text
stringlengths
0
1.16k
2023-06-01 16:38:57.712064: Current learning rate: 0.0004
2023-06-01 16:39:56.893131: train_loss -0.8766
2023-06-01 16:39:56.893327: val_loss -0.8909
2023-06-01 16:39:56.893417: Pseudo dice [0.9076]
2023-06-01 16:39:56.893500: Epoch time: 59.18 s
2023-06-01 16:39:57.988633:
2023-06-01 16:39:57.988727: Epoch 973
2023-06-01 16:39:57.988808: Current learning rate: 0.00039
2023-06-01 16:40:57.131798: train_loss -0.8777
2023-06-01 16:40:57.132013: val_loss -0.8775
2023-06-01 16:40:57.132121: Pseudo dice [0.8955]
2023-06-01 16:40:57.132230: Epoch time: 59.14 s
2023-06-01 16:40:58.201570:
2023-06-01 16:40:58.201667: Epoch 974
2023-06-01 16:40:58.201750: Current learning rate: 0.00037
2023-06-01 16:41:57.376637: train_loss -0.878
2023-06-01 16:41:57.376822: val_loss -0.8854
2023-06-01 16:41:57.376923: Pseudo dice [0.9024]
2023-06-01 16:41:57.377009: Epoch time: 59.18 s
2023-06-01 16:41:58.606337:
2023-06-01 16:41:58.606440: Epoch 975
2023-06-01 16:41:58.606527: Current learning rate: 0.00036
2023-06-01 16:42:57.815907: train_loss -0.8775
2023-06-01 16:42:57.816049: val_loss -0.8781
2023-06-01 16:42:57.816128: Pseudo dice [0.8967]
2023-06-01 16:42:57.816222: Epoch time: 59.21 s
2023-06-01 16:42:58.866508:
2023-06-01 16:42:58.866611: Epoch 976
2023-06-01 16:42:58.866750: Current learning rate: 0.00035
2023-06-01 16:43:58.071027: train_loss -0.8795
2023-06-01 16:43:58.071271: val_loss -0.8709
2023-06-01 16:43:58.071358: Pseudo dice [0.8937]
2023-06-01 16:43:58.071444: Epoch time: 59.21 s
2023-06-01 16:43:59.134953:
2023-06-01 16:43:59.135083: Epoch 977
2023-06-01 16:43:59.135194: Current learning rate: 0.00034
2023-06-01 16:44:58.328298: train_loss -0.8761
2023-06-01 16:44:58.328432: val_loss -0.8798
2023-06-01 16:44:58.328515: Pseudo dice [0.8982]
2023-06-01 16:44:58.328611: Epoch time: 59.19 s
2023-06-01 16:44:59.374923:
2023-06-01 16:44:59.375201: Epoch 978
2023-06-01 16:44:59.375353: Current learning rate: 0.00032
2023-06-01 16:45:58.605832: train_loss -0.8782
2023-06-01 16:45:58.605988: val_loss -0.8839
2023-06-01 16:45:58.606064: Pseudo dice [0.8995]
2023-06-01 16:45:58.606143: Epoch time: 59.23 s
2023-06-01 16:45:59.688164:
2023-06-01 16:45:59.688394: Epoch 979
2023-06-01 16:45:59.688499: Current learning rate: 0.00031
2023-06-01 16:46:58.875169: train_loss -0.879
2023-06-01 16:46:58.875365: val_loss -0.883
2023-06-01 16:46:58.875461: Pseudo dice [0.9043]
2023-06-01 16:46:58.875553: Epoch time: 59.19 s
2023-06-01 16:46:58.875635: Yayy! New best EMA pseudo Dice: 0.8985
2023-06-01 16:47:02.169361:
2023-06-01 16:47:02.169444: Epoch 980
2023-06-01 16:47:02.169545: Current learning rate: 0.0003
2023-06-01 16:48:01.233223: train_loss -0.8774
2023-06-01 16:48:01.233377: val_loss -0.889
2023-06-01 16:48:01.233458: Pseudo dice [0.9066]
2023-06-01 16:48:01.233553: Epoch time: 59.06 s
2023-06-01 16:48:01.233627: Yayy! New best EMA pseudo Dice: 0.8993
2023-06-01 16:48:04.224960:
2023-06-01 16:48:04.225114: Epoch 981
2023-06-01 16:48:04.225197: Current learning rate: 0.00028
2023-06-01 16:49:03.337906: train_loss -0.8736
2023-06-01 16:49:03.338061: val_loss -0.8883
2023-06-01 16:49:03.338138: Pseudo dice [0.9048]
2023-06-01 16:49:03.338217: Epoch time: 59.11 s
2023-06-01 16:49:03.338290: Yayy! New best EMA pseudo Dice: 0.8999
2023-06-01 16:49:06.238531:
2023-06-01 16:49:06.238622: Epoch 982
2023-06-01 16:49:06.238721: Current learning rate: 0.00027
2023-06-01 16:50:05.332272: train_loss -0.8778
2023-06-01 16:50:05.332407: val_loss -0.8874
2023-06-01 16:50:05.332487: Pseudo dice [0.9022]
2023-06-01 16:50:05.332582: Epoch time: 59.09 s
2023-06-01 16:50:05.332661: Yayy! New best EMA pseudo Dice: 0.9001
2023-06-01 16:50:08.274321:
2023-06-01 16:50:08.274425: Epoch 983
2023-06-01 16:50:08.274507: Current learning rate: 0.00026
2023-06-01 16:51:07.342933: train_loss -0.8821
2023-06-01 16:51:07.343068: val_loss -0.8724
2023-06-01 16:51:07.343211: Pseudo dice [0.8926]
2023-06-01 16:51:07.343334: Epoch time: 59.07 s
2023-06-01 16:51:08.458734:
2023-06-01 16:51:08.458835: Epoch 984
2023-06-01 16:51:08.458916: Current learning rate: 0.00024
2023-06-01 16:52:07.678760: train_loss -0.8782
2023-06-01 16:52:07.678910: val_loss -0.8816
2023-06-01 16:52:07.678990: Pseudo dice [0.8996]
2023-06-01 16:52:07.679082: Epoch time: 59.22 s
2023-06-01 16:52:08.725795:
2023-06-01 16:52:08.725975: Epoch 985
2023-06-01 16:52:08.726120: Current learning rate: 0.00023
2023-06-01 16:53:07.975400: train_loss -0.8796
2023-06-01 16:53:07.975533: val_loss -0.8781
2023-06-01 16:53:07.975592: Pseudo dice [0.897]
2023-06-01 16:53:07.975654: Epoch time: 59.25 s