id
int64
599M
3.29B
url
stringlengths
58
61
html_url
stringlengths
46
51
number
int64
1
7.72k
title
stringlengths
1
290
state
stringclasses
2 values
comments
int64
0
70
created_at
timestamp[s]date
2020-04-14 10:18:02
2025-08-05 09:28:51
updated_at
timestamp[s]date
2020-04-27 16:04:17
2025-08-05 11:39:56
closed_at
timestamp[s]date
2020-04-14 12:01:40
2025-08-01 05:15:45
user_login
stringlengths
3
26
labels
listlengths
0
4
body
stringlengths
0
228k
is_pull_request
bool
2 classes
1,482,817,424
https://api.github.com/repos/huggingface/datasets/issues/5339
https://github.com/huggingface/datasets/pull/5339
5,339
Add Video feature, videofolder, and video-classification task
closed
4
2022-12-07T20:48:34
2024-01-11T06:30:24
2023-10-11T09:13:11
nateraw
[]
This PR does the following: - Adds `Video` feature (Resolves #5225 ) - Adds `video-classification` task - Adds `videofolder` packaged module for easy loading of local video classification datasets TODO: - [ ] add tests - [ ] add docs
true
1,482,646,151
https://api.github.com/repos/huggingface/datasets/issues/5338
https://github.com/huggingface/datasets/issues/5338
5,338
`map()` stops every 1000 steps
closed
3
2022-12-07T19:09:40
2025-02-14T18:10:07
2022-12-10T00:39:28
bayartsogt-ya
[]
### Describe the bug I am passing the following `prepare_dataset` function to `Dataset.map` (code is inspired from [here](https://github.com/huggingface/community-events/blob/main/whisper-fine-tuning-event/run_speech_recognition_seq2seq_streaming.py#L454)) ```python3 def prepare_dataset(batch): # load and resample audio data from 48 to 16kHz audio = batch["audio"] # compute log-Mel input features from input audio array batch["input_features"] = feature_extractor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0] # encode target text to label ids batch["labels"] = tokenizer(batch[text_column]).input_ids return batch ... train_ds = train_ds.map(prepare_dataset) ``` Here is the exact code I am running https://github.com/bayartsogt-ya/whisper-multiple-hf-datasets/blob/main/train.py#L70-L71 It starts using all the cores (I am not sure why because I did not pass `num_proc`) then progress bar stops at every 1k steps. (starts using a single core) then come back to using all the cores again. link to [screen record](https://youtu.be/jPQpQQGp6Gc) Can someone explain this process and maybe provide a way to improve this pipeline? cc: @lhoestq ### Steps to reproduce the bug 1. load the dataset 2. create a Whisper processor 3. create a `prepare_dataset` function 4. pass the function to `dataset.map(prepare_dataset)` ### Expected behavior - Use a single core per a function - not to stop at some point? ### Environment info - `datasets` version: 2.7.1.dev0 - Platform: Linux-5.4.0-109-generic-x86_64-with-glibc2.27 - Python version: 3.8.10 - PyArrow version: 10.0.1 - Pandas version: 1.5.2
false
1,481,692,156
https://api.github.com/repos/huggingface/datasets/issues/5337
https://github.com/huggingface/datasets/issues/5337
5,337
Support webdataset format
closed
5
2022-12-07T11:32:25
2024-03-06T14:39:29
2024-03-06T14:39:28
lhoestq
[]
Webdataset is an efficient format for iterable datasets. It would be nice to support it in `datasets`, as discussed in https://github.com/rom1504/img2dataset/issues/234. In particular it would be awesome to be able to load one using `load_dataset` in streaming mode (either from a local directory, or from a dataset on the Hugging Face Hub). Some datasets on the Hub are already in webdataset format. It terms of implementation, we can have something similar to the Parquet loader. I also think it's fine to have webdataset as an optional dependency.
false
1,479,649,900
https://api.github.com/repos/huggingface/datasets/issues/5336
https://github.com/huggingface/datasets/pull/5336
5,336
Set `IterableDataset.map` param `batch_size` typing as optional
closed
3
2022-12-06T17:08:10
2022-12-07T14:14:56
2022-12-07T14:06:27
alvarobartt
[]
This PR solves #5325 ~Indeed we're using the typing for optional values as `Union[type, None]` as it's similar to how Python 3.10 handles optional values as `type | None`, instead of using `Optional[type]`.~ ~Do we want to start using `Union[type, None]` for type-hinting optional values or just keep on using `Optional`?~ -> Keeping `Optional` still for consistency with the rest of the code in `datasets` Also we now allow `batch_size` to be `None` for `IterableDataset.map` and `IterableDataset.filter`e.g. `MappedExamplesIterable` as `map` is internally instantiating those and propagating the `batch_size` param so if it can be `None` for `map` it should also do so for `MappedExamplesIterable`, as well as for `FilteredExamplesIterable` when calling `IterableDataset.filter`. ## TODOs - [x] Add integration tests - [x] Handle scenario where `batched=True` and `batch_size=None` or `batch_size<=0`
true
1,478,890,788
https://api.github.com/repos/huggingface/datasets/issues/5335
https://github.com/huggingface/datasets/pull/5335
5,335
Update tasks.json
closed
11
2022-12-06T11:37:57
2023-09-24T10:06:42
2022-12-07T12:46:03
sayakpaul
[]
Context: * https://github.com/huggingface/datasets/issues/5255#issuecomment-1339107195 Cc: @osanseviero
true
1,477,421,927
https://api.github.com/repos/huggingface/datasets/issues/5334
https://github.com/huggingface/datasets/pull/5334
5,334
Clean up docstrings
closed
3
2022-12-05T20:56:08
2022-12-09T01:44:25
2022-12-09T01:41:44
stevhliu
[ "documentation" ]
As raised by @polinaeterna in #5324, some of the docstrings are a bit of a mess because it has both Markdown and Sphinx syntax. This PR fixes the docstring for `DatasetBuilder`. I'll start working on cleaning up the rest of the docstrings and removing the old Sphinx syntax (let me know if you prefer one big PR with all the cleaned changes or multiple smaller ones)! 🧼
true
1,476,890,156
https://api.github.com/repos/huggingface/datasets/issues/5333
https://github.com/huggingface/datasets/pull/5333
5,333
fix: 🐛 pass the token to get the list of config names
closed
1
2022-12-05T16:06:09
2022-12-06T08:25:17
2022-12-06T08:22:49
severo
[]
Otherwise, get_dataset_infos doesn't work on gated or private datasets, even with the correct token.
true
1,476,513,072
https://api.github.com/repos/huggingface/datasets/issues/5332
https://github.com/huggingface/datasets/issues/5332
5,332
Passing numpy array to ClassLabel names causes ValueError
closed
5
2022-12-05T12:59:03
2022-12-22T16:32:50
2022-12-22T16:32:50
freddyheppell
[]
### Describe the bug If a numpy array is passed to the names argument of ClassLabel, creating a dataset with those features causes an error. ### Steps to reproduce the bug https://colab.research.google.com/drive/1cV_es1PWZiEuus17n-2C-w0KEoEZ68IX TLDR: If I define my classes as: ``` my_classes = np.array(['one', 'two', 'three']) ``` Then this errors: ```py features = Features({'value': Value('string'), 'label': ClassLabel(names=my_classes)}) dataset = Dataset.from_list(my_data, features=features) ``` ``` ValueError Traceback (most recent call last) [<ipython-input-8-a8a9d53ec82f>](https://localhost:8080/#) in <module> ----> 1 dataset = Dataset.from_list(my_data, features=features) 11 frames [/usr/local/lib/python3.8/dist-packages/datasets/utils/py_utils.py](https://localhost:8080/#) in _asdict_inner(obj) 183 for f in fields(obj): 184 value = _asdict_inner(getattr(obj, f.name)) --> 185 if not f.init or value != f.default or f.metadata.get("include_in_asdict_even_if_is_default", False): 186 result[f.name] = value 187 return result ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all() ``` But this works: ``` features2 = Features({'value': Value('string'), 'label': ClassLabel(names=list(my_classes))}) dataset2 = Dataset.from_list(my_data, features=features2) ``` ### Expected behavior If I provide a numpy array of class names, I would expect either an error that the names list is the wrong type, or for it to be cast internally. ### Environment info - `datasets` version: 2.7.1 - Platform: Linux-5.15.0-56-generic-x86_64-with-glibc2.10 - Python version: 3.8.15 - PyArrow version: 10.0.1 - Pandas version: 1.5.2 Additionally: - Numpy version: 1.23.5
false
1,473,146,738
https://api.github.com/repos/huggingface/datasets/issues/5331
https://github.com/huggingface/datasets/pull/5331
5,331
Support for multiple configs in packaged modules via metadata yaml info
closed
22
2022-12-02T16:43:44
2023-07-24T15:49:54
2023-07-13T13:27:56
polinaeterna
[]
will solve https://github.com/huggingface/datasets/issues/5209 and https://github.com/huggingface/datasets/issues/5151 and many other... Config parameters for packaged builders are parsed from `“builder_config”` field in README.md file (separate firs-level field, not part of “dataset_info”), example: ```yaml --- dataset_info: ... configs: - config_name: v1 data_dir: v1 drop_labels: true - config_name: v2 data_dir: v2 drop_labels: false ``` I tried to align packaged builders with custom configs parsed from metadata with scripts dataset builder as much as possible. Their builders are created dynamically (see `configure_builder_class()` in load.py`) and have `BUILDER_CONFIGS` attribute filled with `BuilderConfig` objects in the same way as for datasets with script. ## load_dataset 1. If there is single config in meta and it doesn’t have a name, the name becomes “default” (as we do for “dataset_info”), [example](https://huggingface.co/datasets/polinaeterna/audiofolder_one_default_config_in_metadata/blob/main/README.md): ```python load_dataset("ds") == load_dataset("ds", "default") # load with the params provided in metadata load_dataset("ds", "random name") # ValueError: BuilderConfig 'random_name' not found. Available: ['default'] ``` 2. If there is single config in metadata with `config_name` provided, it becomes a default one (loaded when no `config_name` is specified, [example](https://huggingface.co/datasets/polinaeterna/audiofolder_one_nondefault_config_in_metadata) ```python load_dataset("ds") == load_dataset("ds", "custom") # load with the params provided in meta load_dataset("ds", "random name") # ValueError: BuilderConfig 'random_name' not found. Available: ['custom'] ``` 3. If there are several configs in metadata with names [example](https://huggingface.co/datasets/polinaeterna/audiofolder_two_configs_in_metadata/blob/main/README.md) ```python load_dataset("ds", "v1") # load with "v1" params load_dataset("ds", "v2") # load with "v2" params load_dataset("ds") # ValueError: BuilderConfig 'default' not found. Available: ['v1', 'v2'] ``` Thanks to @lhoestq and [this change](https://github.com/polinaeterna/datasets/pull/1), it's possible to add `"default"` field in yaml and set it to True, to make the config a default one (loaded when no config is specified): ```yaml configs: - config_name: v1 drop_labels: true default: true - config_name: v2 ... ``` then `load_dataset("ds") == load_dataset("ds", "v1")`. ## dataset_name and cache I decided that it’s reasonable to add a `dataset_name` attribute to `DatasetBuilder` class which would be equal to `name` for scripts dataset but reflect a real dataset name for packaged builders (last part of path/name from hub). This is mostly to reorganize cache structure (I believe we can do this in the major release?) because otherwise, with custom configs for packaged builders which were all stored in the same directory, i it was becoming a mess. And in general it makes much more sense like this, from datasets server perspective too, though it’s a breaking change So the cache dir has the following structure: `"{namespace__}<dataset_name>/<config_name>/<version>/<hash>/"` and arrow/parquet filenames are also `"<dataset_name>-<split>.arrow"`. For example `polinaeterna___audiofolder_two_configs_in_metadata/v1-5532fac9443ea252/0.0.0/6cbdd16f8688354c63b4e2a36e1585d05de285023ee6443ffd71c4182055c0fc/` for `polinaeterna/audiofolder_two_configs_in_metadata` Hub dataset, train arrow file is `audiofolder_two_configs_in_metadata-train.arrow`. For script datasets it remains unchanged. ## push_to_hub To support custom configs with `push_to_hub`, the data is put under directory named either as `<config_name>` if `config_name` is **not** "default" or "data" if `config_name` is omitted or "default" (for backward compatibility). `"builder_config"` field is added to README.md, with `config_name` (optional) and `data_files` fields. for `"data_files"`, `"pattern"` parameter is introduced, to resolve data files correctly, see https://github.com/polinaeterna/datasets/pull/1. - `ds.push_to_hub("ds")` --> one config ("default"), put under "data" directory, [example](https://huggingface.co/datasets/polinaeterna/push_to_hub_single_config/blob/main/README.md) ```yaml dataset_info: ... configs: data_files: - split: train pattern: data/train-* ... ``` - `ds.push_to_hub("ds", "custom")` --> put under "custom" directory, [example](https://huggingface.co/datasets/polinaeterna/push_to_hub_singe_nondefault_config/blob/main/README.md) ```yaml configs: config_name: custom data_files: - split: train path: custom/train-* ... ``` - for many configs, [example](https://huggingface.co/datasets/polinaeterna/push_to_hub_many_configs/blob/main/README.md): ```yaml configs: - config_name: v1 data_files: - split: train path: v1/train-* ... - config_name: v2 data_files: - split: train path: v2/train-* ... ``` Thanks to @lhoestq and https://github.com/polinaeterna/datasets/pull/1, when pushing to datasets created **before** this change, README.md is updated accordingly (config for old data is added along with the one that is being pushed). `"dataset_info"` yaml field is updated accordingly (new configs are added). This shouldn't break anything! TODO in separate PRs: - [x] docs - [ ] probably update test cli util (make --save_info not rewrite `builder_config` in readme)
true
1,471,999,125
https://api.github.com/repos/huggingface/datasets/issues/5329
https://github.com/huggingface/datasets/pull/5329
5,329
Clarify imagefolder is for small datasets
closed
4
2022-12-01T21:47:29
2022-12-06T17:20:04
2022-12-06T17:16:53
stevhliu
[]
Based on feedback from [here](https://github.com/huggingface/datasets/issues/5317#issuecomment-1334108824), this PR adds a note to the `imagefolder` loading and creating docs that `imagefolder` is designed for small scale image datasets.
true
1,471,661,437
https://api.github.com/repos/huggingface/datasets/issues/5328
https://github.com/huggingface/datasets/pull/5328
5,328
Fix docs building for main
closed
3
2022-12-01T17:07:45
2022-12-02T16:29:00
2022-12-02T16:26:00
albertvillanova
[]
This PR reverts the triggering event for building documentation introduced by: - #5250 Fix #5326.
true
1,471,657,247
https://api.github.com/repos/huggingface/datasets/issues/5327
https://github.com/huggingface/datasets/pull/5327
5,327
Avoid unwanted behaviour when splits from script and metadata are not matching because of outdated metadata
open
1
2022-12-01T17:05:23
2023-01-23T12:48:29
null
polinaeterna
[]
will fix #5315
true
1,471,634,168
https://api.github.com/repos/huggingface/datasets/issues/5326
https://github.com/huggingface/datasets/issues/5326
5,326
No documentation for main branch is built
closed
0
2022-12-01T16:50:58
2022-12-02T16:26:01
2022-12-02T16:26:01
albertvillanova
[ "bug" ]
Since: - #5250 - Commit: 703b84311f4ead83c7f79639f2dfa739295f0be6 the docs for main branch are no longer built. The change introduced only triggers the docs building for releases.
false
1,471,536,822
https://api.github.com/repos/huggingface/datasets/issues/5325
https://github.com/huggingface/datasets/issues/5325
5,325
map(...batch_size=None) for IterableDataset
closed
5
2022-12-01T15:43:42
2022-12-07T15:54:43
2022-12-07T15:54:42
frankier
[ "enhancement", "good first issue" ]
### Feature request Dataset.map(...) allows batch_size to be None. It would be nice if IterableDataset did too. ### Motivation Although it may seem a bit of a spurious request given that `IterableDataset` is meant for larger than memory datasets, but there are a couple of reasons why this might be nice. One is that load_dataset(...) can return either IterableDataset or Dataset. mypy will then complain if batch_size=None even if we know it is Dataset. Of course we can do: assert isinstance(d, datasets.DatasetDict) But it is a mild inconvenience. What's more annoying is that whenever we use something like e.g. `combine_datasets(...)`, we end up with the union again, and so have to do the assert again. Another is that we could actually end up with an IterableDataset small enough for memory in normal/correct usage, e.g. by filtering a massive IterableDataset. For practical usages, an alternative to this would be to convert from an iterable dataset to a map-style dataset, but it is not obvious how to do this. ### Your contribution Not this time.
false
1,471,524,512
https://api.github.com/repos/huggingface/datasets/issues/5324
https://github.com/huggingface/datasets/issues/5324
5,324
Fix docstrings and types in documentation that appears on the website
open
5
2022-12-01T15:34:53
2024-01-23T16:21:54
null
polinaeterna
[ "documentation" ]
While I was working on https://github.com/huggingface/datasets/pull/5313 I've noticed that we have a mess in how we annotate types and format args and return values in the code. And some of it is displayed in the [Reference section](https://huggingface.co/docs/datasets/package_reference/builder_classes) of the documentation on the website. Would be nice someday, maybe before releasing datasets 3.0.0, to unify it......
false
1,471,518,803
https://api.github.com/repos/huggingface/datasets/issues/5323
https://github.com/huggingface/datasets/issues/5323
5,323
Duplicated Keys in Taskmaster-2 Dataset
closed
2
2022-12-01T15:31:06
2022-12-01T16:26:06
2022-12-01T16:26:06
liaeh
[]
### Describe the bug Loading certain splits () of the taskmaster-2 dataset fails because of a DuplicatedKeysError. This occurs for the following domains: `'hotels', 'movies', 'music', 'sports'`. The domains `'flights', 'food-ordering', 'restaurant-search'` load fine. Output: ### Steps to reproduce the bug ``` from datasets import load_dataset dataset = load_dataset("taskmaster2", "music") ``` Output: ``` --------------------------------------------------------------------------- DuplicatedKeysError Traceback (most recent call last) File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:1532, in GeneratorBasedBuilder._prepare_split_single(self, arg) [1531](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1530) example = self.info.features.encode_example(record) if self.info.features is not None else record -> [1532](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1531) writer.write(example, key) [1533](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1532) num_examples_progress_update += 1 File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py:475, in ArrowWriter.write(self, example, key, writer_batch_size) [474](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=473) if self._check_duplicates: --> [475](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=474) self.check_duplicate_keys() [476](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=475) # Re-intializing to empty list for next batch File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py:492, in ArrowWriter.check_duplicate_keys(self) [486](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=485) duplicate_key_indices = [ [487](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=486) str(self._num_examples + index) [488](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=487) for index, (duplicate_hash, _) in enumerate(self.hkey_record) [489](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=488) if duplicate_hash == hash [490](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=489) ] --> [492](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=491) raise DuplicatedKeysError(key, duplicate_key_indices) [493](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=492) else: DuplicatedKeysError: Found multiple examples generated with the same key The examples at index 858, 859 have the key dlg-89174425-d57a-4db7-a92b-165c3bff6735 During handling of the above exception, another exception occurred: DuplicatedKeysError Traceback (most recent call last) File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:1541, in GeneratorBasedBuilder._prepare_split_single(self, arg) [1540](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1539) num_shards = shard_id + 1 -> [1541](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1540) num_examples, num_bytes = writer.finalize() [1542](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1541) writer.close() File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py:563, in ArrowWriter.finalize(self, close_stream) [562](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=561) if self._check_duplicates: --> [563](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=562) self.check_duplicate_keys() [564](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=563) # Re-intializing to empty list for next batch File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py:492, in ArrowWriter.check_duplicate_keys(self) [486](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=485) duplicate_key_indices = [ [487](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=486) str(self._num_examples + index) [488](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=487) for index, (duplicate_hash, _) in enumerate(self.hkey_record) [489](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=488) if duplicate_hash == hash [490](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=489) ] --> [492](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=491) raise DuplicatedKeysError(key, duplicate_key_indices) [493](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/arrow_writer.py?line=492) else: DuplicatedKeysError: Found multiple examples generated with the same key The examples at index 858, 859 have the key dlg-89174425-d57a-4db7-a92b-165c3bff6735 The above exception was the direct cause of the following exception: DatasetGenerationError Traceback (most recent call last) Cell In[23], line 1 ----> 1 dataset = load_dataset("taskmaster2", "music") File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py:1741, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, **config_kwargs) [1738](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1737) try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES [1740](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1739) # Download and prepare data -> [1741](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1740) builder_instance.download_and_prepare( [1742](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1741) download_config=download_config, [1743](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1742) download_mode=download_mode, [1744](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1743) ignore_verifications=ignore_verifications, [1745](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1744) try_from_hf_gcs=try_from_hf_gcs, [1746](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1745) use_auth_token=use_auth_token, [1747](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1746) num_proc=num_proc, [1748](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1747) ) [1750](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1749) # Build dataset for splits [1751](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1750) keep_in_memory = ( [1752](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1751) keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size) [1753](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/load.py?line=1752) ) File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:822, in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs) [820](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=819) if num_proc is not None: [821](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=820) prepare_split_kwargs["num_proc"] = num_proc --> [822](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=821) self._download_and_prepare( [823](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=822) dl_manager=dl_manager, [824](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=823) verify_infos=verify_infos, [825](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=824) **prepare_split_kwargs, [826](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=825) **download_and_prepare_kwargs, [827](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=826) ) [828](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=827) # Sync info [829](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=828) self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values()) File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:1555, in GeneratorBasedBuilder._download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs) [1554](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1553) def _download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs): -> [1555](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1554) super()._download_and_prepare( [1556](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1555) dl_manager, verify_infos, check_duplicate_keys=verify_infos, **prepare_splits_kwargs [1557](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1556) ) File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:913, in DatasetBuilder._download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) [909](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=908) split_dict.add(split_generator.split_info) [911](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=910) try: [912](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=911) # Prepare split will record examples associated to the split --> [913](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=912) self._prepare_split(split_generator, **prepare_split_kwargs) [914](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=913) except OSError as e: [915](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=914) raise OSError( [916](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=915) "Cannot find data file. " [917](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=916) + (self.manual_download_instructions or "") [918](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=917) + "\nOriginal error:\n" [919](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=918) + str(e) [920](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=919) ) from None File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:1396, in GeneratorBasedBuilder._prepare_split(self, split_generator, check_duplicate_keys, file_format, num_proc, max_shard_size) [1394](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1393) gen_kwargs = split_generator.gen_kwargs [1395](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1394) job_id = 0 -> [1396](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1395) for job_id, done, content in self._prepare_split_single( [1397](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1396) {"gen_kwargs": gen_kwargs, "job_id": job_id, **_prepare_split_args} [1398](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1397) ): [1399](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1398) if done: [1400](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1399) result = content File ~/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py:1550, in GeneratorBasedBuilder._prepare_split_single(self, arg) [1548](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1547) if isinstance(e, SchemaInferenceError) and e.__context__ is not None: [1549](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1548) e = e.__context__ -> [1550](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1549) raise DatasetGenerationError("An error occurred while generating the dataset") from e [1552](file:///home/user/repos/tts-dataset/tts-dataset/venv/lib/python3.9/site-packages/datasets/builder.py?line=1551) yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths) DatasetGenerationError: An error occurred while generating the dataset ``` ### Expected behavior Loads the dataset ### Environment info - `datasets` version: 2.7.1 - Platform: Linux-5.13.0-40-generic-x86_64-with-glibc2.31 - Python version: 3.9.7 - PyArrow version: 10.0.1 - Pandas version: 1.5.2
false
1,471,502,162
https://api.github.com/repos/huggingface/datasets/issues/5322
https://github.com/huggingface/datasets/pull/5322
5,322
Raise error for `.tar` archives in the same way as for `.tar.gz` and `.tgz` in `_get_extraction_protocol`
closed
1
2022-12-01T15:19:28
2022-12-14T16:37:16
2022-12-14T16:33:30
polinaeterna
[]
Currently `download_and_extract` doesn't throw an error when it is used with files with `.tar` extension in streaming mode because `_get_extraction_protocol` doesn't do it (like it does for `tar.gz` and `tgz`). `_get_extraction_protocol` returns formatted url as if we support tar protocol but we don't. That means that in dataset scripts `.tar` files would be attempted to load and fail during examples generation (after `download_and_extract` execution). So this PR raises error for `tar` files too.
true
1,471,430,667
https://api.github.com/repos/huggingface/datasets/issues/5321
https://github.com/huggingface/datasets/pull/5321
5,321
Fix loading from HF GCP cache
closed
2
2022-12-01T14:39:06
2022-12-01T16:10:09
2022-12-01T16:07:02
lhoestq
[]
As reported in https://discuss.huggingface.co/t/error-loading-wikipedia-dataset/26599/4 it's not possible to download a cached version of Wikipedia from the HF GCP cache I fixed it and added an integration test (runs in 10sec)
true
1,471,360,910
https://api.github.com/repos/huggingface/datasets/issues/5320
https://github.com/huggingface/datasets/pull/5320
5,320
[Extract] Place the lock file next to the destination directory
closed
1
2022-12-01T13:55:49
2022-12-01T15:36:44
2022-12-01T15:33:58
lhoestq
[]
Previously it was placed next to the archive to extract, but the archive can be in a read-only directory as noticed in https://github.com/huggingface/datasets/issues/5295 Therefore I moved the lock location to be next to the destination directory, which is required to have write permissions
true
1,470,945,515
https://api.github.com/repos/huggingface/datasets/issues/5319
https://github.com/huggingface/datasets/pull/5319
5,319
Fix Text sample_by paragraph
closed
1
2022-12-01T09:08:09
2022-12-01T15:21:44
2022-12-01T15:19:00
albertvillanova
[]
Fix #5316.
true
1,470,749,750
https://api.github.com/repos/huggingface/datasets/issues/5318
https://github.com/huggingface/datasets/pull/5318
5,318
Origin/fix missing features error
closed
5
2022-12-01T06:18:39
2022-12-12T19:06:42
2022-12-04T05:49:39
eunseojo
[]
This fixes the problem of when the dataset_load function reads a function with "features" provided but some read batches don't have columns that later show up. For instance, the provided "features" requires columns A,B,C but only columns B,C show. This fixes this by adding the column A with nulls.
true
1,470,390,164
https://api.github.com/repos/huggingface/datasets/issues/5317
https://github.com/huggingface/datasets/issues/5317
5,317
`ImageFolder` performs poorly with large datasets
open
3
2022-12-01T00:04:21
2022-12-01T21:49:26
null
salieri
[]
### Describe the bug While testing image dataset creation, I'm seeing significant performance bottlenecks with imagefolders when scanning a directory structure with large number of images. ## Setup * Nested directories (5 levels deep) * 3M+ images * 1 `metadata.jsonl` file ## Performance Degradation Point 1 Degradation occurs because [`get_data_files_patterns`](https://github.com/huggingface/datasets/blob/main/src/datasets/data_files.py#L231-L243) runs the exact same scan for many different types of patterns, and there doesn't seem to be a way to easily limit this. It's controlled by the definition of [`ALL_DEFAULT_PATTERNS`](https://github.com/huggingface/datasets/blob/main/src/datasets/data_files.py#L82-L85). One scan with 3M+ files takes about 10-15 minutes to complete on my setup, so having those extra scans really slows things down – from 10 minutes to 60+. Most of the scans return no matches, but they still take a significant amount of time to complete – hence the poor performance. As a side effect, when this scan is run on 3M+ image files, Python also consumes up to 12 GB of RAM, which is not ideal. ## Performance Degradation Point 2 The second performance bottleneck is in [`PackagedDatasetModuleFactory.get_module`](https://github.com/huggingface/datasets/blob/d7dfbc83d68e87ba002c5eb2555f7a932e59038a/src/datasets/load.py#L707-L711), which calls `DataFilesDict.from_local_or_remote`. It runs for a long time (60min+), consuming significant amounts of RAM – even more than the point 1 above. Based on `iostat -d 2`, it performs **zero** disk operations, which to me suggests that there is a code based bottleneck there that could be sorted out. ### Steps to reproduce the bug ```python from datasets import load_dataset import os import huggingface_hub dataset = load_dataset( 'imagefolder', data_dir='/some/path', # just to spell it out: split=None, drop_labels=True, keep_in_memory=False ) dataset.push_to_hub('account/dataset', private=True) ``` ### Expected behavior While it's certainly possible to write a custom loader to replace `ImageFolder` with, it'd be great if the off-the-shelf `ImageFolder` would by default have a setup that can scale to large datasets. Or perhaps there could be a dedicated loader just for large datasets that trades off flexibility for performance? As in, maybe you have to define explicitly how you want it to work rather than it trying to guess your data structure like `_get_data_files_patterns()` does? ### Environment info - `datasets` version: 2.7.1 - Platform: Linux-4.14.296-222.539.amzn2.x86_64-x86_64-with-glibc2.2.5 - Python version: 3.7.10 - PyArrow version: 10.0.1 - Pandas version: 1.3.5
false
1,470,115,681
https://api.github.com/repos/huggingface/datasets/issues/5316
https://github.com/huggingface/datasets/issues/5316
5,316
Bug in sample_by="paragraph"
closed
1
2022-11-30T19:24:13
2022-12-01T15:19:02
2022-12-01T15:19:02
adampauls
[]
### Describe the bug I think [this line](https://github.com/huggingface/datasets/blob/main/src/datasets/packaged_modules/text/text.py#L96) is wrong and should be `batch = f.read(self.config.chunksize)`. Otherwise it will never terminate because even when `f` is finished reading, `batch` will still be truthy from the last iteration. ### Steps to reproduce the bug ``` > cat test.txt a b c d e f ```` ```python >>> import datasets >>> datasets.load_dataset("text", data_files={"train":"test.txt"}, sample_by="paragraph") ``` This will go on forever. ### Expected behavior Terminates very quickly. ### Environment info `version = "2.6.1"` but I think the bug is still there on main.
false
1,470,026,797
https://api.github.com/repos/huggingface/datasets/issues/5315
https://github.com/huggingface/datasets/issues/5315
5,315
Adding new splits to a dataset script with existing old splits info in metadata's `dataset_info` fails
open
3
2022-11-30T18:02:15
2022-12-02T07:02:53
null
polinaeterna
[ "bug" ]
### Describe the bug If you first create a custom dataset with a specific set of splits, generate metadata with `datasets-cli test ... --save_info`, then change your script to include more splits, it fails. That's what happened in https://huggingface.co/datasets/mrdbourke/food_vision_199_classes/discussions/2#6385fd1269634850f8ddff48. ### Steps to reproduce the bug 1. create a dataset with a custom split that returns, for example, only `"train"` split in `_splits_generators'`. specifically, if really want to reproduce, copy `https://huggingface.co/datasets/mrdbourke/food_vision_199_classes/blob/main/food_vision_199_classes.py 2. run `datasets-cli test dataset_script.py --save_info --all_configs` - this would generate metadata yaml in `README.md` that would contain info about splits, for example, like this: ``` splits: - name: train num_bytes: 2973286 num_examples: 19747 ``` 3. make changes to your script so that it returns another set of splits, for example, `"train"` and `"test"` (uncomment [these lines](https://huggingface.co/datasets/mrdbourke/food_vision_199_classes/blob/main/food_vision_199_classes.py#L271)) 4. run `load_dataset` and get the following error: ```python Traceback (most recent call last): File "/home/daniel/code/pytorch/env/bin/datasets-cli", line 8, in <module> sys.exit(main()) File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/commands/datasets_cli.py", line 39, in main service.run() File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/commands/test.py", line 141, in run builder.download_and_prepare( File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/builder.py", line 822, in download_and_prepare self._download_and_prepare( File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/builder.py", line 1555, in _download_and_prepare super()._download_and_prepare( File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/builder.py", line 913, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/builder.py", line 1356, in _prepare_split split_info = self.info.splits[split_generator.name] File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/splits.py", line 525, in __getitem__ instructions = make_file_instructions( File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/arrow_reader.py", line 111, in make_file_instructions name2filenames = { File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/arrow_reader.py", line 112, in <dictcomp> info.name: filenames_for_dataset_split( File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/naming.py", line 78, in filenames_for_dataset_split prefix = filename_prefix_for_split(dataset_name, split) File "/home/daniel/code/pytorch/env/lib/python3.8/site-packages/datasets/naming.py", line 57, in filename_prefix_for_split if os.path.basename(name) != name: File "/home/daniel/code/pytorch/env/lib/python3.8/posixpath.py", line 143, in basename p = os.fspath(p) TypeError: expected str, bytes or os.PathLike object, not NoneType ``` 5. bonus: try to regenerate metadata in `README.md` with `datasets-cli` as in step 2 and get the same error. This is because `dataset.info.splits` contains only `"train"` split so when we are doing `self.info.splits[split_generator.name]` it tries to infer smth like `info.splits['train[50%]']` and that's not the case and it fails. ### Expected behavior to be discussed? This can be solved by removing splits information from metadata file first. But I wonder if there is a better way. ### Environment info - Datasets version: 2.7.1 - Python version: 3.8.13
false
1,469,685,118
https://api.github.com/repos/huggingface/datasets/issues/5314
https://github.com/huggingface/datasets/issues/5314
5,314
Datasets: classification_report() got an unexpected keyword argument 'suffix'
closed
2
2022-11-30T14:01:03
2023-07-21T14:40:31
2023-07-21T14:40:31
JonathanAlis
[]
https://github.com/huggingface/datasets/blob/main/metrics/seqeval/seqeval.py > import datasets predictions = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] references = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] seqeval = datasets.load_metric("seqeval") results = seqeval.compute(predictions=predictions, references=references) print(list(results.keys())) print(results["overall_f1"]) print(results["PER"]["f1"]) It raises the error: > TypeError: classification_report() got an unexpected keyword argument 'suffix' For context, versions on my pip list -v > datasets 1.12.1 seqeval 1.2.2
false
1,468,484,136
https://api.github.com/repos/huggingface/datasets/issues/5313
https://github.com/huggingface/datasets/pull/5313
5,313
Fix description of streaming in the docs
closed
1
2022-11-29T18:00:28
2022-12-01T14:55:30
2022-12-01T14:00:34
polinaeterna
[]
We say that "the data is being downloaded progressively" which is not true, it's just streamed, so I fixed it. Probably I missed some other places where it is written? Also changed docstrings for `StreamingDownloadManager`'s `download` and `extract` to reflect the same, as these docstrings are displayed in the documentation cc @lhoestq
true
1,468,352,562
https://api.github.com/repos/huggingface/datasets/issues/5312
https://github.com/huggingface/datasets/pull/5312
5,312
Add DatasetDict.to_pandas
closed
12
2022-11-29T16:30:02
2023-09-24T10:06:19
2023-01-25T17:33:42
lhoestq
[]
From discussions in https://github.com/huggingface/datasets/issues/5189, for tabular data it doesn't really make sense to have to do ```python df = load_dataset(...)["train"].to_pandas() ``` because many datasets are not split. In this PR I added `to_pandas` to `DatasetDict` which returns the DataFrame: If there's only one split, you don't need to specify the split name: ```python df = load_dataset(...).to_pandas() ``` EDIT: and if a dataset has multiple splits: ```python df = load_dataset(...).to_pandas(splits=["train", "test"]) # or df = load_dataset(...).to_pandas(splits="all") # raises an error because you need to select the split(s) to convert load_dataset(...).to_pandas() ``` I do have one question though @merveenoyan @adrinjalali @mariosasko: Should we raise an error if there are multiple splits and ask the user to choose one explicitly ?
true
1,467,875,153
https://api.github.com/repos/huggingface/datasets/issues/5311
https://github.com/huggingface/datasets/pull/5311
5,311
Add `features` param to `IterableDataset.map`
closed
1
2022-11-29T11:08:34
2022-12-06T15:45:02
2022-12-06T15:42:04
alvarobartt
[]
## Description As suggested by @lhoestq in #3888, we should be adding the param `features` to `IterableDataset.map` so that the features can be preserved (not turned into `None` as that's the default behavior) whenever the user passes those as param, so as to be consistent with `Dataset.map`, as it provides the `features` param so that those are not inferred by default, but specified by the user, and later validated by `ArrowWriter`. This is internally handled already by the functions relying on `IterableDataset.map` such as `rename_column`, `rename_columns`, and `remove_columns` as described in #5287. ## Usage Example ```python from datasets import load_dataset, Features ds = load_dataset("rotten_tomatoes", split="validation", streaming=True) print(ds.info.features) ds = ds.map( lambda x: {"target": x["label"]}, features=Features( {"target": ds.info.features["label"], "label": ds.info.features["label"], "text": ds.info.features["text"]} ), ) print(ds.info.features) ```
true
1,467,719,635
https://api.github.com/repos/huggingface/datasets/issues/5310
https://github.com/huggingface/datasets/pull/5310
5,310
Support xPath for Windows pathnames
closed
1
2022-11-29T09:20:47
2022-11-30T12:00:09
2022-11-30T11:57:16
albertvillanova
[]
This PR implements a string representation of `xPath`, which is valid for local paths (also windows) and remote URLs. Additionally, some `os.path` methods are fixed for remote URLs on Windows machines. Now, on Windows machines: ```python In [2]: str(xPath("C:\\dir\\file.txt")) Out[2]: 'C:\\dir\\file.txt' In [3]: str(xPath("http://domain.com/file.txt")) Out[3]: 'http://domain.com/file.txt' ```
true
1,466,758,987
https://api.github.com/repos/huggingface/datasets/issues/5309
https://github.com/huggingface/datasets/pull/5309
5,309
Close stream in `ArrowWriter.finalize` before inference error
closed
1
2022-11-28T16:59:39
2022-12-07T12:55:20
2022-12-07T12:52:15
mariosasko
[]
Ensure the file stream is closed in `ArrowWriter.finalize` before raising the `SchemaInferenceError` to avoid the `PermissionError` on Windows in `incomplete_dir`'s `shutil.rmtree`.
true
1,466,552,281
https://api.github.com/repos/huggingface/datasets/issues/5308
https://github.com/huggingface/datasets/pull/5308
5,308
Support `topdown` parameter in `xwalk`
closed
2
2022-11-28T14:42:41
2022-12-09T12:58:55
2022-12-09T12:55:59
mariosasko
[]
Add support for the `topdown` parameter in `xwalk` when `fsspec>=2022.11.0` is installed.
true
1,466,477,427
https://api.github.com/repos/huggingface/datasets/issues/5307
https://github.com/huggingface/datasets/pull/5307
5,307
Use correct dataset type in `from_generator` docs
closed
1
2022-11-28T13:59:10
2022-11-28T15:30:37
2022-11-28T15:27:26
mariosasko
[]
Use the correct dataset type in the `from_generator` docs (example with sharding).
true
1,465,968,639
https://api.github.com/repos/huggingface/datasets/issues/5306
https://github.com/huggingface/datasets/issues/5306
5,306
Can't use custom feature description when loading a dataset
closed
1
2022-11-28T07:55:44
2022-11-28T08:11:45
2022-11-28T08:11:44
clefourrier
[]
### Describe the bug I have created a feature dictionary to describe my datasets' column types, to use when loading the dataset, following [the doc](https://huggingface.co/docs/datasets/main/en/about_dataset_features). It crashes at dataset load. ### Steps to reproduce the bug ```python # Creating features task_list = [f"motif_G{i}" for i in range(19, 53)] features = {t: Sequence(feature=Value(dtype="float64")) for t in task_list} for col_name in ["class_label"]: features[col_name] = Sequence(feature=Value(dtype="int64")) for col_name in ["num_nodes"]: features[col_name] = Value(dtype="int64") for col_name in ["num_bridges", "num_cycles", "avg_shortest_path_len"]: features[col_name] = Sequence(feature=Value(dtype="float64")) for col_name in ["edge_attr", "node_feat", "edge_index"]: features[col_name] = Sequence(feature=Sequence(feature=Value(dtype="int64"))) print(features) dataset = load_dataset(path=f"graphs-datasets/unbalanced-motifs-500K", split="train", features=features) ``` Last line will crash and say 'TypeError: argument of type 'Sequence' is not iterable'. Full stack: ``` Traceback (most recent call last): File "pretrain_tokengt.py", line 131, in <module> main(output_folder = "../workspace/pretraining", File "pretrain_tokengt.py", line 52, in main dataset = load_dataset(path=f"graphs-datasets/{dataset_name}", split="train", features=features) File "huggingface_env/lib/python3.8/site-packages/datasets/load.py", line 1718, in load_dataset builder_instance = load_dataset_builder( File "huggingface_env/lib/python3.8/site-packages/datasets/load.py", line 1514, in load_dataset_builder builder_instance: DatasetBuilder = builder_cls( File "huggingface_env/lib/python3.8/site-packages/datasets/builder.py", line 321, in __init__ info.update(self._info()) File "huggingface_env/lib/python3.8/site-packages/datasets/packaged_modules/json/json.py", line 62, in _info return datasets.DatasetInfo(features=self.config.features) File "<string>", line 20, in __init__ File "huggingface_env/lib/python3.8/site-packages/datasets/info.py", line 155, in __post_init__ self.features = Features.from_dict(self.features) File "huggingface_env/lib/python3.8/site-packages/datasets/features/features.py", line 1599, in from_dict obj = generate_from_dict(dic) File "huggingface_env/lib/python3.8/site-packages/datasets/features/features.py", line 1282, in generate_from_dict return {key: generate_from_dict(value) for key, value in obj.items()} File "huggingface_env/lib/python3.8/site-packages/datasets/features/features.py", line 1282, in <dictcomp> return {key: generate_from_dict(value) for key, value in obj.items()} File "huggingface_env/lib/python3.8/site-packages/datasets/features/features.py", line 1281, in generate_from_dict if "_type" not in obj or isinstance(obj["_type"], dict): TypeError: argument of type 'Sequence' is not iterable ``` ### Expected behavior For it not to crash. ### Environment info - `datasets` version: 2.7.1 - Platform: Linux-5.14.0-1054-oem-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 8.0.0 - Pandas version: 1.4.3
false
1,465,627,826
https://api.github.com/repos/huggingface/datasets/issues/5305
https://github.com/huggingface/datasets/issues/5305
5,305
Dataset joelito/mc4_legal does not work with multiple files
closed
2
2022-11-28T00:16:16
2022-11-28T07:22:42
2022-11-28T07:22:42
JoelNiklaus
[]
### Describe the bug The dataset https://huggingface.co/datasets/joelito/mc4_legal works for languages like bg with a single data file, but not for languages with multiple files like de. It shows zero rows for the de dataset. joelniklaus@Joels-MacBook-Pro ~/N/P/C/L/p/m/mc4_legal (main) [1]> python test_mc4_legal.py (debug) Found cached dataset mc4_legal (/Users/joelniklaus/.cache/huggingface/datasets/mc4_legal/de/0.0.0/fb6952a097180f8c936e2a7605525ff670354a344fc1a2c70107684d3f7cb02f) Dataset({ features: ['index', 'url', 'timestamp', 'matches', 'text'], num_rows: 0 }) joelniklaus@Joels-MacBook-Pro ~/N/P/C/L/p/m/mc4_legal (main)> python test_mc4_legal.py (debug) Downloading and preparing dataset mc4_legal/bg to /Users/joelniklaus/.cache/huggingface/datasets/mc4_legal/bg/0.0.0/fb6952a097180f8c936e2a7605525ff670354a344fc1a2c70107684d3f7cb02f... Downloading data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1240.55it/s] Dataset mc4_legal downloaded and prepared to /Users/joelniklaus/.cache/huggingface/datasets/mc4_legal/bg/0.0.0/fb6952a097180f8c936e2a7605525ff670354a344fc1a2c70107684d3f7cb02f. Subsequent calls will reuse this data. Dataset({ features: ['index', 'url', 'timestamp', 'matches', 'text'], num_rows: 204 }) ### Steps to reproduce the bug import datasets from datasets import load_dataset, get_dataset_config_names language = "bg" test = load_dataset("joelito/mc4_legal", language, split='train') ### Expected behavior It should display the correct number of rows for the de dataset which should be a large number (thousands or more). ### Environment info Package Version ------------------------ -------------- absl-py 1.3.0 aiohttp 3.8.1 aiosignal 1.2.0 astunparse 1.6.3 async-timeout 4.0.2 attrs 22.1.0 beautifulsoup4 4.11.1 blinker 1.4 blis 0.7.8 Bottleneck 1.3.4 brotlipy 0.7.0 cachetools 5.2.0 catalogue 2.0.7 certifi 2022.5.18.1 cffi 1.15.1 chardet 4.0.0 charset-normalizer 2.1.0 click 8.0.4 conllu 4.5.2 cryptography 38.0.1 cymem 2.0.6 datasets 2.6.1 dill 0.3.5.1 docker-pycreds 0.4.0 fasttext 0.9.2 fasttext-langdetect 1.0.3 filelock 3.0.12 flatbuffers 20210226132247 frozenlist 1.3.0 fsspec 2022.5.0 gast 0.4.0 gcloud 0.18.3 gitdb 4.0.9 GitPython 3.1.27 google-auth 2.9.0 google-auth-oauthlib 0.4.6 google-pasta 0.2.0 googleapis-common-protos 1.57.0 grpcio 1.47.0 h5py 3.7.0 httplib2 0.21.0 huggingface-hub 0.8.1 idna 3.4 importlib-metadata 4.12.0 Jinja2 3.1.2 joblib 1.0.1 keras 2.9.0 Keras-Preprocessing 1.1.2 langcodes 3.3.0 lxml 4.9.1 Markdown 3.3.7 MarkupSafe 2.1.1 mkl-fft 1.3.1 mkl-random 1.2.2 mkl-service 2.4.0 multidict 6.0.2 multiprocess 0.70.13 murmurhash 1.0.7 numexpr 2.8.1 numpy 1.22.3 oauth2client 4.1.3 oauthlib 3.2.1 opt-einsum 3.3.0 packaging 21.3 pandas 1.4.2 pathtools 0.1.2 pathy 0.6.1 pip 21.1.2 preshed 3.0.6 promise 2.3 protobuf 4.21.9 psutil 5.9.1 pyarrow 8.0.0 pyasn1 0.4.8 pyasn1-modules 0.2.8 pybind11 2.9.2 pycountry 22.3.5 pycparser 2.21 pydantic 1.8.2 PyJWT 2.4.0 pylzma 0.5.0 pyOpenSSL 22.0.0 pyparsing 3.0.4 PySocks 1.7.1 python-dateutil 2.8.2 pytz 2021.3 PyYAML 6.0 regex 2021.4.4 requests 2.28.1 requests-oauthlib 1.3.1 responses 0.18.0 rsa 4.8 sacremoses 0.0.45 scikit-learn 1.1.1 scipy 1.8.1 sentencepiece 0.1.96 sentry-sdk 1.6.0 setproctitle 1.2.3 setuptools 65.5.0 shortuuid 1.0.9 six 1.16.0 smart-open 5.2.1 smmap 5.0.0 soupsieve 2.3.2.post1 spacy 3.3.1 spacy-legacy 3.0.9 spacy-loggers 1.0.2 srsly 2.4.3 tabulate 0.8.9 tensorboard 2.9.1 tensorboard-data-server 0.6.1 tensorboard-plugin-wit 1.8.1 tensorflow 2.9.1 tensorflow-estimator 2.9.0 termcolor 2.1.0 thinc 8.0.17 threadpoolctl 3.1.0 tokenizers 0.12.1 torch 1.13.0 tqdm 4.64.0 transformers 4.20.1 typer 0.4.1 typing-extensions 4.3.0 Unidecode 1.3.6 urllib3 1.26.12 wandb 0.12.20 wasabi 0.9.1 web-anno-tsv 0.0.1 Werkzeug 2.1.2 wget 3.2 wheel 0.35.1 wrapt 1.14.1 xxhash 3.0.0 yarl 1.8.1 zipp 3.8.0 Python 3.8.10
false
1,465,110,367
https://api.github.com/repos/huggingface/datasets/issues/5304
https://github.com/huggingface/datasets/issues/5304
5,304
timit_asr doesn't load the test split.
closed
1
2022-11-26T10:18:22
2023-02-10T16:33:21
2023-02-10T16:33:21
seyong92
[]
### Describe the bug When I use the function ```timit = load_dataset('timit_asr', data_dir=data_dir)```, it only loads train split, not test split. I tried to change the directory and filename to lower case to upper case for the test split, but it does not work at all. ```python DatasetDict({ train: Dataset({ features: ['file', 'audio', 'text', 'phonetic_detail', 'word_detail', 'dialect_region', 'sentence_type', 'speaker_id', 'id'], num_rows: 4620 }) test: Dataset({ features: ['file', 'audio', 'text', 'phonetic_detail', 'word_detail', 'dialect_region', 'sentence_type', 'speaker_id', 'id'], num_rows: 0 }) }) ``` The directory structure of both splits are same. (DIALECT_REGION / SPEAKER_CODE / DATA_FILES) ### Steps to reproduce the bug 1. just use ```timit = load_dataset('timit_asr', data_dir=data_dir)``` ### Expected behavior ```python DatasetDict({ train: Dataset({ features: ['file', 'audio', 'text', 'phonetic_detail', 'word_detail', 'dialect_region', 'sentence_type', 'speaker_id', 'id'], num_rows: 4620 }) test: Dataset({ features: ['file', 'audio', 'text', 'phonetic_detail', 'word_detail', 'dialect_region', 'sentence_type', 'speaker_id', 'id'], num_rows: 1680 }) }) ``` ### Environment info - ubuntu 20.04 - python 3.9.13 - datasets 2.7.1
false
1,464,837,251
https://api.github.com/repos/huggingface/datasets/issues/5303
https://github.com/huggingface/datasets/pull/5303
5,303
Skip dataset verifications by default
closed
17
2022-11-25T18:39:09
2023-02-13T16:50:42
2023-02-13T16:43:47
mariosasko
[]
Skip the dataset verifications (split and checksum verifications, duplicate keys check) by default unless a dataset is being tested (`datasets-cli test/run_beam`). The main goal is to avoid running the checksum check in the default case due to how expensive it can be for large datasets. PS: Maybe we should deprecate `ignore_verifications`, which is `True` now by default, and give it a different name?
true
1,464,778,901
https://api.github.com/repos/huggingface/datasets/issues/5302
https://github.com/huggingface/datasets/pull/5302
5,302
Improve `use_auth_token` docstring and deprecate `use_auth_token` in `download_and_prepare`
closed
1
2022-11-25T17:09:21
2022-12-09T14:20:15
2022-12-09T14:17:20
mariosasko
[]
Clarify in the docstrings what happens when `use_auth_token` is `None` and deprecate the `use_auth_token` param in `download_and_prepare`.
true
1,464,749,156
https://api.github.com/repos/huggingface/datasets/issues/5301
https://github.com/huggingface/datasets/pull/5301
5,301
Return a split Dataset in load_dataset
closed
2
2022-11-25T16:35:54
2023-09-24T10:06:15
2023-02-21T13:13:13
lhoestq
[]
...instead of a DatasetDict. ```python # now supported ds = load_dataset("squad") ds[0] for example in ds: pass # still works ds["train"] ds["validation"] # new ds.splits # Dict[str, Dataset] | None # soon to be supported (not in this PR) ds = load_dataset("dataset_with_no_splits") ds[0] for example in ds: pass ``` I implemented `Dataset.__getitem__` and `IterableDataset.__getitem__` to be able to get a split from a dataset. The splits are defined by the `ds.info.splits` dictionary. Therefore a dataset is a table that optionally has some splits defined in the dataset info. And a split dataset is the concatenation of all its splits. I made as little breaking changes as possible. Notable breaking changes: - `load_dataset("potato").keys() / .items() / .values() /` don't work anymore, since we don't return a dict - same for `for split_name in load_dataset("potato")`, since we now iterate on the examples - .. TODO: - [x] Update push_to_hub - [x] Update save_to_disk/load_from_disk - [ ] check for other breaking changes - [ ] fix existing tests - [ ] add new tests - [ ] docs This is related to https://github.com/huggingface/datasets/issues/5189, to extend `load_dataset` to return datasets without splits
true
1,464,697,136
https://api.github.com/repos/huggingface/datasets/issues/5300
https://github.com/huggingface/datasets/pull/5300
5,300
Use same `num_proc` for dataset download and generation
closed
2
2022-11-25T15:37:42
2022-12-07T12:55:39
2022-12-07T12:52:51
mariosasko
[]
Use the same `num_proc` value for data download and generation. Additionally, do not set `num_proc` to 16 in `DownloadManager` by default (`num_proc` now has to be specified explicitly).
true
1,464,695,091
https://api.github.com/repos/huggingface/datasets/issues/5299
https://github.com/huggingface/datasets/pull/5299
5,299
Fix xopen for Windows pathnames
closed
1
2022-11-25T15:35:28
2022-11-29T08:23:58
2022-11-29T08:21:24
albertvillanova
[]
This PR fixes a bug in `xopen` function for Windows pathnames. Fix #5298.
true
1,464,681,871
https://api.github.com/repos/huggingface/datasets/issues/5298
https://github.com/huggingface/datasets/issues/5298
5,298
Bug in xopen with Windows pathnames
closed
0
2022-11-25T15:21:32
2022-11-29T08:21:25
2022-11-29T08:21:25
albertvillanova
[ "bug" ]
Currently, `xopen` function has a bug with local Windows pathnames: From its implementation: ```python def xopen(file: str, mode="r", *args, **kwargs): file = _as_posix(PurePath(file)) main_hop, *rest_hops = file.split("::") if is_local_path(main_hop): return open(file, mode, *args, **kwargs) ``` On a Windows machine, if we pass the argument: ```python xopen("C:\\Users\\USERNAME\\filename.txt") ``` it returns ```python open("C:/Users/USERNAME/filename.txt") ```
false
1,464,554,491
https://api.github.com/repos/huggingface/datasets/issues/5297
https://github.com/huggingface/datasets/pull/5297
5,297
Fix xjoin for Windows pathnames
closed
1
2022-11-25T13:30:17
2022-11-29T08:07:39
2022-11-29T08:05:12
albertvillanova
[]
This PR fixes a bug in `xjoin` function with Windows pathnames. Fix #5296.
true
1,464,553,580
https://api.github.com/repos/huggingface/datasets/issues/5296
https://github.com/huggingface/datasets/issues/5296
5,296
Bug in xjoin with Windows pathnames
closed
0
2022-11-25T13:29:33
2022-11-29T08:05:13
2022-11-29T08:05:13
albertvillanova
[ "bug" ]
Currently, `xjoin` function has a bug with local Windows pathnames: instead of returning the OS-dependent join pathname, it always returns it in POSIX format. ```python from datasets.download.streaming_download_manager import xjoin path = xjoin("C:\\Users\\USERNAME", "filename.txt") ``` Join path should be: ```python "C:\\Users\\USERNAME\\filename.txt" ``` However it is: ```python "C:/Users/USERNAME/filename.txt" ```
false
1,464,006,743
https://api.github.com/repos/huggingface/datasets/issues/5295
https://github.com/huggingface/datasets/issues/5295
5,295
Extractions failed when .zip file located on read-only path (e.g., SageMaker FastFile mode)
closed
2
2022-11-25T03:59:43
2023-07-21T14:39:09
2023-07-21T14:39:09
verdimrc
[]
### Describe the bug Hi, `load_dataset()` does not work .zip files located on a read-only directory. Looks like it's because Dataset creates a lock file in the [same directory](https://github.com/huggingface/datasets/blob/df4bdd365f2abb695f113cbf8856a925bc70901b/src/datasets/utils/extract.py) as the .zip file. Encountered this when attempting `load_dataset()` on a datadir with SageMaker FastFile mode. ### Steps to reproduce the bug ```python # Showing relevant lines only. hyperparameters = { "dataset_name": "ydshieh/coco_dataset_script", "dataset_config_name": 2017, "data_dir": "/opt/ml/input/data/coco", "cache_dir": "/tmp/huggingface-cache", # Fix dataset complains out-of-space. ... } estimator = PyTorch( base_job_name="clip", source_dir="../src/sm-entrypoint", entry_point="run_clip.py", # Transformers/src/examples/pytorch/contrastive-image-text/run_clip.py framework_version="1.12", py_version="py38", hyperparameters=hyperparameters, instance_count=1, instance_type="ml.p3.16xlarge", volume_size=100, distribution={"smdistributed": {"dataparallel": {"enabled": True}}}, ) fast_file = lambda x: TrainingInput(x, input_mode='FastFile') estimator.fit( { "pre-trained": fast_file("s3://vm-sagemakerr-us-east-1/clip/pre-trained-checkpoint/"), "coco": fast_file("s3://vm-sagemakerr-us-east-1/clip/coco-zip-files/"), } ) ``` Error message: ```text ErrorMessage "OSError: [Errno 30] Read-only file system: '/opt/ml/input/data/coco/image_info_test2017.zip.lock' """ The above exception was the direct cause of the following exception Traceback (most recent call last) File "/opt/conda/lib/python3.8/runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "/opt/conda/lib/python3.8/runpy.py", line 87, in _run_code exec(code, run_globals) File "/opt/conda/lib/python3.8/site-packages/mpi4py/__main__.py", line 7, in <module> main() File "/opt/conda/lib/python3.8/site-packages/mpi4py/run.py", line 198, in main run_command_line(args) File "/opt/conda/lib/python3.8/site-packages/mpi4py/run.py", line 47, in run_command_line run_path(sys.argv[0], run_name='__main__') File "/opt/conda/lib/python3.8/runpy.py", line 265, in run_path return _run_module_code(code, init_globals, run_name, File "/opt/conda/lib/python3.8/runpy.py", line 97, in _run_module_code _run_code(code, mod_globals, init_globals, File "run_clip_smddp.py", line 594, in <module> File "run_clip_smddp.py", line 327, in main dataset = load_dataset( File "/opt/conda/lib/python3.8/site-packages/datasets/load.py", line 1741, in load_dataset builder_instance.download_and_prepare( File "/opt/conda/lib/python3.8/site-packages/datasets/builder.py", line 822, in download_and_prepare self._download_and_prepare( File "/opt/conda/lib/python3.8/site-packages/datasets/builder.py", line 1555, in _download_and_prepare super()._download_and_prepare( File "/opt/conda/lib/python3.8/site-packages/datasets/builder.py", line 891, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/root/.cache/huggingface/modules/datasets_modules/datasets/ydshieh--coco_dataset_script/e033205c0266a54c10be132f9264f2a39dcf893e798f6756d224b1ff5078998f/coco_dataset_script.py", line 123, in _split_generators archive_path = dl_manager.download_and_extract(_DL_URLS) File "/opt/conda/lib/python3.8/site-packages/datasets/download/download_manager.py", line 447, in download_and_extract return self.extract(self.download(url_or_urls)) File "/opt/conda/lib/python3.8/site-packages/datasets/download/download_manager.py", line 419, in extract extracted_paths = map_nested( File "/opt/conda/lib/python3.8/site-packages/datasets/utils/py_utils.py", line 472, in map_nested mapped = pool.map(_single_map_nested, split_kwds) File "/opt/conda/lib/python3.8/multiprocessing/pool.py", line 364, in map return self._map_async(func, iterable, mapstar, chunksize).get() File "/opt/conda/lib/python3.8/multiprocessing/pool.py", line 771, in get raise self._value OSError: [Errno 30] Read-only file system: '/opt/ml/input/data/coco/image_info_test2017.zip.lock'" ``` ### Expected behavior `load_dataset()` to succeed, just like when .zip file is passed in SageMaker File mode. ### Environment info * datasets-2.7.1 * transformers-4.24.0 * python-3.8 * torch-1.12 * SageMaker PyTorch DLC
false
1,463,679,582
https://api.github.com/repos/huggingface/datasets/issues/5294
https://github.com/huggingface/datasets/pull/5294
5,294
Support streaming datasets with pathlib.Path.with_suffix
closed
1
2022-11-24T18:04:38
2022-11-29T07:09:08
2022-11-29T07:06:32
albertvillanova
[]
This PR extends the support in streaming mode for datasets that use `pathlib.Path.with_suffix`. Fix #5293.
true
1,463,669,201
https://api.github.com/repos/huggingface/datasets/issues/5293
https://github.com/huggingface/datasets/issues/5293
5,293
Support streaming datasets with pathlib.Path.with_suffix
closed
0
2022-11-24T17:52:08
2022-11-29T07:06:33
2022-11-29T07:06:33
albertvillanova
[ "enhancement" ]
Extend support for streaming datasets that use `pathlib.Path.with_suffix`. This feature will be useful e.g. for datasets containing text files and annotated files with the same name but different extension.
false
1,463,053,832
https://api.github.com/repos/huggingface/datasets/issues/5292
https://github.com/huggingface/datasets/issues/5292
5,292
Missing documentation build for versions 2.7.1 and 2.6.2
closed
1
2022-11-24T09:42:10
2022-11-24T10:10:02
2022-11-24T10:10:02
albertvillanova
[ "maintenance" ]
After the patch releases [2.7.1](https://github.com/huggingface/datasets/releases/tag/2.7.1) and [2.6.2](https://github.com/huggingface/datasets/releases/tag/2.6.2), the online docs were not properly built (the build_documentation workflow was not triggered). There was a fix by: - #5291 However, both documentations were built from main branch, instead of their corresponding version branch. We are rebuilding them.
false
1,462,983,472
https://api.github.com/repos/huggingface/datasets/issues/5291
https://github.com/huggingface/datasets/pull/5291
5,291
[build doc] for v2.7.1 & v2.6.2
closed
2
2022-11-24T08:54:47
2022-11-24T09:14:10
2022-11-24T09:11:15
mishig25
[]
Do NOT merge. Using this PR to build docs for [v2.7.1](https://github.com/huggingface/datasets/pull/5291/commits/f4914af20700f611b9331a9e3ba34743bbeff934) & [v2.6.2](https://github.com/huggingface/datasets/pull/5291/commits/025f85300a0874eeb90a20393c62f25ac0accaa0)
true
1,462,716,766
https://api.github.com/repos/huggingface/datasets/issues/5290
https://github.com/huggingface/datasets/pull/5290
5,290
fix error where reading breaks when batch missing an assigned column feature
open
1
2022-11-24T03:53:46
2022-11-25T03:21:54
null
eunseojo
[]
null
true
1,462,543,139
https://api.github.com/repos/huggingface/datasets/issues/5289
https://github.com/huggingface/datasets/pull/5289
5,289
Added support for JXL images.
open
11
2022-11-23T23:16:33
2022-11-29T18:49:46
null
alexjc
[]
JPEG-XL is the most advanced of the next-generation of image codecs, supporting both lossless and lossy files — with better compression and quality than PNG and JPG respectively. It has reduced the disk sizes and bandwidth required for many of the datasets I use. Pillow does not yet support JXL, but there's a plugin as a separate Python library that does (`pip install jxlpy`), and I've tested that this change works as expected when the plugin is imported. Dataset used for testing, you must `git pull` as loading it from Python won't work until `datasets-server` is also changed to support JXL files: https://huggingface.co/datasets/texturedesign/td01_natural-ground-textures The case where the plugin is not imported first raises an error: ``` PIL.UnidentifiedImageError: cannot identify image file 'td01/train/set01/01_145523.jxl' ``` In order to enable support for JXL even before pillow supports this, should this exception be handled with a better error message? I'd expect/hope JXL support to follow in one of the pillow quarterly releases in the next 6-9 months.
true
1,462,134,067
https://api.github.com/repos/huggingface/datasets/issues/5288
https://github.com/huggingface/datasets/issues/5288
5,288
Lossy json serialization - deserialization of dataset info
open
1
2022-11-23T17:20:15
2022-11-25T12:53:51
null
anuragprat1k
[]
### Describe the bug Saving a dataset to disk as json (using `to_json`) and then loading it again (using `load_dataset`) results in features whose labels are not type-cast correctly. In the code snippet below, `features.label` should have a label of type `ClassLabel` but has type `Value` instead. ### Steps to reproduce the bug ``` from datasets import load_dataset def test_serdes_from_json(d): dataset = load_dataset(d, split="train") dataset.to_json('_test') dataset_loaded = load_dataset("json", data_files='_test', split='train') try: assert dataset_loaded.info.features == dataset.info.features, "features unequal!" except Exception as ex: print(f'{ex}') print(f'expected {dataset.info.features}, \nactual { dataset_loaded.info.features }') test_serdes_from_json('rotten_tomatoes') ``` Output ``` features unequal! expected {'text': Value(dtype='string', id=None), 'label': ClassLabel(names=['neg', 'pos'], id=None)}, actual {'text': Value(dtype='string', id=None), 'label': Value(dtype='int64', id=None)} ``` ### Expected behavior The deserialized `features.label` should have type `ClassLabel`. ### Environment info - `datasets` version: 2.6.1 - Platform: Linux-5.10.144-127.601.amzn2.x86_64-x86_64-with-glibc2.17 - Python version: 3.7.13 - PyArrow version: 7.0.0 - Pandas version: 1.2.3
false
1,461,971,889
https://api.github.com/repos/huggingface/datasets/issues/5287
https://github.com/huggingface/datasets/pull/5287
5,287
Fix methods using `IterableDataset.map` that lead to `features=None`
closed
7
2022-11-23T15:33:25
2022-11-28T15:43:14
2022-11-28T12:53:22
alvarobartt
[]
As currently `IterableDataset.map` is setting the `info.features` to `None` every time as we don't know the output of the dataset in advance, `IterableDataset` methods such as `rename_column`, `rename_columns`, and `remove_columns`. that internally use `map` lead to the features being `None`. This PR is related to #3888, #5245, and #5284 ## ✅ Current solution The code in this PR is basically making sure that if the features were there since the beginning and a `rename_column`/`rename_columns` happens, those are kept and the rename is applied to the `Features` too. Also, if the features were not there before applying `rename_column`, `rename_columns` or `remove_columns`, a batch is prefetched and the features are being inferred (that could potentially be part of `IterableDataset.__init__` in case the `info.features` value is `None`). ## 💡 Ideas Some ideas were proposed in https://github.com/huggingface/datasets/issues/3888, but probably the most consistent solution even though it may take some time is to actually do the type inferencing during the `IterableDataset.__init__` in case the provided `info.features` is `None`, otherwise, we can just use the provided features. Additionally, as mentioned at https://github.com/huggingface/datasets/issues/3888, we could also include a `features` parameter to the `map` function, but that's probably more tedious. Also thanks to @lhoestq for sharing some ideas in both https://github.com/huggingface/datasets/issues/3888 and https://github.com/huggingface/datasets/issues/5245 :hugs:
true
1,461,908,087
https://api.github.com/repos/huggingface/datasets/issues/5286
https://github.com/huggingface/datasets/issues/5286
5,286
FileNotFoundError: Couldn't find file at https://dumps.wikimedia.org/enwiki/20220301/dumpstatus.json
closed
3
2022-11-23T14:54:15
2024-11-23T01:16:41
2022-11-25T11:33:14
roritol
[]
### Describe the bug I follow the steps provided on the website [https://huggingface.co/datasets/wikipedia](https://huggingface.co/datasets/wikipedia) $ pip install apache_beam mwparserfromhell >>> from datasets import load_dataset >>> load_dataset("wikipedia", "20220301.en") however this results in the following error: raise MissingBeamOptions( datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20220301.en', beam_runner='DirectRunner')` If I then prompt the system with: >>> load_dataset('wikipedia', '20220301.en', beam_runner='DirectRunner') the following error occurs: raise FileNotFoundError(f"Couldn't find file at {url}") FileNotFoundError: Couldn't find file at https://dumps.wikimedia.org/enwiki/20220301/dumpstatus.json Here is the exact code: Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> from datasets import load_dataset >>> load_dataset('wikipedia', '20220301.en') Downloading and preparing dataset wikipedia/20220301.en to /home/[EDITED]/.cache/huggingface/datasets/wikipedia/20220301.en/2.0.0/aa542ed919df55cc5d3347f42dd4521d05ca68751f50dbc32bae2a7f1e167559... Downloading: 100%|████████████████████████████████████████████████████████████████████████████| 15.3k/15.3k [00:00<00:00, 22.2MB/s] Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python3.10/dist-packages/datasets/load.py", line 1741, in load_dataset builder_instance.download_and_prepare( File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 822, in download_and_prepare self._download_and_prepare( File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1879, in _download_and_prepare raise MissingBeamOptions( datasets.builder.MissingBeamOptions: Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided in `load_dataset` or in the builder arguments. For big datasets it has to run on large-scale data processing tools like Dataflow, Spark, etc. More information about Apache Beam runners at https://beam.apache.org/documentation/runners/capability-matrix/ If you really want to run it locally because you feel like the Dataset is small enough, you can use the local beam runner called `DirectRunner` (you may run out of memory). Example of usage: `load_dataset('wikipedia', '20220301.en', beam_runner='DirectRunner')` >>> load_dataset('wikipedia', '20220301.en', beam_runner='DirectRunner') Downloading and preparing dataset wikipedia/20220301.en to /home/[EDITED]/.cache/huggingface/datasets/wikipedia/20220301.en/2.0.0/aa542ed919df55cc5d3347f42dd4521d05ca68751f50dbc32bae2a7f1e167559... Downloading: 100%|████████████████████████████████████████████████████████████████████████████| 15.3k/15.3k [00:00<00:00, 18.8MB/s] Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python3.10/dist-packages/datasets/load.py", line 1741, in load_dataset builder_instance.download_and_prepare( File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 822, in download_and_prepare self._download_and_prepare( File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1909, in _download_and_prepare super()._download_and_prepare( File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 891, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/home/rorytol/.cache/huggingface/modules/datasets_modules/datasets/wikipedia/aa542ed919df55cc5d3347f42dd4521d05ca68751f50dbc32bae2a7f1e167559/wikipedia.py", line 945, in _split_generators downloaded_files = dl_manager.download_and_extract({"info": info_url}) File "/usr/local/lib/python3.10/dist-packages/datasets/download/download_manager.py", line 447, in download_and_extract return self.extract(self.download(url_or_urls)) File "/usr/local/lib/python3.10/dist-packages/datasets/download/download_manager.py", line 311, in download downloaded_path_or_paths = map_nested( File "/usr/local/lib/python3.10/dist-packages/datasets/utils/py_utils.py", line 444, in map_nested mapped = [ File "/usr/local/lib/python3.10/dist-packages/datasets/utils/py_utils.py", line 445, in <listcomp> _single_map_nested((function, obj, types, None, True, None)) File "/usr/local/lib/python3.10/dist-packages/datasets/utils/py_utils.py", line 346, in _single_map_nested return function(data_struct) File "/usr/local/lib/python3.10/dist-packages/datasets/download/download_manager.py", line 338, in _download return cached_path(url_or_filename, download_config=download_config) File "/usr/local/lib/python3.10/dist-packages/datasets/utils/file_utils.py", line 183, in cached_path output_path = get_from_cache( File "/usr/local/lib/python3.10/dist-packages/datasets/utils/file_utils.py", line 530, in get_from_cache raise FileNotFoundError(f"Couldn't find file at {url}") FileNotFoundError: Couldn't find file at https://dumps.wikimedia.org/enwiki/20220301/dumpstatus.json ### Steps to reproduce the bug $ pip install apache_beam mwparserfromhell >>> from datasets import load_dataset >>> load_dataset("wikipedia", "20220301.en") >>> load_dataset('wikipedia', '20220301.en', beam_runner='DirectRunner') ### Expected behavior Download the dataset ### Environment info Running linux on a remote workstation operated through a macbook terminal Python 3.10.6
false
1,461,521,215
https://api.github.com/repos/huggingface/datasets/issues/5285
https://github.com/huggingface/datasets/pull/5285
5,285
Save file name in embed_storage
closed
2
2022-11-23T10:55:54
2022-11-24T14:11:41
2022-11-24T14:08:37
lhoestq
[]
Having the file name is useful in case we need to check the extension of the file (e.g. mp3), or in general in case it includes some metadata information (track id, image id etc.) Related to https://github.com/huggingface/datasets/issues/5276
true
1,461,519,733
https://api.github.com/repos/huggingface/datasets/issues/5284
https://github.com/huggingface/datasets/issues/5284
5,284
Features of IterableDataset set to None by remove column
closed
19
2022-11-23T10:54:59
2025-02-07T11:36:41
2022-11-28T12:53:24
sanchit-gandhi
[ "bug", "streaming" ]
### Describe the bug The `remove_column` method of the IterableDataset sets the dataset features to None. ### Steps to reproduce the bug ```python from datasets import Audio, load_dataset # load LS in streaming mode dataset = load_dataset("librispeech_asr", "clean", split="validation", streaming=True) # check original features print("Original features: ", dataset.features.keys()) # define features to remove: we KEEP audio and text COLUMNS_TO_REMOVE = ['chapter_id', 'speaker_id', 'file', 'id'] dataset = dataset.remove_columns(COLUMNS_TO_REMOVE) # check processed features, uh-oh! print("Processed features: ", dataset.features) # streaming the first audio sample still works print("First sample:", next(iter(ds))) ``` **Print Output:** ``` Original features: dict_keys(['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id']) Processed features: None First sample: {'audio': {'path': '2277-149896-0000.flac', 'array': array([ 0.00186157, 0.0005188 , 0.00024414, ..., -0.00097656, -0.00109863, -0.00146484]), 'sampling_rate': 16000}, 'text': "HE WAS IN A FEVERED STATE OF MIND OWING TO THE BLIGHT HIS WIFE'S ACTION THREATENED TO CAST UPON HIS ENTIRE FUTURE"} ``` ### Expected behavior The features should be those **not** removed by the `remove_column` method, i.e. audio and text. ### Environment info - `datasets` version: 2.7.1 - Platform: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic - Python version: 3.7.15 - PyArrow version: 9.0.0 - Pandas version: 1.3.5 (Running on Google Colab for a blog post: https://colab.research.google.com/drive/1ySCQREPZEl4msLfxb79pYYOWjUZhkr9y#scrollTo=8pRDGiVmH2ml) cc @polinaeterna @lhoestq
false
1,460,291,003
https://api.github.com/repos/huggingface/datasets/issues/5283
https://github.com/huggingface/datasets/pull/5283
5,283
Release: 2.6.2
closed
1
2022-11-22T17:36:24
2022-11-22T17:50:12
2022-11-22T17:47:02
albertvillanova
[]
null
true
1,460,238,928
https://api.github.com/repos/huggingface/datasets/issues/5282
https://github.com/huggingface/datasets/pull/5282
5,282
Release: 2.7.1
closed
0
2022-11-22T16:58:54
2022-11-22T17:21:28
2022-11-22T17:21:27
albertvillanova
[]
null
true
1,459,930,271
https://api.github.com/repos/huggingface/datasets/issues/5281
https://github.com/huggingface/datasets/issues/5281
5,281
Support cloud storage in load_dataset
open
31
2022-11-22T14:00:10
2024-11-15T15:03:41
null
lhoestq
[ "enhancement", "good second issue" ]
Would be nice to be able to do ```python data_files=["s3://..."] # or gs:// or any cloud storage path storage_options = {...} load_dataset(..., data_files=data_files, storage_options=storage_options) ``` The idea would be to use `fsspec` as in `download_and_prepare` and `save_to_disk`. This has been requested several times already. Some users want to use their data from private cloud storage to train models related: https://github.com/huggingface/datasets/issues/3490 https://github.com/huggingface/datasets/issues/5244 [forum](https://discuss.huggingface.co/t/how-to-use-s3-path-with-load-dataset-with-streaming-true/25739/2)
false
1,459,823,179
https://api.github.com/repos/huggingface/datasets/issues/5280
https://github.com/huggingface/datasets/issues/5280
5,280
Import error
closed
5
2022-11-22T12:56:43
2022-12-15T19:57:40
2022-12-15T19:57:40
feketedavid1012
[]
https://github.com/huggingface/datasets/blob/cd3d8e637cfab62d352a3f4e5e60e96597b5f0e9/src/datasets/__init__.py#L28 Hy, I have error at the above line. I have python version 3.8.13, the message says I need python>=3.7, which is True, but I think the if statement not working properly (or the message wrong)
false
1,459,635,002
https://api.github.com/repos/huggingface/datasets/issues/5279
https://github.com/huggingface/datasets/pull/5279
5,279
Warn about checksums
closed
3
2022-11-22T10:58:48
2022-11-23T11:43:50
2022-11-23T09:47:02
lhoestq
[]
It takes a lot of time on big datasets to compute the checksums, we should at least add a warning to notify the user about this step. I also mentioned how to disable it, and added a tqdm bar (delay=5 seconds) cc @ola13
true
1,459,574,490
https://api.github.com/repos/huggingface/datasets/issues/5278
https://github.com/huggingface/datasets/issues/5278
5,278
load_dataset does not read jsonl metadata file properly
closed
6
2022-11-22T10:24:46
2023-02-14T14:48:16
2022-11-23T11:38:35
065294847
[]
### Describe the bug Hi, I'm following [this page](https://huggingface.co/docs/datasets/image_dataset) to create a dataset of images and captions via an image folder and a metadata.json file, but I can't seem to get the dataloader to recognize the "text" column. It just spits out "image" and "label" as features. Below is code to reproduce my exact example/problem. ### Steps to reproduce the bug ```ruby dataset_link="19Unu89Ih_kP6zsE7f9Mkw8dy3NwHopRF" id = dataset_link output = 'Godardv01.zip' gdown.download(id=id, output=output, quiet=False) ds = load_dataset("imagefolder", data_dir="/kaggle/working/Volumes/TOSHIBA/Godard_imgs/Volumes/TOSHIBA/Godard_imgs/Full/train", split="train", drop_labels=False) print(ds) ``` ### Expected behavior I would expect that it returned "image" and "text" columns from the code above. ### Environment info - `datasets` version: 2.1.0 - Platform: Linux-5.15.65+-x86_64-with-debian-bullseye-sid - Python version: 3.7.12 - PyArrow version: 5.0.0 - Pandas version: 1.3.5
false
1,459,388,551
https://api.github.com/repos/huggingface/datasets/issues/5277
https://github.com/huggingface/datasets/pull/5277
5,277
Remove YAML integer keys from class_label metadata
closed
3
2022-11-22T08:34:07
2022-11-22T13:58:26
2022-11-22T13:55:49
albertvillanova
[]
Fix partially #5275.
true
1,459,363,442
https://api.github.com/repos/huggingface/datasets/issues/5276
https://github.com/huggingface/datasets/issues/5276
5,276
Bug in downloading common_voice data and snall chunk of it to one's own hub
closed
17
2022-11-22T08:17:53
2023-07-21T14:33:10
2023-07-21T14:33:10
capsabogdan
[]
### Describe the bug I'm trying to load the common voice dataset. Currently there is no implementation to download just par tof the data, and I need just one part of it, without downloading the entire dataset Help please? ![image](https://user-images.githubusercontent.com/48530104/203260511-26df766f-6013-4eaf-be26-8aa13794def2.png) ### Steps to reproduce the bug So here is what I have done: 1. Download common_voice data 2. Trim part of it and publish it to my own repo. 3. Download data from my own repo, but am getting this error. ### Expected behavior There shouldn't be an error in downloading part of the data and publishing it to one's own repo ### Environment info common_voice 11
false
1,459,358,919
https://api.github.com/repos/huggingface/datasets/issues/5275
https://github.com/huggingface/datasets/issues/5275
5,275
YAML integer keys are not preserved Hub server-side
closed
13
2022-11-22T08:14:47
2023-01-26T10:52:35
2023-01-26T10:40:21
albertvillanova
[ "bug" ]
After an internal discussion (https://github.com/huggingface/moon-landing/issues/4563): - YAML integer keys are not preserved server-side: they are transformed to strings - See for example this Hub PR: https://huggingface.co/datasets/acronym_identification/discussions/1/files - Original: ```yaml class_label: names: 0: B-long 1: B-short ``` - Returned by the server: ```yaml class_label: names: '0': B-long '1': B-short ``` - They are planning to enforce only string keys - Other projects already use interger-transformed-to string keys: e.g. `transformers` models `id2label`: https://huggingface.co/roberta-large-mnli/blob/main/config.json ```yaml "id2label": { "0": "CONTRADICTION", "1": "NEUTRAL", "2": "ENTAILMENT" } ``` On the other hand, at `datasets` we are currently using YAML integer keys for `dataset_info` `class_label`. Please note (thanks @lhoestq for pointing out) that previous versions (2.6 and 2.7) of `datasets` need being patched: ```python In [18]: Features._from_yaml_list([{'dtype': {'class_label': {'names': {'0': 'neg', '1': 'pos'}}}, 'name': 'label'}]) --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-18-974f07eea526> in <module> ----> 1 Features._from_yaml_list(ry) ~/Desktop/hf/nlp/src/datasets/features/features.py in _from_yaml_list(cls, yaml_data) 1743 raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}") 1744 -> 1745 return cls.from_dict(from_yaml_inner(yaml_data)) 1746 1747 def encode_example(self, example): ~/Desktop/hf/nlp/src/datasets/features/features.py in from_yaml_inner(obj) 1739 elif isinstance(obj, list): 1740 names = [_feature.pop("name") for _feature in obj] -> 1741 return {name: from_yaml_inner(_feature) for name, _feature in zip(names, obj)} 1742 else: 1743 raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}") ~/Desktop/hf/nlp/src/datasets/features/features.py in <dictcomp>(.0) 1739 elif isinstance(obj, list): 1740 names = [_feature.pop("name") for _feature in obj] -> 1741 return {name: from_yaml_inner(_feature) for name, _feature in zip(names, obj)} 1742 else: 1743 raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}") ~/Desktop/hf/nlp/src/datasets/features/features.py in from_yaml_inner(obj) 1734 return {"_type": snakecase_to_camelcase(obj["dtype"])} 1735 else: -> 1736 return from_yaml_inner(obj["dtype"]) 1737 else: 1738 return {"_type": snakecase_to_camelcase(_type), **unsimplify(obj)[_type]} ~/Desktop/hf/nlp/src/datasets/features/features.py in from_yaml_inner(obj) 1736 return from_yaml_inner(obj["dtype"]) 1737 else: -> 1738 return {"_type": snakecase_to_camelcase(_type), **unsimplify(obj)[_type]} 1739 elif isinstance(obj, list): 1740 names = [_feature.pop("name") for _feature in obj] ~/Desktop/hf/nlp/src/datasets/features/features.py in unsimplify(feature) 1704 if isinstance(feature.get("class_label"), dict) and isinstance(feature["class_label"].get("names"), dict): 1705 label_ids = sorted(feature["class_label"]["names"]) -> 1706 if label_ids and label_ids != list(range(label_ids[-1] + 1)): 1707 raise ValueError( 1708 f"ClassLabel expected a value for all label ids [0:{label_ids[-1] + 1}] but some ids are missing." TypeError: can only concatenate str (not "int") to str ``` TODO: - [x] Remove YAML integer keys from `dataset_info` metadata - [x] Make a patch release for affected `datasets` versions: 2.6 and 2.7 - [x] Communicate on the fix - [x] Wait for adoption - [x] Bulk edit the Hub to fix this in all canonical datasets
false
1,458,646,455
https://api.github.com/repos/huggingface/datasets/issues/5274
https://github.com/huggingface/datasets/issues/5274
5,274
load_dataset possibly broken for gated datasets?
closed
9
2022-11-21T21:59:53
2023-05-27T00:06:14
2022-11-28T02:50:42
TristanThrush
[]
### Describe the bug When trying to download the [winoground dataset](https://huggingface.co/datasets/facebook/winoground), I get this error unless I roll back the version of huggingface-hub: ``` [/usr/local/lib/python3.7/dist-packages/huggingface_hub/utils/_validators.py](https://localhost:8080/#) in validate_repo_id(repo_id) 165 if repo_id.count("/") > 1: 166 raise HFValidationError( --> 167 "Repo id must be in the form 'repo_name' or 'namespace/repo_name':" 168 f" '{repo_id}'. Use `repo_type` argument if needed." 169 ) HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/repo_name': 'datasets/facebook/winoground'. Use `repo_type` argument if needed ``` ### Steps to reproduce the bug Install requirements: ``` pip install transformers pip install datasets # It works if you uncomment the following line, rolling back huggingface hub: # pip install huggingface-hub==0.10.1 ``` Then: ``` from datasets import load_dataset auth_token = "" # Replace with an auth token, which you can get from your huggingface account: Profile -> Settings -> Access Tokens -> New Token winoground = load_dataset("facebook/winoground", use_auth_token=auth_token)["test"] ``` ### Expected behavior Downloading of the datset ### Environment info Just a google colab; see here: https://colab.research.google.com/drive/15wwOSte2CjTazdnCWYUm2VPlFbk2NGc0?usp=sharing
false
1,458,018,050
https://api.github.com/repos/huggingface/datasets/issues/5273
https://github.com/huggingface/datasets/issues/5273
5,273
download_mode="force_redownload" does not refresh cached dataset
open
0
2022-11-21T14:12:43
2022-11-21T14:13:03
null
nomisto
[]
### Describe the bug `load_datasets` does not refresh dataset when features are imported from external file, even with `download_mode="force_redownload"`. The bug is not limited to nested fields, however it is more likely to occur with nested fields. ### Steps to reproduce the bug To reproduce the bug 3 files are needed: `dataset.py` (contains dataset loading script), `schema.py` (contains features of dataset) and `main.py` (to run `load_datasets`) `dataset.py` ```python import datasets from schema import features class NewDataset(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( features=features ) def _split_generators(self, dl_manager): return [ datasets.SplitGenerator( name=datasets.Split.TRAIN ) ] def _generate_examples(self): data = [ {"id": 0, "nested": []}, {"id": 1, "nested": []} ] for key, example in enumerate(data): yield key, example ``` `schema.py` ```python import datasets features = datasets.Features( { "id": datasets.Value("int32"), "nested": [ {"text": datasets.Value("string")} ] } ) ``` `main.py` ```python import datasets a = datasets.load_dataset("dataset.py") print(a["train"].info.features) ``` Now if `main.py` is run it prints the following correct output: `{'id': Value(dtype='int32', id=None), 'nested': [{'text': Value(dtype='string', id=None)}]}`. However, if f.e. the label of the feature "text" is changed to something else, f.e. to `schema.py` ```python import datasets features = datasets.Features( { "id": datasets.Value("int32"), "nested": [ {"textfoo": datasets.Value("string")} ] } ) ``` `main.py` still prints `{'id': Value(dtype='int32', id=None), 'nested': [{'text': Value(dtype='string', id=None)}]}`, even if run with `download_mode="force_redownload"`. The only fix is to delete the folder in the cache. ### Expected behavior The cached dataset is deleted and refreshed when using `load_datasets` with `download_mode="force_redownload"`. ### Environment info - `datasets` version: 2.7.0 - Platform: Windows-10-10.0.19041-SP0 - Python version: 3.7.9 - PyArrow version: 10.0.0 - Pandas version: 1.3.5
false
1,456,940,021
https://api.github.com/repos/huggingface/datasets/issues/5272
https://github.com/huggingface/datasets/issues/5272
5,272
Use pyarrow Tensor dtype
open
17
2022-11-20T15:18:41
2024-11-11T03:03:17
null
franz101
[ "enhancement" ]
### Feature request I was going the discussion of converting tensors to lists. Is there a way to leverage pyarrow's Tensors for nested arrays / embeddings? For example: ```python import pyarrow as pa import numpy as np x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) ``` [Apache docs](https://arrow.apache.org/docs/python/generated/pyarrow.Tensor.html) Maybe this belongs into the pyarrow features / repo. ### Motivation Working with big data, we need to make sure to use the best data structures and IO out there ### Your contribution Can try to a PR if code changes necessary
false
1,456,807,738
https://api.github.com/repos/huggingface/datasets/issues/5271
https://github.com/huggingface/datasets/pull/5271
5,271
Fix #5269
closed
1
2022-11-20T07:50:49
2022-11-21T15:07:19
2022-11-21T15:06:38
Freed-Wu
[]
``` $ datasets-cli convert --datasets_directory <TAB> datasets_directory benchmarks/ docs/ metrics/ notebooks/ src/ templates/ tests/ utils/ ```
true
1,456,508,990
https://api.github.com/repos/huggingface/datasets/issues/5270
https://github.com/huggingface/datasets/issues/5270
5,270
When len(_URLS) > 16, download will hang
open
7
2022-11-19T14:27:41
2022-11-21T15:27:16
null
Freed-Wu
[]
### Describe the bug ```python In [9]: dataset = load_dataset('Freed-Wu/kodak', split='test') Downloading: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.53k/2.53k [00:00<00:00, 1.88MB/s] [11/19/22 22:16:21] WARNING Using custom data configuration default builder.py:379 Downloading and preparing dataset kodak/default to /home/wzy/.cache/huggingface/datasets/Freed-Wu___kodak/default/0.0.1/bd1cc3434212e3e654f7e16ad618f8a1470b5982b086c91b1d6bc7187183c6e9... Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 531k/531k [00:02<00:00, 239kB/s] #10: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:04<00:00, 4.06s/obj] Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 534k/534k [00:02<00:00, 193kB/s] #14: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:04<00:00, 4.37s/obj] Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 692k/692k [00:02<00:00, 269kB/s] #12: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:04<00:00, 4.44s/obj] Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 566k/566k [00:02<00:00, 210kB/s] #5: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:04<00:00, 4.53s/obj] Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 613k/613k [00:02<00:00, 235kB/s] #13: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:04<00:00, 4.53s/obj] Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 786k/786k [00:02<00:00, 342kB/s] #3: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:04<00:00, 4.60s/obj] Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 619k/619k [00:02<00:00, 254kB/s] #4: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:04<00:00, 4.68s/obj] Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 737k/737k [00:02<00:00, 271kB/s] Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 788k/788k [00:02<00:00, 285kB/s] #6: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:05<00:00, 5.04s/obj] Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 618k/618k [00:04<00:00, 153kB/s] #0: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:11<00:00, 5.69s/obj] ^CProcess ForkPoolWorker-47: Process ForkPoolWorker-46: Process ForkPoolWorker-36: Process ForkPoolWorker-38:██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:05<00:00, 5.04s/obj] Process ForkPoolWorker-37: Process ForkPoolWorker-45: Process ForkPoolWorker-39: Process ForkPoolWorker-43: Process ForkPoolWorker-33: Process ForkPoolWorker-18: Traceback (most recent call last): Traceback (most recent call last): Traceback (most recent call last): Traceback (most recent call last): Traceback (most recent call last): File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap self.run() File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap self.run() File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap self.run() File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap self.run() File "/usr/lib/python3.10/multiprocessing/pool.py", line 114, in worker task = get() File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap self.run() File "/usr/lib/python3.10/multiprocessing/queues.py", line 364, in get with self._rlock: File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.10/multiprocessing/synchronize.py", line 95, in __enter__ return self._semlock.__enter__() File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.10/multiprocessing/pool.py", line 114, in worker task = get() File "/usr/lib/python3.10/multiprocessing/pool.py", line 114, in worker task = get() File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.10/multiprocessing/queues.py", line 364, in get with self._rlock: File "/usr/lib/python3.10/multiprocessing/pool.py", line 114, in worker task = get() File "/usr/lib/python3.10/multiprocessing/queues.py", line 364, in get with self._rlock: KeyboardInterrupt File "/usr/lib/python3.10/multiprocessing/synchronize.py", line 95, in __enter__ return self._semlock.__enter__() Traceback (most recent call last): Traceback (most recent call last): Traceback (most recent call last): KeyboardInterrupt File "/usr/lib/python3.10/multiprocessing/pool.py", line 114, in worker task = get() File "/usr/lib/python3.10/multiprocessing/queues.py", line 364, in get with self._rlock: File "/usr/lib/python3.10/multiprocessing/queues.py", line 364, in get with self._rlock: File "/usr/lib/python3.10/multiprocessing/synchronize.py", line 95, in __enter__ return self._semlock.__enter__() File "/usr/lib/python3.10/multiprocessing/synchronize.py", line 95, in __enter__ return self._semlock.__enter__() KeyboardInterrupt File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap self.run() File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap self.run() KeyboardInterrupt File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap self.run() File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.10/multiprocessing/pool.py", line 114, in worker task = get() File "/usr/lib/python3.10/multiprocessing/synchronize.py", line 95, in __enter__ return self._semlock.__enter__() File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.10/multiprocessing/pool.py", line 114, in worker task = get() File "/usr/lib/python3.10/multiprocessing/pool.py", line 114, in worker task = get() File "/usr/lib/python3.10/multiprocessing/queues.py", line 364, in get with self._rlock: File "/usr/lib/python3.10/multiprocessing/queues.py", line 365, in get res = self._reader.recv_bytes() File "/usr/lib/python3.10/multiprocessing/queues.py", line 364, in get with self._rlock: File "/usr/lib/python3.10/multiprocessing/synchronize.py", line 95, in __enter__ return self._semlock.__enter__() KeyboardInterrupt File "/usr/lib/python3.10/multiprocessing/synchronize.py", line 95, in __enter__ return self._semlock.__enter__() File "/usr/lib/python3.10/multiprocessing/connection.py", line 221, in recv_bytes buf = self._recv_bytes(maxlength) KeyboardInterrupt KeyboardInterrupt File "/usr/lib/python3.10/multiprocessing/connection.py", line 419, in _recv_bytes buf = self._recv(4) File "/usr/lib/python3.10/multiprocessing/connection.py", line 384, in _recv chunk = read(handle, remaining) KeyboardInterrupt Traceback (most recent call last): File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap self.run() File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.10/multiprocessing/pool.py", line 114, in worker task = get() File "/usr/lib/python3.10/multiprocessing/queues.py", line 364, in get with self._rlock: File "/usr/lib/python3.10/multiprocessing/synchronize.py", line 95, in __enter__ return self._semlock.__enter__() KeyboardInterrupt Process ForkPoolWorker-20: Process ForkPoolWorker-44: Process ForkPoolWorker-22: Traceback (most recent call last): File "/usr/lib/python3.10/site-packages/urllib3/util/connection.py", line 85, in create_connection sock.connect(sa) ConnectionRefusedError: [Errno 111] Connection refused During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap self.run() File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.10/multiprocessing/pool.py", line 125, in worker result = (True, func(*args, **kwds)) File "/usr/lib/python3.10/multiprocessing/pool.py", line 48, in mapstar return list(map(*args)) File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in _single_map_nested mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar] File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in <listcomp> mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar] File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 197, in _single_map_nested return function(data_struct) File "/usr/lib/python3.10/site-packages/datasets/utils/download_manager.py", line 217, in _download return cached_path(url_or_filename, download_config=download_config) File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 298, in cached_path output_path = get_from_cache( File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 561, in get_from_cache response = http_head( File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 476, in http_head response = _request_with_retry( File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 405, in _request_with_retry response = requests.request(method=method.upper(), url=url, timeout=timeout, **params) File "/usr/lib/python3.10/site-packages/requests/api.py", line 59, in request return session.request(method=method, url=url, **kwargs) File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 587, in request resp = self.send(prep, **send_kwargs) File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 701, in send r = adapter.send(request, **kwargs) File "/usr/lib/python3.10/site-packages/requests/adapters.py", line 489, in send resp = conn.urlopen( File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 703, in urlopen httplib_response = self._make_request( File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 386, in _make_request self._validate_conn(conn) File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 1042, in _validate_conn conn.connect() File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 358, in connect self.sock = conn = self._new_conn() File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 174, in _new_conn conn = connection.create_connection( File "/usr/lib/python3.10/site-packages/urllib3/util/connection.py", line 85, in create_connection sock.connect(sa) KeyboardInterrupt #1: 0%| | 0/2 [03:00<?, ?obj/s] Traceback (most recent call last): Traceback (most recent call last): File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap self.run() File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.10/multiprocessing/pool.py", line 125, in worker result = (True, func(*args, **kwds)) File "/usr/lib/python3.10/multiprocessing/pool.py", line 48, in mapstar return list(map(*args)) File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in _single_map_nested mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar] File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in <listcomp> mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar] File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 197, in _single_map_nested return function(data_struct) File "/usr/lib/python3.10/site-packages/datasets/utils/download_manager.py", line 217, in _download return cached_path(url_or_filename, download_config=download_config) File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 298, in cached_path output_path = get_from_cache( File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 659, in get_from_cache http_get( File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 442, in http_get response = _request_with_retry( File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 405, in _request_with_retry response = requests.request(method=method.upper(), url=url, timeout=timeout, **params) File "/usr/lib/python3.10/site-packages/requests/api.py", line 59, in request return session.request(method=method, url=url, **kwargs) File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 587, in request resp = self.send(prep, **send_kwargs) File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 701, in send r = adapter.send(request, **kwargs) File "/usr/lib/python3.10/site-packages/requests/adapters.py", line 489, in send resp = conn.urlopen( File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 703, in urlopen httplib_response = self._make_request( File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 386, in _make_request self._validate_conn(conn) File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap self.run() File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 1042, in _validate_conn conn.connect() File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 358, in connect self.sock = conn = self._new_conn() File "/usr/lib/python3.10/multiprocessing/pool.py", line 125, in worker result = (True, func(*args, **kwds)) File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 174, in _new_conn conn = connection.create_connection( File "/usr/lib/python3.10/multiprocessing/pool.py", line 48, in mapstar return list(map(*args)) File "/usr/lib/python3.10/site-packages/urllib3/util/connection.py", line 72, in create_connection for res in socket.getaddrinfo(host, port, family, socket.SOCK_STREAM): File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in _single_map_nested mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar] File "/usr/lib/python3.10/socket.py", line 955, in getaddrinfo for res in _socket.getaddrinfo(host, port, family, type, proto, flags): File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in <listcomp> mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar] File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 197, in _single_map_nested return function(data_struct) File "/usr/lib/python3.10/site-packages/datasets/utils/download_manager.py", line 217, in _download return cached_path(url_or_filename, download_config=download_config) KeyboardInterrupt File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 298, in cached_path output_path = get_from_cache( File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 561, in get_from_cache response = http_head( File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 476, in http_head response = _request_with_retry( File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 405, in _request_with_retry response = requests.request(method=method.upper(), url=url, timeout=timeout, **params) File "/usr/lib/python3.10/site-packages/requests/api.py", line 59, in request return session.request(method=method, url=url, **kwargs) File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 587, in request resp = self.send(prep, **send_kwargs) File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 701, in send r = adapter.send(request, **kwargs) File "/usr/lib/python3.10/site-packages/requests/adapters.py", line 489, in send resp = conn.urlopen( File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 703, in urlopen httplib_response = self._make_request( File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 386, in _make_request self._validate_conn(conn) File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 1042, in _validate_conn conn.connect() File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 358, in connect self.sock = conn = self._new_conn() File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 174, in _new_conn conn = connection.create_connection( File "/usr/lib/python3.10/site-packages/urllib3/util/connection.py", line 72, in create_connection for res in socket.getaddrinfo(host, port, family, socket.SOCK_STREAM): File "/usr/lib/python3.10/socket.py", line 955, in getaddrinfo for res in _socket.getaddrinfo(host, port, family, type, proto, flags): KeyboardInterrupt #3: 0%| | 0/2 [03:00<?, ?obj/s] #11: 0%| | 0/1 [00:49<?, ?obj/s] Traceback (most recent call last): File "/usr/lib/python3.10/site-packages/urllib3/util/connection.py", line 85, in create_connection sock.connect(sa) ConnectionRefusedError: [Errno 111] Connection refused During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap self.run() File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.10/multiprocessing/pool.py", line 125, in worker result = (True, func(*args, **kwds)) File "/usr/lib/python3.10/multiprocessing/pool.py", line 48, in mapstar return list(map(*args)) File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in _single_map_nested mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar] File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in <listcomp> mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar] File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 197, in _single_map_nested return function(data_struct) File "/usr/lib/python3.10/site-packages/datasets/utils/download_manager.py", line 217, in _download return cached_path(url_or_filename, download_config=download_config) File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 298, in cached_path output_path = get_from_cache( File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 561, in get_from_cache response = http_head( File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 476, in http_head response = _request_with_retry( File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 405, in _request_with_retry response = requests.request(method=method.upper(), url=url, timeout=timeout, **params) File "/usr/lib/python3.10/site-packages/requests/api.py", line 59, in request return session.request(method=method, url=url, **kwargs) File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 587, in request resp = self.send(prep, **send_kwargs) File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 723, in send history = [resp for resp in gen] File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 723, in <listcomp> history = [resp for resp in gen] File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 266, in resolve_redirects resp = self.send( File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 701, in send r = adapter.send(request, **kwargs) File "/usr/lib/python3.10/site-packages/requests/adapters.py", line 489, in send resp = conn.urlopen( File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 703, in urlopen httplib_response = self._make_request( File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 386, in _make_request self._validate_conn(conn) File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 1042, in _validate_conn conn.connect() File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 358, in connect self.sock = conn = self._new_conn() File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 174, in _new_conn conn = connection.create_connection( File "/usr/lib/python3.10/site-packages/urllib3/util/connection.py", line 85, in create_connection sock.connect(sa) KeyboardInterrupt #5: 0%| | 0/1 [03:00<?, ?obj/s] KeyboardInterrupt Process ForkPoolWorker-42: Traceback (most recent call last): File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap self.run() File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/lib/python3.10/multiprocessing/pool.py", line 125, in worker result = (True, func(*args, **kwds)) File "/usr/lib/python3.10/multiprocessing/pool.py", line 48, in mapstar return list(map(*args)) File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in _single_map_nested mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar] File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 215, in <listcomp> mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar] File "/usr/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 197, in _single_map_nested return function(data_struct) File "/usr/lib/python3.10/site-packages/datasets/utils/download_manager.py", line 217, in _download return cached_path(url_or_filename, download_config=download_config) File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 298, in cached_path output_path = get_from_cache( File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 561, in get_from_cache response = http_head( File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 476, in http_head response = _request_with_retry( File "/usr/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 405, in _request_with_retry response = requests.request(method=method.upper(), url=url, timeout=timeout, **params) File "/usr/lib/python3.10/site-packages/requests/api.py", line 59, in request return session.request(method=method, url=url, **kwargs) File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 587, in request resp = self.send(prep, **send_kwargs) File "/usr/lib/python3.10/site-packages/requests/sessions.py", line 701, in send r = adapter.send(request, **kwargs) File "/usr/lib/python3.10/site-packages/requests/adapters.py", line 489, in send resp = conn.urlopen( File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 703, in urlopen httplib_response = self._make_request( File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 386, in _make_request self._validate_conn(conn) File "/usr/lib/python3.10/site-packages/urllib3/connectionpool.py", line 1042, in _validate_conn conn.connect() File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 358, in connect self.sock = conn = self._new_conn() File "/usr/lib/python3.10/site-packages/urllib3/connection.py", line 174, in _new_conn conn = connection.create_connection( File "/usr/lib/python3.10/site-packages/urllib3/util/connection.py", line 72, in create_connection for res in socket.getaddrinfo(host, port, family, socket.SOCK_STREAM): File "/usr/lib/python3.10/socket.py", line 955, in getaddrinfo for res in _socket.getaddrinfo(host, port, family, type, proto, flags): KeyboardInterrupt #9: 0%| | 0/1 [00:51<?, ?obj/s] ``` ### Steps to reproduce the bug ```python """Kodak. Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datasets NUMBER = 17 _DESCRIPTION = """\ The pictures below link to lossless, true color (24 bits per pixel, aka "full color") images. It is my understanding they have been released by the Eastman Kodak Company for unrestricted usage. Many sites use them as a standard test suite for compression testing, etc. Prior to this site, they were only available in the Sun Raster format via ftp. This meant that the images could not be previewed before downloading. Since their release, however, the lossless PNG format has been incorporated into all the major browsers. Since PNG supports 24-bit lossless color (which GIF and JPEG do not), it is now possible to offer this browser-friendly access to the images. """ _HOMEPAGE = "https://r0k.us/graphics/kodak/" _LICENSE = "GPLv3" _URLS = [ f"https://github.com/MohamedBakrAli/Kodak-Lossless-True-Color-Image-Suite/raw/master/PhotoCD_PCD0992/{i}.png" for i in range(1, 1 + NUMBER) ] class Kodak(datasets.GeneratorBasedBuilder): """Kodak datasets.""" VERSION = datasets.Version("0.0.1") def _info(self): features = datasets.Features( { "image": datasets.Image(), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, ) def _split_generators(self, dl_manager): """Return SplitGenerators.""" file_paths = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "file_paths": file_paths, }, ), ] def _generate_examples(self, file_paths): """Yield examples.""" for file_path in file_paths: yield file_path, {"image": file_path} ``` ### Expected behavior When `len(_URLS) < 16`, it works. ```python In [3]: dataset = load_dataset('Freed-Wu/kodak', split='test') Downloading: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.53k/2.53k [00:00<00:00, 3.02MB/s] [11/19/22 22:04:28] WARNING Using custom data configuration default builder.py:379 Downloading and preparing dataset kodak/default to /home/wzy/.cache/huggingface/datasets/Freed-Wu___kodak/default/0.0.1/d26017602a592b5bfa7e008127cdf9dec5af220c9068005f1b4eda036031f475... Downloading: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 593k/593k [00:00<00:00, 2.88MB/s] Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 621k/621k [00:03<00:00, 166kB/s] Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 531k/531k [00:01<00:00, 366kB/s] 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 16/16 [00:13<00:00, 1.18it/s] 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 16/16 [00:00<00:00, 3832.38it/s] Dataset kodak downloaded and prepared to /home/wzy/.cache/huggingface/datasets/Freed-Wu___kodak/default/0.0.1/d26017602a592b5bfa7e008127cdf9dec5af220c9068005f1b4eda036031f475. Subsequent calls will reuse this data. ``` ### Environment info - `datasets` version: 2.7.0 - Platform: Linux-6.0.8-arch1-1-x86_64-with-glibc2.36 - Python version: 3.10.8 - PyArrow version: 9.0.0 - Pandas version: 1.4.4
false
1,456,485,799
https://api.github.com/repos/huggingface/datasets/issues/5269
https://github.com/huggingface/datasets/issues/5269
5,269
Shell completions
closed
2
2022-11-19T13:48:59
2022-11-21T15:06:15
2022-11-21T15:06:14
Freed-Wu
[ "enhancement" ]
### Feature request Like <https://github.com/huggingface/huggingface_hub/issues/1197>, datasets-cli maybe need it, too. ### Motivation See above. ### Your contribution Maybe.
false
1,455,633,978
https://api.github.com/repos/huggingface/datasets/issues/5268
https://github.com/huggingface/datasets/pull/5268
5,268
Sharded save_to_disk + multiprocessing
closed
4
2022-11-18T18:50:01
2022-12-14T18:25:52
2022-12-14T18:22:58
lhoestq
[]
Added `num_shards=` and `num_proc=` to `save_to_disk()` EDIT: also added `max_shard_size=` to `save_to_disk()`, and also `num_shards=` to `push_to_hub` I also: - deprecated the fs parameter in favor of storage_options (for consistency with the rest of the lib) in save_to_disk and load_from_disk - always embed the image/audio data in arrow when doing `save_to_disk` - added a tqdm bar in `save_to_disk` - Use the MockFileSystem in tests for `save_to_disk` and `load_from_disk` - removed the unused integration tests with S3, since we can now test with `mockfs` instead of `s3fs` TODO: - [x] implem save_to_disk for dataset dict - [x] save_to_disk for dataset dict tests - [x] deprecate fs in dataset dict load_from_disk as well - [x] update docs Close #5263 Close https://github.com/huggingface/datasets/issues/4196 Close https://github.com/huggingface/datasets/issues/4351
true
1,455,466,464
https://api.github.com/repos/huggingface/datasets/issues/5267
https://github.com/huggingface/datasets/pull/5267
5,267
Fix `max_shard_size` docs
closed
1
2022-11-18T16:55:22
2022-11-18T17:28:58
2022-11-18T17:25:27
lhoestq
[]
null
true
1,455,281,310
https://api.github.com/repos/huggingface/datasets/issues/5266
https://github.com/huggingface/datasets/pull/5266
5,266
Specify arguments as keywords in librosa.reshape to avoid future errors
closed
1
2022-11-18T14:58:47
2022-11-21T15:45:02
2022-11-21T15:41:57
polinaeterna
[]
Fixes a warning and future deprecation from `librosa.reshape`: ``` FutureWarning: Pass orig_sr=16000, target_sr=48000 as keyword args. From version 0.10 passing these as positional arguments will result in an error array = librosa.resample(array, sampling_rate, self.sampling_rate, res_type="kaiser_best") ```
true
1,455,274,864
https://api.github.com/repos/huggingface/datasets/issues/5265
https://github.com/huggingface/datasets/issues/5265
5,265
Get an IterableDataset from a map-style Dataset
closed
1
2022-11-18T14:54:40
2023-02-01T16:36:03
2023-02-01T16:36:03
lhoestq
[ "enhancement", "streaming" ]
This is useful to leverage iterable datasets specific features like: - fast approximate shuffling - lazy map, filter etc. Iterating over the resulting iterable dataset should be at least as fast at iterating over the map-style dataset. Here are some ideas regarding the API: ```python # 1. # - consistency with load_dataset(..., streaming=True) # - gives intuition that map/filter/etc. are done on-the-fly ids = ds.stream() # 2. # - more explicit on the output type # - but maybe sounds like a conversion tool rather than a step in a processing pipeline ids = ds.as_iterable_dataset() ```
false
1,455,252,906
https://api.github.com/repos/huggingface/datasets/issues/5264
https://github.com/huggingface/datasets/issues/5264
5,264
`datasets` can't read a Parquet file in Python 3.9.13
closed
16
2022-11-18T14:44:01
2023-05-07T09:52:59
2022-11-22T11:18:08
loubnabnl
[ "bug" ]
### Describe the bug I have an error when trying to load this [dataset](https://huggingface.co/datasets/bigcode/the-stack-dedup-pjj) (it's private but I can add you to the bigcode org). `datasets` can't read one of the parquet files in the Java subset ```python from datasets import load_dataset ds = load_dataset("bigcode/the-stack-dedup-pjj", data_dir="data/java", split="train", revision="v1.1.a1", use_auth_token=True) ```` ``` File "pyarrow/error.pxi", line 100, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file. ``` It seems to be an issue with new Python versions, Because it works in these two environements: ``` - `datasets` version: 2.6.1 - Platform: Linux-5.4.0-131-generic-x86_64-with-glibc2.31 - Python version: 3.9.7 - PyArrow version: 9.0.0 - Pandas version: 1.3.4 ``` ``` - `datasets` version: 2.6.1 - Platform: Linux-4.19.0-22-cloud-amd64-x86_64-with-debian-10.13 - Python version: 3.7.12 - PyArrow version: 9.0.0 - Pandas version: 1.3.4 ``` But not in this: ``` - `datasets` version: 2.6.1 - Platform: Linux-4.19.0-22-cloud-amd64-x86_64-with-glibc2.28 - Python version: 3.9.13 - PyArrow version: 9.0.0 - Pandas version: 1.3.4 ``` ### Steps to reproduce the bug Load the dataset in python 3.9.13 ### Expected behavior Load the dataset without the pyarrow error. ### Environment info ``` - `datasets` version: 2.6.1 - Platform: Linux-4.19.0-22-cloud-amd64-x86_64-with-glibc2.28 - Python version: 3.9.13 - PyArrow version: 9.0.0 - Pandas version: 1.3.4 ```
false
1,455,252,626
https://api.github.com/repos/huggingface/datasets/issues/5263
https://github.com/huggingface/datasets/issues/5263
5,263
Save a dataset in a determined number of shards
closed
0
2022-11-18T14:43:54
2022-12-14T18:22:59
2022-12-14T18:22:59
lhoestq
[ "enhancement" ]
This is useful to distribute the shards to training nodes. This can be implemented in `save_to_disk` and can also leverage multiprocessing to speed up the process
false
1,455,171,100
https://api.github.com/repos/huggingface/datasets/issues/5262
https://github.com/huggingface/datasets/issues/5262
5,262
AttributeError: 'Value' object has no attribute 'names'
closed
2
2022-11-18T13:58:42
2022-11-22T10:09:24
2022-11-22T10:09:23
emnaboughariou
[]
Hello I'm trying to build a model for custom token classification I already followed the token classification course on huggingface while adapting the code to my work, this message occures : 'Value' object has no attribute 'names' Here's my code: `raw_datasets` generates DatasetDict({ train: Dataset({ features: ['isDisf', 'pos', 'tokens', 'id'], num_rows: 14 }) }) `raw_datasets["train"][3]["isDisf"]` generates ['B_RM', 'I_RM', 'I_RM', 'B_RP', 'I_RP', 'O', 'O'] `dis_feature = raw_datasets["train"].features["isDisf"] dis_feature` generates Sequence(feature=Value(dtype='string', id=None), length=-1, id=None) and `label_names = dis_feature.feature.names label_names` generates AttributeError Traceback (most recent call last) [<ipython-input-28-972fd54a869a>](https://localhost:8080/#) in <module> ----> 1 label_names = dis_feature.feature.names 2 label_names AttributeError: 'Value' object has AttributeError: 'Value' object has no attribute 'names' Thank you for your help
false
1,454,647,861
https://api.github.com/repos/huggingface/datasets/issues/5261
https://github.com/huggingface/datasets/issues/5261
5,261
Add PubTables-1M
open
1
2022-11-18T07:56:36
2022-11-18T08:02:18
null
NielsRogge
[ "dataset request" ]
### Name PubTables-1M ### Paper https://openaccess.thecvf.com/content/CVPR2022/html/Smock_PubTables-1M_Towards_Comprehensive_Table_Extraction_From_Unstructured_Documents_CVPR_2022_paper.html ### Data https://github.com/microsoft/table-transformer ### Motivation Table Transformer is now available in 🤗 Transformer, and it was trained on PubTables-1M. It's a large dataset for table extraction and structure recognition in unstructured documents.
false
1,453,921,697
https://api.github.com/repos/huggingface/datasets/issues/5260
https://github.com/huggingface/datasets/issues/5260
5,260
consumer-finance-complaints dataset not loading
open
3
2022-11-17T20:10:26
2022-11-18T10:16:53
null
adiprasad
[]
### Describe the bug Error during dataset loading ### Steps to reproduce the bug ``` >>> import datasets >>> cf_raw = datasets.load_dataset("consumer-finance-complaints") Downloading builder script: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8.42k/8.42k [00:00<00:00, 3.33MB/s] Downloading metadata: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5.60k/5.60k [00:00<00:00, 2.90MB/s] Downloading readme: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 16.6k/16.6k [00:00<00:00, 510kB/s] Downloading and preparing dataset consumer-finance-complaints/default to /root/.cache/huggingface/datasets/consumer-finance-complaints/default/0.0.0/30e483d37fb4b25bb98cad1bfd2dc48f6ed6d1f3371eb4568c625a61d1a79b69... Downloading data: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 511M/511M [00:04<00:00, 103MB/s] Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/load.py", line 1741, in load_dataset builder_instance.download_and_prepare( File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/builder.py", line 822, in download_and_prepare self._download_and_prepare( File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/builder.py", line 1555, in _download_and_prepare super()._download_and_prepare( File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/builder.py", line 931, in _download_and_prepare verify_splits(self.info.splits, split_dict) File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/utils/info_utils.py", line 74, in verify_splits raise NonMatchingSplitsSizesError(str(bad_splits)) datasets.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=1605177353, num_examples=2455765, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='train', num_bytes=2043641693, num_examples=3079747, shard_lengths=[721000, 656000, 788000, 846000, 68747], dataset_name='consumer-finance-complaints')}] ``` ### Expected behavior dataset should load ### Environment info >>> datasets.__version__ '2.7.0' Python 3.8.10 "Ubuntu 20.04.4 LTS"
false
1,453,555,923
https://api.github.com/repos/huggingface/datasets/issues/5259
https://github.com/huggingface/datasets/issues/5259
5,259
datasets 2.7 introduces sharding error
closed
3
2022-11-17T15:36:52
2022-12-24T01:44:02
2022-11-18T12:52:05
DCNemesis
[]
### Describe the bug dataset fails to load with runtime error `RuntimeError: Sharding is ambiguous for this dataset: we found several data sources lists of different lengths, and we don't know over which list we should parallelize: - key audio_files has length 46 - key data has length 0 To fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.` ### Steps to reproduce the bug With datasets[audio] 2.7 loaded, and logged into hugging face, `data = datasets.load_dataset('sil-ai/bloom-speech', 'bis', use_auth_token=True)` creates the error. Full stack trace: ```--------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) [<ipython-input-7-8cb9ca0f79f0>](https://localhost:8080/#) in <module> ----> 1 data = datasets.load_dataset('sil-ai/bloom-speech', 'bis', use_auth_token=True) 5 frames [/usr/local/lib/python3.7/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, **config_kwargs) 1745 try_from_hf_gcs=try_from_hf_gcs, 1746 use_auth_token=use_auth_token, -> 1747 num_proc=num_proc, 1748 ) 1749 [/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in download_and_prepare(self, output_dir, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs) 824 verify_infos=verify_infos, 825 **prepare_split_kwargs, --> 826 **download_and_prepare_kwargs, 827 ) 828 # Sync info [/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in _download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs) 1554 def _download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs): 1555 super()._download_and_prepare( -> 1556 dl_manager, verify_infos, check_duplicate_keys=verify_infos, **prepare_splits_kwargs 1557 ) 1558 [/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 911 try: 912 # Prepare split will record examples associated to the split --> 913 self._prepare_split(split_generator, **prepare_split_kwargs) 914 except OSError as e: 915 raise OSError( [/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in _prepare_split(self, split_generator, check_duplicate_keys, file_format, num_proc, max_shard_size) 1362 fpath = path_join(self._output_dir, fname) 1363 -> 1364 num_input_shards = _number_of_shards_in_gen_kwargs(split_generator.gen_kwargs) 1365 if num_input_shards <= 1 and num_proc is not None: 1366 logger.warning( [/usr/local/lib/python3.7/dist-packages/datasets/utils/sharding.py](https://localhost:8080/#) in _number_of_shards_in_gen_kwargs(gen_kwargs) 16 + "\n".join(f"\t- key {key} has length {length}" for key, length in lists_lengths.items()) 17 + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " ---> 18 + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." 19 ) 20 ) RuntimeError: Sharding is ambiguous for this dataset: we found several data sources lists of different lengths, and we don't know over which list we should parallelize: - key audio_files has length 46 - key data has length 0 To fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.``` ### Expected behavior the dataset loads in datasets version 2.6.1 and should load with datasets 2.7 ### Environment info - `datasets` version: 2.7.0 - Platform: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic - Python version: 3.7.15 - PyArrow version: 6.0.1 - Pandas version: 1.3.5
false
1,453,516,636
https://api.github.com/repos/huggingface/datasets/issues/5258
https://github.com/huggingface/datasets/issues/5258
5,258
Restore order of split names in dataset_info for canonical datasets
closed
3
2022-11-17T15:13:15
2023-02-16T09:49:05
2022-11-19T06:51:37
albertvillanova
[ "dataset contribution" ]
After a bulk edit of canonical datasets to create the YAML `dataset_info` metadata, the split names were accidentally sorted alphabetically. See for example: - https://huggingface.co/datasets/bc2gm_corpus/commit/2384629484401ecf4bb77cd808816719c424e57c Note that this order is the one appearing in the preview of the datasets. I'm making a bulk edit to align the order of the splits appearing in the metadata info with the order appearing in the loading script. Related to: - #5202
false
1,452,656,891
https://api.github.com/repos/huggingface/datasets/issues/5257
https://github.com/huggingface/datasets/pull/5257
5,257
remove an unused statement
closed
0
2022-11-17T04:00:50
2022-11-18T11:04:08
2022-11-18T11:04:08
WrRan
[]
remove the unused statement: `input_pairs = list(zip())`
true
1,452,652,586
https://api.github.com/repos/huggingface/datasets/issues/5256
https://github.com/huggingface/datasets/pull/5256
5,256
fix wrong print
closed
0
2022-11-17T03:54:26
2022-11-18T11:05:32
2022-11-18T11:05:32
WrRan
[]
print `encoded_dataset.column_names` not `dataset.column_names`
true
1,452,631,517
https://api.github.com/repos/huggingface/datasets/issues/5255
https://github.com/huggingface/datasets/issues/5255
5,255
Add a Depth Estimation dataset - DIODE / NYUDepth / KITTI
closed
21
2022-11-17T03:22:22
2022-12-17T12:20:38
2022-12-17T12:20:37
sayakpaul
[ "dataset request" ]
### Name NYUDepth ### Paper http://cs.nyu.edu/~silberman/papers/indoor_seg_support.pdf ### Data https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html ### Motivation Depth estimation is an important problem in computer vision. We have a couple of Depth Estimation models on Hub as well: * [GLPN](https://huggingface.co/docs/transformers/model_doc/glpn) * [DPT](https://huggingface.co/docs/transformers/model_doc/dpt) Would be nice to have a dataset for depth estimation. These datasets usually have three things: input image, depth map image, and depth mask (validity mask to indicate if a reading for a pixel is valid or not). Since we already have [semantic segmentation datasets on the Hub](https://huggingface.co/datasets?task_categories=task_categories:image-segmentation&sort=downloads), I don't think we need any extended utilities to support this addition. Having this dataset would also allow us to author data preprocessing guides for depth estimation, particularly like the ones we have for other tasks ([example](https://huggingface.co/docs/datasets/image_classification)). Ccing @osanseviero @nateraw @NielsRogge Happy to work on adding it.
false
1,452,600,088
https://api.github.com/repos/huggingface/datasets/issues/5254
https://github.com/huggingface/datasets/pull/5254
5,254
typo
closed
0
2022-11-17T02:39:57
2022-11-18T10:53:45
2022-11-18T10:53:45
WrRan
[]
null
true
1,452,588,206
https://api.github.com/repos/huggingface/datasets/issues/5253
https://github.com/huggingface/datasets/pull/5253
5,253
typo
closed
0
2022-11-17T02:22:58
2022-11-18T10:53:11
2022-11-18T10:53:10
WrRan
[]
null
true
1,451,765,838
https://api.github.com/repos/huggingface/datasets/issues/5252
https://github.com/huggingface/datasets/pull/5252
5,252
Support for decoding Image/Audio types in map when format type is not default one
closed
6
2022-11-16T15:02:13
2022-12-13T17:01:54
2022-12-13T16:59:04
mariosasko
[]
Add support for decoding the `Image`/`Audio` types in `map` for the formats (Numpy, TF, Jax, PyTorch) other than the default one (Python). Additional improvements: * make `Dataset`'s "iter" API cleaner by removing `_iter` and replacing `_iter_batches` with `iter(batch_size)` (also implemented for `IterableDataset`) * iterate over arrow tables in `map` to avoid `_getitem` calls, which are much slower than `__iter__`/`iter(batch_size)`, when the `format_type` is not Python * fix `_iter_batches` (now named `iter`) when `drop_last_batch=True` and `pyarrow<=8.0.0` is installed * lazily extract and decode arrow data in the default format TODO: * [x] update the `iter` benchmark in the docs (the `BeamBuilder` cannot load the preprocessed datasets from our bucket, so wait for this to be fixed (cc @lhoestq)) Fix https://github.com/huggingface/datasets/issues/3992, fix https://github.com/huggingface/datasets/issues/3756
true
1,451,761,321
https://api.github.com/repos/huggingface/datasets/issues/5251
https://github.com/huggingface/datasets/issues/5251
5,251
Docs are not generated after latest release
closed
8
2022-11-16T14:59:31
2022-11-22T16:27:50
2022-11-22T16:27:50
albertvillanova
[ "maintenance" ]
After the latest `datasets` release version 0.7.0, the docs were not generated. As we have changed the release procedure (so that now we do not push directly to main branch), maybe we should also change the corresponding GitHub action: https://github.com/huggingface/datasets/blob/edf1902f954c5568daadebcd8754bdad44b02a85/.github/workflows/build_documentation.yml#L3-L8 Related to: - #5250 CC: @mishig25
false
1,451,720,030
https://api.github.com/repos/huggingface/datasets/issues/5250
https://github.com/huggingface/datasets/pull/5250
5,250
Change release procedure to use only pull requests
closed
7
2022-11-16T14:35:32
2022-11-22T16:30:58
2022-11-22T16:27:48
albertvillanova
[]
This PR changes the release procedure so that: - it only make changes to main branch via pull requests - it is no longer necessary to directly commit/push to main branch Close #5251.
true
1,451,692,247
https://api.github.com/repos/huggingface/datasets/issues/5249
https://github.com/huggingface/datasets/issues/5249
5,249
Protect the main branch from inadvertent direct pushes
closed
1
2022-11-16T14:19:03
2023-12-21T10:28:27
2023-12-21T10:28:26
albertvillanova
[ "maintenance" ]
We have decided to implement a protection mechanism in this repository, so that nobody (not even administrators) can inadvertently push accidentally directly to the main branch. See context here: - d7c942228b8dcf4de64b00a3053dce59b335f618 To do: - [x] Protect main branch - Settings > Branches > Branch protection rules > main > Edit - [x] Check: Do not allow bypassing the above settings - The above settings will apply to administrators and custom roles with the "bypass branch protections" permission. - [x] Additionally, uncheck: Require approvals [under "Require a pull request before merging", which was already checked] - Before, we could exceptionally merge a non-approved PR, using Administrator bypass - Now that Administrator bypass is no longer possible, we would always need an approval to be able to merge; and pull request authors cannot approve their own pull requests. This could be an inconvenient in some exceptional circumstances when an urgent fix is needed - Nevertheless, although it is no longer enforced, it is strongly recommended to merge PRs only if they have at least one approval - [x] #5250 - So that direct pushes to main branch are no longer necessary
false
1,451,338,676
https://api.github.com/repos/huggingface/datasets/issues/5248
https://github.com/huggingface/datasets/pull/5248
5,248
Complete doc migration
closed
2
2022-11-16T10:41:04
2022-11-16T15:06:50
2022-11-16T10:41:10
mishig25
[]
Reverts huggingface/datasets#5214 Everything is handled on the doc-builder side now 😊
true
1,451,297,749
https://api.github.com/repos/huggingface/datasets/issues/5247
https://github.com/huggingface/datasets/pull/5247
5,247
Set dev version
closed
1
2022-11-16T10:17:31
2022-11-16T10:22:20
2022-11-16T10:17:50
albertvillanova
[]
null
true
1,451,226,055
https://api.github.com/repos/huggingface/datasets/issues/5246
https://github.com/huggingface/datasets/pull/5246
5,246
Release: 2.7.0
closed
1
2022-11-16T09:32:44
2022-11-16T09:39:42
2022-11-16T09:37:03
albertvillanova
[]
null
true
1,450,376,433
https://api.github.com/repos/huggingface/datasets/issues/5245
https://github.com/huggingface/datasets/issues/5245
5,245
Unable to rename columns in streaming dataset
closed
7
2022-11-15T21:04:41
2022-11-28T12:53:24
2022-11-28T12:53:24
peregilk
[]
### Describe the bug Trying to rename column in a streaming datasets, destroys the features object. ### Steps to reproduce the bug The following code illustrates the error: ``` from datasets import load_dataset dataset = load_dataset('mc4', 'en', streaming=True, split='train') dataset.info.features # {'text': Value(dtype='string', id=None), 'timestamp': Value(dtype='string', id=None), 'url': Value(dtype='string', id=None)} dataset = dataset.rename_column("text", "content") dataset.info.features # This returned object is now None! ``` ### Expected behavior This should just alter the renamed column. ### Environment info datasets 2.6.1
false
1,450,019,225
https://api.github.com/repos/huggingface/datasets/issues/5244
https://github.com/huggingface/datasets/issues/5244
5,244
Allow dataset streaming from private a private source when loading a dataset with a dataset loading script
open
5
2022-11-15T16:02:10
2022-11-23T14:02:30
null
bruno-hays
[ "enhancement" ]
### Feature request Add arguments to the function _get_authentication_headers_for_url_ like custom_endpoint and custom_token in order to add flexibility when downloading files from a private source. It should also be possible to provide these arguments from the dataset loading script, maybe giving them to the dl_manager ### Motivation It is possible to share a dataset hosted on another platform by writing a dataset loading script. It works perfectly for publicly available resources. For resources that require authentication, you can provide a [download_custom](https://huggingface.co/docs/datasets/package_reference/builder_classes#datasets.DownloadManager) method to the download_manager. Unfortunately, this function doesn't work with **dataset streaming**. A solution so as to allow dataset streaming from private sources would be a more flexible _get_authentication_headers_for_url_ function. ### Your contribution Would you be interested in this improvement ? If so I could provide a PR. I've got something working locally, but it's not very clean, I'd need some guidance regarding integration.
false
1,449,523,962
https://api.github.com/repos/huggingface/datasets/issues/5243
https://github.com/huggingface/datasets/issues/5243
5,243
Download only split data
open
7
2022-11-15T10:15:54
2025-02-25T14:47:03
null
capsabogdan
[ "enhancement" ]
### Feature request Is it possible to download only the data that I am requesting and not the entire dataset? I run out of disk spaceas it seems to download the entire dataset, instead of only the part needed. common_voice["test"] = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="test", cache_dir="cache/path...", use_auth_token=True, download_config=DownloadConfig(delete_extracted='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') ) ### Motivation efficiency improvement ### Your contribution n/a
false
1,449,069,382
https://api.github.com/repos/huggingface/datasets/issues/5242
https://github.com/huggingface/datasets/issues/5242
5,242
Failed Data Processing upon upload with zip file full of images
open
1
2022-11-15T02:47:52
2022-11-15T17:59:23
null
scrambled2
[]
I went to autotrain and under image classification arrived where it was time to prepare my dataset. Screenshot below ![image](https://user-images.githubusercontent.com/82735473/201814099-3cc5ff8a-88dc-4f5f-8140-f19560641d83.png) I chose the method 2 option. I have a csv file with two columns. ~23,000 files. I uploaded this and chose the image_relpath, and target columns. The image uploader said that I could only upload 10,000 singular images at a time so the 2nd option was to zip the images up and upload a zip archive which I did. That all uploaded. Now I have the message below. It appears the zip archive does just uncompress on the Hugging Face end? What am I missing here? ![image](https://user-images.githubusercontent.com/82735473/201813838-b50dbbbc-34e8-4d73-9c07-12f9e41c62eb.png)
false
1,448,510,407
https://api.github.com/repos/huggingface/datasets/issues/5241
https://github.com/huggingface/datasets/pull/5241
5,241
Support hfh rc version
closed
1
2022-11-14T18:05:47
2022-11-15T16:11:30
2022-11-15T16:09:31
lhoestq
[]
otherwise the code doesn't work for hfh 0.11.0rc0 following #5237
true
1,448,478,617
https://api.github.com/repos/huggingface/datasets/issues/5240
https://github.com/huggingface/datasets/pull/5240
5,240
Cleaner error tracebacks for dataset script errors
closed
2
2022-11-14T17:42:02
2022-11-15T18:26:48
2022-11-15T18:24:38
mariosasko
[]
Make the traceback of the errors raised in `_generate_examples` cleaner for easier debugging. Additionally, initialize the `writer` in the for-loop to avoid the `ValueError` from `ArrowWriter.finalize` raised in the `finally` block when no examples are yielded before the `_generate_examples` error. <details> <summary> The full traceback of the "SQLAlchemy ImportError" error that gets printed with these changes: </summary> ```bash ImportError Traceback (most recent call last) /usr/local/lib/python3.7/dist-packages/datasets/builder.py in _prepare_split_single(self, arg) 1759 _time = time.time() -> 1760 for _, table in generator: 1761 # Only initialize the writer when we have the first record (to avoid having to do the clean-up if an error occurs before that) 9 frames /usr/local/lib/python3.7/dist-packages/datasets/packaged_modules/sql/sql.py in _generate_tables(self) 112 sql_reader = pd.read_sql( --> 113 self.config.sql, self.config.con, chunksize=chunksize, **self.config.pd_read_sql_kwargs 114 ) /usr/local/lib/python3.7/dist-packages/pandas/io/sql.py in read_sql(sql, con, index_col, coerce_float, params, parse_dates, columns, chunksize) 598 """ --> 599 pandas_sql = pandasSQL_builder(con) 600 /usr/local/lib/python3.7/dist-packages/pandas/io/sql.py in pandasSQL_builder(con, schema, meta, is_cursor) 789 elif isinstance(con, str): --> 790 raise ImportError("Using URI string without sqlalchemy installed.") 791 else: ImportError: Using URI string without sqlalchemy installed. The above exception was the direct cause of the following exception: DatasetGenerationError Traceback (most recent call last) <ipython-input-4-5af11af4737b> in <module> ----> 1 ds = Dataset.from_sql('''SELECT * from states WHERE state=="New York";''', "sqlite:///us_covid_data.db") /usr/local/lib/python3.7/dist-packages/datasets/arrow_dataset.py in from_sql(sql, con, features, cache_dir, keep_in_memory, **kwargs) 1152 cache_dir=cache_dir, 1153 keep_in_memory=keep_in_memory, -> 1154 **kwargs, 1155 ).read() 1156 /usr/local/lib/python3.7/dist-packages/datasets/io/sql.py in read(self) 47 # try_from_hf_gcs=try_from_hf_gcs, 48 base_path=base_path, ---> 49 use_auth_token=use_auth_token, 50 ) 51 /usr/local/lib/python3.7/dist-packages/datasets/builder.py in download_and_prepare(self, output_dir, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs) 825 verify_infos=verify_infos, 826 **prepare_split_kwargs, --> 827 **download_and_prepare_kwargs, 828 ) 829 # Sync info /usr/local/lib/python3.7/dist-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 912 try: 913 # Prepare split will record examples associated to the split --> 914 self._prepare_split(split_generator, **prepare_split_kwargs) 915 except OSError as e: 916 raise OSError( /usr/local/lib/python3.7/dist-packages/datasets/builder.py in _prepare_split(self, split_generator, file_format, num_proc, max_shard_size) 1652 job_id = 0 1653 for job_id, done, content in self._prepare_split_single( -> 1654 {"gen_kwargs": gen_kwargs, "job_id": job_id, **_prepare_split_args} 1655 ): 1656 if done: /usr/local/lib/python3.7/dist-packages/datasets/builder.py in _prepare_split_single(self, arg) 1789 raise DatasetGenerationError( 1790 f"An error occured while generating the dataset" -> 1791 ) from e 1792 finally: 1793 yield job_id, False, num_examples_progress_update DatasetGenerationError: An error occurred while generating the dataset ``` </details> PS: I've also considered raising the error as follows: ```python tb = sys.exc_info()[2] raise DatasetGenerationError(f"An error occurred while generating the dataset: {type(e).__name__}: {e}").with_traceback(tb) from None # this raises the DatasetGenerationError with "e"'s traceback ``` But it seems like "from e" is now the [preferred](https://docs.python.org/3/library/exceptions.html#BaseException.with_traceback) way to chain exceptions. Fix https://github.com/huggingface/datasets/issues/5186 cc @nateraw
true
1,448,211,373
https://api.github.com/repos/huggingface/datasets/issues/5239
https://github.com/huggingface/datasets/pull/5239
5,239
Add num_proc to from_csv/generator/json/parquet/text
closed
2
2022-11-14T14:53:00
2022-12-06T15:39:10
2022-12-06T15:39:09
lhoestq
[]
Allow multiprocessing to from_* methods
true