id
int64
599M
3.29B
url
stringlengths
58
61
html_url
stringlengths
46
51
number
int64
1
7.72k
title
stringlengths
1
290
state
stringclasses
2 values
comments
int64
0
70
created_at
timestamp[s]date
2020-04-14 10:18:02
2025-08-05 09:28:51
updated_at
timestamp[s]date
2020-04-27 16:04:17
2025-08-05 11:39:56
closed_at
timestamp[s]date
2020-04-14 12:01:40
2025-08-01 05:15:45
user_login
stringlengths
3
26
labels
listlengths
0
4
body
stringlengths
0
228k
is_pull_request
bool
2 classes
2,367,890,622
https://api.github.com/repos/huggingface/datasets/issues/6992
https://github.com/huggingface/datasets/issues/6992
6,992
Dataset with streaming doesn't work with proxy
open
1
2024-06-22T16:12:08
2024-06-25T15:43:05
null
YHL04
[]
### Describe the bug I'm currently trying to stream data using dataset since the dataset is too big but it hangs indefinitely without loading the first batch. I use AIMOS which is a supercomputer that uses proxy to connect to the internet. I assume it has to do with the network configurations. I've already set up both HTTP_PROXY and HTTPS_PROXY. streaming = False works fine. ### Steps to reproduce the bug use load_dataset with streaming = True in AIMOS ### Expected behavior does not hang indefinitely and loads batches to start training run ### Environment info _libgcc_mutex 0.1 conda_forge conda-forge _openmp_mutex 4.5 2_gnu conda-forge _pytorch_select 2.0 cuda_2 https://ftp.osuosl.org/pub/open-ce/1.10.0 abseil-cpp 20220623.0 h9888cd1_6 conda-forge absl-py 1.0.0 py311h399429b_0 https://ftp.osuosl.org/pub/open-ce/1.10.0 aiofiles 23.2.1 pyhd8ed1ab_0 conda-forge aiohttp 3.8.6 py311hf118e41_0 aiosignal 1.2.0 pyhd3eb1b0_0 archspec 0.2.3 pyhd8ed1ab_0 conda-forge arrow-cpp 11.0.0 ha3edaa6_5_cpu conda-forge async-timeout 4.0.2 py311h6ffa863_0 attrs 23.1.0 py311h6ffa863_0 av 10.0.0 py311he6153ed_2 https://ftp.osuosl.org/pub/open-ce/1.10.0 aws-c-auth 0.6.24 hb81f6d7_5 conda-forge aws-c-cal 0.5.20 h3c2b4d9_6 conda-forge aws-c-common 0.8.11 h4194056_0 conda-forge aws-c-compression 0.2.16 ha19333d_3 conda-forge aws-c-event-stream 0.2.18 h12a9399_6 conda-forge aws-c-http 0.7.4 ha2cde00_2 conda-forge aws-c-io 0.13.17 h9189062_2 conda-forge aws-c-mqtt 0.8.6 h40d1a04_6 conda-forge aws-c-s3 0.2.4 hbdbe4f0_3 conda-forge aws-c-sdkutils 0.1.7 ha19333d_3 conda-forge aws-checksums 0.1.14 ha19333d_3 conda-forge aws-crt-cpp 0.19.7 hd018011_7 conda-forge aws-sdk-cpp 1.10.57 hb9575ba_4 conda-forge blas 1.0 openblas blinker 1.8.2 pyhd8ed1ab_0 conda-forge boltons 23.0.0 py311h6ffa863_0 boost-cpp 1.82.0 h25e6d66_2 bottleneck 1.3.5 py311h34f6284_0 brotli 1.0.9 hf118e41_7 brotli-bin 1.0.9 hf118e41_7 brotli-python 1.0.9 py311h4a02239_7 bzip2 1.0.8 h7b6447c_0 c-ares 1.19.1 hf118e41_0 ca-certificates 2024.6.2 h0f6029e_0 conda-forge cachetools 5.3.3 pyhd8ed1ab_0 conda-forge certifi 2024.6.2 pyhd8ed1ab_0 conda-forge cffi 1.15.1 py311hf118e41_3 charset-normalizer 2.0.4 pyhd3eb1b0_0 click 8.1.7 unix_pyh707e725_0 conda-forge conda 24.5.0 py311h1af927a_0 conda-forge conda-content-trust 0.2.0 py311h6ffa863_0 conda-libmamba-solver 23.11.1 py311h6ffa863_0 conda-package-handling 2.2.0 py311h6ffa863_0 conda-package-streaming 0.9.0 py311h6ffa863_0 contourpy 1.0.5 py311h25e6d66_0 cryptography 41.0.3 py311hb0e80e7_0 cudatoolkit 11.8.0 hedcfb66_13 conda-forge cudnn 8.9.2_11.8 h9ceb136_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 cycler 0.11.0 pyhd3eb1b0_0 datasets 2.12.0 py311h6ffa863_0 dill 0.3.6 py311h6ffa863_0 distro 1.9.0 pyhd8ed1ab_0 conda-forge ffmpeg 4.2.2 opence_0 https://ftp.osuosl.org/pub/open-ce/1.10.0 filelock 3.9.0 py311h6ffa863_0 fmt 9.1.0 h25e6d66_0 fonttools 4.25.0 pyhd3eb1b0_0 freetype 2.12.1 hd23a775_0 frozendict 2.4.4 py311hb02d432_0 conda-forge frozenlist 1.4.0 py311hf118e41_0 fsspec 2023.9.2 py311h6ffa863_0 gflags 2.2.2 he6710b0_0 giflib 5.2.1 hf118e41_3 glog 0.6.0 hbe088e0_0 conda-forge gmp 6.3.0 h46f38da_0 conda-forge gmpy2 2.1.5 py311h2758da7_1 conda-forge google-auth 2.30.0 pyhff2d567_0 conda-forge google-auth-oauthlib 0.5.3 pyhd8ed1ab_0 conda-forge grpc-cpp 1.51.1 h8ba971d_1 conda-forge grpcio 1.54.3 py311h414e0d3_0 https://ftp.osuosl.org/pub/open-ce/1.10.0 huggingface_hub 0.17.3 py311h6ffa863_0 icu 73.1 h4a02239_0 idna 3.4 py311h6ffa863_0 importlib-metadata 6.0.0 py311h6ffa863_0 jinja2 3.1.4 pyhd8ed1ab_0 conda-forge jpeg 9e hf118e41_1 jsonpatch 1.32 pyhd3eb1b0_0 jsonpointer 2.1 pyhd3eb1b0_0 kiwisolver 1.4.4 py311h4a02239_0 krb5 1.20.1 hc019ccd_1 lame 3.100 hb283c62_1003 conda-forge lcms2 2.12 h2045e0b_0 ld_impl_linux-ppc64le 2.38 hec883e6_1 lerc 3.0 h29c3540_0 leveldb 1.23 h24532b4_1 conda-forge libabseil 20220623.0 cxx17_h9235812_6 conda-forge libarchive 3.6.2 hd8ab008_2 libarrow 11.0.0 h837770b_5_cpu conda-forge libboost 1.82.0 haf51a6a_2 libbrotlicommon 1.0.9 hf118e41_7 libbrotlidec 1.0.9 hf118e41_7 libbrotlienc 1.0.9 hf118e41_7 libcrc32c 1.1.2 h3b9df90_0 conda-forge libcurl 8.4.0 h4d62439_0 libdeflate 1.17 hf118e41_1 libedit 3.1.20221030 hf118e41_0 libev 4.33 h140841e_1 libevent 2.1.10 h19c23f1_4 conda-forge libexpat 2.6.2 h46f38da_0 conda-forge libffi 3.4.4 h4a02239_0 libgcc-ng 13.2.0 h31e42bb_10 conda-forge libgfortran-ng 11.2.0 hb3889a9_1 libgfortran5 11.2.0 h1234567_1 libgomp 13.2.0 h31e42bb_10 conda-forge libgoogle-cloud 2.7.0 h11140b6_1 conda-forge libgrpc 1.51.1 h4d29a31_1 conda-forge libmamba 1.5.3 h7c6fafd_0 libmambapy 1.5.3 py311h828bf7b_0 libnghttp2 1.57.0 h44e5816_0 libnsl 2.0.1 ha17a0cc_0 conda-forge libopenblas 0.3.23 hc5a31fb_2 https://ftp.osuosl.org/pub/open-ce/1.10.0 libopus 1.3.1 h4e0d66e_1 conda-forge libpng 1.6.39 hf118e41_0 libprotobuf 3.21.12 h1776448_0 https://ftp.osuosl.org/pub/open-ce/1.10.0 libsolv 0.7.24 h0f529ac_0 libsqlite 3.45.3 hd4bbf49_0 conda-forge libssh2 1.10.0 h50fa78f_2 libstdcxx-ng 13.2.0 h262982c_10 conda-forge libthrift 0.18.0 h82f1162_0 conda-forge libtiff 4.5.1 h4a02239_0 libutf8proc 2.8.0 hb283c62_0 conda-forge libuuid 2.38.1 h4194056_0 conda-forge libvpx 1.13.1 h46f38da_0 conda-forge libwebp 1.3.2 h0f96ee2_0 libwebp-base 1.3.2 hf118e41_0 libxcrypt 4.4.36 ha17a0cc_1 conda-forge libxml2 2.10.4 h18e3229_1 libzlib 1.2.13 h1f2b957_6 conda-forge llvm-openmp 14.0.6 hc028133_0 https://ftp.osuosl.org/pub/open-ce/1.10.0 lmdb 0.9.31 ha17a0cc_1 conda-forge lz4-c 1.9.4 h4a02239_0 markdown 3.4.4 pyhd8ed1ab_0 conda-forge markupsafe 2.1.5 py311h32d8acf_0 conda-forge matplotlib 3.8.0 py311h6ffa863_0 matplotlib-base 3.8.0 py311h52e1fcc_0 menuinst 2.1.1 py311h1af927a_0 conda-forge mpc 1.3.1 heaf1863_0 conda-forge mpfr 4.2.1 haad2271_1 conda-forge mpmath 1.3.0 pyhd8ed1ab_0 conda-forge multidict 6.0.2 py311hf118e41_0 multiprocess 0.70.14 py311h6ffa863_0 munkres 1.1.4 py_0 mypy_extensions 1.0.0 pyha770c72_0 conda-forge nccl 2.18.3 cuda11.8_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 ncurses 6.4 h4a02239_0 nest-asyncio 1.6.0 pyhd8ed1ab_0 conda-forge networkx 2.8.8 pyhd8ed1ab_0 conda-forge nomkl 3.0 0 https://ftp.osuosl.org/pub/open-ce/1.10.0 numactl 2.0.16 hba61f60_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 numexpr 2.8.7 py311hc46fc55_0 numpy 1.24.3 py311h148a09e_0 numpy-base 1.24.3 py311h06b82f6_0 oauthlib 3.2.2 pyhd8ed1ab_0 conda-forge openjpeg 2.4.0 hfe35807_0 openssl 3.3.1 h1f2b957_0 conda-forge orc 1.8.2 h341c9a4_2 conda-forge packaging 23.1 py311h6ffa863_0 pandas 2.1.1 py311h52e1fcc_0 pcre2 10.42 h280155c_0 pillow 10.0.1 py311he33076b_0 pip 23.3 py311h6ffa863_0 platformdirs 4.2.2 pyhd8ed1ab_0 conda-forge pluggy 1.0.0 py311h6ffa863_1 pooch 1.8.2 pyhd8ed1ab_0 conda-forge protobuf 4.21.12 py311ha7baec7_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 psutil 5.9.8 py311hd26027c_0 conda-forge pyarrow 11.0.0 py311h04a18d5_1 pyasn1 0.6.0 pyhd8ed1ab_0 conda-forge pyasn1-modules 0.4.0 pyhd8ed1ab_0 conda-forge pybind11-abi 4 hd3eb1b0_1 pycosat 0.6.6 py311hf118e41_0 pycparser 2.21 pyhd3eb1b0_0 pyjwt 2.8.0 pyhd8ed1ab_1 conda-forge pyopenssl 23.2.0 py311h6ffa863_0 pyparsing 3.0.9 py311h6ffa863_0 pyre-extensions 0.0.30 pyhd8ed1ab_0 conda-forge pysocks 1.7.1 py311h6ffa863_0 python 3.11.8 h3332dee_0_cpython conda-forge python-dateutil 2.8.2 pyhd3eb1b0_0 python-tzdata 2023.3 pyhd3eb1b0_0 python-xxhash 2.0.2 py311hf118e41_1 python_abi 3.11 4_cp311 conda-forge pytorch 2.0.1 cuda11.8_py311_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 pytorch-base 2.0.1 cuda11.8_py311_pb4.21.12_4 https://ftp.osuosl.org/pub/open-ce/1.10.0 pytz 2023.3.post1 py311h6ffa863_0 pyu2f 0.1.5 pyhd8ed1ab_0 conda-forge pyyaml 6.0.1 py311hf118e41_0 re2 2023.02.01 h883269e_0 conda-forge readline 8.2 hf118e41_0 regex 2023.10.3 py311hf118e41_0 reproc 14.2.4 h29c3540_1 reproc-cpp 14.2.4 h29c3540_1 requests 2.31.0 py311h6ffa863_0 requests-oauthlib 2.0.0 pyhd8ed1ab_0 conda-forge responses 0.13.3 pyhd3eb1b0_0 rsa 4.9 pyhd8ed1ab_0 conda-forge ruamel.yaml 0.17.21 py311hf118e41_0 s2n 1.3.37 h5e47323_0 conda-forge safetensors 0.4.0 py311hda16d9e_0 scipy 1.11.1 py311hd69e9bb_0 https://ftp.osuosl.org/pub/open-ce/1.10.0 sentencepiece 0.1.97 h1e74c73_py311_pb4.21.12_2 https://ftp.osuosl.org/pub/open-ce/1.10.0 setuptools 68.0.0 py311h6ffa863_0 six 1.16.0 pyhd3eb1b0_1 snappy 1.1.9 h29c3540_0 sqlite 3.41.2 hf118e41_0 sympy 1.12.1 pypyh2585a3b_103 conda-forge tabulate 0.8.10 pyhd8ed1ab_0 conda-forge tensorboard 2.13.0 pyhab0730d_pb4.21.12_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 tensorboard-data-server 0.7.0 pyh6f84499_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 tensorboard-plugin-wit 1.6.0 pyh9f0ad1d_0 conda-forge tk 8.6.13 hd4bbf49_0 conda-forge tokenizers 0.13.3 py311h3d4f45a_0 torchdata 0.6.0 py311_2 https://ftp.osuosl.org/pub/open-ce/1.10.0 torchsnapshot 0.1.0 pyhd8ed1ab_0 conda-forge torchtext-base 0.15.2 cuda11.8_py311_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 torchtnt 0.2.4 pyhd8ed1ab_0 conda-forge torchvision-base 0.15.2 cuda11.8_py311_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 tornado 6.3.3 py311hf118e41_0 tqdm 4.65.0 py311h7837921_0 transformers 4.32.1 py311h6ffa863_0 truststore 0.8.0 py311h6ffa863_0 typing-extensions 4.7.1 py311h6ffa863_0 typing_extensions 4.7.1 py311h6ffa863_0 typing_inspect 0.9.0 pyhd8ed1ab_0 conda-forge tzdata 2023c h04d1e81_0 urllib3 1.26.18 py311h6ffa863_0 utf8proc 2.6.1 h140841e_0 werkzeug 2.3.8 pyhd8ed1ab_0 conda-forge wheel 0.41.2 py311h6ffa863_0 xxhash 0.8.0 h140841e_3 xz 5.4.2 hf118e41_0 yaml 0.2.5 h7b6447c_0 yaml-cpp 0.8.0 h4a02239_0 yarl 1.8.1 py311hf118e41_0 zipp 3.11.0 py311h6ffa863_0 zlib 1.2.13 h1f2b957_6 conda-forge zstandard 0.19.0 py311hf118e41_0 zstd 1.5.5 h57e4825_0
false
2,367,711,094
https://api.github.com/repos/huggingface/datasets/issues/6991
https://github.com/huggingface/datasets/pull/6991
6,991
Unblock NumPy 2.0
closed
21
2024-06-22T09:19:53
2024-12-25T17:57:34
2024-07-12T12:04:53
NeilGirdhar
[]
Fixes https://github.com/huggingface/datasets/issues/6980
true
2,366,660,785
https://api.github.com/repos/huggingface/datasets/issues/6990
https://github.com/huggingface/datasets/issues/6990
6,990
Problematic rank after calling `split_dataset_by_node` twice
closed
1
2024-06-21T14:25:26
2024-06-25T16:19:19
2024-06-25T16:19:19
yzhangcs
[]
### Describe the bug I'm trying to split `IterableDataset` by `split_dataset_by_node`. But when doing split on a already split dataset, the resulting `rank` is greater than `world_size`. ### Steps to reproduce the bug Here is the minimal code for reproduction: ```py >>> from datasets import load_dataset >>> from datasets.distributed import split_dataset_by_node >>> dataset = load_dataset('fla-hub/slimpajama-test', split='train', streaming=True) >>> dataset = split_dataset_by_node(dataset, 1, 32) >>> dataset._distributed DistributedConfig(rank=1, world_size=32) >>> dataset = split_dataset_by_node(dataset, 1, 15) >>> dataset._distributed DistributedConfig(rank=481, world_size=480) ``` As you can see, the second rank 481 > 480, which is problematic. ### Expected behavior I think this error comes from this line @lhoestq https://github.com/huggingface/datasets/blob/a6ccf944e42c1a84de81bf326accab9999b86c90/src/datasets/iterable_dataset.py#L2943-L2944 We may need to obtain the rank first. Then the above code gives ```py >>> dataset._distributed DistributedConfig(rank=16, world_size=480) ``` ### Environment info datasets==2.20.0
false
2,365,556,449
https://api.github.com/repos/huggingface/datasets/issues/6989
https://github.com/huggingface/datasets/issues/6989
6,989
cache in nfs error
open
1
2024-06-21T02:09:22
2025-01-29T11:44:04
null
simplew2011
[]
### Describe the bug - When reading dataset, a cache will be generated to the ~/. cache/huggingface/datasets directory - When using .map and .filter operations, runtime cache will be generated to the /tmp/hf_datasets-* directory - The default is to use the path of tempfile.tempdir - If I modify this path to the NFS disk, an error will be reported, but the program will continue to run - https://github.com/huggingface/datasets/blob/main/src/datasets/config.py#L257 ``` Traceback (most recent call last): File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/process.py", line 315, in _bootstrap self.run() File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/managers.py", line 616, in _run_server server.serve_forever() File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/managers.py", line 182, in serve_forever sys.exit(0) SystemExit: 0 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/util.py", line 300, in _run_finalizers finalizer() File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/util.py", line 224, in __call__ res = self._callback(*self._args, **self._kwargs) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/util.py", line 133, in _remove_temp_dir rmtree(tempdir) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/shutil.py", line 718, in rmtree _rmtree_safe_fd(fd, path, onerror) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/shutil.py", line 675, in _rmtree_safe_fd onerror(os.unlink, fullname, sys.exc_info()) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/shutil.py", line 673, in _rmtree_safe_fd os.unlink(entry.name, dir_fd=topfd) OSError: [Errno 16] Device or resource busy: '.nfs000000038330a012000030b4' Traceback (most recent call last): File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/process.py", line 315, in _bootstrap self.run() File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/managers.py", line 616, in _run_server server.serve_forever() File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/managers.py", line 182, in serve_forever sys.exit(0) SystemExit: 0 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/util.py", line 300, in _run_finalizers finalizer() File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/util.py", line 224, in __call__ res = self._callback(*self._args, **self._kwargs) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/util.py", line 133, in _remove_temp_dir rmtree(tempdir) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/shutil.py", line 718, in rmtree _rmtree_safe_fd(fd, path, onerror) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/shutil.py", line 675, in _rmtree_safe_fd onerror(os.unlink, fullname, sys.exc_info()) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/shutil.py", line 673, in _rmtree_safe_fd os.unlink(entry.name, dir_fd=topfd) OSError: [Errno 16] Device or resource busy: '.nfs0000000400064d4a000030e5' ``` ### Steps to reproduce the bug ``` import os import time import tempfile from datasets import load_dataset def add_column(sample): # print(type(sample)) # time.sleep(0.1) sample['__ds__stats__'] = {'data': 123} return sample def filt_column(sample): # print(type(sample)) if len(sample['content']) > 10: return True else: return False if __name__ == '__main__': input_dir = '/mnt/temp/CN/small' # some json dataset dataset = load_dataset('json', data_dir=input_dir) temp_dir = '/media/release/release/temp/temp' # a nfs folder os.makedirs(temp_dir, exist_ok=True) # change huggingface-datasets runtime cache in nfs(default in /tmp) tempfile.tempdir = temp_dir aa = dataset.map(add_column, num_proc=64) aa = aa.filter(filt_column, num_proc=64) print(aa) ``` ### Expected behavior no error occur ### Environment info datasets==2.18.0 ubuntu 20.04
false
2,364,129,918
https://api.github.com/repos/huggingface/datasets/issues/6988
https://github.com/huggingface/datasets/pull/6988
6,988
[`feat`] Move dataset card creation to method for easier overriding
open
6
2024-06-20T10:47:57
2024-06-21T16:04:58
null
tomaarsen
[]
Hello! ## Pull Request overview * Move dataset card creation to method for easier overriding ## Details It's common for me to fully automatically download, reformat, and upload a dataset (e.g. see https://huggingface.co/datasets?other=sentence-transformers), but one aspect that I cannot easily automate is the dataset card generation. This is because during `push_to_hub`, the dataset card is created in 3 lines of code in a much larger method. To automatically generate a dataset card, I need to either: 1. Subclass `Dataset`/`DatasetDict`, copy the entire `push_to_hub` method to override the ~3 lines used to generate the dataset card. This is not viable as the method is likely to change over time. 2. Use `push_to_hub` normally, then separately download the pushed (but empty) dataset card, update it, and reupload the modified dataset. This works fine, but prevents me from being able to return a `Dataset` to my users which will automatically use a nice dataset card. So, in this PR I'm proposing to move the dataset generation into another method so that it can be overridden more easily. For example, imagine the following use case: ````python import json from typing import Any, Dict, Optional from datasets import Dataset, load_dataset from datasets.info import DatasetInfosDict, DatasetInfo from datasets.utils.metadata import MetadataConfigs from huggingface_hub import DatasetCardData, DatasetCard TEMPLATE = r"""--- {dataset_card_data} --- # Dataset Card for {source_dataset_name} with mined hard negatives This dataset is a collection of {column_one}-{column_two}-negative triplets from the {source_dataset_name} dataset. See [{source_dataset_name}](https://huggingface.co/datasets/{source_dataset_id}) for additional information. This dataset can be used directly with Sentence Transformers to train embedding models. ## Mining Parameters The negative samples have been mined using the following parameters: - `range_min`: {range_min}, i.e. we skip the {range_min} most similar samples - `range_max`: {range_max}, i.e. we only look at the top {range_max} most similar samples - `margin`: {margin}, i.e. we require negative similarity + margin < positive similarity, so negative samples can't be more similar than the known true answer - `sampling_strategy`: {sampling_strategy}, i.e. whether to randomly sample from the candidate negatives or take the "top" negatives - `num_negatives`: {num_negatives}, i.e. we mine {num_negatives} negatives per question-answer pair ## Dataset Format - Columns: {column_one}, {column_two}, negative - Column types: str, str, str - Example: ```python {example} ``` """ class HNMDataset(Dataset): @classmethod def from_dict(cls, *args, mining_kwargs: Dict[str, Any], **kwargs) -> "HNMDataset": dataset = super().from_dict(*args, **kwargs) dataset.mining_kwargs = mining_kwargs return dataset def _create_dataset_card( self, dataset_card_data: DatasetCardData, dataset_card: Optional[DatasetCard], config_name: str, info_to_dump: DatasetInfo, metadata_config_to_dump: MetadataConfigs, ) -> DatasetCard: if dataset_card: return dataset_card DatasetInfosDict({config_name: info_to_dump}).to_dataset_card_data(dataset_card_data) MetadataConfigs({config_name: metadata_config_to_dump}).to_dataset_card_data(dataset_card_data) dataset_card_data.tags = ["sentence-transformers"] dataset_name = self.mining_kwargs["source_dataset"].info.dataset_name # Very messy, just as an example: dataset_id = list(self.mining_kwargs["source_dataset"].info.download_checksums.keys())[0].removeprefix("hf://datasets/").split("@")[0] content = TEMPLATE.format(**{ "dataset_card_data": str(dataset_card_data), "source_dataset_name": dataset_name, "source_dataset_id": dataset_id, "range_min": self.mining_kwargs["range_min"], "range_max": self.mining_kwargs["range_max"], "margin": self.mining_kwargs["margin"], "sampling_strategy": self.mining_kwargs["sampling_strategy"], "num_negatives": self.mining_kwargs["num_negatives"], "column_one": self.column_names[0], "column_two": self.column_names[1], "example": json.dumps(self[0], indent=4), }) return DatasetCard(content) source_dataset = load_dataset("sentence-transformers/gooaq", split="train[:100]") dataset = HNMDataset.from_dict({ "query": source_dataset["question"], "answer": source_dataset["answer"], # "negative": ... <- In my case, this column would be 'mined' automatically with these parameters }, mining_kwargs={ "range_min": 10, "range_max": 20, "max_score": 0.9, "margin": 0.1, "sampling_strategy": "random", "num_negatives": 3, "source_dataset": source_dataset, }) dataset.push_to_hub("tomaarsen/mining_demo", private=True) ```` In this script, I've created a subclass which stores some additional information about how the dataset was generated. It's a bit hacky (e.g. setting a `mining_kwargs` parameter in `from_dict` that wasn't created in `__init__`, but that's just a consequence of how the `from_...` methods don't accept kwargs), but it allows me to create a "hard negatives mining" function that returns a dataset which people can use locally like normal, but if they choose to upload it, then it'll automatically include some information, e.g.: https://huggingface.co/datasets/tomaarsen/mining_demo This allows others to actually find this dataset (e.g. via the `sentence-transformers` tag) and get an idea of the quality, source, etc. by looking at the model card. ## Note I'm not fixed on this solution whatsoever: I am also completely fine with other solutions, e.g. a `dataset.set_dataset_card_creator` method that allows me to provide a function without even having to subclass anything. I'm open to all ideas :) cc @albertvillanova @lhoestq cc @LysandreJik - Tom Aarsen
true
2,363,728,190
https://api.github.com/repos/huggingface/datasets/issues/6987
https://github.com/huggingface/datasets/pull/6987
6,987
Remove beam
closed
2
2024-06-20T07:27:14
2024-06-26T19:41:55
2024-06-26T19:35:42
albertvillanova
[]
Remove beam, as part of the 3.0 release.
true
2,362,584,179
https://api.github.com/repos/huggingface/datasets/issues/6986
https://github.com/huggingface/datasets/pull/6986
6,986
Add large_list type support in string_to_arrow
closed
1
2024-06-19T14:54:25
2024-08-12T14:43:48
2024-08-12T14:43:47
arthasking123
[]
add large_list type support in string_to_arrow() and _arrow_to_datasets_dtype() in features.py Fix #6984
true
2,362,378,276
https://api.github.com/repos/huggingface/datasets/issues/6985
https://github.com/huggingface/datasets/issues/6985
6,985
AttributeError: module 'pyarrow.lib' has no attribute 'ListViewType'
closed
14
2024-06-19T13:22:28
2025-03-14T18:47:53
2024-06-25T05:40:51
firmai
[]
### Describe the bug I have been struggling with this for two days, any help would be appreciated. Python 3.10 ``` from setfit import SetFitModel from huggingface_hub import login access_token_read = "cccxxxccc" # Authenticate with the Hugging Face Hub login(token=access_token_read) # Load the models from the Hugging Face Hub trainer_relv = SetFitModel.from_pretrained("snowdere/trainer_relevance") trainer_trust = SetFitModel.from_pretrained("snowdere/trainer_trust") trainer_sent = SetFitModel.from_pretrained("snowdere/trainer_sent") trainer_topic = SetFitModel.from_pretrained("snowdere/trainer_topic") ``` ``` --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) Cell In[6], line 1 ----> 1 from setfit import SetFitModel 2 from huggingface_hub import login 4 access_token_read = "ccsddsds" File /opt/conda/lib/python3.10/site-packages/setfit/__init__.py:7 4 import os 5 import warnings ----> 7 from .data import get_templated_dataset, sample_dataset 8 from .model_card import SetFitModelCardData 9 from .modeling import SetFitHead, SetFitModel File /opt/conda/lib/python3.10/site-packages/setfit/data.py:5 3 import pandas as pd 4 import torch ----> 5 from datasets import Dataset, DatasetDict, load_dataset 6 from torch.utils.data import Dataset as TorchDataset 8 from . import logging File /opt/conda/lib/python3.10/site-packages/datasets/__init__.py:18 1 # ruff: noqa 2 # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. 3 # (...) 13 # See the License for the specific language governing permissions and 14 # limitations under the License. 16 __version__ = "2.19.0" ---> 18 from .arrow_dataset import Dataset 19 from .arrow_reader import ReadInstruction 20 from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder File /opt/conda/lib/python3.10/site-packages/datasets/arrow_dataset.py:76 73 from tqdm.contrib.concurrent import thread_map 75 from . import config ---> 76 from .arrow_reader import ArrowReader 77 from .arrow_writer import ArrowWriter, OptimizedTypedSequence 78 from .data_files import sanitize_patterns File /opt/conda/lib/python3.10/site-packages/datasets/arrow_reader.py:29 26 from typing import TYPE_CHECKING, List, Optional, Union 28 import pyarrow as pa ---> 29 import pyarrow.parquet as pq 30 from tqdm.contrib.concurrent import thread_map 32 from .download.download_config import DownloadConfig File /opt/conda/lib/python3.10/site-packages/pyarrow/parquet/__init__.py:20 1 # Licensed to the Apache Software Foundation (ASF) under one 2 # or more contributor license agreements. See the NOTICE file 3 # distributed with this work for additional information (...) 17 18 # flake8: noqa ---> 20 from .core import * File /opt/conda/lib/python3.10/site-packages/pyarrow/parquet/core.py:33 30 import pyarrow as pa 32 try: ---> 33 import pyarrow._parquet as _parquet 34 except ImportError as exc: 35 raise ImportError( 36 "The pyarrow installation is not built with support " 37 f"for the Parquet file format ({str(exc)})" 38 ) from None File /opt/conda/lib/python3.10/site-packages/pyarrow/_parquet.pyx:1, in init pyarrow._parquet() AttributeError: module 'pyarrow.lib' has no attribute 'ListViewType' ``` setfit: 1.0.3 transformers: 4.41.2 lingua-language-detector: 2.0.2 polars: 0.20.31 lightning: None google-cloud-bigquery: 3.24.0 shapely: 2.0.4 pyarrow: 16.0.0 ### Steps to reproduce the bug I have tried all version combinations for Dataset and Pyarrow, the all have the same error since a few days ago. This is accross multiple scripts I have. ### Expected behavior Just ron normally. ### Environment info 3.10
false
2,362,143,554
https://api.github.com/repos/huggingface/datasets/issues/6984
https://github.com/huggingface/datasets/issues/6984
6,984
Convert polars DataFrame back to datasets
closed
1
2024-06-19T11:38:48
2024-08-12T14:43:46
2024-08-12T14:43:46
ljw20180420
[ "enhancement" ]
### Feature request This returns error. ```python from datasets import Dataset dsdf = Dataset.from_dict({"x": [[1, 2], [3, 4, 5]], "y": ["a", "b"]}) Dataset.from_polars(dsdf.to_polars()) ``` ValueError: Arrow type large_list<item: int64> does not have a datasets dtype equivalent. ### Motivation When datasets contain Sequence data type, it will be converted to Arrow type large_list. However, the reverse (from large_list to Sequence) does not work. ### Your contribution No
false
2,361,806,201
https://api.github.com/repos/huggingface/datasets/issues/6983
https://github.com/huggingface/datasets/pull/6983
6,983
Remove metrics
closed
2
2024-06-19T09:08:55
2024-06-28T06:57:38
2024-06-28T06:51:30
albertvillanova
[]
Remove all metrics, as part of the 3.0 release. Note they are deprecated since 2.5.0 version.
true
2,361,661,469
https://api.github.com/repos/huggingface/datasets/issues/6982
https://github.com/huggingface/datasets/issues/6982
6,982
cannot split dataset when using load_dataset
closed
3
2024-06-19T08:07:16
2024-07-08T06:20:16
2024-07-08T06:20:16
cybest0608
[]
### Describe the bug when I use load_dataset methods to load mozilla-foundation/common_voice_7_0, it can successfully download and extracted the dataset but It cannot generating the arrow document, This bug happened in my server, my laptop, so as #6906 , but it won't happen in the google colab. I work for it for days, even I load the datasets from local path, it can Generating train split and validation split but bug happen again in test split. ### Steps to reproduce the bug from datasets import load_dataset, load_metric, Audio common_voice_train = load_dataset("mozilla-foundation/common_voice_7_0", "ja", split="train", token=selftoken, trust_remote_code=True) ### Expected behavior ``` { "name": "ValueError", "message": "Instruction \"train\" corresponds to no data!", "stack": "--------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[2], line 3 1 from datasets import load_dataset, load_metric, Audio ----> 3 common_voice_train = load_dataset(\"mozilla-foundation/common_voice_7_0\", \"ja\", split=\"train\",token='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')#,trust_remote_code=True)#,streaming=True) 4 common_voice_test = load_dataset(\"mozilla-foundation/common_voice_7_0\", \"ja\", split=\"test\",token='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')#,trust_remote_code=True)#,streaming=True) File c:\\Users\\cybes\\.conda\\envs\\ECoG\\lib\\site-packages\\datasets\\load.py:2626, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) 2622 # Build dataset for splits 2623 keep_in_memory = ( 2624 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size) 2625 ) -> 2626 ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory) 2627 # Rename and cast features to match task schema 2628 if task is not None: 2629 # To avoid issuing the same warning twice File c:\\Users\\cybes\\.conda\\envs\\ECoG\\lib\\site-packages\\datasets\\builder.py:1266, in DatasetBuilder.as_dataset(self, split, run_post_process, verification_mode, ignore_verifications, in_memory) 1263 verification_mode = VerificationMode(verification_mode or VerificationMode.BASIC_CHECKS) 1265 # Create a dataset for each of the given splits -> 1266 datasets = map_nested( 1267 partial( 1268 self._build_single_dataset, 1269 run_post_process=run_post_process, 1270 verification_mode=verification_mode, 1271 in_memory=in_memory, 1272 ), 1273 split, 1274 map_tuple=True, 1275 disable_tqdm=True, 1276 ) 1277 if isinstance(datasets, dict): 1278 datasets = DatasetDict(datasets) File c:\\Users\\cybes\\.conda\\envs\\ECoG\\lib\\site-packages\\datasets\\utils\\py_utils.py:484, in map_nested(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, parallel_min_length, batched, batch_size, types, disable_tqdm, desc) 482 if batched: 483 data_struct = [data_struct] --> 484 mapped = function(data_struct) 485 if batched: 486 mapped = mapped[0] File c:\\Users\\cybes\\.conda\\envs\\ECoG\\lib\\site-packages\\datasets\\builder.py:1296, in DatasetBuilder._build_single_dataset(self, split, run_post_process, verification_mode, in_memory) 1293 split = Split(split) 1295 # Build base dataset -> 1296 ds = self._as_dataset( 1297 split=split, 1298 in_memory=in_memory, 1299 ) 1300 if run_post_process: 1301 for resource_file_name in self._post_processing_resources(split).values(): File c:\\Users\\cybes\\.conda\\envs\\ECoG\\lib\\site-packages\\datasets\\builder.py:1370, in DatasetBuilder._as_dataset(self, split, in_memory) 1368 if self._check_legacy_cache(): 1369 dataset_name = self.name -> 1370 dataset_kwargs = ArrowReader(cache_dir, self.info).read( 1371 name=dataset_name, 1372 instructions=split, 1373 split_infos=self.info.splits.values(), 1374 in_memory=in_memory, 1375 ) 1376 fingerprint = self._get_dataset_fingerprint(split) 1377 return Dataset(fingerprint=fingerprint, **dataset_kwargs) File c:\\Users\\cybes\\.conda\\envs\\ECoG\\lib\\site-packages\\datasets\\arrow_reader.py:256, in BaseReader.read(self, name, instructions, split_infos, in_memory) 254 msg = f'Instruction \"{instructions}\" corresponds to no data!' 255 #msg = f'Instruction \"{self._path}\",\"{name}\",\"{instructions}\",\"{split_infos}\" corresponds to no data!' --> 256 raise ValueError(msg) 257 return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) ValueError: Instruction \"train\" corresponds to no data!" } ``` ### Environment info Environment: python 3.9 windows 11 pro VScode+jupyter
false
2,361,520,022
https://api.github.com/repos/huggingface/datasets/issues/6981
https://github.com/huggingface/datasets/pull/6981
6,981
Update docs on trust_remote_code defaults to False
closed
2
2024-06-19T07:12:21
2024-06-19T14:32:59
2024-06-19T14:26:37
albertvillanova
[]
Update docs on trust_remote_code defaults to False. The docs needed to be updated due to this PR: - #6954
true
2,360,909,930
https://api.github.com/repos/huggingface/datasets/issues/6980
https://github.com/huggingface/datasets/issues/6980
6,980
Support NumPy 2.0
closed
0
2024-06-18T23:30:22
2024-07-12T12:04:54
2024-07-12T12:04:53
NeilGirdhar
[ "enhancement" ]
### Feature request Support NumPy 2.0. ### Motivation NumPy introduces the Array API, which bridges the gap between machine learning libraries. Many clients of HuggingFace are eager to start using the Array API. Besides that, NumPy 2 provides a cleaner interface than NumPy 1. ### Tasks NumPy 2.0 was released for testing so that libraries could ensure compatibility [since mid-March](https://github.com/numpy/numpy/issues/24300#issuecomment-1986815755). What needs to be done for HuggingFace to support Numpy 2? - [x] Fix use of `array`: https://github.com/huggingface/datasets/pull/6976 - [ ] Remove [NumPy version limit](https://github.com/huggingface/datasets/pull/6975): https://github.com/huggingface/datasets/pull/6991
false
2,360,175,363
https://api.github.com/repos/huggingface/datasets/issues/6979
https://github.com/huggingface/datasets/issues/6979
6,979
How can I load partial parquet files only?
closed
12
2024-06-18T15:44:16
2024-06-21T17:09:32
2024-06-21T13:32:50
lucasjinreal
[]
I have a HUGE dataset about 14TB, I unable to download all parquet all. I just take about 100 from it. dataset = load_dataset("xx/", data_files="data/train-001*-of-00314.parquet") How can I just using 000 - 100 from a 00314 from all partially? I search whole net didn't found a solution, **this is stupid if they didn't support it, and I swear I wont using stupid parquet any more**
false
2,359,511,469
https://api.github.com/repos/huggingface/datasets/issues/6978
https://github.com/huggingface/datasets/pull/6978
6,978
Fix regression for pandas < 2.0.0 in JSON loader
closed
3
2024-06-18T10:26:34
2024-06-19T06:23:24
2024-06-19T05:50:18
albertvillanova
[]
A regression was introduced for pandas < 2.0.0 in PR: - #6914 As described in pandas docs, the `dtype_backend` parameter was first added in pandas 2.0.0: https://pandas.pydata.org/docs/reference/api/pandas.read_json.html This PR fixes the regression by passing (or not) the `dtype_backend` parameter depending on pandas version. Maybe, in a future 3.0 `datasets` release, we could just require pandas > 2.0. Reported by: - #6977
true
2,359,295,045
https://api.github.com/repos/huggingface/datasets/issues/6977
https://github.com/huggingface/datasets/issues/6977
6,977
load json file error with v2.20.0
closed
2
2024-06-18T08:41:01
2024-06-18T10:06:10
2024-06-18T10:06:09
xiaoyaolangzhi
[]
### Describe the bug ``` load_dataset(path="json", data_files="./test.json") ``` ``` Generating train split: 0 examples [00:00, ? examples/s] Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/json/json.py", line 132, in _generate_tables pa_table = paj.read_json( File "pyarrow/_json.pyx", line 308, in pyarrow._json.read_json File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to array in row 0 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1997, in _prepare_split_single for _, table in generator: File "/usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/json/json.py", line 155, in _generate_tables df = pd.read_json(f, dtype_backend="pyarrow") File "/usr/local/lib/python3.10/dist-packages/pandas/util/_decorators.py", line 211, in wrapper return func(*args, **kwargs) File "/usr/local/lib/python3.10/dist-packages/pandas/util/_decorators.py", line 331, in wrapper return func(*args, **kwargs) TypeError: read_json() got an unexpected keyword argument 'dtype_backend' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/app/t1.py", line 11, in <module> load_dataset(path=data_path, data_files="./t2.json") File "/usr/local/lib/python3.10/dist-packages/datasets/load.py", line 2616, in load_dataset builder_instance.download_and_prepare( File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1029, in download_and_prepare self._download_and_prepare( File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1124, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1884, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 2040, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset ``` ``` import pandas as pd with open("./test.json", "r") as f: df = pd.read_json(f, dtype_backend="pyarrow") ``` ``` Traceback (most recent call last): File "/app/t3.py", line 3, in <module> df = pd.read_json(f, dtype_backend="pyarrow") File "/usr/local/lib/python3.10/dist-packages/pandas/util/_decorators.py", line 211, in wrapper return func(*args, **kwargs) File "/usr/local/lib/python3.10/dist-packages/pandas/util/_decorators.py", line 331, in wrapper return func(*args, **kwargs) TypeError: read_json() got an unexpected keyword argument 'dtype_backend' ``` ### Steps to reproduce the bug . ### Expected behavior . ### Environment info ``` datasets 2.20.0 pandas 1.5.3 ```
false
2,357,107,203
https://api.github.com/repos/huggingface/datasets/issues/6976
https://github.com/huggingface/datasets/pull/6976
6,976
Ensure compatibility with numpy 2.0.0
closed
2
2024-06-17T11:29:22
2024-06-19T14:30:32
2024-06-19T14:04:34
KennethEnevoldsen
[]
Following the conversion guide, copy=False is no longer required and will result in an error: https://numpy.org/devdocs/numpy_2_0_migration_guide.html#adapting-to-changes-in-the-copy-keyword. The following fix should resolve the issue. error found during testing on the MTEB repository e.g. [here](https://github.com/embeddings-benchmark/mteb/pull/938)
true
2,357,003,959
https://api.github.com/repos/huggingface/datasets/issues/6975
https://github.com/huggingface/datasets/pull/6975
6,975
Set temporary numpy upper version < 2.0.0 to fix CI
closed
2
2024-06-17T10:36:54
2024-06-17T12:49:53
2024-06-17T12:43:56
albertvillanova
[]
Set temporary numpy upper version < 2.0.0 to fix CI. See: https://github.com/huggingface/datasets/actions/runs/9546031216/job/26308072017 ``` A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.0 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. ```
true
2,355,517,362
https://api.github.com/repos/huggingface/datasets/issues/6973
https://github.com/huggingface/datasets/issues/6973
6,973
IndexError during training with Squad dataset and T5-small model
closed
2
2024-06-16T07:53:54
2024-07-01T11:25:40
2024-07-01T11:25:40
ramtunguturi36
[]
### Describe the bug I am encountering an IndexError while training a T5-small model on the Squad dataset using the transformers and datasets libraries. The error occurs even with a minimal reproducible example, suggesting a potential bug or incompatibility. ### Steps to reproduce the bug 1.Install the required libraries: !pip install transformers datasets 2.Run the following code: !pip install transformers datasets import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TrainingArguments, Trainer, DataCollatorWithPadding # Load a small, publicly available dataset from datasets import load_dataset dataset = load_dataset("squad", split="train[:100]") # Use a small subset for testing # Load a pre-trained model and tokenizer model_name = "t5-small" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # Define a basic data collator data_collator = DataCollatorWithPadding(tokenizer=tokenizer) # Define training arguments training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=2, num_train_epochs=1, ) # Create a trainer trainer = Trainer( model=model, args=training_args, train_dataset=dataset, data_collator=data_collator, ) # Train the model trainer.train() ### Expected behavior --------------------------------------------------------------------------- IndexError Traceback (most recent call last) [<ipython-input-23-f13a4b23c001>](https://localhost:8080/#) in <cell line: 34>() 32 33 # Train the model ---> 34 trainer.train() 10 frames [/usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py](https://localhost:8080/#) in _check_valid_index_key(key, size) 427 if isinstance(key, int): 428 if (key < 0 and key + size < 0) or (key >= size): --> 429 raise IndexError(f"Invalid key: {key} is out of bounds for size {size}") 430 return 431 elif isinstance(key, slice): IndexError: Invalid key: 42 is out of bounds for size 0 ### Environment info transformers version:4.41.2 datasets version:1.18.4 Python version:3.10.12
false
2,353,531,912
https://api.github.com/repos/huggingface/datasets/issues/6972
https://github.com/huggingface/datasets/pull/6972
6,972
Fix webdataset pickling
closed
2
2024-06-14T14:43:02
2024-06-14T15:43:43
2024-06-14T15:37:35
lhoestq
[]
...by making tracked iterables picklable. This is important to make streaming datasets compatible with multiprocessing e.g. for parallel data loading
true
2,351,830,856
https://api.github.com/repos/huggingface/datasets/issues/6971
https://github.com/huggingface/datasets/pull/6971
6,971
packaging: Remove useless dependencies
closed
4
2024-06-13T18:43:43
2024-06-14T14:03:34
2024-06-14T13:57:24
daskol
[]
Revert changes in #6396 and #6404. CVE-2023-47248 has been fixed since PyArrow v14.0.1. Meanwhile Python requirements requires `pyarrow>=15.0.0`.
true
2,351,380,029
https://api.github.com/repos/huggingface/datasets/issues/6970
https://github.com/huggingface/datasets/pull/6970
6,970
Set dev version
closed
2
2024-06-13T14:59:45
2024-06-13T15:06:18
2024-06-13T14:59:56
albertvillanova
[]
null
true
2,351,351,436
https://api.github.com/repos/huggingface/datasets/issues/6969
https://github.com/huggingface/datasets/pull/6969
6,969
Release: 2.20.0
closed
2
2024-06-13T14:48:20
2024-06-13T15:04:39
2024-06-13T14:55:53
albertvillanova
[]
null
true
2,351,331,417
https://api.github.com/repos/huggingface/datasets/issues/6968
https://github.com/huggingface/datasets/pull/6968
6,968
Use `HF_HUB_OFFLINE` instead of `HF_DATASETS_OFFLINE`
closed
3
2024-06-13T14:39:40
2024-06-13T17:31:37
2024-06-13T17:25:37
Wauplin
[]
To use `datasets` offline, one can use the `HF_DATASETS_OFFLINE` environment variable. This PR makes `HF_HUB_OFFLINE` the recommended environment variable for offline training. Goal is to be more consistent with the rest of HF ecosystem and have a single config value to set. The changes are backward-compatible meaning that: - `HF_DATASETS_OFFLINE` environment is still taken into account, though not documented - `datasets.config.HF_DATASETS_OFFLINE` still exists, though it is not used anymore (in favor of `datasets.config.HF_HUB_OFFLINE`) **Note:** it might break things in downstream libraries if they were monkeypatching `datasets.config.HF_DATASETS_OFFLINE` in their CI tests (for instance). Not much of a problem IMO.
true
2,349,146,398
https://api.github.com/repos/huggingface/datasets/issues/6967
https://github.com/huggingface/datasets/issues/6967
6,967
Method to load Laion400m
open
0
2024-06-12T16:04:04
2024-06-12T16:04:04
null
humanely
[ "enhancement" ]
### Feature request Large datasets like Laion400m are provided as embeddings. The provided methods in load_dataset are not straightforward for loading embedding files, i.e. img_emb_XX.npy ; XX = 0 to 99 ### Motivation The trial and experimentation is the key pivot of HF. It would be great if HF can load embeddings files s,ealessly. ### Your contribution I cam write the loader with some help.
false
2,348,934,466
https://api.github.com/repos/huggingface/datasets/issues/6966
https://github.com/huggingface/datasets/pull/6966
6,966
Remove underlines between badges
closed
1
2024-06-12T14:32:11
2024-06-19T14:16:21
2024-06-19T14:10:11
andrewhong04
[]
## Before: <img width="935" alt="image" src="https://github.com/huggingface/datasets/assets/35881688/93666e72-059b-4180-9e1d-ff176a3d9dac"> ## After: <img width="956" alt="image" src="https://github.com/huggingface/datasets/assets/35881688/75df7c3e-f473-44f0-a872-eeecf6a85fe2">
true
2,348,653,895
https://api.github.com/repos/huggingface/datasets/issues/6965
https://github.com/huggingface/datasets/pull/6965
6,965
Improve skip take shuffling and distributed
closed
2
2024-06-12T12:30:27
2024-06-24T15:22:21
2024-06-24T15:16:16
lhoestq
[]
set the right behavior of skip/take depending on whether it's called after or before shuffle/split_by_node
true
2,344,973,229
https://api.github.com/repos/huggingface/datasets/issues/6964
https://github.com/huggingface/datasets/pull/6964
6,964
Fix resuming arrow format
closed
2
2024-06-10T22:40:33
2024-06-14T15:04:49
2024-06-14T14:58:37
lhoestq
[]
following https://github.com/huggingface/datasets/pull/6658
true
2,344,269,477
https://api.github.com/repos/huggingface/datasets/issues/6963
https://github.com/huggingface/datasets/pull/6963
6,963
[Streaming] retry on requests errors
closed
3
2024-06-10T15:51:56
2024-06-28T09:53:11
2024-06-28T09:46:52
lhoestq
[]
reported in https://discuss.huggingface.co/t/speeding-up-streaming-of-large-datasets-fineweb/90714/6 when training using a streaming a dataloader cc @Wauplin it looks like the retries from `hfh` are not always enough. In this PR I let `datasets` do additional retries (that users can configure in `datasets.config`) since I couldn't find an easy way to increase the max_retries for `hfh` users in general.
true
2,343,394,378
https://api.github.com/repos/huggingface/datasets/issues/6962
https://github.com/huggingface/datasets/pull/6962
6,962
fix(ci): remove unnecessary permissions
closed
2
2024-06-10T09:28:02
2024-06-11T08:31:52
2024-06-11T08:25:47
McPatate
[]
### What does this PR do? Remove unnecessary permissions granted to the actions workflow. Sorry for the mishap.
true
2,342,022,418
https://api.github.com/repos/huggingface/datasets/issues/6961
https://github.com/huggingface/datasets/issues/6961
6,961
Manual downloads should count as downloads
open
1
2024-06-09T04:52:06
2024-06-13T16:05:00
null
umarbutler
[ "enhancement" ]
### Feature request I would like to request that manual downloads of data files from Hugging Face dataset repositories count as downloads of a dataset. According to the documentation for the Hugging Face Hub, that is currently not the case: https://huggingface.co/docs/hub/en/datasets-download-stats ### Motivation This would ensure that downloads are accurately reported to end users. ### Your contribution N/A
false
2,340,791,685
https://api.github.com/repos/huggingface/datasets/issues/6960
https://github.com/huggingface/datasets/pull/6960
6,960
feat(ci): add trufflehog secrets detection
closed
3
2024-06-07T16:18:23
2024-06-08T14:58:27
2024-06-08T14:52:18
McPatate
[]
### What does this PR do? Adding a GH action to scan for leaked secrets on each commit.
true
2,340,229,908
https://api.github.com/repos/huggingface/datasets/issues/6959
https://github.com/huggingface/datasets/pull/6959
6,959
Better error handling in `dataset_module_factory`
closed
3
2024-06-07T11:24:15
2024-06-10T07:33:53
2024-06-10T07:27:43
Wauplin
[]
cc @cakiki who reported it on [slack](https://huggingface.slack.com/archives/C039P47V1L5/p1717754405578539) (private link) This PR updates how errors are handled in `dataset_module_factory` when the `dataset_info` cannot be accessed: 1. Use multiple `except ... as e` instead of using `isinstance(e, ...)` 2. Always raise `DatasetNotFoundError` with `from e` so that the initial error is explicitly logged in the stacktrace. 3. Differentiate `RepoNotFoundError` / `GatedRepoError` / `RevisionNotFoundError` cases
true
2,337,476,383
https://api.github.com/repos/huggingface/datasets/issues/6958
https://github.com/huggingface/datasets/issues/6958
6,958
My Private Dataset doesn't exist on the Hub or cannot be accessed
closed
8
2024-06-06T06:52:19
2024-07-01T11:27:46
2024-07-01T11:27:46
wangguan1995
[]
### Describe the bug ``` File "/root/miniconda3/envs/gino_conda/lib/python3.9/site-packages/datasets/load.py", line 1852, in dataset_module_factory raise DatasetNotFoundError(msg + f" at revision '{revision}'" if revision else msg) datasets.exceptions.DatasetNotFoundError: Dataset 'xxx' doesn't exist on the Hub or cannot be accessed >>> dataset = load_dataset("xxxx", token=True) 404 error 404 Client Error. (Request ID: Root=xxxx) Repository Not Found for url: https://huggingface.co/api/datasets/xxx/xxx. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/root/miniconda3/envs/gino_conda/lib/python3.9/site-packages/datasets/load.py", line 2593, in load_dataset builder_instance = load_dataset_builder( File "/root/miniconda3/envs/gino_conda/lib/python3.9/site-packages/datasets/load.py", line 2265, in load_dataset_builder dataset_module = dataset_module_factory( File "/root/miniconda3/envs/gino_conda/lib/python3.9/site-packages/datasets/load.py", line 1910, in dataset_module_factory raise e1 from None File "/root/miniconda3/envs/gino_conda/lib/python3.9/site-packages/datasets/load.py", line 1852, in dataset_module_factory raise DatasetNotFoundError(msg + f" at revision '{revision}'" if revision else msg) datasets.exceptions.DatasetNotFoundError: Dataset 'xxx' doesn't exist on the Hub or cannot be accessed ``` ### Steps to reproduce the bug 123 ### Expected behavior 123 ### Environment info 123
false
2,335,559,400
https://api.github.com/repos/huggingface/datasets/issues/6957
https://github.com/huggingface/datasets/pull/6957
6,957
Fix typos in docs
closed
2
2024-06-05T10:46:47
2024-06-05T13:01:07
2024-06-05T12:43:26
albertvillanova
[]
Fix typos in docs introduced by: - #6956 Typos: - `comparisions` => `comparisons` - two consecutive sentences both ending in colon - split one sentence into two Sorry, I did not have time to review that PR. CC: @lhoestq
true
2,333,940,021
https://api.github.com/repos/huggingface/datasets/issues/6956
https://github.com/huggingface/datasets/pull/6956
6,956
update docs on N-dim arrays
closed
2
2024-06-04T16:32:19
2024-06-04T16:46:34
2024-06-04T16:40:27
lhoestq
[]
null
true
2,333,802,815
https://api.github.com/repos/huggingface/datasets/issues/6955
https://github.com/huggingface/datasets/pull/6955
6,955
Fix small typo
closed
1
2024-06-04T15:19:02
2024-06-05T10:18:56
2024-06-04T15:20:55
marcenacp
[]
null
true
2,333,530,558
https://api.github.com/repos/huggingface/datasets/issues/6954
https://github.com/huggingface/datasets/pull/6954
6,954
Remove default `trust_remote_code=True`
closed
6
2024-06-04T13:22:56
2024-06-17T16:32:24
2024-06-07T12:20:29
lhoestq
[]
TODO: - [x] fix tests
true
2,333,366,120
https://api.github.com/repos/huggingface/datasets/issues/6953
https://github.com/huggingface/datasets/issues/6953
6,953
Remove canonical datasets from docs
closed
1
2024-06-04T12:09:03
2024-07-01T11:31:25
2024-07-01T11:31:25
albertvillanova
[ "documentation" ]
Remove canonical datasets from docs, now that we no longer have canonical datasets.
false
2,333,320,411
https://api.github.com/repos/huggingface/datasets/issues/6952
https://github.com/huggingface/datasets/pull/6952
6,952
Move info_utils errors to exceptions module
closed
2
2024-06-04T11:48:32
2024-06-10T14:09:59
2024-06-10T14:03:55
albertvillanova
[]
Move `info_utils` errors to `exceptions` module. Additionally rename some of them, deprecate the former ones, and make the deprecation backward compatible (by making the new errors inherit from the former ones).
true
2,333,231,042
https://api.github.com/repos/huggingface/datasets/issues/6951
https://github.com/huggingface/datasets/issues/6951
6,951
load_dataset() should load all subsets, if no specific subset is specified
closed
5
2024-06-04T11:02:33
2024-11-26T08:32:18
2024-07-01T11:33:10
windmaple
[ "enhancement" ]
### Feature request Currently load_dataset() is forcing users to specify a subset. Example `from datasets import load_dataset dataset = load_dataset("m-a-p/COIG-CQIA")` ```--------------------------------------------------------------------------- ValueError Traceback (most recent call last) [<ipython-input-10-c0cb49385da6>](https://localhost:8080/#) in <cell line: 2>() 1 from datasets import load_dataset ----> 2 dataset = load_dataset("m-a-p/COIG-CQIA") 3 frames [/usr/local/lib/python3.10/dist-packages/datasets/builder.py](https://localhost:8080/#) in _create_builder_config(self, config_name, custom_features, **config_kwargs) 582 if not config_kwargs: 583 example_of_usage = f"load_dataset('{self.dataset_name}', '{self.BUILDER_CONFIGS[0].name}')" --> 584 raise ValueError( 585 "Config name is missing." 586 f"\nPlease pick one among the available configs: {list(self.builder_configs.keys())}" ValueError: Config name is missing. Please pick one among the available configs: ['chinese_traditional', 'coig_pc', 'exam', 'finance', 'douban', 'human_value', 'logi_qa', 'ruozhiba', 'segmentfault', 'wiki', 'wikihow', 'xhs', 'zhihu'] Example of usage: `load_dataset('coig-cqia', 'chinese_traditional')` ``` This means a dataset cannot contain all the subsets at the same time. I guess one workaround is to manually specify the subset files like in [here](https://huggingface.co/datasets/m-a-p/COIG-CQIA/discussions/1#658698b44bb41498f75c5622), which is clumsy. ### Motivation Ideally, if not subset is specified, the API should just try to load all subsets. This makes it much easier to handle datasets w/ subsets. ### Your contribution Not sure since I'm not familiar w/ the lib src.
false
2,333,005,974
https://api.github.com/repos/huggingface/datasets/issues/6950
https://github.com/huggingface/datasets/issues/6950
6,950
`Dataset.with_format` behaves inconsistently with documentation
closed
2
2024-06-04T09:18:32
2024-06-25T08:05:49
2024-06-25T08:05:49
iansheng
[ "documentation" ]
### Describe the bug The actual behavior of the interface `Dataset.with_format` is inconsistent with the documentation. https://huggingface.co/docs/datasets/use_with_pytorch#n-dimensional-arrays https://huggingface.co/docs/datasets/v2.19.0/en/use_with_tensorflow#n-dimensional-arrays > If your dataset consists of N-dimensional arrays, you will see that by default they are considered as nested lists. > In particular, a PyTorch formatted dataset outputs nested lists instead of a single tensor. > A TensorFlow formatted dataset outputs a RaggedTensor instead of a single tensor. But I get a single tensor by default, which is inconsistent with the description. Actually the current behavior seems more reasonable to me. Therefore, the document needs to be modified. ### Steps to reproduce the bug ```python >>> from datasets import Dataset >>> data = [[[1, 2],[3, 4]],[[5, 6],[7, 8]]] >>> ds = Dataset.from_dict({"data": data}) >>> ds = ds.with_format("torch") >>> ds[0] {'data': tensor([[1, 2], [3, 4]])} >>> ds = ds.with_format("tf") >>> ds[0] {'data': <tf.Tensor: shape=(2, 2), dtype=int64, numpy= array([[1, 2], [3, 4]])>} ``` ### Expected behavior ```python >>> from datasets import Dataset >>> data = [[[1, 2],[3, 4]],[[5, 6],[7, 8]]] >>> ds = Dataset.from_dict({"data": data}) >>> ds = ds.with_format("torch") >>> ds[0] {'data': [tensor([1, 2]), tensor([3, 4])]} >>> ds = ds.with_format("tf") >>> ds[0] {'data': <tf.RaggedTensor [[1, 2], [3, 4]]>} ``` ### Environment info datasets==2.19.1 torch==2.1.0 tensorflow==2.13.1
false
2,332,336,573
https://api.github.com/repos/huggingface/datasets/issues/6949
https://github.com/huggingface/datasets/issues/6949
6,949
load_dataset error
closed
2
2024-06-04T01:24:45
2024-07-01T11:33:46
2024-07-01T11:33:46
frederichen01
[]
### Describe the bug Why does the program get stuck when I use load_dataset method, and it still gets stuck after loading for several hours? In fact, my json file is only 21m, and I can load it in one go using open('', 'r'). ### Steps to reproduce the bug 1. pip install datasets==2.19.2 2. from datasets import Dataset, DatasetDict, NamedSplit, Split, load_dataset 3. data = load_dataset('json', data_files='train.json') ### Expected behavior It is able to load my json correctly ### Environment info datasets==2.19.2
false
2,331,758,300
https://api.github.com/repos/huggingface/datasets/issues/6948
https://github.com/huggingface/datasets/issues/6948
6,948
to_tf_dataset: Visible devices cannot be modified after being initialized
open
0
2024-06-03T18:10:57
2024-06-03T18:10:57
null
logasja
[]
### Describe the bug When trying to use to_tf_dataset with a custom data_loader collate_fn when I use parallelism I am met with the following error as many times as number of workers there were in ``num_workers``. File "/opt/miniconda/envs/env/lib/python3.11/site-packages/multiprocess/process.py", line 314, in _bootstrap self.run() File "/opt/miniconda/envs/env/lib/python3.11/site-packages/multiprocess/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/opt/miniconda/envs/env/lib/python3.11/site-packages/datasets/utils/tf_utils.py", line 438, in worker_loop tf.config.set_visible_devices([], "GPU") # Make sure workers don't try to allocate GPU memory ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/miniconda/envs/env/lib/python3.11/site-packages/tensorflow/python/framework/config.py", line 566, in set_visible_devices context.context().set_visible_devices(devices, device_type) File "/opt/miniconda/envs/env/lib/python3.11/site-packages/tensorflow/python/eager/context.py", line 1737, in set_visible_devices raise RuntimeError( RuntimeError: Visible devices cannot be modified after being initialized ### Steps to reproduce the bug 1. Download a dataset using HuggingFace load_dataset 2. Define a function that transforms the data in some way to be used in the collate_fn argument 3. Provide a ``batch_size`` and ``num_workers`` value in the ``to_tf_dataset`` function 4. Either retrieve directly or use tfds benchmark to test the dataset ``` python from datasets import load_datasets import tensorflow_datasets as tfds from keras_cv.layers import Resizing def data_loader(examples): x = Resizing(examples[0]['image'], 256, 256, crop_to_aspect_ratio=True) return {X[0]: x} ds = load_datasets("logasja/FDF", split="test") ds = ds.to_tf_dataset(collate_fn=data_loader, batch_size=16, num_workers=2) tfds.benchmark(ds) ``` ### Expected behavior Use multiple processes to apply transformations from the collate_fn to the tf dataset on the CPU. ### Environment info - `datasets` version: 2.19.1 - Platform: Linux-6.5.0-1023-oracle-x86_64-with-glibc2.35 - Python version: 3.11.8 - `huggingface_hub` version: 0.22.2 - PyArrow version: 15.0.2 - Pandas version: 2.2.1 - `fsspec` version: 2024.2.0
false
2,331,114,055
https://api.github.com/repos/huggingface/datasets/issues/6947
https://github.com/huggingface/datasets/issues/6947
6,947
FileNotFoundError:error when loading C4 dataset
closed
15
2024-06-03T13:06:33
2024-06-25T06:21:28
2024-06-25T06:21:28
W-215
[]
### Describe the bug can't load c4 datasets When I replace the datasets package to 2.12.2 I get raise datasets.utils.info_utils.ExpectedMoreSplits: {'train'} How can I fix this? ### Steps to reproduce the bug 1.from datasets import load_dataset 2.dataset = load_dataset('allenai/c4', data_files={'validation': 'en/c4-validation.00003-of-00008.json.gz'}, split='validation') 3. raise FileNotFoundError( FileNotFoundError: Couldn't find a dataset script at local_path/c4_val/allenai/c4/c4.py or any data file in the same directory. Couldn't find 'allenai/c4' on the Hugging Face Hub either: FileNotFoundError: Unable to find 'hf://datasets/allenai/c4@1588ec454efa1a09f29cd18ddd04fe05fc8653a2/en/c4-validation.00003-of-00008.json.gz' with any supported extension ['.csv', '.tsv', '.json', '.jsonl', '.parquet', '.geoparquet', '.gpq', '.arrow', '.txt', '.tar', '.blp', '.bmp', '.dib', '.bufr', '.cur', '.pcx', '.dcx', '.dds', '.ps', '.eps', '.fit', '.fits', '.fli', '.flc', '.ftc', '.ftu', '.gbr', '.gif', '.grib', '.h5', '.hdf', '.png', '.apng', '.jp2', '.j2k', '.jpc', '.jpf', '.jpx', '.j2c', '.icns', '.ico', '.im', '.iim', '.tif', '.tiff', '.jfif', '.jpe', '.jpg', '.jpeg', '.mpg', '.mpeg', '.msp', '.pcd', '.pxr', '.pbm', '.pgm', '.ppm', '.pnm', '.psd', '.bw', '.rgb', '.rgba', '.sgi', '.ras', '.tga', '.icb', '.vda', '.vst', '.webp', '.wmf', '.emf', '.xbm', '.xpm', '.BLP', '.BMP', '.DIB', '.BUFR', '.CUR', '.PCX', '.DCX', '.DDS', '.PS', '.EPS', '.FIT', '.FITS', '.FLI', '.FLC', '.FTC', '.FTU', '.GBR', '.GIF', '.GRIB', '.H5', '.HDF', '.PNG', '.APNG', '.JP2', '.J2K', '.JPC', '.JPF', '.JPX', '.J2C', '.ICNS', '.ICO', '.IM', '.IIM', '.TIF', '.TIFF', '.JFIF', '.JPE', '.JPG', '.JPEG', '.MPG', '.MPEG', '.MSP', '.PCD', '.PXR', '.PBM', '.PGM', '.PPM', '.PNM', '.PSD', '.BW', '.RGB', '.RGBA', '.SGI', '.RAS', '.TGA', '.ICB', '.VDA', '.VST', '.WEBP', '.WMF', '.EMF', '.XBM', '.XPM', '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', '.AIFF', '.AU', '.AVR', '.CAF', '.FLAC', '.HTK', '.SVX', '.MAT4', '.MAT5', '.MPC2K', '.OGG', '.PAF', '.PVF', '.RAW', '.RF64', '.SD2', '.SDS', '.IRCAM', '.VOC', '.W64', '.WAV', '.NIST', '.WAVEX', '.WVE', '.XI', '.MP3', '.OPUS', '.zip'] ### Expected behavior The data was successfully imported ### Environment info python version 3.9 datasets version 2.19.2
false
2,330,276,848
https://api.github.com/repos/huggingface/datasets/issues/6946
https://github.com/huggingface/datasets/pull/6946
6,946
Re-enable import sorting disabled by flake8:noqa directive when using ruff linter
closed
2
2024-06-03T06:24:47
2024-06-04T10:00:08
2024-06-04T09:54:23
albertvillanova
[]
Re-enable import sorting that was wrongly disabled by `flake8: noqa` directive after switching to `ruff` linter in datasets-2.10.0 PR: - #5519 Note that after the linter switch, we wrongly replaced `flake8: noqa` with `ruff: noqa` in datasets-2.17.0 PR: - #6619 That replacement was wrong because we kept the `isort: skip` directives although they were indeed disabled by `flake8: noqa` first and by `ruff: noqa` afterwards. See for example `__init__.py` file after the linter switch: - We kept the `flake8: noqa` directive https://github.com/huggingface/datasets/blob/06ae3f678651bfbb3ca7dd3274ee2f38e0e0237e/src/datasets/__init__.py#L1 - Whereas we also kept the `isort: skip` directives (that were disabled) https://github.com/huggingface/datasets/blob/06ae3f678651bfbb3ca7dd3274ee2f38e0e0237e/src/datasets/__init__.py#L82-L84 Fix #6942.
true
2,330,224,869
https://api.github.com/repos/huggingface/datasets/issues/6945
https://github.com/huggingface/datasets/pull/6945
6,945
Update yanked version of minimum requests requirement
closed
5
2024-06-03T05:45:50
2024-06-18T07:36:15
2024-06-03T06:09:43
albertvillanova
[]
Update yanked version of minimum requests requirement. Version 2.32.1 was yanked: https://pypi.org/project/requests/2.32.1/
true
2,330,207,120
https://api.github.com/repos/huggingface/datasets/issues/6944
https://github.com/huggingface/datasets/pull/6944
6,944
Set dev version
closed
2
2024-06-03T05:29:59
2024-06-03T05:37:51
2024-06-03T05:31:47
albertvillanova
[]
null
true
2,330,176,890
https://api.github.com/repos/huggingface/datasets/issues/6943
https://github.com/huggingface/datasets/pull/6943
6,943
Release 2.19.2
closed
1
2024-06-03T05:01:50
2024-06-03T05:17:41
2024-06-03T05:17:40
albertvillanova
[]
null
true
2,329,562,382
https://api.github.com/repos/huggingface/datasets/issues/6942
https://github.com/huggingface/datasets/issues/6942
6,942
Import sorting is disabled by flake8 noqa directive after switching to ruff linter
closed
0
2024-06-02T09:43:34
2024-06-04T09:54:24
2024-06-04T09:54:24
albertvillanova
[ "maintenance" ]
When we switched to `ruff` linter in PR: - #5519 import sorting was disabled in all files containing the `# flake8: noqa` directive - https://github.com/astral-sh/ruff/issues/11679 We should re-enable import sorting on those files.
false
2,328,930,165
https://api.github.com/repos/huggingface/datasets/issues/6941
https://github.com/huggingface/datasets/issues/6941
6,941
Supporting FFCV: Fast Forward Computer Vision
open
0
2024-06-01T05:34:52
2024-06-01T05:34:52
null
Luciennnnnnn
[ "enhancement" ]
### Feature request Supporting FFCV, https://github.com/libffcv/ffcv ### Motivation According to the benchmark, FFCV seems to be fastest image loading method. ### Your contribution no
false
2,328,637,831
https://api.github.com/repos/huggingface/datasets/issues/6940
https://github.com/huggingface/datasets/issues/6940
6,940
Enable Sharding to Equal Sized Shards
open
0
2024-05-31T21:55:50
2024-06-01T07:34:12
null
yuvalkirstain
[ "enhancement" ]
### Feature request Add an option when sharding a dataset to have all shards the same size. Will be good to provide both an option of duplication, and by truncation. ### Motivation Currently the behavior of sharding is "If n % i == l, then the first l shards will have length (n // i) + 1, and the remaining shards will have length (n // i).". However, when using FSDP we want the shards to have the same size. This requires the user to manually handle this situation, but it will be nice if we had an option to shard the dataset into equally sized shards. ### Your contribution For now just a PR. I can also add code that does what is needed, but probably not efficient. Shard to equal size by duplication: ``` remainder = len(dataset) % num_shards num_missing_examples = num_shards - remainder duplicated = dataset.select(list(range(num_missing_examples))) dataset = concatenate_datasets([dataset, duplicated]) shard = dataset.shard(num_shards, shard_idx) ``` Or by truncation: ``` shard = dataset.shard(num_shards, shard_idx) num_examples_per_shard = len(dataset) // num_shards shard = shard.select(list(range(num_examples_per_shard))) ```
false
2,328,059,386
https://api.github.com/repos/huggingface/datasets/issues/6939
https://github.com/huggingface/datasets/issues/6939
6,939
ExpectedMoreSplits error when using data_dir
closed
0
2024-05-31T15:08:42
2024-05-31T17:10:39
2024-05-31T17:10:39
albertvillanova
[ "bug" ]
As reported by @regisss, an `ExpectedMoreSplits` error is raised when passing `data_dir`: ```python from datasets import load_dataset dataset = load_dataset( "lvwerra/stack-exchange-paired", split="train", cache_dir=None, data_dir="data/rl", ) ``` ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python3.10/dist-packages/datasets/load.py", line 2609, in load_dataset builder_instance.download_and_prepare( File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1027, in download_and_prepare self._download_and_prepare( File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1140, in _download_and_prepare verify_splits(self.info.splits, split_dict) File "/usr/local/lib/python3.10/dist-packages/datasets/utils/info_utils.py", line 92, in verify_splits raise ExpectedMoreSplits(str(set(expected_splits) - set(recorded_splits))) datasets.utils.info_utils.ExpectedMoreSplits: {'test'} ```
false
2,327,568,281
https://api.github.com/repos/huggingface/datasets/issues/6938
https://github.com/huggingface/datasets/pull/6938
6,938
Fix expected splits when passing data_files or dir
closed
2
2024-05-31T11:04:22
2024-05-31T15:28:03
2024-05-31T15:28:02
lhoestq
[]
reported on slack: The following code snippet gives an error with v2.19 but not with v2.18: from datasets import load_dataset ``` dataset = load_dataset( "lvwerra/stack-exchange-paired", split="train", cache_dir=None, data_dir="data/rl", ) ``` and the error is: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python3.10/dist-packages/datasets/load.py", line 2609, in load_dataset builder_instance.download_and_prepare( File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1027, in download_and_prepare self._download_and_prepare( File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1140, in _download_and_prepare verify_splits(self.info.splits, split_dict) File "/usr/local/lib/python3.10/dist-packages/datasets/utils/info_utils.py", line 92, in verify_splits raise ExpectedMoreSplits(str(set(expected_splits) - set(recorded_splits))) datasets.utils.info_utils.ExpectedMoreSplits: {'test'} ```
true
2,327,212,611
https://api.github.com/repos/huggingface/datasets/issues/6937
https://github.com/huggingface/datasets/issues/6937
6,937
JSON loader implicitly coerces floats to integers
open
1
2024-05-31T08:09:12
2025-06-24T05:49:20
null
albertvillanova
[ "bug" ]
The JSON loader implicitly coerces floats to integers. The column values `[0.0, 1.0, 2.0]` are coerced to `[0, 1, 2]`. See CI error in dataset-viewer: https://github.com/huggingface/dataset-viewer/actions/runs/9290164936/job/25576926446 ``` =================================== FAILURES =================================== ___________________________ test_statistics_endpoint ___________________________ normal_user_public_json_dataset = 'DVUser/tmp-dataset-17170199043860' def test_statistics_endpoint(normal_user_public_json_dataset: str) -> None: dataset = normal_user_public_json_dataset config, split = get_default_config_split() statistics_response = poll_until_ready_and_assert( relative_url=f"/statistics?dataset={dataset}&config={config}&split={split}", check_x_revision=True, dataset=dataset, ) content = statistics_response.json() assert len(content) == 3 assert sorted(content) == ["num_examples", "partial", "statistics"], statistics_response statistics = content["statistics"] num_examples = content["num_examples"] partial = content["partial"] assert isinstance(statistics, list), statistics assert len(statistics) == 6 assert num_examples == 4 assert partial is False string_label_column = statistics[0] assert "column_name" in string_label_column assert "column_statistics" in string_label_column assert "column_type" in string_label_column assert string_label_column["column_name"] == "col_1" assert string_label_column["column_type"] == "string_label" # 4 unique values -> label assert isinstance(string_label_column["column_statistics"], dict) assert string_label_column["column_statistics"] == { "nan_count": 0, "nan_proportion": 0.0, "no_label_count": 0, "no_label_proportion": 0.0, "n_unique": 4, "frequencies": { "There goes another one.": 1, "Vader turns round and round in circles as his ship spins into space.": 1, "We count thirty Rebel ships, Lord Vader.": 1, "The wingman spots the pirateship coming at him and warns the Dark Lord": 1, }, } int_column = statistics[1] assert "column_name" in int_column assert "column_statistics" in int_column assert "column_type" in int_column assert int_column["column_name"] == "col_2" assert int_column["column_type"] == "int" assert isinstance(int_column["column_statistics"], dict) assert int_column["column_statistics"] == { "histogram": {"bin_edges": [0, 1, 2, 3, 3], "hist": [1, 1, 1, 1]}, "max": 3, "mean": 1.5, "median": 1.5, "min": 0, "nan_count": 0, "nan_proportion": 0.0, "std": 1.29099, } float_column = statistics[2] assert "column_name" in float_column assert "column_statistics" in float_column assert "column_type" in float_column assert float_column["column_name"] == "col_3" > assert float_column["column_type"] == "float" E AssertionError: assert 'int' == 'float' E - float E + int tests/test_14_statistics.py:72: AssertionError =========================== short test summary info ============================ FAILED tests/test_14_statistics.py::test_statistics_endpoint - AssertionError: assert 'int' == 'float' - float + int ``` This bug was introduced after: - #6914 We have reported the issue to pandas: - https://github.com/pandas-dev/pandas/issues/58866
false
2,326,119,853
https://api.github.com/repos/huggingface/datasets/issues/6936
https://github.com/huggingface/datasets/issues/6936
6,936
save_to_disk() freezes when saving on s3 bucket with multiprocessing
open
3
2024-05-30T16:48:39
2025-02-06T22:12:52
null
ycattan
[]
### Describe the bug I'm trying to save a `Dataset` using the `save_to_disk()` function with: - `num_proc > 1` - `dataset_path` being a s3 bucket path e.g. "s3://{bucket_name}/{dataset_folder}/" The hf progress bar shows up but the saving does not seem to start. When using one processor only (`num_proc=1`), everything works fine. When saving the dataset on local disk (as opposed to s3 bucket) with `num_proc > 1`, everything works fine. Thank you for your help! :) ### Steps to reproduce the bug I tried without any storage options: ``` from datasets import load_dataset sandbox_ds = load_dataset("openai_humaneval") sandbox_ds["test"].save_to_disk( "s3://bucket-name/test_multiprocessing_saving/", num_proc=4, ) ``` and with the specific s3fs storage options: ``` from datasets import load_dataset from s3fs import S3FileSystem def get_s3fs(): return S3FileSystem() sandbox_ds = load_dataset("openai_humaneval") sandbox_ds["test"].save_to_disk( "s3://bucket-name/test_multiprocessing_saving/", num_proc=4, storage_options=get_s3fs().storage_options, # also tried: storage_options=S3FileSystem().storage_options ) ``` I'm guessing I might use `storage_options` parameter wrongly, but I didn't find anything online that made it work. **NB**: Behavior is the same when trying to save the whole `DatasetDict`. ### Expected behavior Progress bar fills in and saving is carried out. ### Environment info `datasets==2.18.0`
false
2,325,612,022
https://api.github.com/repos/huggingface/datasets/issues/6935
https://github.com/huggingface/datasets/issues/6935
6,935
Support for pathlib.Path in datasets 2.19.0
open
2
2024-05-30T12:53:36
2025-01-14T11:50:22
null
lamyiowce
[]
### Describe the bug After the recent update of `datasets`, Dataset.save_to_disk does not accept a pathlib.Path anymore. It was supported in 2.18.0 and previous versions. Is this intentional? Was it supported before only because of a Python dusk-typing miracle? ### Steps to reproduce the bug ``` from datasets import Dataset import pathlib path = pathlib.Path("./my_out_path") Dataset.from_dict( {"text": ["hello world"], "label": [777], "split": ["train"]} .save_to_disk(path) ``` This results in an error when using datasets 2.19: ``` Traceback (most recent call last): File "<stdin>", line 3, in <module> File "/Users/jb/scratch/venv/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 1515, in save_to_disk fs, _ = url_to_fs(dataset_path, **(storage_options or {})) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/jb/scratch/venv/lib/python3.11/site-packages/fsspec/core.py", line 383, in url_to_fs chain = _un_chain(url, kwargs) ^^^^^^^^^^^^^^^^^^^^^^ File "/Users/jb/scratch/venv/lib/python3.11/site-packages/fsspec/core.py", line 323, in _un_chain if "::" in path ^^^^^^^^^^^^ TypeError: argument of type 'PosixPath' is not iterable ``` Converting to str works, however. ``` Dataset.from_dict( {"text": ["hello world"], "label": [777], "split": ["train"]} ).save_to_disk(str(path)) ``` ### Expected behavior My dataset gets saved to disk without an error. ### Environment info aiohttp==3.9.5 aiosignal==1.3.1 attrs==23.2.0 certifi==2024.2.2 charset-normalizer==3.3.2 datasets==2.19.0 dill==0.3.8 filelock==3.14.0 frozenlist==1.4.1 fsspec==2024.3.1 huggingface-hub==0.23.2 idna==3.7 multidict==6.0.5 multiprocess==0.70.16 numpy==1.26.4 packaging==24.0 pandas==2.2.2 pyarrow==16.1.0 pyarrow-hotfix==0.6 python-dateutil==2.9.0.post0 pytz==2024.1 PyYAML==6.0.1 requests==2.32.3 six==1.16.0 tqdm==4.66.4 typing_extensions==4.12.0 tzdata==2024.1 urllib3==2.2.1 xxhash==3.4.1 yarl==1.9.4
false
2,325,341,717
https://api.github.com/repos/huggingface/datasets/issues/6934
https://github.com/huggingface/datasets/pull/6934
6,934
Revert ci user
closed
3
2024-05-30T10:45:26
2024-05-31T10:25:08
2024-05-30T10:45:37
lhoestq
[]
null
true
2,325,300,800
https://api.github.com/repos/huggingface/datasets/issues/6933
https://github.com/huggingface/datasets/pull/6933
6,933
update ci user
closed
2
2024-05-30T10:23:02
2024-05-30T10:30:54
2024-05-30T10:23:12
lhoestq
[]
token is ok to be public since it's only for the hub-ci
true
2,324,729,267
https://api.github.com/repos/huggingface/datasets/issues/6932
https://github.com/huggingface/datasets/pull/6932
6,932
Update dataset_dict.py
closed
2
2024-05-30T05:22:35
2024-06-04T12:56:20
2024-06-04T12:50:13
Arunprakash-A
[]
shape returns (number of rows, number of columns)
true
2,323,457,525
https://api.github.com/repos/huggingface/datasets/issues/6931
https://github.com/huggingface/datasets/pull/6931
6,931
[WebDataset] Support compressed files
closed
2
2024-05-29T14:19:06
2024-05-29T16:33:18
2024-05-29T16:24:21
lhoestq
[]
null
true
2,323,225,922
https://api.github.com/repos/huggingface/datasets/issues/6930
https://github.com/huggingface/datasets/issues/6930
6,930
ValueError: Couldn't infer the same data file format for all splits. Got {'train': ('json', {}), 'validation': (None, {})}
open
2
2024-05-29T12:40:05
2024-07-23T06:25:24
null
Polarisamoon
[]
### Describe the bug When I run the code en = load_dataset("allenai/c4", "en", streaming=True), I encounter an error: raise ValueError(f"Couldn't infer the same data file format for all splits. Got {split_modules}") ValueError: Couldn't infer the same data file format for all splits. Got {'train': ('json', {}), 'validation': (None, {})}. However, running dataset = load_dataset('allenai/c4', streaming=True, data_files={'validation': 'en/c4-validation.00003-of-00008.json.gz'}, split='validation') works fine. What is the issue here? ### Steps to reproduce the bug run code: import os os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com' from datasets import load_dataset en = load_dataset("allenai/c4", "en", streaming=True) ### Expected behavior Successfully loaded the dataset. ### Environment info - `datasets` version: 2.18.0 - Platform: Linux-6.5.0-28-generic-x86_64-with-glibc2.17 - Python version: 3.8.19 - `huggingface_hub` version: 0.22.2 - PyArrow version: 15.0.2 - Pandas version: 2.0.3 - `fsspec` version: 2024.2.0
false
2,322,980,077
https://api.github.com/repos/huggingface/datasets/issues/6929
https://github.com/huggingface/datasets/issues/6929
6,929
Avoid downloading the whole dataset when only README.me has been touched on hub.
open
2
2024-05-29T10:36:06
2024-05-29T20:51:56
null
zinc75
[ "enhancement" ]
### Feature request `datasets.load_dataset()` triggers a new download of the **whole dataset** when the README.md file has been touched on huggingface hub, even if data files / parquet files are the exact same. I think the current behaviour of the load_dataset function is triggered whenever a change of the hash of latest commit on huggingface hub, but is there a clever way to only download again the dataset **if and only if** data is modified ? ### Motivation The current behaviour is a waste of network bandwidth / disk space / research time. ### Your contribution I don't have time to submit a PR, but I hope a simple solution will emerge from this issue !
false
2,322,267,727
https://api.github.com/repos/huggingface/datasets/issues/6928
https://github.com/huggingface/datasets/pull/6928
6,928
Update process.mdx: Code Listings Fixes
closed
1
2024-05-29T03:17:07
2024-06-04T13:08:19
2024-06-04T12:55:00
FadyMorris
[]
null
true
2,322,260,725
https://api.github.com/repos/huggingface/datasets/issues/6927
https://github.com/huggingface/datasets/pull/6927
6,927
Update process.mdx: Minor Code Listings Updates and Fixes
closed
0
2024-05-29T03:09:01
2024-05-29T03:12:46
2024-05-29T03:12:46
FadyMorris
[]
null
true
2,322,164,287
https://api.github.com/repos/huggingface/datasets/issues/6926
https://github.com/huggingface/datasets/pull/6926
6,926
Update process.mdx: Fix code listing in Shard section
closed
0
2024-05-29T01:25:55
2024-05-29T03:11:20
2024-05-29T03:11:08
FadyMorris
[]
null
true
2,321,084,967
https://api.github.com/repos/huggingface/datasets/issues/6925
https://github.com/huggingface/datasets/pull/6925
6,925
Fix NonMatchingSplitsSizesError/ExpectedMoreSplits when passing data_dir/data_files in no-code Hub datasets
closed
6
2024-05-28T13:33:38
2024-11-07T20:41:58
2024-05-31T17:10:37
albertvillanova
[]
Fix `NonMatchingSplitsSizesError` or `ExpectedMoreSplits` error for no-code Hub datasets if the user passes: - `data_dir` - `data_files` The proposed solution is to avoid using exported dataset info (from Parquet exports) in these cases. Additionally, also if the user passes `revision` other than "main" (so that no network requests are made). This PR fixes a bug introduced by: - #6714 Fix #6918, fix #6939.
true
2,320,531,015
https://api.github.com/repos/huggingface/datasets/issues/6924
https://github.com/huggingface/datasets/issues/6924
6,924
Caching map result of DatasetDict.
open
3
2024-05-28T09:07:41
2025-07-28T12:57:34
null
MostHumble
[]
Hi! I'm currenty using the map function to tokenize a somewhat large dataset, so I need to use the cache to save ~25 mins. Changing num_proc incduces the recomputation of the map, I'm not sure why and if this is excepted behavior? here it says, that cached files are loaded sequentially: https://github.com/huggingface/datasets/blob/bb2664cf540d5ce4b066365e7c8b26e7f1ca4743/src/datasets/arrow_dataset.py#L3005-L3006 it seems like I can pass in a fingerprint, and load it directly: https://github.com/huggingface/datasets/blob/bb2664cf540d5ce4b066365e7c8b26e7f1ca4743/src/datasets/arrow_dataset.py#L3108-L3125 **Environment Setup:** - Python 3.11.9 - datasets 2.19.1 conda-forge - Linux 6.1.83-1.el9.elrepo.x86_64 **MRE** ```python fixed raw_datasets fixed tokenize_function tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, num_proc=9, remove_columns=['text'], load_from_cache_file= True, desc="Running tokenizer on dataset line_by_line", ) tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, num_proc=5, remove_columns=['text'], load_from_cache_file= True, desc="Running tokenizer on dataset line_by_line", ) ```
false
2,319,292,872
https://api.github.com/repos/huggingface/datasets/issues/6923
https://github.com/huggingface/datasets/issues/6923
6,923
Export Parquet Tablet Audio-Set is null bytes in Arrow
open
0
2024-05-27T14:27:57
2024-05-27T14:27:57
null
anioji
[]
### Describe the bug Exporting the processed audio inside the table with the dataset.to_parquet function, the object pyarrow {bytes: null, path: "Some/Path"} At the same time, the same dataset uploaded to the hub has bit arrays ![Screenshot from 2024-05-27 19-14-49](https://github.com/huggingface/datasets/assets/140120605/ddfba089-426f-4659-9df4-7a634c948b9e) ![Screenshot from 2024-05-27 19-12-51](https://github.com/huggingface/datasets/assets/140120605/4cf8c0a1-650e-491b-86c8-b475c284a021) ### Steps to reproduce the bug 1.Get dataset from audio and cast it 2.Export and push dataset 3.It’s scary to be indignant at the difference in the uploaded dataset and the fact that it was saved locally ```py from datasets import Dataset, Audio df = Dataset.from_csv("./datasets.csv") df = df.cast_column("audio", Audio(16000)) df.to_parquet("./datasets.parquet") df.push_to_hub(repo_id="************", token="**********************") ``` You can use "try replicate case" for this [replicate_packet.zip](https://github.com/huggingface/datasets/files/15457114/replicate_packet.zip) ### Expected behavior Two parquet tables identical in content. It is obvious? ### Environment info Python 3.11+ (I try did it in 3.12 and got same result )
false
2,318,602,059
https://api.github.com/repos/huggingface/datasets/issues/6922
https://github.com/huggingface/datasets/pull/6922
6,922
Remove torchaudio remnants from code
closed
2
2024-05-27T08:45:07
2024-05-27T09:08:19
2024-05-27T08:59:21
albertvillanova
[]
Remove torchaudio remnants from code. Follow-up on: - #5573
true
2,318,394,398
https://api.github.com/repos/huggingface/datasets/issues/6921
https://github.com/huggingface/datasets/pull/6921
6,921
Support fsspec 2024.5.0
closed
2
2024-05-27T07:00:59
2024-05-27T08:07:16
2024-05-27T08:01:08
albertvillanova
[]
Support fsspec 2024.5.0.
true
2,317,648,021
https://api.github.com/repos/huggingface/datasets/issues/6920
https://github.com/huggingface/datasets/pull/6920
6,920
[WebDataset] Add `.pth` support for torch tensors
closed
2
2024-05-26T11:12:07
2024-05-27T09:11:17
2024-05-27T09:04:54
lhoestq
[]
In this PR I add support for `.pth` but with `weights_only=True` to disallow the use of pickle
true
2,315,618,993
https://api.github.com/repos/huggingface/datasets/issues/6919
https://github.com/huggingface/datasets/issues/6919
6,919
Invalid YAML in README.md: unknown tag !<tag:yaml.org,2002:python/tuple>
open
0
2024-05-24T14:59:45
2024-05-24T14:59:45
null
juanqui
[]
### Describe the bug I wrote a notebook to load an existing dataset, process it, and upload as a private dataset using `dataset.push_to_hub(...)` at the end. The push to hub is failing with: ``` ValueError: Invalid metadata in README.md. - Invalid YAML in README.md: unknown tag !<tag:yaml.org,2002:python[/tuple](http://192.168.1.128:8888/tuple)> (50:11) 47 | - 4 48 | - 4 49 | - 8 50 | - !!binary | ----------------^ 51 | TwAAAA== 52 | '1': !!python[/object/apply](http://192.168.1.128:8888/object/apply):nump ... ``` My dataset has a `train` and `validation` dataset. These are the features: ``` {'c1': Value(dtype='string', id=None), 'c2': Value(dtype='string', id=None), 'c3': [{'value': Value(dtype='string', id=None), 'start': Value(dtype='int64', id=None), 'end': Value(dtype='int64', id=None), 'label': Value(dtype='string', id=None)}], 'c4': Value(dtype='string', id=None), 'c5': Value(dtype='string', id=None), 'c6': Value(dtype='string', id=None), 'c7': Value(dtype='string', id=None), 'c8': Sequence(feature=Value(dtype='int32', id=None), length=-1, id=None), 'c9': Sequence(feature=Value(dtype='int8', id=None), length=-1, id=None), 'c10': Sequence(feature=Value(dtype='int8', id=None), length=-1, id=None), 'labels': Sequence(feature=ClassLabel(names=['O', 'B-ABC', 'I-ABC', ...], id=None), length=-1, id=None), 'c12': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)} ``` This used to work until I decided to cast the `labels` feature to a `Sequence(ClassLabel(...))` type with: ``` ds['train'] = ds['train'].cast_column("labels", Sequence(ClassLabel(names=list(labels)))) ds['validation'] = ds['validation'].cast_column("labels", Sequence(ClassLabel(names=list(labels)))) ``` ### Steps to reproduce the bug 1. Start with any token classification dataset. 2. Add a `labels` column with data such as `[0,0,0,12,13,13,13,0,0]`. 3. Cast the label column from `Sequence` to `Sequence(ClassLabel))` with: ``` labels = ['O', 'B-TEST', 'I-TEST'] ds = ds.cast_column("labels", Sequence(ClassLabel(names=labels))) ``` 4. Push to hub with `ds.push_to_hub("me/awesome-stuff-dataset")` ### Expected behavior I expected `push_to_hub` to successfully push my dataset to the hub without error. ### Environment info Python 3.11.9 datasets==2.19.1 transformers==4.41.1 PyYAML==6.0.1
false
2,315,322,738
https://api.github.com/repos/huggingface/datasets/issues/6918
https://github.com/huggingface/datasets/issues/6918
6,918
NonMatchingSplitsSizesError when using data_dir
closed
2
2024-05-24T12:43:39
2024-05-31T17:10:38
2024-05-31T17:10:38
srehaag
[ "bug" ]
### Describe the bug Loading a dataset from with a data_dir argument generates a NonMatchingSplitsSizesError if there are multiple directories in the dataset. This appears to happen because the expected split is calculated based on the data in all the directories whereas the recorded split is calculated based on the data in the directory specified using the data_dir argument. This is recent behavior. Until the past few weeks loading using the data_dir argument worked without any issue. ### Steps to reproduce the bug Simple test dataset available here: https://huggingface.co/datasets/srehaag/hf-bug-temp The dataset contains two directories "data1" and "data2", each with a file called "train.parquet" with a 2 x 5 table. from datasets import load_dataset dataset = load_dataset("srehaag/hf-bug-temp", data_dir = "data1") Generates: --------------------------------------------------------------------------- NonMatchingSplitsSizesError Traceback (most recent call last) Cell In[3], <a href='vscode-notebook-cell:?execution_count=3&line=2'>line 2</a> <a href='vscode-notebook-cell:?execution_count=3&line=1'>1</a> from datasets import load_dataset ----> <a href='vscode-notebook-cell:?execution_count=3&line=2'>2</a> dataset = load_dataset("srehaag/hf-bug-temp", data_dir = "data1") File ~/.python/current/lib/python3.10/site-packages/datasets/load.py:2609, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) <a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2606'>2606</a> return builder_instance.as_streaming_dataset(split=split) <a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2608'>2608</a> # Download and prepare data -> <a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2609'>2609</a> builder_instance.download_and_prepare( <a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2610'>2610</a> download_config=download_config, <a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2611'>2611</a> download_mode=download_mode, <a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2612'>2612</a> verification_mode=verification_mode, <a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2613'>2613</a> num_proc=num_proc, <a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2614'>2614</a> storage_options=storage_options, <a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2615'>2615</a> ) <a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2617'>2617</a> # Build dataset for splits <a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2618'>2618</a> keep_in_memory = ( <a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2619'>2619</a> keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size) <a href='~/.python/current/lib/python3.10/site-packages/datasets/load.py:2620'>2620</a> ) File ~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1027, in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs) <a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1025'>1025</a> if num_proc is not None: <a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1026'>1026</a> prepare_split_kwargs["num_proc"] = num_proc -> <a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1027'>1027</a> self._download_and_prepare( <a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1028'>1028</a> dl_manager=dl_manager, <a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1029'>1029</a> verification_mode=verification_mode, <a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1030'>1030</a> **prepare_split_kwargs, <a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1031'>1031</a> **download_and_prepare_kwargs, <a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1032'>1032</a> ) <a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1033'>1033</a> # Sync info <a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1034'>1034</a> self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values()) File ~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1140, in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs) <a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1137'>1137</a> dl_manager.manage_extracted_files() <a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1139'>1139</a> if verification_mode == VerificationMode.BASIC_CHECKS or verification_mode == VerificationMode.ALL_CHECKS: -> <a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1140'>1140</a> verify_splits(self.info.splits, split_dict) <a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1142'>1142</a> # Update the info object with the splits. <a href='~/.python/current/lib/python3.10/site-packages/datasets/builder.py:1143'>1143</a> self.info.splits = split_dict File ~/.python/current/lib/python3.10/site-packages/datasets/utils/info_utils.py:101, in verify_splits(expected_splits, recorded_splits) <a href='~/.python/current/lib/python3.10/site-packages/datasets/utils/info_utils.py:95'>95</a> bad_splits = [ <a href='~/.python/current/lib/python3.10/site-packages/datasets/utils/info_utils.py:96'>96</a> {"expected": expected_splits[name], "recorded": recorded_splits[name]} <a href='~/.python/current/lib/python3.10/site-packages/datasets/utils/info_utils.py:97'>97</a> for name in expected_splits <a href='~/.python/current/lib/python3.10/site-packages/datasets/utils/info_utils.py:98'>98</a> if expected_splits[name].num_examples != recorded_splits[name].num_examples <a href='~/.python/current/lib/python3.10/site-packages/datasets/utils/info_utils.py:99'>99</a> ] <a href='~/.python/current/lib/python3.10/site-packages/datasets/utils/info_utils.py:100'>100</a> if len(bad_splits) > 0: --> <a href='~/.python/current/lib/python3.10/site-packages/datasets/utils/info_utils.py:101'>101</a> raise NonMatchingSplitsSizesError(str(bad_splits)) <a href='~/.python/current/lib/python3.10/site-packages/datasets/utils/info_utils.py:102'>102</a> logger.info("All the splits matched successfully.") NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=212, num_examples=10, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='train', num_bytes=106, num_examples=5, shard_lengths=None, dataset_name='hf-bug-temp')}] __________ By contrast, this loads the data from both data1/train.parquet and data2/train.parquet without any error message: from datasets import load_dataset dataset = load_dataset("srehaag/hf-bug-temp") ### Expected behavior Should load the 5 x 2 table from data1/train.parquet without error message. ### Environment info Used Codespaces to simplify environment (see details below), but bug is present across various configurations. - `datasets` version: 2.19.1 - Platform: Linux-6.5.0-1021-azure-x86_64-with-glibc2.31 - Python version: 3.10.13 - `huggingface_hub` version: 0.23.1 - PyArrow version: 16.1.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.3.1
false
2,314,683,663
https://api.github.com/repos/huggingface/datasets/issues/6917
https://github.com/huggingface/datasets/issues/6917
6,917
WinError 32 The process cannot access the file during load_dataset
open
0
2024-05-24T07:54:51
2024-05-24T07:54:51
null
elwe-2808
[]
### Describe the bug When I try to load the opus_book from hugging face (following the [guide on the website](https://huggingface.co/docs/transformers/main/en/tasks/translation)) ```python from datasets import load_dataset, Dataset dataset = load_dataset("Helsinki-NLP/opus_books", "en-fr", features=["id", "translation"]) ``` I get an error: `PermissionError: [WinError 32] The process cannot access the file because it is being used by another process: 'C:/Users/Me/.cache/huggingface/datasets/Helsinki-NLP___parquet/ca-de-a39f1ef185b9b73b/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec.incomplete\\parquet-train-00000-00000-of-NNNNN.arrow' ` <details><summary>Full stacktrace</summary> <p> ```python AttributeError Traceback (most recent call last) File c:\Users\Me\.conda\envs\ia\lib\site-packages\datasets\builder.py:1858, in ArrowBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id) [1857](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/builder.py:1857) _time = time.time() -> [1858](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/builder.py:1858) for _, table in generator: [1859](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/builder.py:1859) if max_shard_size is not None and writer._num_bytes > max_shard_size: File c:\Users\Me\.conda\envs\ia\lib\site-packages\datasets\packaged_modules\parquet\parquet.py:59, in Parquet._generate_tables(self, files) [58](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/packaged_modules/parquet/parquet.py:58) def _generate_tables(self, files): ---> [59](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/packaged_modules/parquet/parquet.py:59) schema = self.config.features.arrow_schema if self.config.features is not None else None [60](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/packaged_modules/parquet/parquet.py:60) if self.config.features is not None and self.config.columns is not None: AttributeError: 'list' object has no attribute 'arrow_schema' During handling of the above exception, another exception occurred: AttributeError Traceback (most recent call last) File c:\Users\Me\.conda\envs\ia\lib\site-packages\datasets\builder.py:1882, in ArrowBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id) [1881](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/builder.py:1881) num_shards = shard_id + 1 -> [1882](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/builder.py:1882) num_examples, num_bytes = writer.finalize() [1883](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/builder.py:1883) writer.close() File c:\Users\Me\.conda\envs\ia\lib\site-packages\datasets\arrow_writer.py:584, in ArrowWriter.finalize(self, close_stream) [583](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/arrow_writer.py:583) # If schema is known, infer features even if no examples were written --> [584](file:///C:/Users/Me/.conda/envs/ia/lib/site-packages/datasets/arrow_writer.py:584) if self.pa_writer is None and self.schema: ... --> [627](file:///C:/Users/Me/.conda/envs/ia/lib/shutil.py:627) os.unlink(fullname) [628](file:///C:/Users/Me/.conda/envs/ia/lib/shutil.py:628) except OSError: [629](file:///C:/Users/Me/.conda/envs/ia/lib/shutil.py:629) onerror(os.unlink, fullname, sys.exc_info()) PermissionError: [WinError 32] The process cannot access the file because it is being used by another process: 'C:/Users/Me/.cache/huggingface/datasets/Helsinki-NLP___parquet/ca-de-a39f1ef185b9b73b/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec.incomplete\\parquet-train-00000-00000-of-NNNNN.arrow' ``` </p> </details> ### Steps to reproduce the bug Steps to reproduce: Just execute these lines ```python from datasets import load_dataset, Dataset dataset = load_dataset("Helsinki-NLP/opus_books", "en-fr", features=["id", "translation"]) ``` ### Expected behavior I expect the dataset to be loaded without any errors. ### Environment info | Package| Version| |--------|--------| | transformers| 4.37.2| | python| 3.9.19| | pytorch| 2.3.0| | datasets|2.12.0 | | arrow | 1.2.3| I am using Conda on Windows 11.
false
2,311,675,564
https://api.github.com/repos/huggingface/datasets/issues/6916
https://github.com/huggingface/datasets/issues/6916
6,916
```push_to_hub()``` - Prevent Automatic Generation of Splits
closed
0
2024-05-22T23:52:15
2024-05-23T00:07:53
2024-05-23T00:07:53
jetlime
[]
### Describe the bug I currently have a dataset which has not been splited. When pushing the dataset to my hugging face dataset repository, it is split into a testing and training set. How can I prevent the split from happening? ### Steps to reproduce the bug 1. Have a unsplit dataset ```python Dataset({ features: ['input', 'output', 'Attack', '__index_level_0__'], num_rows: 944685 }) ``` 2. Push it to huggingface ```python dataset.push_to_hub(dataset_name) ``` 3. On the hugging face dataset repo, the dataset then appears to be splited: ![image](https://github.com/huggingface/datasets/assets/29337128/b4fbc141-42b0-4f49-98df-dd479648fe09) 4. Indeed, when loading the dataset from this repo, the dataset is split in two testing and training set. ```python from datasets import load_dataset, Dataset dataset = load_dataset("Jetlime/NF-CSE-CIC-IDS2018-v2", streaming=True) dataset ``` output: ``` IterableDatasetDict({ train: IterableDataset({ features: ['input', 'output', 'Attack', '__index_level_0__'], n_shards: 2 }) test: IterableDataset({ features: ['input', 'output', 'Attack', '__index_level_0__'], n_shards: 1 }) ``` ### Expected behavior The dataset shall not be splited, as not requested. ### Environment info - `datasets` version: 2.19.1 - Platform: Linux-6.2.0-35-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.23.0 - PyArrow version: 15.0.2 - Pandas version: 2.2.2 - `fsspec` version: 2024.3.1
false
2,310,564,961
https://api.github.com/repos/huggingface/datasets/issues/6915
https://github.com/huggingface/datasets/pull/6915
6,915
Validate config name and data_files in packaged modules
closed
5
2024-05-22T13:36:33
2024-06-06T09:32:10
2024-06-06T09:24:35
albertvillanova
[]
Validate the config attributes `name` and `data_files` in packaged modules by making the derived classes call their parent `__post_init__` method. Note that their parent `BuilderConfig` validates its attributes `name` and `data_files` in its `__post_init__` method: https://github.com/huggingface/datasets/blob/60d21efbc01e15d0b596ac1072750cbecd91548a/src/datasets/builder.py#L128-L137 This PR makes the derived config classes call their parent `__post_init__` method to validate their `name` and `data_files` attributes.
true
2,310,107,326
https://api.github.com/repos/huggingface/datasets/issues/6914
https://github.com/huggingface/datasets/pull/6914
6,914
Preserve JSON column order and support list of strings field
closed
2
2024-05-22T09:58:54
2024-05-29T13:18:47
2024-05-29T13:12:23
albertvillanova
[]
Preserve column order when loading from a JSON file with a list of dict (or with a field containing a list of dicts). Additionally, support JSON file with a list of strings field. Fix #6913.
true
2,309,605,889
https://api.github.com/repos/huggingface/datasets/issues/6913
https://github.com/huggingface/datasets/issues/6913
6,913
Column order is nondeterministic when loading from JSON
closed
0
2024-05-22T05:30:14
2024-05-29T13:12:24
2024-05-29T13:12:24
albertvillanova
[ "bug" ]
As reported by @meg-huggingface, the order of the JSON object keys is not preserved while loading a dataset from a JSON file with a list of objects. For example, when loading a JSON files with a list of objects, each with the following ordered keys: - [ID, Language, Topic], the resulting dataset may have columns: - [ID, Topic, Language], or - [Topic, Language, ID], or - [Topic, ID, Language],... This issue is caused by the use of a Python set (which does not preserve the order): https://github.com/huggingface/datasets/blob/60d21efbc01e15d0b596ac1072750cbecd91548a/src/datasets/packaged_modules/json/json.py#L168 introduced in - #5772
false
2,309,365,961
https://api.github.com/repos/huggingface/datasets/issues/6912
https://github.com/huggingface/datasets/issues/6912
6,912
Add MedImg for streaming
open
8
2024-05-22T00:55:30
2024-09-05T16:53:54
null
lhallee
[ "dataset request" ]
### Feature request Host the MedImg dataset (similar to Imagenet but for biomedical images). ### Motivation There is a clear need for biomedical image foundation models and large scale biomedical datasets that are easily streamable. This would be an excellent tool for the biomedical community. ### Your contribution MedImg can be found [here](https://www.cuilab.cn/medimg/#).
false
2,308,152,711
https://api.github.com/repos/huggingface/datasets/issues/6911
https://github.com/huggingface/datasets/pull/6911
6,911
Remove dead code for non-dict data_files from packaged modules
closed
2
2024-05-21T12:10:24
2024-05-23T08:05:58
2024-05-23T07:59:57
albertvillanova
[]
Remove dead code for non-dict data_files from packaged modules. Since the merge of this PR: - #2986 the builders' variable self.config.data_files is always a dict, which makes the condition on (str, list, tuple) dead code.
true
2,307,570,084
https://api.github.com/repos/huggingface/datasets/issues/6910
https://github.com/huggingface/datasets/pull/6910
6,910
Fix wrong type hints in data_files
closed
2
2024-05-21T07:41:09
2024-05-23T06:04:05
2024-05-23T05:58:05
albertvillanova
[]
Fix wrong type hints in data_files introduced in: - #6493
true
2,307,508,120
https://api.github.com/repos/huggingface/datasets/issues/6909
https://github.com/huggingface/datasets/pull/6909
6,909
Update requests >=2.32.1 to fix vulnerability
closed
2
2024-05-21T07:11:20
2024-05-21T07:45:58
2024-05-21T07:38:25
albertvillanova
[]
Update requests >=2.32.1 to fix vulnerability.
true
2,304,958,116
https://api.github.com/repos/huggingface/datasets/issues/6908
https://github.com/huggingface/datasets/issues/6908
6,908
Fail to load "stas/c4-en-10k" dataset since 2.16 version
closed
2
2024-05-20T02:43:59
2024-05-24T10:58:09
2024-05-24T10:58:09
guch8017
[]
### Describe the bug When update datasets library to version 2.16+ ( I test it on 2.16, 2.19.0 and 2.19.1), using the following code to load stas/c4-en-10k dataset ```python from datasets import load_dataset, Dataset dataset = load_dataset('stas/c4-en-10k') ``` and then it raise UnicodeDecodeError like ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/*/conda3/envs/watermark/lib/python3.10/site-packages/datasets/load.py", line 2523, in load_dataset builder_instance = load_dataset_builder( File "/home/*/conda3/envs/watermark/lib/python3.10/site-packages/datasets/load.py", line 2195, in load_dataset_builder dataset_module = dataset_module_factory( File "/home/*/conda3/envs/watermark/lib/python3.10/site-packages/datasets/load.py", line 1846, in dataset_module_factory raise e1 from None File "/home/*/conda3/envs/watermark/lib/python3.10/site-packages/datasets/load.py", line 1798, in dataset_module_factory can_load_config_from_parquet_export = "DEFAULT_CONFIG_NAME" not in f.read() File "/home/*/conda3/envs/watermark/lib/python3.10/codecs.py", line 322, in decode (result, consumed) = self._buffer_decode(data, self.errors, final) UnicodeDecodeError: 'utf-8' codec can't decode byte 0x8b in position 1: invalid start byte ``` I found that fs.open loads a gzip file and parses it like plain text using utf-8 encoder. ```python fs = HfFileSystem('https://huggingface.co') fs.open("datasets/stas/c4-en-10k/c4-en-10k.py", "rb") data = fs.read() # data is gzip bytes begin with b'\x1f\x8b\x08\x00\x00\tn\x88\x00...' data2 = unzip_gzip_bytes(data) # data2 is what we want: '# coding=utf-8\n# Copyright 2020 The HuggingFace Datasets...' ``` ### Steps to reproduce the bug 1. Install datasets between version 2.16 and 2.19 2. Use `datasets.load_dataset` method to load `stas/c4-en-10k` dataset. ### Expected behavior Load dataset normally. ### Environment info Platform = Linux-5.4.0-159-generic-x86_64-with-glibc2.35 Python = 3.10.14 Datasets = 2.19
false
2,303,855,833
https://api.github.com/repos/huggingface/datasets/issues/6907
https://github.com/huggingface/datasets/issues/6907
6,907
Support the deserialization of json lines files comprised of lists
open
1
2024-05-18T05:07:23
2024-05-18T08:53:28
null
umarbutler
[ "enhancement" ]
### Feature request I manage a somewhat large and popular Hugging Face dataset known as the [Open Australian Legal Corpus](https://huggingface.co/datasets/umarbutler/open-australian-legal-corpus). I recently updated my corpus to be stored in a json lines file where each line is an array and each element represents a value at a particular column. Previously, my corpus was stored as a json lines file where each line was a dictionary and the keys were the fields. Essentially, a line in my json lines file used to look like this: ```json {"version_id":"","type":"","jurisdiction":"","source":"","citation":"","url":"","when_scraped":"","text":""} ``` And now it looks like this: ```json ["","","","","","","",""] ``` This saves 65 bytes per document and allows me very quickly serialise and deserialise documents via `msgspec`. After making this change, I found that `datasets` was incapable of deserialising my Corpus without a custom loading script, even if I ensured that the `dataset_info` field in my dataset card contained the desired names of my features. I would like to request that functionality be added to support this format which is more memory-efficent and faster than using dictionaries. ### Motivation The [documentation](https://huggingface.co/docs/datasets/en/dataset_script) for creating dataset loading scripts asserts that: > In the next major release, the new safety features of 🤗 Datasets will disable running dataset loading scripts by default, and you will have to pass trust_remote_code=True to load datasets that require running a dataset script. I would rather not require my users to pass `trust_remote_code=True` which means that I will need built-in support for this format. ### Your contribution I would be happy to submit a PR for this if this is something you would incorporate into `datasets` and if I can be pointed to where the code would need to go.
false
2,303,679,119
https://api.github.com/repos/huggingface/datasets/issues/6906
https://github.com/huggingface/datasets/issues/6906
6,906
irc_disentangle - Issue with splitting data
closed
6
2024-05-17T23:19:37
2024-07-16T00:21:56
2024-07-08T06:18:08
eor51355
[]
### Describe the bug I am trying to access your database through python using "datasets.load_dataset("irc_disentangle")" and I am getting this error message: ValueError: Instruction "train" corresponds to no data! ### Steps to reproduce the bug import datasets ds = datasets.load_dataset('irc_disentangle') ds ### Expected behavior The data is supposed to load into ds and be accessable as such: ds['train'][1050], ds['train'][1055] ### Environment info I tired Python 3.12 and 3.10
false
2,303,098,587
https://api.github.com/repos/huggingface/datasets/issues/6905
https://github.com/huggingface/datasets/issues/6905
6,905
Extraction protocol for arrow files is not defined
closed
1
2024-05-17T16:01:41
2025-02-06T19:50:22
2025-02-06T19:50:20
radulescupetru
[]
### Describe the bug Passing files with `.arrow` extension into data_files argument, at least when `streaming=True` is very slow. ### Steps to reproduce the bug Basically it goes through the `_get_extraction_protocol` method located [here](https://github.com/huggingface/datasets/blob/main/src/datasets/utils/file_utils.py#L820) The method then looks at some base known extensions where `arrow` is not defined so it proceeds to determine the compression with the magic number method which is slow when dealing with a lot of files which are stored in s3 and by looking at this predefined list, I don't see `arrow` in there either so in the end it return None: ``` MAGIC_NUMBER_TO_COMPRESSION_PROTOCOL = { bytes.fromhex("504B0304"): "zip", bytes.fromhex("504B0506"): "zip", # empty archive bytes.fromhex("504B0708"): "zip", # spanned archive bytes.fromhex("425A68"): "bz2", bytes.fromhex("1F8B"): "gzip", bytes.fromhex("FD377A585A00"): "xz", bytes.fromhex("04224D18"): "lz4", bytes.fromhex("28B52FFD"): "zstd", } ``` ### Expected behavior My expectation is that `arrow` would be in the known lists so it would return None without going through the magic number method. ### Environment info datasets 2.19.0
false
2,302,912,179
https://api.github.com/repos/huggingface/datasets/issues/6904
https://github.com/huggingface/datasets/pull/6904
6,904
Fix decoding multi part extension
closed
3
2024-05-17T14:32:57
2024-05-17T14:52:56
2024-05-17T14:46:54
lhoestq
[]
e.g. a field named `url.txt` should be a treated as text I also included a small fix to support .npz correctly
true
2,300,436,053
https://api.github.com/repos/huggingface/datasets/issues/6903
https://github.com/huggingface/datasets/issues/6903
6,903
Add the option of saving in parquet instead of arrow
open
18
2024-05-16T13:35:51
2025-05-19T12:14:14
null
arita37
[ "enhancement" ]
### Feature request In dataset.save_to_disk('/path/to/save/dataset'), add the option to save in parquet format dataset.save_to_disk('/path/to/save/dataset', format="parquet"), because arrow is not used for Production Big data.... (only parquet) ### Motivation because arrow is not used for Production Big data.... (only parquet) ### Your contribution I can do the testing !
false
2,300,256,241
https://api.github.com/repos/huggingface/datasets/issues/6902
https://github.com/huggingface/datasets/pull/6902
6,902
Make CLI convert_to_parquet not raise error if no rights to create script branch
closed
2
2024-05-16T12:21:27
2024-06-03T04:43:17
2024-05-16T12:51:05
albertvillanova
[]
Make CLI convert_to_parquet not raise error if no rights to create "script" branch. Not that before this PR, the error was not critical because it was raised at the end of the script, once all the rest of the steps were already performed. Fix #6901. Bug introduced in datasets-2.19.0 by: - #6809
true
2,300,167,465
https://api.github.com/repos/huggingface/datasets/issues/6901
https://github.com/huggingface/datasets/issues/6901
6,901
HTTPError 403 raised by CLI convert_to_parquet when creating script branch on 3rd party repos
closed
0
2024-05-16T11:40:22
2024-05-16T12:51:06
2024-05-16T12:51:06
albertvillanova
[ "bug" ]
CLI convert_to_parquet cannot create "script" branch on 3rd party repos. It can only create it on repos where the user executing the script has write access. Otherwise, a 403 Forbidden HTTPError is raised: ``` Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py", line 304, in hf_raise_for_status response.raise_for_status() File "/usr/local/lib/python3.10/dist-packages/requests/models.py", line 1021, in raise_for_status raise HTTPError(http_error_msg, response=self) requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/api/datasets/ORG/DATASET/branch/script The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/usr/local/bin/datasets-cli", line 8, in <module> sys.exit(main()) File "/usr/local/lib/python3.10/dist-packages/datasets/commands/datasets_cli.py", line 41, in main service.run() File "/usr/local/lib/python3.10/dist-packages/datasets/commands/convert_to_parquet.py", line 92, in run create_branch(dataset_id, branch="script", repo_type="dataset", token=token, exist_ok=True) File "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/usr/local/lib/python3.10/dist-packages/huggingface_hub/hf_api.py", line 5503, in create_branch hf_raise_for_status(response) File "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6645ee0d-4db1ed8a1fbe04956be15897;139a6e23-df7d-4f62-b5ba-adb6d8e6e696) 403 Forbidden: Forbidden: cannot write to script. Cannot access content at: https://huggingface.co/api/datasets/ORG/DATASET/branch/script. If you are trying to create or update content,make sure you have a token with the `write` role. ```
false
2,298,489,733
https://api.github.com/repos/huggingface/datasets/issues/6900
https://github.com/huggingface/datasets/issues/6900
6,900
[WebDataset] KeyError with user-defined `Features` when a field is missing in an example
closed
5
2024-05-15T17:48:34
2024-06-28T09:30:13
2024-06-28T09:30:13
lhoestq
[]
reported at https://huggingface.co/datasets/ProGamerGov/synthetic-dataset-1m-dalle3-high-quality-captions/discussions/1 ``` File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/webdataset/webdataset.py", line 109, in _generate_examples example[field_name] = {"path": example["__key__"] + "." + field_name, "bytes": example[field_name]} ```
false
2,298,059,597
https://api.github.com/repos/huggingface/datasets/issues/6899
https://github.com/huggingface/datasets/issues/6899
6,899
List of dictionary features get standardized
open
2
2024-05-15T14:11:35
2025-04-01T20:48:03
null
sohamparikh
[]
### Describe the bug Hi, i’m trying to create a HF dataset from a list using Dataset.from_list. Each sample in the list is a dict with the same keys (which will be my features). The values for each feature are a list of dictionaries, and each such dictionary has a different set of keys. However, the datasets library standardizes all dictionaries under a feature and adds all possible keys (with None value) from all the dictionaries under that feature. How can I keep the same set of keys as in the original list for each dictionary under a feature? ### Steps to reproduce the bug ``` from datasets import Dataset # Define a function to generate a sample with "tools" feature def generate_sample(): # Generate random sample data sample_data = { "text": "Sample text", "feature_1": [] } # Add feature_1 with random keys for this sample feature_1 = [{"key1": "value1"}, {"key2": "value2"}] # Example feature_1 with random keys sample_data["feature_1"].extend(feature_1) return sample_data # Generate multiple samples num_samples = 10 samples = [generate_sample() for _ in range(num_samples)] # Create a Hugging Face Dataset dataset = Dataset.from_list(samples) dataset[0] ``` ```{'text': 'Sample text', 'feature_1': [{'key1': 'value1', 'key2': None}, {'key1': None, 'key2': 'value2'}]}``` ### Expected behavior ```{'text': 'Sample text', 'feature_1': [{'key1': 'value1'}, {'key2': 'value2'}]}``` ### Environment info - `datasets` version: 2.19.1 - Platform: Linux-5.15.0-1040-nvidia-x86_64-with-glibc2.35 - Python version: 3.10.13 - `huggingface_hub` version: 0.23.0 - PyArrow version: 15.0.0 - Pandas version: 2.2.0 - `fsspec` version: 2023.10.0
false
2,294,432,108
https://api.github.com/repos/huggingface/datasets/issues/6898
https://github.com/huggingface/datasets/pull/6898
6,898
Fix YAML error in README files appearing on GitHub
closed
3
2024-05-14T05:21:57
2024-05-16T14:36:57
2024-05-16T14:28:16
albertvillanova
[]
Fix YAML error in README files appearing on GitHub. See error message: ![Screenshot from 2024-05-14 06-58-02](https://github.com/huggingface/datasets/assets/8515462/7984cc4e-96ee-4e83-99a4-4c0c5791fa05) Fix #6897.
true
2,293,428,243
https://api.github.com/repos/huggingface/datasets/issues/6897
https://github.com/huggingface/datasets/issues/6897
6,897
datasets template guide :: issue in documentation YAML
closed
2
2024-05-13T17:33:59
2024-05-16T14:28:17
2024-05-16T14:28:17
bghira
[]
### Describe the bug There is a YAML error at the top of the page, and I don't think it's supposed to be there ### Steps to reproduce the bug 1. Browse to [this tutorial document](https://github.com/huggingface/datasets/blob/main/templates/README_guide.md) 2. Observe a big red error at the top 3. The rest of the document remains functional ### Expected behavior I think the YAML block should be displayed or ignored. ### Environment info N/A
false
2,293,176,061
https://api.github.com/repos/huggingface/datasets/issues/6896
https://github.com/huggingface/datasets/issues/6896
6,896
Regression bug: `NonMatchingSplitsSizesError` for (possibly) overwritten dataset
open
1
2024-05-13T15:41:57
2025-03-25T01:21:06
null
finiteautomata
[]
### Describe the bug While trying to load the dataset `https://huggingface.co/datasets/pysentimiento/spanish-tweets-small`, I get this error: ```python --------------------------------------------------------------------------- NonMatchingSplitsSizesError Traceback (most recent call last) [<ipython-input-1-d6a3c721d3b8>](https://localhost:8080/#) in <cell line: 3>() 1 from datasets import load_dataset 2 ----> 3 ds = load_dataset("pysentimiento/spanish-tweets-small") 3 frames [/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs) 2150 2151 # Download and prepare data -> 2152 builder_instance.download_and_prepare( 2153 download_config=download_config, 2154 download_mode=download_mode, [/usr/local/lib/python3.10/dist-packages/datasets/builder.py](https://localhost:8080/#) in download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs) 946 if num_proc is not None: 947 prepare_split_kwargs["num_proc"] = num_proc --> 948 self._download_and_prepare( 949 dl_manager=dl_manager, 950 verification_mode=verification_mode, [/usr/local/lib/python3.10/dist-packages/datasets/builder.py](https://localhost:8080/#) in _download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs) 1059 1060 if verification_mode == VerificationMode.BASIC_CHECKS or verification_mode == VerificationMode.ALL_CHECKS: -> 1061 verify_splits(self.info.splits, split_dict) 1062 1063 # Update the info object with the splits. [/usr/local/lib/python3.10/dist-packages/datasets/utils/info_utils.py](https://localhost:8080/#) in verify_splits(expected_splits, recorded_splits) 98 ] 99 if len(bad_splits) > 0: --> 100 raise NonMatchingSplitsSizesError(str(bad_splits)) 101 logger.info("All the splits matched successfully.") 102 NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=82649695458, num_examples=597433111, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='train', num_bytes=3358310095, num_examples=24898932, shard_lengths=[3626991, 3716991, 4036990, 3506990, 3676990, 3716990, 2616990], dataset_name='spanish-tweets-small')}] ``` I think I had this dataset updated, might be related to #6271 It is working fine as late in `2.10.0` , but not in `2.13.0` onwards. ### Steps to reproduce the bug ```python from datasets import load_dataset ds = load_dataset("pysentimiento/spanish-tweets-small") ``` You can run it in [this notebook](https://colab.research.google.com/drive/1FdhqLiVimHIlkn7B54DbhizeQ4U3vGVl#scrollTo=YgA50cBSibUg) ### Expected behavior Load the dataset without any error ### Environment info - `datasets` version: 2.13.0 - Platform: Linux-6.1.58+-x86_64-with-glibc2.35 - Python version: 3.10.12 - Huggingface_hub version: 0.20.3 - PyArrow version: 14.0.2 - Pandas version: 2.0.3
false
2,292,993,156
https://api.github.com/repos/huggingface/datasets/issues/6895
https://github.com/huggingface/datasets/pull/6895
6,895
Document that to_json defaults to JSON Lines
closed
2
2024-05-13T14:22:34
2024-05-16T14:37:25
2024-05-16T14:31:26
albertvillanova
[]
Document that `Dataset.to_json` defaults to JSON Lines, by adding explanation in the corresponding docstring. Fix #6894.
true
2,292,840,226
https://api.github.com/repos/huggingface/datasets/issues/6894
https://github.com/huggingface/datasets/issues/6894
6,894
Better document defaults of to_json
closed
0
2024-05-13T13:30:54
2024-05-16T14:31:27
2024-05-16T14:31:27
albertvillanova
[ "documentation" ]
Better document defaults of `to_json`: the default format is [JSON-Lines](https://jsonlines.org/). Related to: - #6891
false
2,292,677,439
https://api.github.com/repos/huggingface/datasets/issues/6893
https://github.com/huggingface/datasets/pull/6893
6,893
Close gzipped files properly
closed
3
2024-05-13T12:24:39
2024-05-13T13:53:17
2024-05-13T13:01:54
lhoestq
[]
close https://github.com/huggingface/datasets/issues/6877
true
2,291,201,347
https://api.github.com/repos/huggingface/datasets/issues/6892
https://github.com/huggingface/datasets/pull/6892
6,892
Add support for categorical/dictionary types
closed
3
2024-05-12T07:15:08
2024-06-07T15:01:39
2024-06-07T12:20:42
EthanSteinberg
[]
Arrow has a very useful dictionary/categorical type (https://arrow.apache.org/docs/python/generated/pyarrow.dictionary.html). This data type has significant speed, memory and disk benefits over pa.string() when there are only a few unique text strings in a column. Unfortunately, huggingface datasets currently does not support this type. So huggingface datasets cannot natively read many parquet files that use this datatype .This PR adds support for Huggingface Datasets to read categorical/dictionary data. Note: This PR functions by simply converting those dictionary/categorical types to strings. This means that huggingface datasets cannot take advantage of the compute benefits of categoricals, but it significantly simplifies logic. At this time, I do not think it makes sense to optimize categorical support within huggingface datasets and that we should only try to optimize later, if necessary. Closes #5706
true