text
stringlengths
41
89.8k
type
stringclasses
1 value
start
int64
79
258k
end
int64
342
260k
depth
int64
0
0
filepath
stringlengths
81
164
parent_class
null
class_index
int64
0
1.38k
class ShapEParamsProjModel(ModelMixin, ConfigMixin): """ project the latent representation of a 3D asset to obtain weights of a multi-layer perceptron (MLP). For more details, see the original paper: """ @register_to_config def __init__( self, *, param_names: Tuple[str] = ( "nerstf.mlp.0.weight", "nerstf.mlp.1.weight", "nerstf.mlp.2.weight", "nerstf.mlp.3.weight", ), param_shapes: Tuple[Tuple[int]] = ( (256, 93), (256, 256), (256, 256), (256, 256), ), d_latent: int = 1024, ): super().__init__() # check inputs if len(param_names) != len(param_shapes): raise ValueError("Must provide same number of `param_names` as `param_shapes`") self.projections = nn.ModuleDict({}) for k, (vectors, channels) in zip(param_names, param_shapes): self.projections[_sanitize_name(k)] = ChannelsProj( vectors=vectors, channels=channels, d_latent=d_latent, ) def forward(self, x: torch.Tensor): out = {} start = 0 for k, shape in zip(self.config.param_names, self.config.param_shapes): vectors, _ = shape end = start + vectors x_bvd = x[:, start:end] out[k] = self.projections[_sanitize_name(k)](x_bvd).reshape(len(x), *shape) start = end return out
class_definition
27,001
28,540
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/shap_e/renderer.py
null
200
class ShapERenderer(ModelMixin, ConfigMixin): @register_to_config def __init__( self, *, param_names: Tuple[str] = ( "nerstf.mlp.0.weight", "nerstf.mlp.1.weight", "nerstf.mlp.2.weight", "nerstf.mlp.3.weight", ), param_shapes: Tuple[Tuple[int]] = ( (256, 93), (256, 256), (256, 256), (256, 256), ), d_latent: int = 1024, d_hidden: int = 256, n_output: int = 12, n_hidden_layers: int = 6, act_fn: str = "swish", insert_direction_at: int = 4, background: Tuple[float] = ( 255.0, 255.0, 255.0, ), ): super().__init__() self.params_proj = ShapEParamsProjModel( param_names=param_names, param_shapes=param_shapes, d_latent=d_latent, ) self.mlp = MLPNeRSTFModel(d_hidden, n_output, n_hidden_layers, act_fn, insert_direction_at) self.void = VoidNeRFModel(background=background, channel_scale=255.0) self.volume = BoundingBoxVolume(bbox_max=[1.0, 1.0, 1.0], bbox_min=[-1.0, -1.0, -1.0]) self.mesh_decoder = MeshDecoder() @torch.no_grad() def render_rays(self, rays, sampler, n_samples, prev_model_out=None, render_with_direction=False): """ Perform volumetric rendering over a partition of possible t's in the union of rendering volumes (written below with some abuse of notations) C(r) := sum( transmittance(t[i]) * integrate( lambda t: density(t) * channels(t) * transmittance(t), [t[i], t[i + 1]], ) for i in range(len(parts)) ) + transmittance(t[-1]) * void_model(t[-1]).channels where 1) transmittance(s) := exp(-integrate(density, [t[0], s])) calculates the probability of light passing through the volume specified by [t[0], s]. (transmittance of 1 means light can pass freely) 2) density and channels are obtained by evaluating the appropriate part.model at time t. 3) [t[i], t[i + 1]] is defined as the range of t where the ray intersects (parts[i].volume \\ union(part.volume for part in parts[:i])) at the surface of the shell (if bounded). If the ray does not intersect, the integral over this segment is evaluated as 0 and transmittance(t[i + 1]) := transmittance(t[i]). 4) The last term is integration to infinity (e.g. [t[-1], math.inf]) that is evaluated by the void_model (i.e. we consider this space to be empty). Args: rays: [batch_size x ... x 2 x 3] origin and direction. sampler: disjoint volume integrals. n_samples: number of ts to sample. prev_model_outputs: model outputs from the previous rendering step, including :return: A tuple of - `channels` - A importance samplers for additional fine-grained rendering - raw model output """ origin, direction = rays[..., 0, :], rays[..., 1, :] # Integrate over [t[i], t[i + 1]] # 1 Intersect the rays with the current volume and sample ts to integrate along. vrange = self.volume.intersect(origin, direction, t0_lower=None) ts = sampler.sample(vrange.t0, vrange.t1, n_samples) ts = ts.to(rays.dtype) if prev_model_out is not None: # Append the previous ts now before fprop because previous # rendering used a different model and we can't reuse the output. ts = torch.sort(torch.cat([ts, prev_model_out.ts], dim=-2), dim=-2).values batch_size, *_shape, _t0_dim = vrange.t0.shape _, *ts_shape, _ts_dim = ts.shape # 2. Get the points along the ray and query the model directions = torch.broadcast_to(direction.unsqueeze(-2), [batch_size, *ts_shape, 3]) positions = origin.unsqueeze(-2) + ts * directions directions = directions.to(self.mlp.dtype) positions = positions.to(self.mlp.dtype) optional_directions = directions if render_with_direction else None model_out = self.mlp( position=positions, direction=optional_directions, ts=ts, nerf_level="coarse" if prev_model_out is None else "fine", ) # 3. Integrate the model results channels, weights, transmittance = integrate_samples( vrange, model_out.ts, model_out.density, model_out.channels ) # 4. Clean up results that do not intersect with the volume. transmittance = torch.where(vrange.intersected, transmittance, torch.ones_like(transmittance)) channels = torch.where(vrange.intersected, channels, torch.zeros_like(channels)) # 5. integration to infinity (e.g. [t[-1], math.inf]) that is evaluated by the void_model (i.e. we consider this space to be empty). channels = channels + transmittance * self.void(origin) weighted_sampler = ImportanceRaySampler(vrange, ts=model_out.ts, weights=weights) return channels, weighted_sampler, model_out @torch.no_grad() def decode_to_image( self, latents, device, size: int = 64, ray_batch_size: int = 4096, n_coarse_samples=64, n_fine_samples=128, ): # project the parameters from the generated latents projected_params = self.params_proj(latents) # update the mlp layers of the renderer for name, param in self.mlp.state_dict().items(): if f"nerstf.{name}" in projected_params.keys(): param.copy_(projected_params[f"nerstf.{name}"].squeeze(0)) # create cameras object camera = create_pan_cameras(size) rays = camera.camera_rays rays = rays.to(device) n_batches = rays.shape[1] // ray_batch_size coarse_sampler = StratifiedRaySampler() images = [] for idx in range(n_batches): rays_batch = rays[:, idx * ray_batch_size : (idx + 1) * ray_batch_size] # render rays with coarse, stratified samples. _, fine_sampler, coarse_model_out = self.render_rays(rays_batch, coarse_sampler, n_coarse_samples) # Then, render with additional importance-weighted ray samples. channels, _, _ = self.render_rays( rays_batch, fine_sampler, n_fine_samples, prev_model_out=coarse_model_out ) images.append(channels) images = torch.cat(images, dim=1) images = images.view(*camera.shape, camera.height, camera.width, -1).squeeze(0) return images @torch.no_grad() def decode_to_mesh( self, latents, device, grid_size: int = 128, query_batch_size: int = 4096, texture_channels: Tuple = ("R", "G", "B"), ): # 1. project the parameters from the generated latents projected_params = self.params_proj(latents) # 2. update the mlp layers of the renderer for name, param in self.mlp.state_dict().items(): if f"nerstf.{name}" in projected_params.keys(): param.copy_(projected_params[f"nerstf.{name}"].squeeze(0)) # 3. decoding with STF rendering # 3.1 query the SDF values at vertices along a regular 128**3 grid query_points = volume_query_points(self.volume, grid_size) query_positions = query_points[None].repeat(1, 1, 1).to(device=device, dtype=self.mlp.dtype) fields = [] for idx in range(0, query_positions.shape[1], query_batch_size): query_batch = query_positions[:, idx : idx + query_batch_size] model_out = self.mlp( position=query_batch, direction=None, ts=None, nerf_level="fine", rendering_mode="stf" ) fields.append(model_out.signed_distance) # predicted SDF values fields = torch.cat(fields, dim=1) fields = fields.float() assert ( len(fields.shape) == 3 and fields.shape[-1] == 1 ), f"expected [meta_batch x inner_batch] SDF results, but got {fields.shape}" fields = fields.reshape(1, *([grid_size] * 3)) # create grid 128 x 128 x 128 # - force a negative border around the SDFs to close off all the models. full_grid = torch.zeros( 1, grid_size + 2, grid_size + 2, grid_size + 2, device=fields.device, dtype=fields.dtype, ) full_grid.fill_(-1.0) full_grid[:, 1:-1, 1:-1, 1:-1] = fields fields = full_grid # apply a differentiable implementation of Marching Cubes to construct meshs raw_meshes = [] mesh_mask = [] for field in fields: raw_mesh = self.mesh_decoder(field, self.volume.bbox_min, self.volume.bbox_max - self.volume.bbox_min) mesh_mask.append(True) raw_meshes.append(raw_mesh) mesh_mask = torch.tensor(mesh_mask, device=fields.device) max_vertices = max(len(m.verts) for m in raw_meshes) # 3.2. query the texture color head at each vertex of the resulting mesh. texture_query_positions = torch.stack( [m.verts[torch.arange(0, max_vertices) % len(m.verts)] for m in raw_meshes], dim=0, ) texture_query_positions = texture_query_positions.to(device=device, dtype=self.mlp.dtype) textures = [] for idx in range(0, texture_query_positions.shape[1], query_batch_size): query_batch = texture_query_positions[:, idx : idx + query_batch_size] texture_model_out = self.mlp( position=query_batch, direction=None, ts=None, nerf_level="fine", rendering_mode="stf" ) textures.append(texture_model_out.channels) # predict texture color textures = torch.cat(textures, dim=1) textures = _convert_srgb_to_linear(textures) textures = textures.float() # 3.3 augument the mesh with texture data assert len(textures.shape) == 3 and textures.shape[-1] == len( texture_channels ), f"expected [meta_batch x inner_batch x texture_channels] field results, but got {textures.shape}" for m, texture in zip(raw_meshes, textures): texture = texture[: len(m.verts)] m.vertex_channels = dict(zip(texture_channels, texture.unbind(-1))) return raw_meshes[0]
class_definition
28,543
39,147
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/shap_e/renderer.py
null
201
class ShapEPipelineOutput(BaseOutput): """ Output class for [`ShapEPipeline`] and [`ShapEImg2ImgPipeline`]. Args: images (`torch.Tensor`) A list of images for 3D rendering. """ images: Union[List[List[PIL.Image.Image]], List[List[np.ndarray]]]
class_definition
2,134
2,419
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/shap_e/pipeline_shap_e.py
null
202
class ShapEPipeline(DiffusionPipeline): """ Pipeline for generating latent representation of a 3D asset and rendering with the NeRF method. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: prior ([`PriorTransformer`]): The canonical unCLIP prior to approximate the image embedding from the text embedding. text_encoder ([`~transformers.CLIPTextModelWithProjection`]): Frozen text-encoder. tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. scheduler ([`HeunDiscreteScheduler`]): A scheduler to be used in combination with the `prior` model to generate image embedding. shap_e_renderer ([`ShapERenderer`]): Shap-E renderer projects the generated latents into parameters of a MLP to create 3D objects with the NeRF rendering method. """ model_cpu_offload_seq = "text_encoder->prior" _exclude_from_cpu_offload = ["shap_e_renderer"] def __init__( self, prior: PriorTransformer, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, scheduler: HeunDiscreteScheduler, shap_e_renderer: ShapERenderer, ): super().__init__() self.register_modules( prior=prior, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler, shap_e_renderer=shap_e_renderer, ) # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, ): len(prompt) if isinstance(prompt, list) else 1 # YiYi Notes: set pad_token_id to be 0, not sure why I can't set in the config file self.tokenizer.pad_token_id = 0 # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_encoder_output = self.text_encoder(text_input_ids.to(device)) prompt_embeds = text_encoder_output.text_embeds prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) # in Shap-E it normalize the prompt_embeds and then later rescale it prompt_embeds = prompt_embeds / torch.linalg.norm(prompt_embeds, dim=-1, keepdim=True) if do_classifier_free_guidance: negative_prompt_embeds = torch.zeros_like(prompt_embeds) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # Rescale the features to have unit variance prompt_embeds = math.sqrt(prompt_embeds.shape[1]) * prompt_embeds return prompt_embeds @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: str, num_images_per_prompt: int = 1, num_inference_steps: int = 25, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, guidance_scale: float = 4.0, frame_size: int = 64, output_type: Optional[str] = "pil", # pil, np, latent, mesh return_dict: bool = True, ): """ The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. num_inference_steps (`int`, *optional*, defaults to 25): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. guidance_scale (`float`, *optional*, defaults to 4.0): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. frame_size (`int`, *optional*, default to 64): The width and height of each image frame of the generated 3D output. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`), `"latent"` (`torch.Tensor`), or mesh ([`MeshDecoderOutput`]). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.shap_e.pipeline_shap_e.ShapEPipelineOutput`] instead of a plain tuple. Examples: Returns: [`~pipelines.shap_e.pipeline_shap_e.ShapEPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.shap_e.pipeline_shap_e.ShapEPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ if isinstance(prompt, str): batch_size = 1 elif isinstance(prompt, list): batch_size = len(prompt) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") device = self._execution_device batch_size = batch_size * num_images_per_prompt do_classifier_free_guidance = guidance_scale > 1.0 prompt_embeds = self._encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance) # prior self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps num_embeddings = self.prior.config.num_embeddings embedding_dim = self.prior.config.embedding_dim latents = self.prepare_latents( (batch_size, num_embeddings * embedding_dim), prompt_embeds.dtype, device, generator, latents, self.scheduler, ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim latents = latents.reshape(latents.shape[0], num_embeddings, embedding_dim) for i, t in enumerate(self.progress_bar(timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t) noise_pred = self.prior( scaled_model_input, timestep=t, proj_embedding=prompt_embeds, ).predicted_image_embedding # remove the variance noise_pred, _ = noise_pred.split( scaled_model_input.shape[2], dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance: noise_pred_uncond, noise_pred = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) latents = self.scheduler.step( noise_pred, timestep=t, sample=latents, ).prev_sample if XLA_AVAILABLE: xm.mark_step() # Offload all models self.maybe_free_model_hooks() if output_type not in ["np", "pil", "latent", "mesh"]: raise ValueError( f"Only the output types `pil`, `np`, `latent` and `mesh` are supported not output_type={output_type}" ) if output_type == "latent": return ShapEPipelineOutput(images=latents) images = [] if output_type == "mesh": for i, latent in enumerate(latents): mesh = self.shap_e_renderer.decode_to_mesh( latent[None, :], device, ) images.append(mesh) else: # np, pil for i, latent in enumerate(latents): image = self.shap_e_renderer.decode_to_image( latent[None, :], device, size=frame_size, ) images.append(image) images = torch.stack(images) images = images.cpu().numpy() if output_type == "pil": images = [self.numpy_to_pil(image) for image in images] if not return_dict: return (images,) return ShapEPipelineOutput(images=images)
class_definition
2,422
13,397
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/shap_e/pipeline_shap_e.py
null
203
class DifferentiableProjectiveCamera: """ Implements a batch, differentiable, standard pinhole camera """ origin: torch.Tensor # [batch_size x 3] x: torch.Tensor # [batch_size x 3] y: torch.Tensor # [batch_size x 3] z: torch.Tensor # [batch_size x 3] width: int height: int x_fov: float y_fov: float shape: Tuple[int] def __post_init__(self): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape) == len(self.y.shape) == len(self.z.shape) == len(self.origin.shape) == 2 def resolution(self): return torch.from_numpy(np.array([self.width, self.height], dtype=np.float32)) def fov(self): return torch.from_numpy(np.array([self.x_fov, self.y_fov], dtype=np.float32)) def get_image_coords(self) -> torch.Tensor: """ :return: coords of shape (width * height, 2) """ pixel_indices = torch.arange(self.height * self.width) coords = torch.stack( [ pixel_indices % self.width, torch.div(pixel_indices, self.width, rounding_mode="trunc"), ], axis=1, ) return coords @property def camera_rays(self): batch_size, *inner_shape = self.shape inner_batch_size = int(np.prod(inner_shape)) coords = self.get_image_coords() coords = torch.broadcast_to(coords.unsqueeze(0), [batch_size * inner_batch_size, *coords.shape]) rays = self.get_camera_rays(coords) rays = rays.view(batch_size, inner_batch_size * self.height * self.width, 2, 3) return rays def get_camera_rays(self, coords: torch.Tensor) -> torch.Tensor: batch_size, *shape, n_coords = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] flat = coords.view(batch_size, -1, 2) res = self.resolution() fov = self.fov() fracs = (flat.float() / (res - 1)) * 2 - 1 fracs = fracs * torch.tan(fov / 2) fracs = fracs.view(batch_size, -1, 2) directions = ( self.z.view(batch_size, 1, 3) + self.x.view(batch_size, 1, 3) * fracs[:, :, :1] + self.y.view(batch_size, 1, 3) * fracs[:, :, 1:] ) directions = directions / directions.norm(dim=-1, keepdim=True) rays = torch.stack( [ torch.broadcast_to(self.origin.view(batch_size, 1, 3), [batch_size, directions.shape[1], 3]), directions, ], dim=2, ) return rays.view(batch_size, *shape, 2, 3) def resize_image(self, width: int, height: int) -> "DifferentiableProjectiveCamera": """ Creates a new camera for the resized view assuming the aspect ratio does not change. """ assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin, x=self.x, y=self.y, z=self.z, width=width, height=height, x_fov=self.x_fov, y_fov=self.y_fov, )
class_definition
724
4,069
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/shap_e/camera.py
null
204
class ShapEPipelineOutput(BaseOutput): """ Output class for [`ShapEPipeline`] and [`ShapEImg2ImgPipeline`]. Args: images (`torch.Tensor`) A list of images for 3D rendering. """ images: Union[PIL.Image.Image, np.ndarray]
class_definition
2,294
2,555
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py
null
205
class ShapEImg2ImgPipeline(DiffusionPipeline): """ Pipeline for generating latent representation of a 3D asset and rendering with the NeRF method from an image. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: prior ([`PriorTransformer`]): The canonical unCLIP prior to approximate the image embedding from the text embedding. image_encoder ([`~transformers.CLIPVisionModel`]): Frozen image-encoder. image_processor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to process images. scheduler ([`HeunDiscreteScheduler`]): A scheduler to be used in combination with the `prior` model to generate image embedding. shap_e_renderer ([`ShapERenderer`]): Shap-E renderer projects the generated latents into parameters of a MLP to create 3D objects with the NeRF rendering method. """ model_cpu_offload_seq = "image_encoder->prior" _exclude_from_cpu_offload = ["shap_e_renderer"] def __init__( self, prior: PriorTransformer, image_encoder: CLIPVisionModel, image_processor: CLIPImageProcessor, scheduler: HeunDiscreteScheduler, shap_e_renderer: ShapERenderer, ): super().__init__() self.register_modules( prior=prior, image_encoder=image_encoder, image_processor=image_processor, scheduler=scheduler, shap_e_renderer=shap_e_renderer, ) # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents def _encode_image( self, image, device, num_images_per_prompt, do_classifier_free_guidance, ): if isinstance(image, List) and isinstance(image[0], torch.Tensor): image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0) if not isinstance(image, torch.Tensor): image = self.image_processor(image, return_tensors="pt").pixel_values[0].unsqueeze(0) image = image.to(dtype=self.image_encoder.dtype, device=device) image_embeds = self.image_encoder(image)["last_hidden_state"] image_embeds = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) if do_classifier_free_guidance: negative_image_embeds = torch.zeros_like(image_embeds) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes image_embeds = torch.cat([negative_image_embeds, image_embeds]) return image_embeds @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, image: Union[PIL.Image.Image, List[PIL.Image.Image]], num_images_per_prompt: int = 1, num_inference_steps: int = 25, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, guidance_scale: float = 4.0, frame_size: int = 64, output_type: Optional[str] = "pil", # pil, np, latent, mesh return_dict: bool = True, ): """ The call function to the pipeline for generation. Args: image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image` or tensor representing an image batch to be used as the starting point. Can also accept image latents as image, but if passing latents directly it is not encoded again. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. num_inference_steps (`int`, *optional*, defaults to 25): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. guidance_scale (`float`, *optional*, defaults to 4.0): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. frame_size (`int`, *optional*, default to 64): The width and height of each image frame of the generated 3D output. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`), `"latent"` (`torch.Tensor`), or mesh ([`MeshDecoderOutput`]). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.shap_e.pipeline_shap_e.ShapEPipelineOutput`] instead of a plain tuple. Examples: Returns: [`~pipelines.shap_e.pipeline_shap_e.ShapEPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.shap_e.pipeline_shap_e.ShapEPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ if isinstance(image, PIL.Image.Image): batch_size = 1 elif isinstance(image, torch.Tensor): batch_size = image.shape[0] elif isinstance(image, list) and isinstance(image[0], (torch.Tensor, PIL.Image.Image)): batch_size = len(image) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(image)}" ) device = self._execution_device batch_size = batch_size * num_images_per_prompt do_classifier_free_guidance = guidance_scale > 1.0 image_embeds = self._encode_image(image, device, num_images_per_prompt, do_classifier_free_guidance) # prior self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps num_embeddings = self.prior.config.num_embeddings embedding_dim = self.prior.config.embedding_dim if latents is None: latents = self.prepare_latents( (batch_size, num_embeddings * embedding_dim), image_embeds.dtype, device, generator, latents, self.scheduler, ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim latents = latents.reshape(latents.shape[0], num_embeddings, embedding_dim) for i, t in enumerate(self.progress_bar(timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t) noise_pred = self.prior( scaled_model_input, timestep=t, proj_embedding=image_embeds, ).predicted_image_embedding # remove the variance noise_pred, _ = noise_pred.split( scaled_model_input.shape[2], dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance: noise_pred_uncond, noise_pred = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) latents = self.scheduler.step( noise_pred, timestep=t, sample=latents, ).prev_sample if XLA_AVAILABLE: xm.mark_step() if output_type not in ["np", "pil", "latent", "mesh"]: raise ValueError( f"Only the output types `pil`, `np`, `latent` and `mesh` are supported not output_type={output_type}" ) # Offload all models self.maybe_free_model_hooks() if output_type == "latent": return ShapEPipelineOutput(images=latents) images = [] if output_type == "mesh": for i, latent in enumerate(latents): mesh = self.shap_e_renderer.decode_to_mesh( latent[None, :], device, ) images.append(mesh) else: # np, pil for i, latent in enumerate(latents): image = self.shap_e_renderer.decode_to_image( latent[None, :], device, size=frame_size, ) images.append(image) images = torch.stack(images) images = images.cpu().numpy() if output_type == "pil": images = [self.numpy_to_pil(image) for image in images] if not return_dict: return (images,) return ShapEPipelineOutput(images=images)
class_definition
2,558
13,204
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py
null
206
class SemanticStableDiffusionPipelineOutput(BaseOutput): """ Output class for Stable Diffusion pipelines. Args: images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, num_channels)`. nsfw_content_detected (`List[bool]`) List indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content or `None` if safety checking could not be performed. """ images: Union[List[PIL.Image.Image], np.ndarray] nsfw_content_detected: Optional[List[bool]]
class_definition
158
821
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/semantic_stable_diffusion/pipeline_output.py
null
207
class SemanticStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin): r""" Pipeline for text-to-image generation using Stable Diffusion with latent editing. This model inherits from [`DiffusionPipeline`] and builds on the [`StableDiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`Q16SafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ model_cpu_offload_seq = "text_encoder->unet->vae" _optional_components = ["safety_checker", "feature_extractor"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__() if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs # Copied from diffusers.pipelines.stable_diffusion_k_diffusion.pipeline_stable_diffusion_k_diffusion.StableDiffusionKDiffusionPipeline.check_inputs def check_inputs( self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: int = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, editing_prompt: Optional[Union[str, List[str]]] = None, editing_prompt_embeddings: Optional[torch.Tensor] = None, reverse_editing_direction: Optional[Union[bool, List[bool]]] = False, edit_guidance_scale: Optional[Union[float, List[float]]] = 5, edit_warmup_steps: Optional[Union[int, List[int]]] = 10, edit_cooldown_steps: Optional[Union[int, List[int]]] = None, edit_threshold: Optional[Union[float, List[float]]] = 0.9, edit_momentum_scale: Optional[float] = 0.1, edit_mom_beta: Optional[float] = 0.4, edit_weights: Optional[List[float]] = None, sem_guidance: Optional[List[torch.Tensor]] = None, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide image generation. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. editing_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to use for semantic guidance. Semantic guidance is disabled by setting `editing_prompt = None`. Guidance direction of prompt should be specified via `reverse_editing_direction`. editing_prompt_embeddings (`torch.Tensor`, *optional*): Pre-computed embeddings to use for semantic guidance. Guidance direction of embedding should be specified via `reverse_editing_direction`. reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`): Whether the corresponding prompt in `editing_prompt` should be increased or decreased. edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5): Guidance scale for semantic guidance. If provided as a list, values should correspond to `editing_prompt`. edit_warmup_steps (`float` or `List[float]`, *optional*, defaults to 10): Number of diffusion steps (for each prompt) for which semantic guidance is not applied. Momentum is calculated for those steps and applied once all warmup periods are over. edit_cooldown_steps (`float` or `List[float]`, *optional*, defaults to `None`): Number of diffusion steps (for each prompt) after which semantic guidance is longer applied. edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9): Threshold of semantic guidance. edit_momentum_scale (`float`, *optional*, defaults to 0.1): Scale of the momentum to be added to the semantic guidance at each diffusion step. If set to 0.0, momentum is disabled. Momentum is already built up during warmup (for diffusion steps smaller than `sld_warmup_steps`). Momentum is only added to latent guidance once all warmup periods are finished. edit_mom_beta (`float`, *optional*, defaults to 0.4): Defines how semantic guidance momentum builds up. `edit_mom_beta` indicates how much of the previous momentum is kept. Momentum is already built up during warmup (for diffusion steps smaller than `edit_warmup_steps`). edit_weights (`List[float]`, *optional*, defaults to `None`): Indicates how much each individual concept should influence the overall guidance. If no weights are provided all concepts are applied equally. sem_guidance (`List[torch.Tensor]`, *optional*): List of pre-generated guidance vectors to be applied at generation. Length of the list has to correspond to `num_inference_steps`. Examples: ```py >>> import torch >>> from diffusers import SemanticStableDiffusionPipeline >>> pipe = SemanticStableDiffusionPipeline.from_pretrained( ... "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> out = pipe( ... prompt="a photo of the face of a woman", ... num_images_per_prompt=1, ... guidance_scale=7, ... editing_prompt=[ ... "smiling, smile", # Concepts to apply ... "glasses, wearing glasses", ... "curls, wavy hair, curly hair", ... "beard, full beard, mustache", ... ], ... reverse_editing_direction=[ ... False, ... False, ... False, ... False, ... ], # Direction of guidance i.e. increase all concepts ... edit_warmup_steps=[10, 10, 10, 10], # Warmup period for each concept ... edit_guidance_scale=[4, 5, 5, 5.4], # Guidance scale for each concept ... edit_threshold=[ ... 0.99, ... 0.975, ... 0.925, ... 0.96, ... ], # Threshold for each concept. Threshold equals the percentile of the latent space that will be discarded. I.e. threshold=0.99 uses 1% of the latent dimensions ... edit_momentum_scale=0.3, # Momentum scale that will be added to the latent guidance ... edit_mom_beta=0.6, # Momentum beta ... edit_weights=[1, 1, 1, 1, 1], # Weights of the individual concepts against each other ... ) >>> image = out.images[0] ``` Returns: [`~pipelines.semantic_stable_diffusion.SemanticStableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.semantic_stable_diffusion.SemanticStableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs(prompt, height, width, callback_steps) # 2. Define call parameters batch_size = 1 if isinstance(prompt, str) else len(prompt) device = self._execution_device if editing_prompt: enable_edit_guidance = True if isinstance(editing_prompt, str): editing_prompt = [editing_prompt] enabled_editing_prompts = len(editing_prompt) elif editing_prompt_embeddings is not None: enable_edit_guidance = True enabled_editing_prompts = editing_prompt_embeddings.shape[0] else: enabled_editing_prompts = 0 enable_edit_guidance = False # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="pt", ) text_input_ids = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] text_embeddings = self.text_encoder(text_input_ids.to(device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method bs_embed, seq_len, _ = text_embeddings.shape text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1) text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) if enable_edit_guidance: # get safety text embeddings if editing_prompt_embeddings is None: edit_concepts_input = self.tokenizer( [x for item in editing_prompt for x in repeat(item, batch_size)], padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="pt", ) edit_concepts_input_ids = edit_concepts_input.input_ids if edit_concepts_input_ids.shape[-1] > self.tokenizer.model_max_length: removed_text = self.tokenizer.batch_decode( edit_concepts_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) edit_concepts_input_ids = edit_concepts_input_ids[:, : self.tokenizer.model_max_length] edit_concepts = self.text_encoder(edit_concepts_input_ids.to(device))[0] else: edit_concepts = editing_prompt_embeddings.to(device).repeat(batch_size, 1, 1) # duplicate text embeddings for each generation per prompt, using mps friendly method bs_embed_edit, seq_len_edit, _ = edit_concepts.shape edit_concepts = edit_concepts.repeat(1, num_images_per_prompt, 1) edit_concepts = edit_concepts.view(bs_embed_edit * num_images_per_prompt, seq_len_edit, -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = text_input_ids.shape[-1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = uncond_embeddings.shape[1] uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1) uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if enable_edit_guidance: text_embeddings = torch.cat([uncond_embeddings, text_embeddings, edit_concepts]) else: text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, text_embeddings.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # Initialize edit_momentum to None edit_momentum = None self.uncond_estimates = None self.text_estimates = None self.edit_estimates = None self.sem_guidance = None for i, t in enumerate(self.progress_bar(timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = ( torch.cat([latents] * (2 + enabled_editing_prompts)) if do_classifier_free_guidance else latents ) latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample # perform guidance if do_classifier_free_guidance: noise_pred_out = noise_pred.chunk(2 + enabled_editing_prompts) # [b,4, 64, 64] noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1] noise_pred_edit_concepts = noise_pred_out[2:] # default text guidance noise_guidance = guidance_scale * (noise_pred_text - noise_pred_uncond) # noise_guidance = (noise_pred_text - noise_pred_edit_concepts[0]) if self.uncond_estimates is None: self.uncond_estimates = torch.zeros((num_inference_steps + 1, *noise_pred_uncond.shape)) self.uncond_estimates[i] = noise_pred_uncond.detach().cpu() if self.text_estimates is None: self.text_estimates = torch.zeros((num_inference_steps + 1, *noise_pred_text.shape)) self.text_estimates[i] = noise_pred_text.detach().cpu() if self.edit_estimates is None and enable_edit_guidance: self.edit_estimates = torch.zeros( (num_inference_steps + 1, len(noise_pred_edit_concepts), *noise_pred_edit_concepts[0].shape) ) if self.sem_guidance is None: self.sem_guidance = torch.zeros((num_inference_steps + 1, *noise_pred_text.shape)) if edit_momentum is None: edit_momentum = torch.zeros_like(noise_guidance) if enable_edit_guidance: concept_weights = torch.zeros( (len(noise_pred_edit_concepts), noise_guidance.shape[0]), device=device, dtype=noise_guidance.dtype, ) noise_guidance_edit = torch.zeros( (len(noise_pred_edit_concepts), *noise_guidance.shape), device=device, dtype=noise_guidance.dtype, ) # noise_guidance_edit = torch.zeros_like(noise_guidance) warmup_inds = [] for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts): self.edit_estimates[i, c] = noise_pred_edit_concept if isinstance(edit_guidance_scale, list): edit_guidance_scale_c = edit_guidance_scale[c] else: edit_guidance_scale_c = edit_guidance_scale if isinstance(edit_threshold, list): edit_threshold_c = edit_threshold[c] else: edit_threshold_c = edit_threshold if isinstance(reverse_editing_direction, list): reverse_editing_direction_c = reverse_editing_direction[c] else: reverse_editing_direction_c = reverse_editing_direction if edit_weights: edit_weight_c = edit_weights[c] else: edit_weight_c = 1.0 if isinstance(edit_warmup_steps, list): edit_warmup_steps_c = edit_warmup_steps[c] else: edit_warmup_steps_c = edit_warmup_steps if isinstance(edit_cooldown_steps, list): edit_cooldown_steps_c = edit_cooldown_steps[c] elif edit_cooldown_steps is None: edit_cooldown_steps_c = i + 1 else: edit_cooldown_steps_c = edit_cooldown_steps if i >= edit_warmup_steps_c: warmup_inds.append(c) if i >= edit_cooldown_steps_c: noise_guidance_edit[c, :, :, :, :] = torch.zeros_like(noise_pred_edit_concept) continue noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond # tmp_weights = (noise_pred_text - noise_pred_edit_concept).sum(dim=(1, 2, 3)) tmp_weights = (noise_guidance - noise_pred_edit_concept).sum(dim=(1, 2, 3)) tmp_weights = torch.full_like(tmp_weights, edit_weight_c) # * (1 / enabled_editing_prompts) if reverse_editing_direction_c: noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1 concept_weights[c, :] = tmp_weights noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c # torch.quantile function expects float32 if noise_guidance_edit_tmp.dtype == torch.float32: tmp = torch.quantile( torch.abs(noise_guidance_edit_tmp).flatten(start_dim=2), edit_threshold_c, dim=2, keepdim=False, ) else: tmp = torch.quantile( torch.abs(noise_guidance_edit_tmp).flatten(start_dim=2).to(torch.float32), edit_threshold_c, dim=2, keepdim=False, ).to(noise_guidance_edit_tmp.dtype) noise_guidance_edit_tmp = torch.where( torch.abs(noise_guidance_edit_tmp) >= tmp[:, :, None, None], noise_guidance_edit_tmp, torch.zeros_like(noise_guidance_edit_tmp), ) noise_guidance_edit[c, :, :, :, :] = noise_guidance_edit_tmp # noise_guidance_edit = noise_guidance_edit + noise_guidance_edit_tmp warmup_inds = torch.tensor(warmup_inds).to(device) if len(noise_pred_edit_concepts) > warmup_inds.shape[0] > 0: concept_weights = concept_weights.to("cpu") # Offload to cpu noise_guidance_edit = noise_guidance_edit.to("cpu") concept_weights_tmp = torch.index_select(concept_weights.to(device), 0, warmup_inds) concept_weights_tmp = torch.where( concept_weights_tmp < 0, torch.zeros_like(concept_weights_tmp), concept_weights_tmp ) concept_weights_tmp = concept_weights_tmp / concept_weights_tmp.sum(dim=0) # concept_weights_tmp = torch.nan_to_num(concept_weights_tmp) noise_guidance_edit_tmp = torch.index_select(noise_guidance_edit.to(device), 0, warmup_inds) noise_guidance_edit_tmp = torch.einsum( "cb,cbijk->bijk", concept_weights_tmp, noise_guidance_edit_tmp ) noise_guidance = noise_guidance + noise_guidance_edit_tmp self.sem_guidance[i] = noise_guidance_edit_tmp.detach().cpu() del noise_guidance_edit_tmp del concept_weights_tmp concept_weights = concept_weights.to(device) noise_guidance_edit = noise_guidance_edit.to(device) concept_weights = torch.where( concept_weights < 0, torch.zeros_like(concept_weights), concept_weights ) concept_weights = torch.nan_to_num(concept_weights) noise_guidance_edit = torch.einsum("cb,cbijk->bijk", concept_weights, noise_guidance_edit) noise_guidance_edit = noise_guidance_edit.to(edit_momentum.device) noise_guidance_edit = noise_guidance_edit + edit_momentum_scale * edit_momentum edit_momentum = edit_mom_beta * edit_momentum + (1 - edit_mom_beta) * noise_guidance_edit if warmup_inds.shape[0] == len(noise_pred_edit_concepts): noise_guidance = noise_guidance + noise_guidance_edit self.sem_guidance[i] = noise_guidance_edit.detach().cpu() if sem_guidance is not None: edit_guidance = sem_guidance[i].to(device) noise_guidance = noise_guidance + edit_guidance noise_pred = noise_pred_uncond + noise_guidance # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() # 8. Post-processing if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) if not return_dict: return (image, has_nsfw_concept) return SemanticStableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
class_definition
879
38,914
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py
null
208
class StableCascadeDecoderPipeline(DiffusionPipeline): """ Pipeline for generating images from the Stable Cascade model. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: tokenizer (`CLIPTokenizer`): The CLIP tokenizer. text_encoder (`CLIPTextModel`): The CLIP text encoder. decoder ([`StableCascadeUNet`]): The Stable Cascade decoder unet. vqgan ([`PaellaVQModel`]): The VQGAN model. scheduler ([`DDPMWuerstchenScheduler`]): A scheduler to be used in combination with `prior` to generate image embedding. latent_dim_scale (float, `optional`, defaults to 10.67): Multiplier to determine the VQ latent space size from the image embeddings. If the image embeddings are height=24 and width=24, the VQ latent shape needs to be height=int(24*10.67)=256 and width=int(24*10.67)=256 in order to match the training conditions. """ unet_name = "decoder" text_encoder_name = "text_encoder" model_cpu_offload_seq = "text_encoder->decoder->vqgan" _callback_tensor_inputs = [ "latents", "prompt_embeds_pooled", "negative_prompt_embeds", "image_embeddings", ] def __init__( self, decoder: StableCascadeUNet, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, scheduler: DDPMWuerstchenScheduler, vqgan: PaellaVQModel, latent_dim_scale: float = 10.67, ) -> None: super().__init__() self.register_modules( decoder=decoder, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=scheduler, vqgan=vqgan, ) self.register_to_config(latent_dim_scale=latent_dim_scale) def prepare_latents( self, batch_size, image_embeddings, num_images_per_prompt, dtype, device, generator, latents, scheduler ): _, channels, height, width = image_embeddings.shape latents_shape = ( batch_size * num_images_per_prompt, 4, int(height * self.config.latent_dim_scale), int(width * self.config.latent_dim_scale), ) if latents is None: latents = randn_tensor(latents_shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents def encode_prompt( self, device, batch_size, num_images_per_prompt, do_classifier_free_guidance, prompt=None, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, prompt_embeds_pooled: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, ): if prompt_embeds is None: # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids attention_mask = text_inputs.attention_mask untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] attention_mask = attention_mask[:, : self.tokenizer.model_max_length] text_encoder_output = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask.to(device), output_hidden_states=True ) prompt_embeds = text_encoder_output.hidden_states[-1] if prompt_embeds_pooled is None: prompt_embeds_pooled = text_encoder_output.text_embeds.unsqueeze(1) prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) prompt_embeds_pooled = prompt_embeds_pooled.to(dtype=self.text_encoder.dtype, device=device) prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) prompt_embeds_pooled = prompt_embeds_pooled.repeat_interleave(num_images_per_prompt, dim=0) if negative_prompt_embeds is None and do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) negative_prompt_embeds_text_encoder_output = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device), output_hidden_states=True, ) negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.hidden_states[-1] negative_prompt_embeds_pooled = negative_prompt_embeds_text_encoder_output.text_embeds.unsqueeze(1) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) seq_len = negative_prompt_embeds_pooled.shape[1] negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.to( dtype=self.text_encoder.dtype, device=device ) negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.view( batch_size * num_images_per_prompt, seq_len, -1 ) # done duplicates return prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled def check_inputs( self, prompt, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, ): if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps def get_timestep_ratio_conditioning(self, t, alphas_cumprod): s = torch.tensor([0.008]) clamp_range = [0, 1] min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2 var = alphas_cumprod[t] var = var.clamp(*clamp_range) s, min_var = s.to(var.device), min_var.to(var.device) ratio = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s return ratio @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, image_embeddings: Union[torch.Tensor, List[torch.Tensor]], prompt: Union[str, List[str]] = None, num_inference_steps: int = 10, guidance_scale: float = 0.0, negative_prompt: Optional[Union[str, List[str]]] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_embeds_pooled: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, num_images_per_prompt: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], ): """ Function invoked when calling the pipeline for generation. Args: image_embedding (`torch.Tensor` or `List[torch.Tensor]`): Image Embeddings either extracted from an image or generated by a Prior Model. prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. num_inference_steps (`int`, *optional*, defaults to 12): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 0.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `decoder_guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_embeds_pooled (`torch.Tensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_prompt_embeds_pooled (`torch.Tensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt` input argument. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` [`~pipelines.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image embeddings. """ # 0. Define commonly used variables device = self._execution_device dtype = self.decoder.dtype self._guidance_scale = guidance_scale if is_torch_version("<", "2.2.0") and dtype == torch.bfloat16: raise ValueError("`StableCascadeDecoderPipeline` requires torch>=2.2.0 when using `torch.bfloat16` dtype.") # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, ) if isinstance(image_embeddings, list): image_embeddings = torch.cat(image_embeddings, dim=0) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # Compute the effective number of images per prompt # We must account for the fact that the image embeddings from the prior can be generated with num_images_per_prompt > 1 # This results in a case where a single prompt is associated with multiple image embeddings # Divide the number of image embeddings by the batch size to determine if this is the case. num_images_per_prompt = num_images_per_prompt * (image_embeddings.shape[0] // batch_size) # 2. Encode caption if prompt_embeds is None and negative_prompt_embeds is None: _, prompt_embeds_pooled, _, negative_prompt_embeds_pooled = self.encode_prompt( prompt=prompt, device=device, batch_size=batch_size, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, ) # The pooled embeds from the prior are pooled again before being passed to the decoder prompt_embeds_pooled = ( torch.cat([prompt_embeds_pooled, negative_prompt_embeds_pooled]) if self.do_classifier_free_guidance else prompt_embeds_pooled ) effnet = ( torch.cat([image_embeddings, torch.zeros_like(image_embeddings)]) if self.do_classifier_free_guidance else image_embeddings ) self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latents latents = self.prepare_latents( batch_size, image_embeddings, num_images_per_prompt, dtype, device, generator, latents, self.scheduler ) if isinstance(self.scheduler, DDPMWuerstchenScheduler): timesteps = timesteps[:-1] else: if hasattr(self.scheduler.config, "clip_sample") and self.scheduler.config.clip_sample: self.scheduler.config.clip_sample = False # disample sample clipping logger.warning(" set `clip_sample` to be False") # 6. Run denoising loop if hasattr(self.scheduler, "betas"): alphas = 1.0 - self.scheduler.betas alphas_cumprod = torch.cumprod(alphas, dim=0) else: alphas_cumprod = [] self._num_timesteps = len(timesteps) for i, t in enumerate(self.progress_bar(timesteps)): if not isinstance(self.scheduler, DDPMWuerstchenScheduler): if len(alphas_cumprod) > 0: timestep_ratio = self.get_timestep_ratio_conditioning(t.long().cpu(), alphas_cumprod) timestep_ratio = timestep_ratio.expand(latents.size(0)).to(dtype).to(device) else: timestep_ratio = t.float().div(self.scheduler.timesteps[-1]).expand(latents.size(0)).to(dtype) else: timestep_ratio = t.expand(latents.size(0)).to(dtype) # 7. Denoise latents predicted_latents = self.decoder( sample=torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents, timestep_ratio=torch.cat([timestep_ratio] * 2) if self.do_classifier_free_guidance else timestep_ratio, clip_text_pooled=prompt_embeds_pooled, effnet=effnet, return_dict=False, )[0] # 8. Check for classifier free guidance and apply it if self.do_classifier_free_guidance: predicted_latents_text, predicted_latents_uncond = predicted_latents.chunk(2) predicted_latents = torch.lerp(predicted_latents_uncond, predicted_latents_text, self.guidance_scale) # 9. Renoise latents to next timestep if not isinstance(self.scheduler, DDPMWuerstchenScheduler): timestep_ratio = t latents = self.scheduler.step( model_output=predicted_latents, timestep=timestep_ratio, sample=latents, generator=generator, ).prev_sample if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) if XLA_AVAILABLE: xm.mark_step() if output_type not in ["pt", "np", "pil", "latent"]: raise ValueError( f"Only the output types `pt`, `np`, `pil` and `latent` are supported not output_type={output_type}" ) if not output_type == "latent": # 10. Scale and decode the image latents with vq-vae latents = self.vqgan.config.scale_factor * latents images = self.vqgan.decode(latents).sample.clamp(0, 1) if output_type == "np": images = images.permute(0, 2, 3, 1).cpu().float().numpy() # float() as bfloat16-> numpy doesnt work elif output_type == "pil": images = images.permute(0, 2, 3, 1).cpu().float().numpy() # float() as bfloat16-> numpy doesnt work images = self.numpy_to_pil(images) else: images = latents # Offload all models self.maybe_free_model_hooks() if not return_dict: return images return ImagePipelineOutput(images)
class_definition
2,024
26,067
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py
null
209
class StableCascadeCombinedPipeline(DiffusionPipeline): """ Combined Pipeline for text-to-image generation using Stable Cascade. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: tokenizer (`CLIPTokenizer`): The decoder tokenizer to be used for text inputs. text_encoder (`CLIPTextModel`): The decoder text encoder to be used for text inputs. decoder (`StableCascadeUNet`): The decoder model to be used for decoder image generation pipeline. scheduler (`DDPMWuerstchenScheduler`): The scheduler to be used for decoder image generation pipeline. vqgan (`PaellaVQModel`): The VQGAN model to be used for decoder image generation pipeline. feature_extractor ([`~transformers.CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `image_encoder`. image_encoder ([`CLIPVisionModelWithProjection`]): Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). prior_prior (`StableCascadeUNet`): The prior model to be used for prior pipeline. prior_scheduler (`DDPMWuerstchenScheduler`): The scheduler to be used for prior pipeline. """ _load_connected_pipes = True _optional_components = ["prior_feature_extractor", "prior_image_encoder"] def __init__( self, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, decoder: StableCascadeUNet, scheduler: DDPMWuerstchenScheduler, vqgan: PaellaVQModel, prior_prior: StableCascadeUNet, prior_text_encoder: CLIPTextModel, prior_tokenizer: CLIPTokenizer, prior_scheduler: DDPMWuerstchenScheduler, prior_feature_extractor: Optional[CLIPImageProcessor] = None, prior_image_encoder: Optional[CLIPVisionModelWithProjection] = None, ): super().__init__() self.register_modules( text_encoder=text_encoder, tokenizer=tokenizer, decoder=decoder, scheduler=scheduler, vqgan=vqgan, prior_text_encoder=prior_text_encoder, prior_tokenizer=prior_tokenizer, prior_prior=prior_prior, prior_scheduler=prior_scheduler, prior_feature_extractor=prior_feature_extractor, prior_image_encoder=prior_image_encoder, ) self.prior_pipe = StableCascadePriorPipeline( prior=prior_prior, text_encoder=prior_text_encoder, tokenizer=prior_tokenizer, scheduler=prior_scheduler, image_encoder=prior_image_encoder, feature_extractor=prior_feature_extractor, ) self.decoder_pipe = StableCascadeDecoderPipeline( text_encoder=text_encoder, tokenizer=tokenizer, decoder=decoder, scheduler=scheduler, vqgan=vqgan, ) def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None): self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"): r""" Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. """ self.prior_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device) self.decoder_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device) def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"): r""" Offloads all models (`unet`, `text_encoder`, `vae`, and `safety checker` state dicts) to CPU using 🤗 Accelerate, significantly reducing memory usage. Models are moved to a `torch.device('meta')` and loaded on a GPU only when their specific submodule's `forward` method is called. Offloading happens on a submodule basis. Memory savings are higher than using `enable_model_cpu_offload`, but performance is lower. """ self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) def progress_bar(self, iterable=None, total=None): self.prior_pipe.progress_bar(iterable=iterable, total=total) self.decoder_pipe.progress_bar(iterable=iterable, total=total) def set_progress_bar_config(self, **kwargs): self.prior_pipe.set_progress_bar_config(**kwargs) self.decoder_pipe.set_progress_bar_config(**kwargs) @torch.no_grad() @replace_example_docstring(TEXT2IMAGE_EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[str, List[str]]] = None, images: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]] = None, height: int = 512, width: int = 512, prior_num_inference_steps: int = 60, prior_guidance_scale: float = 4.0, num_inference_steps: int = 12, decoder_guidance_scale: float = 0.0, negative_prompt: Optional[Union[str, List[str]]] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_embeds_pooled: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, num_images_per_prompt: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, prior_callback_on_step_end_tensor_inputs: List[str] = ["latents"], callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], ): """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation for the prior and decoder. images (`torch.Tensor`, `PIL.Image.Image`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, *optional*): The images to guide the image generation for the prior. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_embeds_pooled (`torch.Tensor`, *optional*): Pre-generated text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_prompt_embeds_pooled (`torch.Tensor`, *optional*): Pre-generated negative text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. prior_guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `prior_guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `prior_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. prior_num_inference_steps (`Union[int, Dict[float, int]]`, *optional*, defaults to 60): The number of prior denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. For more specific timestep spacing, you can pass customized `prior_timesteps` num_inference_steps (`int`, *optional*, defaults to 12): The number of decoder denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. For more specific timestep spacing, you can pass customized `timesteps` decoder_guidance_scale (`float`, *optional*, defaults to 0.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. prior_callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `prior_callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. prior_callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `prior_callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` [`~pipelines.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ dtype = self.decoder_pipe.decoder.dtype if is_torch_version("<", "2.2.0") and dtype == torch.bfloat16: raise ValueError( "`StableCascadeCombinedPipeline` requires torch>=2.2.0 when using `torch.bfloat16` dtype." ) prior_outputs = self.prior_pipe( prompt=prompt if prompt_embeds is None else None, images=images, height=height, width=width, num_inference_steps=prior_num_inference_steps, guidance_scale=prior_guidance_scale, negative_prompt=negative_prompt if negative_prompt_embeds is None else None, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, num_images_per_prompt=num_images_per_prompt, generator=generator, latents=latents, output_type="pt", return_dict=True, callback_on_step_end=prior_callback_on_step_end, callback_on_step_end_tensor_inputs=prior_callback_on_step_end_tensor_inputs, ) image_embeddings = prior_outputs.image_embeddings prompt_embeds = prior_outputs.get("prompt_embeds", None) prompt_embeds_pooled = prior_outputs.get("prompt_embeds_pooled", None) negative_prompt_embeds = prior_outputs.get("negative_prompt_embeds", None) negative_prompt_embeds_pooled = prior_outputs.get("negative_prompt_embeds_pooled", None) outputs = self.decoder_pipe( image_embeddings=image_embeddings, prompt=prompt if prompt_embeds is None else None, num_inference_steps=num_inference_steps, guidance_scale=decoder_guidance_scale, negative_prompt=negative_prompt if negative_prompt_embeds is None else None, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, generator=generator, output_type=output_type, return_dict=return_dict, callback_on_step_end=callback_on_step_end, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, ) return outputs
class_definition
1,703
17,815
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py
null
210
class StableCascadePriorPipelineOutput(BaseOutput): """ Output class for WuerstchenPriorPipeline. Args: image_embeddings (`torch.Tensor` or `np.ndarray`) Prior image embeddings for text prompt prompt_embeds (`torch.Tensor`): Text embeddings for the prompt. negative_prompt_embeds (`torch.Tensor`): Text embeddings for the negative prompt. """ image_embeddings: Union[torch.Tensor, np.ndarray] prompt_embeds: Union[torch.Tensor, np.ndarray] prompt_embeds_pooled: Union[torch.Tensor, np.ndarray] negative_prompt_embeds: Union[torch.Tensor, np.ndarray] negative_prompt_embeds_pooled: Union[torch.Tensor, np.ndarray]
class_definition
1,928
2,638
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
null
211
class StableCascadePriorPipeline(DiffusionPipeline): """ Pipeline for generating image prior for Stable Cascade. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: prior ([`StableCascadeUNet`]): The Stable Cascade prior to approximate the image embedding from the text and/or image embedding. text_encoder ([`CLIPTextModelWithProjection`]): Frozen text-encoder ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)). feature_extractor ([`~transformers.CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `image_encoder`. image_encoder ([`CLIPVisionModelWithProjection`]): Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). scheduler ([`DDPMWuerstchenScheduler`]): A scheduler to be used in combination with `prior` to generate image embedding. resolution_multiple ('float', *optional*, defaults to 42.67): Default resolution for multiple images generated. """ unet_name = "prior" text_encoder_name = "text_encoder" model_cpu_offload_seq = "image_encoder->text_encoder->prior" _optional_components = ["image_encoder", "feature_extractor"] _callback_tensor_inputs = ["latents", "text_encoder_hidden_states", "negative_prompt_embeds"] def __init__( self, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModelWithProjection, prior: StableCascadeUNet, scheduler: DDPMWuerstchenScheduler, resolution_multiple: float = 42.67, feature_extractor: Optional[CLIPImageProcessor] = None, image_encoder: Optional[CLIPVisionModelWithProjection] = None, ) -> None: super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, image_encoder=image_encoder, feature_extractor=feature_extractor, prior=prior, scheduler=scheduler, ) self.register_to_config(resolution_multiple=resolution_multiple) def prepare_latents( self, batch_size, height, width, num_images_per_prompt, dtype, device, generator, latents, scheduler ): latent_shape = ( num_images_per_prompt * batch_size, self.prior.config.in_channels, ceil(height / self.config.resolution_multiple), ceil(width / self.config.resolution_multiple), ) if latents is None: latents = randn_tensor(latent_shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != latent_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latent_shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents def encode_prompt( self, device, batch_size, num_images_per_prompt, do_classifier_free_guidance, prompt=None, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, prompt_embeds_pooled: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, ): if prompt_embeds is None: # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids attention_mask = text_inputs.attention_mask untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] attention_mask = attention_mask[:, : self.tokenizer.model_max_length] text_encoder_output = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask.to(device), output_hidden_states=True ) prompt_embeds = text_encoder_output.hidden_states[-1] if prompt_embeds_pooled is None: prompt_embeds_pooled = text_encoder_output.text_embeds.unsqueeze(1) prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) prompt_embeds_pooled = prompt_embeds_pooled.to(dtype=self.text_encoder.dtype, device=device) prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) prompt_embeds_pooled = prompt_embeds_pooled.repeat_interleave(num_images_per_prompt, dim=0) if negative_prompt_embeds is None and do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) negative_prompt_embeds_text_encoder_output = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device), output_hidden_states=True, ) negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.hidden_states[-1] negative_prompt_embeds_pooled = negative_prompt_embeds_text_encoder_output.text_embeds.unsqueeze(1) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) seq_len = negative_prompt_embeds_pooled.shape[1] negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.to( dtype=self.text_encoder.dtype, device=device ) negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.view( batch_size * num_images_per_prompt, seq_len, -1 ) # done duplicates return prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled def encode_image(self, images, device, dtype, batch_size, num_images_per_prompt): image_embeds = [] for image in images: image = self.feature_extractor(image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) image_embed = self.image_encoder(image).image_embeds.unsqueeze(1) image_embeds.append(image_embed) image_embeds = torch.cat(image_embeds, dim=1) image_embeds = image_embeds.repeat(batch_size * num_images_per_prompt, 1, 1) negative_image_embeds = torch.zeros_like(image_embeds) return image_embeds, negative_image_embeds def check_inputs( self, prompt, images=None, image_embeds=None, negative_prompt=None, prompt_embeds=None, prompt_embeds_pooled=None, negative_prompt_embeds=None, negative_prompt_embeds_pooled=None, callback_on_step_end_tensor_inputs=None, ): if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds is not None and prompt_embeds_pooled is None: raise ValueError( "If `prompt_embeds` are provided, `prompt_embeds_pooled` must also be provided. Make sure to generate `prompt_embeds_pooled` from the same text encoder that was used to generate `prompt_embeds`" ) if negative_prompt_embeds is not None and negative_prompt_embeds_pooled is None: raise ValueError( "If `negative_prompt_embeds` are provided, `negative_prompt_embeds_pooled` must also be provided. Make sure to generate `prompt_embeds_pooled` from the same text encoder that was used to generate `prompt_embeds`" ) if prompt_embeds_pooled is not None and negative_prompt_embeds_pooled is not None: if prompt_embeds_pooled.shape != negative_prompt_embeds_pooled.shape: raise ValueError( "`prompt_embeds_pooled` and `negative_prompt_embeds_pooled` must have the same shape when passed" f"directly, but got: `prompt_embeds_pooled` {prompt_embeds_pooled.shape} !=" f"`negative_prompt_embeds_pooled` {negative_prompt_embeds_pooled.shape}." ) if image_embeds is not None and images is not None: raise ValueError( f"Cannot forward both `images`: {images} and `image_embeds`: {image_embeds}. Please make sure to" " only forward one of the two." ) if images: for i, image in enumerate(images): if not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image): raise TypeError( f"'images' must contain images of type 'torch.Tensor' or 'PIL.Image.Image, but got" f"{type(image)} for image number {i}." ) @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps def get_timestep_ratio_conditioning(self, t, alphas_cumprod): s = torch.tensor([0.008]) clamp_range = [0, 1] min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2 var = alphas_cumprod[t] var = var.clamp(*clamp_range) s, min_var = s.to(var.device), min_var.to(var.device) ratio = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s return ratio @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[str, List[str]]] = None, images: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]] = None, height: int = 1024, width: int = 1024, num_inference_steps: int = 20, timesteps: List[float] = None, guidance_scale: float = 4.0, negative_prompt: Optional[Union[str, List[str]]] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_embeds_pooled: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, image_embeds: Optional[torch.Tensor] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pt", return_dict: bool = True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], ): """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. height (`int`, *optional*, defaults to 1024): The height in pixels of the generated image. width (`int`, *optional*, defaults to 1024): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 60): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 8.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `decoder_guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_embeds_pooled (`torch.Tensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_prompt_embeds_pooled (`torch.Tensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt` input argument. image_embeds (`torch.Tensor`, *optional*): Pre-generated image embeddings. Can be used to easily tweak image inputs, *e.g.* prompt weighting. If not provided, image embeddings will be generated from `image` input argument if existing. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`StableCascadePriorPipelineOutput`] or `tuple` [`StableCascadePriorPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image embeddings. """ # 0. Define commonly used variables device = self._execution_device dtype = next(self.prior.parameters()).dtype self._guidance_scale = guidance_scale if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, images=images, image_embeds=image_embeds, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, ) # 2. Encode caption + images ( prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled, ) = self.encode_prompt( prompt=prompt, device=device, batch_size=batch_size, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, ) if images is not None: image_embeds_pooled, uncond_image_embeds_pooled = self.encode_image( images=images, device=device, dtype=dtype, batch_size=batch_size, num_images_per_prompt=num_images_per_prompt, ) elif image_embeds is not None: image_embeds_pooled = image_embeds.repeat(batch_size * num_images_per_prompt, 1, 1) uncond_image_embeds_pooled = torch.zeros_like(image_embeds_pooled) else: image_embeds_pooled = torch.zeros( batch_size * num_images_per_prompt, 1, self.prior.config.clip_image_in_channels, device=device, dtype=dtype, ) uncond_image_embeds_pooled = torch.zeros( batch_size * num_images_per_prompt, 1, self.prior.config.clip_image_in_channels, device=device, dtype=dtype, ) if self.do_classifier_free_guidance: image_embeds = torch.cat([image_embeds_pooled, uncond_image_embeds_pooled], dim=0) else: image_embeds = image_embeds_pooled # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes text_encoder_hidden_states = ( torch.cat([prompt_embeds, negative_prompt_embeds]) if negative_prompt_embeds is not None else prompt_embeds ) text_encoder_pooled = ( torch.cat([prompt_embeds_pooled, negative_prompt_embeds_pooled]) if negative_prompt_embeds is not None else prompt_embeds_pooled ) # 4. Prepare and set timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latents latents = self.prepare_latents( batch_size, height, width, num_images_per_prompt, dtype, device, generator, latents, self.scheduler ) if isinstance(self.scheduler, DDPMWuerstchenScheduler): timesteps = timesteps[:-1] else: if hasattr(self.scheduler.config, "clip_sample") and self.scheduler.config.clip_sample: self.scheduler.config.clip_sample = False # disample sample clipping logger.warning(" set `clip_sample` to be False") # 6. Run denoising loop if hasattr(self.scheduler, "betas"): alphas = 1.0 - self.scheduler.betas alphas_cumprod = torch.cumprod(alphas, dim=0) else: alphas_cumprod = [] self._num_timesteps = len(timesteps) for i, t in enumerate(self.progress_bar(timesteps)): if not isinstance(self.scheduler, DDPMWuerstchenScheduler): if len(alphas_cumprod) > 0: timestep_ratio = self.get_timestep_ratio_conditioning(t.long().cpu(), alphas_cumprod) timestep_ratio = timestep_ratio.expand(latents.size(0)).to(dtype).to(device) else: timestep_ratio = t.float().div(self.scheduler.timesteps[-1]).expand(latents.size(0)).to(dtype) else: timestep_ratio = t.expand(latents.size(0)).to(dtype) # 7. Denoise image embeddings predicted_image_embedding = self.prior( sample=torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents, timestep_ratio=torch.cat([timestep_ratio] * 2) if self.do_classifier_free_guidance else timestep_ratio, clip_text_pooled=text_encoder_pooled, clip_text=text_encoder_hidden_states, clip_img=image_embeds, return_dict=False, )[0] # 8. Check for classifier free guidance and apply it if self.do_classifier_free_guidance: predicted_image_embedding_text, predicted_image_embedding_uncond = predicted_image_embedding.chunk(2) predicted_image_embedding = torch.lerp( predicted_image_embedding_uncond, predicted_image_embedding_text, self.guidance_scale ) # 9. Renoise latents to next timestep if not isinstance(self.scheduler, DDPMWuerstchenScheduler): timestep_ratio = t latents = self.scheduler.step( model_output=predicted_image_embedding, timestep=timestep_ratio, sample=latents, generator=generator ).prev_sample if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) if XLA_AVAILABLE: xm.mark_step() # Offload all models self.maybe_free_model_hooks() if output_type == "np": latents = latents.cpu().float().numpy() # float() as bfloat16-> numpy doesnt work prompt_embeds = prompt_embeds.cpu().float().numpy() # float() as bfloat16-> numpy doesnt work negative_prompt_embeds = ( negative_prompt_embeds.cpu().float().numpy() if negative_prompt_embeds is not None else None ) # float() as bfloat16-> numpy doesnt work if not return_dict: return ( latents, prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled, ) return StableCascadePriorPipelineOutput( image_embeddings=latents, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, )
class_definition
2,641
31,428
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py
null
212
class StableDiffusionAdapterPipelineOutput(BaseOutput): """ Args: images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. nsfw_content_detected (`List[bool]`) List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, or `None` if safety checking could not be performed. """ images: Union[List[PIL.Image.Image], np.ndarray] nsfw_content_detected: Optional[List[bool]]
class_definition
1,739
2,445
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py
null
213
class StableDiffusionAdapterPipeline(DiffusionPipeline, StableDiffusionMixin): r""" Pipeline for text-to-image generation using Stable Diffusion augmented with T2I-Adapter https://arxiv.org/abs/2302.08453 This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: adapter ([`T2IAdapter`] or [`MultiAdapter`] or `List[T2IAdapter]`): Provides additional conditioning to the unet during the denoising process. If you set multiple Adapter as a list, the outputs from each Adapter are added together to create one combined additional conditioning. adapter_weights (`List[float]`, *optional*, defaults to None): List of floats representing the weight which will be multiply to each adapter's output before adding them together. vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ model_cpu_offload_seq = "text_encoder->adapter->unet->vae" _optional_components = ["safety_checker", "feature_extractor"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, adapter: Union[T2IAdapter, MultiAdapter, List[T2IAdapter]], scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__() if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) if isinstance(adapter, (list, tuple)): adapter = MultiAdapter(adapter) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, adapter=adapter, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) prompt_embeds_tuple = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs, ) # concatenate for backwards comp prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) return prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer. prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, height, width, callback_steps, image, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if isinstance(self.adapter, MultiAdapter): if not isinstance(image, list): raise ValueError( "MultiAdapter is enabled, but `image` is not a list. Please pass a list of images to `image`." ) if len(image) != len(self.adapter.adapters): raise ValueError( f"MultiAdapter requires passing the same number of images as adapters. Given {len(image)} images and {len(self.adapter.adapters)} adapters." ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def _default_height_width(self, height, width, image): # NOTE: It is possible that a list of images have different # dimensions for each image, so just checking the first image # is not _exactly_ correct, but it is simple. while isinstance(image, list): image = image[0] if height is None: if isinstance(image, PIL.Image.Image): height = image.height elif isinstance(image, torch.Tensor): height = image.shape[-2] # round down to nearest multiple of `self.adapter.downscale_factor` height = (height // self.adapter.downscale_factor) * self.adapter.downscale_factor if width is None: if isinstance(image, PIL.Image.Image): width = image.width elif isinstance(image, torch.Tensor): width = image.shape[-1] # round down to nearest multiple of `self.adapter.downscale_factor` width = (width // self.adapter.downscale_factor) * self.adapter.downscale_factor return height, width # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 ) -> torch.Tensor: """ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 Args: w (`torch.Tensor`): Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. embedding_dim (`int`, *optional*, defaults to 512): Dimension of the embeddings to generate. dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): Data type of the generated embeddings. Returns: `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. """ assert len(w.shape) == 1 w = w * 1000.0 half_dim = embedding_dim // 2 emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) emb = w.to(dtype)[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1)) assert emb.shape == (w.shape[0], embedding_dim) return emb @property def guidance_scale(self): return self._guidance_scale # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, image: Union[torch.Tensor, PIL.Image.Image, List[PIL.Image.Image]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, timesteps: List[int] = None, sigmas: List[float] = None, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, adapter_conditioning_scale: Union[float, List[float]] = 1.0, clip_skip: Optional[int] = None, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. image (`torch.Tensor`, `PIL.Image.Image`, `List[torch.Tensor]` or `List[PIL.Image.Image]` or `List[List[PIL.Image.Image]]`): The Adapter input condition. Adapter uses this input condition to generate guidance to Unet. If the type is specified as `torch.Tensor`, it is passed to Adapter as is. PIL.Image.Image` can also be accepted as an image. The control image is automatically resized to fit the output image. height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). adapter_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): The outputs of the adapter are multiplied by `adapter_conditioning_scale` before they are added to the residual in the original unet. If multiple adapters are specified in init, you can set the corresponding scale as a list. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # 0. Default height and width to unet height, width = self._default_height_width(height, width, image) device = self._execution_device # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, callback_steps, image, negative_prompt, prompt_embeds, negative_prompt_embeds ) self._guidance_scale = guidance_scale if isinstance(self.adapter, MultiAdapter): adapter_input = [] for one_image in image: one_image = _preprocess_adapter_image(one_image, height, width) one_image = one_image.to(device=device, dtype=self.adapter.dtype) adapter_input.append(one_image) else: adapter_input = _preprocess_adapter_image(image, height, width) adapter_input = adapter_input.to(device=device, dtype=self.adapter.dtype) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # 3. Encode input prompt prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clip_skip=clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas ) # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 6.5 Optionally get Guidance Scale Embedding timestep_cond = None if self.unet.config.time_cond_proj_dim is not None: guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) timestep_cond = self.get_guidance_scale_embedding( guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim ).to(device=device, dtype=latents.dtype) # 7. Denoising loop if isinstance(self.adapter, MultiAdapter): adapter_state = self.adapter(adapter_input, adapter_conditioning_scale) for k, v in enumerate(adapter_state): adapter_state[k] = v else: adapter_state = self.adapter(adapter_input) for k, v in enumerate(adapter_state): adapter_state[k] = v * adapter_conditioning_scale if num_images_per_prompt > 1: for k, v in enumerate(adapter_state): adapter_state[k] = v.repeat(num_images_per_prompt, 1, 1, 1) if self.do_classifier_free_guidance: for k, v in enumerate(adapter_state): adapter_state[k] = torch.cat([v] * 2, dim=0) num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=cross_attention_kwargs, down_intrablock_additional_residuals=[state.clone() for state in adapter_state], return_dict=False, )[0] # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() if output_type == "latent": image = latents has_nsfw_concept = None elif output_type == "pil": # 8. Post-processing image = self.decode_latents(latents) # 9. Run safety checker image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) # 10. Convert to PIL image = self.numpy_to_pil(image) else: # 8. Post-processing image = self.decode_latents(latents) # 9. Run safety checker image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionAdapterPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
class_definition
7,797
47,680
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py
null
214
class StableDiffusionXLAdapterPipeline( DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionXLLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin, ): r""" Pipeline for text-to-image generation using Stable Diffusion augmented with T2I-Adapter https://arxiv.org/abs/2302.08453 This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters Args: adapter ([`T2IAdapter`] or [`MultiAdapter`] or `List[T2IAdapter]`): Provides additional conditioning to the unet during the denoising process. If you set multiple Adapter as a list, the outputs from each Adapter are added together to create one combined additional conditioning. adapter_weights (`List[float]`, *optional*, defaults to None): List of floats representing the weight which will be multiply to each adapter's output before adding them together. vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae" _optional_components = [ "tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2", "feature_extractor", "image_encoder", ] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, text_encoder_2: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, tokenizer_2: CLIPTokenizer, unet: UNet2DConditionModel, adapter: Union[T2IAdapter, MultiAdapter, List[T2IAdapter]], scheduler: KarrasDiffusionSchedulers, force_zeros_for_empty_prompt: bool = True, feature_extractor: CLIPImageProcessor = None, image_encoder: CLIPVisionModelWithProjection = None, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, adapter=adapter, scheduler=scheduler, feature_extractor=feature_extractor, image_encoder=image_encoder, ) self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.default_sample_size = ( self.unet.config.sample_size if hasattr(self, "unet") and self.unet is not None and hasattr(self.unet.config, "sample_size") else 128 ) # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt def encode_prompt( self, prompt: str, prompt_2: Optional[str] = None, device: Optional[torch.device] = None, num_images_per_prompt: int = 1, do_classifier_free_guidance: bool = True, negative_prompt: Optional[str] = None, negative_prompt_2: Optional[str] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None, negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in both text-encoders device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ device = device or self._execution_device # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if self.text_encoder is not None: if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None: if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) else: scale_lora_layers(self.text_encoder_2, lora_scale) prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # Define tokenizers and text encoders tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] text_encoders = ( [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] ) if prompt_embeds is None: prompt_2 = prompt_2 or prompt prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 # textual inversion: process multi-vector tokens if necessary prompt_embeds_list = [] prompts = [prompt, prompt_2] for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, tokenizer) text_inputs = tokenizer( prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {tokenizer.model_max_length} tokens: {removed_text}" ) prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) # We are only ALWAYS interested in the pooled output of the final text encoder if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2: pooled_prompt_embeds = prompt_embeds[0] if clip_skip is None: prompt_embeds = prompt_embeds.hidden_states[-2] else: # "2" because SDXL always indexes from the penultimate layer. prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] prompt_embeds_list.append(prompt_embeds) prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) # get unconditional embeddings for classifier free guidance zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: negative_prompt_embeds = torch.zeros_like(prompt_embeds) negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) elif do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt or "" negative_prompt_2 = negative_prompt_2 or negative_prompt # normalize str to list negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt negative_prompt_2 = ( batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 ) uncond_tokens: List[str] if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = [negative_prompt, negative_prompt_2] negative_prompt_embeds_list = [] for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): if isinstance(self, TextualInversionLoaderMixin): negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) max_length = prompt_embeds.shape[1] uncond_input = tokenizer( negative_prompt, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) negative_prompt_embeds = text_encoder( uncond_input.input_ids.to(device), output_hidden_states=True, ) # We are only ALWAYS interested in the pooled output of the final text encoder if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2: negative_pooled_prompt_embeds = negative_prompt_embeds[0] negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] negative_prompt_embeds_list.append(negative_prompt_embeds) negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) if self.text_encoder_2 is not None: prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) else: prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] if self.text_encoder_2 is not None: negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) else: negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( bs_embed * num_images_per_prompt, -1 ) if do_classifier_free_guidance: negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( bs_embed * num_images_per_prompt, -1 ) if self.text_encoder is not None: if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None: if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder_2, lora_scale) return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): dtype = next(self.image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = self.feature_extractor(image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) if output_hidden_states: image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_enc_hidden_states = self.image_encoder( torch.zeros_like(image), output_hidden_states=True ).hidden_states[-2] uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( num_images_per_prompt, dim=0 ) return image_enc_hidden_states, uncond_image_enc_hidden_states else: image_embeds = self.image_encoder(image).image_embeds image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_embeds = torch.zeros_like(image_embeds) return image_embeds, uncond_image_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds def prepare_ip_adapter_image_embeds( self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance ): image_embeds = [] if do_classifier_free_guidance: negative_image_embeds = [] if ip_adapter_image_embeds is None: if not isinstance(ip_adapter_image, list): ip_adapter_image = [ip_adapter_image] if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): raise ValueError( f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." ) for single_ip_adapter_image, image_proj_layer in zip( ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers ): output_hidden_state = not isinstance(image_proj_layer, ImageProjection) single_image_embeds, single_negative_image_embeds = self.encode_image( single_ip_adapter_image, device, 1, output_hidden_state ) image_embeds.append(single_image_embeds[None, :]) if do_classifier_free_guidance: negative_image_embeds.append(single_negative_image_embeds[None, :]) else: for single_image_embeds in ip_adapter_image_embeds: if do_classifier_free_guidance: single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) negative_image_embeds.append(single_negative_image_embeds) image_embeds.append(single_image_embeds) ip_adapter_image_embeds = [] for i, single_image_embeds in enumerate(image_embeds): single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) if do_classifier_free_guidance: single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) single_image_embeds = single_image_embeds.to(device=device) ip_adapter_image_embeds.append(single_image_embeds) return ip_adapter_image_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.check_inputs def check_inputs( self, prompt, prompt_2, height, width, callback_steps, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt_2 is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) elif negative_prompt_2 is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds is not None and pooled_prompt_embeds is None: raise ValueError( "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." ) if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: raise ValueError( "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." ) if ip_adapter_image is not None and ip_adapter_image_embeds is not None: raise ValueError( "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." ) if ip_adapter_image_embeds is not None: if not isinstance(ip_adapter_image_embeds, list): raise ValueError( f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" ) elif ip_adapter_image_embeds[0].ndim not in [3, 4]: raise ValueError( f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids def _get_add_time_ids( self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None ): add_time_ids = list(original_size + crops_coords_top_left + target_size) passed_add_embed_dim = ( self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim ) expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features if expected_add_embed_dim != passed_add_embed_dim: raise ValueError( f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." ) add_time_ids = torch.tensor([add_time_ids], dtype=dtype) return add_time_ids # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): dtype = self.vae.dtype self.vae.to(dtype=torch.float32) use_torch_2_0_or_xformers = isinstance( self.vae.decoder.mid_block.attentions[0].processor, ( AttnProcessor2_0, XFormersAttnProcessor, ), ) # if xformers or torch_2_0 is used attention block does not need # to be in float32 which can save lots of memory if use_torch_2_0_or_xformers: self.vae.post_quant_conv.to(dtype) self.vae.decoder.conv_in.to(dtype) self.vae.decoder.mid_block.to(dtype) # Copied from diffusers.pipelines.t2i_adapter.pipeline_stable_diffusion_adapter.StableDiffusionAdapterPipeline._default_height_width def _default_height_width(self, height, width, image): # NOTE: It is possible that a list of images have different # dimensions for each image, so just checking the first image # is not _exactly_ correct, but it is simple. while isinstance(image, list): image = image[0] if height is None: if isinstance(image, PIL.Image.Image): height = image.height elif isinstance(image, torch.Tensor): height = image.shape[-2] # round down to nearest multiple of `self.adapter.downscale_factor` height = (height // self.adapter.downscale_factor) * self.adapter.downscale_factor if width is None: if isinstance(image, PIL.Image.Image): width = image.width elif isinstance(image, torch.Tensor): width = image.shape[-1] # round down to nearest multiple of `self.adapter.downscale_factor` width = (width // self.adapter.downscale_factor) * self.adapter.downscale_factor return height, width # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 ) -> torch.Tensor: """ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 Args: w (`torch.Tensor`): Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. embedding_dim (`int`, *optional*, defaults to 512): Dimension of the embeddings to generate. dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): Data type of the generated embeddings. Returns: `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. """ assert len(w.shape) == 1 w = w * 1000.0 half_dim = embedding_dim // 2 emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) emb = w.to(dtype)[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1)) assert emb.shape == (w.shape[0], embedding_dim) return emb @property def guidance_scale(self): return self._guidance_scale # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, image: PipelineImageInput = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, timesteps: List[int] = None, sigmas: List[float] = None, denoising_end: Optional[float] = None, guidance_scale: float = 5.0, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None, negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, original_size: Optional[Tuple[int, int]] = None, crops_coords_top_left: Tuple[int, int] = (0, 0), target_size: Optional[Tuple[int, int]] = None, negative_original_size: Optional[Tuple[int, int]] = None, negative_crops_coords_top_left: Tuple[int, int] = (0, 0), negative_target_size: Optional[Tuple[int, int]] = None, adapter_conditioning_scale: Union[float, List[float]] = 1.0, adapter_conditioning_factor: float = 1.0, clip_skip: Optional[int] = None, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in both text-encoders image (`torch.Tensor`, `PIL.Image.Image`, `List[torch.Tensor]` or `List[PIL.Image.Image]` or `List[List[PIL.Image.Image]]`): The Adapter input condition. Adapter uses this input condition to generate guidance to Unet. If the type is specified as `torch.Tensor`, it is passed to Adapter as is. PIL.Image.Image` can also be accepted as an image. The control image is automatically resized to fit the output image. height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. Anything below 512 pixels won't work well for [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and checkpoints that are not specifically fine-tuned on low resolutions. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. Anything below 512 pixels won't work well for [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and checkpoints that are not specifically fine-tuned on low resolutions. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. denoising_end (`float`, *optional*): When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be completed before it is intentionally prematurely terminated. As a result, the returned sample will still retain a substantial amount of noise as determined by the discrete timesteps selected by the scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) guidance_scale (`float`, *optional*, defaults to 5.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not provided, embeddings are computed from the `ip_adapter_image` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionAdapterPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). guidance_rescale (`float`, *optional*, defaults to 0.0): Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when using zero terminal SNR. original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): For most cases, `target_size` should be set to the desired height and width of the generated image. If not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): To negatively condition the generation process based on a specific image resolution. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): To negatively condition the generation process based on a target image resolution. It should be as same as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. adapter_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): The outputs of the adapter are multiplied by `adapter_conditioning_scale` before they are added to the residual in the original unet. If multiple adapters are specified in init, you can set the corresponding scale as a list. adapter_conditioning_factor (`float`, *optional*, defaults to 1.0): The fraction of timesteps for which adapter should be applied. If `adapter_conditioning_factor` is `0.0`, adapter is not applied at all. If `adapter_conditioning_factor` is `1.0`, adapter is applied for all timesteps. If `adapter_conditioning_factor` is `0.5`, adapter is applied for half of the timesteps. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ # 0. Default height and width to unet height, width = self._default_height_width(height, width, image) device = self._execution_device if isinstance(self.adapter, MultiAdapter): adapter_input = [] for one_image in image: one_image = _preprocess_adapter_image(one_image, height, width) one_image = one_image.to(device=device, dtype=self.adapter.dtype) adapter_input.append(one_image) else: adapter_input = _preprocess_adapter_image(image, height, width) adapter_input = adapter_input.to(device=device, dtype=self.adapter.dtype) original_size = original_size or (height, width) target_size = target_size or (height, width) # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, prompt_2, height, width, callback_steps, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, ) self._guidance_scale = guidance_scale # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 3.1 Encode input prompt ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, clip_skip=clip_skip, ) # 3.2 Encode ip_adapter_image if ip_adapter_image is not None or ip_adapter_image_embeds is not None: image_embeds = self.prepare_ip_adapter_image_embeds( ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance, ) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas ) # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6.1 Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 6.2 Optionally get Guidance Scale Embedding timestep_cond = None if self.unet.config.time_cond_proj_dim is not None: guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) timestep_cond = self.get_guidance_scale_embedding( guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim ).to(device=device, dtype=latents.dtype) # 7. Prepare added time ids & embeddings & adapter features if isinstance(self.adapter, MultiAdapter): adapter_state = self.adapter(adapter_input, adapter_conditioning_scale) for k, v in enumerate(adapter_state): adapter_state[k] = v else: adapter_state = self.adapter(adapter_input) for k, v in enumerate(adapter_state): adapter_state[k] = v * adapter_conditioning_scale if num_images_per_prompt > 1: for k, v in enumerate(adapter_state): adapter_state[k] = v.repeat(num_images_per_prompt, 1, 1, 1) if self.do_classifier_free_guidance: for k, v in enumerate(adapter_state): adapter_state[k] = torch.cat([v] * 2, dim=0) add_text_embeds = pooled_prompt_embeds if self.text_encoder_2 is None: text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) else: text_encoder_projection_dim = self.text_encoder_2.config.projection_dim add_time_ids = self._get_add_time_ids( original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim, ) if negative_original_size is not None and negative_target_size is not None: negative_add_time_ids = self._get_add_time_ids( negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim, ) else: negative_add_time_ids = add_time_ids if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) prompt_embeds = prompt_embeds.to(device) add_text_embeds = add_text_embeds.to(device) add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) # 8. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) # Apply denoising_end if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1: discrete_timestep_cutoff = int( round( self.scheduler.config.num_train_timesteps - (denoising_end * self.scheduler.config.num_train_timesteps) ) ) num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) timesteps = timesteps[:num_inference_steps] with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} if ip_adapter_image is not None or ip_adapter_image_embeds is not None: added_cond_kwargs["image_embeds"] = image_embeds # predict the noise residual if i < int(num_inference_steps * adapter_conditioning_factor): down_intrablock_additional_residuals = [state.clone() for state in adapter_state] else: down_intrablock_additional_residuals = None noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=cross_attention_kwargs, down_intrablock_additional_residuals=down_intrablock_additional_residuals, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) if self.do_classifier_free_guidance and guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": # make sure the VAE is in float32 mode, as it overflows in float16 needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: self.upcast_vae() latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] # cast back to fp16 if needed if needs_upcasting: self.vae.to(dtype=torch.float16) else: image = latents return StableDiffusionXLPipelineOutput(images=image) image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return StableDiffusionXLPipelineOutput(images=image)
class_definition
8,972
69,335
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py
null
215
class LDM3DPipelineOutput(BaseOutput): """ Output class for Stable Diffusion pipelines. Args: rgb (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, num_channels)`. depth (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, num_channels)`. nsfw_content_detected (`List[bool]`) List indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content or `None` if safety checking could not be performed. """ rgb: Union[List[PIL.Image.Image], np.ndarray] depth: Union[List[PIL.Image.Image], np.ndarray] nsfw_content_detected: Optional[List[bool]]
class_definition
6,963
7,850
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py
null
216
class StableDiffusionLDM3DPipeline( DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin, ): r""" Pipeline for text-to-image and 3D generation using LDM3D. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ model_cpu_offload_seq = "text_encoder->unet->vae" _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] _exclude_from_cpu_offload = ["safety_checker"] _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: Optional[CLIPVisionModelWithProjection], requires_safety_checker: bool = True, ): super().__init__() if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessorLDM3D(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) prompt_embeds_tuple = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs, ) # concatenate for backwards comp prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) return prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer. prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): dtype = next(self.image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = self.feature_extractor(image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) if output_hidden_states: image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_enc_hidden_states = self.image_encoder( torch.zeros_like(image), output_hidden_states=True ).hidden_states[-2] uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( num_images_per_prompt, dim=0 ) return image_enc_hidden_states, uncond_image_enc_hidden_states else: image_embeds = self.image_encoder(image).image_embeds image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_embeds = torch.zeros_like(image_embeds) return image_embeds, uncond_image_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds def prepare_ip_adapter_image_embeds( self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance ): image_embeds = [] if do_classifier_free_guidance: negative_image_embeds = [] if ip_adapter_image_embeds is None: if not isinstance(ip_adapter_image, list): ip_adapter_image = [ip_adapter_image] if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): raise ValueError( f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." ) for single_ip_adapter_image, image_proj_layer in zip( ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers ): output_hidden_state = not isinstance(image_proj_layer, ImageProjection) single_image_embeds, single_negative_image_embeds = self.encode_image( single_ip_adapter_image, device, 1, output_hidden_state ) image_embeds.append(single_image_embeds[None, :]) if do_classifier_free_guidance: negative_image_embeds.append(single_negative_image_embeds[None, :]) else: for single_image_embeds in ip_adapter_image_embeds: if do_classifier_free_guidance: single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) negative_image_embeds.append(single_negative_image_embeds) image_embeds.append(single_image_embeds) ip_adapter_image_embeds = [] for i, single_image_embeds in enumerate(image_embeds): single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) if do_classifier_free_guidance: single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) single_image_embeds = single_image_embeds.to(device=device) ip_adapter_image_embeds.append(single_image_embeds) return ip_adapter_image_embeds def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) rgb_feature_extractor_input = feature_extractor_input[0] safety_checker_input = self.feature_extractor(rgb_feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs def check_inputs( self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if ip_adapter_image is not None and ip_adapter_image_embeds is not None: raise ValueError( "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." ) if ip_adapter_image_embeds is not None: if not isinstance(ip_adapter_image_embeds, list): raise ValueError( f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" ) elif ip_adapter_image_embeds[0].ndim not in [3, 4]: raise ValueError( f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" ) def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 ) -> torch.Tensor: """ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 Args: w (`torch.Tensor`): Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. embedding_dim (`int`, *optional*, defaults to 512): Dimension of the embeddings to generate. dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): Data type of the generated embeddings. Returns: `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. """ assert len(w.shape) == 1 w = w * 1000.0 half_dim = embedding_dim // 2 emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) emb = w.to(dtype)[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1)) assert emb.shape == (w.shape[0], embedding_dim) return emb @property def guidance_scale(self): return self._guidance_scale @property def guidance_rescale(self): return self._guidance_rescale @property def clip_skip(self): return self._clip_skip # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None @property def cross_attention_kwargs(self): return self._cross_attention_kwargs @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 49, timesteps: List[int] = None, sigmas: List[float] = None, guidance_scale: float = 5.0, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, output_type: Optional[str] = "pil", return_dict: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, clip_skip: Optional[int] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. guidance_scale (`float`, *optional*, defaults to 5.0): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not provided, embeddings are computed from the `ip_adapter_image` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None) if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", ) # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs, ) self._guidance_scale = guidance_scale self._guidance_rescale = guidance_rescale self._clip_skip = clip_skip self._cross_attention_kwargs = cross_attention_kwargs self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device if ip_adapter_image is not None or ip_adapter_image_embeds is not None: image_embeds = self.prepare_ip_adapter_image_embeds( ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance, ) # 3. Encode input prompt prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clip_skip=clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas ) # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 6.1 Add image embeds for IP-Adapter added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None # 6.2 Optionally get Guidance Scale Embedding timestep_cond = None if self.unet.config.time_cond_proj_dim is not None: guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) timestep_cond = self.get_guidance_scale_embedding( guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim ).to(device=device, dtype=latents.dtype) # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] rgb, depth = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # Offload all models self.maybe_free_model_hooks() if not return_dict: return ((rgb, depth), has_nsfw_concept) return LDM3DPipelineOutput(rgb=rgb, depth=depth, nsfw_content_detected=has_nsfw_concept)
class_definition
7,853
51,678
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py
null
217
class AuraFlowPipeline(DiffusionPipeline): r""" Args: tokenizer (`T5TokenizerFast`): Tokenizer of class [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). text_encoder ([`T5EncoderModel`]): Frozen text-encoder. AuraFlow uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the [EleutherAI/pile-t5-xl](https://huggingface.co/EleutherAI/pile-t5-xl) variant. vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. transformer ([`AuraFlowTransformer2DModel`]): Conditional Transformer (MMDiT and DiT) architecture to denoise the encoded image latents. scheduler ([`FlowMatchEulerDiscreteScheduler`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. """ _optional_components = [] model_cpu_offload_seq = "text_encoder->transformer->vae" def __init__( self, tokenizer: T5Tokenizer, text_encoder: UMT5EncoderModel, vae: AutoencoderKL, transformer: AuraFlowTransformer2DModel, scheduler: FlowMatchEulerDiscreteScheduler, ): super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) def check_inputs( self, prompt, height, width, negative_prompt, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and prompt_attention_mask is None: raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: raise ValueError( "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" f" {negative_prompt_attention_mask.shape}." ) def encode_prompt( self, prompt: Union[str, List[str]], negative_prompt: Union[str, List[str]] = None, do_classifier_free_guidance: bool = True, num_images_per_prompt: int = 1, device: Optional[torch.device] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, max_sequence_length: int = 256, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): whether to use classifier free guidance or not num_images_per_prompt (`int`, *optional*, defaults to 1): number of images that should be generated per prompt device: (`torch.device`, *optional*): torch device to place the resulting embeddings on prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. negative_prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for negative text embeddings. max_sequence_length (`int`, defaults to 256): Maximum sequence length to use for the prompt. """ if device is None: device = self._execution_device if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] max_length = max_sequence_length if prompt_embeds is None: text_inputs = self.tokenizer( prompt, truncation=True, max_length=max_length, padding="max_length", return_tensors="pt", ) text_input_ids = text_inputs["input_ids"] untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because T5 can only handle sequences up to" f" {max_length} tokens: {removed_text}" ) text_inputs = {k: v.to(device) for k, v in text_inputs.items()} prompt_embeds = self.text_encoder(**text_inputs)[0] prompt_attention_mask = text_inputs["attention_mask"].unsqueeze(-1).expand(prompt_embeds.shape) prompt_embeds = prompt_embeds * prompt_attention_mask if self.text_encoder is not None: dtype = self.text_encoder.dtype elif self.transformer is not None: dtype = self.transformer.dtype else: dtype = None prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) prompt_attention_mask = prompt_attention_mask.reshape(bs_embed, -1) prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt or "" uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, truncation=True, max_length=max_length, padding="max_length", return_tensors="pt", ) uncond_input = {k: v.to(device) for k, v in uncond_input.items()} negative_prompt_embeds = self.text_encoder(**uncond_input)[0] negative_prompt_attention_mask = ( uncond_input["attention_mask"].unsqueeze(-1).expand(negative_prompt_embeds.shape) ) negative_prompt_embeds = negative_prompt_embeds * negative_prompt_attention_mask if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) negative_prompt_attention_mask = negative_prompt_attention_mask.reshape(bs_embed, -1) negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) else: negative_prompt_embeds = None negative_prompt_attention_mask = None return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents def prepare_latents( self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, ): if latents is not None: return latents.to(device=device, dtype=dtype) shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) return latents # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae def upcast_vae(self): dtype = self.vae.dtype self.vae.to(dtype=torch.float32) use_torch_2_0_or_xformers = isinstance( self.vae.decoder.mid_block.attentions[0].processor, ( AttnProcessor2_0, XFormersAttnProcessor, FusedAttnProcessor2_0, ), ) # if xformers or torch_2_0 is used attention block does not need # to be in float32 which can save lots of memory if use_torch_2_0_or_xformers: self.vae.post_quant_conv.to(dtype) self.vae.decoder.conv_in.to(dtype) self.vae.decoder.mid_block.to(dtype) @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, negative_prompt: Union[str, List[str]] = None, num_inference_steps: int = 50, sigmas: List[float] = None, guidance_scale: float = 3.5, num_images_per_prompt: Optional[int] = 1, height: Optional[int] = 1024, width: Optional[int] = 1024, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, max_sequence_length: int = 256, output_type: Optional[str] = "pil", return_dict: bool = True, ) -> Union[ImagePipelineOutput, Tuple]: r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). height (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. This is set to 1024 by default for best results. width (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. This is set to 1024 by default for best results. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. sigmas (`List[float]`, *optional*): Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, `num_inference_steps` and `timesteps` must be `None`. guidance_scale (`float`, *optional*, defaults to 5.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for negative text embeddings. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead of a plain tuple. max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ # 1. Check inputs. Raise error if not correct height = height or self.transformer.config.sample_size * self.vae_scale_factor width = width or self.transformer.config.sample_size * self.vae_scale_factor self.check_inputs( prompt, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask, ) # 2. Determine batch size. if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt ( prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask, ) = self.encode_prompt( prompt=prompt, negative_prompt=negative_prompt, do_classifier_free_guidance=do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt, device=device, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, max_sequence_length=max_sequence_length, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) # 4. Prepare timesteps # sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, sigmas=sigmas) # 5. Prepare latents. latent_channels = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, latent_channels, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents # aura use timestep value between 0 and 1, with t=1 as noise and t=0 as the image # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = torch.tensor([t / 1000]).expand(latent_model_input.shape[0]) timestep = timestep.to(latents.device, dtype=latents.dtype) # predict noise model_output noise_pred = self.transformer( latent_model_input, encoder_hidden_states=prompt_embeds, timestep=timestep, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step() if output_type == "latent": image = latents else: # make sure the VAE is in float32 mode, as it overflows in float16 needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: self.upcast_vae() latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image)
class_definition
4,998
28,791
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/aura_flow/pipeline_aura_flow.py
null
218
class WuerstchenDiffNeXt(ModelMixin, ConfigMixin): @register_to_config def __init__( self, c_in=4, c_out=4, c_r=64, patch_size=2, c_cond=1024, c_hidden=[320, 640, 1280, 1280], nhead=[-1, 10, 20, 20], blocks=[4, 4, 14, 4], level_config=["CT", "CTA", "CTA", "CTA"], inject_effnet=[False, True, True, True], effnet_embd=16, clip_embd=1024, kernel_size=3, dropout=0.1, ): super().__init__() self.c_r = c_r self.c_cond = c_cond if not isinstance(dropout, list): dropout = [dropout] * len(c_hidden) # CONDITIONING self.clip_mapper = nn.Linear(clip_embd, c_cond) self.effnet_mappers = nn.ModuleList( [ nn.Conv2d(effnet_embd, c_cond, kernel_size=1) if inject else None for inject in inject_effnet + list(reversed(inject_effnet)) ] ) self.seq_norm = nn.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6) self.embedding = nn.Sequential( nn.PixelUnshuffle(patch_size), nn.Conv2d(c_in * (patch_size**2), c_hidden[0], kernel_size=1), WuerstchenLayerNorm(c_hidden[0], elementwise_affine=False, eps=1e-6), ) def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0): if block_type == "C": return ResBlockStageB(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout) elif block_type == "A": return AttnBlock(c_hidden, c_cond, nhead, self_attn=True, dropout=dropout) elif block_type == "T": return TimestepBlock(c_hidden, c_r) else: raise ValueError(f"Block type {block_type} not supported") # BLOCKS # -- down blocks self.down_blocks = nn.ModuleList() for i in range(len(c_hidden)): down_block = nn.ModuleList() if i > 0: down_block.append( nn.Sequential( WuerstchenLayerNorm(c_hidden[i - 1], elementwise_affine=False, eps=1e-6), nn.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2), ) ) for _ in range(blocks[i]): for block_type in level_config[i]: c_skip = c_cond if inject_effnet[i] else 0 down_block.append(get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i])) self.down_blocks.append(down_block) # -- up blocks self.up_blocks = nn.ModuleList() for i in reversed(range(len(c_hidden))): up_block = nn.ModuleList() for j in range(blocks[i]): for k, block_type in enumerate(level_config[i]): c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0 c_skip += c_cond if inject_effnet[i] else 0 up_block.append(get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i])) if i > 0: up_block.append( nn.Sequential( WuerstchenLayerNorm(c_hidden[i], elementwise_affine=False, eps=1e-6), nn.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2), ) ) self.up_blocks.append(up_block) # OUTPUT self.clf = nn.Sequential( WuerstchenLayerNorm(c_hidden[0], elementwise_affine=False, eps=1e-6), nn.Conv2d(c_hidden[0], 2 * c_out * (patch_size**2), kernel_size=1), nn.PixelShuffle(patch_size), ) # --- WEIGHT INIT --- self.apply(self._init_weights) def _init_weights(self, m): # General init if isinstance(m, (nn.Conv2d, nn.Linear)): nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) for mapper in self.effnet_mappers: if mapper is not None: nn.init.normal_(mapper.weight, std=0.02) # conditionings nn.init.normal_(self.clip_mapper.weight, std=0.02) # conditionings nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs nn.init.constant_(self.clf[1].weight, 0) # outputs # blocks for level_block in self.down_blocks + self.up_blocks: for block in level_block: if isinstance(block, ResBlockStageB): block.channelwise[-1].weight.data *= np.sqrt(1 / sum(self.config.blocks)) elif isinstance(block, TimestepBlock): nn.init.constant_(block.mapper.weight, 0) def gen_r_embedding(self, r, max_positions=10000): r = r * max_positions half_dim = self.c_r // 2 emb = math.log(max_positions) / (half_dim - 1) emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp() emb = r[:, None] * emb[None, :] emb = torch.cat([emb.sin(), emb.cos()], dim=1) if self.c_r % 2 == 1: # zero pad emb = nn.functional.pad(emb, (0, 1), mode="constant") return emb.to(dtype=r.dtype) def gen_c_embeddings(self, clip): clip = self.clip_mapper(clip) clip = self.seq_norm(clip) return clip def _down_encode(self, x, r_embed, effnet, clip=None): level_outputs = [] for i, down_block in enumerate(self.down_blocks): effnet_c = None for block in down_block: if isinstance(block, ResBlockStageB): if effnet_c is None and self.effnet_mappers[i] is not None: dtype = effnet.dtype effnet_c = self.effnet_mappers[i]( nn.functional.interpolate( effnet.float(), size=x.shape[-2:], mode="bicubic", antialias=True, align_corners=True ).to(dtype) ) skip = effnet_c if self.effnet_mappers[i] is not None else None x = block(x, skip) elif isinstance(block, AttnBlock): x = block(x, clip) elif isinstance(block, TimestepBlock): x = block(x, r_embed) else: x = block(x) level_outputs.insert(0, x) return level_outputs def _up_decode(self, level_outputs, r_embed, effnet, clip=None): x = level_outputs[0] for i, up_block in enumerate(self.up_blocks): effnet_c = None for j, block in enumerate(up_block): if isinstance(block, ResBlockStageB): if effnet_c is None and self.effnet_mappers[len(self.down_blocks) + i] is not None: dtype = effnet.dtype effnet_c = self.effnet_mappers[len(self.down_blocks) + i]( nn.functional.interpolate( effnet.float(), size=x.shape[-2:], mode="bicubic", antialias=True, align_corners=True ).to(dtype) ) skip = level_outputs[i] if j == 0 and i > 0 else None if effnet_c is not None: if skip is not None: skip = torch.cat([skip, effnet_c], dim=1) else: skip = effnet_c x = block(x, skip) elif isinstance(block, AttnBlock): x = block(x, clip) elif isinstance(block, TimestepBlock): x = block(x, r_embed) else: x = block(x) return x def forward(self, x, r, effnet, clip=None, x_cat=None, eps=1e-3, return_noise=True): if x_cat is not None: x = torch.cat([x, x_cat], dim=1) # Process the conditioning embeddings r_embed = self.gen_r_embedding(r) if clip is not None: clip = self.gen_c_embeddings(clip) # Model Blocks x_in = x x = self.embedding(x) level_outputs = self._down_encode(x, r_embed, effnet, clip) x = self._up_decode(level_outputs, r_embed, effnet, clip) a, b = self.clf(x).chunk(2, dim=1) b = b.sigmoid() * (1 - eps * 2) + eps if return_noise: return (x_in - a) / b else: return a, b
class_definition
946
9,619
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py
null
219
class ResBlockStageB(nn.Module): def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0): super().__init__() self.depthwise = nn.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c) self.norm = WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6) self.channelwise = nn.Sequential( nn.Linear(c + c_skip, c * 4), nn.GELU(), GlobalResponseNorm(c * 4), nn.Dropout(dropout), nn.Linear(c * 4, c), ) def forward(self, x, x_skip=None): x_res = x x = self.norm(self.depthwise(x)) if x_skip is not None: x = torch.cat([x, x_skip], dim=1) x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) return x + x_res
class_definition
9,622
10,422
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py
null
220
class MixingResidualBlock(nn.Module): """ Residual block with mixing used by Paella's VQ-VAE. """ def __init__(self, inp_channels, embed_dim): super().__init__() # depthwise self.norm1 = nn.LayerNorm(inp_channels, elementwise_affine=False, eps=1e-6) self.depthwise = nn.Sequential( nn.ReplicationPad2d(1), nn.Conv2d(inp_channels, inp_channels, kernel_size=3, groups=inp_channels) ) # channelwise self.norm2 = nn.LayerNorm(inp_channels, elementwise_affine=False, eps=1e-6) self.channelwise = nn.Sequential( nn.Linear(inp_channels, embed_dim), nn.GELU(), nn.Linear(embed_dim, inp_channels) ) self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True) def forward(self, x): mods = self.gammas x_temp = self.norm1(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * (1 + mods[0]) + mods[1] x = x + self.depthwise(x_temp) * mods[2] x_temp = self.norm2(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * (1 + mods[3]) + mods[4] x = x + self.channelwise(x_temp.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * mods[5] return x
class_definition
1,008
2,188
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py
null
221
class PaellaVQModel(ModelMixin, ConfigMixin): r"""VQ-VAE model from Paella model. This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library implements for all the model (such as downloading or saving, etc.) Parameters: in_channels (int, *optional*, defaults to 3): Number of channels in the input image. out_channels (int, *optional*, defaults to 3): Number of channels in the output. up_down_scale_factor (int, *optional*, defaults to 2): Up and Downscale factor of the input image. levels (int, *optional*, defaults to 2): Number of levels in the model. bottleneck_blocks (int, *optional*, defaults to 12): Number of bottleneck blocks in the model. embed_dim (int, *optional*, defaults to 384): Number of hidden channels in the model. latent_channels (int, *optional*, defaults to 4): Number of latent channels in the VQ-VAE model. num_vq_embeddings (int, *optional*, defaults to 8192): Number of codebook vectors in the VQ-VAE. scale_factor (float, *optional*, defaults to 0.3764): Scaling factor of the latent space. """ @register_to_config def __init__( self, in_channels: int = 3, out_channels: int = 3, up_down_scale_factor: int = 2, levels: int = 2, bottleneck_blocks: int = 12, embed_dim: int = 384, latent_channels: int = 4, num_vq_embeddings: int = 8192, scale_factor: float = 0.3764, ): super().__init__() c_levels = [embed_dim // (2**i) for i in reversed(range(levels))] # Encoder blocks self.in_block = nn.Sequential( nn.PixelUnshuffle(up_down_scale_factor), nn.Conv2d(in_channels * up_down_scale_factor**2, c_levels[0], kernel_size=1), ) down_blocks = [] for i in range(levels): if i > 0: down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1)) block = MixingResidualBlock(c_levels[i], c_levels[i] * 4) down_blocks.append(block) down_blocks.append( nn.Sequential( nn.Conv2d(c_levels[-1], latent_channels, kernel_size=1, bias=False), nn.BatchNorm2d(latent_channels), # then normalize them to have mean 0 and std 1 ) ) self.down_blocks = nn.Sequential(*down_blocks) # Vector Quantizer self.vquantizer = VectorQuantizer(num_vq_embeddings, vq_embed_dim=latent_channels, legacy=False, beta=0.25) # Decoder blocks up_blocks = [nn.Sequential(nn.Conv2d(latent_channels, c_levels[-1], kernel_size=1))] for i in range(levels): for j in range(bottleneck_blocks if i == 0 else 1): block = MixingResidualBlock(c_levels[levels - 1 - i], c_levels[levels - 1 - i] * 4) up_blocks.append(block) if i < levels - 1: up_blocks.append( nn.ConvTranspose2d( c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2, padding=1 ) ) self.up_blocks = nn.Sequential(*up_blocks) self.out_block = nn.Sequential( nn.Conv2d(c_levels[0], out_channels * up_down_scale_factor**2, kernel_size=1), nn.PixelShuffle(up_down_scale_factor), ) @apply_forward_hook def encode(self, x: torch.Tensor, return_dict: bool = True) -> VQEncoderOutput: h = self.in_block(x) h = self.down_blocks(h) if not return_dict: return (h,) return VQEncoderOutput(latents=h) @apply_forward_hook def decode( self, h: torch.Tensor, force_not_quantize: bool = True, return_dict: bool = True ) -> Union[DecoderOutput, torch.Tensor]: if not force_not_quantize: quant, _, _ = self.vquantizer(h) else: quant = h x = self.up_blocks(quant) dec = self.out_block(x) if not return_dict: return (dec,) return DecoderOutput(sample=dec) def forward(self, sample: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: r""" Args: sample (`torch.Tensor`): Input sample. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`DecoderOutput`] instead of a plain tuple. """ x = sample h = self.encode(x).latents dec = self.decode(h).sample if not return_dict: return (dec,) return DecoderOutput(sample=dec)
class_definition
2,191
6,924
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py
null
222
class WuerstchenLayerNorm(nn.LayerNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, x): x = x.permute(0, 2, 3, 1) x = super().forward(x) return x.permute(0, 3, 1, 2)
class_definition
90
342
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py
null
223
class TimestepBlock(nn.Module): def __init__(self, c, c_timestep): super().__init__() self.mapper = nn.Linear(c_timestep, c * 2) def forward(self, x, t): a, b = self.mapper(t)[:, :, None, None].chunk(2, dim=1) return x * (1 + a) + b
class_definition
345
619
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py
null
224
class ResBlock(nn.Module): def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0): super().__init__() self.depthwise = nn.Conv2d(c + c_skip, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c) self.norm = WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6) self.channelwise = nn.Sequential( nn.Linear(c, c * 4), nn.GELU(), GlobalResponseNorm(c * 4), nn.Dropout(dropout), nn.Linear(c * 4, c) ) def forward(self, x, x_skip=None): x_res = x if x_skip is not None: x = torch.cat([x, x_skip], dim=1) x = self.norm(self.depthwise(x)).permute(0, 2, 3, 1) x = self.channelwise(x).permute(0, 3, 1, 2) return x + x_res
class_definition
622
1,368
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py
null
225
class GlobalResponseNorm(nn.Module): def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) def forward(self, x): agg_norm = torch.norm(x, p=2, dim=(1, 2), keepdim=True) stand_div_norm = agg_norm / (agg_norm.mean(dim=-1, keepdim=True) + 1e-6) return self.gamma * (x * stand_div_norm) + self.beta + x
class_definition
1,493
1,943
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py
null
226
class AttnBlock(nn.Module): def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0): super().__init__() self.self_attn = self_attn self.norm = WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6) self.attention = Attention(query_dim=c, heads=nhead, dim_head=c // nhead, dropout=dropout, bias=True) self.kv_mapper = nn.Sequential(nn.SiLU(), nn.Linear(c_cond, c)) def forward(self, x, kv): kv = self.kv_mapper(kv) norm_x = self.norm(x) if self.self_attn: batch_size, channel, _, _ = x.shape kv = torch.cat([norm_x.view(batch_size, channel, -1).transpose(1, 2), kv], dim=1) x = x + self.attention(norm_x, encoder_hidden_states=kv) return x
class_definition
1,946
2,712
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py
null
227
class WuerstchenPrior(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin): unet_name = "prior" _supports_gradient_checkpointing = True @register_to_config def __init__(self, c_in=16, c=1280, c_cond=1024, c_r=64, depth=16, nhead=16, dropout=0.1): super().__init__() self.c_r = c_r self.projection = nn.Conv2d(c_in, c, kernel_size=1) self.cond_mapper = nn.Sequential( nn.Linear(c_cond, c), nn.LeakyReLU(0.2), nn.Linear(c, c), ) self.blocks = nn.ModuleList() for _ in range(depth): self.blocks.append(ResBlock(c, dropout=dropout)) self.blocks.append(TimestepBlock(c, c_r)) self.blocks.append(AttnBlock(c, c, nhead, self_attn=True, dropout=dropout)) self.out = nn.Sequential( WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6), nn.Conv2d(c, c_in * 2, kernel_size=1), ) self.gradient_checkpointing = False self.set_default_attn_processor() @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnAddedKVProcessor() elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor) def _set_gradient_checkpointing(self, module, value=False): self.gradient_checkpointing = value def gen_r_embedding(self, r, max_positions=10000): r = r * max_positions half_dim = self.c_r // 2 emb = math.log(max_positions) / (half_dim - 1) emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp() emb = r[:, None] * emb[None, :] emb = torch.cat([emb.sin(), emb.cos()], dim=1) if self.c_r % 2 == 1: # zero pad emb = nn.functional.pad(emb, (0, 1), mode="constant") return emb.to(dtype=r.dtype) def forward(self, x, r, c): x_in = x x = self.projection(x) c_embed = self.cond_mapper(c) r_embed = self.gen_r_embedding(r) if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward if is_torch_version(">=", "1.11.0"): for block in self.blocks: if isinstance(block, AttnBlock): x = torch.utils.checkpoint.checkpoint( create_custom_forward(block), x, c_embed, use_reentrant=False ) elif isinstance(block, TimestepBlock): x = torch.utils.checkpoint.checkpoint( create_custom_forward(block), x, r_embed, use_reentrant=False ) else: x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, use_reentrant=False) else: for block in self.blocks: if isinstance(block, AttnBlock): x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, c_embed) elif isinstance(block, TimestepBlock): x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, r_embed) else: x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x) else: for block in self.blocks: if isinstance(block, AttnBlock): x = block(x, c_embed) elif isinstance(block, TimestepBlock): x = block(x, r_embed) else: x = block(x) a, b = self.out(x).chunk(2, dim=1) return (x_in - a) / ((1 - b).abs() + 1e-5)
class_definition
1,237
8,475
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py
null
228
class WuerstchenDecoderPipeline(DiffusionPipeline): """ Pipeline for generating images from the Wuerstchen model. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: tokenizer (`CLIPTokenizer`): The CLIP tokenizer. text_encoder (`CLIPTextModel`): The CLIP text encoder. decoder ([`WuerstchenDiffNeXt`]): The WuerstchenDiffNeXt unet decoder. vqgan ([`PaellaVQModel`]): The VQGAN model. scheduler ([`DDPMWuerstchenScheduler`]): A scheduler to be used in combination with `prior` to generate image embedding. latent_dim_scale (float, `optional`, defaults to 10.67): Multiplier to determine the VQ latent space size from the image embeddings. If the image embeddings are height=24 and width=24, the VQ latent shape needs to be height=int(24*10.67)=256 and width=int(24*10.67)=256 in order to match the training conditions. """ model_cpu_offload_seq = "text_encoder->decoder->vqgan" _callback_tensor_inputs = [ "latents", "text_encoder_hidden_states", "negative_prompt_embeds", "image_embeddings", ] def __init__( self, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, decoder: WuerstchenDiffNeXt, scheduler: DDPMWuerstchenScheduler, vqgan: PaellaVQModel, latent_dim_scale: float = 10.67, ) -> None: super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, decoder=decoder, scheduler=scheduler, vqgan=vqgan, ) self.register_to_config(latent_dim_scale=latent_dim_scale) # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, ): batch_size = len(prompt) if isinstance(prompt, list) else 1 # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids attention_mask = text_inputs.attention_mask untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] attention_mask = attention_mask[:, : self.tokenizer.model_max_length] text_encoder_output = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask.to(device)) text_encoder_hidden_states = text_encoder_output.last_hidden_state text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) uncond_text_encoder_hidden_states = None if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) negative_prompt_embeds_text_encoder_output = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device) ) uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = uncond_text_encoder_hidden_states.shape[1] uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt, seq_len, -1 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes return text_encoder_hidden_states, uncond_text_encoder_hidden_states @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, image_embeddings: Union[torch.Tensor, List[torch.Tensor]], prompt: Union[str, List[str]] = None, num_inference_steps: int = 12, timesteps: Optional[List[float]] = None, guidance_scale: float = 0.0, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): """ Function invoked when calling the pipeline for generation. Args: image_embedding (`torch.Tensor` or `List[torch.Tensor]`): Image Embeddings either extracted from an image or generated by a Prior Model. prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. num_inference_steps (`int`, *optional*, defaults to 12): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` timesteps are used. Must be in descending order. guidance_scale (`float`, *optional*, defaults to 0.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `decoder_guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` [`~pipelines.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image embeddings. """ callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None) if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) # 0. Define commonly used variables device = self._execution_device dtype = self.decoder.dtype self._guidance_scale = guidance_scale # 1. Check inputs. Raise error if not correct if not isinstance(prompt, list): if isinstance(prompt, str): prompt = [prompt] else: raise TypeError(f"'prompt' must be of type 'list' or 'str', but got {type(prompt)}.") if self.do_classifier_free_guidance: if negative_prompt is not None and not isinstance(negative_prompt, list): if isinstance(negative_prompt, str): negative_prompt = [negative_prompt] else: raise TypeError( f"'negative_prompt' must be of type 'list' or 'str', but got {type(negative_prompt)}." ) if isinstance(image_embeddings, list): image_embeddings = torch.cat(image_embeddings, dim=0) if isinstance(image_embeddings, np.ndarray): image_embeddings = torch.Tensor(image_embeddings, device=device).to(dtype=dtype) if not isinstance(image_embeddings, torch.Tensor): raise TypeError( f"'image_embeddings' must be of type 'torch.Tensor' or 'np.array', but got {type(image_embeddings)}." ) if not isinstance(num_inference_steps, int): raise TypeError( f"'num_inference_steps' must be of type 'int', but got {type(num_inference_steps)}\ In Case you want to provide explicit timesteps, please use the 'timesteps' argument." ) # 2. Encode caption prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, image_embeddings.size(0) * num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, ) text_encoder_hidden_states = ( torch.cat([prompt_embeds, negative_prompt_embeds]) if negative_prompt_embeds is not None else prompt_embeds ) effnet = ( torch.cat([image_embeddings, torch.zeros_like(image_embeddings)]) if self.do_classifier_free_guidance else image_embeddings ) # 3. Determine latent shape of latents latent_height = int(image_embeddings.size(2) * self.config.latent_dim_scale) latent_width = int(image_embeddings.size(3) * self.config.latent_dim_scale) latent_features_shape = (image_embeddings.size(0) * num_images_per_prompt, 4, latent_height, latent_width) # 4. Prepare and set timesteps if timesteps is not None: self.scheduler.set_timesteps(timesteps=timesteps, device=device) timesteps = self.scheduler.timesteps num_inference_steps = len(timesteps) else: self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latents latents = self.prepare_latents(latent_features_shape, dtype, device, generator, latents, self.scheduler) # 6. Run denoising loop self._num_timesteps = len(timesteps[:-1]) for i, t in enumerate(self.progress_bar(timesteps[:-1])): ratio = t.expand(latents.size(0)).to(dtype) # 7. Denoise latents predicted_latents = self.decoder( torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents, r=torch.cat([ratio] * 2) if self.do_classifier_free_guidance else ratio, effnet=effnet, clip=text_encoder_hidden_states, ) # 8. Check for classifier free guidance and apply it if self.do_classifier_free_guidance: predicted_latents_text, predicted_latents_uncond = predicted_latents.chunk(2) predicted_latents = torch.lerp(predicted_latents_uncond, predicted_latents_text, self.guidance_scale) # 9. Renoise latents to next timestep latents = self.scheduler.step( model_output=predicted_latents, timestep=ratio, sample=latents, generator=generator, ).prev_sample if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) image_embeddings = callback_outputs.pop("image_embeddings", image_embeddings) text_encoder_hidden_states = callback_outputs.pop( "text_encoder_hidden_states", text_encoder_hidden_states ) if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() if output_type not in ["pt", "np", "pil", "latent"]: raise ValueError( f"Only the output types `pt`, `np`, `pil` and `latent` are supported not output_type={output_type}" ) if not output_type == "latent": # 10. Scale and decode the image latents with vq-vae latents = self.vqgan.config.scale_factor * latents images = self.vqgan.decode(latents).sample.clamp(0, 1) if output_type == "np": images = images.permute(0, 2, 3, 1).cpu().float().numpy() elif output_type == "pil": images = images.permute(0, 2, 3, 1).cpu().float().numpy() images = self.numpy_to_pil(images) else: images = latents # Offload all models self.maybe_free_model_hooks() if not return_dict: return images return ImagePipelineOutput(images)
class_definition
2,016
20,769
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py
null
229
class WuerstchenPriorPipelineOutput(BaseOutput): """ Output class for WuerstchenPriorPipeline. Args: image_embeddings (`torch.Tensor` or `np.ndarray`) Prior image embeddings for text prompt """ image_embeddings: Union[torch.Tensor, np.ndarray]
class_definition
1,917
2,203
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py
null
230
class WuerstchenPriorPipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin): """ Pipeline for generating image prior for Wuerstchen. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) The pipeline also inherits the following loading methods: - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights Args: prior ([`Prior`]): The canonical unCLIP prior to approximate the image embedding from the text embedding. text_encoder ([`CLIPTextModelWithProjection`]): Frozen text-encoder. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). scheduler ([`DDPMWuerstchenScheduler`]): A scheduler to be used in combination with `prior` to generate image embedding. latent_mean ('float', *optional*, defaults to 42.0): Mean value for latent diffusers. latent_std ('float', *optional*, defaults to 1.0): Standard value for latent diffusers. resolution_multiple ('float', *optional*, defaults to 42.67): Default resolution for multiple images generated. """ unet_name = "prior" text_encoder_name = "text_encoder" model_cpu_offload_seq = "text_encoder->prior" _callback_tensor_inputs = ["latents", "text_encoder_hidden_states", "negative_prompt_embeds"] _lora_loadable_modules = ["prior", "text_encoder"] def __init__( self, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, prior: WuerstchenPrior, scheduler: DDPMWuerstchenScheduler, latent_mean: float = 42.0, latent_std: float = 1.0, resolution_multiple: float = 42.67, ) -> None: super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, prior=prior, scheduler=scheduler, ) self.register_to_config( latent_mean=latent_mean, latent_std=latent_std, resolution_multiple=resolution_multiple ) # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents def encode_prompt( self, device, num_images_per_prompt, do_classifier_free_guidance, prompt=None, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, ): if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids attention_mask = text_inputs.attention_mask untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] attention_mask = attention_mask[:, : self.tokenizer.model_max_length] text_encoder_output = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask.to(device) ) prompt_embeds = text_encoder_output.last_hidden_state prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) if negative_prompt_embeds is None and do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) negative_prompt_embeds_text_encoder_output = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device) ) negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.last_hidden_state if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) # done duplicates return prompt_embeds, negative_prompt_embeds def check_inputs( self, prompt, negative_prompt, num_inference_steps, do_classifier_free_guidance, prompt_embeds=None, negative_prompt_embeds=None, ): if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if not isinstance(num_inference_steps, int): raise TypeError( f"'num_inference_steps' must be of type 'int', but got {type(num_inference_steps)}\ In Case you want to provide explicit timesteps, please use the 'timesteps' argument." ) @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[str, List[str]]] = None, height: int = 1024, width: int = 1024, num_inference_steps: int = 60, timesteps: List[float] = None, guidance_scale: float = 8.0, negative_prompt: Optional[Union[str, List[str]]] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pt", return_dict: bool = True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. height (`int`, *optional*, defaults to 1024): The height in pixels of the generated image. width (`int`, *optional*, defaults to 1024): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 60): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` timesteps are used. Must be in descending order. guidance_scale (`float`, *optional*, defaults to 8.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `decoder_guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.WuerstchenPriorPipelineOutput`] or `tuple` [`~pipelines.WuerstchenPriorPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image embeddings. """ callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None) if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) # 0. Define commonly used variables device = self._execution_device self._guidance_scale = guidance_scale if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # 1. Check inputs. Raise error if not correct if prompt is not None and not isinstance(prompt, list): if isinstance(prompt, str): prompt = [prompt] else: raise TypeError(f"'prompt' must be of type 'list' or 'str', but got {type(prompt)}.") if self.do_classifier_free_guidance: if negative_prompt is not None and not isinstance(negative_prompt, list): if isinstance(negative_prompt, str): negative_prompt = [negative_prompt] else: raise TypeError( f"'negative_prompt' must be of type 'list' or 'str', but got {type(negative_prompt)}." ) self.check_inputs( prompt, negative_prompt, num_inference_steps, self.do_classifier_free_guidance, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) # 2. Encode caption prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes text_encoder_hidden_states = ( torch.cat([prompt_embeds, negative_prompt_embeds]) if negative_prompt_embeds is not None else prompt_embeds ) # 3. Determine latent shape of image embeddings dtype = text_encoder_hidden_states.dtype latent_height = ceil(height / self.config.resolution_multiple) latent_width = ceil(width / self.config.resolution_multiple) num_channels = self.prior.config.c_in effnet_features_shape = (num_images_per_prompt * batch_size, num_channels, latent_height, latent_width) # 4. Prepare and set timesteps if timesteps is not None: self.scheduler.set_timesteps(timesteps=timesteps, device=device) timesteps = self.scheduler.timesteps num_inference_steps = len(timesteps) else: self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latents latents = self.prepare_latents(effnet_features_shape, dtype, device, generator, latents, self.scheduler) # 6. Run denoising loop self._num_timesteps = len(timesteps[:-1]) for i, t in enumerate(self.progress_bar(timesteps[:-1])): ratio = t.expand(latents.size(0)).to(dtype) # 7. Denoise image embeddings predicted_image_embedding = self.prior( torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents, r=torch.cat([ratio] * 2) if self.do_classifier_free_guidance else ratio, c=text_encoder_hidden_states, ) # 8. Check for classifier free guidance and apply it if self.do_classifier_free_guidance: predicted_image_embedding_text, predicted_image_embedding_uncond = predicted_image_embedding.chunk(2) predicted_image_embedding = torch.lerp( predicted_image_embedding_uncond, predicted_image_embedding_text, self.guidance_scale ) # 9. Renoise latents to next timestep latents = self.scheduler.step( model_output=predicted_image_embedding, timestep=ratio, sample=latents, generator=generator, ).prev_sample if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) text_encoder_hidden_states = callback_outputs.pop( "text_encoder_hidden_states", text_encoder_hidden_states ) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() # 10. Denormalize the latents latents = latents * self.config.latent_mean - self.config.latent_std # Offload all models self.maybe_free_model_hooks() if output_type == "np": latents = latents.cpu().float().numpy() if not return_dict: return (latents,) return WuerstchenPriorPipelineOutput(latents)
class_definition
2,206
24,114
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py
null
231
class WuerstchenCombinedPipeline(DiffusionPipeline): """ Combined Pipeline for text-to-image generation using Wuerstchen This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: tokenizer (`CLIPTokenizer`): The decoder tokenizer to be used for text inputs. text_encoder (`CLIPTextModel`): The decoder text encoder to be used for text inputs. decoder (`WuerstchenDiffNeXt`): The decoder model to be used for decoder image generation pipeline. scheduler (`DDPMWuerstchenScheduler`): The scheduler to be used for decoder image generation pipeline. vqgan (`PaellaVQModel`): The VQGAN model to be used for decoder image generation pipeline. prior_tokenizer (`CLIPTokenizer`): The prior tokenizer to be used for text inputs. prior_text_encoder (`CLIPTextModel`): The prior text encoder to be used for text inputs. prior_prior (`WuerstchenPrior`): The prior model to be used for prior pipeline. prior_scheduler (`DDPMWuerstchenScheduler`): The scheduler to be used for prior pipeline. """ _load_connected_pipes = True def __init__( self, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, decoder: WuerstchenDiffNeXt, scheduler: DDPMWuerstchenScheduler, vqgan: PaellaVQModel, prior_tokenizer: CLIPTokenizer, prior_text_encoder: CLIPTextModel, prior_prior: WuerstchenPrior, prior_scheduler: DDPMWuerstchenScheduler, ): super().__init__() self.register_modules( text_encoder=text_encoder, tokenizer=tokenizer, decoder=decoder, scheduler=scheduler, vqgan=vqgan, prior_prior=prior_prior, prior_text_encoder=prior_text_encoder, prior_tokenizer=prior_tokenizer, prior_scheduler=prior_scheduler, ) self.prior_pipe = WuerstchenPriorPipeline( prior=prior_prior, text_encoder=prior_text_encoder, tokenizer=prior_tokenizer, scheduler=prior_scheduler, ) self.decoder_pipe = WuerstchenDecoderPipeline( text_encoder=text_encoder, tokenizer=tokenizer, decoder=decoder, scheduler=scheduler, vqgan=vqgan, ) def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None): self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"): r""" Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. """ self.prior_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device) self.decoder_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device) def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"): r""" Offloads all models (`unet`, `text_encoder`, `vae`, and `safety checker` state dicts) to CPU using 🤗 Accelerate, significantly reducing memory usage. Models are moved to a `torch.device('meta')` and loaded on a GPU only when their specific submodule's `forward` method is called. Offloading happens on a submodule basis. Memory savings are higher than using `enable_model_cpu_offload`, but performance is lower. """ self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) def progress_bar(self, iterable=None, total=None): self.prior_pipe.progress_bar(iterable=iterable, total=total) self.decoder_pipe.progress_bar(iterable=iterable, total=total) def set_progress_bar_config(self, **kwargs): self.prior_pipe.set_progress_bar_config(**kwargs) self.decoder_pipe.set_progress_bar_config(**kwargs) @torch.no_grad() @replace_example_docstring(TEXT2IMAGE_EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[str, List[str]]] = None, height: int = 512, width: int = 512, prior_num_inference_steps: int = 60, prior_timesteps: Optional[List[float]] = None, prior_guidance_scale: float = 4.0, num_inference_steps: int = 12, decoder_timesteps: Optional[List[float]] = None, decoder_guidance_scale: float = 0.0, negative_prompt: Optional[Union[str, List[str]]] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, num_images_per_prompt: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, prior_callback_on_step_end_tensor_inputs: List[str] = ["latents"], callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation for the prior and decoder. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. prior_guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `prior_guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `prior_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. prior_num_inference_steps (`Union[int, Dict[float, int]]`, *optional*, defaults to 60): The number of prior denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. For more specific timestep spacing, you can pass customized `prior_timesteps` num_inference_steps (`int`, *optional*, defaults to 12): The number of decoder denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. For more specific timestep spacing, you can pass customized `timesteps` prior_timesteps (`List[float]`, *optional*): Custom timesteps to use for the denoising process for the prior. If not defined, equal spaced `prior_num_inference_steps` timesteps are used. Must be in descending order. decoder_timesteps (`List[float]`, *optional*): Custom timesteps to use for the denoising process for the decoder. If not defined, equal spaced `num_inference_steps` timesteps are used. Must be in descending order. decoder_guidance_scale (`float`, *optional*, defaults to 0.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. prior_callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `prior_callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. prior_callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `prior_callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` [`~pipelines.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ prior_kwargs = {} if kwargs.get("prior_callback", None) is not None: prior_kwargs["callback"] = kwargs.pop("prior_callback") deprecate( "prior_callback", "1.0.0", "Passing `prior_callback` as an input argument to `__call__` is deprecated, consider use `prior_callback_on_step_end`", ) if kwargs.get("prior_callback_steps", None) is not None: deprecate( "prior_callback_steps", "1.0.0", "Passing `prior_callback_steps` as an input argument to `__call__` is deprecated, consider use `prior_callback_on_step_end`", ) prior_kwargs["callback_steps"] = kwargs.pop("prior_callback_steps") prior_outputs = self.prior_pipe( prompt=prompt if prompt_embeds is None else None, height=height, width=width, num_inference_steps=prior_num_inference_steps, timesteps=prior_timesteps, guidance_scale=prior_guidance_scale, negative_prompt=negative_prompt if negative_prompt_embeds is None else None, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_images_per_prompt=num_images_per_prompt, generator=generator, latents=latents, output_type="pt", return_dict=False, callback_on_step_end=prior_callback_on_step_end, callback_on_step_end_tensor_inputs=prior_callback_on_step_end_tensor_inputs, **prior_kwargs, ) image_embeddings = prior_outputs[0] outputs = self.decoder_pipe( image_embeddings=image_embeddings, prompt=prompt if prompt is not None else "", num_inference_steps=num_inference_steps, timesteps=decoder_timesteps, guidance_scale=decoder_guidance_scale, negative_prompt=negative_prompt, generator=generator, output_type=output_type, return_dict=return_dict, callback_on_step_end=callback_on_step_end, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, **kwargs, ) return outputs
class_definition
1,596
16,576
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py
null
232
class SafeStableDiffusionSafetyChecker(PreTrainedModel): config_class = CLIPConfig _no_split_modules = ["CLIPEncoderLayer"] def __init__(self, config: CLIPConfig): super().__init__(config) self.vision_model = CLIPVisionModel(config.vision_config) self.visual_projection = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=False) self.concept_embeds = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=False) self.special_care_embeds = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=False) self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False) self.special_care_embeds_weights = nn.Parameter(torch.ones(3), requires_grad=False) @torch.no_grad() def forward(self, clip_input, images): pooled_output = self.vision_model(clip_input)[1] # pooled_output image_embeds = self.visual_projection(pooled_output) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().float().numpy() cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy() result = [] batch_size = image_embeds.shape[0] for i in range(batch_size): result_img = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images adjustment = 0.0 for concept_idx in range(len(special_cos_dist[0])): concept_cos = special_cos_dist[i][concept_idx] concept_threshold = self.special_care_embeds_weights[concept_idx].item() result_img["special_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]}) adjustment = 0.01 for concept_idx in range(len(cos_dist[0])): concept_cos = cos_dist[i][concept_idx] concept_threshold = self.concept_embeds_weights[concept_idx].item() result_img["concept_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(concept_idx) result.append(result_img) has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def forward_onnx(self, clip_input: torch.Tensor, images: torch.Tensor): pooled_output = self.vision_model(clip_input)[1] # pooled_output image_embeds = self.visual_projection(pooled_output) special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds) cos_dist = cosine_distance(image_embeds, self.concept_embeds) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images adjustment = 0.0 special_scores = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) special_care = torch.any(special_scores > 0, dim=1) special_adjustment = special_care * 0.01 special_adjustment = special_adjustment.unsqueeze(1).expand(-1, cos_dist.shape[1]) concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) has_nsfw_concepts = torch.any(concept_scores > 0, dim=1) return images, has_nsfw_concepts
class_definition
1,041
5,038
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_safe/safety_checker.py
null
233
class StableDiffusionSafePipelineOutput(BaseOutput): """ Output class for Safe Stable Diffusion pipelines. Args: images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. nsfw_content_detected (`List[bool]`) List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, or `None` if safety checking could not be performed. images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images that were flagged by the safety checker any may contain "not-safe-for-work" (nsfw) content, or `None` if no safety check was performed or no images were flagged. applied_safety_concept (`str`) The safety concept that was applied for safety guidance, or `None` if safety guidance was disabled """ images: Union[List[PIL.Image.Image], np.ndarray] nsfw_content_detected: Optional[List[bool]] unsafe_images: Optional[Union[List[PIL.Image.Image], np.ndarray]] applied_safety_concept: Optional[str]
class_definition
167
1,458
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_safe/pipeline_output.py
null
234
class SafetyConfig(object): WEAK = { "sld_warmup_steps": 15, "sld_guidance_scale": 20, "sld_threshold": 0.0, "sld_momentum_scale": 0.0, "sld_mom_beta": 0.0, } MEDIUM = { "sld_warmup_steps": 10, "sld_guidance_scale": 1000, "sld_threshold": 0.01, "sld_momentum_scale": 0.3, "sld_mom_beta": 0.4, } STRONG = { "sld_warmup_steps": 7, "sld_guidance_scale": 2000, "sld_threshold": 0.025, "sld_momentum_scale": 0.5, "sld_mom_beta": 0.7, } MAX = { "sld_warmup_steps": 0, "sld_guidance_scale": 5000, "sld_threshold": 1.0, "sld_momentum_scale": 0.5, "sld_mom_beta": 0.7, }
class_definition
384
1,137
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_safe/__init__.py
null
235
class StableDiffusionPipelineSafe(DiffusionPipeline, StableDiffusionMixin, IPAdapterMixin): r""" Pipeline based on the [`StableDiffusionPipeline`] for text-to-image generation using Safe Latent Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ model_cpu_offload_seq = "text_encoder->unet->vae" _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: SafeStableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: Optional[CLIPVisionModelWithProjection] = None, requires_safety_checker: bool = True, ): super().__init__() safety_concept: Optional[str] = ( "an image showing hate, harassment, violence, suffering, humiliation, harm, suicide, sexual, nudity," " bodily fluids, blood, obscene gestures, illegal activity, drug use, theft, vandalism, weapons, child" " abuse, brutality, cruelty" ) if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config) if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) is_unet_version_less_0_9_0 = ( unet is not None and hasattr(unet.config, "_diffusers_version") and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse("0.9.0.dev0") ) is_unet_sample_size_less_64 = ( unet is not None and hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 ) if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5" " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(unet.config) new_config["sample_size"] = 64 unet._internal_dict = FrozenDict(new_config) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder, ) self._safety_text_concept = safety_concept self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.register_to_config(requires_safety_checker=requires_safety_checker) @property def safety_concept(self): r""" Getter method for the safety concept used with SLD Returns: `str`: The text describing the safety concept """ return self._safety_text_concept @safety_concept.setter def safety_concept(self, concept): r""" Setter method for the safety concept used with SLD Args: concept (`str`): The text of the new safety concept """ self._safety_text_concept = concept def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, enable_safety_guidance, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). """ batch_size = len(prompt) if isinstance(prompt, list) else 1 text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="pt").input_ids if not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, ) prompt_embeds = prompt_embeds[0] # duplicate text embeddings for each generation per prompt, using mps friendly method bs_embed, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = text_input_ids.shape[-1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) # Encode the safety concept text if enable_safety_guidance: safety_concept_input = self.tokenizer( [self._safety_text_concept], padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) safety_embeddings = self.text_encoder(safety_concept_input.input_ids.to(self.device))[0] # duplicate safety embeddings for each generation per prompt, using mps friendly method seq_len = safety_embeddings.shape[1] safety_embeddings = safety_embeddings.repeat(batch_size, num_images_per_prompt, 1) safety_embeddings = safety_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance + sld, we need to do three forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing three forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds, safety_embeddings]) else: # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds def run_safety_checker(self, image, device, dtype, enable_safety_guidance): if self.safety_checker is not None: images = image.copy() safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) flagged_images = np.zeros((2, *image.shape[1:])) if any(has_nsfw_concept): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned" " instead." f"{'You may look at this images in the `unsafe_images` variable of the output at your own discretion.' if enable_safety_guidance else 'Try again with a different prompt and/or seed.'}" ) for idx, has_nsfw_concept in enumerate(has_nsfw_concept): if has_nsfw_concept: flagged_images[idx] = images[idx] image[idx] = np.zeros(image[idx].shape) # black image else: has_nsfw_concept = None flagged_images = None return image, has_nsfw_concept, flagged_images # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs # Copied from diffusers.pipelines.stable_diffusion_k_diffusion.pipeline_stable_diffusion_k_diffusion.StableDiffusionKDiffusionPipeline.check_inputs def check_inputs( self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def perform_safety_guidance( self, enable_safety_guidance, safety_momentum, noise_guidance, noise_pred_out, i, sld_guidance_scale, sld_warmup_steps, sld_threshold, sld_momentum_scale, sld_mom_beta, ): # Perform SLD guidance if enable_safety_guidance: if safety_momentum is None: safety_momentum = torch.zeros_like(noise_guidance) noise_pred_text, noise_pred_uncond = noise_pred_out[0], noise_pred_out[1] noise_pred_safety_concept = noise_pred_out[2] # Equation 6 scale = torch.clamp(torch.abs((noise_pred_text - noise_pred_safety_concept)) * sld_guidance_scale, max=1.0) # Equation 6 safety_concept_scale = torch.where( (noise_pred_text - noise_pred_safety_concept) >= sld_threshold, torch.zeros_like(scale), scale ) # Equation 4 noise_guidance_safety = torch.mul((noise_pred_safety_concept - noise_pred_uncond), safety_concept_scale) # Equation 7 noise_guidance_safety = noise_guidance_safety + sld_momentum_scale * safety_momentum # Equation 8 safety_momentum = sld_mom_beta * safety_momentum + (1 - sld_mom_beta) * noise_guidance_safety if i >= sld_warmup_steps: # Warmup # Equation 3 noise_guidance = noise_guidance - noise_guidance_safety return noise_guidance, safety_momentum # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): dtype = next(self.image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = self.feature_extractor(image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) if output_hidden_states: image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_enc_hidden_states = self.image_encoder( torch.zeros_like(image), output_hidden_states=True ).hidden_states[-2] uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( num_images_per_prompt, dim=0 ) return image_enc_hidden_states, uncond_image_enc_hidden_states else: image_embeds = self.image_encoder(image).image_embeds image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_embeds = torch.zeros_like(image_embeds) return image_embeds, uncond_image_embeds @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, sld_guidance_scale: Optional[float] = 1000, sld_warmup_steps: Optional[int] = 10, sld_threshold: Optional[float] = 0.01, sld_momentum_scale: Optional[float] = 0.3, sld_mom_beta: Optional[float] = 0.4, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. sld_guidance_scale (`float`, *optional*, defaults to 1000): If `sld_guidance_scale < 1`, safety guidance is disabled. sld_warmup_steps (`int`, *optional*, defaults to 10): Number of warmup steps for safety guidance. SLD is only be applied for diffusion steps greater than `sld_warmup_steps`. sld_threshold (`float`, *optional*, defaults to 0.01): Threshold that separates the hyperplane between appropriate and inappropriate images. sld_momentum_scale (`float`, *optional*, defaults to 0.3): Scale of the SLD momentum to be added to the safety guidance at each diffusion step. If set to 0.0, momentum is disabled. Momentum is built up during warmup for diffusion steps smaller than `sld_warmup_steps`. sld_mom_beta (`float`, *optional*, defaults to 0.4): Defines how safety guidance momentum builds up. `sld_mom_beta` indicates how much of the previous momentum is kept. Momentum is built up during warmup for diffusion steps smaller than `sld_warmup_steps`. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. Examples: ```py import torch from diffusers import StableDiffusionPipelineSafe from diffusers.pipelines.stable_diffusion_safe import SafetyConfig pipeline = StableDiffusionPipelineSafe.from_pretrained( "AIML-TUDA/stable-diffusion-safe", torch_dtype=torch.float16 ).to("cuda") prompt = "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c. leyendecker" image = pipeline(prompt=prompt, **SafetyConfig.MEDIUM).images[0] ``` """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs(prompt, height, width, callback_steps) # 2. Define call parameters batch_size = 1 if isinstance(prompt, str) else len(prompt) device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 enable_safety_guidance = sld_guidance_scale > 1.0 and do_classifier_free_guidance if not enable_safety_guidance: warnings.warn("Safety checker disabled!") if ip_adapter_image is not None: output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True image_embeds, negative_image_embeds = self.encode_image( ip_adapter_image, device, num_images_per_prompt, output_hidden_state ) if do_classifier_free_guidance: if enable_safety_guidance: image_embeds = torch.cat([negative_image_embeds, image_embeds, image_embeds]) else: image_embeds = torch.cat([negative_image_embeds, image_embeds]) # 3. Encode input prompt prompt_embeds = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, enable_safety_guidance ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 6.1 Add image embeds for IP-Adapter added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None safety_momentum = None num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = ( torch.cat([latents] * (3 if enable_safety_guidance else 2)) if do_classifier_free_guidance else latents ) latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, added_cond_kwargs=added_cond_kwargs ).sample # perform guidance if do_classifier_free_guidance: noise_pred_out = noise_pred.chunk((3 if enable_safety_guidance else 2)) noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1] # default classifier free guidance noise_guidance = noise_pred_text - noise_pred_uncond # Perform SLD guidance if enable_safety_guidance: if safety_momentum is None: safety_momentum = torch.zeros_like(noise_guidance) noise_pred_safety_concept = noise_pred_out[2] # Equation 6 scale = torch.clamp( torch.abs((noise_pred_text - noise_pred_safety_concept)) * sld_guidance_scale, max=1.0 ) # Equation 6 safety_concept_scale = torch.where( (noise_pred_text - noise_pred_safety_concept) >= sld_threshold, torch.zeros_like(scale), scale, ) # Equation 4 noise_guidance_safety = torch.mul( (noise_pred_safety_concept - noise_pred_uncond), safety_concept_scale ) # Equation 7 noise_guidance_safety = noise_guidance_safety + sld_momentum_scale * safety_momentum # Equation 8 safety_momentum = sld_mom_beta * safety_momentum + (1 - sld_mom_beta) * noise_guidance_safety if i >= sld_warmup_steps: # Warmup # Equation 3 noise_guidance = noise_guidance - noise_guidance_safety noise_pred = noise_pred_uncond + guidance_scale * noise_guidance # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() # 8. Post-processing image = self.decode_latents(latents) # 9. Run safety checker image, has_nsfw_concept, flagged_images = self.run_safety_checker( image, device, prompt_embeds.dtype, enable_safety_guidance ) # 10. Convert to PIL if output_type == "pil": image = self.numpy_to_pil(image) if flagged_images is not None: flagged_images = self.numpy_to_pil(flagged_images) if not return_dict: return ( image, has_nsfw_concept, self._safety_text_concept if enable_safety_guidance else None, flagged_images, ) return StableDiffusionSafePipelineOutput( images=image, nsfw_content_detected=has_nsfw_concept, applied_safety_concept=self._safety_text_concept if enable_safety_guidance else None, unsafe_images=flagged_images, )
class_definition
1,004
39,523
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py
null
236
class SanaPipelineOutput(BaseOutput): """ Output class for Sana pipelines. Args: images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. """ images: Union[List[PIL.Image.Image], np.ndarray]
class_definition
148
585
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/sana/pipeline_output.py
null
237
class SanaPipeline(DiffusionPipeline, SanaLoraLoaderMixin): r""" Pipeline for text-to-image generation using [Sana](https://huggingface.co/papers/2410.10629). """ # fmt: off bad_punct_regex = re.compile(r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}") # fmt: on model_cpu_offload_seq = "text_encoder->transformer->vae" _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] def __init__( self, tokenizer: AutoTokenizer, text_encoder: AutoModelForCausalLM, vae: AutoencoderDC, transformer: SanaTransformer2DModel, scheduler: DPMSolverMultistepScheduler, ): super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler ) self.vae_scale_factor = ( 2 ** (len(self.vae.config.encoder_block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 32 ) self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor) def enable_vae_slicing(self): r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.vae.enable_slicing() def disable_vae_slicing(self): r""" Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_slicing() def enable_vae_tiling(self): r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. """ self.vae.enable_tiling() def disable_vae_tiling(self): r""" Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_tiling() def encode_prompt( self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool = True, negative_prompt: str = "", num_images_per_prompt: int = 1, device: Optional[torch.device] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, clean_caption: bool = False, max_sequence_length: int = 300, complex_human_instruction: Optional[List[str]] = None, lora_scale: Optional[float] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For PixArt-Alpha, this should be "". do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): whether to use classifier free guidance or not num_images_per_prompt (`int`, *optional*, defaults to 1): number of images that should be generated per prompt device: (`torch.device`, *optional*): torch device to place the resulting embeddings on prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. For Sana, it's should be the embeddings of the "" string. clean_caption (`bool`, defaults to `False`): If `True`, the function will preprocess and clean the provided caption before encoding. max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt. complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`): If `complex_human_instruction` is not empty, the function will use the complex Human instruction for the prompt. """ if device is None: device = self._execution_device # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, SanaLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if self.text_encoder is not None and USE_PEFT_BACKEND: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] self.tokenizer.padding_side = "right" # See Section 3.1. of the paper. max_length = max_sequence_length select_index = [0] + list(range(-max_length + 1, 0)) if prompt_embeds is None: prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) # prepare complex human instruction if not complex_human_instruction: max_length_all = max_length else: chi_prompt = "\n".join(complex_human_instruction) prompt = [chi_prompt + p for p in prompt] num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt)) max_length_all = num_chi_prompt_tokens + max_length - 2 text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_length_all, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids prompt_attention_mask = text_inputs.attention_mask prompt_attention_mask = prompt_attention_mask.to(device) prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask) prompt_embeds = prompt_embeds[0][:, select_index] prompt_attention_mask = prompt_attention_mask[:, select_index] if self.transformer is not None: dtype = self.transformer.dtype elif self.text_encoder is not None: dtype = self.text_encoder.dtype else: dtype = None prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1) prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) negative_prompt_attention_mask = uncond_input.attention_mask negative_prompt_attention_mask = negative_prompt_attention_mask.to(device) negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1) negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) else: negative_prompt_embeds = None negative_prompt_attention_mask = None if self.text_encoder is not None: if isinstance(self, SanaLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, height, width, callback_on_step_end_tensor_inputs=None, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, ): if height % 32 != 0 or width % 32 != 0: raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.") if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and prompt_attention_mask is None: raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: raise ValueError( "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" f" {negative_prompt_attention_mask.shape}." ) # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing def _text_preprocessing(self, text, clean_caption=False): if clean_caption and not is_bs4_available(): logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")) logger.warning("Setting `clean_caption` to False...") clean_caption = False if clean_caption and not is_ftfy_available(): logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")) logger.warning("Setting `clean_caption` to False...") clean_caption = False if not isinstance(text, (tuple, list)): text = [text] def process(text: str): if clean_caption: text = self._clean_caption(text) text = self._clean_caption(text) else: text = text.lower().strip() return text return [process(t) for t in text] # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption def _clean_caption(self, caption): caption = str(caption) caption = ul.unquote_plus(caption) caption = caption.strip().lower() caption = re.sub("<person>", "person", caption) # urls: caption = re.sub( r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls caption = re.sub( r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls # html: caption = BeautifulSoup(caption, features="html.parser").text # @<nickname> caption = re.sub(r"@[\w\d]+\b", "", caption) # 31C0—31EF CJK Strokes # 31F0—31FF Katakana Phonetic Extensions # 3200—32FF Enclosed CJK Letters and Months # 3300—33FF CJK Compatibility # 3400—4DBF CJK Unified Ideographs Extension A # 4DC0—4DFF Yijing Hexagram Symbols # 4E00—9FFF CJK Unified Ideographs caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) caption = re.sub(r"[\u3200-\u32ff]+", "", caption) caption = re.sub(r"[\u3300-\u33ff]+", "", caption) caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) ####################################################### # все виды тире / all types of dash --> "-" caption = re.sub( r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa "-", caption, ) # кавычки к одному стандарту caption = re.sub(r"[`´«»“”¨]", '"', caption) caption = re.sub(r"[‘’]", "'", caption) # &quot; caption = re.sub(r"&quot;?", "", caption) # &amp caption = re.sub(r"&amp", "", caption) # ip adresses: caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) # article ids: caption = re.sub(r"\d:\d\d\s+$", "", caption) # \n caption = re.sub(r"\\n", " ", caption) # "#123" caption = re.sub(r"#\d{1,3}\b", "", caption) # "#12345.." caption = re.sub(r"#\d{5,}\b", "", caption) # "123456.." caption = re.sub(r"\b\d{6,}\b", "", caption) # filenames: caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) # caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " # this-is-my-cute-cat / this_is_my_cute_cat regex2 = re.compile(r"(?:\-|\_)") if len(re.findall(regex2, caption)) > 3: caption = re.sub(regex2, " ", caption) caption = ftfy.fix_text(caption) caption = html.unescape(html.unescape(caption)) caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) caption = re.sub(r"\bpage\s+\d+\b", "", caption) caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) caption = re.sub(r"\b\s+\:\s+", r": ", caption) caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) caption = re.sub(r"\s+", " ", caption) caption.strip() caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) caption = re.sub(r"^\.\S+$", "", caption) return caption.strip() def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): if latents is not None: return latents.to(device=device, dtype=dtype) shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) return latents @property def guidance_scale(self): return self._guidance_scale @property def attention_kwargs(self): return self._attention_kwargs @property def do_classifier_free_guidance(self): return self._guidance_scale > 1.0 @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, negative_prompt: str = "", num_inference_steps: int = 20, timesteps: List[int] = None, sigmas: List[float] = None, guidance_scale: float = 4.5, num_images_per_prompt: Optional[int] = 1, height: int = 1024, width: int = 1024, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, clean_caption: bool = False, use_resolution_binning: bool = True, attention_kwargs: Optional[Dict[str, Any]] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 300, complex_human_instruction: List[str] = [ "Given a user prompt, generate an 'Enhanced prompt' that provides detailed visual descriptions suitable for image generation. Evaluate the level of detail in the user prompt:", "- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to create vivid and concrete scenes.", "- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.", "Here are examples of how to transform or refine prompts:", "- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a warm sunny windowsill, surrounded by pots of blooming red flowers.", "- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.", "Please generate only the enhanced description for the prompt below and avoid including any additional commentary or evaluations:", "User Prompt: ", ], ) -> Union[SanaPipelineOutput, Tuple]: """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_inference_steps (`int`, *optional*, defaults to 20): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. guidance_scale (`float`, *optional*, defaults to 4.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. height (`int`, *optional*, defaults to self.unet.config.sample_size): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size): The width in pixels of the generated image. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for negative text embeddings. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. attention_kwargs: A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). clean_caption (`bool`, *optional*, defaults to `True`): Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to be installed. If the dependencies are not installed, the embeddings will be created from the raw prompt. use_resolution_binning (`bool` defaults to `True`): If set to `True`, the requested height and width are first mapped to the closest resolutions using `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to the requested resolution. Useful for generating non-square images. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. max_sequence_length (`int` defaults to `300`): Maximum sequence length to use with the `prompt`. complex_human_instruction (`List[str]`, *optional*): Instructions for complex human attention: https://github.com/NVlabs/Sana/blob/main/configs/sana_app_config/Sana_1600M_app.yaml#L55. Examples: Returns: [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images """ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs # 1. Check inputs. Raise error if not correct if use_resolution_binning: if self.transformer.config.sample_size == 128: aspect_ratio_bin = ASPECT_RATIO_4096_BIN elif self.transformer.config.sample_size == 64: aspect_ratio_bin = ASPECT_RATIO_2048_BIN elif self.transformer.config.sample_size == 32: aspect_ratio_bin = ASPECT_RATIO_1024_BIN elif self.transformer.config.sample_size == 16: aspect_ratio_bin = ASPECT_RATIO_512_BIN else: raise ValueError("Invalid sample size") orig_height, orig_width = height, width height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin) self.check_inputs( prompt, height, width, callback_on_step_end_tensor_inputs, negative_prompt, prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask, ) self._guidance_scale = guidance_scale self._attention_kwargs = attention_kwargs self._interrupt = False # 2. Default height and width to transformer if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device lora_scale = self.attention_kwargs.get("scale", None) if self.attention_kwargs is not None else None # 3. Encode input prompt ( prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask, ) = self.encode_prompt( prompt, self.do_classifier_free_guidance, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, device=device, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, clean_caption=clean_caption, max_sequence_length=max_sequence_length, complex_human_instruction=complex_human_instruction, lora_scale=lora_scale, ) if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas ) # 5. Prepare latents. latent_channels = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, latent_channels, height, width, torch.float32, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = latent_model_input.to(prompt_embeds.dtype) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype) # predict noise model_output noise_pred = self.transformer( latent_model_input, encoder_hidden_states=prompt_embeds, encoder_attention_mask=prompt_attention_mask, timestep=timestep, return_dict=False, attention_kwargs=self.attention_kwargs, )[0] noise_pred = noise_pred.float() # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: noise_pred = noise_pred.chunk(2, dim=1)[0] else: noise_pred = noise_pred # compute previous image: x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step() if output_type == "latent": image = latents else: latents = latents.to(self.vae.dtype) try: image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] except torch.cuda.OutOfMemoryError as e: warnings.warn( f"{e}. \n" f"Try to use VAE tiling for large images. For example: \n" f"pipe.vae.enable_tiling(tile_sample_min_width=512, tile_sample_min_height=512)" ) if use_resolution_binning: image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height) if not output_type == "latent": image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return SanaPipelineOutput(images=image)
class_definition
6,923
45,765
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/sana/pipeline_sana.py
null
238
class AudioLDMPipeline(DiffusionPipeline, StableDiffusionMixin): r""" Pipeline for text-to-audio generation using AudioLDM. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.ClapTextModelWithProjection`]): Frozen text-encoder (`ClapTextModelWithProjection`, specifically the [laion/clap-htsat-unfused](https://huggingface.co/laion/clap-htsat-unfused) variant. tokenizer ([`PreTrainedTokenizer`]): A [`~transformers.RobertaTokenizer`] to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded audio latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. vocoder ([`~transformers.SpeechT5HifiGan`]): Vocoder of class `SpeechT5HifiGan`. """ model_cpu_offload_seq = "text_encoder->unet->vae" def __init__( self, vae: AutoencoderKL, text_encoder: ClapTextModelWithProjection, tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast], unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, vocoder: SpeechT5HifiGan, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, vocoder=vocoder, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 def _encode_prompt( self, prompt, device, num_waveforms_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device (`torch.device`): torch device num_waveforms_per_prompt (`int`): number of waveforms that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the audio generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. """ if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids attention_mask = text_inputs.attention_mask untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLAP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask.to(device), ) prompt_embeds = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state prompt_embeds = F.normalize(prompt_embeds, dim=-1) prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) ( bs_embed, seq_len, ) = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt) prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) uncond_input_ids = uncond_input.input_ids.to(device) attention_mask = uncond_input.attention_mask.to(device) negative_prompt_embeds = self.text_encoder( uncond_input_ids, attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state negative_prompt_embeds = F.normalize(negative_prompt_embeds, dim=-1) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds def decode_latents(self, latents): latents = 1 / self.vae.config.scaling_factor * latents mel_spectrogram = self.vae.decode(latents).sample return mel_spectrogram def mel_spectrogram_to_waveform(self, mel_spectrogram): if mel_spectrogram.dim() == 4: mel_spectrogram = mel_spectrogram.squeeze(1) waveform = self.vocoder(mel_spectrogram) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 waveform = waveform.cpu().float() return waveform # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, audio_length_in_s, vocoder_upsample_factor, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor if audio_length_in_s < min_audio_length_in_s: raise ValueError( f"`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but " f"is {audio_length_in_s}." ) if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0: raise ValueError( f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the " f"VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of " f"{self.vae_scale_factor}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents with width->self.vocoder.config.model_in_dim def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(self.vocoder.config.model_in_dim) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, audio_length_in_s: Optional[float] = None, num_inference_steps: int = 10, guidance_scale: float = 2.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_waveforms_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: Optional[int] = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, output_type: Optional[str] = "np", ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide audio generation. If not defined, you need to pass `prompt_embeds`. audio_length_in_s (`int`, *optional*, defaults to 5.12): The length of the generated audio sample in seconds. num_inference_steps (`int`, *optional*, defaults to 10): The number of denoising steps. More denoising steps usually lead to a higher quality audio at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 2.5): A higher guidance scale value encourages the model to generate audio that is closely linked to the text `prompt` at the expense of lower sound quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in audio generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_waveforms_per_prompt (`int`, *optional*, defaults to 1): The number of waveforms to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.AudioPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). output_type (`str`, *optional*, defaults to `"np"`): The output format of the generated image. Choose between `"np"` to return a NumPy `np.ndarray` or `"pt"` to return a PyTorch `torch.Tensor` object. Examples: Returns: [`~pipelines.AudioPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.AudioPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated audio. """ # 0. Convert audio input length from seconds to spectrogram height vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate if audio_length_in_s is None: audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor height = int(audio_length_in_s / vocoder_upsample_factor) original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate) if height % self.vae_scale_factor != 0: height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor logger.info( f"Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} " f"so that it can be handled by the model. It will be cut to {audio_length_in_s} after the " f"denoising process." ) # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, audio_length_in_s, vocoder_upsample_factor, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds = self._encode_prompt( prompt, device, num_waveforms_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_waveforms_per_prompt, num_channels_latents, height, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=None, class_labels=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() # 8. Post-processing mel_spectrogram = self.decode_latents(latents) audio = self.mel_spectrogram_to_waveform(mel_spectrogram) audio = audio[:, :original_waveform_length] if output_type == "np": audio = audio.numpy() if not return_dict: return (audio,) return AudioPipelineOutput(audios=audio)
class_definition
2,038
26,265
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/audioldm/pipeline_audioldm.py
null
239
class ConsisIDPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin): r""" Pipeline for image-to-video generation using ConsisID. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations. text_encoder ([`T5EncoderModel`]): Frozen text-encoder. ConsisID uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. tokenizer (`T5Tokenizer`): Tokenizer of class [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). transformer ([`ConsisIDTransformer3DModel`]): A text conditioned `ConsisIDTransformer3DModel` to denoise the encoded video latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `transformer` to denoise the encoded video latents. """ _optional_components = [] model_cpu_offload_seq = "text_encoder->transformer->vae" _callback_tensor_inputs = [ "latents", "prompt_embeds", "negative_prompt_embeds", ] def __init__( self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, vae: AutoencoderKLCogVideoX, transformer: ConsisIDTransformer3DModel, scheduler: CogVideoXDPMScheduler, ): super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler, ) self.vae_scale_factor_spatial = ( 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 ) self.vae_scale_factor_temporal = ( self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4 ) self.vae_scaling_factor_image = ( self.vae.config.scaling_factor if hasattr(self, "vae") and self.vae is not None else 0.7 ) self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial) # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._get_t5_prompt_embeds def _get_t5_prompt_embeds( self, prompt: Union[str, List[str]] = None, num_videos_per_prompt: int = 1, max_sequence_length: int = 226, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): device = device or self._execution_device dtype = dtype or self.text_encoder.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) logger.warning( "The following part of your input was truncated because `max_sequence_length` is set to " f" {max_sequence_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) # duplicate text embeddings for each generation per prompt, using mps friendly method _, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) return prompt_embeds # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.encode_prompt def encode_prompt( self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, do_classifier_free_guidance: bool = True, num_videos_per_prompt: int = 1, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, max_sequence_length: int = 226, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): Whether to use classifier free guidance or not. num_videos_per_prompt (`int`, *optional*, defaults to 1): Number of videos that should be generated per prompt. torch device to place the resulting embeddings on prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. device: (`torch.device`, *optional*): torch device dtype: (`torch.dtype`, *optional*): torch dtype """ device = device or self._execution_device prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: prompt_embeds = self._get_t5_prompt_embeds( prompt=prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, ) if do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt or "" negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) negative_prompt_embeds = self._get_t5_prompt_embeds( prompt=negative_prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, ) return prompt_embeds, negative_prompt_embeds def prepare_latents( self, image: torch.Tensor, batch_size: int = 1, num_channels_latents: int = 16, num_frames: int = 13, height: int = 60, width: int = 90, dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, generator: Optional[torch.Generator] = None, latents: Optional[torch.Tensor] = None, kps_cond: Optional[torch.Tensor] = None, ): if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) num_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1 shape = ( batch_size, num_frames, num_channels_latents, height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial, ) image = image.unsqueeze(2) # [B, C, F, H, W] if isinstance(generator, list): image_latents = [ retrieve_latents(self.vae.encode(image[i].unsqueeze(0)), generator[i]) for i in range(batch_size) ] if kps_cond is not None: kps_cond = kps_cond.unsqueeze(2) kps_cond_latents = [ retrieve_latents(self.vae.encode(kps_cond[i].unsqueeze(0)), generator[i]) for i in range(batch_size) ] else: image_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) for img in image] if kps_cond is not None: kps_cond = kps_cond.unsqueeze(2) kps_cond_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) for img in kps_cond] image_latents = torch.cat(image_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) # [B, F, C, H, W] image_latents = self.vae_scaling_factor_image * image_latents if kps_cond is not None: kps_cond_latents = torch.cat(kps_cond_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) # [B, F, C, H, W] kps_cond_latents = self.vae_scaling_factor_image * kps_cond_latents padding_shape = ( batch_size, num_frames - 2, num_channels_latents, height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial, ) else: padding_shape = ( batch_size, num_frames - 1, num_channels_latents, height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial, ) latent_padding = torch.zeros(padding_shape, device=device, dtype=dtype) if kps_cond is not None: image_latents = torch.cat([image_latents, kps_cond_latents, latent_padding], dim=1) else: image_latents = torch.cat([image_latents, latent_padding], dim=1) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents, image_latents # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.decode_latents def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width] latents = 1 / self.vae_scaling_factor_image * latents frames = self.vae.decode(latents).sample return frames # Copied from diffusers.pipelines.animatediff.pipeline_animatediff_video2video.AnimateDiffVideoToVideoPipeline.get_timesteps def get_timesteps(self, num_inference_steps, timesteps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = timesteps[t_start * self.scheduler.order :] return timesteps, num_inference_steps - t_start # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, image, prompt, height, width, negative_prompt, callback_on_step_end_tensor_inputs, latents=None, prompt_embeds=None, negative_prompt_embeds=None, ): if ( not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list) ): raise ValueError( "`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" f" {type(image)}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) def _prepare_rotary_positional_embeddings( self, height: int, width: int, num_frames: int, device: torch.device, ) -> Tuple[torch.Tensor, torch.Tensor]: grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) base_size_width = self.transformer.config.sample_width // self.transformer.config.patch_size base_size_height = self.transformer.config.sample_height // self.transformer.config.patch_size grid_crops_coords = get_resize_crop_region_for_grid( (grid_height, grid_width), base_size_width, base_size_height ) freqs_cos, freqs_sin = get_3d_rotary_pos_embed( embed_dim=self.transformer.config.attention_head_dim, crops_coords=grid_crops_coords, grid_size=(grid_height, grid_width), temporal_size=num_frames, device=device, ) return freqs_cos, freqs_sin @property def guidance_scale(self): return self._guidance_scale @property def num_timesteps(self): return self._num_timesteps @property def attention_kwargs(self): return self._attention_kwargs @property def interrupt(self): return self._interrupt @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, image: PipelineImageInput, prompt: Optional[Union[str, List[str]]] = None, negative_prompt: Optional[Union[str, List[str]]] = None, height: int = 480, width: int = 720, num_frames: int = 49, num_inference_steps: int = 50, guidance_scale: float = 6.0, use_dynamic_cfg: bool = False, num_videos_per_prompt: int = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: str = "pil", return_dict: bool = True, attention_kwargs: Optional[Dict[str, Any]] = None, callback_on_step_end: Optional[ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 226, id_vit_hidden: Optional[torch.Tensor] = None, id_cond: Optional[torch.Tensor] = None, kps_cond: Optional[torch.Tensor] = None, ) -> Union[ConsisIDPipelineOutput, Tuple]: """ Function invoked when calling the pipeline for generation. Args: image (`PipelineImageInput`): The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`. prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): The height in pixels of the generated image. This is set to 480 by default for the best results. width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): The width in pixels of the generated image. This is set to 720 by default for the best results. num_frames (`int`, defaults to `49`): Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will contain 1 extra frame because ConsisID is conditioned with (num_seconds * fps + 1) frames where num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that needs to be satisfied is that of divisibility mentioned above. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 6): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. use_dynamic_cfg (`bool`, *optional*, defaults to `False`): If True, dynamically adjusts the guidance scale during inference. This allows the model to use a progressive guidance scale, improving the balance between text-guided generation and image quality over the course of the inference steps. Typically, early inference steps use a higher guidance scale for more faithful image generation, while later steps reduce it for more diverse and natural results. num_videos_per_prompt (`int`, *optional*, defaults to 1): The number of videos to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead of a plain tuple. attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. max_sequence_length (`int`, defaults to `226`): Maximum sequence length in encoded prompt. Must be consistent with `self.transformer.config.max_text_seq_length` otherwise may lead to poor results. id_vit_hidden (`Optional[torch.Tensor]`, *optional*): The tensor representing the hidden features extracted from the face model, which are used to condition the local facial extractor. This is crucial for the model to obtain high-frequency information of the face. If not provided, the local facial extractor will not run normally. id_cond (`Optional[torch.Tensor]`, *optional*): The tensor representing the hidden features extracted from the clip model, which are used to condition the local facial extractor. This is crucial for the model to edit facial features If not provided, the local facial extractor will not run normally. kps_cond (`Optional[torch.Tensor]`, *optional*): A tensor that determines whether the global facial extractor use keypoint information for conditioning. If provided, this tensor controls whether facial keypoints such as eyes, nose, and mouth landmarks are used during the generation process. This helps ensure the model retains more facial low-frequency information. Examples: Returns: [`~pipelines.consisid.pipeline_output.ConsisIDPipelineOutput`] or `tuple`: [`~pipelines.consisid.pipeline_output.ConsisIDPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs height = height or self.transformer.config.sample_height * self.vae_scale_factor_spatial width = width or self.transformer.config.sample_width * self.vae_scale_factor_spatial num_frames = num_frames or self.transformer.config.sample_frames num_videos_per_prompt = 1 # 1. Check inputs. Raise error if not correct self.check_inputs( image=image, prompt=prompt, height=height, width=width, negative_prompt=negative_prompt, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, latents=latents, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) self._guidance_scale = guidance_scale self._attention_kwargs = attention_kwargs self._interrupt = False # 2. Default call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt=prompt, negative_prompt=negative_prompt, do_classifier_free_guidance=do_classifier_free_guidance, num_videos_per_prompt=num_videos_per_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, max_sequence_length=max_sequence_length, device=device, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device) self._num_timesteps = len(timesteps) # 5. Prepare latents is_kps = getattr(self.transformer.config, "is_kps", False) kps_cond = kps_cond if is_kps else None if kps_cond is not None: kps_cond = draw_kps(image, kps_cond) kps_cond = self.video_processor.preprocess(kps_cond, height=height, width=width).to( device, dtype=prompt_embeds.dtype ) image = self.video_processor.preprocess(image, height=height, width=width).to( device, dtype=prompt_embeds.dtype ) latent_channels = self.transformer.config.in_channels // 2 latents, image_latents = self.prepare_latents( image, batch_size * num_videos_per_prompt, latent_channels, num_frames, height, width, prompt_embeds.dtype, device, generator, latents, kps_cond, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Create rotary embeds if required image_rotary_emb = ( self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) if self.transformer.config.use_rotary_positional_embeddings else None ) # 8. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) with self.progress_bar(total=num_inference_steps) as progress_bar: # for DPM-solver++ old_pred_original_sample = None timesteps_cpu = timesteps.cpu() for i, t in enumerate(timesteps): if self.interrupt: continue latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) latent_image_input = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latent_model_input.shape[0]) # predict noise model_output noise_pred = self.transformer( hidden_states=latent_model_input, encoder_hidden_states=prompt_embeds, timestep=timestep, image_rotary_emb=image_rotary_emb, attention_kwargs=attention_kwargs, return_dict=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, )[0] noise_pred = noise_pred.float() # perform guidance if use_dynamic_cfg: self._guidance_scale = 1 + guidance_scale * ( ( 1 - math.cos( math.pi * ((num_inference_steps - timesteps_cpu[i].item()) / num_inference_steps) ** 5.0 ) ) / 2 ) if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 if not isinstance(self.scheduler, CogVideoXDPMScheduler): latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] else: latents, old_pred_original_sample = self.scheduler.step( noise_pred, old_pred_original_sample, t, timesteps[i - 1] if i > 0 else None, latents, **extra_step_kwargs, return_dict=False, ) latents = latents.to(prompt_embeds.dtype) # call the callback, if provided if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if not output_type == "latent": video = self.decode_latents(latents) video = self.video_processor.postprocess_video(video=video, output_type=output_type) else: video = latents # Offload all models self.maybe_free_model_hooks() if not return_dict: return (video,) return ConsisIDPipelineOutput(frames=video)
class_definition
10,944
46,556
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/consisid/pipeline_consisid.py
null
240
class ConsisIDPipelineOutput(BaseOutput): r""" Output class for ConsisID pipelines. Args: frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]): List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape `(batch_size, num_frames, channels, height, width)`. """ frames: torch.Tensor
class_definition
101
614
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/consisid/pipeline_output.py
null
241
class DiffEditInversionPipelineOutput(BaseOutput): """ Output class for Stable Diffusion pipelines. Args: latents (`torch.Tensor`) inverted latents tensor images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `num_timesteps * batch_size` or numpy array of shape `(num_timesteps, batch_size, height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. """ latents: torch.Tensor images: Union[List[PIL.Image.Image], np.ndarray]
class_definition
1,974
2,574
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py
null
242
class StableDiffusionDiffEditPipeline( DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin ): r""" <Tip warning={true}> This is an experimental feature! </Tip> Pipeline for text-guided image inpainting using Stable Diffusion and DiffEdit. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading and saving methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. inverse_scheduler ([`DDIMInverseScheduler`]): A scheduler to be used in combination with `unet` to fill in the unmasked part of the input latents. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ model_cpu_offload_seq = "text_encoder->unet->vae" _optional_components = ["safety_checker", "feature_extractor", "inverse_scheduler"] _exclude_from_cpu_offload = ["safety_checker"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, inverse_scheduler: DDIMInverseScheduler, requires_safety_checker: bool = True, ): super().__init__() if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if scheduler is not None and getattr(scheduler.config, "skip_prk_steps", True) is False: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["skip_prk_steps"] = True scheduler._internal_dict = FrozenDict(new_config) if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) is_unet_version_less_0_9_0 = ( unet is not None and hasattr(unet.config, "_diffusers_version") and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse("0.9.0.dev0") ) is_unet_sample_size_less_64 = ( unet is not None and hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 ) if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5" " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(unet.config) new_config["sample_size"] = 64 unet._internal_dict = FrozenDict(new_config) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, inverse_scheduler=inverse_scheduler, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) prompt_embeds_tuple = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs, ) # concatenate for backwards comp prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) return prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer. prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image def check_inputs( self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): if (strength is None) or (strength is not None and (strength < 0 or strength > 1)): raise ValueError( f"The value of `strength` should in [0.0, 1.0] but is, but is {strength} of type {type(strength)}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) def check_source_inputs( self, source_prompt=None, source_negative_prompt=None, source_prompt_embeds=None, source_negative_prompt_embeds=None, ): if source_prompt is not None and source_prompt_embeds is not None: raise ValueError( f"Cannot forward both `source_prompt`: {source_prompt} and `source_prompt_embeds`: {source_prompt_embeds}." " Please make sure to only forward one of the two." ) elif source_prompt is None and source_prompt_embeds is None: raise ValueError( "Provide either `source_image` or `source_prompt_embeds`. Cannot leave all both of the arguments undefined." ) elif source_prompt is not None and ( not isinstance(source_prompt, str) and not isinstance(source_prompt, list) ): raise ValueError(f"`source_prompt` has to be of type `str` or `list` but is {type(source_prompt)}") if source_negative_prompt is not None and source_negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `source_negative_prompt`: {source_negative_prompt} and `source_negative_prompt_embeds`:" f" {source_negative_prompt_embeds}. Please make sure to only forward one of the two." ) if source_prompt_embeds is not None and source_negative_prompt_embeds is not None: if source_prompt_embeds.shape != source_negative_prompt_embeds.shape: raise ValueError( "`source_prompt_embeds` and `source_negative_prompt_embeds` must have the same shape when passed" f" directly, but got: `source_prompt_embeds` {source_prompt_embeds.shape} !=" f" `source_negative_prompt_embeds` {source_negative_prompt_embeds.shape}." ) def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] return timesteps, num_inference_steps - t_start def get_inverse_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) # safety for t_start overflow to prevent empty timsteps slice if t_start == 0: return self.inverse_scheduler.timesteps, num_inference_steps timesteps = self.inverse_scheduler.timesteps[:-t_start] return timesteps, num_inference_steps - t_start # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def prepare_image_latents(self, image, batch_size, dtype, device, generator=None): if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) if image.shape[1] == 4: latents = image else: if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if isinstance(generator, list): latents = [ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) ] latents = torch.cat(latents, dim=0) else: latents = self.vae.encode(image).latent_dist.sample(generator) latents = self.vae.config.scaling_factor * latents if batch_size != latents.shape[0]: if batch_size % latents.shape[0] == 0: # expand image_latents for batch_size deprecation_message = ( f"You have passed {batch_size} text prompts (`prompt`), but only {latents.shape[0]} initial" " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" " your script to pass as many initial images as text prompts to suppress this warning." ) deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) additional_latents_per_image = batch_size // latents.shape[0] latents = torch.cat([latents] * additional_latents_per_image, dim=0) else: raise ValueError( f"Cannot duplicate `image` of batch size {latents.shape[0]} to {batch_size} text prompts." ) else: latents = torch.cat([latents], dim=0) return latents def get_epsilon(self, model_output: torch.Tensor, sample: torch.Tensor, timestep: int): pred_type = self.inverse_scheduler.config.prediction_type alpha_prod_t = self.inverse_scheduler.alphas_cumprod[timestep] beta_prod_t = 1 - alpha_prod_t if pred_type == "epsilon": return model_output elif pred_type == "sample": return (sample - alpha_prod_t ** (0.5) * model_output) / beta_prod_t ** (0.5) elif pred_type == "v_prediction": return (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"prediction_type given as {pred_type} must be one of `epsilon`, `sample`, or `v_prediction`" ) @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def generate_mask( self, image: Union[torch.Tensor, PIL.Image.Image] = None, target_prompt: Optional[Union[str, List[str]]] = None, target_negative_prompt: Optional[Union[str, List[str]]] = None, target_prompt_embeds: Optional[torch.Tensor] = None, target_negative_prompt_embeds: Optional[torch.Tensor] = None, source_prompt: Optional[Union[str, List[str]]] = None, source_negative_prompt: Optional[Union[str, List[str]]] = None, source_prompt_embeds: Optional[torch.Tensor] = None, source_negative_prompt_embeds: Optional[torch.Tensor] = None, num_maps_per_mask: Optional[int] = 10, mask_encode_strength: Optional[float] = 0.5, mask_thresholding_ratio: Optional[float] = 3.0, num_inference_steps: int = 50, guidance_scale: float = 7.5, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, output_type: Optional[str] = "np", cross_attention_kwargs: Optional[Dict[str, Any]] = None, ): r""" Generate a latent mask given a mask prompt, a target prompt, and an image. Args: image (`PIL.Image.Image`): `Image` or tensor representing an image batch to be used for computing the mask. target_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide semantic mask generation. If not defined, you need to pass `prompt_embeds`. target_negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). target_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. target_negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. source_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide semantic mask generation using DiffEdit. If not defined, you need to pass `source_prompt_embeds` or `source_image` instead. source_negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide semantic mask generation away from using DiffEdit. If not defined, you need to pass `source_negative_prompt_embeds` or `source_image` instead. source_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings to guide the semantic mask generation. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from `source_prompt` input argument. source_negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings to negatively guide the semantic mask generation. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from `source_negative_prompt` input argument. num_maps_per_mask (`int`, *optional*, defaults to 10): The number of noise maps sampled to generate the semantic mask using DiffEdit. mask_encode_strength (`float`, *optional*, defaults to 0.5): The strength of the noise maps sampled to generate the semantic mask using DiffEdit. Must be between 0 and 1. mask_thresholding_ratio (`float`, *optional*, defaults to 3.0): The maximum multiple of the mean absolute difference used to clamp the semantic guidance map before mask binarization. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`~models.attention_processor.AttnProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). Examples: Returns: `List[PIL.Image.Image]` or `np.array`: When returning a `List[PIL.Image.Image]`, the list consists of a batch of single-channel binary images with dimensions `(height // self.vae_scale_factor, width // self.vae_scale_factor)`. If it's `np.array`, the shape is `(batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor)`. """ # 1. Check inputs (Provide dummy argument for callback_steps) self.check_inputs( target_prompt, mask_encode_strength, 1, target_negative_prompt, target_prompt_embeds, target_negative_prompt_embeds, ) self.check_source_inputs( source_prompt, source_negative_prompt, source_prompt_embeds, source_negative_prompt_embeds, ) if (num_maps_per_mask is None) or ( num_maps_per_mask is not None and (not isinstance(num_maps_per_mask, int) or num_maps_per_mask <= 0) ): raise ValueError( f"`num_maps_per_mask` has to be a positive integer but is {num_maps_per_mask} of type" f" {type(num_maps_per_mask)}." ) if mask_thresholding_ratio is None or mask_thresholding_ratio <= 0: raise ValueError( f"`mask_thresholding_ratio` has to be positive but is {mask_thresholding_ratio} of type" f" {type(mask_thresholding_ratio)}." ) # 2. Define call parameters if target_prompt is not None and isinstance(target_prompt, str): batch_size = 1 elif target_prompt is not None and isinstance(target_prompt, list): batch_size = len(target_prompt) else: batch_size = target_prompt_embeds.shape[0] if cross_attention_kwargs is None: cross_attention_kwargs = {} device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompts (cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None) target_negative_prompt_embeds, target_prompt_embeds = self.encode_prompt( target_prompt, device, num_maps_per_mask, do_classifier_free_guidance, target_negative_prompt, prompt_embeds=target_prompt_embeds, negative_prompt_embeds=target_negative_prompt_embeds, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if do_classifier_free_guidance: target_prompt_embeds = torch.cat([target_negative_prompt_embeds, target_prompt_embeds]) source_negative_prompt_embeds, source_prompt_embeds = self.encode_prompt( source_prompt, device, num_maps_per_mask, do_classifier_free_guidance, source_negative_prompt, prompt_embeds=source_prompt_embeds, negative_prompt_embeds=source_negative_prompt_embeds, ) if do_classifier_free_guidance: source_prompt_embeds = torch.cat([source_negative_prompt_embeds, source_prompt_embeds]) # 4. Preprocess image image = self.image_processor.preprocess(image).repeat_interleave(num_maps_per_mask, dim=0) # 5. Set timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps, _ = self.get_timesteps(num_inference_steps, mask_encode_strength, device) encode_timestep = timesteps[0] # 6. Prepare image latents and add noise with specified strength image_latents = self.prepare_image_latents( image, batch_size * num_maps_per_mask, self.vae.dtype, device, generator ) noise = randn_tensor(image_latents.shape, generator=generator, device=device, dtype=self.vae.dtype) image_latents = self.scheduler.add_noise(image_latents, noise, encode_timestep) latent_model_input = torch.cat([image_latents] * (4 if do_classifier_free_guidance else 2)) latent_model_input = self.scheduler.scale_model_input(latent_model_input, encode_timestep) # 7. Predict the noise residual prompt_embeds = torch.cat([source_prompt_embeds, target_prompt_embeds]) noise_pred = self.unet( latent_model_input, encode_timestep, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, ).sample if do_classifier_free_guidance: noise_pred_neg_src, noise_pred_source, noise_pred_uncond, noise_pred_target = noise_pred.chunk(4) noise_pred_source = noise_pred_neg_src + guidance_scale * (noise_pred_source - noise_pred_neg_src) noise_pred_target = noise_pred_uncond + guidance_scale * (noise_pred_target - noise_pred_uncond) else: noise_pred_source, noise_pred_target = noise_pred.chunk(2) # 8. Compute the mask from the absolute difference of predicted noise residuals # TODO: Consider smoothing mask guidance map mask_guidance_map = ( torch.abs(noise_pred_target - noise_pred_source) .reshape(batch_size, num_maps_per_mask, *noise_pred_target.shape[-3:]) .mean([1, 2]) ) clamp_magnitude = mask_guidance_map.mean() * mask_thresholding_ratio semantic_mask_image = mask_guidance_map.clamp(0, clamp_magnitude) / clamp_magnitude semantic_mask_image = torch.where(semantic_mask_image <= 0.5, 0, 1) mask_image = semantic_mask_image.cpu().numpy() # 9. Convert to Numpy array or PIL. if output_type == "pil": mask_image = self.image_processor.numpy_to_pil(mask_image) # Offload all models self.maybe_free_model_hooks() return mask_image @torch.no_grad() @replace_example_docstring(EXAMPLE_INVERT_DOC_STRING) def invert( self, prompt: Optional[Union[str, List[str]]] = None, image: Union[torch.Tensor, PIL.Image.Image] = None, num_inference_steps: int = 50, inpaint_strength: float = 0.8, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, decode_latents: bool = False, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: Optional[int] = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, lambda_auto_corr: float = 20.0, lambda_kl: float = 20.0, num_reg_steps: int = 0, num_auto_corr_rolls: int = 5, ): r""" Generate inverted latents given a prompt and image. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. image (`PIL.Image.Image`): `Image` or tensor representing an image batch to produce the inverted latents guided by `prompt`. inpaint_strength (`float`, *optional*, defaults to 0.8): Indicates extent of the noising process to run latent inversion. Must be between 0 and 1. When `inpaint_strength` is 1, the inversion process is run for the full number of iterations specified in `num_inference_steps`. `image` is used as a reference for the inversion process, and adding more noise increases `inpaint_strength`. If `inpaint_strength` is 0, no inpainting occurs. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. decode_latents (`bool`, *optional*, defaults to `False`): Whether or not to decode the inverted latents into a generated image. Setting this argument to `True` decodes all inverted latents for each timestep into a list of generated images. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.DiffEditInversionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`~models.attention_processor.AttnProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). lambda_auto_corr (`float`, *optional*, defaults to 20.0): Lambda parameter to control auto correction. lambda_kl (`float`, *optional*, defaults to 20.0): Lambda parameter to control Kullback-Leibler divergence output. num_reg_steps (`int`, *optional*, defaults to 0): Number of regularization loss steps. num_auto_corr_rolls (`int`, *optional*, defaults to 5): Number of auto correction roll steps. Examples: Returns: [`~pipelines.stable_diffusion.pipeline_stable_diffusion_diffedit.DiffEditInversionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.pipeline_stable_diffusion_diffedit.DiffEditInversionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is the inverted latents tensors ordered by increasing noise, and the second is the corresponding decoded images if `decode_latents` is `True`, otherwise `None`. """ # 1. Check inputs self.check_inputs( prompt, inpaint_strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ) if image is None: raise ValueError("`image` input cannot be undefined.") # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if cross_attention_kwargs is None: cross_attention_kwargs = {} device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Preprocess image image = self.image_processor.preprocess(image) # 4. Prepare latent variables num_images_per_prompt = 1 latents = self.prepare_image_latents( image, batch_size * num_images_per_prompt, self.vae.dtype, device, generator ) # 5. Encode input prompt prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 6. Prepare timesteps self.inverse_scheduler.set_timesteps(num_inference_steps, device=device) timesteps, num_inference_steps = self.get_inverse_timesteps(num_inference_steps, inpaint_strength, device) # 7. Noising loop where we obtain the intermediate noised latent image for each timestep. num_warmup_steps = len(timesteps) - num_inference_steps * self.inverse_scheduler.order inverted_latents = [] with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.inverse_scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # regularization of the noise prediction (not in original code or paper but borrowed from Pix2PixZero) if num_reg_steps > 0: with torch.enable_grad(): for _ in range(num_reg_steps): if lambda_auto_corr > 0: for _ in range(num_auto_corr_rolls): var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True) # Derive epsilon from model output before regularizing to IID standard normal var_epsilon = self.get_epsilon(var, latent_model_input.detach(), t) l_ac = auto_corr_loss(var_epsilon, generator=generator) l_ac.backward() grad = var.grad.detach() / num_auto_corr_rolls noise_pred = noise_pred - lambda_auto_corr * grad if lambda_kl > 0: var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True) # Derive epsilon from model output before regularizing to IID standard normal var_epsilon = self.get_epsilon(var, latent_model_input.detach(), t) l_kld = kl_divergence(var_epsilon) l_kld.backward() grad = var.grad.detach() noise_pred = noise_pred - lambda_kl * grad noise_pred = noise_pred.detach() # compute the previous noisy sample x_t -> x_t-1 latents = self.inverse_scheduler.step(noise_pred, t, latents).prev_sample inverted_latents.append(latents.detach().clone()) # call the callback, if provided if i == len(timesteps) - 1 or ( (i + 1) > num_warmup_steps and (i + 1) % self.inverse_scheduler.order == 0 ): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) assert len(inverted_latents) == len(timesteps) latents = torch.stack(list(reversed(inverted_latents)), 1) # 8. Post-processing image = None if decode_latents: image = self.decode_latents(latents.flatten(0, 1)) # 9. Convert to PIL. if decode_latents and output_type == "pil": image = self.image_processor.numpy_to_pil(image) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (latents, image) return DiffEditInversionPipelineOutput(latents=latents, images=image) @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[str, List[str]]] = None, mask_image: Union[torch.Tensor, PIL.Image.Image] = None, image_latents: Union[torch.Tensor, PIL.Image.Image] = None, inpaint_strength: Optional[float] = 0.8, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: int = None, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. mask_image (`PIL.Image.Image`): `Image` or tensor representing an image batch to mask the generated image. White pixels in the mask are repainted, while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be `(B, 1, H, W)`. image_latents (`PIL.Image.Image` or `torch.Tensor`): Partially noised image latents from the inversion process to be used as inputs for image generation. inpaint_strength (`float`, *optional*, defaults to 0.8): Indicates extent to inpaint the masked area. Must be between 0 and 1. When `inpaint_strength` is 1, the denoising process is run on the masked area for the full number of iterations specified in `num_inference_steps`. `image_latents` is used as a reference for the masked area, and adding more noise to a region increases `inpaint_strength`. If `inpaint_strength` is 0, no inpainting occurs. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ # 1. Check inputs self.check_inputs( prompt, inpaint_strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ) if mask_image is None: raise ValueError( "`mask_image` input cannot be undefined. Use `generate_mask()` to compute `mask_image` from text prompts." ) if image_latents is None: raise ValueError( "`image_latents` input cannot be undefined. Use `invert()` to compute `image_latents` from input images." ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if cross_attention_kwargs is None: cross_attention_kwargs = {} device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 4. Preprocess mask mask_image = preprocess_mask(mask_image, batch_size) latent_height, latent_width = mask_image.shape[-2:] mask_image = torch.cat([mask_image] * num_images_per_prompt) mask_image = mask_image.to(device=device, dtype=prompt_embeds.dtype) # 5. Set timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, inpaint_strength, device) # 6. Preprocess image latents if isinstance(image_latents, list) and any(isinstance(l, torch.Tensor) and l.ndim == 5 for l in image_latents): image_latents = torch.cat(image_latents).detach() elif isinstance(image_latents, torch.Tensor) and image_latents.ndim == 5: image_latents = image_latents.detach() else: image_latents = self.image_processor.preprocess(image_latents).detach() latent_shape = (self.vae.config.latent_channels, latent_height, latent_width) if image_latents.shape[-3:] != latent_shape: raise ValueError( f"Each latent image in `image_latents` must have shape {latent_shape}, " f"but has shape {image_latents.shape[-3:]}" ) if image_latents.ndim == 4: image_latents = image_latents.reshape(batch_size, len(timesteps), *latent_shape) if image_latents.shape[:2] != (batch_size, len(timesteps)): raise ValueError( f"`image_latents` must have batch size {batch_size} with latent images from {len(timesteps)}" f" timesteps, but has batch size {image_latents.shape[0]} with latent images from" f" {image_latents.shape[1]} timesteps." ) image_latents = image_latents.transpose(0, 1).repeat_interleave(num_images_per_prompt, dim=1) image_latents = image_latents.to(device=device, dtype=prompt_embeds.dtype) # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 8. Denoising loop latents = image_latents[0].clone() num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # mask with inverted latents from appropriate timestep - use original image latent for last step latents = latents * mask_image + image_latents[i] * (1 - mask_image) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
class_definition
8,889
78,413
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py
null
243
class AmusedInpaintPipeline(DiffusionPipeline): image_processor: VaeImageProcessor vqvae: VQModel tokenizer: CLIPTokenizer text_encoder: CLIPTextModelWithProjection transformer: UVit2DModel scheduler: AmusedScheduler model_cpu_offload_seq = "text_encoder->transformer->vqvae" # TODO - when calling self.vqvae.quantize, it uses self.vqvae.quantize.embedding.weight before # the forward method of self.vqvae.quantize, so the hook doesn't get called to move the parameter # off the meta device. There should be a way to fix this instead of just not offloading it _exclude_from_cpu_offload = ["vqvae"] def __init__( self, vqvae: VQModel, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModelWithProjection, transformer: UVit2DModel, scheduler: AmusedScheduler, ): super().__init__() self.register_modules( vqvae=vqvae, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, scheduler=scheduler, ) self.vae_scale_factor = ( 2 ** (len(self.vqvae.config.block_out_channels) - 1) if getattr(self, "vqvae", None) else 8 ) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False) self.mask_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True, do_resize=True, ) self.scheduler.register_to_config(masking_schedule="linear") @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[List[str], str]] = None, image: PipelineImageInput = None, mask_image: PipelineImageInput = None, strength: float = 1.0, num_inference_steps: int = 12, guidance_scale: float = 10.0, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[torch.Generator] = None, prompt_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_encoder_hidden_states: Optional[torch.Tensor] = None, output_type="pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, micro_conditioning_aesthetic_score: int = 6, micro_conditioning_crop_coord: Tuple[int, int] = (0, 0), temperature: Union[int, Tuple[int, int], List[int]] = (2, 0), ): """ The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image latents as `image`, but if passing latents directly it is not encoded again. mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B, H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W, 1)`, or `(H, W)`. strength (`float`, *optional*, defaults to 1.0): Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a starting point and more noise is added the higher the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 essentially ignores `image`. num_inference_steps (`int`, *optional*, defaults to 16): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 10.0): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. A single vector from the pooled and projected final hidden states. encoder_hidden_states (`torch.Tensor`, *optional*): Pre-generated penultimate hidden states from the text encoder providing additional text conditioning. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. negative_encoder_hidden_states (`torch.Tensor`, *optional*): Analogous to `encoder_hidden_states` for the positive prompt. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). micro_conditioning_aesthetic_score (`int`, *optional*, defaults to 6): The targeted aesthetic score according to the laion aesthetic classifier. See https://laion.ai/blog/laion-aesthetics/ and the micro-conditioning section of https://arxiv.org/abs/2307.01952. micro_conditioning_crop_coord (`Tuple[int]`, *optional*, defaults to (0, 0)): The targeted height, width crop coordinates. See the micro-conditioning section of https://arxiv.org/abs/2307.01952. temperature (`Union[int, Tuple[int, int], List[int]]`, *optional*, defaults to (2, 0)): Configures the temperature scheduler on `self.scheduler` see `AmusedScheduler#set_timesteps`. Examples: Returns: [`~pipelines.pipeline_utils.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.pipeline_utils.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ if (prompt_embeds is not None and encoder_hidden_states is None) or ( prompt_embeds is None and encoder_hidden_states is not None ): raise ValueError("pass either both `prompt_embeds` and `encoder_hidden_states` or neither") if (negative_prompt_embeds is not None and negative_encoder_hidden_states is None) or ( negative_prompt_embeds is None and negative_encoder_hidden_states is not None ): raise ValueError( "pass either both `negatve_prompt_embeds` and `negative_encoder_hidden_states` or neither" ) if (prompt is None and prompt_embeds is None) or (prompt is not None and prompt_embeds is not None): raise ValueError("pass only one of `prompt` or `prompt_embeds`") if isinstance(prompt, str): prompt = [prompt] if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] batch_size = batch_size * num_images_per_prompt if prompt_embeds is None: input_ids = self.tokenizer( prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids.to(self._execution_device) outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True) prompt_embeds = outputs.text_embeds encoder_hidden_states = outputs.hidden_states[-2] prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1) encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1) if guidance_scale > 1.0: if negative_prompt_embeds is None: if negative_prompt is None: negative_prompt = [""] * len(prompt) if isinstance(negative_prompt, str): negative_prompt = [negative_prompt] input_ids = self.tokenizer( negative_prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids.to(self._execution_device) outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True) negative_prompt_embeds = outputs.text_embeds negative_encoder_hidden_states = outputs.hidden_states[-2] negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1) negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1) prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds]) encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states]) image = self.image_processor.preprocess(image) height, width = image.shape[-2:] # Note that the micro conditionings _do_ flip the order of width, height for the original size # and the crop coordinates. This is how it was done in the original code base micro_conds = torch.tensor( [ width, height, micro_conditioning_crop_coord[0], micro_conditioning_crop_coord[1], micro_conditioning_aesthetic_score, ], device=self._execution_device, dtype=encoder_hidden_states.dtype, ) micro_conds = micro_conds.unsqueeze(0) micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 else batch_size, -1) self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device) num_inference_steps = int(len(self.scheduler.timesteps) * strength) start_timestep_idx = len(self.scheduler.timesteps) - num_inference_steps needs_upcasting = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast if needs_upcasting: self.vqvae.float() latents = self.vqvae.encode(image.to(dtype=self.vqvae.dtype, device=self._execution_device)).latents latents_bsz, channels, latents_height, latents_width = latents.shape latents = self.vqvae.quantize(latents)[2][2].reshape(latents_bsz, latents_height, latents_width) mask = self.mask_processor.preprocess( mask_image, height // self.vae_scale_factor, width // self.vae_scale_factor ) mask = mask.reshape(mask.shape[0], latents_height, latents_width).bool().to(latents.device) latents[mask] = self.scheduler.config.mask_token_id starting_mask_ratio = mask.sum() / latents.numel() latents = latents.repeat(num_images_per_prompt, 1, 1) with self.progress_bar(total=num_inference_steps) as progress_bar: for i in range(start_timestep_idx, len(self.scheduler.timesteps)): timestep = self.scheduler.timesteps[i] if guidance_scale > 1.0: model_input = torch.cat([latents] * 2) else: model_input = latents model_output = self.transformer( model_input, micro_conds=micro_conds, pooled_text_emb=prompt_embeds, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, ) if guidance_scale > 1.0: uncond_logits, cond_logits = model_output.chunk(2) model_output = uncond_logits + guidance_scale * (cond_logits - uncond_logits) latents = self.scheduler.step( model_output=model_output, timestep=timestep, sample=latents, generator=generator, starting_mask_ratio=starting_mask_ratio, ).prev_sample if i == len(self.scheduler.timesteps) - 1 or ((i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, timestep, latents) if XLA_AVAILABLE: xm.mark_step() if output_type == "latent": output = latents else: output = self.vqvae.decode( latents, force_not_quantize=True, shape=( batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor, self.vqvae.config.latent_channels, ), ).sample.clip(0, 1) output = self.image_processor.postprocess(output, output_type) if needs_upcasting: self.vqvae.half() self.maybe_free_model_hooks() if not return_dict: return (output,) return ImagePipelineOutput(output)
class_definition
2,223
19,075
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/amused/pipeline_amused_inpaint.py
null
244
class AmusedImg2ImgPipeline(DiffusionPipeline): image_processor: VaeImageProcessor vqvae: VQModel tokenizer: CLIPTokenizer text_encoder: CLIPTextModelWithProjection transformer: UVit2DModel scheduler: AmusedScheduler model_cpu_offload_seq = "text_encoder->transformer->vqvae" # TODO - when calling self.vqvae.quantize, it uses self.vqvae.quantize.embedding.weight before # the forward method of self.vqvae.quantize, so the hook doesn't get called to move the parameter # off the meta device. There should be a way to fix this instead of just not offloading it _exclude_from_cpu_offload = ["vqvae"] def __init__( self, vqvae: VQModel, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModelWithProjection, transformer: UVit2DModel, scheduler: AmusedScheduler, ): super().__init__() self.register_modules( vqvae=vqvae, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, scheduler=scheduler, ) self.vae_scale_factor = ( 2 ** (len(self.vqvae.config.block_out_channels) - 1) if getattr(self, "vqvae", None) else 8 ) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False) @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[List[str], str]] = None, image: PipelineImageInput = None, strength: float = 0.5, num_inference_steps: int = 12, guidance_scale: float = 10.0, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[torch.Generator] = None, prompt_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_encoder_hidden_states: Optional[torch.Tensor] = None, output_type="pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, micro_conditioning_aesthetic_score: int = 6, micro_conditioning_crop_coord: Tuple[int, int] = (0, 0), temperature: Union[int, Tuple[int, int], List[int]] = (2, 0), ): """ The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image latents as `image`, but if passing latents directly it is not encoded again. strength (`float`, *optional*, defaults to 0.5): Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a starting point and more noise is added the higher the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 essentially ignores `image`. num_inference_steps (`int`, *optional*, defaults to 12): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 10.0): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. A single vector from the pooled and projected final hidden states. encoder_hidden_states (`torch.Tensor`, *optional*): Pre-generated penultimate hidden states from the text encoder providing additional text conditioning. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. negative_encoder_hidden_states (`torch.Tensor`, *optional*): Analogous to `encoder_hidden_states` for the positive prompt. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). micro_conditioning_aesthetic_score (`int`, *optional*, defaults to 6): The targeted aesthetic score according to the laion aesthetic classifier. See https://laion.ai/blog/laion-aesthetics/ and the micro-conditioning section of https://arxiv.org/abs/2307.01952. micro_conditioning_crop_coord (`Tuple[int]`, *optional*, defaults to (0, 0)): The targeted height, width crop coordinates. See the micro-conditioning section of https://arxiv.org/abs/2307.01952. temperature (`Union[int, Tuple[int, int], List[int]]`, *optional*, defaults to (2, 0)): Configures the temperature scheduler on `self.scheduler` see `AmusedScheduler#set_timesteps`. Examples: Returns: [`~pipelines.pipeline_utils.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.pipeline_utils.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ if (prompt_embeds is not None and encoder_hidden_states is None) or ( prompt_embeds is None and encoder_hidden_states is not None ): raise ValueError("pass either both `prompt_embeds` and `encoder_hidden_states` or neither") if (negative_prompt_embeds is not None and negative_encoder_hidden_states is None) or ( negative_prompt_embeds is None and negative_encoder_hidden_states is not None ): raise ValueError( "pass either both `negative_prompt_embeds` and `negative_encoder_hidden_states` or neither" ) if (prompt is None and prompt_embeds is None) or (prompt is not None and prompt_embeds is not None): raise ValueError("pass only one of `prompt` or `prompt_embeds`") if isinstance(prompt, str): prompt = [prompt] if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] batch_size = batch_size * num_images_per_prompt if prompt_embeds is None: input_ids = self.tokenizer( prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids.to(self._execution_device) outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True) prompt_embeds = outputs.text_embeds encoder_hidden_states = outputs.hidden_states[-2] prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1) encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1) if guidance_scale > 1.0: if negative_prompt_embeds is None: if negative_prompt is None: negative_prompt = [""] * len(prompt) if isinstance(negative_prompt, str): negative_prompt = [negative_prompt] input_ids = self.tokenizer( negative_prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids.to(self._execution_device) outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True) negative_prompt_embeds = outputs.text_embeds negative_encoder_hidden_states = outputs.hidden_states[-2] negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1) negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1) prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds]) encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states]) image = self.image_processor.preprocess(image) height, width = image.shape[-2:] # Note that the micro conditionings _do_ flip the order of width, height for the original size # and the crop coordinates. This is how it was done in the original code base micro_conds = torch.tensor( [ width, height, micro_conditioning_crop_coord[0], micro_conditioning_crop_coord[1], micro_conditioning_aesthetic_score, ], device=self._execution_device, dtype=encoder_hidden_states.dtype, ) micro_conds = micro_conds.unsqueeze(0) micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 else batch_size, -1) self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device) num_inference_steps = int(len(self.scheduler.timesteps) * strength) start_timestep_idx = len(self.scheduler.timesteps) - num_inference_steps needs_upcasting = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast if needs_upcasting: self.vqvae.float() latents = self.vqvae.encode(image.to(dtype=self.vqvae.dtype, device=self._execution_device)).latents latents_bsz, channels, latents_height, latents_width = latents.shape latents = self.vqvae.quantize(latents)[2][2].reshape(latents_bsz, latents_height, latents_width) latents = self.scheduler.add_noise( latents, self.scheduler.timesteps[start_timestep_idx - 1], generator=generator ) latents = latents.repeat(num_images_per_prompt, 1, 1) with self.progress_bar(total=num_inference_steps) as progress_bar: for i in range(start_timestep_idx, len(self.scheduler.timesteps)): timestep = self.scheduler.timesteps[i] if guidance_scale > 1.0: model_input = torch.cat([latents] * 2) else: model_input = latents model_output = self.transformer( model_input, micro_conds=micro_conds, pooled_text_emb=prompt_embeds, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, ) if guidance_scale > 1.0: uncond_logits, cond_logits = model_output.chunk(2) model_output = uncond_logits + guidance_scale * (cond_logits - uncond_logits) latents = self.scheduler.step( model_output=model_output, timestep=timestep, sample=latents, generator=generator, ).prev_sample if i == len(self.scheduler.timesteps) - 1 or ((i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, timestep, latents) if XLA_AVAILABLE: xm.mark_step() if output_type == "latent": output = latents else: output = self.vqvae.decode( latents, force_not_quantize=True, shape=( batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor, self.vqvae.config.latent_channels, ), ).sample.clip(0, 1) output = self.image_processor.postprocess(output, output_type) if needs_upcasting: self.vqvae.half() self.maybe_free_model_hooks() if not return_dict: return (output,) return ImagePipelineOutput(output)
class_definition
1,941
17,389
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/amused/pipeline_amused_img2img.py
null
245
class AmusedPipeline(DiffusionPipeline): image_processor: VaeImageProcessor vqvae: VQModel tokenizer: CLIPTokenizer text_encoder: CLIPTextModelWithProjection transformer: UVit2DModel scheduler: AmusedScheduler model_cpu_offload_seq = "text_encoder->transformer->vqvae" def __init__( self, vqvae: VQModel, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModelWithProjection, transformer: UVit2DModel, scheduler: AmusedScheduler, ): super().__init__() self.register_modules( vqvae=vqvae, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, scheduler=scheduler, ) self.vae_scale_factor = ( 2 ** (len(self.vqvae.config.block_out_channels) - 1) if getattr(self, "vqvae", None) else 8 ) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False) @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[List[str], str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 12, guidance_scale: float = 10.0, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[torch.Generator] = None, latents: Optional[torch.IntTensor] = None, prompt_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_encoder_hidden_states: Optional[torch.Tensor] = None, output_type="pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, micro_conditioning_aesthetic_score: int = 6, micro_conditioning_crop_coord: Tuple[int, int] = (0, 0), temperature: Union[int, Tuple[int, int], List[int]] = (2, 0), ): """ The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. height (`int`, *optional*, defaults to `self.transformer.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 16): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 10.0): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.IntTensor`, *optional*): Pre-generated tokens representing latent vectors in `self.vqvae`, to be used as inputs for image gneration. If not provided, the starting latents will be completely masked. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. A single vector from the pooled and projected final hidden states. encoder_hidden_states (`torch.Tensor`, *optional*): Pre-generated penultimate hidden states from the text encoder providing additional text conditioning. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. negative_encoder_hidden_states (`torch.Tensor`, *optional*): Analogous to `encoder_hidden_states` for the positive prompt. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). micro_conditioning_aesthetic_score (`int`, *optional*, defaults to 6): The targeted aesthetic score according to the laion aesthetic classifier. See https://laion.ai/blog/laion-aesthetics/ and the micro-conditioning section of https://arxiv.org/abs/2307.01952. micro_conditioning_crop_coord (`Tuple[int]`, *optional*, defaults to (0, 0)): The targeted height, width crop coordinates. See the micro-conditioning section of https://arxiv.org/abs/2307.01952. temperature (`Union[int, Tuple[int, int], List[int]]`, *optional*, defaults to (2, 0)): Configures the temperature scheduler on `self.scheduler` see `AmusedScheduler#set_timesteps`. Examples: Returns: [`~pipelines.pipeline_utils.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.pipeline_utils.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ if (prompt_embeds is not None and encoder_hidden_states is None) or ( prompt_embeds is None and encoder_hidden_states is not None ): raise ValueError("pass either both `prompt_embeds` and `encoder_hidden_states` or neither") if (negative_prompt_embeds is not None and negative_encoder_hidden_states is None) or ( negative_prompt_embeds is None and negative_encoder_hidden_states is not None ): raise ValueError( "pass either both `negatve_prompt_embeds` and `negative_encoder_hidden_states` or neither" ) if (prompt is None and prompt_embeds is None) or (prompt is not None and prompt_embeds is not None): raise ValueError("pass only one of `prompt` or `prompt_embeds`") if isinstance(prompt, str): prompt = [prompt] if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] batch_size = batch_size * num_images_per_prompt if height is None: height = self.transformer.config.sample_size * self.vae_scale_factor if width is None: width = self.transformer.config.sample_size * self.vae_scale_factor if prompt_embeds is None: input_ids = self.tokenizer( prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids.to(self._execution_device) outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True) prompt_embeds = outputs.text_embeds encoder_hidden_states = outputs.hidden_states[-2] prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1) encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1) if guidance_scale > 1.0: if negative_prompt_embeds is None: if negative_prompt is None: negative_prompt = [""] * len(prompt) if isinstance(negative_prompt, str): negative_prompt = [negative_prompt] input_ids = self.tokenizer( negative_prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids.to(self._execution_device) outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True) negative_prompt_embeds = outputs.text_embeds negative_encoder_hidden_states = outputs.hidden_states[-2] negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1) negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1) prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds]) encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states]) # Note that the micro conditionings _do_ flip the order of width, height for the original size # and the crop coordinates. This is how it was done in the original code base micro_conds = torch.tensor( [ width, height, micro_conditioning_crop_coord[0], micro_conditioning_crop_coord[1], micro_conditioning_aesthetic_score, ], device=self._execution_device, dtype=encoder_hidden_states.dtype, ) micro_conds = micro_conds.unsqueeze(0) micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 else batch_size, -1) shape = (batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor) if latents is None: latents = torch.full( shape, self.scheduler.config.mask_token_id, dtype=torch.long, device=self._execution_device ) self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device) num_warmup_steps = len(self.scheduler.timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, timestep in enumerate(self.scheduler.timesteps): if guidance_scale > 1.0: model_input = torch.cat([latents] * 2) else: model_input = latents model_output = self.transformer( model_input, micro_conds=micro_conds, pooled_text_emb=prompt_embeds, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, ) if guidance_scale > 1.0: uncond_logits, cond_logits = model_output.chunk(2) model_output = uncond_logits + guidance_scale * (cond_logits - uncond_logits) latents = self.scheduler.step( model_output=model_output, timestep=timestep, sample=latents, generator=generator, ).prev_sample if i == len(self.scheduler.timesteps) - 1 or ( (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 ): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, timestep, latents) if XLA_AVAILABLE: xm.mark_step() if output_type == "latent": output = latents else: needs_upcasting = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast if needs_upcasting: self.vqvae.float() output = self.vqvae.decode( latents, force_not_quantize=True, shape=( batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor, self.vqvae.config.latent_channels, ), ).sample.clip(0, 1) output = self.image_processor.postprocess(output, output_type) if needs_upcasting: self.vqvae.half() self.maybe_free_model_hooks() if not return_dict: return (output,) return ImagePipelineOutput(output)
class_definition
1,574
15,911
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/amused/pipeline_amused.py
null
246
class LuminaText2ImgPipeline(DiffusionPipeline): r""" Pipeline for text-to-image generation using Lumina-T2I. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`AutoModel`]): Frozen text-encoder. Lumina-T2I uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.AutoModel), specifically the [t5-v1_1-xxl](https://huggingface.co/Alpha-VLLM/tree/main/t5-v1_1-xxl) variant. tokenizer (`AutoModel`): Tokenizer of class [AutoModel](https://huggingface.co/docs/transformers/model_doc/t5#transformers.AutoModel). transformer ([`Transformer2DModel`]): A text conditioned `Transformer2DModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. """ bad_punct_regex = re.compile( r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}" ) # noqa _optional_components = [] model_cpu_offload_seq = "text_encoder->transformer->vae" def __init__( self, transformer: LuminaNextDiT2DModel, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: AutoModel, tokenizer: AutoTokenizer, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=transformer, scheduler=scheduler, ) self.vae_scale_factor = 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.max_sequence_length = 256 self.default_sample_size = ( self.transformer.config.sample_size if hasattr(self, "transformer") and self.transformer is not None else 128 ) self.default_image_size = self.default_sample_size * self.vae_scale_factor def _get_gemma_prompt_embeds( self, prompt: Union[str, List[str]], num_images_per_prompt: int = 1, device: Optional[torch.device] = None, clean_caption: Optional[bool] = False, max_length: Optional[int] = None, ): device = device or self._execution_device prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) text_inputs = self.tokenizer( prompt, pad_to_multiple_of=8, max_length=self.max_sequence_length, truncation=True, padding=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids.to(device) untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids.to(device) if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.max_sequence_length - 1 : -1]) logger.warning( "The following part of your input was truncated because Gemma can only handle sequences up to" f" {self.max_sequence_length} tokens: {removed_text}" ) prompt_attention_mask = text_inputs.attention_mask.to(device) prompt_embeds = self.text_encoder( text_input_ids, attention_mask=prompt_attention_mask, output_hidden_states=True ) prompt_embeds = prompt_embeds.hidden_states[-2] if self.text_encoder is not None: dtype = self.text_encoder.dtype elif self.transformer is not None: dtype = self.transformer.dtype else: dtype = None prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) _, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) prompt_attention_mask = prompt_attention_mask.view(batch_size * num_images_per_prompt, -1) return prompt_embeds, prompt_attention_mask # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt def encode_prompt( self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool = True, negative_prompt: Union[str, List[str]] = None, num_images_per_prompt: int = 1, device: Optional[torch.device] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, clean_caption: bool = False, **kwargs, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For Lumina-T2I, this should be "". do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): whether to use classifier free guidance or not num_images_per_prompt (`int`, *optional*, defaults to 1): number of images that should be generated per prompt device: (`torch.device`, *optional*): torch device to place the resulting embeddings on prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. For Lumina-T2I, it's should be the embeddings of the "" string. clean_caption (`bool`, defaults to `False`): If `True`, the function will preprocess and clean the provided caption before encoding. max_sequence_length (`int`, defaults to 256): Maximum sequence length to use for the prompt. """ if device is None: device = self._execution_device prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: prompt_embeds, prompt_attention_mask = self._get_gemma_prompt_embeds( prompt=prompt, num_images_per_prompt=num_images_per_prompt, device=device, clean_caption=clean_caption, ) # Get negative embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt if negative_prompt is not None else "" # Normalize str to list negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): negative_prompt = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) # Padding negative prompt to the same length with prompt prompt_max_length = prompt_embeds.shape[1] negative_text_inputs = self.tokenizer( negative_prompt, padding="max_length", max_length=prompt_max_length, truncation=True, return_tensors="pt", ) negative_text_input_ids = negative_text_inputs.input_ids.to(device) negative_prompt_attention_mask = negative_text_inputs.attention_mask.to(device) # Get the negative prompt embeddings negative_prompt_embeds = self.text_encoder( negative_text_input_ids, attention_mask=negative_prompt_attention_mask, output_hidden_states=True, ) negative_dtype = self.text_encoder.dtype negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] _, seq_len, _ = negative_prompt_embeds.shape negative_prompt_embeds = negative_prompt_embeds.to(dtype=negative_dtype, device=device) # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) negative_prompt_attention_mask = negative_prompt_attention_mask.view( batch_size * num_images_per_prompt, -1 ) return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, height, width, negative_prompt, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and prompt_attention_mask is None: raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: raise ValueError( "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" f" {negative_prompt_attention_mask.shape}." ) # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing def _text_preprocessing(self, text, clean_caption=False): if clean_caption and not is_bs4_available(): logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")) logger.warning("Setting `clean_caption` to False...") clean_caption = False if clean_caption and not is_ftfy_available(): logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")) logger.warning("Setting `clean_caption` to False...") clean_caption = False if not isinstance(text, (tuple, list)): text = [text] def process(text: str): if clean_caption: text = self._clean_caption(text) text = self._clean_caption(text) else: text = text.lower().strip() return text return [process(t) for t in text] # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption def _clean_caption(self, caption): caption = str(caption) caption = ul.unquote_plus(caption) caption = caption.strip().lower() caption = re.sub("<person>", "person", caption) # urls: caption = re.sub( r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls caption = re.sub( r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls # html: caption = BeautifulSoup(caption, features="html.parser").text # @<nickname> caption = re.sub(r"@[\w\d]+\b", "", caption) # 31C0—31EF CJK Strokes # 31F0—31FF Katakana Phonetic Extensions # 3200—32FF Enclosed CJK Letters and Months # 3300—33FF CJK Compatibility # 3400—4DBF CJK Unified Ideographs Extension A # 4DC0—4DFF Yijing Hexagram Symbols # 4E00—9FFF CJK Unified Ideographs caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) caption = re.sub(r"[\u3200-\u32ff]+", "", caption) caption = re.sub(r"[\u3300-\u33ff]+", "", caption) caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) ####################################################### # все виды тире / all types of dash --> "-" caption = re.sub( r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa "-", caption, ) # кавычки к одному стандарту caption = re.sub(r"[`´«»“”¨]", '"', caption) caption = re.sub(r"[‘’]", "'", caption) # &quot; caption = re.sub(r"&quot;?", "", caption) # &amp caption = re.sub(r"&amp", "", caption) # ip adresses: caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) # article ids: caption = re.sub(r"\d:\d\d\s+$", "", caption) # \n caption = re.sub(r"\\n", " ", caption) # "#123" caption = re.sub(r"#\d{1,3}\b", "", caption) # "#12345.." caption = re.sub(r"#\d{5,}\b", "", caption) # "123456.." caption = re.sub(r"\b\d{6,}\b", "", caption) # filenames: caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) # caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " # this-is-my-cute-cat / this_is_my_cute_cat regex2 = re.compile(r"(?:\-|\_)") if len(re.findall(regex2, caption)) > 3: caption = re.sub(regex2, " ", caption) caption = ftfy.fix_text(caption) caption = html.unescape(html.unescape(caption)) caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) caption = re.sub(r"\bpage\s+\d+\b", "", caption) caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) caption = re.sub(r"\b\s+\:\s+", r": ", caption) caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) caption = re.sub(r"\s+", " ", caption) caption.strip() caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) caption = re.sub(r"^\.\S+$", "", caption) return caption.strip() def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) return latents @property def guidance_scale(self): return self._guidance_scale # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, width: Optional[int] = None, height: Optional[int] = None, num_inference_steps: int = 30, guidance_scale: float = 4.0, negative_prompt: Union[str, List[str]] = None, sigmas: List[float] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, clean_caption: bool = True, max_sequence_length: int = 256, scaling_watershed: Optional[float] = 1.0, proportional_attn: Optional[bool] = True, ) -> Union[ImagePipelineOutput, Tuple]: """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_inference_steps (`int`, *optional*, defaults to 30): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. height (`int`, *optional*, defaults to self.unet.config.sample_size): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size): The width in pixels of the generated image. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. For Lumina-T2I this negative prompt should be "". If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for negative text embeddings. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. clean_caption (`bool`, *optional*, defaults to `True`): Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to be installed. If the dependencies are not installed, the embeddings will be created from the raw prompt. max_sequence_length (`int` defaults to 120): Maximum sequence length to use with the `prompt`. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images """ height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, ) cross_attention_kwargs = {} # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if proportional_attn: cross_attention_kwargs["base_sequence_length"] = (self.default_image_size // 16) ** 2 scaling_factor = math.sqrt(width * height / self.default_image_size**2) device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt ( prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask, ) = self.encode_prompt( prompt, do_classifier_free_guidance, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, device=device, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, clean_caption=clean_caption, max_sequence_length=max_sequence_length, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds], dim=0) prompt_attention_mask = torch.cat([prompt_attention_mask, negative_prompt_attention_mask], dim=0) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, sigmas=sigmas) # 5. Prepare latents. latent_channels = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, latent_channels, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Denoising loop with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents current_timestep = t if not torch.is_tensor(current_timestep): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = latent_model_input.device.type == "mps" if isinstance(current_timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 current_timestep = torch.tensor( [current_timestep], dtype=dtype, device=latent_model_input.device, ) elif len(current_timestep.shape) == 0: current_timestep = current_timestep[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML current_timestep = current_timestep.expand(latent_model_input.shape[0]) # reverse the timestep since Lumina uses t=0 as the noise and t=1 as the image current_timestep = 1 - current_timestep / self.scheduler.config.num_train_timesteps # prepare image_rotary_emb for positional encoding # dynamic scaling_factor for different resolution. # NOTE: For `Time-aware` denosing mechanism from Lumina-Next # https://arxiv.org/abs/2406.18583, Sec 2.3 # NOTE: We should compute different image_rotary_emb with different timestep. if current_timestep[0] < scaling_watershed: linear_factor = scaling_factor ntk_factor = 1.0 else: linear_factor = 1.0 ntk_factor = scaling_factor image_rotary_emb = get_2d_rotary_pos_embed_lumina( self.transformer.head_dim, 384, 384, linear_factor=linear_factor, ntk_factor=ntk_factor, ) noise_pred = self.transformer( hidden_states=latent_model_input, timestep=current_timestep, encoder_hidden_states=prompt_embeds, encoder_mask=prompt_attention_mask, image_rotary_emb=image_rotary_emb, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] noise_pred = noise_pred.chunk(2, dim=1)[0] # perform guidance scale # NOTE: For exact reproducibility reasons, we apply classifier-free guidance on only # three channels by default. The standard approach to cfg applies it to all channels. # This can be done by uncommenting the following line and commenting-out the line following that. # eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:] if do_classifier_free_guidance: noise_pred_eps, noise_pred_rest = noise_pred[:, :3], noise_pred[:, 3:] noise_pred_cond_eps, noise_pred_uncond_eps = torch.split( noise_pred_eps, len(noise_pred_eps) // 2, dim=0 ) noise_pred_half = noise_pred_uncond_eps + guidance_scale * ( noise_pred_cond_eps - noise_pred_uncond_eps ) noise_pred_eps = torch.cat([noise_pred_half, noise_pred_half], dim=0) noise_pred = torch.cat([noise_pred_eps, noise_pred_rest], dim=1) noise_pred, _ = noise_pred.chunk(2, dim=0) # compute the previous noisy sample x_t -> x_t-1 latents_dtype = latents.dtype noise_pred = -noise_pred latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] if latents.dtype != latents_dtype: if torch.backends.mps.is_available(): # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 latents = latents.to(latents_dtype) progress_bar.update() if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": latents = latents / self.vae.config.scaling_factor image = self.vae.decode(latents, return_dict=False)[0] image = self.image_processor.postprocess(image, output_type=output_type) else: image = latents # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image)
class_definition
5,461
42,665
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/lumina/pipeline_lumina.py
null
247
class CogView3PipelineOutput(BaseOutput): """ Output class for CogView3 pipelines. Args: images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. """ images: Union[List[PIL.Image.Image], np.ndarray]
class_definition
148
593
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogview3/pipeline_output.py
null
248
class CogView3PlusPipeline(DiffusionPipeline): r""" Pipeline for text-to-image generation using CogView3Plus. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`T5EncoderModel`]): Frozen text-encoder. CogView3Plus uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. tokenizer (`T5Tokenizer`): Tokenizer of class [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). transformer ([`CogView3PlusTransformer2DModel`]): A text conditioned `CogView3PlusTransformer2DModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. """ _optional_components = [] model_cpu_offload_seq = "text_encoder->transformer->vae" _callback_tensor_inputs = [ "latents", "prompt_embeds", "negative_prompt_embeds", ] def __init__( self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, vae: AutoencoderKL, transformer: CogView3PlusTransformer2DModel, scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler], ): super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._get_t5_prompt_embeds with num_videos_per_prompt->num_images_per_prompt def _get_t5_prompt_embeds( self, prompt: Union[str, List[str]] = None, num_images_per_prompt: int = 1, max_sequence_length: int = 226, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): device = device or self._execution_device dtype = dtype or self.text_encoder.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) logger.warning( "The following part of your input was truncated because `max_sequence_length` is set to " f" {max_sequence_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) # duplicate text embeddings for each generation per prompt, using mps friendly method _, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) return prompt_embeds def encode_prompt( self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, do_classifier_free_guidance: bool = True, num_images_per_prompt: int = 1, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, max_sequence_length: int = 224, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): Whether to use classifier free guidance or not. num_images_per_prompt (`int`, *optional*, defaults to 1): Number of images that should be generated per prompt. torch device to place the resulting embeddings on prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. max_sequence_length (`int`, defaults to `224`): Maximum sequence length in encoded prompt. Can be set to other values but may lead to poorer results. device: (`torch.device`, *optional*): torch device dtype: (`torch.dtype`, *optional*): torch dtype """ device = device or self._execution_device prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: prompt_embeds = self._get_t5_prompt_embeds( prompt=prompt, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, ) if do_classifier_free_guidance and negative_prompt is None: negative_prompt_embeds = prompt_embeds.new_zeros(prompt_embeds.shape) if do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) negative_prompt_embeds = self._get_t5_prompt_embeds( prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, ) return prompt_embeds, negative_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs # Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs def check_inputs( self, prompt, height, width, negative_prompt, callback_on_step_end_tensor_inputs, prompt_embeds=None, negative_prompt_embeds=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) @property def guidance_scale(self): return self._guidance_scale # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[str, List[str]]] = None, negative_prompt: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, timesteps: Optional[List[int]] = None, guidance_scale: float = 5.0, num_images_per_prompt: int = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, original_size: Optional[Tuple[int, int]] = None, crops_coords_top_left: Tuple[int, int] = (0, 0), output_type: str = "pil", return_dict: bool = True, callback_on_step_end: Optional[ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 224, ) -> Union[CogView3PipelineOutput, Tuple]: """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). height (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. If not provided, it is set to 1024. width (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. If not provided it is set to 1024. num_inference_steps (`int`, *optional*, defaults to `50`): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. guidance_scale (`float`, *optional*, defaults to `5.0`): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to `1`): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead of a plain tuple. attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. max_sequence_length (`int`, defaults to `224`): Maximum sequence length in encoded prompt. Can be set to other values but may lead to poorer results. Examples: Returns: [`~pipelines.cogview3.pipeline_cogview3plus.CogView3PipelineOutput`] or `tuple`: [`~pipelines.cogview3.pipeline_cogview3plus.CogView3PipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs height = height or self.transformer.config.sample_size * self.vae_scale_factor width = width or self.transformer.config.sample_size * self.vae_scale_factor original_size = original_size or (height, width) target_size = (height, width) # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, negative_prompt, callback_on_step_end_tensor_inputs, prompt_embeds, negative_prompt_embeds, ) self._guidance_scale = guidance_scale self._interrupt = False # 2. Default call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, negative_prompt, self.do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, max_sequence_length=max_sequence_length, device=device, ) if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) self._num_timesteps = len(timesteps) # 5. Prepare latents. latent_channels = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, latent_channels, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Prepare additional timestep conditions original_size = torch.tensor([original_size], dtype=prompt_embeds.dtype) target_size = torch.tensor([target_size], dtype=prompt_embeds.dtype) crops_coords_top_left = torch.tensor([crops_coords_top_left], dtype=prompt_embeds.dtype) if self.do_classifier_free_guidance: original_size = torch.cat([original_size, original_size]) target_size = torch.cat([target_size, target_size]) crops_coords_top_left = torch.cat([crops_coords_top_left, crops_coords_top_left]) original_size = original_size.to(device).repeat(batch_size * num_images_per_prompt, 1) target_size = target_size.to(device).repeat(batch_size * num_images_per_prompt, 1) crops_coords_top_left = crops_coords_top_left.to(device).repeat(batch_size * num_images_per_prompt, 1) # 8. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) with self.progress_bar(total=num_inference_steps) as progress_bar: # for DPM-solver++ old_pred_original_sample = None for i, t in enumerate(timesteps): if self.interrupt: continue latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latent_model_input.shape[0]) # predict noise model_output noise_pred = self.transformer( hidden_states=latent_model_input, encoder_hidden_states=prompt_embeds, timestep=timestep, original_size=original_size, target_size=target_size, crop_coords=crops_coords_top_left, return_dict=False, )[0] noise_pred = noise_pred.float() # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 if not isinstance(self.scheduler, CogVideoXDPMScheduler): latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] else: latents, old_pred_original_sample = self.scheduler.step( noise_pred, old_pred_original_sample, t, timesteps[i - 1] if i > 0 else None, latents, **extra_step_kwargs, return_dict=False, ) latents = latents.to(prompt_embeds.dtype) # call the callback, if provided if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ 0 ] else: image = latents image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return CogView3PipelineOutput(images=image)
class_definition
5,087
33,852
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogview3/pipeline_cogview3plus.py
null
249
class BlipImageProcessor(BaseImageProcessor): r""" Constructs a BLIP image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`dict`, *optional*, defaults to `{"height": 384, "width": 384}`): Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be overridden by the `resample` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Wwhether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = True, do_center_crop: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 224, "width": 224} size = get_size_dict(size, default_to_square=True) self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD self.do_convert_rgb = do_convert_rgb self.do_center_crop = do_center_crop # Copy-pasted from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. Returns: `np.ndarray`: The resized image. """ size = get_size_dict(size) if "height" not in size or "width" not in size: raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") output_size = (size["height"], size["width"]) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def preprocess( self, images: ImageInput, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, do_center_crop: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, do_convert_rgb: bool = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Controls the size of the image after `resize`. The shortest edge of the image is resized to `size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest edge equal to `int(size["shortest_edge"] * (1333 / 800))`. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to normalize the image by if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to normalize the image by if `do_normalize` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # PIL RGBA images are converted to RGB if do_convert_rgb: images = [convert_to_rgb(image) for image in images] # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: images = [ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] if do_center_crop: images = [self.center_crop(image, size, input_data_format=input_data_format) for image in images] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] encoded_outputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors) return encoded_outputs # Follows diffusers.VaeImageProcessor.postprocess def postprocess(self, sample: torch.Tensor, output_type: str = "pil"): if output_type not in ["pt", "np", "pil"]: raise ValueError( f"output_type={output_type} is not supported. Make sure to choose one of ['pt', 'np', or 'pil']" ) # Equivalent to diffusers.VaeImageProcessor.denormalize sample = (sample / 2 + 0.5).clamp(0, 1) if output_type == "pt": return sample # Equivalent to diffusers.VaeImageProcessor.pt_to_numpy sample = sample.cpu().permute(0, 2, 3, 1).numpy() if output_type == "np": return sample # Output_type must be 'pil' sample = numpy_to_pil(sample) return sample
class_definition
1,621
16,741
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/blip_diffusion/blip_image_processing.py
null
250
class BlipDiffusionPipeline(DiffusionPipeline): """ Pipeline for Zero-Shot Subject Driven Generation using Blip Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: tokenizer ([`CLIPTokenizer`]): Tokenizer for the text encoder text_encoder ([`ContextCLIPTextModel`]): Text encoder to encode the text prompt vae ([`AutoencoderKL`]): VAE model to map the latents to the image unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the image embedding. scheduler ([`PNDMScheduler`]): A scheduler to be used in combination with `unet` to generate image latents. qformer ([`Blip2QFormerModel`]): QFormer model to get multi-modal embeddings from the text and image. image_processor ([`BlipImageProcessor`]): Image Processor to preprocess and postprocess the image. ctx_begin_pos (int, `optional`, defaults to 2): Position of the context token in the text encoder. """ model_cpu_offload_seq = "qformer->text_encoder->unet->vae" def __init__( self, tokenizer: CLIPTokenizer, text_encoder: ContextCLIPTextModel, vae: AutoencoderKL, unet: UNet2DConditionModel, scheduler: PNDMScheduler, qformer: Blip2QFormerModel, image_processor: BlipImageProcessor, ctx_begin_pos: int = 2, mean: List[float] = None, std: List[float] = None, ): super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, unet=unet, scheduler=scheduler, qformer=qformer, image_processor=image_processor, ) self.register_to_config(ctx_begin_pos=ctx_begin_pos, mean=mean, std=std) def get_query_embeddings(self, input_image, src_subject): return self.qformer(image_input=input_image, text_input=src_subject, return_dict=False) # from the original Blip Diffusion code, speciefies the target subject and augments the prompt by repeating it def _build_prompt(self, prompts, tgt_subjects, prompt_strength=1.0, prompt_reps=20): rv = [] for prompt, tgt_subject in zip(prompts, tgt_subjects): prompt = f"a {tgt_subject} {prompt.strip()}" # a trick to amplify the prompt rv.append(", ".join([prompt] * int(prompt_strength * prompt_reps))) return rv # Copied from diffusers.pipelines.consistency_models.pipeline_consistency_models.ConsistencyModelPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels, height, width, dtype, device, generator, latents=None): shape = (batch_size, num_channels, height, width) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device=device, dtype=dtype) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def encode_prompt(self, query_embeds, prompt, device=None): device = device or self._execution_device # embeddings for prompt, with query_embeds as context max_len = self.text_encoder.text_model.config.max_position_embeddings max_len -= self.qformer.config.num_query_tokens tokenized_prompt = self.tokenizer( prompt, padding="max_length", truncation=True, max_length=max_len, return_tensors="pt", ).to(device) batch_size = query_embeds.shape[0] ctx_begin_pos = [self.config.ctx_begin_pos] * batch_size text_embeddings = self.text_encoder( input_ids=tokenized_prompt.input_ids, ctx_embeddings=query_embeds, ctx_begin_pos=ctx_begin_pos, )[0] return text_embeddings @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: List[str], reference_image: PIL.Image.Image, source_subject_category: List[str], target_subject_category: List[str], latents: Optional[torch.Tensor] = None, guidance_scale: float = 7.5, height: int = 512, width: int = 512, num_inference_steps: int = 50, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, neg_prompt: Optional[str] = "", prompt_strength: float = 1.0, prompt_reps: int = 20, output_type: Optional[str] = "pil", return_dict: bool = True, ): """ Function invoked when calling the pipeline for generation. Args: prompt (`List[str]`): The prompt or prompts to guide the image generation. reference_image (`PIL.Image.Image`): The reference image to condition the generation on. source_subject_category (`List[str]`): The source subject category. target_subject_category (`List[str]`): The target subject category. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by random sampling. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. height (`int`, *optional*, defaults to 512): The height of the generated image. width (`int`, *optional*, defaults to 512): The width of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. neg_prompt (`str`, *optional*, defaults to ""): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_strength (`float`, *optional*, defaults to 1.0): The strength of the prompt. Specifies the number of times the prompt is repeated along with prompt_reps to amplify the prompt. prompt_reps (`int`, *optional*, defaults to 20): The number of times the prompt is repeated along with prompt_strength to amplify the prompt. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` """ device = self._execution_device reference_image = self.image_processor.preprocess( reference_image, image_mean=self.config.mean, image_std=self.config.std, return_tensors="pt" )["pixel_values"] reference_image = reference_image.to(device) if isinstance(prompt, str): prompt = [prompt] if isinstance(source_subject_category, str): source_subject_category = [source_subject_category] if isinstance(target_subject_category, str): target_subject_category = [target_subject_category] batch_size = len(prompt) prompt = self._build_prompt( prompts=prompt, tgt_subjects=target_subject_category, prompt_strength=prompt_strength, prompt_reps=prompt_reps, ) query_embeds = self.get_query_embeddings(reference_image, source_subject_category) text_embeddings = self.encode_prompt(query_embeds, prompt, device) do_classifier_free_guidance = guidance_scale > 1.0 if do_classifier_free_guidance: max_length = self.text_encoder.text_model.config.max_position_embeddings uncond_input = self.tokenizer( [neg_prompt] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt", ) uncond_embeddings = self.text_encoder( input_ids=uncond_input.input_ids.to(device), ctx_embeddings=None, )[0] # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) scale_down_factor = 2 ** (len(self.unet.config.block_out_channels) - 1) latents = self.prepare_latents( batch_size=batch_size, num_channels=self.unet.config.in_channels, height=height // scale_down_factor, width=width // scale_down_factor, generator=generator, latents=latents, dtype=self.unet.dtype, device=device, ) # set timesteps extra_set_kwargs = {} self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): # expand the latents if we are doing classifier free guidance do_classifier_free_guidance = guidance_scale > 1.0 latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents noise_pred = self.unet( latent_model_input, timestep=t, encoder_hidden_states=text_embeddings, down_block_additional_residuals=None, mid_block_additional_residual=None, )["sample"] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) latents = self.scheduler.step( noise_pred, t, latents, )["prev_sample"] if XLA_AVAILABLE: xm.mark_step() image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image)
class_definition
2,834
15,221
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py
null
251
class Blip2TextEmbeddings(nn.Module): """Construct the embeddings from word and position embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.config = config def forward( self, input_ids=None, position_ids=None, query_embeds=None, past_key_values_length=0, ): if input_ids is not None: seq_length = input_ids.size()[1] else: seq_length = 0 if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length].clone() if input_ids is not None: embeddings = self.word_embeddings(input_ids) if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings = embeddings + position_embeddings if query_embeds is not None: batch_size = embeddings.shape[0] # repeat the query embeddings for batch size query_embeds = query_embeds.repeat(batch_size, 1, 1) embeddings = torch.cat((query_embeds, embeddings), dim=1) else: embeddings = query_embeds embeddings = embeddings.to(query_embeds.dtype) embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings
class_definition
1,763
4,009
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/blip_diffusion/modeling_blip2.py
null
252
class Blip2VisionEmbeddings(nn.Module): def __init__(self, config: Blip2VisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype) return embeddings
class_definition
4,108
5,490
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/blip_diffusion/modeling_blip2.py
null
253
class Blip2QFormerEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList( [Blip2QFormerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, query_length=0, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions else None next_decoder_cache = () if use_cache else None for i in range(self.config.num_hidden_layers): layer_module = self.layer[i] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if getattr(self.config, "gradient_checkpointing", False) and torch.is_grad_enabled(): if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions, query_length) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, query_length, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if layer_module.has_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, )
class_definition
5,600
9,357
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/blip_diffusion/modeling_blip2.py
null
254
class Blip2QFormerLayer(nn.Module): def __init__(self, config, layer_idx): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = Blip2QFormerAttention(config) self.layer_idx = layer_idx if layer_idx % config.cross_attention_frequency == 0: self.crossattention = Blip2QFormerAttention(config, is_cross_attention=True) self.has_cross_attention = True else: self.has_cross_attention = False self.intermediate = Blip2QFormerIntermediate(config) self.intermediate_query = Blip2QFormerIntermediate(config) self.output_query = Blip2QFormerOutput(config) self.output = Blip2QFormerOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, query_length=0, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] if query_length > 0: query_attention_output = attention_output[:, :query_length, :] if self.has_cross_attention: if encoder_hidden_states is None: raise ValueError("encoder_hidden_states must be given for cross-attention layers") cross_attention_outputs = self.crossattention( query_attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions=output_attentions, ) query_attention_output = cross_attention_outputs[0] # add cross attentions if we output attention weights outputs = outputs + cross_attention_outputs[1:-1] layer_output = apply_chunking_to_forward( self.feed_forward_chunk_query, self.chunk_size_feed_forward, self.seq_len_dim, query_attention_output, ) if attention_output.shape[1] > query_length: layer_output_text = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output[:, query_length:, :], ) layer_output = torch.cat([layer_output, layer_output_text], dim=1) else: layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output, ) outputs = (layer_output,) + outputs outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output def feed_forward_chunk_query(self, attention_output): intermediate_output = self.intermediate_query(attention_output) layer_output = self.output_query(intermediate_output, attention_output) return layer_output
class_definition
9,403
13,347
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/blip_diffusion/modeling_blip2.py
null
255
class ProjLayer(nn.Module): def __init__(self, in_dim, out_dim, hidden_dim, drop_p=0.1, eps=1e-12): super().__init__() # Dense1 -> Act -> Dense2 -> Drop -> Res -> Norm self.dense1 = nn.Linear(in_dim, hidden_dim) self.act_fn = QuickGELU() self.dense2 = nn.Linear(hidden_dim, out_dim) self.dropout = nn.Dropout(drop_p) self.LayerNorm = nn.LayerNorm(out_dim, eps=eps) def forward(self, x): x_in = x x = self.LayerNorm(x) x = self.dropout(self.dense2(self.act_fn(self.dense1(x)))) + x_in return x
class_definition
13,441
14,034
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/blip_diffusion/modeling_blip2.py
null
256
class Blip2VisionModel(Blip2PreTrainedModel): main_input_name = "pixel_values" config_class = Blip2VisionConfig def __init__(self, config: Blip2VisionConfig): super().__init__(config) self.config = config embed_dim = config.hidden_size self.embeddings = Blip2VisionEmbeddings(config) self.pre_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.encoder = Blip2Encoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.post_init() @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Blip2VisionConfig) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values) hidden_states = self.pre_layernorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.post_layernorm(last_hidden_state) pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def get_input_embeddings(self): return self.embeddings
class_definition
14,142
16,582
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/blip_diffusion/modeling_blip2.py
null
257
class Blip2QFormerModel(Blip2PreTrainedModel): """ Querying Transformer (Q-Former), used in BLIP-2. """ def __init__(self, config: Blip2Config): super().__init__(config) self.config = config self.embeddings = Blip2TextEmbeddings(config.qformer_config) self.visual_encoder = Blip2VisionModel(config.vision_config) self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size)) if not hasattr(config, "tokenizer") or config.tokenizer is None: self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side="right") else: self.tokenizer = BertTokenizer.from_pretrained(config.tokenizer, truncation_side="right") self.tokenizer.add_special_tokens({"bos_token": "[DEC]"}) self.proj_layer = ProjLayer( in_dim=config.qformer_config.hidden_size, out_dim=config.qformer_config.hidden_size, hidden_dim=config.qformer_config.hidden_size * 4, drop_p=0.1, eps=1e-12, ) self.encoder = Blip2QFormerEncoder(config.qformer_config) self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def get_extended_attention_mask( self, attention_mask: torch.Tensor, input_shape: Tuple[int], device: torch.device, has_query: bool = False, ) -> torch.Tensor: """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (`torch.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (`Tuple[int]`): The shape of the input to the model. device (`torch.device`): The device of the input to the model. Returns: `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. """ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( input_shape, attention_mask.shape ) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def forward( self, text_input=None, image_input=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" encoder_hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of: shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, `optional`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ text = self.tokenizer(text_input, return_tensors="pt", padding=True) text = text.to(self.device) input_ids = text.input_ids batch_size = input_ids.shape[0] query_atts = torch.ones((batch_size, self.query_tokens.size()[1]), dtype=torch.long).to(self.device) attention_mask = torch.cat([query_atts, text.attention_mask], dim=1) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # past_key_values_length past_key_values_length = ( past_key_values[0][0].shape[2] - self.config.query_length if past_key_values is not None else 0 ) query_length = self.query_tokens.shape[1] embedding_output = self.embeddings( input_ids=input_ids, query_embeds=self.query_tokens, past_key_values_length=past_key_values_length, ) # embedding_output = self.layernorm(query_embeds) # embedding_output = self.dropout(embedding_output) input_shape = embedding_output.size()[:-1] batch_size, seq_length = input_shape device = embedding_output.device image_embeds_frozen = self.visual_encoder(image_input).last_hidden_state # image_embeds_frozen = torch.ones_like(image_embeds_frozen) encoder_hidden_states = image_embeds_frozen if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_hidden_states is not None: if isinstance(encoder_hidden_states, list): encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() else: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if isinstance(encoder_attention_mask, list): encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] elif encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.qformer_config.num_hidden_layers) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, query_length=query_length, ) sequence_output = encoder_outputs[0] pooled_output = sequence_output[:, 0, :] if not return_dict: return self.proj_layer(sequence_output[:, :query_length, :]) return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, )
class_definition
16,667
27,292
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/blip_diffusion/modeling_blip2.py
null
258
class ContextCLIPTextModel(CLIPPreTrainedModel): config_class = CLIPTextConfig _no_split_modules = ["CLIPEncoderLayer"] def __init__(self, config: CLIPTextConfig): super().__init__(config) self.text_model = ContextCLIPTextTransformer(config) # Initialize weights and apply final processing self.post_init() def forward( self, ctx_embeddings: torch.Tensor = None, ctx_begin_pos: list = None, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: return self.text_model( ctx_embeddings=ctx_embeddings, ctx_begin_pos=ctx_begin_pos, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, )
class_definition
1,789
2,992
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py
null
259
class ContextCLIPTextTransformer(nn.Module): def __init__(self, config: CLIPTextConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = ContextCLIPTextEmbeddings(config) self.encoder = CLIPEncoder(config) self.final_layer_norm = nn.LayerNorm(embed_dim) def forward( self, ctx_embeddings: torch.Tensor, ctx_begin_pos: list, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None: raise ValueError("You have to specify either input_ids") input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.embeddings( input_ids=input_ids, position_ids=position_ids, ctx_embeddings=ctx_embeddings, ctx_begin_pos=ctx_begin_pos, ) bsz, seq_len = input_shape if ctx_embeddings is not None: seq_len += ctx_embeddings.size(1) # CLIP's text model uses causal mask, prepare it here. # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 causal_attention_mask = self._build_causal_attention_mask(bsz, seq_len, hidden_states.dtype).to( hidden_states.device ) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask, hidden_states.dtype) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.final_layer_norm(last_hidden_state) # text_embeds.shape = [batch_size, sequence_length, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 pooled_output = last_hidden_state[ torch.arange(last_hidden_state.shape[0], device=input_ids.device), input_ids.to(torch.int).argmax(dim=-1), ] if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def _build_causal_attention_mask(self, bsz, seq_len, dtype): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype) mask.fill_(torch.tensor(torch.finfo(dtype).min)) mask.triu_(1) # zero out the lower diagonal mask = mask.unsqueeze(1) # expand mask return mask
class_definition
2,995
6,993
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py
null
260
class ContextCLIPTextEmbeddings(nn.Module): def __init__(self, config: CLIPTextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) def forward( self, ctx_embeddings: torch.Tensor, ctx_begin_pos: list, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.Tensor] = None, ) -> torch.Tensor: if ctx_embeddings is None: ctx_len = 0 else: ctx_len = ctx_embeddings.shape[1] seq_length = (input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]) + ctx_len if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) # for each input embeddings, add the ctx embeddings at the correct position input_embeds_ctx = [] bsz = inputs_embeds.shape[0] if ctx_embeddings is not None: for i in range(bsz): cbp = ctx_begin_pos[i] prefix = inputs_embeds[i, :cbp] # remove the special token embedding suffix = inputs_embeds[i, cbp:] input_embeds_ctx.append(torch.cat([prefix, ctx_embeddings[i], suffix], dim=0)) inputs_embeds = torch.stack(input_embeds_ctx, dim=0) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings
class_definition
6,996
9,001
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py
null
261
class LattePipelineOutput(BaseOutput): frames: torch.Tensor
class_definition
5,482
5,545
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/latte/pipeline_latte.py
null
262
class LattePipeline(DiffusionPipeline): r""" Pipeline for text-to-video generation using Latte. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations. text_encoder ([`T5EncoderModel`]): Frozen text-encoder. Latte uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. tokenizer (`T5Tokenizer`): Tokenizer of class [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). transformer ([`LatteTransformer3DModel`]): A text conditioned `LatteTransformer3DModel` to denoise the encoded video latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `transformer` to denoise the encoded video latents. """ bad_punct_regex = re.compile(r"[#®•©™&@·º½¾¿¡§~\)\(\]\[\}\{\|\\/\\*]{1,}") _optional_components = ["tokenizer", "text_encoder"] model_cpu_offload_seq = "text_encoder->transformer->vae" _callback_tensor_inputs = [ "latents", "prompt_embeds", "negative_prompt_embeds", ] def __init__( self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, vae: AutoencoderKL, transformer: LatteTransformer3DModel, scheduler: KarrasDiffusionSchedulers, ): super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor) # Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/utils.py def mask_text_embeddings(self, emb, mask): if emb.shape[0] == 1: keep_index = mask.sum().item() return emb[:, :, :keep_index, :], keep_index # 1, 120, 4096 -> 1 7 4096 else: masked_feature = emb * mask[:, None, :, None] # 1 120 4096 return masked_feature, emb.shape[2] # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt def encode_prompt( self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool = True, negative_prompt: str = "", num_images_per_prompt: int = 1, device: Optional[torch.device] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, clean_caption: bool = False, mask_feature: bool = True, dtype=None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt not to guide the video generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For Latte, this should be "". do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): whether to use classifier free guidance or not num_images_per_prompt (`int`, *optional*, defaults to 1): number of video that should be generated per prompt device: (`torch.device`, *optional*): torch device to place the resulting embeddings on prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. For Latte, it's should be the embeddings of the "" string. clean_caption (bool, defaults to `False`): If `True`, the function will preprocess and clean the provided caption before encoding. mask_feature: (bool, defaults to `True`): If `True`, the function will mask the text embeddings. """ embeds_initially_provided = prompt_embeds is not None and negative_prompt_embeds is not None if device is None: device = self._execution_device if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] max_length = 120 if prompt_embeds is None: prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {max_length} tokens: {removed_text}" ) attention_mask = text_inputs.attention_mask.to(device) prompt_embeds_attention_mask = attention_mask prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds_attention_mask = torch.ones_like(prompt_embeds) if self.text_encoder is not None: dtype = self.text_encoder.dtype elif self.transformer is not None: dtype = self.transformer.dtype else: dtype = None prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) prompt_embeds_attention_mask = prompt_embeds_attention_mask.view(bs_embed, -1) prompt_embeds_attention_mask = prompt_embeds_attention_mask.repeat(num_images_per_prompt, 1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) attention_mask = uncond_input.attention_mask.to(device) negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes else: negative_prompt_embeds = None # Perform additional masking. if mask_feature and not embeds_initially_provided: prompt_embeds = prompt_embeds.unsqueeze(1) masked_prompt_embeds, keep_indices = self.mask_text_embeddings(prompt_embeds, prompt_embeds_attention_mask) masked_prompt_embeds = masked_prompt_embeds.squeeze(1) masked_negative_prompt_embeds = ( negative_prompt_embeds[:, :keep_indices, :] if negative_prompt_embeds is not None else None ) return masked_prompt_embeds, masked_negative_prompt_embeds return prompt_embeds, negative_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, height, width, negative_prompt, callback_on_step_end_tensor_inputs, prompt_embeds=None, negative_prompt_embeds=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing def _text_preprocessing(self, text, clean_caption=False): if clean_caption and not is_bs4_available(): logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")) logger.warning("Setting `clean_caption` to False...") clean_caption = False if clean_caption and not is_ftfy_available(): logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")) logger.warning("Setting `clean_caption` to False...") clean_caption = False if not isinstance(text, (tuple, list)): text = [text] def process(text: str): if clean_caption: text = self._clean_caption(text) text = self._clean_caption(text) else: text = text.lower().strip() return text return [process(t) for t in text] # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption def _clean_caption(self, caption): caption = str(caption) caption = ul.unquote_plus(caption) caption = caption.strip().lower() caption = re.sub("<person>", "person", caption) # urls: caption = re.sub( r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls caption = re.sub( r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls # html: caption = BeautifulSoup(caption, features="html.parser").text # @<nickname> caption = re.sub(r"@[\w\d]+\b", "", caption) # 31C0—31EF CJK Strokes # 31F0—31FF Katakana Phonetic Extensions # 3200—32FF Enclosed CJK Letters and Months # 3300—33FF CJK Compatibility # 3400—4DBF CJK Unified Ideographs Extension A # 4DC0—4DFF Yijing Hexagram Symbols # 4E00—9FFF CJK Unified Ideographs caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) caption = re.sub(r"[\u3200-\u32ff]+", "", caption) caption = re.sub(r"[\u3300-\u33ff]+", "", caption) caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) ####################################################### # все виды тире / all types of dash --> "-" caption = re.sub( r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa "-", caption, ) # кавычки к одному стандарту caption = re.sub(r"[`´«»“”¨]", '"', caption) caption = re.sub(r"[‘’]", "'", caption) # &quot; caption = re.sub(r"&quot;?", "", caption) # &amp caption = re.sub(r"&amp", "", caption) # ip adresses: caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) # article ids: caption = re.sub(r"\d:\d\d\s+$", "", caption) # \n caption = re.sub(r"\\n", " ", caption) # "#123" caption = re.sub(r"#\d{1,3}\b", "", caption) # "#12345.." caption = re.sub(r"#\d{5,}\b", "", caption) # "123456.." caption = re.sub(r"\b\d{6,}\b", "", caption) # filenames: caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) # caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " # this-is-my-cute-cat / this_is_my_cute_cat regex2 = re.compile(r"(?:\-|\_)") if len(re.findall(regex2, caption)) > 3: caption = re.sub(regex2, " ", caption) caption = ftfy.fix_text(caption) caption = html.unescape(html.unescape(caption)) caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) caption = re.sub(r"\bpage\s+\d+\b", "", caption) caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) caption = re.sub(r"\b\s+\:\s+", r": ", caption) caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) caption = re.sub(r"\s+", " ", caption) caption.strip() caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) caption = re.sub(r"^\.\S+$", "", caption) return caption.strip() # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents def prepare_latents( self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None ): shape = ( batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @property def guidance_scale(self): return self._guidance_scale # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, negative_prompt: str = "", num_inference_steps: int = 50, timesteps: Optional[List[int]] = None, guidance_scale: float = 7.5, num_images_per_prompt: int = 1, video_length: int = 16, height: int = 512, width: int = 512, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: str = "pil", return_dict: bool = True, callback_on_step_end: Optional[ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], clean_caption: bool = True, mask_feature: bool = True, enable_temporal_attentions: bool = True, decode_chunk_size: Optional[int] = None, ) -> Union[LattePipelineOutput, Tuple]: """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the video generation. If not defined, one has to pass `prompt_embeds`. instead. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the video generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality video at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` timesteps are used. Must be in descending order. guidance_scale (`float`, *optional*, defaults to 7.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate videos that are closely linked to the text `prompt`, usually at the expense of lower video quality. video_length (`int`, *optional*, defaults to 16): The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds num_images_per_prompt (`int`, *optional*, defaults to 1): The number of videos to generate per prompt. height (`int`, *optional*, defaults to self.unet.config.sample_size): The height in pixels of the generated video. width (`int`, *optional*, defaults to self.unet.config.sample_size): The width in pixels of the generated video. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for video generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. For Latte this negative prompt should be "". If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate video. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): A callback function or a list of callback functions to be called at the end of each denoising step. callback_on_step_end_tensor_inputs (`List[str]`, *optional*): A list of tensor inputs that should be passed to the callback function. If not defined, all tensor inputs will be passed. clean_caption (`bool`, *optional*, defaults to `True`): Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to be installed. If the dependencies are not installed, the embeddings will be created from the raw prompt. mask_feature (`bool` defaults to `True`): If set to `True`, the text embeddings will be masked. enable_temporal_attentions (`bool`, *optional*, defaults to `True`): Whether to enable temporal attentions decode_chunk_size (`int`, *optional*): The number of frames to decode at a time. Higher chunk size leads to better temporal consistency at the expense of more memory usage. By default, the decoder decodes all frames at once for maximal quality. For lower memory usage, reduce `decode_chunk_size`. Examples: Returns: [`~pipelines.latte.pipeline_latte.LattePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.latte.pipeline_latte.LattePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images """ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs # 0. Default decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else video_length # 1. Check inputs. Raise error if not correct height = height or self.transformer.config.sample_size * self.vae_scale_factor width = width or self.transformer.config.sample_size * self.vae_scale_factor self.check_inputs( prompt, height, width, negative_prompt, callback_on_step_end_tensor_inputs, prompt_embeds, negative_prompt_embeds, ) self._guidance_scale = guidance_scale self._interrupt = False # 2. Default height and width to transformer if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, do_classifier_free_guidance, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, device=device, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clean_caption=clean_caption, mask_feature=mask_feature, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) self._num_timesteps = len(timesteps) # 5. Prepare latents. latent_channels = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, latent_channels, video_length, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) current_timestep = t if not torch.is_tensor(current_timestep): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = latent_model_input.device.type == "mps" if isinstance(current_timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) elif len(current_timestep.shape) == 0: current_timestep = current_timestep[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML current_timestep = current_timestep.expand(latent_model_input.shape[0]) # predict noise model_output noise_pred = self.transformer( latent_model_input, encoder_hidden_states=prompt_embeds, timestep=current_timestep, enable_temporal_attentions=enable_temporal_attentions, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # use learned sigma? if not ( hasattr(self.scheduler.config, "variance_type") and self.scheduler.config.variance_type in ["learned", "learned_range"] ): noise_pred = noise_pred.chunk(2, dim=1)[0] # compute previous video: x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step() if output_type == "latents": deprecation_message = ( "Passing `output_type='latents'` is deprecated. Please pass `output_type='latent'` instead." ) deprecate("output_type_latents", "1.0.0", deprecation_message, standard_warn=False) output_type = "latent" if not output_type == "latent": video = self.decode_latents(latents, video_length, decode_chunk_size=14) video = self.video_processor.postprocess_video(video=video, output_type=output_type) else: video = latents # Offload all models self.maybe_free_model_hooks() if not return_dict: return (video,) return LattePipelineOutput(frames=video) # Similar to diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion.decode_latents def decode_latents(self, latents: torch.Tensor, video_length: int, decode_chunk_size: int = 14): # [batch, channels, frames, height, width] -> [batch*frames, channels, height, width] latents = latents.permute(0, 2, 1, 3, 4).flatten(0, 1) latents = 1 / self.vae.config.scaling_factor * latents forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys()) # decode decode_chunk_size frames at a time to avoid OOM frames = [] for i in range(0, latents.shape[0], decode_chunk_size): num_frames_in = latents[i : i + decode_chunk_size].shape[0] decode_kwargs = {} if accepts_num_frames: # we only pass num_frames_in if it's expected decode_kwargs["num_frames"] = num_frames_in frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample frames.append(frame) frames = torch.cat(frames, dim=0) # [batch*frames, channels, height, width] -> [batch, channels, frames, height, width] frames = frames.reshape(-1, video_length, *frames.shape[1:]).permute(0, 2, 1, 3, 4) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 frames = frames.float() return frames
class_definition
5,548
42,334
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/latte/pipeline_latte.py
null
263
class LDMSuperResolutionPipeline(DiffusionPipeline): r""" A pipeline for image super-resolution using latent diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Parameters: vqvae ([`VQModel`]): Vector-quantized (VQ) model to encode and decode images to and from latent representations. unet ([`UNet2DModel`]): A `UNet2DModel` to denoise the encoded image. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`], [`DPMSolverMultistepScheduler`], or [`PNDMScheduler`]. """ def __init__( self, vqvae: VQModel, unet: UNet2DModel, scheduler: Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ], ): super().__init__() self.register_modules(vqvae=vqvae, unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, image: Union[torch.Tensor, PIL.Image.Image] = None, batch_size: Optional[int] = 1, num_inference_steps: Optional[int] = 100, eta: Optional[float] = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, output_type: Optional[str] = "pil", return_dict: bool = True, ) -> Union[Tuple, ImagePipelineOutput]: r""" The call function to the pipeline for generation. Args: image (`torch.Tensor` or `PIL.Image.Image`): `Image` or tensor representing an image batch to be used as the starting point for the process. batch_size (`int`, *optional*, defaults to 1): Number of images to generate. num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple. Example: ```py >>> import requests >>> from PIL import Image >>> from io import BytesIO >>> from diffusers import LDMSuperResolutionPipeline >>> import torch >>> # load model and scheduler >>> pipeline = LDMSuperResolutionPipeline.from_pretrained("CompVis/ldm-super-resolution-4x-openimages") >>> pipeline = pipeline.to("cuda") >>> # let's download an image >>> url = ( ... "https://user-images.githubusercontent.com/38061659/199705896-b48e17b8-b231-47cd-a270-4ffa5a93fa3e.png" ... ) >>> response = requests.get(url) >>> low_res_img = Image.open(BytesIO(response.content)).convert("RGB") >>> low_res_img = low_res_img.resize((128, 128)) >>> # run pipeline in inference (sample random noise and denoise) >>> upscaled_image = pipeline(low_res_img, num_inference_steps=100, eta=1).images[0] >>> # save image >>> upscaled_image.save("ldm_generated_image.png") ``` Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images """ if isinstance(image, PIL.Image.Image): batch_size = 1 elif isinstance(image, torch.Tensor): batch_size = image.shape[0] else: raise ValueError(f"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(image)}") if isinstance(image, PIL.Image.Image): image = preprocess(image) height, width = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image latents_shape = (batch_size, self.unet.config.in_channels // 2, height, width) latents_dtype = next(self.unet.parameters()).dtype latents = randn_tensor(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) image = image.to(device=self.device, dtype=latents_dtype) # set timesteps and move to the correct device self.scheduler.set_timesteps(num_inference_steps, device=self.device) timesteps_tensor = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_kwargs = {} if accepts_eta: extra_kwargs["eta"] = eta for t in self.progress_bar(timesteps_tensor): # concat latents and low resolution image in the channel dimension. latents_input = torch.cat([latents, image], dim=1) latents_input = self.scheduler.scale_model_input(latents_input, t) # predict the noise residual noise_pred = self.unet(latents_input, t).sample # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_kwargs).prev_sample if XLA_AVAILABLE: xm.mark_step() # decode the image latents with the VQVAE image = self.vqvae.decode(latents).sample image = torch.clamp(image, -1.0, 1.0) image = image / 2 + 0.5 image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image)
class_definition
1,050
8,277
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py
null
264
class LDMTextToImagePipeline(DiffusionPipeline): r""" Pipeline for text-to-image generation using latent diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Parameters: vqvae ([`VQModel`]): Vector-quantized (VQ) model to encode and decode images to and from latent representations. bert ([`LDMBertModel`]): Text-encoder model based on [`~transformers.BERT`]. tokenizer ([`~transformers.BertTokenizer`]): A `BertTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. """ model_cpu_offload_seq = "bert->unet->vqvae" def __init__( self, vqvae: Union[VQModel, AutoencoderKL], bert: PreTrainedModel, tokenizer: PreTrainedTokenizer, unet: Union[UNet2DModel, UNet2DConditionModel], scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], ): super().__init__() self.register_modules(vqvae=vqvae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler) self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1) @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 1.0, eta: Optional[float] = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, **kwargs, ) -> Union[Tuple, ImagePipelineOutput]: r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 1.0): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple. Example: ```py >>> from diffusers import DiffusionPipeline >>> # load model and scheduler >>> ldm = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256") >>> # run pipeline in inference (sample random noise and denoise) >>> prompt = "A painting of a squirrel eating a burger" >>> images = ldm([prompt], num_inference_steps=50, eta=0.3, guidance_scale=6).images >>> # save images >>> for idx, image in enumerate(images): ... image.save(f"squirrel-{idx}.png") ``` Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor if isinstance(prompt, str): batch_size = 1 elif isinstance(prompt, list): batch_size = len(prompt) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") # get unconditional embeddings for classifier free guidance if guidance_scale != 1.0: uncond_input = self.tokenizer( [""] * batch_size, padding="max_length", max_length=77, truncation=True, return_tensors="pt" ) negative_prompt_embeds = self.bert(uncond_input.input_ids.to(self._execution_device))[0] # get prompt text embeddings text_input = self.tokenizer(prompt, padding="max_length", max_length=77, truncation=True, return_tensors="pt") prompt_embeds = self.bert(text_input.input_ids.to(self._execution_device))[0] # get the initial random noise unless the user supplied it latents_shape = (batch_size, self.unet.config.in_channels, height // 8, width // 8) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor( latents_shape, generator=generator, device=self._execution_device, dtype=prompt_embeds.dtype ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") latents = latents.to(self._execution_device) self.scheduler.set_timesteps(num_inference_steps) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_kwargs = {} if accepts_eta: extra_kwargs["eta"] = eta for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale == 1.0: # guidance_scale of 1 means no guidance latents_input = latents context = prompt_embeds else: # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes latents_input = torch.cat([latents] * 2) context = torch.cat([negative_prompt_embeds, prompt_embeds]) # predict the noise residual noise_pred = self.unet(latents_input, t, encoder_hidden_states=context).sample # perform guidance if guidance_scale != 1.0: noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_kwargs).prev_sample if XLA_AVAILABLE: xm.mark_step() # scale and decode the image latents with vae latents = 1 / self.vqvae.config.scaling_factor * latents image = self.vqvae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image)
class_definition
1,406
10,570
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py
null
265
class LDMBertConfig(PretrainedConfig): model_type = "ldmbert" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, vocab_size=30522, max_position_embeddings=77, encoder_layers=32, encoder_ffn_dim=5120, encoder_attention_heads=8, head_dim=64, encoder_layerdrop=0.0, activation_function="gelu", d_model=1280, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, classifier_dropout=0.0, scale_embedding=False, use_cache=True, pad_token_id=0, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.head_dim = head_dim self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.classifier_dropout = classifier_dropout self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__(pad_token_id=pad_token_id, **kwargs)
class_definition
11,148
12,789
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py
null
266
class LDMBertAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, head_dim: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = False, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = head_dim self.inner_dim = head_dim * num_heads self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, self.inner_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, self.inner_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, self.inner_dim, bias=bias) self.out_proj = nn.Linear(self.inner_dim, embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.inner_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value
class_definition
13,384
20,114
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py
null
267
class LDMBertEncoderLayer(nn.Module): def __init__(self, config: LDMBertConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = LDMBertAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, head_dim=config.head_dim, dropout=config.attention_dropout, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_head_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """ Args: hidden_states (`torch.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)` attention_mask (`torch.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.Tensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
20,117
23,256
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py
null
268
class LDMBertPreTrainedModel(PreTrainedModel): config_class = LDMBertConfig base_model_prefix = "model" _supports_gradient_checkpointing = True _keys_to_ignore_on_load_unexpected = [r"encoder\.version", r"decoder\.version"] def _init_weights(self, module): std = self.config.init_std if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (LDMBertEncoder,)): module.gradient_checkpointing = value @property def dummy_inputs(self): pad_token = self.config.pad_token_id input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) dummy_inputs = { "attention_mask": input_ids.ne(pad_token), "input_ids": input_ids, } return dummy_inputs
class_definition
23,351
24,565
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py
null
269
class LDMBertEncoder(LDMBertPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`LDMBertEncoderLayer`]. Args: config: LDMBertConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: LDMBertConfig): super().__init__(config) self.dropout = config.dropout embed_dim = config.d_model self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim) self.embed_positions = nn.Embedding(config.max_position_embeddings, embed_dim) self.layers = nn.ModuleList([LDMBertEncoderLayer(config) for _ in range(config.encoder_layers)]) self.layer_norm = nn.LayerNorm(embed_dim) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`BartTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.BaseModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) seq_len = input_shape[1] if position_ids is None: position_ids = torch.arange(seq_len, dtype=torch.long, device=inputs_embeds.device).expand((1, -1)) embed_pos = self.embed_positions(position_ids) hidden_states = inputs_embeds + embed_pos hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.size()[0] != (len(self.layers)): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(encoder_layer), hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions )
class_definition
24,568
32,086
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py
null
270
class LDMBertModel(LDMBertPreTrainedModel): _no_split_modules = [] def __init__(self, config: LDMBertConfig): super().__init__(config) self.model = LDMBertEncoder(config) self.to_logits = nn.Linear(config.hidden_size, config.vocab_size) def forward( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return outputs
class_definition
32,089
33,005
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py
null
271
class HunyuanVideoPipelineOutput(BaseOutput): r""" Output class for HunyuanVideo pipelines. Args: frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]): List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape `(batch_size, num_frames, channels, height, width)`. """ frames: torch.Tensor
class_definition
101
622
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuan_video/pipeline_output.py
null
272
class HunyuanVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoaderMixin): r""" Pipeline for text-to-video generation using HunyuanVideo. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: text_encoder ([`LlamaModel`]): [Llava Llama3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). tokenizer (`LlamaTokenizer`): Tokenizer from [Llava Llama3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). transformer ([`HunyuanVideoTransformer3DModel`]): Conditional Transformer to denoise the encoded image latents. scheduler ([`FlowMatchEulerDiscreteScheduler`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. vae ([`AutoencoderKLHunyuanVideo`]): Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations. text_encoder_2 ([`CLIPTextModel`]): [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer_2 (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). """ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" _callback_tensor_inputs = ["latents", "prompt_embeds"] def __init__( self, text_encoder: LlamaModel, tokenizer: LlamaTokenizerFast, transformer: HunyuanVideoTransformer3DModel, vae: AutoencoderKLHunyuanVideo, scheduler: FlowMatchEulerDiscreteScheduler, text_encoder_2: CLIPTextModel, tokenizer_2: CLIPTokenizer, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=transformer, scheduler=scheduler, text_encoder_2=text_encoder_2, tokenizer_2=tokenizer_2, ) self.vae_scale_factor_temporal = self.vae.temporal_compression_ratio if getattr(self, "vae", None) else 4 self.vae_scale_factor_spatial = self.vae.spatial_compression_ratio if getattr(self, "vae", None) else 8 self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial) def _get_llama_prompt_embeds( self, prompt: Union[str, List[str]], prompt_template: Dict[str, Any], num_videos_per_prompt: int = 1, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, max_sequence_length: int = 256, num_hidden_layers_to_skip: int = 2, ) -> Tuple[torch.Tensor, torch.Tensor]: device = device or self._execution_device dtype = dtype or self.text_encoder.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) prompt = [prompt_template["template"].format(p) for p in prompt] crop_start = prompt_template.get("crop_start", None) if crop_start is None: prompt_template_input = self.tokenizer( prompt_template["template"], padding="max_length", return_tensors="pt", return_length=False, return_overflowing_tokens=False, return_attention_mask=False, ) crop_start = prompt_template_input["input_ids"].shape[-1] # Remove <|eot_id|> token and placeholder {} crop_start -= 2 max_sequence_length += crop_start text_inputs = self.tokenizer( prompt, max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt", return_length=False, return_overflowing_tokens=False, return_attention_mask=True, ) text_input_ids = text_inputs.input_ids.to(device=device) prompt_attention_mask = text_inputs.attention_mask.to(device=device) prompt_embeds = self.text_encoder( input_ids=text_input_ids, attention_mask=prompt_attention_mask, output_hidden_states=True, ).hidden_states[-(num_hidden_layers_to_skip + 1)] prompt_embeds = prompt_embeds.to(dtype=dtype) if crop_start is not None and crop_start > 0: prompt_embeds = prompt_embeds[:, crop_start:] prompt_attention_mask = prompt_attention_mask[:, crop_start:] # duplicate text embeddings for each generation per prompt, using mps friendly method _, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) prompt_attention_mask = prompt_attention_mask.repeat(1, num_videos_per_prompt) prompt_attention_mask = prompt_attention_mask.view(batch_size * num_videos_per_prompt, seq_len) return prompt_embeds, prompt_attention_mask def _get_clip_prompt_embeds( self, prompt: Union[str, List[str]], num_videos_per_prompt: int = 1, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, max_sequence_length: int = 77, ) -> torch.Tensor: device = device or self._execution_device dtype = dtype or self.text_encoder_2.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) text_inputs = self.tokenizer_2( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {max_sequence_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False).pooler_output # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt) prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, -1) return prompt_embeds def encode_prompt( self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]] = None, prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE, num_videos_per_prompt: int = 1, prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, max_sequence_length: int = 256, ): if prompt_embeds is None: prompt_embeds, prompt_attention_mask = self._get_llama_prompt_embeds( prompt, prompt_template, num_videos_per_prompt, device=device, dtype=dtype, max_sequence_length=max_sequence_length, ) if pooled_prompt_embeds is None: if prompt_2 is None and pooled_prompt_embeds is None: prompt_2 = prompt pooled_prompt_embeds = self._get_clip_prompt_embeds( prompt, num_videos_per_prompt, device=device, dtype=dtype, max_sequence_length=77, ) return prompt_embeds, pooled_prompt_embeds, prompt_attention_mask def check_inputs( self, prompt, prompt_2, height, width, prompt_embeds=None, callback_on_step_end_tensor_inputs=None, prompt_template=None, ): if height % 16 != 0 or width % 16 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt_2 is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") if prompt_template is not None: if not isinstance(prompt_template, dict): raise ValueError(f"`prompt_template` has to be of type `dict` but is {type(prompt_template)}") if "template" not in prompt_template: raise ValueError( f"`prompt_template` has to contain a key `template` but only found {prompt_template.keys()}" ) def prepare_latents( self, batch_size: int, num_channels_latents: 32, height: int = 720, width: int = 1280, num_frames: int = 129, dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, ) -> torch.Tensor: if latents is not None: return latents.to(device=device, dtype=dtype) shape = ( batch_size, num_channels_latents, num_frames, int(height) // self.vae_scale_factor_spatial, int(width) // self.vae_scale_factor_spatial, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) return latents def enable_vae_slicing(self): r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.vae.enable_slicing() def disable_vae_slicing(self): r""" Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_slicing() def enable_vae_tiling(self): r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. """ self.vae.enable_tiling() def disable_vae_tiling(self): r""" Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_tiling() @property def guidance_scale(self): return self._guidance_scale @property def num_timesteps(self): return self._num_timesteps @property def attention_kwargs(self): return self._attention_kwargs @property def interrupt(self): return self._interrupt @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, prompt_2: Union[str, List[str]] = None, height: int = 720, width: int = 1280, num_frames: int = 129, num_inference_steps: int = 50, sigmas: List[float] = None, guidance_scale: float = 6.0, num_videos_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, attention_kwargs: Optional[Dict[str, Any]] = None, callback_on_step_end: Optional[ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE, max_sequence_length: int = 256, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is will be used instead. height (`int`, defaults to `720`): The height in pixels of the generated image. width (`int`, defaults to `1280`): The width in pixels of the generated image. num_frames (`int`, defaults to `129`): The number of frames in the generated video. num_inference_steps (`int`, defaults to `50`): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. guidance_scale (`float`, defaults to `6.0`): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. Note that the only available HunyuanVideo model is CFG-distilled, which means that traditional guidance between unconditional and conditional latent is not applied. num_videos_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`HunyuanVideoPipelineOutput`] instead of a plain tuple. attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of each denoising step during the inference. with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~HunyuanVideoPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`HunyuanVideoPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, prompt_2, height, width, prompt_embeds, callback_on_step_end_tensor_inputs, prompt_template, ) self._guidance_scale = guidance_scale self._attention_kwargs = attention_kwargs self._interrupt = False device = self._execution_device # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # 3. Encode input prompt prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, prompt_template=prompt_template, num_videos_per_prompt=num_videos_per_prompt, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, prompt_attention_mask=prompt_attention_mask, device=device, max_sequence_length=max_sequence_length, ) transformer_dtype = self.transformer.dtype prompt_embeds = prompt_embeds.to(transformer_dtype) prompt_attention_mask = prompt_attention_mask.to(transformer_dtype) if pooled_prompt_embeds is not None: pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype) # 4. Prepare timesteps sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, sigmas=sigmas, ) # 5. Prepare latent variables num_channels_latents = self.transformer.config.in_channels num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1 latents = self.prepare_latents( batch_size * num_videos_per_prompt, num_channels_latents, height, width, num_latent_frames, torch.float32, device, generator, latents, ) # 6. Prepare guidance condition guidance = torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0 # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue latent_model_input = latents.to(transformer_dtype) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latents.shape[0]).to(latents.dtype) noise_pred = self.transformer( hidden_states=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds, encoder_attention_mask=prompt_attention_mask, pooled_projections=pooled_prompt_embeds, guidance=guidance, attention_kwargs=attention_kwargs, return_dict=False, )[0] # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor video = self.vae.decode(latents, return_dict=False)[0] video = self.video_processor.postprocess_video(video, output_type=output_type) else: video = latents # Offload all models self.maybe_free_model_hooks() if not return_dict: return (video,) return HunyuanVideoPipelineOutput(frames=video)
class_definition
6,332
31,669
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py
null
273
class ConsistencyModelPipeline(DiffusionPipeline): r""" Pipeline for unconditional or class-conditional image generation. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: unet ([`UNet2DModel`]): A `UNet2DModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Currently only compatible with [`CMStochasticIterativeScheduler`]. """ model_cpu_offload_seq = "unet" def __init__(self, unet: UNet2DModel, scheduler: CMStochasticIterativeScheduler) -> None: super().__init__() self.register_modules( unet=unet, scheduler=scheduler, ) self.safety_checker = None def prepare_latents(self, batch_size, num_channels, height, width, dtype, device, generator, latents=None): shape = (batch_size, num_channels, height, width) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device=device, dtype=dtype) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents # Follows diffusers.VaeImageProcessor.postprocess def postprocess_image(self, sample: torch.Tensor, output_type: str = "pil"): if output_type not in ["pt", "np", "pil"]: raise ValueError( f"output_type={output_type} is not supported. Make sure to choose one of ['pt', 'np', or 'pil']" ) # Equivalent to diffusers.VaeImageProcessor.denormalize sample = (sample / 2 + 0.5).clamp(0, 1) if output_type == "pt": return sample # Equivalent to diffusers.VaeImageProcessor.pt_to_numpy sample = sample.cpu().permute(0, 2, 3, 1).numpy() if output_type == "np": return sample # Output_type must be 'pil' sample = self.numpy_to_pil(sample) return sample def prepare_class_labels(self, batch_size, device, class_labels=None): if self.unet.config.num_class_embeds is not None: if isinstance(class_labels, list): class_labels = torch.tensor(class_labels, dtype=torch.int) elif isinstance(class_labels, int): assert batch_size == 1, "Batch size must be 1 if classes is an int" class_labels = torch.tensor([class_labels], dtype=torch.int) elif class_labels is None: # Randomly generate batch_size class labels # TODO: should use generator here? int analogue of randn_tensor is not exposed in ...utils class_labels = torch.randint(0, self.unet.config.num_class_embeds, size=(batch_size,)) class_labels = class_labels.to(device) else: class_labels = None return class_labels def check_inputs(self, num_inference_steps, timesteps, latents, batch_size, img_size, callback_steps): if num_inference_steps is None and timesteps is None: raise ValueError("Exactly one of `num_inference_steps` or `timesteps` must be supplied.") if num_inference_steps is not None and timesteps is not None: logger.warning( f"Both `num_inference_steps`: {num_inference_steps} and `timesteps`: {timesteps} are supplied;" " `timesteps` will be used over `num_inference_steps`." ) if latents is not None: expected_shape = (batch_size, 3, img_size, img_size) if latents.shape != expected_shape: raise ValueError(f"The shape of latents is {latents.shape} but is expected to be {expected_shape}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, batch_size: int = 1, class_labels: Optional[Union[torch.Tensor, List[int], int]] = None, num_inference_steps: int = 1, timesteps: List[int] = None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, ): r""" Args: batch_size (`int`, *optional*, defaults to 1): The number of images to generate. class_labels (`torch.Tensor` or `List[int]` or `int`, *optional*): Optional class labels for conditioning class-conditional consistency models. Not used if the model is not class-conditional. num_inference_steps (`int`, *optional*, defaults to 1): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` timesteps are used. Must be in descending order. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ # 0. Prepare call parameters img_size = self.unet.config.sample_size device = self._execution_device # 1. Check inputs self.check_inputs(num_inference_steps, timesteps, latents, batch_size, img_size, callback_steps) # 2. Prepare image latents # Sample image latents x_0 ~ N(0, sigma_0^2 * I) sample = self.prepare_latents( batch_size=batch_size, num_channels=self.unet.config.in_channels, height=img_size, width=img_size, dtype=self.unet.dtype, device=device, generator=generator, latents=latents, ) # 3. Handle class_labels for class-conditional models class_labels = self.prepare_class_labels(batch_size, device, class_labels=class_labels) # 4. Prepare timesteps if timesteps is not None: self.scheduler.set_timesteps(timesteps=timesteps, device=device) timesteps = self.scheduler.timesteps num_inference_steps = len(timesteps) else: self.scheduler.set_timesteps(num_inference_steps) timesteps = self.scheduler.timesteps # 5. Denoising loop # Multistep sampling: implements Algorithm 1 in the paper with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): scaled_sample = self.scheduler.scale_model_input(sample, t) model_output = self.unet(scaled_sample, t, class_labels=class_labels, return_dict=False)[0] sample = self.scheduler.step(model_output, t, sample, generator=generator)[0] # call the callback, if provided progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, sample) if XLA_AVAILABLE: xm.mark_step() # 6. Post-process image sample image = self.postprocess_image(sample, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image)
class_definition
2,503
12,595
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/consistency_models/pipeline_consistency_models.py
null
274
class DanceDiffusionPipeline(DiffusionPipeline): r""" Pipeline for audio generation. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Parameters: unet ([`UNet1DModel`]): A `UNet1DModel` to denoise the encoded audio. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of [`IPNDMScheduler`]. """ model_cpu_offload_seq = "unet" def __init__(self, unet, scheduler): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, batch_size: int = 1, num_inference_steps: int = 100, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, audio_length_in_s: Optional[float] = None, return_dict: bool = True, ) -> Union[AudioPipelineOutput, Tuple]: r""" The call function to the pipeline for generation. Args: batch_size (`int`, *optional*, defaults to 1): The number of audio samples to generate. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher-quality audio sample at the expense of slower inference. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. audio_length_in_s (`float`, *optional*, defaults to `self.unet.config.sample_size/self.unet.config.sample_rate`): The length of the generated audio sample in seconds. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.AudioPipelineOutput`] instead of a plain tuple. Example: ```py from diffusers import DiffusionPipeline from scipy.io.wavfile import write model_id = "harmonai/maestro-150k" pipe = DiffusionPipeline.from_pretrained(model_id) pipe = pipe.to("cuda") audios = pipe(audio_length_in_s=4.0).audios # To save locally for i, audio in enumerate(audios): write(f"maestro_test_{i}.wav", pipe.unet.sample_rate, audio.transpose()) # To dislay in google colab import IPython.display as ipd for audio in audios: display(ipd.Audio(audio, rate=pipe.unet.sample_rate)) ``` Returns: [`~pipelines.AudioPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.AudioPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated audio. """ if audio_length_in_s is None: audio_length_in_s = self.unet.config.sample_size / self.unet.config.sample_rate sample_size = audio_length_in_s * self.unet.config.sample_rate down_scale_factor = 2 ** len(self.unet.up_blocks) if sample_size < 3 * down_scale_factor: raise ValueError( f"{audio_length_in_s} is too small. Make sure it's bigger or equal to" f" {3 * down_scale_factor / self.unet.config.sample_rate}." ) original_sample_size = int(sample_size) if sample_size % down_scale_factor != 0: sample_size = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" f" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" " process." ) sample_size = int(sample_size) dtype = next(self.unet.parameters()).dtype shape = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) audio = randn_tensor(shape, generator=generator, device=self._execution_device, dtype=dtype) # set step values self.scheduler.set_timesteps(num_inference_steps, device=audio.device) self.scheduler.timesteps = self.scheduler.timesteps.to(dtype) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output model_output = self.unet(audio, t).sample # 2. compute previous audio sample: x_t -> t_t-1 audio = self.scheduler.step(model_output, t, audio).prev_sample if XLA_AVAILABLE: xm.mark_step() audio = audio.clamp(-1, 1).float().cpu().numpy() audio = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=audio)
class_definition
1,042
6,537
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py
null
275
class Kandinsky3Pipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin): model_cpu_offload_seq = "text_encoder->unet->movq" _callback_tensor_inputs = [ "latents", "prompt_embeds", "negative_prompt_embeds", "negative_attention_mask", "attention_mask", ] def __init__( self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, unet: Kandinsky3UNet, scheduler: DDPMScheduler, movq: VQModel, ): super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, movq=movq ) def process_embeds(self, embeddings, attention_mask, cut_context): if cut_context: embeddings[attention_mask == 0] = torch.zeros_like(embeddings[attention_mask == 0]) max_seq_length = attention_mask.sum(-1).max() + 1 embeddings = embeddings[:, :max_seq_length] attention_mask = attention_mask[:, :max_seq_length] return embeddings, attention_mask @torch.no_grad() def encode_prompt( self, prompt, do_classifier_free_guidance=True, num_images_per_prompt=1, device=None, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, _cut_context=False, attention_mask: Optional[torch.Tensor] = None, negative_attention_mask: Optional[torch.Tensor] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`, *optional*): torch device to place the resulting embeddings on num_images_per_prompt (`int`, *optional*, defaults to 1): number of images that should be generated per prompt do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask. Must provide if passing `prompt_embeds` directly. negative_attention_mask (`torch.Tensor`, *optional*): Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly. """ if prompt is not None and negative_prompt is not None: if type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) if device is None: device = self._execution_device if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] max_length = 128 if prompt_embeds is None: text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids.to(device) attention_mask = text_inputs.attention_mask.to(device) prompt_embeds = self.text_encoder( text_input_ids, attention_mask=attention_mask, ) prompt_embeds = prompt_embeds[0] prompt_embeds, attention_mask = self.process_embeds(prompt_embeds, attention_mask, _cut_context) prompt_embeds = prompt_embeds * attention_mask.unsqueeze(2) if self.text_encoder is not None: dtype = self.text_encoder.dtype else: dtype = None prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) attention_mask = attention_mask.repeat(num_images_per_prompt, 1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt if negative_prompt is not None: uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=128, truncation=True, return_attention_mask=True, return_tensors="pt", ) text_input_ids = uncond_input.input_ids.to(device) negative_attention_mask = uncond_input.attention_mask.to(device) negative_prompt_embeds = self.text_encoder( text_input_ids, attention_mask=negative_attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] negative_prompt_embeds = negative_prompt_embeds[:, : prompt_embeds.shape[1]] negative_attention_mask = negative_attention_mask[:, : prompt_embeds.shape[1]] negative_prompt_embeds = negative_prompt_embeds * negative_attention_mask.unsqueeze(2) else: negative_prompt_embeds = torch.zeros_like(prompt_embeds) negative_attention_mask = torch.zeros_like(attention_mask) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) if negative_prompt_embeds.shape != prompt_embeds.shape: negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) negative_attention_mask = negative_attention_mask.repeat(num_images_per_prompt, 1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes else: negative_prompt_embeds = None negative_attention_mask = None return prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents def check_inputs( self, prompt, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, attention_mask=None, negative_attention_mask=None, ): if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if negative_prompt_embeds is not None and negative_attention_mask is None: raise ValueError("Please provide `negative_attention_mask` along with `negative_prompt_embeds`") if negative_prompt_embeds is not None and negative_attention_mask is not None: if negative_prompt_embeds.shape[:2] != negative_attention_mask.shape: raise ValueError( "`negative_prompt_embeds` and `negative_attention_mask` must have the same batch_size and token length when passed directly, but" f" got: `negative_prompt_embeds` {negative_prompt_embeds.shape[:2]} != `negative_attention_mask`" f" {negative_attention_mask.shape}." ) if prompt_embeds is not None and attention_mask is None: raise ValueError("Please provide `attention_mask` along with `prompt_embeds`") if prompt_embeds is not None and attention_mask is not None: if prompt_embeds.shape[:2] != attention_mask.shape: raise ValueError( "`prompt_embeds` and `attention_mask` must have the same batch_size and token length when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape[:2]} != `attention_mask`" f" {attention_mask.shape}." ) @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, num_inference_steps: int = 25, guidance_scale: float = 3.0, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, height: Optional[int] = 1024, width: Optional[int] = 1024, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, negative_attention_mask: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, latents=None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. num_inference_steps (`int`, *optional*, defaults to 25): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` timesteps are used. Must be in descending order. guidance_scale (`float`, *optional*, defaults to 3.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. height (`int`, *optional*, defaults to self.unet.config.sample_size): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size): The width in pixels of the generated image. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask. Must provide if passing `prompt_embeds` directly. negative_attention_mask (`torch.Tensor`, *optional*): Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. clean_caption (`bool`, *optional*, defaults to `True`): Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to be installed. If the dependencies are not installed, the embeddings will be created from the raw prompt. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` """ callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None) if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) cut_context = True device = self._execution_device # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, callback_on_step_end_tensor_inputs, attention_mask, negative_attention_mask, ) self._guidance_scale = guidance_scale if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # 3. Encode input prompt prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask = self.encode_prompt( prompt, self.do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt, device=device, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, _cut_context=cut_context, attention_mask=attention_mask, negative_attention_mask=negative_attention_mask, ) if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) attention_mask = torch.cat([negative_attention_mask, attention_mask]).bool() # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latents height, width = downscale_height_and_width(height, width, 8) latents = self.prepare_latents( (batch_size * num_images_per_prompt, 4, height, width), prompt_embeds.dtype, device, generator, latents, self.scheduler, ) if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None: self.text_encoder_offload_hook.offload() # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, encoder_attention_mask=attention_mask, return_dict=False, )[0] if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = (guidance_scale + 1.0) * noise_pred_text - guidance_scale * noise_pred_uncond # noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, generator=generator, ).prev_sample if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) attention_mask = callback_outputs.pop("attention_mask", attention_mask) negative_attention_mask = callback_outputs.pop("negative_attention_mask", negative_attention_mask) if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() # post-processing if output_type not in ["pt", "np", "pil", "latent"]: raise ValueError( f"Only the output types `pt`, `pil`, `np` and `latent` are supported not output_type={output_type}" ) if not output_type == "latent": image = self.movq.decode(latents, force_not_quantize=True)["sample"] if output_type in ["np", "pil"]: image = image * 0.5 + 0.5 image = image.clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).float().numpy() if output_type == "pil": image = self.numpy_to_pil(image) else: image = latents self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image)
class_definition
1,750
27,768
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py
null
276
class Kandinsky3Img2ImgPipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin): model_cpu_offload_seq = "text_encoder->movq->unet->movq" _callback_tensor_inputs = [ "latents", "prompt_embeds", "negative_prompt_embeds", "negative_attention_mask", "attention_mask", ] def __init__( self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, unet: Kandinsky3UNet, scheduler: DDPMScheduler, movq: VQModel, ): super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, movq=movq ) def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _process_embeds(self, embeddings, attention_mask, cut_context): # return embeddings, attention_mask if cut_context: embeddings[attention_mask == 0] = torch.zeros_like(embeddings[attention_mask == 0]) max_seq_length = attention_mask.sum(-1).max() + 1 embeddings = embeddings[:, :max_seq_length] attention_mask = attention_mask[:, :max_seq_length] return embeddings, attention_mask @torch.no_grad() def encode_prompt( self, prompt, do_classifier_free_guidance=True, num_images_per_prompt=1, device=None, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, _cut_context=False, attention_mask: Optional[torch.Tensor] = None, negative_attention_mask: Optional[torch.Tensor] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`, *optional*): torch device to place the resulting embeddings on num_images_per_prompt (`int`, *optional*, defaults to 1): number of images that should be generated per prompt do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask. Must provide if passing `prompt_embeds` directly. negative_attention_mask (`torch.Tensor`, *optional*): Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly. """ if prompt is not None and negative_prompt is not None: if type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) if device is None: device = self._execution_device if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] max_length = 128 if prompt_embeds is None: text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids.to(device) attention_mask = text_inputs.attention_mask.to(device) prompt_embeds = self.text_encoder( text_input_ids, attention_mask=attention_mask, ) prompt_embeds = prompt_embeds[0] prompt_embeds, attention_mask = self._process_embeds(prompt_embeds, attention_mask, _cut_context) prompt_embeds = prompt_embeds * attention_mask.unsqueeze(2) if self.text_encoder is not None: dtype = self.text_encoder.dtype else: dtype = None prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) attention_mask = attention_mask.repeat(num_images_per_prompt, 1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt if negative_prompt is not None: uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=128, truncation=True, return_attention_mask=True, return_tensors="pt", ) text_input_ids = uncond_input.input_ids.to(device) negative_attention_mask = uncond_input.attention_mask.to(device) negative_prompt_embeds = self.text_encoder( text_input_ids, attention_mask=negative_attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] negative_prompt_embeds = negative_prompt_embeds[:, : prompt_embeds.shape[1]] negative_attention_mask = negative_attention_mask[:, : prompt_embeds.shape[1]] negative_prompt_embeds = negative_prompt_embeds * negative_attention_mask.unsqueeze(2) else: negative_prompt_embeds = torch.zeros_like(prompt_embeds) negative_attention_mask = torch.zeros_like(attention_mask) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) if negative_prompt_embeds.shape != prompt_embeds.shape: negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) negative_attention_mask = negative_attention_mask.repeat(num_images_per_prompt, 1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes else: negative_prompt_embeds = None negative_attention_mask = None return prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) batch_size = batch_size * num_images_per_prompt if image.shape[1] == 4: init_latents = image else: if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(generator, list): init_latents = [ self.movq.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) ] init_latents = torch.cat(init_latents, dim=0) else: init_latents = self.movq.encode(image).latent_dist.sample(generator) init_latents = self.movq.config.scaling_factor * init_latents init_latents = torch.cat([init_latents], dim=0) shape = init_latents.shape noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # get latents init_latents = self.scheduler.add_noise(init_latents, noise, timestep) latents = init_latents return latents # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, attention_mask=None, negative_attention_mask=None, ): if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if negative_prompt_embeds is not None and negative_attention_mask is None: raise ValueError("Please provide `negative_attention_mask` along with `negative_prompt_embeds`") if negative_prompt_embeds is not None and negative_attention_mask is not None: if negative_prompt_embeds.shape[:2] != negative_attention_mask.shape: raise ValueError( "`negative_prompt_embeds` and `negative_attention_mask` must have the same batch_size and token length when passed directly, but" f" got: `negative_prompt_embeds` {negative_prompt_embeds.shape[:2]} != `negative_attention_mask`" f" {negative_attention_mask.shape}." ) if prompt_embeds is not None and attention_mask is None: raise ValueError("Please provide `attention_mask` along with `prompt_embeds`") if prompt_embeds is not None and attention_mask is not None: if prompt_embeds.shape[:2] != attention_mask.shape: raise ValueError( "`prompt_embeds` and `attention_mask` must have the same batch_size and token length when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape[:2]} != `attention_mask`" f" {attention_mask.shape}." ) @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]] = None, strength: float = 0.3, num_inference_steps: int = 25, guidance_scale: float = 3.0, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, negative_attention_mask: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. strength (`float`, *optional*, defaults to 0.8): Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a starting point and more noise is added the higher the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 essentially ignores `image`. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 3.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask. Must provide if passing `prompt_embeds` directly. negative_attention_mask (`torch.Tensor`, *optional*): Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` """ callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None) if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) cut_context = True # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, callback_on_step_end_tensor_inputs, attention_mask, negative_attention_mask, ) self._guidance_scale = guidance_scale if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 3. Encode input prompt prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask = self.encode_prompt( prompt, self.do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt, device=device, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, _cut_context=cut_context, attention_mask=attention_mask, negative_attention_mask=negative_attention_mask, ) if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) attention_mask = torch.cat([negative_attention_mask, attention_mask]).bool() if not isinstance(image, list): image = [image] if not all(isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image): raise ValueError( f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) image = torch.cat([prepare_image(i) for i in image], dim=0) image = image.to(dtype=prompt_embeds.dtype, device=device) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) # 5. Prepare latents latents = self.movq.encode(image)["latents"] latents = latents.repeat_interleave(num_images_per_prompt, dim=0) latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) latents = self.prepare_latents( latents, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator ) if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None: self.text_encoder_offload_hook.offload() # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, encoder_attention_mask=attention_mask, )[0] if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = (guidance_scale + 1.0) * noise_pred_text - guidance_scale * noise_pred_uncond # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, generator=generator, ).prev_sample if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) attention_mask = callback_outputs.pop("attention_mask", attention_mask) negative_attention_mask = callback_outputs.pop("negative_attention_mask", negative_attention_mask) if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() # post-processing if output_type not in ["pt", "np", "pil", "latent"]: raise ValueError( f"Only the output types `pt`, `pil`, `np` and `latent` are supported not output_type={output_type}" ) if not output_type == "latent": image = self.movq.decode(latents, force_not_quantize=True)["sample"] if output_type in ["np", "pil"]: image = image * 0.5 + 0.5 image = image.clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).float().numpy() if output_type == "pil": image = self.numpy_to_pil(image) else: image = latents self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image)
class_definition
2,177
31,027
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py
null
277
class StableDiffusionImageVariationPipeline(DiffusionPipeline, StableDiffusionMixin): r""" Pipeline to generate image variations from an input image using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. image_encoder ([`~transformers.CLIPVisionModelWithProjection`]): Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ # TODO: feature_extractor is required to encode images (if they are in PIL format), # we should give a descriptive message if the pipeline doesn't have one. _optional_components = ["safety_checker"] model_cpu_offload_seq = "image_encoder->unet->vae" _exclude_from_cpu_offload = ["safety_checker"] def __init__( self, vae: AutoencoderKL, image_encoder: CLIPVisionModelWithProjection, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__() if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) is_unet_version_less_0_9_0 = ( unet is not None and hasattr(unet.config, "_diffusers_version") and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse("0.9.0.dev0") ) is_unet_sample_size_less_64 = ( unet is not None and hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 ) if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5" " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(unet.config) new_config["sample_size"] = 64 unet._internal_dict = FrozenDict(new_config) self.register_modules( vae=vae, image_encoder=image_encoder, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): dtype = next(self.image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = self.feature_extractor(images=image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) image_embeddings = self.image_encoder(image).image_embeds image_embeddings = image_embeddings.unsqueeze(1) # duplicate image embeddings for each generation per prompt, using mps friendly method bs_embed, seq_len, _ = image_embeddings.shape image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) if do_classifier_free_guidance: negative_prompt_embeds = torch.zeros_like(image_embeddings) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) return image_embeddings # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs(self, image, height, width, callback_steps): if ( not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list) ): raise ValueError( "`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" f" {type(image)}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @torch.no_grad() def __call__( self, image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor], height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, ): r""" The call function to the pipeline for generation. Args: image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.Tensor`): Image or images to guide image generation. If you provide a tensor, it needs to be compatible with [`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json). height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter is modulated by `strength`. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. Examples: ```py from diffusers import StableDiffusionImageVariationPipeline from PIL import Image from io import BytesIO import requests pipe = StableDiffusionImageVariationPipeline.from_pretrained( "lambdalabs/sd-image-variations-diffusers", revision="v2.0" ) pipe = pipe.to("cuda") url = "https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200" response = requests.get(url) image = Image.open(BytesIO(response.content)).convert("RGB") out = pipe(image, num_images_per_prompt=3, guidance_scale=15) out["images"][0].save("result.jpg") ``` """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs(image, height, width, callback_steps) # 2. Define call parameters if isinstance(image, PIL.Image.Image): batch_size = 1 elif isinstance(image, list): batch_size = len(image) else: batch_size = image.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input image image_embeddings = self._encode_image(image, device, num_images_per_prompt, do_classifier_free_guidance) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, image_embeddings.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=image_embeddings).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() self.maybe_free_model_hooks() if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, image_embeddings.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
class_definition
1,499
22,699
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py
null
278
class FlaxStableDiffusionPipeline(FlaxDiffusionPipeline): r""" Flax-based pipeline for text-to-image generation using Stable Diffusion. This model inherits from [`FlaxDiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: vae ([`FlaxAutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.FlaxCLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`FlaxUNet2DConditionModel`]): A `FlaxUNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`FlaxDDIMScheduler`], [`FlaxLMSDiscreteScheduler`], [`FlaxPNDMScheduler`], or [`FlaxDPMSolverMultistepScheduler`]. safety_checker ([`FlaxStableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ def __init__( self, vae: FlaxAutoencoderKL, text_encoder: FlaxCLIPTextModel, tokenizer: CLIPTokenizer, unet: FlaxUNet2DConditionModel, scheduler: Union[ FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler ], safety_checker: FlaxStableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, dtype: jnp.dtype = jnp.float32, ): super().__init__() self.dtype = dtype if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) is_unet_version_less_0_9_0 = ( unet is not None and hasattr(unet.config, "_diffusers_version") and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse("0.9.0.dev0") ) is_unet_sample_size_less_64 = ( unet is not None and hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 ) if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5" " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(unet.config) new_config["sample_size"] = 64 unet._internal_dict = FrozenDict(new_config) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 def prepare_inputs(self, prompt: Union[str, List[str]]): if not isinstance(prompt, (str, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") text_input = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="np", ) return text_input.input_ids def _get_has_nsfw_concepts(self, features, params): has_nsfw_concepts = self.safety_checker(features, params) return has_nsfw_concepts def _run_safety_checker(self, images, safety_model_params, jit=False): # safety_model_params should already be replicated when jit is True pil_images = [Image.fromarray(image) for image in images] features = self.feature_extractor(pil_images, return_tensors="np").pixel_values if jit: features = shard(features) has_nsfw_concepts = _p_get_has_nsfw_concepts(self, features, safety_model_params) has_nsfw_concepts = unshard(has_nsfw_concepts) safety_model_params = unreplicate(safety_model_params) else: has_nsfw_concepts = self._get_has_nsfw_concepts(features, safety_model_params) images_was_copied = False for idx, has_nsfw_concept in enumerate(has_nsfw_concepts): if has_nsfw_concept: if not images_was_copied: images_was_copied = True images = images.copy() images[idx] = np.zeros(images[idx].shape, dtype=np.uint8) # black image if any(has_nsfw_concepts): warnings.warn( "Potential NSFW content was detected in one or more images. A black image will be returned" " instead. Try again with a different prompt and/or seed." ) return images, has_nsfw_concepts def _generate( self, prompt_ids: jnp.array, params: Union[Dict, FrozenDict], prng_seed: jax.Array, num_inference_steps: int, height: int, width: int, guidance_scale: float, latents: Optional[jnp.ndarray] = None, neg_prompt_ids: Optional[jnp.ndarray] = None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") # get prompt text embeddings prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0] # TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0` # implement this conditional `do_classifier_free_guidance = guidance_scale > 1.0` batch_size = prompt_ids.shape[0] max_length = prompt_ids.shape[-1] if neg_prompt_ids is None: uncond_input = self.tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np" ).input_ids else: uncond_input = neg_prompt_ids negative_prompt_embeds = self.text_encoder(uncond_input, params=params["text_encoder"])[0] context = jnp.concatenate([negative_prompt_embeds, prompt_embeds]) # Ensure model output will be `float32` before going into the scheduler guidance_scale = jnp.array([guidance_scale], dtype=jnp.float32) latents_shape = ( batch_size, self.unet.config.in_channels, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if latents is None: latents = jax.random.normal(prng_seed, shape=latents_shape, dtype=jnp.float32) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") def loop_body(step, args): latents, scheduler_state = args # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes latents_input = jnp.concatenate([latents] * 2) t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step] timestep = jnp.broadcast_to(t, latents_input.shape[0]) latents_input = self.scheduler.scale_model_input(scheduler_state, latents_input, t) # predict the noise residual noise_pred = self.unet.apply( {"params": params["unet"]}, jnp.array(latents_input), jnp.array(timestep, dtype=jnp.int32), encoder_hidden_states=context, ).sample # perform guidance noise_pred_uncond, noise_prediction_text = jnp.split(noise_pred, 2, axis=0) noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents, scheduler_state = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple() return latents, scheduler_state scheduler_state = self.scheduler.set_timesteps( params["scheduler"], num_inference_steps=num_inference_steps, shape=latents.shape ) # scale the initial noise by the standard deviation required by the scheduler latents = latents * params["scheduler"].init_noise_sigma if DEBUG: # run with python for loop for i in range(num_inference_steps): latents, scheduler_state = loop_body(i, (latents, scheduler_state)) else: latents, _ = jax.lax.fori_loop(0, num_inference_steps, loop_body, (latents, scheduler_state)) # scale and decode the image latents with vae latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.apply({"params": params["vae"]}, latents, method=self.vae.decode).sample image = (image / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1) return image @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt_ids: jnp.array, params: Union[Dict, FrozenDict], prng_seed: jax.Array, num_inference_steps: int = 50, height: Optional[int] = None, width: Optional[int] = None, guidance_scale: Union[float, jnp.ndarray] = 7.5, latents: jnp.ndarray = None, neg_prompt_ids: jnp.ndarray = None, return_dict: bool = True, jit: bool = False, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. latents (`jnp.ndarray`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents array is generated by sampling using the supplied random `generator`. jit (`bool`, defaults to `False`): Whether to run `pmap` versions of the generation and safety scoring functions. <Tip warning={true}> This argument exists because `__call__` is not yet end-to-end pmap-able. It will be removed in a future release. </Tip> return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] instead of a plain tuple. Examples: Returns: [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor if isinstance(guidance_scale, float): # Convert to a tensor so each device gets a copy. Follow the prompt_ids for # shape information, as they may be sharded (when `jit` is `True`), or not. guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0]) if len(prompt_ids.shape) > 2: # Assume sharded guidance_scale = guidance_scale[:, None] if jit: images = _p_generate( self, prompt_ids, params, prng_seed, num_inference_steps, height, width, guidance_scale, latents, neg_prompt_ids, ) else: images = self._generate( prompt_ids, params, prng_seed, num_inference_steps, height, width, guidance_scale, latents, neg_prompt_ids, ) if self.safety_checker is not None: safety_params = params["safety_checker"] images_uint8_casted = (images * 255).round().astype("uint8") num_devices, batch_size = images.shape[:2] images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3) images_uint8_casted, has_nsfw_concept = self._run_safety_checker(images_uint8_casted, safety_params, jit) images = np.asarray(images).copy() # block images if any(has_nsfw_concept): for i, is_nsfw in enumerate(has_nsfw_concept): if is_nsfw: images[i, 0] = np.asarray(images_uint8_casted[i]) images = images.reshape(num_devices, batch_size, height, width, 3) else: images = np.asarray(images) has_nsfw_concept = False if not return_dict: return (images, has_nsfw_concept) return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept)
class_definition
2,831
19,679
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py
null
279
class OnnxStableDiffusionPipeline(DiffusionPipeline): vae_encoder: OnnxRuntimeModel vae_decoder: OnnxRuntimeModel text_encoder: OnnxRuntimeModel tokenizer: CLIPTokenizer unet: OnnxRuntimeModel scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] safety_checker: OnnxRuntimeModel feature_extractor: CLIPImageProcessor _optional_components = ["safety_checker", "feature_extractor"] _is_onnx = True def __init__( self, vae_encoder: OnnxRuntimeModel, vae_decoder: OnnxRuntimeModel, text_encoder: OnnxRuntimeModel, tokenizer: CLIPTokenizer, unet: OnnxRuntimeModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: OnnxRuntimeModel, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__() if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config) if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae_encoder=vae_encoder, vae_decoder=vae_decoder, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.register_to_config(requires_safety_checker=requires_safety_checker) def _encode_prompt( self, prompt: Union[str, List[str]], num_images_per_prompt: Optional[int], do_classifier_free_guidance: bool, negative_prompt: Optional[str], prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`): prompt to be encoded num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`np.ndarray`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`np.ndarray`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. """ if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="np", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids if not np.array_equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0] prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] * batch_size elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="np", ) negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0] if do_classifier_free_guidance: negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds]) return prompt_embeds def check_inputs( self, prompt: Union[str, List[str]], height: Optional[int], width: Optional[int], callback_steps: int, negative_prompt: Optional[str] = None, prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) def __call__( self, prompt: Union[str, List[str]] = None, height: Optional[int] = 512, width: Optional[int] = 512, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: Optional[float] = 0.0, generator: Optional[np.random.RandomState] = None, latents: Optional[np.ndarray] = None, prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, np.ndarray], None]] = None, callback_steps: int = 1, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. image (`PIL.Image.Image` or List[`PIL.Image.Image`] or `torch.Tensor`): `Image`, or tensor representing an image batch which will be upscaled. * num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`np.random.RandomState`, *optional*): One or a list of [numpy generator(s)](TODO) to make generation deterministic. latents (`np.ndarray`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`np.ndarray`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`np.ndarray`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # check inputs. Raise error if not correct self.check_inputs( prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds ) # define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if generator is None: generator = np.random # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 prompt_embeds = self._encode_prompt( prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) # get the initial random noise unless the user supplied it latents_dtype = prompt_embeds.dtype latents_shape = (batch_size * num_images_per_prompt, 4, height // 8, width // 8) if latents is None: latents = generator.randn(*latents_shape).astype(latents_dtype) elif latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") # set timesteps self.scheduler.set_timesteps(num_inference_steps) latents = latents * np.float64(self.scheduler.init_noise_sigma) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta timestep_dtype = next( (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)" ) timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t) latent_model_input = latent_model_input.cpu().numpy() # predict the noise residual timestep = np.array([t], dtype=timestep_dtype) noise_pred = self.unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds) noise_pred = noise_pred[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 scheduler_output = self.scheduler.step( torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs ) latents = scheduler_output.prev_sample.numpy() # call the callback, if provided if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) latents = 1 / 0.18215 * latents # image = self.vae_decoder(latent_sample=latents)[0] # it seems likes there is a strange result for using half-precision vae decoder if batchsize>1 image = np.concatenate( [self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])] ) image = np.clip(image / 2 + 0.5, 0, 1) image = image.transpose((0, 2, 3, 1)) if self.safety_checker is not None: safety_checker_input = self.feature_extractor( self.numpy_to_pil(image), return_tensors="np" ).pixel_values.astype(image.dtype) images, has_nsfw_concept = [], [] for i in range(image.shape[0]): image_i, has_nsfw_concept_i = self.safety_checker( clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1] ) images.append(image_i) has_nsfw_concept.append(has_nsfw_concept_i[0]) image = np.concatenate(images) else: has_nsfw_concept = None if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
class_definition
1,120
23,328
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py
null
280
class StableDiffusionOnnxPipeline(OnnxStableDiffusionPipeline): def __init__( self, vae_encoder: OnnxRuntimeModel, vae_decoder: OnnxRuntimeModel, text_encoder: OnnxRuntimeModel, tokenizer: CLIPTokenizer, unet: OnnxRuntimeModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: OnnxRuntimeModel, feature_extractor: CLIPImageProcessor, ): deprecation_message = "Please use `OnnxStableDiffusionPipeline` instead of `StableDiffusionOnnxPipeline`." deprecate("StableDiffusionOnnxPipeline", "1.0.0", deprecation_message) super().__init__( vae_encoder=vae_encoder, vae_decoder=vae_decoder, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, )
class_definition
23,331
24,308
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py
null
281
class StableUnCLIPImageNormalizer(ModelMixin, ConfigMixin): """ This class is used to hold the mean and standard deviation of the CLIP embedder used in stable unCLIP. It is used to normalize the image embeddings before the noise is applied and un-normalize the noised image embeddings. """ @register_to_config def __init__( self, embedding_dim: int = 768, ): super().__init__() self.mean = nn.Parameter(torch.zeros(1, embedding_dim)) self.std = nn.Parameter(torch.ones(1, embedding_dim)) def to( self, torch_device: Optional[Union[str, torch.device]] = None, torch_dtype: Optional[torch.dtype] = None, ): self.mean = nn.Parameter(self.mean.to(torch_device).to(torch_dtype)) self.std = nn.Parameter(self.std.to(torch_device).to(torch_dtype)) return self def scale(self, embeds): embeds = (embeds - self.mean) * 1.0 / self.std return embeds def unscale(self, embeds): embeds = (embeds * self.std) + self.mean return embeds
class_definition
795
1,889
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py
null
282
class FlaxStableDiffusionInpaintPipeline(FlaxDiffusionPipeline): r""" Flax-based pipeline for text-guided image inpainting using Stable Diffusion. <Tip warning={true}> 🧪 This is an experimental feature! </Tip> This model inherits from [`FlaxDiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: vae ([`FlaxAutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.FlaxCLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`FlaxUNet2DConditionModel`]): A `FlaxUNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`FlaxDDIMScheduler`], [`FlaxLMSDiscreteScheduler`], [`FlaxPNDMScheduler`], or [`FlaxDPMSolverMultistepScheduler`]. safety_checker ([`FlaxStableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ def __init__( self, vae: FlaxAutoencoderKL, text_encoder: FlaxCLIPTextModel, tokenizer: CLIPTokenizer, unet: FlaxUNet2DConditionModel, scheduler: Union[ FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler ], safety_checker: FlaxStableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, dtype: jnp.dtype = jnp.float32, ): super().__init__() self.dtype = dtype if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) is_unet_version_less_0_9_0 = ( unet is not None and hasattr(unet.config, "_diffusers_version") and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse("0.9.0.dev0") ) is_unet_sample_size_less_64 = ( unet is not None and hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 ) if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5" " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(unet.config) new_config["sample_size"] = 64 unet._internal_dict = FrozenDict(new_config) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 def prepare_inputs( self, prompt: Union[str, List[str]], image: Union[Image.Image, List[Image.Image]], mask: Union[Image.Image, List[Image.Image]], ): if not isinstance(prompt, (str, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if not isinstance(image, (Image.Image, list)): raise ValueError(f"image has to be of type `PIL.Image.Image` or list but is {type(image)}") if isinstance(image, Image.Image): image = [image] if not isinstance(mask, (Image.Image, list)): raise ValueError(f"image has to be of type `PIL.Image.Image` or list but is {type(image)}") if isinstance(mask, Image.Image): mask = [mask] processed_images = jnp.concatenate([preprocess_image(img, jnp.float32) for img in image]) processed_masks = jnp.concatenate([preprocess_mask(m, jnp.float32) for m in mask]) # processed_masks[processed_masks < 0.5] = 0 processed_masks = processed_masks.at[processed_masks < 0.5].set(0) # processed_masks[processed_masks >= 0.5] = 1 processed_masks = processed_masks.at[processed_masks >= 0.5].set(1) processed_masked_images = processed_images * (processed_masks < 0.5) text_input = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="np", ) return text_input.input_ids, processed_masked_images, processed_masks def _get_has_nsfw_concepts(self, features, params): has_nsfw_concepts = self.safety_checker(features, params) return has_nsfw_concepts def _run_safety_checker(self, images, safety_model_params, jit=False): # safety_model_params should already be replicated when jit is True pil_images = [Image.fromarray(image) for image in images] features = self.feature_extractor(pil_images, return_tensors="np").pixel_values if jit: features = shard(features) has_nsfw_concepts = _p_get_has_nsfw_concepts(self, features, safety_model_params) has_nsfw_concepts = unshard(has_nsfw_concepts) safety_model_params = unreplicate(safety_model_params) else: has_nsfw_concepts = self._get_has_nsfw_concepts(features, safety_model_params) images_was_copied = False for idx, has_nsfw_concept in enumerate(has_nsfw_concepts): if has_nsfw_concept: if not images_was_copied: images_was_copied = True images = images.copy() images[idx] = np.zeros(images[idx].shape, dtype=np.uint8) # black image if any(has_nsfw_concepts): warnings.warn( "Potential NSFW content was detected in one or more images. A black image will be returned" " instead. Try again with a different prompt and/or seed." ) return images, has_nsfw_concepts def _generate( self, prompt_ids: jnp.ndarray, mask: jnp.ndarray, masked_image: jnp.ndarray, params: Union[Dict, FrozenDict], prng_seed: jax.Array, num_inference_steps: int, height: int, width: int, guidance_scale: float, latents: Optional[jnp.ndarray] = None, neg_prompt_ids: Optional[jnp.ndarray] = None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") # get prompt text embeddings prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0] # TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0` # implement this conditional `do_classifier_free_guidance = guidance_scale > 1.0` batch_size = prompt_ids.shape[0] max_length = prompt_ids.shape[-1] if neg_prompt_ids is None: uncond_input = self.tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np" ).input_ids else: uncond_input = neg_prompt_ids negative_prompt_embeds = self.text_encoder(uncond_input, params=params["text_encoder"])[0] context = jnp.concatenate([negative_prompt_embeds, prompt_embeds]) latents_shape = ( batch_size, self.vae.config.latent_channels, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if latents is None: latents = jax.random.normal(prng_seed, shape=latents_shape, dtype=self.dtype) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") prng_seed, mask_prng_seed = jax.random.split(prng_seed) masked_image_latent_dist = self.vae.apply( {"params": params["vae"]}, masked_image, method=self.vae.encode ).latent_dist masked_image_latents = masked_image_latent_dist.sample(key=mask_prng_seed).transpose((0, 3, 1, 2)) masked_image_latents = self.vae.config.scaling_factor * masked_image_latents del mask_prng_seed mask = jax.image.resize(mask, (*mask.shape[:-2], *masked_image_latents.shape[-2:]), method="nearest") # 8. Check that sizes of mask, masked image and latents match num_channels_latents = self.vae.config.latent_channels num_channels_mask = mask.shape[1] num_channels_masked_image = masked_image_latents.shape[1] if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: raise ValueError( f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" " `pipeline.unet` or your `mask_image` or `image` input." ) def loop_body(step, args): latents, mask, masked_image_latents, scheduler_state = args # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes latents_input = jnp.concatenate([latents] * 2) mask_input = jnp.concatenate([mask] * 2) masked_image_latents_input = jnp.concatenate([masked_image_latents] * 2) t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step] timestep = jnp.broadcast_to(t, latents_input.shape[0]) latents_input = self.scheduler.scale_model_input(scheduler_state, latents_input, t) # concat latents, mask, masked_image_latents in the channel dimension latents_input = jnp.concatenate([latents_input, mask_input, masked_image_latents_input], axis=1) # predict the noise residual noise_pred = self.unet.apply( {"params": params["unet"]}, jnp.array(latents_input), jnp.array(timestep, dtype=jnp.int32), encoder_hidden_states=context, ).sample # perform guidance noise_pred_uncond, noise_prediction_text = jnp.split(noise_pred, 2, axis=0) noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents, scheduler_state = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple() return latents, mask, masked_image_latents, scheduler_state scheduler_state = self.scheduler.set_timesteps( params["scheduler"], num_inference_steps=num_inference_steps, shape=latents.shape ) # scale the initial noise by the standard deviation required by the scheduler latents = latents * params["scheduler"].init_noise_sigma if DEBUG: # run with python for loop for i in range(num_inference_steps): latents, mask, masked_image_latents, scheduler_state = loop_body( i, (latents, mask, masked_image_latents, scheduler_state) ) else: latents, _, _, _ = jax.lax.fori_loop( 0, num_inference_steps, loop_body, (latents, mask, masked_image_latents, scheduler_state) ) # scale and decode the image latents with vae latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.apply({"params": params["vae"]}, latents, method=self.vae.decode).sample image = (image / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1) return image @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt_ids: jnp.ndarray, mask: jnp.ndarray, masked_image: jnp.ndarray, params: Union[Dict, FrozenDict], prng_seed: jax.Array, num_inference_steps: int = 50, height: Optional[int] = None, width: Optional[int] = None, guidance_scale: Union[float, jnp.ndarray] = 7.5, latents: jnp.ndarray = None, neg_prompt_ids: jnp.ndarray = None, return_dict: bool = True, jit: bool = False, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide image generation. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter is modulated by `strength`. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. latents (`jnp.ndarray`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents array is generated by sampling using the supplied random `generator`. jit (`bool`, defaults to `False`): Whether to run `pmap` versions of the generation and safety scoring functions. <Tip warning={true}> This argument exists because `__call__` is not yet end-to-end pmap-able. It will be removed in a future release. </Tip> return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] instead of a plain tuple. Examples: Returns: [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor masked_image = jax.image.resize(masked_image, (*masked_image.shape[:-2], height, width), method="bicubic") mask = jax.image.resize(mask, (*mask.shape[:-2], height, width), method="nearest") if isinstance(guidance_scale, float): # Convert to a tensor so each device gets a copy. Follow the prompt_ids for # shape information, as they may be sharded (when `jit` is `True`), or not. guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0]) if len(prompt_ids.shape) > 2: # Assume sharded guidance_scale = guidance_scale[:, None] if jit: images = _p_generate( self, prompt_ids, mask, masked_image, params, prng_seed, num_inference_steps, height, width, guidance_scale, latents, neg_prompt_ids, ) else: images = self._generate( prompt_ids, mask, masked_image, params, prng_seed, num_inference_steps, height, width, guidance_scale, latents, neg_prompt_ids, ) if self.safety_checker is not None: safety_params = params["safety_checker"] images_uint8_casted = (images * 255).round().astype("uint8") num_devices, batch_size = images.shape[:2] images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3) images_uint8_casted, has_nsfw_concept = self._run_safety_checker(images_uint8_casted, safety_params, jit) images = np.asarray(images) # block images if any(has_nsfw_concept): for i, is_nsfw in enumerate(has_nsfw_concept): if is_nsfw: images[i] = np.asarray(images_uint8_casted[i]) images = images.reshape(num_devices, batch_size, height, width, 3) else: images = np.asarray(images) has_nsfw_concept = False if not return_dict: return (images, has_nsfw_concept) return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept)
class_definition
3,917
24,356
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py
null
283
class FlaxStableDiffusionSafetyCheckerModule(nn.Module): config: CLIPConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.vision_model = FlaxCLIPVisionModule(self.config.vision_config) self.visual_projection = nn.Dense(self.config.projection_dim, use_bias=False, dtype=self.dtype) self.concept_embeds = self.param("concept_embeds", jax.nn.initializers.ones, (17, self.config.projection_dim)) self.special_care_embeds = self.param( "special_care_embeds", jax.nn.initializers.ones, (3, self.config.projection_dim) ) self.concept_embeds_weights = self.param("concept_embeds_weights", jax.nn.initializers.ones, (17,)) self.special_care_embeds_weights = self.param("special_care_embeds_weights", jax.nn.initializers.ones, (3,)) def __call__(self, clip_input): pooled_output = self.vision_model(clip_input)[1] image_embeds = self.visual_projection(pooled_output) special_cos_dist = jax_cosine_distance(image_embeds, self.special_care_embeds) cos_dist = jax_cosine_distance(image_embeds, self.concept_embeds) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs adjustment = 0.0 special_scores = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment special_scores = jnp.round(special_scores, 3) is_special_care = jnp.any(special_scores > 0, axis=1, keepdims=True) # Use a lower threshold if an image has any special care concept special_adjustment = is_special_care * 0.01 concept_scores = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment concept_scores = jnp.round(concept_scores, 3) has_nsfw_concepts = jnp.any(concept_scores > 0, axis=1) return has_nsfw_concepts
class_definition
1,172
3,080
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/safety_checker_flax.py
null
284
class FlaxStableDiffusionSafetyChecker(FlaxPreTrainedModel): config_class = CLIPConfig main_input_name = "clip_input" module_class = FlaxStableDiffusionSafetyCheckerModule def __init__( self, config: CLIPConfig, input_shape: Optional[Tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): if input_shape is None: input_shape = (1, 224, 224, 3) module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.Array, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensor clip_input = jax.random.normal(rng, input_shape) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, clip_input)["params"] return random_params def __call__( self, clip_input, params: dict = None, ): clip_input = jnp.transpose(clip_input, (0, 2, 3, 1)) return self.module.apply( {"params": params or self.params}, jnp.array(clip_input, dtype=jnp.float32), rngs={}, )
class_definition
3,083
4,475
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/safety_checker_flax.py
null
285
class StableDiffusionSafetyChecker(PreTrainedModel): config_class = CLIPConfig main_input_name = "clip_input" _no_split_modules = ["CLIPEncoderLayer"] def __init__(self, config: CLIPConfig): super().__init__(config) self.vision_model = CLIPVisionModel(config.vision_config) self.visual_projection = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=False) self.concept_embeds = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=False) self.special_care_embeds = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=False) self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False) self.special_care_embeds_weights = nn.Parameter(torch.ones(3), requires_grad=False) @torch.no_grad() def forward(self, clip_input, images): pooled_output = self.vision_model(clip_input)[1] # pooled_output image_embeds = self.visual_projection(pooled_output) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().float().numpy() cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy() result = [] batch_size = image_embeds.shape[0] for i in range(batch_size): result_img = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images adjustment = 0.0 for concept_idx in range(len(special_cos_dist[0])): concept_cos = special_cos_dist[i][concept_idx] concept_threshold = self.special_care_embeds_weights[concept_idx].item() result_img["special_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]}) adjustment = 0.01 for concept_idx in range(len(cos_dist[0])): concept_cos = cos_dist[i][concept_idx] concept_threshold = self.concept_embeds_weights[concept_idx].item() result_img["concept_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(concept_idx) result.append(result_img) has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result] for idx, has_nsfw_concept in enumerate(has_nsfw_concepts): if has_nsfw_concept: if torch.is_tensor(images) or torch.is_tensor(images[0]): images[idx] = torch.zeros_like(images[idx]) # black image else: images[idx] = np.zeros(images[idx].shape) # black image if any(has_nsfw_concepts): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) return images, has_nsfw_concepts @torch.no_grad() def forward_onnx(self, clip_input: torch.Tensor, images: torch.Tensor): pooled_output = self.vision_model(clip_input)[1] # pooled_output image_embeds = self.visual_projection(pooled_output) special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds) cos_dist = cosine_distance(image_embeds, self.concept_embeds) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images adjustment = 0.0 special_scores = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) special_care = torch.any(special_scores > 0, dim=1) special_adjustment = special_care * 0.01 special_adjustment = special_adjustment.unsqueeze(1).expand(-1, cos_dist.shape[1]) concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) has_nsfw_concepts = torch.any(concept_scores > 0, dim=1) images[has_nsfw_concepts] = 0.0 # black image return images, has_nsfw_concepts
class_definition
1,060
5,758
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/safety_checker.py
null
286
class CLIPImageProjection(ModelMixin, ConfigMixin): @register_to_config def __init__(self, hidden_size: int = 768): super().__init__() self.hidden_size = hidden_size self.project = nn.Linear(self.hidden_size, self.hidden_size, bias=False) def forward(self, x): return self.project(x)
class_definition
765
1,093
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/clip_image_project_model.py
null
287
class FlaxStableDiffusionImg2ImgPipeline(FlaxDiffusionPipeline): r""" Flax-based pipeline for text-guided image-to-image generation using Stable Diffusion. This model inherits from [`FlaxDiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: vae ([`FlaxAutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.FlaxCLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`FlaxUNet2DConditionModel`]): A `FlaxUNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`FlaxDDIMScheduler`], [`FlaxLMSDiscreteScheduler`], [`FlaxPNDMScheduler`], or [`FlaxDPMSolverMultistepScheduler`]. safety_checker ([`FlaxStableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ def __init__( self, vae: FlaxAutoencoderKL, text_encoder: FlaxCLIPTextModel, tokenizer: CLIPTokenizer, unet: FlaxUNet2DConditionModel, scheduler: Union[ FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler ], safety_checker: FlaxStableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, dtype: jnp.dtype = jnp.float32, ): super().__init__() self.dtype = dtype if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 def prepare_inputs(self, prompt: Union[str, List[str]], image: Union[Image.Image, List[Image.Image]]): if not isinstance(prompt, (str, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if not isinstance(image, (Image.Image, list)): raise ValueError(f"image has to be of type `PIL.Image.Image` or list but is {type(image)}") if isinstance(image, Image.Image): image = [image] processed_images = jnp.concatenate([preprocess(img, jnp.float32) for img in image]) text_input = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="np", ) return text_input.input_ids, processed_images def _get_has_nsfw_concepts(self, features, params): has_nsfw_concepts = self.safety_checker(features, params) return has_nsfw_concepts def _run_safety_checker(self, images, safety_model_params, jit=False): # safety_model_params should already be replicated when jit is True pil_images = [Image.fromarray(image) for image in images] features = self.feature_extractor(pil_images, return_tensors="np").pixel_values if jit: features = shard(features) has_nsfw_concepts = _p_get_has_nsfw_concepts(self, features, safety_model_params) has_nsfw_concepts = unshard(has_nsfw_concepts) safety_model_params = unreplicate(safety_model_params) else: has_nsfw_concepts = self._get_has_nsfw_concepts(features, safety_model_params) images_was_copied = False for idx, has_nsfw_concept in enumerate(has_nsfw_concepts): if has_nsfw_concept: if not images_was_copied: images_was_copied = True images = images.copy() images[idx] = np.zeros(images[idx].shape, dtype=np.uint8) # black image if any(has_nsfw_concepts): warnings.warn( "Potential NSFW content was detected in one or more images. A black image will be returned" " instead. Try again with a different prompt and/or seed." ) return images, has_nsfw_concepts def get_timestep_start(self, num_inference_steps, strength): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) return t_start def _generate( self, prompt_ids: jnp.ndarray, image: jnp.ndarray, params: Union[Dict, FrozenDict], prng_seed: jax.Array, start_timestep: int, num_inference_steps: int, height: int, width: int, guidance_scale: float, noise: Optional[jnp.ndarray] = None, neg_prompt_ids: Optional[jnp.ndarray] = None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") # get prompt text embeddings prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0] # TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0` # implement this conditional `do_classifier_free_guidance = guidance_scale > 1.0` batch_size = prompt_ids.shape[0] max_length = prompt_ids.shape[-1] if neg_prompt_ids is None: uncond_input = self.tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np" ).input_ids else: uncond_input = neg_prompt_ids negative_prompt_embeds = self.text_encoder(uncond_input, params=params["text_encoder"])[0] context = jnp.concatenate([negative_prompt_embeds, prompt_embeds]) latents_shape = ( batch_size, self.unet.config.in_channels, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if noise is None: noise = jax.random.normal(prng_seed, shape=latents_shape, dtype=jnp.float32) else: if noise.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {noise.shape}, expected {latents_shape}") # Create init_latents init_latent_dist = self.vae.apply({"params": params["vae"]}, image, method=self.vae.encode).latent_dist init_latents = init_latent_dist.sample(key=prng_seed).transpose((0, 3, 1, 2)) init_latents = self.vae.config.scaling_factor * init_latents def loop_body(step, args): latents, scheduler_state = args # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes latents_input = jnp.concatenate([latents] * 2) t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step] timestep = jnp.broadcast_to(t, latents_input.shape[0]) latents_input = self.scheduler.scale_model_input(scheduler_state, latents_input, t) # predict the noise residual noise_pred = self.unet.apply( {"params": params["unet"]}, jnp.array(latents_input), jnp.array(timestep, dtype=jnp.int32), encoder_hidden_states=context, ).sample # perform guidance noise_pred_uncond, noise_prediction_text = jnp.split(noise_pred, 2, axis=0) noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents, scheduler_state = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple() return latents, scheduler_state scheduler_state = self.scheduler.set_timesteps( params["scheduler"], num_inference_steps=num_inference_steps, shape=latents_shape ) latent_timestep = scheduler_state.timesteps[start_timestep : start_timestep + 1].repeat(batch_size) latents = self.scheduler.add_noise(params["scheduler"], init_latents, noise, latent_timestep) # scale the initial noise by the standard deviation required by the scheduler latents = latents * params["scheduler"].init_noise_sigma if DEBUG: # run with python for loop for i in range(start_timestep, num_inference_steps): latents, scheduler_state = loop_body(i, (latents, scheduler_state)) else: latents, _ = jax.lax.fori_loop(start_timestep, num_inference_steps, loop_body, (latents, scheduler_state)) # scale and decode the image latents with vae latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.apply({"params": params["vae"]}, latents, method=self.vae.decode).sample image = (image / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1) return image @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt_ids: jnp.ndarray, image: jnp.ndarray, params: Union[Dict, FrozenDict], prng_seed: jax.Array, strength: float = 0.8, num_inference_steps: int = 50, height: Optional[int] = None, width: Optional[int] = None, guidance_scale: Union[float, jnp.ndarray] = 7.5, noise: jnp.ndarray = None, neg_prompt_ids: jnp.ndarray = None, return_dict: bool = True, jit: bool = False, ): r""" The call function to the pipeline for generation. Args: prompt_ids (`jnp.ndarray`): The prompt or prompts to guide image generation. image (`jnp.ndarray`): Array representing an image batch to be used as the starting point. params (`Dict` or `FrozenDict`): Dictionary containing the model parameters/weights. prng_seed (`jax.Array` or `jax.Array`): Array containing random number generator key. strength (`float`, *optional*, defaults to 0.8): Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a starting point and more noise is added the higher the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 essentially ignores `image`. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter is modulated by `strength`. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. noise (`jnp.ndarray`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. The array is generated by sampling using the supplied random `generator`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] instead of a plain tuple. jit (`bool`, defaults to `False`): Whether to run `pmap` versions of the generation and safety scoring functions. <Tip warning={true}> This argument exists because `__call__` is not yet end-to-end pmap-able. It will be removed in a future release. </Tip> Examples: Returns: [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor if isinstance(guidance_scale, float): # Convert to a tensor so each device gets a copy. Follow the prompt_ids for # shape information, as they may be sharded (when `jit` is `True`), or not. guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0]) if len(prompt_ids.shape) > 2: # Assume sharded guidance_scale = guidance_scale[:, None] start_timestep = self.get_timestep_start(num_inference_steps, strength) if jit: images = _p_generate( self, prompt_ids, image, params, prng_seed, start_timestep, num_inference_steps, height, width, guidance_scale, noise, neg_prompt_ids, ) else: images = self._generate( prompt_ids, image, params, prng_seed, start_timestep, num_inference_steps, height, width, guidance_scale, noise, neg_prompt_ids, ) if self.safety_checker is not None: safety_params = params["safety_checker"] images_uint8_casted = (images * 255).round().astype("uint8") num_devices, batch_size = images.shape[:2] images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3) images_uint8_casted, has_nsfw_concept = self._run_safety_checker(images_uint8_casted, safety_params, jit) images = np.asarray(images) # block images if any(has_nsfw_concept): for i, is_nsfw in enumerate(has_nsfw_concept): if is_nsfw: images[i] = np.asarray(images_uint8_casted[i]) images = images.reshape(num_devices, batch_size, height, width, 3) else: images = np.asarray(images) has_nsfw_concept = False if not return_dict: return (images, has_nsfw_concept) return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept)
class_definition
3,638
21,055
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py
null
288
class StableUnCLIPPipeline( DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin ): """ Pipeline for text-to-image generation using stable unCLIP. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights Args: prior_tokenizer ([`CLIPTokenizer`]): A [`CLIPTokenizer`]. prior_text_encoder ([`CLIPTextModelWithProjection`]): Frozen [`CLIPTextModelWithProjection`] text-encoder. prior ([`PriorTransformer`]): The canonical unCLIP prior to approximate the image embedding from the text embedding. prior_scheduler ([`KarrasDiffusionSchedulers`]): Scheduler used in the prior denoising process. image_normalizer ([`StableUnCLIPImageNormalizer`]): Used to normalize the predicted image embeddings before the noise is applied and un-normalize the image embeddings after the noise has been applied. image_noising_scheduler ([`KarrasDiffusionSchedulers`]): Noise schedule for adding noise to the predicted image embeddings. The amount of noise to add is determined by the `noise_level`. tokenizer ([`CLIPTokenizer`]): A [`CLIPTokenizer`]. text_encoder ([`CLIPTextModel`]): Frozen [`CLIPTextModel`] text-encoder. unet ([`UNet2DConditionModel`]): A [`UNet2DConditionModel`] to denoise the encoded image latents. scheduler ([`KarrasDiffusionSchedulers`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. """ _exclude_from_cpu_offload = ["prior", "image_normalizer"] model_cpu_offload_seq = "text_encoder->prior_text_encoder->unet->vae" # prior components prior_tokenizer: CLIPTokenizer prior_text_encoder: CLIPTextModelWithProjection prior: PriorTransformer prior_scheduler: KarrasDiffusionSchedulers # image noising components image_normalizer: StableUnCLIPImageNormalizer image_noising_scheduler: KarrasDiffusionSchedulers # regular denoising components tokenizer: CLIPTokenizer text_encoder: CLIPTextModel unet: UNet2DConditionModel scheduler: KarrasDiffusionSchedulers vae: AutoencoderKL def __init__( self, # prior components prior_tokenizer: CLIPTokenizer, prior_text_encoder: CLIPTextModelWithProjection, prior: PriorTransformer, prior_scheduler: KarrasDiffusionSchedulers, # image noising components image_normalizer: StableUnCLIPImageNormalizer, image_noising_scheduler: KarrasDiffusionSchedulers, # regular denoising components tokenizer: CLIPTokenizer, text_encoder: CLIPTextModelWithProjection, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, # vae vae: AutoencoderKL, ): super().__init__() self.register_modules( prior_tokenizer=prior_tokenizer, prior_text_encoder=prior_text_encoder, prior=prior, prior_scheduler=prior_scheduler, image_normalizer=image_normalizer, image_noising_scheduler=image_noising_scheduler, tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, vae=vae, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline._encode_prompt with _encode_prompt->_encode_prior_prompt, tokenizer->prior_tokenizer, text_encoder->prior_text_encoder def _encode_prior_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None, text_attention_mask: Optional[torch.Tensor] = None, ): if text_model_output is None: batch_size = len(prompt) if isinstance(prompt, list) else 1 # get prompt text embeddings text_inputs = self.prior_tokenizer( prompt, padding="max_length", max_length=self.prior_tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids text_mask = text_inputs.attention_mask.bool().to(device) untruncated_ids = self.prior_tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.prior_tokenizer.batch_decode( untruncated_ids[:, self.prior_tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.prior_tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.prior_tokenizer.model_max_length] prior_text_encoder_output = self.prior_text_encoder(text_input_ids.to(device)) prompt_embeds = prior_text_encoder_output.text_embeds text_enc_hid_states = prior_text_encoder_output.last_hidden_state else: batch_size = text_model_output[0].shape[0] prompt_embeds, text_enc_hid_states = text_model_output[0], text_model_output[1] text_mask = text_attention_mask prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) text_enc_hid_states = text_enc_hid_states.repeat_interleave(num_images_per_prompt, dim=0) text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) if do_classifier_free_guidance: uncond_tokens = [""] * batch_size uncond_input = self.prior_tokenizer( uncond_tokens, padding="max_length", max_length=self.prior_tokenizer.model_max_length, truncation=True, return_tensors="pt", ) uncond_text_mask = uncond_input.attention_mask.bool().to(device) negative_prompt_embeds_prior_text_encoder_output = self.prior_text_encoder( uncond_input.input_ids.to(device) ) negative_prompt_embeds = negative_prompt_embeds_prior_text_encoder_output.text_embeds uncond_text_enc_hid_states = negative_prompt_embeds_prior_text_encoder_output.last_hidden_state # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) seq_len = uncond_text_enc_hid_states.shape[1] uncond_text_enc_hid_states = uncond_text_enc_hid_states.repeat(1, num_images_per_prompt, 1) uncond_text_enc_hid_states = uncond_text_enc_hid_states.view( batch_size * num_images_per_prompt, seq_len, -1 ) uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) text_enc_hid_states = torch.cat([uncond_text_enc_hid_states, text_enc_hid_states]) text_mask = torch.cat([uncond_text_mask, text_mask]) return prompt_embeds, text_enc_hid_states, text_mask # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) prompt_embeds_tuple = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs, ) # concatenate for backwards comp prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) return prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer. prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs with prepare_extra_step_kwargs->prepare_prior_extra_step_kwargs, scheduler->prior_scheduler def prepare_prior_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the prior_scheduler step, since not all prior_schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other prior_schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.prior_scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the prior_scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.prior_scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, height, width, callback_steps, noise_level, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Please make sure to define only one of the two." ) if prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( "Provide either `negative_prompt` or `negative_prompt_embeds`. Cannot leave both `negative_prompt` and `negative_prompt_embeds` undefined." ) if prompt is not None and negative_prompt is not None: if type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps: raise ValueError( f"`noise_level` must be between 0 and {self.image_noising_scheduler.config.num_train_timesteps - 1}, inclusive." ) # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents def noise_image_embeddings( self, image_embeds: torch.Tensor, noise_level: int, noise: Optional[torch.Tensor] = None, generator: Optional[torch.Generator] = None, ): """ Add noise to the image embeddings. The amount of noise is controlled by a `noise_level` input. A higher `noise_level` increases the variance in the final un-noised images. The noise is applied in two ways: 1. A noise schedule is applied directly to the embeddings. 2. A vector of sinusoidal time embeddings are appended to the output. In both cases, the amount of noise is controlled by the same `noise_level`. The embeddings are normalized before the noise is applied and un-normalized after the noise is applied. """ if noise is None: noise = randn_tensor( image_embeds.shape, generator=generator, device=image_embeds.device, dtype=image_embeds.dtype ) noise_level = torch.tensor([noise_level] * image_embeds.shape[0], device=image_embeds.device) self.image_normalizer.to(image_embeds.device) image_embeds = self.image_normalizer.scale(image_embeds) image_embeds = self.image_noising_scheduler.add_noise(image_embeds, timesteps=noise_level, noise=noise) image_embeds = self.image_normalizer.unscale(image_embeds) noise_level = get_timestep_embedding( timesteps=noise_level, embedding_dim=image_embeds.shape[-1], flip_sin_to_cos=True, downscale_freq_shift=0 ) # `get_timestep_embeddings` does not contain any weights and will always return f32 tensors, # but we might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. noise_level = noise_level.to(image_embeds.dtype) image_embeds = torch.cat((image_embeds, noise_level), 1) return image_embeds @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, # regular denoising process args prompt: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 20, guidance_scale: float = 10.0, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[torch.Generator] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, noise_level: int = 0, # prior args prior_num_inference_steps: int = 25, prior_guidance_scale: float = 4.0, prior_latents: Optional[torch.Tensor] = None, clip_skip: Optional[int] = None, ): """ The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 20): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 10.0): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). noise_level (`int`, *optional*, defaults to `0`): The amount of noise to add to the image embeddings. A higher `noise_level` increases the variance in the final un-noised images. See [`StableUnCLIPPipeline.noise_image_embeddings`] for more details. prior_num_inference_steps (`int`, *optional*, defaults to 25): The number of denoising steps in the prior denoising process. More denoising steps usually lead to a higher quality image at the expense of slower inference. prior_guidance_scale (`float`, *optional*, defaults to 4.0): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. prior_latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image embedding generation in the prior denoising process. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~ pipeline_utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs( prompt=prompt, height=height, width=width, callback_steps=callback_steps, noise_level=noise_level, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] batch_size = batch_size * num_images_per_prompt device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. prior_do_classifier_free_guidance = prior_guidance_scale > 1.0 # 3. Encode input prompt prior_prompt_embeds, prior_text_encoder_hidden_states, prior_text_mask = self._encode_prior_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=prior_do_classifier_free_guidance, ) # 4. Prepare prior timesteps self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device) prior_timesteps_tensor = self.prior_scheduler.timesteps # 5. Prepare prior latent variables embedding_dim = self.prior.config.embedding_dim prior_latents = self.prepare_latents( (batch_size, embedding_dim), prior_prompt_embeds.dtype, device, generator, prior_latents, self.prior_scheduler, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline prior_extra_step_kwargs = self.prepare_prior_extra_step_kwargs(generator, eta) # 7. Prior denoising loop for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([prior_latents] * 2) if prior_do_classifier_free_guidance else prior_latents latent_model_input = self.prior_scheduler.scale_model_input(latent_model_input, t) predicted_image_embedding = self.prior( latent_model_input, timestep=t, proj_embedding=prior_prompt_embeds, encoder_hidden_states=prior_text_encoder_hidden_states, attention_mask=prior_text_mask, ).predicted_image_embedding if prior_do_classifier_free_guidance: predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2) predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * ( predicted_image_embedding_text - predicted_image_embedding_uncond ) prior_latents = self.prior_scheduler.step( predicted_image_embedding, timestep=t, sample=prior_latents, **prior_extra_step_kwargs, return_dict=False, )[0] if callback is not None and i % callback_steps == 0: callback(i, t, prior_latents) prior_latents = self.prior.post_process_latents(prior_latents) image_embeds = prior_latents # done prior # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 8. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 9. Prepare image embeddings image_embeds = self.noise_image_embeddings( image_embeds=image_embeds, noise_level=noise_level, generator=generator, ) if do_classifier_free_guidance: negative_prompt_embeds = torch.zeros_like(image_embeds) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes image_embeds = torch.cat([negative_prompt_embeds, image_embeds]) # 10. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 11. Prepare latent variables num_channels_latents = self.unet.config.in_channels shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) latents = self.prepare_latents( shape=shape, dtype=prompt_embeds.dtype, device=device, generator=generator, latents=latents, scheduler=self.scheduler, ) # 12. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 13. Denoising loop for i, t in enumerate(self.progress_bar(timesteps)): latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, class_labels=image_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] else: image = latents image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image)
class_definition
2,346
45,525
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py
null
289
class StableDiffusionPipelineOutput(BaseOutput): """ Output class for Stable Diffusion pipelines. Args: images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, num_channels)`. nsfw_content_detected (`List[bool]`) List indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content or `None` if safety checking could not be performed. """ images: Union[List[PIL.Image.Image], np.ndarray] nsfw_content_detected: Optional[List[bool]]
class_definition
177
828
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_output.py
null
290
class FlaxStableDiffusionPipelineOutput(BaseOutput): """ Output class for Flax-based Stable Diffusion pipelines. Args: images (`np.ndarray`): Denoised images of array shape of `(batch_size, height, width, num_channels)`. nsfw_content_detected (`List[bool]`): List indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content or `None` if safety checking could not be performed. """ images: np.ndarray nsfw_content_detected: List[bool]
class_definition
903
1,495
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_output.py
null
291
class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin): r""" Pipeline for text-guided depth-based image-to-image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. """ model_cpu_offload_seq = "text_encoder->unet->vae" _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "depth_mask"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, depth_estimator: DPTForDepthEstimation, feature_extractor: DPTImageProcessor, ): super().__init__() is_unet_version_less_0_9_0 = ( unet is not None and hasattr(unet.config, "_diffusers_version") and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse("0.9.0.dev0") ) is_unet_sample_size_less_64 = ( unet is not None and hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 ) if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5" " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(unet.config) new_config["sample_size"] = 64 unet._internal_dict = FrozenDict(new_config) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, depth_estimator=depth_estimator, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) prompt_embeds_tuple = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs, ) # concatenate for backwards comp prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) return prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer. prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, ): if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] if hasattr(self.scheduler, "set_begin_index"): self.scheduler.set_begin_index(t_start * self.scheduler.order) return timesteps, num_inference_steps - t_start # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) batch_size = batch_size * num_images_per_prompt if image.shape[1] == 4: init_latents = image else: if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(generator, list): if image.shape[0] < batch_size and batch_size % image.shape[0] == 0: image = torch.cat([image] * (batch_size // image.shape[0]), dim=0) elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0: raise ValueError( f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} " ) init_latents = [ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) for i in range(batch_size) ] init_latents = torch.cat(init_latents, dim=0) else: init_latents = retrieve_latents(self.vae.encode(image), generator=generator) init_latents = self.vae.config.scaling_factor * init_latents if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: # expand init_latents for batch_size deprecation_message = ( f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" " your script to pass as many initial images as text prompts to suppress this warning." ) deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) additional_image_per_prompt = batch_size // init_latents.shape[0] init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: raise ValueError( f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." ) else: init_latents = torch.cat([init_latents], dim=0) shape = init_latents.shape noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # get latents init_latents = self.scheduler.add_noise(init_latents, noise, timestep) latents = init_latents return latents def prepare_depth_map(self, image, depth_map, batch_size, do_classifier_free_guidance, dtype, device): if isinstance(image, PIL.Image.Image): image = [image] else: image = list(image) if isinstance(image[0], PIL.Image.Image): width, height = image[0].size elif isinstance(image[0], np.ndarray): width, height = image[0].shape[:-1] else: height, width = image[0].shape[-2:] if depth_map is None: pixel_values = self.feature_extractor(images=image, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device=device, dtype=dtype) # The DPT-Hybrid model uses batch-norm layers which are not compatible with fp16. # So we use `torch.autocast` here for half precision inference. if torch.backends.mps.is_available(): autocast_ctx = contextlib.nullcontext() logger.warning( "The DPT-Hybrid model uses batch-norm layers which are not compatible with fp16, but autocast is not yet supported on MPS." ) else: autocast_ctx = torch.autocast(device.type, dtype=dtype) with autocast_ctx: depth_map = self.depth_estimator(pixel_values).predicted_depth else: depth_map = depth_map.to(device=device, dtype=dtype) depth_map = torch.nn.functional.interpolate( depth_map.unsqueeze(1), size=(height // self.vae_scale_factor, width // self.vae_scale_factor), mode="bicubic", align_corners=False, ) depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0 depth_map = depth_map.to(dtype) # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method if depth_map.shape[0] < batch_size: repeat_by = batch_size // depth_map.shape[0] depth_map = depth_map.repeat(repeat_by, 1, 1, 1) depth_map = torch.cat([depth_map] * 2) if do_classifier_free_guidance else depth_map return depth_map @property def guidance_scale(self): return self._guidance_scale @property def clip_skip(self): return self._clip_skip # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def cross_attention_kwargs(self): return self._cross_attention_kwargs @property def num_timesteps(self): return self._num_timesteps @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, image: PipelineImageInput = None, depth_map: Optional[torch.Tensor] = None, strength: float = 0.8, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: Optional[float] = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: Optional[int] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image` or tensor representing an image batch to be used as the starting point. Can accept image latents as `image` only if `depth_map` is not `None`. depth_map (`torch.Tensor`, *optional*): Depth prediction to be used as additional conditioning for the image generation process. If not defined, it automatically predicts the depth with `self.depth_estimator`. strength (`float`, *optional*, defaults to 0.8): Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a starting point and more noise is added the higher the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 essentially ignores `image`. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter is modulated by `strength`. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: ```py >>> import torch >>> import requests >>> from PIL import Image >>> from diffusers import StableDiffusionDepth2ImgPipeline >>> pipe = StableDiffusionDepth2ImgPipeline.from_pretrained( ... "stabilityai/stable-diffusion-2-depth", ... torch_dtype=torch.float16, ... ) >>> pipe.to("cuda") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> init_image = Image.open(requests.get(url, stream=True).raw) >>> prompt = "two tigers" >>> n_prompt = "bad, deformed, ugly, bad anotomy" >>> image = pipe(prompt=prompt, image=init_image, negative_prompt=n_prompt, strength=0.7).images[0] ``` Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None) if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) # 1. Check inputs self.check_inputs( prompt, strength, callback_steps, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, ) self._guidance_scale = guidance_scale self._clip_skip = clip_skip self._cross_attention_kwargs = cross_attention_kwargs if image is None: raise ValueError("`image` input cannot be undefined.") # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 3. Encode input prompt text_encoder_lora_scale = ( self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None ) prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 4. Prepare depth mask depth_mask = self.prepare_depth_map( image, depth_map, batch_size * num_images_per_prompt, self.do_classifier_free_guidance, prompt_embeds.dtype, device, ) # 5. Preprocess image image = self.image_processor.preprocess(image) # 6. Set timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) # 7. Prepare latent variables latents = self.prepare_latents( image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator ) # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 9. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) latent_model_input = torch.cat([latent_model_input, depth_mask], dim=1) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=self.cross_attention_kwargs, return_dict=False, )[0] # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) depth_mask = callback_outputs.pop("depth_mask", depth_mask) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] else: image = latents image = self.image_processor.postprocess(image, output_type=output_type) self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image)
class_definition
3,486
44,488
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py
null
292
class StableDiffusionPipeline( DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin, ): """ Pipeline for text-to-image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] _exclude_from_cpu_offload = ["safety_checker"] _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection = None, requires_safety_checker: bool = True, ): super().__init__() if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config) if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) is_unet_version_less_0_9_0 = ( unet is not None and hasattr(unet.config, "_diffusers_version") and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse("0.9.0.dev0") ) self._is_unet_config_sample_size_int = unet is not None and isinstance(unet.config.sample_size, int) is_unet_sample_size_less_64 = ( unet is not None and hasattr(unet.config, "sample_size") and self._is_unet_config_sample_size_int and unet.config.sample_size < 64 ) if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5" " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(unet.config) new_config["sample_size"] = 64 unet._internal_dict = FrozenDict(new_config) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) prompt_embeds_tuple = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs, ) # concatenate for backwards comp prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) return prompt_embeds def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer. prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): dtype = next(self.image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = self.feature_extractor(image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) if output_hidden_states: image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_enc_hidden_states = self.image_encoder( torch.zeros_like(image), output_hidden_states=True ).hidden_states[-2] uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( num_images_per_prompt, dim=0 ) return image_enc_hidden_states, uncond_image_enc_hidden_states else: image_embeds = self.image_encoder(image).image_embeds image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_embeds = torch.zeros_like(image_embeds) return image_embeds, uncond_image_embeds def prepare_ip_adapter_image_embeds( self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance ): image_embeds = [] if do_classifier_free_guidance: negative_image_embeds = [] if ip_adapter_image_embeds is None: if not isinstance(ip_adapter_image, list): ip_adapter_image = [ip_adapter_image] if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): raise ValueError( f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." ) for single_ip_adapter_image, image_proj_layer in zip( ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers ): output_hidden_state = not isinstance(image_proj_layer, ImageProjection) single_image_embeds, single_negative_image_embeds = self.encode_image( single_ip_adapter_image, device, 1, output_hidden_state ) image_embeds.append(single_image_embeds[None, :]) if do_classifier_free_guidance: negative_image_embeds.append(single_negative_image_embeds[None, :]) else: for single_image_embeds in ip_adapter_image_embeds: if do_classifier_free_guidance: single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) negative_image_embeds.append(single_negative_image_embeds) image_embeds.append(single_image_embeds) ip_adapter_image_embeds = [] for i, single_image_embeds in enumerate(image_embeds): single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) if do_classifier_free_guidance: single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) single_image_embeds = single_image_embeds.to(device=device) ip_adapter_image_embeds.append(single_image_embeds) return ip_adapter_image_embeds def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if ip_adapter_image is not None and ip_adapter_image_embeds is not None: raise ValueError( "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." ) if ip_adapter_image_embeds is not None: if not isinstance(ip_adapter_image_embeds, list): raise ValueError( f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" ) elif ip_adapter_image_embeds[0].ndim not in [3, 4]: raise ValueError( f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" ) def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 ) -> torch.Tensor: """ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 Args: w (`torch.Tensor`): Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. embedding_dim (`int`, *optional*, defaults to 512): Dimension of the embeddings to generate. dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): Data type of the generated embeddings. Returns: `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. """ assert len(w.shape) == 1 w = w * 1000.0 half_dim = embedding_dim // 2 emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) emb = w.to(dtype)[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1)) assert emb.shape == (w.shape[0], embedding_dim) return emb @property def guidance_scale(self): return self._guidance_scale @property def guidance_rescale(self): return self._guidance_rescale @property def clip_skip(self): return self._clip_skip # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None @property def cross_attention_kwargs(self): return self._cross_attention_kwargs @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, timesteps: List[int] = None, sigmas: List[float] = None, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, output_type: Optional[str] = "pil", return_dict: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, clip_skip: Optional[int] = None, callback_on_step_end: Optional[ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not provided, embeddings are computed from the `ip_adapter_image` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). guidance_rescale (`float`, *optional*, defaults to 0.0): Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when using zero terminal SNR. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of each denoising step during the inference. with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None) if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", ) if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs # 0. Default height and width to unet if not height or not width: height = ( self.unet.config.sample_size if self._is_unet_config_sample_size_int else self.unet.config.sample_size[0] ) width = ( self.unet.config.sample_size if self._is_unet_config_sample_size_int else self.unet.config.sample_size[1] ) height, width = height * self.vae_scale_factor, width * self.vae_scale_factor # to deal with lora scaling and other possible forward hooks # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs, ) self._guidance_scale = guidance_scale self._guidance_rescale = guidance_rescale self._clip_skip = clip_skip self._cross_attention_kwargs = cross_attention_kwargs self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 3. Encode input prompt lora_scale = ( self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None ) prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, clip_skip=self.clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) if ip_adapter_image is not None or ip_adapter_image_embeds is not None: image_embeds = self.prepare_ip_adapter_image_embeds( ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance, ) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas ) # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 6.1 Add image embeds for IP-Adapter added_cond_kwargs = ( {"image_embeds": image_embeds} if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) else None ) # 6.2 Optionally get Guidance Scale Embedding timestep_cond = None if self.unet.config.time_cond_proj_dim is not None: guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) timestep_cond = self.get_guidance_scale_embedding( guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim ).to(device=device, dtype=latents.dtype) # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ 0 ] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
class_definition
6,745
55,619
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
null
293
class StableDiffusionImg2ImgPipeline( DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin, ): r""" Pipeline for text-guided image-to-image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] _exclude_from_cpu_offload = ["safety_checker"] _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection = None, requires_safety_checker: bool = True, ): super().__init__() if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config) if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) is_unet_version_less_0_9_0 = ( unet is not None and hasattr(unet.config, "_diffusers_version") and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse("0.9.0.dev0") ) is_unet_sample_size_less_64 = ( unet is not None and hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 ) if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5" " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(unet.config) new_config["sample_size"] = 64 unet._internal_dict = FrozenDict(new_config) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) prompt_embeds_tuple = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs, ) # concatenate for backwards comp prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) return prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer. prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): dtype = next(self.image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = self.feature_extractor(image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) if output_hidden_states: image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_enc_hidden_states = self.image_encoder( torch.zeros_like(image), output_hidden_states=True ).hidden_states[-2] uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( num_images_per_prompt, dim=0 ) return image_enc_hidden_states, uncond_image_enc_hidden_states else: image_embeds = self.image_encoder(image).image_embeds image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_embeds = torch.zeros_like(image_embeds) return image_embeds, uncond_image_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds def prepare_ip_adapter_image_embeds( self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance ): image_embeds = [] if do_classifier_free_guidance: negative_image_embeds = [] if ip_adapter_image_embeds is None: if not isinstance(ip_adapter_image, list): ip_adapter_image = [ip_adapter_image] if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): raise ValueError( f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." ) for single_ip_adapter_image, image_proj_layer in zip( ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers ): output_hidden_state = not isinstance(image_proj_layer, ImageProjection) single_image_embeds, single_negative_image_embeds = self.encode_image( single_ip_adapter_image, device, 1, output_hidden_state ) image_embeds.append(single_image_embeds[None, :]) if do_classifier_free_guidance: negative_image_embeds.append(single_negative_image_embeds[None, :]) else: for single_image_embeds in ip_adapter_image_embeds: if do_classifier_free_guidance: single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) negative_image_embeds.append(single_negative_image_embeds) image_embeds.append(single_image_embeds) ip_adapter_image_embeds = [] for i, single_image_embeds in enumerate(image_embeds): single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) if do_classifier_free_guidance: single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) single_image_embeds = single_image_embeds.to(device=device) ip_adapter_image_embeds.append(single_image_embeds) return ip_adapter_image_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, ): if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if ip_adapter_image is not None and ip_adapter_image_embeds is not None: raise ValueError( "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." ) if ip_adapter_image_embeds is not None: if not isinstance(ip_adapter_image_embeds, list): raise ValueError( f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" ) elif ip_adapter_image_embeds[0].ndim not in [3, 4]: raise ValueError( f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" ) def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] if hasattr(self.scheduler, "set_begin_index"): self.scheduler.set_begin_index(t_start * self.scheduler.order) return timesteps, num_inference_steps - t_start def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) batch_size = batch_size * num_images_per_prompt if image.shape[1] == 4: init_latents = image else: if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(generator, list): if image.shape[0] < batch_size and batch_size % image.shape[0] == 0: image = torch.cat([image] * (batch_size // image.shape[0]), dim=0) elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0: raise ValueError( f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} " ) init_latents = [ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) for i in range(batch_size) ] init_latents = torch.cat(init_latents, dim=0) else: init_latents = retrieve_latents(self.vae.encode(image), generator=generator) init_latents = self.vae.config.scaling_factor * init_latents if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: # expand init_latents for batch_size deprecation_message = ( f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" " your script to pass as many initial images as text prompts to suppress this warning." ) deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) additional_image_per_prompt = batch_size // init_latents.shape[0] init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: raise ValueError( f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." ) else: init_latents = torch.cat([init_latents], dim=0) shape = init_latents.shape noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # get latents init_latents = self.scheduler.add_noise(init_latents, noise, timestep) latents = init_latents return latents # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 ) -> torch.Tensor: """ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 Args: w (`torch.Tensor`): Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. embedding_dim (`int`, *optional*, defaults to 512): Dimension of the embeddings to generate. dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): Data type of the generated embeddings. Returns: `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. """ assert len(w.shape) == 1 w = w * 1000.0 half_dim = embedding_dim // 2 emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) emb = w.to(dtype)[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1)) assert emb.shape == (w.shape[0], embedding_dim) return emb @property def guidance_scale(self): return self._guidance_scale @property def clip_skip(self): return self._clip_skip # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None @property def cross_attention_kwargs(self): return self._cross_attention_kwargs @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, image: PipelineImageInput = None, strength: float = 0.8, num_inference_steps: Optional[int] = 50, timesteps: List[int] = None, sigmas: List[float] = None, guidance_scale: Optional[float] = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: Optional[float] = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, output_type: Optional[str] = "pil", return_dict: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: int = None, callback_on_step_end: Optional[ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image latents as `image`, but if passing latents directly it is not encoded again. strength (`float`, *optional*, defaults to 0.8): Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a starting point and more noise is added the higher the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 essentially ignores `image`. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter is modulated by `strength`. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not provided, embeddings are computed from the `ip_adapter_image` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of each denoising step during the inference. with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None) if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs, ) self._guidance_scale = guidance_scale self._clip_skip = clip_skip self._cross_attention_kwargs = cross_attention_kwargs self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 3. Encode input prompt text_encoder_lora_scale = ( self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None ) prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) if ip_adapter_image is not None or ip_adapter_image_embeds is not None: image_embeds = self.prepare_ip_adapter_image_embeds( ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance, ) # 4. Preprocess image image = self.image_processor.preprocess(image) # 5. set timesteps timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas ) timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) # 6. Prepare latent variables latents = self.prepare_latents( image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator, ) # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7.1 Add image embeds for IP-Adapter added_cond_kwargs = ( {"image_embeds": image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None ) # 7.2 Optionally get Guidance Scale Embedding timestep_cond = None if self.unet.config.time_cond_proj_dim is not None: guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) timestep_cond = self.get_guidance_scale_embedding( guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim ).to(device=device, dtype=latents.dtype) # 8. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ 0 ] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
class_definition
7,719
59,492
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py
null
294
class StableDiffusionUpscalePipeline( DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin, ): r""" Pipeline for text-guided image super-resolution using Stable Diffusion 2. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. low_res_scheduler ([`SchedulerMixin`]): A scheduler used to add initial noise to the low resolution conditioning image. It must be an instance of [`DDPMScheduler`]. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. """ model_cpu_offload_seq = "text_encoder->unet->vae" _optional_components = ["watermarker", "safety_checker", "feature_extractor"] _exclude_from_cpu_offload = ["safety_checker"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, low_res_scheduler: DDPMScheduler, scheduler: KarrasDiffusionSchedulers, safety_checker: Optional[Any] = None, feature_extractor: Optional[CLIPImageProcessor] = None, watermarker: Optional[Any] = None, max_noise_level: int = 350, ): super().__init__() if hasattr( vae, "config" ): # check if vae has a config attribute `scaling_factor` and if it is set to 0.08333, else set it to 0.08333 and deprecate is_vae_scaling_factor_set_to_0_08333 = ( hasattr(vae.config, "scaling_factor") and vae.config.scaling_factor == 0.08333 ) if not is_vae_scaling_factor_set_to_0_08333: deprecation_message = ( "The configuration file of the vae does not contain `scaling_factor` or it is set to" f" {vae.config.scaling_factor}, which seems highly unlikely. If your checkpoint is a fine-tuned" " version of `stabilityai/stable-diffusion-x4-upscaler` you should change 'scaling_factor' to" " 0.08333 Please make sure to update the config accordingly, as not doing so might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging" " Face Hub, it would be very nice if you could open a Pull Request for the `vae/config.json` file" ) deprecate("wrong scaling_factor", "1.0.0", deprecation_message, standard_warn=False) vae.register_to_config(scaling_factor=0.08333) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, low_res_scheduler=low_res_scheduler, scheduler=scheduler, safety_checker=safety_checker, watermarker=watermarker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, resample="bicubic") self.register_to_config(max_noise_level=max_noise_level) def run_safety_checker(self, image, device, dtype): if self.safety_checker is not None: feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, nsfw_detected, watermark_detected = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype=dtype), ) else: nsfw_detected = None watermark_detected = None if hasattr(self, "unet_offload_hook") and self.unet_offload_hook is not None: self.unet_offload_hook.offload() return image, nsfw_detected, watermark_detected # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) prompt_embeds_tuple = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs, ) # concatenate for backwards comp prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) return prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer. prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image def check_inputs( self, prompt, image, noise_level, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if ( not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image) and not isinstance(image, np.ndarray) and not isinstance(image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `np.ndarray`, `PIL.Image.Image` or `list` but is {type(image)}" ) # verify batch size of prompt and image are same if image is a list or tensor or numpy array if isinstance(image, (list, np.ndarray, torch.Tensor)): if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if isinstance(image, list): image_batch_size = len(image) else: image_batch_size = image.shape[0] if batch_size != image_batch_size: raise ValueError( f"`prompt` has batch size {batch_size} and `image` has batch size {image_batch_size}." " Please make sure that passed `prompt` matches the batch size of `image`." ) # check noise level if noise_level > self.config.max_noise_level: raise ValueError(f"`noise_level` has to be <= {self.config.max_noise_level} but is {noise_level}") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = (batch_size, num_channels_latents, height, width) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def upcast_vae(self): dtype = self.vae.dtype self.vae.to(dtype=torch.float32) use_torch_2_0_or_xformers = isinstance( self.vae.decoder.mid_block.attentions[0].processor, ( AttnProcessor2_0, XFormersAttnProcessor, ), ) # if xformers or torch_2_0 is used attention block does not need # to be in float32 which can save lots of memory if use_torch_2_0_or_xformers: self.vae.post_quant_conv.to(dtype) self.vae.decoder.conv_in.to(dtype) self.vae.decoder.mid_block.to(dtype) @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, image: PipelineImageInput = None, num_inference_steps: int = 75, guidance_scale: float = 9.0, noise_level: int = 20, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: int = None, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image` or tensor representing an image batch to be upscaled. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. Examples: ```py >>> import requests >>> from PIL import Image >>> from io import BytesIO >>> from diffusers import StableDiffusionUpscalePipeline >>> import torch >>> # load model and scheduler >>> model_id = "stabilityai/stable-diffusion-x4-upscaler" >>> pipeline = StableDiffusionUpscalePipeline.from_pretrained( ... model_id, variant="fp16", torch_dtype=torch.float16 ... ) >>> pipeline = pipeline.to("cuda") >>> # let's download an image >>> url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale/low_res_cat.png" >>> response = requests.get(url) >>> low_res_img = Image.open(BytesIO(response.content)).convert("RGB") >>> low_res_img = low_res_img.resize((128, 128)) >>> prompt = "a white cat" >>> upscaled_image = pipeline(prompt=prompt, image=low_res_img).images[0] >>> upscaled_image.save("upsampled_cat.png") ``` Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ # 1. Check inputs self.check_inputs( prompt, image, noise_level, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ) if image is None: raise ValueError("`image` input cannot be undefined.") # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 4. Preprocess image image = self.image_processor.preprocess(image) image = image.to(dtype=prompt_embeds.dtype, device=device) # 5. set timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Add noise to image noise_level = torch.tensor([noise_level], dtype=torch.long, device=device) noise = randn_tensor(image.shape, generator=generator, device=device, dtype=prompt_embeds.dtype) image = self.low_res_scheduler.add_noise(image, noise, noise_level) batch_multiplier = 2 if do_classifier_free_guidance else 1 image = torch.cat([image] * batch_multiplier * num_images_per_prompt) noise_level = torch.cat([noise_level] * image.shape[0]) # 6. Prepare latent variables height, width = image.shape[2:] num_channels_latents = self.vae.config.latent_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 7. Check that sizes of image and latents match num_channels_image = image.shape[1] if num_channels_latents + num_channels_image != self.unet.config.in_channels: raise ValueError( f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" f" `num_channels_image`: {num_channels_image} " f" = {num_channels_latents+num_channels_image}. Please verify the config of" " `pipeline.unet` or your `image` input." ) # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 9. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents # concat latents, mask, masked_image_latents in the channel dimension latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) latent_model_input = torch.cat([latent_model_input, image], dim=1) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, class_labels=noise_level, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": # make sure the VAE is in float32 mode, as it overflows in float16 needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: self.upcast_vae() # Ensure latents are always the same type as the VAE latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] # cast back to fp16 if needed if needs_upcasting: self.vae.to(dtype=torch.float16) image, has_nsfw_concept, _ = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # 11. Apply watermark if output_type == "pil" and self.watermarker is not None: image = self.watermarker.apply_watermark(image) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
class_definition
2,691
39,734
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py
null
295
class OnnxStableDiffusionInpaintPipeline(DiffusionPipeline): r""" Pipeline for text-guided image inpainting using Stable Diffusion. *This is an experimental feature*. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ vae_encoder: OnnxRuntimeModel vae_decoder: OnnxRuntimeModel text_encoder: OnnxRuntimeModel tokenizer: CLIPTokenizer unet: OnnxRuntimeModel scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] safety_checker: OnnxRuntimeModel feature_extractor: CLIPImageProcessor _optional_components = ["safety_checker", "feature_extractor"] _is_onnx = True def __init__( self, vae_encoder: OnnxRuntimeModel, vae_decoder: OnnxRuntimeModel, text_encoder: OnnxRuntimeModel, tokenizer: CLIPTokenizer, unet: OnnxRuntimeModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: OnnxRuntimeModel, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__() logger.info("`OnnxStableDiffusionInpaintPipeline` is experimental and will very likely change in the future.") if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config) if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae_encoder=vae_encoder, vae_decoder=vae_decoder, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.register_to_config(requires_safety_checker=requires_safety_checker) # Copied from diffusers.pipelines.stable_diffusion.pipeline_onnx_stable_diffusion.OnnxStableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt: Union[str, List[str]], num_images_per_prompt: Optional[int], do_classifier_free_guidance: bool, negative_prompt: Optional[str], prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`): prompt to be encoded num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`np.ndarray`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`np.ndarray`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. """ if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="np", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids if not np.array_equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0] prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] * batch_size elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="np", ) negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0] if do_classifier_free_guidance: negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds]) return prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_onnx_stable_diffusion.OnnxStableDiffusionPipeline.check_inputs def check_inputs( self, prompt: Union[str, List[str]], height: Optional[int], width: Optional[int], callback_steps: int, negative_prompt: Optional[str] = None, prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], image: PIL.Image.Image, mask_image: PIL.Image.Image, height: Optional[int] = 512, width: Optional[int] = 512, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[np.random.RandomState] = None, latents: Optional[np.ndarray] = None, prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, np.ndarray], None]] = None, callback_steps: int = 1, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. image (`PIL.Image.Image`): `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will be masked out with `mask_image` and repainted according to `prompt`. mask_image (`PIL.Image.Image`): `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`np.random.RandomState`, *optional*): A np.random.RandomState to make generation deterministic. latents (`np.ndarray`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`np.ndarray`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`np.ndarray`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # check inputs. Raise error if not correct self.check_inputs( prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds ) # define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if generator is None: generator = np.random # set timesteps self.scheduler.set_timesteps(num_inference_steps) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 prompt_embeds = self._encode_prompt( prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) num_channels_latents = NUM_LATENT_CHANNELS latents_shape = (batch_size * num_images_per_prompt, num_channels_latents, height // 8, width // 8) latents_dtype = prompt_embeds.dtype if latents is None: latents = generator.randn(*latents_shape).astype(latents_dtype) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") # prepare mask and masked_image mask, masked_image = prepare_mask_and_masked_image(image, mask_image, latents_shape[-2:]) mask = mask.astype(latents.dtype) masked_image = masked_image.astype(latents.dtype) masked_image_latents = self.vae_encoder(sample=masked_image)[0] masked_image_latents = 0.18215 * masked_image_latents # duplicate mask and masked_image_latents for each generation per prompt mask = mask.repeat(batch_size * num_images_per_prompt, 0) masked_image_latents = masked_image_latents.repeat(batch_size * num_images_per_prompt, 0) mask = np.concatenate([mask] * 2) if do_classifier_free_guidance else mask masked_image_latents = ( np.concatenate([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents ) num_channels_mask = mask.shape[1] num_channels_masked_image = masked_image_latents.shape[1] unet_input_channels = NUM_UNET_INPUT_CHANNELS if num_channels_latents + num_channels_mask + num_channels_masked_image != unet_input_channels: raise ValueError( "Incorrect configuration settings! The config of `pipeline.unet` expects" f" {unet_input_channels} but received `num_channels_latents`: {num_channels_latents} +" f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" " `pipeline.unet` or your `mask_image` or `image` input." ) # set timesteps self.scheduler.set_timesteps(num_inference_steps) # scale the initial noise by the standard deviation required by the scheduler latents = latents * np.float64(self.scheduler.init_noise_sigma) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta timestep_dtype = next( (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)" ) timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents # concat latents, mask, masked_image_latnets in the channel dimension latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t) latent_model_input = latent_model_input.cpu().numpy() latent_model_input = np.concatenate([latent_model_input, mask, masked_image_latents], axis=1) # predict the noise residual timestep = np.array([t], dtype=timestep_dtype) noise_pred = self.unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds)[ 0 ] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 scheduler_output = self.scheduler.step( torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs ) latents = scheduler_output.prev_sample.numpy() # call the callback, if provided if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) latents = 1 / 0.18215 * latents # image = self.vae_decoder(latent_sample=latents)[0] # it seems likes there is a strange result for using half-precision vae decoder if batchsize>1 image = np.concatenate( [self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])] ) image = np.clip(image / 2 + 0.5, 0, 1) image = image.transpose((0, 2, 3, 1)) if self.safety_checker is not None: safety_checker_input = self.feature_extractor( self.numpy_to_pil(image), return_tensors="np" ).pixel_values.astype(image.dtype) # safety_checker does not support batched inputs yet images, has_nsfw_concept = [], [] for i in range(image.shape[0]): image_i, has_nsfw_concept_i = self.safety_checker( clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1] ) images.append(image_i) has_nsfw_concept.append(has_nsfw_concept_i[0]) image = np.concatenate(images) else: has_nsfw_concept = None if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
class_definition
1,931
29,133
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py
null
296
class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMixin, FromSingleFileMixin): r""" Pipeline for upscaling Stable Diffusion output image resolution by a factor of 2. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A [`EulerDiscreteScheduler`] to be used in combination with `unet` to denoise the encoded image latents. """ model_cpu_offload_seq = "text_encoder->unet->vae" def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: EulerDiscreteScheduler, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, resample="bicubic") def _encode_prompt( self, prompt, device, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None, negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.encode_prompt( prompt=prompt, device=device, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, **kwargs, ) prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds]) return prompt_embeds, pooled_prompt_embeds def encode_prompt( self, prompt, device, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None, negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `list(int)`): prompt to be encoded device: (`torch.device`): torch device do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. """ if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None or pooled_prompt_embeds is None: text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_length=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_encoder_out = self.text_encoder( text_input_ids.to(device), output_hidden_states=True, ) prompt_embeds = text_encoder_out.hidden_states[-1] pooled_prompt_embeds = text_encoder_out.pooler_output # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: if negative_prompt_embeds is None or negative_pooled_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = text_input_ids.shape[-1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_length=True, return_tensors="pt", ) uncond_encoder_out = self.text_encoder( uncond_input.input_ids.to(device), output_hidden_states=True, ) negative_prompt_embeds = uncond_encoder_out.hidden_states[-1] negative_pooled_prompt_embeds = uncond_encoder_out.pooler_output return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image def check_inputs( self, prompt, image, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, ): if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and not isinstance(prompt, str) and not isinstance(prompt, list): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds is not None and pooled_prompt_embeds is None: raise ValueError( "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." ) if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: raise ValueError( "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." ) if ( not isinstance(image, torch.Tensor) and not isinstance(image, np.ndarray) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or `list` but is {type(image)}" ) # verify batch size of prompt and image are same if image is a list or tensor if isinstance(image, (list, torch.Tensor)): if prompt is not None: if isinstance(prompt, str): batch_size = 1 else: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if isinstance(image, list): image_batch_size = len(image) else: image_batch_size = image.shape[0] if image.ndim == 4 else 1 if batch_size != image_batch_size: raise ValueError( f"`prompt` has batch size {batch_size} and `image` has batch size {image_batch_size}." " Please make sure that passed `prompt` matches the batch size of `image`." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = (batch_size, num_channels_latents, height, width) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, image: PipelineImageInput = None, num_inference_steps: int = 75, guidance_scale: float = 9.0, negative_prompt: Optional[Union[str, List[str]]] = None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None, negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide image upscaling. image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image` or tensor representing an image batch to be upscaled. If it's a tensor, it can be either a latent output from a Stable Diffusion model or an image tensor in the range `[-1, 1]`. It is considered a `latent` if `image.shape[1]` is `4`; otherwise, it is considered to be an image representation and encoded using this pipeline's `vae` encoder. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. Examples: ```py >>> from diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline >>> import torch >>> pipeline = StableDiffusionPipeline.from_pretrained( ... "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16 ... ) >>> pipeline.to("cuda") >>> model_id = "stabilityai/sd-x2-latent-upscaler" >>> upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) >>> upscaler.to("cuda") >>> prompt = "a photo of an astronaut high resolution, unreal engine, ultra realistic" >>> generator = torch.manual_seed(33) >>> low_res_latents = pipeline(prompt, generator=generator, output_type="latent").images >>> with torch.no_grad(): ... image = pipeline.decode_latents(low_res_latents) >>> image = pipeline.numpy_to_pil(image)[0] >>> image.save("../images/a1.png") >>> upscaled_image = upscaler( ... prompt=prompt, ... image=low_res_latents, ... num_inference_steps=20, ... guidance_scale=0, ... generator=generator, ... ).images[0] >>> upscaled_image.save("../images/a2.png") ``` Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ # 1. Check inputs self.check_inputs( prompt, image, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) # 2. Define call parameters if prompt is not None: batch_size = 1 if isinstance(prompt, str) else len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 if guidance_scale == 0: prompt = [""] * batch_size # 3. Encode input prompt ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.encode_prompt( prompt, device, do_classifier_free_guidance, negative_prompt, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds]) # 4. Preprocess image image = self.image_processor.preprocess(image) image = image.to(dtype=prompt_embeds.dtype, device=device) if image.shape[1] == 3: # encode image if not in latent-space yet image = retrieve_latents(self.vae.encode(image), generator=generator) * self.vae.config.scaling_factor # 5. set timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps batch_multiplier = 2 if do_classifier_free_guidance else 1 image = image[None, :] if image.ndim == 3 else image image = torch.cat([image] * batch_multiplier) # 5. Add noise to image (set to be 0): # (see below notes from the author): # "the This step theoretically can make the model work better on out-of-distribution inputs, but mostly just seems to make it match the input less, so it's turned off by default." noise_level = torch.tensor([0.0], dtype=torch.float32, device=device) noise_level = torch.cat([noise_level] * image.shape[0]) inv_noise_level = (noise_level**2 + 1) ** (-0.5) image_cond = F.interpolate(image, scale_factor=2, mode="nearest") * inv_noise_level[:, None, None, None] image_cond = image_cond.to(prompt_embeds.dtype) noise_level_embed = torch.cat( [ torch.ones(pooled_prompt_embeds.shape[0], 64, dtype=pooled_prompt_embeds.dtype, device=device), torch.zeros(pooled_prompt_embeds.shape[0], 64, dtype=pooled_prompt_embeds.dtype, device=device), ], dim=1, ) timestep_condition = torch.cat([noise_level_embed, pooled_prompt_embeds], dim=1) # 6. Prepare latent variables height, width = image.shape[2:] num_channels_latents = self.vae.config.latent_channels latents = self.prepare_latents( batch_size, num_channels_latents, height * 2, # 2x upscale width * 2, prompt_embeds.dtype, device, generator, latents, ) # 7. Check that sizes of image and latents match num_channels_image = image.shape[1] if num_channels_latents + num_channels_image != self.unet.config.in_channels: raise ValueError( f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" f" `num_channels_image`: {num_channels_image} " f" = {num_channels_latents+num_channels_image}. Please verify the config of" " `pipeline.unet` or your `image` input." ) # 9. Denoising loop num_warmup_steps = 0 with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): sigma = self.scheduler.sigmas[i] # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t) scaled_model_input = torch.cat([scaled_model_input, image_cond], dim=1) # preconditioning parameter based on Karras et al. (2022) (table 1) timestep = torch.log(sigma) * 0.25 noise_pred = self.unet( scaled_model_input, timestep, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_condition, ).sample # in original repo, the output contains a variance channel that's not used noise_pred = noise_pred[:, :-1] # apply preconditioning, based on table 1 in Karras et al. (2022) inv_sigma = 1 / (sigma**2 + 1) noise_pred = inv_sigma * latent_model_input + self.scheduler.scale_model_input(sigma, t) * noise_pred # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] else: image = latents image = self.image_processor.postprocess(image, output_type=output_type) self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image)
class_definition
3,105
30,970
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
null
297
class StableDiffusionInstructPix2PixPipeline( DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin, ): r""" Pipeline for pixel-level image editing by following text instructions (based on Stable Diffusion). This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ model_cpu_offload_seq = "text_encoder->unet->vae" _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] _exclude_from_cpu_offload = ["safety_checker"] _callback_tensor_inputs = ["latents", "prompt_embeds", "image_latents"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: Optional[CLIPVisionModelWithProjection] = None, requires_safety_checker: bool = True, ): super().__init__() if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, image: PipelineImageInput = None, num_inference_steps: int = 100, guidance_scale: float = 7.5, image_guidance_scale: float = 1.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback_on_step_end: Optional[ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], cross_attention_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. image (`torch.Tensor` `np.ndarray`, `PIL.Image.Image`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image` or tensor representing an image batch to be repainted according to `prompt`. Can also accept image latents as `image`, but if passing latents directly it is not encoded again. num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. image_guidance_scale (`float`, *optional*, defaults to 1.5): Push the generated image towards the initial `image`. Image guidance scale is enabled by setting `image_guidance_scale > 1`. Higher image guidance scale encourages generated images that are closely linked to the source `image`, usually at the expense of lower image quality. This pipeline requires a value of at least `1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of each denoising step during the inference. with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). Examples: ```py >>> import PIL >>> import requests >>> import torch >>> from io import BytesIO >>> from diffusers import StableDiffusionInstructPix2PixPipeline >>> def download_image(url): ... response = requests.get(url) ... return PIL.Image.open(BytesIO(response.content)).convert("RGB") >>> img_url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" >>> image = download_image(img_url).resize((512, 512)) >>> pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( ... "timbrooks/instruct-pix2pix", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> prompt = "make the mountains snowy" >>> image = pipe(prompt=prompt, image=image).images[0] ``` Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None) if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs # 0. Check inputs self.check_inputs( prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs, ) self._guidance_scale = guidance_scale self._image_guidance_scale = image_guidance_scale device = self._execution_device if image is None: raise ValueError("`image` input cannot be undefined.") # 1. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 2. Encode input prompt prompt_embeds = self._encode_prompt( prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) if ip_adapter_image is not None or ip_adapter_image_embeds is not None: image_embeds = self.prepare_ip_adapter_image_embeds( ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance, ) # 3. Preprocess image image = self.image_processor.preprocess(image) # 4. set timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare Image latents image_latents = self.prepare_image_latents( image, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, self.do_classifier_free_guidance, ) height, width = image_latents.shape[-2:] height = height * self.vae_scale_factor width = width * self.vae_scale_factor # 6. Prepare latent variables num_channels_latents = self.vae.config.latent_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 7. Check that shapes of latents and image match the UNet channels num_channels_image = image_latents.shape[1] if num_channels_latents + num_channels_image != self.unet.config.in_channels: raise ValueError( f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" f" `num_channels_image`: {num_channels_image} " f" = {num_channels_latents+num_channels_image}. Please verify the config of" " `pipeline.unet` or your `image` input." ) # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 8.1 Add image embeds for IP-Adapter added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None # 9. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # Expand the latents if we are doing classifier free guidance. # The latents are expanded 3 times because for pix2pix the guidance\ # is applied for both the text and the input image. latent_model_input = torch.cat([latents] * 3) if self.do_classifier_free_guidance else latents # concat latents, image_latents in the channel dimension scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) scaled_latent_model_input = torch.cat([scaled_latent_model_input, image_latents], dim=1) # predict the noise residual noise_pred = self.unet( scaled_latent_model_input, t, encoder_hidden_states=prompt_embeds, added_cond_kwargs=added_cond_kwargs, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] # perform guidance if self.do_classifier_free_guidance: noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3) noise_pred = ( noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_image) + self.image_guidance_scale * (noise_pred_image - noise_pred_uncond) ) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) image_latents = callback_outputs.pop("image_latents", image_latents) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_ prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. """ if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype else: prompt_embeds_dtype = self.unet.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes # pix2pix has two negative embeddings, and unlike in other pipelines latents are ordered [prompt_embeds, negative_prompt_embeds, negative_prompt_embeds] prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds]) return prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): dtype = next(self.image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = self.feature_extractor(image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) if output_hidden_states: image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_enc_hidden_states = self.image_encoder( torch.zeros_like(image), output_hidden_states=True ).hidden_states[-2] uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( num_images_per_prompt, dim=0 ) return image_enc_hidden_states, uncond_image_enc_hidden_states else: image_embeds = self.image_encoder(image).image_embeds image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_embeds = torch.zeros_like(image_embeds) return image_embeds, uncond_image_embeds def prepare_ip_adapter_image_embeds( self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance ): if ip_adapter_image_embeds is None: if not isinstance(ip_adapter_image, list): ip_adapter_image = [ip_adapter_image] if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): raise ValueError( f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." ) image_embeds = [] for single_ip_adapter_image, image_proj_layer in zip( ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers ): output_hidden_state = not isinstance(image_proj_layer, ImageProjection) single_image_embeds, single_negative_image_embeds = self.encode_image( single_ip_adapter_image, device, 1, output_hidden_state ) single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) single_negative_image_embeds = torch.stack( [single_negative_image_embeds] * num_images_per_prompt, dim=0 ) if do_classifier_free_guidance: single_image_embeds = torch.cat( [single_image_embeds, single_negative_image_embeds, single_negative_image_embeds] ) single_image_embeds = single_image_embeds.to(device) image_embeds.append(single_image_embeds) else: repeat_dims = [1] image_embeds = [] for single_image_embeds in ip_adapter_image_embeds: if do_classifier_free_guidance: ( single_image_embeds, single_negative_image_embeds, single_negative_image_embeds, ) = single_image_embeds.chunk(3) single_image_embeds = single_image_embeds.repeat( num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) ) single_negative_image_embeds = single_negative_image_embeds.repeat( num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])) ) single_image_embeds = torch.cat( [single_image_embeds, single_negative_image_embeds, single_negative_image_embeds] ) else: single_image_embeds = single_image_embeds.repeat( num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) ) image_embeds.append(single_image_embeds) return image_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image def check_inputs( self, prompt, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, ): if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if ip_adapter_image is not None and ip_adapter_image_embeds is not None: raise ValueError( "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." ) if ip_adapter_image_embeds is not None: if not isinstance(ip_adapter_image_embeds, list): raise ValueError( f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" ) elif ip_adapter_image_embeds[0].ndim not in [3, 4]: raise ValueError( f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def prepare_image_latents( self, image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None ): if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) batch_size = batch_size * num_images_per_prompt if image.shape[1] == 4: image_latents = image else: image_latents = retrieve_latents(self.vae.encode(image), sample_mode="argmax") if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: # expand image_latents for batch_size deprecation_message = ( f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial" " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" " your script to pass as many initial images as text prompts to suppress this warning." ) deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) additional_image_per_prompt = batch_size // image_latents.shape[0] image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: raise ValueError( f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." ) else: image_latents = torch.cat([image_latents], dim=0) if do_classifier_free_guidance: uncond_image_latents = torch.zeros_like(image_latents) image_latents = torch.cat([image_latents, image_latents, uncond_image_latents], dim=0) return image_latents @property def guidance_scale(self): return self._guidance_scale @property def image_guidance_scale(self): return self._image_guidance_scale @property def num_timesteps(self): return self._num_timesteps # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self.guidance_scale > 1.0 and self.image_guidance_scale >= 1.0
class_definition
3,506
45,803
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
null
298
class OnnxStableDiffusionImg2ImgPipeline(DiffusionPipeline): r""" Pipeline for text-guided image to image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ vae_encoder: OnnxRuntimeModel vae_decoder: OnnxRuntimeModel text_encoder: OnnxRuntimeModel tokenizer: CLIPTokenizer unet: OnnxRuntimeModel scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] safety_checker: OnnxRuntimeModel feature_extractor: CLIPImageProcessor _optional_components = ["safety_checker", "feature_extractor"] _is_onnx = True def __init__( self, vae_encoder: OnnxRuntimeModel, vae_decoder: OnnxRuntimeModel, text_encoder: OnnxRuntimeModel, tokenizer: CLIPTokenizer, unet: OnnxRuntimeModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: OnnxRuntimeModel, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__() if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config) if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae_encoder=vae_encoder, vae_decoder=vae_decoder, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.register_to_config(requires_safety_checker=requires_safety_checker) # Copied from diffusers.pipelines.stable_diffusion.pipeline_onnx_stable_diffusion.OnnxStableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt: Union[str, List[str]], num_images_per_prompt: Optional[int], do_classifier_free_guidance: bool, negative_prompt: Optional[str], prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`): prompt to be encoded num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`np.ndarray`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`np.ndarray`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. """ if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="np", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids if not np.array_equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0] prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] * batch_size elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="np", ) negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0] if do_classifier_free_guidance: negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds]) return prompt_embeds def check_inputs( self, prompt: Union[str, List[str]], callback_steps: int, negative_prompt: Optional[Union[str, List[str]]] = None, prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) def __call__( self, prompt: Union[str, List[str]], image: Union[np.ndarray, PIL.Image.Image] = None, strength: float = 0.8, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: Optional[float] = 0.0, generator: Optional[np.random.RandomState] = None, prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, np.ndarray], None]] = None, callback_steps: int = 1, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. image (`np.ndarray` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. strength (`float`, *optional*, defaults to 0.8): Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter will be modulated by `strength`. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`np.random.RandomState`, *optional*): A np.random.RandomState to make generation deterministic. prompt_embeds (`np.ndarray`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`np.ndarray`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # check inputs. Raise error if not correct self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) # define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") if generator is None: generator = np.random # set timesteps self.scheduler.set_timesteps(num_inference_steps) image = preprocess(image).cpu().numpy() # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 prompt_embeds = self._encode_prompt( prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) latents_dtype = prompt_embeds.dtype image = image.astype(latents_dtype) # encode the init image into latents and scale the latents init_latents = self.vae_encoder(sample=image)[0] init_latents = 0.18215 * init_latents if isinstance(prompt, str): prompt = [prompt] if len(prompt) > init_latents.shape[0] and len(prompt) % init_latents.shape[0] == 0: # expand init_latents for batch_size deprecation_message = ( f"You have passed {len(prompt)} text prompts (`prompt`), but only {init_latents.shape[0]} initial" " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" " your script to pass as many initial images as text prompts to suppress this warning." ) deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) additional_image_per_prompt = len(prompt) // init_latents.shape[0] init_latents = np.concatenate([init_latents] * additional_image_per_prompt * num_images_per_prompt, axis=0) elif len(prompt) > init_latents.shape[0] and len(prompt) % init_latents.shape[0] != 0: raise ValueError( f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {len(prompt)} text prompts." ) else: init_latents = np.concatenate([init_latents] * num_images_per_prompt, axis=0) # get the original timestep using init_timestep offset = self.scheduler.config.get("steps_offset", 0) init_timestep = int(num_inference_steps * strength) + offset init_timestep = min(init_timestep, num_inference_steps) timesteps = self.scheduler.timesteps.numpy()[-init_timestep] timesteps = np.array([timesteps] * batch_size * num_images_per_prompt) # add noise to latents using the timesteps noise = generator.randn(*init_latents.shape).astype(latents_dtype) init_latents = self.scheduler.add_noise( torch.from_numpy(init_latents), torch.from_numpy(noise), torch.from_numpy(timesteps) ) init_latents = init_latents.numpy() # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta latents = init_latents t_start = max(num_inference_steps - init_timestep + offset, 0) timesteps = self.scheduler.timesteps[t_start:].numpy() timestep_dtype = next( (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)" ) timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] for i, t in enumerate(self.progress_bar(timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t) latent_model_input = latent_model_input.cpu().numpy() # predict the noise residual timestep = np.array([t], dtype=timestep_dtype) noise_pred = self.unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds)[ 0 ] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 scheduler_output = self.scheduler.step( torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs ) latents = scheduler_output.prev_sample.numpy() # call the callback, if provided if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) latents = 1 / 0.18215 * latents # image = self.vae_decoder(latent_sample=latents)[0] # it seems likes there is a strange result for using half-precision vae decoder if batchsize>1 image = np.concatenate( [self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])] ) image = np.clip(image / 2 + 0.5, 0, 1) image = image.transpose((0, 2, 3, 1)) if self.safety_checker is not None: safety_checker_input = self.feature_extractor( self.numpy_to_pil(image), return_tensors="np" ).pixel_values.astype(image.dtype) # safety_checker does not support batched inputs yet images, has_nsfw_concept = [], [] for i in range(image.shape[0]): image_i, has_nsfw_concept_i = self.safety_checker( clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1] ) images.append(image_i) has_nsfw_concept.append(has_nsfw_concept_i[0]) image = np.concatenate(images) else: has_nsfw_concept = None if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
class_definition
2,276
28,519
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
null
299