id
stringlengths 1
6
| url
stringlengths 16
1.82k
| content
stringlengths 37
9.64M
|
|---|---|---|
190800
|
https://ocw.mit.edu/courses/8-03sc-physics-iii-vibrations-and-waves-fall-2016/pages/part-iii-optics/
|
Part III: Optics | Physics III: Vibrations and Waves | Physics | MIT OpenCourseWare
Browse Course Material
Syllabus
Instructor Insights
Instructor Reflections on Teaching 8.03
Part I: Mechanical Vibrations and Waves
Lecture 1: Periodic Oscillations, Harmonic Oscillators
Lecture 2: Damped Free Oscillators
Lecture 3: Driven Oscillators, Transient Phenomena, Resonance
Lecture 4: Coupled Oscillators, Normal Modes
Lecture 5: Beat Phenomena
Lecture 6: Driven Oscillators, Resonance
Lecture 7: Symmetry, Infinite Number of Coupled Oscillators
Lecture 8: Translation Symmetry
Lecture 9: Wave Equation, Standing Waves, Fourier Series
Exam 1
Lecture 10: Traveling Waves
Lecture 11: Sound Waves
Part II: Electromagnetic Waves
Lecture 12: Maxwell's Equation, Electromagnetic Waves
Lecture 13: Dispersive Medium, Phase Velocity, Group Velocity
Lecture 14: Fourier Transform, AM Radio
Lecture 15: Uncertainty Principle, 2D Waves
Lecture 16: 2D and 3D Waves, Snell's Law
Part III: Optics
Lecture 17: Polarization, Polarizer
Exam 2
Lecture 18: Wave Plates, Radiation
Lecture 19: Waves in Medium
Lecture 20: Interference, Soap Bubble
Lecture 21: Phased Radar, Single Electron Interference
Lecture 22: Diffraction, Resolution
Lecture 23: Quantum Waves and Gravitational Waves
Lecture 24: Review for Final Exam
Final Exam
Problem Solving Help Videos
Resource Index
Course Info
Instructor
Prof. Yen-Jie Lee
Departments
Physics
As Taught In
Fall 2016
Level
Undergraduate
Topics
Science
Physics
Atomic, Molecular, Optical Physics
Classical Mechanics
Electromagnetism
Learning Resource Types
theaters Lecture Videos
notes Lecture Notes
assignment Problem Sets
co_present Instructor Insights
grading Exams
Download Course
menu
search
Give Now
About OCW
Help & Faqs
Contact Us
searchGIVE NOWabout ocwhelp & faqscontact us
8.03SC | Fall 2016 | Undergraduate
Physics III: Vibrations and Waves
Menu
More Info
Syllabus
Instructor Insights
Instructor Reflections on Teaching 8.03
Part I: Mechanical Vibrations and Waves
Lecture 1: Periodic Oscillations, Harmonic Oscillators
Lecture 2: Damped Free Oscillators
Lecture 3: Driven Oscillators, Transient Phenomena, Resonance
Lecture 4: Coupled Oscillators, Normal Modes
Lecture 5: Beat Phenomena
Lecture 6: Driven Oscillators, Resonance
Lecture 7: Symmetry, Infinite Number of Coupled Oscillators
Lecture 8: Translation Symmetry
Lecture 9: Wave Equation, Standing Waves, Fourier Series
Exam 1
Lecture 10: Traveling Waves
Lecture 11: Sound Waves
Part II: Electromagnetic Waves
Lecture 12: Maxwell's Equation, Electromagnetic Waves
Lecture 13: Dispersive Medium, Phase Velocity, Group Velocity
Lecture 14: Fourier Transform, AM Radio
Lecture 15: Uncertainty Principle, 2D Waves
Lecture 16: 2D and 3D Waves, Snell's Law
Part III: Optics
Lecture 17: Polarization, Polarizer
Exam 2
Lecture 18: Wave Plates, Radiation
Lecture 19: Waves in Medium
Lecture 20: Interference, Soap Bubble
Lecture 21: Phased Radar, Single Electron Interference
Lecture 22: Diffraction, Resolution
Lecture 23: Quantum Waves and Gravitational Waves
Lecture 24: Review for Final Exam
Final Exam
Problem Solving Help Videos
Resource Index
Part III: Optics
« Previous | Next »
Lecture 17: Polarization, Polarizer
Exam 2
Lecture 18: Wave Plates, Radiation
Lecture 19: Waves in Medium
Lecture 20: Interference, Soap Bubble
Lecture 21: Phased Radar, Single Electron Interference
Lecture 22: Diffraction, Resolution
Lecture 23: Quantum Waves and Gravitational Waves
Lecture 24: Review for Final Exam
Looking for something specific in this course? The Resource Index compiles links to most course resources in a single page.
« Previous | Next »
Course Info
Instructor
Prof. Yen-Jie Lee
Departments
Physics
As Taught In
Fall 2016
Level
Undergraduate
Topics
Science
Physics
Atomic, Molecular, Optical Physics
Classical Mechanics
Electromagnetism
Learning Resource Types
theaters Lecture Videos
notes Lecture Notes
assignment Problem Sets
co_present Instructor Insights
grading Exams
Download Course
Over 2,500 courses & materials
Freely sharing knowledge with learners and educators around the world. Learn more
© 2001–2025 Massachusetts Institute of Technology
Accessibility
Creative Commons License
Terms and Conditions
Proud member of:
© 2001–2025 Massachusetts Institute of Technology
You are leaving MIT OpenCourseWare
close
Please be advised that external sites may have terms and conditions, including license rights, that differ from ours. MIT OCW is not responsible for any content on third party sites, nor does a link suggest an endorsement of those sites and/or their content.
Stay Here Continue
|
190801
|
https://www.oed.com/dictionary/censure_n
|
Advanced search
Oxford English Dictionary
The historical English dictionary
An unsurpassed guide for researchers in any discipline to the meaning, history, and usage of over 500,000 words and phrases across the English-speaking world.
Find out more about OED
Understanding entries
Glossaries, abbreviations, pronunciation guides, frequency, symbols, and more
Explore resources
Personal account
Change display settings, save searches and purchase subscriptions
Account features
Getting started
Videos and guides about how to use the new OED website
Read our guides
Recently added
hoaching
kottu roti
busy bee
private bag
PMS-ing
shwmae
bedrid
chiollagh
digestivo
Texas gate
hyperpop
bombil
jibaro
camera roll
Uglish
bowlered
Word of the day
aequoreal
adjective
Marine, oceanic.
Recently updated
Hobbist
Boran
tsarian
brechan
typing
shurt
hobbet
tone arm
shipload
duma
hubbly
shipward
tsar
flaily
hobbled
beat-up
## Word stories
Read our collection of word stories detailing the etymology and semantic development of a wide range of words, including ‘dungarees’, ‘codswallop’, and ‘witch’. ## Word lists
Access our word lists and commentaries on an array of fascinating topics, from film-based coinages to Tex-Mex terms. ## World Englishes
Explore our World Englishes hub and access our resources on the varieties of English spoken throughout the world by people of diverse cultural backgrounds. ## History of English
Here you can find a series of commentaries on the History of English, charting the history of the English language from Old English to the present day.
Sign in
Personal account
Access or purchase personal subscriptions
Get our newsletter
Save searches
Set display preferences
Sign in Register
Institutional access
Sign in through your institution
Sign in with library card
Sign in with username / password
Recommend to your librarian
Institutional account management
Sign in as administrator on Oxford Academic
Word of the Day
Sign up to receive the Oxford English Dictionary Word of the Day email every day.
Our Privacy Policy sets out how Oxford University Press handles your personal information, and your rights to object to your personal information being used for marketing to you or being processed as part of our business activities.
We will only use your personal information for providing you with this service.
|
190802
|
http://www.emeraldcoastperiodontics.com/blog/2025/8/15/soft-tissue-graft-surgery-recovery-timeline-what-to-expect-week-by-week
|
Soft Tissue Graft Surgery Recovery Timeline: Week-by-Week Guide
0
Skip to Content
Our Office
Meet Dr. Woolsey
Meet Our Team
Schedule an Appointment
Contact
Referring Dentists
Referral Form
Treatment Video Library
Patients
Schedule an Appointment
Contact
Patient Registration
Update Medical History
Financial Policy
Insurance
Blog
Services
Open Menu Close Menu
Our Office
Meet Dr. Woolsey
Meet Our Team
Schedule an Appointment
Contact
Referring Dentists
Referral Form
Treatment Video Library
Patients
Schedule an Appointment
Contact
Patient Registration
Update Medical History
Financial Policy
Insurance
Blog
Services
Open Menu Close Menu
Folder:Our Office
Folder:Referring Dentists
Folder:Patients
Blog
Services
Back
Meet Dr. Woolsey
Meet Our Team
Schedule an Appointment
Contact
Back
Referral Form
Treatment Video Library
Back
Schedule an Appointment
Contact
Patient Registration
Update Medical History
Financial Policy
Insurance
Soft Tissue Graft Surgery Recovery Timeline: What to Expect Week by Week
Aug 15
Written By McClain Woolsey
ByDr. Woolsey, board-certified by the American Board of Periodontology
As someone who has performed hundreds of soft tissue graft surgeries, I know that patients often feel more at ease when they understand what recovery will look like. Healing from this procedure takes time, but knowing the week-by-week process can help you prepare, follow your post-op instructions, and get the best results.
Here’s a detailed timeline of what to expect—based on both professional guidelines and what I’ve observed in real patient cases.
Understanding Soft Tissue Graft Surgery Recovery
Soft tissue graft surgery is designed to restore gum tissue, protect tooth roots, and improve oral health. The recovery process is gradual, as your body needs time to:
Integrate the graft with your natural gum tissue
Reduce swelling and inflammation
Allow new tissue to fully mature and strengthen
Day of Surgery – First 24 Hours
Expect: Mild discomfort, swelling, and possibly light bleeding.
Tips for Success:
Keep your head slightly elevated.
Use a cold compress (15 minutes on/off) to control swelling.
Stick to cool, soft foods (like yogurt or applesauce).
Avoid brushing the surgical area—your periodontist will provide cleaning instructions.
Week 1 – Initial Healing Phase
What’s Happening: The graft is beginning to adhere to the surrounding gum tissue. Swelling and tenderness are still normal.
Your Care Goals:
Continue a soft food diet.
Use prescribed mouth rinse or gentle saltwater rinses.
Take prescribed pain medication if needed.
Avoid exercise or strenuous activity that increases blood flow to the gums.
Week 2 – Early Tissue Integration
What’s Happening: The graft is receiving blood supply from surrounding tissues, which is essential for long-term success. Stitches may be removed during this week.
Your Care Goals:
Resume gentle brushing and flossing away from the graft site.
Continue avoiding crunchy, sticky, or spicy foods.
Follow up with your periodontist to check graft stability.
Week 3 – Reduced Sensitivity and Swelling
What’s Happening: Discomfort should be minimal by now, and swelling is greatly reduced. You may notice the graft site blending more naturally with surrounding gums.
Your Care Goals:
Slowly reintroduce soft, cooked vegetables and pasta.
Continue to chew on the opposite side if possible.
Maintain excellent oral hygiene in non-surgical areas.
Weeks 4–6 – Strengthening Phase
What’s Happening: The graft tissue is becoming more robust and resistant to irritation. Sensitivity should be gone or greatly reduced.
Your Care Goals:
Gradually return to normal eating habits (with your periodontist’s approval).
Continue avoiding hard or sharp foods until you’re fully cleared.
Keep up with follow-up visits for progress checks.
Months 3–6 – Final Healing and Maturation
What’s Happening: The graft has fully integrated and matured. Your gumline should now be stable, protected, and aesthetically improved.
Your Care Goals:
Maintain consistent oral care routines.
Schedule regular dental cleanings to prevent future gum recession.
Discuss long-term gum health strategies with your dental team.
When to Call Your Periodontist
While mild discomfort and swelling are normal, contact your periodontist immediately if you experience:
Heavy bleeding
Severe pain not relieved by medication
Signs of infection (fever, pus, foul taste)
The feeling that the graft is loose or shifting
Final Takeaway
Recovery from soft tissue graft surgery is a step-by-step process that rewards patience and careful home care. By following your periodontist’s instructions and understanding this timeline, you can protect your investment in your smile and enjoy long-lasting gum health.
“I have an EXTREME ANXIETY for the dentist! These ladies and the dentist here were AMAZING ALL AROUND!!! Put me at ease right to begin with and through the ENTIRE PROCEDURE!!!! I HIGHLY RECOMMEND THIS OFFICE 100%!!!
THANK YOU, THANK YOU, THANK YOU!!!!”
— Jeremy Katz
McClain Woolsey
Comments (0)
Newest First
Preview Post Comment…
Next Next Eating After Soft Tissue Graft Surgery: Foods to Avoid and Enjoy ----------------------------------------------------------------
Subscribe
Sign up with your email address to receive news and updates.
Email Address
Sign Up
Thank you!
Emerald Coast Periodontics, 719 Bayshore Dr, Niceville, FL, 32578, United States
|
190803
|
https://zh.wikisource.org/wiki/Wikisource:%E5%86%99%E5%AD%97%E9%97%B4
|
跳转到内容
[关闭]
维基文库:写字间
العربية
অসমীয়া
Basa Bali
Беларуская
Български
বাংলা
Brezhoneg
Bosanski
Català
Čeština
Cymraeg
Dansk
Deutsch
Ελληνικά
English
Esperanto
Español
Eesti
Euskara
فارسی
Suomi
Føroyskt
Français
Galego
ગુજરાતી
עברית
हिन्दी
Hrvatski
Magyar
Հայերեն
Bahasa Indonesia
Íslenska
Italiano
日本語
Jawa
ಕನ್ನಡ
한국어
Latina
Limburgs
Ligure
Македонски
മലയാളം
मराठी
Bahasa Melayu
မြန်မာဘာသာ
Napulitano
Nederlands
Norsk bokmål
ଓଡ଼ିଆ
ਪੰਜਾਬੀ
Polski
Piemontèis
Português
Romnă
Русский
संस्कृतम्
Саха тыла
Slovenčina
Slovenščina
Српски / srpski
Sunda
Svenska
தமிழ்
ತುಳು
తెలుగు
ไทย
Türkçe
Українська
Vèneto
Tiếng Việt
Walon
ייִדיש
閩南語 / Bn-lm-gí
编辑链接
添加话题
維基文庫,自由的圖書館
MediaWiki message delivery在话题“2025年第33期技術新聞”中的最新留言:15小时前
| | | |
---
| ←社區 | 写字间 | 存檔→ |
| |
| 姊妹计划: 百科·大典·吴典·粤典·图册·语录·新闻·词义·教科书·课程·物种·导游·数据项·元 捷径 WS:S WS:VP 請另頁請求管理員幫助,力求提高效率。机器人、導入者、管理员、更改用戶名請另頁申請。目前中文維基文库共有146名活跃用户,沒有行政員,暫不建議申請。 If you can't speak Chinese, we prefer you to comment at the embassy and our volunteers can help on translating your inputs. |
| 維基文庫項目 |
| 维基文库是什么 |
| 维基文库与维基教科书 |
| 写字间 |
| 投票 |
| 版权信息 |
| 版權討論 |
| 删除讨论 |
| 移動請求 |
| 保護請求 |
| 請求管理員幫助 |
| # | 💭 話題 | 💬 | 👥 | 🙋 最新發言 | 🕒 (UTC+8) |
--- --- --- |
| 1 | 重写维基文库方针和说明文档 | 13 | 8 | 银色雪莉 | 2025-07-16 18:51 |
| 2 | 新建模板:允許在page頁面以傳統版式顯示、在主頁面以現代方式顯示 | 25 | 10 | Teetrition | 2025-06-23 13:24 |
| 3 | 朝代標註 | 4 | 2 | Ericliu1912 | 2025-05-08 23:25 |
| 4 | 可否在Template:PD-PRC-exempt恢复第3项描述,或是像Template:单纯事实消息那样单独建立模板? | 31 | 5 | Teetrition | 2025-07-04 10:05 |
| 5 | 重选管理员建议 | 81 | 16 | 自由雨日 | 2025-06-30 18:47 |
| 6 | 请各位不翻2025年6月8日前旧账 | 39 | 9 | RoyZuo | 2025-06-24 17:00 |
| 7 | 有限任期制 | 19 | 9 | Jusjih | 2025-07-23 10:56 |
| 8 | 解决方法3 问卷调查 | 7 | 5 | 維基小霸王 | 2025-06-15 22:42 |
| 9 | 请求修改禁用标题名单 | 8 | 6 | Teetrition | 2025-07-01 19:42 |
| 10 | 要求管理員~~就申報有償編輯~~宣誓 | 18 | 7 | Jusjih | 2025-08-02 02:19 |
| 11 | 维基文库收录方针之开放性探讨——《回归愿景,海纳百川》已发 | 15 | 5 | Ericliu1912 | 2025-06-28 19:53 |
| 12 | 版权讨论与删除讨论流程和模板问题 | 75 | 8 | 银色雪莉 | 2025-08-09 12:54 |
| 13 | Sister Projects Task Force reviews Wikispore and Wikinews | 1 | 1 | Victoria | 2025-06-28 04:57 |
| 14 | 部分文档的标题长度超出MediaWiki允许的上限 | 7 | 5 | Hat600 | 2025-07-05 17:49 |
| 15 | 2025年第27期技術新聞 | 1 | 1 | MediaWiki message delivery | 2025-07-01 07:40 |
| 16 | 為使用者命名空間禁止索引事 | 13 | 8 | Liuxinyu970226 | 2025-08-09 12:58 |
| 17 | 制订机器人方针 | 10 | 5 | Liuxinyu970226 | 2025-07-14 12:12 |
| 18 | 接受 维基文库:繁简处理 成为指引 | 5 | 4 | Midleading | 2025-07-22 01:38 |
| 19 | 2025年第28期技術新聞 | 1 | 1 | MediaWiki message delivery | 2025-07-08 08:05 |
| 20 | Wikidata Item and Property labels soon displayed in Wiki Watchlist/Recent Changes | 1 | 1 | MediaWiki message delivery | 2025-07-14 20:46 |
| 21 | 2025年第29期技術新聞 | 1 | 1 | MediaWiki message delivery | 2025-07-15 04:09 |
| 22 | 政治人物談話的版權 | 3 | 2 | Lemonaka | 2025-07-16 22:15 |
| 23 | 為版權容忍模板移除附編輯標籤事 | 2 | 2 | Teetrition | 2025-07-17 22:05 |
| 24 | 請支援臺灣 | 5 | 2 | Ericliu1912 | 2025-07-20 05:43 |
| 25 | 2025年第30期技術新聞 | 1 | 1 | MediaWiki message delivery | 2025-07-22 07:42 |
| 26 | 请求支援以修正桌面端左侧边栏目录缺失章节的问题 | 3 | 2 | HCCB3947 | 2025-07-22 20:07 |
| 27 | 台灣分會2025年7月對話時間 | 1 | 1 | MediaWiki message delivery | 2025-07-23 22:51 |
| 28 | 2025年第31期技術新聞 | 1 | 1 | MediaWiki message delivery | 2025-07-29 08:26 |
| 29 | 为什么有的分节用pages标签嵌入不出东西? | 10 | 3 | Nanhuajiaren | 2025-07-31 22:09 |
| 30 | 关于收录各类审判文书中当事人的姓名、出生日期、地址、身份证号,维基是否有相关的隐私政策规范应当做何种处理? | 8 | 4 | 银色雪莉 | 2025-07-31 11:39 |
| 31 | 现在写字间页面太长 | 1 | 1 | Fire-and-Ice | 2025-07-31 05:59 |
| 32 | 关于MidleadingBot识别文件原本上汉字能力及方法的困惑 | 5 | 3 | HCCB3947 | 2025-08-04 20:12 |
| 33 | Upcoming Deployment of the CampaignEvents Extension | 2 | 2 | Liouxiao | 2025-07-31 23:56 |
| 34 | 各位有沒有免費的古籍OCR的網站推薦一些 | 6 | 3 | 唐吉訶德的侍從 | 2025-08-09 00:23 |
| 35 | 中华人民共和国地方政府公开的规划文件属于公有领域吗 | 5 | 3 | 银色雪莉 | 2025-08-09 12:52 |
| 36 | Module:XsLiDian | 1 | 1 | 沈澄心 | 2025-08-04 21:21 |
| 37 | 2025年第32期技術新聞 | 1 | 1 | MediaWiki message delivery | 2025-08-05 11:40 |
| 38 | 2025年第33期技術新聞 | 1 | 1 | MediaWiki message delivery | 2025-08-12 07:29 |
| 發言更新圖例 |
| 最近一小時內 |
| 最近一日內 |
| 一週內 |
| 一個月內 |
| 逾一個月 |
| 特殊狀態 |
| 已移動至其他頁面 或完成討論之議題 |
| 手動設定 |
| 當列表出現異常時, 請先檢查設定是否有誤 |
重写维基文库方针和说明文档
[编辑]
最新留言:27天前13条留言8人参与讨论
明年中文维基文库即将迎来20周年华诞。一些方针和说明文档已有近20年的历史,让人感觉晦涩难懂,内容过时。我计划明年对其进行大幅修改。对方针的修改尽量不会有争议,如果别人不满意也可以讨论。 維基小霸王(留言) 2024年12月4日 (三) 14:21 (UTC)回复
: 支持。我半年前就大致整理过一次帮助文档和模板说明,但很多还需要大幅完善。 Kcx36(留言) 2024年12月4日 (三) 16:20 (UTC)回复
: 支持,目前很多应当有的文档仅存在于英文维基文库,例如en:WS:V,en:Help:Index pages。 曾晋哲(留言) 2024年12月4日 (三) 18:42 (UTC)回复
: 支持:修正案可即時陸續提出,俾便社群分批檢視。—— Eric Liu(留言) 2024年12月9日 (一) 16:01 (UTC)回复
: 完全 支持。 银色雪莉(留言) 2024年12月26日 (四) 07:02 (UTC)回复
: 支持。Teetrition(留言) 2025年1月7日 (二) 09:01 (UTC)回复
: 支持。另外(&)建議:希望能补上中文特有的东西:异体字如何处理、怎样查询,直排标点符号怎么录入、引号和句号连一起时顺序是否要转换成横排习惯,首行缩进、{{nop}},穿越历史的文献怎么算版权…… David, but not Hilbert(留言) 2025年2月18日 (二) 14:16 (UTC)回复
: 本主題全部或部分段落文字,已移動至Index talk:魯迅全集01 (1948).pdf#從校對頁錄入時…….pdf#從校對頁錄入時…… "Index talk:魯迅全集01 (1948).pdf")。执行人:David, but not Hilbert(留言) 2025年6月7日 (六) 13:26 (UTC)。回复
我认为校对页面和主页面显示不同内容,完全通过软件层面的处理即可完成。每个标点添加{{ia}}太麻烦了。另外,建立忠实原文和现代标点的两种页面也不利于维护。如督戎疏紀/卷之一和督戎疏紀_(影印本)/卷之一。一方面我很尊重这样做的编辑很用心,一方面我觉得如果有一天更正错字,需要修改两个地方,很麻烦。最好的做法是能通过软件进行修改,可自动将嵌入包含的页面显示为督戎疏紀/卷之一的样式。现在chatgpt等llm可以帮助写代码,我觉得咱们可以试着写一个。--維基小霸王(留言) 2025年2月20日 (四) 02:02 (UTC)回复
: 我在建立{{ia}}模板前也想過軟件方案,如js工具、lua模組,
+ js小工具需要審核後方能添加到維基站點。還需要進一步判對當前頁面命名空間是否為無標點文書,如果沒有參數支持,那就要讀者用戶自行手工打開。
+ lua模組則是方便用於作品頁嵌入時刪去符號,剛好與古文校對頁無標點的目的相反。
: 思來想去讓編輯貢獻者自己來負擔成本還較省事,至少可調可控。花的時間也不過是完稿後敲幾個Ctrl+H作取代的工夫,或是直接丟進python處理。
: 反正這模板只是工具,也還能修改。我就在想著要來把這些標點改成偽元素,使其真正的與實體原文分離。 Aerotinge(留言) 2025年2月20日 (四) 03:00 (UTC)回复
: 我見到您提供的模組了,的確是可以照著軟件這個方向去做。 Aerotinge(留言) 2025年2月20日 (四) 03:11 (UTC)回复
: 我前一段时间比较忙 一直没空 现在闲了些 可以开始了 維基小霸王(留言) 2025年7月15日 (二) 15:27 (UTC)回复
: @維基小霸王:在下凑个热闹,下方正有对Wikisource:删除守则的修订提案,未知是否可请阁下若方便时多作指正。 银色雪莉(留言) 2025年7月16日 (三) 10:51 (UTC)回复
新建模板:允許在page頁面以傳統版式顯示、在主頁面以現代方式顯示
[编辑]
最新留言:1个月前25条留言10人参与讨论
古文需要以兩種方式顯示:現代版式和傳統版式。前者便於閲讀,後者便於校對。一種方法是同時創建兩者,比如督戎疏紀_(影印本)/卷之一和督戎疏紀/卷之一。但是這樣太費力,而且難以維護。我創建了兩個模板,以允許在page頁面以傳統版式顯示、在主頁面以現代方式顯示。
{{Transclude pages}}:替代嵌入包含。請看夜航船/卷01和欽定古今圖書集成/博物彙編/藝術典/第001卷。該模板可以刪除每行閒的“\n”,這樣嵌入后換行閒就不會有空格了。另外,還支持mediawiki的標題目錄。(目前欽定古今圖書集成/博物彙編/藝術典/第002卷還是用傳統方式嵌入,就無法顯示目錄。)
{{Old text page}}:用於在page頁面以還原古書的方式顯示:竪排顯示,刪除標題(==標題==)兩旁的等號,刪除表點,將換行顯示。見Page:Ye Hang Chuan part 1.djvu/15。但是還有個問題沒有解決,那就是對於太長的文本,原圖就無法顯示了,見Page:Gujin Tushu Jicheng, Volume 423 (1700-1725).djvu/4。還請其他維基人幫忙調整。
建好了這兩個模板,只需在校對頁面輸入完整的包含標點和標題符號的文章,即可同時實現在page頁面以傳統版式顯示(按原版式顯示換行)、在主頁面以現代方式顯示(只顯示段閒換行),既便於核對原文,又便於維護。
這兩個模板還需要進一步完善,以適應更複雜的版式。比如,有的古書會將一些名字靠前顯示,如南京條約,又比如Page:KYTU-BB04492447 督戎疏紀1.pdf/16有不同的段前空格。如何在page頁面保持這種顯示方式,在主頁面卻不這麽顯示? 維基小霸王(留言) 2025年2月20日 (四) 07:20 (UTC)回复
: 那個是w:擡頭相關的板式,你可以參考一下我昨天錄的使西紀程及配套的樣式表。
: 基本上版型都要因地制宜去微調樣式,至少要用到一些標籤語法才會讓文字工作比較簡單。
: 此外還有挪抬,即:奉(空兩格)天承運這類的。我手上有兩篇用到這樣的樣式,但還沒發出來,沒辦法做例子。 Aerotinge(留言) 2025年2月20日 (四) 07:50 (UTC)回复
: 我将模板用在了使西紀程、Page:NLC892-GBZX0301010751-250698 使西紀程 二卷.pdf/3,请问是否满意。除了作者难以兼顾,而且换行空格已经消失,其他均显示如以前。 維基小霸王(留言) 2025年2月20日 (四) 09:18 (UTC)回复
: 我想這樣的錄入方式會失去其條列性質。本件作品為日記形式,有著一貫的體例,故我當初以<ul>等html元素標籤錄入,這也是為了兼顧其語意結構。這是對一部作品粗讀過,拆解出大致結構後的成果。
: 古文作品不僅僅只是一篇純文字。古人縱然沒有發展出西方的排版、標點、縮排、項目等格式工具,他們仍然用僅有的換行與空格來嘗試形成各種體例,常見的日記、博物志、方志、詩集或多或少都可以受益並應用現代的W3C標準。
: 也是這種隨意性,讓我認為錄入古文會存在因地制宜的必要性。
: 模組是可以提供一個通用的公版,這點仍是具有相當價值的。 Aerotinge(留言) 2025年2月20日 (四) 09:42 (UTC)回复
: 稍等我修改一下 維基小霸王(留言) 2025年2月20日 (四) 09:46 (UTC)回复
: 已修改。加入<includeonly>\</includeonly>即可。 維基小霸王(留言) 2025年2月20日 (四) 11:59 (UTC)回复
: 您对新模板是否满意?如果满意,可考虑将Index:NLC892-GBZX0301010751-250698\_使西紀程\_二卷.pdf替换为新式,这样可以大幅让源码看上去简单。 維基小霸王(留言) 2025年2月20日 (四) 12:22 (UTC)回复
: 首先感謝您的心血,辛苦了。
: 對於校對頁的理解,我認為歧異依舊存在。我對校對的理解是,校對頁與被嵌入頁的目標結構應該是對應一致的,或大致相似的。
: 兩方的差異僅僅是樣式不同,即文本的表現態樣不同。
: 在校對頁有著h3+p+span+p+ul+li+p結構的一頁,在嵌入頁的結構理當一樣。
: 而您提供的模板則是在校對頁會推平成p+p+span+p+p+p+p,這是我說的純文字的意思。這些資訊雖然會在嵌入時回來,但兩邊結構實是不同的。
: 對於當前絕大部分做OCR的貢獻者來說,這個模板方案確實比一行行敲再兩換行符錄入來得更優秀(無須擔心Wikimedia的p閉合抽風、自動除換行空格、夠用的縮排與樣式彈性、擴展過的語法但大致維持熟悉的Wikitext風格...etc)
: 就像視覺化編輯器一樣,相當夠用了。但我是個用慣了直接敲原代碼的人,請容我當前維持能緊抓狠抓、落實掌控的錄書方式。
: 至於滿意那可是太滿意了,今天您已經帶給我太多驚喜了,實在是社群之福,還請務必適度休息。 Aerotinge(留言) 2025年2月20日 (四) 12:59 (UTC)回复
: 感谢!此方案效果甚佳,值得推广。另请问Page:NLC892-GBZX0301010751-250698\_使西紀程\_二卷.pdf/16有DL(双行注解)模板,不知嵌入页会怎么处理? Liouxiao(留言) 2025年2月23日 (日) 14:25 (UTC)回复
: 感謝閣下示例。我非常認同閣下對校對頁的見解,支持改進現有校對頁嵌入方式,讓直排顯示的page頁面文本能在嵌入后直排或橫排顯示並有適當的格式,並保持page頁的原始代碼的簡潔和易用。
: 技術上,除了{{Transclude pages}}所示的刪除換行符“\n”外,另一個可能普遍存在的需求是橫排的分段。以我是新手時錄入的紅樓夢(程甲本)/二十爲例,現代標準無論直排或橫排都會分開段落,有些地方(如此作品頁來源的5,6頁之間)還可以加大段落距離以起到子章節的效果。但原刻本并無分段,此資訊是缺失的。因此無論何種嵌入技術,包括未來可能的MediaWiki 原生官方支持,都很難避免「污染」原始代碼,加入如{{brop}}但功能相反的模板,或使用<noinclude></noinclude>。我在之前的話題<#直排之技術問題>之中希望提請討論的也正是這個問題。
: 其他的需求如挪抬,縮進,竪排行高和頁面寬,如Aerotinge閣下所言,大多可以用樣式表微調。對齊可參見{{Center or page}}。因未見社群有共識,故尚未向社群推薦。詩歌的直排轉橫排可能更加困難,因古籍樣式和今天標準相差太大,也許可以先擱置。(未完) Andayunxiao(留言) 2025年2月20日 (四) 08:14 (UTC)回复
: 湊合著弄了篇康熙皇帝遺詔改版,及配套的樣式,在擡頭、三抬的樣式部分,請兩位參考、惠賜意見。 Aerotinge(留言) 2025年2月20日 (四) 08:30 (UTC)回复
: 已經很好了。請教一個離題的問題:印章裏滿文和中文混排,間距可有規範?如果是正文内排版又有何不同?遺詔原件的印章我看不大清。 Andayunxiao(留言) 2025年2月22日 (六) 16:48 (UTC)回复
: 不知規範,我那時是湊合著能看就弄上了。
: 斯以為印章不必加入正文,若要加入僅需要確保邊線壓印在年月日上做騎縫章作用。這有個名堂,但我忘記叫啥來著了。 Aerotinge(留言) 2025年2月22日 (六) 17:08 (UTC)回复
: 另一方面,就直排原文錄入和閲讀而言,社群已經有直排轉橫排,直排轉直排兩種偏好。即使不是古籍,也已經有不同編者對同一主命名空間的作品文字排列方向的爭論。
: 私以爲,文字排列方向及其附加產生的排版樣式問題,是維基文庫版本的「維基百科字詞轉換」問題。兩者的相似之處甚多:都是源於并存的多種中文標準;都是編者期望以自己熟悉的樣式錄入,或希望展示特定樣式,而不能兼顧其他編者和讀者的需求;都是MediaWiki 原生不支持的。更顯見的是,無論是百科還是文庫,社群都無力長期維護兩個内容同源但編輯分立的頁面。中文維基百科成功避免了可能的分家,而是允許了繁簡并存和讀者自由選擇,還讓其他有類似文字轉換需求的語言社群也因此受益。本地社群也應能努力達成共識,推動技術更新,避免校對頁和作品頁「分家」。 Andayunxiao(留言) 2025年2月20日 (四) 08:44 (UTC)回复
: 那麼那些有《 (四庫全書本)》的那些頁面是怎麼搞的?
: 比如說《史糾 (四庫全書本)》、《史通 (四庫全書本)》
: 難道我們需要刪除這些頁面嗎? 大東國奎章閣大提學兼弘文館大提學藝文館大提學知成均館事Blahhmosh(留言) 2025年2月22日 (六) 19:32 (UTC)回复
: 成熟可靠的版本什麼時候能開發製作好?現在每天都在微調改動,無法批量使用你的模版。 #Kill the zombies in zh.wikisource.org, it's very important.(留言) 2025年2月23日 (日) 18:53 (UTC)回复
已经写好了两个模板的文档:{{transclude pages}}、{{old text page}}。我还提议了一个新的关键字:=。通常来说一页的第一段是上一段的延续,但是有时是新段。此时,嵌入包含仍然视为上一段的继续。如果在第一段前加上“=”,就代表这一页最开始就是新的一段。如Page:NLC892-GBZX0301010751-250698 使西紀程 二卷.pdf/4。我在两个模板中都加入了对此的处理方式。请检查。--維基小霸王(留言) 2025年2月20日 (四) 12:18 (UTC)回复
: 再次感謝閣下的貢獻。個人純技術的淺見,標記並判斷首段是否是新段可考慮使用空白元素,如<span></span>,<p></p>。如覺得過長,也可自訂空白標簽,如<newparagraph>,並可專設一個模板{{模板快捷名}}以方便錄入。這樣可與Wikitext 語言最大相容,避免第三方誤讀頁面的可見文字内容。 Andayunxiao(留言) 2025年2月22日 (六) 16:09 (UTC)回复
: 我感觉“=”就类似于mediawiki的“==标题==”语法。使用“=”判断,可同时兼容标题,因为标题也是以“=”开始的。wiki的一大用途是chatgpt这样大语言模型的训练语料,只要在文档中写清楚这个语法,他们应该是可以自动判断的。 維基小霸王(留言) 2025年3月2日 (日) 05:47 (UTC)回复
: 直接在页面开头多加两个换行就可以标记page中的首段是新段落了,不需要任何新模板或语法。 Midleading(留言) 2025年3月2日 (日) 09:27 (UTC)回复
: 可能并不簡單。原則上MediaWiki手冊#Trimming on save說頁首的空格和新行會在保存頁面時保存,在校對頁實測并非如此,而是:
頁眉空白:則正文首的空格和新行不能保存,之後也不能嵌入(用 pages 標簽)。
頁眉或正文起首有`<noinclude />`:之後的空格和新行能保存,嵌入后無論多少都變成一個空格。
如果頁眉有閉合模板(即正文在模板閉合后開始),則正文首的空格和新行能保存,嵌入后同樣只有一個空格。
如果頁眉有開放模板,將正文作參數,例如{{old text page}}的用法,依同一手冊#Trimming on expansion,命名參數起首空格不保存,位置參數相反。未測試。
頁眉空白,正文首有`{{nop}}\n`(英文文庫用法是前一頁末尾), 則`{{nop}}`前的空格和新行不保存,之後的保存,嵌入后可正常分段。
: 因涉及MediaWiki parser 和 ProofreadPage 擴展兩處,找到問題所在可能不容易,總之很不符合中文文本編輯的習慣,更勿論直排轉橫排。 Andayunxiao(留言) 2025年3月2日 (日) 19:24 (UTC)回复
: 理解閣下的想法。考慮{{old text page}}模板將校對頁正文視爲模板參數,那麽確實沒有對參數内語法和MediaWiki 已有語法一致的限制。閣下的方案并無技術上不當之處,而且值得使用。可能多餘的考慮是,技術上,標記語言應該是將單行内成對並在首尾(不計首尾空白字符)的等號群解釋為標題,但`= 第一章 = a\n`不會渲染為標題`<h1>第一章</h1>a`而是普通文本。因此,以“=”开始的校對頁可能必須使用專門模板,如{{transclude pages}}才能正確嵌入。如果{{old text page}}也能和預設的嵌入語法協同使用或提供選擇,受益的編者可能更多。 Andayunxiao(留言) 2025年3月6日 (四) 07:45 (UTC)回复
: 中立诗歌的话,也可能牵涉这个美国法案使其美国版权发生微秒变化,这样一来能不能提供演唱版本就成了一些问题。--Liuxinyu970226(留言) 2025年5月18日 (日) 05:08 (UTC)回复
: 可是,《世界版權公約》要求美國、中國等締約國不能對外國作品著作權提供超國民待遇。這些問題可由《維基文庫》服務器所在州法院或美利堅合衆國最高法院判定、解決。 2409:8A55:3966:7D80:5C72:13C8:A94B:98A 2025年6月23日 (一) 03:02 (UTC)回复
: 看不出来是什么问题,方便的话还请阁下详述。 Teetrition(留言) 2025年6月23日 (一) 05:24 (UTC)回复
朝代標註
[编辑]
最新留言:3个月前4条留言2人参与讨论
雖然Header模板現在可以設定分類重新導向,但還是想問一下錄入時有無必要統一朝代標註(如統用「秦朝」而不用「秦代」之類)?這涉及本站不少文章體例,故提出討論。—— Eric Liu(留言) 2025年5月2日 (五) 07:33 (UTC)回复
: 除此之外,地名(如「2017年香港」此種分類)或許也值得討論。—— Eric Liu(留言) 2025年5月2日 (五) 07:50 (UTC)回复
: 此例「秦代」,模板似乎沒有使用分類重定向,而是經過轉換文字,直接添加了Category:秦朝。轉換表在Module:Header内。如不在此表内,則編者選擇可能不同。閣下是希望規範使用者錄入的朝代名? Andayunxiao(留言) 2025年5月3日 (六) 06:34 (UTC)回复
: 對。當然我知道這可能有爭議,所以先在此請社群多討論下。—— Eric Liu(留言) 2025年5月8日 (四) 15:25 (UTC)回复
可否在Template:PD-PRC-exempt恢复第3项描述,或是像Template:单纯事实消息那样单独建立模板?
[编辑]
最新留言:1个月前31条留言5人参与讨论
本主題或以下段落文字,在討論結束後應存檔至Template talk:PD-PRC-exempt。
在2023年讨论中,我哀伤的看到@Teetrition:仅要求移除第3项“历法、通用数表、通用表格和公式”,理由只是模棱两可的“这类内容很难符合文库的收录方针,更适合百科相关条目进行介绍。”,后续@红渡厨:虽说支持但未能解释为何此类内容不能收录于此,个人认为如下类内容或许反而适合本站而非维基百科来收录:
两个字——日历;
各地民政局/厅的结婚、离婚、社会组织登记等申请表原表;
各地公安局/厅的刑事案件笔录纸,或是境外非政府组织代表机构登记表原表;
各地(规划和)自然资源局/厅的测绘资质证书底稿
当然数表公式啥的怕不是更适合新开创的维基函数(Wikifunctions),希望涉事用户发表意见。 Liuxinyu970226(留言) 2025年5月21日 (三) 02:37 (UTC)回复
: 日历这种东西真的适合收录吗。。。 ——— 红渡厨(留言・贡献) 2025年5月21日 (三) 03:09 (UTC)回复
: 一部分日历,例如择日用的黄历确实很适合收录,不过这种日历或许已经具有独创性,需要确认已过期再收录。数学表格通常是收录到维基百科,如果维基百科无法收录再移动到维基学院。只有确认数学表格作为某作品的附录才能收录到维基文库,并且需要同时收录该数学作品的全文。至于各司法或行政机关的表格和程序性文件,目前还存在争议,例如大同市中级人民法院出庭通知书 (2025年4月12日)&action=edit&redlink=1 "大同市中级人民法院出庭通知书 (2025年4月12日)(页面不存在)")刚刚才被删除,还有很多像铁通江苏分公司2012年第一季度码号核配表这样的页面需要讨论。需要收录所有司法或行政机关的表格和程序性文件吗? Midleading(留言) 2025年5月21日 (三) 04:07 (UTC)回复
: 出庭通知书估计已经有一定的特定事实针对性,感觉没什么通用感,受版权保护再正常不过。 Liuxinyu970226(留言) 2025年5月21日 (三) 04:14 (UTC)回复
: 这份出庭通知书的内容就是“XXX:本院受理原审被告人XXX XXX一案,定于YYYY年mm月dd日上午hh时mm分在本院第XX法庭公开宣判,特通知你作为本案的辩护人准时出庭。”看不出有什么独创性。而且这是司法机关出具的,明显属于具有立法、司法、行政性质的文件。 Midleading(留言) 2025年5月21日 (三) 04:26 (UTC)回复
: @Midleading然而中华文库)网站收录的原文却显示“郑(打黑)...席(打黑)强奸上诉...2025年4月16日上午9时40分...第十四法庭”,删前版本故意改成XXX回避原文的原创性。 Liuxinyu970226(留言) 2025年5月21日 (三) 04:31 (UTC)回复
: 我可不认为当事人的姓名、案件案由或者是一些数字能让一份由司法机关出具的文件受版权保护。这里删除的原因是Zhxy 519同意红渡厨和Teetrition在Wikisource:删除讨论/XsLiDian建立内容专题删除讨论页提出的“程序性文件,似无收录意义”删除理由。 Midleading(留言) 2025年5月21日 (三) 04:42 (UTC)回复
: @Midleading为什么这些不能受版权保护呢?某些地图网站的管理方甚至认为日本的某一个“交差点”(道路平交路口)、“踏切”(铁路平交道口)的名字都能受当地市厅或区役所版权保护(甚至确有案例佐证,如有兴趣我可以邮件私发)。 Liuxinyu970226(留言) 2025年5月22日 (四) 15:41 (UTC)回复
: 日本的情况我确实不了解,不过也和中文维基文库关系不大。如果这事出现在中国大陆,就好像是“北京城市副中心站”这个地名很有独创性,所以这个词就禁止在维基共享资源和维基文库出现了,因为这两个地方都不接受合理使用。我从未知道两岸三地有这样的情形。另外,维基文库连判决书都能收录,出庭通知书有什么比判决书更受版权保护的地方呢? Midleading(留言) 2025年5月22日 (四) 17:11 (UTC)回复
: @Liuxinyu970226 针对阁下所提“历法、通用数表、通用表格和公式”的四种内容,我分别进行回复,同时分别提交回复方便各位分别讨论回复:
: 一、历法
: 请注意“历法”不同于日历、月历、万年历等等“表达”,历法是以日为基础单位计算时间的方法。(另商务印书馆《现代汉语词典》【历法】用年、月、日计算时间的方法。主要分为阳历、阴历和阴阳历三类。具体的历法还包括纪年的方法。)这一点想必阁下可以自行到各种百科、词典中确认。
: 著作权法保护的是表达而非思想、方法等等,虽然《著作权法》没有对此明确规定,中国参加的与贸易有关的知识产权协定第9条第2款、北京市高级人民法院侵害著作权案件审理指南第10.10条第二款及中国大陆司法实务广泛确认了这一著作权法学说的共识。
: 全国人大法律问答与释义对《著作权法》第五条第三项明确指出:历法所揭示的日期、节气、节日等内容是不为著作权法所调整的,但人们根据历法所绘制的挂历、台历、日历是受著作权法保护的。这印证了我此前所说的历法不同于日历,日历是根据历法绘制的。所以阁下所称“两个字——日历”站不住脚。
: 正如Midleading所说,也正如全国人大的释义,人们根据历法所绘制的挂历、台历、日历是受著作权法保护的,需要等过期后才能收录。如果有哪本书用表达(如文字)的形式描述了某种历法,自然也需要等那本书过期后整本书收录。本站自然用不到“历法”的版权模板。 Teetrition(留言) 2025年5月22日 (四) 09:19 (UTC)回复
: 補充對曆法等以下四點的意見:文庫是「數字圖書館」,不是「單純事實資料庫」。按英文維基文庫的觀點,只有已出版的「作品」才能收錄。(題外話:本地不收历法、通用数表、通用表格和公式等的共識,可能來自英文文庫此頁)。除了作品完整性的考慮外,作品中的事實和概念,如曆書中的某年1月1日是星期幾,教科書中的三角函數表反映的數值,傳記中某人的生平,如未有摘選另出版,本身不成爲作品。
: 此點與版權無關:一方面,即使這些事實,概念可能不受版權保護,但其承載這些事實的作品,如Teetrition 閣下所言,當有版權的考慮。另一方面,不受版權保護,不代表其一定為作品。
: 本地收法律文書,當然未經出版,故顯得另設標準。曆法等作品,和法律文書不同,在網路時代之前,需要出版才能存世,版權過期後當然可收錄特定的出版版本,但文庫不應有「2025年日曆」,「三角函數表」,「魯迅作品年表」等作品名,並從出版作品中抽出或匯校出事實來,或由編者修訂,作爲此類頁面内容。除非真的有作品這樣命名,及多個這樣命名的作品的消歧義,則可錄入作品,而不是事實。
: 此類話題可以並非常適合在導覽(主題)頁建立。如建立Portal:曆法,可在此頁錄入編者生成内容和單純事實,並索引各本收錄的歷書。文庫的導覽空間事實上就充當一個有限的百科,可以善用。 Andayunxiao(留言) 2025年6月6日 (五) 09:14 (UTC)回复
: 二、通用数表
: 同样还是全国人大法律问答与释义的解释,通用数表的例子包括元素周期率、函数表。按照这种举例,当然可以包括w:九九乘法表、w:三角函数表、w:对数表。说到这里,这个通用数表我觉得当然应该由百科而非文库收录——百科也确实收录了(部分在页尾扩展链接到第三方)。收到文库也会产生问题:为什么三角函数表里列了sin30°,sin30.5°列不列?sin30.75°列不列?列了A编写的三角函数表,另一个人又新开了B编写的三角函数表,到时候一个三角函数表也得消歧义了,这样意义真的大吗。 Teetrition(留言) 2025年5月22日 (四) 09:29 (UTC)回复
: 三、通用表格
: 这一项确实相比之下更耐人寻味。同样还是全国人大法律问答与释义的解释,通用表格,例如通用发票、通用会计账册表格。阁下所举的结婚、离婚、社会组织登记等申请表等等,确实按理说也属于通用表格。
: 如果一个通用表格属于结婚、离婚、社会组织登记等申请表,那么这类表格具有行政性质(如果表格属于某个法律行政法规的附表、附录,那更是可以通过立法性质解释),这个时候只要用现在的Template:PD-PRC-exempt就可以了。如果是个人所制表格,“通用”与否还是问题,更可能产生著作权问题。
: 对于已经填好的某个具体的表格(例如张三已经填好的结婚登记表)要不要收录,可以讨论,我完全持开放意见。但即使收录也仍应当使用Template:PD-PRC-exempt(即第五条第一项而非第三项)。正如Midleading所说,本站刚删除了大同市中级人民法院出庭通知书 (2025年4月12日),欢迎阁下参与相关讨论。 Teetrition(留言) 2025年5月22日 (四) 09:47 (UTC)回复
: @Teetrition如果阁下真的对这方面有透彻研究的话,那么反而阁下应该注意到那个东西是有最起码的原创性的,因为针对性提到了部分人名成分(尽管只有姓,名被打黑处理)、针对的犯罪行为(强奸)、明确的日期和指定的法庭(第十四),在不进行实质性修改的情况下极难做到通用(甚至根本就不可能,难度堪比b站up主“超级小桀”玩过的某些马里奥制造2困难关),而一旦修改必然涉及衍生作品要不要遵守甚至尊重原作版权礼仪,正因如此我其实很愿意支持删除它,如果不能证明ta有多么通用,那么我宁愿嘉许其专用属性。 Liuxinyu970226(留言) 2025年5月22日 (四) 15:26 (UTC)回复
: @Liuxinyu970226
1. 我目前的观点是对文件的脱敏处理(也就是对姓名的“名”的部分的涂黑处理,或是其他文件中也可能对地址涂黑或删除、或是将地址删除到仅剩省级或地级市级别行政区。这类行为让任何人来做都有相同结果,不具有原创性)、写明犯罪行为、开庭日期、开庭地点的事实不具有原创性。退一步讲,即使认为上述行为具有原创性,我上方也主张对于这类文件应该用现在的Template:PD-PRC-exempt模板——因为写明犯罪行为、开庭日期、开庭地点的事实也是法院做的,这份文件具有司法性质。如果脱敏行为是贡献者做的,那么本站适用了CC BY-SA 4.0使其贡献均以该协议释出,自然也没有问题。当然,如果阁下主张如果脱敏并非由有权机关或贡献者做出且认为这种脱敏有原创性的话,完全欢迎阁下继续讨论。
2. 阁下提到的日本平交道口、路口的案例我很感兴趣,如果不方便直接发到这里,那我斗胆向阁下要一份,非常感谢。
: Teetrition(留言) 2025年5月23日 (五) 02:20 (UTC)回复
: @Liuxinyu970226 阁下一周多没回复本话题了,我也没有收到阁下关于日本独创性问题的资料。如果阁下认同历法、通用数表和公式不适合维基文库收录,同时对通用表格使用目前的Template:PD-PRC-exempt(也就是仅仅是第五条第一项内容)就可以的话,为免我理解错误,可能还需要作为本话题发起人的阁下说明一下是否还有需要讨论的问题。 Teetrition(留言) 2025年6月3日 (二) 03:18 (UTC)回复
: @Teetrition意思是依据第二项另外建立的{{单纯事实消息}}也没有存在的必要咯? Liuxinyu970226(留言) 2025年6月3日 (二) 03:20 (UTC)回复
: @Liuxinyu970226 我没有这个意思,本话题中的所有讨论均不涉及第二项,请您理解和知悉,如造成歧义在此表示歉意。 Teetrition(留言) 2025年6月3日 (二) 03:24 (UTC)回复
: @Teetrition更大的问题是表格怎么也无法让人信服为“可以由另一个叫维基函数的维基媒体项目收录”,这估计又是一个先有鸡还是先有蛋的问题,实在谈不拢怕是只得走投票看大家的态度。 Liuxinyu970226(留言) 2025年6月5日 (四) 07:26 (UTC)回复
: @Liuxinyu970226 我一直强调现阶段似乎【对通用表格使用目前的Template:PD-PRC-exempt(也就是仅仅是第五条第一项内容)就可以】,所以阁下如果想让“通用表格”单独做一个版权模板的话,应该举一个【不具有立法、司法或行政性质的通用表格】的例子出来,否则投票是在投什么? Teetrition(留言) 2025年6月5日 (四) 11:00 (UTC)回复
: @Teetrition这个行么? Liuxinyu970226(留言) 2025年6月5日 (四) 11:08 (UTC)回复
: @Liuxinyu970226 没问题,我持中立意见,需要更多共识决定文库要不要收录这种内容。 Teetrition(留言) 2025年6月5日 (四) 11:15 (UTC)回复
: 臺灣也規定了通用之表格不得為著作權之標的,有沒有臺灣使用者覺得需要錄入的通用之表格? Midleading(留言) 2025年6月18日 (三) 10:09 (UTC)回复
: 四、公式
: 这个阁下没举例子,我觉得阁下应该能理解为什么本站不适合收录单独的公式,不赘述。如果公式存在于某个作品如数学教科书中,应等待整个教科书过期后收录整本书,而非单个公式。 Teetrition(留言) 2025年5月22日 (四) 09:50 (UTC)回复
: @Teetrition我不愿意举数表公式例子是因为连我都知道有新开创的项目叫维基函数更适合收录这种东西,谈论这个领域纯粹是浪费感情中的浪费感情。 Liuxinyu970226(留言) 2025年5月22日 (四) 15:32 (UTC)回复
: 这不也是一并回应了阁下提到的“日历”而且阁下目前也没有反驳了吗,一并回应更完整些也利于其他社群成员一并参与。 Teetrition(留言) 2025年5月23日 (五) 02:08 (UTC)回复
细化讨论——是否收录各类不具有立法、司法、行政性质的通用表格
[编辑]
经以上讨论,目前争议的焦点在于是否单独设立“通用表格”的版权模板来收录不具有立法、司法、行政性质的通用表格。@Liuxinyu970226就此给出了举例见此。@Andayunxiao、红渡厨、Midleading:副知其他本话题参与讨论者,如有打扰请见谅。Teetrition(留言) 2025年6月16日 (一) 08:45 (UTC)回复
: 中立需要法律专家进一步厘清通用表格的认定标准。 Liuxinyu970226(留言) 2025年6月16日 (一) 08:53 (UTC)回复
: 我个人觉得没必要,直觉认为纯表格类的文献没啥好收的。 ——— 红渡厨(留言・贡献) 2025年6月18日 (三) 10:55 (UTC)回复
: 通用表格如果来自 等地方或者是来自个人和一般企业,显然不符合要求作品已正式发表的方针。如果是来自一本已出版的书本,而书本自身没有过期,也会因为无法完整收录书本而不能单独收录其中的表格。还有一些通用表格是来自可以自行发表文件的党政机关,例如地方党委、党组,这些单位不符合PD-PRC-CPC,所以这些机关印发的通用表格只能根据本条收录,而且看似有收录价值。 Midleading(留言) 2025年6月20日 (五) 08:47 (UTC)回复
: 如果是各级党政机关的表格,那真的“通用”吗?党内自己“通用”真是著作权法通用表格的“通用”吗? Teetrition(留言) 2025年7月4日 (五) 02:05 (UTC)回复
重选管理员建议
[编辑]
最新留言:1个月前81条留言16人参与讨论
中文维基文库20周年,管理员们都很辛苦,向维基长期贡献势必对生活产生了一定影响,但为了维基文库的发展都想继续当。我有个想法。能否取消所有管理员,重新选举?--維基小霸王(留言) 2025年6月2日 (一) 14:39 (UTC)回复
: 这等于在目前正在进行的解任投票中对所有管理员发起解任投票或者投票支持解任,然后再看有哪些人之后申请成为管理员。确实需要这样的话请前往投票。 Midleading(留言) 2025年6月2日 (一) 14:45 (UTC)回复
: 反对:此舉不僅有弊無利,也沒看出理由與提議本身有什麼關聯。若個別管理員自認長期難以活躍,理當考慮辭去權限,但這仍是他們的自由選擇,他人不應代為決定。況且在這個社群氣氛極差的時刻,要所有管理員為續任四處搏取支持,反而讓他們為避免得罪他人而更加辛苦,難以於一般站務討論公正行使權限。我想這是一個很糟糕的提議。—— Eric Liu(留言) 2025年6月2日 (一) 16:08 (UTC)回复
: 支持全部重选,要么是动不动吵架的、要么是八百年难得见到活跃一次的、要么是水平极差的,现有管理员已显然不适合现今的管理员工作, 支持全部推翻重选。 ——— 红渡厨(留言・贡献) 2025年6月2日 (一) 16:15 (UTC)回复
: (特别说明,我认为Ericliu1912属于还凑合的管理员,不属于上述三类。) ——— 红渡厨(留言・贡献) 2025年6月2日 (一) 16:16 (UTC)回复
: @红渡厨按阁下的标准,我反而认为Ericliu1912也可以算,原因嘛,c:Commons:Deletion\_requests/File:玉環新村.jpg了解一下,这个用户连URAA都不知道,虽然C区对涉URAA内容反而比较暧昧(某个日期之前上传的老文件可以保留打标签,之后的删除保留反而形成了近乎五五开,纯粹看管理员心情),不像本站管的很严。 Liuxinyu970226(留言) 2025年6月3日 (二) 23:05 (UTC)回复
: User:红渡厨然後剛剛這圖片正好被還原了,而從還原請求的有關討論來看,閣下可能也不知道有關協議具體如何適用。—— Eric Liu(留言) 2025年6月7日 (六) 12:44 (UTC)回复
: 支持,但不認同閣下這句話“中文维基文库20周年,管理员们都很辛苦。”管理員之間差別很大,一些無良混事的管理員幾乎不上線,僅僅為了滿足所謂管理員在任資格條件,基本每半年才刷一次修改,比很多新人的貢獻還要少的多,但一旦遇到管理權力問題,可以鬧翻天。人品敗壞到極點。囍鵲(留言) 2025年6月2日 (一) 18:22 (UTC)回复
: 支持,必须全面整肃,包括EricLiu1912,同时敦促重新检讨是否及如何修订管理员的当选及解任条件。--Liuxinyu970226(留言) 2025年6月3日 (二) 22:48 (UTC)回复
: 哥們,我本來就是臨時管理員,到期要重新申請的。上面翻共享資源的舊帳,也不知居心何在,我現在又沒有在本站主張什麼東西,更沒有在此一方面不當利用管理權限。—— Eric Liu(留言) 2025年6月3日 (二) 23:40 (UTC)回复
: 另外我要指出你對本站著作權政策的解釋有所錯誤:既然你知道共享資源對於特定期間以後適用有關協議的檔案,一般不予保留,怎麼會不知道本站對適用有關協議的文章,不僅予以消極容忍,甚至「不反對增加(與刪改)有關內容」呢?當然近年也有例外,比方說未來進入公有領域作品列表舉出的若干範例,或是隱藏正文而不刪除頁面本體、移交維基別庫(現已不用)等折衷措施;不過光憑前述語句,就知道實情根本不像你所說,「(共享資源)不像本站管的很严」,而是反之,即文庫遠不若共享資源死板。更值得使社群懷疑你在此趁機反對本人,是在藉故賊喊捉賊。—— Eric Liu(留言) 2025年6月4日 (三) 00:07 (UTC)回复
: @Ericliu1912消极容忍并不意味着不能删除,如果已故版权人的继承者(在法定公有领域日到来之前)继续声索版权权利,对此类内容的暂时性删除仍旧不可避免,只不过相信一般用户不太可能非要闹僵到这种境界,真正愿意这么玩的,我的印象中可能无非就是圆谷株式会社。 Liuxinyu970226(留言) 2025年6月4日 (三) 12:46 (UTC)回复
: 我也不想多說,但希望你實際看看我在本站行使管理權限的情況再評判,我是真沒逾矩,版權有關討論也都會請教他人,確認社群共識。況且共享資源那也是2023年的事了,拜託。若直接上來就反對,我也不知道要怎麼改正。—— Eric Liu(留言) 2025年6月4日 (三) 17:56 (UTC)回复
: 中立:有點像最近台灣興起的所謂「大罷免」舉措。Shunshen Lee(留言) 2025年6月4日 (三) 08:07 (UTC)回复
: 缺少任何详细的实施方案,所以根本不值得在这里投票 支持或者 反对。如果仍然要重选管理员,未投票的请尽快前往投票而不是在这里投票,已经在那里投票的也没必要再在这里投票。 Midleading(留言) 2025年6月4日 (三) 10:37 (UTC)回复
: @Midleading:與其說要打倒誰,不如問問社群目前有誰比較適合擔任管理員,為社群分擔站務壓力?多提名一些人,「以加法替代減法」。我也很好奇@維基小霸王:本人心中有沒有其他人選。—— Eric Liu(留言) 2025年6月4日 (三) 18:02 (UTC)回复
: 没那么简单,2020年維基小霸王自己还申请过成为管理员,结果支持他的除了本人以外只有两个如今没有投票资格的用户和一个如今被WMF禁制的用户,然后被Jusjih和Zhxy 519否决了。維基小霸王作出的贡献不亚于本人,但是更多在共享资源那边,本地看不到。之后就是落花有意12138,这个用户当时的表现可与现在的银色雪莉相比,但是又因为“本文库日常管理工作积压,私以为根本原因不在于缺乏管理员”被否决了。随便提名但可能再次被否决也没有什么意义,所以还是让需要申请管理员的用户自行申请吧。 Midleading(留言) 2025年6月4日 (三) 20:50 (UTC)回复
: 2020年到现在也已过去5年,现在参选管理员参与投票者也未必如当年那么少。 dringsim 2025年6月5日 (四) 17:33 (UTC)回复
: 這屬於擾亂了。 瓜皮仔@Canton 2025年6月5日 (四) 13:24 (UTC)回复
: 好吧,既然多位现有管理员反对此提案,撤回。@红渡厨、囍鵲、Liuxinyu970226:你们说呢?感觉只要是管理员就反对,只要不是就支持,有阶级斗争的感觉。--維基小霸王(留言) 2025年6月5日 (四) 13:34 (UTC)回复
: 现任管理员均属于利益相关方。不认为他们的话在本讨论中具备参考价值。 ——— 红渡厨(留言・贡献) 2025年6月5日 (四) 14:59 (UTC)回复
: w:User:爱学习的饭桶/免死金牌。我沒有要封禁人,但是別總這麼玩。 瓜皮仔@Canton 2025年6月5日 (四) 15:37 (UTC)回复
: 阁下账号创建于2007年3月22日,到目前一共598次编辑,以您的活跃程度,平常可以说是基本不干管理员的活,我真搞不懂既不干活又想把管理员权力撺在手里到底是个什么心态,你不愿意干活没人逼你干,把位置让出来不好吗? ——— 红渡厨(留言・贡献) 2025年6月5日 (四) 16:35 (UTC)回复
: 管理员的“位置”是无限的,随时可以申请,不须等待别人“让出位置”。 dringsim 2025年6月5日 (四) 16:58 (UTC)回复
: 你说的对。 ——— 红渡厨(留言・贡献) 2025年6月6日 (五) 08:04 (UTC)回复
: 這裡激烈反對的三位管理員,我的看法是全部重選。三個都有問題。不是吹毛求疵,為反對而反對。 囍鵲(留言) 2025年6月5日 (四) 16:01 (UTC)回复
: 另外,萬一要是有贊成的管理員呢,遇到點阻力就撤回。太兒戲了點。 囍鵲(留言) 2025年6月5日 (四) 16:03 (UTC)回复
: 您要是想推进此案,可以订立一个详细方案(对本案需要投票多久,在重选期间若出现破坏,由谁处理。) 維基小霸王(留言) 2025年6月6日 (五) 00:48 (UTC)回复
: 本人沒想要推進閣下如同兒戲般的提案。
: 本人深知在這次渺無人煙黑暗透頂的論壇,閣下見風使舵、兩面橫跳的做法相反獲得讚許。現在只是後悔投下支持票。 囍鵲(留言) 2025年6月6日 (五) 09:12 (UTC)回复
: 我不想陷入这个泥潭。来维基是为了贡献的,不是为了玩网络过家家当官、选官、搞政治斗争的。不过整天看到各种解任案,我觉得维基文库应该有点改变,本主题是个初步想法。您可以提出一个更稳妥的提案。 維基小霸王(留言) 2025年6月7日 (六) 03:58 (UTC)回复
: @維基小霸王:從上面的話可以看到,有些人不過是想借你的提議,實現他們自己的目的,根本不在乎管理員權限的本質。不要被利用了。—— Eric Liu(留言) 2025年6月5日 (四) 20:48 (UTC)回复
: 註:我是臨時管理員,之後本來就要「重選」,但亦寧願冒些風險,說明此類「一刀切」提議不妥之處。大不了,你也可以觀察本人近期的續任申請,思考推動此類提議可能的結果如何。—— Eric Liu(留言) 2025年6月5日 (四) 21:21 (UTC)回复
: 现在那边的投票也快要结束了,从那边的投票情况来看,维基文库除了有很多“不活跃”的管理员,还有很多“不活跃”的用户。这里站内的讨论根本就没有代表性,人家只是很久以前编辑了50次而已,七八年甚至十年都不在维基文库活跃,或者是平时只在维基百科活跃,根本看不到这里的讨论。那些用户无条件支持全体管理员续任,难道要剥夺那些用户的投票资格? Midleading(留言) 2025年6月6日 (五) 02:49 (UTC)回复
: 顯然是這裡保守戀權的所謂管理員在這幾天聯繫這些所謂老用戶出來投票的結果。這些所謂老用戶除了按照指示,大事化小和稀泥投反對票以外看不到一丁點對此事的反思和公正評價。所以我之前說了,投票很有可能無法解決問題,針對Zhxy 519 的處理更不應該通過所謂社區投票來決定。既然是違規那麼按照相應的社區條例來處理才對。而不是訴諸民意。否則現實中還要法院做什麼。事事都投票就解決了。
: 投票時限快到,到時儘快關閉。不要再歹戲拖棚一拖到底,對於此荒誕結果,要持續抗爭。 囍鵲(留言) 2025年6月6日 (五) 06:14 (UTC)回复
: Zhxy 519就算不完全解任,仍要禁制。此次不是我直接提出解任Zhxy 519,但Zhxy 519的下一步,也請問算不算Wikisource:管理員的離任#提前中止的“蓄意濫提解任案者,可能遭反坐,例如封禁”?--Jusjih(留言) 2025年6月6日 (五) 17:14 (UTC)回复
: 對面不會妥協的,華人社會也沒有妥協。
: 硬碰硬打不過別人,全部籌碼都會被拿走。
: 文明的「不文明」的,該說的「不該說的」我都說了,為了改變現狀,已經盡了最大的努力,沒什麼好遺憾的。如果還是無法達到目的,那確實是時候走下舞臺換個去處。 kill the zombies in zh.wikisource.org, it is very important.(留言) 2025年6月6日 (五) 19:19 (UTC)回复
: @Jusjih:为什么现在还在想“蓄意濫提解任案者,可能遭反坐,例如封禁”呢?现在结果几乎已经确定了,傀儡问题也不是普通管理员可以参与调查的,需要用户查核员和通用行为准则协调委员会才可以调查。如果最终通用行为准则协调委员会认定本次投票的结果有效而且未通过,那么根据一事不再理以后也不要再提出同样内容的请求了。如果本次投票的结果有效的话,那就说明本站存在许多使用者平时根本不参与站内编辑或者讨论,只参与投票。这是很危险的,因为这导致了站内讨论都失去了代表性,就像是存在一个地下党支部一样危险。 Midleading(留言) 2025年6月7日 (六) 02:44 (UTC)回复
: 社群可以討論,提高投票門檻,例如最低總編輯次數,或近期編輯次數之類。我建議待兩場管理員解任投票告一段落,再來看看怎麼處理。—— Eric Liu(留言) 2025年6月7日 (六) 03:01 (UTC)回复
: 此次投票中出现的几位鲜少在本站编辑的用户,其全域编辑数都有几千乃至几万次,在缺乏强有力的行为证据的情况下,仅凭“投票可疑”根本不可能发起用户查核(参见w:Wikipedia:傀儡調查/案件/自由雨日/存檔#c-ASid-20241108124800-薏仁將-20241108084000)。 dringsim 2025年6月7日 (六) 09:09 (UTC)回复
: 用户查核很难查出什么东西。之前维基百科的基金会行动的证据也不是用户查核查出来的,而是站外渠道获得的。我一开始就觉得本次投票出现暗中拉票行为的可能性极大,不过Ericliu1912觉得无所谓,后来没有采取任何措施。目前没有任何确实证据的情况下,不宜妄加断言,只能通过不断完善有关方针规避未来出现这种情况的风险。现实说明党争是有用的,自己认真调查、分析、讨论、总结共识、再投票,比不过一群真人傀儡不讨论只投票。 Midleading(留言) 2025年6月7日 (六) 10:47 (UTC)回复
: 这就说明所谓的民主制度根本不起作用。就算下次有什么近期编辑次数的要求,照样可以通过让党羽多编辑来操纵。--維基小霸王(留言) 2025年6月7日 (六) 10:57 (UTC)回复
: @Midleading:我在此慎重希望你收回上述指控,因為我已明確請全域委員會「注意此一投票雙方可能存在之傀儡問題」。—— Eric Liu(留言) 2025年6月7日 (六) 12:03 (UTC)回复
: 另外,本人主張交由全域委員會組織第三方調查,全盤蒐集證據,也是避免「民粹主義」的一種方式。—— Eric Liu(留言) 2025年6月7日 (六) 12:16 (UTC)回复
: 本人提不出什么指控,而且根据一事不再理不希望下次再反复提出同样的案件。本人只希望通过这次投票的结果继续反思,一是看如何让这一部分不参与讨论的用户能够参与到讨论里达成更好的沟通,二是促进再次修改投票条件以及其他有关方针,以促使原本不参与讨论的用户加入讨论,使本站不再只是投票而是能够讨论达到共识。 Midleading(留言) 2025年6月7日 (六) 12:50 (UTC)回复
: User:Midleadinganyway,我還是要再次聲明,從來沒有「觉得无所谓」。即便從功利主義的角度來,如果之後我本人的續任申請還上演代理人大戰,豈不是相當恐怖?從這種角度就知道事情不會是這樣子吧?至於社群問題,我也確切希望所有投票者更加活躍;最近的解任投票,確實有促進一些維基人重新投入貢獻,但還不夠。誠然,我希望這種壓力是良性的,不是像上面那種惡意攻訐或「文革」式鬥爭。
: 我也有計劃提案,提高投票門檻;但也不能弄太高,不然文庫就沒人了,還可能反而造成新的「團伙把持」現象。所以就再看看。—— Eric Liu(留言) 2025年6月7日 (六) 16:10 (UTC)回复
: @Ericliu1912那个C区文件恢复了就恢复了吧,我也是才知道书法字在美国不受版权保护,这一点算我输。只是很好奇,会不会未来有一些用户往部分受“消极容忍”的近代文里插入书法图片,然后说“其大中华地区版权通通届满,书法字美国也不受版权保护,因此可以部分洗白”,这种行为究竟是否妥当有待进一步讨论(当然如果您认为这样插入图片算妥当行为我也不妨碍)。想整顿管理员乱象,就需要先修订方针,想修订方针,就需要足够多用户(不只是管理员们)的支持,而想要足够多支持,就需要整顿管理员行为上的乱象,这种shi循环我是看累了,目前在整顿乱象上倒是迎来了一丝曙光(即便Z某人和J某人除权案均双双告负,至少我们努力了不是么),但剩下两点...怎么去修订方针指引,又怎么去让用户继续支持贡献本站,仍将任重而道远,嘛,几分钟前U4C委员会D某那位在元维基告诉我:m:Talk:Universal\_Code\_of\_Conduct/Coordinating\_Committee/Cases/Zhxy\_519,\_Jusjih\_and\_Chinese\_Wikisource#Request\_for\_another\_motion\_to\_focus\_on\_zhwikisource\_users'\_future\_mention\_of\_past\_wrong\_behaviors。 Liuxinyu970226(留言) 2025年6月8日 (日) 04:22 (UTC)回复
: 现有Z某和J某除权申请由谁、何时及如何结案,我不想再细谈,既然在座的各位都或多或少成了“涉事用户”(自然我也不能例外),那倒不如一口气把自己对整个社群的(而绝不是针对某个或某些别人的)不满都吐出来,最好都告知U4C,这样我们才能知道如何改进社群,而不是纠结于ZJ之战,却忽视了更长期的反破坏问题。 Liuxinyu970226(留言) 2025年6月8日 (日) 05:06 (UTC)回复
: 哎呀真是榮幸,我的留言居然被引用了哈哈。 ASid(留言) 2025年6月9日 (一) 16:04 (UTC)回复
关于各派动机的恶意假定
[编辑]
我知道维基百科要求善意假定,但是看到整天的维基政治斗争,我感觉真无聊,不禁恶意假定:你们是不是喜欢玩民主试验场,在网上玩政治过家家呀?整天在电视上看到美国、台湾的党争不过瘾,自己想在网上也玩玩。--維基小霸王(留言) 2025年6月7日 (六) 04:07 (UTC)回复
: 以本人來說,一、我沒所謂「黨派」可言;二、我也不想被擅自劃分黨派;三、很多「黨派歸屬」不過是少數特定人士惡意臆測或給人目測分邊的結果。你應該譴責前面那種人,因為大部分維基人根本沒興趣「鬥爭」誰誰誰,不信你問問在場各位。—— Eric Liu(留言) 2025年6月7日 (六) 12:01 (UTC)回复
: 有没有派系还不明显吗,您要是装睡是叫不醒的。 維基小霸王(留言) 2025年6月7日 (六) 12:03 (UTC)回复
: 你覺得大家真的想「搞派系」嗎?—— Eric Liu(留言) 2025年6月7日 (六) 12:04 (UTC)回复
: 如果真的像你說的一樣來「惡意假定」動機,我或社群其他人,也完全可以「推定」你之前竟然在這個社群混亂最當頭的節骨眼提出「重選管理員建議」,是別有居心要把站務既有管理體系直接掀翻,而且是最為可怖的手段;但我相信你並不是這樣想法,所以很認真跟你解釋自己不支持提議的緣由,而非直接當你是什麼什麼派別的人,然後開始吵架。希望你可以理解,所謂「派系鬥爭」的想像,不過是少數有心人士意圖施加於本站廣大社群的陰謀。—— Eric Liu(留言) 2025年6月7日 (六) 12:05 (UTC)回复
: 雖然基本原則如此,但最近的解任投票,確實有「拉票」或淪為「代理人戰爭」互報私仇的可能。沒有人能否認這點。所以我更希望近期的種種惡象,能夠隨著管理員解任投票結束而消止。—— Eric Liu(留言) 2025年6月7日 (六) 12:16 (UTC)回复
: 用“派系”的简单叙事来解释这些事情是行不通的,它不能解释票型,也不能解释不同用户的行为动机。如果用这种所谓叙事,两边都投了支持/反对票的用户要算什么派?在支持全部重选的同时在两项投票中一支持一反对并对其他用户进行类似拉票行为而话不投机后又给人扣帽子的,又该算是什么派?傀儡调查值得信任,因为它需要以证据为前提,否则我们就会发现几位“其全域编辑数都有几千乃至几万次”的用户(其中不乏仍在各种维基项目常态活动者)在不具备强证据的情况下似乎就要因为瞪眼的“派别”划分被投到用户查核员处(这种情况下,也几乎不可能发生查核——查核不是钓鱼);而未见清晰逻辑链条只靠瞪眼的派系划分,则并不有益。这不是就意味着完全不存在傀儡的可能——但最起码应该基于证据来谈这些事,如果只因为支持或反对就要被扣帽子,谁还会表态?说起来本地过去也不是没有这种派别论,Assifbus阁下不是隔三差五就反共派哪个派?XsLiDian阁下不是因为别人对其做法提出意见就把人打成“党羽”“小圈子”?结果,这样的观点,不能反映问题,也不能解决问题。说句玩笑话:如果一定要算派别,那就把我算在“老好人”派好了——这还是由持派别论最烈的囍鵲阁下亲封的,实在是与有荣焉。——不过您说得对,这些事当中的不小部分,确实是无聊。 银色雪莉(留言) 2025年6月7日 (六) 13:37 (UTC)回复
: 我爱吃菠萝派! ——— 红渡厨(留言・贡献) 2025年6月7日 (六) 15:31 (UTC)回复
: 阁下可能需要厘清一下是我爱吃“菠萝”派还是我爱吃“菠萝派”,以便我决定赞扬阁下还是提报阁下(doge) 银色雪莉(留言) 2025年6月7日 (六) 15:52 (UTC)回复
: 全域编辑数多确实是一个可能的解释,这些用户主要活跃于维基百科而不是维基文库。现在要让这些用户看到并且参与在维基文库的讨论,但是又没办法在维基百科开启一个维基文库的分讨论以便让他们更方便参与。 Midleading(留言) 2025年6月7日 (六) 15:54 (UTC)回复
: 我认为像诸位提及的对人事任免投票资格作出“近期编辑数”要求算是一个可以考虑的处理这种情况的做法——事实上,让活跃于其他项目的用户读到这些讨论和让活跃于本地(但不参与人事案)的用户读到这些讨论,这两件事其实在本质上没有太多差别,这不是一个我们可以期待解决的事。我们可以解决的,是保证投票用户具备在本地一定的近期参与度,这样会提高“读到这些讨论”的逻辑可能性——例如在人事任免流程开始的前180天内有5次编辑之类的。另外,就人事任免提高总编辑次数的门槛也应该考虑了,来个250次正文编辑或5篇信而有征,其实也不是多高,毕竟是人事任免。 银色雪莉(留言) 2025年6月7日 (六) 16:09 (UTC)回复
: @Midleading:中文維基文庫現在有Telegram即時通訊群組,內容完全是公開的,且開放隨意入群。您或其他人可以考慮加入群組,也方便快速交流。QQ那邊,我不確定環境是否適合,但若有需求,也可以開設聯絡群組。—— Eric Liu(留言) 2025年6月7日 (六) 17:16 (UTC)回复
: 別忘了基金會行動肇由Telegram和QQ群組。我自認處於大陸地區,一旦個人信息泄露有極大可能性處於危險,無法再公正行使管理員職能。本人在此聲明過去、現在以及未來都不會加入任何與維基媒體有關的站外即時通訊群組,亦不會參與線下活動,除非是經私人邀請且可保證安全隱私無虞。只建議臺灣人民使用Telegram。 Midleading(留言) 2025年6月8日 (日) 13:34 (UTC)回复
: User:Midleading不過您也不用真的「加入」,因為群組係公開,可以定時查看群組內容即可。—— Eric Liu(留言) 2025年6月9日 (一) 05:48 (UTC)回复
: 那么多人都在这里说那么多不管用的干嘛呢。
: 两个礼拜投完票了,能不能快点,大家确认投票结果,正式结束这次投票了。
: 好让我提两个方案,也许能解决这件事。 RoyZuo(留言) 2025年6月7日 (六) 13:30 (UTC)回复
: 拭目以待。--晞世道明(留言) 2025年6月7日 (六) 13:35 (UTC)回复
: 作為對中立性的尊重,本人會在兩名中立管理員至少三天無回應的情況下考慮正式結案。我目前傾向於基於Wikisource:管理员的离任/修正案2開展討論。 瓜皮仔@Canton 2025年6月7日 (六) 16:07 (UTC)回复
: @Gzdavidwong:此舉可能涉及利益衝突(閣下係該解任投票主要涉事方),而違反全域委員會有關決議。我已請求委員會就此予以裁定。以個人角度而言,我亦希望閣下不要急於操作,否則又將犯「授人把柄」之殷鑑。事實上,Zhxy 519屢次回退Jusjih提起的解任投票,無論背後理據如何,仍顯得過於激進,甚至直接造成委員會之介入,乃至於本地解任投票中多位維基人以此為理由支持將其除名的所謂「惡果」。—— Eric Liu(留言) 2025年6月7日 (六) 16:19 (UTC)回复
: 至於管理員離任規定及投票門檻等議題,社群似乎多人有討論意願,可以趁機另開新章節提倡之。—— Eric Liu(留言) 2025年6月7日 (六) 16:22 (UTC)回复
: 我赞成Eric Liu阁下上述就此件结案的意见。投票已经过了截止期,它的结果已经冻结,快点慢点正式结束并不是问题的核心——甚至可以说没有太大实际意义,无争议地走流程才是关键。关于该修正案,作为作者说一句:我这个已经是几年前的了,而且之前投出来也并没有太多正面反响,因此我完全不认为这个修正案的质量有多高以及多符合当前的环境。——当然,欢迎诸位将这个修正案作为砖头。 银色雪莉(留言) 2025年6月7日 (六) 16:26 (UTC)回复
: @银色雪莉我个人建议先不要着急就正常的申请解任条件及程序(即阁下意图要修改的“发起对管理员的解任投票”)进行修订,私下跟某位U4C成员的讨论来看,之所以造成管理员组内部对立,不是因为缺乏行政员,除维基百科外的一多半WMF站点都没有行政员,维基百科语言版本中也就一少半有这个,ta们怎么就没发生这问题呢?怎么就本站奇葩呢?别的站点(事实上也包括Eric Liu也担任管理员的其他站点上)谁谁搞破坏应该被封禁、哪哪页面是破坏/违反方针页面应被删除,哪哪条目遭遇编辑战需要回退,回退不行上保护...,几乎没一个管理员敢公然说不的,也不是因为双方熟对谁错,非要抢麦拿下定义对方违规的话筒,而是本站整个站点的混乱,如果实在不行,我还是那句话,申请关站吧,wiki不是适合吵嘴皮子杖的合适网络平台。 Liuxinyu970226(留言) 2025年6月13日 (五) 08:16 (UTC)回复
: @Liuxinyu970226:抱歉,我感觉阁下虚空画出来的靶子太多了。我甚至并不理解阁下的意图和观点是什么。
: 一,我上面已经明确表明我的方案已经在时间上和实务上过时——我不明白阁下一来就给我套一个“阁下意图要修改”的帽子是干什么——难道我是应该说“现行指引很好,没有一点问题,别改了”或者说“我的指引方案很棒,你们就照着来改”吗?客观而言,从各次解任过程来看,解任的流程被审视和需要完善是正常的,如果连审视的讨论都不能开始,那么这又谈何完善本地规则呢?而如果我过时的方案能作为砖头引出诸君的玉石,那我是乐意的。
: 二,阁下后续整段的论述——抱歉,容我说得重一点——究竟想表达什么呢?(1)我没有谈过行政员的问题,不知阁下突然提这个是为什么,恕我没有回应。(2)别的站点...而是本站整个站点的混乱:抱歉,我真的看不懂你想表达什么。本地除了这件事外,其他各种的站务从写字间、版权讨论到删除讨论,近年来并未见明显的处理失灵(至于说有没有处理迟缓或不善之处,我不会说没有,但我个人而言还在可接受的范围):写字间近两年来在不同的用户以讨论等形式达成共识下,已经多次通过了版权方针、格式指引和重要模板的修订;两个存废类页面在我这个还算是活跃的人看来也还在合理进行的范畴内。如果就本件而言,在U4C介入下,本件在形式上已经有告一段落的迹象,我认为这是一个完善本地相关的事宜和规则的契机。我强烈反对阁下这种所谓“整个站点的混乱”的完全不审视本地实际情况的定性。(3)如果阁下表达的是其他内容,还请明确提出,讲真,我很少说别人讲话我看不懂,因此阁下可以不必忧虑我是托词闪避——我确实看不懂你想表达什么。
: 三,我个人强烈反对这种动不动就是分站(阁下犹记得当年阁下牵扯所谓“文言文站”案否?别人可能忘记了,在下倒是不敢忘记)、关站然而其核心空洞无物的表述——你可以把我接下来这句话当做人身攻击提报:在我看来,这种无聊透顶的表述也只有在本地主业干得不多(注:这不是问题,文库不强迫任何人参与;但是再结合下一点特征的话,就恐怕有缺少本地经验、不结合实际站务情况而空谈家国大事之嫌了),参与讨论时缺乏分析、逻辑说理、方案提供而只输出个人reaction的人物在坚持了。这种表述,本质上跟类似Assifbus、XsLidian和囍鹊大同小异,都是一种拍脑袋画“大破大立”大饼的行为,文明一点的说法,就是“虚空画靶”。我想本地需要的是讨论实际事务而非说怪话的人。——PS:话虽如此,我个人不会赞成任何在这条评论下方只是为了反对Liuxinyu970226个人而支持这段评论的留言——在我看来那一样无聊。
: 四、我对阁下没有恶意——再次声明,如果你觉得上述的表述有恶意,我完全欢迎提报——我诚挚希望阁下能够有效而详细地表述阁下认为当前本站需要改善的地方(若能有具体方案则想必社群都非常欢迎),这样,别人(自然也包括在下)才能就具体的问题和事宜详细商讨,就像过去两三年间写字间正常就各项版权、格式方针指引的讨论那样,少谈高来高去,多谈实际事宜。
: 在此我也要自我声明:我近来受俗事缠绕,未能很常参与本站事情,特别是“后罢免时代”与人事站务相关的讨论(在我看来这确实是复杂的而需要相当投入精力的讨论——但也应该是务实的讨论),我个人表示惭愧,也希望诸位有识之士像此前写字间讨论多项其他类别的站务那样,以务实精神来提出(并整理)各家之见,逐步完善这些规则。 银色雪莉(留言) 2025年6月13日 (五) 10:20 (UTC)回复
: @银色雪莉如果阁下这份10多kb的辱骂性言论也可以叫“没有恶意”,那我真无法想象什么才是真“恶意”了,这个讨论章节名“关于各派动机的恶意假定”也是够奇葩,批斗大会114514.0版?(我不想引用某些现实战争)“阁下犹记得当年阁下牵扯所谓“文言文站”案否?”我作为那个RFL的提案者居然也能忘了?我比您还忘记不了好不?“这种无聊透顶的表述也只有在本地主业干得不多”,您觉得无聊透顶您自己觉得去,我觉得这些话题有的聊。“这种表述,本质上跟类似Assifbus、XsLidian和囍鹊大同小异”别拿我跟那帮LTA一起看待,我在支持这份大罢免提案时,不也是警告了囍鹊了么,当年的某个SRCU我也是不留情面的列出了Assifbus了么。“少谈高来高去,多谈实际事宜。”我想这样做,可您的一贯言论却反而意图阻止我这样。“我强烈反对阁下这种所谓“整个站点的混乱”的完全不审视本地实际情况的定性。”那7个字不是我说的,谁之前说的这个东西找谁去,不过我也是忘了。“我不明白阁下一来就给我套一个“阁下意图要修改”的帽子是干什么”您可以撒谎,那些管理员们也可以撒谎,甚至真正严格的讲(如果真有必要的话)我也可以撒谎,但编辑历史不会撒谎,这个离任修正案2是谁提的,如果看完编辑历史还认为不是阁下,那我恐怕只得去m:SRG提报compromised account问题咯 Liuxinyu970226(留言) 2025年6月13日 (五) 11:02 (UTC)回复
: @Liuxinyu970226:
: 1、对于阁下称我的言论是“辱骂性言论”,我也还是那句话,“无聊透顶”不礼貌,我一早就说过了您可以提报,这是表述形式不文明,我完全承认、也愿意回应,如果您需要道歉,我也可以道歉,但是这不能改变您的这种动辄传播“关站”论的表述无益的事实——如果您真的记得所谓“文言文站”的提案及其相关讨论,就应该意识到这种提法对文库项目的发展毫无益处,甚至有害。
: 2、您大聊高来高去,这个是很明确的。有问题提问题,有事情谈事情,具体的,不是您的个人观感和reaction。您在本论题谈过什么实际问题?关站吗?谁有问题提谁的问题,哪有问题提哪的问题,不要老搞“ta们怎么就没发生这问题呢?怎么就本站奇葩呢?”这种缺少认真详细论述的高来高去的慨叹,这样没人知道应该从具体的什么地方或问题开始跟阁下聊——如果阁下仔细认真阅读他人留言,就应该留意到我很早就提醒过您,回归论题本身。如果阁下确实想谈实际事宜,我很乐意参与——但不是这种要猜测您在说什么的事宜。
: 2、没有人拿您和“那帮LTA”(就我所知,他们当中仍有不少并非阁下所称的身份,您给别人扣的这个帽子是不是扣得太大了?)相提并论,如果阁下确实读到了这种表述这四个字的话。
: 3、“那7个字不是我说的”——就您这样还指责别人“说谎”?——别的站点(事实上也包括Eric Liu也担任管理员的其他站点上)谁谁搞破坏应该被封禁、哪哪页面是破坏/违反方针页面应被删除,哪哪条目遭遇编辑战需要回退,回退不行上保护...,几乎没一个管理员敢公然说不的,也不是因为双方熟对谁错,非要抢麦拿下定义对方违规的话筒,而是本站整个站点的混乱,如果实在不行,我还是那句话,申请关站吧,wiki不是适合吵嘴皮子杖的合适网络平台,原文直出,从上下文看,这难道还不是您对于本地的定性,而是“谁之前说的这个东西找谁去”式的引用别人的观点吗?您做这样的语言闪避是毫无必要的。
: 4、我没有兴趣做这样的闪避,我在上文已经说了,我上面已经明确表明我的方案已经在时间上和实务上过时——您是从哪得出一个我否认自己为这份方案的创作者身份、并为此撒谎的推定的?我反对的——再明确讲一遍——是反对阁下这种先不要着急就正常的申请解任条件及程序(即阁下意图要修改的“发起对管理员的解任投票”)进行修订的推定——没有任何人着急修订,讨论和交换意见是正常的,这是一份我已明确指出问题的“死”方案,但如果各位愿意以这份方案为出发点——或者批判这份方案为出发点——来讨论,我个人非常高兴,但这不代表阁下可以扣上一个“着急就正常的...进行修订”和“意图要修改”(从前后文来看,我只能认为阁下推定我个人意图在现时点就修改一个正常的规则)的帽子。
: 5、我还是那句话,不要高来高去。我很愿意与包括阁下在内的任何人讨论本地方针指引等规则的修订问题,也可以讨论本地弊病——前提是您应该说明白,是什么具体内容,而不是用一段段的个人表态来谈问题。 银色雪莉(留言) 2025年6月13日 (五) 15:37 (UTC)回复
: 补多一句总结好了:有人提说要用在下的浅陋的方案来讨论,我个人在认为该方案多有欠缺的同时对此持开放态度,这就是上述交换意见的所有内容(这甚至都不是一个提案,并且交换意见显然已经终结——它不可能在本话题下被继续讨论,这种开放态度也并不代表当真正讨论该议题时我或任何人仍坚持此方案)——而在议题显然已经终结后上来继续延伸的,是阁下。这就使我尤为不解了——因为我没看懂您的延伸,也不认为这种单纯交换意见是有问题的。 银色雪莉(留言) 2025年6月13日 (五) 15:56 (UTC)回复
: 您爱怎么说怎么说吧,我不想再回应了。 Liuxinyu970226(留言) 2025年6月13日 (五) 23:32 (UTC)回复
: 甚至“犹记得”这种叫法,好像阁下认为我在搞“反犹主义”一般,希望今后避免这种争议极大的称谓。“反犹主义”同样也是我所反对的。 Liuxinyu970226(留言) 2025年6月13日 (五) 11:21 (UTC)回复
: 您这个帽子扣得已经是没边了,我只能郑重提醒阁下,不要扣帽子——即便扣,不要乱扣。“犹记得”是正常的中文表述,跟您所牵扯的概念事宜毫无关系,从古人到现代中文使用者( 银色雪莉(留言) 2025年6月13日 (五) 15:41 (UTC)回复
: ???—— Eric Liu(留言) 2025年6月13日 (五) 19:20 (UTC)回复
: 🤔? ——自由雨日(留言) 2025年6月30日 (一) 10:47 (UTC)回复
: 反對以上和類似的關站提議。網路社群分離、合并并非罕事。意見不合時,退出社群甚至另立門戶以競爭,并不是失臉面的事。但是此種關站或遷移提議并未説服我那邊的月亮更圓。如元維基上果真有關站提案,本人將反對。 Andayunxiao(留言) 2025年6月23日 (一) 16:30 (UTC)回复
: Wikisource:写字间#c-RoyZuo-20250607211300-请各位不翻2025年6月8日前旧账
: 我两个方案写出来了,请大家赏脸看看吧。 RoyZuo(留言) 2025年6月7日 (六) 21:20 (UTC)回复
: 模板:PD-1923已有中文維基文庫最不宜關站的事由,就是若全部移囘舊維基文庫,在那管理員多洋人不易亂,但尚未確定作者逝世逾50年的作品即使1930年1月1日以前在美國以外發表,在美國屬於公有領域,最怕中華圈用戶誤踩版權地雷。因此,關站不如大量重選管理員。另立門戶包括啓用文言文維基文庫。請看<#要求管理員就申報有償編輯宣誓>。--Jusjih(留言) 2025年6月24日 (二) 17:51 (UTC)回复
请各位不翻2025年6月8日前旧账
[编辑]
最新留言:1个月前39条留言9人参与讨论
最近举行了special:permalink/2566738#解任投票。其中1项,已确认投票期已结束。
务实地说,我感觉,已结束的 Zhxy_519 的解任投票,和未结束的 Jusjih 的解任投票,最终结果将是,与投票前的情况,没有区别。所以我也不等所有投票结果出来,现在就提两个方案,希望有助于解决实际问题。
这是第1个方案。
我诚恳地呼吁各位,从今日起,不翻今日以前的旧账。具体操作如下。
我提议,大家商定“旧账”截止时间,随后14日作为过渡期。以下讨论均假定2025年6月7日23:59为截止时间,具体日期待各位商议。
| 旧账截止时间 | 过渡期 | 不翻旧账 |
| 2025年6月7日 23:59 (UTC) | 6月 8日 00:00 至 21日 23:59 | 2025年6月22日00:00起,翻2025年6月7日23:59前的旧账,属于扰乱。 |
何谓“不翻旧账”:
所有用户截止时间(2025年6月7日23:59)前的任何行为,从此不咎。也就是说,这些行为不可再作为封锁用户的依据;不可再在讨论中用作指控用户的证据。
任何“翻旧账”的行为,无论是在zh.wikisource,还是在任何WMF的网站,一经发现,即属“扰乱”。
我建议,特设一页,用以记录该等翻旧账扰乱行为。
我提议,任何用户翻旧账达3次:一般用户即应被中文维基文库管理员封锁7日以上;管理员则应被封锁7日以上,社群并发起解任投票。
3. 考虑到我等并非圣人,许多人情绪高涨,故特设14日过渡期,方便各位适应。
原则上,大家今日起不翻今日以前的旧账,但14日过渡期内,即使有翻旧账的行为,也不列入第2点建议设立的专页,不算作扰乱。希望大家互相体谅,过渡期内的行为,就当是一时火起、戒断反应……诸如此类。
但恳请各位保持克制,真正做到今日起不翻今日以前的旧账。
请各位共商。谢谢。--RoyZuo(留言) 2025年6月7日 (六) 21:13 (UTC)回复
附注:我就看看大家讨论成什么样,如非必要也不说话。可能两个礼拜之后我作一个私人总结吧。(我未来的私人总结不是结束这个讨论,大家讨论没有限期。只不过视乎参与讨论的人数,我预估届时我能得出一些观察结果了。) I plan to make a personal report on these 2 mediation attempts of mine circa 2 weeks from now, depending on how many people join this discussion. Before that I dont comment unless necessary.--RoyZuo(留言) 2025年6月8日 (日) 06:50 (UTC)回复
| | |
| 1. Zhxy 519就算不完全解任,仍要。此次不是我直接提出解任Zhxy 519,但Zhxy 519的下一步,也請問算不算的“蓄意濫提解任案者,可能遭反坐,例如封禁”? 2. {{反對}}以上提案,根本不如利用以便此地參考。更請注意若不妥善遮罩平反,就是一直公然展示。 3. 那就在此回一句:“問題皆是Zhxy 519多次封禁用戶的程序,造成社群存疑,但因為日常繁忙,本人雖不承諾原諒Zhxy 519,但人不犯我,我不犯人。”也就是可同意Zhxy 519按章行使刪除恢復頁面,但涉及封禁用戶的特權,有待另案商榷如何限制Zhxy 519使用之。 4. 正不正,不是Ericliu1912一人說的就算,但需要社群斟酌。 5. 是有不需要解任的新的矛盾化解方法,例如。斟酌,就是像Z某封禁他人程序的爭端,公共可看的封禁史若程序不正,就應討論是否遮罩平反,但曾被封的又再犯,或任意封禁的管理又再犯,新舊帳一起算就不是單純的任意翻舊賬,以及可能要短暫反遮罩作公開證據。 6. {{反對}}。依照,自從以來,凸顯Ericliu1912力求避免Gzdavidwong解任案,同Zhxy 519以及Gzdavidwong是啥關係?因此引用:"必须全面整肃,包括EricLiu1912"。 | 1. 本人保持:問題皆是Jusjih無中生有,但因為日常繁忙,本人雖不承諾原諒Jusjih,但人不犯我,我不犯人。 |
个人总结, 到2025年6月24日 (二) 09:00 (UTC)为止. 没写完待续.--RoyZuo(留言) 2025年6月24日 (二) 09:00 (UTC)回复
意见
[编辑]
(限每人1行,表达支持/反对/其它。冗长讨论请写于下1小节。)
反对以上提案,根本不如利用w:Wikipedia:翻舊帳#「不要翻舊帳」不是什麼以便此地參考。更請注意存疑不合理的封禁若不妥善遮罩平反,就是一直公然展示。--Jusjih(留言) 2025年6月7日 (六) 22:24 (UTC)回复
仅 反对特定日期,建议改为灵活时间段制度,如1年前、2年前等...在未满足特定时间段时的情形仍应允许主动公开(尤其近1年间的封禁记录)以便及时判断相关言论及操作是否具合理性,已满特定时间段的我可以支持不再重提,另外提醒阁下(指RoyZuo),随意回退他人评论及歪曲被封禁的理由本就已是扰乱行为中的IDHT。--Liuxinyu970226(留言) 2025年6月7日 (六) 22:30 (UTC)回复
(!)意見,翻旧账在中文维基百科都只是论述,没有理由在这边采取更强硬的措施。——— 红渡厨(留言・贡献) 2025年6月8日 (日) 07:33 (UTC)回复
反对建议直接雪球驳回吧,没有一个用户支持通过的。要讨论也应先由提案人总结现在已经出现的意见,再重提一个更实际的提案,才好达成共识。 Midleading(留言) 2025年6月8日 (日) 10:48 (UTC)回复
(!)意見,不說禁止翻舊賬吧,但是反覆用同一理由提罷免應該是明文禁止的。--瓜皮仔@Canton 2025年6月12日 (四) 03:10 (UTC)回复
讨论
[编辑]
本人保持於meta的聲明:問題皆是Jusjih無中生有,但因為日常繁忙,本人雖不承諾原諒Jusjih,但人不犯我,我不犯人。--Zhxy 519(留言) 2025年6月7日 (六) 22:20 (UTC)回复
要不我提议一个修正案好了:
所有本站用户(指至少登录本站1次)在任何站点,发生于2年前(原则上以730天计算)的任何行为,不论是否为其所欲,都应假定合理性,既往不咎。也就是说,这些行为不可再作为封禁该用户的依据(或是该用户为管理员时封禁他人的依据);不可再在讨论中用作指控用户(无论是针对其本人亦或其本人针对他人)的证据。(毕竟阁下根本无法左右外站是否对本站行为追究后续责任)
但对封禁而言,任何站点当前仍在实施中的封禁,只要不被适当申诉予以推翻,即可继续引用,不受上述翻旧账定义限制--Liuxinyu970226(留言) 2025年6月7日 (六) 23:03 (UTC)回复
User:Liuxinyu970226 has been harassing me crosswiki, this time by pinging an uninvolved user under an unrelated section on my user talk page and making misleading comments, for my attempts at mediation for zh.wikisource .--RoyZuo(留言) 2025年6月7日 (六) 23:04 (UTC)回复
: @RoyZuo: No, that's not a harassing behavior, just a reminder that you should also not revert other users' comments to avoid trolls from or toward you, that's a protect trial, not wrong behavior. --Liuxinyu970226(留言) 2025年6月7日 (六) 23:10 (UTC)回复
: But if you think that comment is really unnecessary, I've withdrawn. Liuxinyu970226(留言) 2025年6月7日 (六) 23:23 (UTC)回复
In this enwiki diff, @RoyZuo: above wrongly claimed a so-called "harassement" which I didn't ask Czar to be blocked (only say that that should also be blocked if and when that user really did something that community agrees with their IDHT property, which didn't happened yet), but only a reminder that this user shouldn't be a meatpuppet of other users, thus this user should be largely warned due to their IDHT (Failure or refusal to "get the point"). --Liuxinyu970226(留言) 2025年6月8日 (日) 03:27 (UTC)回复
「一事不再理」是管理員解任投票的基本原則。也就是說,Jusjih及Zhxy 519,本來都不能再用此前的理由向對方提起解任投票。至於精神上的「不翻舊帳」,我看是難以規定,如此不過是強壓不滿,提前掩埋社群不和諧因子的「地雷」罷了。—— Eric Liu(留言) 2025年6月8日 (日) 07:34 (UTC)回复
: 确实,这种情绪性提案,建议直接否决。 Liuxinyu970226(留言) 2025年6月8日 (日) 07:40 (UTC)回复
: 有關這個問題,雖然解任投票尚在進行,我尤其希望先得到@Jusjih:君的明確答覆。文庫社群已經就此紛爭糾纏數年,干擾站務甚鉅,無論起因,顯然已經不少人對此感到厭惡。既然Zhxy 519已經白紙黑字地表示「人不犯我,我不犯人」,剩下就輪到Jusjih您這邊了。我很誠摯地等待。—— Eric Liu(留言) 2025年6月13日 (五) 22:01 (UTC)回复
: (註:對我而言,有關Gzdavidwong的若干瑣事也包含在內,因為那實在是Jusjih跟Zhxy 519更大衝突的一部分而已,都已是一坨舊帳、「爛帳」)—— Eric Liu(留言) 2025年6月13日 (五) 22:16 (UTC)回复
: @红渡厨 理论上,大家是希望有的人不要把陈年旧事反反复复没完没了地提吧?看看是谁不同意,谁反对这个大家的意愿,谁一定要提以前的事?
: 所以实际上,他们反复提,我们也无可奈何,因为有的人拿着无限期管理员权限。
: 所以我现在就提出来一个具体的、可以执行的方法,定一个时间点,时间点以前的事就不准再提了。
: 就好像整个中文维基文库在那个时间点重生一样。
: 同时定一个宽限期,宽限期内忍不住嘴的,大家就算了,大家都忍一忍。
: 但是宽限期以后,还忍不住嘴的,那大家就知道是谁一直纠缠不清了,大家就有理由把他们踢走了。
: 然后世界清静了,大家就该干嘛干嘛了,可以回归抄书校对的实际工作了。 RoyZuo(留言) 2025年6月8日 (日) 08:03 (UTC)回复
: 我还是那句话,我反对一个特定时间点,但支持某一时间段之前的不要再提,例如1年前或2年前,而且阁下其实也无法劝阻外站用户提及本站琐事(例如万一这样的“提及”来自萌娘百科、或是OA2021之后那帮被赶走的叛徒所建立的所谓“求闻百科”呢,您还有心思跑到那两个网站说“不许再提中文维基文库”么?ta们如果不嘲笑阁下都算烧高香了,就好像日本政府曾要求中国外交部撤下一幅讽刺绘画,结果却是——置顶了),所以规定“所有本站用户”绝无不妥。至于为何要求对当前发生的封禁作出适当例外,这当然是基于另一个“囍鵲”案:m:Universal Code of Conduct/Coordinating Committee/Cases/2025/囍鵲,如果不提及这个案件,将几乎没有可能做到“引以为戒”,反而会误导社群“这个人做错的事跟我做错的事是两回事,我跟ta没半点关系”,对社群恐百害而无一利。 Liuxinyu970226(留言) 2025年6月8日 (日) 08:14 (UTC)回复
: 就“整个中文维基文库在那个时间点重生一样”一说,我想可以重生,如果现有政策仍旧乱的一锅粥,元维基项目站点关闭提案专页(PCP)随时欢迎,我无意主动提案,但如果有人提了,我用人格保证我绝对投支持票,而不是反对或中立票。待关闭后本站内容临时迁回多语言版维基文库,好好整顿一番后申请按语言申请页规定重新启动,岂不更加美哉(而且这样做,从多语言版维基文库要回ta们的文言文内容反而觉得容易了呢)。 Liuxinyu970226(留言) 2025年6月8日 (日) 08:35 (UTC)回复
: 请有事说事,就事论事,漫无边际的发想,话题很新,离题很远,毫无效益。 银色雪莉(留言) 2025年6月8日 (日) 08:42 (UTC)回复
: @Midleading 现在才多久了?一天都不到,多少人看到了?又是谁在反对?谁在反对某一个时间点以前的旧事不再提,从此整个维基文库重新开始?谁一定要提旧事? RoyZuo(留言) 2025年6月8日 (日) 11:25 (UTC)回复
: 己所不欲,勿施于人。自己捅的娄子自己缝补。 Liuxinyu970226(留言) 2025年6月8日 (日) 11:29 (UTC)回复
: 不管是谁反对,但是我还没看到有支持的,已经说明目前的提案至少也要重新修改,才更有机会通过。一直放着并不会魔术般的就通过了,如果我是一个没时间的不活跃用户,偶尔才过来看到这个讨论,里面全都是各种各样的反对,那我很可能会直接点击×而不是留言。 Midleading(留言) 2025年6月8日 (日) 16:55 (UTC)回复
: 那麼,閣下就這一點的意見到底是什麼?閣下目前只是拿別人都反對來當理由,自己的真實想法卻不清楚。 瓜皮仔@Canton 2025年6月12日 (四) 03:13 (UTC)回复
: 两位管理员已经根据一事不再理原则不再能重新提出针对对方的解任案,看不出本提案的必要性,根据其他反对意见,本提案的可行性也不足。 Midleading(留言) 2025年6月12日 (四) 08:47 (UTC)回复
: 本次投票緣起就是Jusjih屢屢違反一事不再理原则意圖提出解任,閣下是否追認這一事實?按照他的脾氣,過了半年再來提,閣下是否出手制止? 瓜皮仔@Canton 2025年6月12日 (四) 13:07 (UTC)回复
: 提醒@Gzdavidwong离任指引并未明确禁止“一事不再理”,而且现时Jusjih的解任案中,包括本人在内多位反对者已提出有效异议,认为部分解任理由更适合描述Zhxy 519自己。 Liuxinyu970226(留言) 2025年6月12日 (四) 20:57 (UTC)回复
: 我建议当本案被否决之时,同时允许前往Wikisource:投票区表决我上面提到的一份修正案。 Liuxinyu970226(留言) 2025年6月12日 (四) 21:00 (UTC)回复
: 阁下修正案亦缺少讨论,在下反对在此情况下将其付诸表决,请牢记投票不能代替共识。我个人对于上述原案与修正案不论以何种方式划定“不算旧账”的严格的时间点和作为强制性规则两件事的前景都不看好。如果一事(这里的事情,应当是指具体的事项,而非一项提案)在流程正常进行下已有处理结果,那么不再理会是符合程序原则的——不过我似乎也没有见过要把它明文化的,这可能也很困难,不过我相信即使有人打算违反,那也会被指出来,所以其实大概还好。 银色雪莉(留言) 2025年6月13日 (五) 10:29 (UTC)回复
: @银色雪莉这个流程正常么?目前多位用户反映提案者不分青红皂白强推本页提案,甚至我只是提一个修正案不想竟遭恶言对待,试问谁能支持? Liuxinyu970226(留言) 2025年6月13日 (五) 10:38 (UTC)回复
: @Liuxinyu970226:首先,我的“流程正常进行”是针对其他就“一事不再理”问题的意见的个人看法中的表述。第二,每个人有提案的自由,他的提案我也不支持,但他这样怎么样算是强推呢?他把这弄到投票去了吗?这不还是在讨论和形成共识阶段吗?征求意见阶段这么多不同意见,那么这个议案自然是难以通过的,正常过一定时数(这里倒不是说要等十四天)没有更多讨论就可以关闭或存档议案,也可以雪球关闭(不过本地确实很少做这种雪球关闭的处理——这也表明我们可以完善这些规则),除提案者外其他人阻止了吗?从以上看,这样的流程,又哪里不正常呢?老实说,哪怕是一个错到离谱的提案,我们也不妨从中吸取一些经验,而不必一来就是自己捅的娄子自己缝补。至于你们俩之间的争议,如果发生在本地而你认为这些是由其不当行为所致,可以提报,如果发生在别处,你也可以提报。最后,我可以再次利申:我认为这个提案——和修正案——都不现实。 银色雪莉(留言) 2025年6月13日 (五) 10:51 (UTC)回复
: 雙重標准不是你這麼玩的。上面Eric Liu和Midleading都在提一事不再理,你還一副贊同的模樣,卻單單跑來提醒我。你投票發表意見就發表好了,多扯「有效」就太此地無銀三百兩了。 瓜皮仔@Canton 2025年6月14日 (六) 02:51 (UTC)回复
: 现在看出来了,他很会说话,用点藉口就把自己真实意图藏起来。 RoyZuo(留言) 2025年6月14日 (六) 15:35 (UTC)回复
: 不敢自称写作有多好,只不过是正常而已,没读过书怎么好意思当中文维基文库的管理员。本人对道家文化感兴趣,这么做是很自然的道理,人家Jusjih都还没有提出来这样的提案,谁知道未来会不会出现新的解任理由,或者是Jusjih会不会想出不需要解任的新的矛盾化解方法,这些都不是“一事不再理”,可以继续讨论,现在就要颁发永久效力的保护证明确实有点为时尚早。Jusjih一直在錄入台灣法律,想要尋求一個公平正義的解決方案也很合理。其他管理員的錄入風格暫時還未知,因此抱歉無法點評。 Midleading(留言) 2025年6月16日 (一) 04:02 (UTC)回复
: @Zbz53321374:才像是最近刊登台灣法律最活躍的,但不肯討論,而其正確性以及排版,我一人追加校正很瑣碎,因而有請公正管理員注意,甚至勸告。是有不需要解任的新的矛盾化解方法,例如禁制。斟酌w:Wikipedia:翻舊帳#「不要翻舊帳」不是什麼,就是像Z某封禁他人程序的爭端,公共可看的封禁史若程序不正,就應討論是否遮罩平反,但曾被封的又再犯,或任意封禁的管理又再犯,新舊帳一起算就不是單純的任意翻舊賬,以及可能要短暫反遮罩作公開證據。--Jusjih(留言) 2025年6月17日 (二) 18:44 (UTC)回复
: 您是管理員,也是錄入台灣法律方面的專家,其他管理員對錄入台灣法律都不太熟悉,還是由您直接多勸告此用戶較好。 Midleading(留言) 2025年6月19日 (四) 02:50 (UTC)回复
: 确实,要是连谁是录入专家都搞不清,却硬要保留本站制造概念混乱,我看还不如趁早关站,好聚好散得了。 Liuxinyu970226(留言) 2025年6月19日 (四) 03:40 (UTC)回复
有限任期制
[编辑]
最新留言:20天前19条留言9人参与讨论
第2个方案,有限任期制。
所有现任管理员,任期到某商定日期为止。(例如2027年12月31日,超过2年后。具体日期待各位商议。)
任何新当选管理员,任期若干年而非无限期。(例如6年。具体待商议。)
管理员任期届满前,举行信任投票,通过信任投票方能续任。(通过门槛最低为“支持票>反对票” ,最高为75%(新管理员当选门槛),具体门槛待商议。)
请各位共商。谢谢。--RoyZuo(留言) 2025年6月7日 (六) 21:13 (UTC)回复
意见
[编辑]
(限每人1行,表达支持/反对/其它。冗长讨论请写于下1小节。)
反对有时间规定任期,还不如两套管理员相关指引都提出修订意见(尤其是就不活跃的管理员定义问题,G打头那位更是心知肚明中的心知肚明),目前管理员行为争议皆起因指引叙述争端,并不是限制任期就能解决的,顺带,当可能通过的下次修订通过后,我请求修订哪个就升级哪个为方针。--Liuxinyu970226(留言) 2025年6月7日 (六) 22:33 (UTC)回复
支持每个人网络做志愿者公益编辑的精力都是有限的,能投入一部分时间精力来贡献就可以了,不要求终身贡献。任期制可以避免一些人虽然兴趣和精力已经减弱,为了终身保持管理员的“荣誉”,而只是做最低限度的编辑。不过我认为到期后应该直接取消管理员权限,而不是举行信任投票。如果需要管理员权限,可以重新选举。--維基小霸王(留言) 2025年6月8日 (日) 00:15 (UTC)回复
支持 但是我想第3點該是所有管理員同時"下課",有意連任者,報名參加新一屆選舉,由有資格投票用戶審視。--晞世道明(留言) 2025年6月8日 (日) 03:29 (UTC)回复
反对任期制:管理員處理站務,無論理由多麼正大光明,總是有機會得罪別人;時間久了,整體支持率必然下降。而本站社群基數較小,這一現象比百科等地更加嚴重,且會持續加劇。重點是,越活躍處理站務,就越容易得罪別人,於是更可能導致有能者漸難取得社群多數滿意,最終促使本站管理體系長期失能。本人認為,如果個別管理員沒有明顯濫權問題,則不應予以解任。現有管理員離任指引,雖仍有瑕疵,已經足堪應付此種不端行為。若要避免管理權限淪為所謂「榮譽」,倒是理當考慮提高管理人員活躍度門檻,而不是直接訂下硬性任期限制為妥。—— Eric Liu(留言) 2025年6月8日 (日) 07:28 (UTC)回复
支持。英文維基文庫退出舊維基文庫不久,就自行成立有限任期制,最多13月。本站就是有太多管理員太怕解任,就更要改革。--Jusjih(留言) 2025年7月23日 (三) 02:56 (UTC)回复
讨论
[编辑]
@維基小霸王这便是我反而害怕的问题,这种定期选举逻辑肇因维基百科那边受OA2021影响而被迫如此,但也已导致选举不能灵活进行而造成1.本应可以满足条件新当选上的却奈何为时过早或过晚,过分且无合理理由地强加了自我检讨期;2.某些用户抓住时间要求,刻意赶在某个选举日期前刷满编辑次数,自诩满足参选/当选条件,我不希望本站再因同一原因再发生一次基金会行动。 Liuxinyu970226(留言) 2025年6月8日 (日) 00:26 (UTC)回复
@晞世道明所有管理员同时"下课",那么如果在选举期间遇到多出了大规模侵权内容,甚至大规模编辑战,又该由谁管控呢? Liuxinyu970226(留言) 2025年6月8日 (日) 03:49 (UTC)回复
: 其實還有GS,你們可以請求Global sysop action,不過這不是一個good idea就是了。 ASid(留言) 2025年6月8日 (日) 17:41 (UTC)回复
: 简单至极,您是位热心用戶,给您"看守",必不负众望。 晞世道明(留言) 2025年6月13日 (五) 13:28 (UTC)回复
: @晞世道明我?没空,真是没空,你们要全体都不行了,管不住了,剩我一个那这wiki还有啥用呢,关站得了。 Liuxinyu970226(留言) 2025年6月13日 (五) 13:40 (UTC)回复
首先请全体超级低调管理员发表意见,你们是可能受影响最大的人,不发表意见有点说不过去。其次请超级低调用户谈谈看法。我们都知道七八年前这些问题根本就不存在,不用通过投票确认这一事实。但是你们能不能更新更新认识,这里谈了这么多,没人理睬的话岂不等于满篇废纸。 Midleading(留言) 2025年6月8日 (日) 05:49 (UTC)回复
: @Midleading的确,就像我在U4C案例讨论页问到的那样,我们都需要逐步完善有关指引及程序,并寻求将指引升级成方针(即只要不被再次修订,任何人都必须无条件遵守)。 Liuxinyu970226(留言) 2025年6月8日 (日) 06:00 (UTC)回复
另請注意百科此前推出之「臨時管理員」試行,結果是幾乎所有管理員作完一任,涉及各種爭議站務工作,都不足以取得更多支持續任,還有部分倒退跡象。百科如此規模之社群都不過如此,遑論文庫?—— Eric Liu(留言) 2025年6月8日 (日) 07:37 (UTC)回复
: 且要指出,本站新任管理員,已非預設永久任期,而是受全域要求規範,僅有獲得相當支持,始有取得永久權限之可能。這不代表本站不能自訂指引,但我仍覺得弊大於利,理由已於上述。—— Eric Liu(留言) 2025年6月8日 (日) 07:43 (UTC)回复
: 的确,贸然开这个口子只会让某些别有用心用户拿权限随意做一些争议性操作,做完跑路,这便是我为何永远不可能支持“有限任期”的想法,管理员(及以上权限)是神圣的,任何有这类权限的用户都应该知道自己的操作是否配得上神圣这个词,如果配不上,跑路便是,不然就只会引发争论。 Liuxinyu970226(留言) 2025年7月14日 (一) 04:22 (UTC)回复
大体上同Eric Liu在意见章节的意见。以目前的社群规模,这种安排最终会造成管理员人数大幅下降。而且考虑到管理员之间本来已有大量的矛盾,人越少事情越难处理。除非诸位有最终放弃设置本地管理员的打算,否则还是不建议引入任期制…… --达师 - 370 - 608 2025年6月8日 (日) 14:16 (UTC)回复
不同意管理員積極處理站務必然導致支持度降低,這里管理員自身的行為有待改進才是支持度降低的決定性因素。如遇爭議站務工作,應該首先調查有關證據,征求社群意見,促進形成共識,如此即使產生爭議案件(如剛剛過去的m:Universal Code of Conduct/Coordinating Committee/Cases/Hounding claim on Chinese Wikisource)也可安然化解。管理員必須對自己的行為負責。不同意因為管理員自身問題可能導致管理員人數下降,就支持任用條件尚不成熟的管理員,應該和維基百科一樣從嚴要求。如果管理員人數真的下降,我仍會在今後很長的時間內維持高頻度巡查和處理站務,不致使站務陷入癱瘓。 Midleading(留言) 2025年6月14日 (六) 02:16 (UTC)回复
: 你說的是理想情況,但以本站的社群風格來說,還真不一定。這裡討論的應該也不是「任用條件尚不成熟的管理員」,而是避免管理員因為無私處理站務惹上麻煩。—— Eric Liu(留言) 2025年6月15日 (日) 09:18 (UTC)回复
解决方法3 问卷调查
[编辑]
最新留言:1个月前7条留言5人参与讨论
为了解决实际问题的第3个方法:问卷调查。
调查关于“需要管理员或更高权限的操作”,主要就是 assign/remove user group 和 block/unblock user 4件事。(因为不需要管理员权限的操作可以慢慢聊,所有人慢慢聊到天荒地老都无所谓。)
每个人写下,你自己认为,为了解决维基文库的实际问题,必要的这4种操作。不需要写理由,不要你罗里吧嗦地写一大堆。只要你写“针对谁,干啥”,完了。
问卷调查截止时间到了之后,归纳所有意见。将所有“至少两个人提出的要求”列出来。
然后整个文库社群针对所有这些“至少两个人提出的要求”讨论并投票。
讨论投票结果出来就完了,代表所有涉及高级权限操作的事都搞完了。其他事情,可以在本地范围内,随你们便慢慢聊吧。
看看你们要不要做这个问卷调查。要公开做还是匿名做。
要匿名做的话,找几个局外人,弄个Googleform/SurveyMonkey之类的匿名调查问卷。匿名问卷的意思是,收集意见的过程其他人看不到,但还是要签名的,保证每个人只交1份答案!至于问卷结束归纳“至少两个人提出的要求”之后,“谁提那些要求”不一定需要公开,因为每一项要求还要经过公开讨论和公开投票。
3rd solution, a questionnaire to find out what actions (that require advanced user rights) should be taken to resolve the problems. That is, assign/remove user group and block/unblock user, these actions. All other things that dont involve these actions can be discussed locally forever and ever. At the end of the survey, make a list of all actions that at least 2 users request. This list of actions will then be discussed and voted on. That resolves everything that requires advanced user rights (i.e. meta/global users / u4c committee). All other matters can be handled locally.--RoyZuo(留言) 2025年6月14日 (六) 11:59 (UTC)回复
| 用户 username | 要求 What do you want? | | | |
| 授权 assign to group | 除权 remove from group | 封锁 block user | 解封 unblock user |
| User:Example <- 样板 SAMPLE -> | User:Test 管理员 3个月 | User:Test 管理员 | User:Test 永久 | User:Test |
| | | | | |
--RoyZuo(留言) 2025年6月14日 (六) 11:59 (UTC)回复
: 抱歉,我看不出这个调查的用途以及它试图解决的“实际问题”是什么? 银色雪莉(留言) 2025年6月14日 (六) 14:06 (UTC)回复
: 你觉得有属于这4种操作的措施,但是因为这里一天到晚瞎吵,什么都做不了的吗?
: 如果你觉得没有的话……
: 如果所有人都觉得没有的话……
: 那么m:Universal Code of Conduct/Coordinating Committee/Cases/Zhxy 519, Jusjih and Chinese Wikisource不就完了吗?
: 瞎吵一轮到最后原来什么措施都不需要管理员以上的操作的话,那谁喜欢吵就这里继续慢慢吵,其他人就不用搭理那些专门吵架的人了吧?
: 如果有属于这4种操作的,那就现在所有人麻利地提出来麻利地讨论投票,两三个月之内搞完,拉倒了。没完没了地吵了几年都不知道在干嘛。 RoyZuo(留言) 2025年6月14日 (六) 15:09 (UTC)回复
: 其實解任投票完了以後就沒什麼事了吧?不一定「没完没了地吵了几年都不知道在干嘛」了。—— Eric Liu(留言) 2025年6月14日 (六) 17:51 (UTC)回复
: 当然还有很多事了,例如讨论投票资格应该怎么修改以考虑近期编辑次数,管理员不活跃方针是否修订等等,不一定仅限于这个问卷所列出的授权、除权、封锁、解封四种。 Midleading(留言) 2025年6月15日 (日) 04:16 (UTC)回复
: 老管理员在维基都活跃多年,有深厚的人脉,只要愿意总是能找到朋友来帮忙。除非是不搞小圈子的管理员得罪了一个派系,这种解任投票是没有意义的。 維基小霸王(留言) 2025年6月15日 (日) 14:42 (UTC)回复
请求修改禁用标题名单
[编辑]
最新留言:1个月前8条留言6人参与讨论
请移除如下禁用标题名单项。
标题 "戊午上高宗封事" 已被禁止创建。 其与以下禁用标题名单项匹配: .宗. <autoconfirmed|noedit> #傀儡破壞,暫時 (whitelist避免過度封鎖)
标题 "Category:宗教" 已被禁止创建。 其与以下禁用标题名单项匹配: .[教敎]. <autoconfirmed|noedit> #傀儡破壞,暫時 (whitelist避免過度封鎖)
并帮忙检查下,还有没有其他不合时宜的禁用标题名单。——2409:8A55:3966:7D80:5C72:13C8:A94B:98A 2025年6月23日 (一) 02:45 (UTC)回复
: 已经移除这些敏感词 Midleading(留言) 2025年6月23日 (一) 04:22 (UTC)回复
: 請求公開此名單,可以只讀方式。——西城東路(留言) 2025年6月23日 (一) 14:01 (UTC)回复
: 该列表是公开的,请自行查阅 Midleading(留言) 2025年6月24日 (二) 14:57 (UTC)回复
: 查阅链接URL? 2409:8A55:3966:7D80:F9C0:B08E:A3A:9984 2025年6月25日 (三) 07:12 (UTC)回复
: 问题是,本人搜索「禁用标题名单」,勾选搜索范围「全部」,未找到相应列表。——2409:8A55:3969:6960:6CEE:5E60:3C55:887D 2025年6月27日 (五) 11:14 (UTC)回复
: 請提供列表鏈接。——西城東路(留言) 2025年7月1日 (二) 08:03 (UTC)回复
: @西城東路:请点击访问MediaWiki:Titleblacklist(该名单链接位置各个MediaWiki项目共通)。 Teetrition(留言) 2025年7月1日 (二) 11:42 (UTC)回复
要求管理員~~就申報有償編輯~~宣誓
[编辑]
最新留言:10天前18条留言7人参与讨论
@維基小霸王:Wikisource:申報有償編輯是維基媒體基金會制定的使用條款,因此請問是否要求管理員就申報有償編輯(包括不濫用傀儡)宣誓?誓詞草稿自中華民國憲法第48條改作:「余謹以至誠,向全社群用戶宣誓,余必遵守維基媒體基金會包括申報有償編輯的使用條款,盡忠職務,增進用戶福利,保衞社群,無負用戶付託,不濫用傀儡,不授受賄賂干涉社群秩序。如違誓言,願受社群嚴厲之制裁。謹誓。」 ~~~~既然<#重选管理员建议>僵持不下,也請問是否要求任何在任管理員(包括未來新上任的,但非申請未准的)限期(例如14日)宣誓,逾期就自動解任,只能重選,不能申訴?此案若成立,维基文库:管理員的離任也要修正。--Jusjih(留言) 2025年6月24日 (二) 17:47 (UTC)回复
: 反对,因为中华民国宪法只适用于台湾,不适用于大陆和港澳。 Midleading(留言) 2025年6月25日 (三) 02:37 (UTC)回复
: 鉴于申报有偿编辑条款适用于各计划,相信重要的是依据相关条款在证据和逻辑链条下审视各项行为;相信这远胜于其他形式化的行为。 银色雪莉(留言) 2025年6月25日 (三) 03:54 (UTC)回复
: 據我所知,無論是否為管理員,都有必要遵守全域方針與指引。另外,目前沒有任何管理員從事有償編輯,將來也很難預見如此,故此一提議未免過慮。—— Eric Liu(留言) 2025年6月25日 (三) 06:51 (UTC)回复
: @Midleading:误会了。自中華民國憲法的第48條改作是指文字内容,不涉及不适用于大陆和港澳。@Ericliu1912:“沒有任何管理員從事有償編輯”是指目前不足以確定有誰有償編輯未申報。若大量非管理員支持本案,應尊重他們,--Jusjih(留言) 2025年6月25日 (三) 21:21 (UTC)回复
: 这个形式很新鲜,可以初步试行看看效果。惟誓词要更简单、有烟火气,建议改作:“上邪,我典此文库,欲请偿于兹任。我将无我,不负乡亲社员。若有私心背德,三刀六洞、天打五雷轰。谨此宣誓。宣誓人:某某。”宣誓时,宜录音、录像,并上传维基共享网站留存存证。Liouxiao(留言) 2025年6月26日 (四) 01:19 (UTC)回复
: 這應該算是侵犯個人隱私,還可能違反基金會隱私政策⋯⋯😅 —— Eric Liu(留言) 2025年6月26日 (四) 04:14 (UTC)回复
: 您好,感谢您@我。对于这个问题,我再想一想。本人从来没有有偿编辑过。 維基小霸王(留言) 2025年6月26日 (四) 16:26 (UTC)回复
: 同意Ericliu1912存疑Liouxiao的“宣誓时,宜录音、录像,并上传维基共享网站留存存证”恐有“侵犯個人隱私,還可能違反基金會隱私政策”之虞。因此,誓詞末端簽名仍不足?Liouxiao的誓詞草案比有些民國有些“如違誓言,願受最嚴厲之處罰”的宣誓更毒,因此我才引用民國總統誓詞改作。我也概不有償編輯。<#重选管理员建议>不能建立共識,使得本案最重要的是要求管理員宣誓否,柔性加重管理員的責任心,不必大量重選。編輯不管有償否,最反感的是任何用戶任意用傀儡,包括真人傀儡,因而存疑。--Jusjih(留言) 2025年6月26日 (四) 17:05 (UTC)回复
: 误会误会,这里“宜录音、录像,并上传”仅仅是建议,非强制要求;但可以鼓励心志坚决的志士仁人这样做,以昭告天下、表明立场。如果是出于个人意愿本意的做法,应该不至于侵犯隐私吧?
: 另外,誓非毒誓则不足以取信于人;后果要形象具体,例如“嚴厲之制裁”就不够具象(窃以为这貌似为民国各类官方誓词的通例句子,但因所指过于含糊、而颇为诟病)。再有,“不濫用傀儡”略显语气松动,是否意味着可以“少量使用傀儡”,或者用何种“傀儡”则不叫作“濫用”?其它令人反感的事项,是否也应加入誓词、以引以为戒? Liouxiao(留言) 2025年6月27日 (五) 06:39 (UTC)回复
: 您好,我想了想,有偿编辑问题对于维基百科确是个问题,因为有人用那个做广告。可是对于维基文库来说,这里应该没什么人会有偿编辑吧?如果真的添加了这个要求,而且所有的管理员都宣誓了,那又有什么意义呢?因为肯定没有人有偿编辑呀。 維基小霸王(留言) 2025年6月27日 (五) 15:04 (UTC)回复
: 我也想了一下,維基百科出現有償編輯問題,是因為該處流量較大、藉由書寫條目而「正面曝光」的機會更多;但這些因素在文庫都不存在。況且本站純粹是收錄文獻,根本不涉及人、事、物評價等問題;就算是有償錄入文獻,若文獻本身符合收錄標準,又有何不可?所以我認為這嚴格來說算是個「假命題」,至少重要程度有所高估。—— Eric Liu(留言) 2025年6月28日 (六) 11:51 (UTC)回复
: 提案者在此劃去“就申報有償編輯”,只留“要求管理員宣誓”。仍斟酌Liouxiao的誓詞草案。要避免列出太多令人反感的事宜,我簡化草案成:「余謹以至誠,向全社群用戶宣誓,余必遵守維基媒體基金會的使用條款,盡忠職務,增進用戶福利,保衞社群,無負用戶付託。如違誓言,願受社群嚴厲之制裁。謹誓。」宣誓人--~~~~”。--Jusjih(留言) 2025年6月28日 (六) 16:39 (UTC)回复
: 我還是覺得這太官僚了。—— Eric Liu(留言) 2025年7月2日 (三) 14:12 (UTC)回复
: 似乎可以支持,但需要地域中立,不要刻意提及某些地区名词。--Liuxinyu970226(留言) 2025年7月2日 (三) 01:59 (UTC)回复
: 我的最新誓詞草案不提及任何地区名词。但Liouxiao草案的“上邪,我典此……”更古典、地域中立。缺乏共識,本案投票看似要分段,先確定是否要求全部管理員宣誓。若否,是否只要求未來新的管理員宣誓,就另當別論。再討論吧。--Jusjih(留言) 2025年7月4日 (五) 02:50 (UTC)回复
: 有資格投票的,請去Wikisource:投票#要求全部管理員宣誓。先確定是否要求全部管理員宣誓。--Jusjih(留言) 2025年7月18日 (五) 19:00 (UTC)回复
: 同意結束投票,加倍討論<#有限任期制>才更有用。--Jusjih(留言) 2025年8月1日 (五) 18:19 (UTC)回复
维基文库收录方针之开放性探讨——《回归愿景,海纳百川》已发
[编辑]
最新留言:1个月前15条留言5人参与讨论
本主題或以下段落文字,在討論結束後應存檔至Wikisource talk:论维基文库收录方针的开放性原则。
近来,社群内就作品收录标准之宽严,屡有论辩,此番思潮,实发人深省。为析理明志,以期共识,鄙人已另撰一文,题曰《回归愿景,海纳百川:论维基文库收录方针的开放性原则》,现已发于Wikisource:论维基文库收录方针的开放性原则。此文旨在探讨维基文库之根本精神,并吁请社群以更开阔之胸襟,审视收录方针。此文并非个人定论,而乃抛砖引玉之作,诚挚邀请诸君直接修改、增补、润饰。维基文库之文脉,仰赖集体智慧之赓续,恳请诸君不吝指教,踊跃修订,以期共襄盛举,早日凝聚社群共识,共谋文库长远发展。--Zy26(留言) 2025年6月26日 (四) 04:04 (UTC)回复
: 感謝閣下的論述。閣下對社群的憂思和願景,我甚為仰望而敬重。就收錄方針和版權方針,本人意見和閣下所期並不甚一致,將另段落論述。但我認同閣下所言的社群討論中的問題,特別是(一,二,三)逐點。就Wikisource:删除讨论#6月中紅樓夢選文的討論,各位資深用戶不可忘記新手也是編者,儘管新手常畏與討論,但不代表他們沒有意見,或者他們的沉默代表接受社群的共識。老編者應該如@Zy26閣下所爲,為新手發聲,避免所有討論都完全變成精英用戶交換觀點。
: 具體在此討論中,各位確有傾向以作品内容意義,價值等劃出界限。本人反思,此舉屬實不可,文庫收錄標準不應依仰作品價值。紅樓夢并不比其他作品更值得收錄,或可以開出特例允許選段。然而我想説,此討論中各位都在避免完全不讓步而在尋求妥協和推遲決定,也都在小心推進討論,避免造成完全對立。以作品内容劃界,在我看來是達成共識的嘗試,而并非濫用資深用戶的聲量。本人的提議是,各位重新考慮立場並繼續討論,但是應放棄以作品價值劃界來達成妥協。任何收錄標準應不依照作品内容,至少適用一切公有領域已出版作品(排除法律作品因其出版要求顯異)。
: 就閣下所言「引導」貢獻者,我也深深認同其原則。閣下所舉三國演義詩詞的情境,有一點困難是如何錄入這類文庫編者選集是沒有共識的,我們正在討論的就是這個問題。不僅此案,社群對消歧義命名,編者生成内容,版本分離,都缺少共識。現狀是活躍貢獻者回避討論,在爭議方針上並不互相介入編輯。此種情況下,老編者引導新手難免有顧慮。
: 就閣下「破除心障,重拾願景」的建言,本人想補充,對各個維基媒體專案,「是什麽」和「不是什麽」從來都是重要議題。沒有哪個社群願意無限制地減少内容和樣式的限制,而賦予編者完全的自由。「收錄所有自由文本」和「收錄所有已出版的自由文本」并不相同,前者可能超過了一些文庫用戶對專案的理解,這是值得討論,而不適合假設的。 Andayunxiao(留言) 2025年6月26日 (四) 09:09 (UTC)回复
: @Andayunxiao:阁下宏论,细致周全,于拙文所陈,多有会心,亦有补益,深感嘉许。诚如阁下所言,收录之议,诚为复杂,观点或有不同,亦属常理。尤其阁下对“维基之界”的补充,正切中肯綮。拙文于“结论”部分已明言,维基文库严谨之处,在于坚持“免费、可验证、已出版”之原则,故“收录所有自由文本”确指“收录所有已出版之自由文本”,此乃鄙人立论之基,并非意欲逾越现有共识之范畴,特此澄清。拙文所思,乃在引玉,盼启社群共议。阁下所提社群讨论之弊,与引導贡献者之难,皆为真知灼见。凡此种种,皆赖集思广益,方能拨云见日。阁下所思所虑,深具启发,再次致谢。--Zy26(留言) 2025年6月26日 (四) 10:00 (UTC)回复
: 本人閲讀不細,如曲解閣下意見還望諒解。文庫是否要求已出版原則,閣下確指如此,然其他編者也可能持不同觀點,所以仍期待更多討論,本人不回撤先前發言。 Andayunxiao(留言) 2025年6月26日 (四) 10:32 (UTC)回复
: 感谢阁下与Andayunxiao阁下长文论述,各论于在下都很有启发性,使人获益良多。自然我与阁下就事情的观察未必全然一致,但我相信这种观点碰撞是有益的。我个人非常赞成您认为对文本价值的讨论应当尽量开放的观点,但我认为这种开放与Andayunxiao阁下认为收录标准不应以作品价值定论的观点应是并行不悖的。维基文库作为图书馆,提供一页不知名清代笔记中之零散记录是很正常的,因为其作品独立形式并不因缺页而遭磨损;但自行把一册笔记抽页展示则未必适宜,哪怕抽出的页面可能是名言警句。因此,收录标准不免需要根据其形式上的诸事项来做决定,而这决定的权力自然在社群——诸位在删除讨论多番交流,正佐证了社群审阅机制仍在进行。自然,这些事项不免错综复杂,确实在一定程度上影响不同意见的参与,我完全赞成这种看法,因此我也认为对于新用户发生以上事宜时,尤应细致引导,多加沟通;当然,这也许能够通过一些工具和机制上的调整来加以改善,例如侵犯版权模板无法跳到对应提删话题而只能跳到版权讨论页面,相当不利新人,我想这应该加以调整。不考虑版权情况时,若教科书可以收录,单篇课文作为子文档收录相信不成问题,但这种情况正是一种结构完整的表现,而非可能带有原创性的选段;就我个人而言,支持单篇课文作为子文档收录与支持红楼梦原文有标题的诗词单独展示在逻辑上是有着一定程度的亲缘性(自然,这不是同一个逻辑),而展示原著无标题的诗词与前述间的逻辑在我看来并没有太多关联。匆匆数言,也许不甚妥当,多请见谅。 银色雪莉(留言) 2025年6月26日 (四) 17:02 (UTC)回复
收錄方針的觀點 (Andayunxiao)
[编辑]
本人無力持續參與後續討論,故一處集中寫明本人在Zy26閣下發文之前的觀點。如此回復顯然不利分別討論,因此各編者可隨意重構本人此發言,不必等待我意見。如果有新的意見,也需要社群討論後本人再思考。本人假期結束前不會更新或回復。Andayunxiao(留言) 2025年6月26日 (四) 10:26 (UTC)回复
主動錄入
[编辑]
我甚少直接向主作品空間的頁面錄入作品,大多以校對頁錄入個別版本。文庫對不同編者,可以是一本本書的書架,法律文書檔案,還可能是佛學辭典。我樂於看到文庫收錄多種結構和形式的自由文本,不希望限制他人編輯。同時,本人對除了單個影印文件整體錄入外的文庫部分缺少熱情。Andayunxiao(留言) 2025年6月26日 (四) 10:26 (UTC)回复
文庫自行選段和結集
[编辑]
Wikisource:删除讨论#6月中關於紅樓夢選文的討論,各位已經厘清,標題的版權非核心問題,文庫編者可以自行命名繞過此要求。我想更值得討論的是:
是否允許編者自行從公有領域作品中選段並自行命名?如,可否僅以編者偏好為理由將葬花吟再錄入一次到(而不是重定向)顰兒葬花吟?
是否允許編者自行從公有領域作品中選段並編集:如曹雪芹詩詞選 (維基文庫編),魯迅日記书賬集 (維基文庫編)?
如允許,是否允許這些選集的子作品獨立為作品頁,而不是僅作爲選集的子頁?
以上逐點,并非滑坡謬論,也不希望預設情景,而是實在可以討論的議題。本人認爲以上逐點都不滿足已出版的條件,即使所有内容都在公有領域。文庫需要決定的是,允許多少這類編者生成内容出現在作品頁空間。本人意見偏於可以允許第二類的選段,但所選各段不能獨立為作品頁。編者選段的作品應該像編者翻譯一樣,以頂欄或消歧義明確告知讀者這是編者選集,而非流傳或已出版的作品。另外,Zy26和各位可能也已建議,在Portal頁面適當地錄入選集類的文字,對此我十分 支持,並希望社群有明確支持多使用Portal空間。此點如我理解不對望見諒。Andayunxiao(留言) 2025年6月26日 (四) 10:26 (UTC)回复
: 私以为虽然标题版权也许非核心问题,但自行命名作为原创行为,恐怕未必适宜作为处理相关事宜的手段。对三个议题,第一个在下持反对意见,因为这在我看来恐怕会导致“摘章寻句”的泛滥。后两者(我相信是同一者)的话,我不确定文库是否能承担这种功能——这听着像是学院的功能。--银色雪莉(留言) 2025年6月26日 (四) 17:13 (UTC)回复
: 同意现在这篇论述存在可能不适用维基文库的地方。要编写百科全书请去维基百科。要创建自由的教科书请去维基教科书。要收集名句请去维基语录。要创建研究资料请去维基学院。 Midleading(留言) 2025年6月26日 (四) 17:30 (UTC)回复
版權
[编辑]
此討論實不甚涉及版權。我只想陳述,將後人出版的編輯的公有領域作品去掉今人擬題和增值内容,但又保存編者所選及不選的篇目,刊在文庫或其他網站,在版權期限内,仍然是侵犯後人編者版權的,這一點我相信各位有共識,無需掩耳盜鈴。
我能補充的是文庫爲什麽要執著於自由内容和無侵犯版權。不同編者在文庫錄入作品的動力,有對作品的喜愛,也有保存,整理的願望。自由作品和非自由作品,都有保存人類知識的益處,因此很多文庫和共享資源編輯也可能持 copyleft 或「反著作權運動」的觀點。同一編者兼有兩種主義并不矛盾,惟文庫自由文本能夠以合法方式二次分發,或者商用,文庫編者花時間和精力錄入自由文本,其價值遠超為本站增加流量。非自由文本則到此爲止,僅能以影子圖書館或P2P方式分發。因此,反著作權的支持者,可能不值得花時間在内容網站上錄入這些非自由文本的,可考慮支持非自由文本的流通網路和私人收藏。Andayunxiao(留言) 2025年6月26日 (四) 10:26 (UTC)回复
: 同意。--银色雪莉(留言) 2025年6月26日 (四) 17:13 (UTC)回复
消歧義
[编辑]
文庫的所有作品都應盡量平等的消歧義。每個作品頂端都應該有適當的到導引,消歧義頁的連結,讓讀者找到需要消歧義的其他作品,無論具體何種模板。命名方針上,應該有一個辦法協調編者和讀者對無後綴條目的偏好。應該讓讀者意識到,消歧義後綴是技術原因所加,非作品優劣差異。Andayunxiao(留言) 2025年6月26日 (四) 10:26 (UTC)回复
: 赞成阁下的观点,长期而言,多版本平等展示是合理的前景。--银色雪莉(留言) 2025年6月26日 (四) 17:13 (UTC)回复
其他討論
[编辑]
@Zy26:是否可以邀請您將此文章轉載投稿維基百科的社群期刊《維基人》?我想這對於宣揚文庫的宗旨及精神頗有意義,或許也可以吸引更多編者前來建設文庫。—— Eric Liu(留言) 2025年6月28日 (六) 11:53 (UTC)回复
版权讨论与删除讨论流程和模板问题
[编辑]
最新留言:3天前75条留言8人参与讨论
本主題或以下段落文字,在討論結束後應存檔至Wikisource talk:删除守则。
在提删流程中加入“通知页面创建者”、copyvio和afd模板直链到提删件
[编辑]
读Zy26阁下的论述中关于新人引导的部分有感,提两个问题:
能否参考w:Wikipedia:頁面存廢討論#提報過程,将提删通知页面创建者一项(本地本就有Template:AFDNote)列为提删时的操作指引?
Template:copyvio和Template:Afd该两模板是否有可能做到像w:Template:Vfd那样,链接到具体的提报件?
以上出于便利用户(尤其是新人)和规范流程的目的起见而提出,当中技术小白之处,请轻拍。 银色雪莉(留言) 2025年6月26日 (四) 17:30 (UTC)回复
: 现在的两个讨论页都是用户自行去编辑分隔线,和其他社区每一件提报都开一个章节不同,如果换成每个提报都开一个新章节的形式,链接到具体提报就会更方便,自行编辑分隔线相较开新章节也对新人更有门槛。 Teetrition(留言) 2025年6月27日 (五) 03:36 (UTC)回复
: 提报方面甚至可以学习Commons使用自动化脚本提报+通知贡献者。 Teetrition(留言) 2025年6月27日 (五) 03:37 (UTC)回复
: 由于是技术问题(再次利申小白),在此先向界面管理员@Midleading阁下咨询上述内容包括Teetrition阁下意见是否有可能实现(题外话:话说本地是不是只剩下一位界面管理员了?),以便决定是否接续讨论。 银色雪莉(留言) 2025年6月28日 (六) 09:41 (UTC)回复
: 可以学习其他社区每一件提报都开一个章节,每个月份设置一个提报页面。这样对提报页面版面变动较大,如果通过的话建议从下一年1月1日起实行,届时可实现提报模板直接链接到案件。
: 至于小工具,我只能说对于目前较低的提报频率,还不需要投入开发和维护成本去开发小工具。本人现在是唯一界面管理员,元维基全域方针规定至少要有两个界面管理员,本人目前未辞职为非法界面管理员,建议尽快选举另一个界面管理员,否则本人可能被迫辞职。 Midleading(留言) 2025年6月28日 (六) 10:34 (UTC)回复
: 本人依然認為可以選舉@Shizhao:為介面管理員。或是問問有誰適合擔任?我目前仍是有限期管理員,不適合兼理介面管理員。—— Eric Liu(留言) 2025年6月28日 (六) 11:46 (UTC)回复
: m:Interface administrators僅建議社群有至少2人懂JavaScript,並未要求必須有2名界面管理員。 dringsim 2025年6月30日 (一) 07:32 (UTC)回复
: 文庫現有討論篇幅已經很多,再拆分成章節,恐怕無助於事。其實MediaWiki目前已支援留言直接連結,屆時連結至提刪留言本身即可,不需要更改格式。本人認為,漸進改革試試水溫比較得體。—— Eric Liu(留言) 2025年6月28日 (六) 11:46 (UTC)回复
: @Ericliu1912:请问MediaWiki目前已支援留言直接連結,屆時連結至提刪留言本身是否能达致和百科vfd模板类似的效果,即点击后可以连接至案件本身?其实正是因为“文庫現有討論篇幅已經很多”,着实让人翻找不易,尤其是新手被提删时可能困扰何处回应或查看案件详情,故才有此议,若能不用大改而达致相同或接近效果,自然是好的。 银色雪莉(留言) 2025年6月28日 (六) 13:29 (UTC)回复
: 比方說,你可以從這個連結直接通到我的留言。除了自動化可能困難(需要手動通知),其他問題應該不大。—— Eric Liu(留言) 2025年6月28日 (六) 13:37 (UTC)回复
: 我的本意是希望当用户打开Translation:百字明咒短釋或发到用户讨论页的Template:AFDNote能够使用户一键直达提报讨论处——自然,最好是自动化的。只能手动添加留言直链的话,忧虑没有太多用户会注意填写。不过我最主要的,还是希望推行第一点,即明确要求提删时应使用Template:AFDNote或留言告知页面创建者。 银色雪莉(留言) 2025年6月28日 (六) 14:31 (UTC)回复
: 本站似乎沒有Twinkle工具,所以任何通知本來就是手動。至於是否添加直接連結,我想大可以鼓勵。另外,現在刪除討論就一頁,所以祇要有通知,不管有無直接連結,受通知者應該都不難找。—— Eric Liu(留言) 2025年6月29日 (日) 12:52 (UTC)回复
: 本身悉知“本来就是手动”,因此才请教各位是否有自动化可能性,我想即使“本来就是手动”,在此基础上探讨自动化可能性——即便只停留在探讨——总是好的,求上得中,求中得下嘛。虽然就一页,但客观讲确实篇幅并不短(其中在下又臭又长亦略有“贡献”doge),新人未必好找。还是那句话,我抛砖。眼下第一点似乎还没有什么反对意见,期待各位更多意见。 银色雪莉(留言) 2025年6月29日 (日) 13:17 (UTC)回复
: 理解改为章节模式后也方便存档(虽然本站并没有自动存档机器人),最终删除的作品姑且不论,至少对于那些标记保留的作品,对后人提删更有参考作用(比搜索存档来得直观)。 Teetrition(留言) 2025年6月30日 (一) 09:03 (UTC)回复
: 我自己倒没有太强烈的偏好——能自动化,怎么都好;不能自动化,就无所谓了(笑)反正这项如果没能共识,能把其他谈下来也很好。您对提删需通知页面创建者一项意见如何? 银色雪莉(留言) 2025年7月1日 (二) 03:33 (UTC)回复
: 支持 Teetrition(留言) 2025年7月1日 (二) 11:51 (UTC)回复
: (!)意見 如果这项通过以后有的用户像红渡厨一样长期大量提报,但是从来不通知页面创建人,需要怎么处理? Midleading(留言) 2025年7月2日 (三) 12:44 (UTC)回复
: 你非要扯上我是干什么?维基百科都不要求强制通知,你不是很喜欢扯维基百科怎样怎样吗?这会儿你又不说维基百科了? ——— 红渡厨(留言・贡献) 2025年7月2日 (三) 12:54 (UTC)回复
: 现在还没有通过要强制通知呢,通知不通知随便,只是讨论。 Midleading(留言) 2025年7月2日 (三) 12:57 (UTC)回复
: 你明知通知不通知随便,非要把我扯上是干什么?还跟我写上一句“像红渡厨一样长期大量提报,但是从来不通知页面创建人”,你没事找事吧你? ——— 红渡厨(留言・贡献) 2025年7月2日 (三) 13:05 (UTC)回复
: 我说的是真话吧,2025年至今没见过阁下提报时通知页面创建人。如果阁下反对提报时通知页面创建人,应该在这里表示反对啊,通知阁下过来有必要。 Midleading(留言) 2025年7月2日 (三) 13:16 (UTC)回复
: 那麻烦你别像我做错事了一样的口气在这里讲话。 ——— 红渡厨(留言・贡献) 2025年7月2日 (三) 13:29 (UTC)回复
: 既然阁下来了,如方便时能否请阁下谈谈您对关于本话题下两件的看法?毕竟阁下是两项讨论的常客——其实我本意是准备在整理好2.0版本(即收集一下初步意见的基础上提出的改善件)再请包含阁下在内的活跃于删除讨论和版权讨论的用户等提供意见的,不过既然阁下来了,相请不如偶遇。 银色雪莉(留言) 2025年7月2日 (三) 13:04 (UTC)回复
: 1. 关于删除讨论,我的意见是推荐各位提删人在提删时通知,但不应强制。因为在删除讨论这方面更有经验的维基百科同样没有强制要求;
2. 关于版权讨论,我的意见是不推荐各位提删人在提删时通知,但也不反对。因为版权讨论有其特殊性,很多上传者就算参与讨论了,其实自己也说不清楚什么版权不版权的,实际能说清楚的就那么几个人,说白了还是由那么几个人的讨论结果来决定。提醒不提醒的重要性不大。
: ——— 红渡厨(留言・贡献) 2025年7月2日 (三) 13:42 (UTC)回复
: 感谢。在下粗糙的两项设定主要都是顾虑到照顾贡献者的知情权——我个人认为这是维系社群稳定(尤其是新人)的一个有效因素,毕竟如果自己的贡献在未通知或沟通下被删除——虽然删除的结果意味着它不符合收录方针或版权方针——不免会带来一些情绪上的消极因素,这也可能影响他们的后续贡献的意欲;而且趁此机会给予用户(尤其是新人)在收录方针和版权方针方面的指引,应该也绝非坏事;此外,虽然我并不认为“实际能说清楚的就那么几个人”,但如果真是那样的话,那么通过引导贡献者参与讨论来让能说清楚的人变多一点,也是好事——那么“那么几个人”的工作量也能减轻了2333。至于百科方面的经验,一来像您之前说的,文库不是百科的附庸——我个人倾向于结合实际情况下的萧规曹随;二来,事实上百科对删除的方针性表述中含有“如可能,应通知页面的创建者”——这或许表面看着不像强制性表述,但我认为这意味着“只要有可能,就要通知”——而我实在想不到有什么主观方面的“不可能”足以阻碍这种在我看来是客观的“有可能”。当然,我认为这样做最重要的作用还是在于完善整个流程,能够照顾到的就照顾一下,减少不必要的质疑和扯皮。不过这当然是我的个人意见。 银色雪莉(留言) 2025年7月2日 (三) 14:09 (UTC)回复
: 我同意照顾贡献者知情权,对于此事我不持有反对意见,若日后规定强制提醒,我会照做。 ——— 红渡厨(留言・贡献) 2025年7月2日 (三) 14:26 (UTC)回复
: 这项没通过以前的情况不必讨论,现时不是硬性规定,不可能要求人遵守。鉴于我认为此项应列入Wikisource:删除守则,而且我认为这条应该是必要性要求,因此我提议的表述是“应通知页面创建者”,所以如果不遵守,就跟普通的不遵守其他方针指引一样,循序渐进处理。我个人对红渡厨阁下对指引的遵守性不持怀疑态度——就我的观察,其在百科存废那边也是正常添加通知模板的。 银色雪莉(留言) 2025年7月2日 (三) 13:01 (UTC)回复
: 其實百科方面規定「如可能,應通知頁面的建立者。」基本就是強制通知。我看過提報者沒通知,導致整個討論以程序無效結案的;甚至沒記錯的話,我自己也在這問題上栽過跟頭。就事論事,文庫方面自不必如此嚴格,但至少「推薦(甚至鼓勵)通知」,我覺得屬於比較穩妥的建議。—— Eric Liu(留言) 2025年7月2日 (三) 14:08 (UTC)回复
: 我赞成百科方面的规定基本——在我看来可以说是“几乎”——就是强制通知,理由上述不赘。作为不时参加两项讨论的人,虑及之前一些各方面的争执,强制要求(除了部分规程性快删,下已述不赘)在我看来并不影响提删者任何自由或权益,但确是对被提删者的知情权的保障,也能减免一些不必要的扯皮——推荐或鼓励,还是会有扯皮的;像上面的“几乎”,也会有扯皮。人多的地方,惯例的力量大,人少的地方就不一定了;鉴于此项无伤大雅,我认为不如划成“除非客观无法通知,否则应通知页面建立者”,但求不扯皮——因为我实在想不到“通知”到底能影响提删者什么(PS:再次重申,部分规程性快删应该豁免);如果有,请各位告诉我。 银色雪莉(留言) 2025年7月2日 (三) 14:18 (UTC)回复
在版权、删除讨论及快删流程中厘清管理员权限使用指引
[编辑]
考虑到管理员兼具普通用户和执行共识用户的身份,为厘清相关身份定位,以便利各方面,在此建议部分参考w:WP:CLOSEAFD和w:WP:SD,在Wikisource:删除守则中加入以下要求:
1、在“共识”一节末尾加入“在版权及删除讨论中得出的对被提删页面的处理方式(例如保留、删除、合并、重定向)的共识须由一名未参与该案件提删和讨论的管理员执行。”
2、“快速删除”一节改为:
如果页面符合快速删除的标准,请加上{{Sdelete}}模板,不用提交到Wikisource:删除讨论中。加了模板的页面会自动收入Category:快速删除候选分类,管理员就能看到了。加入模板时,请写明删除原因,用法:{{sdelete|删除原因}}。如果不符合快速删除的标准,请提交到Wikisource:删除讨论。
维基文库的方针允许管理员在页面符合一个或以上的快速删除标准时,直接快速删除页面;若遇有不确定的情况,则应转交删除讨论或版权讨论。~~管理员须避嫌,不得处理自己的快速删除请求。~~
以上,在此征询诸位意见。--银色雪莉(留言) 2025年6月28日 (六) 09:52 (UTC)回复
: 文庫社群基數較小,我認為不應該直接禁止管理員同時參與任何討論及結案,尤其是在某些共識明確的情況。是否可以增加一些但書,或是弱化指引語氣?—— Eric Liu(留言) 2025年6月28日 (六) 11:48 (UTC)回复
: 我不排斥根据社群实际情况调整——我又不觉得人多2333但一定的限制是必须的。我看(1)至少要不允许管理员在作为提删者的同时又可以结案,这是基本的程序需要;(2)如果管理员不是提删者但是是参与讨论者,那么至少应使他们在作出处理动作前作必要的共识概括并通知所有参与讨论者,采类似公示的形式(或者说,有点类似w:WP:RSN),如何? 银色雪莉(留言) 2025年6月28日 (六) 14:52 (UTC)回复
: 实际情况是少数几个活跃用户需要管理四十余万个页面,经常审理删除请求、执行删除操作的管理员人数很少,但是可能需要删除甚至完全应该快速删除的页面很多,并且有相当一部分现在还没有任何人提报。有很多快速删除的页面都是我专门查出来,查出来就立刻快速删除而不需要打扰社群的。 Midleading(留言) 2025年6月28日 (六) 12:49 (UTC)回复
: 也行,不少姊妹项目似乎都没有这一条,我不反对删去此条。但我想征询一点作为删去此条的补充措施,即因应上节在下提出将提删事宜通知页面创建者作为删除讨论和版权讨论流程的一部分,快删似亦应将结果通知页面创建者或主要贡献者,以满足基本的程序需要,如何? 银色雪莉(留言) 2025年6月28日 (六) 15:27 (UTC)回复
: 同意快删时应当尽量通知页面创建者或主要贡献者。删除纯粹破坏内容,由页面创建者或主要贡献者通过添加Sdelete等模板或者直接清空页面等方式自行要求的快删,或者页面创建者或主要贡献者已经被封禁的除外。 Midleading(留言) 2025年6月28日 (六) 15:43 (UTC)回复
: 个人认为可以。看看其他用户有无补充,我先把那句拉掉。等最后汇总的时候再合并公示。 银色雪莉(留言) 2025年6月28日 (六) 15:47 (UTC)回复
: 還有一種情況只在維基文庫頻繁出現,就是申請移動頁面且不留重定向,或者是移動頁面後申請快速刪除重定向,原因多半是繁簡不當或者是消歧義樣式不當。對這樣的快速刪除閣下怎麼看,本人通常只給新手發送提醒,而老手不需要過度提醒。 Midleading(留言) 2025年6月28日 (六) 16:03 (UTC)回复
: 本地基本没有太多原创命名的空间,都是照原件来,而且Wikisource:移动请求要经管理员复核,也有其他用户活动,只要所提供依据和资料经审视足以证明,只是更正名称,应该不需要通知页面贡献者。自行移动页面后申请快删重定向,个人其实不赞成这么做——除非是显而易见的错别字或是消歧义样式不当——不然想要删重定向还是应该提删除讨论,以免查证不足时实际上删去了可作为有效重定向的一些别名页面。我建议管理员这种情况下方便查资料就查资料,可以保留的就撤销快删,不能保留的直接删掉,按Wikisource:删除守则中“例程刪除”一类,应可不必通知(如果是新人,我赞成您说的提醒一下,这是善意,也是好事,有利于其明晰情况);不便查资料或者吃不准时,可以移交删除讨论,那就自然要通知创建者。 银色雪莉(留言) 2025年6月29日 (日) 05:01 (UTC)回复
: 如果只是“显而易见的错别字或是消歧义样式不当”这种类别,这种快删我看也可以按“例程刪除”一类,一般应可不必通知——若新人的话,提醒一下当是引导,也无不可。 银色雪莉(留言) 2025年6月29日 (日) 05:03 (UTC)回复
: @Midleading、银色雪莉:快速刪除候選通知應該比照普通刪除請求,由提報人而非管理員作出。其他規則也可以準用上述討論中之刪除請求通知程序,不必寫兩套指引。—— Eric Liu(留言) 2025年6月29日 (日) 12:52 (UTC)回复
: @Ericliu1912:前述在谈的作通知者,本身即指提报人——读上述讨论时可把Midleading阁下看作此身份。我的看法是本地当前实况时,程序类快删通知似可省去以合理地简化部分流程——但能上删除讨论者必定是因为非程序类问题,因此应均通知以求程序完善。由此,此二类似仍应有所差别。 银色雪莉(留言) 2025年6月29日 (日) 13:24 (UTC)回复
2.0(Wikisource:删除守则修订案)
[编辑]
个人浅见提出后,在上方与部分用户作了些讨论,蒙指正获益良多,在此先行致谢。有鉴前述讨论中似尚未见根本性的反对或否定意见,而原方案亦有不少未妥善处,因此在综合前述各位的指正和意见碰撞下,谨拟出第二版修订方案,以进一步在更大范围内征求意见,亦请各位不吝指教。PS:原两话题因均牵涉各项提删流程,是以在此拟合为一件不再分述,各项内容以对Wikisource:删除守则的修订案的形式综合呈现。
| | | | |
--- --- |
| | | | 現行條文 共识 如果你怀疑一篇条目侵犯版权,请在Wikisource:版权讨论中提交,如果你认为一篇条目不应该在维基文库上出现,但有不符合以下提到的任何快速删除的标准,请在Wikisource:删除讨论中提交。 在Wikisource:删除讨论中会讨论一周左右,而在Wikisource:版权讨论中一般会讨论两周左右。尽管任何人都可以讨论提名,但只有社群认可的编辑的投票才有分量。 快速删除 捷径 WS:速删 维基文库的方针允许管理员在页面符合一个或以上的快速删除标准时,直接快速删除页面。如果不符合快速删除的标准,可以提交到Wikisource:删除讨论中。如果页面符合快速删除的标准,请配上{{Sdelete}}模板,但不用提交到Wikisource:删除讨论中。加了模板的页面会自动收入Category:快速删除候选分类,管理员就能看到了。加入模板时,请写明删除原因,用法:{{sdelete|删除原因}}。 | | | | | 提議條文 版权讨论/删除讨论 如果你怀疑一个页面侵犯版权,请加上Template:Copyvio并在Wikisource:版权讨论中提交。如果你认为一个页面因非版权原因不应该在维基文库上出现,但又不符合以下提到的任何快速删除的标准,请加上Template:Afd并在Wikisource:删除讨论中提交。在提交讨论的同时,请到该页面的创建者(创建者自行提删除外;另外,如需要时,亦可包括该页面的其他主要编者)的讨论页发出页面已被列入版权/删除讨论的通知(可使用Template:CopyvioNotice和Template:AFDNote)。 一般情况下,在Wikisource:删除讨论中会讨论一周左右,而在Wikisource:版权讨论中会讨论两周左右。尽管任何人都可以提报及参与讨论,但只有社群认可的言之有理的见解才有分量,管理员应基于由这样的见解所形成的共识执行结案处理(例如保留、删除、合并、重定向),并应回避对自己在版权/删除讨论中提报的页面执行结案处理。 快速删除 捷径 WS:速删 如果页面符合快速删除的标准,请加上Template:Sdelete模板并附原因,不用提交到Wikisource:删除讨论中;加了模板的页面会自动收入Category:快速删除候选分类,管理员就能看到了。如有必要时,提报者可到该页面的创建者(如需要时,亦可包括该页面的其他主要编者)的讨论页发出页面已被列入快删的通知。如果不符合快速删除的标准,请提交到Wikisource:删除讨论。 维基文库的方针允许管理员在页面符合一个或以上的快速删除标准时,直接快速删除页面;若遇不符合或不确定是否符合快删标准时,则应转交删除讨论或版权讨论。 | |
修订说明
[编辑]
1、修订“共识”一节标题为“版权讨论/删除讨论”,以明晰其含义,并与下文“快速删除”小节的标题保持对应。
2、在提交版权/删除讨论的流程中明确要求提报人在提报时添加对应的页面维护模板和用户提醒模板。
3、有鉴于多年实践中版权/删除讨论一向奉行“請以理服人,言之有理,不是一定少數服從多數的以力服人,所以IP用戶可發言,不是投票,不應用Wikisource:投票#各式投票資格”的底层逻辑,为厘清表述,调整“只有社群认可的编辑的投票才有分量”为“只有社群认可的言之有理的见解才有分量”,以保持逻辑上的一致,亦表明相关讨论并非由“资深编辑”把控(原有的表述,“社群认可的编辑”容易被认为是看资历)。
4、强调管理员应基于“社群认可的言之有理的见解”而形成的共识执行结案操作,并设置要求管理员回避对由其自身提报的页面进行结案操作。版权/删除讨论并非投票,同时亦非字面意义上的“共识决”——那就会沦为另一种投票,而应基于言之有理的说理为大前提;同时,也约束管理员注意执行结案操作的基础与方式。
5、就快删的用户通知不比照版权/删除讨论的用户通知要求一事,个人意见是:快删本意是对明显有问题的页面作出快速应对处理,如果明显的,则这种通知更多是出于一种社群对用户的引导,与删除/版权讨论的可能强争议性的属性并不相同,应可采推荐制而非必要制,且现有删除守则中实际上已列出较仔细的各类流程操作,也一定程度上对此类问题可能导致的处理不当作了约束;如不明显或有争议的页面,应该转交,届时自然会通知用户。因此,更需要的是规范删除/版权讨论和快删之间分流流程、快删的处理流程(包括转交流程)和删除的恢复流程。(PS:作为配套,认为如有需要,或可考虑导入w:Template:Db-notice并本地化。)
6、对部分用词作了调整,如现行条文中的“条目”等表述,并不适合本地,而各提报流程牵涉的范围又不仅仅是文献,因此一律调整为“页面”。
讨论区
[编辑]
由于相关修订为对方针的修订,需要更显著的共识基础;同时,相关版面(1)确实涉及部分相关方针、指引或知识;(2)对在相关版面活动的用户(含管理员)的权责约束有所调整。因此,在此邀请就在下所见活跃于相关版面的用户@红渡厨、Zy26、Njzjz、Teetrition、Aerotinge、晞世道明、沈澄心、Kcx36、Fire-and-Ice、Andayunxiao、Liuxinyu970226(不免挂一漏万,多请担待)及所有管理员@Jusjih、Shizhao、Gzdavidwong、Zhxy_519、Hat600、Midleading、Ericliu1912参与讨论;同时,上述邀请并非意在小圈子讨论,在下谨请其他所有用户若有见解时不吝就此件指正。希望藉此能凝聚共识,对可能是本地最重要的站务之一的版权/删除讨论等内容的相关规则作出必要修订。--银色雪莉(留言) 2025年7月7日 (一) 07:28 (UTC)回复
: 关键是本站如何定义“快速删除”标准。 Liuxinyu970226(留言) 2025年7月7日 (一) 07:39 (UTC)回复
: 这里根本就没有提到“快速删除”标准的修订吧,看不出和本讨论有何关联性或者关键意义。 Midleading(留言) 2025年7月7日 (一) 07:41 (UTC)回复
: 您是说适用快删的情况吗?原守则的“快速删除”一节下方就有列出,您是否认为当中也有需要调整或加添的部分?如果有的话不妨提出,也可以再作整合。不过快删标准在广义上讲应该大差不差,细分项即使要修订,应该也不至于根本性影响关于快删操作流程等事宜的规定。 银色雪莉(留言) 2025年7月7日 (一) 08:14 (UTC)回复
: 我加一条,在版权/删除讨论案件中表态过的管理员,亦不应对该案件执行结案处理。 ——— 红渡厨(留言・贡献) 2025年7月8日 (二) 07:29 (UTC)回复
: 「表態」是否包含詢問社群意見(即「留言」)?抑或限於明確表示立場者?—— Eric Liu(留言) 2025年7月8日 (二) 14:28 (UTC)回复
: 我不清楚你是指何种“詢問社群意見”,但为稳妥起见,避免存在管理员不避嫌的疑虑,我认为只要是发言过的,均应不对该案件执行结案处理。管理员人数是够的,没必要一定由那个人来结案。 ——— 红渡厨(留言・贡献) 2025年7月8日 (二) 14:57 (UTC)回复
: 我想他指的是这种Special:diff/2504142,我也想确认一下,即阁下所说的是否包括这一类。 银色雪莉(留言) 2025年7月8日 (二) 15:25 (UTC)回复
: 我认为这种回复可以视作作为管理员汇聚共识,可以不视为普通用户的讨论行为。 ——— 红渡厨(留言・贡献) 2025年7月9日 (三) 14:49 (UTC)回复
: 另外,我正好想到,你在维基百科的存废中,存在既作为普通用户对存废发表意见,同时又作为管理员对同一案件进行结案的事情。 ——— 红渡厨(留言・贡献) 2025年7月8日 (二) 15:05 (UTC)回复
: 看看实际数据再说管理员够不够吧,从数据可以看出,只要经常参与删除的前两个管理员同时发言,就算这两个管理员都支持删除,该页面被删除的机会也会下降88%,因为根据这个规则一发言就不能删除了。维基百科都支持的事情本地为什么不支持呢? Midleading(留言) 2025年7月8日 (二) 17:06 (UTC)回复
: 你的实际数据恰恰说明管理员人数足够。但问题在哪?问题在当上管理员后不愿意干活。 ——— 红渡厨(留言・贡献) 2025年7月9日 (三) 14:50 (UTC)回复
: 管理员不愿意干活并没有违反任何维基文库方针,要贿赂他们履行职责吗?明明有活跃的管理员可以履行职责,为什么要等待不愿意干活的管理员呢,现在就有这样的案例,删除请求从2019年持续至今仍在等待一个特定管理员结案。 Midleading(留言) 2025年7月10日 (四) 02:52 (UTC)回复
: 我可没说他们违反方针。反正随便你吧,你不怕有人以后投诉你不避嫌,那你就去结案呗。 ——— 红渡厨(留言・贡献) 2025年7月10日 (四) 02:58 (UTC)回复
: 情况更新:虑及本地有指引级Wikisource:管理员(以下简称“指引”),其中“避嫌”一节有“管理员不得删除自己提议删除或者投票删除的页面”及其例外情况说明,这与上方修订案及其他用户修正修订案的表述存在留有真空地带的冲突。虽说删除守则作为方针可能位阶更高,或许不必顾虑指引,但一般而言,为了实用性和避免不必要的争议,没有道理不使它们保持逻辑上的一致。我并不打算修订指引——那样事情就没完没了了,而且这本是删除守则自身的事。因此,在前述基础上,我拟将修订案第一节第二段的内容替换为:
: > 一般情况下,在删除讨论中会讨论一周左右,而在版權討論中会讨论两周左右。尽管任何人都可以提报及参与讨论,但只有言之有理的见解才有分量,管理员应基于由这样的见解所形成的共识执行结案处理(例如保留、删除等)。管理员对于自己在版权討論或删除讨论中所提报,或曾对其去留表态的页面,應迴避處理,而当共识形成时,亦应通知第三方管理员代為结案;惟若自通知起两周后(对自己就其去留表态的页面)或四周后(对自己提报的页面)仍无第三方管理员处理时,该管理员則可依共识自行斟酌执行结案处理。
: 注:部分作了微调,如“社群认可的...见解”与“由这样的见解所形成的共识”语义不免累赘,去其一;鉴于本地工作是录入原始文献,因此合并或重定向关键还是看原始文献的情况,也并不必须由管理员执行,因此似不必在管理员事务流程中作太细的约束(这不是说删除讨论就不处理这些事,只是说它是一个只要共识了一般谁处理都问题不大的事);加入对部分情况联系第三方管理员处理的要求,作为根据指引提出的但书的抵冲。 银色雪莉(留言) 2025年7月10日 (四) 13:58 (UTC)回复
: 我对此修改案不持有反对意见。 ——— 红渡厨(留言・贡献) 2025年7月10日 (四) 14:43 (UTC)回复
: 微调表述,本意不变。--银色雪莉(留言) 2025年7月10日 (四) 15:46 (UTC)回复
: 目前暂无明显反对意见,征询在本件参加讨论较多的@Midleading、Ericliu1912意见,看接下来是作公示7日还是需要走投票?--银色雪莉(留言) 2025年7月19日 (六) 14:56 (UTC)回复
: 我再調整了一下行文。此案已可考慮交付公示。—— Eric Liu(留言) 2025年7月19日 (六) 21:55 (UTC)回复
以2.0案及其后“情况更新”修正案,公示7日。--银色雪莉(留言) 2025年7月20日 (日) 12:31 (UTC)回复
: 恕我現在才發表一點懶人懶言,反對「通知第三方管理員」一點。一是比如說很長的討論本來確定「共識」就很難;二是即使管理員少,我個人也沒見過各種語言各項目還要這一步(即使真有也相信為極少數),這一步驟相當多餘;三是對可能對管理員造成通知地獄,反而會令人心生厭煩。 Zhxy 519(留言) 2025年7月20日 (日) 15:08 (UTC)回复
: @Zhxy 519:不否认共识的形成有时确实是困难的,但“共识并不强求一致”,关键还是能否有言之有理的意见,没有什么规章制度是能完全回避需要下判断的风险的,制度上谨慎一点总是对各方(包括管理员)都是一种保障,也避免了角色冲突,程序上至少通顺些。要求由第三方管理员关闭页面存废类型的讨论见诸于百科的w:WP:CLOSEAFD,而更进一步要求“请求未涉事的第三方管理员处理事件”的类似规定也见诸于w:WP:避嫌和本地的Wikisource:管理员#避嫌,我想百科作为中文维基项目中体量最大也确乎在头面地位的项目,如果要算作是“极少数”,那应该是很有力的“极少数”——但我认为“通知第三方”是可以透过Wikisource:請求管理員幫助页面提出而非一定要ping每个人或是在每个人的讨论页中留言(如果我们能就这一点达成共识,我不反对在行文中在“通知第三方管理员”处加入“(如Wikisource:請求管理員幫助)”的说明字样,这种举例在w:WP:避嫌也有出现——当然如果谁喜欢ping人那也是自由的),而且后续的一定条件下两周四周允许涉及提报的管理员自行斟酌处理也已经充分松动——这种情况下,要求通知第三方,我认为是合理的安排。 银色雪莉(留言) 2025年7月20日 (日) 15:43 (UTC)回复
: 一和三綜合一下,我尊重參與討論的用戶在討論過長而其實已經有一定共識的情況下,在討論最下方以非ping的方式告知全體管理員(而非刻意強調第三方),也認可這是非常友善的做法,唯獨不贊成去Wikisource:請求管理員幫助,因為太繞遠了。第二點從規則來講,遵守沒有問題,我也同意今後管理員本人提刪等待四週,但是和專門「通知」還是不一樣的。 Zhxy 519(留言) 2025年7月20日 (日) 20:11 (UTC)回复
: 想了想,修訂重點放在避嫌,應該可以將「通知第三方管理员代為结案」改為「等待第三方管理员代為结案(亦可主動通知)」?後面的「惟若自通知起两周后(对自己就其去留表态的页面)或四周后(对自己提报的页面)仍无第三方管理员处理时」,則可以改為「幾日以後沒有表達新立場的留言」之類,再看怎麼措辭。—— Eric Liu(留言) 2025年7月21日 (一) 00:34 (UTC)回复
: @Zhxy 519、Ericliu1912:外游刚结束,才能回复两位。原“通知”并没有明确指明要以何种方式通知,我并不反对在讨论下方通知(或“告知”),我自己在Wikisource:版權討論#4月也这么处理,后续处理者正是Zhxy 519,这同样是我认为的“通知”的一种。同意“修订重点放在避嫌”,因此相关约束并不是约束任意“參與討論的用戶”,而是约束“提报,或曾对其去留表态”的管理员,不允许他们自行在无共识的情况下概括共识或太早的情况下就结案,这会导致角色冲突;因此与其说是所谓“刻意强调第三方”,倒不如说“前述的情况下尽可能由其他管理员处理(除非已经历一定前提下的一定时长),至于是在讨论下方告知还是如何通知,这是个人选择的事,没有人可能禁止别人或要求别人去什么地方通知”。我认为可以将“...而当共识形成时”以后的内容改为「亦应在讨论下方公示并等待或通知第三方管理员代為结案;惟若自公示起两周后(对自己就其去留表态的页面)或四周后(对自己提报的页面)仍无第三方管理员处理时,该管理员則可依共识自行斟酌执行结案处理。」 银色雪莉(留言) 2025年7月24日 (四) 02:56 (UTC)回复
: 通知為自願,文庫用戶做沒有問題,但是不必強制明文化,所以Eric Liu的寫法明顯更好,因為不是「應」。 Zhxy 519(留言) 2025年7月24日 (四) 17:12 (UTC)回复
: 请仔细阅读“等待或通知”——阁下总不会觉得连等待也是“自愿”吧?至于“公示”,作一个宣示是应该的,有利于自此开始计算时间节点。还有,文库普通用户怎么做并没有在这里被约束——这里是约束诸位身兼管理员权限者在自己提报或参与讨论时,以免出现角色冲突,这我此前讲过多次了,所以“文库用户”当然不必“强制明文化”,但我们也并不是在约束广义上的“文库用户”。
: 事实上Eric Liu的写法也没有改动“亦应”,他是从“通知”两字开始改动的,我与他的方案在意义上并无差别,“公示”的部分则是为了回应其后半部分的“再看怎么措辞”,不作“应”公示的设定则时间节点计算无从谈起。另外,我考虑了一下,既然提到了公示,那么参考w:WP:7DAYS,补充如下:「亦应在讨论下方公示并等待或通知第三方管理员代為结案;惟若自公示起两周后(对自己就其去留表态的页面)或四周后(对自己提报的页面)仍无第三方管理员处理时,该管理员則可依共识自行斟酌执行结案处理,但公示期间若有言之有理的见解,公示期应中止,继续讨论相关见解直至共识形成,则可重行公示共识,此前公示时间不累计。」 银色雪莉(留言) 2025年7月25日 (五) 02:46 (UTC)回复
: 他是从“通知”两字开始改动的不假,不過這樣就更好地規避了通知的強制性。要麼通知要麼等待,也還是比一個括號裡的可字強制性更強。所謂公示我認為這裡和通知是差不多的東西,更不必刻意去寫。 Zhxy 519(留言) 2025年7月25日 (五) 16:58 (UTC)回复
: 第一,不管上述哪种表述,管理员都可以选等待,没有人强制你选“通知”,选等待是合规的,我看不出阁下称“强制性更强”的论理依据——除非阁下认为应该允许管理员对自己在版权討論或删除讨论中所提报,或曾对其去留表态的页面采取其他做法,那么请阁下把这种做法说出来大家参详。第二,提报或表态的管理员完全可以不做公示,但这些管理员就不应该被允许——即便在相隔一定时间后——自行结案,因为那就是角色冲突的不避嫌。我再改一版吧:
: 「...管理员对于自己在版权討論或删除讨论中所提报、或曾对其去留表态的页面,均應迴避以管理员身份處理该页面,须等待(亦可通知)第三方管理员进行处理。惟当页面的处理共识已清晰时,提报或曾对其去留表态的管理员可在讨论下方公示这一共识,若自公示起两周后(对自己就其去留表态的页面)或四周后(对自己提报的页面)仍无第三方管理员处理时,该管理员才可依共识自行斟酌执行结案处理;但公示期间若有言之有理的见解,公示期应中止,继续讨论相关见解直至共识形成,则可重行公示共识,此前公示时间不累计。」 银色雪莉(留言) 2025年7月25日 (五) 18:49 (UTC)回复
: 另,公示与通知显著不同,不写,则时点无从计算,也留下了随意计算时间的空子。我还是那句话:提报或表态的管理员完全可以不做公示,没有任何规定相逼这些管理员要这么做——那就在该件中不要由自己结案就好,踏踏实实做一个普通用户,回避对其以管理员身份操作,这不是什么难以办到的事。 银色雪莉(留言) 2025年7月25日 (五) 18:54 (UTC)回复
: 總歸都是等四週,那麼等待就不僅是合規,而是必須的,通知不過是為了加快速度的的可選項。我現在認為閣下前一版幾乎沒提公示,現在提出十分突兀,具體就公示一點我現在想看看其他人怎麼想。 Zhxy 519(留言) 2025年7月28日 (一) 13:38 (UTC)回复
: 如果提案或表态的管理员有结案的意思,那么等待四周(或两周)是必须的,问题在于从什么时候开始算这个等待,不能自由心证,否则只仍然是造成角色冲突,而公示就是一种时间节点的宣示。在讨论中不断精进案文、提出修正案并供讨论是正常的,并无任何人称就即刻要以此案生效或不经讨论就推进修订,因此难称为“突兀”;我完全赞成征求其他意见,在此除了有劳@Midleading、Ericliu1912、Teetrition、Liuxinyu970226、红渡厨等曾在本件中发言的用户审视外,也继续请其他用户审视经讨论和修改后的案文,并提议可在顶端布告此事的讨论。 银色雪莉(留言) 2025年7月28日 (一) 14:28 (UTC)回复
: @银色雪莉我其实有条件支持“通知第三方管理员”,条件如下(任意一项):
: 1.当相关被提删稿件至少有插入一张共享资源图片时,因为显而易见如果这种情况稿件侵权了,那么66.666%概率图片也侵权了(非得纠结剩下33.334%么)
: 2.当有关稿件系从维基百科等外站导入时(且需在源站自创建之日起有一些后续可信编辑)
: 3.当有关稿件实质调用维基数据相关结构化数据时(而不只是被维基数据跨语言链接到,那种太普遍了) Liuxinyu970226(留言) 2025年8月9日 (六) 04:29 (UTC)回复
: @Liuxinyu970226:我的第三方管理员,指的是站内的管理员,目的是约束站内管理员在此类站务上避免角色冲突。所以我不太了解这和您提到的条件的关联性,能否详细说明一下? 银色雪莉(留言) 2025年8月9日 (六) 04:54 (UTC)回复
Sister Projects Task Force reviews Wikispore and Wikinews
[编辑]
最新留言:1个月前1条留言1人参与讨论
親愛的維基媒體社群,
維基媒體基金會理事會的社群事務委員會 (CAC)指派姊妹專案工作小組 (SPTF)更新並實施一套評估姊妹專案(即由維基媒體基金會 (WMF)支援的維基媒體計劃)生命週期的程序。
維基媒體運動始終秉持著提供相關、可訪問且具有影響力的自由知識願景。隨著維基媒體專案生態系統的不斷發展,我們必須定期審查現有專案,以確保所有專案仍然符合我們的目標和社群能力。
儘管有些維基媒體專案的初衷崇高,但這些專案可能不再有效地服務於其最初的目標。審查此類專案並非放棄,而是對共享資源進行負責任的管理——志願者的時間、員工支援、基礎設施和社群關注都是有限的,而隨著我們的生態系統進入一個與我們最初創立時不同的網路時代,非技術成本往往會大幅增長。支持不活躍的專案或未能實現我們目標的專案,可能會無意中將這些資源從更具潛在影響力的領域轉移。
此外,維護那些不再體現維基媒體名稱所代表的品質和可靠性的專案會帶來聲譽風險。一個被放棄或可靠性下降的專案會影響人們對維基媒體運動的信任。
最後,如果不停止或重新規劃那些不再有效的維基媒體專案,啟動新專案將變得更加困難。當社群感到被過去的每一個決定所束縛——無論這些決定多麼過時——我們就有可能陷入停滯。一個健康的生態系統必須允許進化、適應,並在必要時放手。如果我們期望每個維基媒體專案都必須無限期地存在,我們就會限制實驗和創新的能力。
因此,姊妹專案工作小組審查了兩項關於姊妹專案生命週期的申請,以進行研究並示範審查流程。我們選擇 Wikispore (維基孢子) 作為可能啟動新姊妹專案的案例研究,並選擇維基新聞作為現有專案審查的案例研究。初步調查結果已在 2024 年 9 月 11 日的社群事務委員會會議上進行了討論,社群事務委員會建議就這兩項提案進行社群諮詢。
Wikispore (維基孢子)
[编辑]
以Wikispore (維基孢子)為新姊妹專案的申請已於2019年提交。姊妹專案工作小組決定更深入地審查此申請,因為 Wikispore (維基孢子)不像大多數新姊妹專案提案那樣專注於特定主題,而是有潛力培養多個新創的姊妹專案。
經過仔細考慮,姊妹專案工作小組決定不推薦 Wikispore (維基孢子)作為維基媒體姊妹專案。考慮到目前的活動水平,目前的安排允許更好的靈活性和實驗性,而維基媒體基金會則提供核心基礎設施支援。
我們認同該專案的潛力,並尋求社群意見,以確定什麼樣的活動和參與度才算足夠,以便在未來重新考慮其地位。
作為審查過程的一部分,我們與 Wikispore (維基孢子)社群分享了這項決定,並邀請了社群領導人之一 Pharos 參加姊妹專案工作小組會議。
目前,我們特別邀請大家就專案準備情況提供可衡量的回饋,例如貢獻者數量、內容量以及持續的社群支援。這將充分闡明開設新姊妹專案的標準,包括未來 Wikispore (維基孢子)可能會重新申請。然而,這些數字只是提供指導作用,因為任何數字都可能被操縱。
維基新聞
[编辑]
在現有的維基媒體姊妹專案中,我們選擇對維基新聞進行審查,因為我們從多方面觀察到維基新聞是最受關注的專案。
自 2023 年姊妹專案工作小組成立以來,其成員一直在會議和社群線上會議上就未履行維基媒體運動承諾的姊妹專案徵求社群意見。 維基新聞是評估的主要候選專案,因為來自多個語言社群的人們提出了這項建議。此外,從大多數指標來看,維基新聞是最不活躍的姊妹專案,多年來活動量下降幅度最大。
雖然語言委員會定期開放和關閉姊妹專案的小語種版本,但從未有人提出關閉主要語言維基百科或任何英語姊妹專案的有效提案——維基新聞則並非如此。曾有人提議關閉英文維基新聞,該提議獲得了一些支持,但並未最終付諸行動,此外同時有一份關閉所有語言維基新聞的提案草案。
維基媒體基金會工作人員編製的初步指標同時佐證了維基媒體運動社群對維基新聞的擔憂。
基於此報告,姊妹專案工作小組建議社群重新評估維基新聞。我們得出的結論是,維基新聞目前的結構和活躍度在現有姊妹專案中最低。姊妹專案工作小組同時建議在諮詢期間暫停新語言版本的開放。
姊妹專案工作小組將對此分析進行討論,並歡迎討論其他替代方案,包括潛在的重組措施或與其他維基媒體專案整合。
目前提到的選項(可能僅適用於活躍度較低的語言或所有語言)包括但不限於:
重構維基新聞的運作方式,並將其與其他專案中的時事工作連結起來;
將維基新聞的內容合併到相關語言的維基百科中,亦可能合併到新的命名空間中;
將內容合併到相容授權的外部專案中;
封存維基新聞專案。
您的見解和觀點對於塑造這些專案的未來至關重要。我們鼓勵所有有興趣的社群成員在相關討論頁面或其他指定的回饋管道分享他們的想法。
回饋與後續步驟
[编辑]
如果您有意參與討論這些專案的未來發展和審核流程,我們將不勝感激。我們正在設定兩個不同的專案頁面:關於維基孢子的公眾諮詢和 關於維基新聞的公眾諮詢。請在2025年6月25日至2025年7月27日之間參與,屆時我們將總結討論內容,以便推進後續工作。您可以使用自己的語言撰寫意見。
同時,我將於7月16日星期三11:00(世界協調時間)和7月17日星期四17:00(世界協調時間)主持社群對話(通話連結即將發布),並將在維基媒體國際會議上進行更多討論。
-- Victoria on behalf of the Sister Project Task Force, 2025年6月27日 (五) 20:57 (UTC)回复
部分文档的标题长度超出MediaWiki允许的上限
[编辑]
最新留言:1个月前7条留言5人参与讨论
部分文档的标题长度已超出MediaWiki的页面标题长度上限(即255字节),例如中华人民共和国国务院公报/2022年/第24号中的和中华人民共和国最高人民法院公报/2023年#第5期(总第321期)中的。这些页面应当如何命名? dringsim 2025年6月30日 (一) 11:32 (UTC)回复
: 可以考慮比照維基百科,建立一種技術限制的命名及標註方式。當然MediaWiki如果能放寬,那是最好,但應該不太可能😅 —— Eric Liu(留言) 2025年6月30日 (一) 11:45 (UTC)回复
: 用{{long title}}模板即可。可参考全国人民代表大会常务委员会关于延长授权国务院在北京市大兴区等二百三十二个试点县(市、区)、天津市蓟州区等五十九个试点县(市、区)行政区域分别暂时调整实施有关法律规定期限的决定。 Ewan0707(留言) 2025年6月30日 (一) 15:03 (UTC)回复
: 可以用阿拉伯数字,如全国人民代表大会常务委员会关于延长授权国务院在北京市大兴区等232个、天津市蓟州区等59个试点县级行政区域分别暂时调整实施有关法律规定期限的决定。 西城東路(留言) 2025年7月3日 (四) 03:13 (UTC)回复
: 我给出的例子都没有数字。 dringsim 2025年7月3日 (四) 12:52 (UTC)回复
: 話說這種法規有沒有官方或常用簡稱啊?—— Eric Liu(留言) 2025年7月4日 (五) 12:21 (UTC)回复
: 到字数截断就可以了,除非到字数截断会导致重名(在255字节之后才有差异的情况)。即便有上方被移动的例子(先不去讨论这个移动是否合理),显然不是所有标题里都有数字,也不是所有数字都适合改成阿拉伯数字。 --达师 - 370 - 608 2025年7月5日 (六) 09:49 (UTC)回复
2025年第27期技術新聞
[编辑]
最新留言:1个月前1条留言1人参与讨论
維基媒體技術社群現在發布最新的技術新聞。請告知其他用户這些更改;不是所有的更改都會對您造成影響。技術新聞提供其他語言的翻译版本。
本週要聞
所有維基百科現皆已啟用CampaignEvents擴充功能。該擴充功能讓維基人更容易在維基上舉辦參與編輯松、維基專題等協作活動。該擴充功能有三大功能:活動報名、協作清單和邀請名單。若其他維基想啟用該擴充功能,請見部署資訊頁的說明。
近況更新 - 面向編輯者
防濫用過濾器維護者現在可以在防濫用過濾器中設定匹配IP信譽資料的規則。IP信譽資料是與IP位址關聯的代理和VPN資訊。IP信譽資料不會公開顯示,也不會因一般使用者所執行的操作而產生。
現在,當有人在支援的瀏覽器中使用網頁瀏覽器的「在網頁中尋找」功能(Ctrl+F或⌘F)時,維基頁面中可摺疊部件內的隱藏內容會自動展開來。
本週稍晚,新功能「收藏模板」將在所有專案推出(英語維基百科除外,預定下週推出)。該功能先前已在波蘭語和阿拉伯語維基百科、義大利語和英語維基文庫試行推出。使用者可以用該功能將模板加入「收藏清單」,方便新手和資深貢獻者透過模板對話框來調用和探索模板。視覺化編輯器和wikitext編輯器中均可使用該功能。該功能屬於社群願望清單的一個重點領域。
上週有31件社群提交的工單得到解決。 例如,先前有個錯誤導致通知重複發送,此問題現已修正。
近況更新 - 面向技術貢獻者
本週軟體更新細節: MediaWiki
技術新聞由技術新聞編者準備,並由機器人送達 • 貢獻 • 翻譯 • 获取帮助 • 提供反馈 • 訂閱或退訂。
MediaWiki message delivery 2025年6月30日 (一) 23:40 (UTC)回复
為使用者命名空間禁止索引事
[编辑]
最新留言:3天前13条留言8人参与讨论
有些編者會將待錄入或待整理文獻放在自己的使用者子頁面,也有不少使用者頁面是為了其他個人用途。這些頁面多半不是正式的內容頁面,但在網路上能夠搜尋,可能引發讀者誤會(比方說我今天搜鄧小平「復出」決議就搜到某篇沙盒)。所以本人希望比照百科經驗,推動使用者命名空間一律禁止索引(NOINDEX)。以上,請社群商議。—— Eric Liu(留言) 2025年7月1日 (二) 11:42 (UTC)回复
: 支持 Teetrition(留言) 2025年7月1日 (二) 11:52 (UTC)回复
: 支持,以免误导。 银色雪莉(留言) 2025年7月2日 (三) 13:15 (UTC)回复
: 支持 dringsim 2025年7月3日 (四) 12:52 (UTC)回复
: 支持 本人的已废弃沙盒里保存着未校订的修真十书上清集,因为主命名空间未录入,导致该废弃沙盒浏览量高。 Midleading(留言) 2025年7月3日 (四) 13:22 (UTC)回复
: 这个已经对站外用户造成误导了。 GZWDer(留言) 2025年7月4日 (五) 09:00 (UTC)回复
: 题外话:这好像确实是那本词典的内容?( 银色雪莉(留言) 2025年7月4日 (五) 09:14 (UTC)回复
: 这些页面已经提交过删除讨论。目前正在等待@Jusjih:检查是否重复内容再删除,但是Jusjih无回应。 Midleading(留言) 2025年7月4日 (五) 09:25 (UTC)回复
: 哪些页面已经提交过删除讨论?--Jusjih(留言) 2025年7月18日 (五) 18:03 (UTC)回复
: @Jusjih:Special:前缀索引/User:A-Chioh/的所有页面。 Midleading(留言) 2025年7月21日 (一) 09:17 (UTC)回复
社群似有共識,據此公示七日。—— Eric Liu(留言) 2025年7月11日 (五) 05:20 (UTC)回复
: 再等幾天看看。—— Eric Liu(留言) 2025年7月23日 (三) 06:54 (UTC)回复
: @Ericliu1912别等了,直接Phabricator一日游不更好,再等黄花菜都凉了。 Liuxinyu970226(留言) 2025年8月9日 (六) 04:58 (UTC)回复
制订机器人方针
[编辑]
最新留言:29天前10条留言5人参与讨论
现时维基文库:机器人除“机器人提议”和“机器人注册”2个讨论串外,仅规定“本wiki允许全局机器人和自动批准的机器人”,而没有其它规定。经审视本站各机器人账号,发现以下问题:
有的机器人未经批准就添加任务;
有的机器人长期不活跃,机器人账号可以远高于人类编辑的速率操作,编辑和日志操作默认从最近更改中隐藏,此类账号若被盗而用于破坏将造成更大危害,因此如同IP封禁豁免者和管理员等一样,长期闲置的账号应收回权限;
有的机器人获批的任务已不能再执行(例如维护跨语言链接等),早应收回权限;
有的机器人没有在用户页使用{{Bot}}正确标注信息。
不活跃超过1年的机器人
| 机器人账号 | 所有者 | 最后编辑时间 | 用途 | IP封禁豁免 |
| 350bot | Fish bowl | 2024-05-03 | 经人工审批写入生僻字 | |
不活跃超过2年的机器人
| 机器人账号 | 所有者 | 最后编辑时间 | 用途 | IP封禁豁免 |
| CrowleyBot | Crowley666 | 2021-10-11 | Wikisource:写字间/存档/2021#关于删除wikisource名字空间下所有跨名字空间重定向的提案(任务已完成?) 用Wikidata取代跨语言链接(任务已完成?) 未经批准运行错字修正等任务 | 是 |
| Njzjzbot | Njzjz | 2023-01-06 | 导入国家法律法规数据库 | |
| Yinyue200Bot | Yinyue200 | (从未运行,2022-09-04取得权限) | 导入国务院文件 | 是 |
不活跃超过5年的机器人
| 机器人账号 | 所有者 | 最后编辑时间 | 用途 | IP封禁豁免 |
| Alexbot | Alexsh | 2009-11-15 | 双重重定向修复 跨语言链接(不再适用) (机器人用户页列出了其它任务,但没有经过批准) | |
| AvicBot | Avicennasis | 2020-02-20 | 双重重定向修复 跨语言链接(不再适用) | |
| AvocatoBot | Avocato | 2012-09-16 | 跨语言链接(不再适用) (未能查询到批准记录及权限日志,属自动批准?) | |
| Interwiki-Bot | DeirdreAnne | 2011-03-05 | 跨语言链接(不再适用) (自动批准) | |
| KtBot | KaiesTse | 2009-01-24 | “协助导入工作”,实际执行修正标点等任务 | |
| Liangent-bot | Liangent | 2012-04-05 | 录入文本等 | |
| P-bot | PhiLiP | 2011-04-13 | (未能查询到批准记录,由原行政员Vipuser授权) | |
| Vizbot | Viztor | 2019-08-15 | 替换过期的模板、进行格式性修正等 | |
| Wikisource-bot | 多名用户 | 2018-08-10 | Wikisource:写字间/存档/2018#Bot_rights_for_User:Wikisource-bot(任务已完成?) | |
| タチコマ robot | とある白い猫 | 2017-03-21 | 双重重定向修复 (未能查询到批准记录及权限日志,属自动批准?) | |
因此,我认为有必要制订一套正式的机器人方针,明确审批程序,并参考w:维基百科:机器人方针引入复核申请、活跃度要求等机制。 dringsim 2025年7月3日 (四) 17:31 (UTC)回复
: 通知其余几位使用机器人的用户:@Kcx36、Liouxiao、Midleading、維基小霸王:(请維基小霸王在Wmr-bot用户页添加{{Bot}}标注机器人操作者信息,谢谢!) dringsim 2025年7月3日 (四) 17:47 (UTC)回复
: 可参考以下站点的活跃度要求:
中文维基百科:机器人超过1年不活跃+一星期通知期
英文维基文库:机器人或用户超过2年不活跃+30天通知期,须回应并运行机器人方可保留权限
日文维基文库:机器人超过1年不活跃
全域机器人:机器人超过1年未在允许使用全域机器人的wiki编辑
: dringsim 2025年7月3日 (四) 17:55 (UTC)回复
: 结合本站活跃度,理解超过2年不活跃的标准比较妥当? Teetrition(留言) 2025年7月4日 (五) 02:01 (UTC)回复
: 本站IP封禁豁免者目前是没有活跃度方针的,允许长期闲置。建议要求通知不活跃机器人,本地缺乏行政员,重新授权会导致机器人重新启用延迟。本站很多页面分类通过header模板中theme参数录入,而不是直接添加分类,因此必须使用机器人而不是小工具才能进行批量维护,至少本人和維基小霸王正在把机器人权限作为自动维基浏览器权限使用以维护大量页面,标记含有{{PUA}}的页面,录入原文等等。而且有些机器人(至少包括本人和維基小霸王)正在维基共享资源执行耗时很长的大批量上传和维护,可能会需要2年甚至更长时间。本地看不到这些贡献,但不代表这些机器人在本地不再活跃或者账号被盗。 Midleading(留言) 2025年7月4日 (五) 04:02 (UTC)回复
: 在其它wiki运行即表明仍然控制账号,但如果是超过2年在各wiki都完全没有活动,我认为仍然要认定为闲置账号,此时虽有重新启用延迟,但继续保留权限的好处恐不足以抵消其风险。 dringsim 2025年7月4日 (五) 04:57 (UTC)回复
: 另外如果通知后仍长期未回应,则表明用户近期无意继续使用该权限,宜需要时再重新申请权限。 dringsim 2025年7月4日 (五) 05:02 (UTC)回复
: 考慮本站實況,本人認為可以設定一段活躍門檻(比方說兩年?),但同時引進通知制度,即若機器人操作者於期限內明確表達希望保留權限(且未有不當行為),則一般從其意願。這樣可以確保操作者足夠活躍,或至少能夠掌握機器人。至於是否要計入全域活躍程度,本人沒有特別意見。—— Eric Liu(留言) 2025年7月4日 (五) 05:01 (UTC)回复
: 个人支持Teetrition上面说的2年意见,不过建议有管理员权限的机器人应该有比此适度更短的活跃期要求。 Liuxinyu970226(留言) 2025年7月14日 (一) 04:12 (UTC)回复
: 另外,如果机器人出现任务已结束、运行未批准的任务等情况,也应当能被申请复核。 dringsim 2025年7月4日 (五) 05:28 (UTC)回复
接受 维基文库:繁简处理 成为指引
[编辑]
最新留言:21天前5条留言4人参与讨论
本主題或以下段落文字,在討論結束後應存檔至Wikisource talk:繁简处理。
维基文库:繁简处理已经使用一年半,且未见到有用户作出重大修改,因此询问社群是否支持其成为维基文库指引。 Midleading(留言) 2025年7月7日 (一) 07:21 (UTC)回复
: 支持。 Liouxiao(留言) 2025年7月7日 (一) 10:01 (UTC)回复
: 支持。另,在下微调了下语序,应该没有破坏原意,请阁下看看妥否。 银色雪莉(留言) 2025年7月7日 (一) 12:29 (UTC)回复
: 支持没啥说的。 Liuxinyu970226(留言) 2025年7月14日 (一) 04:48 (UTC)回复
已經正式成為指引 Midleading(留言) 2025年7月21日 (一) 17:38 (UTC)回复
2025年第28期技術新聞
[编辑]
最新留言:1个月前1条留言1人参与讨论
維基媒體技術社群現在發布最新的技術新聞。請告知其他用户這些更改;不是所有的更改都會對您造成影響。技術新聞提供其他語言的翻译版本。
本週要聞
臨時帳號已部署至18個中大型維基百科,包括中文、德語、日語、法語等。現在,所有維基中約有三分之一的非登入活動來自臨時帳號。參與巡查的使用者可能會對下列新說明文件感興趣:對IP的存取——解釋與存取臨時帳號IP位址相關的所有事項;資源庫——內有新的小工具和腳本的清單。
近況更新 - 面向編輯者
所有使用者現在可以遊玩一個測試階段遊戲,維基競速(WikiRun),玩法為在維基百科裡競速,用最短時間和最少點擊數到達目標頁面。這個專案旨在開發吸引讀者的新方式。試玩遊戲並回報你的想法給開發團隊。
在Android版維基百科APP,部分語言的使用者現在可以遊玩全新推出的問答遊戲。「Which came first?」是一個簡單的歷史遊戲,讓玩家猜測歷史上的今天發生的兩個事件中,哪一個較早發生。這款遊戲之前以A/B測試的形式提供。現在,所有中文、英語、德語、法語、西班牙語、葡萄牙語、俄語、阿拉伯語和土耳其語使用者均可遊玩。此功能旨在吸引新世代的讀者。
部分語言的iOS版維基百科APP使用者可能會中見到新推出的分頁瀏覽功能,閣下可使用此功能在瀏覽時打開多個分頁。此功能使得瀏覽相關主題和切換瀏覽條目變得更便捷。此功能的A/B測試會推送至特定地區的阿拉伯語、英語和日語使用者。更多詳情請見本項目頁面。
維基行政員現可使用Special:VerifyOATHForUser檢查使用者是否啟用雙重驗證。
新功能模板分類瀏覽器將於本週稍晚部署至所有維基媒體專案,協助用戶將模板加入至收藏列表。此瀏覽器將允許用戶在給定分類樹視圖下瀏覽一系列模板。此功能由社群透過社群願望清單所要求,屬於重點領域「模板調用和探索」。
現可從監視清單訪問監視清單設置,冗餘的編輯清單按鈕已被移除。
上週有27件社群提交的工單得到解決。
近況更新 - 面向技術貢獻者
MediaWiki 1.44版本中新增了統一的內建通知系統,讓開發者更容易發送、管理和自訂通知。請參閱更新說明文件Manual:Notifications、T388663中關於遷移的資訊、以及T389624中關於已廢棄勾點的詳細資訊。
本週軟體更新細節: MediaWiki
會議與活動
2025年維基數據雙年會現已開放報名和會議環節提案。本次活動定于10月31日至11月2日線上舉行,探索主題“鏈動開放數據,促進人際連結”(Connecting People through Linked Open Data)。
技術新聞由技術新聞編者準備,並由機器人送達 • 貢獻 • 翻譯 • 获取帮助 • 提供反馈 • 訂閱或退訂。
MediaWiki message delivery 2025年7月8日 (二) 00:05 (UTC)回复
Wikidata Item and Property labels soon displayed in Wiki Watchlist/Recent Changes
[编辑]
最新留言:29天前1条留言1人参与讨论
(Apologies for posting in English, you can help by translating into your language)
Hello everyone, the Wikidata For Wikimedia Projects team is excited to announce an upcoming change in how Wikidata edit changelogs are displayed in your Watchlists and Recent Changes lists. If an edit is made on Wikidata that affects a page in another Wikimedia Project, the changelog will contain some information about the nature of the edit. This can include a QID (or Q-number), a PID (or P-number) and a value (which can be text, numbers, dates, or also QID or PID’s). Confused by these terms? See the Wikidata:Glossary for further explanations.
The upcoming change is scheduled for 17.07.2025, between 1300 - 1500 UTC.
The change will display the label (item name) alongside any QID or PIDs, as seen in the image below:
These changes will only be visible if you have Wikidata edits enabled in your User Preferences for Watchlists and Recent Changes, or have the active filter ‘Wikidata edits’ checkbox toggled on, directly on the Watchlist and Recent Changes pages.
Your bot and gadget may be affected! There are thousands of bots, gadgets and user-scripts and whilst we have researched potential effects to many of them, we cannot guarantee there won’t be some that are broken or affected by this change.
Further information and context about this change, including how your bot may be affected can be found on this project task page. We welcome your questions and feedback, please write to us on this dedicated Talk page.
Thank you, - Danny Benjafield (WMDE) on behalf of the Wikidata For Wikimedia Projects Team. MediaWiki message delivery(留言) 2025年7月14日 (一) 12:46 (UTC)回复
2025年第29期技術新聞
[编辑]
最新留言:28天前1条留言1人参与讨论
維基媒體技術社群現在發布最新的技術新聞。請告知其他用户這些更改;不是所有的更改都會對您造成影響。技術新聞提供其他語言的翻译版本。
近況更新 - 面向編輯者
新功能精選模板(featured templates)將於本週部署至所有維基媒體專案。透過此功能,編輯者將能夠快速存取實用模板的清單。這些模板將在模板探索介面的「精選」標籤下的清單中顯示。管理員可以透過社群配置介面定義該清單。此功能滿足了社群透過社群願望清單提出的請求,為重點領域「模板調用和探索」的一部分。
上週有31件社群提交的工單得到解決。 例如,在維基文庫電子書匯出工具中加入馬拉雅拉姆文字型的請求現已解決。現在,該工具所匯出的維基文庫電子書將正確呈現馬拉雅拉姆文字母。
近況更新 - 面向技術貢獻者
本週軟體更新細節: MediaWiki
深入了解
歡迎開發者、設計師和所有維基人為2025年維基媒體國際會議黑客松提交專案構想。參閱這篇Diff文章了解更多。
會議與活動
2025年WikiIndaba獎助金申請與議程提案至7月20日 23:59 UTC截止。WikiIndaba是一個區域會議,旨在讓非洲大陸和散居海外的非洲維基人團結一致,共同成長。立即提交您的獎助金申請和議程提案!
2025年巴西維基會議將於7月19日至20日在巴西巴伊亞州薩爾瓦多市舉行。歡迎巴西社群成員報名參加!
技術新聞由技術新聞編者準備,並由機器人送達 • 貢獻 • 翻譯 • 获取帮助 • 提供反馈 • 訂閱或退訂。
MediaWiki message delivery 2025年7月14日 (一) 20:09 (UTC)回复
政治人物談話的版權
[编辑]
最新留言:27天前3条留言2人参与讨论
看到有人提報朱鎔基談話是否侵犯版權。想就這一問題展開一定的探討。
PRC方面,關於政治人物的談話,有{{PD-PRC-exempt}} 中华人民共和国公务演讲,不总是具有立法、行政、司法性质的文件。但二者的邊界是什麽?
ROC方面,關於政治人物的談話,有{{PD-ROC-exempt}}所以自從1947年(民國三十六年)12月25日中華民國憲法施行以來,各政黨黨務作品,不能認為公文。其中的黨務作品和公文,邊界是什麽。
請各位提出看法,謝謝! Lemonaka(留言) 2025年7月16日 (三) 13:37 (UTC)回复
: 第一个问题的边界,主要基于中华人民共和国著作权法第十一条第三款和第十八条及其他可能相关的条文内容来区分。朱镕基一件的情况,属于第十八条中的一般职务作品。 银色雪莉(留言) 2025年7月16日 (三) 14:04 (UTC)回复
: 特別地,民國的著作權法在 著作權法_(民國111年5月立法6月公布) Lemonaka(留言) 2025年7月16日 (三) 14:15 (UTC)回复
為版權容忍模板移除附編輯標籤事
[编辑]
最新留言:26天前2条留言2人参与讨论
不知目前是否有此類標籤?若無,希望能夠增設,以應對部分尚未進入公有領域而以懸掛模板代替之文章的可能變動。—— Eric Liu(留言) 2025年7月17日 (四) 11:39 (UTC)回复
: 说实话,阁下这句话我看了好几遍才大概知道意思而且还不确定我理解得对不对。 Teetrition(留言) 2025年7月17日 (四) 14:05 (UTC)回复
請支援臺灣
[编辑]
最新留言:23天前5条留言2人参与讨论
個兄弟姊妹好,本項目存在各類大陸地方的公文,然而臺灣對應的公文著實過少,我查閲了一些刊載臺灣公文的網站,希望個位朋友能伸出手來支援臺灣。謝謝。
臺北
新北
新竹
桃園
持續更新中 Lemonaka(留言) 2025年7月19日 (六) 12:38 (UTC)回复
: 臺中
臺南
高雄高雄市政府電子公報資訊網
: 總統府 Lemonaka(留言) 2025年7月19日 (六) 12:42 (UTC)回复
: @Ericliu1912 @Jusjih特ping經常處理民國問題的朋友們。 Lemonaka(留言) 2025年7月19日 (六) 12:45 (UTC)回复
: 自動輸入是不可能,頂多先建立基礎分類架構。—— Eric Liu(留言) 2025年7月19日 (六) 20:12 (UTC)回复
: 另外,政府公報資訊網有各種中央及地方政府公報,包含上述全部在內。—— Eric Liu(留言) 2025年7月19日 (六) 21:43 (UTC)回复
2025年第30期技術新聞
[编辑]
最新留言:21天前1条留言1人参与讨论
維基媒體技術社群現在發布最新的技術新聞。請告知其他用户這些更改;不是所有的更改都會對您造成影響。技術新聞提供其他語言的翻译版本。
近況更新 - 面向編輯者
內容翻譯工具中的翻譯建議功能現已在「...更多」分類中新增另一級條目篩選器。使用建議功能的譯者現在可以使用新的「Regions」篩選器選擇並接收根據其感興趣的地理位置定制的條目建議。
管理員現在可以將「新增連結」功能限制為僅限新手使用。「新增連結」結構化任務可協助新帳號持有者開始編輯,但一些社群要求該功能應能夠限制於目標受眾:新手。管理員可以在社群配置功能中配置此設定。
上週有29件社群提交的工單得到解決。
近況更新 - 面向技術貢獻者
部分維基的過濾器編輯者,現在可以根據編輯嘗試的回退風險評分來過濾編輯。只有當評估的操作是編輯時,才會產生該評分。更多資訊請參閱 ORES/AbuseFilter變數說明文件。
Beta Cluster維基已從beta.wmflabs.org移至beta.wmcloud.org。使用者可能需要更新工具或密碼管理員中的URL。若有任何相關問題請在此工單回報。
本週軟體更新細節: MediaWiki
會議與活動
2025年WikiCite將於8月29日至31日在瑞士伯恩以線上和線下形式舉行。本次活動旨在重新聯繫從事開放參考資料、書目資料以及Wikidata/Wikibase生態系統工作的社群、機構和個人。活動現開放報名,提案徵集即將公布。
技術新聞由技術新聞編者準備,並由機器人送達 • 貢獻 • 翻譯 • 获取帮助 • 提供反馈 • 訂閱或退訂。
MediaWiki message delivery 2025年7月21日 (一) 23:42 (UTC)回复
请求支援以修正桌面端左侧边栏目录缺失章节的问题
[编辑]
最新留言:21天前3条留言2人参与讨论
请求有经验的编辑人员帮助修正国内邮件处理规则 (1972年)桌面端左侧边栏目录缺失章节的问题。谢谢! HCCB3947(留言) 2025年7月22日 (二) 09:44 (UTC)回复
: 请参见我的修改。同时,建议不要使用<center>标签,它已被规范废弃(未修改该问题),可改用Template:Center。 Teetrition(留言) 2025年7月22日 (二) 11:31 (UTC)回复
: 好的,非常感谢您的贡献和告知! HCCB3947(留言) 2025年7月22日 (二) 12:07 (UTC)回复
台灣分會2025年7月對話時間
[编辑]
最新留言:19天前1条留言1人参与讨论
台灣維基媒體協會2025年7月的對話時間,訂於台灣時間7/27 (日) 14:00舉行,
參與連結為 。
想跟更多台灣維基人互動嗎?不知道台灣有個維基協會,或知道協會但不知道他們平常都在幹嘛嗎?
本次對話時間將聚焦於第二十三次動員令的討論,這是將是讓你深入了解協會運作並參與交流的絕佳機會!快來一起參加!
--MediaWiki message delivery(留言) 2025年7月23日 (三) 14:51 (UTC)回复
2025年第31期技術新聞
[编辑]
最新留言:14天前1条留言1人参与讨论
維基媒體技術社群現在發布最新的技術新聞。請告知其他用户這些更改;不是所有的更改都會對您造成影響。技術新聞提供其他語言的翻译版本。
本週要聞
今後幾個月,社群技術團隊將專注於與監視清單和近期變更頁面相關的願望。團隊正在尋求意見回饋。參閱最新的近況更新,如果您有任何想法,請就相關主題提交願望。
近況更新 - 面向編輯者
經維基共享資源社群決定,自8月16日起,禁止所有未在維基共享資源上擁有自動確認權限的使用者跨維基上傳檔案。此舉是由於新使用者上傳檔案時普遍存在問題。受此影響的使用者將收到一則錯誤訊息,其中包含指向限制較少的維基共享資源上傳精靈的連結。請協助翻譯該訊息或就訊息文字提供回饋。另也請更新您本地維基的說明頁面,以解釋這項限制。
在元維基和已啟用臨時帳號的維基站點上,管理員現在可以為臨時帳號的Special:Contributions頁面設定頁尾,類似於IP和使用者帳號頁面的頁尾。管理員可以透過建立名為MediaWiki:Sp-contributions-footer-temp的頁面來實現。
上週有21件社群提交的工單得到解決。
近況更新 - 面向技術貢獻者
本週軟體更新細節: MediaWiki
會議與活動
2025年維基媒體國際會議將於8月6日至9日舉行。議程現已公布,供您參考規劃您想參加的會議。大多數會議將進行直播,但顯示「無攝影機」圖示的會議除外。如果您想在線上觀看直播並使用互動功能,請報名獲取免費虛擬門票。 例如,您可能會對以下技術會議感興趣:
臨時帳號:增強未註冊編輯者的隱私
為維基媒體貢獻者建立永續未來
wikitext的一打願景!
與產品與技術諮詢委員會協調各方利益相關者
2025年秋季MediaWiki使用者與開發者大會將於2025年10月28日至30日在德國漢諾威舉行。此活動由第三方MediaWiki社群舉辦,並面向該社群。您可以提交會議提案並報名參加。
技術新聞由技術新聞編者準備,並由機器人送達 • 貢獻 • 翻譯 • 获取帮助 • 提供反馈 • 訂閱或退訂。
MediaWiki message delivery 2025年7月29日 (二) 00:26 (UTC)回复
为什么有的分节用pages标签嵌入不出东西?
[编辑]
最新留言:12天前10条留言3人参与讨论
最近整理东西正好看到家里祖传的一本圣遗物(是的,这本书我有实体的),年份也到了,遂录入文库,目前初步录了几章。该书章节是不另起一页的,需要配合标签才能分节嵌入。目前遇到的问题是第四章和第五章的首页(也是上一章的末页)下半部分没法嵌入。例如
<pages index="NLC416-03jh003202-258_天台山指南.pdf" from=34 to=34 onlysection="四"/>,Page页面上是有个章节标题的,但是嵌入又没有东西,二一页(43)下半部分也是这样,我看来看去也实在没看出有什么问题,这是为什么啊? Nanhuajiaren(留言) 2025年7月30日 (三) 00:59 (UTC)回复
: 好像是的,也許是BUG? Liouxiao(留言) 2025年7月30日 (三) 06:46 (UTC)回复
: 类似的问题见討赤旬報/第五期/吳孚威電告西北軍狼狽情形、討赤旬報/第五期/南口懷來兩方戰訊、討赤旬報/第五期/主義殺人(為此而不得不將from頁碼往前一頁),怀疑是前后有未录入的空页+代码BUG导致。另外,pages的onlysection参数好像不起作用。这需要熟悉Module:Pages、Module:Lst代码的人看一下。 Liouxiao(留言) 2025年7月30日 (三) 13:41 (UTC)回复
: 檢查 標籤是否有重複,「四」好像各出現2次?-- Lonicear(留言) 2025年7月31日 (四) 01:51 (UTC)回复
: 我也不会,本地帮助都没有,只好到英文那边现学……按照我理解是这样(一个pre一个页面):
: ```
<section start="三"/>第三章内容<section end="三"/><section start="四"/>第四章内容<section end="四"/>
```
: ```
第四章内容
```
: ……
: ```
第四章内容
```
: ```
<section start="四"/>第四章内容<section end="四"/><section start="五"/>第五章内容<section end="五"/>
```
: 之前也按照这个办法做了几章,好像并没有什么问题? Nanhuajiaren(留言) 2025年7月31日 (四) 09:27 (UTC)回复
: Page 34裡,出現過1次 <section start=四 /> ……… <section end=四 />。Page 43裡,又出現1次 <section start="四"/>……… <section end=四 start=五 />。<section start=四 /> 及 <section end=四 />各出現2次,刪掉Page 34的<section end=四 />及Page 43的<section start=四 />,看看是否會顯示正常?-- Lonicear(留言) 2025年7月31日 (四) 10:43 (UTC)回复
: 都试过,好像不行。 Liouxiao(留言) 2025年7月31日 (四) 12:13 (UTC)回复
: 修改了Page 34、Page 43及四 天台山人物誌的內容,是不是要改成這樣?-- Lonicear(留言) 2025年7月31日 (四) 13:35 (UTC)回复
: 👍哇,好像可以了,沒想到在這個位置start ==> begin。感謝! Liouxiao(留言) 2025年7月31日 (四) 13:42 (UTC)回复
: 昏头了,记错词了……总之谢谢了。 Nanhuajiaren(留言) 2025年7月31日 (四) 14:09 (UTC)回复
关于收录各类审判文书中当事人的姓名、出生日期、地址、身份证号,维基是否有相关的隐私政策规范应当做何种处理?
[编辑]
最新留言:12天前8条留言4人参与讨论
如:杨某诉肖某性骚扰损害责任纠纷一审民事判决书,是否算“侵犯個人隱私”,抑或“違反基金會隱私政策”? Liouxiao(留言) 2025年7月30日 (三) 12:13 (UTC)回复
: 相关的意见可见《从判决书的私人公开看公共记录中的隐私权保护》:“……除此以外可以公开的判决书,也需在公开时采取必要的匿名化措施,以保护当事人的个人信息。” Liouxiao(留言) 2025年7月30日 (三) 12:19 (UTC)回复
: 理论上,根据最高人民法院关于人民法院在互联网公布裁判文书的规定 (2016年) "最高人民法院关于人民法院在互联网公布裁判文书的规定 (2016年)")等,法院在互联网上公布裁判文书时是会遮蔽相应信息的。本件所涉裁判文书现在还没上裁判文书网(我自己暂时没查到),如果说到时上网了是一个处理过的版本,可以考虑用那个版本作替换。但如果说像是“私人公开”或是其他一些情况,我不太确定一线判例对此的看法是否有一个较明确的方向,就算有,在本地层面就具体的件是否适合做什么处理(举个例子(不代表我支持或反对),也许会有“参照相关规定在本地做遮蔽”的提议:赞成的人会认为只要参照相关规定,不自由心证就好;反对的人会认为这与反映原貌的精神相冲突,也会质疑说这个遮蔽实际上无法不自由心证,甚至质疑本地可能不适宜或无法讨论这种事而应该提到基金会——综上,这种讨论恐怕是无果的),基金会的隐私方针多大程度上能够处理这些事以及处理到什么程度,我想这可能真的要找基金会了解才能确定。 银色雪莉(留言) 2025年7月30日 (三) 13:28 (UTC)回复
: 就我个人看法而言,现当前情况中“自然人的家庭住址、通讯方式、身份证号码、银行账号、健康状况、车牌号码、动产或不动产权属证书编号等个人信息”就连《规定》都说了要删去,我觉得本地也其实可以如此——但是这只是我的个人看法,还不成为一种提议,因为就像上面说的,我不知道这能有多大程度的共识或方针支撑,也不确定实际操作的可行性。 银色雪莉(留言) 2025年7月30日 (三) 13:51 (UTC)回复
: 仅仅就这个法律来说(先不考虑是否符合使用条款和通用行为准则),中华人民共和国法律管不到维基文库。 GZWDer(留言) 2025年7月31日 (四) 02:49 (UTC)回复
: 我想我们的意思在这里应该都不是“管到”,而是它在论理上有多高的参考性。 银色雪莉(留言) 2025年7月31日 (四) 03:39 (UTC)回复
: 使用条款和通用行为准则禁止侵犯他人隐私。非公开个人信息应当移除(见全域监督方针)。如果认为这样做会与反映原貌的精神相冲突,可以选择全文删除。 dringsim 2025年7月30日 (三) 15:14 (UTC)回复
: 通用行为准则描述的是sharing other contributors' private information,在没有证据证明当事人编辑过维基媒体计划的情况下不适用。 GZWDer(留言) 2025年7月31日 (四) 02:56 (UTC)回复
现在写字间页面太长
[编辑]
最新留言:12天前1条留言1人参与讨论
需要引入存档机器人。 Fire Ice 2025年7月30日 (三) 21:59 (UTC)回复
关于MidleadingBot识别文件原本上汉字能力及方法的困惑
[编辑]
最新留言:8天前5条留言3人参与讨论
我想上传几本20世纪50至60年代行政机关发布的规章制度类汇编资料(处于公有领域),其中包含繁体字和异体字形,还存在同一页上同一个字有不同字形的情况(如内/內 户/戶 项/項 级/級),不知该机器人能否分辨出?
此外,只需将文件直接上传到维基文库后,便会生成类似File:Sibu_Congkan1613-黃宗羲-南雷集-8-4.djvu的页面,机器人就会自动介入识别文字吗?还是说必须要像这个文件一样,命名成Sibu开头的djvu文件,或是有其他规则?谢谢! HCCB3947(留言) 2025年7月31日 (四) 14:32 (UTC)回复
: 文件需上传到共享維基,假设您的原件是"01.pdf",上传后命名为“Sample.pdf”,则在维基文库可以通过File:Sample.pdf看到并引用。命名的规则参见8个月前Blahhmosh给我的建议——
: 最好加入:文獻出處代码;文獻番號;以及文獻名称、分册编号等等。
: 文件类型我看是 djvu、pdf 都可以,当然基本的单张图片也没问题。 Liouxiao(留言) 2025年7月31日 (四) 14:42 (UTC)回复
: 好的,谢谢您!请问上传之后每页文件是不是有可以自行识别校对该页文字的独立空间,就像上面我举的那个例子一样,是吗? HCCB3947(留言) 2025年8月4日 (一) 12:12 (UTC)回复
: 机器人是从其他网站转载原文,而不是直接识别这些文件。 Midleading(留言) 2025年8月1日 (五) 07:29 (UTC)回复
: 这样啊,看来还是逃不过人工识别校对文字。 HCCB3947(留言) 2025年8月4日 (一) 12:10 (UTC)回复
Upcoming Deployment of the CampaignEvents Extension
[编辑]
最新留言:11天前2条留言2人参与讨论
Hello everyone,
(Apologies for posting in English if English is not your first language. Please help translate to your language.)
The Campaigns Product Team is planning a global deployment of the CampaignEvents extension to all Wikisource, including this Wikisource, during the week of August 25th.
This extension is designed to help organizers plan and manage events, WikiProjects, and other on-wiki collaborations - and to make these efforts more discoverable.
The three main features of this extension are:
Event Registration: A simple way to sign up for events on the wiki.
Collaboration List: A global list of events and a local list of WikiProjects, accessible at Special:AllEvents.
Invitation Lists: A tool to help organizers find editors who might want to join, based on their past contributions.
Note: The extension comes with a new user right called "Event Organizer", which will be managed by administrators on this Wikisource. Organizer tools like Event Registration and Invitation Lists will only work if someone is granted this right. The Collaboration List is available to everyone immediately after deployment.
The extension is already live on several wikis, including all Wikipedia, Meta, Wikidata, and more ( See the full deployment list)
If you have any questions, concerns, or feedback, please feel free to share them on the extension talkpage. We’d love to hear from you before the rollout.
Thank you!
Udehb-WMF (留言) 2025年7月31日 (四) 15:40 (UTC)回复
: 大家好,
: 活动产品团队(The Campaigns Product Team)计划在8月25日至31日这一周向所有Wikisource,包括本Wikisource,进行CampaignEvents扩展的全球部署。
: 该扩展旨在帮助组织者规划和管理活动、Wiki项目以及其他在维基上的协作工作,并使这些努力更加易于发现。
: 该扩展的三个主要功能如下:
活动报名: 在维基上报名活动的简便方式。
协作列表: 所有活动的全局列表和Wiki项目的本地列表,可在Special:AllEvents访问。
邀请列表: 此工具可帮助组织者根据编辑者的过去贡献、找到可能想加入的编辑者。
: 注意:该扩展带来了一个新的用户权限,称为"Event Organizer"(活动组织者),将由本Wikisource的管理员管理。“活动报名”和“邀请列表”等组织者工具仅对获得此权限后的用户才会生效。协作列表在部署后立即对所有人开放。
: 该扩展已在多个维基网站上线,包括所有维基百科、Meta、Wikidata等( 参见完整的部署列表)。
: 如果您有任何疑问、担忧或反馈,请随时在 扩展讨论页上分享。我们很乐意在推出之前听到您的意见。
: 感谢! Liouxiao(留言) 2025年7月31日 (四) 15:56 (UTC)回复
各位有沒有免費的古籍OCR的網站推薦一些
[编辑]
最新留言:3天前6条留言3人参与讨论
目前計劃根據慶應義塾大學語言研究所於昭和三十六年出版的《大南寔錄》影印本,對《大南寔錄》進行錄入。手上有該影印本20冊,因版權原因不能上傳到維基共享資源。藉助普通的OCR識別質量很差,錯別字很多,之後校正需要花費較大精力。各位有沒有免費的古籍OCR的網站推薦一些?最好是沒有限制每天使用次數的,因為識別量比較大。 el caballero de los Leones(留言) 2025年8月2日 (六) 11:43 (UTC)回复
: 個人覺得最好用的是識典古籍,不過既然有版權方面的擔心,那麽上傳到那裏是不是也有問題?另外,少量的也許古籍酷可以,但是大量要收費。 Liouxiao(留言) 2025年8月2日 (六) 15:19 (UTC)回复
: 如果有足夠的本地算力,也許可以試試免費的模型,比如 ? (很期待看一下效果如何) Liouxiao(留言) 2025年8月2日 (六) 16:00 (UTC)回复
: 之前使用中文古籍文档分析识别演示系统 el caballero de los Leones(留言) 2025年8月2日 (六) 16:20 (UTC)回复
: 之前看到過「中央研究院文字辨識與校對平台」,但需要註冊登入,不知道非合作學術機構使用者是否方便使用?—— Eric Liu(留言) 2025年8月2日 (六) 21:20 (UTC)回复
: 感謝@Liouxiao:、@Ericliu1912:二位的回答。在下最近新發現了一個網站看典古籍,為近兩年新上線的古籍網站,其中提供有免費的古籍OCR每日1000頁(需要用手機號註冊)。 el caballero de los Leones(留言) 2025年8月8日 (五) 16:23 (UTC)回复
中华人民共和国地方政府公开的规划文件属于公有领域吗
[编辑]
最新留言:3天前5条留言3人参与讨论
如题,例如《天津市国土空间总体规划(2021—2035年)》全文。--忒有钱(留言) 2025年8月2日 (六) 18:04 (UTC)回复
: 是。 银色雪莉(留言) 2025年8月2日 (六) 18:49 (UTC)回复
: 非常感谢!我已将文件上传至共享资源(File:天津市国土空间总体规划(2021—2035年).pdf),待我有时间整理成页面。--忒有钱(留言) 2025年8月3日 (日) 15:31 (UTC)回复
: @忒有钱及银色雪莉立法、行政、司法性质? Liuxinyu970226(留言) 2025年8月9日 (六) 04:31 (UTC)回复
: @Liuxinyu970226:行政性质。中共中央 国务院关于建立国土空间规划体系并监督实施的若干意见:国家、省、市县编制国土空间总体规划...省级国土空间规划是对全国国土空间规划的落实,指导市县国土空间规划编制,侧重协调性,由省级政府组织编制,经同级人大常委会审议后报国务院审批。 银色雪莉(留言) 2025年8月9日 (六) 04:52 (UTC)回复
Module:XsLiDian
[编辑]
最新留言:8天前1条留言1人参与讨论
Module:XsLiDian以用户名命名并被多个模板调用。应移动到适当标题并做相应清理。 dringsim 2025年8月4日 (一) 13:21 (UTC)回复
2025年第32期技術新聞
[编辑]
最新留言:7天前1条留言1人参与讨论
維基媒體技術社群現在發布最新的技術新聞。請告知其他用户這些更改;不是所有的更改都會對您造成影響。技術新聞提供其他語言的翻译版本。
近況更新 - 面向編輯者
編輯者現在可以啟用使用者資訊卡功能。此功能可在頁面修訂紀錄、使用者貢獻日誌等類似頁面中的使用者名稱旁新增一個圖示。當用滑鼠或觸控螢幕按一下圖示後,它會顯示該使用者帳號的相關資料,例如編輯次數、被回退編輯數、被封鎖次數等。這是一個更廣泛專案的一部分,旨在讓網站維護者能更容易評估帳號的可信度。此功能現可在全域偏好設定中啟用,本週稍晚將可在本地偏好設定中啟用。
歡迎任何人就Connection團隊最近啟動的「協作貢獻」專案發表意見。該專案旨在創造一種新的方式來展示協作編輯活動(如編輯松、積壓消化作業、維基專題)對維基的影響。請在此討論頁發表您的意見。
管理員現在可以定義臨時帳號的預設封鎖時長。為此,管理員需要建立MediaWiki:Ipb-default-expiry-temporary-account頁面,並使用MediaWiki:Ipboptions中定義的值。這讓管理員可以輕易將臨時帳號封鎖90天,由於臨時帳號的活動效期同為90天,這類封鎖實質等同於無限期封鎖。此解決方案的優點是讓Special:BlockList中不會堆滿永封臨時帳號。參見說明文件。
上週有27件社群提交的工單得到解決。
近況更新 - 面向技術貢獻者
小工具現在可以包含.vue檔案。這讓使用Vue.js開發現代UI變得更容易,尤其是使用維基媒體官方設計系統Codex。Codex圖示集可以透過小工具定義載入。參見說明文件中的範例。對於使用Vue.js的腳本,現在有一個API模組可以用於載入Codex圖示集。
模組開發者現在可以使用一個Lua介面來簡化在元維基上翻譯Lua模組的準備工作。這項改進使翻譯人員能夠更容易找到和編輯模組中的字串,而無需處理Lua原始碼。這有助於避免翻譯過程中出差錯,導致模組損壞。歡迎模組開發者和翻譯人員觀看示範影片,閱讀更多關於可翻譯模組的資訊以了解其運作方式,參考元維基的Module:User Wikimedia project作為使用範例,並對於如何解決工作流程中的挑戰分享意見回饋。該介面仍有一些效能問題,因此目前還不適合用於廣泛使用的模組。
與維基媒體網頁連接的外部工具的開發者,請務必設定符合使用者代理方針的使用者代理。由於外部爬蟲過度使用維基媒體資源,該方針將於8月開始嚴格執行。託管在維基媒體Toolforge或Cloud VPS上的工具暫時不會受此影響,但仍應設定使用者代理。在工單參閱更多技術細節,歡迎在工單中提出相關問題。
繼維基導遊和維基詞典成功轉換成Parsoid閱讀視圖之後,未來幾週內,Parsoid閱讀視圖將在一些小型維基百科推出。參閱Parsoid/解析器統一了解更多。
本週軟體更新細節: MediaWiki
會議與活動
2025年維基媒體國際會議將於8月6日至9日舉行。議程現已公布,供您參考規劃想參加的會議。大多數會議將進行直播,但顯示「無攝影機」圖示的會議除外。如果您想在線上觀看直播並使用互動功能,請報名獲取免費虛擬門票。 您可能會對以下技術會議感興趣:
身處不斷變化的網際網路中的維基媒體知識基礎設施:建立內容再利用的永續途徑
維基函數即將登陸至您附近的維基!
塑造維基百科讀者體驗的未來
讓維基百科更容易閱讀:下一步
技術新聞由技術新聞編者準備,並由機器人送達 • 貢獻 • 翻譯 • 获取帮助 • 提供反馈 • 訂閱或退訂。
MediaWiki message delivery 2025年8月5日 (二) 03:40 (UTC)回复
2025年第33期技術新聞
[编辑]
最新留言:15小时前1条留言1人参与讨论
維基媒體技術社群現在發布最新的技術新聞。請告知其他用户這些更改;不是所有的更改都會對您造成影響。技術新聞提供其他語言的翻译版本。
近況更新 - 面向編輯者
2010年版wikitext編輯器的工具按鈕的提示現在會包含快捷鍵,讓使用者更容易發現這些快捷鍵。
產品與技術諮詢委員會發布了一系列實驗方案,供維基媒體基金會嘗試以改善與社群的溝通。歡迎於8月22日前在此討論頁對這些方案給予意見回饋。
Minerva外觀(手機版網頁)的搜尋欄已更新,改為使用與Vector 2022相同的Type-ahead搜尋元件。搜尋功能並未改變,僅在視覺上有些許變化。具體來說,搜尋欄的關閉按鈕已從叉號 改為返回箭頭 ,並改動了按鈕位置,避免與用於清除文字的另一個叉號按鈕混淆。
部分維基百科的編輯者將在監視清單、相關變更和近期變更頁面上看到新的「按頁面分組結果」開關。這是一項A/B實驗,計劃於8月11日開始,在中文、孟加拉語、捷克語、法語、希臘語、葡萄牙語、烏爾都語維基百科上進行3至6週。實驗旨在探討讓這項既有功能更容易被發現,會如何影響編輯者在這些特殊頁面中尋找編輯的能力。
上週有31件由社群提交的工單得到解決。
近況更新 - 面向技術貢獻者
多個維基的Module:Unicode data皆有的相同資料集已移至維基共享資源(Category:Unicode Module Datasets),以遵循「一個共同資料來源,多個本地維基」的理念。大多數維基已更新為使用共享資源資料的版本。若有問題請在討論頁提出。
在Lua中,模組編者可以用mw.addWarning()函數,讓模組在發生錯誤時新增警告。先前,新的警告會取代舊的警告。現在,您可以多次呼叫該函數來新增多個警告。如果您有在維護使用警告的Lua模組,請檢查它是否仍然如預期運作。
本週軟體更新細節: MediaWiki
技術新聞由技術新聞編者準備,並由機器人送達 • 貢獻 • 翻譯 • 获取帮助 • 提供反馈 • 訂閱或退訂。
MediaWiki message delivery 2025年8月11日 (一) 23:29 (UTC)回复
检索自“
分类:
维基文库
含有受损文件链接的页面
|
190804
|
https://numpy.org/doc/2.2/reference/random/generated/numpy.random.Generator.hypergeometric.html
|
numpy.random.Generator.hypergeometric — NumPy v2.2 Manual
Skip to main content
Back to top Ctrl+K
This is documentation for an old version (2.2.0).Switch to stable version
User Guide
API reference
Building from source
Development
Release notes
Learn
More
NEPs
2.2
dev2.3 (stable)2.22.12.01.261.251.241.231.221.211.201.191.181.171.161.151.141.13
GitHub
User Guide
API reference
Building from source
Development
Release notes
Learn
NEPs
2.2
dev2.3 (stable)2.22.12.01.261.251.241.231.221.211.201.191.181.171.161.151.141.13
GitHub
Section Navigation
NumPy’s module structure
Array objects
Universal functions (ufunc)
Routines and objects by topic
Constants
Array creation routines
Array manipulation routines
Bit-wise operations
String functionality
Datetime support functions
Data type routines
Mathematical functions with automatic domain
Floating point error handling
Exceptions and Warnings (numpy.exceptions)
Discrete Fourier Transform (numpy.fft)
Functional programming
Input and output
Indexing routines
Linear algebra (numpy.linalg)
Logic functions
Masked array operations
Mathematical functions
Miscellaneous routines
Polynomials
Random sampling (numpy.random)
Random Generator
numpy.random.Generator.bit_generator
numpy.random.Generator.spawn
numpy.random.Generator.integers
numpy.random.Generator.random
numpy.random.Generator.choice
numpy.random.Generator.bytes
numpy.random.Generator.shuffle
numpy.random.Generator.permutation
numpy.random.Generator.permuted
numpy.random.Generator.beta
numpy.random.Generator.binomial
numpy.random.Generator.chisquare
numpy.random.Generator.dirichlet
numpy.random.Generator.exponential
numpy.random.Generator.f
numpy.random.Generator.gamma
numpy.random.Generator.geometric
numpy.random.Generator.gumbel
numpy.random.Generator.hypergeometric
numpy.random.Generator.laplace
numpy.random.Generator.logistic
numpy.random.Generator.lognormal
numpy.random.Generator.logseries
numpy.random.Generator.multinomial
numpy.random.Generator.multivariate_hypergeometric
numpy.random.Generator.multivariate_normal
numpy.random.Generator.negative_binomial
numpy.random.Generator.noncentral_chisquare
numpy.random.Generator.noncentral_f
numpy.random.Generator.normal
numpy.random.Generator.pareto
numpy.random.Generator.poisson
numpy.random.Generator.power
numpy.random.Generator.rayleigh
numpy.random.Generator.standard_cauchy
numpy.random.Generator.standard_exponential
numpy.random.Generator.standard_gamma
numpy.random.Generator.standard_normal
numpy.random.Generator.standard_t
numpy.random.Generator.triangular
numpy.random.Generator.uniform
numpy.random.Generator.vonmises
numpy.random.Generator.wald
numpy.random.Generator.weibull
numpy.random.Generator.zipf
Legacy Generator (RandomState)
Bit generators
Upgrading PCG64 with PCG64DXSM
Compatibility policy
Parallel Applications
Multithreaded Generation
What’s new or different
Comparing Performance
C API for random
Examples of using Numba, Cython, CFFI
Set routines
Sorting, searching, and counting
Statistics
Test support (numpy.testing)
Window functions
Typing (numpy.typing)
Packaging (numpy.distutils)
NumPy C-API
Array API standard compatibility
CPU/SIMD optimizations
Thread Safety
Global Configuration Options
NumPy security
Status of numpy.distutils and migration advice
numpy.distutils user guide
NumPy and SWIG
NumPy reference
NumPy’s module structure
Random sampling (numpy.random)
Random Generator
numpy.random.Generator.hypergeometric
numpy.random.Generator.hypergeometric#
method
random.Generator.hypergeometric(ngood, nbad, nsample, size=None)#
Draw samples from a Hypergeometric distribution.
Samples are drawn from a hypergeometric distribution with specified parameters, ngood (ways to make a good selection), nbad (ways to make a bad selection), and nsample (number of items sampled, which is less than or equal to the sum ngood + nbad).
Parameters:ngoodint or array_like of ints
Number of ways to make a good selection. Must be nonnegative and less than 109.
nbadint or array_like of ints
Number of ways to make a bad selection. Must be nonnegative and less than 109.
nsampleint or array_like of ints
Number of items sampled. Must be nonnegative and less than ngood + nbad.
sizeint or tuple of ints, optional
Output shape. If the given shape is, e.g., (m, n, k), then m n k samples are drawn. If size is None (default), a single value is returned if ngood, nbad, and nsample are all scalars. Otherwise, np.broadcast(ngood, nbad, nsample).size samples are drawn.
Returns:outndarray or scalar
Drawn samples from the parameterized hypergeometric distribution. Each sample is the number of good items within a randomly selected subset of size nsample taken from a set of ngood good items and nbad bad items.
See also
multivariate_hypergeometric
Draw samples from the multivariate hypergeometric distribution.
scipy.stats.hypergeom
probability density function, distribution or cumulative density function, etc.
Notes
The probability mass function (PMF) for the Hypergeometric distribution is
P(x)=(g x)(b n−x)(g+b n),
where 0≤x≤n and n−b≤x≤g
for P(x) the probability of x good results in the drawn sample, g = ngood, b = nbad, and n = nsample.
Consider an urn with black and white marbles in it, ngood of them are black and nbad are white. If you draw nsample balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the drawn sample.
Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is infinite). As the sample space becomes large, this distribution approaches the binomial.
The arguments ngood and nbad each must be less than 109. For extremely large arguments, the algorithm that is used to compute the samples breaks down because of loss of precision in floating point calculations. For such large values, if nsample is not also large, the distribution can be approximated with the binomial distribution, binomial(n=nsample, p=ngood/(ngood + nbad)).
References
Lentner, Marvin, “Elementary Applied Statistics”, Bogden and Quigley, 1972.
Weisstein, Eric W. “Hypergeometric Distribution.” From MathWorld–A Wolfram Web Resource.
Wikipedia, “Hypergeometric distribution”,
Stadlober, Ernst, “The ratio of uniforms approach for generating discrete random variates”, Journal of Computational and Applied Mathematics, 31, pp. 181-189 (1990).
Examples
Draw samples from the distribution:
rng = np.random.default_rng()
ngood, nbad, nsamp = 100, 2, 10
number of good, number of bad, and number of samples
s = rng.hypergeometric(ngood, nbad, nsamp, 1000)
from matplotlib.pyplot import hist
hist(s)
note that it is very unlikely to grab both bad items
Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it that 12 or more of them are one color?
s = rng.hypergeometric(15, 15, 15, 100000)
sum(s>=12)/100000. + sum(s<=3)/100000.
answer = 0.003 ... pretty unlikely!
previous numpy.random.Generator.gumbelnext numpy.random.Generator.laplace
On this page
random.Generator.hypergeometric
© Copyright 2008-2024, NumPy Developers.
Created using Sphinx 7.2.6.
Built with the PyData Sphinx Theme 0.16.0.
|
190805
|
https://chem.libretexts.org/Courses/Athabasca_University/Chemistry_360%3A_Organic_Chemistry_II/Chapter_18%3A_Ethers_and_Epoxides_Thiols_and_Sulfides/18.05_Cyclic_Ethers%3A_Epoxides
|
18.5 Cyclic Ethers: Epoxides - Chemistry LibreTexts
Skip to main content
Table of Contents menu
search Search build_circle Toolbar fact_check Homework cancel Exit Reader Mode
school Campus Bookshelves
menu_book Bookshelves
perm_media Learning Objects
login Login
how_to_reg Request Instructor Account
hub Instructor Commons
Search
Search this book
Submit Search
x
Text Color
Reset
Bright Blues Gray Inverted
Text Size
Reset
+-
Margin Size
Reset
+-
Font Type
Enable Dyslexic Font - [x]
Downloads expand_more
Download Page (PDF)
Download Full Book (PDF)
Resources expand_more
Periodic Table
Physics Constants
Scientific Calculator
Reference expand_more
Reference & Cite
Tools expand_more
Help expand_more
Get Help
Feedback
Readability
x
selected template will load here
Error
This action is not available.
chrome_reader_mode Enter Reader Mode
Chapter 18: Ethers and Epoxides; Thiols and Sulfides
Chemistry 360: Organic Chemistry II
{ }
{ "18.001_Introduction" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "18.01_Names_and_Properties_of_Ethers" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "18.02_Synthesis_of_Ethers" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "18.03_Reactions_of_Ethers:Acidic_Cleavage" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "18.04_Reactions_of_Ethers-Claisen_Rearrangement" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "18.05_Cyclic_Ethers:_Epoxides" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "18.06_Reactions_of_Epoxides:_Ring-opening" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "18.07_Crown_Ethers" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "18.08_Thiols_and_Sulfides" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "18.09_Spectroscopy_of_Ethers" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "18.10_A_Preview_of_Carbonyl_Compounds" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "18.S:_Ethers_and_Epoxides;_Thiols_and_Sulfides(Summary)" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1" }
{ "00:Front_Matter" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "Chapter_17:_Alcohols_and_Phenols" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "Chapter_18:_Ethers_and_Epoxides_Thiols_and_Sulfides" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "Chapter_19:_Aldehydes_and_Ketones:_Nucleophilic_Addition_Reactions" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "Chapter_20:_Carboxylic_Acids_and_Nitriles" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "Chapter_21:_Carboxylic_Acid_Derivatives:_Nucleophilic_Acyl_Substitution_Reactions" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "Chapter_22:_Carbonyl_Alpha-Substitution_Reactions" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "Chapter_23:_Carbonyl_Condensation_Reactions" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "Chapter_24:_Amines_and_Heterocycles" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "Chapter_25:_Biomolecules:_Carbohydrates" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "Chapter_26:_Biomolecules:_Amino_Acids_Peptides_and_Proteins" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "Chapter_27:_Biomolecules-Lipids" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "Chapter_28:_Biomolecules-_Nucleic_Acids" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1", "zz:_Back_Matter" : "property get Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1" }
Thu, 16 Nov 2023 22:52:19 GMT
18.5 Cyclic Ethers: Epoxides
90956
90956
Dietmar Kennepohl
{ }
Anonymous
Anonymous User
2
false
false
[ "article:topic", "showtoc:no", "license:ccbyncsa", "cssprint:dense", "licenseversion:40" ]
[ "article:topic", "showtoc:no", "license:ccbyncsa", "cssprint:dense", "licenseversion:40" ]
Search site Search Search Go back to previous article
Sign in
Username Password Sign in
Sign in
Sign in
Forgot password
Contents
1. Home
2. Campus Bookshelves
3. Athabasca University
4. Chemistry 360: Organic Chemistry II
5. Chapter 18: Ethers and Epoxides; Thiols and Sulfides
6. 18.5 Cyclic Ethers: Epoxides
Expand/collapse global location
Chemistry 360: Organic Chemistry II
Front Matter
Chapter 17: Alcohols and Phenols
Chapter 18: Ethers and Epoxides; Thiols and Sulfides
Chapter 19: Aldehydes and Ketones: Nucleophilic Addition Reactions
Chapter 20: Carboxylic Acids and Nitriles
Chapter 21: Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions
Chapter 22: Carbonyl Alpha-Substitution Reactions
Chapter 23: Carbonyl Condensation Reactions
Chapter 24: Amines and Heterocycles
Chapter 25: Biomolecules: Carbohydrates
Chapter 26: Biomolecules: Amino Acids, Peptides, and Proteins
Chapter 27: Biomolecules - Lipids
Chapter 28: Biomolecules - Nucleic Acids
Back Matter
18.5 Cyclic Ethers: Epoxides
Last updated Nov 16, 2023
Save as PDF
18.4 Reactions of Ethers - Claisen Rearrangement
18.6 Reactions of Epoxides: Ring-opening
Page ID 90956
( \newcommand{\kernel}{\mathrm{null}\,})
Table of contents
1. Key Terms
2. Nomenclature of Epoxides
1. Example 18.5.1
Synthesis of Epoxides
Example 18.5.2
Exercises
Exercise 18.5.1
Exercise 18.5.2
Contributors and Attributions
Objectives
After completing this section, you should be able to
write an equation to describe the industrial preparation of ethylene oxide.
list two important industrial uses of ethylene oxide.
write an equation to describe the normal laboratory preparation of an epoxide.
identify the epoxide produced from the reaction of a given alkene with a peroxyacid.
identify the alkene, the reagent, or both, needed to prepare a given epoxide.
write an equation to describe the preparation of an epoxide from an alkene via a halohydrin.
Key Terms
Make certain that you can define, and use in context, the key term below.
epoxide (oxirane)
Epoxides (also known as oxiranes) are three-membered ring structures in which one of the vertices is an oxygen and the other two are carbons. Epoxides behave differently than other ethers due to the strain created by the three-membered ring.
The most important and simplest epoxide is ethylene oxide which is prepared on an industrial scale by catalytic oxidation of ethylene by air. Ethylene oxide is used as an important chemical feedstock in the manufacturing of ethylene glycol, which is used as antifreeze, liquid coolant and solvent. In turn, ethylene glycol is used in the production of polyester and polyethylene terephthalate (PET) the raw material for plastic bottles.
Nomenclature of Epoxides
The name ethylene oxide is not systematic but common. Epoxides are systematically named as an oxirane ring system much like the other cyclic ethers discussed in Section 18.1. The oxygen is numbered in the 1 position.
Example 18.5.1
Synthesis of Epoxides
As discussed in Section 8-7, epoxides are typically prepared by the reaction of an alkene and a peroxycarboxylic acid (RCO 3 H), such as meta-chloroperbenzoic acid (MCPBA). The peroxycarboxylic acid has the unique property of having an electropositive oxygen atom on the CO 3 H group. The reaction is initiated by the electrophilic oxygen atom reacting with the nucleophilic carbon-carbon double bond. The mechanism involves a concerted reaction with a four-part, circular transition state. The result is that the originally electropositive oxygen atom ends up in the oxacyclopropane ring and the CO 3 H group becomes CO 2 H.
General Reaction
Stereochemical Consideration
The oxygen addition to the alkene is a syn addition and is stereospecific. The substituents of a cis-alkene will appear in the cis configuration on the epoxide ring. Likewise, Substituents of a trans-alkene will appear in the trans configuration on the epoxide ring. During this reaction the sp 2 hybridized carbons of the alkene are converted to sp 3 hybridized carbons in the epoxide. Thus, there is the possibility of two new chiral carbons forming in the epoxide product. In most cases, epoxidation of an alkene will product a mixture of enantiomers in the product, due to the electrophilic oxygen being able to attack from above or below the plane of the alkene. One major exception is the epoxidation of symmetrical cis-alkene which produces a meso compound product.
Example 18.5.2
Treatment of an alkene with X 2& H 2 O creates a halohydrin (Section 8-3). When a halohydrin is treated with a base the alcohol is deprotonated to from an alkoxide. This causes an intramolecular Williamson ether synthesis to produce an epoxide along with the elimination of HX. Note, that this reaction generally forms a mixture of enantiomeric products unless a meso compound is produced.
Exercises
Exercise 18.5.1
What reagents would you use to perform the following transformation?
Answer
Lindlar's catalyst reduces alkynes to cis/Z alkenes. This stereochemistry is retained after epoxidation.
Exercise 18.5.2
Predict the products of the following reactions:
Answer
Contributors and Attributions
Dr. Dietmar Kennepohl FCIC (Professor of Chemistry, Athabasca University)
Prof. Steven Farmer (Sonoma State University)
William Reusch, Professor Emeritus (Michigan State U.), Virtual Textbook of Organic Chemistry
John D. Robert and Marjorie C.Caserio (1977) Basic Principles of Organic Chemistry, second edition. W. A. Benjamin, Inc. , Menlo Park, CA. ISBN 0-8053-8329-8. This content is copyrighted under the following conditions, "You are granted permission for individual, educational, research and non-commercial reproduction, distribution, display and performance of this work in any format."
18.5 Cyclic Ethers: Epoxides is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.
Back to top
18.4 Reactions of Ethers - Claisen Rearrangement
18.6 Reactions of Epoxides: Ring-opening
Was this article helpful?
Yes
No
Recommended articles
18.S: Ethers and Epoxides; Thiols and Sulfides (Summary)
18.0 Introduction
18.1 Names and Properties of Ethers
18.2 Synthesis of Ethers
18.3 Reactions of Ethers: Acidic Cleavage
Article typeSection or PagePrint CSSDenseLicenseCC BY-NC-SALicense Version4.0Show Page TOCno on page
Tags
This page has no tags.
© Copyright 2025 Chemistry LibreTexts
Powered by CXone Expert ®
?
The LibreTexts libraries arePowered by NICE CXone Expertand are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. Privacy Policy. Terms & Conditions. Accessibility Statement.For more information contact us atinfo@libretexts.org.
Support Center
How can we help?
Contact Support Search the Insight Knowledge Base Check System Status×
contents readability resources tools
☰
18.4 Reactions of Ethers - Claisen Rearrangement
18.6 Reactions of Epoxides: Ring-opening
|
190806
|
https://math.stackexchange.com/questions/4155754/non-negative-distributional-derivative-imply-a-e-monotonicity
|
real analysis - Non negative distributional derivative imply a.e. monotonicity - Mathematics Stack Exchange
Join Mathematics
By clicking “Sign up”, you agree to our terms of service and acknowledge you have read our privacy policy.
Sign up with Google
OR
Email
Password
Sign up
Already have an account? Log in
Skip to main content
Stack Exchange Network
Stack Exchange network consists of 183 Q&A communities including Stack Overflow, the largest, most trusted online community for developers to learn, share their knowledge, and build their careers.
Visit Stack Exchange
Loading…
Tour Start here for a quick overview of the site
Help Center Detailed answers to any questions you might have
Meta Discuss the workings and policies of this site
About Us Learn more about Stack Overflow the company, and our products
current community
Mathematics helpchat
Mathematics Meta
your communities
Sign up or log in to customize your list.
more stack exchange communities
company blog
Log in
Sign up
Home
Questions
Unanswered
AI Assist Labs
Tags
Chat
Users
Teams
Ask questions, find answers and collaborate at work with Stack Overflow for Teams.
Try Teams for freeExplore Teams
3. Teams
4. Ask questions, find answers and collaborate at work with Stack Overflow for Teams. Explore Teams
Teams
Q&A for work
Connect and share knowledge within a single location that is structured and easy to search.
Learn more about Teams
Hang on, you can't upvote just yet.
You'll need to complete a few actions and gain 15 reputation points before being able to upvote. Upvoting indicates when questions and answers are useful. What's reputation and how do I get it?
Instead, you can save this post to reference later.
Save this post for later Not now
Thanks for your vote!
You now have 5 free votes weekly.
Free votes
count toward the total vote score
does not give reputation to the author
Continue to help good content that is interesting, well-researched, and useful, rise to the top! To gain full voting privileges, earn reputation.
Got it!Go to help center to learn more
Non negative distributional derivative imply a.e. monotonicity
Ask Question
Asked 4 years, 4 months ago
Modified4 years, 4 months ago
Viewed 54 times
This question shows research effort; it is useful and clear
0
Save this question.
Show activity on this post.
Suppose f∈L 1 l o c(R)f∈L l o c 1(R) and that f′≤0 f′≤0 in the sense of distribution, i.e. ∀φ∈C∞C(R)∀φ∈C C∞(R)φ≥0 φ≥0 we have ∫R f φ′≥0∫R f φ′≥0.
How can I prove that f f is almost everywhere decreasing (f(x+y)≤f(x)f(x+y)≤f(x) for almost every x∈R,y∈R+x∈R,y∈R+)?
My obvious attempt was to use the fact that lim h→0∫φ(x)f(x)−f(x−h)h d x≤0 lim h→0∫φ(x)f(x)−f(x−h)h d x≤0 to get a local statement: for sufficiently small h h we have that f(x)−f(x−h)≤0 f(x)−f(x−h)≤0 for a.e. x,h>0 x,h>0, where h h is small. Can I proceed from this?
real-analysis
weak-derivatives
Share
Share a link to this question
Copy linkCC BY-SA 4.0
Cite
Follow
Follow this question to receive notifications
edited May 30, 2021 at 15:32
Matteo TestaMatteo Testa
asked May 30, 2021 at 11:01
Matteo TestaMatteo Testa
376 1 1 silver badge 11 11 bronze badges
5
your question is a bit confusing, sometimes you talk about f f, then there is u u in your attempt. also, you want f(x+y)≥f(x)f(x+y)≥f(x) for a.e. x∈R,y>0 x∈R,y>0, right?Pink Panther –Pink Panther 2021-05-30 14:39:33 +00:00 Commented May 30, 2021 at 14:39
Yes, you're right, I fixed it!Matteo Testa –Matteo Testa 2021-05-30 15:00:16 +00:00 Commented May 30, 2021 at 15:00
There are still needless typos in your question. f′≤0 f′≤0, but f f is increasing? f(x+y)≥f(x)f(x+y)≥f(x) for all y∈R y∈R?user711689 –user711689 2021-05-30 15:05:17 +00:00 Commented May 30, 2021 at 15:05
1 Are you familiar with mollification? That is often the cheap way to demonstrate these types of results.user711689 –user711689 2021-05-30 15:07:26 +00:00 Commented May 30, 2021 at 15:07
Oh very nice! Thank you very much! It is basically 1 line proof Matteo Testa –Matteo Testa 2021-05-30 15:35:41 +00:00 Commented May 30, 2021 at 15:35
Add a comment|
0
Sorted by: Reset to default
You must log in to answer this question.
Start asking to get answers
Find the answer to your question by asking.
Ask question
Explore related questions
real-analysis
weak-derivatives
See similar questions with these tags.
Featured on Meta
Introducing a new proactive anti-spam measure
Spevacus has joined us as a Community Manager
stackoverflow.ai - rebuilt for attribution
Community Asks Sprint Announcement - September 2025
Report this ad
Related
4Is f f non-decreasing a.e. if its primitive is convex?
6function a.e. differentiable and it's weak derivative
0Doubts on distributional derivative: null derivative and non negative derivative
1The integral of a square-integrable non-negative function equals zero implies function is zero a.e
12If ∫f g=0∫f g=0 for all compactly supported continuous g, then f = 0 a.e.?
1Brezis' Lemma 8.1: where did I get wrong?
2Is it true that ∫Ω f(∇φ)=0∫Ω f(∇φ)=0 for all φ∈C∞c(Ω)φ∈C c∞(Ω) implies f f is constant a.e. in Ω Ω?
Hot Network Questions
Can a cleric gain the intended benefit from the Extra Spell feat?
How can the problem of a warlock with two spell slots be solved?
Matthew 24:5 Many will come in my name!
How many stars is possible to obtain in your savefile?
Analog story - nuclear bombs used to neutralize global warming
Is it possible that heinous sins result in a hellish life as a person, NOT always animal birth?
Does the mind blank spell prevent someone from creating a simulacrum of a creature using wish?
How to locate a leak in an irrigation system?
Change default Firefox open file directory
Transforming wavefunction from energy basis to annihilation operator basis for quantum harmonic oscillator
Does the curvature engine's wake really last forever?
What "real mistakes" exist in the Messier catalog?
How exactly are random assignments of cases to US Federal Judges implemented? Who ensures randomness? Are there laws regulating how it should be done?
What is a "non-reversible filter"?
Should I let a player go because of their inability to handle setbacks?
What is the meaning of 率 in this report?
Is direct sum of finite spectra cancellative?
Direct train from Rotterdam to Lille Europe
в ответе meaning in context
Cannot build the font table of Miama via nfssfont.tex
Storing a session token in localstorage
Sign mismatch in overlap integral matrix elements of contracted GTFs between my code and Gaussian16 results
Are there any world leaders who are/were good at chess?
alignment in a table with custom separator
more hot questions
Question feed
Subscribe to RSS
Question feed
To subscribe to this RSS feed, copy and paste this URL into your RSS reader.
Why are you flagging this comment?
It contains harassment, bigotry or abuse.
This comment attacks a person or group. Learn more in our Code of Conduct.
It's unfriendly or unkind.
This comment is rude or condescending. Learn more in our Code of Conduct.
Not needed.
This comment is not relevant to the post.
Enter at least 6 characters
Something else.
A problem not listed above. Try to be as specific as possible.
Enter at least 6 characters
Flag comment Cancel
You have 0 flags left today
Mathematics
Tour
Help
Chat
Contact
Feedback
Company
Stack Overflow
Teams
Advertising
Talent
About
Press
Legal
Privacy Policy
Terms of Service
Your Privacy Choices
Cookie Policy
Stack Exchange Network
Technology
Culture & recreation
Life & arts
Science
Professional
Business
API
Data
Blog
Facebook
Twitter
LinkedIn
Instagram
Site design / logo © 2025 Stack Exchange Inc; user contributions licensed under CC BY-SA. rev 2025.9.26.34547
By clicking “Accept all cookies”, you agree Stack Exchange can store cookies on your device and disclose information in accordance with our Cookie Policy.
Accept all cookies Necessary cookies only
Customize settings
Cookie Consent Preference Center
When you visit any of our websites, it may store or retrieve information on your browser, mostly in the form of cookies. This information might be about you, your preferences, or your device and is mostly used to make the site work as you expect it to. The information does not usually directly identify you, but it can give you a more personalized experience. Because we respect your right to privacy, you can choose not to allow some types of cookies. Click on the different category headings to find out more and manage your preferences. Please note, blocking some types of cookies may impact your experience of the site and the services we are able to offer.
Cookie Policy
Accept all cookies
Manage Consent Preferences
Strictly Necessary Cookies
Always Active
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work. These cookies do not store any personally identifiable information.
Cookies Details
Performance Cookies
[x] Performance Cookies
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. All information these cookies collect is aggregated and therefore anonymous. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
Cookies Details
Functional Cookies
[x] Functional Cookies
These cookies enable the website to provide enhanced functionality and personalisation. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.
Cookies Details
Targeting Cookies
[x] Targeting Cookies
These cookies are used to make advertising messages more relevant to you and may be set through our site by us or by our advertising partners. They may be used to build a profile of your interests and show you relevant advertising on our site or on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device.
Cookies Details
Cookie List
Clear
[x] checkbox label label
Apply Cancel
Consent Leg.Interest
[x] checkbox label label
[x] checkbox label label
[x] checkbox label label
Necessary cookies only Confirm my choices
|
190807
|
https://flexbooks.ck12.org/cbook/ck-12-interactive-middle-school-math-8-for-ccss/section/10.12/primary/lesson/converting-repeating-decimals-into-fractions-msm8-ccss/
|
Converting Repeating Decimals into Fractions | CK-12 Foundation
AI Teacher Tools – Save Hours on Planning & Prep.
Try it out!
Skip to content
What are you looking for? Search
Math
Grade 6
Grade 7
Grade 8
Algebra 1
Geometry
Algebra 2
PreCalculus
Science
Earth Science
Life Science
Physical Science
Biology
Chemistry
Physics
Social Studies
Economics
Geography
Government
Philosophy
Sociology
Subject
Math
Elementary Math
Grade 1
Grade 2
Grade 3
Grade 4
Grade 5
Interactive
Math 6
Math 7
Math 8
Algebra I
Geometry
Algebra II
Conventional
Math 6
Math 7
Math 8
Algebra I
Geometry
Algebra II
Probability & Statistics
Trigonometry
Math Analysis
Precalculus
Calculus
What's the difference?
Science
Grade K to 5
Earth Science
Life Science
Physical Science
Biology
Chemistry
Physics
Advanced Biology
FlexLets
Math FlexLets
Science FlexLets
English
Writing
Spelling
Social Studies
Economics
Geography
Government
History
World History
Philosophy
Sociology
More
Astronomy
Engineering
Health
Photography
Technology
College
College Algebra
College Precalculus
Linear Algebra
College Human Biology
The Universe
Adult Education
Basic Education
High School Diploma
High School Equivalency
Career Technical Ed
English as 2nd Language
Country
Bhutan
Brasil
Chile
Georgia
India
Translations
Spanish
Korean
Deutsch
Chinese
Greek
Polski
Explore
EXPLORE
Flexi A FREE Digital Tutor for Every Student
FlexBooks 2.0 Customizable, digital textbooks in a new, interactive platform
FlexBooks Customizable, digital textbooks
Schools FlexBooks from schools and districts near you
Study Guides Quick review with key information for each concept
Adaptive Practice Building knowledge at each student’s skill level
Simulations Interactive Physics & Chemistry Simulations
PLIX Play. Learn. Interact. eXplore.
CCSS Math Concepts and FlexBooks aligned to Common Core
NGSS Concepts aligned to Next Generation Science Standards
Certified Educator Stand out as an educator. Become CK-12 Certified.
Webinars Live and archived sessions to learn about CK-12
Other Resources
CK-12 Resources
Concept Map
Testimonials
CK-12 Mission
Meet the Team
CK-12 Helpdesk
FlexLets
Know the essentials.
Pick a Subject
Donate
Sign InSign Up
Start Practice
10.12
Converting Repeating Decimals into Fractions
FlexBooks 2.0>
CK-12 Interactive Middle School Math 8>
Converting Repeating Decimals into Fractions
Written by:Larame Spence |Sean Regan
Fact-checked by:The CK-12 Editorial Team
Last Modified: Jul 01, 2025
Lesson Review Asked on Flexi Related Content
Lesson
Egypt
Rational numbers date back to 3,100 BCE in ancient Egypt. Egyptians were the first to develop a number system that included non-whole numbers. The Egyptian number system used fractions to represent values between whole numbers. The symbol that they used to signify a fraction was the following:
This symbol was placed above a number to represent the reciprocal of that number. For example, if it were placed above the number 8, it would represent 1 8. Egyptians did not need a symbol for 2 8 because they could use the symbol for 1 4. Nor did they need a symbol for 3 8 because 3 8=1 8+1 8+1 8.
By exclusively using fractions, ancient Egyptians avoided the problem of non-terminating decimals. In this section, you will continue your investigation of non-terminating decimals. Egyptians invented fractions because they allowed them to represent any fractional quantity while preserving accuracy. In our modern number system, our calculations are only as accurate as the place value to which we round. T ake a look at how you can write a repeating decimal as a fraction to avoid the need to round.
What Does it Mean?
If you have eaten a third of a pizza, it means that you ate 0.3¯pizzas. How is it possible to eat a never-ending decimal of pizza? Does that mean that you ate an infinite amount of pizza? Unfortunately, you only ate a finite amount of pizza, but let’s take a closer look at what it means when a decimal repeats. The decimal 0.3¯ means 0.33333…or 3 10+3 100+3 1,000+…The amount is increasing forever, but each place value is one-ten th as small as the last. The reason we have difficulty writing 1 3 is that our base ten system of numbers makes it difficult to divide 10 into thirds. This value can be more easily expressed as a fraction.
Use the interactive below to further explore this idea by examining where repeating decimals fall on a number line.
INTERACTIVE
Repeating Decimal Number Line Placement
According to the repeating decimal, can you determine where the red point should be placed?
Move the red point along the number line and see where it should be placed.
Press the "Check" button to check your answer.
Try It
Your device seems to be offline.
Please check your internet connection and try again.
+
Do you want to reset the PLIX?
Yes
No
Discussion Question
Mathematically, 0.9¯=1.0.How could you prove this?Join the discussion in the Math Cafe!
Repeating Decimals
To write a repeating decimal as a fraction, you will need to use an equation.
Begin by writing x= the repeating number.
Multiply both sides of the equation by a power of 10 which will move the decimal to the right of the repeating number.
Subtract the equation from step 1 from the equation in step 2.
Solve the resulting equation.
Example
Write 0.7¯as a fraction.
Begin by writing x = the repeating number.
x=0.7¯
Multiply both sides of the equation by a power of 10 which will move the decimal to the right of the repeating number.
The repeating number is seven. To move the decimal to the right of the 7, you need to multiply by 10. This gives you the following: 10 x=7.7¯.
Subtract the equation from step 1 from the equation in step 2.
10 x=7.7¯−x=0.7¯_ 9 x=7
Solve the resulting equation.
9 x=7 x=7 9
Use the interactive below to explore this further.
INTERACTIVE
What Is The Fraction?
Enter the numerator and denominator of the fraction that equals the repeating decimal.
Click on the button to check your answer.
Try It
Your device seems to be offline.
Please check your internet connection and try again.
+
Do you want to reset the PLIX?
Yes
No
Discussion Question
0.7¯can be written as 7 9.0.56¯can be written as 56 99.0.115¯can be written as 115 999.Do you think you notice a pattern? Will it work for all repeating numbers?
Mixed Repeating Decimals
A mixed repeating decimal is a decimal that does not repeat until after the tenths place. The value 7 12=0.58 3¯is an example of this. To write a mixed repeating decimal, you will use the same steps as before.
Begin by writing x= the repeating number.
Multiply both sides of the equation by a power of 10 which will move the decimal to the right of the repeating number.
Subtract the equation from step 1 from the equation in step 2.
Solve the resulting equation.
Example
Write 0.8 6¯as a fraction.
Begin by writing x = the repeating number.
x=0.8 6¯
Multiply both sides of the equation by a power of 10 which will move the decimal to the right of the repeating number.
The repeating number is six. To move the decimal to the right of the 6, you need to multiply by 100 which gives you the following:
100 x=86.6¯
Subtract the equation from step 1 from the equation in step 2.
100 x=86.6¯−x=0.8 6¯_ 99 x=85.8
Solve the resulting equation.
99 x=85.8 x=85.8 99
Since your answer has a decimal in the fraction, you must multiply the numerator and denominator by a power of ten which will produce an equivalent fraction with no decimals. Multiplying the numerator and denominator by 10 gives you your answer:
x=858 990
We can reduce this fraction to 429 495=143 165=13 15.
INTERACTIVE
What Is The Fraction? (Mixed Repeating Decimals Version)
Enter the numerator and denominator of the fraction that equals the repeating decimal.
Click on the button to check your answer.
Try It
Your device seems to be offline.
Please check your internet connection and try again.
+
Do you want to reset the PLIX?
Yes
No
Discussion Question
The value π represents the ratio between circumference and diameter. This ratio is a ratio between two numbers, but π doesn’t repeat. Why do you think that is?
Summary
To write a repeating decimal as a fraction:
Start by creating an equation where x= "the repeating number".
Multiply both sides of the equation by a power of 10 which will move the decimal to the right of the repeating number.
Subtract the equation from the first step from the equation in the second step.
Solve the resulting equation.
Add Note
CancelSave
Discuss with Flexi
NOTES / HIGHLIGHTS
Please Sign In to create your own Highlights / Notes
Add Note Edit Note Remove Highlight
Image Attributions
Asked by Students
Here are the top questions that students are asking Flexi for this concept:
How do I convert a non-terminating decimal into a fraction?
You can only convert a repeating non-terminating decimal to a fraction.
To write a repeating decimal as a fraction, you will need to use an equation.
Begin by writing x= the repeating number.
Multiply both sides of the equation by a power of 10 which will move the decimal to the right of the repeating number.
Subtract the equation from step 1 from the equation in step 2.
Solve the resulting equation.
For example, write 0.7¯as a fraction.
Begin by writing x = the repeating number.
x=0.7¯
Multiply both sides of the equation by a power of 10 which will move the decimal to the right of the repeating number.
The repeating number is seven. To move the decimal to the right of the 7, you need to multiply by 10. This gives you the following: 10 x=7.7¯.
Subtract the equation from step 1 from the equation in step 2.
10 x=7.7¯−x=0.7¯_ 9 x=7
Solve the resulting equation.
9 x=7 x=7 9
Click here to learn more!
Is 0.462 a terminating decimal, a repeating decimal, or neither? Can it be written as a fraction?
The decimal 0.462 is a terminating decimal because it ends and does not go on indefinitely. It is not a repeating decimal because no digit or set of digits is repeated indefinitely. Yes, it can be written as a fraction. To convert a decimal to a fraction, we look at the place value of the last digit. Here, the last digit is in the thousandths place. So, we can write the decimal as a fraction over 1000 and then simplify if necessary. 0.462=462 1000 This fraction can be simplified by dividing both the numerator and the denominator by their greatest common divisor, which is 2. 462 1000=231 500 So, 0.462=231 500.
Is 0.92847 a terminating decimal, a repeating decimal, or neither? Can it be written as a fraction?
The decimal 0.92847 does not appear to repeat or terminate, so it's neither a repeating nor a terminating decimal. However, any decimal can be written as a fraction. To do this, we need to consider the place value of the decimal. In this case, the decimal goes to the 5th decimal place. So we can write it as a fraction over 10 to the power of 5 (100000). So, 0.92847=92847 100000. Therefore, 0.92847=92847 100000.
Are decimals that have a denominator of 64 all repeating or terminating? Is there a limit to the number of decimal places when the fractional equivalent has a denominator of 64?
Decimals that have a denominator of 64 are terminating decimals. This is because 64 is a power of 2, and any fraction with a denominator that is a power of 2 or 5 (or a combination of both) will result in a terminating decimal. There is a limit to the number of decimal places for these fractions. The number of decimal places is determined by the highest power of 2 or 5 in the denominator. In this case, since 64 is 2 to the power of 6, the maximum number of decimal places is 6. So, a l l d e c i m a l s w i t h a d e n o m i n a t o r o f 64 a r e t e r m i n a t i n g d e c i m a l s w i t h a m a x i m u m o f 6 d e c i m a l p l a c e s.
Is 0.46 with a repeating line a terminating decimal, a repeating decimal, or neither? Can it be written as a fraction?
The decimal 0.46 repeating is a repeating decimal because the digits 46 repeat indefinitely. Yes, it can be written as a fraction. To do this, we can use the following steps: 1. Let x=0.464646... 2. Multiply both sides by 100 to shift the decimal point two places to the right: 100 x=46.464646... 3. Subtract the original equation from this result to get rid of the repeating part: 100 x−x=46.464646...−0.464646..., which simplifies to 99 x=46 4. Solve for x by dividing both sides by 99: x=46 99 So, 0.464646...=46 99.
Overview
To write a repeating decimal as a fraction:
Start by creating an equation where x= "the repeating number".
Multiply both sides of the equation by a power of 10 which will move the decimal to the right of the repeating number.
Subtract the equation from the first step from the equation in the second step.
Solve the resulting equation.
Vocabulary
Whole Numbers
reciprocal
Place Value
Round
Repeating Decimal
Amount
Divide
number line
Numerator
Denominator
reduce
Test Your Knowledge
Question 1
Change the value, 0.45¯, into fraction.
a
45 100
b
6 13
c
5 11
d
4 9
Check It
Let x=0.45¯...
Then 100 x=45.45¯...
Next use subtraction to remove the repeating decimal.
100 x=45.45¯....−x=−0.45¯...
This results in:
99 x=45
Dividing both sides by 99 results in x=45 99
Simplifying we get x=5 11
FlexCard™
Question 2
Write the decimal 0.36¯ as a fraction in simplest form.
a
1 3
b
36 10
c
4 11
d
2 5
Check It
Let x=0.36¯...
Then 100 x=36.36¯...
Next use subtraction to remove the repeating decimal.
100 x=36.36¯...x=0.36¯...
This results in:
99 x=36
Dividing both sides by 99 results in x=36 99
Simplifying we get x=4 11
FlexCard™
Asked by Students
Ask your question
Here are the top questions that students are asking Flexi for this concept:
How do I convert a non-terminating decimal into a fraction?
You can only convert a repeating non-terminating decimal to a fraction.
To write a repeating decimal as a fraction, you will need to use an equation.
Begin by writing x= the repeating number.
Multiply both sides of the equation by a power of 10 which will move the decimal to the right of the repeating number.
Subtract the equation from step 1 from the equation in step 2.
Solve the resulting equation.
For example, write 0.7¯as a fraction.
Begin by writing x = the repeating number.
x=0.7¯
Multiply both sides of the equation by a power of 10 which will move the decimal to the right of the repeating number.
The repeating number is seven. To move the decimal to the right of the 7, you need to multiply by 10. This gives you the following: 10 x=7.7¯.
Subtract the equation from step 1 from the equation in step 2.
10 x=7.7¯−x=0.7¯_ 9 x=7
Solve the resulting equation.
9 x=7 x=7 9
Click here to learn more!
Is 0.462 a terminating decimal, a repeating decimal, or neither? Can it be written as a fraction?
The decimal 0.462 is a terminating decimal because it ends and does not go on indefinitely. It is not a repeating decimal because no digit or set of digits is repeated indefinitely. Yes, it can be written as a fraction. To convert a decimal to a fraction, we look at the place value of the last digit. Here, the last digit is in the thousandths place. So, we can write the decimal as a fraction over 1000 and then simplify if necessary. 0.462=462 1000 This fraction can be simplified by dividing both the numerator and the denominator by their greatest common divisor, which is 2. 462 1000=231 500 So, 0.462=231 500.
Is 0.92847 a terminating decimal, a repeating decimal, or neither? Can it be written as a fraction?
The decimal 0.92847 does not appear to repeat or terminate, so it's neither a repeating nor a terminating decimal. However, any decimal can be written as a fraction. To do this, we need to consider the place value of the decimal. In this case, the decimal goes to the 5th decimal place. So we can write it as a fraction over 10 to the power of 5 (100000). So, 0.92847=92847 100000. Therefore, 0.92847=92847 100000.
Are decimals that have a denominator of 64 all repeating or terminating? Is there a limit to the number of decimal places when the fractional equivalent has a denominator of 64?
Decimals that have a denominator of 64 are terminating decimals. This is because 64 is a power of 2, and any fraction with a denominator that is a power of 2 or 5 (or a combination of both) will result in a terminating decimal. There is a limit to the number of decimal places for these fractions. The number of decimal places is determined by the highest power of 2 or 5 in the denominator. In this case, since 64 is 2 to the power of 6, the maximum number of decimal places is 6. So, a l l d e c i m a l s w i t h a d e n o m i n a t o r o f 64 a r e t e r m i n a t i n g d e c i m a l s w i t h a m a x i m u m o f 6 d e c i m a l p l a c e s.
Is 0.46 with a repeating line a terminating decimal, a repeating decimal, or neither? Can it be written as a fraction?
The decimal 0.46 repeating is a repeating decimal because the digits 46 repeat indefinitely. Yes, it can be written as a fraction. To do this, we can use the following steps: 1. Let x=0.464646... 2. Multiply both sides by 100 to shift the decimal point two places to the right: 100 x=46.464646... 3. Subtract the original equation from this result to get rid of the repeating part: 100 x−x=46.464646...−0.464646..., which simplifies to 99 x=46 4. Solve for x by dividing both sides by 99: x=46 99 So, 0.464646...=46 99.
Related Content
Properties of Rational Numbers
Integers and Rational Numbers: A Sample Application
Properties of Rational Numbers: Lollipop Trees
Back to Converting Repeating Decimals into Fractions
| Image | Reference | Attributions |
---
Ask me anything!
Mute me
CK-12 Foundation is a non-profit organization that provides free educational materials and resources.
FLEXI APPS
ABOUT
Our missionMeet the teamPartnersPressCareersSecurityBlogCK-12 usage mapTestimonials
SUPPORT
Certified Educator ProgramCK-12 trainersWebinarsCK-12 resourcesHelpContact us
BY CK-12
Common Core MathK-12 FlexBooksCollege FlexBooksTools and apps
CONNECT
TikTokInstagramYouTubeTwitterMediumFacebookLinkedIn
v2.11.9.20250723073146-fde7a5d80f
© CK-12 Foundation 2025 | FlexBook Platform®, FlexBook®, FlexLet® and FlexCard™ are registered trademarks of CK-12 Foundation.
Terms of usePrivacyAttribution guide
Student Sign Up
Are you a teacher? Sign up here
Sign in with Google
Having issues? Click here
Sign in with Microsoft
or
Sign up using email
By signing up, I confirm that I have read and agree to the Terms of use and Privacy Policy
Already have an account? Sign In
Adaptive Practice
I’m Ready to Practice!
Get 10 correct to reach your goal
Estimated time to complete: 11 min
Start Practice I need help
Save this section to your Library in order to add a Practice or Quiz to it.
Title
(Edit Title)44/ 100
Save Go Back
This lesson has been added to your library.
Got It
No Results Found
Your search did not match anything in .
Got It
Searching in:
CK-12
Looks like this FlexBook 2.0 has changed since you visited it last time. We found the following sections in the book that match the one you are looking for:
Go to the Table of Contents
Ok
Are you sure you want to restart this practice? Restarting will reset your practice score and skill level.
|
190808
|
https://dl.icdst.org/pdfs/files1/adb0479df2ac3f05a3637ffd493fed54.pdf
|
LANGE'S HANDBOOK OF CHEMISTRY John A. Dean Professor Emeritus of Chemistry University of Tennessee, Knoxville Fifteenth Edition McGRAW-HILL, INC. New York St. Louis San Francisco Auckland Bogotá Caracus Lisbon London Madrid Mexico Milan Montreal New Delhi Paris San Juan São Paulo Singapore Sydney Tokyo Toronto Copyright © 1999, 1992, 1985, 1979, 1973, 1967, 1961, 1956 by McGraw- Hill, Inc. All rights reserved. Copyright renewed 1972 by Norbert Adolph Lange. Copyright 1952, 1949, 1946, 1944, 1941, 1939, 1937, 1934 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base retrieval system without the prior written permis- sion of the publisher. 5 6 7 8 9 0 DOC/DOC 9 0 3 2 1 0 9 8 ISBN 0-07-016384-7 The sponsoring editor for this book was Robert Esposito, and the production supervisor was Clare B. Stanley. It was set in Times Roman by Progressive Information Technologies. Printed and bound by R. R. Donnelley & Sons Company. Information contained in this work has been obtained by McGraw- Hill, Inc., from sources believed to be reliable. However, neither McGraw-Hill nor its authors guarantee the accuracy or completeness of any information published herein and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill and its authors are supplying infor- mation but are not attempting to render engineering or other profes-sional services. If such services are required, the assistance of an appropriate profession should be sought. Grateful acknowledgment is hereby made of an indebtedness to those who have contributed to previous editions and whose compilations continue in use in this edition. In particular, acknowledg-ment is made of the contribution of L. P. Buseth, who prepared the conversion tables for the thirteenth edition and who prepared the table on the U.S. Standard Sieve Series.
xvii ABOUT THE EDITOR John A. Dean assumed the editorship of Lange's Handbook of Chemistry in 1968 with the Eleventh Edition. He is currently Professor Emeritus of Chemistry at the University of Tennessee at Knoxville. The author of nine major chemistry reference books used throughout the world, John Dean's research interests, reflected in over 105 research papers and scholarly publications, include instrumental methods of analysis, flame emis-sion and atomic absorption spectroscopy, chromatographic and solvent extraction meth-ods, and polarography. He received his B.S., M.S., and Ph.D. in Chemistry from the University of Michigan at Ann Arbor. In 1974, he was given the Charles H. Stone Award by the Carolina-Piedmont Section of the American Chemical Society. In 1991, he was awarded the Distinguished Service Award by the Society for Applied Spectroscopy; by the same organization he was awarded Honorary Membership in 1997.
For the detailed contents of any section, consult the title page of that section. See also the alpha.
betical index in the back of this handbook.
Preface to Fifteenth Edition Preface to Fourteenth Edition Preface to First Edition xv Acknowledgments xvii vii 1.1 2.1 3.1 4.1 5.1 6.1 7.1 8.1 9.1 10.1 11.1 Section 1. Organic Compounds Section 2. General Information, Conversion Tables, and Mathematics Section 3. Inorganic Compounds Section 4. Properties of Atoms, Radicals, and Bonds Section 5. Physical Properties Section 6. Thermodynamic Properties Section 7. Spectroscopy Section 8. Electrolytes, Electromotive Force, and Chemical Equilibrium Section 9. Physicochemical Relationships Section 10. Polymers, Rubbers, Fats, Oils, and Waxes Section 11. Practical Laboratory Information Index follows Section 11 PREFACE TO FIFTEENTH EDITION This new edition, the fifth under the aegis of the present editor, remains the one-volume source of factual information for chemists, both professionals and students—the first place in which to “look it up” on the spot. The aim is to provide sufficient data to satisfy all one’s general needs without recourse to other reference sources. A user will find this volume of value as a time-saver because of the many tables of numerical data which have been especially compiled.
Descriptive properties for a basic group of approximately 4300 organic compounds are compiled in Section 1, an increase of 300 entries. All entries are listed alphabetically according to the senior prefix of the name. The data for each organic compound include (where available) name, structural formula, formula weight, Beilstein reference (or if un-available, the entry to the Merck Index, 12th ed.), density, refractive index, melting point, boiling point, flash point, and solubility (citing numerical values if known) in water and various common organic solvents. Structural formulas either too complex or too ambig-uous to be rendered as line formulas are grouped at the bottom of each facing double page on which the entries appear. Alternative names, as well as trivial names of long-standing usage, are listed in their respective alphabetical order at the bottom of each double page in the regular alphabetical sequence. Another feature that assists the user in locating a desired entry is the empirical formula index.
Section 2 on General Information, Conversion Tables, and Mathematics has had the table on general conversion factors thoroughly reworked. Similarly the material on Statis-tics in Chemical Analysis has had its contents more than doubled.
Descriptive properties for a basic group of inorganic compounds are compiled in Section 3, which has undergone a small increase in the number of entries. Many entries under the column “Solubility” supply the reader with precise quantities dissolved in a stated solvent and at a given temperature.
Several portions of Section 4, Properties of Atoms, Radicals, and Bonds, have been significantly enlarged. For example, the entries under “Ionization Energy of Molecular and Radical Species” now number 740 and have an additional column with the enthalpy of formation of the ions. Likewise, the table on “Electron Affinities of the Elements, Molecules, and Radicals” now contains about 225 entries. The Table of Nuclides has material on additional radionuclides, their radiations, and the neutron capture cross sec-tions.
Revised material for Section 5 includes the material on surface tension, viscosity, di-electric constant, and dipole moment for organic compounds. In order to include more data at several temperatures, the material has been divided into two separate tables. Ma-terial on surface tension and viscosity constitute the first table with 715 entries; included is the temperature range of the liquid phase. Material on dielectric constant and dipole vii viii PREFACE TO FIFTEENTH EDITION moment constitute another table of 1220 entries. The additional data at two or more tem-peratures permit interpolation for intermediate temperatures and also permit limited ex-trapolation of the data. The Properties of Combustible Mixtures in Air has been revised and expanded to include over 450 compounds. Flash points are to be found in Section 1.
Completely revised are the tables on Thermal Conductivity for gases, liquids, and solids.
Van der Waals’ constants for gases has been brought up to date and expanded to over 500 substances.
Section 6, which includes Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic and Inorganic Compounds, and Heats of Melting, Vaporization, and Sublimation and Specific Heat at Various Temperatures for organic and inorganic compounds, has expanded by 11 pages, but the major additions have involved data in columns where it previously was absent. More material has also been included for critical temperature, critical pressure, and critical volume.
The section on Spectroscopy has been retained but with some revisions and expansion.
The section includes ultraviolet-visible spectroscopy, fluorescence, infrared and Raman spectroscopy, and X-ray spectrometry. Detection limits are listed for the elements when using flame emission, flame atomic absorption, electrothermal atomic absorption, argon induction coupled plasma, and flame atomic fluorescence. Nuclear magnetic resonance embraces tables for the nuclear properties of the elements, proton chemical shifts and coupling constants, and similar material for carbon-13, boron-11, nitrogen-15, fluorine-19, silicon-19, and phosphorus-31.
In Section 8, the material on solubility constants has been doubled to 550 entries.
Sections on proton transfer reactions, including some at various temperatures, formation constants of metal complexes with organic and inorganic ligands, buffer solutions of all types, reference electrodes, indicators, and electrode potentials are retained with some revisions. The material on conductances has been revised and expanded, particularly in the table on limiting equivalent ionic conductances.
Everything in Sections 9 and 10 on physiochemical relationships, and on polymers, rubbers, fats, oils, and waxes, respectively, has been retained.
Section 11, Practical Laboratory Information, has undergone significant changes and expansion. Entries in the table on “Molecular Elevation of the Boiling Point” have been increased. McReynolds’ constants for stationary phases in gas chromatography have been reorganized and expanded. The guide to ion-exchange resins and discussion is new and embraces all types of column packings and membrane materials. Gravimetric factors have been altered to reflect the changes in atomic weights for several elements. Newly added are tables listing elements precipitated by general analytical reagents, and giving equations for the redox determination of the elements with their equivalent weights. Discussion on the topics of precipitation and complexometric titrations include primary standards and indicators for each analytical technique. A new topic of masking and demasking agents includes discussion and tables of masking agents for various elements, for anions and neutral molecules, and common demasking agents. A table has been added listing the common amino acids with their pI and pKa values and their 3-letter and 1-letter abbrevi-ations. Lastly a 9-page table lists the threshold limit value (TLV) for gases and vapors.
As stated in earlier prefaces, every effort has been made to select the most useful and reliable information and to record it with accuracy. However, the editor’s 50 years of PREFACE TO FIFTEENTH EDITION ix involvement with textbooks and handbooks bring a realization of the opportunities for gremlins to exert their inevitable mischief. It is hoped that users of this handbook will continue to offer suggestions of material that might be included in, or even excluded from, future editions and call attention to errors. These communications should be directed to the editor. The street address will change early in 1999, as will the telephone number.
However, the e-mail address should remain as “pd105@aol.com.” Knoxville, TN John A. Dean PREFACE TO FOURTEENTH EDITION Perhaps it would be simplest to begin by stating the ways in which this new edition, the fourth under the aegis of the present editor, has not been changed. It remains the one-volume source of factual information for chemists, both professionals and students—the first place in which to “look it up” on the spot. The aim is to provide sufficient data to satisfy all one’s general needs without recourse to other reference sources. Even the worker with the facilities of a comprehensive library will find this volume of value as a time-saver because of the many tables of numerical data which have been especially compiled.
The changes, however, are both numerous and significant. First of all, there is a change in the organization of the subject matter. For example, material formerly contained in the section entitled Analytical Chemistry is now grouped by operational categories: spectroscopy; electrolytes, electro-motive force, and chemical equilibrium; and practical laboratory information. Polymers, rubbers, fats, oils, and waxes constitute a large independent section.
Descriptive properties for a basic group of approximately 4000 organic compounds are compiled in Section 1. These follow a concise introduction to organic nomenclature, including the topic of stereochemistry. Nomenclature is consistent with the 1979 rules of the Commission on Nomencla-ture, International Union of Pure and Applied Chemistry (IUPAC). All entries are listed alphabeti-cally according to the senior prefix of the name. The data for each organic compound include (where available) name, structural formula, formula weight, Beilstein reference, density, refractive index, melting point, boiling point, flash point, and solubility (citing numerical values if known) in water and various common organic solvents. Structural formulas either too complex or too ambiguous to be rendered as line formulas are grouped at the bottom of the page on which the entries appear.
Alternative names, as well as trivial names of long-standing usage, are listed in their respective alphabetical order at the bottom of each page in the regular alphabetical sequence. Another feature that assists the user in locating a desired entry is the empirical formula index.
Section 2 combines the former separate section on Mathematics with the material involving General Information and Conversion Tables. The fundamental physical constants reflect values rec-ommended in 1986. Physical and chemical symbols and definitions have undergone extensive re-vision and expansion. Presented in 14 categories, the entries follow recommendations published in 1988 by the IUPAC. The table of abbreviations and standard letter symbols provides, in a sense, an alphabetical index to the foregoing tables. The table of conversion factors has been modified in view of recent data and inclusion of SI units; cross-entries for “archaic” or unusual entries have been curtailed.
Descriptive properties for a basic group of approximately 1400 inorganic compounds are com-piled in Section 3. These follow a concise, revised introduction to inorganic nomenclature that follows the recommendations of the IUPAC published in 1990. In this section are given the exact atomic (or formula) weight of the elements accompanied, when available, by the uncertainty in the final figure given in parentheses.
In Section 4 the data on bond lengths and strengths have been vastly increased so as to include not only the atomic and effective ionic radii of elements and the covalent radii for atoms, but also the bond lengths between carbon and other elements and between elements other than carbon. All xi xii PREFACE TO FOURTEENTH EDITION lengths are given in picometers (SI unit). Effective ionic radii are tabulated as a function of ion charge and coordination number. Bond dissociation energies are given in kilojoules per mole with the uncertainty of the final figure(s) given in parentheses when known. New tables include bond dipole moments, group dipole moments, work functions of the elements, and relative abundances of the naturally occurring elements. The table of nuclides has been shortened and includes only the more commonly encountered nuclides; tabulations list half-life, natural abundance, cross-section to thermal neutrons, and radiation emitted upon disintegration. Entries have been updated.
Revised material in Section 5 includes an extensive tabulation of binary and ternary azeotropes comprising approximately 850 entries. Over 975 compounds have values listed for viscosity, di-electric constant, dipole moment, and surface tension. Whenever possible, data for viscosity and dielectric constant are provided at two temperatures to permit interpolation for intermediate tem-peratures and also to permit limited extrapolation of the data. The dipole moments are often listed for different physical states. Values for surface tension can be calculated over a range of temperatures from two constants that can be fitted into a linear equation. Also extensively revised and expanded are the properties of combustible mixtures in air. A table of triple points has been added.
The tables in Section 6 contain values of the enthalpy and Gibbs energy of formation, entropy, and heat capacity at five temperatures for approximately 2000 organic compounds and 1500 inor-ganic compounds, many in more than one physical state. Separate tabulations have enthalpies of melting, vaporization, transition, and sublimation for organic and inorganic compounds. All values are given in SI units (joule) and have been extracted from the latest sources such as JANAF Ther-mochemical Tables, 3d ed. (1986); Thermochemical Data of Organic Compounds, 2d ed. (1986); and Enthalpies of Vaporization of Organic Compounds, published under the auspices of the IUPAC (1985). Also updated is the material on critical properties of elements and compounds.
The section on Spectroscopy has been expanded to include ultraviolet-visible spectroscopy, fluorescence, Raman spectroscopy, and mass spectroscopy. Retained sections have been thoroughly revised: in particular, the tables on electronic emission and atomic absorption spectroscopy, nuclear magnetic resonance, and infrared spectroscopy. Detection limits are listed for the elements when using flame emission, flame atomic absorption, electrothermal atomic absorption, argon ICP, and flame atomic fluorescence. Nuclear magnetic resonance embraces tables for the nuclear properties of the elements, proton chemical shifts and coupling constants, and similar material for carbon-13, boron-11, nitrogen-15, fluorine-19, silicon-29, and phosphorus-31.
Section 8 now combines all the material on electrolytes, electromotive force, and chemical equi-librium, some of which had formerly been included in the old “Analytical Chemistry” section of earlier editions. Material on the half-wave potentials of inorganic and organic materials has been thoroughly revised. The tabulation of the potentials of the elements and their compounds reflects recent IUPAC (1985) recommendations.
An extensive new Section 10 is devoted to polymers, rubbers, fats, oils, and waxes. A discussion of polymers and rubbers is followed by the formulas and key properties of plastic materials. For each member and type of the plastic families there is a tabulation of their physical, electrical, mechanical, and thermal properties and characteristics. A similar treatment is accorded the various types of rubber materials. Chemical resistance and gas permeability constants are also given for rubbers and plastics. The section concludes with various constants of fats, oils, and waxes.
The practical laboratory information contained in Section 11 has been gathered from many of the previous sections of earlier editions. This material has been supplemented with new material under separation methods, gravimetric and volumetric analysis, and laboratory solutions. Significant new tables under separation methods include: properties of solvents for chromatography, solvents having the same refractive index and the same density, McReynolds’ constants for stationary phases in gas chromatography, characteristics of selected supercritical fluids, and typical performances in HPLC for various operating conditions. Under gravimetric and volumetric analysis, gravimetric factors, equations and equivalents for volumetric analysis, and titrimetric factors have been retained PREFACE TO FOURTEENTH EDITION xiii along with the formation constants of EDTA metal complexes. In this age of awareness of chemical dangers, tables have been added for some common reactive and incompatible chemicals, chemicals recommended for refrigerated storage, and chemicals which polymerize or decompose on extended storage at low temperature. Updated is the information about the U.S. Standard Sieve Series. Ther-mometry data have been revised to bring them into agreement with the new International Temper-ature Scale–1990, and data for type N thermocouples are included.
Every effort has been made to select the most useful and most reliable information and to record it with accuracy. However, the editor’s many years of involvement with handbooks bring a realiza-tion of the opportunities for gremlins to exert their inevitable mischief. It is hoped that users of this handbook will offer suggestions of material that might be included in, or even excluded from, future editions and call attention to errors. These communications should be directed to the editor at his home address (or by telephone).
John A. Dean PREFACE TO FIRST EDITION This book is the result of a number of years’ experience in the compiling and editing of data useful to chemists. In it an effort has been made to select material to meet the needs of chemists who cannot command the unlimited time available to the research specialist, or who lack the facilities of a large technical library which so often is not conveniently located at many manufacturing centers.
If the information contained herein serves this purpose, the compiler will feel that he has accom-plished a worthy task. Even the worker with the facilities of a comprehensive library may find this volume of value as a time-saver because of the many tables of numerical data which have been especially computed for this purpose.
Every effort has been made to select the most reliable information and to record it with accuracy.
Many years of occupation with this type of work bring a realization of the opportunities for the occurrence of errors, and while every endeavor has been made to prevent them, yet it would be remarkable if the attempts towards this end had always been successful. In this connection it is desired to express appreciation to those who in the past have called attention to errors, and it will be appreciated if this be done again with the present compilation for the publishers have given their assurance that no expense will be spared in making the necessary changes in subsequent printings.
It has been aimed to produce a compilation complete within the limits set by the economy of available space. One difficulty always at hand to the compiler of such a book is that he must decide what data are to be excluded in order to keep the volume from becoming unwieldy because of its size. He can hardly be expected to have an expert’s knowledge of all branches of the science nor the intuition necessary to decide in all cases which particular value to record, especially when many differing values are given in the literature for the same constant. If the expert in a particular field will judge the usefulness of this book by the data which it supplies to him from fields other than his specialty and not by the lack of highly specialized information in which only he and his co-workers are interested (and with which he is familiar and for which he would never have occasion to consult this compilation), then an estimate of its value to him will be apparent. However, if such specialists will call attention to missing data with which they are familiar and which they believe others less specialized will also need, then works of this type can be improved in succeeding editions.
Many of the gaps in this volume are caused by the lack of such information in the literature. It is hoped that to one of the most important classes of workers in chemistry, namely the teachers, the book will be of value not only as an aid in answering the most varied questions with which they are confronted by interested students, but also as an inspiration through what it suggests by the gaps and inconsistencies, challenging as they do the incentive to engage in the creative and experimental work necessary to supply the missing information.
While the principal value of the book is for the professional chemist or student of chemistry, it should also be of value to many people not especially educated as chemists. Workers in the natural sciences—physicists, mineralogists, biologists, pharmacists, engineers, patent attorneys, and librar-ians—are often called upon to solve problems dealing with the properties of chemical products or materials of construction. For such needs this compilation supplies helpful information and will serve not only as an economical substitute for the costly accumulation of a large library of mono-graphs on specialized subjects, but also as a means of conserving the time required to search for xv xvi PREFACE TO FIRST EDITION information so widely scattered throughout the literature. For this reason especial care has been taken in compiling a comprehensive index and in furnishing cross references with many of the tables.
It is hoped that this book will be of the same usefulness to the worker in science as is the dictionary to the worker in literature, and that its resting place will be on the desk rather than on the bookshelf.
Cleveland, Ohio N. A. Lange May 2, 1934 SECTION 1 ORGANIC COMPOUNDS 1.1 NOMENCLATURE OF ORGANIC COMPOUNDS 1.1 1.1.1 Nonfunctional Compounds 1.1 Table 1.1 Names of Straight-Chain Alkanes 1.2 Table 1.2 Fused Polycyclic Hydrocarbons 1.8 Table 1.3 Specialist Nomenclature for Heterocyclic Systems 1.11 Table 1.4 Suffixes for Specialist Nomenclature of Heterocyclic Systems 1.12 Table 1.5 Trivial Names of Heterocyclic Systems Suitable for Use in Fusion Names 1.13 Table 1.6 Trivial Names for Heterocyclic Systems That Are Not Recommended for Use in Fusion Names 1.16 1.1.2 Functional Compounds 1.17 Table 1.7 Characteristic Groups for Substitutive Nomenclature 1.18 Table 1.8 Characteristic Groups Cited Only as Prefixes in Substitutive Nomenclature 1.19 Table 1.9 Functional Class Names Used in Radicofunctional Nomenclature 1.22 1.1.3 Specific Functional Groups 1.23 Table 1.10 Retained Trivial Names of Alcohols and Phenols with Structures 1.24 Table 1.11 Names of Some Carboxylic Acids 1.30 Table 1.12 Parent Structures of Phosphorus-Containing Compounds 1.36 1.1.4 Stereochemistry 1.39 1.1.5 Chemical Abstracts Indexing System 1.49 Table 1.13 Names and Formulas of Organic Radicals 1.51 1.2 PHYSICAL PROPERTIES OF PURE SUBSTANCES 1.58 Table 1.14 Empirical Formula Index of Organic Compounds 1.58 Table 1.15 Physical Constants of Organic Compounds 1.74 1.1 NOMENCLATURE OF ORGANIC COMPOUNDS The following synopsis of rules for naming organic compounds and the examples given in expla-nation are not intended to cover all the possible cases. For a more comprehensive and detailed description, see J. Rigaudy and S. P. Klesney, Nomenclature of Organic Chemistry, Sections A, B, C, D, E, F, and H, Pergamon Press, Oxford, 1979. This publication contains the recommendations of the Commission on Nomenclature of Organic Chemistry and was prepared under the auspices of the International Union of Pure and Applied Chemistry (IUPAC).
1.1.1 Nonfunctional Compounds 1.1.1.1 Alkanes.
The saturated open-chain (acyclic) hydrocarbons have names ending (C H ) n 2n2 in -ane. The first four members have the trivial names methane (CH4), ethane (CH3CH3 or C2H6), propane (C3H8), and butane (C4H10). For the remainder of the alkanes, the first portion of the name 1.1 1.2 SECTION 1 is derived from the Greek prefix (see Table 2.4) that cites the number of carbons in the alkane followed by -ane with elision of the terminal -a from the prefix, as shown in Table 1.1.
For branching compounds, the parent structure is the longest continuous chain present in the compound. Consider the compound to have been derived from this structure by replacement of hydrogen by various alkyl groups. Arabic number prefixes indicate the carbon to which the alkyl group is attached. Start numbering at whichever end of the parent structure that results in the lowest-numbered locants. The arabic prefixes are listed in numerical sequence, separated from each other by commas and from the remainder of the name by a hyphen.
If the same alkyl group occurs more than once as a side chain, this is indicated by the prefixes di-, tri-, tetra-, etc. Side chains are cited in alphabetical order (before insertion of any multiplying prefix). The name of a complex radical (side chain) is considered to begin with the first letter of its complete name. Where names of complex radicals are composed of identical words, priority for citation is given to that radical which contains the lowest-numbered locant at the first cited point of difference in the radical. If two or more side chains are in equivalent positions, the one to be assigned the lowest-numbered locant is that cited first in the name. The complete expression for the side chain may be enclosed in parentheses for clarity or the carbon atoms in side chains may be indicated by primed locants.
If hydrocarbon chains of equal length are competing for selection as the parent, the choice goes in descending order to (1) the chain that has the greatest number of side chains, (2) the chain whose side chains have the lowest-numbered locants, (3) the chain having the greatest number of carbon atoms in the smaller side chains, or (4) the chain having the least-branched side chains.
These trivial names may be used for the unsubstituted hydrocarbon only: Isobutane (CH3)2CHCH3 Neopentane (CH3)4C Isopentane (CH3)2CHCH2CH3 Isohexane (CH3)2CHCH2CH2CH3 Univalent radicals derived from saturated unbranched alkanes by removal of hydrogen from a terminal carbon atom are named by adding -yl in place of -ane to the stem name. Thus the alkane TABLE 1.1 Names of Straight-Chain Alkanes n Name n Name n Name n Name 1 Methane 11 Undecane‡ 21 Henicosane 60 Hexacontane 2 Ethane 12 Dodecane 22 Docosane 70 Heptacontane 3 Propane 13 Tridecane 23 Tricosane 80 Octacontane 4 Butane 14 Tetradecane 90 Nonacontane 5 Pentane 15 Pentadecane 30 Triacontane 100 Hectane 6 Hexane 16 Hexadecane 31 Hentriacontane 110 Decahectane 7 Heptane 17 Heptadecane 32 Dotriacontane 120 Icosahectane 8 Octane 18 Octadecane 121 Henicosahectane 9 Nonane† 19 Nonadecane 40 Tetracontane 10 Decane 20 Icosane§ 50 Pentacontane n total number of carbon atoms.
† Formerly called enneane.
‡ Formerly called hendecane.
§ Formerly called eicosane.
ORGANIC COMPOUNDS 1.3 ethane becomes the radical ethyl. These exceptions are permitted for unsubstituted radicals only: Isopropyl (CH3)2CH9 Isopentyl (CH3)2CHCH2CH29 Isobutyl (CH3)2CHCH29 Neopentyl (CH3)3CCH29 sec-Butyl CH3CH2CH(CH3)9 tert-Pentyl CH3CH2C(CH3)29 tert-Butyl (CH3)3C9 Isohexyl (CH3)2CHCH2CH2CH29 Note the usage of the prefixes iso-, neo-, sec-, and tert-, and note when italics are employed. Italicized prefixes are never involved in alphabetization, except among themselves; thus sec-butyl would pre-cede isobutyl, isohexyl would precede isopropyl, and sec-butyl would precede tert-butyl.
Examples of alkane nomenclature are 2-Methylbutane (or the trivial name, isopentane) 3-Methylpentane (not 2-ethylbutane) 5-Ethyl-2,2-dimethyloctane (note cited order) 3-Ethyl-6-methyloctane (note locants reversed) 4,4-Bis(1,1-dimethylethyl)-2-methyloctane 4,4-Bis-1,1-dimethylethyl-2-methyloctane 4,4-Bis(tert-butyl)-2-methyloctane Bivalent radicals derived from saturated unbranched alkanes by removal of two hydrogen atoms are named as follows: (1) If both free bonds are on the same carbon atom, the ending -ane of the hydrocarbon is replaced with -ylidene. However, for the first member of the alkanes it is methylene 1.4 SECTION 1 rather than methylidene. Isopropylidene, sec-butylidene, and neopentylidene may be used for the unsubstituted group only. (2) If the two free bonds are on different carbon atoms, the straight-chain group terminating in these two carbon atoms is named by citing the number of methylene groups comprising the chain. Other carbon groups are named as substituents. Ethylene is used rather than dimethylene for the first member of the series, and propylene is retained for CH39CH9CH29 (but trimethylene is 9CH29CH29CH29).
Trivalent groups derived by the removal of three hydrogen atoms from the same carbon are named by replacing the ending -ane of the parent hydrocarbon with -ylidyne.
1.1.1.2 Alkenes and Alkynes.
Each name of the corresponding saturated hydrocarbon is con-verted to the corresponding alkene by changing the ending -ane to -ene. For alkynes the ending is -yne. With more than one double (or triple) bond, the endings are -adiene, -atriene, etc. (or -adiyne, -atriyne, etc.). The position of the double (or triple) bond in the parent chain is indicated by a locant obtained by numbering from the end of the chain nearest the double (or triple) bond; thus CH3CH2CH"CH2 is 1-butene and CH3C#CCH3 is 2-butyne.
For multiple unsaturated bonds, the chain is so numbered as to give the lowest possible locants to the unsaturated bonds. When there is a choice in numbering, the double bonds are given the lowest locants, and the alkene is cited before the alkyne where both occur in the name. Examples: CH3CH2CH2CH2CH"CH9CH"CH2 1,3-Octadiene CH2"CHC#CCH"CH2 1,5-Hexadiene-3-yne CH3CH"CHCH2C#CH 4-Hexen-1-yne CH#CCH2CH"CH2 1-Penten-4-yne Unsaturated branched acyclic hydrocarbons are named as derivatives of the chain that contains the maximum number of double and/or triple bonds. When a choice exists, priority goes in sequence to (1) the chain with the greatest number of carbon atoms and (2) the chain containing the maximum number of double bonds.
These nonsystematic names are retained: Ethylene CH2"CH2 Allene CH2"C"CH2 Acetylene HC#CH An example of nomenclature for alkenes and alkynes is 4-Propyl-3-vinyl-1,3-hexadien-5-yne Univalent radicals have the endings -enyl, -ynyl, -dienyl, -diynyl, etc. When necessary, the po-sitions of the double and triple bonds are indicated by locants, with the carbon atom with the free valence numbered as 1. Examples: CH2"CH9CH29 2-Propenyl CH39C#C9 1-Propynyl CH39C#C9CH2CH"CH29 1-Hexen-4-ynyl These names are retained: ORGANIC COMPOUNDS 1.5 Vinyl (for ethenyl) CH2"CH9 Allyl (for 2-propenyl) CH2"CH9CH29 Isopropenyl (for 1-methylvinyl but for unsubstituted radical only) CH2"C(CH3)9 Should there be a choice for the fundamental straight chain of a radical, that chain is selected which contains (1) the maximum number of double and triple bonds, (2) the largest number of carbon atoms, and (3) the largest number of double bonds. These are in descending priority.
Bivalent radicals derived from unbranched alkenes, alkadienes, and alkynes by removing a hy-drogen atom from each of the terminal carbon atoms are named by replacing the endings -ene, -diene, and -yne by -enylene, -dienylene, and -ynylene, respectively. Positions of double and triple bonds are indicated by numbers when necessary. The name vinylene instead of ethenylene is retained for 9CH"CH9.
1.1.1.3 Monocyclic Aliphatic Hydrocarbons.
Monocyclic aliphatic hydrocarbons (with no side chains) are named by prefixing cyclo- to the name of the corresponding open-chain hydrocarbon having the same number of carbon atoms as the ring. Radicals are formed as with the alkanes, alkenes, and alkynes. Examples: Cyclohexane Cyclohexyl- (for the radical) Cyclohexene 1-Cyclohexenyl- (for the radical with the free valence at carbon 1) 1,3-Cyclohexandiene Cyclohexadienyl- (the unsaturated carbons are given numbers as low as possible, numbering from the carbon atom with the free valence given the number 1) For convenience, aliphatic rings are often represented by simple geometric figures: a triangle for cyclopropane, a square for cyclobutane, a pentagon for cyclopentane, a hexagon (as illustrated) for cyclohexane, etc. It is understood that two hydrogen atoms are located at each corner of the figure unless some other group is indicated for one or both.
1.1.1.4 Monocyclic Aromatic Compounds.
Except for six retained names, all monocyclic sub-stituted aromatic hydrocarbons are named systematically as derivatives of benzene. Moreover, if the substituent introduced into a compound with a retained trivial name is identical with one already present in that compound, the compound is named as a derivative of benzene. These names are retained: Cumene Cymene (all three forms; para- shown) Mesitylene 1.6 SECTION 1 Styrene Toluene Xylene (all three forms; meta- shown) The position of substituents is indicated by numbers, with the lowest locant possible given to substituents. When a name is based on a recognized trivial name, priority for lowest-numbered locants is given to substituents implied by the trivial name. When only two substituents are present on a benzene ring, their position may be indicated by o- (ortho-), m- (meta-), and p- (para-) (and alphabetized in the order given) used in place of 1,2-, 1,3-, and 1,4-, respectively.
Radicals derived from monocyclic substituted aromatic hydrocarbons and having the free valence at a ring atom (numbered 1) are named phenyl (for benzene as parent, since benzyl is used for the radical C6H5CH29), cumenyl, mesityl, tolyl, and xylyl. All other radicals are named as substituted phenyl radicals. For radicals having a single free valence in the side chain, these trivial names are retained: Benzyl C6H5CH29 Phenethyl C6H5CH2CH29 Benzhydryl (alternative to diphenylmethyl) (C6H5)2CH9 Styryl C6H5CH"CH9 Cinnamyl C6H5CH"CH9CH29 Trityl (C6H5)3C9 Otherwise, radicals having the free valence(s) in the side chain are named in accordance with the rules for alkanes, alkenes, or alkynes.
The name phenylene (o-, m-, or p-) is retained for the radical 9C6H49. Bivalent radicals formed from substituted benzene derivatives and having the free valences at ring atoms are named as sub-stituted phenylene radicals, with the carbon atoms having the free valences being numbered 1,2-, 1,3-, or 1,4-, as appropriate.
Radicals having three or more free valences are named by adding the suffixes -triyl, -tetrayl, etc.
to the systematic name of the corresponding hydrocarbon.
1.1.1.5 Fused Polycyclic Hydrocarbons.
The names of polycyclic hydrocarbons containing the maximum number of conjugated double bonds end in -ene. Here the ending does not denote one double bond. Names of hydrocarbons containing five or more fixed benzene rings in a linear ar-rangement are formed from a numerical prefix (see Table 2.4) followed by -acene. A partial list of the names of polycyclic hydrocarbons is given in Table 1.2. Many names are trivial.
Numbering of each ring system is fixed, as shown in Table 1.2, but it follows a systematic pattern.
The individual rings of each system are oriented so that the greatest number of rings are (1) in a horizontal row and (2) the maximum number of rings are above and to the right (upper-right quad-rant) of the horizontal row. When two orientations meet these requirements, the one is chosen that has the fewest rings in the lower-left quadrant. Numbering proceeds in a clockwise direction, com-mencing with the carbon atom not engaged in ring fusion that lies in the most counterclockwise position of the uppermost ring (upper-right quadrant); omit atoms common to two or more rings.
Atoms common to two or more rings are designated by adding lowercase roman letters to the number of the position immediately preceding. Interior atoms follow the highest number, taking a clockwise ORGANIC COMPOUNDS 1.7 sequence wherever there is a choice. Anthracene and phenanthrene are two exceptions to the rule on numbering. Two examples of numbering follow: When a ring system with the maximum number of conjugated double bonds can exist in two or more forms differing only in the position of an “extra” hydrogen atom, the name can be made specific by indicating the position of the extra hydrogen(s). The compound name is modified with a locant followed by an italic capital H for each of these hydrogen atoms. Carbon atoms that carry an indicated hydrogen atom are numbered as low as possible. For example, 1H-indene is illustrated in Table 1.2; 2H-indene would be Names of polycyclic hydrocarbons with less than the maximum number of noncumulative double bonds are formed from a prefix dihydro-, tetrahydro-, etc., followed by the name of the corresponding unreduced hydrocarbon. The prefix perhydro- signifies full hydrogenation. For example, 1,2-dihy-dronaphthalene is Examples of retained names and their structures are as follows: Indan Acenaphthene Aceanthrene Acephenanthrene Polycyclic compounds in which two rings have two atoms in common or in which one ring contains two atoms in common with each of two or more rings of a contiguous series of rings and which contain at least two rings of five or more members with the maximum number of noncumu-1.8 SECTION 1 TABLE 1.2 Fused Polycyclic Hydrocarbons Listed in order of increasing priority for selection as parent compound.
1. Pentalene 2. Indene 3. Naphthalene 4. Azulene 5. Heptalene 6. Biphenylene 7. asym-Indacene 8. sym-Indacene 9. Acenaphthylene 10. Fluorene 11. Phenalene 12. Phenanthrene 13. Anthracene 14. Fluoranthene 15. Acephenanthrylene 16. Aceanthrylene Asterisk after a compound denotes exception to systematic numbering.
ORGANIC COMPOUNDS 1.9 TABLE 1.2 Fused Polycyclic Hydrocarbons (Continued) 17. Triphenylene 18. Pyrene 19. Chrysene 20. Naphthacene lative double bonds and which have no accepted trivial name (Table 1.2) are named by prefixing to the name of the parent ring or ring system designations of the other components. The parent name should contain as many rings as possible (provided it has a trivial name) and should occur as far as possible from the beginning of the list in Table 1.2. Furthermore, the attached component(s) should be as simple as possible. For example, one writes dibenzophenanthrene and not naphthophenanthrene because the attached component benzo- is simpler than napththo-. Prefixes designating attached components are formed by changing the ending -ene into -eno-; for example, indeno- from indene.
Multiple prefixes are arranged in alphabetical order. Several abbreviated prefixes are recognized; the parent is given in parentheses: Acenaphtho-(acenaphthylene) Naphtho-(naphthalene) Anthra-(anthracene) Perylo-(perylene) Benzo-(benzene) Phenanthro-(phenanthrene) For monocyclic prefixes other than benzo-, the following names are recognized, each to represent the form with the maximum number of noncumulative double bonds: cyclopenta-, cyclohepta-, cycloocta-, etc.
Isomers are distinguished by lettering the peripheral sides of the parent beginning with a for the side 1,2, and so on, lettering every side around the periphery. If necessary for clarity, the numbers of the attached position (1,2, for example) of the substituent ring are also denoted. The prefixes are cited in alphabetical order. The numbers and letters are enclosed in square brackets and placed immediately after the designation of the attached component. Examples are Benz[]anthracene Anthra[2,1-]naphthacene 1.10 SECTION 1 1.1.1.6 Bridged Hydrocarbons.
Saturated alicyclic hydrocarbon systems consisting of two rings that have two or more atoms in common take the name of the open-chain hydrocarbon containing the same total number of carbon atoms and are preceded by the prefix bicyclo-. The system is numbered commencing with one of the bridgeheads, numbering proceeding by the longest possible path to the second bridgehead. Numbering is then continued from this atom by the longer remaining unnumbered path back to the first bridgehead and is completed by the shortest path from the atom next to the first bridgehead. When a choice in numbering exists, unsaturation is given the lowest numbers. The number of carbon atoms in each of the bridges connecting the bridgeheads is indicated in brackets in descending order. Examples are Bicyclo[3.2.1]octane Bicyclo[5.2.0]nonane 1.1.1.7 Hydrocarbon Ring Assemblies.
Assemblies are two or more cyclic systems, either single rings or fused systems, that are joined directly to each other by double or single bonds. For identical systems naming may proceed (1) by placing the prefix bi- before the name of the corresponding radical or (2), for systems joined through a single bond, by placing the prefix bi- before the name of the corresponding hydrocarbon. In each case, the numbering of the assembly is that of the cor-responding radical or hydrocarbon, one system being assigned unprimed numbers and the other primed numbers. The points of attachment are indicated by placing the appropriate locants before the name; an unprimed number is considered lower than the same number primed. The name biphenyl is used for the assembly consisting of two benzene rings. Examples are 1,1-Bicyclopropyl or 1,1-bicyclopropane 2-Ethyl-2-propylbiphenyl For nonidentical ring systems, one ring system is selected as the parent and the other systems are considered as substituents and are arranged in alphabetical order. The parent ring system is assigned unprimed numbers. The parent is chosen by considering the following characteristics in turn until a decision is reached: (1) the system containing the larger number of rings, (2) the system containing the larger ring, (3) the system in the lowest state of hydrogenation, and (4) the highest-order number of ring systems set forth in Table 1.2. Examples are given, with the deciding priority given in parentheses preceding the name: (1) 2-Phenylnaphthalene (2) and (4) 2-(2-Naphthyl)azulene (3) Cyclohexylbenzene 1.1.1.8 Radicals from Ring Systems.
Univalent substituent groups derived from polycyclic hy-drocarbons are named by changing the final e of the hydrocarbon name to -yl. The carbon atoms having free valences are given locants as low as possible consistent with the fixed numbering of the ORGANIC COMPOUNDS 1.11 hydrocarbon. Exceptions are naphthyl (instead of naphthalenyl), anthryl (for anthracenyl), and phen-anthryl (for phenanthrenyl). However, these abbreviated forms are used only for the simple ring systems. Substituting groups derived from fused derivatives of these ring systems are named sys-tematically. Substituting groups having two or more free bonds are named as described in Mono-cyclic Aliphatic Hydrocarbons on p. 1.5.
1.1.1.9 Cyclic Hydrocarbons with Side Chains.
Hydrocarbons composed of cyclic and aliphatic chains are named in a manner that is the simplest permissible or the most appropriate for the chemical intent. Hydrocarbons containing several chains attached to one cyclic nucleus are generally named as derivatives of the cyclic compound, and compounds containing several side chains and/or cyclic radicals attached to one chain are named as derivatives of the acyclic compound. Examples are 2-Ethyl-1-methylnaphthalene Diphenylmethane 1,5-Diphenylpentane 2,3-Dimethyl-1-phenyl-1-hexene Recognized trivial names for composite radicals are used if they lead to simplifications in naming.
Examples are 1-Benzylnaphthalene 1,2,4-Tris(3-p-tolylpropyl)benzene Fulvene, for methylenecyclopentadiene, and stilbene, for 1,2-diphenylethylene, are trivial names that are retained.
1.1.1.10 Heterocyclic Systems.
Heterocyclic compounds can be named by relating them to the corresponding carbocyclic ring systems by using replacement nomenclature. Heteroatoms are de-noted by prefixes ending in a, as shown in Table 1.3. If two or more replacement prefixes are required in a single name, they are cited in the order of their listing in the table. The lowest possible num-bers consistent with the numbering of the corresponding carbocyclic system are assigned to the heteroatoms and then to carbon atoms bearing double or triple bonds. Locants are cited immediately preceding the prefixes or suffixes to which they refer. Multiplicity of the same heteroatom is indicated by the appropriate prefix in the series: di-, tri-, tetra-, penta-, hexa-, etc.
TABLE 1.3 Specialist Nomenclature for Heterocyclic Systems Heterocyclic atoms are listed in decreasing order of priority.
Element Valence Prefix Element Valence Prefix Oxygen 2 Oxa-Antimony 3 Stiba- Sulfur 2 Thia-Bismuth 3 Bisma-Selenium 2 Selena-Silicon 4 Sila-Tellurium 2 Tellura-Germanium 4 Germa-Nitrogen 3 Aza-Tin 4 Stanna-Phosphorus 3 Phospha- Lead 4 Plumba-Arsenic 3 Arsa- Boron 3 Bora-Mercury 2 Mercura- When immediately followed by -in or -ine, phospha- should be replaced by phosphor-, arsa- by arsen-, and stiba-by antimon-. The saturated six-membered rings corresponding to phosphorin and arsenin are named phosphorinane and arsenane. A further exception is the replacement of borin by borinane.
1.12 SECTION 1 If the corresponding carbocyclic system is partially or completely hydrogenated, the additional hydrogen is cited using the appropriate H- or hydro- prefixes. A trivial name from Tables 1.5 and 1.6, if available, along with the state of hydrogenation may be used. In the specialist nomenclature for heterocyclic systems, the prefix or prefixes from Table 1.3 are combined with the appropriate stem from Table 1.4, eliding an a where necessary. Examples of acceptable usage, including (1) replacement and (2) specialist nomenclature, are (1) 1-Oxa-4-azacyclo-hexane (1) 1,3-Diazacyclo-hex-5-ene (1) Thiacyclopropane (2) 1,4-Oxazoline Morpholine (2) 1,2,3,4-Tetra-hydro-1,3-diazine (2) Thiirane Ethylene sulfide Radicals derived from heterocyclic compounds by removal of hydrogen from a ring are named by adding -yl to the names of the parent compounds (with elision of the final e, if present). These exceptions are retained: Furyl (from furan) Furfuryl (for 2-furylmethyl) Pyridyl (from pyridine) Furfurylidene (for 2-furylmethylene) Piperidyl (from piperidine) Thienyl (from thiophene) Quinolyl (from quinoline) Thenylidyne (for thienylmethylidyne) Isoquinolyl Furfurylidyne (for 2-furylmethylidyne) Thenylidene (for thienylmethylene) Thenyl (for thienylmethyl) Also, piperidino- and morpholino- are preferred to 1-piperidyl- and 4-morpholinyl-, respectively.
TABLE 1.4 Suffixes for Specialist Nomenclature of Heterocyclic Systems Rings containing nitrogen Rings containing no nitrogen Number of ring members Unsaturation Saturation Unsaturation Saturation 3 4 5 6 7 8 9 10 -irine -ete -ole -ine† -epine -ocine -onine -ecine -iridine -etidine -olidine ‡ ‡ ‡ ‡ ‡ -irene -ete -ole -in -epin -ocin -onin -ecin -irane -etane -olane -ane§ -epane -ocane -onane -ecane Unsaturation corresponding to the maximum number of noncumulative double bonds. Heteroatoms have the normal valences given in Table 1.3.
† For phosphorus, arsenic, antimony, and boron, see the special provisions in Table 1.3.
‡ Expressed by prefixing perhydro- to the name of the corresponding unsaturated compound.
§ Not applicable to silicon, germanium, tin, and lead; perhydro- is prefixed to the name of the corresponding unsaturated compound.
ORGANIC COMPOUNDS 1.13 TABLE 1.5 Trivial Names of Heterocyclic Systems Suitable for Use in Fusion Names Listed in order of increasing priority as senior ring system.
Structure Parent name Radical name Structure Parent name Radical name Thiophene Thienyl Thianthrene Thianthrenyl Furan Furyl Pyran (2H-shown) Pyranyl Isobenzofuran Isobenzo-furanyl Chromene (2H-shown) Chromenyl Xanthene Xanthenyl Phenoxathiin Phenoxa-thiinyl 2H-Pyrrole 2H-Pyrrolyl Pyrrole Pyrrolyl Imidazole Imidazolyl Pyrazole Pyrazolyl Isothiazole Isothiazolyl Isoxazole Isoxazolyl Pyridine Pyridyl Pyrazine Pyrazinyl Pyrimidine Pyrimidinyl Pyridazine Pyridazinyl Asterisk after a compound denotes exception to systematic numbering.
1.14 SECTION 1 TABLE 1.5 Trivial Names of Heterocyclic Systems Suitable for Use in Fusion Names (Continued) Structure Parent name Radical name Structure Parent name Radical name Indolizine Indolizinyl Isoindole Isoindolyl 3H-Indole 3H-Indolyl Indole Indolyl 1H-Indazole 1H-Indazolyl Purine Purinyl 4H-Quin-olizine 4H-Quin-olizinyl Isoquinoline Isoquinolyl Quinolone Quinolyl Phthalazine Phthalazinyl Naphthyri-dine (1,8-shown) Naphthyri-dinyl Quinoxaline Quinoxalinyl Quinazoline Quinazolinyl Cinnoline Cinnolinyl Pteridine Pteridinyl 4H-Carbazole 4H-Carbazolyl Carbazole Carbazolyl Asterisk after a compound denotes exception to systematic numbering.
ORGANIC COMPOUNDS 1.15 TABLE 1.5 Trivial Names of Heterocyclic Systems Suitable for Use in Fusion Names (Continued) Structure Parent name Radical name Structure Parent name Radical name -Carboline -Carbolinyl Phenanthri-dine Phenanthri-dinyl Acridine Acridinyl Perimidine Perimidinyl Phenanthroline (1,10-shown) Phenanthrolinyl Phenazine Phenazinyl Phenarsazine Phenarsazinyl Phenothiazine Phenothiazinyl Furazan Furazanyl Phenoxazine Phenoxazinyl Asterisk after a compound denotes exception to systematic numbering.
If there is a choice among heterocyclic systems, the parent compound is decided in the following order of preference: 1. A nitrogen-containing component 2. A component containing a heteroatom, in the absence of nitrogen, as high as possible in Table 1.3 3. A component containing the greater number of rings 1.16 SECTION 1 TABLE 1.6 Trivial Names of Heterocyclic Systems That Are Not Recommended for Use in Fusion Names Listed in order of increasing priority.
Structure Parent name Radical name Structure Parent name Radical name Isochroman Isochromanyl Chroman Chromanyl Pyrrolidine Pyrrolinyl Pyrroline (2-shown) Pyrrolinyl Imidazolidine Imidazolidinyl Imidazoline (2-shown) Imidazolinyl Pyrazolidine Pyrazolidinyl Pyrazoline (3-shown) Pyrazolinyl Piperidine Piperidyl† Piperazine Piperazinyl Indoline Indolinyl Isoindoline Isoindolinyl Quinuclidine Quinuclidinyl Morpholine Morpholinyl‡ Denotes position of double bond.
† For 1-piperidyl, use piperidino.
‡ For 4-morpholinyl, use morpholino.
4. A component containing the largest possible individual ring 5. A component containing the greatest number of heteroatoms of any kind 6. A component containing the greatest variety of heteroatoms 7. A component containing the greatest number of heteroatoms first listed in Table 1.3 ORGANIC COMPOUNDS 1.17 If there is a choice between components of the same size containing the same number and kind of heteroatoms, choose as the base component that one with the lower numbers for the heteroatoms before fusion. When a fusion position is occupied by a heteroatom, the names of the component rings to be fused are selected to contain the heteroatom.
1.1.2 Functional Compounds There are several types of nomenclature systems that are recognized. Which type to use is sometimes obvious from the nature of the compound. Substitutive nomenclature, in general, is preferred because of its broad applicability, but radicofunctional, additive, and replacement nomenclature systems are convenient in certain situations.
1.1.2.1 Substitutive Nomenclature.
The first step is to determine the kind of characteristic (func-tional) group for use as the principal group of the parent compound. A characteristic group is a recognized combination of atoms that confers characteristic chemical properties on the molecule in which it occurs. Carbon-to-carbon unsaturation and heteroatoms in rings are considered nonfunc-tional for nomenclature purposes.
Substitution means the replacement of one or more hydrogen atoms in a given compound by some other kind of atom or group of atoms, functional or nonfunctional. In substitutive nomenclature, each substituent is cited as either a prefix or a suffix to the name of the parent (or substituting radical) to which it is attached; the latter is denoted the parent compound (or parent group if a radical).
In Table 1.7 are listed the general classes of compounds in descending order of preference for citation as suffixes, that is, as the parent or characteristic compound. When oxygen is replaced by sulfur, selenium, or tellurium, the priority for these elements is in the descending order listed. The higher valence states of each element are listed before considering the successive lower valence states. Derivative groups have priority for citation as principal group after the respective parents of their general class.
In Table 1.8 are listed characteristic groups that are cited only as prefixes (never as suffixes) in substitutive nomenclature. The order of listing has no significance for nomenclature purposes.
Systematic names formed by applying the principles of substitutive nomenclature are single words except for compounds named as acids. First one selects the parent compound, and thus the suffix, from the characteristic group listed earliest in Table 1.7. All remaining functional groups are handled as prefixes that precede, in alphabetical order, the parent name. Two examples may be helpful: Structure I Structure II Structure I contains an ester group and an ether group. Since the ester group has higher priority, the name is ethyl 2-methoxy-6-methyl-3-cyclohexene-1-carboxylate. Structure II contains a carbonyl group, a hydroxy group, and a bromo group. The latter is never a suffix. Between the other two, the carbonyl group has higher priority, the parent has -one as suffix, and the name is 4-bromo-1-hydroxy-2-butanone.
1.18 SECTION 1 Selection of the principal alicyclic chain or ring system is governed by these selection rules: 1. For purely alicyclic compounds, the selection process proceeds successively until a decision is reached: (a) the maximum number of substituents corresponding to the characteristic group cited earliest in Table 1.7, (b) the maximum number of double and triple bonds considered together, (c) the maximum length of the chain, and (d) the maximum number of double bonds. Additional criteria, if needed for complicated compounds, are given in the IUPAC nomenclature rules.
2. If the characteristic group occurs only in a chain that carries a cyclic substituent, the compound is named as an aliphatic compound into which the cyclic component is substituted; a radical prefix is used to denote the cyclic component. This chain need not be the longest chain.
3. If the characteristic group occurs in more than one carbon chain and the chains are not directly TABLE 1.7 Characteristic Groups for Substitutive Nomenclature Listed in order of decreasing priority for citation as principal group or parent name.
Class Formula Prefix Suffix 1. Cations: H4N H3O H3S H3Se H2Cl H2Br H2I -onio-Ammonio-Oxonio-Sulfonio-Selenonio-Chloronio-Bromonio-Iodonio--onium -ammonium -oxonium -sulfonium -selenonium -chloronium -bromonium -iodonium 2. Acids: Carboxylic 9COOH 9(C)OOH 9C("O)OOH Carboxy--carboxylic acid -oic acid -peroxy···carboxylic acid 9(C"O)OOH -peroxy···oic acid Sulfonic 9SO3H Sulfo--sulfonic acid Sulfinic 9SO2H Sulfino--sulfinic acid Sulfenic 9SOH Sulfeno--sulfenic acid Salts 9COOM 9(C)OOM 9SO3M 9SO2M 9SOM Metal···carboxylate Metal···oate Metal···sulfonate Metal···sulfinate Metal···sulfenate 3. Derivatives of acids: Anhydrides 9C("O)OC("O)9 9(C"O)O(C"O)9 -carboxylic anhydride -oic anhydride Esters 9COOR 9C(OOR) R-oxycarbonyl-R···carboxylate R···oate Acid halides 9CO9halogen Haloformyl -carbonyl halide Amides 9CO9NH2 (C)O9NH2 Carbamoyl--carboxamide -amide ORGANIC COMPOUNDS 1.19 TABLE 1.7 Characteristic Groups for Substitutive Nomenclature (Continued) Class Formula Prefix Suffix Hydrazides 9CO9NHNH2 Carbonyl-hydrazino--carbohydrazide 9(CO)9NHNH2 -ohydrazide Imides 9CO9NH9CO9 R-imido--carboximide Amidines 9C("NH)9NH2 9(C"NH)9NH2 Amidino--carboxamidine -amidine 4. Nitrile (cyanide) 9CN 9(C)N Cyano--carbonitrile -nitrile 5. Aldehydes 9CHO 9(C"O)H Formyl-Oxo--carbaldehyde -al (then their analogs and derivatives) 6. Ketones (C"O) Oxo--one (then their analogs and derivatives) 7. Alcohols (and phenols) 9OH Hydroxy--ol Thiols 9SH Mercapto--thiol 8. Hydroperoxides 9O9OH Hydroperoxy-9. Amines 9NH2 Amino--amine Imines NH Imino--imine Hydrazines 9NHNH2 Hydrazino--hydrazine 10. Ethers 9OR R-oxy-Sulfides 9SR R-thio-11. Peroxides 9O9OR R-dioxy- Carbon atoms enclosed in parentheses are included in the name of the parent compound and not in the suffix or prefix.
TABLE 1.8 Characteristic Groups Cited Only as Prefixes in Substitutive Nomenclature Characteristic group Prefix Characteristic group Prefix 9Br Bromo-9IX2 X may be halogen or a radical; dihalogenoiodo-or diacetoxyiodo-, e.g., 9ICl2 is dichloroido-9Cl Chloro-9ClO Chlorosyl-9ClO2 Chloryl-N2 Diazo-9ClO3 Perchloryl-9N3 Azido-9F Fluoro-9NO Nitroso-9I Iodo-9NO2 Nitro-9IO Iodosyl-N("O)OH aci-Nitro-9IO2 Iodyl 9OR R-oxy-9I(OH)2 Dihydroxyiodo-9SR R-thio-9SeR (9TeR) R-seleno- (R-telluro-) Formerly iodoxy.
1.20 SECTION 1 attached to one another, then the chain chosen as parent should carry the largest number of the characteristic group. If necessary, the selection is continued as in rule 1.
4. If the characteristic group occurs only in one cyclic system, that system is chosen as the parent.
5. If the characteristic group occurs in more than one cyclic system, that system is chosen as parent which (a) carries the largest number of the principal group or, failing to reach a decision, (b) is the senior ring system.
6. If the characteristic group occurs both in a chain and in a cyclic system, the parent is that portion in which the principal group occurs in largest number. If the numbers are the same, that portion is chosen which is considered to be the most important or is the senior ring system.
7. When a substituent is itself substituted, all the subsidiary substituents are named as prefixes and the entire assembly is regarded as a parent radical.
8. The seniority of ring systems is ascertained by applying the following rules successively until a decision is reached: (a) all heterocycles are senior to all carbocycles, (b) for heterocycles, the preference follows the decision process described under Heterocyclic Systems, p. 1.11, (c) the largest number of rings, (d) the largest individual ring at the first point of difference, (e) the largest number of atoms in common among rings, (f) the lowest letters in the expression for ring functions, (g) the lowest numbers at the first point of difference in the expression for ring junc-tions, (h) the lowest state of hydrogenation, (i) the lowest-numbered locant for indicated hydrogen, (j) the lowest-numbered locant for point of attachment (if a radical), (k) the lowest-numbered locant for an attached group expressed as a suffix, (l) the maximum number of substituents cited as prefixes, (m) the lowest-numbered locant for substituents named as prefixes, hydro prefixes, -ene, and -yne, all considered together in one series in ascending numerical order independent of their nature, and (n) the lowest-numbered locant for the substituent named as prefix which is cited first in the name.
Numbering of Compounds.
If the rules for aliphatic chains and ring systems leave a choice, the starting point and direction of numbering of a compound are chosen so as to give lowest-numbered locants to these structural factors, if present, considered successively in the order listed below until a decision is reached. Characteristic groups take precedence over multiple bonds.
1. Indicated hydrogen, whether cited in the name or omitted as being conventional 2. Characteristic groups named as suffix following the ranking order of Table 1.7 3. Multiple bonds in acyclic compounds; in bicycloalkanes, tricycloalkanes, and polycycloalkanes, double bonds having priority over triple bonds; and in heterocyclic systems whose names end in -etine, -oline, or -olene 4. The lowest-numbered locant for substituents named as prefixes, hydro prefixes, -ene, and -yne, all considered together in one series in ascending numerical order 5. The lowest locant for that substituent named as prefix which is cited first in the name For cyclic radicals, indicated hydrogen and thereafter the point of attachment (free valency) have priority for the lowest available number.
Prefixes and Affixes.
Prefixes are arranged alphabetically and placed before the parent name; multiplying affixes, if necessary, are inserted and do not alter the alphabetical order already attained.
The parent name includes any syllables denoting a change of ring member or relating to the structure of a carbon chain. Nondetachable parts of parent names include ORGANIC COMPOUNDS 1.21 1. Forming rings; cyclo-, bicyclo-, spiro-2. Fusing two or more rings: benzo-, naphtho-, imidazo-3. Substituting one ring or chain member atom for another: oxa-, aza-, thia-4. Changing positions of ring or chain members: iso-, sec-, tert-, neo-5. Showing indicated hydrogen 6. Forming bridges: ethano-, epoxy-7. Hydro-Prefixes that represent complete terminal characteristic groups are preferred to those representing only a portion of a given group. For example, for the prefix 9C("O)CH3, the name (formylmethyl) is preferred to (oxoethyl).
The multiplying affixes di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-, deca-, undeca-, and so on are used to indicate a set of identical unsubstituted radicals or parent compounds. The forms bis-, tris-, tetrakis-, pentakis-, and so on are used to indicate a set of identical radicals or parent compounds each substituted in the same way. The affixes bi-, ter-, quater-, quinque-, sexi-, septi-, octi-, novi-, deci-, and so on are used to indicate the number of identical rings joined together by a single or double bond.
Although multiplying affixes may be omitted for very common compounds when no ambiguity is caused thereby, such affixes are generally included throughout this handbook in alphabetical listings. An example would be ethyl ether for diethyl ether.
1.1.2.2 Conjunctive Nomenclature.
Conjunctive nomenclature may be applied when a principal group is attached to an acyclic component that is directly attached by a carbon-carbon bond to a cyclic component. The name of the cyclic component is attached directly in front of the name of the acyclic component carrying the principal group. This nomenclature is not used when an unsat-urated side chain is named systematically. When necessary, the position of the side chain is indicated by a locant placed before the name of the cyclic component. For substituents on the acyclic chain, carbon atoms of the side chain are indicated by Greek letters proceeding from the principal group to the cyclic component. The terminal carbon atom of acids, aldehydes, and nitriles is omitted when allocating Greek positional letters. Conjunctive nomenclature is not used when the side chain carries more than one of the principal group, except in the case of malonic and succinic acids.
The side chain is considered to extend only from the principal group to the cyclic component.
Any other chain members are named as substituents, with appropriate prefixes placed before the name of the cyclic component.
When a cyclic component carries more than one identical side chain, the name of the cyclic component is followed by di-, tri-, etc., and then by the name of the acyclic component, and it is preceded by the locants for the side chains. Examples are 4-Methyl-1-cyclohexaneethanol -Ethyl-,-dimethylcyclohexaneethanol 1.22 SECTION 1 When side chains of two or more different kinds are attached to a cyclic component, only the senior side chain is named by the conjunctive method. The remaining side chains are named as prefixes. Likewise, when there is a choice of cyclic component, the senior is chosen. Benzene derivatives may be named by the conjunctive method only when two or more identical side chains are present. Trivial names for oxo carboxylic acids may be used for the acyclic component. If the cyclic and acyclic components are joined by a double bond, the locants of this bond are placed as superscripts to a Greek capital delta that is inserted between the two names. The locant for the cyclic component precedes that for the acyclic component, e.g., indene-1,-acetic acid.
1.1.2.3 Radicofunctional Nomenclature.
The procedures of radicofunctional nomenclature are identical with those of substitutive nomenclature except that suffixes are never used. Instead, the functional class name (Table 1.9) of the compound is expressed as one word and the remainder of the molecule as another that precedes the class name. When the functional class name refers to a characteristic group that is bivalent, the two radicals attached to it are each named, and when dif-ferent, they are written as separate words arranged in alphabetical order. When a compound contains more than one kind of group listed in Table 1.9, that kind is cited as the functional group or class name that occurs higher in the table, all others being expressed as prefixes.
Radicofunctional nomenclature finds some use in naming ethers, sulfides, sulfoxides, sulfones, selenium analogs of the preceding three sulfur compounds, and azides.
1.1.2.4 Replacement Nomenclature.
Replacement nomenclature is intended for use only when other nomenclature systems are difficult to apply in the naming of chains containing heteroatoms.
When no group is present that can be named as a principal group, the longest chain of carbon and heteroatoms terminating with carbon is chosen and named as though the entire chain were that of an acyclic hydrocarbon. The heteroatoms within this chain are identified by means of prefixes aza-, oxa-, thia-, etc., in the order of priority stated in Table 1.3. Locants indicate the positions of the heteroatoms in the chain. Lowest-numbered locants are assigned to the principal group when TABLE 1.9 Functional Class Names Used in Radicofunctional Nomenclature Groups are listed in order of decreasing priority.
Group Functional class names X in acid derivatives Name of X (in priority order: fluoride, chloride, bromide, iodide, cyanide, azide; then the sulfur and selenium analogs) 9CN, 9NC Cyanide, isocyanide CO 9OH 9O9OH O S, SO, SO2 Se, SeO, SeO2 Ketone; then S and Se analogs Alcohol; then S and Se analogs Hydroperoxide Ether or oxide Sulfide, sulfoxide, sulfone Selenide, selenoxide, selenone 9F, 9Cl, 9Br, 9I Fluoride, chloride, bromide, iodide 9N3 Azide ORGANIC COMPOUNDS 1.23 such is present. Otherwise, lowest-numbered locants are assigned to the heteroatoms considered together and, if there is a choice, to the heteroatoms cited earliest in Table 1.3. An example is 13-Hydroxy-9,12-dioxa-3,6-diazatridecanoic acid 1.1.3 Specific Functional Groups Characteristic groups will now be treated briefly in order to expand the terse outline of substitutive nomenclature presented in Table 1.7. Alternative nomenclature will be indicated whenever desirable.
1.1.3.1 Acetals and Acylals.
Acetals, which contain the group C(OR)2, where R may be dif-ferent, are named (1) as dialkoxy compounds or (2) by the name of the corresponding aldehyde or ketone followed by the name of the hydrocarbon radical(s) followed by the word acetal. For example, CH39CH(OCH3)2 is named either (1) 1,1-dimethoxyethane or (2) acetaldehyde dimethyl acetal.
A cyclic acetal in which the two acetal oxygen atoms form part of a ring may be named (1) as a heterocyclic compound or (2) by use of the prefix methylenedioxy for the group 9O9CH29O9 as a substituent in the remainder of the molecule. For example, (1) 1,3-Benzo[d]dioxole-5-carboxylic acid (2) 3,4-Methylenedioxybenzoic acid Acylals, R1R2C(OCOR3)2, are named as acid esters; Butylidene acetate propionate -Hydroxy ketones, formerly called acyloins, had been named by changing the ending -ic acid or -oic acid of the corresponding acid to -oin. They are preferably named by substitutive nomencla-ture; thus CH39CH(OH)9CO9CH3 3-Hydroxy-2-butanone (formerly acetoin) 1.1.3.2 Acid Anhydrides.
Symmetrical anhydrides of monocarboxylic acids, when unsubstituted, are named by replacing the word acid by anhydride. Anhydrides of substituted monocarboxylic acids, if symmetrically substituted, are named by prefixing bis- to the name of the acid and replacing the word acid by anhydride. Mixed anhydrides are named by giving in alphabetical order the first part of the names of the two acids followed by the word anhydride, e.g., acetic propionic anhydride or acetic propanoic anhydride. Cyclic anhydrides of polycarboxylic acids, although possessing a 1.24 SECTION 1 heterocyclic structure, are preferably named as acid anhydrides. For example, 1,8;4,5-Napthalenetetracarboxylic dianhydride (note the use of a semicolon to distinguish the pairs of locants) 1.1.3.3 Acyl Halides.
Acyl halides, in which the hydroxyl portion of a carboxyl group is replaced by a halogen, are named by placing the name of the corresponding halide after that of the acyl radical. When another group is present that has priority for citation as principal group or when the acyl halide is attached to a side chain, the prefix haloformyl- is used as, for example, in fluoro-formyl-.
1.1.3.4 Alcohols and Phenols.
The hydroxyl group is indicated by a suffix -ol when it is the principal group attached to the parent compound and by the prefix hydroxy- when another group with higher priority for citation is present or when the hydroxy group is present in a side chain.
When confusion may arise in employing the suffix -ol, the hydroxy group is indicated as a prefix; this terminology is also used when the hydroxyl group is attached to a heterocycle, as, for example, in the name 3-hydroxythiophene to avoid confusion with thiophenol (C6H5SH). Designations such as isopropanol, sec-butanol, and tert-butanol are incorrect because no hydrocarbon exists to which the suffix can be added. Many trivial names are retained. These structures are shown in Table 1.10.
The radicals (RO9) are named by adding -oxy as a suffix to the name of the R radical, e.g., pentyloxy for CH3CH2CH2CH2CH2O9. These contractions are exceptions: methoxy (CH3O9), ethoxy (C2H5O9), propoxy (C3H7O9), butoxy (C4H9O9), and phenoxy (C6H5O9).
For unsubstituted radicals only, one may use isopropoxy [(CH3)2CH9O9], isobutoxy [(CH3)2CH2CH9O9], sec-butoxy [CH3CH2CH(CH3)9O9], and tert-butoxy [(CH3)3C9O9].
TABLE 1.10 Retained Trivial Names of Alcohols and Phenols with Structures Ally alcohol CH2"CHCH2OH tert-Butyl alcohol (CH3)3COH Benzyl alcohol C6H5CH2OH Phenethyl alcohol C6H5CH2CH2OH Ethylene glycol HOCH2CH2OH 1,2-Propylene glycol CH3CHOHCH2OH Glycerol HOCH2CHOHCH2OH Pentaerythritol C(CH2OH)4 Pinacol (CH3)2COHCOH(CH3)2 Phenol C6H5OH Xylitol Geraniol HOCH2CH9CH9CH9CH2OH OH OH OH (CH3)2C"CHCH2CH2C"CHCH2OH CH3 ORGANIC COMPOUNDS 1.25 TABLE 1.10 Retained Trivial Names of Alcohols and Phenols with Structures (Continued) 1.26 SECTION 1 Bivalent radicals of the form O9Y9O are named by adding -dioxy to the name of the bivalent radicals except when forming part of a ring system. Examples are 9O9CH29O9 (methylene-dioxy), 9O9CO9O9 (carbonyldioxy), and 9O9SO29O9 (sulfonyldioxy). Anions derived from alcohols or phenols are named by changing the final -ol to -olate.
Salts composed of an anion, RO9, and a cation, usually a metal, can be named by citing first the cation and then the RO anion (with its ending changed to -yl oxide), e.g., sodium benzyl oxide for C6H5CH2ONa. However, when the radical has an abbreviated name, such as methoxy, the ending -oxy is changed to -oxide. For example, CH3ONa is named sodium methoxide (not sodium meth-ylate).
1.1.3.5 Aldehydes.
When the group 9C("O)H, usually written 9CHO, is attached to carbon at one (or both) end(s) of a linear acyclic chain the name is formed by adding the suffix -al (or -dial) to the name of the hydrocarbon containing the same number of carbon atoms. Examples are butanal for CH3CH2CH2CHO and propanedial for, OHCCH2CHO.
Naming an acyclic polyaldehyde can be handled in two ways. First, when more than two aldehyde groups are attached to an unbranched chain, the proper affix is added to -carbaldehyde, which becomes the suffix to the name of the longest chain carrying the maximum number of aldehyde groups. The name and numbering of the main chain do not include the carbon atoms of the aldehyde groups. Second, the name is formed by adding the prefix formyl- to the name of the -dial that incorporates the principal chain. Any other chains carrying aldehyde groups are named by the use of formylalkyl- prefixes. Examples are (1) 1,2,5-Pentanetricarbaldehyde (2) 3-Formylheptanedial (1) 4-(2-Formylethyl)-3-(formylmethyl)-1,2,7-heptanetricarbaldehyde (2) 3-Formyl-5-(2-formylethyl)-4-(formylmethyl)nonanedial When the aldehyde group is directly attached to a carbon atom of a ring system, the suffix -carbaldehyde is added to the name of the ring system, e.g., 2-naphthalenecarbaldehyde. When the aldehyde group is separated from the ring by a chain of carbon atoms, the compound is named (1) as a derivative of the acyclic system or (2) by conjunctive nomenclature, for example, (1) (2-naphthyl)propionaldehyde or (2) 2-naphthalenepropionaldehyde.
An aldehyde group is denoted by the prefix formyl- when it is attached to a nitrogen atom in a ring system or when a group having priority for citation as principal group is present and part of a cyclic system.
When the corresponding monobasic acid has a trivial name, the name of the aldehyde may be formed by changing the ending -ic acid or -oic acid to -aldehyde. Examples are Formaldehyde Acrylaldehyde (not acrolein) Acetaldehyde Benzaldehyde Propionaldehyde Cinnamaldehyde Butyraldehyde 2-Furaldehyde (not furfural) ORGANIC COMPOUNDS 1.27 The same is true for polybasic acids, with the proviso that all the carboxyl groups must be changed to aldehyde; then it is not necessary to introduce affixes. Examples are Glyceraldehyde Succinaldehyde Glycolaldehyde Phthalaldehyde (o-, m-, p-) Malonaldehyde These trivial names may be retained: citral (3,7-dimethyl-2,6-octadienal), vanillin (4-hydroxy-3-methoxybenzaldehyde), and piperonal (3,4-methylenedioxybenzaldehyde).
1.1.3.6 Amides.
For primary amides the suffix -amide is added to the systematic name of the parent acid. For example, CH39CO9NH2 is acetamide. Oxamide is retained for H2N9CO9CO9NH2. The name -carboxylic acid is replaced by -carboxamide.
For amino acids having trivial names ending in -ine, the suffix -amide is added after the name of the acid (with elision of e for monoamides). For example, H2N9CH29CO9NH2 is glycin-amide.
In naming the radical R9CO9NH9, either (1) the -yl ending of RCO9 is changed to -amido or (2) the radicals are named as acylamino radicals. For example, (1) 4-Acetamidobenzoic acid (2) 4-Acetylaminobenzoic acid The latter nomenclature is always used for amino acids with trivial names.
N-substituted primary amides are named either (1) by citing the substituents as N prefixes or (2) by naming the acyl group as an N substituent of the parent compound. For example, (1) N-Methylbenzamide (2) Benzoylaminomethane 1.1.3.7 Amines.
Amines are preferably named by adding the suffix -amine (and any multiplying affix) to the name of the parent radical. Examples are CH3CH2CH2CH2CH2NH2 Pentylamine H2NCH2CH2CH2CH2CH2NH2 1,5-Pentyldiamine or pentamethylenediamine Locants of substituents of symmetrically substituted derivatives of symmetrical amines are dis-tinguished by primes or else the names of the complete substituted radicals are enclosed in paren-theses. Unsymmetrically substituted derivatives are named similarly or as N-substituted products of a primary amine (after choosing the most senior of the radicals to be the parent amine). For example, (1) 1,3-Difluorodipropylamine (2) 1-Fluoro-N-(3-fluoropropyl)propylamine (3) (1-Fluoropropyl)(3-fluoropropyl)amine Complex cyclic compounds may be named by adding the suffix -amine or the prefix amino- (or aminoalkyl-) to the name of the parent compound. Thus three names are permissible for (1) 4-Pyridylamine (2) 4-Pyridinamine (3) 4-Aminopyridine 1.28 SECTION 1 Complex linear polyamines are best designated by replacement nomenclature. These trivial names are retained: aniline, benzidene, phenetidine, toluidine, and xylidine.
The bivalent radical 9NH9 linked to two identical radicals can be denoted by the prefix imino-, as well as when it forms a bridge between two carbon ring atoms. A trivalent nitrogen atom linked to three identical radicals is denoted by the prefix nitrilo-. Thus ethylenediaminetetraacetic acid (an allowed exception) should be named ethylenedinitrilotetraacetic acid.
1.1.3.8 Ammonium Compounds.
Salts and hydroxides containing quadricovalent nitrogen are named as a substituted ammonium salt or hydroxide. The names of the substituting radicals precede the word ammonium, and then the name of the anion is added as a separate word. For example, (CH3)4NI is tetramethylammonium iodide.
When the compound can be considered as derived from a base whose name does not end in -amine, its quaternary nature is denoted by adding ium to the name of that base (with elision of e), substituent groups are cited as prefixes, and the name of the anion is added separately at the end.
Examples are Anilinium hydrogen sulfate C H NH HSO 6 5 3 4 Dianilinium hexachloroplatinate 2 [(C H NH ) ] PtCl 6 5 3 2 6 The names choline and betaine are retained for unsubstituted compounds.
In complex cases, the prefixes amino- and imino- may be changed to ammonio- and iminio- and are followed by the name of the molecule representing the most complex group attached to this nitrogen atom and are preceded by the names of the other radicals attached to this nitrogen. Finally the name of the anion is added separately. For example, the name might be 1-trimethylammonio-acridine chloride or 1-acridinyltrimethylammonium chloride.
When the preceding rules lead to inconvenient names, then (1) the unaltered name of the base may be used followed by the name of the anion or (2) for salts of hydrohalogen acids only the unaltered name of the base is used followed by the name of the hydrohalide. An example of the latter would be 2-ethyl-p-phenylenediamine monohydrochloride.
1.1.3.9 Azo Compounds.
When the azo group (9N"N9) connects radicals derived from identical unsubstituted molecules, the name is formed by adding the prefix azo- to the name of the parent unsubstituted molecules. Substituents are denoted by prefixes and suffixes. The azo group has priority for lowest-numbered locant. Examples are azobenzene for C6H59N"N9C6H5, azo-benzene-4-sulfonic acid for C6H59N"N9C6H5SO3H, and 2,4-dichloroazobenzene-4-sulfonic acid for ClC6H49N"N9C6H3ClSO3H.
When the parent molecules connected by the azo group are different, azo is placed between the complete names of the parent molecules, substituted or unsubstituted. Locants are placed between the affix azo and the names of the molecules to which each refers. Preference is given to the more complex parent molecule for citation as the first component, e.g., 2-aminonaphthalene-1-azo-(4-chloro-2-methylbenzene).
In an alternative method, the senior component is regarded as substituted by RN"N9, this group R being named as a radical. Thus 2-(7-phenylazo-2-naphthylazo)anthracene is the name by this alternative method for the compound named anthracene-2-azo-2-naphthalene-7-azobenzene.
1.1.3.10 Azoxy Compounds.
Where the position of the azoxy oxygen atom is unknown or im-material, the compound is named in accordance with azo rules, with the affix azo replaced by azoxy.
When the position of the azoxy oxygen atom in an unsymmetrical compound is designated, a prefix NNO- or ONN- is used. When both the groups attached to the azoxy radical are cited in the name of the compound, the prefix NNO- specifies that the second of these two groups is attached directly ORGANIC COMPOUNDS 1.29 to 9N(O)9; the prefix ONN- specifies that the first of these two groups is attached directly to 9N(O)9. When only one parent compound is cited in the name, the prefixed ONN- and NNO-specify that the group carrying the primed and unprimed substituents is connected, respectively, to the 9N(O)9 group. The prefix NON- signifies that the position of the oxygen atom is unknown; the azoxy group is then written as 9N2O9. For example, 2,2,4-Trichloro-NNO-azoxybenzene 1.1.3.11 Boron Compounds.
Molecular hydrides of boron are called boranes. They are named by using a multiplying affix to designate the number of boron atoms and adding an Arabic numeral within parentheses as a suffix to denote the number of hydrogen atoms present. Examples are pen-taborane(9) for B5H9 and pentaborane(11) for B5H11.
Organic ring systems are named by replacement nomenclature. Three- to ten-membered mono-cyclic ring systems containing uncharged boron atoms may be named by the specialist nomenclature for heterocyclic systems. Organic derivatives are named as outlined for substitutive nomenclature.
The complexity of boron nomenclature precludes additional details; the text by Rigaudy and Klesney should be consulted.
1.1.3.12 Carboxylic Acids.
Carboxylic acids may be named in several ways. First, 9COOH groups replacing CH39 at the end of the main chain of an acyclic hydrocarbon are denoted by adding -oic acid to the name of the hydrocarbon. Second, when the 9COOH group is the principal group, the suffix -carboxylic acid can be added to the name of the parent chain whose name and chain numbering does not include the carbon atom of the 9COOH group. The former nomenclature is preferred unless use of the ending -carboxylic acid leads to citation of a larger number of carboxyl groups as suffix. Third, carboxyl groups are designated by the prefix carboxy- when attached to a group named as a substituent or when another group is present that has higher priority for citation as principal group. In all cases, the principal chain should be linked to as many carboxyl groups as possible even though it might not be the longest chain present. Examples are CH CH CH CH CH CH COOH (1) Heptanoic acid 3 2 2 2 2 2 (2) 1-Hexanecarboxylic acid C H COOH (2) Cyclohexanecarboxylic acid 6 11 (3) 2-(Carboxymethyl)-1,4-hexanedicarboxylic acid Removal of the OH from the 9COOH group to form the acyl radical results in changing the ending -oic acid to -oyl or the ending -carboxylic acid to -carbonyl. Thus the radical CH3CH2CH2CH2CO9 is named either pentanoyl or butanecarbonyl. When the hydroxyl has not been removed from all carboxyl groups present in an acid, the remaining carboxyl groups are denoted by the prefix carboxy-. For example, HOOCCH2CH2CH2CH2CH2CO9 is named 6-carboxyhex-anoyl.
1.30 SECTION 1 Many trivial names exist for acids; these are listed in Table 1.11. Generally, radicals are formed by replacing -ic acid by -oyl. When a trivial name is given to an acyclic monoacid or diacid, the numeral 1 is always given as locant to the carbon atom of a carboxyl group in the acid or to the carbon atom with a free valence in the radical RCO9.
TABLE 1.11 Names of Some Carboxylic Acids Systematic name Trivial name Systematic name Trivial name Methanoic Formic trans-Methylbutenedioic Mesaconic Ethanoic Acetic Propanoic Butanoic 2-Methylpropanoic Propionic Butyric Isobutyric 1,2,2-Trimethyl-1,3-cyclopen-tanedicarboxylic acid Camphoric Pentanoic Valeric Benzenecarboxylic Benzoic 3-Methylbutanoic Isovaleric 1,2-Benzenedicarboxylic Phthalic 2,2-Dimethylpropanoic Pivalic 1,3-Benzenedicarboxylic Isophthalic Hexanoic (Caproic) 1,4-Benzenedicarboxylic Terephthalic Heptanoic (Enanthic) Naphthalenecarboxylic Naphthoic Octanoic (Caprylic) Methylbenzenecarboxylic Toluic Decanoic (Capric) 2-Phenylpropanoic Hydratropic Dodecanoic Lauric 2-Phenylpropenoic Atropic Tetradecanoic Myristic trans-3-Phenylpropenoic Cinnamic Hexadecanoic Palmitic Furancarboxylic Furoic Octadecanoic Stearic Thiophenecarboxylic 3-Pyridinecarboxylic Thenoic Nicotinic Ethanedioic Oxalic 4-Pyridinecarboxylic Isonicotinic Propanedioic Malonic Butanedioic Succinic Hydroxyethanoic Glycolic Pentanedioic Glutaric 2-Hydroxypropanoic Lactic Hexanedioic Adipic 2,3-Dihydroxypropanoic Glyceric Heptanedioic Pimelic Hydroxypropanedioic Tartronic Octanedioic Suberic Hydroxybutanedioic Malic Nonanedioic Azelaic 2,3-Dihydroxybutanedioic Tartaric Decanedioic Sebacic 3-Hydroxy-2-phenylpropanoic Tropic Propenoic Propynoic Acrylic Propiolic 2-Hydroxy-2,2-diphenyl-ethanoic Benzilic 2-Methylpropenoic Methacrylic 2-Hydroxybenzoic Salicylic trans-2-Butenoic Crotonic Methoxybenzoic Anisic cis-2-Butenoic Isocrotonic 4-Hydroxy-3-methoxybenzoic Vanillic cis-9-Octadecenoic Oleic trans-9-Octadecenoic Elaidic 3,4-Dimethoxybenzoic Veratric cis-Butenedioic Maleic 3,4-Methylenedioxybenzoic Piperonylic trans-Butenedioic Fumaric 3,4-Dihydroxybenzoic Protocatechuic cis-Methylbutenedioic Citraconic 3,4,5-Trihydroxybenzoic Gallic Systematic names should be used in derivatives formed by substitution on a carbon atom.
Note: The names in parentheses are abandoned but are listed for reference to older literature.
Exceptions: formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, oxalyl, malonyl, succinyl, glutaryl, furoyl, and thenoyl.
ORGANIC COMPOUNDS 1.31 1.1.3.13 Ethers (R19O9R2).
In substitutive nomenclature, one of the possible radicals, R9O9, is stated as the prefix to the parent compound that is senior from among R1 or R2. Examples are methoxyethane for CH3OCH2CH3 and butoxyethanol for C4H9OCH2CH2OH.
When another principal group has precedence and oxygen is linking two identical parent com-pounds, the prefix oxy- may be used, as with 2,2-oxydiethanol for HOCH2CH2OCH2CH2OH.
Compounds of the type RO9Y9OR, where the two parent compounds are identical and contain a group having priority over ethers for citation as suffix, are named as assemblies of identical units. For example, HOOC9CH29O9CH2CH29O9CH29COOH is named 2,2-(ethylene-dioxy)diacetic acid.
Linear polyethers derived from three or more molecules of aliphatic dihydroxy compounds, particularly when the chain length exceeds ten units, are most conveniently named by open-chain replacement nomenclature. For example, CH3CH29O9CH2CH29O9CH2CH3 could be 3,6-dioxaoctane or (2-ethoxy)ethoxyethane.
An oxygen atom directly attached to two carbon atoms already forming part of a ring system or to two carbon atoms of a chain may be indicated by the prefix epoxy-. For example, CH29CH9CH2Cl O is named 1-chloro-2,3-epoxypropane.
Symmetrical linear polyethers may be named (1) in terms of the central oxygen atom when there is an odd number of ether oxygen atoms or (2) in terms of the central hydrocarbon group when there is an even number of ether oxygen atoms. For example, C2H59O9C4H89O9C4H89O9C2H5 is bis-(4-ethoxybutyl)ether, and 3,6-dioxaoctane (earlier example) could be named 1,2-bis(ethoxy)ethane.
Partial ethers of polyhydroxy compounds may be named (1) by substitutive nomenclature or (2) by stating the name of the polyhydroxy compound followed by the name of the etherifying radical(s) followed by the word ether. For example, (1) 3-Butoxy-1,2-propanediol (2) Glycerol 1-butyl ether; also, 1-O-butylglycerol Cyclic ethers are named either as heterocyclic compounds or by specialist rules of heterocyclic nomenclature. Radicofunctional names are formed by citing the names of the radicals R1 and R2 followed by the word ether. Thus methoxyethane becomes ethyl methyl ether and ethoxyethane becomes diethyl ether.
1.1.3.14 Halogen Derivatives.
Using substitutive nomenclature, names are formed by adding prefixes listed in Table 1.8 to the name of the parent compound. The prefix perhalo- implies the replacement of all hydrogen atoms by the particular halogen atoms.
Cations of the type R1R2X are given names derived from the halonium ion, H2X, by substi-tution, e.g., diethyliodonium chloride for (C2H5)2ICl.
Retained are these trivial names; bromoform (CHBr3), chloroform (CHCl3), fluoroform (CHF3), iodoform (CHI3), phosgene (COCl2), thiophosgene (CSCl2), and dichlorocarbene radical ( CCl2).
Inorganic nomenclature leads to such names as carbonyl and thiocarbonyl halides (COX2 and CSX2) and carbon tetrahalides (CX4).
1.1.3.15 Hydroxylamines and Oximes.
For RNH9OH compounds, prefix the name of the rad-ical R to hydroxylamine. If another substituent has priority as principal group, attach the prefix 1.32 SECTION 1 hydroxyamino- to the parent name. For example, C6H5NHOH would be named N-phenylhydrox-ylamine, but HOC6H4NHOH would be (hydroxyamino)phenol, with the point of attachment indi-cated by a locant preceding the parentheses.
Compounds of the type R1NH9OR2 are named (1) as alkoxyamino derivatives of compound R1H, (2) as N,O-substituted hydroxylamines, (3) as alkoxyamines (even if R1 is hydrogen), or (4) by the prefix aminooxy- when another substituent has priority for parent name. Examples of each type are 1. 2-(Methoxyamino)-8-naphthalenecarboxylic acid for CH3ONH9C10H6COOH 2. O-Phenylhydroxylamine for H2N9O9C6H5 or N-phenylhydroxylamine for C6H5NH9OH 3. Phenoxyamine for H2N9O9C6H5 (not preferred to O-phenylhydroxylamine) 4. Ethyl (aminooxy)acetate for H2N9O9CH2CO9OC2H5 Acyl derivatives, RCO9NH9OH and H2N9O9CO9R, are named as N-hydroxy deriva-tives of amides and as O-acylhydroxylamines, respectively. The former may also be named as hydroxamic acids. Examples are N-hydroxyacetamide for CH3CO9NH9OH and O-acetylhydrox-ylamine for H2N9O9CO9CH3. Further substituents are denoted by prefixes with O- and/or N-locants. For example, C6H5NH9O9C2H5 would be O-ethyl-N-phenylhydroxylamine or N-ethox-ylaniline.
For oximes, the word oxime is placed after the name of the aldehyde or ketone. If the carbonyl group is not the principal group, use the prefix hydroxyimino-. Compounds with the group N9OR are named by a prefix alkyloxyimino- as oxime O-ethers or as O-substituted oximes. Compounds with the group C"N(O)R are named by adding N-oxide after the name of the alkylideneaminc compound. For amine oxides, add the word oxide after the name of the base, with locants. For example, C5H5N9O is named pyridine N-oxide or pyridine 1-oxide.
1.1.3.16 Imines.
The group C"NH is named either by the suffix -imine or by citing the name of the bivalent radical R1R2C as a prefix to amine. For example, CH3CH2CH2CH"NH could be named 1-butanimine or butylideneamine. When the nitrogen is substituted, as in CH2"N9CH2CH3, the name is N-(methylidene)ethylamine.
Quinones are exceptions. When one or more atoms of quinonoid oxygen have been replaced by NH or NR, they are named by using the name of the quinone followed by the word imine (and preceded by proper affixes). Substituents on the nitrogen atom are named as prefixes. Examples are p-Benzoquinone monoimine p-Benzoquinone diimine 1.1.3.17 Ketenes.
Derivatives of the compound ketene, CH2"C"O, are named by substitutive nomenclature. For example, C4H9CH"C"O is butyl ketene. An acyl derivative, such as CH3CH29CO9CH2CH"C"O, may be named as a polyketone, 1-hexene-1,4-dione. Bisketene is used for two to avoid ambiguity with diketene (dimeric ketene).
1.1.3.18 Ketones.
Acyclic ketones are named (1) by adding the suffix -one to the name of the hydrocarbon forming the principal chain or (2) by citing the names of the radicals R1 and R2 followed ORGANIC COMPOUNDS 1.33 by the word ketone. In addition to the preceding nomenclature, acyclic monoacyl derivatives of cyclic compounds may be named (3) by prefixing the name of the acyl group to the name of the cyclic compound. For example, the three possible names of (1) 1-(2-Furyl)-1-propanone (2) Ethyl 2-furyl ketone (3) 2-Propionylfuran When the cyclic component is benzene or naphthalene, the -ic acid or -oic acid of the acid corresponding to the acyl group is changed to -ophenone or -onaphthone, respectively. For example, C6H59CO9CH2CH2CH3 can be named either butyrophenone (or butanophenone) or phenyl propyl ketone.
Radicofunctional nomenclature can be used when a carbonyl group is attached directly to carbon atoms in two ring systems and no other substituent is present having priority for citation.
When the methylene group in polycarbocyclic and heterocyclic ketones is replaced by a keto group, the change may be denoted by attaching the suffix -one to the name of the ring system.
However, when CH in an unsaturated or aromatic system is replaced by a keto group, two alter-native names become possible. First, the maximum number of noncumulative double bonds is added after introduction of the carbonyl group(s), and any hydrogen that remains to be added is denoted as indicated hydrogen with the carbonyl group having priority over the indicated hydrogen for lower-numbered locant. Second, the prefix oxo- is used, with the hydrogenation indicated by hydro prefixes; hydrogenation is considered to have occurred before the introduction of the carbonyl group. For example, (1) 1-(2H)-Naphthalenone (2) 1-Oxo-1,2-dihydronaphthalene When another group having higher priority for citation as principal group is also present, the ketonic oxygen may be expressed by the prefix oxo-, or one can use the name of the carbonyl-containing radical, as, for example, acyl radicals and oxo-substituted radicals. Examples are 4-(4-Oxohexyl)-1-benzoic acid 1,2,4-Triacetylbenzene Diketones and tetraketones derived from aromatic compounds by conversion of two or four CH groups into keto groups, with any necessary rearrangement of double bonds to a quinonoid structure, are named by adding the suffix -quinone and any necessary affixes.
Polyketones in which two or more contiguous carbonyl groups have rings attached at each end 1.34 SECTION 1 may be named (1) by the radicofunctional method or (2) by substitutive nomenclature. For example, (1) 2-Naphthyl 2-pyridyl diketone (2) 1-(2-Naphthyl)-2-(2-pyridyl)ethanedione Some trivial names are retained: acetone (2-propanone), biacetyl (2,3-butanedione), propiophen-one (C6H59CO9CH2CH3), chalcone (C6H59CH"CH9CO9C6H5), and deoxybenzoin (C6H59CH29CO9C6H5).
These contracted names of heterocyclic nitrogen compounds are retained as alternatives for sys-tematic names, sometimes with indicated hydrogen. In addition, names of oxo derivatives of fully saturated nitrogen heterocycles that systematically end in -idinone are often contracted to end in -idone when no ambiguity might result. For example, 2-Pyridone 2(1H)-Pyridone 4-Pyridone 4(1H)-Pyridone 2-Quinolone 2(1H)-Quinolone 4-Quinolone 4(1H)-Quinolone 1-Isoquinolone 1(2H)-Isoquinolone 4-Oxazolone 4(5H)-Oxazolone 4-Pyrazolone 4(5H)-Pyrazolone 5-Pyrazolone 5(4H)-Pyrazolone 4-Isoxazoline 4(5H)-Isoxazolone 4-Thiazolone 4(5H)-Thiazolone 9-Acridone 9(10H)-Acridone 1.1.3.19 Lactones, Lactides, Lactams, and Lactims.
When the hydroxy acid from which water may be considered to have been eliminated has a trivial name, the lactone is designated by substi-tuting -olactone for -ic acid. Locants for a carbonyl group are numbered as low as possible, even before that of a hydroxyl group.
Lactones formed from aliphatic acids are named by adding -olide to the name of the nonhydrox-ylated hydrocarbon with the same number of carbon atoms. The suffix -olide signifies the change of CH3 CH into C"O.
C O Structures in which one or more (but not all) rings of an aggregate are lactone rings are named by placing -carbolactone (denoting the 9O9CO9 bridge) after the names of the structures that ORGANIC COMPOUNDS 1.35 remain when each bridge is replaced by two hydrogen atoms. The locant for 9CO9 is cited before that for the ester oxygen atom. An additional carbon atom is incorporated into this structure as compared to the -olide.
These trivial names are permitted: -butyrolactone, -valerolactone, and -valerolactone. Names based on heterocycles may be used for all lactones. Thus, -butyrolactone is also tetrahydro-2-furanone or dihydro-2(3H)-furanone.
Lactides, intermolecular cyclic esters, are named as heterocycles. Lactams and lactims, containing a 9CO9NH9 and 9C(OH)"N9 group, respectively, are named as heterocycles, but they may also be named with -lactam or -lactim in place of -olide. For example, (1) 2-Pyrrolidinone (2) 4-Butanelactam 1.1.3.20 Nitriles and Related Compounds.
For acids whose systematic names end in -carboxylic acid, nitriles are named by adding the suffix -carbonitrile when the 9CN group replaces the 9COOH group. The carbon atom of the 9CN group is excluded from the numbering of a chain to which it is attached. However, when the triple-bonded nitrogen atom is considered to replace three hydrogen atoms at the end of the main chain of an acyclic hydrocarbon, the suffix -nitrile is added to the name of the hydrocarbon. Numbering begins with the carbon attached to the nitrogen.
For example, CH3CH2CH2CH2CH2CN is named (1) pentanecarbonitrile or (2) hexanenitrile.
Trivial acid names are formed by changing the endings -oic acid or -ic acid to -onitrile. For example, CH3CN is acetonitrile. When the 9CN group is not the highest priority group, the 9CN group is denoted by the prefix cyano-.
In order of decreasing priority for citation of a functional class name, and the prefix for substi-tutive nomenclature, are the following related compounds: Functional group Prefix Radicofunctional ending 9NC Isocyano-Isocyanide 9OCN Cyanato-Cyanate 9NCO Isocyanato-Isocyanate 9ONC — Fulminate 9SCN Thiocyanato-Thiocyanate 9NCS Isothiocyanato-Isothiocyanate 9SeCN Selenocyanato-Selenocyanate 9NCSe Isoselenocyanato-Isoselenocyanate 1.1.3.21 Peroxides.
Compounds of the type R9O9OH are named (1) by placing the name of the radical R before the word hydroperoxide or (2) by use of the prefix hydroperoxy- when another parent name has higher priority. For example, C2H5OOH is ethyl hydroperoxide.
Compounds of the type R1O9OR2 are named (1) by placing the names of the radicals in al-phabetical order before the word peroxide when the group 9O9O9 links two chains, two rings, or a ring and a chain, (2) by use of the affix dioxy to denote the bivalent group 9O9O9 for naming assemblies of identical units or to form part of a prefix, or (3) by use of the prefix epidioxy-when the peroxide group forms a bridge between two carbon atoms, a ring, or a ring system.
1.36 SECTION 1 Examples are methyl propyl peroxide for CH39O9O9C3H7 and 2,2-dioxydiacetic acid for HOOC9CH29O9O9CH29COOH.
1.1.3.22 Phosphorus Compounds.
Acyclic phosphorus compounds containing only one phos-phorus atom, as well as compounds in which only a single phosphorus atom is in each of several functional groups, are named as derivatives of the parent structures listed in Table 1.12. Often these are purely hypothetical parent structures. When hydrogen attached to phosphorus is replaced by a hydrocarbon group, the derivative is named by substitution nomenclature. When hydrogen of an 9OH group is replaced, the derivative is named by radicofunctional nomenclature. For example, C2H5PH2 is ethylphosphine; (C2H5)2PH, diethylphosphine; CH3P(OH)2, dihydroxy-methyl-phos-phine or methylphosphonous acid; C2H59PO(Cl)(OH), ethylchlorophosphonic acid or ethylphos-phonochloridic acid or hydrogen chlorodioxoethylphosphate(V); CH3CH(PH2)COOH, 2-phosphin-opropionic acid; HP(CH2COOH)2, phosphinediyldiacetic acid; (CH3)HP(O)OH, methylphosphinic acid or hydrogen hydridomethyldioxophosphate(V); (CH3O)3PO, trimethyl phosphate; and (CH3O)3P, trimethyl phosphite.
1.1.3.23 Salts and Esters of Acids.
Neutral salts of acids are named by citing the cation(s) and then the anion, whose ending is changed from -oic to -oate or from -ic to -ate. When different acidic residues are present in one structure, prefixes are formed by changing the anion ending -ate to -ato-or -ide to -ido-. The prefix carboxylato- denotes the ionic group 9COO. The phrase (metal) salt of (the acid) is permissible when the carboxyl groups are not all named as affixes.
Acid salts include the word hydrogen (with affixes, if appropriate) inserted between the name of the cation and the name of the anion (or word salt).
Esters are named similarly, with the name of the alkyl or aryl radical replacing the name of the TABLE 1.12 Parent Structures of Phosphorus-Containing Compounds Formula Parent name Substitutive prefix Radicofunctional ending H3P Phosphine H2P9 Phosphino-Phosphide H5P Phosphorane H4P9 Phosphoranyl-H3P H2P Phosphoroanediyl-Phosphoranetriyl-H3PO Phosphine oxide H3PS Phosphine sulfide H3PNH Phosphine imide P(OH)3 Phosphorous acid Phosphite HP(OH)2 Phosphonous acid Phosphonite H2POH Phosphinous acid Phosphinite P(O)(OH)3 HP(O)(OH)2 H2P(O)OH Phosphoric acid Phosphonic acid Phosphinic acid P(O) HP(O) 9P(O)OH2 P(O)OH H2P(O)9 Phosphoryl-Phosphonoyl-Phosphono-Phosphinoyl-Phosphinoco-Phosphinato-Phosphate(V) Phosphonate Phosphinate ORGANIC COMPOUNDS 1.37 cation. Acid esters of acids and their salts are named as neutral esters, but the components are cited in the order: cation, alkyl or aryl radical, hydrogen, and anion. Locants are added if necessary. For example, Potassium 1-ethyl hydrogen citrate Ester groups in R19CO9OR2 compounds are named (1) by the prefix alkoxycarbonyl- or aryloxycarbonyl- for 9CO9OR2 when the radical R1 contains a substituent with priority for ci-tation as principal group or (2) by the prefix acyloxy- for R19CO9O9 when the radical R2 contains a substituent with priority for citation as principal group. Examples are Methyl 3-methoxycarbonyl-2-naphthalenebutyrate + [CH O9CO9CH CH N(CH ) ]Cl [(2-Methoxycarbonyl)ethyl]trimethylammonium chloride 3 2 2 3 3 C6H59CO9OCH2CH2COOH 3-Benzoyloxypropionic acid The trivial name acetoxy is retained for the CH39CO9O9 group. Compounds of the type R2C(OR2)3 are named as R2 esters of the hypothetical ortho acids. For example, CH3C(OCH3)3 is trimethyl orthoacetate.
1.1.3.24 Silicon Compounds.
SiH4 is called silane; its acyclic homologs are called disilane, tri-silane, and so on, according to the number of silicon atoms present. The chain is numbered from one end to the other so as to give the lowest-numbered locant in radicals to the free valence or to substituents on a chain. The abbreviated form silyl is used for the radical SiH39. Numbering and citation of side chains proceed according to the principles set forth for hydrocarbon chains. Cyclic nonaromatic structures are designated by the prefix cyclo-.
When a chain or ring system is composed entirely of alternating silicon and oxygen atoms, the parent name siloxane is used with a multiplying affix to denote the number of silicon atoms present.
The parent name silazane implies alternating silicon and nitrogen atoms; multiplying affixes denote the number of silicon atoms present.
The prefix sila- designates replacement of carbon by silicon in replacement nomenclature. Prefix names for radicals are formed analogously to those for the corresponding carbon-containing com-pounds. Thus silyl is used for SiH39, silyene for 9SiH29, silylidyne for 9SiH, as well as trily, tetrayl, and so on for free valences(s) on ring structures.
1.1.3.25 Sulfur Compounds Bivalent Sulfur.
The prefix thio, placed before an affix that denotes the oxygen-containing group or an oxygen atom, implies the replacement of that oxygen by sulfur. Thus the suffix -thiol denotes 9SH, -thione denotes 9(C)"S and implies the presence of an "S at a nonterminal carbon atom, -thioic acid denotes [(C)"S]OH L [(C)"O]SH (that is, the O-substituted acid and the S-substi-1.38 SECTION 1 tuted acid, respectively), -dithioc acid denotes [9C(S)]SH, and -thial denotes 9(C)HS (or -car-bothialdehyde denotes 9CHS). When -carboxylic acid has been used for acids, the sulfur analog is named -carbothioic acid or -carbodithioic acid.
Prefixes for the groups HS9 and RS9 are mercapto- and alkylthio-, respectively; this latter name may require parentheses for distinction from the use of thio- for replacement of oxygen in a trivially named acid.
Examples of this problem are 4-C2H59C6H49CSOH named p-ethyl(thio)benzoic acid and 4-C2H59S9C6H49COOH named p-(ethylthio)benzoic acid. When 9SH is not the principal group, the prefix mercapto- is placed before the name of the parent compound to denote an unsubstituted 9SH group.
The prefix thioxo- is used for naming "S in a thioketone. Sulfur analogs of acetals are named as alkylthio- or arylthio-. For example, CH3CH(SCH3)OCH3 is 1-methoxy-1-(methylthio)ethane.
Prefix forms for -carbothioic acids are hydroxy(thiocarbonyl)- when referring to the O-substituted acid and mercapto(carbonyl)- for the S-substituted acid.
Salts are formed as with oxygen-containing compounds. For example, C2H59S9Na is named either sodium ethanethiolate or sodium ethyl sulfide. If mercapto- has been used as a prefix, the salt is named by use of the prefix sulfido- for 9S.
Compounds of the type R19S9R2 are named alkylthio- (or arylthio-) as a prefix to the name of R1 or R2, whichever is the senior.
Sulfonium Compounds.
Sulfonium compounds of the type R1R2R3SX are named by citing in alphabetical order the radical names followed by -sulfonium and the name of the anion. For hetero-cyclic compounds, -ium is added to the name of the ring system. Replacement of CH by sulfonium sulfur is denoted by the prefix thionia-, and the name of the anion is added at the end.
Organosulfur Halides.
When sulfur is directly linked only to an organic radical and to a halogen atom, the radical name is attached to the word sulfur and the name(s) and number of the halide(s) are stated as a separate word. Alternatively, the name can be formed from R9SOH, a sulfenic acid whose radical prefix is sulfenyl-. For example, CH3CH29S9Br would be named either ethylsulfur monobromide or ethanesulfenyl bromide. When another principal group is present, a composite prefix is formed from the number and substitutive name(s) of the halogen atoms in front of the syllable thio. For example, BrS9COOH is (bromothio)formic acid.
Sulfoxides.
Sulfoxides, R19SO9R2, are named by placing the names of the radi-cals in alphabetical order before the word sulfoxide. Alternatively, the less senior radical is named followed by sulfinyl- and concluded by the name of the senior group. For example, CH3CH29SO9CH2CH2CH3 is named either ethyl propyl sulfoxide or 1-(ethylsulfinyl)propane.
When an SO group is incorporated in a ring, the compound is named an oxide.
Sulfones.
Sulfones, R19SO29R2, are named in an analogous manner to sulfoxides, using the word sulfone in place of sulfoxide. In prefixes, the less senior radical is followed by -sulfonyl-. When the SO2 group is incorporated in a ring, the compound is named as a dioxide.
Sulfur Acids.
Organic oxy acids of sulfur, that is, 9SO3H, 9SO2H, and 9SOH, are named sulfonic acid, sulfinic acid, and sulfenic acid, respectively. In subordinate use, the respective prefixes are sulfo-, sulfino, and sulfeno-. The grouping 9SO29O9SO29 or 9SO9O9SO is named sulfonic or sulfinic anhydride, respectively.
Inorganic nomenclature is employed in naming sulfur acids and their derivatives in which sulfur is linked only through oxygen to the organic radical. For example, (C2H5O)2SO2 is diethyl sulfate and C2H5O9SO29OH is ethyl hydrogen sulfate. Prefixes O- and S- are used where necessary to denote attachment to oxygen and to sulfur, respectively, in sulfur replacement compounds. For example, CH39S9SO29ONa is sodium S-methyl thiosulfate.
When sulfur is linked only through nitrogen, or through nitrogen and oxygen, to the organic radical, naming is as follows: (1) N-substituted amides are designated as N-substituted derivatives of the sulfur amides and (2) compounds of the type R9NH9SO3H may be named as N-substituted ORGANIC COMPOUNDS 1.39 sulfamic acids or by the prefix sulfoamino- to denote the group HO3S9NH9. The groups and 9N"SO2 are named sulfinylamines and sulfonylamines, respectively.
9N"SO Sultones and Sultams.
Compounds containing the group 9SO29O9 as part of the ring are called -sultone. The 9SO29 group has priority over the 9O9 group for lowest-numbered locant.
Similarly, the 9SO29N" group as part of a ring is named by adding -sultam to the name of the hydrocarbon with the same number of carbon atoms. The 9SO29 has priority over 9N" for lowest-numbered locant.
1.1.4 Stereochemistry Concepts in stereochemistry, that is, chemistry in three-dimensional space, are in the process of rapid expansion. This section will deal with only the main principles. The compounds discussed will be those that have identical molecular formulas but differ in the arrangement of their atoms in space.
Stereoisomers is the name applied to these compounds.
Stereoisomers can be grouped into three categories: (1) Conformational isomers differ from each other only in the way their atoms are oriented in space, but can be converted into one another by rotation about sigma bonds. (2) Geometric isomers are compounds in which rotation about a double bond is restricted. (3) Configurational isomers differ from one another only in configuration about a chiral center, axis, or plane. In subsequent structural representations, a broken line denotes a bond projecting behind the plane of the paper and a wedge denotes a bond projecting in front of the plane of the paper. A line of normal thickness denotes a bond lying essentially in the plane of the paper.
1.1.4.1 Conformational Isomers.
A molecule in a conformation into which its atoms return spontaneously after small displacements is termed a conformer. Different arrangements of atoms that can be converted into one another by rotation about single bonds are called conformational isomers (see Fig. 1.1). A pair of conformational isomers can be but do not have to be mirror images of each other. When they are not mirror images, they are called diastereomers.
FIGURE 1.1 Conformations of ethane.
(a) Eclipsed; (b) staggered.
Acyclic Compounds.
Different conformations of acyclic compounds are best viewed by con-struction of ball-and-stick molecules or by use of Newman projections (see Fig. 1.2). Both types of representations are shown for ethane. Atoms or groups that are attached at opposite ends of a single bond should be viewed along the bond axis. If two atoms or groups attached at opposite ends of the bond appear one directly behind the other, these atoms or groups are described as eclipsed. That portion of the molecule is described as being in the eclipsed conformation. If not eclipsed, the atoms 1.40 SECTION 1 or groups and the conformation may be described as staggered. Newman projections show these conformations clearly.
Certain physical properties show that rotation about the single bond is not quite free. For ethane there is an energy barrier of about (12 The potential energy of the molecule 1 1 3 kcal · mol kJ · mol ).
is at a minimum for the staggered conformation, increases with rotation, and reaches a maximum at the eclipsed conformation. The energy required to rotate the atoms or groups about the carbon-carbon bond is called torsional energy. Torsional strain is the cause of the relative instability of the eclipsed conformation or any intermediate skew conformations.
In butane, with a methyl group replacing one hydrogen on each carbon of ethane, there are several different staggered conformations (see Fig. 1.3). There is the anti-conformation in which the methyl groups are as far apart as they can be (dihedral angle of 180). There are two gauche conformations in which the methyl groups are only 60 apart; these are two nonsuperimposable mirror images of each other. The anti-conformation is more stable than the gauche by about 1 0.9 kcal · mol Both are free of torsional strain. However, in a gauche conformation the methyl 1 (4 kJ · mol ).
groups are closer together than the sum of their van der Waals’ radii. Under these conditions van der Waals’ forces are repulsive and raise the energy of conformation. This strain can affect not only the relative stabilities of various staggered conformations but also the heights of the energy barriers FIGURE 1.2 Newman projections for ethane. (a) Staggered; (b) eclipsed.
FIGURE 1.3 Conformations of butane. (a) Anti-staggered; (b) eclipsed; (c) gauche-staggered; (d) eclipsed; (e) gauche-staggered; (f) eclipsed. (Eclipsed conformations are slightly staggered for convenience in drawing; actually they are superimposed.) ORGANIC COMPOUNDS 1.41 between them. The energy maximum (estimated at 4.8 to or 20 to is 1 1 6.1 kcal · mol 25 kJ · mol ) reached when two methyl groups swing past each other (the eclipsed conformation) rather than past hydrogen atoms.
Cyclic Compounds.
Although cyclic aliphatic compounds are often drawn as if they were planar geometric figures (a triangle for cyclopropane, a square for cyclobutane, and so on), their structures are not that simple. Cyclopropane does possess the maximum angle strain if one considers the difference between a tetrahedral angle (109.5) and the 60 angle of the cyclopropane structure.
Nevertheless the cyclopropane structure is thermally quite stable. The highest electron density of the carbon-carbon bonds does not lie along the lines connecting the carbon atoms. Bonding electrons lie principally outside the triangular internuclear lines and result in what is known as bent bonds (see Fig. 1.4).
Cyclobutane has less angle strain than cyclopropane (only 19.5). It is also believed to have some bent-bond character associated with the carbon-carbon bonds. The molecule exists in a nonplanar conformation in order to minimize hydrogen-hydrogen eclipsing strain.
Cyclopentane is nonplanar, with a structure that resembles an envelope (see Fig. 1.5). Four of the carbon atoms are in one plane, and the fifth is out of that plane. The molecule is in continual motion so that the out-of-plane carbon moves rapidly around the ring.
The 12 hydrogen atoms of cyclohexane do not occupy equivalent positions. In the chair confor-mation six hydrogen atoms are perpendicular to the average plane of the molecule and six are directed outward from the ring, slightly above or below the molecular plane (see Fig. 1.6). Bonds which are perpendicular to the molecular plane are known as axial bonds, and those which extend outward FIGURE 1.4 The bent bonds (“tear drops”) of cyclopropane.
FIGURE 1.5 The conformations of cyclopentane.
FIGURE 1.6 The two chair conformations of cyclohexane; a axial hy-drogen atom and e equatorial hydrogen atom.
1.42 SECTION 1 from the ring are known as equatorial bonds. The three axial bonds directed upward originate from alternate carbon atoms and are parallel with each other; a similar situation exists for the three axial bonds directed downward. Each equatorial bond is drawn so as to be parallel with the ring carbon-carbon bond once removed from the point of attachment to that equatorial bond. At room temper-ature, cyclohexane is interconverting rapidly between two chair conformations. As one chair form converts to the other, all the equatorial hydrogen atoms become axial and all the axial hydrogens become equatorial. The interconversion is so rapid that all hydrogen atoms on cyclohexane can be considered equivalent. Interconversion is believed to take place by movement of one side of the chair structure to produce the twist boat, and then movement of the other side of the twist boat to give the other chair form. The chair conformation is the most favored structure for cyclohexane. No angle strain is encountered since all bond angles remain tetrahedral. Torsional strain is minimal because all groups are staggered.
In the boat conformation of cyclohexane (Fig. 1.7) eclipsing torsional strain is significant, al-though no angle strain is encountered. Nonbonded interaction between the two hydrogen atoms across the ring from each other (the “flagpole” hydrogens) is unfavorable. The boat conformation is about (27 higher in energy than the chair form at 25C.
1 1 6.5 kcal · mol kJ · mol ) A modified boat conformation of cyclohexane, known as the twist boat (Fig. 1.8), or skew boat, has been suggested to minimize torsional and nonbounded interactions. This particular conformation is estimated to be about lower in energy than the boat form at room 1 1 1.5 kcal · mol (6 kJ · mol ) temperature.
The medium-size rings (7 to 12 ring atoms) are relatively free of angle strain and can easily take a variety of spatial arrangements. They are not large enough to avoid all nonbonded interactions between atoms.
Disubstituted cyclohexanes can exist as cis-trans isomers as well as axial-equatorial conformers.
Two isomers are predicted for 1,4-dimethylcyclohexane (see Fig. 1.9). For the trans isomer the diequatorial conformer is the energetically favorable form. Only one cis isomer is observed, since the two conformers of the cis compound are identical. Interconversion takes place between the conformational (equatorial-axial) isomers but not configurational (cis-trans) isomers.
FIGURE 1.7 The boat conforma-tion of cyclohexane. a axial hydro-gen atom and e equatorial hydrogen atom.
FIGURE 1.8 Twist-boat conformation of cyclo-hexane.
ORGANIC COMPOUNDS 1.43 FIGURE 1.9 Two isomers of 1,4-dimethylcyclohexane. (a) Trans isomer; (b) cis isomer.
FIGURE 1.10 Two isomers of decahydronaphthalene, or bicyclo[4.4.0]decane.
(a) Trans isomer; (b) cis isomer.
The bicyclic compound decahydronaphthalene, or bicyclo[4.4.0]decane, has two fused six-mem-bered rings. It exists in cis and trans forms (see Fig. 1.10), as determined by the configurations at the bridgehead carbon atoms. Both cis- and trans-decahydronaphthalene can be constructed with two chair conformations.
1.1.4.2 Geometrical Isomerism.
Rotation about a carbon-carbon double bond is restricted be-cause of interaction between the p orbitals which make up the pi bond. Isomerism due to such restricted rotation about a bond is known as geometric isomerism. Parallel overlap of the p orbitals of each carbon atom of the double bond forms the molecular orbital of the pi bond. The relatively large barrier to rotation about the pi bond is estimated to be nearly 1 63 kcal · mol 1 (263 kJ · mol ).
When two different substituents are attached to each carbon atom of the double bond, cis-trans isomers can exist. In the case of cis-2-butene (Fig. 1.11a), both methyl groups are on the same side of the double bond. The other isomer has the methyl groups on opposite sides and is designated as trans-2-butene (Fig. 1.11b). Their physical properties are quite different. Geometric isomerism can also exist in ring systems; examples were cited in the previous discussion on conformational isomers.
For compounds containing only double-bonded atoms, the reference plane contains the double-bonded atoms and is perpendicular to the plane containing these atoms and those directly attached to them. It is customary to draw the formulas so that the reference plane is perpendicular to that of 1.44 SECTION 1 FIGURE 1.11 Two isomers of 2-butene. (a) Cis isomer, bp 3.8C, mp 138.9C, dipole moment 0.33 D; (b) trans isomer, bp 0.88C, mp 105.6C, dipole moment 0 D.
the paper. For cyclic compounds the reference plane is that in which the ring skeleton lies or to which it approximates. Cyclic structures are commonly drawn with the ring atoms in the plane of the paper.
1.1.4.3 Sequence Rules for Geometric Isomers and Chiral Compounds.
Although cis and trans designations have been used for many years, this approach becomes useless in complex systems. To eliminate confusion when each carbon of a double bond or a chiral center is connected to different groups, the Cahn, Ingold, and Prelog system for designating configuration about a double bond or a chiral center has been adopted by IUPAC. Groups on each carbon atom of the double bond are assigned a first (1) or second (2) priority. Priority is then compared at one carbon relative to the other. When both first priority groups are on the same side of the double bond, the configuration is designated as Z (from the German zusammen, “together”), which was formerly cis. If the first priority groups are on opposite sides of the double bond, the designation is E (from the German entgegen, “in opposition to”), which was formerly trans. (See Fig. 1.12.) FIGURE 1.12 Configurations designated by priority groups. (a) Z (cis); (b) E (trans).
When a molecule contains more than one double bond, each E or Z prefix has associated with it the lower-numbered locant of the double bond concerned. Thus (see also the rules that follow) (2E,4Z)-2,4-Hexadienoic acid When the sequence rules permit alternatives, preference for lower-numbered locants and for inclusion in the principal chain is allotted as follows in the order stated: Z over E groups and cis over trans cyclic groups. If a choice is still not attained, then the lower-numbered locant for such a preferred ORGANIC COMPOUNDS 1.45 group at the first point of difference is the determining factor. For example, (2Z,5E)-2,5-Heptadienedioic acid Rule 1.
Priority is assigned to atoms on the basis of atomic number. Higher priority is assigned to atoms of higher atomic number. If two atoms are isotopes of the same element, the atom of higher mass number has the higher priority. For example, in 2-butene, the carbon atom of each methyl group receives first priority over the hydrogen atom connected to the same carbon atom. Around the asymmetric carbon atom in chloroiodomethanesulfonic acid, the priority sequence is I, Cl, S, H. In 1-bromo-1-deuteroethane, the priority sequence is Cl, C, D, H.
Rule 2.
When atoms attached directly to a double-bonded carbon have the same priority, the second atoms are considered and so on, if necessary, working outward once again from the double bond or chiral center. For example, in 1-chloro-2-methylbutene, in CH3 the second atoms are and in CH2CH3 they are C, H, H. Since carbon has a higher atomic number than hydrogen, H, H, H the ethyl group has the next highest priority after the chlorine atom.
(Z)-1-Chloro-2-methylbutene (E)-1-Chloro-2-methylbutene Rule 3.
When groups under consideration have double or triple bonds, the multiple-bonded atom is replaced conceptually by two or three single bonds to that same kind of atom.
A A A A A A A A A A 9C C CH CH C9O O C C9O (O) O9C (C) C N (N) (N) (C) (C) Thus, "A is considered to be equivalent to two A's, or and #A equals . However, a real has priority over "A; likewise a real has priority over #A. Actually, both atoms of a multiple bond are duplicated, or triplicated, so that C"O is treated as , that is and , and C#N is treated as . A phenyl carbon becomes . Only the double-bonded atoms themselves are duplicated, not the atoms or groups attached to them. The duplicated atoms (or phantom atoms) may be considered as carrying atomic number zero. For example, among the groups OH, CHO, CH2OH, and H, the OH group has the highest priority, and the C(O, O, H) of CHO takes priority over the C(O, H, H) of CH2OH.
1.1.4.4 Chirality and Optical Activity.
A compound is chiral (the term dissymmetric was formerly used) if it is not superimposable on its mirror image. A chiral compound does not have a plane of symmetry. Each chiral compound possesses one (or more) of three types of chiral element, namely, a chiral center, a chiral axis, or a chiral plane.
1.46 SECTION 1 Chiral Center.
The chiral center, which is the chiral element most commonly met, is exemplified by an asymmetric carbon with a tetrahedral arrangement of ligands about the carbon. The ligands comprise four different atoms or groups. One “ligand” may be a lone pair of electrons; another, a phantom atom of atomic number zero. This situation is encountered in sulfoxides or with a nitrogen atom. Lactic acid is an example of a molecule with an asymmetric (chiral) carbon. (See Fig. 1.13b.) FIGURE 1.13 Asymmetric (chiral) car-bon in the lactic acid molecule.
A simpler representation of molecules containing asymmetric carbon atoms is the Fischer pro-jection, which is shown here for the same lactic acid configurations. A Fischer projection involves drawing a cross and attaching to the four ends the four groups that are attached to the asymmetric carbon atom. The asymmetric carbon atom is understood to be located where the lines cross. The horizontal lines are understood to represent bonds coming toward the viewer out of the plane of the paper. The vertical lines represent bonds going away from the viewer behind the plane of the paper as if the vertical line were the side of a circle. The principal chain is depicted in the vertical direction; the lowest-numbered (locant) chain member is placed at the top position. These formulas may be moved sideways or rotated through 180 in the plane of the paper, but they may not be removed from the plane of the paper (i.e., rotated through 90). In the latter orientation it is essential to use thickened lines (for bonds coming toward the viewer) and dashed lines (for bonds receding from the viewer) to avoid confusion.
Enantiomers.
Two nonsuperimposable structures that are mirror images of each other are known as enantiomers. Enantiomers are related to each other in the same way that a right hand is related to a left hand. Except for the direction in which they rotate the plane of polarized light, enantiomers are identical in all physical properties. Enantiomers have identical chemical properties except in their reactivity toward optically active reagents.
Enantiomers rotate the plane of polarized light in opposite directions but with equal magnitude.
If the light is rotated in a clockwise direction, the sample is said to be dextrorotatory and is designed as (). When a sample rotates the plane of polarized light in a counterclockwise direction, it is said to be levorotatory and is designed as (). Use of the designations d and l is discouraged.
Specific Rotation.
Optical rotation is caused by individual molecules of the optically active compound. The amount of rotation depends upon how many molecules the light beam encounters in passing through the tube. When allowances are made for the length of the tube that contains the sample and the sample concentration, it is found that the amount of rotation, as well as its direction, is a characteristic of each individual optically active compound.
ORGANIC COMPOUNDS 1.47 Specific rotation is the number of degrees of rotation observed if a 1-dm tube is used and the compound being examined is present to the extent of 1 g per 100 mL. The density for a pure liquid replaces the solution concentration.
observed rotation (degrees) Specific rotation [] length (dm) (g/100 mL) The temperature of the measurement is indicated by a superscript and the wavelength of the light employed by a subscript written after the bracket; for example, implies that the measurement 20 []590 was made at 20C using 590-nm radiation.
Optically Inactive Chiral Compounds.
Although chirality is a necessary prerequisite for optical activity, chiral compounds are not necessarily optically active. With an equal mixture of two en-antiomers, no net optical rotation is observed. Such a mixture of enantiomers is said to be racemic and is designated as () and not as dl. Racemic mixtures usually have melting points higher than the melting point of either pure enantiomer.
A second type of optically inactive chiral compounds, meso compounds, will be discussed in the next section.
Multiple Chiral Centers.
The number of stereoisomers increases rapidly with an increase in the number of chiral centers in a molecule. A molecule possessing two chiral atoms should have four optical isomers, that is, four structures consisting of two pairs of enantiomers. However, if a com-pound has two chiral centers but both centers have the same four substituents attached, the total number of isomers is three rather than four. One isomer of such a compound is not chiral because it is identical with its mirror image; it has an internal mirror plane. This is an example of a diaster-eomer. The achiral structure is denoted as a meso compound. Diastereomers have different physical and chemical properties from the optically active enantiomers. Recognition of a plane of symmetry is usually the easiest way to detect a meso compound. The stereoisomers of tartaric acid are examples of compounds with multiple chiral centers (see Fig. 1.14), and one of its isomers is a meso compound.
FIGURE 1.14 Isomers of tartaric acid.
When the asymmetric carbon atoms in a chiral compound are part of a ring, the isomerism is more complex than in acyclic compounds. A cyclic compound which has two different asymmetric carbons with different sets of substituent groups attached has a total of optical isomers: an 2 2 4 enantiometric pair of cis isomers and an enantiometric pair of trans isomers. However, when the two asymmetric centers have the same set of substituent groups attached, the cis isomer is a meso compound and only the trans isomer is chiral. (See Fig. 1.15.) Torsional Asymmetry.
Rotation about single bonds of most acyclic compounds is relatively free at ordinary temperatures. There are, however, some examples of compounds in which nonbonded 1.48 SECTION 1 interactions between large substituent groups inhibit free rotation about a sigma bond. In some cases these compounds can be separated into pairs of enantiomers.
A chiral axis is present in chiral biaryl derivatives. When bulky groups are located at the ortho positions of each aromatic ring in biphenyl, free rotation about the single bond connecting the two rings is inhibited because of torsional strain associated with twisting rotation about the central single bond. Interconversion of enantiomers is prevented (see Fig. 1.16).
For compounds possessing a chiral axis, the structure can be regarded as an elongated tetrahedron to be viewed along the axis. In deciding upon the absolute configuration it does not matter from which end it is viewed; the nearer pair of ligands receives the first two positions in the order of precedence (see Fig. 1.17). For the meaning of (S), see the discussion under Absolute Configuration on p. 1.49.
A chiral plane is exemplified by the plane containing the benzene ring and the bromine and oxygen atoms in the chiral compound shown in Fig. 1.18. Rotation of the benzene ring around the oxygen-to-ring single bonds is inhibited when x is small (although no critical size can be reasonably established).
FIGURE 1.15 Isomers of cyclopropane-1,2-dicarboxylic acid. (a) Trans isomer; (b) meso isomer.
FIGURE 1.16 Isomers of biphenyl compounds with bulky groups attached at the ortho positions.
FIGURE 1.17 Example of a chiral axis.
ORGANIC COMPOUNDS 1.49 Absolute Configuration.
The terms absolute stereochemistry and absolute configuration are used to describe the three-dimensional arrangement of substituents around a chiral element. A general system for designating absolute configuration is based upon the priority system and sequence rules.
Each group attached to a chiral center is assigned a number, with number one the highest-priority group. For example, the groups attached to the chiral center of 2-butanol (see Fig. 1.19) are assigned these priorities: 1 for OH, 2 for CH2CH3, 3 for CH3, and 4 for H. The molecule is then viewed from the side opposite the group of lowest priority (the hydrogen atom), and the arrangement of the remaining groups is noted. If, in proceeding from the group of highest priority to the group of second priority and thence to the third, the eye travels in a clockwise direction, the configuration is specified R (from the Latin rectus, “right”); if the eye travels in a counterclockwise direction, the configuration is specified S (from the Latin sinister, “left”). The complete name includes both configuration and direction of optical rotation, as for example, (S)-()-2-butanol.
The relative configurations around the chiral centers of many compounds have been established.
One optically active compound is converted to another by a sequence of chemical reactions which are stereospecific; that is, each reaction is known to proceed spatially in a specific way. The config-uration of one chiral compound can then be related to the configuration of the next in sequence. In order to establish absolute configuration, one must carry out sufficient stereospecific reactions to relate a new compound to another of known absolute configuration. Historically the configuration of D-()-2,3-dihydroxypropanal has served as the standard to which all configuration has been compared. The absolute configuration assigned to this compound has been confirmed by an X-ray crystallographic technique.
1.1.5 Chemical Abstracts Indexing System When compounds of complex structure are considered, the number of name possibilities grows rapidly. To avoid having index entries for all possible names, Chemical Abstracts Service has de-veloped what might be called the principle of inversion. The indexing system employs inverted FIGURE 1.18 Example of a chi-ral plane.
FIGURE 1.19 Viewing angle as a means of designating the absolute config-uration of compounds with a chiral axis. (a) (R)-2-Butanol (sequence clock-wise); (b) (S)-2-butanol (sequence counterclockwise).
1.50 SECTION 1 entries to bring together related compounds in an alphabetically arranged index. The index heading parent from the Chemical Substance Index appears in the Formula Index in lightface before the “comma of inversion.” The substituents follow the “comma of inversion” in alphabetical order. Any name modification appears on a separate line. If necessary, the chemical description is completed by citation of an associated ion, a functional derivative, a “salt with” or “compound with” term, and/or a stereochemical descriptor.
Quite naturally there is a certain amount of arbitrariness in this system, although the IUPAC nomenclature is followed. The preferred Chemical Abstracts index names for chemical substances have been, with very few exceptions, continued unchanged (since 1972) as set forth in the Ninth Collective Index Guide and in a journal article. Any revisions appear in the updated Index Guide; new editions appear at 18-month intervals. Appendix VI is of particular interest to chemists. Reprints of the Appendix may be purchased from Chemical Abstracts Service, Marketing Division, P.O. Box 3012, Columbus, Ohio 43210.
J. Chem. Doc. 14(1):3–15 (1974).
ORGANIC COMPOUNDS 1.51 TABLE 1.13 Names and Formulas of Organic Radicals For more comprehensive lists, see the various lists of radicals given in the subject indexes of the annual and decennial indexes of Chemical Abstracts.
Name Formula Name Formula Acenaphthenyl Acenaphthenylene Acenaphthenylidene Acetamido Acetimidoyl Acetoacetyl Acetohydrazonoyl Acetohydroximoyl Acetonyl Acetonylidene Acetoxy Acetyl (not ethanoyl) Acetylamino Acetylhydrazino Acetylimino Acridinyl (from acridine) Acroyloyl (or propenoyl) Adipoyl (or hexanedioyl) Alanyl -Alanyl Allyl (or 2-propenyl) Allylidene Allyloxy Amidino Amino Aminomethyleneamino Aminooxy Ammonio Amyl, see Pentyl Anilino Anisidino (o-, m-, or p-) Anisoyl (o-, m-, or p-; or methoxyben-zoyl) Anthraniloyl Anthryl (from anthracene) Anthrylene Arginyl Asparaginyl Aspartoyl -Aspartyl Atropoyl (or 2-phenylpro-penoyl) Azelaoyl, see Nonane-dioyl C12H99 9C12H89 C12H8" CH39CO9NH9 CH3C("NH)9 CH39CO9CH29CO9 CH39C("NNH2)9 CH39C("NOH)9 CH39CO9CH29 CH39CO9CH" CH39CO9O9 CH39CO9 CH39CO9NH9 CH39CO9NH9NH9 CH39CO9N" NC13H89 CH2"CH9CO9 9CO9[CH2]49CO9 CH39CH(NH2)9CO9 H2N9CH29CH29CO9 CH2"CH9CH29 CH2"CH9CH" CH2"CH9CH29O9 H2N9C("NH)9 H2N9 H2N9CH"N9 H2N9O9 H3N9 C6H59NH9 CH3O9C6H49NH9 CH3O9C6H49CO9 o-NH29C6H49CO9 C14H99 9C14H89 H2N9C("NH)9NH9 [CH2]39CH(NH)9 CO9 H2N9CO9CH29 CH(NH2)9CO9 9CO9CH29 CH(NH2)9CO9 HO2C9CH2CH(NH2)9 C6H59C("CH2)9CO9 Azido Azino Azo Azoxy Azulenyl Benzamido Benzeneazo Benzeneazoxy 1,2-Benzenedicarbonyl, see Phthaloyl 1,3-Benzenedicarbonyl (or isophthaloyl) 1,4-Benzenedicarbonyl (or terephthaloyl) Benzenesulfinyl Benzenesulfonamido Benzenesulfonyl Benzenesulfonylamino Benzenetriyl Benzhydryl (or diphenyl-methyl) Benzidino Benziloyl (or 2-hydroxy-2,2-diphenylethanoyl) Benzimidazolyl Benzimidoyl Benzofuranyl Benzopyranyl Benzoquinonyl (1,2- or 1,4-) Benzo[b]thienyl Benzoyl Benzoylamino Benzoylhydrazino Benzoylimino Benzoyloxy Benzyl Benzylidene Benzylidyne Benzyloxy Benzyloxycarbonyl Benzylthio Biphenylenyl Biphenylyl Bornenyl Bornyl (not camphyl or bornylyl) Bromo Bromoformyl N39 "N9N" 9N"N9 9N(O)9N9 C10H79 C6H59CO9NH9 C6H59N"N9 C6H59N2O9 9CO9C6H49CO9 (m-) 9CO9C6H49CO9 (p-) C6H59SO9 C6H59SO29NH9 C6H59SO29 C6H59SO29NH9 C6H39 (C6H5)2CH9 p-H2N9C6H49C6H49 NH9 (C6H5)2C(OH)9CO9 N2C7H59 C6H59C("NH)9 OC8H59 OC9H79 (O")2C6H39 SC8H59 C6H59CO9 C6H59CO9NH9 C6H59CO9NH9NH9 C6H59CO9N" C6H59CO9O9 C6H59CH29 C6H59CH" C6H59C# C6H59CH29O9 C6H59CH29O9CO9 C6H59CH29S9 C12H79 C6H59C6H49 C10H159 C10H179 Br9 Br9CO9 1.52 SECTION 1 TABLE 1.13 Names and Formulas of Organic Radicals (Continued) Name Formula Name Formula Bromonio Butadienyl (1,3- shown) Butanedioyl, see Succinyl Butanediylidene Butanediylidyne Butanoyl, see Butyryl cis-Butenedioyl, see Ma-leoyl trans-Butenedioyl, see Fu-maroyl Butenoyl, see Crotonoyl and Isocroto-noyl 1-Butenyl 2-Butenyl (not crotyl) 2-Butenylene Butenylidene (2- shown) Butenylidyne (2- shown) Butoxy sec-Butoxy (unsubstituted only) tert-Butoxy (unsubstituted only) Butyl sec-Butyl (unsubstituted only) tert-Butyl (unsubstituted only) Butylidene sec-Butylidene (unsubsti-tuted only) Butylidyne Butyryl (or butanoyl) Camphoroyl Carbamoyl Carbazolyl Carbazoyl Carbonimidoyl Carbonohydrazido (pre-ferred to carbohydazido or carbazido) Carbonyl Carbonyldioxy Carboxy Carboxylato Chloro Chlorocarbonyl, see Chlo-roformyl Chloroformyl Chlorosyl Chlorothio Chloryl HBr9 CH2"CH9CH"CH9 "CH9CH29CH29 CH" #C9CH29CH29C# CH39CH29CH"CH9 CH39CH"CH9CH29 9CH29CH"CH9 CH29 CH3CH"CH9CH" CH39CH"CH9C# CH39[CH2]39O9 C2H59CH(CH3)9O9 (CH3)3C9O9 CH39[CH2]39 or C4H99 C2H59CH(CH3)9 (CH3)3C9 CH39CH29CH29CH" C2H5C(CH3)" CH39[CH2]29C# CH39CH29CH29CO9 C10H14O29 H2N9CO9 NC12H89 H2N9NH9CO9 9C("NH)9 H2N9NH9CO9NH9 NH9 9CO9 or "C(O) 9O9CO9O9 HO2C9 9O2C9 Cl9 Cl9C(O)9 OCl9 ClS9 O2Cl9 Cinnamoyl (or 3-phenyl-propenoyl) Cinnamyl Cinnamylidene Citraconoyl (unsubstituted only) Crotonoyl Crotyl, see 2-Butenyl Cumenyl (o-, m-, or p-) Cyanato Cyano Cyclobutyl Cycloheptyl Cyclohexadienyl (2,4-shown) Cyclohexadienylidene (2,4- shown) Cyclohexanecarbonyl Cyclohexanecarbothioyl Cyclohexanecarboxamido Cyclohexanecarboximidoyl Cyclohexenyl 2-Cyclohexenylidene Cyclohexyl Cyclohexylcarbonyl Cyclohexylene Cyclohexylidene Cyclohexylthiocarbonyl Cyclopentadienyl Cyclopentadienylidene Cyclopenta[a]phenanthryl 1,2-Cyclopentenophenan-thryl Cyclopentenyl Cyclopentyl Cyclopentylene Cyclopropyl Cysteinyl Cystyl Decanedioyl Decanoyl Decyl Diacetoxyiodo Diacetylamino Diaminomethyleneamino C6H59CH"CH9CO C6H59CH"CH9CH29 C6H59CH"CH9CH" CH39C9CO9 HC9CO9 CH39CH"CH9CO9 (trans) (CH3)2CH9C6H49 NCO9 NC9 C4H79 C7H139 CH9CH29C CH9CH CH CH"CH9CH9 CH"CH9CH2 C6H119CO9 C6H119CS9 C6H119CO9NH9 C6H119C("NH)9 C6H99 CH"CH9C H2C9CH2 CH2 C6H119 C6H119CO9 9C6H109 CH29CH29C CH29CH29CH2 C6H119CS9 C5H59 CH"CH9CH"CH9C" C17H179 C17H119 C5H79 C5H99 9C5H89 C3H59 HS9CH29CH(NH2)9 CO9 9CO9CH(NH2)9 CH29S9S9CH29 CH(NH2)9CO9 9CO9[CH2]89CO9 CH39[CH2]89CO9 CH39[CH2]99 (CH39CO9O)2I9 (CH39CO)2N9 (NH2)2C"N9 ORGANIC COMPOUNDS 1.53 TABLE 1.13 Names and Formulas of Organic Radicals (Continued) Name Formula Name Formula Diazo Diazoamino Dibenzoylamino Dichloroiodo Diethylamino 3,4-Dihydroxybenzoyl, see Protocatechuoyl 2,3-Dihydroxybutanedioyl, see Tartaroyl Dihydroxyiodo 2,3-Dihydroxypropanoyl, see Glyceroyl 3,4-Dimethoxybenzoyl, see Veratroyl 3,4-Dimethoxyphenethyl 3,4-Dimethoxyphenylace-tyl Dimethylamino Dimethylbenzoyl Dioxy Diphenylamino Diphenylmethylene Dithio Diethiocarboxy Dithiosulfo Dodecanoyl Dodecyl Elaidoyl (or trans-9-octa-decenoyl) Epidioxy (as a bridge) Epidiseleno (as bridge) Epidithio (as a bridge) Epimino (as a bridge) Episeleno (as a bridge) Epithio (as a bridge) Epoxy (as a bridge) Ethanesulfonamide Ethanoyl, see Acetyl Ethenyl, see Vinyl Ethoxalyl Ethoxy Ethoxycarbonyl Ethyl Ethylamino Ethylene Ethylenedioxy Ethylidene Ethylidyne Ethylsulfonylamino Ethylthio Ethynyl Ethynylene Fluoranthenyl "N2 9N"N9NH9 (C6H59CO)2N9 Cl2I9 (C2H5)2N9 (HO)2I9 3,4-(CH3O)2C6H3CH2CH9 3,4-(CH3O)2C6H3CH2CO9 (CH3)2N9 (CH3)2C6H6H39CO9 9O9O9 (C6H5)2N9 (C6H5)2C" 9S9S9 HSSC9 HOS29 CH3[CH2]109CO9 CH3[CH2]119 CH3[CH2]7CH"CH9 [CH2]79CO9 9O9O9 9Se9Se9 9S9S9 9NH9 9Se9 9S9 9O9 C2H59SO29NH9 C2H59OOC9CO9 C2H59O9 C2H59O9CO9 C2H59 or CH39CH29 C2H59NH9 9CH29CH29 9O9CH29CH29O9 CH39CH" CH39C# C2H59SO29NH9 C2H59S9 HC#C9 9C#C9 C16H99 Fluorenyl Fluoro Fluoroformyl Formamido Formimidoyl Formyl (not methanoyl) Formylamino Formylimino Formyloxy Fumaroyl (or trans-butene-dioyl) Furancarbonyl, see Furoyl Furfuryl (2- only; pre-ferred to 2-furylmethyl) Furfurylidene (2- only) Furoyl (3- shown; pre-ferred to furancarbonyl) Furyl 3-Furylmethyl Galloyl (or 3,4,5-trihy-droxybenzoyl) Geranyl (from geraniol) Glutaminyl Glutamoyl -Glutamyl -Glutamyl Glutaryl (or pentanedioyl) Glyceroyl (or 2,3- dihy-droxypropanoyl) Glycoloyl (or hydroxy-ethanoyl) Glycyl Glycylamino Glyoxyloyl Guanidino Guanyl, see Amidino Heptanamido Heptanedioyl Heptanoyl Heptyl Hexadecanoyl Hexadecyl Hexamethylene Hexanamido Hexanedioyl (or adipoyl) C13H99 F9 F9CO9 OCH9NH9 CH("NH)9 OCH9 or 9C(O)H H9CO9NH9 H9CO9N" H9CO9O9 9CO9CH"CH9CO9 (trans) CH"C9CH29 CH9O HC CH"C9CH CH9O HC CH"C9CO9 CH"CH O CH"C9CH29 CH"CH O OC4H39 3,4,5-(HO)3C6H29CO9 C10H179 H2N9CO9CH29CH29 CH(NH2)9CO9 9CO9CH29CH29 CH(NH2)9CO9 HOOC[CH2]2CH(NH2)9 CO9 HOOC9CH(NH2)9 [CH2]29CO9 9CO9[CH2]39CO9 HO9CH29CH(OH)9 CO9 HO9CH29CO9 H2N9CH29CO9 H2N9CH29CO9NH9 OHC9CO9 H2N9C("NH)9NH9 CH39[CH2]59CO9NH9 9CO9[CH2]59CO9 CH39[CH2]59CO9 CH39[CH2]59CH29 CH39[CH2]149CO9 CH39[CH2]149CH29 9[CH2]69 CH39[CH2]49CO9NH9 9CO9[CH2]49CO9 1.54 SECTION 1 TABLE 1.13 Names and Formulas of Organic Radicals (Continued) Name Formula Name Formula Hexanimidoyl Hexanoyl Hexanoylamino Hexyl Hexylidene Hexyloxy Hippuroyl Histidyl Homocysteinyl Homoseryl Hydantoyl Hydratropoyl (or 2-phenyl-propanoyl) Hydrazi Hydrazino Hydrazo Hydrazono Hydroperoxy Hydroseleno Hydroxy Hydroxyamino o-Hydroxybenzoyl (or sal-icyloyl) m-Hydroxybenzoyl p-Hydroxybenzoyl Hydroxybutanedioyl, see Maloyl 2-Hydroxy-2,2-diphenyl ethanoyl, see Benziloyl Hydroxyethanoyl, see Gly-coloyl Hydroxyimino 4-Hydroxy-3-methoxy-benzoyl (or vanilloyl) 3-Hydroxy-2-phenylpropa-noyl (or tropoyl) Hydroxypropanedioyl (or tartronoyl) 2-Hydroxypropanoyl (or lactoyl) Icosyl Imino Iminomethylamino Iodo Iodoformyl CH39[CH2]49C("NH)9 CH39[CH2]49CO9 CH39[CH2]49CO9NH9 CH39[CH2]49CH29 CH39[CH2]49CH" CH3[CH2]59O9 C6H59CO9NH9CH29 CO9 N2C3H39CH29CH(NH2)9 CO9 HS9CH29CH29 CH(NH2)9CO9 HO9CH29CH29 CH(NH2)9CO9 H2N9CO9NH9CH29 CO9 C6H59CH(CH3)9CO9 9NH9NH9 (to single atom) H2N9NH9 9NH9NH9 (to different atoms) H2N9N" HO9O9 HSe9 HO9 HO9NH9 o-HO9C6H49CO9 m-HO9C6H49CO9 p-HO9C6H49CO9 HO9N" 4-HO,3-CH3O9 C6H39CO9 C6H59CH(CH2OH)9CO9 9CO9CH(OH)9CO9 CH39CH(OH)9CO9 CH39[CH2]189CH29 9NH9, HN" HN"CH9NH9 I9 I9CO9 Iodonio Iodosyl Iodyl Isobutoxy (unsubstituted only) Isobutyl (unsubstituted only) Isobutylidene (unsubsti-tuted only) Isobutylidyne (unsubsti-tuted only) Isobutyryl (unsubstituted only; or 2-methylpropa-noyl) Isocarbonohydrazido Isocrotonoyl Isocyanato Isocyano Isohexyl (unsubstituted only) Isoleucyl Isonicotinoyl (or 4-pyridi-necarbonyl) Isopentyl (unsubstituted only) Isophthaloyl (or 1,3-benzenedicarbonyl) Isopropenyl (unsubstituted only; or 1-methylvinyl) Isopropoxy (unsubstituted only) Isopropyl (unsubstituted only) p-Isopropylbenzoyl Isopropylbenzyl Isopropylidene Isoselenocyanato Isosemicarbazido Isothiocyanato Isothioureido Isoureido Isovaleryl (unsubstituted only; or 3-methylbutan-oyl) Lactoyl Lauroyl (unsubstituted only) HI9 OI9 O2I9 (CH3)2CH9CH29O9 (CH3)2CH9CH29 (CH3)2CH9CH" (CH3)2CH9C# (CH3)2CH9CO9 H2N9N"C(OH)9NH9 NH9 CH39CH"CH9CO9 (cis) OCN9 CN9 (CH3)2CH9[CH2]39 C2H59CH(CH3)9 CH(NH2)9CO NC5H49CO9 (4-) (CH3)2CH9CH29CH29 9CO9C6H49CO9 (m-) CH2"C(CH3)9 (CH3)2CH9O9 (CH3)2CH9 p-(CH3)2CH9C6H49CO9 (CH3)2CH9C6H49CH29 (CH3)2C" SeCN9 H2N9NH9C(OH)"N9 SCN9 HN"C(SH)9NH9, H2N9C(SH)"N9 HN"C(OH)9NH9, H2N9C(OH)"N9 (CH3)2CH9CH29CO9 CH39CH(OH)9CO9 CH39[CH2]109CO9 ORGANIC COMPOUNDS 1.55 TABLE 1.13 Names and Formulas of Organic Radicals (Continued) Name Formula Name Formula Leucyl Lysyl Maleoyl Malonyl Maloyl Mercapto-Mesaconoyl (unsubstituted only) Mesityl Mesoxalo Mesoxalyl Mesyl Methacryloyl (or 2-methyl-propenoyl) Methaneazo Methaneazoxy Methanesulfinamido Methanesulfinyl Methanesulfonamido Methanesulfonyl, see Mesyl Methanoyl, see Formyl Methionyl Methoxalyl Methoxy Methoxybenzoyl (o-, m-, or p-) Methoxycarbonyl Methoxyimino Methoxyphenyl Methoxysulfinyl Methoxysulfonyl Methoxy(thiosulfonyl) Methyl Methylallyl Methylamino Methylazo Methylazoxy -Methylbenzyl Methylbenzyl 3-Methylbutanoyl cis-Methylbutenedioyl trans-Methylbutenedioyl Methyldithio Methylene Methylenedioxy 3,4-Methylenedioxyben-zoyl (CH3)2CH9CH29 CH(NH2)9CO9 H2N9[CH2]49 CH(NH2)9CO9 9CO9CH"CH9CO9 9CO9CH29CO9 9CO9CH(OH)9CH29 CO9 HS9 9CO9CH CH39C9CO9 2,4,6-(CH3)3C6H29 HOOC9CO9CO9 9CO9CO9CO9 CH39SO29 CH2"C(CH3)9CO9 CH39N"N9 CH39N2O9 CH39SO9NH9 CH39SO9 CH39SO29NH9 CH39S9CH29CH29 CH(NH2)9CO9 CH3OOC9CO9 CH3O9 CH3O9C6H49CO9 CH3O9CO9 CH3O9N" CH3O9C6H49 CH3O9SO9 CH3O9SO29 CH3O9S2O9 CH39 CH2"C(CH3)9CH29 CH39NH9 CH39N"N9 CH39N2O9 C6H59CH(CH3)9 CH39C6H49CH29 (CH3)2CH9CH29CO9 9CO9CH CH39C9CO9 HC9CO9 CH39C9CO9 CH39S9S9 9CH29, H2C" 9O9CH29O9 3,4-CH2O2:C6H39 CO9 5-Methylhexyl Methylidyne Methylsulfinimidoyl Methylsulfinohydrazonoyl Methylsulfinohydroxi-moyl Methylsulfinyl Methylsulfinylamino Methylsulfonohydrazo-noyl Methylsulfonimidoyl Methylsulfonohydroxa-moyl Methylsulfonyl Methylthio (Methylthio)sulfonyl 1-Methylvinyl, see Isopro-penyl Morpholino (4- only) Morpholinyl (3- shown) Myristoyl (unsubstituted only) Naphthalenazo Naphthalenecarbonyl, see Naphthoyl Naphthoyl Naphthoyloxy Naphthyl Naphthylazo Naphthylene Naphthylenebisazo Naphthyloxy Neopentyl (unsubstituted only) Nicotinoyl Nitrilo Nitro aci-Nitro Nitroso Nonanedioyl Nonanoyl Nonyl Norbornyl Norbornylyl, see Norbor-nyl Norcamphyl, see Norbor-nyl Norleucyl Norvalyl Octadecanoyl (CH3)2CH9[CH2]49 HC# CH39S("NH)9 CH39S("NNH2)9 CH39S("N9OH)9 CH39SO9 CH39SO9NH9 CH39S(O)(NNH2)9 CH39S(O)("NH)9 CH39S(O)(N9OH)9 CH39SO29 CH3S9 CH3S9SO29 CH29CH2 CH29CH2 O N9 CH29CH2 CH29CH O NH CH39[CH2]129CO9 C10H79N"N9 C10H79CO9 C10H79CO9O9 C10H79 C10H79N"N9 9C10H69 9N"N9C10H69 N"N9 C10H79O9 (CH3)3C9CH29 NC5H49CO9 (3-) N# O2N9 HO9(O")N" ON9 9CO9[CH2]79CO9 CH39[CH2]79CO9 CH39[CH2]79CH29 C7H119 CH39[CH2]39CH(NH2)9 CO9 CH39CH29CH29 CH(NH2)9CO9 CH39[CH2]169CO9 1.56 SECTION 1 TABLE 1.13 Names and Formulas of Organic Radicals (Continued) Name Formula Name Formula cis-9-Octadecenoyl Octadecyl Octanedioyl Octanoyl Octyl Oleoyl Ornithyl Oxalacetyl Oxalaceto Oxalo Oxalyl Oxamoyl Oxido Oxo Oxonio Oxy Palmitoyl (unsubstituted only) Pentafluorothio Pentamethylene Pentanedioyl, see Glu-taryl Pentanoyl, see Valeryl Pentenyl (2- shown) Pentyl Pentyloxy Perchloryl Phenacyl Phenacylidene Phenanthryl Phenethyl Phenetidino (o-, m-, or p-) Phenoxy Phenyl Phenylacetyl Phenylazo Phenylazoxy Phenylcarbamoyl Phenylene Phenylenebisazo Phenylimino 2-Phenylpropanoyl 3-Phenylpropenoyl, see Cinnamoyl 3-Phenylpropyl H[CH2]89CH"CH9 [CH2]79CO9 CH39[CH2]169CH29 9CO9[CH2]69CO9 CH39[CH2]69CO9 CH39[CH2]69CH29 H[CH2]89CH"CH9 [CH2]79CO9 H2N9[CH2]39 CH(NH2)9CO9 9CO9CH29CO9 CO9 HOOC9CO9CH29 CO9 HOOC9CO9 9CO9CO9 H2N9CO9CO9 O9 (ion) O" H2O9 9O9 CH39[CH2]149CO9 F5S9 9CH29CH29CH29 CH29CH29 CH39CH29CH"CH9 CH29 CH39CH29CH29CH29 CH29 CH39[CH2]49O9 O3Cl9 C6H59CO9CH29 C6H59CO9CH" C14H99 C6H59CH29CH29 C2H5O9C6H49NH9 C6H59O9 C6H59 C6H59CH29CO9 C6H59N"N9 C6H59N2O9 C6H59NH9CO 9C6H49 9N"N9C6H49 N"N9 C6H59N" C6H59CH(CH3)9CO9 C6H59CH29CH29 CH29 Phenylsulfamoyl Phenylsulfinyl Phenylsulfonyl Phenylsulfonylamino Phenylthio 3-Phenylureido Phthalamoyl Phthalidyl Phthalimido Phthaloyl Picryl Pimeloyl (unsubstituted only) Piperidino (1- only) Piperidyl (2-, 3-, 4-) Piperonyl Pivaloyl (unsubstituted only) Polythio Propanedioyl, see Ma-lonyl Propanoyl, see Propionyl Propargyl, see 2-Pro-pynyl Propenoyl, see Acryloyl 1-Propenyl 2-Propenyl, see Allyl Propenylene Propioloyl Propionamido Propionyl Propionylamino Propionyloxy Propoxy Propyl Propylene Propylidene Propylidyne Propynoyl, see Propiolyl 1-Propynyl 2-Propynyl Protocatechuoyl 3-Pyridinecarbonyl 4-Pyridinecarbonyl Pyridinio Pyridyl 2-Pyridylcarbonyl Pyridyloxy Pyruvoyl Salicyl Salicylidene Salicyloyl Sarcosyl C6H59NH9SO2 C6H59SO9 C6H59SO29 C6H59SO29NH9 C6H59S9 C6H59NH9CO9NH9 H2N9CO9C6H49CO9 C6H49CO9O9CH9 CO9C6H49CO9N9 (o-) 9CO9C6H49CO9 (o-) 2,4,6-(NO2)3C6H29 9CO9[CH2]59CO9 C5H10N9 NC5H109 3,4-CH2O2:C6H39CH29 (CH3)3C9CO9 9S49 CH39CH"CH9 9CH29CH"CH9 CH#C9CO9 CH39CH29CO9NH9 CH39CH29CO9 CH39CH29CO9NH9 CH39CH29CO9O9 CH39CH29CH29O CH39CH29CH29 9CH(CH3)9CH29 CH39CH29CH" CH39CH29C# CH39C#C9 HC#C9CH29 3,4-(HO)2C6H39CO9 NC5H49CO9 (3-) NC5H49CO9 (4-) NC5H59 (ion) NC5H49 NC5H49CO9 (2-) NC5H49O9 CH39CO9CO9 o-HO9C6H49CH29 o-HO9C6H49CH" o-HO9C6H49CO9 CH39NH9CH29CO9 ORGANIC COMPOUNDS 1.57 TABLE 1.13 Names and Formulas of Organic Radicals (Continued) Name Formula Name Formula Sebacoyl (unsubstituted only) Seleneno Selenino Seleninyl Seleno Selenocyanato Selenoformyl Selenonio Selenono Selenonyl Selenoureido Selenoxo Semicarbazido Semicarbazono Seryl Stearoyl (unsubstituted only) Styryl Suberoyl (unsubstituted only) Succinamoyl Succinimido Succinimidoyl Succinyl Sulfamoyl Sulfanilamido Sulfanilyl Sulfenamoyl Sulfeno Sulfido Sulfinamoyl Sulfino Sulfinyl Sulfo Sulfoamino Sulfonato Sulfonio Sulfonyl Sulfonyldioxy Tartaroyl Tartronoyl Tauryl Telluro Terephthaloyl Terphenylyl 9CO9[CH2]89CO9 HOSe9 HO2Se9 OSe" 9Se9 NC9Se9 HSeC9 H2Se9 (ion) HO3Se9 O2Se9 H2N9CSe9NH9 (C)"Se H2N9CO9NH9NH9 H2N9CO9NH9N" HO9CH29CH(NH2)9 CO9 CH39[CH2]169CO9 C6H59CH"CH9 9CO9[CH2]69CO9 H2N9CO9CH29CH29 CO9 CH29C CH29C N9 O O 9C("NH)9CH29 CH2C("NH)9 9CO9CH29CH29CO9 H2N9SO29 p-H2N9C6H49SO29 NH9 p-H2N9C6H49SO29 H2N9S9 HO9S9 S9 (ion) H2N9SO9 HO2S9 9SO9 HO9SO29 HO2S9NH9 O3S9 (ion) H2S9 (ion) 9SO29 9O9SO29O9 9CO9CH(OH)9 CH(OH)9CO9 9CO9CH(OH)9CO9 H2N9CH29CH29SO29 Te replacing O 9CO9C6H49CO9 (p-) C6H59C6H49C6H49 (Terthiophen)yl Tetradecanoyl Tetradecyl Tetramethylene Thenoyl (2- shown) Thenyl Thienyl Thio Thioacetyl Thiobenzoyl Thiocarbamoyl Thiocarbazono Thiocarbodiazono Thiocarbonohydrazido Thiocarbonyl Thiocarboxy Thiocyanato Thioformyl Thiophenecarbonyl, see Thenoyl Thiosemicarbazido Thiosulfino Thiosulfo Thioreido Thioxo Threonyl Toluenesulfonyl (o-, m-) Toluidino (o-, m-, or p-) Toluoyl (o-, m-, or p-) Tolyl (o-, m-, or p-) Tolylsulfonyl Tosyl (p- only) Triazano Triazeno Trichlorothio Tridecanoyl Tridecyl Trifluorothio 3,4,5-Trihydroxybenzoyl Trimethylammonio Trimethylanilino (all iso-mers) Trimethylene Trimethylenedioxy Triphenylmethyl Trithio Trithiosulfo SC4H39SC4H29SC4H29 CH39[CH2]129CO9 CH39[CH2]129CH29 9CH29CH29CH29 CH29 CH"CH S CO9 CH"C SC4H39CH29 SC4H39 9S9 CH39CS9 C6H59CS9 H2N9CS9 HN"N9CS9NH9 NH9 HN"N9CS9N"N9 H2N9NH9CS9NH9 NH9 9CS9, SC" HSOC9, HS9CO9 NCS9 SHC9, HCS9 H2N9CS9NH9NH9 HOS29 HO2S29 H2N9CS9NH9 S" CH39CH(OH)9 CH(NH2)9CO9 CH39C6H49SO29 CH39C6H49NH9 CH39C6H49CO9 CH39C6H49 CH39C6H49SO29 p-CH39C6H49SO29 H2N9NH9NH9 H2N9N"N9 Cl3S9 CH39[CH2]119CO9 CH39[CH2]129 F3S9 3,4,5-(HO)3C6H29CO9 (CH3)3N9 (ion) (CH3)3C6H29NH9 9CH29CH29CH29 9O9CH29CH29 CH29O9 (C6H5)3C9 9S39 HS9S39 1.58 SECTION 1 TABLE 1.13 Names and Formulas of Organic Radicals (Continued) Name Formula Name Formula Trityl Tropoyl Tyrosyl Undecanoyl Undecyl Ureido Ureylene Valeryl Valyl (C6H5)3C9 C6H59CH(CH2OH)9 CO9 p-HO9C6H49CH29 CH(NH2)9CO9 CH39[CH2]99CO9 CH39[CH2]99CH29 H2N9CO9NH9 9NH9CO9NH9 CH39[CH2]39CO9 (CH3)2CH9CH(NH2)9 CO9 Vanilloyl Vanillyl Veratroyl Veratryl Vinyl Vinylene Xylidino (all isomers) Xylyl (all isomers) 3,4-CH3O(HO)C6H39 CO9 3,4-CH3O(HO)C6H39 CH29 3,4-(CH3O)2C6H39 CO9 3,4-(CH3O)2C6H29 CH29 CH2"CH9 9CH"CH9 (CH3)2C6H39NH9 (CH3)2C6H39 TABLE 1.14 Empirical Formula Index of Organic Compounds The alphanumeric designations are keyed to Table 1.15.
Br2OS: t149 ClHO3S: c248 ClH4NO: h139 Cl2OS: t150 Cl2H2Si: d270a Cl3HSi: t249 Cl3PS: t158 H3NO3S: s23 H4N2: h85 H6Si2: d791 C1 CBr4: c13 CBrClF2: b301 CBrCl3: b432 CBrF3: b434 CBrN: c325 CBr2F2: d93 CBr4: c13 CClF3: c264 CClNO3S: c249 CCl2F2: d218 CCl3D: c146 CCl3F: t237 CCl4: c14 CCl4S: t240 CD2Cl2: d236 CD4O: m36 CD7O: m40 CFCl3: f30 CF4: c15 CHBrCl2: b316 CHBr2Cl: d88 CHBr2F: d104a CHBr3: t204 CHClF2: c101 CHCl2F: d233 CHCl3: c145 CHF3: t307 CHF3O3S: t308 CHI3: i33 CH2BrCl: b305 CH2Br2: d110 CH2Cl2: d235 CH2F2: d409 CH2I2: d452 CH2N2: c318, d63 CH2N4: t131 CH2O: f32 (CH2O)x: p1 CH2O2: f36 CH2O3: g29 CH2S3: t451 CH3Br: b354 CH3Br3Ge: m260 CH3Cl: c157 CH3ClO2S: m36 CH3Cl3Si: m450, t242 CH3DO: m39 CH3F: f18 CH3I: i37 CH3NO: f33 CH3NO2: m325, n56 CH3NO3: m324 CH3N5: a294 CH4: m33 CH4Cl2Si: d240 CH4N2O: f38, u16 CH4N2S: t161 CH4N4O2: n54 CH4O: m38 13CH4O: m41 CH4O2: m279 CH4O3S: m34 CH4S: m37 CH5AsO3: m137 CH5N: m127 CH5NO3S: a201 CH5N3: g30 CH5N3S: t160 CH6ClN3O: s3 CH6N2: m274 CH6N4: a180 CH6N4O: c9 CI4: c16 CN4O8: t123 CS2: c10 CO: c11 COS: c12 C2 C2Br2ClF3: d90 C2Br2Cl4: d129 C2Br2F4: d130 C2Br2O2: o54 C2ClF3: c263 C2Cl2F4: d270b, d271 C2Cl2O2: o55 C2Cl3F3: t256, t257 C2Cl3N: t222 1.2 PHYSICAL PROPERTIES OF PURE SUBSTANCES ORGANIC COMPOUNDS 1.59 TABLE 1.14 Empirical Formula Index of Organic Compounds (Continued) The alphanumeric designations are keyed to Table 1.15.
C2Cl4: t38 C2Cl4F2: d411, d412, t36 C2Cl4O: t224 C2Cl6: h27 C2D3N: a30 C2D4O2: a21 C2D6OS: d698 C2F4: t65 C2F6: h42 C2F6O5S2: t309 C2HBrClF3: b308 C2HBr2F3: d133 C2HBr2N: d77 C2HBr3: t203 C2HBr3O: t199 C2HBr3O2: t200 C2HClF2: c100a C2HClF2O2: c98 C2HCl3: t235 C2HCl3O: d186, t218 C2HCl3O2: t219 C2HCl5: p7 C2HF3O2: t300 C2H2: a41 C2H2BrClO: b255 C2H2Br2: d99, d100 C2H2Br2F2: d92 C2H2Br2O: b254 C2H2Br2O2: d76 C2H2Br4: t16 C2H2ClF3: c262 C2H2ClN: c30 C2H2Cl2: d227, d228, d229 C2H2Cl2O: c34 C2H2Cl2O2: d182 C2H2Cl3NO: t217 C2H2Cl4: t36a, t37 C2H2F2: d408 C2H2F3NO: t299 C2H2F4: t64 C2H2N2S3: d488 C2H2O: k1 C2H2O2: g28 C2H2O3: g29 C2H2O4: o52, o53 C2H3Br: b336 C2H3BrO: a35 C2H3BrO2: b249 C2H3Br2Cl3Si: d101 C2H3Br3O: t202 C2H3Cl: c129 C2H3ClF2: c100 C2H3ClO: a37, c23a C2H3ClO2: c27, m194 C2H3Cl3: t231, t232 C2H3Cl3O: t233 C2H3Cl3Si: t258 C2H3DO2: a20 C2H3FO: a43 C2H3FO2: f5 C2H3F3O: t305 C2H3F3O3S: m453 C2H3IO: a48 C2H3IO2: i21 C2H3N: a29 C2H3NO: m288 C2H3NS: m294, m440 C2H3N3: t197 C2H3N3S2: a284 C2H4: e131 C2H4BrCl: b303 C2H4BrNO: b247 C2H4Br2: d96, d97 C2H4ClNO: c24 C2H4ClO: b165a C2H4Cl2: d225, d226 C2H4Cl2O: d237 C2H4Cl6Si2: b227 C2H4F2: d407 C2H4INO: i20 C2H4I2: d451 C2H4N2: a109 C2H4N2O2: o58 C2H4N2S2: d795 C2H4N4: a289, d281 C2H4N4O2: a314 C2H4O: e147 C2H4OS: t147 C2H4O2: a19, h87, m257 C2H4O2S: m16 C2H4O3: h88, p60 C2H4O5S: s26 C2H4S: e148 C2H5AlCl2: e61 C2H5Br: b329 C2H5BrNaO2S: b330 C2H5BrO: b331, b369 C2H5Cl: c121 C2H5ClHg: e198 C2H5ClO: c122, c156, c173 C2H5ClS: c174 C2H5Cl2OPS: e124 C2H5Cl2O2P: e123 C2H5Cl3Si: c171, e269, t236 C2H5DO: e28 C2H5F: f17 C2H5I: i31 C2H5IO: i32 C2H5N: e146 C2H5NO: a5, a6, m255, m291 C2H5NO2: e225, g26, m187, n52 C2H5NO3: e224 C2H5NS: t138 C2H5N3O2: b238, o57 C2H6: e20 C2H6AlCl: d533 C2H6BrN: b333 C2H6Cd: d578 C2H6ClN: c126 C2H6ClNO2S: d692 C2H6ClO2PS: d582 C2H6Cl2Si: d222 C2H6Hg: d631 C2H6N2: a8 C2H6N2O: m460, n78 C2H6N2O2: m275 C2H6N2S: m444 C2H6N4O: o56 C2H6O: d603, e27 C2H6OS: d697, m20 C2H6O2: e21a, e135 C2H6O2S: d696 C2H6O3S: d695, e25, m301 C2H6O4S: d693 C2H6O5S2: m35 C2H6S: d694, e26a C2H6S2: d600, e24 C2H6Te: d700 C2H6Zn: d709 C2H7AsO2: d560 C2H7ClSi: c111 C2H7N: d534, e63 C2H7NO: a162, a163, e29 C2H7NO3S: a160 C2H7NO4S: a169 C2H7NS: a161 C2H7N5: b137 C2H7O3P: d625 C2H8N2: d623, d624, e21, e133 C2H8N2O: h125 C2H9BD: b243 C2H10BN: b242 C3 C3Br2F5: d105 C3Cl3N3: t255 C3Cl3N3O3: t239 C3Cl6: h30 C3Cl6O: a27, h2 C3F6: h44 C3HCl5O: p5 C3H2ClN: c35 C3H2Cl2O2: m6 1.60 SECTION 1 TABLE 1.14 Empirical Formula Index of Organic Compounds (Continued) The alphanumeric designations are keyed to Table 1.15.
C3H2Cl4O: t31 C3H2Cl4O2: t234 C3H2F6O: h43 C3H2N2: m5 C3H2O2: p248 C3H3Br: b415 C3H3Br2N: d126 C3H3Cl: c241 C3H3ClO: a63a C3H3Cl3O: e18, t221 C3H3Cl3O2: m449 C3H3F3O: t302 C3H3F3O2: m452 C3H3N: a63 C3H3NOS2: r7 C3H3NO2: c320 C3H3NS: t136 C3H3N3O2S: a244 C3H3N3O3: a289, c332 C3H4: a72, p246 C3H4BrClO: b410, b411 C3H4BrN: b408 C3H4Br2: d124 C3H4Br2O: b409 C3H4Br2O2: d125 C3H4ClN: c233 C3H4Cl2: d265, d266 C3H4Cl2O: c235, c236, d183, d184 C3H4Cl2O2: m227 C3H4F4O: t66 C3H4N2: i3, m241, p254 C3H4N2O: c287 C3H4N2O2: h84 C3H4N2S: a285 C3H4N3NaS: c326 C3H4O: p203, p249 C3H4O2: a62, o64 C3H4O3: e132, o65, p210 C3H4O4: m3 C3H5Br: b314, b404, b405 C3H5BrO: b328, b403 C3H5BrO2: b406, b407, m143 C3H5Br3: t206 C3H5Cl: c236a C3H5ClO: c120, c232, p216 C3H5ClO2: c228, c229, e109, m188 C3H5Cl3: t247 C3H5Cl3Si: a98 C3H5F3O3S: m453 C3H5I: a87, i50 C3H5N: p215 C3H5NO: c323, h172, h173, v11 C3H5NO2: o59 C3H5NS: e193, m435 C3H5NS2: m26 C3H5N3O: c321 C3H5N3O9: g22 C3H5N3S: c293 C3H6: c406, p204 C3H6BrCl: b307 C3H6BrNO3: b381 C3H6Br2: d120, d121 C3H6Br2O: d122, d123 C3H6ClI: c155 C3H6ClNO: d578 C3H6Cl2: d262, d263 C3H6Cl2N2O2: d173 C3H6Cl2O: d231, d264 C3H6Cl2Si: d241 C3H6Cl4Si: t230 C3H6I2: d454 C3H6NO: a61 C3H6N2: d583 C3H6N2O: i5 C3H6N2O3: m4 C3H6N2OS: a58 C3H6N2O2: m4, m270 C3H6N2S: a286, i4 C3H6O: a26, a78, e15, m462, p211, p232 C3H6OS: t159 C3H6O2: d734, e16, e154, h90, m122, p213 C3H6O2S: m22, m23, m298 C3H6O3: d445, d580, L1, L2, m43, m265, t407 C3H6O3S: p197 C3H6S: p205, p233 C3H6S3: t450 C3H7Br: b400, b401 C3H7BrO: b402 C3H7Cl: c172, c225, c226 C3H7ClO: c132, c153, c230, c231 C3H7ClOS: c156 C3H7ClO2: c227 C3H7ClO2S: p196 C3H7Cl2OP: p241 C3H7Cl3Si: d214, p242 C3H7I: i48, i49 C3H7N: a76, p231 C3H7NO: a28, d606, m120, p212 C3H7NO2: a68, a69, a70, e102, i125, m264, n73, n74 C3H7NO2S: c411 C3H7NO3: i124, n75, p238, s4 C3H7NS: d704 C3H8: p188 C3H8BrClSi: b366 C3H8ClN: c225 C3H8Cl2Si: c88, d232 C3H8N2O: d708, e274 C3H8N2O2: e103 C3H8N2S: d705 C3H8O: e10, e210, p201, p202 C3H8OS2: d485, m315 C3H8O2: d507, m71, p191, p192 C3H8O2S: m21 C3H8O3: g19 C3H8S: e221, p198, p199 C3H8S2: p195 C3H9Al: t352 C3H9BO3: t338 C3H9B3O6: t339 C3H9BrGe: b437 C3H9BrSi: b438 C3H9ClGe: c265 C3H9ClSi: c266 C3H9IOS: t400 C3H9IS: t399 C3H9ISi: i56 C3H9N: i100, p223, t354 C3H9NO: a263, a264, a265, a266, m77, m131 C3H9NO2: a262 C3H9N3Si: a309 C3H9O3P: d635, t390 C3H9O4P: t389 C3H10N2: d54, d55, m254, p189, p190 C3H10N2O: d56 C3H10O3Si: t343 C3H11Br2N3S: a171 C4 C4Cl6: h23 C4Cl6O3: t220 C4D6O3: a23 C4F6O3: t301 C4HBrO3: b352 C4HCl3N2: t248 C4HF7O2: h2 C4H2: b452 C4H2Br2S: d131 C4H2Cl2N2: d267 C4H2Cl2O2: f43 C4H2Cl2S: d272 C4H2F6O2: t306 C4H2O3: m2 ORGANIC COMPOUNDS 1.61 TABLE 1.14 Empirical Formula Index of Organic Compounds (Continued) The alphanumeric designations are keyed to Table 1.15.
C4H2O4: q42 C4H3IS: i52 C4H3N3O4: n88 C4H4: b489 C4H4BrNO2: b422 C4H4Br2O2: d86 C4H4Br2O4: d128 C4H4ClNO2: c247 C4H4ClO3: c28 C4H4Cl2: d213 C4H4Cl2O2: s19 C4H4Cl2O3: c25 C4H4N2: b456, p251, p256, p277, s18 C4H4N2O2: d448, p278 C4H4N2O2S: d437 C4H4N2O3: b1 C4H4N2O5: a73 C4H4N4: d50 C4H4O: f45 C4H4O2: d483 C4H4O3: s16 C4H4O4: f42, m1 C4H4S: t151 C4H5BrO2: b283 C4H5BrO4: b421 C4H5Cl: c74, c74a, c83 C4H5ClN2O2: c184 C4H5ClO: c310, c408, m31 C4H5ClO2: a82 C4H5ClO3: c194, e232 C4H5Cl3O2: e268 C4H5N: b482, c309, c407, m30a, p279 C4H5NO: m47, m295 C4H5NO2: m201, s17 C4H5NO2S: e39 C4H5NO3: h183 C4H5NS: a88, m432 C4H5N3: a278, i8 C4H5N3O: a194 C4H5N3OS: a187 C4H5N3O2: a152, a153, c322, m338 C4H5N4O: d49 C4H6: b448, b449, b610a, b610b C4H6Br2O: b374 C4H6Br2N2O2: d95 C4H6Br2O2: d87 C4H6ClN: c86 C4H6Cl2: c89, d211, d212 C4H6Cl2O: c87 C4H6Cl2O2: m229 C4H6Cl3NSi: t250 C4H6N2: a149, m284, m285, m286 C4H6N2O2: e121, m273 C4H6N2S: a225 C4H6N2S2: d584 C4H6N4O: d39 C4H6N4O3: a71 C4H6O: b488, c306, d421, m27, m407 C4H6O2: b466, b483, b484, b485, b611, b616, b617, c307, c409, m29, m126, v5 C4H6O2S: b450 C4H6O3: a22, a24, m355, o60, p230 C4H6O4: d652, s15 C4H6O4S: m25, t143 C4H6O5: d690, h186, h187, o67 C4H6O6: t1, t2, t3, t4 C4H7Br: b276, b277, b278 C4H7BrO2: b282, b332, b368, b373, e83, m156 C4H7Cl: c79, c80, c81, c181, c182, c312 C4H7ClO: b620, c78, c136, i85 C4H7ClO2: c84, c85, e105, m196, p228 C4H7Cl3O: t241 C4H7FO2: e153 C4H7N: b618, i83 C4H7NO: h153, i115, m28, m99a, m352, p236, p285 C4H7NO2: b467, h146, m351 C4H7NO3: a46, e233, s13 C4H7NO4: a304, i7 C4H7NS: m434 C4H7N3O: c302 C4H8: b477, b478, b479, c333, m399 C4H8BrCl: b298, b306 C4H8Br2: d81, d82, d83, d84 C4H8Br2O: b148 C4H8Br2O2: d85 C4H8Cl2: d210 C4H8Cl2O: b163, d230 C4H8I2: d450 C4H8N2: d535 C4H8N2O: a102 C4H8N2O2: d610, s14 C4H8N2O3: a313, g27 C4H8N2S: a97, t85 C4H8O: b475, b486, b487, b612, c311, e3, e276, i79, m106, m389, m400, t69 C4H8O2: b480, b481, b614, d732, d733, e57, h107, h108, i81. m64, m401, p234 C4H8O2S: e196, m299, t107 C4H8O3: e24, e153, h120, h138, m70, m296, m302 C4H8S: a90, t87 C4H8S2: d792 C4H9Br: b274, b275, b371, b372 C4H9BrO: b337 C4H9BrO2: b319 C4H9Cl: c75, c76, c179, c180 C4H9ClO: a64, c77, c131, m74 C4H9ClO2: c105, c123, m67 C4H9ClSi: c112 C4H9Cl3Si: b604, b603, d215 C4H9Cl3Sn: b600 C4H9F: f21 C4H9I: i26, i27, i38, i39 C4H9N: e53, p280 C4H9NO: a311, b476, b613, d526, i80, m110, m463 C4H9NO2: a133, a133a, a134, b578, b579, h119, i73, n48 C4H9NO2S: a200 C4H9NO3: a185, a186, i72, m341, n49 C4H9NO5: t442 C4H9NSi: c331 C4H9N3O2: c301 C4H10: b454, m390 C4H10AlCl: d320, e62 C4H10ClO2PS: d351 C4H10ClO3P: d350 C4H10Cl2Si: b165 C4H10Cl4Si2: b174 C4H10N2: p178 C4H10N2O: a227 C4H10N2O4S: a8 C4H10O: b473, b474, d365, m397, m398, m404 C4H10OS: e180 C4H10OS2: b208 C4H10O2: b457, b457a, b457b, b458, b563, d504, d505, e40, e141, m105, m393 C4H10O2S: t144 C4H10O2S2: d484, h123 C4H10O3: b198, b472, d361, o62, t378 C4H10O3S: d399 C4H10O4: e19 C4H10O4S: d397 1.62 SECTION 1 TABLE 1.14 Empirical Formula Index of Organic Compounds (Continued) The alphanumeric designations are keyed to Table 1.15.
C4H10S: b470, b471, d398, i104, m394, m395, m396, m406 C4H10S2: b468, d356 C4H10S3: b209 C4H10Zn: d405 C4H11ClSi: c183 C4H11N: b453, b509, b510, b511, d323, d604, i66, m293 C4H11NO: a135, a164, a203, a216, d376, d539, e44, e67, m112 C4H11NO2: a215, d297, d506 C4H11NO3: t439 C4H11OP: d390 C4H11O2PS2: d358 C4H11O3P: d375 C4H12BrN: t93 C4H12ClN: d324, t94 C4H12Ge: t109 C4H12IN: t95 C4H12N2: b455, b560, b562, d41, d605, m391, m392 C4H12N2O: a165 C4H12N2S4: b183 C4H12OSi: m119 C4H12O2Si: d502 C4H12O3Si: m455 C4H12Pb: t112 C4H12Si: t118 C4H12Sn: t121 C4H13N3: d362 C4H14BN: b239 C4H14OSi2: t106 C4H16O4Si4: t104 C5 C5Cl5N: p10 C5Cl6: h25 C5D5N: p258 C5H3BrS: b426, b427 C5H3Br2N: d127 C5H3ClOS: t153 C5H3ClO2: f55 C5H3ClS: c251 C5H3Cl2N: d268, d269 C5H3N3: p252 C5H4BrN: b416, b417 C5H4ClN: c242 C5H4FN: f26 C5H4F8O: o20 C5H4N2O2: p253 C5H4N2O3: n76 C5H4N4O3: u17 C5H4OS: t154 C5H4O2: f44 C5H4O2S: t155 C5H4O3: c285, f54 C5H5ClN2: a148 C5H5ClN2O2: c168 C5H5N: p257 C5H5NO: h179, h180, h181, p271 C5H5NO2: d448, h183 C5H5N3O2: a243 C5H5N3O4: a158 C5H5N5: a61 C5H6: c395, m174 C5H6BrClN2O2: b302 C5H6Br2N2O2: d76 C5H6Cl2NO2: d220 C5H6Cl2O2: g18 C5H6N2: a275, a276, a277, g17, m408, v12 C5H6N2O: a47, a193 C5H6N2OS: h140, h141 C5H6O: m259 C5H6OS: f48, m443 C5H6O2: f50 C5H6O3: g15, h156 C5H6O4: c284, m253 C5H6O4S3: b156 C5H6S: m441, m442 C5H7BN: b244 C5H7BrO3: e91 C5H7ClO2: c205, d581 C5H7ClO3: m189, m190, m195 C5H7N: m417, p51, p52 C5H7NO: e31, f51 C5H7NO2: c324, e115 C5H7N3: a224, d58 C5H7N3O: a188 C5H8: c401, d424, m157, m178, p15, p16, p17, p18, p58 C5H8Br2O2: e122 C5H8N2: d626, d684, e191, p283 C5H8N2O2: d622 C5H8N4O12: p22 C5H8O: c399, c410, d364, e6, m179 C5H8O2: a74, c334, d532, e60, g16, i95, m65, m168, m169, m170, m200, m225, m300, p33, p34, p207, v2, v3, v10, v14 C5H8O3: e237, h121, m123, o63 C5H8O4: d547, g14, m278 C5H9Br: b313, b365 C5H9BrO2: b364, e93, e94, m155 C5H9Cl: c93 C5H9ClO: c206, d681, m186, p45, t75, t351 C5H9ClOS: c238 C5H9ClO2: b538, c237, e110, e111, i68, i107, m193 C5H9N: d683, m185, p35 C5H9NO: b565, b566, c400, d531, e53, e234, m419, m461 C5H9NO2: d523, f39, m130, p187 C5H9NO4: g12 C5H10: c396, m165a, m166, m167, p48, p49, p50 C5H10Br2: d117, d118 C5H10ClNO: d348 C5H10Cl2: d209 C5H10Cl2: d251 C5H10I2: d453 C5H10NO3P: d293a C5H10N2: d548 C5H10N2O: d627 C5H10N2O3: g13 C5H10N2O4S2: c412 C5H10O: a85, c398, d653, d677, e252, m165, m171, m172, m173, m180, m181, m429, p28, p42, p43, t83 C5H10OS: m439 C5H10O2: b557, c398, d521, d679, e252, h147, h164, i69, i99, m86, m182, m183, m184, m237, m290, m353, p38, p222, t71, t349 C5H10O2S: e197, e222, m316, m431 C5H10O3: d349, d520, e194, m75, m282, m307 C5H10O4: b201, m72 C5H10O5: a300, r9, x8 C5H11Br: b362, b363, b387, b388 C5H11BrO: b322 C5H11BrO2: b320 C5H11Br2O: b148 C5H11Br2O2: b150 C5H11Cl: c109, c150, c169a, c170, c204a C5H11ClO: c110 C5H11Cl2N: b164 C5H11I: i47 ORGANIC COMPOUNDS 1.63 TABLE 1.14 Empirical Formula Index of Organic Compounds (Continued) The alphanumeric designations are keyed to Table 1.15.
C5H11N: a85, c404, m418, p180 C5H11NO: b558, d369, d678, m317, t72 C5H11NO2: a248, a249, b133, b532, e275, i92, m310a, v4 C5H11NO2S: m42 C5H11NO3: n58 C5H11NS2: d357 C5H11O5P: t391 C5H12: d673, m155, p29 C5H12Cl2O2Si: b162 C5H12N2: a261, m381, m382 C5H12N2O: b608, d702, t122 C5H12N2O2: b533, o46 C5H12N2S: t119 C5H12N2S2: p282 C5H12O: b572, d676, e254, m161, m162, m163, m164, p31, p32, p39, p40, p41 C5H12O2: b504, d307, d518, d519, d675, i97, m64, p218 C5H12O2Si: d509, t395, v18 C5H12O3: m73, t340, t377, t440 C5H12O3S: p36 C5H12O4: p19 C5H12O5: x7 C5H12S: b577, e255, m159, m160, p37 C5H12Si: t401 C5H13ClOSi: c125 C5H13N: a246, a247, d380, d628, d682, m175, m176, p54 C5H13NO: a209, a250, d546, d547, e54, p224 C5H13NOSi: t394 C5H13NO2: a176, d508, d545, d607, m230 C5H13N3: t110 C5H14ClN3O: g5 C5H14N2: d549, d674, p30, t105, t113 C5H14N2O: a150, a166 C5H14O: b560, b561 C5H14OSi: e56 C5H15NSi: d707 C5H15N3: a175 C6 C6BrD5: b263 C6BrF5: b386 C6Cl4O2: t34, t35 C6Cl5NO2: p8 C6Cl6: h22 C6D6: b11 C6D12: c348 C6F6: h41 C6F14: t42 C6HBr5O: p4 C6HCl4NO2: t39 C6HCl5: p6 C6HCl5O: p9 C6H2BrFN2O4: b324 C6H2Br4: t14 C6H2Cl3NO2: t243 C6H2Cl4: t32, t33 C6H3Br2F: d103, d104 C6H3Br2NO2: d115 C6H3Br3O: t211 C6H3ClFNO2: c141 C6H3ClF2: c99 C6H3ClN2O4: c114, c115 C6H3ClN2O4S: d712 C6H3Cl2NO2: d245, d246, d247, d248 C6H3Cl2NO3: d249 C6H3Cl3: t227, t228, t229 C6H3Cl3O: t244, t245 C6H3Cl3O2S: d201 C6H3D3: b9 C6H3FN2O4: d718 C6H3F2NO2: d410 C6H3F3: t303 C6H3N3O6: t403, t404 C6H3N3O7: p174 C6H4BrCl: b287, b288, b296 C6H4BrClO2S: b264 C6H4BrF: b340, b341, b342 C6H4BrNO2: b378 C6H4BrN3O4: b323 C6H4Br2: d79, d112 C6H4Br2N2O2: d114 C6H4Br2O: d119 C6H4Br3N: t201 C6H4ClF: c137, c138 C6H4ClFO: c142 C6H4ClI: c154 C6H4ClNO2: c192, c193, c194 C6H4ClNO3: c201 C6H4ClNO4S: n33 C6H4Cl2: d198, d199, d200 C6H4Cl2N2O2: d244 C6H4Cl2O: d252, d253, d254, d255 C6H4Cl2O2S: c50 C6H4Cl3N: t225, t226 C6H4FNO2: f23 C6H4F2: d406 C6H4INO2: i40, i41 C6H4I2: d449 C6H4N2: a267, c328, c329, c330 C6H4N2O2: b43 C6H4N2O4: d711 C6H4N2O5: d720 C6H4N4O6: t402 C6H4O2: b58 C6H5BO2: c22 C6H5Br: b262 C6H5BrO: b392, b393, b394 C6H5BrS: b428 C6H5Cl: c47 C6H5ClHg: p129 C6H5ClN2O2: c188, c189, c190, c191 C6H5ClN3O4: c113 C6H5ClO: c208, c209, c210 C6H5ClO2: c102, c103, c244 C6H5ClO2S: b24 C6H5ClO3S: c49 C6H5ClS: c252 C6H5Cl2N: d187, d188, d189, d190, d191, d192 C6H5Cl2OP: p140 C6H5Cl2O2P: p100 C6H5Cl2P: d260 C6H5Cl3Si: p159 C6H5F: f11 C6H5FN2O2: f22 C6H5FO: f28 C6H5FO2S: b25 C6H5I: b28, i23 C6H5NO: n77, p261, p262, p263 C6H5NOS: t148 C6H5NO2: n30, n82, p265, p266, p267 C6H5NO3: h182, n59, n60 C6H5NO4: c288 C6H5N3: b61 C6H5N3O: h104 C6H5N3O4: d710 C6H6: b8 13C6H6: b10 C6H6AsNO6: h162 C6H6BrN: b256, b257, b258 C6H6ClN: c38, c39, c40 C6H6ClNO: a147, c162 C6H6ClNO2S: c48 C6H6Cl6: h24 C6H6FN: f7, f8 C6H6F9O3P: t447 C6H6HgO: p130 1.64 SECTION 1 TABLE 1.14 Empirical Formula Index of Organic Compounds (Continued) The alphanumeric designations are keyed to Table 1.15.
C6H6IN: i22 C6H6NO6: n20 C6H6N2O: e49, p259, p260, p264 C6H6N2O2: n23, n24, n25 C6H6N2O3: a238, a239, a240, m94 C6H6N4O4: d721, n53 C6H6O: p65 C6H6OS: a57, m443 C6H6O2: a44, c21, d428, d429, d430, h86, m258, r2 C6H6O2S: b21, t152 C6H6O3: b34, m259a, t317, t318 C6H6O3S: b23 C6H6O4: d529 C6H6O6: p206 C6H6S: t156 C6H7AsO3: b12 C6H7BO2: b13 C6H7ClN2: c216, c217 C6H7N: a293, a294, m409, m410, m411 C6H7NO: a252, a253, a254, h155, m113, p273, p274 C6H7NO2: m414 C6H7NO2S: b22 C6H7NO3S: a115, a116, a117, s25 C6H7NS: a287 C6H7N3O2: n65, n66, n67 C6H7O2P: p138 C6H7O3P: p139 C6H8AsNO3: a113 C6H8Br2O2: d107 C6H8Br3O: t205 C6H8ClN3O4S2: a137 C6H8Cl2O2: m228 C6H8N2: a218, a219, a220, a221, a222, a223, d284, m263, p104, p105, p106, p117 C6H8N2O: a204, o69 C6H8N2O2S: b26, s24 C6H8N2O3: d561a C6H8O: c371, d609, d620, h38 C6H8O2: b451, c360, h40, m223 C6H8O3: a36, a311, d599, f47 C6H8O4: d598, d608, d629, d630 C6H8O6: a302, g11, i61 C6H8O7: c289 C6H9Br: b312 C6H9BrO3: b285 C6H9ClO3: e106, e107 C6H9F3O2: b605 C6H9NO: o62, v17 C6H9NOS: m433 C6H9NO2: b540 C6H9NO3: m78, n49 C6H9N3: a156 C6H9N3O2: a157, c317, h83 C6H10: c368, d566, h39, h82, m356 C6H10Br2: d89 C6H10N2: e211, i114, p181 C6H10N2O2: c361 C6H10N2O4: d338 C6H10N2O5: a14 C6H10N4: p27 C6H10O: c366, c370, d31, d362, e12, h77, m224, m368, m370, m372 C6H10O2: a91, c397, d422, e114, e119, e142, e199, h60, h69, h74, h75, m369 C6H10O3: d501, e58, e143, h126, h177, m402, p214 C6H10O4: d385, d634, d691, e22, e137, h54, m276, m303 C6H10O4S: t146 C6H10O4S2: d794, e136 C6H10O5: d386 C6H10O6: d699, g7 C6H10S: d34 C6H11Br: b311 C6H11BrO: b424 C6H11BrO2: b279, b347, b529, e85, e86, e89 C6H11BrO4: d346 C6H11Cl: c91 C6H11ClO: h72 C6H11ClO2: b535, c82, e98 C6H11I: i28 C6H11N: d30, h61, m361 C6H11NO: c367, e260, f40, m388, o61, t379 C6H11NO2: e66 C6H12: c347, d572a, d573, d574, e95a, h73, m222 C6H12Br2: d94, d106 C6H12ClNO: c133 C6H12Cl2: d217, d219, d234 C6H12Cl2O: b166 C6H12Cl2O2: b161, d169 C6H12Cl3O3P: t437 C6H12Cl3O4P: t436 C6H12F3NOSi: m457 C6H12NO3P: d294 C6H12N2: d61, d325, t279 C6H12N2S: b183, t119 C6H12N2S4: t120 C6H12N2Si: t396 C6H12N2Zn: d601 C6H12N4: h49 C6H12O: a96, b609, c365, d572, e11, e98, h51, h70, h71, h76, i78, m367, m430 C6H12O2: b465, b501, b502, b503, c359, d576, d577, e99, e100, e192, e209, e213, h64, h150, i63, m235, m312, m362, m363, m456, p244, t84 C6H12O3: d525, e42, e179, e182, i116, p2, p237, t70 C6H12O4: e149 C6H12O4Si: d27 C6H12O6: f41, g1, g8, i19, m11, s6 C6H12O7: g6 C6H12S: c364 C6H13Br: b346 C6H13BrO2: b317 C6H13Cl: c149 C6H13ClO: c150 C6H13ClO2: c96 C6H13ClO3: c124 C6H13I: i36 C6H13N: c375, e202, h48, m383, m384, m385, m386 C6H13NO: d314, d637, e223, h133, h152 C6H13NO2: a182, a183, h127, i88, L5, L6, m233 C6H13NO4: b199 C6H13NO5: t441 C6H14: d567, d568, h52, m357, m358 C6H14ClN: d328 C6H14Cl4OSi2: b175 C6H14NO2: b213 C6H14N2: a214, c354, d43, d44, d671, e245 C6H14N2O: a172, h129 C6H14N2O2: L13 C6H14N4O2: a301 C6H14O: b554, d476, d570, d570a, d571, d786, e95, h66, h67, h68, m364, m365, m366 C6H14OSi: a93 ORGANIC COMPOUNDS 1.65 TABLE 1.14 Empirical Formula Index of Organic Compounds (Continued) The alphanumeric designations are keyed to Table 1.15.
C6H14O2: b493, d303, d304, d569, e138, e219, h55, h56, h57, m82, m360, p220 C6H14O2S: d789 C6H14O3: b204, b214, d305, d779, e41, e183, h63, h176, t321, t341 C6H14O4: t280 C6H14O4S: d788 C6H14O4S2: b459 C6H14O6: d824, m10, s5 C6H14O6S2: b210 C6H14S: b557, h62 C6H14Si: a101 C6H15Al: t273 C6H15AlI: d322 C6H15AlO: d321 C6H15As: t276 C6H15B: t277 C6H15ClGe: c260 C6H15ClO3Si: c240 C6H15ClSi: b551, c261 C6H15Ga: t286 C6H15In: t288 C6H15N: d468, d575, d777, e97, h81, m371, t274 C6H15NO: a184, a211, a212, b513, b553, d327, d364, i98 C6H15NO2: d306, d540, e125 C6H15NO3: t266 C6H15N3: a174 C6H15O3B: t268 C6H15O3P: d480, t294 C6H15O3PS: t298 C6H15O4P: t292 C6H15P: t293 C6H15Sb: t275 C6H16Br2OSi2: b149 C6H16Cl2OSi2: b167 C6H16N2: d367, h53, m359, t108 C6H16OSi: p221 C6H16O2Si: d301 C6H16O3SSi: m24 C6H16O3Si: t269, t342 C6H16Si: t297 C6H17NO3Si: a274, t344 C6H17N3: i9 C6H18ClN3Si: c268a C6H18N2Si: b179 C6H18N3OP: h50 C6H18N4: t285, t434 C6H18OSi2: h47 C6H18O3Si3: h45 C6H19NOSi2: b233 C6H19NSi2: h46 C7 C7H3BrClF3: b297 C7H3BrF3NO: b380 C7H3ClF3NO2: c199, c200 C7H3ClN2O5: d714 C7H3Cl2F3: d206, d207 C7H3Cl2NO: d259 C7H3Cl3O: d208, d209 C7H4BrF3: b268, b269 C7H4Br4O: t15 C7H4ClFO: f14, f15 C7H4ClF3: c60, c61, c62 C7H4ClN: c54, c55 C7H4ClNO: c219, c220 C7H4ClNO3: n39, n40 C7H4ClNO4: c195, c196, c197 C7H4Cl2O: c64, c65, d194, d195 C7H4Cl2O2: d202, d203, d204 C7H4Cl3F: t238 C7H4Cl4: c58, c59 C7H4F3NO2: n86, n87 C7H4I2O3: h113 C7H4N2O2: n38 C7H4N2O6: d713 C7H4N2O7: d722, h114 C7H4O3S: h105 C7H4O4S: s27 C7H5BrO: b65 C7H5BrO2: b266, b265 C7H5BrO3: b419 C7H5ClF3N: a142, a143 C7H5ClO: b66, c43, c44, c45 C7H5ClO2: c51, c52, c53, p99 C7H5ClO3: c207, c245, c246 C7H5Cl2F: c139 C7H5Cl2NO: d196, d197 C7H5Cl3: t251, t252, t253, t254 C7H5FO: b68, f9, f10 C7H5FO2: f12, f13 C7H5F3: t311 C7H5F3N2O2: a237 C7H5F3O: t304 C7H5F4N: a179 C7H5IO2: i25 C7H5IO3: i51 C7H5I2NO2: a154 C7H5N: b51 C7H5NO: b62, p124 C7H5NO3: n26, n27 C7H5NO3S: s1 C7H5NO4: n35, n36, n37, p268, p269, p270 C7H5NO5: h163 C7H5NS: b59, p125 C7H5NS2: m17, m19 C7H5N3O2: a234, n34, n55 C7H5N3O2S: a236 C7H5N3O6: t405 C7H6BrClO: b300 C7H6BrNO2: n44 C7H6BrNO3: h156 C7H6Br2: b271, d132 C7H6Br2O: d111 C7H6ClF: c143, c144, f16 C7H6ClNO: c46 C7H6ClNO2: a138, a139, c202, c203, n45 C7H6Cl2: c69, c70, d273, d274, d275, d276 C7H6F3N: a126, a127, a128, t310 C7H6FNO2: f24 C7H6INO2: a199 C7H6N2: a121, a122, a123, b39 C7H6N2O3: n28, n29 C7H6N2O4: a233, d723, d724 C7H6N2O5: d715, d716 C7H6N2S: a125 C7H6N4O2: t134 C7H6O: b3 C7H6OS: t139 C7H6O2: b44, h94, h95, h96, m251 C7H6O2S: m18 C7H6O3: d427, f46, h99, h100, h101 C7H6O4: d431, d432, d433, d434 C7H6O5: t319 C7H6O6S: s31 C7H7Br: b85, b429, b430, b431 C7H7BrO: b259, b260, b270, b357, b358, b359 C7H7BrS: b425 C7H7Cl: b90, c255, c256, c257 C7H7ClNNaO2S: c258 C7H7ClN4O2: c253 C7H7ClO: c66, c160, c176, c177 C7H7ClO2S: t177 C7H7ClO3S: m56 1.66 SECTION 1 TABLE 1.14 Empirical Formula Index of Organic Compounds (Continued) The alphanumeric designations are keyed to Table 1.15.
C7H7ClS: c73 C7H7Cl3Si: b128 C7H7F: f27, f28, f29 C7H7FO: f19, f20 C7H7FO2S: t178 C7H7I: i53, i54, i55 C7H7N: v15, v16 C7H7NO: a53, a54, a55, b4, f35 C7H7NO2: a118, a119, a120, h97, h98, m412, m413, n83, n84, n85 C7H7NO3: a280, a281, m92, m339, m340, n41, n42, n43 C7H7NO4S: c17 C7H7N3: a197, a198 C7H8: b134, c344, t166 C7H8BrN: b360 C7H8ClN: c37, c67, c68, c163, c164, c165, c166, c167 C7H8ClNO: c158, c159 C7H8ClNO2: c19 C7H8ClNO2S: c248 C7H8Cl2Si: d239 C7H8N2: h102 C7H8N2O: a112, b71, p167 C7H8N2O2: d40, h149, h170, m326, m327, m328, m329, m330, m415 C8H8N2O3: m89, m90, m91 C7H8N2S: p158 C7H8N4O2: t133 C7H8O: b78, c303, c304, c305, m55 C7H8O2: d438, h106, m97, m98, m99, m280 C7H8O2S: t172 C7H8O3: e155, f49, m314 C7H8O3S: m139, t176 C7H8S: b106, m379, t142 C7H9BrO2: e84 C7H9N: b79, d685, d686, d687, d688, d689, e256, e257, e258, m134, t180, t181, t182 C7H9NO: a213, b101, h132, m48, m49, m50 C7H9NO2: d524 C7H9NO2S: t173, t174 C7H9NO3S: a205, a206, a288 C7H9NS: m436 C7H10: b135 C7H10ClN3O: g4 C7H10N2: a177, a178, d59, d60, d287, d551, t167, t168, t169, t170 C7H10N2O: o66 C7H10N2O2: e212, m242 C7H10N2O2S: t175 C7H10O: d294, m67, n108, t67 C7H10O2: a40, c402 C7H10O3: e17, e144, m354, t367 C7H10O4: d29, d596, p208 C7H10O5: d528 C7H11Br: b383 C7H11BrO4: d346 C7H11ClO: c351 C7H11N: c350 C7H11NO: c381, h112 C7H11NO2: a52, b539 C7H11NO3: m83 C7H11NO5: a45 C7H11NS: c382 C7H12: c345, h20, m215, m216, n107 C7H12N2O: m464 C7H12O: b506, c348, c352, c369, m212, m213, m214 C7H12O2: a80, b507a, b508, c353, d420, e126, i65 C7H12O3: e43, e201, e226, h178, t73 C7H12O4: d378, d379, d636, d656, h7, m76, m277, t125 C7H12O6Si: m448 C7H13Br: b310, b367 C7H13BrO2: b390, e92 C7H13ClO: h17 C7H13N: a245 C7H13NO: a307, b507, c380 C7H13NO2: d541 C7H13NO3: d418 C7H14: c341, e118a, h18, h18a, h18b, m202 C7H14ClN: c134 C7H14N2: d475 C7H14N2O: a272 C7H14N2O2: e246 C7H14O: c342, c384, d655, d658, h3, h14, h15, h16, m205, m206, m207, m208, m209, m210, m211, m271 C7H14O2: b559, b593, b594, d312, e128, e207, e208, e239, h9, i74, i91, i106, m270, p53, p228 C7H14O2S: b569 C7H14O3: b567, e130, e151 C7H14O6: m262 C7H15Br: b343, b344 C7H15Cl: c147 C7H15ClO2: c97 C7H15I: i34 C7H15N: c362, d672, e247, e248, m218, m219, m220 C7H15NO: e186, h131, h134, m387, p182, p183 C7H15NO2: p286 C7H15NO3: m467 C7H15O5P: t296 C7H16: d654, e238, h6, t361 C7H16BrNO2: a38 C7H16ClNO2: a39 C7H16N2: a210, a271, m308, t392 C7H16N2S: d482 C7H16O: d657, h10, h11, h12, t362 C7H16O2: b498, b499, d311, d393, m405 C7H16O2Si: d310 C7H16O3: d784, t290 C7H16O4: t92, t284 C7H16S: h8 C7H17N: h19, m272 C7H17NO: b500, d332, d333 C7H17NO2: b515, d331 C7H17NO5: m261 C7H18N2: d334, d392, t116 C7H18N2O: b180 C7H18N2O2: a270 C7H18N2O4Si: t348 C7H18O2Si: b607 C7H18O3Si: b606, i77, m451 C7H19NOSi2: b232 C7H19NSi: d404 C7H19N3: d52 C7H20N2OSi2: b236 C7H22O4Si3: h5 C8 C8Br4O3: t17 C8Cl4O3: t40 C8D10: e73 C8F18O2S: p59 C8HCl4NO2: t39 C8H3NO5: n72 C8H4BrNO2: b348 C8H4Cl2O2: b15, b16, p172 C8H4Cl2O4: d261 C8H4Cl6: b225 C8H4F6: b229 C8H4N2: d282, d283 ORGANIC COMPOUNDS 1.67 TABLE 1.14 Empirical Formula Index of Organic Compounds (Continued) The alphanumeric designations are keyed to Table 1.15.
C8H4N2O2: p107 C8H4O3: p169 C8H5BrN: b272 C8H5ClO2: c224 C8H5Cl3O: t223 C8H5Cl3O3: t246 C8H5D3O: a32 C8H5F3O2S: t132 C8H5F6N: b228 C8H5NO: b67 C8H5NO2: i17, p171 C8H5NO3: h171, i60 C8H5NO6: n31, n32, n70, n71 C8H6: p84 C8H6BrClO: b286 C8H6BrN: b397 C8H6Br2O: d78 C8H6Br4: t18, t19, t20 C8H6ClN: c71, c72, c215 C8H6ClNO3: c187 C8H6Cl2O: c168, d185 C8H6Cl2O3: d256 C8H6N2: q4 C8H6N2O: q5 C8H6N2O2: n64 C8H6O: b42 C8H6O2: b14, p170, t6 C8H6O3: b69, f37, m250 C8H6O4: b17, b18, p168 C8H6S: b60 C8H7Br: b420 C8H7BrO: b251, b253 C8H7BrO2: b356, b396 C8H7BrO3: b355 C8H7ClO: c31, c32, c33, p83, t187, t188, t189 C8H7ClOS: b92 C8H7ClO2: b91, c214, m60, m191, m192, p69 C8H7ClO3: c161, c211 C8H7FO: f6 C8H7N: i15, p82, t183, t184, t185 C8H7NO: m9, m147, t192 C8H7NS2: m438 C8H7NO3: n21, n22 C8H7NO3S: t179 C8H7NO4: a114, m331, m332, m333, m334, m335, m336, m337, n61, n62, n63 C8H7NO5: m93 C8H7NS: b126, m146 C8H7N3O2: a151 C8H8: s11 C8H8BrNO: b248 C8H8Br2: d98, d134, d135 C8H8ClNO: c25, c26, c26a C8H8ClNO3: a146 C8H8ClNO3S: a10 C8H8Cl2: d277, d278, d279 C8H8HgO: p128 C8H8N2: a255, m140 C8H8O: a31, e9, m138, p77, s12 C8H8OS: m437 C8H8O2: b41, b99, h91, h92, h93, m51, m52, m53, m141, m142, m143, m144, p80, p81 C8H8O2S: p156, t157 C8H8O3: d425, h142, h165, m8, m57, m58, m59, m281, m424, p68, r4, t81 C8H8O4: d25, h143 C8H8O4S: a33 C8H8O5: m454 C8H9Br: b334a, b335, b443, b444, b445, b446 C8H9BrO: b321, b338, b361 C8H9BrO2: b318 C8H9Cl: c127, c128, c269, c270, c271, c272, c273 C8H9ClO: c108, c218 C8H9ClO2: c104 C8H9N: b104, i18 C8H9NO: a18, a105, a106, a107, b98, m256 C8H9NO2: a15, a16, a17, a207, a208, b89, d638, d639, d640, d641, e226, e259, m54, m129, p114, t77 C8H9NO3: a202, h167, h168, m95 C8H9NO4: d511 C8H9NO4S: m133 C8H10: e74, x4, x5, x6 C8H10ClN: c107 C8H10N2O: d642 C8H10N2O3: m85 C8H10N2O3S: m343 C8H10N4O2: c1, d286 C8H10O: b136, d659, d660, d661, d662, d663, d664, e36, e240, e241, e242, m116, m117, m118, m149, m150, p109, p110 C8H10O2: b19, d493, d494, d495, e51, m61, m84, p72, p108 C8H10O3: c308, c356, d512, h118, h145, m30, m234 C8H10O3S: e75, m447 C8H10O4: d668, d669, d670 C8H10O8: b469 C8H10S: b110 C8H11N: b108, d553, d554, d555, d556, d557, d558, d559, e68, e69, e70, e220, i130, m151, m152, p112, t393 C8H11NO: a173, a251, a256, a257, a295, d544, e32, h122, m62, m80, m81, p101, p275, p276 C8H11NO2: d488, d489, d490 C8H11NO2S: m446 C8H11NO3: e150 C8H12: c387, c388, v9 C8H12N2: d288, d665, t117, x9 C8H12N2O2: d461 C8H12N2O3: d339 C8H12N4: a313 C8H12O: e278 C8H12O2: d589, e262, n109 C8H12O3: e135, t74 C8H12O4: c355, d28, d370, d377, m36 C8H12O5: d530 C8H12O6Si: t194 C8H13N: e238 C8H13NO4: m342 C8H14: c393, o19, o49, v8 C8H14N2: p185, p281 C8H14NO4: d472 C8H14O: b576, c392, d592, d621, m217, m269, o50 C8H14O2: b464, b570, c373, c374, c405, d620, h78, i71, m203, n31 C8H14O3: b505, b615, e45, e101, i64, i82 C8H14O4: b197, b460, d381, d396, d617, e139, e177, o25 C8H14O4S: d703 C8H14O4S2: d793 C8H14O6: d400, d401 C8H15BrO2: e88 C8H15ClO: e163, o39 C8H15N: o28 C8H15NO: p243 C8H15NO2: d543, e249, e250, p184 C8H16: c389, d585, d586, d587, d587a, d588, e117, o40, t384 C8H16Br2: d116 C8H16N2O4S: h130 1.68 SECTION 1 TABLE 1.14 Empirical Formula Index of Organic Compounds (Continued) The alphanumeric designations are keyed to Table 1.15.
C8H16O: c378, c391, d500, d590, d591, e118, e158, m268, o36, o37, o38, o43 C8H16O2: b531, c357, c390, e160, e161, h79, i70, m266, o30, p239 C8H16O3: b497, e181 C8H16O4: c313, e37, t124 C8H17Br: b385 C8H17Cl: c204 C8H17Cl3Si: o48 C8H17I: i44 C8H17N: b597, c394, d593, d594 C8H17NO3: e173 C8H17O5P: t295 C8H18: d616a, e158a e214, e215, o23, t100, t380, t381, t382 C8H18AlCl: d455 C8H18ClNO2: a49 C8H18Cl2Sn: d177 C8H18F3NOSi2: b235 C8H18N2: c349 C8H18N2O4S: h130 C8H18N2O6S2: p179 C8H18O: d148, d458, e162, m267, o32, o33, o34, o35, o66a C8H18OSi2: d799 C8H18OSn: d180 C8H18O2: b494, d159, d618, e159, o26, o27, t383 C8H18O2S: d173 C8H18O3: b186, b495, t289 C8H18O3S: d172 C8H18O3Si: t272 C8H18O4: b211, t282 C8H18O4S: d169 C8H18O5: t51 C8H18S: d170, d171, o29 C8H18S2: b154, b155, d146, d147 C8H18Si2: b231 C8H19Al: d456 C8H19N: d139, d140, d457, d477, d619, e166, o44, t103 C8H19NO: d413 C8H19NO2: b549, d299, d300 C8H19O3P: d164 C8H20BrN: t49 C8H20ClN: t50 C8H20Ge: t58 C8H20N2: o24, t101, t102 C8H20N2O2S: t61 C8H20O3Si: e270 C8H20O4Si: t48 C8H20O4Ti: t163 C8H20Pb: t59 C8H20Si: t60 C8H20Sn: t63 C8H21NOSi2: b230 C8H21NO2Si: a269, d308 C8H22B: b241 C8H22N2O3Si: a166, t346 C8H22N4: b145 C8H22O2Si2: b234 C8H23N5: t56 C8H24Cl2O3Si4: d250 C8H24O2Si3: o22 C8H24O4Si4: o21 C8H35N: d728 C9 C9H2Cl6O3: h28 C9H3Cl3O3: b33 C9H4O5: b32 C9H5BrClNO: b304 C9H5Br2NO: d108 C9H5ClINO: c152 C9H5Cl2N: d270 C9H6BrN: b418 C9H6ClNO: c153 C9H6INO4S: h137 C9H6N2O2: t171 C9H6O2: b55, c292 C9H6O3: h111 C9H6O4: i13 C9H6O6: b29, b30, b31 C9H7BrO: b309 C9H7ClO: c280 C9H7ClO2: c90 C9H7N: i133, q3 C9H7NO: h184 C9H7NO3: h151, m289 C9H7NO4: n50 C9H7NO4S: h185 C9H7N3O4S2: a242 C9H8: i14 C9H8Cl2O3: d258 C9H8N2: m423, p120 C9H8N2O6: e129 C9H8O: c278, i12 C9H8O2: c279, d417, v6 C9H8O3: h109 C9H8O3S: p247 C9H8O4: p127 C9H9BrO: b412 C9H9BrO2: b86 C9H9Cl: v7 C9H9ClO: c234 C9H9ClO3: c213, d498 C9H9N: d564, m287 C9H9NO: m103, m104, p134 C9H9NO2: a9 C9H9NO3: a11, a12, b70 C9H9NO4: e227 C9H9N3O: a260 C9H9N3O2S2: t137 C9H9N5: d53 C9H10: a78, i10, m425, m426 C9H10Br2: d109 C9H10F3NO2: m135 C9H10N: a196, a197 C9H10N2: a296, p121 C9H10N2O: p151 C9H10N2O2: p85 C9H10N2O3: a129 C9H10O: a94, a95, c282, e14, e72, i11, m124, p147, p148, p149, p209, p217 C9H10O2: b63, b76, d563, e33, e34, e76, h174, h175, m44, m45, m46, m309, m310, m311, m375, p103, p150, t190 C9H10O3: d491, d492, e37, e38, e46, e55, e178, e261, f52, m101, m283, m297, m304, m305, p74 C9H10O4: d496, d492, h135, m292 C9H11Br: b350, b353, b399, b435, b436 C9H11BrO: b413, p75 C9H11Cl: c222 C9H11ClO3S: c135 C9H11N: a77, c333, m288, t78, t86 C9H11NO: d536, d562, m121, m374, m445 C9H11NO2: d537, d538, e35, e64, e65, i126, p86 C9H11NO3: t455 C9H12: e190, i103, p225, t357, t358, t359, v13 C9H12N2O4: a241 C9H12N2O6: u18 C9H12N2S: b111 C9H12O: b98, d632, d633, i127, i128, i129, m373, p145, p146, p240, t385, t386, t387 C9H12O2: b115, c316, c358, e48, p73, p148, t365, t374 ORGANIC COMPOUNDS 1.69 TABLE 1.14 Empirical Formula Index of Organic Compounds (Continued) The alphanumeric designations are keyed to Table 1.15.
C9H12O3: d499, m204, t332, t333, t334 C9H12O3S: e263 C9H12S: p144 C9H13N: b595, d565, d706, e80, e203, e264 e265, e266, i101, t355 C9H13NO: b80, m96, n110 C9H13NO2: a258, b596 C9H13N5: t191 C9H14BrN: p162 C9H14Br3N: p165 C9H14ClN: p163 C9H14IN: p164 C9H14N2: n92, t388 C9H14O: d611, d613, i93, t364 C9H14O2: m350 C9H14O2Si: d510 C9H14O3: b215, t76 C9H14O3Si: p161 C9H14O5: d315, d382 C9H14O6: p200 C9H14Si: p166 C9H15N: t195 C9H15NO: c362 C9H15N3: t439 C9H16: m348 C9H16N2: d62 C9H16O: d612, n103 C9H16O2: b571, c363, h80, n97 C9H16O3: b568, b582 C9H16O4: d368, d371, d478, d614, n93 C9H16O6: d345 C9H17BrO2: e87 C9H17Cl: c92 C9H17ClO: n102, t372 C9H17ClO2: e167 C9H17N: a83, n95 C9H17NO2: e216, e217 C9H18: i108, p229, t363 C9H18NO: t115 C9H18N2O: d550 C9H18O: c385, d616, n99, n100, n101, n104, t370 C9H18O2: e156, m349, n96 C9H18O3: d144 C9H18O4: d785 C9H19Br: b382 C9H19BrO2: e90 C9H19I: i42 C9H19NO: d151 C9H19NO3Si: t270 C9H19N2S: d175 C9H20: d386a, d613a, e210a, n90, t370a C9H20Cl2Si: d238 C9H20N2: a136, a290 C9H20N2S: d136 C9H20O: d615, n98, t371 C9H20O2: b556, n94 C9H20O2Si: c377 C9H20O3: d783, t291 C9H20O3Si: a99 C9H20O4: t430 C9H21Al: t428 C9H21BO3: t427, t326 C9H21BO6: t445 C9H21ClO3Si: c239 C9H21N: n105, t429 C9H21NO2: d470, d778 C9H21NO3: t325 C9H21N3: t287 C9H21O3P: t329 C9H22N2: d387, n91 C9H22O3: d780, d781 C9H22Si: t330 C9H23N3: p26 C9H24N4: b147 C9H24O2Si3: m153 C9H27BO3Si3: t449 C9H31ClO3Ti: c254 C10 C10H2O6: b28 C10H4Cl2O2: d243 C10H6Br2O: d113 C10H6Cl2O: d242 C10H6N2: b103 C10H6N2O4: d719 C10H6N2O4S: d64 C10H6O2: n11 C10H6O3: h161 C10H6O8: b27 C10H7Br: b376 C10H7BrO: b377, b378 C10H7Br2NO: d112 C10H7Cl: c185, c186 C10H7NO2: n57, n80, p126 C10H7NO8S2: n81 C10H8: a316, d1, n2 C10H8BrNO2: b339 C10H8N2: d790 C10H8N2O4: b205, f53 C10H8O: n9, n10 C10H8O2: d439, d440, d441, d442, m199 C10H8O3: h148 C10H8O3S: n6, n7 C10H8O4: d443, d444 C10H9N: a228, a229, m420, m421, m422, n17 C10H9NO: a51, a232 C10H9NO2: i16 C10H9NO3: h128 C10H9NO3S: a230 C10H9NO4S: a189, a190, a191, a192 C10H9NO6: d643 C10H10: d423 C10H10BrClO: b299 C10H10ClFO: c121 C10H10ClNO2: c29 C10H10Cl2O3: d257 C10H10N2: a279, n4, n5 C10H10N2O: m378 C10H10N4O2S: s21 C10H10O: d363, m197, p94, p95 C10H10O2: b63, m66, m198, s2 C10H10O3: b72, m345 C10H10O4: d590, d591, d592, m125, p155, r3 C10H11BrO: b375 C10H11ClO3: c212 C10H11ClO4: t336 C10H11IO4: i24 C10H11N: p98 C10H11NO2: a24, d514 C10H11NO4: c8, d552a C10H11O2S: b94 C10H12: d292, t80 C10H12N2: a170, b81 C10H12O: a89, b77a, b619, e59, e279, i84, i102, m107, m403, p96 C10H12O2: d419, e204, e205, e206, e243, h154, h166, m79, m102, m108, m109, m111, m148, p79, p97, p111, p226 C10H12O3: d487, e47, e195, m306, p71, p102, p235 C10H12O4: d26a, d513, m231, m232, t331 C10H12O5: p245, t335 C10H13Br: b280, b351 C10H13BrO: b281 C10H13BrO2: b395 C10H13Cl: b536, c178 C10H13NO: d527, p131 C10H13NO2: m380 C10H13NS2: b95 1.70 SECTION 1 TABLE 1.14 Empirical Formula Index of Organic Compounds (Continued) The alphanumeric designations are keyed to Table 1.15.
C10H13N5O4: a67 C10H13O2S: b94 C10H14: b521, b522, b523, d340a, d341, d342, i67, i118, i119, i120, t97, t98, t99 C10H14ClN: c130 C10H14NO5PS: p3 C10H14N2: n19, p141 C10H14N2O: d383 C10H14N2O4: b206 C10H14N4O4: d446 C10H14O: c20, i104 C10H14O: b585, b586, b587, b588, b591, c20, i104, i121, i122, i123, k2, m376, t162a, t260 C10H14O2: b534, d516, p78 C10H14O3: c7 C10H14O4: b461, e23, e140, m100, t337 C10H14O5PS: p3 C10H15BrO: b284 C10H15N: b516, b517, b518, b519, d336, d278, e2, e277, i105, i117, m377, p96 C10H15NO: b490, c403, d330, e2, p219 C10H15NO2: d517 C10H15NO4: d309 C10H16: a65, c2, d595, d648, d736, L7, L8, m467, p25, p175, p176, t10, t11, t259, t400a C10H16ClN: b131 C10H16Cl2O2: d13 C10H16N2: d388 C10H16N2O4: d35 C10H16N2O8: e134 C10H16O: c3, c4, c286, d416, d614, d645, L9, L10, p177, p250, t376 C10H16O2: c383, m344 C10H16O4: c4, d319 C10H16O4S: c5 C10H16O5: d317, d366 C10H16Si: b132 C10H17N: a64, p284 C10H17NO: c386, m465 C10H18: d2, d3 C10H18NO2: b514 C10H18N2O7: h124 C10H18O: b245, b545, b546, c277, d4, g2, i62, i132, L11, m13, t12, t13, t375 C10H18O2: c379, d17, d650 C10H18O3: d680, t77, t350, v1 C10H18O4: b185, d10, d158, d318, d394, d651, t283 C10H18O6: d481 C10H18S2: b154 C10H19ClO: d21 C10H19N: d13, d13a, t356 C10H19NO2: d329, e251 C10H20: b541, b542, c335, d22 C10H20Br2: d91 C10H20Cl2: d216 C10H20N2S4: t62 C10H20O: b543, b544, c290, d7, d18, d19, d20, e7, e175, m12, m313 C10H20O2: d15, e164, e231, m177, o42 C10H20O4: b496, b530 C10H20O5: p46 C10H20O5Si: t347 C10H21Br: b315 C10H21Cl: c94 C10H21I: i29 C10H21N: d353 C10H21NO: a226 C10H21NO2: e218 C10H21NO4Si: t271 C10H22: d8 C10H22N2: d51 C10H22O: d16, d646, d647, d738, t79 C10H22O2: d11, d12, d137 C10H22O3: d699, t433 C10H22O4: t432 C10H22O5: b212, p47, t55 C10H22O7: d735 C10H23N: d23, d649, d737 C10H23NO: d141 C10H23NO2: d313 C10H24N2: d9, t57, t111 C10H24N2O2: d731 C10H24N4: b146, t89 C10H24O3Si: i76 C10H28N6: p23 C10H30O3Si4: d6 C10H30O5Si5: d5 C11 C11H7N: c327 C11H7NO: n18 C11H8O: n1 C11H8O2: h157, m321, n3 C11H8O3: h158, h159, h160 C11H9Br: b370 C11H9Cl: c175 C11H9N: p152 C11H10: m318, m319 C11H10O: m87, m88 C11H12ClF: c140 C11H12N2O: a299 C11H12N2O2: t454 C11H12O2: b107, c281, e112, m115 C11H12O3: b77, b200, e77, e145, e244 C11H13ClO: b527 C11H13ClO3: c259 C11H13NO: b124, d666 C11H13NO4: b580 C11H13N3O: a110 C11H14O: p44, m114 C11H14O2: a84, b524, b526, d522, e52, e176, p113 C11H14O3: b491, b584, b590, e200 C11H14O4: e158 C11H15N: p142 C11H15NO: b121, d326 C11H15NO2: b512, d542, e127 C11H16: b602, p24, p55 C11H16N2: b119 C11H16O: b87, b573, b574, b575, d667, p57 C11H16O4: d800 C11H17N: b538, d403 C11H17NO: e267 C11H17NO2: b109, m416 C11H17O3P: d344 C11H18N2O2: t366 C11H18O: d372, n106 C11H18O5: d316 C11H19ClO: u15 C11H19NO2: e168, o45 C11H20O: u12 C11H20O2: e165, i89, u13 C11H20O4: d155, d347, d354, d373 C11H21BrO2: b442 C11H21N: u3 C11H21O2: c287 C11H22: u12a C11H22N2: d776 C11H22O: u1, u9, u10, u11, u14 C11H22O2: e171, e228, m69, m226, u4, u5, u6 C11H23Br: b441 C11H23I: i57 C11H24: u2 ORGANIC COMPOUNDS 1.71 TABLE 1.14 Empirical Formula Index of Organic Compounds (Continued) The alphanumeric designations are keyed to Table 1.15.
C11H24O: u7, u8 C11H24O6Si: t444 C11H25NO2: a292 C11H26N2: b555, d166 C11H26N2O6: b237 C12 C12H4Cl6S2: b226 C12H6Br4O4S: s28 C12H6O3: n8 C12H6O12: b20 C12H7Cl6O: d296 C12H8: a3 C12H8Br2: d80 C12H8Cl2OS: b172 C12H8Cl2O2S: b171, c223 C12H8N2: p63 C12H8N2O4S: b216 C12H8O: d66 C12H8S: d67 C12H9Br: b273 C12H9BrO: b325, b398 C12H9ClO2S: c221 C12H9N: c6, d751, n16 C12H9NO: b73, b74, b75 C12H9NO2: n46, n47 C12H9NO3: n68, n69 C12H9NS: p67 C12H9N3O4: d717 C12H10: a2, b138 C12H10ClN: a145 C12H10ClO3P: c748 C12H10ClP: c118 C12H10Cl2Si: d223 C12H10Hg: d758 C12H10N2: a312 C12H10N2O: n79, p90 C12H10N2O2: n51 C12H10N3O3P: d764 C12H10O: d753, m322, m323, p135, p136 C12H10OS: d772 C12H10O2: d436, h89, n14, n15 C12H10O2S: d771, t145 C12H10O3: n12 C12H10O3S: b142 C12H10O4: q1 C12H10O4S: s30 C12H10S: d770 C12H10S2: d750 C12H10Se2: d749 C12H11N: a130, a131, b122, b123, d743 C12H11NO: h115, n13, p70 C12H11N3: p88 C12H11O3P: d763 C12H12N2: b140, d757, p137 C12H12N2O: o68 C12H12N2O2: b40 C12H12N2O2S: d47, d48 C12H12O: e50 C12H12O2Si: d769 C12H12O3: e78 C12H12O6: t193, t360 C12H13N: t68 C12H13N3: d34 C12H13NO3S: p272 C12H14: d467 C12H14N2: d46 C12H14N4O2S: s22 C12H14O: b525 C12H14O3: e179 C12H14O4: d391 C12H15NO: b121 C12H15N3O3: t196 C12H15N3O4S: d42 C12H16: b598, c376, m221 C12H16O2: p64 C12H16O3: d298 C12H17N: b120 C12H17NO: d402 C12H18: c338, d473, d474, p116, t453 C12H18Cl2N4OS: t135 C12H18N2: p186 C12H18N2O2: i94 C12H18O: b552, d479, e4 C12H18O2: b550 C12H18O3: o41 C12H18O4: b463, h58 C12H19N: d471 C12H20O2: b202, b296, e112, g3, L12 C12H20O3Si: p160 C12H20O4: d154 C12H20O4Sn: d179 C12H20O7: t278 C12H21N: t446 C12H21NO3Si: t345 C12H21N3: t429 C12H22: c339, d288 C12H22BCl: c95 C12H22N2O8: d45 C12H22O: c337, e5 C12H22O2: d811, e172, m14 C12H22O3: h65 C12H22O4: d168, d384, d597, d787, d805 C12H22O6: d174 C12H22O11: L3, L4, m7, s20 C12H23N: d289 C12H23NO: a308, o47 C12H24: d813 C12H24Cl2: d224 C12H24O: c326, d817, e8, m459 C12H24O2: d809, e120 C12H24O6: c314 C12H25Br: b327 C12H25Cl: e119 C12H25Cl3Si: d821 C12H25I: i30 C12H25N: c340 C12H25N3: i6 C12H26: d803 C12H26O: d414, d810 C12H26O2: d806, d807 C12H26O3: b151 C12H26O4: d460, t91 C12H26O3S: d820 C12H26O5: t53 C12H26S: d808 C12H27Al: t322 C12H27B: t209 C12H27BO3: t207 C12H27ClSn: t213 C12H27N: d413, d818, t208 C12H27O3P: t212 C12H27O4P: t211 C12H28BrN: t130 C12H28N2: d804 C12H28O4Si: t129 C12H28O4Ti: t164, t165 C12H28Sn: t215 C12H29N: t323 C12H29N3: b196 C13 C13H6Cl2O2: h29 C13H8ClNO3: c198 C13H8Cl2O: d205 C13H8O: f3 C13H8OS: t162 C13H8O2: x3 C13H9BrO: b267 C13H9ClO: c56, c57 C13H9ClO2: c151 C3H9N: a60 C13H10: f2 C13H10ClNO: a140, a141, d745 C13H10Cl2: d221 C13H10Cl2O2: m243 C13H10F2: b195 C13H10N2: p91 1.72 SECTION 1 TABLE 1.14 Empirical Formula Index of Organic Compounds (Continued) The alphanumeric designations are keyed to Table 1.15.
C13H10N2O3: a235 C13H10O: b53, x1 C13H10O2: b139, h103, m68, p92 C13H10O3: d435, d747, p154, r5 C13H10O4: t320 C13H10O5: t88 C13H11Br: b326 C13H11Cl: c116 C13H11N: b102 C13H11NO: a124, b5 C13H11NO3: p87 C13H12: d759 C13H12NO2: b112 C13H12N2: b54, d754 C13H12N2O: d775 C13H12N2S: d774, t141 C13H12N4O: d746, p89 C13H12N4S: d773 C13H12O: d760, h116, h117, m63, p76 C13H12O2: m320 C13H12O4: d32 C13H12S: b118 C13H13ClSi: c117 C13H13N: d761, m238, p93 C13H13NO2: t187 C13H13N3: d755 C13H14N2: d35, m249 C13H14N2O3: a59 C13H14N4O: d746 C13H15NO: i96 C13H16O3: e79 C13H16O4: d389 C13H17NO2: e82 C13H18O3: b117 C13H18O5: t267 C13H20: p115 C13H20O: i58, i59 C13H22ClN: b130 C13H22N2: d290 C13H22O3Si: b129 C13H24O2: e273, i86 C13H24O4: d337 C13H26: t265 C13H26N2: m246, t369 C13H26O: t263, t264 C13H26O2: e232, t262 C13H27Br: b433 C13H28: t261 C13H28O4: t431 C13H29Cl: c250 C13H29NO4: b176 C13H30OSn: t216 C14 C14H6Cl2O2: d193 C14H7ClO2: c41, c42 C14H8O2: a298 C14H8O4: d426 C14H9Br: b391 C14H9ClO3: c63 C14H9Cl5: b173 C14H9NO2: a108, a109 C14H10: a297, d742, p62 C14H10ClNO3: a144 C14H10Cl2O4: b168 C14H10Cl4: b169 C14H10N2O2: d36, d37, d38, d39 C14H10O2: b35 C14H10O3: b45, b64, x2 C14H10O4: b141, d69, b71a C14H10O4S2: d796 C14H11N: d741, p123 C14H11NOS: a50 C14H12: d415, s9 C14H12Cl2O: b170 C14H12N2O: b38 C14H12N2O2: b36 C14H12O: a34, d26, m145 C14H12O2: b46, b83, b84, b113, d740 C14H12O3: b37, b100, b125, h144 C14H13ClO: c169 C14H13N: e104, i9 C14H13NO: b82, d739 C14H13NO2: b50 C14H14: d752 C14H14N2: a168 C14H14N2O: m240 C14H14N2O3: a315 C14H14O: d73 C14H14OS: b223 C14H14O2: b114 C14H14O4: d33 C14H14S2: b222, d72 C14H15N: d71 C14H16N2O4: b207 C14H16O2Si: d503 C14H16O4: d340 C14H18N2O2: m132 C14H18O: p56 C14H18O4: d343 C14H18O7: p21 C14H19O3: d293 C14H22O: d160, d161, d162, d163 C14H22O2: d145 C14H22O3: d153 C14H22O4: h59 C14H22O6: t281 C14H22O7: t52 C14H23N: d142 C14H23N3O10: d299 C14H26O2: i87 C14H26O3: h10 C14H26O4: d152, d395, d459 C14H27ClO: t46 C14H28: t47 C14H28O: d822 C14H28O2: d815, e272, t44 C14H29Br: b423 C14H29O4: b156 C14H30: t43 C14H30O: t45 C14H30O2Sn: d136 C14H31N: d602 C14H32N2O4: t90 C14H32OSn: t214 C15 C15H10N2O2: m247 C15H10O2: b105, m136, p122 C15H11NO: d762 C15H11NO2: m128 C15H12N2O2: d756 C15H12O: c23 C15H12O2: d68 C15H13NO: a13 C15H14O: d767 C15H14O2: b49, d768, h169 C15H14O3: b116, m239 C15H16O: c316a C15H16O2: e189, i113 C15H17N: b96a C15H17N3: d797 C15H20O6: e184 C15H22O3: d117, e174 C15H22O5: o46 C15H23N: b583 C15H24: t327 C15H24O: d156 C15H26O6: g20 C15H28O2: d816, i112 C15H29N: p12 C15H30N2: t368 C15H30O: p13 C15H30O2: m428 C15H32: p11 C15H32O10: t409 C15H33NO6: t443 ORGANIC COMPOUNDS 1.73 TABLE 1.14 Empirical Formula Index of Organic Compounds (Continued) The alphanumeric designations are keyed to Table 1.15.
C16 C16H10: b52, f1, p255 C16H11NO2: p153 C16H12N4O9S2: t5 C16H13N: p132, p133 C16H14: d744, e71 C16H14O2: b93 C16H14O6S: s29 C16H16O2: b47 C16H16O3: d515 C16H18ClN3S: m248 C16H19ClSi: b537 C16H20N2: d74 C16H20N2O: b178 C16H20O2Si: d302 C16H22O4: d165, d410 C16H22O11: g9 C16H24N2: d150 C16H26O3: d814 C16H26O7: t54 C16H28O: c346 C16H30O2: d819 C16H30O4: b158, d157, d167, d360 C16H32: h37 C16H32O: e10 C16H32O2: h34 C16H33Br: b345 C16H33Cl: c148 C16H33I: i35 C16H33NO: d359 C16H34: h4, h31, h36 C16H34O: d729, h35 C16H34O2: h32 C16H34O4: b157 C16H34S: d720, h33 C16H35N: d728, h37 C16H35O3P: b192 C16H36BF4N: t25 C16H36BrN: t21 C16H36BrP: t29 C16H36Br3N: t26 C16H36ClN: t22 C16H36IN: t24 C16H36O4Si: t28 C16H36Sn: t30 C16H37NO4S: t23 C17 C17H12O3: p118, p119 C17H13N3O5S2: p173 C17H15N2O: d355 C17H16O4: d75, p194 C17H18N2O4: p193 C17H18O2: b589 C17H18O3: b592 C17H18O4: b203 C17H20N2O: b178 C17H20N4O6: r8 C17H21NO4: b291 C17H22N2: m245 C17H23NO3: a305 C17H24O6: b492 C17H25NO2: m15 C17H27NO2: e170 C17H28NO: d149 C17H28O7: d181 C17H34O2: m269a, i131 C17H34O4: b160 C17H36: h1 C17H36O: h1a C17H37N: m236 C18 C18H12: b6, b7 C18H12N5O6: d766 C18H14: t7, t8, t9 C18H14O8: d70 C18H15As: t412 C18H15B: t414 C18H15ClSn: c268, t425 C18H15N: t410 C18H15NO2: e116 C18H15N3Si: a310 C18H15OP: t421 C18H15O3P: t422 C18H15O4P: t419 C18H15P: t420 C18H15Sb: t411 C18H16OSn: t426 C18H16O2: b520, d280 C18H16Si: t423 C18H18O3: e81 C18H20N2O2: e152 C18H20O: b548 C18H20O2: b48 C18H22: b182 C18H26O6: e185 C18H30O: t210 C18H30O2: o7 C18H32N4O14: d364 C18H32O2: o1 C18H32O16: r1 C18H33ClO: o13 C18H34O2: o10, o11 C18H34O4: d143 C18H36: o8 C18H36O: e13, o12 C18H36O2: e157, o5 C18H37Br: b384 C18H37Cl: c203a C18H37Cl3Si: o17 C18H37I: i43 C18H37N: o9 C18H37NO: o2 C18H38: o3 C18H38O: o6 C18H38S: o4 C18H39ClSi: t315 C18H39N: o15, t313 C18H39O7P: t435 C18H40Si: t316 C19 C19H15Br: b440, t417 C19H15Cl: c267, t418 C19H16: t415 C19H16O: t416 C19H18BrP: m458 C19H19N7O6: f31 C19H20Br4O4: i110 C19H20O4: b88 C19H22N2O: c276 C19H30O5: m252 C19H31N: d24 C19H34ClN: b127 C19H36O2: m347 C19H37NO: o16 C19H38O2: i109, m346 C19H40: n89, t114 C20 C20H10Br2O5: d105 C20H12: b56, b57, d65 C20H12O5: f4 C20H14O4: d765, p66 C20H15Br: b439 C20H18O2Sn: t424 C20H19N3: b2 C20H20BrOP: h136 C20H32O5: d782 C20H24N2O2: q2 C20H26O4: d291 C20H27O3P: i90 C20H30O2: a1 C20H30O6: b184 C20H31N: d20 C20H34O4: b159 C20H36O2: e229 1.74 SECTION 1 TABLE 1.14 Empirical Formula Index of Organic Compounds (Continued) The alphanumeric designations are keyed to Table 1.15.
C20H38O2: e230 C20H38O4: b187 C20H40: i2 C20H40O: o18 C20H42: i1 C21 to C23 C21H15NO: b143 C21H21N: t198 C21H21O4P: t452 C21H22N2O2: s10 C21H24O2: b144 C21H28N2O: b177 C21H36O: p14 C21H40O2: o14 C21H45N3O12Si3: t448 C22H23N3O9: a306 C22H26O: b181 C22H30O2S: t140 C22H34O4: b547, d463 C22H42O8: b152 C22H44O2: b581, i75 C22H46: d801 C22H46O: d802 C22H48N2: t27 C23H18BrO2P: c18 C23H26N2O4: b447 C23H42O2: b581a C24 to C29 C24H16N2O2: b218 C24H18: t413 C24H20BNa: t126 C24H20Sn: t128 C24H27NO2: e169 C24H38O4: b193, d374, d466, d466a C24H40O5: c275 C24H46O4: d725, d812 C24H50: t41 C24H51N: t406 C24H51O3P: t438 C24H54OSn2: b224 C25H30ClN3: c315 C25H34Cl6O4: b189 C25H48O4: d465 C26H26N2O2S: b153 C26H42O2: d138 C26H42O4: d464 C26H47O3P: d462 C26H46O8: t312 C26H50O4: b190 C27H42O: c274 C27H50ClN: b96 C28H31ClN2O3: r6 C28H32: t127 C28H50O8: t314 C28H54O6Sn: b601 C29H44O2: m244 C29H50O7: p20 C30 to C57 C30H43FO2P: e188 C30H46O2: e187 C30H50: s8 C30H58O4S: d295 C30H62: s7 C30H63O3P: t324 C32H64O4Sn: d178 C32H66: d823 C36H75O3P: d726 C39H74O6: g21 C40H82O6P2: b217 C42H82O4S: d727 C45H86O6: g25 C51H98O6: g24 C55H98O6P2: i111 C57H104O6: g23 TABLE 1.15 Physical Constants of Organic Compounds See also the special tables of polymers, rubbers, fats, oils, and waxes.
Names of the compounds in the table starting on p. 1.76 are arranged alphabetically. Usually substitutive no-menclature is employed; exceptions generally involve ethers, sulfides, sulfones, and sulfoxides. Each compound is given a number within its letter classification; thus compound c209 is 3-chlorophenol. Section 1.1, Nomen-clature of Organic Compounds, should be consulted to familiarize oneself with present nomenclature systems.
Synonyms or Alternate Names are found at the bottom of each spread in their alphabetical listing; the number following the same refers to the numerical place of this compound in the table. For example, epichlorohydrin, c120, indicates that this compound is found listed under the name 1-chloro-2,3-epoxypropane.
Formulas are presented in semistructural form when no ambiguity is possible. Complicated systems are drawn in complete structural form and located at the bottom of each page and keyed to the number of the entry.
Beilstein Reference. In this column is found the reference to the volume and page numbers of the fourth edition of Beilstein, Handbuch der Organischen Chemie (Springer-Verlag, New York, 1918). Thus the entry 9, 202 refers to an entry in volume 9 appearing on page 202. When the volume number has a superscript attached, reference is made to the appropriate supplementary volume. For example, 122, 404 indicates that the compound will be found listed in the second supplement to volume 12 on page 404. The earliest Beilstein entry is listed.
Supplementary information may be found in the supplements to the basic series; such coordinating references (series number, volume number, and page number of the main edition) along with the system number are found at the top of each odd-numbered page. Similarly, a back reference such as H93; E II 64; E III 190 in a volume of Supplementary Series IV means that previous items on this compound are found in the same volume of the 1.74 SECTION 1 TABLE 1.14 Empirical Formula Index of Organic Compounds (Continued) The alphanumeric designations are keyed to Table 1.15.
C20H38O2: e230 C20H38O4: b187 C20H40: i2 C20H40O: o18 C20H42: i1 C21 to C23 C21H15NO: b143 C21H21N: t198 C21H21O4P: t452 C21H22N2O2: s10 C21H24O2: b144 C21H28N2O: b177 C21H36O: p14 C21H40O2: o14 C21H45N3O12Si3: t448 C22H23N3O9: a306 C22H26O: b181 C22H30O2S: t140 C22H34O4: b547, d463 C22H42O8: b152 C22H44O2: b581, i75 C22H46: d801 C22H46O: d802 C22H48N2: t27 C23H18BrO2P: c18 C23H26N2O4: b447 C23H42O2: b581a C24 to C29 C24H16N2O2: b218 C24H18: t413 C24H20BNa: t126 C24H20Sn: t128 C24H27NO2: e169 C24H38O4: b193, d374, d466, d466a C24H40O5: c275 C24H46O4: d725, d812 C24H50: t41 C24H51N: t406 C24H51O3P: t438 C24H54OSn2: b224 C25H30ClN3: c315 C25H34Cl6O4: b189 C25H48O4: d465 C26H26N2O2S: b153 C26H42O2: d138 C26H42O4: d464 C26H47O3P: d462 C26H46O8: t312 C26H50O4: b190 C27H42O: c274 C27H50ClN: b96 C28H31ClN2O3: r6 C28H32: t127 C28H50O8: t314 C28H54O6Sn: b601 C29H44O2: m244 C29H50O7: p20 C30 to C57 C30H43FO2P: e188 C30H46O2: e187 C30H50: s8 C30H58O4S: d295 C30H62: s7 C30H63O3P: t324 C32H64O4Sn: d178 C32H66: d823 C36H75O3P: d726 C39H74O6: g21 C40H82O6P2: b217 C42H82O4S: d727 C45H86O6: g25 C51H98O6: g24 C55H98O6P2: i111 C57H104O6: g23 TABLE 1.15 Physical Constants of Organic Compounds See also the special tables of polymers, rubbers, fats, oils, and waxes.
Names of the compounds in the table starting on p. 1.76 are arranged alphabetically. Usually substitutive no-menclature is employed; exceptions generally involve ethers, sulfides, sulfones, and sulfoxides. Each compound is given a number within its letter classification; thus compound c209 is 3-chlorophenol. Section 1.1, Nomen-clature of Organic Compounds, should be consulted to familiarize oneself with present nomenclature systems.
Synonyms or Alternate Names are found at the bottom of each spread in their alphabetical listing; the number following the same refers to the numerical place of this compound in the table. For example, epichlorohydrin, c120, indicates that this compound is found listed under the name 1-chloro-2,3-epoxypropane.
Formulas are presented in semistructural form when no ambiguity is possible. Complicated systems are drawn in complete structural form and located at the bottom of each page and keyed to the number of the entry.
Beilstein Reference. In this column is found the reference to the volume and page numbers of the fourth edition of Beilstein, Handbuch der Organischen Chemie (Springer-Verlag, New York, 1918). Thus the entry 9, 202 refers to an entry in volume 9 appearing on page 202. When the volume number has a superscript attached, reference is made to the appropriate supplementary volume. For example, 122, 404 indicates that the compound will be found listed in the second supplement to volume 12 on page 404. The earliest Beilstein entry is listed.
Supplementary information may be found in the supplements to the basic series; such coordinating references (series number, volume number, and page number of the main edition) along with the system number are found at the top of each odd-numbered page. Similarly, a back reference such as H93; E II 64; E III 190 in a volume of Supplementary Series IV means that previous items on this compound are found in the same volume of the ORGANIC COMPOUNDS 1.75 Basic Series on page 93, of Supplementary Series II on page 64, and of Supplementary Series III on page 190.
The absence of a back reference implies that the compound involved is described for the first time in the series concerned.
Formula Weights are based on the International Atomic Weights of 1993 and are computed to the nearest hundredth when justified. The actual significant figures are given in the atomic weights of the individual elements; see Table 3.2.
Density values are given at room temperature unless otherwise indicated by the superscript figure; thus 0.9711112 indicates a density of 0.9711 for the substance at 112C. A density of indicates a density of 0.899 for 16 0.8994 the substance at 16C relative to water at 4C.
Refractive Index, unless otherwise specified, is given for the sodium line at 589.6 nm. The temperature at which the measurement was made is indicated by the superscript figure; otherwise it is assumed to be room temperature.
Melting Point is recorded in certain cases as 250 d and in some other cases as d 250, the distinction being made in this manner to indicate that the former is a melting point with decomposition at 250C, while the latter decomposition occurs only at 250C and higher temperatures. Where a value such as 2H2O, 120 is given, it indicates a loss of 2 moles of water per formula weight of the compound at a temperature of 120C.
Boiling Point is given at atmospheric pressure (760 mmHg) unless otherwise indicated; thus indicates 15mm 82 that the boiling point is 82C when the pressure is 15 mmHg. Also, subl 550 indicates that the compound sublimes at 550C.
Flash Point is given in degrees Celsius, usually using a closed cup. When the method is known, the acronym appears in parentheses after the value: closed cup (CC), Cleveland closed cup (CCC), open cup (OC), Tag closed cup (TCC), and Tag open cup (TOC). Because values will vary with the specific procedure employed, and many times the method was not stated, the values listed for the flash point should be considered only as indicative.
See also Table 5.23, Properties of Combustible Mixtures in Air.
Solubility is given in parts by weight (of the formula weight) per 100 parts by weight of the solvent and at room temperature. Other temperatures are indicated by the superscript. Another way in which solubility is explicitly stated is in weight (in grams) per 100 mL of the solvent. In the case of gases, the solubility is often expressed as 5 mL10, which indicates that at 10C, 5 mL of the gas is soluble in 100 g (or 100 mL, if explicitly stated) of the solvent.
Abbreviations Used in the Table abs, absolute acet, acetone alc, alcohol (ethanol usually) alk, alkali (aqueous NaOH or KOH) anhyd, anhydrous aq, aqueous, water as, asymmetrical atm, atmosphere BuOH, 1-butanol bz, benzene c, cold chl, chloroform conc, concentrated d, decomposes or decomposed D, dextrorotatory deliq, deliquescent dil, dilute diox, 1,4-dioxane DL, inactive (50% D and 50% L) DMF, dimethylformamide E, trans (German “entgegen”) EtOAc, ethyl acetate eth, diethyl ether EtOH, ethanol, 95% expl, explodes glyc, glycerol h, hot HOAc, acetic acid hyd, hydrolysis hygr, hygroscopic i, insoluble ign, ignites i-PrOH, isopropyl alcohol, 2-propanol L, levorotatory m, meta configuration Me, methyl MeOH, methanol misc, miscible; soluble in all proportions NaOH, aqueous sodium hy-droxide o, ortho configuration org, organic p, para configuration PE, petroleum ether pyr, pyridine s, soluble sec, secondary sl, slight, slightly soln, solution solv, solvent subl, sublimes s, symmetrical sym, symmetrical tert, tertiary v, very v s, very soluble v sl s, very slightly soluble vac, vacuo or vacuum vols, volumes Z, cis (German “zusamman”) , greater than , less than , approximately , inactive [50% () and 50% ()] , alpha (first) position , beta (second) position , gamma (third) position , delta (fourth) position , omega position (farthest from parent functional group) TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent a1 ()-Abietic acid 302.46 92, 424 172–175 i aq; s acet, alc, bz, chl, CS2, eth, dil alk a2 Acenaphthene 154.21 5, 586 1.189 1.604895 93.4 279 i aq; 3.2 alc; 20 bz; 10 chl; 1.8 MeOH; 3.2 g in 100 mL HOAc a3 Acenaphthylene 152.20 5, 625 0.89916 4 88–91 280 i aq; v s alc, eth a4 Acetaldehyde CH3CHO 44.05 1, 594 0.78816 6 1.331620 123 21 38(CC) misc aq, alc, eth a5 Acetaldoxime CH3CH"NOH 59.07 1, 608 0.966 1.41520 46.5() 12() 114.5 40 v s aq, alc, eth a6 Acetamide CH3CONH2 59.07 22, 177 0.99978 1.4158110 81 222 70 aq; 50 alc; 16 pyr; s chl, glyc, hot bz a7 Acetamidine HCl CH3C("NH)NH2·HCl 94.54 2, 185 164–166 v s aq; s alc; i acet, eth a8 N-(2-Acetamido)-2-aminoethanesulfonic acid H2N(CO)CH2NHCH2CH2SO3H 182.20 220 dec a9 4-Acetamidobenzalde-hyde CH3CONHC6H4CHO 163.18 14, 38 156–158 s aq, bz; sl s alc a10 4-Acetamidobenzene-sulfonyl chloride CH3CONHC6H4SO3Cl 233.67 14, 702 148 dec d aq; v s alc, bz, eth, acet a11 2-Acetamidobenzoic acid CH3CONHC6H4CO2H 179.18 14, 337 185–187 sl s aq; v s alc, bz, eth, acet a12 4-Acetamidobenzoic acid CH3CONHC6H4CO2H 179.18 14, 432 262 dec i aq; s alc; sl s eth a13 2-Acetamidofluorene 223.28 12, 1331 192–196 i aq; s alc, glycols a14 N-(2-Acetamido)imi-nodiacetic acid H2NCOCH2N(CH2CO2H)2 190.16 219 d a15 2-Acetamidophenol CH3CONHC6H4OH 151.17 13, 370 207–210 a16 3-Acetamidophenol CH3CONHC6H4OH 151.17 13, 415 146–149 a17 4-Acetamidophenol CH3CONHC6H4OH 151.17 13, 460 1.29321 4 170–172 s alc, acet a18 Acetanilide CH3CONHC6H5 135.17 12, 237 1.21915 4 114 304–305 173 0.56 aq25; 25 acet; 29 alc; 2 bz; 27 chl; 5 eth a19 Acetic acid CH3CO2H 60.05 2, 96 1.049220 4 1.371820 16.7 118 39 (CC) misc aq, alc, eth, CCl4 a20 Acetic acid-d CH3CO2D 61.06 23, 202 1.059 1.271520 115.5 40 misc aq, alc, eth, CCl4 1.76 a21 Acetic-d3 acid-d CD3CO2D 64.08 23, 203 1.137 1.368720 114.4 40 misc aq, alc, eth, CCl4 a22 Acetic anhydride (CH3CO)2O 102.09 2, 166 1.08015 4 1.390420 73 139 54 (CC) s chl, eth; slowly s aq forming HOAc, alc forming EtOAc a23 Acetic anhydride-d6 (CD3CO)2O 108.14 1.387520 6565mm 54 see acetic anhydride a24 Acetoacetanilide CH3COCH2CONHC6H5 177.20 12, 518 1.26020 85 dec 185 s alc, hot bz, acids, al-kalis, chl, eth a25 Acetoacetic acid CH3COCH2COOH 102.09 3, 630 36–37 d viol 100 misc aq, alc a26 Acetone CH3COCH3 58.08 1, 635 0.790820 4 1.359120 94 56 20 misc aq, alc, chl, DMF a27 Acetone-d6 CD3COCD3 64.13 0.872 1.355420 93.8 55.5 17 see acetone a28 Acetone oxime (CH3)2C"NOH 73.10 1, 649 0.91162 2 60 135 v s aq, alc, eth a29 Acetonitrile CH3CN 41.05 2, 183 0.787515 4 1.346015 44 81.6 6 misc aq, acet, alc, chl, eth, EtOAc a30 Acetonitrile-d3 CD3CN 44.08 24, 428 0.844 1.340620 80.7 5 misc aq, alc, chl a31 Acetophenone C6H5COCH3 120.15 7, 271 1.02620 4 1.537220 20 202 77 0.55 aq; s alc, chl, eth, glyc a32 Acetophenone-methyl-d3 C6H5COCD3 123.18 74, 626 1.055 1.532520 201–202 82 1.77 ACES, a8 Acetal, d303 Acetaldehyde ammonia, a162 Acetaldehyde diethyl acetal, d303 Acetaldehyde dimethyl acetal, d504 Acetamidoacetic acid, a46 2-Acetamidopentanedioic acid, a45 Acetoacetic ester, e58 Acetoin, h108 Acetonaphthones, m322, m323 Acetonecarboxylic acid, a24 Acetone cyanohydrin, h138a Acetone dimethyl acetal, d519 Acetone ketal of glycerin, d599 Acetonylacetone, h60 a1 a2 a3 a13 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent a33 4-Acetylbenzenesul-fonic acid, sodium salt CH3COC6H5SO Na 3 222.20 112, 186 300 a34 Acetylbiphenyl C6H5C6H4COCH3 196.25 72, 337 116–118 325–327 i aq; v s alc, acet a35 Acetyl bromide CH3COBr 122.95 2, 174 1.66316 4 1.448620 96 76 110 dec viol by aq or alc; misc bz, chl, eth a36 2-Acetylbutyrolactone 128.13 173, 5837 1.184620 4 1.458520 1075mm 110 20% v/v aq a37 Acetyl chloride CH3COCl 78.50 2, 173 1.10420 4 1.389620 113 51 4 (CC) dec viol aq or alc; misc bz, chl, eth, HOAc, PE a38 Acetylcholine bromide (CH3)3N(Br)CH2CH -2 O2CCH3 226.11 41, 428 144–146 v s aq (dec by hot aq or alkalis); s alc; i eth a39 Acetylcholine chloride (CH3)3N(Cl)CH2CH -2 O2CCH3 181.66 4, 281 150–152 v s aq, alc; dec by hot aq or alkalis; i eth a40 2-Acetylcyclopentan-one 126.16 7, 558 1.043 1.490520 758mm 72 a41 Acetylene HC#CH 26.04 1, 228 0.90(g) 85(subl) 18 1 vol in 1 vol aq, in 6 vol HOAc or alc; s bz, eth; acet dis-solves 25 vol15 but 300 vols at 12 atm a42 Acetylenedicarboxylic acid HO2CC#CCO2H 114.06 2, 801 180 d v s aq, alc, eth a43 Acetyl fluoride CH3OF 62.04 2, 172 1.00215 4 60 20.8 5 aq(dec); sl s acet, alc, bz, eth a44 2-Acetylfuran 110.11 17, 286 1.098 1.506520 29–30 6710mm 71 a45 N-Acetyl-()-glutamic acid HO2CCH2CH2CHCO2CH3 NHCOCH3 189.17 42, 908 200–201 a46 N-Acetylglycine CH3CONHCH2CO2H 117.10 4, 354 206–208 2.7 aq15; s alc; sl s acet, chl, HOAc; i bz, eth a47 1-Acetylimidazole 110.12 103–105 1.78 a48 Acetyl iodide CH3COI 169.95 2, 174 2.067420 4 1.549120 108 dec aq, alc; s bz, eth a49 Acetyl-2-methylcho-line chloride CH3CO2CH(CH3)CH 2 N(Br)(CH3)3 195.69 Merck: 12, 6003 172–173 v s aq, alc, chl; i eth; dec by alkalis, eth a50 2-Acetylphenothiazine 241.31 180–185 a51 2-Acetylphenylaceto-nitrile C6H5CH(CN)COCH3 159.19 10, 699 92–94 a52 1-Acetyl-4-pipidone 141.17 1.146 1.502620 218 110 a53 2-Acetylpyridine (C5H4N)COCH3 121.14 21, 279 1.080 1.520320 188–189 73 v s alc, eth a54 3-Acetylpyridine (C5H4N)COCH3 121.14 21, 279 1.102 1.533620 220 150 v s acids, alc, eth; s aq a55 4-Acetylpyridine (C5H4N)COCH3 121.14 21, 279 1.095 1.535020 212 110 v s alc, eth a56 Acetylsalicylic acid HO2C6H4-2-O2CCH3 180.16 10, 67 1.35 135 0.33 aq25; 29 acet; 20 alc; 5.9 chl; 5 eth; s bz a57 2-Acetylthiophene (C4H3S)COCH3 126.18 17, 287 1.16822 4 1.556420 10–11 214 sl s aq; misc alc, eth a58 1-Acetyl-2-thiourea CH3C(O)NHC(S)NH2 118.16 3, 191 167 s hot aq, alc; sl s eth 1.79 p-Acetotoluide, m374 Acetoxime, a28 2-Acetoxybenzoic acid, a56 1-Acetoxy-1,3-butadiene, b378 (Acetoxymethyl)benzene, b76 3-Acetoxypropene, a74 Aceturic acid, a46 Acetylacetanilid, a24 Acetyl acetate, a22 Acetylacetone, p34 N-Acetylanthranilic acid, a11 Acetylbenzene, a31 Acetylcyclopropane, c410 Acetylene dichloride, d228, d229 Acetylene tetrabromide, t16 Acetylene tetrachloride, t37 N-Acetylethanolamine, h119 3-Acetyl-6-methyl-2H-pyran-2,4-(3H)-dione, d25 2-(Acetyloxy)benzoic acid, a56 3-Acetyl-1-propanol, h164 N-Acetylsulfanilyl chloride, a10 a36 a40 a44 a47 a50 a52 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent a59 N-Acetyl-()-trypto-phan 246.27 222, 469 206 s aq, alc; v s eth a60 Acridine 179.22 20, 459 1.00520 4 106–110 subl 100 346 s alc, eth, CS2, PE; sl s hot aq a61 Acrylamide H2C"CHCONH2 71.08 2, 400 1.22230 4 84.5 192.6 at 30, g/100 mL: 215 aq, 155 MeOH, 86 EtOH, 63 acet, 12.6 EtOAc, 2.7 chl, 0.3 bz a62 Acrylic acid H2C"CHCO2H 72.06 2, 397 1.051120 1.422420 12–14 141 50 misc aq, alc, bz, eth, chl, acet a63 Acrylonitrile H2C"CHCN 53.06 2, 400 0.806020 4 1.391120 83.5 77.3 0 7.3 aq; misc org solv a63a Acryloyl chloride H2C"CHCOCl 90.51 2, 400 1.114 1.435020 72–76 15 d aq; v s chl a64 1-Adamantanamine 151.25 Merck: 12, 389 160–190 sl s aq a65 Adamantane 136.24 Merck: 12, 149 1.09 1.568 270 (sealed tube) 205 subl s acet a66 Adenine 135.13 26, 420 360 dec subl 220 0.005 aq; sl s alc; i chl, eth a67 ()-Adenosine 267.24 31, 27 235 s aq; i alc a68 ()--Alanine CH3CH(NH2)CO2H 89.09 4, 387 1.424 264–269 (de-pends on heat-ing rate) subl 200 16.7 aq25; 0.009 alc25; i eth a69 ()--Alanine CH3CH(NH2)CO2H 89.09 4, 381 1.401 dec 297 16.7 aq25; 0.2 alc25; i eth a70 -Alanine H2NCH2CH2CO2H 89.09 4, 401 1.4375 197 dec v s aq; sl s alc; i eth a71 Allantoin 158.12 25, 474 238 0.45 aq; 0.2 alc; i eth a72 Allene H2C"C"CH2 40.06 1, 248 1.787 1.4168 136 34 a73 Alloxan monohydrate 160.09 24, 500 anhyd: 256 dec s aq, alc, acet, HOAc; sl s chl, EtOAc, PE a74 Allyl acetate H2C"CHCH2OCOCH3 100.12 2, 136 0.97720 4 1.404020 104 22 i aq; misc alc, eth a75 Allyl alcohol H2C"CHCH2OH 58.08 2, 436 0.854020 4 1.413420 129 97 21 misc aq, alc, chl, eth a76 Allylamine H2C"CHCH2NH2 57.10 4, 205 0.76120 4 1.418520 88.2 53–55 29 misc aq, alc, chl, eth 1.80 a77 N-Allylaniline C6H5NHCH2CH"CH2 133.19 12, 170 0.98225 1.563020 220 89 i aq; s alc, eth a78 Allylbenzene C6H5CH2CH"CH2 118.18 5, 484 0.89220 0 1.512220 157 33 i aq; s alc, eth a79 Allyl bromide H2C"CHCH2Br 120.98 1, 201 1.39820 4 1.465420 119 70 2 sl s aq; misc org solv a80 Allyl butanoate CH3CH2CH2COOCH2-CH"CH2 128.17 2, 272 0.902 1.414220 4415mm 41 1.81 Aconitic acid, p206 Acrolein, p203 Acrolein diethyl acetal, d312 Acrolein dimethyl acetal, d521 Acrylaldehyde, p203 Adipic acid, h54 Adipic acid monoethyl ester, e177 Adiponitrile, d284 Alaninol, a264, a265 Allocimene, d669 Allylacetone, h77 4-Allylanisole, a89 Allyl butyrate, a80 a59 a60 a64 a65 a66 a67 a71 a73 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent a81 Allyl chloride H2C"CHCH2Cl 76.53 1, 198 0.93820 4 1.415420 134.5 44–46 31 (CC) sl s aq; misc alc, chl, eth, PE a82 Allyl chloroformate H2C"CHCH2OOCCl 120.54 3, 12 1.136 1.4223 110 27 31 a83 Allylcyclohexylamine (C6H11)NHCH2CH"CH2 139.24 0.962 1.466420 6612mm 53 a84 4-Allyl-1,2-dimethoxy-benzene H2C"CHCH2C6H3(OCH3)2 178.23 6, 963 1.036 1.534420 4 255 a85 N-Allyl-N,N-dimethyl-amine H2C"CHCH2N(CH3)2 85.0 1.401020 64 a86 Allyl ethyl ether H2C"CHCH2OCH2CH3 86.13 1, 438 0.76520 4 1.388120 68 20 i aq; misc alc, eth a87 Allyl iodide H2C"CHCH2I 167.98 1, 202 1.82520 4 1,554021 99 103 i aq; misc alc, eth a88 Allyl isothiocyanate H2C"CHCH2NCS 99.16 4, 214 1.01325 4 1.524825 80 152 46 0.2 aq; misc org solv a89 Allyl methacrylate H2C"C(CH3)COOCH -2 CH"CH2 126.16 23, 1290 0.938 1.4360 6143mm 33 a90 Allyl methyl sulfide H2C"CHCH2SCH3 88.17 1, 440 0.803 1.471420 91–93 18 a91 1-Alloxy-2,3-epoxy-propane H2C9CHCH2OCH2-O CH"CH2 114.14 0.962 1.433220 154 57 a92 3-Alloxy-1,2-propane-diol H2C"CHCH 2 CH2CH(OH)CH2OH 132.16 1, 513 1.068 1.462020 14228mm 110 a93 Allyloxytrimethyl-silane H2C"CHCH2OSi(CH3)3 130.26 0.7830 1.407525 102 0 a94 2-Allylphenol H2C"CHCH2C6H4OH 134.18 6, 572 1.03315 4 1.545020 10 220 88 s alc, eth a95 Allyl phenyl ether H2C"CHCH2OC6H5 134.18 6, 144 0.98315 4 1.520020 192 62 i aq; s alc, misc eth a96 Allyl propyl ether H2C"CHCH2OC3H7 100.16 1, 438 0.76720 4 1.399020 90–92 5 s alc; misc eth a97 1-Allyl-2-thiourea H2C"CHCH2NHC(S)NH2 116.19 4, 211 1.21920 20 70–72 3.3 aq; s alc; i bz; v sl s eth a98 Allyltrichlorosilane H2C"CHCH2SiCl3 175.52 43, 1909 1.201120 4 1.455020 117.5 31 a99 Allyltriethoxysilane H2C"CHCH2Si(OC2H5)3 204.34 43, 1909 0.903020 1.406220 176740mm 21 a100 Allyl trifluoroacetate CF3COOCH2CH"CH2 154.09 24, 464 1.183 1.335020 66–67 1 a101 Allyltrimethylsilane H2C"CHCH2Si(CH3)3 114.27 0.719320 4 1.408020 84–88 7 a102 Allylurea H2C"CHCH2NHCONH2 100.12 4, 209 85 v s aq, alc; i chl, CS2 eth, toluene a103 Aminoacetonitrile H2NCH2CN 56.07 4, 344 5815mm d s acids, alc 1.82 a104 Aminoacetonitrile hy-drogen sulfate H2NCH2CN·H2SO4 154.14 4, 344 121 d 165 v s aq; sl s alc; i eth a105 2-Aminoaceto-phenone H2NC6H4COCH3 135.17 14, 41 703mm 110 v sl s aq; s alc, eth a106 3-Aminoaceto-phenone H2NC6H4COCH3 135.17 14, 45 99 290 a107 4Aminoacetophenone H2NC6H4COCH3 135.17 14, 46 106 293–295 s hot aq, alc, eth, HOAc; sl s bz a108 1-Aminoanthra-quinone 223.23 14, 177 ca. 250 subl i aq; v s alc, bz, chl, eth, HOAc, HCl a109 2-Aminoanthra-quinone 223.23 14, 191 295 d subl i aq, eth; s alc, bz a110 4-Aminoantipyrine 203.25 24, 273 109 s aq, alc, bz; sl s eth a111 p-Aminoazobenzene C6H5N"NC6H4NH2 197.24 128 360 sl a aq; v s alc, bz, chl, eth a112 2-Aminobenzamide H2NC6H4CONH2 136.15 14, 320 110 300 sl d v s hot aq, alc; i bz; sl s eth a113 4-Aminobenzene-arsonic acid H2NC6H4AsO(OH)2 217.06 16, 878 232 s hot aq; alk CO3, concd mineral ac-ids; i acet, bz, chl, eth a114 5-Aminobenzene-1,3-dicarboxylic acid H2NC6H3(COOH)2 181.15 141, 636 300 1.83 Allyl carbamide, a102 Allyl chloride, c236a Allyl cyanide, b482 Allyl glycidyl ether, a91 1-Allyl-2-hydroxybenzene, a94 Allyl iodide, i50 Allyl mercaptan, p205 Allyl sulfide, d34 Allyl trichloride, t247 Aluminon, a306 N-Amidinosarcosine, c301 Aminoacetaldehyde diethyl acetal, d306 Aminoacetaldehyde dimethyl acetal, d506 1-Aminoadamantane, a64 Aminoanisoles, m48 thru m50 p-Aminoazobenzene, p88 a108 a109 a110 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent a115 2-Aminobenzene-sulfonic acid H2NC6H4SO3H 173.19 14, 681 ca. d 325 1.5 aq15; v sl s alc, eth a116 3-Aminobenzene-sulfonic acid H2NC6H4SO3H 173.19 14, 688 1.69 300 2 aq15; sl s alc, MeOH a117 4-Aminobenzene-sulfonic acid H2NC6H4SO3H 173.19 14, 695 d 288 1 aq20; sl s hot MeOH; i alc, bz, eth a118 2-Aminobenzoic acid H2NC6H4COOH 137.14 14, 310 144–146 subl v s hot aq, alc, eth a119 3-Aminobenzoic acid H2NC6H4COOH 137.14 14, 383 1.5114 172–174 v s hot aq, alc; s eth a120 4-Aminobenzoic acid H2NC6H4COOH 137.14 14, 418 1.374 187 0.59 aq; 12 alc; 2 eth; s EtOAc, HOAc a121 2-Aminobenzonitrile H2NC6H4CN 118.14 14, 322 49 268 110 s alc, eth a122 3-Aminobenzonitrile H2NC6H4CN 118.14 14, 391 53 288–290 110 s hot aq; v s alc, eth a123 4-Aminobenzonitrile H2BC6H4CN 118.14 14, 425 85 dec v s hot aq, alc, eth a124 2-Aminobenzophenone H2NC6H4COC6H5 197.24 14, 76 108 223–226 sl s aq; s alc, eth a125 2-Aminobenzothiazole 150.20 27, 182 132 dec v s concd acids, alc, chl, eth a126 2-Aminobenzotri-fluoride H2NC6H4CF3 161.13 1212, 453 1.29025 1.478525 34 175 55 a127 3-Aminobenzotri-fluoride H2NC6H4CF3 161.13 12, 870 1.290 1.480020 6 187 85 a128 4-Aminobenzotri-fluoride H2NC6H4CF3 161.13 123, 2151 1.28327 1.481525 38 8312mm 86 a129 N-(4-Aminobenzoyl)-glycine H2NC6H4CONHCH2COOH 194.19 142, 258 198–199 i aq; s alc, bz, chi a130 2-Aminobiphenyl H2NC6H C6H5 4 169.23 12, 1317 50–53 299 110 sl s aq; s alc a131 4-Aminobiphenyl H2NC6H C6H5 4 169.23 12, 1318 52–54 19115mm 110 s hot aq, alc, eth a132 2-Amino-5-bromo-benzoic acid Br(NH2)C6H3COOH 216.03 14, 370 218–219 s alc, bz, chl, eth, HOAc; v s acet a133 ()-2-Aminobutanoic acid CH3CH2CH(NH2)COOH 103.12 4, 408 304 d subl 300 21 aq25, 0.18 hot alc; i eth a133a 3-Aminobutanoic acid H3CCH2CH(NH2)COOH 103.12 4, 412 193–194 125 aq; i alc, eth a134 4-Aminobutanoic acid H2NCH2CH2CH2COOH 103.12 4, 413 195 d v s aq; i org solv a135 2-Amino-1-butanol CH2CH2CH(NH2)CH2OH 89.14 4, 291 0.94420 20 1.452120 2 176–178 74 (OC) misc aq; s alc 1.84 a136 3-(4-Aminobutyl)-piperidine (HNC5H9)(CH2)4NH2 156.27 223, 3788 0.910 39–42 14810mm 110 a137 4-Amino-6-chloro-1,3-benzenedisulfon-amide H2NC6H2(Cl)(SO2NH2)2 285.73 144, 2810 257–261 a138 2-Amino-4-chloroben-zoic acid H2N(Cl)C6H3COOH 171.58 14, 365 231–233 a139 5-Amino-2-chloroben-zoic acid H2N(Cl)C6H3COOH 171.58 14, 412 188 d a140 2-Amino-4-chloro-benzophenone H2NC6H4COC6H4Cl 231.68 141, 389 104 a141 2-Amino-5-chloroben-zophenone H2N(Cl)C6H3COC6H5 231.68 14, 79 98–100 a142 2-Amino-5-chloroben-zotrifluoride H2N(Cl)C6H3CF3 195.57 123, 1921 1.386 1.506920 673mm none a143 5-Amino-2-chloroben-zotrifluoride H2N(Cl)C6H3CF3 195.57 36–38 110 a144 2-(3-Amino-4-chloro-benzoyl)benzoic acid H2N(Cl)C6H3COC6H4COOH 275.69 14, 661 171–173 a145 4-Amino-4-chloro-biphenyl H2NC6H C6H4Cl 4 203.67 128–134 i aq; s alc, acet, bz, chl, HOAc a146 4-Amino-5-chloro-2-methoxybenzoic acid H2NC6H2(Cl)(OCH3)COOH 201.61 206 d a147 2-Amino-4-chloro-phenol H2N(Cl)C6H3OH 143.57 13, 383 139–143 a148 2-Amino-5-chloro-pyridine H2N(Cl)(C5H3N) 129.56 222, 332 135–138 12811mm 1.85 Aminobenzenethiol, a297 Aminobenzyl cyanide, a255 1-Aminobutane, b509 2-Aminobutane, b510 4-Aminobutyraldehyde diethyl acetal, d299 Aminobutyric acids, a133, a133a, a134 -Aminocaproic acid, a182 -Aminocaproic acid, a183 a125 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent a149 3-Aminocrotononitrile CH3C(NH2)"CHCN 82.11 3, 660 a150 1-[(2-Aminoethyl)-amino]-2-propanol CH3CH(OH)CH2NHCH -2 CH2NH2 118.18 0.983725 4 1.478825 11210mm a151 5-Amino-2,3-dihydro-1,4-phthalazinedione 177.16 251, 698 319–320 a152 2-Amino-4,6-dihy-droxypyrimidine 127.10 24, 468 300 a153 4-Amino-2,6-dihy-droxypyrimidine 127.10 24, 469 300 a154 2-Amino-3,3-dimethyl-butane (CH3)3CCH(NH2)CH3 101.19 4, 193 0.755 1.413020 20 102–103 1 a155 2-Amino-4,6-dimethyl-pyridine (CH3)2(NH2)(C5H2N) 122.17 22, 435 63–64 235 a156 4-Amino-2,6-dimethyl-pyrimidine 123.16 242, 45 184–186 156 aq; 18.9 alc a157 6-Amino-1,3-dimethyl-uracil 155.16 24, 471 295 d a158 5-Amino-2,6-dioxo-1,2,3,6-tetrahydro-4-pyrimidinecarbox-ylic acid 171.11 25, 264 300 a159 -Aminodiphenyl-methane (C6H5)2CHNH2 183.25 12, 1323 1.063522 4 1.595020 34 304 110 sl s aq; s acids a160 2-Aminoethanesulfonic acid H2NCH2CH2SO3H 125.15 4, 528 d ca. 300 5.45 aq12; 0.004 alc17 a161 2-Aminoethanethiol HSCH2CH2NH2 77.14 4, 286 97–99 v s aq; s alc a162 1-Aminoethanol CH2CH(OH)NH2 61.08 97 110 d s aq; sl s eth a163 2-Aminoethanol H2NCH2CH2OH 61.08 4, 274 1.011725 4 1.453920 10.3 171 93 misc aq, org solv a164 2-(2-Aminoethoxy)-ethanol H2NCH2CH2OCH2CH2OH 105.14 43, 642 1.048 218–224 a165 2-(2-Aminoethyl-amino)ethanol H2NCH2CH2NHCH2CH2OH 104.15 4, 286 1.030 1.486120 240753mm 110 v s aq, alc; sl s eth a166 1-[(2-Aminoethyl)-amino]-2-propanol CH3CH(OH)CH2NHCH -2 CH2NH2 118.18 Merck: 12, 458 0.983725 4 1.473825 11210mm s acids 1.86 a167 3-(2-Aminoethyl-amino)propyltri-methoxysilane H2NCH2CH2NHCH2CH -2 Si(OCH3)3 222.1 1.0125 4 1.441825 14015mm 150 a168 3-Amino-9-ethylcarba-zole 210.28 221, 642 98–100 a169 2-Aminoethyl hydro-gen sulfate H2NCH2CH2OSO3H 141.15 4, 276 277 d a170 3-(2-Aminoethyl)-indole 160.22 221, 636 118 1370.15mm i aq, bz, chl, eth; s alc, acet, HCl a171 S-2-Aminoethyliso-thiouronium bro-mide HBr 281.01 Merck: 12, 176 194–195 a172 N-(2-Aminoethyl)-morpholine 130.19 273, 370 0.992 1.475520 25.6 205 175 s aq, alc, bz, acet, acids 1.87 4-Amino-m-cresol, a213 Aminocyclododecane, c340 Aminocyclohexane, c375 Aminodecane, d23 2-Amino-5-diethylaminopentane, d387 2-Amino-1,5-dihydro-1-methyl-4H-imidazol-4-one, c302 2-Aminodiphenylamine, p137 Aminodiphenylmethane, d761 Aminoethane, e63 2-Aminoethanol, e29 1-(2-Aminoethyl)amino-2-[(2-aminoethyl)aminoethyl]aminoethane, t56 Aminoethylbenzene, e69, e70 a152 a151 a153 a156 a157 a158 a168 a170 a171 a172 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent a173 4-(2-Aminoethyl)-phenol HOC6H4CH2CH2NH2 137.18 13, 625 164–165 1662mm 1 aq15; 10 boiling alc; s HCl a174 N-(2-Aminoethyl)-piperazine 129.21 0.98520 20 1.498320 26 218–222 93 (OC) a175 N-(2-Aminoethyl)-1,3-propanediamine H2NCH2CH2CH2NHCH -2 CH2NH2 117.20 0.928 1.481520 96 a176 2-Amino-2-ethyl-1,3-propanediol HOCH2C(NH2)(C2H5)-CH2OH 119.16 4,3,850 1.09920 20 1.49020 38 15210mm 110 misc aq; s alc a177 2-(2-Aminoethyl)-pyridine H2NCH2CH2(C5H4N) 122.17 22, 434 1.021 1.536020 9312mm 100 a178 4-(2-Aminoethyl)-pyridine H2NCH2CH2(C5H4N) 122.17 1.012 1.540320 1049mm a179 2-Amino-5-fluoroben-zotrifluoride H2N(F)C6H3CF3 179.12 123, 1991 1.3781 1.460820 8120mm 70 a180 Aminoguanidine hy-drogen carbonate H2NNHC("NH)-NH2·H2CO3 136.11 3, 117 172 d i aq; d hot aq a181 N-Aminohexamethyle-neimine (C6H12N)NH2 114.19 0.984 1.485020 165 56 a182 ()-2-Aminohexanoic acid CH3(CH2)3CH(NH2)COOH 131.17 4, 433 1.172 301 1.15 aq25; 0.42 alc25; s acids a183 6-Aminohexanoic acid H2N(CH2)5COOH 131.17 4, 434 204–206 v s aq; i alc, s acids a184 6-Amino-1-hexanol H2N(CH2)5CH2OH 117.19 42, 748 56–58 13530mm a185 ()-2-Amino-3-hydroxybutanoic acid CH3CH(OH)CH(NH2)-COOH 119.12 4, 514 d 255 v s aq; i alc, chl, eth a186 ()-4-Amino-3-hydroxybutanoic acid H2NCH2CH(OH)CH2-COOH 119.12 42, 938 218 d s aq; sl s alc, chl, eth, EtOAc a187 4-Amino-6-hydroxy-2-mercaptopyrimidine hydrate 161.18 24, 476 300 a188 2-Amino-4-hydroxy-6-methylpyrimidine 125.13 24, 343 300 a189 4-Amino-3-hydroxy-1-naphthalenesulfonic acid 239.25 14, 846 295 d i aq, alc, bz, eth 1.88 a190 4-Amino-5-hydroxy-1-naphthalenesulfonic acid 239.25 14, 835 sl s aq; i alc, eth a191 5-Amino-6-hydroxy-2-naphthalenesulfonic acid 239.25 sl s hot aq; i eth a192 6-Amino-7-hydroxy-2-naphthalenesulfonic acid 239.25 14, 849 300 a193 2-Amino-3-hydroxy-pyridine H2N(HO)(C5H3N) 110.12 122, 408 172–174 a194 4-Amino-2-hydroxy-pyrimidine 111.10 24, 314 300 0.77 aq; sl s alc a195 1-Aminoindane 133.19 12, 1191 1.03815 4 1.561320 1.5 978mm 94 sl s aq a196 5-Aminoindane 133.19 121, 511 36 249745mm 110 sl s aq 1.89 2-(2-Aminoethyl)-2-thiopseudourea, a171 1-Aminoheptane, h19 2-Aminoheptane, m272 1-Aminohexane, h81 2-Aminohexane, m371 p-Aminohippuric acid, a129 Aminohydroxybenzoic acids, a280, a281 2-Amino-2-(hydroxymethyl)-1,3-propanediol, t439 -Amino-4-imidazolepropanoic acid, h83 Aminoiminomethanesulfinic acid, f34 N-(Aminoiminomethyl)-N-methylglycine, c301 a174 a187 a188 a189 a194 a192 a191 a190 a195 a196 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent a197 5-Aminoindazole 133.15 252, 308 175–178 a198 6-Aminoindazole 133.15 25, 317 206 d a199 2-Amino-5-iodoben-zoic acid H2N(I)C6H3COOH 263.03 14, 373 221 d sl s aq, PE; s alc a200 ()-2-Amino-4-mer-captobutanoic acid HSCH2CH2CH(NH2)COOH 135.19 43, 1647 232–233 a201 Aminomethanesulfonic acid H2NCH2SO3H 111.12 1, 583 185 d v s aq a202 3-Amino-4-methoxy-benzoic acid CH3O(NH2)C6H3COOH 167.16 141, 657 210 a203 2-Amino-1-methoxy-propane CH3OCH2CH(CH3)NH2 84.14 44, 1615 0.845 1.406520 93 8 a204 5-Amino-2-methoxy-pyridine CH3O(NH2)(C5H3N) 124.14 222, 408 1.574520 31 901mm 110 a205 4-Amino-N-methyl-acetanilide CH3ON(CH3)C6H4NH2 164.21 131, 30 90–92 a206 4-Amino-3-methyl-benzenesulfonic acid H2NC6H3(CH3)SO3H 187.22 14, 726 300 a207 2-Amino-5-methyl-benzoic acid H2N(CH3)C6H3COOH 151.17 14, 481 175 d sl s aq; s alc, eth a208 3-Amino-4-methyl-benzoic acid H2N(CH3)C6H3COOH 151.17 14, 487 167–169 s aq a209 2-Amino-3-methyl-1-butanol (CH3)2CHCH(NH2)CH2OH 103.17 43, 805 0.906 1.454320 35–36 808mm 90 a210 2-(Aminomethyl)-1-ethylpyrrolidine 128.22 0.887 1.466520 6016mm 60 a211 2-Amino-3-methyl-1-pentanol CH2CH2CH(CH3)CH(NH2)-CH2OH 117.19 1.458920 30 9714mm 100 a212 2-Amino-4-methyl-1-pentanol CH3CH(CH3)CH2CH(NH2)-CH2OH 117.19 4, 298 0.917 1.449620 200 90 a213 4-Amino-3-methyl-phenol H2N(CH3)C3H3OH 123.16 179 a214 4-(Aminomethyl)-piperidine 114.19 1.490020 25 200 78 1.90 a215 2-Amino-2-methyl-1,3-propanediol HOCH2C(CH3)(NH2)CH2OH 105.14 108–110 15110mm 250 aq20; s alc a216 2-Amino-2-methyl-1-propanol (CH3)2C(NH2)CH2OH 89.14 43, 783 0.93420 20 1.448020 25 165 67 misc aq; s alc, org solv a217 2-Amino-2-methyl-propionic acid (CH3)2C(NH2)COOH 103.12 4, 414 335 (sealed tube) 280 subl v s aq a218 2-(Aminomethyl)-pyridine H2NCH2(C5H4N) 108.14 1.049 1.544020 8512mm 90 a219 3-(Aminomethyl)-pyridine H2NCH2(C5H4N) 108.14 1.062 1.551020 21 741mm 100 a220 4-(Aminomethyl)-pyridine H2NCH2(C5H4N) 108.14 223, 4181 1.065 1.551520 8 230 108 a221 2-Amino-3-methyl-pyridine H2N(CH3)(C5H3N) 108.14 222, 342 1.073 1.582320 32–34 222 111 a222 2-Amino-4-methyl-pyridine H2N(CH3)(C4H3N) 108.14 222, 342 98–100 230 v s aq, alc, DMF a223 2-Amino-6-methyl-pyridine H2N(CH3)(C4H3N) 108.14 221, 633 42–45 209 103 v s aq a224 2-Amino-4-methyl-pyrimidine 109.13 24, 84 160 subl s hot aq; s alc a225 2-Amino-4-methyl-thiazole 114.17 27, 159 44–46 232 110 v s aq, alc, eth 1.91 2-Aminoisobutanol, a216 2-Aminoisobutyric acid, a217 5-Aminoisophthalic acid, a114 2-Amino-3-mercaptopropanoic acid, c411 1-Amino-2-methoxyethane, m77 -(Aminomethyl)benzyl alcohol, a257 3-Amino--methylbenzyl alcohol, a256 2-Amino-3-methylpentanoic acid, i88 2-Amino-2-methylpropane, b511 a210 a198 a197 a214 a224 a225 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent a226 2-Aminomethyl-3,5,5-trimethylcyclo-hexanol 171.29 0.969 1.490420 43–48 265 110 a227 N-Aminomorpholine 102.14 27, 8 1.059 1.477220 168 58 a228 1-Aminonaphthalene (C10H7)NH2 143.18 12, 1212 1.13 48–50 301 157 0.17 aq; v s alc, eth a229 2-Aminonaphthalene (C10H7)NH2 143.18 12, 1212 111–113 306 s hot aq, alc, eth a230 2-Amino-1-naphtha-lenesulfonic acid H2N(C10H6)SO3H 223.25 14, 736 dec 0.031 aq; sl s hot aq; s dil alkali a231 5-Amino-2-naphtha-lenesulfonic acid H2N(C10H6)SO3H 223.25 14, 758 180 sl s aq; s hot aq a232 8-Amino-2-naphthol H2NC10H6OH 159.19 13, 685 207 a233 2-Amino-4-nitro-benzoic acid H2N(NO2)C6H3COOH 182.14 14, 374 270 d i aq; v s alc, eth a234 2-Amino-5-nitro-benzonitrile H2N(NO2)C6H3CN 163.14 142, 234 200–207 a235 5-Amino-5-nitro-benzophenone C6H5COC6H4(NH2)NO2 242.23 14, 79 166–168 a236 2-Amino-6-nitro-benzothiazole 195.20 272, 232 247–249 a237 4-Amino-3-nitro-benzotrifluoride H2N(NO2)C6H3CF3 206.12 105–106 a238 2-Amino-4-nitrophenol O2N(NH2)C6H3OH 154.13 132, 192 143–145 1.92 a239 2-Amino-5-nitrophenol O2N(NH2)C6H3OH 154.13 13, 390 202 d a240 4-Amino-2-nitrophenol O2N(NH2)C6H3OH 154.13 13, 520 125–127 a241 D-()-threo-2-Amino-1-(4-nitrophenyl)-1,3-propanediol HOCH2C(NH2)C(OH)-C6H4NO2 212.21 163–165 a242 2-Amino-5-(4-nitro-phenylsulfonyl-thiazole 285.30 222–226 a243 2-Amino-5-nitro-pyridine H2N(C5H3N)NO2 139.11 221, 631 186–188 sl s aq, bz, eth a244 2-Amino-5-nitro-thiazole 145.14 Merck: 12, 477 d 202 s sl s aq; 0.7 alc; 0.4 ether; s dil acids a245 exo-2-Aminonor-bornane 111.19 123, 160 0.938 1.480720 4910mm 35 a246 2-Aminopentane H(CH2)3CH(NH2)CH3 87.17 4, 177 0.73920 1.404720 91–92 s aq, alc, eth, PE a247 3-Aminopentane C2H5CH(NH2)C2H5 87.17 4, 179 0.74920 4 1.405520 91 1 misc aq, alc, eth a248 DL-2-Aminopentanoic acid H(CH2)3CH(NH2)COOH 117.15 4, 416 303 320 subl 5.5 aq18; v sl s alc, chl, eth, PE a249 5-Aminopentanoic acid H2N(CH2)4COOH 117.15 4, 418 158–161 v s aq; sl s alc; i eth a250 5-Amino-1-pentanol H2N(CH2)5OH 103.17 41, 441 0.949 1.461520 35–37 12216mm 65 a251 2-Aminophenethyl al-cohol H2NC6H4CH2CH2OH 137.18 133, 1679 1.045 1.584920 1484mm 112 a252 2-Aminophenol H2NC6H4OH 109.13 13, 354 170–174 2 aq; 4.3 alc; v s eth a253 3-Aminophenol H2NC6H4OH 109.13 13, 401 122–123 16411mm 2.5 aq; v s hot aq, alc, eth a254 4-Aminophenol H2NC6H4OH 109.13 13, 427 190 1503mm 0.65 aq; 4.5 alc; 9.3 EtMeKetone58; s eth a255 4-Aminophenylaceto-nitrile H2NC6H4CH2CN 132.17 45–48 312 110 sl s hot aq; s alc a256 1-(3-Aminophenyl)-ethanol H2NC6H4CH(CH3)OH 137.18 133, 1654 68–71 a257 2-Amino-1-phenyl-ethanol H2NCH2CH(C6H5)OH 137.18 132, 361 56–58 16017mm v s aq; s alc 1.93 1-Aminonaphthalene, n17 1-Amino-2-naphthol-4-sulfonic acid, a189 1-Amino-2-naphthol-6-sulfonic acid, a197 1-Aminoorotic acid, a158 1-Aminopentane, p53 a227 a226 a236 a242 a244 a245 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent a258 1S,2S-()-2-Amino-1-phenyl-1,3-propane-diol C6H5CH(OH)CH(NH2)-CH2OH 167.21 13,4, 2968 109–113 a259 L-2-Amino-3-phenyl-1-propanol C6H5CH2(NH2)CH2OH 151.21 133, 1757 92–94 a260 3-Amino-1-phenyl-2-pyrazolin-5-one 175.19 210 d a261 N-Aminopiperidine 100.17 20, 89 0.928 1.475020 146730mm 36 a262 3-Amino-1,2-propane-diol H2NCH2CH(OH)CH2OH 91.11 4, 301 1.175 1.492020 265739mm 110 a263 DL-1-Amino-2-pro-panol CH3CH(OH)CH2NH2 75.11 4, 289 0.973 1.448320 2 160 76 v s aq, alc; i eth a264 DL-2-Amino-1-pro-panol CH3CH(NH2)CH2OH 75.11 41, 432 0.943 1.449520 173–176 83 v s aq, alc, eth a265 S-()-2-Amino-1-pro-panol CH3CH(NH2)CH2OH 75.11 43, 735 0.965 1.449820 176 62 v s aq, alc, eth a266 3-Amino-1-propanol H2NCH2CH2CH2OH 75.11 4, 288 0.982 1.461020 10–12 188 79 (TOC) s aq, alc a267 2-Amino-1-propene-1,1,3-tricarbonitrile NCC(CN)"C(NH2)CH2CN 132.13 Merck: 11, 495 171–173 s aq a268 3-Aminopropyl-(dieth-oxy)methylsilane H2N(CH2)3Si(CH3)-(OCH2CH3)2 191.4 0.91620 4 1.42720 888mm a269 1-(3-Aminopropyl)-imidazole 125.18 233, 577 1.049 1.519020 110 a270 N-(3-Aminopropyl)-iminodiethanol H2N(CH3)N(CH2CH2OH)2 162.23 0.1071 1.498020 1702mm 137 a271 N-(3-Aminopropyl)-morpholine 144.22 0.987220 20 1.476120 15 224 98 misc aq, alc, bz a272 N-(3-Aminopropyl)-2-pyrolidinone 142.20 1.014 1.50020 1231mm 110 a273 3-Aminopropyltri-ethoxysilane H2N(CH2)3Si(OC2H5)3 221.37 0.950620 4 1.422520 217 104 a274 3-Aminopropyltri-methoxysilane H2N(CH2)3Si(OCH3)3 179.29 1.0125 4 1.42025 808mm 83 a275 2-Aminopyridine (C5H4N)NH2 94.12 22, 428 58.1 210.6 92 s aq, alc, bz, eth 1.94 a276 3-Aminopyridine (C5H4N)NH2 94.12 22, 431 64 250–252 s aq, alc, bz, eth a277 4-Aminopyridine (C5H4N)NH2 94.12 22, 433 160–162 273 s aq, alc; sl s bz, eth a278 2-Aminopyrimidine 95.11 24, 80 125–127 subl v s aq a279 4-Aminoquinaldine 158.20 22, 453 167–169 333 sl s aq; v s alc, eth, acet; s hot bz a280 4-Aminosalicylic acid H2NC6H3(OH)CO2H 153.14 14, 579 150–151 0.2 aq; 4.8 alc; s dil acids, alk; sl s eth a281 5-Aminosalicylic acid H2NC6H3(OH)CO2H 153.14 14, 579 280 d a282 2-Aminoterephthalic acid H2NC6H3(CO2H)2 181.15 14, 558 324 d a283 5-Amino-1,2,3,4-tetra-zole hydrate 103.08 26, 403 204 d 1.95 4-Aminophenyl phenyl ether, p70 Aminophenyl sulfones, d47, d48 3-Aminophthalhydrazide, a151 5-Amino-m-phthalic acid, a114 Aminopicolines, a222, a223 1-Aminopropane, p223 2-Aminopropane, i100 3-Amino-1-propene, a76 N-(3-Aminopropyl)diethanolamine, a270 6-Aminopurine, a66 2-Amino-3-pyridinol, a193 Aminopyrimidinediols, a152, a153 2-Aminosuccinamic acid, a301 Aminosuccinic acid, a304 6-Amino-2-thiouracil, a187 a260 a261 a269 a271 a272 a278 a279 a283 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent a284 2-Amino-1,3,4-thiadi-azole 101.13 27, 624 190–192 a285 2-Aminothiazole 100.14 27, 155 93 sl s aq, alc, eth; s hot aq, HCl a286 2-Amino-2-thiazoline 100.14 27, 136 79–82 s HCl a287 2-Aminothiophenol H2NC6H4SH 125.19 13, 397 1.170 1.642020 19–21 720.1mm 79 a288 2-Aminotoluene-5-sul-fonic acid H2NC6H3(CH3)SO3H 187.22 14, 726 300 i aq12; v s hot aq a289 3-Amino-1,2,4-triazole 84.08 26, 137 150–153 s aq, alc, chl a290 5-Amino-1,3,3-tri-methylcyclohexane-methylamine H2N(C6H7)(CH3)3CH2NH2 170.30 0.922 1.488020 10 247 110 a291 5-Amino-2,2,4-tri-methylcyclopentane-methylamine 156.27 0.901 1.473320 221 97 a292 11-Aminoundecanoic acid H2N(CH2)10CO2H 201.31 190–192 a293 Aniline C6H5NH2 93.12 12, 59 1.02720 20 1.586320 6 184–186 70 3.5 aq25; s acids; misc most org solv a294 Aniline hydrochloride C6H5NH2·HCl 129.59 Merck: 12, 696 1.222 198 245 193 (CC) 100 aq; v s alc a295 2-Anilinoethanol C6H5NHCH2CH2OH 137.18 12, 182 1.085 1.579320 15210mm 153 sl s aq; v s alc, chl, eth a296 3-Anilinopropionitrile C6H5NHCH2CH2CN 146.19 52–53 110 a297 Anthracene 178.23 5, 657 1.2527 4 215-218 339–342 121 (CC) 1.5 alc; 1.6 bz; 1.2 chl; 3.1 CS2; 0.5 eth; i aq a298 9,10-Anthraquinone 208.20 7, 781 1.4320 4 286 377 185 (CC) 0.44 alc25; 0.6 chl20; 0.2 bz20; 0.11 eth25 a299 Antipyrine 188.23 24, 27 1.088113 4 111–114 319 100 aq; 77 alc; 100 chl; 2.3 eth a300 L-()-Arabinose 150.13 31, 32 157–160 100 aq; 0.4 alc a301 L-()-Arginine H2NC("NH)NH(CH2)3-CH(NH2)CO2H 174.20 4, 420 d 240 15 aq21; sl s alc 1.96 a302 L-()-Ascorbic acid 176.12 183, 3038 1.6525 190–192 33 aq; 3.3 alc; 1 glyc; i bz, chl, eth, PE a303 L-()-Asparagine H2NCOCH2CH(NH2)CO2H 132.12 4, 476 235 3.5 aq28; s alkalis, ac-ids; i alc, bz, eth 1.97 5-Amino-o-toluenesulfonic acid, a206 2-Amino-1,1,3-tricyanopropene, a267 1-Aminotricyclo[3.3.13,7]decane, a65 Aminouracil, a153 2-Aminovaleric acid, a248 5-Aminovaleric acid, a249 AMP, a216 Amyl compounds, see also Pentyl Amyl alcohol, p39 act-Amyl alcohol, m161 sec-Amyl alcohol, p40 tert-Amyl alcohol, m162 tert-Amylamine, d701 Amyl bromides, b325, b326 Amyl chloride, c204a -Amylcinnamaldehyde, p56 Amyl ether, d738 Amyl iodide, i47 Amyl mercaptan, p37 Amyl methyl ketone, h14 Anethole, m107 Angelic acid, m169 Anilinesulfonic acids, a115, a116, a117 Anisaldehydes, m51, m52, m53 Anisamide, m54 Anisic acids, m57, m58, m59 Anidisines, m48, m49, m50 Anisole, m55 p-Anisoyl chloride, m60 p-Anisyl alcohol, m61 Anthranilamide, a112 Anthranilic acid, a118 Araboascorbic acid, i61 APDC, p282 Arsanilic acids, a113 a285 a284 a286 a289 a291 a297 a298 a299 a300 a302 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent a304 L-()-Aspartic acid HO2CCH2CH(NH2)CO2H 133.10 4, 472 1.66112.5 270–272 0.45 aq; s alkalis, acids; i alc, eth a305 Atropine 289.38 21, 27 114–116 subl 110 high vac 0.22 aq; 50 alc; 4 eth; 100 chl; 3.9 glyc; s bz, dil acids a306 Aurintricarboxylic acid, triammonium salt 473.44 102, 775 225 d v s aq a307 2-Azacyclooctanone 127.19 21, 242 35–38 14810mm 110 a308 2-Azacyclotridecanone 197.32 150–153 a309 Azidotrimethylsilane (CH3)3SiN3 115.21 0.868 1.414020 95 95–96 23 a310 Azidotriphenylsilane (C6H5)3SiN3 301.4 83–84 1000.01mm a311 1-Aziridineethanol (C2H4N)CH2CH2OH 87.12 1.088 1.456020 168 67 a312 Azobenzene C6H5N"NC6H5 182.23 16, 8 1.20320 4 67–68 293 4.2 alc20; s eth, HOAc a313 2,2-Azobis(2-methyl-propionitrile) (CH3)2C(CN)N"N-C(CN)(CH3)2 164.21 4, 563 107 d 2 EtOH;20 5 MeOH;20 can explode in ace-tone a314 Azodicarbonamide H2NCON"NCONH2 116.08 3, 123 225 d i aq, alc; s hot aq a315 4,4-Azoxydianisole H3OC6H4N"N( : O)C6H4-OCH3 258.28 16, 637 120 a316 Azulene 128.17 52, 432 99–100 242 i aq; s org solvents 1.98 b1 Barbituric acid 128.09 24, 467 252 d s hot aq, dil acids b2 Basic fuchsin 337.86 13, 765 1.22 250 d 0.3 aq; s alc, acids b3 Benzaldehyde C6H5CHO 106.12 7, 174 1.05015 4 1.545620 26 179 63 0.3 aq; misc alc, eth b4 Benzamide C6H5CONH2 121.13 9, 195 1.3414 129–130 288–290 1.3 aq; 17 alc; 30 pyr b5 Benzanilide C6H5CONHC6H5 197.24 12, 262 1.315 163 11710mm i aq; 1.7 alc; sl s eth b6 1,2-Benzanthracene 228.29 5, 718 155–157 437.6 sl s hot aq; s org solv b7 2,3-Benzanthracene 228.29 52, 628 1.35 357 (Cu block) subl sl s most org solv b8 Benzene C6H6 78.11 5, 179 0.878715 4 1.501120 5.5 80.0 11 (CC) 0.17 aq; misc most org solv b9 Benzene-1,3,5-d3 C6H3D3 81.14 53, 518 0.908 1.499020 80 11 (CC) similar to ordinary benzene b10 Benzene-13C6 13C6H6 84.07 0.949 1.501020 5.5 80 11 (CC) similar to ordinary benzene b11 Benzene-d6 C6D6 84.16 53, 519 0.950 1.498620 6.8 79.1 11 (CC) similar to ordinary benzene b12 Benzenearsonic acid C6H5AsO(OH)2 202.03 16, 868 1.76025 162 2.5 aq; 2 alc; i chl 1.99 Aspirin, a56 Azabenzene, p257 Azacyclopentane, p280 Azacyclopropane, e146 1-Azanaphthalene, q3 Azelaic acid, n93 Azine, p257 Aziridine, e148 Azobis(isobutyronitrile), a313 Azole, p279 4,4-Azoxyanisole, a315 Barbitol, d339 Behenyl alcohol, d817 Benzal bromide, d132 Benzal chloride, d273 Benzalphthalide, b105 Benzeneacetaldehyde, p77 a307 a305 a306 a308 b1 b2 b6 b7 a316 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent b13 Benzeneboronic acid C6H5B(OH)2 121.94 16, 920 216 2.5 aq; 1.8 bz; 30 eth; 178 MeOH b14 1,4-Benzenedicarb-aldehyde C6H4(CHO)2 134.13 7, 675 113 248 i aq; 6 bz; 17 acet; 2 eth; 14 diox; 46 MeOH b15 1,2-Benzenedicarbonyl dichloride C6H4(COCl)2 203.02 9, 834 1.40920 15–16 280–282 d aq, alc; s eth b16 1,4-Benzenedicarbonyl dichloride C6H4(COCl)2 203.02 9, 844 81 266 180 37 bz; 9 CCl4 b17 1,3-Benzenedicarbox-ylic acid C6H4(COOH)2 166.13 9, 832 345–348 subl 0.012 aq; v s alc, HOAc; i bz, PE b18 1,4-Benzenedicarbox-ylic acid C6H4(COOH)2 166.13 9, 841 subl 402 sl s alc; s alkalis; v sl s aq, chl, eth b19 1,4-Benzenedimetha-nol C6H4(CH2OH)2 138.17 6, 919 1.100117 117–119 1431mm 188 b20 Benzenehexacar-boxylic acid C6(COOH)6 342.17 9, 1008 286 d v s aq, alc b21 Benzenesulfinic acid C6H5S("O)OH 142.16 11, 2 85 100 d sl s aq; s alc, bz, eth b22 Benzenesulfonamide C6H5SO2NH2 157.19 11, 39 150–152 i aq; sl s alc; s eth b23 Benzenesulfonic acid C6H5SO2OH 158.18 11, 26 50–51 v s aq, alc; sl s bz; i CS2, eth b24 Benzenesulfonyl chlo-ride C6H5SO2Cl 176.62 11, 34 1.384215 15 1.551820 14.5 12010mm 110 i aq; s alc, eth b25 Benzenesulfonyl fluo-ride C6H5SO2F 160.17 112, 23 1.328620 4 1.492020 5 207–208 87 s alc, eth b26 Benzenesulfonyl hy-drazide C6H5SO2NHNH2 172.21 11, 52 d 104 flammable solid b27 1,2,4,5-Benzenetetra-carboxylic acid C6H2(COOH)4 254.15 9, 997 276 1.5 aq; v s alc b28 1,2,4,5-Benzenetetra-carboxyl dianhy-dride 218.12 19, 196 283–286 397–400 b29 1,2,3-Benzenetricarb-oxylic acid dihyrate C6H3(COOH)3·2H2O 246.18 9, 976 192 d sl s aq; v s eth 1.100 b30 1,2,4-Benzenetricarb-oxylic acid C6H3(COOH)3 210.14 9, 997 231 d 2.1 aq; 25.3 alc; 7.9 acet; v s eth b31 1,3,5-Benzenetricarb-oxylic acid C6H3(COOH)3 210.14 9, 978 330 sl s aq; v s alc; s eth b32 1,2,4-Benzenetricarb-oxylic anhydride 192.13 18, 468 161–163 24514mm 50 acet; 22 EtOAc; 15 DMF b33 1,3,5-Benzenetricarb-oxylic trichloride C6H3(COCl)3 265.48 35–36 18016mm 110 b34 1,2,4-Benzenetriol C6H3(OH)3 126.11 6, 1087 141 v s aq, alc, eth, EtOAc b35 Benzil C6H5CO9COC6H5 210.23 7, 747 1.2315 4 95 346–348 i aq; s alc, bz, chl, EtOAc, eth b36 Benzil dioxime C6H5C("NOH)-C("NOH)C6H5 240.25 73, 3816 () 240 () 214 i aq, HOAc, eth; sl s alc; s NaOH b37 Benzilic acid (C6H5)2C(OH)COOH 228.24 10, 342 150 sl s aq; v s alc, eth hot aq b38 Benzil monohydrazone C6H5C("NNH2)COC6H5 224.26 71, 394 150–152 b39 Benzimidazole 118.13 23, 131 170.5 360 sl s aq, eth; v s alc b40 7,8-Benzo-1,3-diaza-spiro[4,5]decane-2,4-dione 216.23 Merck: 12, 9372 268 s alc, HOAc b41 1,4-Benzodioxan 136.15 1.142 1.549020 1036mm 87 1.101 Benzeneazobenzene, a312 Benzenecarbonitrile, b51 Benzenecarbonyl chloride, b66 Benzenecarboxyaldehyde, b3 Benzenecarboxylic acid, b44 Benzene-1,2-dicarboxylic acid, p168 Benzene-1,2-dicarboxylic anhydride, p169 1,4-Benzenediol, h86 Benzenemethanol, b78 1,2,3-Benzenetriol, t317 Benzenethiol, t156 Benzhydrazide, b71 Benzhydrol, d760 Benzhydrylamine, d761 Benzhydryl bromide, b326 p-Benzidine, b140 2-Benzimidazolethiol, m17 1,3-Benzodiazole, b39 1,2,3-Benzodioxaborole, c22 1,3-Benzodioxole, m251 b28 b39 b41 b40 b32 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent b42 2,3-Benzofuran 118.13 17, 54 1.072 1.566020 18 173–175 56 i aq; misc alc, bz, eth, PE b43 Benzofurazan-1-oxide 136.11 271, 740 69–71 b44 Benzoic acid C6H5COOH 122.12 9, 92 1.321 122.4 249 121 (CC) 0.29 aq25; 43 alc; 10 bz; 22 chl; 33 eth; 33 acet; 30 CS2 b45 Benzoic anhydride (C6H5CO)2O 226.22 9, 164 1.198915 4 42 360 110 i aq; s alc, acet, chl bz, HOAc, EtOAc b46 DL-Benzoin C6H5COCH(OH)C6H5 212.25 8, 167 1.310020 4 137 19412mm s hot alc, acet; 20 pyr; sl s eth b47 Benzoin ethyl ether C6H5CH(C2H5)COC6H5 240.30 8, 174 1.101617 4 1.572717 62 19520mm s alc, bz, eth b48 Benzoin isobutyl ether C6H5CH[OCH2CH(CH3)2]-COC6H5 268.36 0.985 1.548520 1330.5mm 85 b49 Benzoin methyl ether C6H5CH(OCH3)COC6H5 226.28 8, 174 1.127814 4 48 18915mm 110 v s alc, bz, eth b50 -Benzoinoxime C6H5CH(OH)C("NOH)-C6H5 227.26 8, 175 152–156 sl s aq; s alc, NH4OH b51 Benzonitrile C6H5CN 103.12 9, 275 1.010 1.528920 12.7 191 71 0.2 aq; misc org solv b52 1,2-Benzophen-anthrene 202.26 5, 718 1.27420 4 258 448 i aq; s alc, eth b53 Benzophenone C6H5COC6H5 182.22 7, 411 1.110818 4 1.597545 48 305 110 13.3 alc; 17 eth; s chl b54 Benzophenone hydra-zone C6H5C("NNH2)C6H5 196.25 7, 417 95–98 23055mm b55 1-Benzopyran-4(4H)-one 146.15 17, 327 55–60 b56 1,2-Benzo[a]pyrene 252.32 Merck: 12, 1134 179 31210mm s bz; sl s alc b57 4,5-Benzo[e]pyrene 252.32 Merck: 12, 1105 179 s bz b58 1,4-Benzoquinone C6H4("O)2 108.10 7, 609 1.31820 4 116 sl s aq; s alc, hot bz, eth, hot PE; alkalis with dec b59 Benzothiazole 135.19 Merck: 12, 1139 1.246020 4 1.637920 2 13134mm 110 sl s aq; v s alc, CS2 b60 Benzo[b]thiophene 134.20 17, 59 1.193740 1.630240 32 221 110 s alc, bz, chl, eth 1.102 b61 1,2,3-Benzotriazole 119.13 26, 38 1.238 1.642020 98.5 204 may explode sl s aq; s alc, bz, chl, DMF b62 Benzoxazole 119.12 27, 42 1.5594 30 182 58 sl s aq b63 1-Benzoylacetone C6H5COCH2COCH3 162.19 7, 680 1.09060 60 60 260 sl d sl s aq; v s alc, eth b64 2-Benzoylbenzoic acid C6H5COC6H4COOH 226.23 10, 747 129 265 sl s aq; v s alc, eth b65 Benzoyl bromide C6H5COBr 185.03 9, 195 1.546720 1.588320 24 219 90 d aq, alc; misc eth b66 Benzoyl chloride C6H5COCl 140.57 9, 182 1.21120 4 1.553720 1.0 197.2 88 (CC) d aq, alc; misc bz, eth CS2 b67 Benzoyl cyanide C6H5COCN 131.13 10, 659 1.106 32 206 i aq b68 Benzoyl fluoride C6H5COF 124.11 9, 181 1.140 1.496020 28 161 48 d hot aq; v s alc, eth b69 Benzoylformic acid C6H5COCOOH 150.13 10, 654 67–69 1.103 Benzofuroxan, b43 Benzoglyoxaline, b39 Benzoic acid hydrazide, b71 Benzhydroxylamine, a159 o-Benzoic sulfimide, s1 Benzo[def]phenanthrene, p255 Benzopyridine, q3 Benzoresorcinol, d443 2-Benzothiazolethiol, m19 Benzotrichloride, t251 Benzotrifluoride, t311 Benzoylamide, b4 Benzoylbenzene, b53 Benzoyl peroxide, d69 1,2-Benzophenanthrene, b6 b42 b52 b56 b55 b43 b57 b59 b60 b62 b61 b70 N-Benzoylglycine C6H5CONHCH2COOH 179.18 9, 225 179 0.4 aq; 0.1 chl; 0.25 eth; sl s alc; i bz, PE b71 Benzoylhydrazine C6H5CONHNH2 136.15 9, 319 117 b71a Benzoyl peroxide (C6H5CO)2O2 242.23 9, 179 103–106 explodes 2.5 CS2; s bz, chl, eth b72 3-Benzoylpropanoic acid C6H5COCH2CH2COOH 178.19 10, 696 117–119 sl s aq; s alc b73 2-Benzoylpyridine C6H5CO(C5H4N) 183.21 21, 330 44 317 150 b74 3-Benzoylpyridine C6H5CO(C5H4N) 183.21 21, 331 40 397 150 s alc, bz, eth b75 4-Benzoylpyridine C6H5CO(C5H4N) 183.21 21, 331 71 315 150 s alc, bz, eth b76 Benzyl acetate CH3CO2CH2C6H5 150.18 6, 435 1.05025 4 1.499825 51.5 213.5 102 (CC) i aq; misc alc, eth b77 Benzyl acetoacetate CH3COCH2CO2CH2C6H5 192.21 6, 438 1.112 1.512120 15910mm 110 b77a Benzylacetone C6H5CH2CH2COCH3 148.21 7, 314 0.989 1.512220 235 98 b78 Benzyl alcohol C6H5CH2OH 108.14 6, 428 1.045320 4 1.540320 15.2 205 93 (CC) 0.08 aq; misc alc, chl, eth b79 Benzylamine C6H5CH2NH2 107.16 12, 1013 0.98319 4 1.540120 10 185 60 misc aq, alc, eth b80 N-Benzylaminoethanol C6H5CH2NHCH2CH2OH 151.21 12, 1040 1.065 1.543520 15612mm 110 b81 3-(Benzylamino)-propanonitrile C6H5CH2NHCH2CH2CN 160.22 1.024 1.530820 110 b82 N-Benzylbenzamide C6H5CH2NHCH2C6H5 211.26 106 b83 Benzyl benzoate C6H5CO2CH2C6H5 212.25 9, 121 1.11825 4 1.568121 21 323 148 misc alc, chl, eth b84 2-Benzylbenzoic acid C6H5CH2C6H4COOH 212.24 92, 471 110–113 sl s aq; s alc, bz, chl, eth b85 Benzyl bromide C6H5CH2Br 171.04 5, 306 1.438022 0 1.575220 3.9 199 86 slowly dec aq b86 Benzyl 2-bromoacetate BrCH2CO2CH2C6H5 229.08 61, 220 1.446 1.544020 17022mm 110 b87 Benzyl-tert-butanol C6H5CH2CH2C(CH3)2OH 164.25 6, 548 1.509020 31–33 14485mm 110 b88 Benzyl butyl 1,2-phthalate C6H5CH2O2C6H4CO2C4H9 312.37 92, 594 1.11925 25 1.540020 199 b89 Benzyl carbamate C6H5CH2OCONH2 151.17 6, 437 87–89 220 d v s alc; sl s eth b90 Benzyl chloride C6H5CH2Cl 126.59 5, 292 1.10020 20 1.538120 43 to 49 179 67 misc alc, chl, eth 1.104 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent b91 Benzyl chloroformate C6H5CH2OCOCl 170.60 6, 437 1.195 1.519020 10320mm 91 dec aq; s eth b92 Benzyl chlorothiol-formate C6H5CH2SCOCl 186.5 1.23730 4 1.571130 800.13mm 118 b93 Benzyl cinnamate C6H5CH"CHCO2CH2C6H5 238.29 9, 584 39 2005mm 110 s alc, eth; i aq, glyc b94 S-Benzyl-L-cysteine C6H5CH2SCH2CH(NH2)-COOH 211.28 6, 465 214 d b95 Benzyl N,N-dimethyl-dithiocarbamate (CH3)2NCS2CH2C6H5 211.35 41 110 b96 Benzyldimethylstearyl-ammonium chloride hydrate C6H5CH2N[(CH2)17CH3]-(CH3)2Cl·H2O 442.18 123, 2212 67–69 b96a N-Butyl-N-ethylaniline C6H5N(CH2C6H5)C2H5 211.31 12, 1026 1.029 1.595020 1646mm 110 b97 Benzyl ethyl ether C6H5CH2OC2H5 136.20 Merck: 12, 1168 0.947820 1.495520 186 misc alc, eth; i aq b98 N-Benzylformamide C6H5CH2NHCHO 135.17 12, 1043 61 b99 Benzyl formate C6H5CH2O2CH 136.15 Merck: 12, 1169 1.08120 4 203 i aq; s alc b100 Benzyl 4-hydroxy-benzoate HOC6H4CO2CH2C6H5 228.25 10,3, 311 110–112 b101 O-Benzylhydroxyl-amine hydrochlo-ride C6H5CH2ONH2·HCl 159.62 6, 440 238 subl 110 b102 Benzylidineaniline C6H5N"CHC6H5 181.24 12, 195 1.04550 4 56 300 110 s alc, chl, CS2 b103 Benzylidenemalono-nitrile C6H5CH"C(CN)2 154.17 9, 895 83–85 b104 N-Benzylidenemethyl-amine C6H5CH"NCH3 119.17 7, 213 0.967 1.552020 8018mm 112 1.105 Benzylaniline, p93 Benzylbenzene, d759 Benzyl cyanide, p82 Benzyl disulfide, d72 Benzyl ethanoate, b76 N-Benzylethanolamine, b80 Benzyl ether, d73 Benzylideneacetone, p94 Benzylideneacetophenone, c23 Benzylidene chloride, d273 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent b105 3-Benzylidene-phthalide 124.21 17, 376 99–102 b106 Benzyl mercaptan C6H5CH2SH 222.24 6, 453 1.05820 1.575120 20630mm 110 b107 Benzyl methacrylate H2C"C(CH3)CO2CH2C6H5 176.22 63, 1481 1.040 1.512020 984mm 77 b108 N-Benzylmethylamine C6H5CH2NHCH3 138.23 12, 1019 0.939 1.523020 184–189 77 b109 3-(N-Benzyl-N-methyl-amino)-1,2-propane-diol C6H5CH2N(CH3)CH2-CH(OH)CH2OH 195.26 1.084 1.534120 20630mm 110 b110 Benzyl methyl sulfide C6H5CH2SCH3 138.23 6, 453 1.015 1.562020 195–198 73 b111 1-Benzyl-3-methyl-2-thiourea C6H5CH2NHC("S)NHCH3 180.27 12, 1052 74–76 b112 Benzyl nicotinate (C5H4N)CO2CH2C6H5 213.24 22,3, 366 1.165 1.570020 21–23 18912mm 110 b113 4-Benzyloxybenz-aldehyde C6H5CH2OC6H4CHO 212.25 8, 73 73–74 b114 4-Benzyloxybenzyl al-cohol C6H5CH2OC6H4CH2OH 214.26 86–87 b115 2-Benzyloxyethanol C6H5CH2OCH2CH2OH 152.20 62, 413 1.0720 20 1.521020 265 129 0.4 aq b116 4-Benzyloxy-3-meth-oxybenzaldehyde C6H5CH2OC6H4(OCH3)CHO 242.29 63–65 b117 4-(Benzyloxymethyl)-2,2-dimethyl-1,3-dioxolane 222.28 192, 73 1.051 1.494020 910.1mm 110 b118 Benzyl phenyl sulfide C6H5CH2SC6H5 200.30 6, 454 41–44 19727mm 110 i aq; sl s alc; s eth b119 1-Benzylpiperazine 176.26 1.014 1.546720 110 s aq, alc, eth b120 4-Benzylpiperidine 175.28 20, 296 0.997 1.537920 6–7 279 110 b121 1-Benzyl-4-piperidone 189.26 1.021 1.539920 1347mm 110 b122 2-Benzylpyridine C6H5CH2(C5H4N) 169.23 20, 425 1.054 1.579020 8–10 276 125 i aq; v s alc, eth b123 4-Benzylpyridine C6H5CH2(C5H4N) 169.23 20, 426 1.06120 0 1.581820 287 115 s alc; v s eth b124 1-Benzyl-2-pyrrolidi-none 175.23 1.095 1.552520 110 b125 Benzyl salicylate HOC6H4CO2CH2C6H5 228.25 Merck: 12, 1181 1.17520 20825mm sl s aq; misc alc, eth b126 Benzyl thiocyanate C6H5CH2SCN 149.22 6, 460 43 235 110 i aq; s alc; v s eth b127 Benzyltributyl-ammonium chloride C H CH N(C H ) Cl 6 5 2 4 9 3 312.94 164 d 1.106 b128 Benzyltrichlorosilane C6H5CH2SiCl3 225.28 16, 912 1.28820 4 1.525020 142100mm 93 b129 Benzyltriethoxysilane C6H5CH2Si(OC2H5)3 254.40 0.98620 4 17570mm b130 Benzyltriethylammo-nium chloride C H CH N(C H ) Cl 6 5 2 2 5 3 227.78 12, 1021 185 d b131 Benzyltrimethylam-monium chloride C H CH N(CH ) Cl 6 5 2 3 3 185.70 12, 1021 239 d none b132 Benzyltrimethylsilane C6H5CH2Si(CH3)3 164.32 16,1, 526 0.893320 1.494120 190 57 b133 Betaine (CH3)3NCH2COO 117.15 4, 347 dec 310 160 aq; 55 MeOH; 8.7 EtOH 1.107 Benzyl methyl ketone, p147 Benzyloxyamine, b101 Benzylphenol, h116 o,o-Bibenzoic acid, b141 Bibenzyl, d752 Bicine, b199 b117 b120 b124 b121 b119 b105 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent b134 Bicyclo[2.2.1]hepta-2,5-diene 92.14 0.90920 1.470720 20 89 11 i aq; s PE b135 Bicyclo[2.2.1]-2-hep-tene 94.16 44–46 96 15 s eth b136 Bicyclo[2.2.1]-2-hep-tene-2-carbaldehyde 122.16 1.108 1.488320 7012mm 51 b137 Biguanide H2NC("NH)NH-C("NH)NH2 101.11 3, 93 130 dec 142 s aq, alc; i bz, chl, eth b138 Biphenyl C6H59C6H5 154.20 5, 578 0.99175 4 1.58877 69–71 256 113 (CC) i aq; s alc, eth b139 4-Biphenylcarboxylic acid C6H59C6H4COOH 198.22 9, 671 226 subl v s alc, eth; s bz; i aq b140 4,4-Biphenyldiamine H2NC6H49C6H4NH2 184.24 13, 214 120 ca. 400 s alc; 2 eth; 20 hot alc b141 2,2-Biphenyldi-carboxylic acid HOOCC6H49C6H4COOH 242.23 9, 922 228–229 0.06 aq; s org solvents b142 4-Biphenylsulfonic acid C6H59C6H4SO3H 234.26 138 b143 2-Biphenylyl glycidyl ether 226.28 30–32 1200.1mm b144 2,2-Bis[4-(allyloxy)-phenyl]-propane H2C"CHCH2OC6H4-C(CH3)2C6H49OCH2CH"CH2 308.42 1.022 1.563620 110 b145 N,N-Bis(3-amino-propyl)ethylenedi-amine H2N(CH2)3NHCH2-CH2NH(CH2)3NH2 174.29 0.952 1.491020 1605mm 110 b146 N,N-Bis(3-amino-propyl)piperazine 200.33 232, 12 0.973 1.501520 15 1522mm 162 b147 N,N-Bis(3-amino-propyl)-1,3-propane-diamine H2N(CH2)3NHCH2CH2CH2-NH(CH2)3NH2 188.32 44, 1278 0.920 1.491520 1031mm b148 Bis(2-bromoethyl) ether BrCH2CH2OCH2CH2Br 231.92 10720mm b149 1,3-Bis(bromoethyl)-tetramethyldisilox-ane [BrCH2Si(CH3)2]2O 320.17 1.391820 4 1.471920 10415mm 1.108 b150 2,2-Bis(bromomethyl)-1,3-propanediol HOCH2CH(CH2Br)2CH2OH 261.95 11, 251 114 b151 Bis(2-butoxyethyl)-ether (C4H9OCH2CH2)2O 218.34 0.885320 20 1.424020 60.2 256 118 0.3 aq; misc alc, es-ters, eth, CCl4 ke-tones b152 Bis[2-(2-butoxyethoxy)-ethyl] adipate [-CH2CH2CO2(CH2CH2O)2-(CH2)3CH3]2 434.58 23, 1718 1.010 1.448020 11 110 b153 2,5-Bis(5-tert-butyl-2-2-benzoxazolyl)-thiophene 430.57 201 b154 Bis(sec-butyl) disulfide [CH3CH2CH(CH3)]2S2 178.36 13, 1549 0.957 1.492020 164739mm 112 b155 Bis(tert-butyl) disul-fide (CH3)3CSSC(CH3)3 178.36 1, 379 0.909 1.493020 204 79 b156 1,1-Bis(tert-butylper-oxy)cyclohexane C6H10[OOC(CH3)3]2 260.38 0.970 1.457020 5415mm 90 1.109 Bicyclo[4.4.0]decane, d2, d3 Bicyclo[5.3.0]decapentane, a316 Biformyl, g28 Biphenol, d436 Biphenylamines, a130, a131 2,2-Bipyridine, d790 Bis(2-aminoethyl)amine, d362 Bis(4-aminophenyl)ether, o67 1,3-Bis(aminomethyl)cyclohexane, c349 1,2-Bis(benzylamino)ethane, d74 Bis(3-tert-butyl-4-hydroxy-5-ethylphenyl) sulfide, t140 b143 b153 b146 b136 b134 b135 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent b157 2,5-Bis(tert-butylper-oxy)-2,5-dimethyl-hexane [(CH3)3COOC(CH3)2CH2-]2 290.45 0.877 1.423020 577mm 41 b158 2,5-Bis(tert-butylper-oxy)-2,5-dimethyl-3-hexyne (CH3)3COOC(CH3)2C#C-C(CH3)2OOC(CH3)3 286.41 14, 2701 0.881 1.432020 672mm 85 b159 Bis[1-(tert-butylper-oxy)-1-methylethyl-benzene C6H4[C(CH3)2OOC(CH3)3]2 338.49 44–48 flammable solid oxi-dizer b160 1,1-Bis(tert-butylper-oxy)-3,3,5-tri-methyl-cyclohexane [(CH3)3COO]2C6H7(CH3)3 302.46 0.906 1.441020 87 b161 1,2-Bis(2-chloro-ethoxy)ethane (ClCH2CH2OCH2-)2 187.07 13, 2079 1.19720 4 1.461020 235 121 b162 Bis(2-chloroethoxy)-methylsilane H(CH3)Si(OCH2CH2Cl)2 203.1 1.164320 4 1.443120 9718mm b163 Bis(2-chloroethyl) ether ClCH2CH2OCH2CH2Cl 143.01 12, 335 1.222020 20 1.457520 50 to 52 178.5 55 s most org solvents b164 Bis(2-chloroethyl)-N-methylamine CH3N(CH2CH2Cl)2 156.07 1.11825 4 60 7510mm v sl s aq; misc most org solvents b165 Bis(chloromethyl)di-methylsilane (CH3)2Si(CH2Cl)2 157.12 43, 1845 1.97520 4 1.460020 160 46 b165a Bis(chloromethyl) ether ClCH2OCH2Cl 114.96 Merck: 12, 3119 1.31520 4 1.4346 41.5 106 dec aq b166 Bis(2-chloro-1-methyl)ethyl ether ClCH2CH(CH3)OCH(CH3)-CH2Cl 171.07 1.112220 20 187.3 85 b167 1,3-Bis(chloromethyl)-tetramethyldisilox-ane [ClCH2Si(CH3)2]2O 231.3 43, 1864 1.050 1.440520 205 73 b168 Bis(4-chlorophenoxy)-acetic acid (ClC6H4O)2CHCOOH 313.14 140–142 1.110 b169 2,2-Bis(4-chloro-phenyl)-1,1-di-chloroethane (ClC6H4)2CHCHCl2 320.05 53, 1830 110 similar to b168 b170 1,1-Bis(4-chloro-phenyl)ethanol (ClC6H4)2C(OH)CH3 267.16 63, 3396 69 s org solvents b171 Bis(4-chlorophenyl) sulfone ClC6H4SO2C6H4Cl 287.16 6, 327 145–148 25010mm b172 Bis(4-chlorophenyl) sulfoxide ClC6H4S(O)C6H4Cl 271.17 61, 149 141–144 b173 1,1-Bis(4-chloro-phenyl)-2,2,2-tri-chloroethane (ClC6H4)2CHCCl3 354.49 53, 1833 109–111 58 acet; 78 bz; 45 chl; v s pyr, 1,4-dioxane b174 1,2-Bis(dichlorometh-ylsilyl)ethane [-CH2Si(CH3)Cl2]2 256.11 44, 192 1.263 1.476020 33–35 210 90 b175 1,3-Bis(dichloro-methyl)tetramethyl-disiloxane [ClCH(CH3)2Si]2O 300.16 1.221320 4 1.466020 14940mm b176 N,N-Bis(2,2-diethoxy-ethyl)methylamine [(C2H5O)2CHCH2]2NCH3 263.38 4, 311 0.945 1.425920 222244mm 60 b177 4,4-Bis(diethyl-amino)benzo-phenone [(C2H5)2NC6H4]2C"O 324.47 14, 98 95 b178 4,4-Bis(dimethyl-amino)benzophe-none (CH3)2NC6H4]2C"O 268.35 14, 89 172 360 d s alc, warm bz; v sl s eth; i aq b179 Bis(dimethylamino)di-methylsilane [(CH3)2N]Si(CH3)2 146.31 44, 4143 0.81022 1.417020 98 128–129 7 b180 1,3-Bis(dimethyl-amino)-2-propanol [(CH3)2NCH2]2CHOH 146.23 4, 290 0.897 1.442220 110 b181 2,4-Bis(,-dimethyl-benzyl)phenol [C6H5C(CH3)2]2C6H3OH 330.47 64, 5076 63–65 20615mm b182 1,1-Bis(3,4-dimethyl-phenyl)ethane [(CH3)2C6H3]2CHCH3 238.38 53, 1908 0.982 1.564020 1745mm 110 b183 Bis(dimethylthio-carbamyl) disulfide [(CH3)2NC("S)S-]2 240.43 4, 76 1.29 155–156 s alc, eth; sl s bz, acet; i aq 1.111 Bis(4-chlorophenyl) sulfone, c223 Bis(2-cyanoethyl) ether, a62 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent b184 Bis(3,4-epoxycyclo-hexylmethyl) adi-pate 366.46 1.149 1.4930 110 b185 1,4-Bis(2,3-epoxy-pro-poxy)butane [H2C9CHCH2OCH2CH2]2 O 202.25 1.049 1.453020 16011mm 110 b186 Bis(2-ethoxyethyl) ether (C2H5OCH2CH2)2O 162.23 12, 519 0.90720 4 1.411020 45 188 82 v s aq, alc, org sol-vents b187 Bis(2-ethylhexyl) adipate [-CH2CH2CO2CH(C2H5)-(CH2)3CH3]2 370.58 23, 1715 0.990 1.442520 1671mm 110 b188 Bis(2-ethylhexyl)-amine [CH3(CH2)3CH(C2H5)-(CH2)3CH3]2 241.46 43, 388 0.805 1.442520 1235mm 110 b189 Bis(2-ethylhexyl) chlorendate 613.28 1.240 1.50020 2330.3mm 110 b190 Bis(2-ethylhexyl) decanedioate CH3(CH2)3CH(C2H5)CH2-OOC(CH2)8COOCH2-CH(C2H5)(CH2)3CH3 426.66 0.911925 25 1.449625 b191 Bis(2-ethylhexyl) hydrogen phosphate [CH3(CH2)3CH(C2H5)-CH2O]2P(O)OH 322.43 14, 1786 0.965 1.443020 60 20910mm 110 b192 Bis(2-ethylhexyl) hydrogen phosphite [CH3(CH2)3CH(C2H5)-CH2O]2POH 306.43 0.916 1.442020 110 b193 Bis(2-ethylhexyl) o-phthalate [CH3(CH2)3CH(C2H5)-CH2OOC]2C6H4 390.56 Merck: 12, 1291 0.984320 1.485920 50 to 55 384 218 0.01 aq b194 Bis(2-ethylhexyl) 1,4-phthalate [CH3(CH2)3CH(C2H5)-CH2OOC]2C6H4 390.56 9,4, 3306 0.980 1.490020 30–34 400 110 b195 Bis(4-fluorophenyl)-methane (FC6H4)2CH2 204.22 53, 1789 1.145 1.536220 29–30 260742mm 110 b196 Bis(hexamethylene)-triamine [H2N(CH2)6]2NH 215.39 33–36 1654mm 110 b197 1,4-Bis(2-hydroxy-ethoxy)-2-butyne HOCH2CH2OCH2C#CCH2-OCH2CH2OH 174.20 1.144 1.485020 110 b198 Bis(2-hydroxyethyl) ether HOCH2CH2OCH2CH2OH 106.12 1, 468 1.118420 20 1.446020 10.4 246 118 misc aq, alc, acet, eth b199 N,N-Bis(2-hydroxy-ethyl)glycine (HOCH2CH2)2NCH2COOH 163.17 Merck: 12, 1248 193–195 17.9 aq0 1.112 b200 2,6-Bis(hydroxy-methyl)-p-cresol CH3C6H2(CH2OH)2OH 168.19 6, 1127 128–130 b201 2,2-Bis(hydroxy-methyl)propanoic acid (HOCH2)2C(CH3)COOH 134.13 3, 401 181–185 s aq, MeOH; sl s acet; i bz b202 4,8-Bis(hydroxy-methyl)tricyclo-[5.2.1.02,6]decane 196.29 64, 5538 1.528020 110 b203 4,4-Bis(4-hydroxy-phenyl)pentanoic acid CH3C(C6H4OH)2CH2-CH2COOH 286.33 Merck: 12, 3370 171–172 higher melting form s hot aq, acet, alc, HOAc, MeEtKe b204 Bis(2-hydroxypropyl) ether HO(CH2)3O(CH2)3OH 134.18 12, 537 1.025220 20 1.441020 231.8 137 misc aq, alc b205 1,3-Bis(isocyanato-methyl)benzene C6H4(CH2NCO)2 188.19 133, 334 1.202 1.591020 7 1302mm 110 b206 1,3-Bis(isocyanato-methyl)cyclohexane C6H10(CH2NCO)2 194.24 1.101 1.485020 110 b207 1,3-Bis(1-isocyanato-1-methylethyl)-benzene C6H4[C(CH3)2NCO]2 244.30 1.060 1.511020 1060.9mm 153 b208 Bis(2-mercaptoethyl) ether (HSCH2CH2)2O 138.25 1.114 80 217 98 b209 Bis(2-mercaptoethyl) sulfide (HSCH2CH2)2S 154.32 1.183 1.596120 13610mm 90 1.113 Bis(2-ethylhexyl) sebacate, b190 1,2-Bis(2-hydroxyethoxy)ethane, t280 Bis(2-hydroxyethyl) sulfide, t144 2,2-Bis(hydroxymethyl)-1,3-propanediol, p19 Bis(4-hydroxyphenyl) sulfide, t145 4,4-Bis(hydroxyphenyl)valeric acid, b203 b189 b202 b184 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent b210 1,4-Bis(methanesulfon-oxy)butane (CH3SO2OCH2CH2-)2 246.30 115–117 sl hyd aq; 0.1 alc; 1.4 acet b211 1,2-Bis(methoxy-ethoxy)ethane (CH3OCH2CH2OCH2-)2 178.23 0.99020 4 1.422420 45 216 110 misc aq b212 Bis[2-(2-methoxy-ethoxy)ethyl] ether (CH3OCH2CH2OCH2CH2)2O 228.28 13, 2107 1.008720 4 1.433020 27 275 140 s aq b213 Bis(2-methoxyethyl)-amine (CH3OCH2CH2)2NH 133.19 43, 691 0.902 1.419020 172 58 b214 Bis(2-methoxyethyl) ether (CH3OCH2CH2)2O 134.18 12, 520 0.944025 1.404325 64 to 68 162 67 misc aq b214a 2,2-Bis(4-methoxy-phenyl)-1,1,1-trichloroethane (CH3OC6H4)2CHCCl3 345.66 6, 1007 86–88 v sl s aq; s alc b215 Bis(2-methylallyl) carbonate [H2C"C(CH3)CH2O]2C"O 170.21 0.943 1.437020 202 72 b216 Bis(3-nitrophenyl) disulfide O2NC6H4SSC6H4NO2 308.33 6, 339 83 i aq; s alc; v s eth b217 Bis(octadecyl)penta-erythritol diphos-phite [C18H37OP(OCH2)2-]2 721.01 0.925 1.457 40 261 b218 1,4-Bis(5-phenyloxa-zol-2-yl)benzene 364.40 244 b219 N,N-Bis(salicylidene)-1,4-butanediamine HOC6H4CH"N(CH2)4-N"CHC6H4OH 296.37 83, 163 88–90 b220 N,N-Bis(salicylidene)-ethylenediamine (-CH2N"CHC6H4OH)2 268.32 8, 48 128 b221 N,N-Bis(salicylidene)-1,6-hexanediamine HOC6H4CH"N(CH2)6-N"CHC6H4OH 324.44 83, 165 69 b222 Bis(p-tolyl) disulfide CH3C6H4SSC6H4CH3 246.39 6, 425 43–46 i aq; s alc; v s eth b223 Bis(p-tolyl) sulfoxide CH3C6H4S(:O)C6H4CH3 230.33 6, 419 94–96 v s alc, bz, chl, eth b224 Bis(tributyltin) oxide (C4H9)3SnOSn(C4H9)3 596.08 1.170 1.486020 1802mm 110 b225 1,4-Bis(trichloro-methyl)benzene Cl3CC6H4CCl3 312.84 5, 385 108–110 i aq; 26 acet; 38 bz 1.114 b226 Bis(2,4,5-trichloro-phenyl) disulfide Cl3C6H2SSC6H2Cl3 425.01 140–144 b227 1,2-Bis(trichlorosilyl)-ethane Cl3SiCH2CH2SiCl3 296.94 44, 4266 1.48320 4 1.475020 24.5 202 65 b228 3,5-Bis(trifluoro-methyl)aniline (F3C)2C6H3NH2 229.13 1.467 1.434020 8515mm 83 b229 1,3-Bis(trifluoro-methyl)benzene (F3C)2C6H4 214.11 53, 834 1.379025 1.391625 116 26 b230 N,O-Bis(trimethyl-silyl)acetamide CH39C"N9Si(CH3)3 O9Si(CH3)3 203.43 0.83220 4 1.417020 7335mm 11 b231 Bis(trimethylsilyl)-acetylene (CH3)3SiC#CSi(CH3)3 170.41 0.77020 4 1.427020 137 2 b232 Bis(trimethylsilyl)-formamide HC"NSi(CH3)3 OSi(CH3)3 189.41 0.885 1.438120 5513mm b233 N,O-Bis(trimethyl-silyl)hydroxyl-amine (CH3)3SiONHSi(CH3)3 177.40 0.830 1.411220 80100mm 28 b234 1,2-Bis(trimethylsilyl-oxy)ethane (CH3)3SiOCH2CH2OSi(CH3)3 206.43 0.842 1.403420 166 46 b235 N,O-Bis(trimethyl-silyl)trifluoroace-tamide F3C["NSi(CH3)3]OSi(CH3)3 257.40 0.969 1.383920 10 5014mm 23 b236 1,3-Bis(trimethylsilyl)-urea (CH3)3SiNHCONHSi(CH3)3 204.42 232 dec 1.115 1,2-Bis(2-methoxyethoxy)ethane, t282 Bis(phenylmethyl) disulfide, d72 Bis-tris propane, b237 2-Bornanone, c3 b218 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent b237 1,3-Bis[tris(hydroxy-methyl)methyl-amino]propane CH2[CH2NHC(CH2OH)3]2 282.34 43, 859 170 s aq b238 Biuret H2NC("O)NHC("O)NH2 103.08 3, 70 1.4675 4 anhyd 110 dec 190 v s alc; 2 aq25 b239 Borane-tert-butylamine (CH3)3CNH2·BH3 86.97 100 dec b240 Borane-N,N-diethyl-aniline C6H5N(C2H5)2·BH3 163.07 30 21 b241 Borane-N,N-di-isopropylethylamine [(CH3)2CH]2C2H5·BH3 143.08 0.822 1.460020 15–17 40 b242 Borane-dimethylamine (CH3)2NH·BH3 58.92 36 43 b243 Borane-dimethyl sulfide (CH3)2S·BH3 75.97 0.801 18 b244 Borane-pyridine C5H4N·BH3 92.93 0.920 1.532020 10–11 21 b245 (1S-endo)-()-Borneol 154.25 6, 72 1.01120 4 204 210779mm 65 i aq; 176 alc; s eth b246 ()-1-Bornyl acetate 196.29 6, 82 0.982 1.4626 27 224 84 v sl s aq; s alc, eth b247 N-Bromoacetamide CH3CON(Br)H 137.96 2, 181 102–105 sl s aq; v s eth b248 p-Bromoacetanilide BrC6H4NHCOCH3 214.06 12, 642 1.717 168 s alc, bz, chl, EtOAc b249 Bromoacetic acid BrCH2COOH 138.95 2, 213 1.93450 4 1.480450 50 208 110 v s aq, alc b250 Bromoacetonitrile BrCH2CN 119.95 2, 216 1.722 1.480020 6224mm 110 b251 2-Bromoacetophenone C6H5COCH2Br 199.05 7, 283 1.64720 4 50 13518mm 110 v s alc, bz, chl, eth b253 p-Bromoacetophenone BrC6H4COCH3 199.05 7, 283 1.647 54 255 110 s alc, bz, CS2, HOAc PE b254 Bromoacetyl bromide BrCH2COBr 201.86 2, 215 2.31722 22 1.548020 150 none dec aq, alc b255 Bromoacetyl chloride BrCH2COCl 157.40 2, 215 1.908 1.496020 128 none dec aq, alc b256 2-Bromoaniline BrC6H4NH2 172.03 12, 631 1.57820 4 1.622320 31 229 110 i aq; s alc, eth b257 3-Bromoaniline BrC6H4NH2 172.03 12, 633 1.58020 4 1.625020 16.8 251 110 sl s aq; s alc, eth b258 4-Bromoaniline BrC6H4NH2 172.03 12, 636 1.4970100 4 66.3 i aq; v s alc, eth b259 2-Bromoanisole BrC6H4OCH3 187.04 6, 197 1.502 1.574020 2 223 96 b260 4-Bromoanisole BrC6H4OCH3 187.04 6, 199 1.494 1.564020 9–10 223 94 b261 3-Bromobenzaldehyde BrC6H4CHO 185.03 7, 238 1.587 1.593520 230 96 i aq; v s alc, eth b262 Bromobenzene C6H5Br 157.01 5, 206 1.495220 4 1.560220 30.6 156 51 0.045 aq30; 10.4 alc25; 71.6 eth25; misc bz, chl, PE 1.116 b263 Bromobenzene-d5 C6D5Br 162.06 1.539 1.558520 5323mm 51 b264 4-Bromobenzene-sulfonyl chloride BrC6H4SO2Cl 255.52 11, 57 74.5 15315mm i aq; s alc (dec); v s eth b265 2-Bromobenzoic acid BrC6H4COOH 201.02 9, 347 148–150 b266 4-Bromobenzoic acid BrC6H4COOH 201.02 9, 351 1.92925 4 251–253 0.18 aq25; s alc, eth b267 4-Bromobenzo-phenone BrC6H4COC6H5 261.12 7, 422 82 350 i alc; sl s bz, eth b268 2-Bromobenzotri-fluoride BrC6H4CF3 225.01 1.65220 1.482020 168 51 b269 3-Bromobenzotri-fluoride BrC6H4CF3 225.01 1.613 1.473020 152 43 b270 3-Bromobenzoyl chloride BrC6H4COCl 219.47 9, 350 1.662 1.596520 750.5mm 107 b271 4-Bromobenzyl bromide BrC6H4CH2Br 249.94 5, 308 1.619320 61 12412mm 110 s aq, alc, bz, eth, CS2, HOAc b272 -Bromobenzyl cya-nide C6H5CH(Br)CN 196.05 1.53929 4 1.569620 29 242 dec 110 sl s aq; v s alc, acet, eth. A war gas.
b273 4-Bromobiphenyl BrC6H4C6H5 233.11 5, 580 0.932725 4 90–92 310 i aq; s alc, bz, eth b274 1-Bromobutane CH3CH2CH2CH2Br 137.02 1, 119 1.268625 4 1.437425 112.4 101.6 18 i aq; s alc, bz, eth b275 2-Bromobutane CH3CH2CHBrCH3 137.02 1, 119 1.258520 1.436020 112.7 91.4 21 0.1 aq; v s alc, eth b276 1-Bromo-2-butene CH3CH"CHCH2Br 135.01 1, 205 1.312 1.476520 99 11 b277 2-Bromo-2-butene CH3CH"C(Br)CH3 135.01 1, 205 1.328 1.459020 90740mm 1 Mixture of cis, trans b278 4-Bromo-1-butene BrCH2CH2CH"CH2 135.01 11, 84 1.323020 4 1.460820 100 9 i aq; s alc, eth b279 4-Bromobutyl acetate CH3CO2(CH2)4Br 195.06 23, 39 1.348 1.460020 9312mm 109 b280 1-Bromo-4-tert-butyl-benzene (CH3)3CC6H4Br 213.12 5, 416 1.229 1.533020 15–16 812mm 97 1.117 Bromal, t199 Bromoacetaldehyde diethyl acetal, b317 Bromoanisoles, b357, b358, b359 p-Bromobenzenethiol, b428 4-Bromobenzyl cyanide, b397 exo-2-Bromobicyclo[2.2.1]heptane, b383 Bromobutanedioic acid, b421 b245 b246 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent b281 4-Bromobutyl phenyl ether C6H5O(CH2)4Br 229.12 62, 82 41–43 15618mm 110 b282 2-Bromobutyric acid CH3CH2CH(Br)COOH 167.00 2, 281 1.566920 20 1.472020 4 10310mm 110 6.7 aq; s alc, eth b283 -Bromo--butyro-lactone 164.99 1.99020 1.508020 1386mm 110 b284 [1R-endo]-()-3-Bromocamphor 231.14 7, 120 1.449 75–78 244 15 alc; 200 chl; 62 eth; s olive oil b285 1-Bromocarbonyl-1-methylethyl acetate CH3CO2C(CH3)2COBr 209.05 1.431 1.457020 7712mm 110 b286 2-Bromo-4-chloro-acetophenone ClC6H4COCH2Br 233.50 b287 2-Bromochloro-ben-zene BrC6H4Cl 191.46 5, 209 1.638225 4 1.578925 204 79 i aq; v s bz b288 3-Bromochloro-ben-zene BrC6H4Cl 191.46 5, 209 1.630220 4 1.577020 21 196 80 i aq; v s alc, bz, eth 1.118 b296 4-Bromochloro-benzene BrC6H4Cl 191.46 5, 209 1.57671 4 1.553170 66 196 0.1 aq; misc MeOH, eth b297 3-Bromo-4-chloro-benzotrifluoride Br(Cl)C6H3CF3 259.46 53, 715 1.726 1.499020 22 190 94 b298 1-Bromo-4-chloro-butane ClCH2CH2CH2CH2Br 171.47 53, 294 1.488 1.487520 8230mm 60 i aq; s alc, chl, eth b299 4-Bromo-4-chloro-butyrophenone BrC6H4CO(CH2)3Cl 261.55 36–38 110 b300 4-Bromo-6-chloro-o-cresol Br(Cl)C6H2(OH)CH3 221.49 6, 360 45–47 110 b301 Bromochlorodifluoro-methane Br(Cl)CF2 165.36 6.579 g/L 160 3.7 b302 3-Bromo-1-chloro-5,5-dimethyl-hydantoin 241.48 160–164 b303 1-Bromo-2-chloro-ethane ClCH2CH2Br 143.41 1, 89 1.739220 4 1.491720 18.4 106.6 0.7 aq; misc org solv b303a Bromochlorofluoro-methane Br(Cl)CHF 149.37 1.97710 1.414455 115 36 b304 7-Bromo-5-chloro-8-hydroxyquinoline 258.51 211, 222 177–179 b305 Bromochloromethane ClCH2Br 129.38 1, 67 1.92325 4 1.48025 88 68 0.9 aq; misc MeOH, eth b306 1-Bromo-3-chloro-2-methylpropane ClCH2CH(CH3)CH2Br 171.47 13, 324 1.467 1.480920 154 110 b307 1-Bromo-3-chloro-propane ClCH2CH2CH2Br 157.44 1, 109 1.492 1.485120 50 143.5 0.1 aq; misc org solv b308 2-Bromo-2-chloro-1,1,1-trifluoroethane BrCH(Cl)CF3 197.39 14 156 1.863625 1.369120 50.2 none b309 2-Bromocinnam-aldehyde C6H4CH"C(Br)CHO 211.06 7, 358 66–68 b310 Bromocycloheptane Br(C7H13) 177.09 5, 29 1.288722 4 1.505220 7210mm 68 i aq; v s chl, eth b311 Bromocyclohexane Br(C6H11) 163.06 5, 24 1.326415 4 1.495615 165.8 62 0.1 aq; 10 MeOH; 71 eth b312 3-Bromocyclohexene 161.04 52, 40 1.389020 4 1.529220 6515mm 54 b313 Bromocyclopentane Br(C5H9) 149.04 5, 19 1.390020 4 1.488120 137–139 35 b314 Bromocyclopropane Br(C3H5) 120.98 1.510 1.460529 69 6 b315 1-Bromodecane CH3(CH2)9Br 221.18 12, 130 1.065820 4 1.456020 30 238–240 94 i aq; v s chl, eth b316 Bromodichloro-methane BrCHCl2 163.83 1, 67 1.98020 1.496720 55 87 none sl s aq; misc org solv b317 2-Bromo-1,1-di-ethoxyethane BrCH2CH(OC2H5)2 197.08 1, 625 1.310 1.438520 6718mm 51 s hot alc b318 4-Bromo-1,2-di-methoxybenzene BrC6H3(OCH3)2 217.07 6, 784 1.702 1.574320 256 109 b319 2-Bromo-1,1-di-methoxyethane BrCH2CH(OCH3)2 169.02 1, 624 1.430 1.445020 150 53 1.119 2-Bromo-p-cumene, b351 -Bromocumene, b350 b284 b302 b304 b312 b283 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent b320 1-Bromo-2,2-di-methoxypropane CH3C(OCH3)2CH2Br 185.05 1.355 1.447520 8780mm 40 b321 4-Bromo-2,6-di-methylphenol BrC6H2(CH3)2OH 201.07 6, 485 79–81 b322 3-Bromo-2,2-dimethyl-1-propanol BrCH2C(CH3)2CH2OH 167.05 11, 201 1.358 1.479420 184–187 75 b323 2-Bromo-4,6-dinitro-aniline BrC6H2(NO2)2NH2 262.03 12, 761 154 subl v s hot alc, hot acet b324 1-Bromo-2,4-dinitro-benzene BrC6H3(NO2)2 247.01 71–73 b325 4-Bromodiphenyl ether BrC6H4OC6H5 249.11 61, 105 1.423 1.607020 18 305 110 b326 1-Bromodiphenyl-methane C6H5CH(Br)C6H5 247.14 5, 592 40–42 18420mm 110 b327 1-Bromododecane CH3(CH2)11Br 249.24 12, 133 1.038 1.458020 11 1356mm 110 0.1 aq; s alc, eth b328 1-Bromo-2,3-epoxy-propane H2C9CHCH2Br O 136.98 17, 9 1.60120 1.482020 40 134–136 56 i aq; sl s alc; s eth b329 Bromoethane CH3CH2Br 108.97 1, 88 1.461220 4 1.424220 119 38.2 23 0.91 aq20; misc alc, chl, eth b330 2-Bromoethanesulfonic acid, sodium salt BrCH2CH2SO Na 2 211.02 4, 7 283 dec b331 2-Bromoethanol BrCH2CH2OH 124.98 1, 338 1.762920 4 1.493620 5720mm 110 misc aq; s org solv ex-cept PE b332 2-Bromoethyl acetate CH3CO2CH2CH2Br 167.01 21, 57 1.51420 4 1.454720 13.8 159 71 v s aq; misc alc, eth b333 2-Bromoethylamine HBr BrCH2CH2NH2·HBr 204.90 4, 134 172–174 v s aq, alc b334 (1-Bromoethyl)-benzene C6H5CH(CH3)Br 185.07 5, 355 1.356 1.560020 9416mm 81 b334a (2-Bromoethyl)-benzene C6H5CH2CH2Br 185.07 5, 355 1.355 1.556020 221 89 b335 1-Bromo-2-ethyl-benzene BrC6H4CH2CH3 185.07 5, 355 1.338 1.549020 19416mm 71 b336 Bromoethylene H2C"CHBr 106.95 1, 188 1.49320 1.438020 139 15.8 none i aq; misc alc, eth 1.120 b337 2-Bromoethyl ethyl ether BrCH2CH2OCH2CH3 153.02 1, 338 1.357220 4 1.445020 150 21 sl s aq; misc alc, eth b338 2-Bromoethyl phenyl ether BrCH2CH2OC6H5 201.07 6, 142 34 14440mm 65 i sq; v s alc, eth b339 N-(2-Bromoethyl)-phthalimide 254.09 21, 461 81–84 s hot aq; v s eth b340 1-Bromo-2-fluoro-benzene BrC6H4F 175.01 1.601 1.533720 156 43 b341 1-Bromo-3-fluoro-benzene BrC6H4F 175.01 1.567 1.525720 150 38 b342 1-Bromo-4-fluoro-benzene BrC6H4F 175.01 5, 209 1.59315 1.531015 17.4 152 60 b343 1-Bromoheptane H(CH2)7Br 179.11 1, 155 1.138420 4 1.450520 58 180 60 i aq; v s alc, eth b344 2-Bromoheptane H(CH2)5CH(Br)CH3 179.11 1, 155 1.142 1.447020 6621mm 47 b345 1-Bromohexadecane H(CH2)16Br 305.35 12, 138 0.9991 1.461820 17.8 336 177 i aq; misc org solv b346 1-Bromohexane H(CH2)6Br 165.08 1, 144 1.176320 4 1.447520 85 154–158 57 i aq; misc alc, eth b347 DL-2-Bromohexanoic acid CH3(CH2)3CH(Br)COOH 195.06 2, 325 1.370 1.472020 13818mm 110 s alc, eth b348 5-Bromoisatin 226.03 21, 453 251–253 b350 (2-Bromoisopropyl)-benzene C6H5CH(CH3)CH2Br 199.10 51, 191 1.316 1.548020 10818mm 91 b351 2-Bromo-4-isopropyl-1-methylbenzene CH3(Br)C6H3CH(CH3)2 213.0 1.25325 25 1.53525 20 120 i aq; 50 MeOH; misc org solvents b352 Bromomaleic anhy-dride 176.96 17, 435 1.905 1.540020 215 110 b353 2-Bromomesitylene 1,3,5-(CH3)3C6H2Br 199.10 5, 408 1.301 1.552020 2 255 96 b354 Bromomethane CH3Br 94.94 1, 67 1.7320 0 1.423410 94 3.56 none 0.1 aq; s alc, chl, eth b355 4-Bromomandelic acid BrC6H4CH(OH)COOH 231.05 10, 210 117–118 sl s aq 1.121 4-Bromodiphenyl ether, b295 Bromoethene, b336 Bromoform, t204 2-Bromomesitylene, b436 b339 b348 b352 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent b356 5-Bromo-2-methoxy-benzaldehyde BrC6H3(OCH3)CHO 215.05 8, 55 116–119 b357 2-Bromo-1-methoxy-benzene BrC6H4OCH3 187.04 6, 197 1.501820 4 1.573720 2 223 96 i aq; v s alc, eth b358 3-Bromo-1-methoxy-benzene BrC6H4OCH3 187.04 6, 198 1.477 1.563520 211 93 i aq; s alc, eth b359 4-Bromo-1-methoxy-benzene BrC6H4OCH3 187.04 6, 199 1.456420 4 1.563020 10 223 94 sl s aq; v s alc, eth b360 4-Bromo-2-methyl-aniline CH3(Br)C6H3NH2 186.06 12, 838 57–59 240 110 sl s aq; v s alc b361 1-Bromo-3-methyl-benzyl alcohol BrC6H4CH(CH3)OH 201.07 62, 447 1.460 36–38 1217mm 63 b362 1-Bromo-3-methyl-butane (CH3)2CHCH2CH2Br 151.05 1, 136 1.21015 4 1.440920 112 119.7 32 0.02 aq; misc alc, eth b363 2-Bromo-2-methyl-butane C2H5C(CH3)2Br 151.05 1, 136 1.182 1.442320 107735mm 5 b364 2-Bromo-3-methyl-butanoic acid (CH3)2CHCH(Br)COOH 181.04 2, 317 44 12620mm 107 sl s aq; s alc, eth b365 4-Bromo-2-methyl-2-butene BrCH2C"C(CH3)2 149.04 12, 189 1.293 1.489820 6060mm 32 b366 (Bromomethyl)chloro-dimethylsilane BrCH2Si(CH3)2Cl 187.5 44, 4024 1.375 1.465020 130740mm 41 b367 (Bromomethyl)cyclo-hexane (C6H11)CH2Br 177.09 52, 18 1.269 1.490720 7726mm 57 b368 2-Bromomethyl-1,3-dioxalane 167.01 192, 8 1.613 1.481720 8227mm 62 b369 Bromomethyl methyl ether BrCH2OCH3 124.97 1, 582 1.531 1.455020 87 26 b370 1-Bromo-2-methyl-naphthalene Br(C10H6)CH3 221.10 5, 568 1.418 1.648620 296 110 b371 1-Bromo-2-methyl-propane (CH3)2CHCH2Br 137.03 1, 126 1.264120 1.436220 119 91.5 18 0.06 aq; misc alc, eth 1.122 b372 2-Bromo-2-methyl-propane (CH3)3CBr 137.03 1, 127 1.212525 4 1.42525 16.2 73.1 18 i aq; misc org solv b373 2-Bromo-2-methyl-propanoic acid BrC(CH3)2COOH 167.01 2, 295 1.52 48–49 200 110 sl s aq; s alc, eth; dec by hot aq b374 2-Bromo-2-methyl-propionyl bromide (CH3)2C(Br)COBr 229.91 2, 297 1.860 1.506424 164 110 b375 2-Bromo-2-methyl-propiophenone C6H5CO(CH3)2Br 227.11 7, 316 1.350 1.556120 14830mm 112 b376 1-Bromonaphthalene (C10H7)Br 207.07 5, 547 1.483420 4 1.658020 1.8 281 110 misc alc, bz, chl, eth b377 1-Bromo-1-naphthol BrC10H6OH 233.07 6, 650 78 130 dec i aq; s alc, bz, eth b378 1-Bromo-2-naphthol BrC10H6OH 223.07 6, 650 78–81 b379 1-Bromo-2-nitroben-zene BrC6H4NO2 202.01 51, 247 1.624580 4 43 261 110 v s alc; s bz, eth b380 5-Bromo-2-nitrobenzo-trifluoride O2N(Br)C6H3CF3 270.02 53, 755 1.799225 1.518025 33–35 1005mm 110 b381 2-Bromo-2-nitro-1,3-propanediol (HOCH2)2C(Br)NO2 199.99 1, 476 120–122 s aq, alc, EtOAc; sl s bz, acet, chl, eth b382 1-Bromononane H(CH2)9Br 207.16 11, 63 1.084 1.454020 201 90 i aq; s chl, eth b383 exo-2-Bromo-norbor-nane 175.07 1.363 1.514820 8229mm 60 b384 1-Bromooctadecane H(CH2)18Br 333.41 11, 69 0.976 23 21612mm 110 i aq; s alc, eth b385 1-Bromooctane H(CH2)8Br 193.13 1, 160 1.10825 4 1.451825 55 201 78 i aq; misc alc, eth b386 Bromopentafluoro-benzene BrC6F5 246.97 1.94720 1.449020 31 137 87 b387 1-Bromopentane H(CH2)5Br 151.05 1, 131 1.223715 4 1.444420 88 129.6 31 i aq; s alc; misc eth b388 2-Bromopentane CH3CH2CH2CH(Br)CH3 151.05 1, 131 1.203920 4 1.440320 117 20 b389 3-Bromopentane C2H5CH(Br)C2H5 151.05 11, 43 1.216 1.444520 119 18 b390 5-Bromopentyl acetate CH3CO2(CH2)5Br 209.09 23, 249 1.255 1.462020 11015mm 110 1.123 (Bromomethyl)benzene, b85 4-Bromo-1-methylbenzene, b431 2-Bromo-2-methylpropanoyl bromide, b374 -Bromo-p-nitrotoluene, n44 b368 b383 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent b391 9-Bromophenanthrene 257.14 5, 671 1.409101 4 54–58 1902mm 110 i aq; s alc, eth b392 2-Bromophenol BrC6H4OH 173.01 6, 197 1.492 1.589220 6 194 42 s aq; misc chl, eth b393 3-Bromophenol BrC6H4OH 173.01 6, 198 32 236 110 b394 4-Bromophenol BrC6H4OH 173.01 6, 198 1.587580 64 238 14 aq; v s alc, chl b395 1-(4-Bromophenoxy)-1-ethoxyethane CH3CH(OC6H4Br)OC2H5 245.12 1.348 1.522920 1258mm 106 b396 4-Bromophenylacetic acid BrC6H4CH2COOH 215.05 9, 451 119 sl s aq; v s alc, eth b397 4-Bromophenylaceto-nitrile BrC6H4CH2CN 196.05 9, 451 47–49 110 i aq; sl s alc; v s bz b398 4-Bromophenyl phenyl ether BrC6H4OC6H5 249.11 61, 105 1.423 1.607020 18 305 110 b399 1-Bromo-3-phenyl-propane BrC6H4CH2CH2CH2Br 199.10 5, 391 1.310 1.545020 220 101 b400 1-Bromopropane CH3CH2CH2Br 122.99 1, 108 1.359715 1.437015 110.1 71.0 0.23 aq30; misc alc b401 2-Bromopropane CH3CH(Br)CH3 123.99 1, 108 1.322215 1.428515 89.0 59.5 19 0.3 aq18; misc alc, bz, chl, eth b402 3-Bromo-1-propanol BrCH2CH2CH2OH 139.00 1, 356 1.537420 4 1.485820 625mm 93 s aq; misc alc, eth b403 1-Bromo-2-propanone CH3OCH2Br 136.98 Merck: 12, 1422 1.63423 1.469715 36.5 137 v sl s aq; s alc, acet b404 1-Bromo-1-propene CH3CH"CHBr 120.98 1, 200 1.413320 4 1.453820 116 70 6 i aq b405 2-Bromo-2-propene CH3C(Br)"CH2 120.98 1, 200 1.36220 4 1.442520 125 47–49 4 b406 2-Bromopropionic acid CH3CH(Br)COOH 152.98 2, 254 1.700020 1.475020 25.7 203 100 v s aq, alc, bz, chl, eth b407 3-Bromopropionic acid BrCH2CH2COOH 152.98 2, 256 1.480 62.5 65 s aq, alc, bz, chl, eth b408 3-Bromopropionitrile BrCH2CH2CN 133.98 22, 231 1.615220 4 1.480020 7810mm 98 v s alc, eth b409 2-Bromopropionyl bromide CH3CH(Br)COBr 215.88 2, 256 2.061 1.518220 5010mm 110 b410 2-Bromopropionyl chloride CH3CH(Br)COCl 171.43 2, 256 1.70011 1.480020 133 51 d aq; s chl, eth b411 3-Bromopropionyl chloride CH3CH(Br)COCl 171.43 22, 231 1.701 1.496820 5717mm 79 b412 2-Bromopropio-phenone C6H5COCH(Br)CH3 213.08 7, 302 1.43020 4 1.571520 250 110 s alc, bz, eth, acet 1.124 b413 3-Bromopropyl phenyl ether C6H5OCH2CH2CH2Br 215.10 6, 142 1.365 1.546420 10–11 13414mm 96 b414 3-Bromopropyltri-chlorosilane Br(CH2)3SiCl3 256.44 1.605 1.490020 202–204 76 b415 3-Bromopropyne BrCH2C#CH 118.97 1, 248 1.335 1.490520 88–90 18 b416 2-Bromopyridine Br(C5H4N) 158.00 20, 233 1.65718 1.572020 194 54 i aq; s org solv b417 3-Bromopyridine Br(C5H4N) 158.00 20, 233 1.6450 4 1.569520 142–143 173 51 s aq; v s alc, eth b418 3-Bromoquinoline 208.06 20, 363 1.533 1.664020 15 276 110 s HOAc b419 5-Bromosalicylic acid Br(HO)C6H3COOH 217.02 10, 107 166 0.3 aq80; 85 alc25; 70 eth25 b420 -Bromostyrene C6H5CH"CHBr 183.05 5, 477 1.42220 4 1.606620 7 11220mm 79 i aq; misc alc, eth b421 ()-Bromosuccinic acid HOOCH2CH(Br)COOH 196.99 2, 621 2.073 161 18 aq; s alc, acet, eth b422 N-Bromosuccinimide 177.99 21, 380 2.098 173 sl dec 1.5 aq25; 14.4 acet25; 3.1 HOAc25 b423 1-Bromotetradecane H(CH2)14Br 277.30 12, 136 1.012425 4 1.460020 6 17820mm 110 s alc; v s chl; misc bz, acet b424 3-Bromotetrahydro-2-methyl-2H-pyran 179.06 173, 75 1.366 1.483020 6117mm 57 b425 3-Bromothioanisole BrC6H4SCH3 203.11 6, 330 38–40 110 b426 2-Bromothiophene Br(C5H3S) 163.04 17, 33 1.68420 4 1.586020 151 60 v s acet, eth b427 3-Bromothiophene Br(C5H3S) 163.04 1.740 1.591020 150 56 b428 4-Bromothiophenol BrC6H4SH 189.08 6, 330 76 239 b429 2-Bromotoluene BrC6H4CH3 171.04 5, 304 1.42225 25 1.55225 26 181 78 0.1 aq; misc alc, bz, chl, eth 1.125 -Bromophenitole, b338 3-Bromopropene, a79 (3-Bromopropyl)benzene, b338 3-Bromopropylene, a79 5-Bromopseudocumene, b435 -Bromotoluene, b85 b418 b424 b422 b391 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent b430 3-Bromotoluene BrC6H4CH3 171.04 5, 305 1.409920 1.551720 39.8 183.7 60 s alc, bz, eth b431 4-Bromotoluene BrC6H4CH3 171.04 5, 305 1.395935 35 1.5490 28.5 184.5 85 s alc, bz, eth b432 Bromotrichloro-methane BrCCl3 198.28 1, 67 1.99725 25 1.506320 6 104–105 misc org solv b433 1-Bromotridecane H(CH2)13Br 263.27 12, 134 1.026220 4 1.459220 7 15010mm 110 v s chl b434 Bromotrifluoro-methane BrCF3 148.91 13, 83 6.087 g/L 168 to 172 57.8 v s chl b435 5-Bromo-1,2,4-tri-methylbenzene BrC6H2(CH3)3 199.10 5, 403 73 235 i aq; s alc b436 2-Bromo-1,3,5-tri-methylbenzene BrC6H2(CH3)3 199.10 5, 408 1.301 1.551120 2 225 96 i aq; s bz; v s eth b437 Bromotrimethyl-germane (CH3)3GeBr 197.60 1.54418 1.470520 25 113.7 37 b438 Bromotrimethylsilane (CH3)3SiBr 153.10 1.160 1.414020 79 32 b439 Bromotriphenyl-ethylene (C6H5)2C"C(Br)C6H5 335.22 5, 722 115–117 b440 Bromotriphenyl-methane (C6H5)3CBr 323.24 5, 704 152–154 23015mm b441 1-Bromoundecane CH3(CH2)10Br 235.22 12, 132 1.954 1.456320 9 13818mm 110 b442 11-Bromoundecanoic acid Br(CH2)10COOH 265.20 22, 315 51 1742mm 110 i aq; v s alc b443 -Bromo-1,2-xylene BrCH2C6H3CH3 185.07 5, 365 1.38123 1.38120 21 224 82 s alc, eth b444 -Bromo-1,3-xylene BrCH2C6H3CH3 185.07 5, 374 1.37023 1.556020 185340mm 82 s alc, eth b445 2-Bromo-1,4-xylene BrCH2C6H3CH3 185.07 5, 385 1.340 1.550520 9–10 199–201 79 v s chl, hot ether b446 4-Bromo-1,2-xylene BrCH2C6H3CH3 185.07 5, 365 1.37015 15 1.556020 215 80 v s alc, eth b447 Brucine 394.45 272, 797 178 77 alc; 1 bz; 20 chl; 4 EtOAc b448 1,2-Butadiene CH3CH"C"CH2 54.09 1, 249 0.67610 1.42051 136.2 10.9 misc alc, eth b449 1,3-Butadiene H2C"CHCH"CH2 54.09 1, 249 2.211 g/L 1.429325 108.9 4.4 76 misc alc, eth b450 Butadiene sulfone 118.15 173, 144 66 110 b451 1,3-Butadienyl acetate CH3CO2CH"CHCH"CH2 112.13 23, 295 0.945 1.469020 6040mm 33 b452 1,3-Butadiyne HC#CC#CH 50.06 13, 1056 0.73640 4 1.41895 36 10.3 v s eth; s acet, bz 1.126 S O O b453 2-Butanamine CH3CH2CH(NH2)CH3 73.14 4, 160 0.730815 4 1.396315 104.5 66 19 misc aq, alc b454 Butane CH3CH2CH2CH3 58.12 1, 118 0.60110 1.356213 138.3 0.50 60 1 vol aq dissolves 0.15 vol and 1 vol alc 18 vols at 17 and 770 mm; 1 vol ether or CHCl3 dissolves 25 or 30 vols, resp.
b455 1,4-Butanediamine H2NCH2CH2CH2CH2NH2 88.15 4, 264 0.87725 4 1.456920 28 158–160 51 s aq b456 Butanedinitrile NCCH2CH2CN 80.09 2, 615 0.986760 4 1.417360 54.5 266 132 11.5 aq; s acet, chl, 1,4-dioxane; sl s bz b457 1,2-Butanediol CH3CH2CH(OH)CH2OH 90.12 1, 477 1.00618 0 1.438020 207.5 93 s aq, alc, acet b457a 1,3-Butanediol CH3CH(OH)CH2CH2OH 90.12 1, 477 1.005320 20 1.44120 50 207.5 121 s aq, alc, acet; 9 eth b457b 1,4-Butanediol HOCH2CH2CH2CH2OH 90.12 1, 478 1.01625 4 1.445220 20 235 121 misc aq, alc, acet; 0.3 bz; 3.1 eth; 0.9 PE b458 meso-2,3-Butanediol CH3CH(OH)CH(OH)CH3 90.12 1, 479 0.993925 4 1.432435 25 182 85 misc aq, alc b459 1,4-Butanediol di-methanesulfonate CH3SO2O(CH2)4OSO2CH3 246.30 44, 19 114–117 2.4 acet25; 0.1 alc25 b460 1,3-Butanediol di-acetate CH3CO2CH2CH2CH(CH3)-O2CCH3 174.20 2, 143 1.028 1.419920 998mm 85 b461 1,4-Butanediol di-acrylate (H2C"CHCO2CH2CH2-)2 198.22 24, 170 1.051 1.456020 830.3mm 110 1.127 Bromo-,,-trifluorotoluene, b268, b269 3-Bromo-1,7,7-trimethylbicyclo[2.2.1]heptane-2-one, b284 4-Bromoveratrole, b318 4-Bromo-2,6-xylenol, b321 BSA, b230 BSTFA, b235 BTMSA, b231 Busulfan, b210 1,3-Butadiene diepoxide, d546 Butanal, b612 1-Butanamine, b509 Butanecarbaldehyde, p28 Butanedinitrile, s18 Butanedioic acid, s15 Butanedioic anhydride, s16 1,4-Butanediol diglycidyl ether, b185 b447 b450 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent b462 1,3-Butanediol di-methacrylate H2C"C(CH3)CO2CH2CH2-CH(CH3)O2CC(CH3)"CH2 226.28 1.010 1.452020 290 110 b463 1,4-Butanediol di-methacrylate [H2C"C(CH3)CO2CH2CH2-]2 226.28 24, 1534 1.010 1.456020 1344mm 110 b464 1,4-Butanediol divinyl ether (-CH2CH2OCH"CH2)2 142.20 14, 2518 0.898 1.44420 8 6410mm 62 b465 1,4-Butanediol vinyl ether H2C"CHO(CH2)4OH 116.16 14, 2518 0.939 1.444020 9520 85 b466 2,3-Butanedione CH3C("O)C("O)CH3 86.09 1, 769 0.99015 15 1.395120 86 7 25 aq; misc alc, eth b467 2,3-Butanedione mon-oxide CH3C("NOH)C("O)CH3 101.11 1, 772 75–78 186 b468 1,4-Butanedithiol HSCH2CH2CH2CH2SH 122.25 1, 479 1.042 1.529020 10630mm 70 i aq; v s alc b468a Butanenitrile CH3CH2CH2CN 69.11 22, 252 0.7936 1.444020 112 117.6 24 3.3 aq; misc alc, eth b469 1,2,3,4-Butanetetra-carboxylic acid [-CH(COOH)CH2COOH]2 234.16 2, 863 196 b470 1-Butanethiol CH3CH2CH2CH2SH 90.19 1, 370 0.836725 4 1.443025 116 98.5 2 0.06 aq; v s alc, eth b471 2-Butanethiol CH3CH2CH(SH)CH3 90.19 1, 373 0.824625 4 1.433825 165 85.0 21 sl s aq; v s alc, eth b472 1,2,4-Butanetriol HOCH2CH2CH(OH)CH2OH 106.12 1, 519 1.19020 1.474820 19118mm 167 v s aq, alc b473 1-Butanol CH3CH2CH2CH2OH 74.12 1, 367 0.809720 4 1.399320 89.5 117.7 37 7.4 aq; misc alc, eth b474 2-Butanol CH3CH2CH(OH)CH3 74.12 1, 371 0.806920 4 1.397220 114.7 99.5 24 12.5 aq; misc alc, eth b475 2-Butanone CH3CH2COCH3 72.11 1, 666 0.805420 4 1.378820 86.7 79.6 9 24 aq; misc alc, bz, eth b476 2-Butanone oxime CH3CH2C("NOH)CH3 87.12 1, 668 0.924 1.442020 6015mm 60 b477 1-Butene CH3CH2CH"CH2 56.11 1, 203 0.6255mp 4 1.396220 185.3 6.5 80 i aq; v s alc, eth b478 cis-2-Butene CH3CH"CHCH3 56.11 13, 728 0.6213 1.393125 139.3 3.7 73 i aq; v s alc, eth b479 trans-2-Butene CH3CH"CHCH3 56.11 1, 205 0.6041 1.384825 105.8 0.9 73 i aq; v s alc, eth b480 cis-2-Butene-1,4-diol HOCH2CH"CHCH2OH 88.11 12, 567 1.070020 4 1.478020 2 234 128 s aq; v s alc b481 trans-2-Butene-1,4-diol HOCH2CH"CHCH2OH 88.11 13, 2252 1.07020 4 1.475520 25 132 v s aq, alc b482 3-Butenenitrile H2C"CHCH2CN 67.09 2, 408 0.834120 4 1.406020 87 119 21 sl s aq; misc alc, eth b483 cis-2-Butenoic acid CH3CH"CHCOOH 86.09 2, 412 1.026720 4 1.448314 14–15 168–169 v s aq; s alc b484 trans-2-Butenoic acid CH3CH"CHCOOH 86.09 2, 408 0.960480 4 1.424877 72 185 87 55 aq; 52 EtOH; 53 acet; 37 toluene b485 3-Butenoic acid H2C"CHCH2COOH 86.09 2, 407 1.009120 4 1.424920 39 163 65 s aq; misc alc, eth b486 cis-2-Buten-1-ol CH3CH"CHCH2OH 72.11 1, 442 0.866220 4 1.434220 89.4 123.6 56 16.6 aq; misc alc 1.128 b487 trans-2-Buten-1-ol CH3CH"CHCH2OH 72.11 1, 442 0.852420 4 1.428920 30 121.2 56 16.6 aq; misc alc b488 3-Buten-2-one H2C"CHCOCH3 70.09 1, 728 0.863620 4 1.408620 81.4 6 v s aq, alc, acet, eth b489 1-Buten-3-yne HC#CCH"CH2 52.07 13, 1032 0.70951 4 1.4161 5.1 b490 4-Butoxyaniline CH3(CH2)3OC6H4NH2 165.24 132, 226 0.992 1.554320 14913mm 110 b491 4-Butoxybenzoic acid CH3(CH2)3OC6H4COOH 194.23 102, 93 150 b492 Butoxycarbonylmethyl butyl phthalate 2-[CH3(CH2)3O2CCH2O2C]-C6H4CO2(CH2)3CH3 336.39 9,3, 4187 1.100 1.490020 2195mm 110 b493 2-Butoxyethanol CH3(CH2)3OCH2CH2OH 118.18 12, 519 0.901220 4 1.419820 75 168 69 5 aq; s most org solv b494 1-tert-Butoxy-2-ethox-yethane (CH3)3COCH2CH2OC2H5 146.23 13, 2085 0.834 1.401520 148 33 b495 2-(2-Butoxyethoxy)-ethanol HOCH2CH2OCH2CH2OC4H9 162.23 12, 521 0.953620 20 1.430620 68.1 230.4 100 misc aq, alc, bz, acet, CCl4, PE b496 2-(2-Butoxyethoxy)-ethyl acetate CH3CO2(CH2CH2O)2CH2-CH2CH2CH3 204.27 23, 308 0.978 1.426020 245 110 b497 2-Butoxyethyl acetate CH3CO2CH2CH2O(CH2)3CH3 160.22 23, 307 0.942 1.413620 192 76 b498 2-tert-Butoxy-2-meth-oxyethane (CH3)3CO2CH2CH2OCH3 132.20 13, 2084 0.840 1.398520 132 25 b499 1-tert-Butoxy-2-pro-panol (CH3)3COCH2CH(OH)CH3 132.10 13, 2148 0.874 1.413020 143–145 44 b500 3-Butoxypropylamine CH3(CH2)3O(CH2)3NH2 73.14 43, 739 0.853 1.426020 170 63 b501 Butyl acetate C4H9O2CH3 116.16 2, 130 0.881320 4 1.394120 77/78 126 22 0.43 aq; misc alc, eth; s most org solvents b502 DL-sec-Butyl acetate CH3CO2CH(CH3)C2H5 116.16 22, 131 0.874820 1.388820 99 112 31 0.62 aq; s alc, eth b503 tert-Butyl acetate (CH3)3CO2CCH3 116.16 2, 131 0.866520 4 1.387020 95.1 16 i aq; misc alc, eth b504 tert-Butylacetic acid (CH3)CCH2COOH 116.16 2, 337 0.912 1.411520 6–7 190 b505 tert-Butyl acetoacetate (CH3)3COC("O)CH2-C("O)CH3 158.20 0.954 1.418020 60 b506 2-Butylacrolein (CH3(CH2)3C("CH2)CHO 112.17 14, 3482 0.843 1.434820 139 33 b507 N-tert-Butylacrylamide H2C"CHCONHC(CH3)3 127.19 44, 664 128–129 b507a Butyl acrylate H2"CHCO2(CH2)3CH3 128.17 22, 388 0.894 1.418020 64 145 39 0.14 aq20 b508 tert-Butyl acrylate H2C"CHCO2C(CH3)3 128.17 23, 1228 0.875 1.410820 6360mm 17 b509 Butylamine CH3CH2CH2CH2NH2 73.14 4, 156 0.732725 4 1.399225 50/49 77 12 misc aq, alc, eth b510 ()-sec-Butylamine C2H5CH(NH2)CH3 73.14 4, 160 0.72420 4 1.392820 104 63 9 misc aq, alc b511 tert-Butylamine (CH3)3CNH2 73.14 4, 173 0.695120 4 1.378820 66 44 9 misc aq, alc 1.129 1,4-Butanediol dimethanesulfonate, b210 Butanoic acid, b614 Butanoic anhydride, b615 trans-2-Butenal, c306 Buten-4-carboxylic acid, p51 cis-2-Butenedioic acid, m1 2-Butene-1,1-diol diacetate, d28 trans-2-Buten-1-ol, c311 Butopyronoxyl, b550 Butoxybenzene, b591 1-Butoxybutane, d148 Butyl alcohols, b473, b474, m385 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent b512 Butyl-4-aminobenzoate H2NC6H4CO2(CH2)3CH3 193.25 142, 249 57–59 1748mm v sl s aq; s dil acids, alc, chl, eth b513 2-(tert-Butylamino)-ethanol (CH3)3CNHCH2CH2OH 117.19 42–45 9225mm 68 b514 2-(tert-Butylamino)-ethyl methacrylate H2C"C(CH3)CO2CH2-CH2NC(CH3)3 185.27 44, 1509 0.914 1.442020 8210mm 71 b515 3-(tert-Butylamino)-1,2-propanediol (CH3)3CNHCH2CH(OH)-CH2OH 147.22 70 921mm b516 2-Butylaniline CH3(CH2)3C6H4NH2 149.24 122, 633 0.953 1.538020 12312mm 108 b517 2-sec-Butylaniline C2H5CH(CH3)C6H4NH2 149.24 123, 2721 0.957 1.541020 12216mm 110 b518 4-Butylaniline CH3(CH2)3C6H4NH2 149.24 121, 503 0.945 1.535020 12015mm 101 b519 4-sec-Butylaniline C2H5CH(CH3)C6H4NH2 149.24 122, 635 0.977 1.537020 245727mm 107 b520 2-tert-Butylanthra-quinone 264.32 98–100 b521 Butylbenzene CH3CH2CH2CH2C6H5 134.22 5, 413 0.860420 4 1.489820 88 183 71 misc alc, bz, eth b522 sec-Butylbenzene C2H5CH(CH3)C6H5 134.22 5, 414 0.860820 4 1.489020 82.7 173 52 misc alc, bz, eth b523 tert-Butylbenzene (CH3)3CC6H5 134.22 5, 415 0.866920 4 1.492320 58.1 168.5 60 misc alc, bz, eth b524 Butyl benzoate C6H5CO2C4H9 178.23 9, 112 1.000020 1.496 22 250 106 i aq; s alc, eth b525 2-Butylbenzofuran 174.25 0.987 1.533020 101 b526 4-tert-Butylbenzoic acid (CH3)3CC6H4COOH 178.23 9, 560 1.14220 4 166.3 i aq; v s alc, bz b527 4-tert-Butylbenzoyl chloride (CH3)3CC6H4COCl 196.68 1.007 1.536420 13520mm 87 b528 N-(tert-Butyl)benzyl-amine C6H5CH2NHC(CH3)3 163.27 12, 1022 0.881 1.496820 805mm 80 b529 tert-Butyl bromo-acetate BrCH2CO2C(CH3)3 195.06 21, 96 1.321 1.445020 5010mm 49 b530 Butyl 2-butoxy-2-hydroxyacetate CH3(CH2)3OCH(OH)CO2-(CH2)3CH3 204.27 34, 1497 0.996 1.429120 9040mm 74 b531 Butyl butyrate CH3CH2CH2CCO2C4H9 144.22 2, 271 0.869220 4 1.406420 91.5 166 49 i aq; misc alc, eth b532 Butyl carbamate H2NCO2(CH2)3CH3 117.15 53–55 108 b533 Butyl carbazate H2NNHCO2C(CH3)3 132.16 39–42 650.03mm 91 b534 4-tert-Butylcatechol (CH3)3C6H3-1,2-(OH)2 166.22 1.04960 25 52–55 285 151 0.2 aq;80 240 eth;25 s alc; v s acet 1.130 b535 tert-Butyl chloro-acetate ClCH2CO2C(CH3)3 150.61 23, 444 1.053 1.423020 4911mm 46 b536 4-tert-Butyl-1-chloro-benzene (CH3)3C6H4Cl 158.67 5, 416 1.006 1.510820 23–25 217 b537 tert-Butylchlorodi-phenylsilane (CH3)3CSi(C6H5)2Cl 274.87 1.057 1.567520 900.02mm 110 b538 Butyl chloroformate ClCO2C4H9 136.58 32, 11 1.07425 4 1.411420 142 25 d aq, alc; misc eth b539 Butyl cyanoacetate NCCH2CO2C4H9 141.17 21, 255 0.993 1.425420 11515mm 87 b540 tert-Butyl cyanoacetate NCCH2CO2C(CH3)3 141.17 0.972 1.420020 108 91 b541 Butylcyclohexane (C6H11)6C4H9 140.27 51, 20 0.818 1.440020 78 178–180 41 b542 tert-Butylcyclohexane (C6H11)C(CH3)3 140.27 51, 20 0.831 1.447020 167 42 b543 2-tert-Butylcyclo-hexanol (CH3)3C(C6H10)OH 145.27 63, 126 0.902 43–46 79 i aq b544 4-tert-Butylcyclo-hexanol (CH3)3C(C6H10)OH 156.27 61, 18 62–70 11515mm 105 i aq b545 2-tert-Butylcyclo-hexanone (CH3)3C(C6H9)("O) 154.25 73, 143 0.896 1.456520 634mm 72 b546 4-tert-Butylcyclo-hexanone (CH3)3C(C6H9)("O) 154.25 71, 29 47–50 11620mm 96 i aq b547 Butyl decyl o-phthalate C4H9O2C6H4CO2C10H21 362.51 0.99425 25 202 b548 4-sec-Butyl-2,6-di-tert-butylphenol C2H5CH(CH3)C6H2(OH)-[C(CH3)3] 262.44 6,3, 2094 0.902 25 14210mm 110 1.131 Butyl bromide, b274 sec-Butyl bromide, b275 tert-Butyl bromide, b372 N-Butyl-1-butanamine, d139 Butyl butenoate, b531 Butyl carbitol, b495 Butyl cellosolve, b493 Butyl cellosolve acetate, b497 Butyl chloride, c75 tert-Butyl chloride, c180 2-tert-Butyl-o-cresol, b574 2-tert-Butyl-p-cresol, b573 Butyl cyanide, p35 b520 b525 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent b549 N-Butyldiethanolamine C4H9N(CH2CH2OH)2 161.25 4, 285 0.98620 20 1.462520 70 276 126 b550 Butyl 3,4-dihydro-2,2-dimethyl-4-oxo-2H-pyran-6-carboxylate 226.27 1.05425 25 1.476720 256–270 110 b551 tert-Butyldimethyl-chlorosilane (CH3)3CSi(CH3)2Cl 150.73 4,4, 4076 89 124–126 22 b552 6-tert-Butyl-2,4-di-methylphenol (CH3)3CC6H2(CH3)2OH 178.28 63, 2020 1.517820 23 249 111 b553 N-Butylethanolamine HOCH2CH2NHC4H9 117.19 0.8920 1.44420 3.5 192 77 b554 Butyl ethyl ether C4H9OC2H5 102.18 1, 369 0.749520 4 1.381820 124 92 4 i aq; misc alc, eth b555 2-Butyl-2-ethyl-1,5-pentanediamine H2N(CH2)3C[(CH2)3CH3]-(C2H5)CH2NH2 186.34 0.876 1.470020 269750mm 110 b556 2-Butyl-2-ethyl-1,3-propanediol HOCH2C(C2H5)(C4H9)CH2OH 160.25 13, 2228 0.93150 20 1.458725 41–44 17850mm 110 0.8 aq b557 Butyl ethyl sulfide C4H9SC2H5 118.24 13, 1522 0.837620 4 1.449120 95.1 144.2 s chl b558 N-tert-Butyl-formamide HCONHC(CH3)3 101.15 43, 324 0.903 1.433020 16 202 95 b559 Butyl formate HCO2C4H9 102.13 2, 21 0.892 1.388920 91.5 106 18 b560 Butyl glycidyl ether H2C9CHCH2OC4H9 O b561 tert-Butyl glycidyl ether H2C9CHCH2OC(CH3)3 O 130.19 173, 988 0.917 1.416620 43 b562 tert-Butylhydrazine HCl (CH3)3CNHNH2·HCl 124.61 43, 1734 194 b563 tert-Butyl hydro-peroxide (CH3)3C9O9OH 90.12 13, 1579 0.89620 4 1.400720 8 3417mm 37 s aq, alc, chl, eth b564 1-Butylimidazole 124.19 232, 36 0.945 1.480020 11612mm 110 b565 Butyl isocyanate C4H9NCO 99.13 0.880 1.406120 115 17 b566 tert-Butyl isocyanate (CH3)3CNCO 99.13 4, 175 0.868 1.386520 86 4 b567 Butyl lactate CH3CH(OH)CO2C4H9 148.19 32, 207 0.984 1.421020 28 185–187 69 b568 Butyl levulinate CH3COCH2CH2CO2C4H9 172.22 0.974 1.427020 1085.5mm 91 1.132 b569 Butyl 3-mercapto-propionate HSCH2CH2CO2C4H9 162.25 0.795 1.410020 10112mm 93 b570 Butyl methacrylate H2C"C(CH3)CO2C4H9 142.19 23, 1286 0.88925 15 1.423025 170 50 i aq; misc alc, eth b571 sec-Butyl-2-methyl-2-butenoate CH3CH"C(CH3)CO2-CH(CH3)C2H5 156.23 0.889 1.435020 8527mm 66 b572 tert-Butyl methyl ether (CH3)3C9O9CH3 88.15 1, 381 0.740420 4 1.368920 109 52 28 4.8 aq; v s alc, eth; un-stable acid solns b573 2-tert-Butyl-4-methyl-phenol (CH3)3CC6H3(CH3)OH 164.25 0.924775 4 1.496975 51.7 237 100 i aq; s org solv b574 2-tert-Butyl-5-methyl-phenol (CH3)3CC6H3(CH3)OH 164.25 62, 507 0.964 1.519220 11812mm 105 b575 2-tert-Butyl-6-methyl-phenol (CH3)3CC6H3(CH3)OH 164.25 1.519020 30–32 230 107 b576 tert-Butyl-1-methyl-2-propynyl ether (CH3)3COCH(CH3)C#CH 126.20 0.795 1.410020 4125mm 10 b577 tert-Butyl methyl sulfide (CH3)3CSCH3 104.21 13, 1591 0.82620 4 1.44120 97.8 102 3 v s alc b578 Butyl nitrite C4H9ONO 103.12 1, 369 0.91140 4 1.3768 78 13 misc alc, eth b579 tert-Butyl nitrite (CH3)3CONO 103.12 1, 382 0.867120 4 1.368720 63 13 sl s aq; v s alc, chl, eth, CS2 1.133 Butyl diglyme, b151 tert-Butyldihydroxybenzene, b534 Butyl disulfide, d146 tert-Butyl disulfide, d147 1-Butylene, b477 cis-2-Butylene, b478 trans-2-Butylene, b479 1,4-Butylene bis(2,3-epoxypropyl) ether, b185 1,3-Butylene glycol, b456 1,4-Butylene glycol, b457 2,3-Butylene glycol, b458 1,3-Butyleneglycol methyl ether, m64 1,2-Butylene oxide, e3 Butyl ether, d148 Butyl ethyl ketone, h15 tert-Butyl fluoride, f22 Butyl glycol, b493 2,2-(Butylimino)diethanol, b549 Butyl iodides, i26, i27, i38 Butyl levulinate, b582 Butyl mercaptans, b470, b471; m394, m395, m396 Butyl methanoate, b559 Butyl methyl ketone, d572 b550 b564 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent b580 Butyl 4-nitrobenzoate O2NC6H4CO2C4H9 223.23 92, 259 35–39 1608mm 110 b581 Butyl octadecanoate CH3(CH2)16CO2C4H9 340.60 22, 352 0.855120 4 1.442225 26.3 343 160 s alc; v s acet b581a Butyl cis-9-octa-decenoate CH3(CH2)8CH"CH(CH2)7-CO2C4H7 338.57 0.870415 1.448025 26 180 s eth b582 Butyl 4-oxopentanoate CH3C("O)CH2CH2CO2C4H9 172.22 0.973520 4 1.427020 1076mm 91 s alc, acet, eth b583 4-(1-Butylpentyl)-pyridine C4H9CHC(CH2)3CH3 C5H4N 205.35 203, 2872 0.887 1.487720 267 110 b584 tert-Butyl peroxo-benzoate C6H5C("O)O9O9C(CH3)3 194.23 1.021 1.499020 760.2mm 93 b585 2-sec-Butylphenol CH3CH2CH(CH3)C6H4OH 150.22 0.982 1.522220 12 228 112 i aq; s alc; v s eth b586 2-tert-Butylphenol (CH3)3CC6H4OH 150.22 62, 489 0.978320 4 1.522820 7 221–224 110 b587 4-sec-Butylphenol CH3CH2CH(CH3)C6H4OH 150.22 6, 522 0.96920 4 1.5150 62 13625mm 115 s hot aq, alc, eth b588 4-tert-Butylphenol (CH3)3CC6H4OH 150.22 6, 524 0.908114 4 1.4787114 98 237 i aq; s alc, eth b589 tert-Butyl 4-phenoxy-phenol ketone C6H5OC6H4C("O)C(CH3)3 254.33 83, 491 52–54 1753mm 110 b590 tert-Butyl phenyl carbonate C6H5OC("O)OC(CH3)3 194.23 1.047 1.480520 790.8mm 101 b591 Butyl phenyl ether CH3CH2CH2CH2OC6H5 150.22 6, 143 0.935120 4 1.497020 19 210.3 82 (OC) b592 4-tert-Butylphenyl salicylate HOC6H4CO2CH6H4C(CH3)3 270.31 62–64 0.1 aq; 79 alc; 153 EtOAc; 158 toluene b593 Butyl propionate CH3CH2CO2C4H9 130.19 2, 241 0.881815 1.398225 89 146.8 38 v s alc, eth; v sl s aq b594 tert-Butyl propionate CH3CH2CO2C(CH3)3 130.19 23, 528 0.865 1.393020 118 20 b595 4-tert-Butyl pyridine (CH3)3C(C5H4N) 135.21 20, 252 0.915 1.495220 197 63 b596 tert-Butyl 1-pyrrole-carboxylate (C4H4N)CO2C(CH3)3 167.21 1.000 1.468520 9220mm 75 b597 1-Butylpyrrolidine (C4H8N)C4H9 127.23 202, 4 0.814 1.444020 157 36 b598 4-tert-Butylstyrene (CH3)3CC6H4CH"CH2 160.26 53, 1254 0.875 1.526020 37 929mm 80 b599 1-Butyl-3-sulfanilyl-urea 4-(H2N)C6H4SO2NH-CONHC4H9 271.34 14,4, 2667 143–145 b600 Butyltin trichloride C4H9SnCl3 282.17 44, 4346 1.693 1.522920 9310mm 81 b601 Butyltin tris(2-ethyl-hexanoate) [CH3(CH2)3CH(C2H5)CO2]3-SnC4H9 605.43 1.105 1.465020 110 1.134 b602 4-tert-Butyltoluene (CH3)3CC6H4CH3 148.25 5, 439 0.861220 1.491820 52 190 68 b603 Butyltrichlorosilane C4H9SiCl3 191.56 4,1, 582 1.160 1.437020 149 45 b604 tert-Butyltrichloro-silane (CH3)3CSiCl3 191.56 43, 1905 97–100 132–134 40 b605 Butyl trifluoroacetate CF3CO2C4H9 170.1 1.026822 1.35322 100.1 b606 Butyltrimethoxysilane C4H9Si(OCH3)3 178.3 0.931220 4 1.397920 164–165 b607 tert-Butyl trimethyl-silyl peroxide (CH3)3C9O9O9Si(CH3)3 162.3 0.821920 4 1.393520 dec 135 4141mm b608 Butylurea C4H9NHCONH2 116.16 41, 371 96–98 s aq, alc, eth b609 Butyl vinyl ether C4H9OCH"CH2 100.16 0.779220 1.400720 92 94.2 9 0.3 aq b610 5-tert-Butyl-m-xylene (CH3)3CC6H3(CH3)2 162.28 5, 447 0.867 1.494620 205–206 72 b610a 1-Butyne CH3CH2C#CH 54.09 2.211 g/L 126 8.1 b610b 2-Butyne CH3C#C9CH3 54.09 0.688 32 27 b611 2-Butyne-1,4-diol HOCH2C#CCH2OH 86.09 11, 261 1.45025 56–58 238 152 374 aq; 83 als; 0.04 bz; 2.6 eth; 70 acet b612 Butyraldehyde CH3CH2CH2CHO 72.11 1, 662 0.801620 4 1.384320 96/99 74.8 22 7.1 aq; misc alc, acet, eth, EtOAc b613 Butyramide CH3CH2CH2CONH2 87.12 2, 275 116 216 16 aq; s alc b614 Butyric acid CH3CH2CH2COOH 88.11 2, 264 0.958220 4 1.399120 5.3/5.7 163.5 72 misc aq, alc, eth b615 Butyric anhydride [CH3CH2CH2C("O)]2O 158.20 2, 274 0.966820 4 1.407020 75/66 199.5 54 s aq (dec); alc (dec), eth b616 -Butyrolactone 86.09 171, 130 1.056 1.410920 43.5 204 60 b617 -Butyrolactone 86.09 17, 234 1.12425 4 1.434825 43.5 204 98 misc aq; s alc, acet, bz, eth b618 Butyronitrile CH3CH2CH2CN 69.11 22, 252 0.795415 4 1.444020 112 117.6 24 3.3 aq; misc alc, eth 1.135 Butyl oleate, b581a tert-Butyl perbenzoate, b584 Butyl o-phthalate, d165 Butyl 2-propenoate, b507a Butyl propyl ketone, o38 Butyl stearate, b581 Butyl sulfate, d169 Butyl sulfide, d170 tert-Butyl sulfide, d171 Butyl sulfite, d172 Butyl sulfone, d173 -Butyrolactam, p285 b616 b617 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent b619 Butyrophenone C6H5C("O)C3H7 148.21 7, 313 1.021 1.519520 11–13 230 88 b620 Butyryl chloride CH3CH2CH2COCl 106.55 2, 274 1.026321 4 1.41220 89 102 21 s aq (dec), alc (dec); misc eth 1.136 c1 Caffeine 194.19 26, 461 1.2318 4 238 subl 178 2.1 aq; 1.5 alc; 18 chl; 0.19 eth; 1 bz; 2 acet c2 ()-Camphene 136.24 5, 156 0.842254 4 1.455154 51–52 159 36 i aq; s alc, chl, eth c3 (1R)-()-Camphor 152.24 7, 101 0.99225 4 1.5462 179 207 66 100 alc; 100 eth; 200 chl; 250 acet c4 (1R,3S)-Camphoric acid 200.23 9, 745 1.18620 4 186–188 at 25C: 0.8 aq, 100 alc, 250 acet, 200 eth, 200 HOAc; s chl c5 ()-10-Camphor-sulfonic acid 232.30 11, 314 194 dec deliq moist air; sl s HOAc, EtOAc; i eth c6 Carbazole 167.21 20, 433 1.1018 4 245 355 16 pyr; 11 acet; 3 eth; 0.8 bz; sl s HOAc, PE c7 4-Carbethoxy-2-methyl-3-cyclo-hexen-1-one 182.22 10, 631 1.078 1.488020 268–272 110 c8 Carbobenzyloxy-glycine C6H5CH2OC("O)NH-CH2COOH 209.20 122 c9 Carbohydrazide H2NNHC("O)NHNH2 90.08 3, 121 157–158 v s aq; i alc, bz, eth; forms salts with acids c10 Carbon disulfide CS2 76.14 3, 197 1.263220 4 1.627020 111.6 46.5 30 0.3 aq; misc bz, chl, eth, CCl4 c11 Carbon monoxide CO 28.01 Merck: 12, 1861 1.145 g/L 205 191.5 2.3 aq; 16 alc; s chl, EtOAc, HOAc c12 Carbon oxide sulfide COS 60.07 2.456 g/L 138.8 50 c13 Carbon tetrabromide CBr4 331.65 1, 68 3.42 90 190 none c14 Carbon tetrachloride CCl4 153.82 1, 64 1.58925 25 1.460720 23 76.7 none 0.05 aq; misc alc, bz, chl, eth, CS2, PE c15 Carbon tetrafluoride CF4 88.01 1, 59 1.89183 liq 183.6 127.8 c16 Carbon tetraiodide CI4 519.63 1, 74 4.3220 4 171 s bz, chl; dec hot alc c17 4-Carboxybenzene-sulfonamide HOOCC6H4SO2NH2 201.20 11, 390 dec 280 v s alc; s alkalis; i aq, bz, eth 1.137 Cadaverine, p30 2-Camphanone, c3 Capraldehyde, d7 Capric acid, d15 Capric alcohol, d16 Caproaldehyde, h51 Caproic acid, h64 Caproic anhydride, h65 6-(or )-Caprolactam, o61 -Caprolactone, h69 Capronitrile, h61 Caproyl chloride, h72 Capryl alcohol, o32 Caprylaldehyde, o43 Caprylic acid, o30 Caprylonitrile, o28 Capryloyl chloride, o39 N-(Carbamoylmethyl)iminodiacetic acid, a14 Carbamylurea, b238 Carbanilide, d775 Carbazole, d751 Carbitol, e41a Carbitol acetate, e42 Carbobenzoxy chloride, b91 Carbolic acid, p65 3-Carbomethoxypropionyl chloride, m195 Carbon bromotrichloride, b432 N-Carbonylsulfamyl chloride, c249 Carbonyl sulfide, c12 Carboxybenzaldehyde, f37 c1 c2 c3 c4 c5 c6 c7 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent c18 (4-Carboxybutyl)tri-phenylphosphonium bromide HOOC(CH2)4(C6H5)3Br 443.33 205–207 c19 1-(Carboxymethyl)-pyridinium chloride 173.60 189 dec c20 R-()-Carvone 150.22 7, 157 0.96520 4 1.498920 15 230 88 i aq; misc alc c21 Catechol C6H4-1,2-(OH)2 110.11 1.344 104–106 245 137 43 aq; v s alkalis, pyr; s alc, bz, chl, eth c22 Catecholborane 119.92 1.125 1.507020 12 5050mm 2 c23 Chalcone C6H5CH"CHCOC6H5 208.26 7, 478 1.071262 4 55–57 20825mm 110 v s bz, chl, CS2, eth; sl s alc c23a Chloroacetaldehyde ClCH2CHO 78.50 1, 610 16 85–86 s aq, alc, eth c24 2-Chloroacetamide ClCH2CONH2 93.51 2, 199 119 225 dec 10 aq; 10 alc; sl s eth c25 2-Chloroacetanilide ClC6H4NHCOCH3 169.61 12, 559 88–90 s alc c26 3-Chloroacetanilide ClC6H4NHCOCH3 169.61 12, 604 79–81 v s alc, bz, CS2 c26a 4-Chloroacetanilide ClC6H4NHCOCH3 169.61 12, 611 1.38520 4 179 i aq; v s alc, eth, CS2 c27 Chloroacetic acid ClCH2COOH 94.50 2, 194 1.580 (c) 1.429765 61 189 126 v s aq; s alc, bz, eth c28 Chloroacetic anhydride [ClCH2C("O)]2O 170.98 2, 199 1.549420 4 46 203 v s chl, eth; sl s bz; dec by aq, alc c29 4-Chloroacetoacet-anilide CH3COCH2CH2CO-NHC6H4Cl 211.65 134 dec 160 (CC) c30 Chloroacetonitrile ClCH2CN 75.50 2, 201 1.193 1.422520 126 47 c31 2-Chloroacetophenone C6H5COCH2Cl 154.60 7, 282 1.32415 54–56 245 i aq; v s alc, bz, eth c32 o-Chloroacetophenone ClC6H4COCH3 154.60 71, 151 1.188 1.543820 228738mm 88 sl s aq; s eth c33 p-Chloroacetophenone ClC6H4COCH3 154.60 7, 281 1.19220 4 1.55520 20–21 237 90 i aq; misc alc, eth c34 Chloroacetyl chloride ClCH2COCl 112.94 2, 199 1.42020 4 1.454120 21.8 106 none dec by aq, MeOH c36 2-Chloroacrylonitrile H2C"C(Cl)CN 87.51 1.096 1.429020 65 89 6 c37 2-Chloro-4-amino-toluene ClC6H3(CH3)NH2 141.60 12, 988 1.1671 1.584020 24–25 238 100 c38 2-Chloroaniline ClC6H4NH2 127.57 12, 597 1.212520 4 1.589520 14 208.8 97 0.88 aq; s acids, most common org solvents c39 3-Chloroaniline ClC6H4NH2 127.57 12, 602 1.215022 4 1.593120 10.4 230.5 123 i aq; s most common org solvents 1.138 c40 4-Chloroaniline ClC6H4NH2 127.57 12, 607 1.16977 4 1.554685 72.5 232 s hot aq; v s alc, acet, eth, CS2 c41 1-Chloroanthra-quinone 242.66 7, 787 160 sublimes sl s alc; s hot bz; misc eth c42 2-Chloroanthra-quinone 242.66 7, 787 211 sublimes sl s alc, bz; i eth c43 2-Chlorobenzaldehyde ClC6H4CHO 140.57 7, 233 1.248320 4 1.5658 11 215 87 sl s aq; s alc, bz, eth c44 3-Chlorobenzaldehyde ClC6H4CHO 140.57 7, 234 1.241 1.554520 18 214 88 c45 4-Chlorobenzaldehyde ClC6H4CHO 140.57 7, 235 1.19661 4 1.55261 47 214 87 s aq; v s alc, bz, eth c46 2-Chlorobenzamide ClC6H4CONH2 155.58 9, 336 142–144 c47 Chlorobenzene C6H5Cl 112.56 5, 199 1.106320 1.524820 45.3 131.7 28 0.049 aq30; v s alc, bz, chl, eth c48 4-Chlorobenzene-sulfonamide ClC6H4SO2NH2 191.64 11, 55 146 s hot aq, hot alc, hot eth c49 4-Chlorobenzene-sulfonic acid ClC6H4SO3H 192.62 11, 54 14922mm 107 c50 4-Chlorobenzene-sulfonyl chloride ClC6H4SO2Cl 211.07 11, 55 55 14115mm 107 dec aq, alc; v s bz, eth c51 2-Chlorobenzoic acid ClC6H4COOH 156.57 9, 334 1.54420 4 140 0.11 aq; v s alc, eth 1.139 (3-Carboxy-2-hydroxypropyl)trimentylammonium hydroxide, c19 (Carboxylmethyl)trimethylammonium hydroxide, b133 (Carbomethylimino)bis(ethylenenitrilo)-tetraaceticacid, d363 3-Carboxylpropyl disulfide, d809 Carvene, L17 Cellosolve, e40 Cellosolve acetate, e42 Cetyl alcohol, h35 Cetyl bromide, b345 Chalcone, d768 Chloral, t218 Chloramine T, c258 Chloranil, t34, t35 Chlorendic anhydride, h28 Chloroacetaldehyde diethyl acetal, c96 Chloroacetaldehyde dimethyl acetal, c105 Chloroacetone, c229a Chloroenthranilic acid, a138 5-Chloroanthranilonitrile, a139 Chlorobenzeneamines, c38 thru c40 p-Chlorobenzenethiol, c252 c19 c20 c22 c41 c42 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent c52 3-Chlorobenzoic acid ClC6H4COOH 156.57 9, 337 1.49625 4 158 0.04 aq; v s alc, eth c53 4-Chlorobenzoic acid ClC6H4COOH 156.57 9, 340 241–243 0.02 aq; v s alc, eth c54 2-Chlorobenzonitrile ClC6H4CN 137.57 9, 336 46 232 108 s alc, eth c55 4-Chlorobenzonitrile ClC6H4CN 137.57 9, 341 93 223 s alc, bz, chl, eth c56 2-Chlorobenzo-phenone ClC6H4COC6H5 216.67 7, 419 44–47 300 110 c57 4-Chlorobenzo-phenone ClC6H4COC6H5 216.67 7, 419 77 19617mm s alc, acet, bz, eth c58 2-Chlorobenzotri-chloride ClC6H4CCl3 229.92 5, 302 1.508 1.581720 29 264 98 c59 4-Chlorobenzotri-chloride ClC6H4CCl3 229.92 5, 303 1.495 1.572220 245 110 c60 2-Chlorobenzotri-fluoride ClC6H4CF3 180.56 53, 692 1.354025 1.451325 6.4 152 58 c61 3-Chlorobenzotri-fluoride ClC6H4CF3 180.56 53, 692 1.331125 1.443825 56.7 137.7 38 c62 4-Chlorobenzotri-fluoride ClC6H4CF3 180.56 1.35320 1.4463 36 138.7 47 c63 2-(4-Chlorobenzoyl)-benzoic acid ClC6H4COC6H4COOH 260.68 10, 750 150 s alc, bz, eth c64 2-Chlorobenzoyl chloride ClC6H4COCl 175.01 9, 336 1.382 1.571820 3 238 110 dec by aq & alc c65 4-Chlorobenzoyl chloride ClC6H4COCl 175.01 9, 341 1.377 1.578020 14 222 105 dec by aq & alc c66 4-Chlorobenzyl alcohol ClC6H4CH2OH 142.59 6, 444 72 234 v s alc, eth c67 2-Chlorobenzylamine ClC6H4CH2NH2 141.60 12, 1073 1.173 1.563020 10411mm 88 c68 4-Chlorobenzylamine ClC6H4CH2NH2 141.60 12, 1074 1.164 1.558620 215 90 c69 2-Chlorobenzyl chloride ClC6H4CH2Cl 161.03 5, 297 1.274 1.559120 17 214 82 c70 4-Chlorobenzyl chloride ClC6H4CH2Cl 161.03 5, 308 30 222 97 s alc, v s eth c71 2-Chlorobenzyl cyanide ClC6H4CH2CN 151.60 9, 448 1.554020 24 242 110 1.140 c72 4-Chlorobenzyl cyanide ClC6H4CH2CN 151.60 9, 448 30.3 267 110 c73 4-Chlorobenzyl mercaptan ClC6H4CH2SH 158.65 6, 466 1.202 1.589320 20 76 c74 1-Chloro-1,3-butadiene H2C"CHCH"CHCl 88.54 13, 949 0.960120 4 1.471220 68 20 v s chl c74a 2-Chloro-1,3-butadiene H2C"CHC(Cl)"CH2 88.54 0.952 59 c75 1-Chlorobutane CH3CH2CH2CH2Cl 92.57 1, 118 0.886420 4 1.402120 123.1 78.4 9 0.11 aq; misc alc, eth c76 2-Chlorobutane CH3CH2CH(Cl)CH3 92.57 1, 119 0.873220 4 1.397120 131.3 68.2 15 0.1 aq; misc alc, eth c77 4-Chloro-1-butanol ClCH2CH2CH2CH2OH 108.56 12, 398 1.088320 4 1.451820 8920mm 32 s alc, eth c78 3-Chloro-2-butanone CH3CH(Cl)C("O)CH3 106.55 1, 669 1.055 1.417220 117 21 v s alc, eth c79 cis-1-Chloro-2-butene CH3CH"CHCH2Cl 90.55 12, 176 0.942620 1.439020 84.1 15 s alc, acet c80 trans-1-Chloro-2-butene CH3CH"CHCH2Cl 90.55 12, 176 0.929 1.439020 85 5 s alc, acet c81 3-Chloro-1-butene CH3CH(Cl)CH"CH2 90.55 12, 174 0.900120 4 1.415520 65 20 v s acet c82 4-Chlorobutyl acetate CH3CO2CH2CH2CH2CH2Cl 150.61 22, 141 1.072 1.433820 9222mm 64 c83 3-Chloro-1-butyne CH3CH(Cl)C#CH 88.54 14, 970 0.961 1.428020 68–70 1 c84 3-Chlorobutyric acid CH3CH(Cl)CH2COOH 122.55 2, 277 1.18620 4 1.442120 16.3 10917mm 110 s alc, eth c85 4-Chlorobutyric acid ClCH2CH2CH2COOH 122.55 2, 278 1.223620 4 1.452120 12–16 19622mm 110 sl s aq; v s eth c86 4-Chlorobutyronitrile ClCH2CH2CH2CN 103.55 2, 278 1.158 1.441320 197 85 s alc, eth c87 4-Chlorobutyryl chlo-ride ClCH2CH2CH2COCl 141.00 2, 278 1.258 1.460920 174 72 dec by aq, alc; s eth c88 Chloro(chloromethyl)-dimethylsilane ClCH2Si(CH3)2Cl 143.09 1.086 1.437320 114752mm 21 c89 3-Chloro-2-chloro-methyl-1-propene H2C"C(CH2Cl)2 125.00 12, 181 1.080 1.475320 14 138 36 c90 trans-2-Chloro-cinnamic acid ClC6H4CH"CHCO2H 182.61 9, 594 208–210 c91 Chlorocyclohexane ClC6H11 118.61 5, 21 1.00020 4 1.462020 44 142 28 i aq; s alc, eth c92 1-Chloro-3-cyclo-hexylpropane C6H11(CH2)3Cl 160.69 52, 23 0.997 1.466220 795mm 78 c93 Chlorocyclopentane C5H9Cl 104.58 5, 19 1.005120 4 1.451220 114 15 i aq c94 1-Chlorodecane CH3(CH2)9Cl 176.73 1, 168 0.868 1.436220 34 223 83 i aq c95 Chlorodicyclohexyl-borane (C6H11)2BCl 212.57 164, 1637 0.970 1011mm c96 2-Chloro-1,1-diethoxy-ethane ClCH2CH(OC2H5)2 152.62 1, 611 1.018 1.415720 157 29 1.141 Chlorocresol, c176, c177 Chlorodibromomethane, d88 2-Chloro-N,N-diethylethylamine, d328 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent c97 3-Chloro-1,1-diethoxy-propane ClCH2CH2CH(OC2H5)2 166.65 1, 632 0.995 1.424020 8425mm 36 c98 Chlorodifluoroacetic acid F2C(Cl)COOH 130.48 2, 201 1.540 1.355920 24–26 122 none c99 1-Chloro-2,4-difluoro-benzene ClC6H3F2 148.54 54, 653 1.353 1.475020 127 32 c100 1-Chloro-1,1-difluoro-ethane CH3C(Cl)F2 100.50 13, 138 4.108 g/L 131 10 0.19 aq c100a 1-Chloro-2,2-difluoro-ethylene ClCH"CF2 98.48 4.025 g/L 138.5 18.5 c101 Chlorodifluoro-methane HCClF2 86.47 13, 41 1.490969 157 40.8 0.30 aq c102 1-Chloro-2,4-di-hydroxybenzene ClC6H3(OH)2 144.56 62, 818 107 14718mm v s aq, alc, chl, eth c103 2-Chloro-1,4-di-hydroxybenzene ClC6H3(OH)2 144.56 6, 849 101–102 263 v s aq; i alc, s eth c104 2-Chloro-1,4-di-methoxybenzene ClC6H3(OCH3)2 172.61 63, 4432 1.211 1.546720 234 110 c105 2-Chloro-1,1-di-methoxyethane ClCH2CH(OCH3)2 124.57 1.09420 20 1.414820 130 28 c107 2-Chloro-4,6-di-methylaniline ClC6H2(CH3)2NH2 155.63 12, 1125 1.110 38–40 110 c108 4-Chloro-3,5-di-methylphenol ClC6H2(CH3)2OH 156.61 62, 463 115.5 246 0.03 aq; 100 alc; s bz, eth, alkalis c109 1-Chloro-2,2-di-methylpropane (CH3)3CCH2Cl 106.59 1, 141 0.86620 4 1.404220 20 84.4 32 c110 3-Chloro-2,2-dimethyl-1-propanol ClCH2C(CH3)2CH2OH 122.60 1.450420 34–36 8735mm 71 c111 Chlorodimethylsilane (CH3)2Si(Cl)H 94.62 0.85220 4 1.382720 111 36 28 c112 Chlorodimethylvinyl-silane (CH3)2Si(Cl)CH"CH2 120.7 4,4, 4080 0.88425 4 1.41425 82.5 5 c113 6-Chloro-2,4-dinitro-aniline ClC6H2(NO2)2NH2 217.57 121, 367 159 1.142 c114 1-Chloro-2,4-dinitro-benzene ClC6H3(NO2)2 202.55 5, 263 1.498275 4 1.585760 52–54 315 186 sl s alc; s hot alc, bz, eth c115 2-Chloro-3,5-dinitro-benzoic acid ClC6H2(NO2)2COOH 246.56 9, 415 198 241 explodes 0.3 aq c116 Chlorodiphenyl-methane C6H5CH(Cl)C6H5 202.68 52, 500 1.14020 4 1.595120 17 1403mm 110 c117 Chlorodiphenylmethyl-silane (C6H5)2Si(Cl)CH3 232.8 162, 606 1.127720 4 1.574220 295 110 c118 Chlorodiphenyl-phosphine (C6H5)2PCl 220.64 16, 763 1.229 1.633820 320 110 c119 1-Chlorododecane CH3(CH2)11Cl 204.79 0.867320 4 1.4426 9 116 93 v s alc; s bz c120 1-Chloro-2,3-epoxy-propane H2C9CHCH2Cl O 92.53 17, 6 1.181220 4 1.435820 57.2 116.1 31 5.9 aq; misc alc, chl c121 Chloroethane CH3CH2Cl 64.52 1, 82 0.92140 4 1.374210 139 12.3 50 0.45 aq0; 48 alc; misc eth c122 2-Chloroethanol ClCH2CH2OH 80.52 1, 337 1.201920 1.442220 67.5 128.6 60 misc aq, alc c123 2-(2-Chloroethoxy)-ethanol ClCH2CH2OCH2CH2OH 124.57 1, 467 1.180 1.452920 815mm 90 c124 2-[2-(2-Chloroethoxy)-ethoxy]ethanol ClCH2CH2OCH2CH2O-CH2CH2OH 168.62 1, 468 1.160 1.458020 1205mm 107 c125 2-Chloroethoxytri-methylsilane ClCH2CH2OSi(CH3)3 152.70 43, 1856 0.944 1.414020 134 30 c126 2-Chloroethylamine hydrochloride ClCH2CH2NH2·HCl 115.99 4, 133 146 c127 1-Chloro-2-ethyl-benzene ClC6H4C2H5 140.61 1.05525 25 81 179.2 66 i aq; misc alc, eth c128 (2-Chloroethyl)-benzene C6H5CH2CH2Cl 140.61 5, 354 1.069 1.530020 8416mm 66 s alc, bz, eth c129 Chloroethylene H2C"CHCl 62.50 1, 186 0.9714 154 13.4 78 sl s aq; s alc c130 N-(2-Chloroethyl)-N-ethylamine C6H5N(C2H5)CH2CH2Cl 183.68 123, 263 1.075 1.558420 16442mm 110 c131 2-Chloroethyl ethyl ether ClCH2CH2OCH2CH3 108.57 1, 337 0.989 1.412020 107 15 1.143 Chlorodimethyl ether, c173 2-Chloroethyl alcohol, c122 2-Chloroethyl ether, b163 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent c132 2-Chloroethyl methyl ether ClCH2CH2OCH3 94.54 1, 337 1.035 1.409020 90 15 c133 N-(2-Chloroethyl)-morpholine HCl 186.08 186 c133a 2-Chloroethyl phenyl ether C6H5OCH2CH2Cl 156.61 63, 675 1.129 1.534020 9815mm 100 c134 N-(2-Chloroethyl)-piperidine HCl 184.11 20, 17 236 c135 2-Chloroethyl p-toluenesulfonate CH3C6H4SO3CH2CH2Cl 234.70 112, 45 1.294 1.529020 1530.3mm 110 c136 2-Chloroethyl vinyl ether H2C"CHOCH2CH2Cl 106.55 12, 473 1.052515 15 1.437020 69.7 110 16 0.6 aq c137 1-Chloro-2-fluoro-benzene ClC6H4F 130.55 51, 110 1.244 1.501020 42.4 138.5 31 s alc, eth c138 1-Chloro-3-fluoro-benzene ClC6H4F 130.55 1.219 1.494420 126 20 s alc, eth c139 2-Chloro-6-fluoro-benzyl chloride Cl(F)C6H3CH2Cl 179.02 1.401 1.537220 93 c140 4-Chloro-4-fluoro-butyrophenone FC6H4C("O)CH2CH2CH2Cl 200.64 1.220 1.525520 110 c141 3-Chloro-4-fluoro-nitrobenzene Cl(F)C6H3NO2 175.55 51, 130 1.602817 1.567417 41.5 12717mm c142 2-Chloro-4-fluoro-phenol Cl(F)C6H3OH 146.55 64, 880 1.344 1.5300 23 884mm 75 c143 2-Chloro-6-fluoro-toluene Cl(F)C6H3CH3 144.58 1.191 1.502620 156 46 c144 4-Chloro-2-fluoro-toluene Cl(F)C6H3CH3 144.58 54, 813 1.186 1.499820 158743mm 51 c145 Chloroform CHCl3 119.39 1, 61 1.483220 1.445920 63.6 61.1 0.50 aq25; misc alc, bz, eth, PE, CCl4 c146 Chloroform-d CDCl3 120.39 13, 63 1.500 1.444520 64 60.9 see under chloroform c147 1-Chloroheptane CH3(CH2)6Cl 134.65 1, 154 0.88116 0 1.425020 69 159–161 41 misc alc, eth c148 1-Chlorohexadecane CH3(CH2)15Cl 260.89 1, 172 0.865 1.449020 1491mm 110 1.144 c149 1-Chlorohexane CH3(CH2)5Cl 120.62 1, 143 0.878020 4 1.419520 94 134 26 i aq c150 6-Chloro-1-hexanol Cl(CH2)6OH 136.62 1.204 1.456020 11014mm 98 sl s aq; v s alc, eth c151 4-Chloro-4-hydroxy-benzophenone ClC6H4C("O)C6H4OH 232.67 82, 187 175–178 25713mm c152 5-Chloro-8-hydroxy-7-iodoquinoline 305.50 21, 98 172 i alc, eth; 0.8 chl; 0.6 HOAc c153 5-Chloro-8-hydroxy-quinoline 179.61 21, 95 130 sl s aq HCl c154 1-Chloro-4-iodo-benzene ClC6H4I 238.46 5, 221 1.18657 4 53–54 227 108 s alc c155 1-Chloro-3-iodo-propane Cl(CH2)3I 204.44 1, 114 1.904 1.546320 170–172 110 c156 1-Chloro-3-mercapto-2-propanol HSCH2CH(OH)CH2Cl 126.61 13, 2156 1.277 1.527620 571.3mm 97 c157 Chloromethane CH3Cl 50.49 1, 59 2.064 g/L 1.371224 97.7 24.2 0 0.48 aq;25 s alc,; misc chl, eth, HOAc c158 3-Chloro-4-methoxy-aniline ClC6H3(OCH3)NH2 157.60 13, 511 50–55 110 c159 5-Chloro-2-methoxy-aniline ClC6H3(OCH3)NH2 157.60 13, 383 83–85 c160 1-Chloro-2-methoxy-benzene ClC6H4OCH3 142.59 6, 184 1.123 1.544520 196 76 i aq; s alc, eth c161 5-Chloro-2-methoxy-benzoic acid ClC6H3(OCH3)COOH 186.59 10, 103 98–100 c162 2-Chloro-6-methoxy-pyridine CH3O(Cl)(C5H3N) 143.57 1.207 1.526320 186 1.145 2-Chloro-6-fluorobenzal chloride, t238 -Chloro-4-fluorotoluene, f16 5-Chloro-2-hydroxyaniline, a147 Chlorohydroxybenzoic acids, c245, c246 1-Chloro-3-hydroxypropane, c231 c133 c134 c152 c153 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent c163 2-Chloro-6-methyl-aniline CH3O(Cl)C6H3NH2 141.60 121, 388 1.152 1.576120 2 215 98 s alc c164 3-Chloro-2-methyl-aniline CH3O(Cl)C6H3NH2 141.60 12, 836 1.185 1.587420 2 11710mm 110 c165 3-Chloro-4-methyl-aniline CH3O(Cl)C6H3NH2 141.60 12, 988 1.583020 25 238 100 c166 4-Chloro-2-methyl-aniline CH3O(Cl)C6H3NH2 141.60 12, 835 1.584820 27 241 99 s hot alc c167 5-Chloro-2-methyl-aniline CH3O(Cl)C6H3NH2 141.60 12, 835 1.584020 22 237 160 c168 3-(Chloromethyl)-benzoyl chloride ClCH2C6H4COCl 189.04 92, 325 1.330 1.574820 15020mm 110 c169 DL-4-Chloro-2-(-methylben-zyl)phenol C6H5CH(CH3)C6H3(Cl)OH 232.71 64, 4710 1.238 1.599420 1552mm 110 c169a 1-Chloro-3-methyl-butane ClCH2CH2CH(CH3)CH3 106.60 0.875020 1.408420 104 99 21 sl s aq; misc alc, eth c170 2-Chloro-2-methyl-butane CH3CH2CCl(CH3)2 106.59 1, 134 0.865020 4 1.405220 73.7 85 9 i aq; s alc, eth c171 Chloromethyldichloro-methylsilane ClCH2Si(Cl)2CH3 163.5 43, 1888 1.286 1.449420 121 110 c172 Chloromethyl ethyl ether ClCH2OCH2CH3 94.54 12, 645 1.0420 4 1.404020 79–83 19 s alc; v s eth c172a 3-(Chloromethyl)-heptane CH3CH2CH2CH2CH(CH2Cl)-CH2CH3 148.68 0.876920 1.431920 172 60 c173 Chloromethyl methyl ether ClCH2OCH3 80.51 1, 580 1.070320 4 1.396120 103.5 57–59 15 dec by aq; s acet, CS2 c174 Chloromethyl methyl sulfide ClCH2SCH3 95.48 1.153 1.496320 105 17 c175 1-(Chloromethyl)-naphthalene C10H7CH2Cl 176.65 5, 566 1.180 1.638020 32 16925mm 110 c176 4-Chloro-2-methyl-phenol CH3(Cl)C6H3OH 142.59 6, 359 45–48 220–225 110 sl s aq 1.146 c177 4-Chloro-3-methyl-phenol CH3(Cl)C6H3OH 142.59 6, 381 65–68 235 i aq; s alc, bz, chl, eth, acet c178 1-Chloro-2-methyl-2-phenylpropane C6H5C(CH3)2CH2Cl 168.67 52, 320 1.047 1.524020 9610mm 92 c179 1-Chloro-2-methyl-propane (CH3)2CHCH2Cl 92.57 1, 124 0.882915 1.401015 130.3 68.9 21 0.09 aq; misc alc, eth c180 2-Chloro-2-methyl-propane (CH3)3CCl 92.57 1, 125 0.842020 1.385620 26 50.8 0 sl s aq; misc alc, eth c181 1-Chloro-2-methyl-propene (CH3)2C"CHCl 90.55 1, 209 0.918620 4 1.422520 68.1 1 misc alc, eth c182 3-Chloro-2-methyl-propene ClCH2C(CH3)"CH2 90.55 1, 209 0.921015 4 1.427220 80 72 12 misc alc, eth c183 Chloromethyltri-methylsilane ClCH2Si(CH3)3 122.67 43, 1844 0.886120 4 1.418020 99 2 c184 6-(Chloromethyl)-uracil 160.56 231, 328 257 dec c185 1-Chloronaphthalene C10H7Cl 162.62 5, 541 1.193820 4 1.632620 2.3 259 121 s alc, bz, PE c186 2-Chloronaphthalene C10H7Cl 162.62 1.137771 1.607971 60 256 s alc, bz, chl, eth c187 4-Chloro-3-nitro-acetophenone ClC6H3(NO2)C("O)CH3 199.60 73, 995 101 c188 2-Chloro-4-nitro-aniline ClC6H3(NO2)NH2 172.57 12, 733 107–109 sl s aq; v s alc, eth c189 2-Chloro-5-nitro-aniline ClC6H3(NO2)NH2 172.57 12, 732 119–121 c190 4-Chloro-2-nitro-aniline ClC6H3(NO2)NH2 172.57 12, 729 117–119 v s alc, eth 1.147 Chloromethylbenzenes, b90, c255, c256, c257 (Chloromethyl)oxirane, c120 -Chloronitrotoluene, n45 Chloronitro-,,-trifluorotoluenes, c199, c200 c184 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent c191 4-Chloro-3-nitro-aniline ClC6H3(NO2)NH2 172.57 12, 731 99–101 v s alc; s eth c192 1-Chloro-2-nitro-benzene ClC6H4NO2 157.56 5, 241 1.348 33 246 123 s alc, bz, eth c193 1-Chloro-3-nitro-benzene ClC6H4NO2 157.56 5, 243 1.53420 4 44 236 103 sl s alc; v s chl, eth c194 1-Chloro-4-nitro-benzene ClC6H4NO2 157.56 5, 243 1.520 83–84 242 110 sl s alc; v s eth, CS2 c195 2-Chloro-4-nitro-benzoic acid ClC6H3(NO2)COOH 201.57 9, 404 139–141 s hot aq, hot bz c196 2-Chloro-5-nitro-benzoic acid ClC6H3(NO2)COOH 201.57 9, 403 1.60818 166–168 sl s aq; s alc, bz, eth c197 4-Chloro-3-nitro-benzoic acid ClC6H3(NO2)COOH 201.57 9, 402 1.64518 180–183 sl s alc; s hot aq c198 4-Chloro-3-nitro-benzophenone ClC6H3(NO2)C("O)C6H5 261.66 71, 230 104–106 23513mm c199 2-Chloro-5-nitro-benzotrifluoride ClC6H3(NO2)CF3 225.55 1.527 1.508320 231 98 c200 4-Chloro-3-nitro-benzotrifluoride ClC6H3(NO2)CF3 225.55 1.511 1.489320 2.5 222 101 c201 4-Chloro-2-nitrophenol ClC6H3(NO2)OH 173.56 6, 238 85–87 c202 2-Chloro-6-nitro-toluene ClC6H3(NO2)CH3 171.58 5, 327 1.537770 36 238 125 i aq c203 4-Chloro-2-nitro-toluene ClC6H3(NO2)CH3 171.58 5, 327 39 240718mm 110 i aq c203a 1-Chlorooctadecane CH3(CH2)17Cl 288.95 13, 566 0.849 1.451620 1581.5mm 110 c204 1-Chlorooctane CH3(CH2)7Cl 148.68 1, 159 0.875 1.429820 58 182 70 0.02 aq; misc alc, eth c204a 1-Chloropentane CH3(CH2)4Cl 106.60 1, 130 0.882020 1.411520 99 107–108 13 1.148 c205 3-Chloro-2,4-pentane-dione CH3COCH(Cl)COCH3 134.56 1, 785 1.129 1.483020 5218mm 12 c206 5-Chloro-2-pentanone ClCH2CH2CH2COCH3 120.58 12, 738 1.057118 4 1.439020 7220mm 35 s acet, eth c207 3-Chloroperoxy-benzoic acid ClC6H5C(O)OOH 172.57 94, 972 69–71 c208 2-Chlorophenol ClC6H4OH 128.56 6, 183 1.257323 4 1.556520 9.8 175 63 sl s aq; v s alc, eth, caustic alkali c209 3-Chlorophenol ClC6H4OH 128.56 6, 185 1.24545 4 1.556540 33 214 110 sl s aq; s alc, eth c210 4-Chlorophenol ClC6H4OH 128.56 6, 186 1.223878 4 1.547940 43 220 115 sl s aq; v s alc, chl, eth, CHCl3, glyc c211 4-Chlorophenoxyacetic acid ClC6H4OCH2COOH 186.59 6, 187 157–159 s aq; MeOH c212 2-(4-Chlorophenoxy)-2-methylpropanoic acid ClC6H4OC(CH3)2COOH 214.65 Merck: 12, 2437 118–119 c213 ()-2-(4-Chlorophen-oxy)propanoic acid ClC6H4OCH(CH3)COOH 200.62 63, 695 117 c214 4-Chlorophenylacetic acid ClC6H4CH2COOH 170.60 9, 448 108 v s aq, alc, eth; s bz c215 (4-Chlorophenyl)-acetonitrile ClC6H4CH2CN 151.60 9, 448 30.5 265–267 110 c216 2-Chloro-1,4-phenyl-enediamine sulfate H2NC6H3(Cl)NH2 · H2SO4 240.67 13, 117 251–253 s aq c217 4-Chloro-1,2-phenyl-enediamine ClC6H3(NH2)2 142.59 13, 25 70–73 s mineral acids c218 1-(4-Chlorophenyl)-ethanol ClC6H4CH(CH3)OH 156.61 61, 236 1.171 1.541O20 11910mm 110 c219 3-Chlorophenyl iso-cyanate ClC6H4NCO 153.57 12, 606 1.260 1.557620 4.4 11443mm 86 c220 4-Chlorophenyl iso-cyanate ClC6H4NCO 153.57 12, 616 1.200 1.561820 29–31 204 110 c221 4-Chlorophenyl phenyl sulfone ClC6H4SO2C6H5 252.72 61, 149 94 at 20C: 74 acet; 44 bz; 5 CCl4; 65 diox; 21 i-PrOH c222 1-Chloro-3-phenyl-propane C6H5(CH2)3Cl 154.64 5, 391 1.080 1.520720 219 87 c223 4-Chlorophenyl sulfone (ClC6H5)2SO2 287.17 6, 327 145–148 25010mm 1.149 p-Chlorophenacyl bromide, b286 Chlorophenylamines, c38, c39, c40 4-Chlorophenyl sulfone, b171 4-Chlorophenyl sulfoxide, b172 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent c224 3-Chlorophthalide 168.58 171, 162 58 15010mm c225 1-Chloropropane CH3CH2CH2Cl 78.54 1, 104 0.889920 1.388620 122.8 46–47 31 0.27 aq; misc alc, eth c226 2-Chloropropane CH3CHClCH3 78.54 1, 105 0.856320 1.377720 117 35–36 35 0.2 aq20; misc alc, bz, chl, eth c227 3-Chloro-1,2-propane-diol ClCH2CH(OH)CH2OH 110.54 1, 473 1.321820 4 1.480520 213 110 s aq, alc, eth c228 2-Chloropropanoic acid CH3CH(Cl)COOH 108.52 2, 248 1.182 1.434520 170–190 101 misc aq, alc, eth c229 3-Chloropropanoic acid ClCH2CH2COOH 108.52 2, 249 41 200765mm 110 v s aq, alc, chl; s eth c230 1-Chloro-2-propanol CH3CH(OH)CH2Cl 94.54 1, 363 1.11520 1.437520 4 126–127 51 misc aq; s alc c231 3-Chloro-1-propanol ClCH2CH2CH2OH 94.54 1, 356 1.130920 4 1.445020 160–162 73 c232 Chloro-2-propanone ClCH2COCH3 92.53 1, 653 1.13515 1.432020 44.5 119.7 27 10 aq; misc alc, chl, eth c233 3-Chloropropano-nitrile ClCH2CH2CN 89.53 2, 250 1.144318 1.434120 51 9550mm d 130 75 c234 3-Chloropropano-phenone ClC6H4C("O)CH2CH3 168.62 73, 1028 45–47 12414mm 110 c235 2-Chloropropanyl chloride CH3CH(Cl)COCl 126.97 2, 248 1.308 1.440020 109–111 31 dec aq, alc c236 3-Chloropropanyl chloride ClCH2CH2COCl 126.97 2, 250 1.330713 1.457020 143–145 61 i aq; d hot aq, hot alc; s alc; v s eth c236a 3-Chloro-1-propene ClCH2CH"CH2 76.53 1, 198 0.93820 4 1.415420 134.5 45 32 0.36 aq; misc alc, PE c237 3-Chloropropylacetate CH3CO2(CH3)3Cl 130.02 4, 148 148–150 c238 3-Chloropropyl thiolactate CH3C("O)SCH2CH2Cl 152.64 23, 493 1.159 1.494620 8410mm 77 c239 (3-Chloropropyl)tri-ethoxysilane Cl(CH2)3Si(OC2H5)3 240.81 1.00920 4 1.42020 10210mm c240 (3-Chloropropyl)tri-methoxysilane Cl(CH2)3Si(OCH3)3 198.72 1.07725 4 1.418325 195750mm 78 c241 3-Chloropropyne ClCH2C#CH 74.51 1, 248 1.030625 4 1.456020 78 57 13 misc alc, bz, eth, EtOAc c242 2-Chloropyridine Cl(C5H4N) 113.55 20, 230 1.20515 1.532020 166714mm 65 sl s aq; s alc, eth 1.150 c243 3-Chloropyridine Cl(C5H4N) 113.55 20, 230 1.194 1.530020 148 65 c244 4-Chlororesorcinol ClC6H3-1,3(OH)2 144.56 62, 818 106–108 14718mm c245 4-Chlorosalicylic acid ClC6H3(2-OH)COOH 172.57 10, 101 210–212 c246 5-Chlorosalicylic acid ClC6H3(2-OH)COOH 172.57 10, 102 172 c247 N-Chlorosuccinimide 133.53 21, 380 1.65 150–151 1.4 aq; 0.67 alc; 2 bz; sl s chl, CCl4, eth c248 Chlorosulfonic acid ClHO3S 116.52 Merck: 12, 2218 1.75320 4 1.43714 80 152755mm none s pyr, dichloroethane; aq dec with violence c249 Chlorosulfonyl isocyanate ClSO2NCO 141.53 1.626 1.447020 44 107 none c250 1-Chlorotetradecane CH3(CH2)13Cl 232.84 12, 135 0.859 1.446020 1424mm 110 c251 2-Chlorothiophene Cl(C5H3S) 118.59 17, 32 1.286 1.548320 72 127–129 22 i aq; misc alc, eth c252 4-Chlorothiophenol ClC6H4SH 144.62 6, 326 49–52 205–207 110 c253 8-Chlorothiophylline 214.61 26, 473 dec 290 s alkali c254 Chlorotitanium triiso-propoxide [(CH3)2CHO]3TiCl 260.62 1.091 22 c255 2-Chlorotoluene ClC6H4CH3 126.59 5, 290 1.082620 4 1.526820 35.6 159.0 47 sl s aq; v s alc, bz, chl, eth c256 3-Chlorotoluene ClC6H4CH3 126.59 5, 291 1.076019 4 1.521820 47.8 161.8 50 s alc, bz, chl; misc eth c257 4-Chlorotoluene ClC6H4CH3 126.59 5, 292 1.069720 4 1.515020 7.5 162.4 49 sl s aq; s alc, bz, eth c258 N-Chloro-p-toluene sulfonamide, so-dium salt CH3C6H4SO2NCl Na 227.67 167 dec s aq; i bz, chl, eth c259 4-(4-Chloro-o-tolyl-oxy)butyric acid ClC6H3(CH3)O(CH2)3COOH 228.68 99–100 1.151 Chloroprene, c236a -Chloropropionaldehyde diethyl acetal, c97 3-Chloropropylene-1,2-oxide, c120 1-Chloro-2,5-pyrrolidinedione, c247 -Chlorotoluene, b90 Chlorotoluidines, c163 thru c167 c224 c247 c253 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent c260 Chlorotriethylgermane (C2H5)3GeCl 195.23 43, 1912 1.175 1.459020 110 c261 Chlorotriethylsilane (C2H5)3SiCl 150.73 4, 624 0.898 1.430020 142–144 29 c262 Chloro-2,2,2-trifluoro-ethane CF3CH2Cl 118.5 1,3, 138 1.3890 1.30900 105 6.9 c263 Chlorotrifluoro-ethylene CF2"CFCl 116.47 13, 646 1.315 158.2 28 c264 Chlorotrifluoro-methane ClCF3 104.46 13, 42 4.270 g/L 181 81 c265 Chlorotrimethyl-germane (CH3)3GeCl 153.16 1.238222 1.428320 13 102 1 c266 Chlorotrimethylsilane (CH3)3SiCl 108.64 4,3, 1857 0.858020 4 1.387020 40 57 27 c267 Chlorotriphenyl-methane (C6H5)3CCl 278.78 5, 700 110–112 23520mm v s bz, chl, eth c268 Chlorotriphenyltin (C6H5)3SnCl 385.46 12, 914 108 dec 24014mm c268a Chloro-tris(dimethyl-amino)silane [(CH3)2N]3SiCl 195.8 0.97520 4 1.44220 6312mm c269 -Chloro-o-xylene CH3C6H4CH2Cl 140.61 5, 364 1.063 1.539120 9625mm 73 i aq; misc alc, eth c270 -Chloro-m-xylene CH3C6H4CH2Cl 140.61 5, 373 1.06420 1.535020 195–196 75 i aq; misc alc, eth c271 -Chloro-p-xylene CH3C6H4CH2Cl 140.61 5, 384 1.533020 4.5 200 75 misc alc, bz, eth, acet c272 2-Chloro-p-xylene ClC6H3(CH3)2 140.61 5, 384 1.049 1.524020 2 186 57 c273 4-Chloro-p-xylene ClC6H3(CH3)2 140.61 5, 363 1.047 1.528020 221–223 66 misc alc, bz, eth, acet c274 Cholesterol 386.66 6,3, 2607 1.05219 19 148.5 2030.5mm 1.3 alc; 35 eth; 22 chl; s bz, PE c275 Cholic acid 408.58 103, 2162 198 (15): 0.03 aq; 3.1 alc; 2.8 acet; 15.2 HOAc; 0.5 chl; 0.036 bz c276 Cinchonine 194.40 232, 369 ca. 260 1.6 alc; 0.9 chl; 0.2 eth c277 1,8-Cineole 154.25 17, 23 0.92125 25 1,457220 1 176.4 48 misc alc, chl, eth c278 trans-Cinnamaldehyde C6H5CH"CHCHO 132.16 7, 348 1.05025 25 1.621920 7.5 13620mm 71 0.014 aq; misc alc, chl, eth c279 trans-Cinnamic acid C6H5CH"CHCOOH 148.16 9, 573 1.24754 4 133 300 0.05 aq; 16 alc; 8 chl 1.152 c280 trans-Cinnamoyl chlo-ride C6H5CH"CHCOCl 166.61 92, 390 1.161725 4 1.61443 35–36 258 110 s hot alc, CCl4 c281 Cinnamyl acetate CH3CO2CH2CH"CHC6H5 176.22 62, 527 1.0571 1.542120 265 110 c282 Cinnamyl alcohol C6H5CH"CHCH2OH 134.18 6, 570 1.039735 35 1.575833 33 250.0 110 s aq; v s common or-ganic solvents c283 Cinnamyl chloride C6H5CH"CHCH2Cl 159.62 5, 482 1.096 1.584020 19 10812mm 79 c284 Citraconic acid CH3C(COOH)"CHCOOH 130.10 2, 768 1.62 92 dec v s aq, alc, eth; sl s chl; i bz, PE c285 Citraconic anhydride 112.08 17, 440 1.247 1.471220 8 214 101 c286 Citral (geranial plus neral, cis and trans forms, resp.) (CH3)2C"CHCH2CH2-C(CH3)"CHCHO 152.24 0.888 1.487620 229 101 1.153 2-Chlorotriethylamine, d328 2-Chloro-2-(trifluoromethyl)aniline, a141 Chloro-,,-trifluorotoluenes, c60, c61, c62 4-Chloro-,,-trifluoro-o-toluidine, a142 -Chloro-,,-trifluoro-m-xylene, t304 Chlorotrihexylsilane, t307 Chloroxylenol, c109 Chromone, b55 Chrysene, b52 Cinchophen, p153 Citral, d644, d645 c274 c275 c276 c277 c285 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent c287 Citral dimethyl acetal (CH3)2C"CHCH2CH2-C(CH3)"CH(OCH3)2 198.31 14, 3570 0.890 1.454020 10610mm 92 c288 Citrazinic acid 155.11 22, 254 carbonizes without melting 300 i aq; s alkali c289 Citric acid HOOCCH2C(OH)(COOH)-CH2COOH 192.12 3, 556 1.665 154 59 aq c290 -Citronellol (CH3)2C"CHCH2CH2-CH(CH3)CH2CH2OH 156.27 11, 232 0.857020 4 1.456020 222 98 v sl s aq; misc alc, eth c299 Cocaine 303.35 222, 150 1.502298 98 1870.1mm 0.17 aq; 15 alc; 140 chl; 28 eth; s acet; EtOAc, CS2 c300 Coumarin 146.15 17, 328 0.93520 4 68–70 298 0.25 aq; v s alc, chl, eth; s alkali c301 Creatine HOOCCH2N(CH3)-C("NH)NH2 131.14 4, 363 dec 303 1.3 aq; 0.11 alc; i eth c302 Creatinine 113.12 24, 245 255 dec 8 aq; sl s alc; i eth c303 o-Cresol CH3C6H4OH 108.14 6, 349 1.027341 1.536141 30 191 81 3.1 aq40; misc alc, chl, eth; s alkali c304 m-Cresol CH3C6H4OH 108.14 6, 373 1.03420 4 1.543820 12 202.2 86 2.5 aq40; misc alc, chl, eth; s alkali c305 p-Cresol CH3C6H4OH 108.14 6, 389 1.017941 1.531241 34.8 201.9 86 2.3 aq40; misc alc, chl, eth; s alkali c306 trans-Crotonaldehyde CH3CH"CHCHO 70.09 1, 728 0.851620 1.437320 76 102–104 13 18.1 aq20 c307 Crotonic acid CH3CH"CHCOOH 86.19 2, 408 0.9648 4 1.422880 71.6 185 87 54.6 aq20; 52.5 EtOH25; 53 acet; 37.5 toluene c308 Crotonic anhydride (CH3CH"CHO)2O 154.17 2, 411 1.040 1.474020 248 110 c309 Crotononitrile CH3CH"CHCN 67.09 2, 412 1.419020 1.419020 121 20 c310 Crotonyl chloride CH3CH"CHCOCl 104.54 2, 411 1.091 1.460020 120–123 35 c311 Crotyl alcohol CH3CH"CHCH2OH 72.11 1, 442 0.845 1.427020 122 37 17 aq; misc alc c312 Crotyl chloride CH3CH"CHCH2Cl 90.55 12, 176 0.929 1.436020 85 5 c313 12-Crown-4 176.21 1.089 1.463020 700.5mm 110 specific for Li 1.154 c314 18-Crown-6 264.32 42–45 110 c315 Crystal Violet 407.99 13, 756 215 dec c316 Cumene hydro-peroxide C6H5C(CH3)2OH 152.20 63, 1814 1.030 1.521020 1018mm 56 1.155 Cleland’s reagent, d484 2,4,6-Collidine, t393 p-Coumaric acid, h109 Cresylic acids, c303, c304, c305 trans-Crotonic acid, b484 Crotononitrile, b482 trans-Crotonyl alcohol, c311 Crotyl alcohols, b486, b487 Crotyl bromide, b276 Crotyl chloride, c79 12-Crown-4, t124 15-Crown-5, p46 Cumene, i103 Cumic alcohol, i104 c288 c299 c300 c302 c313 c314 c315 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent c316a Cumylphenol C6H5C(CH3)2C6H4OH 212.29 74–76 335 c317 Cupferron C6H5N(NO)O NH+ 4 155.16 161, 395 163–164 v s aq, alc c318 Cyanamide H2NCN 42.04 32, 63 1.28220 4 46 83380mm 110 78 aq; 29 BuOH; 42 EtOAc; s alc, eth c319 2-Cyanoacetamide NCCH2CONH2 84.08 2, 589 119.5 215 25 aq; 3.1 alc c320 Cyanoacetic acid NCCH2COOH 85.06 2, 583 66 10815mm 107 s aq, alc, eth; sl s bz c321 Cyanoacetohydrazide NCCH2C("O)NHNH2 99.09 Merck: 11, 2688 115 dec v s aq; s alc; i eth c322 Cyanoacetylurea NCCH2C("O)NH-C("O)NH2 127.10 3, 66 214 dec c323 2-Cyanoethanol NCCH2CH2OH 71.08 32, 213 1.05880 10811mm misc aq, alc; sl s eth c324 2-Cyanoethyl acrylate H2C"CHCO2CH2CH2CN 125.13 33, 543 1.052 1.447020 10812mm 103 c325 Cyanogen bromide BrCN 105.93 3, 39 2.01520 4 52 61–62 5 v s aq, alc, eth c326 1-Cyano-3-methyliso-thiourea, sodium salt CH2NH("NCN)S Na 137.14 4, 71 290 dec c327 1-Cyanonaphthalene C10H7CN 153.18 9, 649 1.111325 25 1.629818 38 299 i aq; v s alc, eth c328 2-Cyanopyridine NC(C5H4N) 104.11 22, 36 1.081 1.528820 26–28 215 89 s aq; v s alc, bz, eth c329 3-Cyanopyridine NC(C5H4N) 104.11 22, 41 50–52 201 84 v s aq, alc, bz, eth c330 4-Cyanopyridine NC(C5H4N) 104.11 22, 46 78–80 s aq, alc, bz, eth c331 Cyanotrimethylsilane (CH3)3SiCN 99.21 44, 3893 0.78320 4 1.392420 11–12 118–119 1 c332 Cyanuric acid 129.08 26, 239 1.7680 360; dec to HOCN 0.5 aq; s hot alc, pyr; i acet, bz, chl, eth c333 Cyclobutane C4H8 56.10 5, 17 0.70380 1.37520 91 13 i aq; v s alc, acet c334 Cyclobutanecarboxylic acid (C4H7)COOH 100.12 9, 5 1.047 1.443320 20 to 7.5 195 83 c335 Cyclodecane C10H20 140.27 0.871 1.470720 201 65 c336 Cyclododecanol C12H23OH 184.32 77 c337 Cyclododecanone C12H22("O) 182.31 72, 48 0.90662 59–61 851mm c338 trans,trans,cis-1,5,9-cyclododecatriene 162.28 54, 1115 0.892520 4 1.507020 18 231 87 c339 Cyclododecene 166.31 0.863 1.482220 232–245 93 c340 Cyclododecylamine (C12H23)NH2 183.34 28–30 1247mm 121 1.156 c341 Cycloheptane C7H14 98.18 5, 29 0.81120 4 1.445520 8.0 118 6 v s alc, eth c342 Cycloheptanol C7H13OH 114.19 6, 10 0.94820 4 1.476020 2 185 71 sl s aq; v s alc, eth c343 Cycloheptanone C7H12("O) 112.17 7, 13 0.949020 4 1.461120 179–181 55 i aq; v s alc; s eth c344 1,3,5-Cyclohepta-triene 92.13 5, 280 0.888 1.521120 75.3 115.5 26 s alc, eth; v s bz, chl c345 Cycloheptene C7H12 96.17 5, 65 0.824 1.458520 114.7 6 s alc, eth c346 8-Cyclohexadecene-1-one 236.40 73, 521 1.489020 19519mm 110 c347 Cyclohexane C6H12 84.16 5, 20 0.778620 4 1.426220 6.6 80.7 20 0.01 aq; misc acet, alc, bz, CCl4, eth c348 Cyclohexane-d12 C6D12 92.26 53, 36 0.893 1.421020 78 18 c349 1,3-Cyclohexanebis-(methylamine) C10H10(NHCH3)2 142.25 0.945 1.493020 106 c350 1,3-Cyclohexane-carbonitrile C6H11CN 109.17 9, 9 0.919 1.450520 7616mm 65 c351 Cyclohexanecarbonyl chloride C6H11COCl 146.62 9, 9 1.096 1.470020 184 66 c352 Cyclohexanecarbox-aldehyde C6H11CHO 112.17 7, 19 0.926 1.450020 163 40 1.157 Cupron, b50 Cyanoacetonitrile, m5 Cyanoanilines, a121, a122, a123 Cyanobenzene, b51 2-Cyanoethanol, h173 Cyanoethylene, a63 Cyanomethane, a29 1-Cyanopropane, b468a 2-Cyano-1-propene, m30a 2-Cyanotoluene, t184 4-Cyanotoluene, t185 Cyanuric chloride, t255 1,5-Cyclododecadiene-9,10-epoxide, e4 Cyclododecane epoxide, e5 Cycloheptanone isooxime, a307 Cycloheptyl bromide, b310 2,5-Cyclohexadien-1,4-dione, b58 2,5-Cyclohexadiene-1,4-dione with 1,4-benzenediol (1:1), q1 Cyclohexaneacetic acid, c373 c332 c338 c339 c344 c346 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent c353 Cyclohexanecarboxylic acid C6H11COOH 128.17 9, 7 1.048015 4 1.453020 29 232.5 110 0.21 aq; s alc, bz, eth c354 trans-1,2-Cyclo-hexanediamine C6H10(NH2)2 114.19 133, 8 0.951 1.488420 14–15 9218mm 68 c355 1,3-Cyclohexanedi-carboxylic acid C6H10(COOH)2 172.18 9, 732 132–141 c356 cis-1,2-Cyclohexanedi-carboxyic anhydride 154.17 17, 452 32–34 15817mm 110 c357 1,4-Cyclohexanedi-methanol C6H10(CH2OH)2 144.21 0.978100 4 1.489320 43 283 161 misc aq, alc; 2.5 eth c358 1,4-Cyclohexane-divinyl ether C6H10(OCH"CH2)2 196.29 0.919 1.472020 12614mm 110 c359 1,4-Cyclohexanediol C6H10(OH)2 116.16 6, 741 98–100 15020mm 65 c360 1,3-Cyclohexanedione C6H8("O)2 112.13 7, 554 1.086191 1.4576102 103–105 s aq, alc, acet, chl c361 1,2-Cyclohexanedione dioxime C6H8("NOH)2 142.16 72, 526 185–188 s aq c362 Cyclohexanemethyl-amine C6H11CH2NH2 113.20 12, 12 0.870 1.463020 145–147 43 c363 Cyclohexanepropionic acid C6H11CH2CH2COOH 156.23 9, 82 0.912 1.463620 14–17 275.8 110 c364 Cyclohexanethiol C6H11SH 116.23 6, 8 0.950 1.492120 158–160 43 c365 Cyclohexanol C6H11OH 100.16 6, 5 0.941630 1.462930 25.4 161 68 3.8 aq25; misc alc, bz c366 Cyclohexanone C6H10("O) 98.15 7, 8 0.947820 4 1.451020 31 155.7 44 15 aq10; s alc, eth c367 Cyclohexanone oxime C6H10("NOH) 113.16 7, 10 89–91 206–210 s aq, eth; sl s alc c368 Cyclohexene C6H10 82.15 5, 63 0.809420 4 1.446420 103.5 83.0 12 0.02 aq; misc alc, bz, acet, eth c369 3-Cyclohexene-1-methanol C6H9CH2OH 112.17 63, 215 0.961 1.485320 8518mm 76 c370 Cyclohexene oxide 98.15 17, 21 0.970 1.452020 130 27 c371 2-Cyclohexene-1-one C6H8("O) 96.13 72, 55 0.993 1.488520 53 168 56 v s alc c372 4-(3-Cyclohexene-1-yl)pyridine 159.23 203, 3239 1.021 1.548020 14120mm 110 c373 Cyclohexyl acetate CH3CO2C6H11 142.20 6, 7 0.966 1.439520 173 57 sl s aq; s org solv 1.158 c374 Cyclohexylacetic acid C6H11CH2COOH 142.20 92, 9 1.007 1.463020 31–33 242–244 110 c375 Cyclohexylamine C6H11NH2 99.18 12, 5 0.867120 1.459320 18 134 31 misc aq, alc, chl, eth c376 Cyclohexylbenzene C6H11C6H5 160.26 5, 503 0.950220 4 1.525820 7 240 98 i aq; v s alc, eth c377 Cyclohexyldimethoxy-methylsilane C6H11Si(OCH3)2CH3 188.35 0.940 1.439020 201.2 73 c378 2-Cyclohexylethanol C6H11CH2CH2OH 128.22 6, 17 0.919 1.464720 207745mm 86 c379 Cyclohexylethyl acetate CH3CO2CH2CH2C6H11 170.25 0.949 1.4461 9815mm 81 c380 N-Cyclohexyl-formamide C6H11NHCHO 127.18 122, 11 38–40 11310mm 110 c381 Cyclohexyl isocyanate C6H11NCO 125.17 122, 12 0.980 1.455120 168–170 48 c382 Cyclohexyl isothio-cyanate C6H11NCS 141.24 122, 12 0.996 1.535020 219 95 c383 Cyclohexyl meth-acrylate H2C"C(CH3)CO2C6H11 168.24 63, 25 0.964 1.458020 704mm 82 c384 Cyclohexylmethanol C6H11CH2OH 114.19 6, 14 0.921525 4 1.464025 181 71 s alc, eth c385 3-Cyclohexyl-1-propanol C6H11CH2CH2CH2OH 142.24 61, 15 1.007 1.497520 218 101 c386 N-Cyclohexyl-2-pyrrolidinone 167.25 213, 3149 1.026 1.495 12 284 110 1.159 Cyclohexanecarboxylic acid chloride, c351 Cyclohexaneethanol, c378 Cyclohexaneethyl acetate, c379 Cyclohexanemethanol, c384 Cyclohexanone cyanohydrin, h112 cis-4-Cyclohexene-1,2-dicarboximide, t82 cis-4-Cyclohexene-1,2-dicarboxylic anhydride, t81 N-(1-Cyclohexen-1-yl)morpholine, m465 N-(1-Cyclohexen-1-yl)pyrrolidine, p284 Cyclohexyl alcohol, c365 Cyclohexyl bromide, b311 Cyclohexyl chloride, c91 Cyclohexyl ketone, c366 Cyclohexyl mercaptan, c364 Cyclohexylmethane, m202 Cyclohexylmethyl bromide, b367 c356 c370 c372 c386 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent c387 cis,cis-1,3-Cyclo-octadiene 108.18 54, 401 0.869 1.492820 53 to 51 5534mm 24 c388 1,5-Cyclooctadiene 108.18 5, 116 0.881825 4 1.490525 69 149–150 31 s CCl4 c389 Cyclooctane C8H16 112.22 5, 35 0.834 1.457420 14.8 151.1 30 c390 trans-1,2-Cyclo-octanediol C8H14(OH)2 144.21 63, 4094 1.080 1.498020 32 940.5mm 110 c391 Cyclooctanol C8H15OH 128.22 62, 25 0.974020 4 1.485020 14–15 10822mm 86 c392 Cyclooctanone C8H14("O) 126.20 7, 21 0.958420 4 1.649420 41–43 195–197 72 c393 cis-Cyclooctene C8H14 110.20 51, 35 0.846 1.469820 16 145–146 25 c394 Cyclooctylamine C8H15NH2 127.23 0.928 1.480420 48 190 62 c395 Cyclopentadiene 66.10 Merck: 12, 2807 0.802120 4 1.446316 85 41–42 misc alc, bz, CCl4, eth; s aniline, HOAc, CS2 c396 Cyclopentane C5H10 70.13 5, 19 0.746020 4 1.406820 94 49.3 37 i aq; misc alc, eth c397 Cyclopentane-carboxylic acid C5H9COOH 114.14 9, 6 1.05320 4 1.454020 4 216 93 sl s aq; s MeOH c398 Cyclopentanol C5H9OH 86.13 6, 5 0.948820 4 1.452120 19 140 51 sl s aq; s alc c399 Cyclopentanone C5H8("O) 84.12 7, 5 0.950918 4 1.436620 51 130.6 26 sl s aq; misc alc, eth c400 Cyclopentanone oxime C5H8("NOH) 99.13 7, 7 53–55 196 92 s aq, alc, bz, chl, eth c401 Cyclopentene C5H8 68.11 5, 61 0.772020 1.422820 135.1 44.2 29 c402 2-Cyclopentene-1-acetic acid C5H7CH2COOH 126.16 9, 42 1.047 1.467520 19 942.5mm 110 c403 N-(1-Cyclopenten-1-yl)morpholine 153.23 0.957 1.510520 10612mm 60 c404 Cyclopentylamine C5H9NH2 85.15 12, 4 0.863 1.448220 106–108 17 c405 3-Cyclopentyl-propanoic acid C5H9CH2CH2COOH 142.20 0.996 1.457020 13012mm 46 c406 Cyclopropane C3H6 42.08 5, 15 0.72079 4 127 32.8 37 mL/100 mL aq15; v s alc, eth c407 Cyclopropanecarbo-nitrile C3H5CN 67.09 9, 4 0.91116 1.420720 135 32 s eth c408 Cyclopropanecarbonyl chloride C3H5COCl 104.54 9, 4 1.152 1.452220 119 23 1.160 c409 Cyclopropane-carboxylic acid C3H5COOH 86.09 9, 4 1.088 1.438020 17–19 182–184 71 sl s hot aq; s alc, eth c410 Cyclopropyl methyl ketone C3H5COCH3 84.12 7, 7 0.899320 4 1.424020 114 21 s aq, alc, eth c411 L-Cysteine HSCH2CH(NH2)COOH 121.16 4, 506 220 dec v s aq, alc; i bz, eth c412 L-Cystine HOOCCH(NH2)SSCH2-CH(NH2)COOH 240.30 4, 507 dec 240 0.01 aq; s acid, alkali; i alc 1.161 Cyclopentanepropanoic acid, c405 Cyclopentene oxide, e42 Cyclopentyl bromide, b313 Cyclopentyl chloride, c93 Cyclopropyl bromide, b314 Cyclopropyl cyanide, c407 Cymenes, i118 thru i120 Cysteamine, a161 Cytosine, a194 p,p-DDT, b173 1,2-Decahydroacenaphthylene, a2 cis-Decalin, d2 trans-Decalin, d3 Decamethylene glycol, d12 Decanealdehyde, d7 1,10-Decanedicarboxylic acid, d805 c387 c388 d1 1,9-Decalene H2C"CH(CH2)6CH"CH2 138.25 11, 123 0.750 1.432020 169 41 d2 cis-Decahydro-naphthalene C10H18 138.25 5, 92 0.896320 4 1.481020 43 195.8 58 (CC) v s alc, chl, eth; misc most ketones, esters d3 trans-Decahydro-naphthalene C10H18 138.25 52, 56 0.870020 4 1.469020 30.4 187.3 54 see under cis d4 Decahydro-2-naphthol C10H17OH 154.25 6, 67 0.996 1.50020 10914mm 110 d5 Decamethylcyclo-pentasiloxane [9Si(CH3)2O9]5 370.78 44, 4128 0.959320 4 1.398220 38 10120mm 72 i aq d6 Decamethyltetra-siloxane (CH3)3SiO[Si(CH3)2O]2-Si(CH3)3 310.69 43, 1879 0.853620 4 1.389520 68 194 62 sl s alc; s bz, PE d7 Decanal H(CH2)9CHO 156.27 1, 711 0.83015 4 1.428020 5 208–209 85 i aq; s alc, eth d8 Decane CH3(CH2)8CH3 142.29 1, 168 0.730120 4 1.411020 29.7 174.1 46 0.07 aq d9 1,10-Decanediamine H2N(CH2)10NH2 172.32 4, 273 62–63 14012mm d10 Decanedioic acid HOOC(CH2)8COOH 202.25 2, 718 1.20720 4 1.422134 134.5 23210mm 0.1 aq20, eth17; v s alc, esters, ketones d11 1,2-Decanediol CH3(CH2)7CH(OH)CH2OH 174.28 1, 494 48–50 255 110 d12 1,10-Decanediol HO(CH2)10OH 174.28 12, 560 74 1708mm 110 sl s aq, eth; v s alc c395 c403 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d13 Decanedioyl dichloride ClC("O)(CH2)8COCl 239.14 2, 719 1.121220 4 1,467820 22075mm 110 dec aq, alc d13a Decanenitrile CH3(CH2)8CN 153.27 2, 356 0.829515 4 1.429520 15 235–237 misc alc, chl, eth d14 1-Decanethiol CH3(CH2)9SH 174.35 12, 459 0.841 1.456520 26 11413mm 98 d15 Decanoic acid CH3(CH2)8COOH 172.27 22, 309 0.875250 4 1.428840 32 270 110 0.015 aq; s alc, bz, chl, CS2 d16 1-Decanol CH3(CH2)9OH 158.29 1, 425 0.829720 4 1.435920 6.9 232 82 i aq; s alc, eth d17 -Decanolactone 170.25 175,9, 91 0.954 1.458020 1200.02mm 110 d18 2-Decanone CH3(CH2)7COCH3 156.27 1, 711 0.825 1.425020 3.5 211 71 d19 3-Decanone CH3(CH2)6COC2H5 156.27 11, 367 0.825 1.424120 3.8 205 25 d20 4-Decanone CH3(CH2)6C("O)(CH2)2CH3 156.27 1, 711 0.82420 0 1.423720 207 71 i aq; misc alc, eth d21 Decanoyl chloride CH3(CH2)8COCl 190.71 2, 356 0.919 1.441020 34.5 965mm 106 dec aq. alc; s eth d22 1-Decene H(CH2)8CH"CH2 140.27 13, 858 0.740820 1.421020 66 170.6 47 i aq; misc alc, eth d23 Decylamine H(CH2)10NH2 157.30 4, 199 0.787 1.436020 12–14 216–218 85 sl s aq; misc alc, bz, eth, acet d24 Dehydroabeitylamine 285.48 124, 3005 1.546020 110 d25 Dehydroacetic acid 168.15 17, 559 111–113 270 at 25: 22 acet; 18 bz; 5 eth; 3 EtOH; 5 MeOH d26 Deoxybenzoin C6H5CH2COC6H5 196.25 72, 368 1.2010 4 55–56 320 110 i aq; v s alc, eth d27 Diacetoxydimethyl-silane (CH3)2Si(OOCCH3)2 176.3 1.05420 4 1.403020 164–166 d28 trans-1,1-Diacetoxy-2-butene (CH3CO2)2CHCH"CHCH3 172.18 2, 154 1.057 1.429020 10620mm 87 d29 1,1-Diacetoxy-2-propene (CH3CO2)2CHCH"CH2 158.16 2, 154 1.078 1.419020 184 78 d30 Diallylamine (H2C"CHCH2)2NH 97.16 4, 208 0.787 1.440520 88 112 15 d31 Diallyl ether (H2C"CHCH2)2O 98.15 1, 438 0.80518 0 1.416020 94–95 6 (OC) i aq; misc alc, eth d32 Diallyl maleate H2C"CHCH2O2CCH"CH-CO2CH2CH"CH2 196.20 23, 1926 1.073 1.470220 47 1164mm 110 d33 Diallyl 1,2-phthalate C6H4(CO2CH2CH"CH2)2 246.27 93, 4120 1.121 1.518720 1675mm 110 d34 Diallyl sulfide (H2C"CHCH2)2S 114.21 1, 440 0.887727 4 1.488920 85 138 46 sl s aq; misc alc, eth d35 ()-N,N-Diallyl-tartardiamide [-CH(OH)CONHCH2-CH"CH2]2 228.25 4, 218 186–188 1.162 d36 1,2-Diaminoanthra-quinone 238.25 141, 459 289–291 sl s alc, eth d37 1,4-Diaminoanthra-quinone 238.25 14, 197 265–269 sl s aq, alc; v s bz d38 1,5-Diaminoanthra-quinone 238.25 14, 203 308 dec d39 2,6-Diaminoanthra-quinone 238.25 14, 215 325 sl s hot aq, pyr d40 3,5-Diaminobenzoic acid (H2N)2C6H3COOH 152.15 14, 453 228 H2O, 110 sl s aq; s alc, eth 1.163 Decyl alcohol, d16 Decyl bromide, b315 Decyl chloride, c94 Decylic acid, d15 Decyl iodide, i29 Decyl mercaptan, d14 Delphinic acid, m184 Dextrose, g8 Diacetone alcohol, h150 1,2-Diacetoxyethane, e137 (Diacetoxyiodo)benzene, i24 Diacetyl, b466 Diacetylmethane, p34 Diallyl, h39 ()-N,N-Diallyltartramide, d35 2,5-Diaminoanisole, m103 d17 d24 d25 d36 d37 d38 d39 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d41 1,4-Diaminobutane H2N(CH2)4NH2 88.15 4, 264 0.877 1.456920 27.3 158–160 51 d42 4,4-Diaminodiphenyl-amine sulfate H2NC6H4NHC6H4NH2 · H2SO4 297.33 13, 110 300 s aq d43 trans-1,2-Diamino-cyclohexane C6H10(NH2)2 114.19 133, 8 0.951 1.288620 14–15 8115mm 68 d44 trans-1,4-Diamino-cyclohexane C6H10(NH2)2 114.19 131, 3 69–72 197 71 d45 trans-1,2-Diamino-cyclohexane-N,N,N,N-tetra-acetic acid hydrate C6H10[N(CH2COOH)2]2 · H2O 364.36 133, 10 213–216 v s aq d46 4,4-Diaminodiphenyl-methane H2NC6H4CH2C6H4NH2 198.27 13, 238 91–92 398 221 sl s aq; v s alc, bz, eth d47 3,3-Diaminodiphenyl sulfone H2NC6H4SO2C6H4NH2 248.30 13, 426 170–173 i aq; s alc, bz d48 4,4-Diaminodiphenyl sulfone H2NC6H4SO2C6H4NH2 248.30 13, 536 175–176 i aq; s alc, acet, dil HCl d49 2,4-Diamino-6-hydroxypyrimidine 126.12 24, 469 285 dec s aq d50 Diaminomaleonitrile NCC(NH2)"C(NH2)CN 108.10 42, 949 178–179 d51 1,8-Diamino-p-men-thane 170.30 13, 4 0.914 1.480520 45 12510mm 93 d52 3,3-Diamino-N-methyldipropylam-ine CH3N[(CH2)3NH2]2 145.25 44, 1279 0.901 1.472520 1126mm 102 d53 2,4-Diamino-6-phenyl-1,3,5-triazine 187.21 261, 69 1.4025 4 227–228 0.06 aq; s alc, eth, dil HCl; sl s DMF d54 1,2-Diaminopropane CH3CH(NH2)CH2NH2 74.13 4, 257 0.878 1.446020 119–120 33 v s aq d55 1,3-Diaminopropane H2N(CH2)3NH2 74.13 4, 261 0.888 1.457020 12 140 48 v s aq 1.164 d56 1,3-Diamino-2-propanol H2NCH2CH(OH)CH2NH2 90.13 4, 290 40–45 235 110 d58 2,6-Diaminopyridine (H2N)2C5H3N 109.13 221, 647 120–122 s aq, alc d59 2,4-Diaminotoluene (H2N)2C6H3CH3 122.17 13, 124 97–99 283–285 d60 3,4-Diaminotoluene (H2N)2C6H3CH3 122.17 13, 148 91–93 15618mm d61 1,4-Diazabicyclo[2.2.2]-octane 112.18 233, 484 158–160 174 62 45 aq; 77 EtOH; 51 bz; 13 acet; 26 MeEtKe d62 1,8-Diazabicyclo[5.4.0]-undec-7-ene 152.24 1.018 1.521920 800.6mm 110 d63 Diazomethane CH2"N"N 42.04 23, 25 145 23 VERY EXPLOSIVE; s eth, dioxane d64 1-Diazo-2-naphthol-4-sulfonic acid 272.22 16, 595 160 dec d65 1,2,5,6-Dibenz-anthracene 278.33 51, 369 266 subl 524 s bz, PE; sl s alc, eth 1.165 1,4-Diaminobutane, b455 1,2-Diaminocyclohexane, c354 1,10-Diaminodecane, d9 2,2-Diaminodiethylamine, d362 1,12-Diaminododecane, d804 1,2-Diaminoethane, e21 1,6-Diaminohexane, h53 1,3-Diamino-2-hydroxypropane, d56 Diaminonaphthalenes, n4, n5 1,2-Diamino-4-nitrobenzene, n66 1,4-Diamino-2-nitrobenzene, n65 1,9-Diaminononane, n91 1,8-Diaminooctane, o24 1,5-Diaminopentane, p30 2,5-Diaminopentanoic acid, o51 1,2-Diaminopropane, p189 1,3-Diaminopropane, p190 4,6-Diamino-4-pyrimidinol, d49 Diaminotoluenes, t167 thru t170 1,3-Diaminourea, c9 Diamylamine, d737 Diamyl ether, d738 Diamyl ketone, u11 Diazirine, d63 1,3-Diazole, i3 d49 d51 d53 d61 d62 d64 d65 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d66 Dibenzofuran 168.20 17, 70 1.088699 4 1.607999 81–83 285 s alc, bz, eth; i aq d67 Dibenzothiophene 184.26 17, 72 97–100 332–333 s aq; v s alc, bz d68 Dibenzoylmethane C6H5COCH2COC6H5 224.26 7, 769 78–79 22018mm 4.4 alc; s eth, aq NaOH d69 Dibenzoyl peroxide C6H5C("O)OOC("O)C6H5 242.23 9, 179 103–106 may explode when heated sl s aq, alc; s bz, chl, eth d70 ()-Dibenzoyl-L-tartaric acid hydrate [(C6H5COOCH(COOH)-]2 · H2O 376.34 9, 170 90–92 d71 Dibenzylamine C6H5CH2NHCH2C6H5 197.28 12, 1035 1.026 1.573120 26 300 143 i aq; s alc, eth d72 Dibenzyldisulfide C6H5CH2SSCH2C6H5 246.39 6, 465 69 d 270 s hot alc, bz, eth d73 Dibenzyl ether C6H5CH2OCH2C6H5 198.27 6, 434 1.001420 4 1.516820 2 298 135 (CC) misc alc, acet, chl, eth d74 N,N-Dibenzyl-ethylenediamine (C6H5CH2NHCH2-)2 240.35 12, 1067 1.02420 4 1.562420 26 1954mm 110 v s alc, bz, chl, eth d75 Dibenzyl malonate CH2[CO2CH2C6H5]2 284.31 6, 436 1.137 1.544720 1880.2mm 110 d76 Dibromoacetic acid Br2CHCOOH 217.86 2, 218 39–41 13016mm 110 d77 Dibromoacetonitrile Br2CHCN 198.86 2, 219 2.296 1.539320 6924mm d78 2,4-Dibromoaceto-phenone BrC6H4C("O)CH2Br 277.96 7, 285 108–110 v s warm alc; s eth d79 1,4-Dibromobenzene C6H4Br2 235.92 5, 211 0.9641100 1.5743100 87.3 220 1.4 alc; v s eth; s bz d80 4,4-Dibromobiphenyl BrC6H4C6H4Br 312.00 5, 580 167–170 355–360 s bz; sl s hot alc d81 1,2-Dibromobutane CH3CH2CH(Br)CH2Br 215.93 1, 120 1.789 1.514120 6020mm 110 d82 1,3-Dibromobutane CH3CH(Br)CH2CH2Br 215.93 1, 120 1.80020 1.508520 175 s chl, eth d83 1,4-Dibromobutane BrCH2CH2CH2CH2Br 215.93 1, 120 1.808020 4 1.518620 20 198 110 s chl d84 meso-2,3-Dibromo-butane CH3CH(Br)CH(Br)CH3 215.93 1.121 1.767 1.510020 7447mm 110 d85 2,3-Dibromo-1,4-butanediol HOCH2CH(Br)CH(Br)-CH2OH 247.93 13, 2176 88–90 1501.5mm d86 1,4-Dibromo-2,3-butanediol BrCH2C("O)C("O)CH2Br 243.89 1, 774 117–119 d87 trans-2,3-Dibromo-2-butene-1,4-diol HOCH2C(Br)"C(Br)CH2OH 245.91 11, 260 112–114 1.166 d88 Dibromochloro-methane HCClBr2 208.29 1, 67 2,451 1.546520 22 120748mm none misc alc, bz, eth d89 trans-1,2-Dibromo-cyclohexane C6H10Br2 241.96 5, 24 1.784 1.551520 14610mm 110 d90 1,2-Dibromo-2-chloro-1,1,2-trifluoroethane FCCl(Br)C(Br)F2 276.5 2.247820 1.427520 93–94 none d91 1,10-Dibromodecane Br(CH2)10Br 300.09 11, 64 1.33530 1.491220 27 16015mm 110 sl s alc; s eth d92 1,2-Dibromo-1,1-difluoroethane CH2BrC(Br)F2 223.87 1, 92 2.223820 1.445620 61.3 92.4 none i aq d93 Dibromodifluoro-methane Br2CF2 209.81 11, 16 2.28815 4 1.401620 110 25 none 0.1 aq; misc alc, bz, chl, eth d94 1,2-Dibromo-3,3-di-methylbutane (CH3)3CCH(Br)CH2Br 243.98 1, 151 1.610 1.505320 733mm 83 d95 1,3-Dibromo-5,5-di-methylhydantoin 185.93 197 dec d96 1,1-Dibromoethane CH3CHBr2 187.86 1, 90 2.05520 4 1.537920 113 none i aq; v s alc, eth d97 1,2-Dibromoethane BrCH2CH2Br 187.86 1, 90 2.180220 4 1.538720 10.0 131.7 none 0.43 aq; misc alc, eth d98 (1,2-Dibromoethyl)-benzene C6H5CH(Br)CH2Br 263.97 5, 356 70–74 14015mm d99 cis-1,2-Dibromo-ethylene BrCH"CHBr 185.86 1, 190 2.2117 4 1.543118 53 112.5 none s alc, bz, chl, eth d100 trans-1,2-Dibromo-ethylene BrCH"CHBr 185.86 1, 190 2.246 1.550518 6.5 108 none d101 1,2-Dibromoethyltri-chlorosilane BrCH2CH(Br)SiCl3 321.3 2.04620 4 1.53720 9011mm 1.167 Dibenzo[b,e]pyridine, a60 Dibenzoyl, b35 Dibenzyl, d752 Dibenzyl ketone, d767 d66 d67 d95 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d102 45-Dibromo-fluorescein 490.12 19, 228 270–273 s hot alc, HOAc d103 1,4-Dibromo-2-fluoro-benzene Br2C6H3F 253.91 54, 684 33–36 216 101 d104 2,4-Dibromo-1-fluoro-benzene Br2C6H3F 253.91 2.04720 1.584020 10522mm 92 d104a Dibromofluoro-methane Br2CHF 191.83 78 65 d105 1,2-Dibromohexa-fluoropropane CF3CF(Br)C(Br)F2 309.84 14, 218 2.169 1.360520 95 72734mm none d106 1,6-Dibromohexane Br(CH2)6Br 243.98 1, 145 1.58618 4 1.506620 243 110 misc eth d107 2,5-Dibromo-3,4-hexanedione CH3CHBrC("O)C("O)-CH(Br)CH3 271.95 13, 3132 1.766 1.512020 10310mm 110 d108 5,7-Dibromo-8-hydroxyquinoline 302.96 21, 97 200–201 subl s alc, bz; v s eth d109 2,4-Dibromomesitylene 1,3,5-(CH3)3-C6HBr2 278.00 5, 408 61–63 278–279 d110 Dibromomethane CH2Br2 173.85 1, 67 2.495620 4 1.541920 52.7 96–97 none 1.15 aq; misc alc, bz, acet, chl, eth d111 2,6-Dibromo-4-methyl-phenol Br2C6H2(CH3)OH 265.94 6, 406 49–50 110 d112 5,7-Dibromo-2-methyl-8-quinolinol 316.99 213, 1240 126–130 d113 1,6-Dibromo-2-naphthol Br2C10H5OH 301.98 6, 652 105–107 d114 2,6-Dibromo-4-nitro-aniline Br2C6H2(NO2)NH2 295.93 12, 743 206–208 sl s aq; s HOAc d115 2,5-Dibromonitro-benzene Br2C6H3NO2 280.91 5, 250 2.374 82–84 s bz, hot alc d116 1,8-Dibromooctane Br(CH2)8Br 272.03 1, 160 1.477 1.498120 15–16 272 110 d117 1,4-Dibromopentane CH3CH(Br)CH2CH2CH2Br 229.95 1, 131 1.687 1.508520 34 9925mm 110 d118 1,5-Dibromopentane Br(CH2)5Br 229.95 1, 131 1.687915 4 1.509220 34 11015mm 110 d119 2,4-Dibromophenol Br2C6H3OH 251.92 6, 202 40–42 15411mm 110 1.168 d120 1,2-Dibromopropane CH3CH(Br)CH2Br 201.90 1, 109 1.93320 1.520320 55.5 142 none 0.2 aq; misc alc, bz, chl, eth d121 1,3-Dibromopropane BrCH2CH2CH2Br 201.90 1, 110 1.971225 4 1.523320 36 166.8 54 0.17 aq; s alc, eth d122 1,3-Dibromo-2-propanol BrCH2CH(OH)CH2Br 217.90 1, 365 2.136 1.551420 837mm 46 d123 2,3-Dibromo-1-propanol BrCH2CH(Br)CH2OH 217.90 1, 357 2.12020 4 1.559920 9710mm 110 sl s aq; misc alc, bz, acet, eth d124 2,3-Dibromopropene BrCH2C(Br)"CH2 199.88 1, 201 1.933620 4 1.547020 140–143 81 d125 2,3-Dibromopropionic acid BrCH2CH(Br)COOH 231.88 2, 258 64–66 16020mm s aq, alc, bz d126 2,3-Dibromopropio-nitrile BrCH2CH(Br)CN 212.88 2, 259 2.140 1.545020 173 d127 2,6-Dibromopyridine BrC5H3N 236.91 202, 153 118–119 255 d128 meso-2,3-Dibromo-succinic acid HOOCCH(Br)CH(Br)-COOH 275.89 2, 625 275 subl v s aq, alc d129 1,2-Dibromotetra-chloroethane BrCCl2CCl2Br 325.65 1, 93 2.713 222 dec none d130 1,2-Dibromotetra-fluoroethane BrCF2CF2Br 259.83 2.14925 1.36725 110.5 47 none d131 2,5-Dibromothiophene Br2C4H2S 241.94 17, 33 2.14723 23 1.628920 6 211 99 i aq; v s alc, eth d132 ,-Dibromotoluene C6H5CHBr2 249.94 5, 308 1.51015 1.614720 15623mm 110 i aq; misc alc, eth d133 1,2-Dibromo-1,1,2-trifluoroethane HC(Br)FC(Br)F2 241.8 1, 92 2.27427 1.419124 76.5 d134 ,-Dibromo-o-xylene C6H4(CH2Br)2 263.97 5, 366 1.960 92–94 sl s alc, chl, eth 1.169 5,7-Dibromo-8-quinolinol, d108 d102 d108 d112 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d135 ,-Dibromo-p-xylene C6H4(CH2Br)2 263.97 5, 386 1.0120 72–74 261 v s alc, chl; s eth d136 Dibutoxydibutyltin [CH3(CH2)3O]2Sn[(CH2)3CH3]2 379.15 1.110 1.474020 1380.05mm 40 d137 1,2-Dibutoxyethane C4H9OCH2CH2OC4H9 174.28 0.837420 20 1.413120 69.1 203.6 85 0.2 aq; misc alc, acet d138 Dibutyl adipate [-CH2CH2CO2(CH2)3CH3]2 258.36 22, 575 0.962 1.436020 305 110 d139 Dibutylamine (C4H9)2NH 129.25 4, 157 0.767020 1.417720 62 159.6 47 0.47 aq; s alc, acet, eth EtOAc, PE d140 Di-sec-butylamine [C2H5CH(CH3)]2NH 129.25 4, 162 0.753 1.410020 135 20 d141 N,N-Dibutylamino-ethanol (C4H9)2NCH2CH2OH 173.29 43, 682 0.86020 20 1.44420 70 229–230 91 d142 N,N-Dibutylaniline C6H5N(C4H9)2 205.34 123, 95 0.90420 1.529720 267–275 110 i aq, MeOH; s acet, bz, EtOH, EtOAc, eth d143 Dibutyl decanedioate C4H9O2C(CH2)8CO2C4H9 214.45 2, 719 0.936620 1.441520 10 344–345 178 0.004 aq d144 Di-tert-butyl di-carbonate (CH3)3COC("O)OC(CH3)3 218.25 0.950 1.410320 23 560.5mm 37 d145 2,5-Di-tert-butyl-1,4-dihydroxybenzene [(CH3)3C]2C6H2(OH)2 222.33 217–219 d146 Dibutyl disulfide C4H9SSC4H9 178.36 12, 400 0.938320 4 1.492020 71 231.2 93 i aq; misc alc, eth d147 Di-tert-butyl disulfide (CH3)3CSSC(CH3)3 178.36 0.935 1.4920 229–233 93 d148 Dibutyl ether C4H9OC4H9 130.22 1, 369 0.768920 4 1.399220 95 140 25 0.03 aq; misc alc, eth d149 2,6-Di-tert-butyl-4-(dimethylamino-methyl)phenol (CH3)2NCH2C6H2-[C(CH3)3]2OH 263.43 134, 2014 93–94 17230mm d150 N,N-Dibutylethylene-diamine [CH3(CH2)3]2NCH2CH2NH2 172.32 44, 1182 0.823 1.443020 11724mm 87 d151 N,N-Dibutylformamide HC("O)N(C4H9)2 157.26 0.864 1.442920 12015mm 100 d152 Dibutyl hexanedioate [-CH2CH2CO2(CH2)3CH3]2 258.36 22, 575 0.962 1.435820 305 110 d153 2,5-Di-tert-butyl-hydroquinone [(CH3)3C]2C6H2-1,4-(OH)2 222.33 6, 3, 4741 217–219 d154 Dibutyl maleate C4H9O2CCH"CHCO2C4H9 228.29 23, 1925 0.995020 1.445420 80 281 141 0.05 aq d155 Di-tert-butyl malonate CH2CO2C(CH3)3 CO2C(CH3)3 216.27 23, 1621 1.418420 6.0 9310mm 88 1.170 d156 2,6-Di-tert-butyl-4-methylphenol [(CH3)3C]2C6H2(CH3)OH 220.36 63, 2073 1.04820 4 1.485975 70 265 127 s alc, bz, acet, PE d157 Dibutyl octanedioate [-(CH2)3CO2(CH2)3CH3]2 286.41 23, 1767 0.948 1.439020 1764.5mm 110 d158 Dibutyl oxalate C4H9O2CCO2C4H9 202.25 2, 540 0.98620 20 1.423220 30.0 239–240 108 misc alc, ketones, PE d159 Di-tert-butyl peroxide (CH3)3CO9OC(CH3)3 146.23 13, 1580 0.79420 1.389020 40 110 1 misc acet, octane d160 2,4-Di-tert-butylphenol [(CH3)3C]2C6H3OH 206.33 56.5 263.5 115 s hot alc; i alk d161 2,6-Di-sec-butylphenol [CH3CH2CH(CH3)]2C6H3OH 206.23 0.918 1.510020 42 255–260 127 d162 2,6-Di-tert-butylphenol [(CH3)3C]2C6H3OH 206.23 63, 2061 35–38 253 118 s hot alc; i alk d163 3,5-Di-tert-butylphenol [(CH3)3C]2C6H3OH 206.23 87–89 d164 Dibutyl phosphite (C4H9O)2P(O)H 194.21 11, 187 0.995 1.423920 11911mm 121 d165 Dibutyl 1,2-phthalate C6H4 1,2-[CO2C4H9]2 278.35 92, 586 1.046520 4 1.491120 35 340 157 0.01 aq; v s alc, bz, acet, eth d166 N,N-Dibutyl-1,3-propanediamine C4H9NH(CH2)3NHC4H9 186.34 0.827 1.446320 205 103 d167 Dibutyl suberate CH3(CH2)3O2C(CH2)6CO2-(CH2)3CH3 286.41 23, 1767 0.948 1.439020 175.54.5mm 110 d168 Dibutyl succinate [C4H9O2 ]2 CCH 2 230.30 22, 551 0.976820 4 1.429920 29.0 274.5 i aq; s alc, eth d169 Dibutyl sulfate C4H9OSO2OC4H9 210.29 1.05925 4 1.421320 13211mm d170 Dibutyl sulfide C4H9SC4H9 146.30 1, 370 0.838620 1.453020 80 185 76 i aq; v s alc, eth d171 Di-tert-butyl sulfide (CH3)3CSC(CH3)3 146.30 0.815 1.450620 151 48 d172 Dibutyl sulfite (C4H9O)2S("O) 194.29 12, 397 0.994422 4 1.431020 10815mm d173 Dibutyl sulfone (C4H9)2SO2 178.29 1, 371 46 295 143 i aq; s alc, eth d174 Dibutyl L-tartrate [-CH(OH)CO2(CH2)3CH3]2 262.31 3, 518 1.091 1.446520 22 1755mm 110 d175 N,N-Dibutyl-2-thiourea C4H9NC("S)NHC4H9 188.34 63–65 i aq; s alc; sl s eth d176 Dibutyltin diacetate (CH3CO2)2Sn(C4H9)2 351.01 1.320 1.470020 14510mm 110 d177 Dibutyltin dichloride (C4H9)SnCl2 303.83 39–41 13510mm 110 d178 Dibutyltin dilaurate [CH3(CH2)10CO2]2Sn(C4H9)2 631.56 Merck: 12, 3089 1.066 1.468320 22–24 110 s PE, bz, acet, eth, org esters 1.171 Dibutyl adipate, d152 Dibutyl 1,2-benzenedicarboxylate, d165 Dibutyl butanedioate, d168 N,N-Dibutyl-1-butanamine, t208 Dibutyl carbitol, b151 Dibutyl cellosolve, d137 Di-tert-butylcresol, d156 2,5-Di-tert-butylhydroquinone, d145 Dibutyl ketone, n101 Dibutyl sebacate, d143 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d179 Dibutyltin maleate 346.98 135–140 d180 Dibutyltin oxide (C4H9)2SnO 248.92 41, 588 300 d181 Dicaprolactone 2-(acryloxy)ethyl ester HO(CH2)5CO2(CH2)5CO2-CH2CH2O2CCH"CH2 344.41 1.100 1.466020 110 d182 Dichloroacetic acid Cl2CHCOOH 128.94 2, 202 1.56320 4 1.446220 9–11 193–194 110 misc aq, alc, eth d183 1,1-Dichloroacetone CH3C("O)CHCl2 126.97 1, 654 1.30518 15 1.445520 120 24 s sl aq; s alc, eth d184 1,3-Dichloroacetone ClCH2C("O)CH2Cl 126.97 1, 655 1.383 39–41 173 89 d185 2,4-Dichloroaceto-phenone Cl2C6H3C("O)CH3 189.04 7, 282 1.563520 33–34 14515mm 110 i aq d186 Dichloroacetyl chloride Cl2CHC("O)Cl 147.39 2, 204 1.531516 4 1.460320 107–108 none dec aq, alc; misc eth d187 2,3-Dichloroaniline Cl2C6H3NH2 162.02 12, 621 1.596920 23–24 252 110 s alc; v s eth d188 2,4-Dichloroaniline Cl2C6H3NH2 162.02 12, 621 1.56720 59–62 245 sl s aq; s alc, eth d189 2,5-Dichloroaniline Cl2C6H3NH2 162.02 12, 625 49–51 251 110 s alc, bz, eth d190 2,6-Dichloroaniline Cl2C6H3NH2 162.02 12, 626 38–41 110 d191 3,4-Dichloroaniline Cl2C6H3NH2 162.02 12, 626 70–72 272 s alc, eth; sl s bz d192 3,5-Dichloroaniline Cl2C6H3NH2 162.02 12, 626 51–53 259741mm 110 i aq; s alc, eth d193 1,5-Dichloro-anthraquinone 277.11 7, 787 245–247 sl s alc, bz, acet d194 2,3-Dichlorobenz-aldehyde Cl2C6H3CHO 175.01 73, 878 64–67 d195 2,4-Dichlorobenz-aldehyde Cl2C6H3CHO 175.01 7, 236 69–73 233 i aq; s alc d196 2,4-Dichlorobenzamide Cl2C6H3CONH2 190.03 93, 1376 191–194 d197 2,6-Dichlorobenzamide Cl2C6H3CONH2 190.03 91, 149 196–199 d198 1,2-Dichlorobenzene C6H4Cl2 147.00 5, 201 1.305920 4 1.551020 17.0 180.4 66 misc alc, bz, eth d199 1,3-Dichlorobenzene C6H4Cl2 147.00 5, 202 1.288420 4 1.546020 24.8 173.1 72 0.01 aq; s alc, eth d200 1,4-Dichlorobenzene C6H4Cl2 147.00 5, 203 1.24176 1.528520 53 174.1 66 s alc, bz, chl, eth d201 2,5-Dichlorobenzene-sulfonyl chloride Cl2C6H3SO2Cl 245.51 111, 15 36–37 110 d hot alc, hot aq d202 2,4-Dichlorobenzoic acid Cl2C6H3COOH 191.01 9, 342 157–160 s hot aq, alc, bz, chl 1.172 d203 2,5-Dichlorobenzoic acid Cl2C6H3COOH 191.01 9, 342 154–157 301 sl s aq; s alc, eth d204 3,4-Dichlorobenzoic acid Cl2C6H3COOH 191.01 9, 343 207–209 s hot aq, eth; v s alc d205 4,4-Dichlorobenzo-phenone (ClC6H4)2C"O 251.11 7, 420 144–146 353 s hot alc, v s chl, eth d206 2,4-Dichlorobenzo-trifluoride Cl2C6H3CF3 215.00 53, 698 1.484 1.481020 117–118 72 d207 3,4-Dichlorobenzo-trifluoride Cl2C6H3CF3 215.00 53, 698 1.478 1.475020 12 173–174 65 d208 2,4-Dichlorobenzoyl chloride Cl2C6H3C("O)Cl 209.46 9, 342 1.494 1.529720 16–18 15034mm 137 dec aq, alc d209 3,4-Dichlorobenzoyl chloride Cl2C6H3C("O)Cl 209.46 9, 344 30–33 242 142 dec aq, alc d210 1,4-Dichlorobutane ClCH2CH2CH2CH2Cl 127.01 1, 119 1.159820 4 1.456620 38 161–163 40 i aq; s chl d211 cis-1,4-Dichloro-2-butene ClCH2CH"CHCH2Cl 125.00 13, 743 1.18825 4 1.488725 48 152 55 i aq; s org solvents d212 3,4-Dichloro-1-butene ClCH2CH(Cl)CH"CH2 125.00 13, 725 1.150 1.465820 61 123 28 d213 1,4-Dichloro-2-butyne ClCH2C#CCH2Cl 122.98 13, 927 1.25820 4 1.504820 165–168 160 d214 Dichloro(2-chloro-ethyl)methylsilane ClCH2CH2SiCl2(CH3) 177.53 43, 1892 1.261 1.458020 157744mm 32 d215 Dichloro(3-chloro-propyl)methylsilane Cl(CH2)3Si(CH3)Cl2 191.56 44, 4170 1.227 1.462020 8018mm 59 d216 1,10-Dichlorodecane Cl(CH2)10Cl 211.18 13, 522 0.999 1.460520 15.6 16828mm 110 d217 1,1-Dichloro-2,2-di-ethoxyethane Cl2CHCH(OC2H5)2 187.07 1, 614 1.138 1.436020 183–184 60 1.173 Dichloroacetaldehyde diethyl acetal, d217 2,6-Dichlorobenzyl chloride, t253 2,2-Dichlorodiethyl ether, b163 d179 d193 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d218 Dichlorodifluoro-methane Cl2CF2 120.91 1, 61 1.48630 158 29.8 0.01 aq; 9 bz; 5.5 chl; 6 diox; s alc, eth d219 1,1-Dichloro-3,3-dimethylbutane (CH3)3CCH2CHCl2 155.07 13, 409 1.027 1.438820 56 148 36 d220 1,3-Dichloro-3,5-dimethylhydantoin 197.02 242, 158 134–136 d221 Dichlorodiphenyl-methane (C6H5)2CCl2 237.13 5, 590 1.235 1.604020 305 110 d222 Dichlorodimethylsilane (CH3)2SiCl2 129.06 1.06420 4 1.403820 16 70 16 d223 Dichlorodiphenylsilane (C6H5)2SiCl2 253.20 16, 910 1.22220 308–309 157 dec aq, alc d224 1,12-Dichlorododecane Cl(CH2)12Cl 239.23 11, 67 28–30 17210mm 110 d225 1,1-Dichloroethane CH3CHCl2 98.96 1, 83 1.175720 4 1.416420 97 57.3 17 0.51 aq; misc alc d226 1,2-Dichloroethane ClCH2CH2Cl 98.96 1, 84 1.235120 4 1.444820 35.7 83.5 13 0.8 aq; misc alc, chl, eth d227 1,1-Dichloroethylene H2C"CCl2 96.94 1, 186 1.212920 4 1.424720 122.6 31.6 28 0.01 aq; s alc, bz, chl, eth d228 cis-1,2-Dichloro-ethylene ClCH"CHCl 96.94 1, 188 1.283820 4 1.449020 80.1 60 2 0.7 aq; s alc, eth d229 trans-1,2-Dichloro-ethylene ClCH"CHCl 96.94 1, 188 1.256520 1.445220 49.8 48.7 2 0.6 aq; s alc, eth d230 2,2-Dichloroethyl ether ClCH2CH2OCH2CH2Cl 143.01 12, 335 1.222020 20 1.45720 178.5 55 1.1 aq; s alc, bz, eth d231 2,2-Dichloroethyl methyl ether Cl2CHCH2OCH3 128.99 1.226 1.437520 33 d232 Dichloroethylmethyl-silane (C2H5)Si(CH3)Cl2 143.09 1.063 1.419020 100 43 d233 Dichlorofluoro-methane FCHCl2 102.92 1, 61 1.4059 1.37249 135 8.9 69 HOAc; 108 diox; s alc, eth; i aq d234 1,6-Dichlorohexane Cl(CH2)6Cl 155.07 1, 144 1.068 1.456820 8715mm 73 s chl d235 Dichloromethane CH2Cl2 84.93 1, 60 1.326520 1.424620 95 40 none 1.3 aq; misc alc, eth d236 Dichloromethane-d2 CD2Cl2 86.95 14, 39 1.3621 1.421820 40 none 1.174 d237 ,-Dichloromethyl methyl ether Cl2CHOCH3 114.96 1.271 1.430020 85 42 d238 Dichloro(methyl)octyl-silane CH3(CH2)7Si(CH3)Cl2 227.25 4, 4, 4182 0.973 1.444020 946mm 98 d239 Dichloro(methyl)-phenylsilane C6H5Si(CH3)Cl2 191.13 1.176 1.519020 205 82 d240 Dichloro(methyl)silane HSi(CH3)Cl2 115.04 41, 581 1.105 1.39820 93 41 32 d241 Dichloro(methyl)vinyl-silane H2C"CHSi(CH3)Cl2 141.07 1.08720 4 1.430020 92 4 d242 2,4-Dichloro-1-naphthol Cl2C10H5OH 213.06 6, 612 108 d243 2,3-Dichloro-1,4-naphthoquinone 227.05 7, 729 190–192 sl s alc, bz, eth d244 2,6-Dichloro-4-nitro-aniline Cl2C6H2(NO2)NH2 207.02 12, 735 190–192 d245 2,3-Dichloronitro-benzene Cl2C6H3NO2 192.00 5, 245 1.72114 61–62 257–258 123 s PE d246 2,4-Dichloronitro-benzene Cl2C6H3NO2 192.00 5, 245 1.43980 29–32 258 110 s hot alc; misc eth d247 2,5-Dichloronitro-benzene Cl2C6H3NO2 192.00 5, 245 54–57 266–269 110 d248 3,4-Dichloronitro-benzene Cl2C6H3NO2 192.00 5, 246 1.45675 41–44 256 123 d249 2,4-Dichloro-6-nitrophenol Cl2C6H2(NO2)OH 208.00 6, 241 118–120 1.175 5,5-Dichloro-2,2-dihydroxydiphenylmethane, m243 1,1-Dichlorodimethyl ether, d237 Dichlorohydrin, d264 Dichloroisopropyl alcohol, d264 2,4-Dichloro-1-methylbenzene, d274 (Dichloromethyl)benzene, d273 4,4-Dichloro--methylbenzhydrol, b169 sym-Dichloromethyl ether, t165a d220 d243 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d250 1,7-Dichloroocta-methyltetrasiloxane [Cl(CH3)2SiOSi(CH3)2-]2 351.53 43, 1884 1.01120 4 1.40320 62 222 d251 1,5-Dichloropentane Cl(CH2)5Cl 141.04 1, 131 1.105820 4 1.455320 72 6610mm 26 i aq; s alc, eth d252 2,3-Dichlorophenol Cl2C6H3OH 163.00 61, 102 58–60 206 s alc, eth d253 2,4-Dichlorophenol Cl2C6H3OH 163.00 6, 189 42–43 210 113 v s alc, bz, chl, eth d254 2,5-Dichlorophenol Cl2C6H3OH 163.00 6, 189 56–58 211 v s alc, bz, eth d255 2,6-Dichlorophenol Cl2C6H3OH 163.00 6, 190 65–68 218–220 v s alc, eth d256 2,4-Dichlorophenoxy-acetic acid Cl2C6H3OCH2COOH 221.04 136–140 1600.4mm s alc, bz, chl, eth d257 4-(2,4-Dichlorophen-oxy)butanoic acid Cl2C6H3O(CH2)3CO2H 249.10 63, 708 117–119 46 ppm aq25; s acet, alc, eth; sl s bz d258 2-(2,4-Dichlorophen-oxy)propanoic acid Cl2C6H3OCH(CH3)CO2H 235.07 6, 189 110–112 350 ppm aq20; v s org solvents d259 3,4-Dichlorophenyl isocyanate Cl2C6H3NCO 188.01 123, 1405 42–44 12018mm 110 d260 Dichlorophenylphos-phine C6H5PCl2 178.99 16, 763 1.319 1.598020 51 222 112 d261 4,5-Dichloro-o-phthalic acid Cl2C6H2(CO2H)2 235.02 91, 366 201–203 s aq; v s eth d262 1,2-Dichloropropane CH3CH(Cl)CH2Cl 112.99 1, 105 1.155820 1.439020 100 96 4 0.26 aq; misc alc, bz, chl, eth d263 1,3-Dichloropropane ClCH2CH2CH2Cl 112.99 1, 105 1.187820 4 1.448720 99.5 120–122 32 v s alc, eth d264 1,3-Dichloro-2-propanol ClCH2CH(OH)CH2Cl 128.99 1, 364 1.198 1.483520 4 174.3 85 9.1 aq; misc alc, eth d265 1,3-Dichloropropene ClCH2CH"CHCl 110.97 1, 199 1.21720 4 1.47020 97–112 25 i aq; s chl, eth d266 2,3-Dichloro-1-propene ClCH2C(Cl)"CH2 110.97 1, 199 1.20425 25 1.461120 94 10 misc alc; s eth d267 3,6-Dichloropyridazine 148.98 66–69 d268 2,6-Dichloropyridine Cl2C5H3N 147.99 20, 231 86–88 d269 3,5-Dichloropyridine Cl2C5H3N 147.99 20, 231 65–67 d270 4,7-Dichloroquinoline 198.05 203, 3384 84–86 14810mm d270a Dichlorosilane Cl2SiH2 101.01 122 8.3 1.176 d270b 1,1-Dichlorotetra-fluoroethane F3CCFCl2 170.92 1.45525 satd pres-sure 1.30920 57 4 d271 1,2-Dichloro-1,1,2,2-tetrafluoroethane ClCF2CF2Cl 170.93 13, 152 1.47020 4 satd pres-sure 1.309220 94 3.6 s alc, eth d272 2,5-Dichlorothiophene Cl2(C4H2S) 153.03 17, 33 1.442 1.562120 40.5 162 59 i aq; misc alc, eth d273 ,-Dichlorotoluene C6H5CHCl2 161.03 5, 297 1.254 1.550020 16/17 205 92 v s alc, eth d274 2,4-Dichlorotoluene Cl2C6H3CH3 161.03 5, 295 1.246020 20 1.551120 13 200.5 79 i aq d275 2,6-Dichlorotoluene Cl2C6H3CH3 161.03 5, 296 1.254 1.550720 196–203 82 i aq; s chl d276 3,4-Dichlorotoluene Cl2C6H3CH3 161.03 5, 296 1.25125 25 1.547220 15 209 85 i aq d277 ,-Dichloro-o-xylene C6H4(CH2Cl)2 175.06 5, 364 55–57 239–241 107 d278 ,-Dichloro-p-xylene C6H4(CH2Cl)2 175.06 5, 384 99–101 254 22.5 acet; 20 bz; 4.5 CCl4; 11 eth; 18 EtOAc d279 2,5-Dichloro-p-xylene Cl2C6H2(CH3)2 175.06 5, 384 71 222 27 acet; 44 bz; 39 eth; 32 EtOAc; 5 MeOH d280 Dicumyl peroxide [C6H5C(CH3)2]2O2 270.37 39–41 110 d281 Dicyandiamide H2NC("NH)NHCN 84.08 3, 91 1.40025 4 208–211 2.3 aq; 1.3 alc; i bz d282 1,2-Dicyanobenzene C6H4(CN)2 128.13 9, 815 139–141 v s bz, alc; s hot eth d283 1,3-Dicyanobenzene C6H4(CN)2 128.13 9, 836 158–160 s alc, bz, chl, eth d284 1,4-Dicyanobutane NC(CH2)4CN 108.14 2, 653 0.951 1.438020 1–3 295 93 d285 1,6-Dicyanohexane NC(CH2)6CN 136.20 2, 694 0.954 1.443620 3.5 18515mm 110 d286 2,4-Dicyano-3-methyl-glutaramide CH3CH[CH(CN)CONH2]2 194.19 22, 704 159–160 d287 1,5-Dicyanopentane NC(CH2)5CN 122.17 2, 671 0.951 1.441020 17614mm 110 1.177 1,1-Dichloro-2-propanone, d184 ,o-Dichlorotoluene, c56 ,p-Dichlorotoluene, c70 1,2-Dicyanoethane, b456 d267 d270 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d288 Dicyclohexyl C6H11C6H11 166.31 5, 108 0.864 1.478220 3–4 227 92 7 MeOH; misc bz, acet, eth d289 Dicyclohexylamine (C6H11)2NH 181.32 12, 6 0.910 1.484220 2 255.8 96 misc alc, bz, chl, eth d290 N,N-Dicyclohexyl-carbodiimide C6H11N"C"NC6H11 206.33 Merck: 12, 3146 35–36 1246mm 110 d291 Dicyclohexyl o-phthalate C6H4-1,2-(CO2C6H11)2 330.43 9, 799 64–66 d292 Dicyclopentadiene 132.21 5, 495 0.93025 4 1.505025 1 170 26 s alc, eth d293 Dicyclopentenyl methacrylate 218.30 63, 1942 1.050 1.508020 13713mm 110 d294 Dicyclopropyl ketone (C3H5)2C"O 110.16 0.977 1.467020 160–162 39 d295 Didodecyl 3,3-thiodi-propionate S[CH2CH2CO2(CH2)11CH3]2 514.86 33, 556 0.915 40–42 110 d296 Dieldrin 380.92 173, 526 176–177 i aq; s common org solvents except PE d297 Diethanolamine HOCH2CH2NHCH2CH2OH 105.14 4, 283 1.088130 4 1.474730 28.0 269 172 96 aq; 4 bz; 0.8 eth; misc MeOH, acet d298 2,2-Diethoxyacet-ophenone C6H5C("O)CH(OC2H5)2 208.26 71, 361 1.034 1.499520 13410mm 110 d299 4,4-Diethoxybutyl-amine H2N(CH2)3CH(OC2H5)2 161.25 4, 319 0.933 1.427520 196 62 d300 2,2-Diethoxy-N,N-di-methylethylamine (C2H5O)2CHCH2N(CH3)2 161.25 4, 308 0.883 1.412920 170 45 d301 Diethoxydimethyl-silane (C2H5O)2Si(CH3)2 148.28 0.84020 4 1.381120 87 114 11 d302 Diethoxydiphenyl-silane (C2H5O)2Si(C6H5)2 272.42 162, 608 1.032920 4 1.526920 1392mm 110 d303 1,1-Diethoxyethane CH3CH(OC2H5)2 118.18 1, 603 0.825420 4 1.381920 100 102.2 21 5 aq; misc alc, eth d304 1,2-Diethoxyethane C2H5OCH2CH2OC2H5 118.18 1, 468 0.842 1.392220 74 121.4 27 21 aq d305 2,2-Diethoxyethanol (C2H5O)2CHCH2OH 134.18 1, 818 0.88824 4 1.416020 167 67 s alc, eth d306 2,2-Diethoxyethyl-amine (C2H5O)2CHCH2NH2 133.19 4, 308 0.916 1.4170 162–163 45 d307 Diethoxymethane (C2H5O)2CH2 104.15 0.839 1.373220 87–88 5 1.178 d308 3-(Diethoxymethyl-silyl)propylamine CH3Si(OC2H5)2(CH2)3NH2 191.35 4, 4, 4201 0.916 1.426020 888mm 75 d309 2,5-Diethoxynitro-benzene (C2H5O)2C6H5NO2 211.22 6, 857 48–51 16913mm 110 d310 Diethoxymethylvinyl-silane (C2H5O)2Si(CH3)CH"CH2 160.29 44, 4183 0.85820 4 1.40020 133–134 17 d311 1,1-Diethoxypropane CH3CH2CH(OC2H5)2 132.20 1, 630 0.823220 4 1.388420 122.8 7 v s alc, eth d312 3,3-Diethoxy-1-propene (C2H5O)2CHCH"CH2 130.19 1, 727 0.854 1.400020 125 4 d313 2,2-Diethoxytri-ethylamine (C2H5O)2CHCH2N(C2H5)2 189.30 4, 309 0.850 1.418920 194–195 65 d314 N,N-Diethylacetamide CH3C("O)N(C2H5)2 115.18 4, 110 0.925 1.440120 182–186 70 d315 Diethyl 1,3-acetone-dicarboxylate C2H5OOCCH2C("O)CH2-CO2C2H5 202.21 3, 791 1.113 1.438520 250 86 1.179 Diethyl acetal, d303 Diethylacetic acid, e100 Diethyl 2-acetylpentanedioate, d316 d292 d293 d296 d316 Diethyl 2-acetyl-glutarate C2H5O2CCH2CH2CH-[C("O)CH3]CO2C2H5 230.26 3, 809 1.071 1.438620 15411mm 110 d317 Diethyl acetylsuccinate C2H5O2CCH2CH[C("O)-CH3]CO2C2H5 216.23 3, 801 1.081 1.434620 18350mm 110 d318 Diethyl adipate C2H5O2C(CH2)4CO2C2H5 202.25 2, 652 1.009 1.427020 18 251 110 d319 Diethyl allylmalonate C2H5O2CCH(CH2CH"CH2)-CO2C2H5 200.23 2, 776 1.015 1.430420 222–223 71 d320 Diethylaluminum chloride (C2H5)2AlCl 120.56 43, 1972 0.961 50 12650mm 18 d321 Diethylaluminum ethoxide (C2H5)2AlOC2H5 130.17 43, 1972 0.850 2.5–4.5 10910mm 18 d322 Diethylaluminum iodide (C2H5)2AlI 212.01 42, 1024 1.609 1204mm 18 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d323 Diethylamine (C2H5)2NH 73.14 4, 95 0.707420 4 1.386410 50.0 55.5 23 misc aq, alc d324 Diethylamine HCl (C2H5)2NH · HCl 109.60 4, 95 1.04821 4 227–230 320–330 s aq, alc, chl; i eth d325 2-(Diethylamino)-acetonitrile (C2H5)2NCH2CN 112.18 4, 350 0.866 1.426020 170 53 d326 4-(Diethylamino)-benzaldehyde (C2H5)2NC6H4CHO 177.25 142, 25 39–41 1747mm 110 d327 2-Diethylaminoethanol (C2H5)2NCH2CH2OH 117.19 4, 282 0.880025 1.438920 70 163 48 s aq, alc, bz, eth d328 2-Diethylaminoethyl-chloride HCl ClCH2CH2N(C2H5)2 · HCl 172.10 42, 618 108–210 d329 2-(Diethylamino)ethyl methacrylate H2C"C(CH3)CO2CH2CH2-N(C2H5)2 185.27 43, 676 0.922 1.444020 8010mm 76 d330 3-(Diethylamino)-phenol (C2H5)2NC6H4OH 165.24 13, 408 65–69 17015mm s aq, alc, eth d331 3-Diethylamino-1,2-propanediol (C2H5)2NCH2CH(OH)-CH2OH 147.22 4, 302 0.97320 20 1.460220 233–235 107 s aq, alc, chl, eth d332 1-Diethylamino-2-propanol (C2H5)2NCH2CH(OH)CH3 131.22 42, 737 0.889 1.425520 13.5 5913mm 33 s alc d333 3-Diethylamino-1-propanol (C2H5)2NCH2CH2CH2OH 131.22 4, 288 0.884 1.4435 8315mm 65 d334 3-Diethylaminopropyl-amine (C2H5)2NCH2CH2CH2NH2 130.24 0.826 1.441620 159 58 d335 N,N-Diethylaniline C6H5N(C2H5)2 149.24 12, 164 0.930225 4 1.539425 38 216 97 1 aq; sl s alc, eth d336 2,6-Diethylaniline (C2H5)2C6H3NH2 149.24 0.906 1.545220 3 243 123 d337 Diethyl azelate C2H5O2C(CH2)7CO2C2H5 244.33 2, 709 0.973 1.435020 16 17218mm 110 d338 Diethyl azodi-carboxylate C2H5O2CN"NCO2C2H5 174.16 3, 123 1.106 1.428020 10613mm 110 d339 5,5-Diethylbarbituric acid 184.19 242, 279 1.220 188–192 0.7 aq; 7 alc; 1.3 chl; 3.2 eth; s acet, HOAc d340 Diethyl benzalmalonate C6H5CH"C(CO2C2H5)2 248.28 9, 892 1.107 1.536520 21530mm 110 d340a 1,2-Diethylbenzene C6H4(C2H5)2 134.22 5, 426 0.880 1.502020 31 184 49 d341 1,3-Diethylbenzene C6H4(C2H5)2 134.22 5, 426 0.864020 4 1.495020 83.9 181.1 50 s alc, eth d342 1,4-Diethylbenzene C6H4(C2H5)2 134.22 5, 426 0.862020 4 1.494020 42.8 183.8 56 s alc, eth 1.180 d343 Diethyl benzyl-malonate C6H5CH2CH(CO2C2H5)2 250.29 9, 869 1.064 1.486820 16210mm 110 d344 Diethyl benzo-phosphonate C6H5CH2P(O)(OC2H5)2 228.23 12, 164 1.095 1.497020 1081mm 110 d345 Diethyl bis(hydroxy-methyl)malonate (HOCH2)2C(CO2C2H5)2 220.22 49–51 110 d346 Diethyl bromomalonate BrCH(CO2C2H5)2 239.07 2, 594 1.402225 4 1.455020 54 235 dec 110 i aq; misc alc, eth d347 Diethyl butylmalonate C4H9CH(CO2C2H5)2 216.28 21, 282 0.983 1.4220 235–240 93 v s alc, eth d348 Diethylcarbamoyl chloride (C2H5)2N(O)Cl 135.59 4, 120 1.070 1.451520 32 187–190 75 d hot aq, hot alc d349 Diethyl carbonate (C2H5O)2C"O 118.13 3, 5 0.976420 4 1.384320 43.0 126 25 69 aq; misc alc, bz, eth, esters d350 Diethyl chloro-phosphate (C2H5O)2P(O)Cl 172.55 1, 332 1.194 1.416520 602mm 61 d351 Diethyl chlorothio-phosphate (C2H5O)2P(S)Cl 188.61 13, 1332 1.200 1.471520 453mm 110 d352 Diethyl cyano-phosphate (C2H5O)2P(O)CN 163.11 1.075 1.401220 10519mm 80 d353 N,N-Diethylcyclo-hexylamine C6H11N(C2H5)2 155.29 12, 6 0.850 1.456220 194–195 57 d354 Diethyl diethyl-malonate (C2H5)2C(CO2C2H5)2 216.28 2, 686 0.990 1.423020 228–230 94 d355 1,3-Diethyl-1,3-diphenylurea [C6H5N(C2H5)]2C"O 268.36 12, 422 73–75 d356 Diethyl disulfide C2H5SSC2H5 122.25 1, 347 0.99820 4 1.506320 101.5 154.0 40 sl s aq; misc alc, eth 1.181 Diethylaminoacetaldehyde diethyl acetal, d313 3-Diethylaminopropylamine, d400 Diethyl cis-2-butanedioate, d377 Diethyl carbitol, b186 d339 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d357 Diethyldithiocarbamic acid, sodium salt (C2H5)2NC("S)S Na · 3H2O 225.31 42, 613 95–99 d358 Diethyl dithio-phosphate (C2H5O)2P(S)SH 186.23 1, 333 1.111 1.512020 601mm 82 d359 N,N-Diethyldodecan-amide CH3(CH2)10C("O)N(C2H5)2 255.45 0.847 1.454520 1662mm 110 d360 Diethyl dodecane-dioate C2H5O2C(CH2)10CO2C2H5 186.41 22, 616 0.951 1.440220 15 19314mm 110 d361 Diethylene glycol (HOCH2CH2)2O 106.12 1, 468 1.119715 1.446020 10 246 124 d362 Diethylenetriamine (H2NCH2CH2)NH 103.17 4, 255 0.954220 20 1.482620 35/39 207 98 misc aq, alc, bz, eth d363 Diethylenetriamine-pentaacetic acid [(HO2CCH2)2NCH2CH2]2N-(CH2CO2H)N(CH2CO2H)2 393.35 44, 2454 219–220 d364 N,N-Diethylethanol-amine HOCH2CH2N(C2H5)2 117.19 4, 282 0.884 1.441020 161 48 d365 Diethyl ether C2H5OC2H5 74.12 1, 314 0.713420 4 1.352720 116.3 34.6 45 6 aq; misc alc, bz, chl d366 Diethyl ethoxymethyl-enemalonate (C2H5O2C)2C"CHOC2H5 216.23 3, 469 1.070 1.462020 279–281 155 d367 N,N-Diethylethylene-diamine (C2H5)2NCH2CH2NH2 116.21 4, 251 0.827 1.436020 145–147 30 d368 Diethyl ethylmalonate C2H5CH(CO2C2H5)2 188.22 2, 644 1.00420 20 1.415820 775mm 88 sl s aq; v s alc, eth d369 N,N-Diethylformamide (C2H5)2NCHO 101.15 4, 109 0.908 1.434020 176–177 60 misc aq; v s alc, eth d370 Diethyl fumarate C2H5O2CCH"CHCO2C2H5 172.18 2, 742 1.05220 4 1.440620 1–2 218–219 91 d371 Diethyl glutarate C2H5O2CCH2CH2CH2-CO2C2H5 188.22 2, 633 1.022 1.424020 23.8 237 96 0.9 aq; v s alc; s eth d372 2,4-Diethyl-2,6-heptadienal H2C"CHCH2CH(C2H5)-CH"C(C2H5)CHO 166.27 0.862 1.467620 9112mm 86 d373 Diethyl heptanedioate C2H5O2C(CH2)5CO2C2H5 216.28 2, 671 0.994520 1.428020 24 192100mm 110 i aq; s alc, eth d374 Di-(2-ethylhexyl)-o-phthalate C6H4[CO2CH2CH(C2H5)-C4H9]2 390.56 10, 1248 0.98125 25 1.485320 50 384 207 d375 Diethyl hydrogen phosphonate (C2H5O)2P(O)H 138.10 1, 330 1.07920 4 1.407620 512mm 90 hyd aq; s alc, eth d376 N,N-Diethylhydroxyl-amine (C2H5)2NOH 89.14 4, 536 1.867 1.419520 25 125–130 45 d377 Diethyl maleate C2H5O2CCH"CHCO2C2H5 172.18 2, 751 1.068720 1.440020 8.8 225.3 93 1.4 aq; s alc, eth 1.182 d378 Diethyl malonate C2H5O2CCH2CO2C2H5 160.17 2, 573 1.0550 1.413620 49.9 199.3 93 2.7 aq; misc alc, eth d379 Diethylmalonic acid HO2CC(C2H5)2CO2H 160.17 2, 686 127 170–180 v s aq, alc, eth d380 N,N-Diethylmethyl-amine (C2H5)2NH3 87.17 4, 99 0.720 1.388720 63–65 23 d381 Diethyl methyl-malonate C2H5O2CCH(CH3)CO2C2H5 174.20 2, 629 1.01820 4 1.413020 198 76 d382 Diethyl 2-methyl-2-oxosuccinate C2H5O2CCH(CH3)C("O)-CO2C2H5 202.21 3, 794 1.073 1.431320 13823mm 110 d383 N,N-Diethyl-4-nitroso-aniline C6H4(NO)N(C2H5)2 178.24 12, 684 82–84 d384 Diethyl octanedioate C2H5O2C(CH2)6CO2C2H5 230.30 2, 693 0.982220 4 1.432320 5.9 282 112 i aq; s alc, eth d385 Diethyl oxalate C2H5O2CCO2C2H5 146.14 2, 535 1.078520 4 1.410220 40.6 185.4 76 3.6 aq (gradual dec); misc alc, eth d386 Diethyl oxydiformate [C2H5OC("O)]2O 162.14 Merck: 12, 8182 1.1220 4 1.398020 9318mm 69 50 alc; s esters, ke-tones; s aq d386a 3,3-diethylpentane C(C2H5)4 128.26 0.753620 1.420620 33 146 d387 N1,N1-Diethyl-1,4-pentanediamine CH3CH(NH2)(CH2)3N(C2H5)2 158.29 Merck: 12, 6819 0.817 1.442920 200 68 s aq, alc, eth d388 N1,N1-Diethyl-1,4-phenylenediamine (C2H5)2NC6H4NH2 164.25 13, 75 0.988 1.571020 1165mm 110 d389 Diethyl phenyl-malonate C6H5CH(CO2C2H5)2 236.27 9, 854 1.095020 4 1.491320 16 17014mm 110 i aq; s alc d390 Diethyl phosphite (C2H5)2P(O)H 138.10 1, 330 1.07920 4 1.407920 512mm 90 hyd aq; s alc, eth d391 Diethyl o-phthalate C6H4(CO2C2H5)2 222.24 9, 798 1.23214 4 1.504914 40 295 160 i aq; misc alc, eth d392 N,N-Diethyl-1,3-propanediamine (C2H5)2NCH2CH2CH2NH2 130.24 0.826 1.441620 159 58 d393 2,2-Diethyl-1,3-propanediol (C2H5)2C(CH2OH)2 132.20 1.05220 1.457425 61.3 12510mm 25 aq; v s alc, eth 1.183 Diethylene dioxide, d733 Diethylene glycol, b198 Diethylene glycolamine, a164 Diethylene glycol dibutyl ether, b151 Diethylene glycol diethyl ether, b186 Diethylene glycol dimethyl ether, b214 Diethylene glycol monobutyl ether, b495 Diethylene glycol monoethyl ether, e41 Diethylene glycol monoethyl ether acetate, e41a Diethylene glycol monomethyl ether, m73 Diethyleneimide oxide, m463 N,N-Diethylethanamine, t274 Diethyl ethanedioate, d385 N,N-Diethylethanolamine, d327 Diethyl ethoxycarbonylmethylphosphonate, t287 Di-2-ethylhexyl phthalate, b193 Diethyl ketone, p43 O,O-Diethyl O-p-nitrophenyl phosphorothioate, p3 Diethyl 3-oxoglutarate, d315 2,3-Diethylpentane, e210a Diethyl 2-pentenedioate, d371 Diethyl phosphorochloridate, d350 Diethyl phosphorochloridothionate, d351 Diethyl pimelate, d373 Diethyl propanedioate, d378 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d394 Diethyl propyl-malonate C2H5O2CCH(C3H7)CO2C2H5 202.25 2, 657 0.987 1.418520 221–222 91 d395 Diethyl sebacate C2H5O2C(CH2)8CO2C2H5 258.36 2, 717 0.963 1.436020 1–2 312 110 0.14 aq; misc alc, eth d396 Diethyl succinate C2H5O2C(CH2)2CO2C2H5 174.20 2, 609 1.04020 4 1.420020 21 217.7 100 i aq; misc alc, eth d397 Diethyl sulfate (C2H5O)2SO2 154.18 1, 327 1.17225 4 1.400420 25 208 78 i aq; misc alc, eth d398 Diethyl sulfide (C2H5)2S 90.19 1, 344 0.836720 4 1.443020 103.9 92.1 9 i aq; misc alc, eth d399 Diethyl sulfite (C2H5O)2SO 138.19 1, 325 1.883 1.45020 158 53 s aq(dec), alc d400 ()-Diethyl-L-tartrate [-CH(OH)CO2C2H5]2 206.19 3, 512 1.20520 4 1.446020 17 280 93 sl s aq; misc alc, eth d401 ()-Diethyl-D-tartrate [-CH(OH)CO2C2H5]2 206.19 31, 181 1.205 1.446020 16219mm 93 sl s aq; misc alc, eth d402 N,N-Diethyl-m-toluamide CH3C6H4C("O)N(C2H5)2 191.27 92, 325 0.99620 4 1.521220 1111mm 110 i aq; v s alc, bz, eth d403 N,N-Diethyl-m-toluidine CH3C6H4CN(C2H5)2 163.26 12, 857 0.922 1.536020 231–232 100 d404 N,N-Diethyl-1,1,1-tri-methylsilylamine (C2H5)2NSi(CH3)3 145.32 43, 1861 0.767 1.411020 125–126 10 d405 Diethylzinc (C2H5)2Zn 123.49 6, 672 1.206520 4 1.498320 28 118 23 d406 1,2-Difluorobenzene C6H4F2 114.09 52, 147 1.158 1.443020 34 92 2 d406a 1,4-Difluorobenzene C6H4F2 114.09 5, 199 1.170120 1.441020 13 89 2 d407 1,1-Difluoroethane CH3CHF2 66.05 13, 130 0.90921 1.301172 117 24.7 0.32 aq d408 1,1-Difluoroethylene CH2"CF2 64.04 1, 186 144 86 d409 Difluoromethane CH2F2 52.02 1, 59 2.126 g/L 136 51.6 FLAMMABLE GAS d410 2,4-Difluoronitro-benzene F2C6H3NO2 159.09 51, 129 1.451 1.511020 9–10 203–204 90 d411 1,1-Difluorotetra-chloroethane ClF2CCCl3 203.83 1, 86 1.649 1.413 41 91 none sl s alc; v s eth d412 1,2-Difluorotetra-chloroethane FCl2CCCl2F 203.83 13, 365 1.644725 4 1.41325 23.8 203.8 i aq; s alc, eth d413 Dihexylamine (C6H13)2NH 185.36 41, 384 0.795 1.432020 192–195 95 s alc, eth d414 Dihexyl ether (C6H13)2O 186.34 13, 1656 0.793620 4 1.420420 226.2 77 i aq; s ethers d415 9,10-Dihydro-anthracene 180.25 5, 641 0.880 108–110 312 i aq; s alc, bz, eth d416 ()-Dihydrocarvone 152.24 73, 337 0.92919 1.471820 221–222 81 d417 Dihydrocoumarin 148.16 17, 315 1.16918 1.556320 25 272 110 sl s alc, eth; s chl 1.184 d418 2,5-Dihydro-2,5-di-methoxyfurfuryl-amine 159.19 183, 7426 1.102 1.460020 9612mm 96 d419 2,3-Dihydro-2,2-di-methyl-7-benzo-furanol 164.21 175, 4, 47 1.101 1.541020 110 d420 3,4-Dihydro-2-ethoxy-2H-pyran 128.17 0.957 1.439420 4216mm 24 d421 2,3-Dihydrofuran 70.09 173, 141 0.927 1.423920 54–55 24 d422 3,4-Dihydro-2-methoxy-2H-pyran 114.14 1.442520 16 d423 3,4-Dihydro-1(2H)-naphthalenone 146.19 7, 370 1.099 1.568520 5–6 1166mm 110 d424 3,4-Dihydro-2H-pyran 84.12 0.92219 15 1.441020 70 86 15 s aq, alc d425 2,4-Dihydroacet-ophenone (HO)2C6H3C("O)CH3 152.15 8, 266 1.180 145–147 s warm alc, HOAc, pyr; i bz, eth 1.185 Diethyl pyrocarbonate, d386 Diethyl suberate, d384 Diglycine, i7 Diglycol, b198 Diglycolic acid, o67 Diglyme, b214 Dihexyl ketone, t264 1,2-Dihydroacenaphthylene, a2 2,5-Dihydroanisole, m67 d415 d416 d417 d418 d419 d420 d421 d422 d423 d424 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d426 1,8-Dihydroxyanthra-quinone 240.21 8, 458 193–197 subl 0.005 alc; 0.2 eth; s chl d427 2,4-Dihydroxybenz-aldehyde (HO)2C6H3CHO 138.12 8, 241 135–136 22622mm v s aq, alc, chl, eth d428 1,2-Dihydroxybenzene C6H4(OH)2 110.11 6, 759 1.3444 104–106 245.5 137 43 aq; s alc, bz, chl, eth; v s pyr, alkalis d429 1,3-Dihydroxybenzene C6H4(OH)2 110.11 62, 802 1.27215 109–110 276 171 110 aq; 110 alc; v s eth, glyc; sl s chl d430 1,4-Dihydroxybenzene C6H4(OH)2 110.11 6, 836 1.33215 170–171 285–287 7 aq; v s alc, eth d431 2,4-Dihydroxybenzoic acid (HO)2C6H3CO2H 154.12 10, 377 213 rapid heating s hot aq, alc, eth d432 2,5-Dihydroxybenzoic acid (HO)2C6H3CO2H 154.12 10, 384 199–200 0.5 aq; s alc, eth d433 3,4-Dihydroxybenzoic acid (HO)2C6H3CO2H 154.12 10, 389 1.54 200–202 2 aq; s alc, eth d434 3,5-Dihydroxybenzoic acid (HO)2C6H3CO2H 154.12 10, 404 236 dec sl s aq; s alc, eth d435 2,4-Dihydroxybenz-ophenone (HO)2C6H3C("O)C6H5 214.22 8, 312 144–145 v s alc, eth, HOAc d436 2,2-Dihydroxybiphenyl HOC6H4C6H4OH 186.21 6, 989 110 315 s alc, bz, eth; sl s aq d437 4,6-Dihydroxy-2-mercaptopyrimidine 144.15 24, 476 236 d438 1,2-Dihydroxy-4-methylbenzene (HO)2C6H3CH3 124.14 6, 878 1.12974 4 1.542574 67–69 251 v s aq, alc, eth d439 1,5-Dihydroxy-naphthalene C10H6(OH)2 160.17 6, 980 259 dec sl s aq; s alc; v s eth d440 1,6-Dihydroxy-naphthalene C10H6(OH)2 160.17 6, 981 138–140 v s alc, eth d441 2,3-Dihydroxy-naphthalene C10H6(OH)2 160.17 6, 982 162–164 v s alc, eth d442 2,7-Dihydroxy-naphthalene C10H6(OH)2 160.17 6, 985 187 dec sl s aq; v s alc, eth 1.186 d443 1,4-Dihydroxy-2-naphthoic acid (HO)2C10H5CO2H 204.19 10, 442 220 dec d444 3,5-Dihydroxy-2-naphthoic acid (HO)2C10H5CO2H 204.19 10, 444 277 dec d445 1,3-Dihydroxy-2-propanone HOCH2C("O)CH2OH 90.08 1, 846 65–71 v s aq, alc, acet, eth d446 7-(2,3-Dihydroxy-propyl)theophylline 254.25 158 33 aq; 2 alc; 1 chl d447 3,6-Dihydroxy-pyridazine 112.09 24, 312 306–308 sl s ahot alc; s hot aq d448 2,3-Dihydroxypyridine (HO)2C5H3N 111.10 212, 107 245 dec d449 1,4-Diiodobenzene C6H4I2 329.91 5, 227 131–133 285 sl s alc; v s eth d450 1,4-Diiodobutane I(CH2)4I 309.92 1, 123 2.350 1.621220 6 15226mm none d451 1,2-Diiodoethane ICH2CH2I 281.86 1, 99 2.13210 81–84 200 sl s aq; s alc, eth d452 Diiodomethane CH2I2 267.84 1, 71 3.32520 4 1.742520 6 181 110 0.12 aq; misc alc, bz, eth, PE d453 1,5-Diiodopentane I(CH2)5I 323.94 1, 133 2.177 1.600220 1023mm 110 d454 1,3-Diiodopropane I(CH2)3I 295.88 1, 115 2.575520 4 1.642320 13 222 110 i aq; s chl, eth 1.187 10,11-Dihydro-5H-dibenz[b,f]azepine, i9 2,5-Dihydro-2,5-dimethoxyfuran, d501 3,7-Dihydro-3,7-dimethyl-1H-pyridine-2,6-dione, t134 Dihydro-2(3H)-furanone, b617 2,3-Dihydroindene, i10 Dihydromyrcenol, m313 Dihydroresorcinol, c323 3,7-Dihydro-1,3,7-trimethyl-1H-purine-2,6-dione, c1 1,3-Dihydroxyacetone, d445 1,4-Dihydroxybenzene, h86 1,4-Dihydroxycyclohexane, c359 2,2-Dihydroxydiethylamine, d297 N,N-Di(hydroxyethyl)aminoacetic acid, b199 2,2-Dihydroxy-1,3-indandione, i13 2,2-Dihydroxymethyl-1-butanol, e183 1,1-Di(hydroxymethyl)ethylamine, a215 Dihydroxypropane, p191, p192 3,5-Diiodosalicylic acid, h113 Diisobutyl adipate, d459 d426 d437 d446 d447 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d455 Diisobutylaluminum chloride [(CH3)2CHCH2]2AlCl 176.67 44, 4403 0.905 1.450620 40 15210mm 18 d456 Diisobutylaluminum hydride [(CH3)2CHCH2]2AlH 142.22 44, 4400 0.798 1181mm 18 d457 Diisobutylamine [(CH3)2CHCH2]2NH 129.25 4, 166 0.740 1.408120 77 137–139 29 s alc, acet, eth, chl d458 Diisobutyl ether [(CH3)2CHCH2]2O 130.22 0.76115 122–124 8 i aq; misc alc, eth d459 Diisobutyl hexane-dioate [(CH3)2CHCH2O2CCH2 ]2 CH 2 258.36 0.95025 25 160 d460 Diisobutyl o-phthalate C6H4[CO2CH2CH(CH3)2]2 278.35 92, 587 1.03825 25 1.490020 174 d461 1,6-Diisocyanato-hexane OCN(CH2)6NCO 168.20 42, 711 1.040 1.452520 255 140 d462 Diisodecyl phenyl phosphite (C10H21O)2P(O)C6H5 438.64 0.940 1.480020 1765mm d463 Diisoheptyl o-phthalate C6H4(CO2C7H15)2 0.990 1.486020 110 d464 Diisononyl o-phthalate C6H4(CO2C9H19)2 0.972 1.485020 110 d465 Diisooctyl nonane-dioate C8H17O2C(CH2)7CO2C8H17 412.66 0.905 1.451010 2102mm 110 d466 Diisooctyl o-phthalate C6H4(CO2C8H17)2 390.56 0.983 1.486020 110 d466a Diisopentyl ether [(CH3)2CHCH2CH2]2O 158.28 0.777720 1.408520 172.5 d467 1,3-Diisopropenyl-benzene C6H4[C(CH3)"CH2]2 158.25 0.925 1.557120 231 91 d468 Diisopropylamine [(CH3)2CH]2NH 101.19 4, 154 0.715320 1.392420 61 83.5 1 11 aq; s alc d469 2-(Diisopropylamino)-ethanol [(CH3)2CH]2NCH2CH2OH 145.25 41, 430 0.826 1.441720 187–192 57 d470 3-Diisopropylamino-1,2-propanediol [(CH3)2CH]2NCH2CH(OH)-CH2OH 175.27 0.962 1.458320 13110mm 110 d471 2,6-Diisopropylaniline [(CH3)2CH]2C6H3NH2 177.29 12, 168 0.940 1.533220 45 257 123 d472 Diisopropyl azodi-carboxylate (CH3)2CHO2CNCO2-CH(CH3)2 202.21 1.027 1.420020 750.25mm 106 d473 1,3-Diisopropyl-benzene C6H4[CH(CH3)2]2 162.28 5, 447 0.85620 4 1.489020 63 203 76 misc alc, bz, eth, acet d474 1,4-Diisopropyl-benzene C6H4[CH(CH3)2]2 162.28 52, 339 0.85720 4 1.488920 17 204 76 misc alc, bz, acet, eth d475 Diisopropylcyanamide [(CH3)2CH]2NCN 126.20 43, 279 0.839 1.427020 9325mm 78 1.188 d476 Diisopropyl ether [(CH3)2CH]2O 102.17 1, 362 0.725820 4 1.367920 86.9 68.4 28 1.2 aq; misc alc, bz, chl, eth d477 N,N-Diisopropyl-ethylamine [(CH3)2CH]2NC2H5 129.25 4, 4, 511 0.742 1.413320 50 127 10 d478 Diisopropyl malonate (CH3)2CHO2CCH2CO2-CH(CH3)2 188.22 23, 1620 0.991 1.412020 9512mm 88 d479 2,6-Diisopropylphenol [(CH3)2CH]2C6H3OH 178.28 61, 272 0.962 1.514020 18 256 110 d480 Diisopropyl phosphite [(CH3)2CHO]2P(O)H 166.16 1, 363 0.997 1.407020 72–7520 110 d481 ()-Diisopropyl L-tartrate [-CH(OH)CO2CH(CH3)2]2 234.25 3, 517 1.114 1.438720 15212mm 109 d482 1,3-Diisopropyl-2-thiourea (CH3)2CHNHCSNH-CH(CH3)2 160.28 4, 155 143–145 d483 Diketene 84.07 173, 4297 1.090 1.433020 127 34 d484 threo-1,4-Dimercapto-2,3-butanediol HSCH2CH(OH)CH(OH)-CH2SH 154.25 42.43 v s aq, alc, chl, eth d485 2,3-Dimercapto-1-propanol HSCH2CH(SH)CH2OH 124.22 1.238525 4 1.527025 12015mm 110 8 aq(dec); s alc, eth d486 2,5-Dimercapto-1,3,4-thiadiazole 150.24 27, 677 162 dec d487 34-Dimethoxy-acetophenone (CH3O)2C6H3COCH3 180.20 82, 298 49–51 286–288 110 sl s aq, alc, eth d488 2,4-Dimethoxyaniline (CH3O)2C6H3NH2 153.18 13, 784 1.075 34–37 110 s alc, bz, eth d489 2,5-Dimethoxyaniline (CH3O)2C6H3NH2 153.18 13, 788 80–82 270 s aq, alc d490 3,4-Dimethoxyaniline (CH3O)2C6H3NH2 153.18 13, 780 88 17622mm s hot eth d491 2,5-Dimethoxybenz-aldehyde (CH3O)2C6H3CHO 166.18 8, 245 49–52 14610mm 110 d492 3,4-Dimethoxybenz-aldehyde (CH3O)2C6H3CHO 166.18 8, 255 42–43 281 110 v s alc, eth d493 1,2-Dimethoxybenzene C6H4(OCH3)2 138.17 6, 771 1.081925 1.523225 22.5 206.3 87 sl s aq; s alc, eth 1.189 Diisobutylene, t384 Diisobutyl ketone, d616 Diisopropyl ketone, d658 Dimedone, d596 d483 d486 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d494 1,3-Dimethoxybenzene C6H4(OCH3)2 138.17 6, 813 1.055 1.5240 55 877mm 87 s alc, bz, eth d495 1,4-Dimethoxybenzene C6H4(OCH3)2 138.17 6, 843 1.03665 8 55–60 213 s alc; v s bz, eth d496 3,4-Dimethoxybenzoic acid (CH3O)2C6H3CO2H 182.18 101, 188 180–181 0.05 aq; v s alc, eth d497 3,5-Dimethoxybenzoic acid (CH3O)2C6H3CO2H 182.18 10, 405 182–184 d498 2,6-Dimethoxybenzoyl chloride (CH3O)2C6H3COCl 200.62 103, 1402 64–66 d499 3,4-Dimethoxybenzyl alcohol (CH3O)2C6H3CH2OH 168.19 5, 1113 1.157 1.552020 297732mm 110 d500 2,2-Dimethoxycyclo-hexanol (CH3O)2C6H9OH 160.22 1.072 1.462020 909mm 40 d501 2,5-Dimethoxy-2,5-dihydrofuran 130.14 1.073 1.433920 160–162 47 d502 Dimethoxydimethyl-silane (CH3O)2Si(CH3)2 120.23 0.880 1.369020 81.4 10 d503 Dimethoxydiphenyl-silane (C6H5)2Si(OCH3)2 244.4 1.077120 4 1.544720 16115mm d504 1,1-Dimethoxyethane CH2CH(OCH3)2 90.12 1, 603 0.850220 1.366820 113 64.5 17 s aq, alc, chl, eth d505 1,2-Dimethoxyethane CH3OCH2CH2OCH3 90.12 1, 467 0.862020 4 1.379620 68 85.2 1 misc aq, alc; s PE d506 (2,2-Dimethoxy)-ethylamine H2NCH2CH(OCH3)2 105.14 42, 758 0.965 1.417020 13595mm 53 d507 Dimethoxymethane CH2(OCH3)2 76.10 1, 574 0.860120 20 1.351420 104.8 42.3 32 32 aq d508 1,1-Dimethoxy-2-methylaminoethane CH3NHCH2CH(OCH3)2 119.16 42, 759 0.928 1.411520 140 29 d509 Dimethoxymethylvinyl-silane CH3Si(OCH3)2CH"CH2 132.24 0.884 1.395020 106 3 d510 Dimethoxymethyl-phenylsilane (CH3O)2Si(CH3)C6H5 182.3 0.99320 4 1.46920 199–200 d511 1,2-Dimethoxy-4-nitrobenzene (CH3O)2C6H3NO2 183.16 6, 789 1.1888133 4 95–98 23017mm v s alc, eth; s chl d512 2,6-Dimethoxyphenol (CH3O)2C6H3OH 154.17 6, 1081 53–56 261 110 s alc, alk; v s eth 1.190 d513 3,4-Dimethoxyphenyl-acetic acid (CH3O)2C6H3CO2H 196.20 10, 409 96–98 s aq; v s alc, eth d514 3,4-Dimethoxyphenyl-acetonitrile (CH3O)2C6H3CN 177.20 101, 198 62–63 17810mm d515 2,2-Dimethoxy-2-phenylacetophenone C6H5C(O)C(OCH3)2C6H5 256.30 67–70 d516 1,1-Dimethoxy-2-phenylethane C6H5CH2CH(OCH3)2 166.22 7, 293 1.004 1.495020 221 83 d517 2-(3,4-Dimethoxy-phenyl)ethylamine (CH3O)2C6H3CH2CH2NH2 181.24 13, 800 1.074 1.546420 18815mm 110 d518 1,2-Dimethoxypropane CH3CH(OCH3)CH2OCH3 104.15 14, 2471 0.855 1.383520 96 0 d519 2,2-Dimethoxypropane (CH3)2C(OCH3)2 104.15 1, 648 0.847 1.378020 83 11 d520 1,1-Dimethoxy-2-propanone CH3C(O)CH(OCH3)2 118.13 11, 395 0.976 1.397820 143–147 37 d521 3,3-Dimethoxy-1-propene (CH3O)2CHCH"CH2 102.13 11, 378 0.862 1.395420 89–90 2 d522 1,2-Dimethoxy-4-propenylbenzene CH3CH"CHC6H5(OCH3)2 178.23 6, 956 1.055 1.568020 262–264 110 d523 3,3-Dimethoxy-propionitrile (CH3O)2CHCH2CN 115.13 34, 521 1.026 1.413020 9230mm 86 d524 2,6-Dimethoxypyridine (CH3O)2C5H3N 139.15 1.053 1.512920 178–180 61 d525 2,5-Dimethoxytetra-hydrofuran (CH3O)2C4H6O 132.16 1.020 1.418020 145–147 35 d526 N,N-Dimethylacet-amide CH3C(O)N(CH3)2 87.12 4, 59 0.936625 1.437620 20 165.5 70 misc aq, alc, bz, eth d527 2,6-Dimethylacet-anilide CH3C(O)NHC6H3(CH3)2 163.22 12, 1109 182–184 d528 Dimethyl 1,3-acetone-dicarboxylate [CH3O2CCH2]2C"O 174.15 3, 790 1.185 1.443420 15025mm 110 1.191 3,4-Dimethoxyphenethylamine, d517 1,1-Dimethyoxytrimethylamine, d614 Dimethyl acetal, d504 Dimethylacetic acid, i81 d501 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d529 Dimethyl acetylenedi-carboxylate CH3O2CC#CCO2CH3 142.11 2, 803 1.156 1.447020 9819mm 86 d530 Dimethyl acetyl-succinate CH3O2CC2CH(COCH3)-CO2CH3 188.18 34, 1825 1.160 33 13412mm 110 d531 N,N-Dimethylacryl-amide H2C"CHC(O)N(CH3)2 99.13 43, 130 0.962 1.473020 8120mm 71 d532 3,3-Dimethylacrylic acid (CH3)2C"CHCO2H 100.12 2, 432 69 195 d533 Dimethylaluminum chloride (CH3)2AlCl 92.51 43, 1971 0.996 21 126–127 18 d534 Dimethylamine (CH3)2NH2 45.08 4, 39 0.6800 4 1.35017 92.2 6.9 20 v s aq; s alc, eth d535 Dimethylamino-acetonitrile (CH3)2NCH2CN 84.12 4, 346 0.863 1.410120 138 36 d536 4-(Dimethylamino)-benzaldehyde (CH3)2NC6H4CHO 149.19 14, 31 74 17617mm s alc, chl, eth, HOAc d537 3-Dimethylamino-benzoic acid (CH3)2NC6H4CO2H 165.19 14, 392 148–152 d538 4-Dimethylamino-benzoic acid (CH3)2NC6H4CO2H 165.19 14, 426 241 dec s alc; sl s eth d539 2-(Dimethylamino)-ethanol (CH3)2NCH2CH2OH 89.14 4, 276 0.887620 4 1.429420 135 40 misc aq, alc, eth d540 2-[2-(Dimethylamino)-ethoxy]ethanol (CH3)2NCH2CH2OCH2-CH2OH 133.19 42, 719 0.954 1.442020 9515mm 92 d541 2-(Dimethylamino)-ethyl acrylate H2C"CHCO2CH2CH2-N(CH3)2 143.19 43, 649 0.943 1.428020 6412mm 58 d542 2-(Dimethylamino)-ethyl benzoate C6H5CO2CH2CH2N(CH3)2 193.26 1.014 1.507720 15920mm 110 d543 2-(Dimethylamino)-ethyl methacrylate H2C"C(CH3)CO2CH2CH2-N(CH3)2 157.22 43, 649 0.933 1.440020 182–192 70 1.192 d544 3-Dimethylamino-phenol (CH3)2NC6H4OH 137.18 13, 405 1.589525 82–84 265–268 v s alc, bz, eth, acet d545 3-Dimethylamino-1,2-propanediol (CH3)2NCH2CH(OH)CH2OH 119.16 4, 302 1.004 1.460920 216–217 105 s aq, alc, chl, eth d546 1-Dimethylamino-2-propanol CH3CH(OH)CH2N(CH3)2 103.17 0.837 1.419320 121–127 35 d547 3-Dimethylamino-1-propanol (CH3)2NCH2CH2OH 103.17 41, 433 0.872 1.436020 163–164 36 d548 3-(Dimethylamino)-propionitrile (CH3)2NCH2CH2CN 98.15 43, 1265 0.870 1.425820 43 171750mm 62 d549 3-Dimethylamino-propylamine (CH3)2N(CH2)3NH2 102.18 43, 554 0.812 1.4350 133 15 d550 N-[3-(Dimethylamino)-propyl]methacryl-amide H2C"C(CH3)CONH(CH2)3-N(CH3)2 170.26 0.940 1.479020 1342mm 110 d551 4-(Dimethylamino)-pyridine (CH3)2N(C5H4N) 122.17 222, 341 112–114 v s aq, alc, bz, chl d552 Dimethyl 2-amino-1,4-phthalate H2NC6H3(CO2CH3)2 209.20 14, 559 127–130 d553 N,N-Dimethylaniline C6H5N(CH3)2 121.18 12, 141 0.955920 4 1.558420 2.5 194.2 63 v s alc, chl, eth d554 2,3-Dimethylaniline (CH3)2C6H3NH2 121.18 12, 1101 0.993320 1.568520 15 221–222 97 sl s aq; s alc, eth d555 2,4-Dimethylaniline (CH3)2C6H3NH2 121.18 12, 1111 0.972320 1.5568620 14.3 214 90 s alc, bz, eth d556 2,5-Dimethylaniline (CH3)2C6H3NH2 121.18 12, 1135 0.979021 4 1.559220 15.5 214 93 sl s aq; s alc, eth d557 2,6-Dimethylaniline (CH3)2C6H3NH2 121.18 12, 1107 0.984220 1.560120 11.2 215 96 sl s aq; s alc, eth d558 3,4-Dimethylaniline (CH3)2C6H3NH2 121.18 12, 1103 1.07618 51 228 98 sl s aq; s alc d559 3,5-Dimethylaniline (CH3)2C6H3NH2 121.18 12, 1131 0.970620 1.557820 9.8 220.5 93 sl s aq; s alc d560 Dimethylarsinic acid (CH3)2As(O)OH 138.00 4, 610 195–196 v s alc; 200 aq; i eth 1.193 cis-2,3-Dimethylacrylic acid, m168 trans-2,3-Dimethylacrylic acid, m169 3,3-Dimethylacrylic acid, m170 Dimethyl adipate, d617 Dimethylaminoacetaldehyde diethyl acetal, d300 Dimethyl 2-amino-1,4-benzenedicarboxylate, d552 Dimethyl 2-aminoterephthalate, d552 N,N-Dimethylaminotrimethylsilane, d707 Dimethylanisole, d631, d632 2,4-Dimethyl-3-azapentane, d468 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d561 1,3-Dimethylbarbituric acid 156.14 24, 471 124–126 d562 N,N-Dimethylbenz-amide C6H5CON(CH3)2 149.19 9, 201 43–45 13315mm 110 d563 3,4-Dimethylbenzoic acid (CH3)2C6H3CO2H 150.18 92, 353 165–167 subl s alc, bz d564 2,5-Dimethylbenzo-nitrile (CH3)2C6H3CN 131.18 9, 535 0.957 1.528420 13–14 223730mm 92 d565 N,N-Dimethylbenzyl-amine C6H5CH2N(CH3)2 135.21 12, 1019 0.900 1.501120 75 183 54 d566 2,3-Dimethyl-1,3-butadiene H2C"C(CH3)C(CH3)"CH2 82.15 13, 991 0.722225 4 1.436225 76.0 69.2 22 d567 2,2-Dimethylbutane CH3CH2C(CH3)3 86.18 1, 150 0.649220 1.368820 99.9 49.7 48 d568 2,3-Dimethylbutane (CH3)2CHCH(CH3)2 86.18 1, 151 0.661620 1.375020 128.5 58.0 29 d569 2,3-Dimethyl-2,3-butanediol (CH3)2C(OH)C(OH)(CH3)2 86.18 1, 487 41.1 174.4 77 v s hot aq, alc, eth d570 2,3-Dimethyl-2-butanol (CH3)2CHC(CH3)2OH 102.18 1, 413 0.823620 4 1.417620 14 118 29 s aq; misc alc, eth d570a 3,3-Dimethyl-1-butanol (CH3)3CCH2CH2OH 102.18 13, 1677 0.82420 1.417620 60 143 47 d571 3,3-Dimethyl-2-butanol (CH3)3CCH(OH)CH3 102.18 1, 412 0.818520 4 1.415120 5.6 120 28 s alc; misc eth d572 3,3-Dimethyl-2-butanone (CH3)3CCOCH3 100.16 1, 694 0.725025 25 1.393925 52.5 106 23 2.5 aq; s alc, eth d572a 2,3-Dimethyl-1-butene (CH3)2CHC(CH3)"CH2 84.16 13, 816 0.680 1.389020 157 55.6 18 d573 2,3-Dimethyl-2-butene (CH3)2C"C(CH3)2 84.16 1, 218 0.708120 4 1.412420 75 73 16 s alc, eth d574 3,3-Dimethyl-1-butene (CH3)3CCH"CH2 84.16 1.217 0.653120 4 1.376220 115 41 28 d575 N,N-Dimethylbutyl-amine CH3(CH2)3N(CH3)2 101.19 4, 1, 371 0.721 1.398020 93750mm 3 d576 2,2-Dimethylbutyric acid C2H5C(CH3)2CO2H 116.16 2, 335 0.928 1.415420 965mm 79 d577 3,3-Dimethylbutyric acid (CH3)3CCH2CO2H 116.16 2, 337 0.912420 4 1.410020 6–7 190 88 s alc, eth d578 Dimethylcadmium (CH3)2Cd 142.48 1.984617 4 1.5488 4.5 105.5 150 ex-plodes dec aq; s PE 1.194 d579 Dimethylcarbamyl chloride (CH3)2NCOCl 107.54 4, 73 1.168 1.454020 33 168 68 d580 Dimethyl carbonate (CH3O)2C"O 90.08 3, 4 1.06517 4 1.368220 0.5 90–91 18 i aq; misc alc, eth d581 Dimethyl chloro-malonate ClCH(CO2CH3)2 166.56 2, 592 1.305 1.437020 10619mm 106 d582 Dimethyl chlorothio-phosphate (CH3O)2P(S)Cl 160.56 11, 143 1.322 1.481920 6716mm 105 d583 Dimethylcyanamide (CH3)2NCN 70.09 4, 74 0.867 1.410020 161–163 58 d584 Dimethyl N-cyanothio-iminocarbonate (CH3S)2C"NCN 146.23 3, 220 46–50 110 d584a 1,1-Dimethylcyclo-hexane (CH3)2C6H10 112.22 5, 35 0.777 1.428020 33 120 7 d585 cis-1,2-Dimethylcyclo-hexane (CH3)2C6H10 112.22 5, 36 0.796320 1.433520 49.9 129.7 16 i aq; s alc, bz d586 trans-1,2-Dimethyl-cyclohexane (CH3)2C6H10 112.22 5, 36 0.776020 1.427320 90 123.4 11 i aq; s alc, bz d587 cis-1,3-Dimethylcyclo-hexane (CH3)2C6H10 112.22 5, 36 0.784 1.423020 76 120 5 d587a trans-1,3-Dimethyl-cyclohexane (CH3)2C6H10 112.22 52, 21 0.780 1.430520 90 124.5 7 d588 cis-1,4-Dimethylcyclo-hexane (CH3)2C6H10 112.22 52, 22 0.783 1.429720 88 125 6 d589 5,5-Dimethyl-1,3-cyclohexanedione 140.18 7, 559 dec 149 0.4 aq; s alc, bz 1.195 Dimethylbenzenes, x4, x5, x6 6,6-Dimethylbicyclo[3.1.1]hept-2-ene-2-ethanol, n106 Dimethyl cis-butenedioate, d628 Dimethyl 1-butynedioate, d529 Dimethyl cellosolve, d505 Dimethylchlorosilane, c93 cis-2-Dimethylcrotonic acid, m168 trans-2-Dimethylcrotonic acid, m169 d561 d589 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d590 2,3-Dimethylcyclo-hexanol (CH3)2C6H9OH 128.22 0.934 1.465320 65 d591 3,5-Dimethylcyclo-hexanol (CH3)2C6H9OH 128.22 6, 18 0.892 1.4552 11–12 186 73 d592 2,6-Dimethylcyclo-hexanone (CH3)2C6H8("O) 126.20 7, 23 0.925 1.446020 175 51 i aq; s alc, eth d593 N,N-Dimethylcyclo-hexylamine C6H11N(CH3)2 127.23 0.849 1.453520 159 42 d594 2,3-Dimethylcyclo-hexylamine (CH3)2C6H9NH2 127.23 0.835 1.459520 160 51 1.196 d595 1,5-Dimethyl-1,5-cyclooctadiene 136.24 0.867 1.489620 7416mm 55 d596 Dimethyl 1,1-cyclo-propanedicarboxy-late C3H4(CO2CH3)2 158.16 91, 314 1.147 1.441020 196–198 95 d597 Dimethyl decanedioate CH3O2C(CH2)8CO2CH3 230.30 2, 719 0.98330 20 1.433528 23 1445mm 145 i aq; s alc, eth d598 2,2-Dimethyl-1,3-dioxane-4,6-dione 144.13 94–96 s aq, acet d599 2,2-Dimethyl-1,3-dioxolane-4-metha-nol 132.16 19, 65 1.063 1.434020 188–189 80 misc aq, alc, bz, esters, eth, PE, acetals d600 Dimethyl disulfide CH3SSCH3 94.20 1, 291 1.062520 1.528920 84.7 109.8 24 i aq; misc alc, eth d601 Dimethyldithio-carbamic acid, Zn salt [(CH3)2NCS2]2Zn 305.80 43, 149 1.66 250–252 0.2 alc, eth; 0.5 acet, bz; 0.5 naphtha d602 N,N-Dimethyldodecyl-amine CH3(CH2)11N(CH3)2 213.41 43, 409 0.775 1.437520 20 1123mm 110 d603 Dimethyl ether (CH3)2O 46.07 1, 281 0.66120 141.5 24.9 41 35 aq(5 atm); 15 bz; 11.8 acet d604 N,N-Dimethylethyl-amine C2H5N(CH3)2 73.14 4, 94 0.675 1.372020 140 36–38 36 d605 N,N-Dimethylethylene-diamine C2H5NCH2CH2NH2 88.15 42, 690 0.803 1.426020 106 23 d606 N,N-Dimethylform-amide (CH3)2NCHO 73.10 4, 58 0.944525 4 1.430520 60.4 153.0 57 misc aq, alc, bz, eth d607 N,N-Dimethylform-amide dimethyl acetal (CH3)2NCH(OCH3)2 119.16 0.897 1.397220 103720mm 7 d608 Dimethyl fumarate CH3O2CCH"CHCO2CH3 144.13 2, 741 1.045106 105 193 sl s alc, eth d609 2,5-Dimethylfuran (CH3)2(C4H2O) 96.13 17, 41 0.900020 4 1.441420 62 93 1 i aq; misc alc, eth d610 Dimethylglyoxime CH3C("NOH)-C("NOH)CH3 116.12 1, 772 240 s alc, acet, eth, pyr d611 2,4-Dimethyl-1,6-heptadienal H2C"CHCH2CH(CH3)-CH"C(CH3)CHO 138.21 0.870 1.466420 472mm 64 d612 2,4-Dimethyl-2,6-heptadien-1-ol H2C"CHCH2CH(CH3)-CH"C(CH3)CH2OH 140.23 1.351 1.464020 8610mm 78 d613 2,6-Dimethyl-2,5-heptadien-4-one (CH3)2C"CHC("O)-CH"(CH3)2 138.21 1, 751 0.88520 4 1.496821 28 198–199 79 sl s aq; s alc, eth d613a 2,2-Dimethylheptane (CH3)3C(CH2)4CH3 128.26 0.710520 1.401620 113 132.7 d614 Dimethyl heptane-dioate CH3O2C(CH2)5CO2CH3 188.22 21, 281 1.062520 4 1.431420 21 12211mm 110 s alc d615 2,6-Dimethyl-4-heptanol (CH3)2CHCH2CH(OH)-CH2CH(CH3)2 144.26 1, 425 0.809 1.423620 178 66 d616 2,6-Dimethyl-4-heptanone [(CH3)2CHCH2]2C"O 142.24 1, 710 0.80620 20 1.411420 41.5 169.4 49 0.06 aq; misc alc, bz, chl, eth d616a 2,4-Dimethylhexane C2H5CH(CH3)CH2CH(CH3)2 114.23 1, 162 0.696225 1.392925 109.5 10 d617 Dimethyl hexanedioate CH3O2C(CH2)4CO2CH3 174.20 1, 652 1.060020 4 1.428520 8 11210mm 107 i aq; s alc, eth d618 2,5-Dimethyl-2,5-hexanediol [(CH3)2C(OH) ]2 CH 2 146.23 1, 492 86–90 214–215 126 1.197 Dimethyl diphenyl sulfone 4,4-dicarboxylate, s29 Dimethyleneimine, e148 Dimethylene oxide, e146 N,N-Dimethylethanolamine, d539 (1,1-Dimethylethyl)benzene, b523 4-(1,1-Dimethylethyl)-4-methylbenzene, b602 4-(1,1-Dimethylethyl)phenol, b588 Dimethyl glutarate, d656 d595 d598 d599 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d619 1,5-Dimethylhexyl-amine (CH3)2CH(CH2)3-CH(NH2)CH3 129.25 Merck: 11, 6678 0.767 1.420920 154–156 48 d620 2,5-Dimethyl-3-hexyne-2,5-diol (CH3)2C(OH)C#C-C(OH)(CH3)2 142.20 1, 501 94–95 205–206 d621 3,5-Dimethyl-1-hexyn-3-ol (CH3)2CHCH2C(CH3)(OH)C#CH 126.20 12, 507 0.859 1.433520 151 44 d622 5,5-Dimethylhydantoin 128.13 24, 289 176–178 v s aq, alc, bz, chl, eth, acet d623 1,1-Dimethylhydrazine (CH3)2NNH2 60.10 4, 547 0.79122 4 1.407520 58 63.9 1 misc aq, alc, eth, PE d624 1,2-Dimethylhydrazine CH3NHNHCH3 60.10 4, 547 0.827420 4 1.420920 81 flam-mable misc aq, alc, eth, PE d625 Dimethyl hydrogen phosphonate (CH3O)2P(O)H 110.05 1, 285 1.20020 4 1.400920 170–171 29 s aq(hyd); misc alc, acet, eth d626 1,2-Dimethylimidazole 96.13 23, 66 1.084 29–30 204 92 d627 1,3-Dimethyl-2-imidazolidinone 114.15 1.044 1.472020 10817mm 80 d628 N,N-Dimethyliso-propylamine (CH3)2CHN(CH3)2 87.17 42, 630 0.715 1.390520 66 9 d629 Dimethyl maleate CH3O2CCH"CHCO2CH3 144.13 2, 751 1.160620 1.442220 19 202 113 8.7 aq d630 Dimethyl malonate CH3O2CCH2CO2CH3 132.12 2, 572 1.15420 4 1.413520 62 180–181 90 sl s aq; misc alc, eth d631 Dimethylmercury (CH3)2Hg 230.66 4, 678 3.187420 1.545220 43 92–94 5 i aq; s alc, eth d632 3,4-Dimethyl-1-methoxybenzene (CH3)2C6H3OCH3 136.19 6, 481 0.974414 4 1.519814 200 i aq; s alc, bz, eth d633 3,5-Dimethyl-1-methoxybenzene (CH3)2C6H3OCH3 136.19 6, 493 0.962715 4 1.510715 193 65 i aq; s alc, bz, eth d634 Dimethyl methyl-malonate CH3CH(CO2CH3)2 146.14 2, 628 1.098 1.414020 176–177 76 d635 Dimethyl methyl-phosphonate (CH3O)2P(O)CH3 124.08 41, 572 1.145 1.413020 181 68 d636 Dimethyl methyl-succinate CH3O2CCH2CH(CH3)-CO2CH3 160.17 23, 1696 1.076 1.420020 196 83 d637 2,6-Dimethyl-morpholine 115.18 0.934620 1.447020 85 147 48 misc aq, alc, bz 1.198 d637a 1,2-Dimethylnaphtha-lene C10H6(CH3)2 156.23 51, 267 1.017920 1.616620 0.8 266.5 110 d638 1,2-Dimethyl-3-nitro-benzene (CH3)2C6H3NO2 151.17 5, 367 1.129 1.543420 7–9 245 107 i aq; s alc d639 1,2-Dimethyl-4-nitro-benzene (CH3)2C6H3NO2 151.17 5, 368 1.139 29–31 14320mm 110 i aq; s alc d640 1,3-Dimethyl-2-nitro-benzene (CH3)2C6H3NO2 151.17 5, 378 1.112 1.522020 14–16 225744mm 87 i aq; s alc d641 1,3-Dimethyl-4-nitro-benzene (CH3)2C6H3NO2 151.17 5, 378 1.117 1.549720 2 237–239 107 s alc, bz, chl, eth d642 N,N-Dimethyl-4-nitrosoaniline (CH3)2NC6H4NO 150.18 12, 677 86 flammable solid i aq; s alc, eth d643 Dimethyl 2-nitro-1,4-phthalate O2NC6 1,4-(CO2CH3)2 H 3 239.18 9, 826 72–75 d644 cis-3,7-Dimethyl-2,6-octadienal 152.24 0.888820 4 1.489820 229 101 misc alc, eth, glyc d645 trans-3,7-Dimethyl-2,6-octadienal 152.24 0.886920 4 1.486920 229 101 misc alc, eth, glyc d646 3,7-Dimethyl-1-octanol (CH3)2CH(CH2)3CH(CH3)-CH2CH2OH 158.29 1, 426 0.840 1.435520 969mm 95 d647 3,7-Dimethyl-3-octanol (CH3)2CH(CH2)3-C(OH)(CH3)C2H5 158.29 1, 426 0.826 1.433620 736mm 76 1.199 Dimethyl isophthalate, d669 1,4a-Dimethyl-7-isopropyl-1,2,3,4,4a,9,10,10a-octahydro-1-phenanthrenemethylamine, d24 Dimethyl ketone, a26 2,2-Dimethyl-3-methoxyoxirane, m86 6,6-Dimethyl-2-methylenebicyclo[3.1.1]heptane, p176 2,2-Dimethyl-3-methylenebicyclo[2.2.1]heptane, c2 2,2-Dimethyl-3-methylenenorbornane, c2 6,6-Dimethyl-2-methylenenorpinene, p176 d622 d626 d627 d637 d644 d645 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d648 2,6-Dimethyl-2,4,6-octatriene CH3CH"C(CH3)CH"CH-CH"C(CH3)2 136.24 13, 1050 0.811 1.542920 7514mm 68 d649 N,N-Dimethyloctyl-amine CH3(CH2)7N(CH3)2 157.30 41, 386 0.765 1.424320 57 195 65 d650 3,6-Dimethyl-4-octyne-3,6-diol C2H5C(CH3)(OH)C#C-C(CH3)(OH)C2H5 170.35 11, 263 53–55 214680mm 110 d651 Dimethyl octanedioate CH3O2C(CH2)6CO2CH3 202.25 2, 693 1.021020 4 1.432520 4.8 268 i aq; s alc d652 Dimethyl oxalate CH3O2CCO2CH3 118.09 2, 534 1.14854 1.37980 50–54 163.5 75 6 aq; s alc, eth d653 3,3-Dimethyloxetane 86.13 172, 21 0.835 1.3990 81 9 d654 2,3-Dimethylpentane C2H5CH(CH3)CH(CH3)2 100.21 12, 120 0.695120 4 1.392020 89.8 7 i aq; s alc, eth d655 2,4-Dimethylpentane (CH3)2CHCH2CH(CH3)2 100.21 1, 158 0.672720 1,381520 120 80.4 12 d656 Dimethyl pentane-dioate CH3O2C(CH2)3CO2CH3 160.17 2, 633 1.087620 1.424420 42.5 214 102 v s alc, eth d657 2,4-Dimethyl-3-pentanol (CH3)2CHCH(OH)CH(CH3)2 116.20 1, 417 0.82920 4 1.425420 140 37 sl s aq; s alc, eth d658 2,4-Dimethyl-3-pentanone (CH3)2CHC(O)CH(CH3)2 114.19 1, 703 0.806220 4 1.398620 69 125 15 d659 2,3-Dimethylphenol (CH3)2C6H3OH 122.17 6, 480 1.542020 72.8 217 v s alc, bz, chl, eth d660 2,4-Dimethylphenol (CH3)2C6H3OH 122.17 6, 486 1.027614 4 1.542014 24.5 211 110 v s alc, bz, chl, eth d661 2,5-Dimethylphenol (CH3)2C6H3OH 122.17 6, 494 0.96580 74.5 211.5 v s alc, bz, chl, eth d662 2,6-Dimethylphenol (CH3)2C6H3OH 122.17 6, 485 45.7 201 73 v s alc, bz, chl, eth d663 3,4-Dimethylphenol (CH3)2C6H3OH 122.17 6, 480 0.983020 60.8 227 v s alc, bz, chl, eth d664 3,5-Dimethylphenol (CH3)2C6H3OH 122.17 6, 492 0.968020 64 222 v s alc, bz, chl, eth d665 N,N-Dimethyl-1,4-phenylenediamine (CH3)2NC6H4NH2 136.20 13, 72 36 262 90 v s aq; s alc d666 4,4-Dimethyl-2-phenyl-2-oxazoline 175.23 274, 1114 1.025 1.532220 20–24 12420mm 102 d667 2,2-Dimethyl-3-phenyl-1-propanol C6H5CH2C(CH3)2CH2OH 164.25 35 12615mm 109 d668 Dimethyl 1,2-phthalate C6H4(CO2CH3)2 194.19 9, 797 1.190520 1.513820 5.5 283.7 146 0.4 aq; misc alc, chl, eth; i PE d669 Dimethyl 1,3-phthalate C6H4(CO2CH3)2 194.19 9, 834 1.19420 4 1.516820 67–68 282 i aq d670 Dimethyl 1,4-phthalate C6H4(CO2CH3)2 194.19 9, 843 140–142 288 0.3 hot aq; s hot alc; s eth 1.200 d671 1,4-Dimethyl-piperazine 114.19 23, 7 0.844 1.446320 132750mm 18 d672 cis-2,6-Dimethyl-piperidine 113.20 20, 108 0.840 1.439420 127 11 d673 2,2-Dimethylpropane (CH3)4C 72.15 Merck: 12, 6545 0.6130 1.34766 16.6 9.5 65 d674 2,2-Dimethyl-1,3-propanediamine H2NCH2C(CH3)2CH2NH2 102.18 43, 595 0.851 1.456620 31 154 47 d675 2,2-Dimethyl-1,3-propanediol (CH3)2C(CH2OH)2 104.15 1, 483 1.1125 127–128 208–210 107 180 aq; 12 bz; 60 acet; v s alc, eth d676 2,2-Dimethyl-1-propanol (CH3)3CCH2OH 88.15 1, 406 0.81220 4 52.5 113.1 36 3.6 aq; misc alc, eth d677 2,2-Dimethylpropion-aldehyde (CH3)3CCHO 186.25 0.793 1.379420 6 74730mm 1 d678 N,N-Dimethylpropion-amide C2H5C(O)N(CH3)2 101.15 43, 126 0.920 1.440020 45 175 62 d679 2,2-Dimethylpropionic acid (CH3)3CCO2H 102.13 2, 319 0.90550 1.393137 35.5 163.8 63 2.5 aq; v s alc, eth d680 2,2-Dimethylpropionic anhydride [(CH3)3DD(O)]2O 186.25 2, 320 0.918 1.409220 193 57 d681 2,2-Dimethylpropionyl chloride (CH3)3CC(O)Cl 120.58 2, 320 0.979 1.412020 105–106 1 dec aq, alc; v s eth d682 1,1-Dimethylpropyl-amine CH3CH2C(CH3)2NH2 87.17 4, 179 0.73125 4 1.399620 105 77 65 misc aq, alc, eth 1.201 3,7-Dimethyl-6-octen-1-ol, c275 Dimethylolpropionic acid, b201 Dimethyl 3-oxoglutarate, d325 1,5-Dimethyl-2-phenyl-4-aminopyrazolone, a110 2,3-Dimethyl-1-phenyl-3-pyrazolin-5-one, a299 Dimethyl phosphite, d625 Dimethyl pimelate, d617 Dimethyl propanedioate, d630 1,1-Dimethylpropargylamine, d683 d653 d666 d671 d672 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d683 1,1-Dimethyl-2-propynylamine HC#CC(CH3)2NH2 83.13 0.790 1.423520 79–80 2 d684 3,5-Dimethylpyrazole 96.13 23, 74 108 218 s aq; v s bz, eth d685 2,3-Dimethylpyridine (CH3)2(C5H3N) 107.16 20, 243 0.945 1.5080 15 163 50 d686 2,4-Dimethylpyridine (CH3)2(C5H3N) 107.16 20, 244 0.930920 1.501020 64 158.3 37 17 aq; v s alc, bz, eth d687 2,6-Dimethylpyridine (CH3)2(C5H3N) 107.16 20, 244 0.922620 1.495620 6.0 144 33 43 aq45; s alc, eth d688 3,4-Dimethylpyridine (CH3)2(C5H3N) 107.16 20, 246 0.95425 4 1.510025 12 164 53 sl s aq; s alc, eth d689 3,5-Dimethylpyridine (CH3)2(C5H3N) 107.16 20, 246 0.93925 4 1.503325 9 170 53 s aq, alc, eth d690 Dimethyl pyro-carbonate O(CO2CH3)2 134.09 34, 17 1.250 1.393320 465mm 80 d691 Dimethyl succinate CH3O2CCH2CH2CO2CH3 146.14 2, 609 1.119820 1.419020 19 196.4 85 0.83 aq; 2.9 alc d692 Dimethylsulfamoyl chloride (CH3)2NSO2Cl 143.59 4, 84 1.337 1.451820 11475mm 94 d693 Dimethyl sulfate (CH3O)2SO2 126.13 1, 283 1.332220 4 1.387420 31.8 188 dec 83 2.8 aq(hyd); s acet, bz, dioxane, eth d694 Dimethyl sulfide (CH3)2S 62.13 1, 288 0.848320 1.443820 98.3 37.3 36 2 aq; s alc, eth d695 Dimethyl sulfite (CH3O)2SO 110.13 1, 282 1.294 1.408320 126–127 30 d696 Dimethyl sulfone (CH3)2SO2 94.13 1, 289 109 238 143 v s aq, alc, acet d697 Dimethyl sulfoxide (CH3)2SO 78.13 1, 289 1.10120 4 1.417020 18.5 189.0 95 s alc, acet, bz, chl d698 Dimethyl-d6 sulfoxide (CD3)2SO 84.18 14, 1279 1.190 1.475820 555mm 95 d699 ()-Dimethyl L-tartrate CH3O2CH(OH)CH(OH)-CO2CH3 178.14 3, 510 1.32820 4 48–50 16323mm 110 s aq; 200 alc15; v s bz d700 Dimethyltelluride (CH3)2Te 157.68 1, 291 10 91–92 dec aq; v s alc; i eth d701 2,5-Dimethyltetra-hydrofuran (CH3)2(C4H2O) 100.16 17, 14 0.833 1.4041 90–92 26 d702 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone 128.18 243, 32 1.060 1.488020 14644mm 110 d703 Dimethyl 3,3-dithio-propionate (CH3O2CCH2CH2)2S 206.26 1.198 1.474020 14818mm 110 d704 N,N-Dimethylthio-formamide (CH3)2NC(S)H 89.16 4, 70 1.047 1.575720 581mm 99 d705 N,N-Dimethylthiourea (CH3NH)2C"S 104.18 4, 70 60–62 v s aq, alc, acet 1.202 d706 N,N-Dimethyl-p-toluidine CH3C6H4N(CH3)2 135.21 12, 902 0.937 1.545820 211 83 d707 N,N-Dimethyltri-methylsilylamine (CH3)3SiN(CH3)2 117.27 0.732 1.397020 84 19 d708 1,3-Dimethylurea (CH3NH)2C"O 88.11 4, 65 101–104 268–270 v s aq, alc; i eth d709 Dimethylzinc (CH3)2Zn 95.45 Merck: 12, 3312 0.724 40 46 1 misc bz, PE; s eth d710 2,4-Dinitroaniline (O2N)2C6H3NH2 183.12 12, 747 1.61514 176–178 i aq; 0.75 alc d711 1,3-Dinitrobenzene C6H4(NO2)2 168.11 5, 258 1.368 89–90 297 0.05 aq; 2.7 alc; v s bz, chl, EtOAc d712 2,4-Dinitrobenzene-sulfenyl chloride (O2N)2C6H3SCl 234.62 62, 316 96 s bz, HOAc; dec alc d713 3,5-Dinitrobenzoic acid (O2N)2C6H3CO2H 212.12 9, 413 205–207 1.9 hot aq; v s alc; sl s bz, eth d714 3,5-Dinitrobenzoyl chloride (O2N)2C6H3COCl 230.56 9, 414 69–71 19611mm dec aq, alc; s eth d715 2,6-Dinitro-p-cresol (O2N)2C6H2(OH)CH3 198.13 6, 414 77–79 d716 4,6-Dinitro-o-cresol (O2N)2C6H2(OH)CH3 198.13 6, 368 83–87 v s alc, acet, eth, alk d717 2,4-Dinitrodiphenyl-amine (O2N)2C6H3NHC6H5 259.22 12, 751 159–161 d718 2,4-Dinitro-1-fluoro-benzene FC6H3(NO2)2 186.10 5, 262 1.482 1.569020 27–30 17825mm 110 s bz, eth, glyc d719 1,5-Dinitronaphthalene C10H6(NO2)2 218.17 5, 558 216–217 subl s bz; v s eth; sl s alc 1.203 1,3-Dimethyl-2,4,6(1H,3H,5H)pyrimidinetriol, d561 N-(4,6-Dimethyl-2-pyrimidinyl)sulfanilamide, s22 Dimethyl sebacate, d597 Dimethyl suberate, d651 Dimethyl terephthalate, d670 2,4-Dinitrochlorobenzene, c114 3,4-Dinitrochlorobenzene, c115 d684 d702 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d720 2,4-Dinitrophenol (O2N)2C6H3OH 184.11 6, 251 1.683 106–108 s alc, bz; 16 EtOAc; 36 acet; 5 chl; 20 pyr d721 2,4-Dinitrophenyl-hydrazine (O2N)2C6H3NHNH2 198.14 15, 489 ca. 200 sl s aq, alc; s acid d722 3,5-Dinitrosalicylic acid (O2N)2C6H2(OH)CO2H 228.12 10, 122 169–172 s aq; v s alc, eth d723 2,4-Dinitrotoluene CH3C6H3(NO2)2 182.14 5, 339 1.32171 1.442 67–70 300 sl d 1.2 alc; 9 eth d724 2,6-Dinitrotoluene CH3C6H3(NO2)2 182.14 5, 341 1.2833111 1.479 64–66 s alc d725 Dinonyl hexanedioate C9H19O2C(CH2)4CO2C9H19 398.63 0.91725 25 218 d726 Dioctadecyl phosphite (C18H37O)2P(O)H 586.97 57–59 d727 Dioctadecyl 3,3-thiopropionate S[CH2CH2CO2(CH2)17CH3]2 683.18 65–67 d728 Dioctylamine (C8H17)2NH 241.46 4, 196 0.799 1.443220 14–16 298 110 i aq; v s alc, eth d729 Dioctyl ether (C8H17)2O 242.45 1, 419 0.806 1.431820 7.6 287 110 d730 Dioctyl sulfide (C8H17)2S 258.51 1, 419 0.842 1.461020 18010mm 110 d731 4,9-Dioxa-1,12-dodecanediamine H2N(CH2)3O(CH2)4O-(CH2)3NH2 204.32 0.962 1.460920 1364mm 110 d732 1,3-Dioxane 88.11 19, 2 1.032 1.418020 45 106 15 d733 1,4-Dioxane 88.11 19, 3 1.032920 4 1.422420 11.8 101.2 12 misc aq, alc, bz, chl, eth, PE d734 1,3-Dioxolane 74.08 192, 2 1.06020 4 1.400020 95 78 2 misc aq; s alc, eth d735 Dipentaerythritol (HOCH2)3CCH2OCH2-C(CH2OH)3 254.28 215–218 d736 Dipentene 136.24 5, 137 0.840221 4 1.473920 95.5 178 45 i aq; misc alc d737 Dipentylamine (C5H11)2NH 157.29 41, 378 0.777 1.4272 195–202 52 v s alc, eth d738 Dipentyl ether (C5H11)2O 158.29 11, 193 0.783320 4 1.412020 69.4 190 57 misc alc, eth; s acet d739 N,N-Diphenylacet-amide CH3CON(C6H5)2 211.26 12, 247 103 1300.02mm sl s aq; s alc, eth d740 Diphenylacetic acid (C6H5)2CHCO2H 212.25 9, 673 1.25815 15 148 1955mm s hot aq, alc, chl, eth d741 Diphenylacetonitrile (C6H5)2CHCN 193.25 9, 674 71–73 18112mm d742 Diphenylacetylene C6H5C#CC6H5 178.23 5, 656 0.990 62.5 300 v s eth, hot alc d743 Diphenylamine (C6H5)2NH 169.23 12, 174 1.160 53 302 152 45 alc; v s bz, eth 1.204 d744 cis,trans-1,4-Diphenyl-1,3-butadiene C6H5CH"CHCH"CHC6H5 206.29 5, 676 0.997422 4 1.065322 149.7 350720mm s alc; sl s eth d745 Diphenylcarbamoyl chloride (C6H5)2NC(O)Cl 231.68 82–84 d746 1,5-Diphenylcarbo-hydrazide (C6H5NHNH)2C"O 242.28 15, 292 168–171 s hot alc, acet, HOAc d747 Diphenyl carbonate (C6H5O)2C"O 214.22 6, 158 80–81 301–302 s hot alc, bz, eth d748 Diphenyl chloro-phosphate (C6H5O)2P(O)Cl 268.64 6, 179 1.296 1.550020 316272mm 110 d749 Diphenyl diselenide C6H5SeSeC6H5 312.13 6, 346 1.55780 4 61–63 s hot alc d750 Diphenyl disulfide C6H5SSC6H5 218.34 6, 323 1.35320 4 58–60 310 s alc, bz, eth; i aq d751 Diphenylenimine 167.21 20, 433 1.1018 4 246 355 0.8 bz; 3 eth; 16 pyr; 11 acet; i aq d752 1,2-Diphenylethane C6H5CH2CH2C6H5 182.27 5, 598 0.99520 4 1.5338 52.5 284 110 s alc; v s chl, eth d753 Diphenyl ether C6H5OC6H5 170.21 6, 146 1.066130 4 1.576330 26.9 258 112 s alc, bz, eth, HOAc d754 N,N-Diphenyl-formamidine C6H5N"CHNHC6H5 196.25 12, 236 138–141 s eth; v s chl d755 1,3-Diphenylguanidine C6H5NHC("NH)NHC6H5 211.27 12, 369 1.13 148–150 dec 170 s alc, hot bz, chl 1.205 1,3-Dioxacyclohexane, d732 1,4-Dioxacyclohexane, d733 1,3-Dioxacyclopentane, d734 3,6-Dioxa-1,11-undecanediol, t430 (2,5-Dioxo-4-imidazolidinyl)urea, a71 1,3-Dioxolane-2-one, e132 Dipentyl ketone, u11 Diphenic acid, b141 Diphenolic acid, b205 Diphenyl, b138 Diphenylacetone, d767 Diphenylbenzenes, t7 thru t9 sym-Diphenylcarbazide, d746 Diphenyldiazene, a312 Diphenylenemethane, f2 Diphenylethanedione, b35 Diphenylethanedione dioxime, b36 1,2-Diphenylethene, s9 Diphenylethyne, d742 Diphenylglycolic acid, b37 Diphenylglyoxime, b36 d732 d733 d734 d736 d751 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d756 5,5-Diphenylhydantoin 252.27 24, 410 294–297 i aq; 1.7 alc; 3.3 acet d757 1,2-Diphenylhydrazine C6H5NHNHC6H5 184.24 15, 123 1.15816 4 123–126 v s alc; sl s bz d758 Diphenylmercury (C6H5)2Hg 354.81 16, 946 2.3184 128–129 dec 306 s chl; sl s hot alc d759 Diphenylmethane C6H5CH2C6H5 168.24 52, 498 1.006 1.576820 25 265 110 v s alc, bz, chl, eth d760 Diphenylmethanol C6H5CH(OH)C6H5 184.24 6, 678 66.7 298 0.05 aq; v s alc, chl, eth d761 1,1-Diphenylmethyl-amine C6H5CH(NH2)C6H5 183.25 12, 1323 1.063522 4 1.595699 34 295 112 sl s aq d762 2,5-Diphenyloxazole 221.26 27, 78 72–74 360 d763 Diphenyl phosphite (C6H5O)2P(O)H 234.19 61, 94 1.223 1.557520 12 21926mm 176 d764 Diphenylphosphoryl azide (C6H5O)2P(O)N3 275.20 1.277 1.551820 1570.17mm 110 d765 Diphenyl o-phthalate C6H4(CO2C6H5)2 318.33 9, 801 74–76 d766 2,2-Diphenyl-1-picryl-hydrazyl 394.32 162, 363 127 dec d767 1,3-Diphenyl-2-propanone C6H5CH2(C"O)CH2C6H5 210.28 7, 445 1.2 32–34 330 i aq; v s alc, eth d768 2,2-Diphenylpropionic acid CH3C(C6H5)2CO2H 226.28 92, 474 175–177 300 s alc; v s bz, eth d769 Diphenylsilanediol (C6H5)2Si(OH)2 216.31 16, 909 140 dec 53 d770 Diphenyl sulfide (C6H5)2S 186.28 6, 299 1.11815 15 1.632720 40 296 110 misc bz, eth, CS2 d771 Diphenyl sulfone (C6H5)2SO2 218.27 6, 300 128–129 379 i aq; s hot alc, bz d772 Diphenyl sulfoxide (C6H5)2SO 202.28 6, 300 69–71 20713mm d773 Diphenylthiocarbazone C6H5N"NC(S)NHNHC6H5 256.33 16, 26 168 dec i aq; v s chl, CCl4 d774 1,3-Diphenyl-2-thio-urea C6H5NHC(S)NHC6H5 228.32 12, 394 1.32 154 i aq; v s alc, eth d775 1,3-Diphenylurea C6H5NHC(O)NHC6H5 212.35 12, 352 1.239 238 260 dec 0.015 aq; s eth, HOAc d776 Dipiperidinomethane 182.31 0.915 1.482020 12315mm 91 d777 Dipropylamine (C3H7)2NH 101.19 4, 138 0.737520 4 1.404320 63 109.2 17 4 aq; v s alc, eth, PE d778 3-Dipropylamino-1,2-propanediol (C3H7)2NCH2CH(OH)-CH2OH 175.27 43, 841 0.949 1.455420 1439mm 110 d779 Dipropylene glycol HO(CH2)3O(CH2)3OH 134.18 12, 537 1.023 1.441020 137 d780 Dipropylene glycol butyl ether CH3CH(OH)CH2OCH2-CH(OC4H9)CH3 190.29 1, 4, 2474 0.91725 25 1.42525 229 96 1.206 d781 Dipropylene glycol tert-butyl ether (CH3)3CO(CH2)3O(CH2)3OH 190.29 0.900 1.424020 220–222 87 d782 Dipropylene glycol dibenzoate [C6H5CO2(CH2)3]2O 342.40 92, 108 1.120 1.528020 2325mm 110 d783 Dipropylene glycol isopropyl ether CH3CH(OH)CH2OCH2-CH[OCH(CH3)2]CH3 176.2 0.87825 25 1.42125 80.1 90 d784 Dipropylene glycol methyl ether CH3CH(OH)CH2OCH2-CH(OCH3)CH3 148.2 0.95120 20 1.41920 117 188.3 74 d785 Dipropylene glycol acetate CH3CO2(CH2)3O(CH2)3-OCH3 190.24 0.970 1.418020 200 85 d786 Dipropyl ether (C3H7)2O 102.18 1, 354 0.746620 1.380320 126.2 89.6 21 0.4 aq d787 Dipropyl hexanedioate C3H7O2C(CH2)4CO2C3H7 230.30 22, 574 0.979020 4 1.431420 20 14410mm i aq; s alc, eth d788 Dipropyl sulfate (C3H7O)2SO2 182.24 1, 354 1.10620 4 dec 140 12020mm v s PE d789 Dipropyl sulfone (C3H7)2SO2 150.24 1, 359 1.02850 4 28–30 270 126 d790 2,2-Dipyridyl 156.19 23, 199 70–73 273 0.5 aq; v s alc, bz, chl, eth, PE d791 Disilane H3SiSiH3 62.22 Merck: 12, 3419 0.68625 4 132 14.3 ignites in air s alc, bz, CS2 1.207 5,5-Diphenyl-2,4-imidazolidinedione, d756 Diphenyl ketone, b53 Diphenylmethanone, b53 1,1-Diphenylmethylamine, a159 Diphenyl oxide, d753 Diphenylphosphorochloridate, d748 1,3-Diphenyl-1,3-propanedione, d68 sym-Diphenylthiourea, t141 Dipicolinic acid, p270 Di-2-propenylamine, d30 Dipropyl adipate, d787 Dipropylene glycol, b204 Dipropyl ketone, h16 Distearylpentaerythritol diphosphite, b217 Disulfram, t62 d756 d762 d766 d776 d790 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent d792 1,3-Dithiane 120.24 53–55 90 d793 4,4-Dithiobutyric acid HO2C(CH2)3SS(CH2)3CO2H 238.32 3, 312 110 d794 3,3-Dithiodipropionic acid HO2C(CH2)2SS(CH2)2CO2H 210.27 157–159 d795 Dithiooxamide H2NC(S)C(S)NH2 120.20 2, 565 245 sl s aq; s alc; i eth d796 2,2-Dithiosalicylic acid S2(C6H4CO2H)2 306.36 10, 129 287–290 d797 1,3-Di-o-tolylguanidine (CH3C6H4NH)2C"NH 239.32 12, 803 1.1020 4 176–178 s hot alc, eth d798 Divinyl ether H2C"CHOCH"CH2 70.09 Merck: 12, 10133 0.77320 4 1.398920 101 28.3 30 0.53 aq; misc alc, eth d799 1,3-Divinyltetra-methyldisiloxane [CH2"CHSi(CH3)2]2O 186.39 4,4,4080 0.81120 4 1.411020 99 139 24 d800 3,9-Divinyl-2,4,8,10-tetraoxaspiro[5.5]-undecane 212.25 193, 5679 1.251 43–46 1102mm 110 d801 Docasane CH3(CH2)20CH3 310.61 1, 174 0.778245 1.435845 43–45 369 110 i aq; sl s alc; v s eth d802 1-Docosanol CH3(CH2)21OH 326.61 1, 431 65–72 18022mm sl s eth; s alc, chl d803 Dodecane CH3(CH2)10CH3 170.34 1, 171 0.749020 4 1.421620 10 216.2 74 d804 1,12-Dodecanediamine H2N(CH2)12NH2 200.37 4, 273 71 155 d805 Dodecanedioic acid HO2C(CH2)10CO2H 230.30 2, 729 128–130 24510mm d806 1,2-Dodecanediol CH3(CH2)9CH(OH)CH2OH 202.34 13, 2237 58–60 d807 1,12-Dodecanediol HOCH2(CH2)10CH2OH 202.34 12, 562 81–84 18912mm d808 1-Dodecanethiol CH3(CH2)11SH 202.40 0.84520 20 1.458720 266–283 87 i aq; s alc, eth d809 Dodecanoic acid CH3(CH2)10CO2H 200.32 2, 359 0.86914 1.418382 43 225100mm 110 i aq; 100 alc; v s bz, eth; 40 PrOH d810 1-Dodecanol CH3(CH2)11OH 186.34 1, 428 0.830825 4 1.441325 24 259 110 i aq; s alc, eth d811 -Dodecanolactone 198.31 175,9,100 0.942 1.460220 12 1261mm 110 d812 Dodecanoyl peroxide [CH3(CH2)10CO]2O2 398.63 23, 893 55–57 d813 1-Dodecene CH3(CH2)9CH"CH2 168.32 1, 225 0.758420 4 1.429420 35.2 213.4 79 s alc, eth, PE d814 2-Dodecen-1-ylsuccinic anhydride 266.38 41–43 1805mm 177 d815 Dodecyl acetate CH3CO2(CH2)11CH3 228.38 2, 136 0.865 1.431820 15015mm 110 d816 Dodecyl acrylate H2C"CHCO2(CH2)11CH3 240.39 23, 1230 0.884 1.445020 110 1.208 d817 Dodecyl aldehyde CH3(CH2)10CHO 184.32 1, 714 0.835 1.434420 185100mm 101 d818 Dodecylamine CH3(CH2)11NH2 185.36 4, 200 0.808 30–32 247–249 110 misc alc, bz, chl, eth d819 Dodecyl methacrylate H2C"C(CH3)CO2(CH2)11CH3 254.42 23, 1290 0.868 1.446020 7 1424mm 110 d820 Dodecyl sulfate, sodium salt CH3(CH2)11 Na SO3 288.38 13, 1786 204–207 10 aq d821 Dodecyltrichlorosilane CH3(CH2)11SiCl3 303.8 43, 1907 1.020 1.45820 294 110 d822 Dodecyl vinyl ether CH3(CH2)11OCH"CH2 212.38 0.817 1.438220 117–120 110 d823 Dotriacontane CH3(CH2)30CH3 450.88 1,177 0.812420 4 1.436470 68–70 467 sl s alc, bz, eth d824 Dulcitol 182.17 1, 544 1.4720 188–191 2801mm 3.3 aq; sl s alc 1.209 2,3-Dithiabutane, d607 5,6-Dithiadecane, d146 3,4-Dithiahexane, d356 2,2-Dithiodibenzoic acid, d796 2,2-Dithiodiethanol, h123 Dithizone, d773 Divinylene oxide, f45 DMSO, d697 Dodecyl alcohol, d810 Dodecyl iodide, i30 DPPH, d766 Durene, t99 1-Eicosene, i2 Elaidic acid, o11 Enanthic alcohol, h11 Enanthylic acid, h9 Epibromohydrin, b328 Epichlorohydrine, c120 1,4-Epoxybutane, t69 d800 d811 d814 d824 e1 Eicosane CH3(CH2)18CH3 282.56 1, 174 0.7823 (s) 37 343 110 e2 1R,2S-()-Ephedrine CH3NHCH(CH3)CH(OH)C6H5 165.24 13, 636 1.124 39 255 85 s aq, alc, chl, eth e3 1,2-Epoxybutane H2C9CHCH2CH3 O 72.11 172, 17 0.829720 1.385020 150 63 22 6 aq; misc alc, bz, chl, eth EDTA, e134 Eicosane, i1 d792 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent e4 1,2-Epoxy-5,9-cyclo-dodecadiene 178.28 0.980 1.504520 831mm 110 e5 1,2-Epoxycyclo-dodecane 182.31 0.939 1.477320 110 e6 1,2-Epoxycyclopentane 84.12 17, 21 0.964 1.433620 102 10 e7 1,2-Epoxydecane H2C9CHCH2(CH2)6CH3 O 156.27 17, 18 0.840 1.429020 9415mm 78 e8 1,2-Epoxydodecane H2C9CHCH2(CH2)8CH3 O 184.32 173, 136 0.844 1.435520 12515mm 105 e9 1,2-Epoxyethylbenzene H2C9CHC6H5 O 120.15 17, 49 1.052316 4 1.533820 37 194 79 i aq; s alc, eth e10 1,2-Epoxyhexadecane H2C9CHCH2(CH2)12CH3 O 240.43 17, 20 0.846 1.445220 21–22 18012mm 93 e11 1,2-Epoxyhexane H2C9CHCH2CH2CH2CH3 O 100.16 174, 86 0.831 1.405620 118–120 15 e12 1,2-Epoxy-5-hexene H2C9CHCH2CH2CH"CH2 O 98.15 173, 163 0.870 1.425220 121 15 e13 1,2-Epoxyoctadecane H2C9CHCH2(CH2)14CH3 O 268.49 173, 140 33–35 1370.5mm 110 e14 1,2-Epoxy-3-phenoxy-propane H2C9CHCH2OC6H5 O 150.18 17, 105 1.109 1.53020 3.5 245 110 e15 1,2-Epoxypropane H2C9CHCH3 O 58.08 17, 6 0.8590 4 1.366020 112 35 37 41 aq; misc alc, eth e16 2,3-Epoxy-1-propanol H2C9CHCH2OH O 74.08 17, 104 1.114325 4 1.431520 662.5mm 81 misc aq e17 2,3-Epoxypropyl-methacrylate H2C9CHCH2O2C(CH3)-O CH"CH2 142.16 1.042 1.449420 189 76 1.210 e18 1,2-Epoxy-3,3,3-tri-chloropropane H2C9CHCCl3 O 161.42 172, 14 1.495 1.477820 151745mm 66 e19 meso-Erythritol HOCH2[CH(OH)]2CH2OH 122.12 1, 525 120–123 329–331 e20 Ethane CH3CH3 30.07 1, 80 1.3560 g/L 182.8 88 135 4.7 mL aq; 46 mL alc4 e21 1,2-Ethanediamine H2NCH2CH2NH2 60.10 4, 230 0.897720 4 1.456820 11 117.3 33 misc aq, alc; i bz e21a 1,2-Ethanediol HOCH2CH2OH 62.07 1, 465 1.113520 4 1.431820 12.6 197.3 110 misc aq, alc, glyc, pyr e22 1,2-Ethanediol diacetate CH3CO2CH2CH2O2CCH3 146.14 2, 142 1.104320 1.415020 31 190.2 82 misc alc, eth e23 1,2-Ethanediol dimethacrylate [H2C"C(CH3)CO2 ]2 CH2 198.22 23, 1292 1.051 1.454920 1005mm 110 e24 1,2-Ethanedithiol HSCH2CH2SH 94.20 1, 471 1.12324 1.558020 146 50 v s alc, alk e25 Ethanesulfonic acid C2H5SO3H 110.13 4, 5 1.350 1.434020 17 1230.01mm 110 e26 Ethanesulfonyl chloride CH3CH2SO2Cl 128.57 4, 6 1.35722 1.433020 177 83 dec aq, alc; v s eth e26a Ethanethiol CH3CH2SH 62.13 1, 340 0.831525 1.42025 147.9 35.0 17 0.7 aq; s alc, eth e27 Ethanol CH3CH2OH 46.07 1, 292 0.789420 4 1.361120 114 78.3 13 misc aq, alc, chl, eth e28 Ethanol-d CH3CH2OD 47.08 13, 1287 0.801 1.359520 78.8 12 misc aq, alc, eth e29 Ethanolamine H2NCH2CH2OH 61.08 Merck: 12, 3712 1.018020 1.453920 10.5 170.8 86 misc aq, alc, acet e30 Ethoxyacetic acid CH3CH2OCH2CO2H 104.11 3, 233 1.102120 4 1.419020 9711mm 97 s aq, alc, eth 1.211 Epoxyethane, e147 1,2-Epoxy-1-methoxy-2-methylpropane, m86 1,2-Epoxypropane, p232 Estragole, a89 Ethanal, a4 Ethanamide, a6 Ethanamidine HCl, a7 Ethanedial, g28 1,2-Ethanediol, e135 Ethanediamide, o58 Ethanenitrile, a29 Ethanoic acid, a19 Ethanoic anhydride, a22 Ethanolamine, a164 Ethanoyl bromide, a35 Ethanoyl chloride, a37 Ethene, e131 Ethenone, k1 Ethenyl acetate, v2 Ethenylbenzene, s11 e4 e5 e6 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent e31 3-Ethoxyacrylonitrile C2H5OCH"CHCN 97.12 33, 681 0.944 1.454520 9119mm 81 e32 4-Ethoxyaniline CH3CH2OC6H5NH2 137.18 13, 436 1.065216 4 1.560920 4 250 115 i aq; s alc e33 2-Ethoxybenzaldehyde CH3CH2OC6H4CHO 150.18 8, 43 1.074 1.5422 20 13624mm 107 misc alc, eth e34 4-Ethoxybenzaldehyde CH3CH2OC6H4CHO 150.18 8, 73 1.08025 25 1.558420 13–14 255 110 v s alc, bz, eth e35 2-Ethoxybenzamide CH3CH2OC6H4CONH2 165.19 10, 93 132–134 sl s aq; s alc, eth e36 Ethoxybenzene CH3CH2OC6H5 122.17 6, 140 0.96720 4 1.507420 29.5 169.8 63 v s alc, eth e37 2-Ethoxybenzoic acid CH3CH2OC6H4CO2H 166.18 10, 64 1.105 1.540020 19.4 17415mm 110 sl s aq e38 4-Ethoxybenzoic acid CH3CH2OC6H4CO2H 166.18 10, 156 197–199 sl s hot aq e39 Ethoxycarbonyl isothiocyanate CH3CH2OC("O)NCS 131.15 33, 279 1.112 1.500020 5618mm 50 e40 2-Ethoxyethanol CH3CH2OCH2CH2OH 90.12 1, 467 0.929520 1.407520 70 134.8 43 misc aq, alc, acet, eth e41 2-(2-Ethoxyethoxy)-ethanol C2H5OCH2CH2OCH2CH2OH 134.18 12, 520 0.984125 4 1.425425 76 196 96 misc aq, alc, bz, chl, acet, pyr e41a 2-(2-Ethoxyethoxy)-ethanol acetate CH3CO2CH2CH2OCH2CH2-OCH2CH3 176.21 1.009620 1.421320 25 218.5 110 e42 2-Ethoxyethyl acetate CH3CO2CH2CH2OCH2CH3 132.16 22, 155 0.974920 4 1.402320 61.7 156.3 57 29 aq; misc alc, eth e43 2-Ethoxyethyl acrylate H2C"CHCO2CH2CH2OC2H5 144.17 23, 1232 0.982 1.427020 7823mm 65 e44 2-Ethoxyethylamine CH3CH2OCH2CH2NH2 89.14 42, 718 0.851220 4 1.410120 107 21 misc aq, alc, eth e45 2-Ethoxyethyl methacrylate H2C"C(CH3)CO2CH2CH2OC2H5 158.20 23, 1291 0.964 1.428520 9335mm 71 e46 3-Ethoxy-4-hydroxy-benzaldehyde C2H5OC6H3(OH)CHO 166.18 8, 256 76–78 s eth, glycols; 50 alc e47 3-Ethoxy-4-methoxy-benzaldehyde C2H5OC6H3(OCH3)CHO 180.2 8, 256 51–53 110 s alc, bz, chl, eth e48 1-Ethoxy-2-methoxy-benzene C2H5OC6H4OCH3 152.19 6, 771 1.044 1.524020 217–218 90 e49 Ethoxymethylene-malononitrile CH3CH2OCH"C(CN)2 122.13 31, 162 64–66 16012mm e50 1-Ethoxynaphthalene C10H7OCH2CH3 172.23 6, 606 1.06020 4 1.604020 5.5 280 110 i aq; v s alc, eth e51 2-Ethoxyphenol C2H5OC6H4OH 138.17 6, 771 1.090 1.528820 29 217 91 e52 trans-2-Ethoxy-5-(1-propenyl)phenyl C2H5OC6H3(CH"CHCH3)OH 178.23 62, 918 86–88 e53 3-Ethoxypropionitrile C2H5OCH2CH2CN 99.14 3, 298 0.911 1.406520 171–172 63 1.212 e54 3-Ethoxypropylamine C2H5OCH2CH2CH2NH2 103.17 43, 739 0.861 1.417820 136–138 32 e55 3-Ethoxysalicyl-aldehyde C2H5OC6H3(OH)CHO 166.18 82, 267 66–68 264 e56 Ethoxytrimethylsilane (CH3)3SiOC2H5 118.3 43, 1856 0.757320 4 1.374220 75–76 18 e57 Ethyl acetate CH3CO2C2H5 88.11 2, 125 0.900620 4 1.372420 84 77 4 9.7 aq; misc alc, acet, chl, eth e58 Ethyl acetoacetate CH3COCH2CO2C2H5 130.15 3, 632 1.021325 4 1.417420 45 180.8 57 2.9 aq; misc alc, chl e59 p-Ethylacetophenone C2H5C6H4COCH3 148.21 74, 1101 0.993 1.529320 20.6 11411mm 90 e60 Ethyl acrylate H2C"CHCO2C2H5 100.12 2, 399 0.923420 1.406020 71 99 10 1.5 aq; s alc, eth e61 Ethylaluminum dichloride C2H5AlCl2 126.95 43, 1973 1.20750 32 11350mm 18 e62 Ethylaluminum sesquichloride C2H5AlCl2 · ClAl(C2H5)2 247.51 1.092 50 204 18 e63 Ethylamine C2H5NH2 45.09 4, 87 0.68915 15 1.366320 81 16.6 18 misc aq, alc, eth e64 Ethyl 2-aminobenzoate H2NC6H4CO2C2H5 165.19 14, 319 1.08815 1.564020 13–15 266–268 110 i aq; s alc, eth e65 Ethyl 4-aminobenzoate H2NC6H4CO2C2H5 165.19 14, 422 88–90 310 0.04 aq; 20 alc; 50 chl, 25 eth; s dil acid e66 Ethyl 3-amino-crotonate CH3C(NH2)"CHCO2C2H5 129.16 3, 654 1.02120 4 33–35 210–215 97 i aq; s alc, bz, eth e67 2-(Ethylamino)ethanol CH3CH2NHCH2CH2OH 89.14 4, 282 0.91420 4 1.440220 90 170 71 v s aq, alc, eth e68 N-Ethylaniline C6H5NHC2H5 121.18 12, 159 0.95825 25 1.555920 63.5 203 85 i aq; misc alc, eth e69 2-Ethylaniline CH3CH2C6H4NH2 121.18 122, 584 0.983 1.559020 44 210 91 sl s aq; v s alc, eth e70 4-Ethylaniline CH3CH2C6H4NH2 121.18 12, 1090 0.975 1.554220 5 216 85 sl s aq; v s alc, eth e71 2-Ethylanthraquinone 236.27 71, 425 108–111 e72 4-Ethylbenzaldehyde C2H5C6H4CHO 134.18 7, 307 0.979 1.539020 221 92 e73 Ethylbenzene-d10 C6D5CD2CD3 116.25 0.949 1.492020 134.6 31 1.213 4-Ethoxy-m-anisaldehyde, e48 1-Ethoxybutane, b554 Ethoxyethane, d365 2-Ethoxyethyl ether, b186 Ethoxyformic anhydride, d386 (Ethoxymethyl)benzene, b97 -Ethoxy--phenylacetophenone, b47 3-Ethoxy-1-propene, a86 Ethylacetylene, b160a Ethyl alcohol, e27, e28 Ethylaldehyde, a4 Ethyl anthranilate, e64 Ethyl benzencarboxylate, e76 e71 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent e74 Ethylbenzene C6H5CH2CH3 106.17 52, 274 0.867020 4 1.495920 95.0 136.2 22 0.01 aq; misc alc, bz, chl, eth e75 4-Ethylbenzene-sulfonic acid C2H5C6H4SO3H 186.23 11, 120 1.229 1.5331 110 e76 Ethyl benzoate C6H5CO2C2H5 150.18 9, 110 1.05115 1.500020 34.7 212.4 84 0.05 aq; misc alc, chl, bz, eth, PE e77 Ethyl benzoylacetate C6H5(C"O)CH2CO2C2H5 192.21 10, 674 1.110 1.533820 265–270 63 i aq; misc alc, eth e78 Ethyl 3-benzoyl-acrylate C6H5(C"O)CH"CHCO2C2H5 204.23 102, 501 1.112 1.543520 18525mm 110 e79 Ethyl 2-benzylaceto-acetate CH3C("O)CH(CH2C6H5)CO2C2H5 220.27 10, 710 1.036 1.499620 276 110 e80 N-Ethylbenzylamine C6H5CH2NHC2H5 135.21 12, 1020 0.909 1.511720 194 66 e81 Ethyl (2-benzyl)-benzoylacetate C6H5C("O)CH(CH2C6H5)-CO2C2H5 282.34 10, 764 1.110 1.556720 27080mm 110 e82 Ethyl N-benzyl-N-cyclopropylcarba-mate C6H5CH2N(C3H5)CO2C2H5 219.28 0.997 1.510420 110 e83 Ethyl bromoacetate BrCH2CO2CH2CH3 167.01 2, 214 1.50620 20 1.451020 20 159 47 i aq; misc alc, eth e84 Ethyl 4-bromo-benzoate BrC6H4CO2C2H5 229.08 9, 352 1.403 1.544020 13114mm 110 e85 Ethyl 2-bromobutyrate CH3CH2CH(Br)CO2C2H5 195.06 22, 255 1.32920 20 1.447020 177 dec 58 i aq; misc alc, eth e86 Ethyl 4-bromobutyrate BrCH2CH2CH2CO2C2H5 195.06 2, 283 1.363 1.455920 8210mm 90 e87 Ethyl 2-bromo-heptanoate CH3(CH2)3CH(Br)CO2C2H5 237.14 2, 341 1.211 1.452420 10910mm 104 e88 Ethyl 6-bromo-hexanoate Br(CH2)5CO2C2H5 223.12 23, 737 1.254 1.459020 13016mm 110 e89 Ethyl 2-bromoiso-butyrate (CH3)2C(Br)CO2C2H5 195.06 2, 296 1.32920 4 1.444620 6711mm 60 i aq; misc alc, eth e90 Ethyl 2-bromo-octanoate CH3(CH2)5CH(Br)CO2C2H5 251.17 2, 349 1.167 1.452020 106 e91 Ethyl 3-bromo-2-oxo-propionate BrCH2C("O)CO2C2H5 195.02 32, 409 1.554 1.469520 10010mm 98 1.214 e92 Ethyl 2-bromo-pentanoate CH3(CH2)2CH(Br)CO2C2H5 209.09 2, 302 1.116 1.448620 190–192 77 i aq; misc alc, eth e93 Ethyl 2-bromo-propionate CH3CH(Br)CO2C2H5 181.03 2, 255 1.394 1.446020 156–160 51 i aq; misc alc, eth e94 Ethyl 3-bromo-propionate BrCH2CH2CO2C2H5 181.03 2, 256 1.412318 4 1.456918 13650mm 79 i aq; misc alc, eth e95 2-Ethyl-1-butanol (C2H5)2CHCH2OH 102.18 1, 412 0.833020 1.422420 15 146 58 0.63 aq e95a 2-Ethyl-1-butene (C2H5)2C"CH2 84.16 12, 95 0.689 1.396020 131 65 26 e96 2-Ethylbutyl acetate CH3CO2CH2CH(C2H5)2 144.21 23, 257 0.876 1.410020 160740mm 52 e97 N-Ethylbutylamine CH3(CH2)3NHC2H5 101.19 4, 157 0.74020 4 1.405020 108 18 e98 2-Ethylbutyraldehyde (C2H5)2CHCHO 100.16 1, 693 0.816220 20 1.401820 89 116.7 21 0.31 aq e99 Ethyl butyrate CH3CH2CH2CO2C2H5 116.16 2, 270 0.87920 4 1.399820 98 121 24 0.49 aq; misc alc, eth e100 2-Ethylbutyric acid (C2H5)2CHCO2H 116.16 2, 333 0.922520 20 1.413320 14 194 87 e101 Ethyl butyrylacetate CH3(CH2)2C("O)CH2-CO2C2H5 158.20 3, 684 1.001 1.427020 10422mm 78 e102 Ethyl carbamate H2NCO2C2H5 89.09 3, 22 1.056 49–50 182–184 92 200 aq; 125 alc; 111 chl; 67 eth e103 Ethyl carbazate H2NNHCO2C2H5 104.11 3, 98 44–47 11022mm 86 e104 N-Ethylcarbazole 195.27 20, 436 68–70 e105 Ethyl chloroacetate ClCH2CO2C2H5 122.55 2, 197 1.149820 4 1.422720 21 144 65 i aq; misc alc, eth e106 Ethyl 2-chloro-acetoacetate CH3C("O)CH(Cl)CO2C2H5 164.59 3, 662 1.190 1.443020 10714mm 50 i aq; s alc, eth e107 Ethyl 4-chloro-acetoacetate ClCH2C("O)CH2CO2C2H5 164.59 3, 663 1.21817 4 1.452020 11514mm 96 i aq; misc alc, eth 1.215 Ethyl 3-benzenepropenoate, e113 -Ethylbenzyl alcohol, p145 Ethyl benzyl ether, b97 Ethyl bromide, b329 Ethyl 2-bromo-2-methylpropanoate, e89 Ethyl bromopyruvate, e91 Ethyl bromovalerate, e92 Ethyl butanoate, e99 2-Ethylbutyl alcohol, e95 Ethyl butyl ether, b554 Ethyl butyl ketone, h15 Ethyl caprate, e120 Ethyl caproate, e160 Ethyl caprylate, e231 Ethyl chloride, c121 e104 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent e108 Ethyl 4-chlorobutyrate ClCH2CH2CH2CO2C2H5 150.61 2, 278 1.075420 4 1.430620 186 51 s alc, acet, eth e109 Ethyl chloroformate ClCO2C2H5 108.52 3, 10 1.140320 4 1.394120 81 93 13 misc alc, bz, chl, eth e110 Ethyl 2-chloro-propionate CH3CH(Cl)CO2C2H5 136.58 2, 248 1.08720 4 1.418520 146–149 38 e111 Ethyl 3-chloro-propionate ClCH2CH2CO2C2H5 136.58 2, 250 1.108620 4 1.424920 162–163 54 misc alc, eth e112 Ethyl chrysanthemumate 196.29 92, 45 0.906 1.460020 11210mm 84 e113 Ethyl trans-cinnamate C6H5CH"CHCO2C2H5 176.22 92, 385 1.049520 4 1.559820 10 271 110 misc alc, eth; i aq e114 Ethyl crotonate CH3CH"CHCO2C2H5 114.14 2, 411 0.917520 4 1.424020 138 28 i aq; s alc, eth e115 Ethyl cyanoacetate NCCH2CO2C2H5 113.12 2, 585 1.056425 4 1.417620 22 206 110 i aq; misc alc, eth e116 Ethyl 2-cyano-3,3-diphenylacrylate (C6H5)2C"C(CN)CO2C2H5 277.33 93, 4601 97–99 1740.2mm e117 Ethylcyclohexane C6H11CH2CH3 112.22 5, 35 0.787920 1.433020 111 131.8 35 e118 4-Ethylcyclohexanol CH3CH2C6H10OH 128.22 62, 26 0.889 1.462520 8410mm 77 e118a Ethylcyclopentane C2H5(C5H9) 98.19 52, 19 0.763 1.419020 138 103 15 e119 Ethyl cyclopropane-carboxylate C3H5CO2CH2CH3 114.14 9, 4 0.960 1.419720 129–133 18 e120 Ethyl decanoate CH3(CH2)8CO2C2H5 200.32 2, 356 0.86220 1.424820 245 102 misc alc, chl, eth e121 Ethyl diazoacetate N2CH2CO2C2H5 114.10 31, 211 1.085218 4 1.458818 22 141710mm 26 misc alc, bz, eth e122 Ethyl 2,3-dibromo-propionate BrCH2CH(Br)CO2C2H5 259.94 2, 259 1.78816 4 1.498620 214 91 s alc, eth e123 Ethyl dichloro-phosphate CH3CH2OP(O)Cl2 162.94 1, 332 1.373 1.433820 6510mm 110 e124 Ethyl dichlorothio-phosphate CH3CH2OP(S)Cl2 179.01 1, 353 1.353 1.504020 6810mm 110 e125 N-Ethyldiethanolamine CH3CH2N(CH2CH2OH)2 133.19 4, 284 1.014 1.466520 50 246–252 123 e126 Ethyl 3,3-dimethyl-acrylate (CH3)2C"CHCO2C2H5 128.17 2, 433 0.924720 4 1.435020 155 33 e127 Ethyl 4-dimethyl-aminobenzoate (CH3)2NC6H4CO2C2H5 193.25 141, 571 64–66 e128 Ethyl 2,2-dimethyl-propionate (CH3)3CCO2C2H5 130.19 2, 320 0.858418 4 1.392218 118.2 16 s alc, eth 1.216 e129 Ethyl 3,5-dinitro-benzoate (O2N)2C6H3CO2C2H5 240.17 9, 414 94–95 e130 5-Ethyl-1,3-dioxane-5-methanol 146.19 195,2,382 1.090 1.463020 1055mm 110 e131 Ethylene H2C"CH2 28.05 1, 180 1.147 g/L 169.4 104 11 mL aq25; 200 alc25; v s eth; s acet, bz e132 Ethylene carbonate 88.06 19, 100 1.321439 1.419940 36.4 248 143 misc aq e133 Ethylenediamine H2NCH2CH2NH2 60.10 4, 230 0.87920 1.456620 11 117 40 e134 Ethylenediamine-N,N,N,N-tetra-acetic acid (HO2CCH2)2NCH2CH2-N(CH2CO2H)2 292.24 43, 1187 250 dec 0.05 aq e135 Ethylene glycol HOCH2CH2OH 62.07 1, 465 1.113 1.431020 196–198 110 e136 Ethylene glycol bis-(mercaptoacetate) (HSCH2CO2CH29)2 210.27 1.313 1.521120 1392mm 110 e137 Ethylene glycol diacetate CH3CO2CH2CH2O2CCH3 146.14 2, 142 1.104320 1.415920 31 190 88 e138 Ethylene glycol diethyl ether C2H5OCH2CH2OC2H5 118.18 1, 468 0.848420 1.386020 74 119 35 e139 Ethylene glycol diglycidyl ether (H2C9CHCH2OCH2)2 O 174.20 1, 468 0.842 1.392320 74 121 20 e140 Ethylene glycol dimethacrylate [H2C"C(CH3)CO2 ]2 CH 2 198.22 23, 1292 1.051 1.454920 1005mm 110 1.217 Ethyl chloroglyoxylate, e232 Ethyl citrate, t278 Ethyl cyanide, p215 Ethyl 2-cyano-3-ethoxyacrylate, e150 N-Ethyldiisopropylamine, d477 Ethylene bromohydrin, b331 Ethylene chlorobromide, b303 Ethylene chlorohydrin, c122 Ethylene cyanohydrin, h173 Ethylene diacetate, e22 Ethylenediamine, e21 Ethylene dibromide, d97 Ethylene dichloride, d226 Ethylene diglyme, b186 (Ethylenedinitril)tetraacetic acid, e134 2,2-Ethylenedioxybis(ethanol), t280 Ethylene glycol, e21a Ethylene glycol bis(thioglycolate), e136 Ethylene glycol tert-butyl ether, b494 Ethylene glycol tert-butyl methyl ether, b498 Ethylene glycol p-butylphenyl ether, b590 Ethylene glycol diacetate, e22 Ethylene glycol diethyl ether, d304 Ethylene glycol dimethacrylate, e23 e112 e130 e132 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent e141 Ethylene glycol dimethyl ether CH3OCH2CH2OCH3 90.12 1, 467 0.869120 1.379620 58 85 2 e142 Ethylene glycol divinyl ether H2C"CHOCH2CH2OCH"CH2 114.14 13, 2807 0.914 1.435020 125–127 27 e143 Ethylene glycol methyl ether acrylate H2C"CHCO2CH2CH2OCH3 130.14 23, 1232 1.012 1.427020 5612mm 60 e144 Ethylene glycol methyl ether methacrylate H2C"C(CH3)CO2CH2CH2OCH3 144.17 23, 1291 0.993 1.431020 6512mm 60 e145 Ethylene glycol phenyl ether acrylate H2C"CHCO2CH2CH2OC6H5 192.21 63, 572 1.104 1.518020 840.2mm 110 e146 Ethyleneimine H2C9CH2 N H 43.07 0.832125 4 1.412325 78 56 11 misc aq; s alc e147 Ethylene oxide H2C9CH2 O 44.05 17, 4 0.8910 4 1.35977 111 10.6 18 misc aq; s alc, eth e148 Ethylene sulfide H2C9CH2 S 60.12 172, 12 1.010 1.493520 55–56 10 sl s alc, eth e149 Ethyl 2-ethoxy-2-hydroxyacetate HOCH(OC2H5)CO2C2H5 148.16 3, 601 1.079 1.420020 137 49 e150 Ethyl (ethoxy-methylene)cyano-acetate C2H5OCH"C(CN)CO2C2H5 169.18 3, 470 51–53 19030mm 110 e151 Ethyl 3-ethoxy-propionate C2H5OCH2CH2CO2C2H5 146.19 3, 298 0.949 1.405020 166 52 e152 Ethyl 4-{[(ethyl-phenylamino)-methylene]amino}-benzoate C6H5N(C2H5)CH"N9C6H4-CO2C2H5 296.37 62–65 2152mm e153 Ethyl fluoroacetate FCH2CO2C2H5 106.10 2, 193 1.092621 1.375520 119 30 s aq e154 Ethyl formate HCO2C2H5 74.08 2, 19 0.91720 4 1.359020 80 54 20 10 aq; misc alc, eth e155 Ethyl 2-furoate 140.14 18, 275 1.11720 4 35–37 196 70 i aq; s alc, eth e156 Ethyl heptanoate CH3(CH2)5CO2C2H5 158.24 22, 295 0.868520 4 1.414415 66 189 66 s alc, eth 1.218 e157 Ethyl hexadecanoate CH3(CH2)14CO2C2H5 284.48 22, 336 0.857725 4 1.434734 22 19110mm s alc, eth e158 2-Ethylhexanaldehyde CH3(CH2)3CH(C2H5)CHO 128.22 1, 707 0.822 1.4155 5513.5mm 42 e158a 3-Ethylhexane (C2H5)CHCH2CH2CH3 114.23 14, 431 0.713620 1.401820 118.6 s alc, eth e159 2-Ethyl-1,3-hexanediol CH3(CH2)2CH(OH)-CH(C2H5)CH2OH 146.23 Merck: 12, 3790 0.932522 4 1.453022 40 244 127 0.6% (w/w) aq; s alc, propylene glycol e160 Ethyl hexanoate CH3(CH2)4CO2C2H5 144.21 2, 323 0.87120 4 1.407520 67 166–168 49 i aq; misc alc, eth e161 2-Ethylhexanoic acid CH3(CH2)3CH(C2H5)CO2H 144.21 2, 349 0.9077 1.424120 118.4 228 127 0.25 aq e162 2-Ethyl-1-hexanol CH3(CH2)3CH(C2H5)CH2OH 130.23 Merck: 12, 3854 0.831925 1.430020 70 184.6 73 0.07 aq; s alc, bz, chl e163 2-Ethylhexanoyl chloride CH3(CH2)3CH(C2H5)COCl 162.66 22, 304 0.939 1.433520 6811mm 69 e164 2-Ethylhexyl acetate CH3(CH2)3CH(C2H5)-CH2O2CCH3 172.27 Merck: 12, 6860 0.8718 1.420420 80 199 71 0.03 aq; misc alc, oils, org liquids e165 2-Ethylhexyl acrylate H2C"CCO2CH(C2H5)(CH2)3CH3 184.28 23, 1229 0.885 1.4358 214–219 79 e166 2-Ethylhexylamine CH3(CH2)3CH(C2H5)CH2NH2 129.31 43, 388 0.789 1.430020 76 169 60 i aq; s alc, acet, eth e167 2-Ethylhexyl chloro-formate CH3(CH2)3CH(C2H5)CH2O2CCl 192.69 34, 28 0.981 1.431220 10730mm 81 e168 2-Ethylhexyl cyano-acetate NCCH2CO2CH2CH(C2H5)-(CH2)3CH3 197.28 0.975 1.438020 15011mm 110 e169 2-Ethylhexyl 2-cyano-3,3-diphenylacrylate (C6H5)2C"C(CN)CO2CH2-CH(C2H5)(CH2)3CH3 361.49 1.051 1.567020 10 2181.5mm 110 1.219 Ethylene glycol dimethyl ether, d505 Ethylene glycol ethyl ether acetate, e42 Ethylene glycol monoacetate, h120 Ethylene glycol monobutyl ether, b493 Ethylene glycol monobutyl ether acetate, b497 Ethylene glycol monoethyl ether, e40 Ethylene glycol monomethyl ether, m71 Ethylene glycol monomethyl ether acetate, m75 Ethylene iodide, d451 Ethylene iodohydrin, i32 1,8-Ethylenenaphthalene, a2 Ethylenethiourea, i4 Ethylene trichloride, t232 Ethyleneurea, i5 N-Ethylethanamine, d323 Ethyl 2-ethoxyglycolate, e149 Ethyl N-ethylcarbamate, e275 Ethyl fluoride, f17 2-Ethyl-1-hexanamine, e166 2-Ethylhexyl alcohol, e162 e155 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent e170 2-Ethylhexyl 4-(di-methylamino)-benzoate (CH3)2NC6H4CO2CH2-CH(C2H5)(CH2)3CH3 277.41 0.995 1.542020 325 110 e171 2-Ethylhexyl glycidyl ether OCH2CH9CH2 CH3(CH2)3CH(C2H5)CH2-O 186.30 0.891 1.434020 610.3mm 96 e172 2-Ethylhexyl methacrylate H2C"C(CH3)CO2CH2-CH(C2H5)(CH2)3CH3 198.31 23, 1289 0.885 1.438120 12018mm 92 e173 2-Ethylhexyl nitrate CH3(CH2)3CH(C2H5)CH2ONO2 175.23 0.963 1.432020 75 explodes when heated e174 2-Ethylhexyl salicylate 2-(HO)C6H4CO2CH2-CH(C2H5)(CH2)3CH3 250.34 103, 124 1.014 1.502020 19021mm 110 e175 2-Ethylhexyl vinyl ether CH3(CH2)3CH(C2H5)-CH2OCH"CH2 156.26 0.8102 1.427320 85 177–178 52 0.01 aq e176 Ethyl hydrocinnamate C6H5CH2CH2CO2C2H5 178.23 9, 511 1.010 1.494020 247–248 107 e177 Ethyl hydrogen hexanedioate HO2C(CH2)4CO2C2H5 174.20 21, 277 1.438720 28–29 18018mm 110 e178 Ethyl 4-hydroxy-benzoate HOC6H4CO2C2H5 166.18 10, 159 116–118 297–298 0.07 aq; v s alc, eth e179 Ethyl 3-hydroxy-butyrate CH3CH(OH)CH2CO2C2H5 132.16 3, 309 1.01720 4 1.420520 170 64 s aq, alc e180 Ethyl 2-hydroxyethyl sulfide HOCH2CH2SCH2CH3 106.19 12, 525 1.020 1.486920 180–184 110 s eth e181 Ethyl 6-hydroxy-hexanoate HO(CH2)5CO2C2H5 160.22 3,3,628 0.985 1.437020 12812mm 110 e182 Ethyl 2-hydroxyiso-butyrate (CH3)2C(OH)CO2C2H5 132.16 3, 315 0.965 1.407820 150 44 dec by hot aq e183 2-Ethyl-2-(hydroxy-methyl)-1,3-propanediol C2H5C(CH2OH)3 134.18 13, 2349 60–62 1612mm e184 2-Ethyl-2-(hydroxy-methyl)-1,3-propanedioltri-acrylate (H2C"CHCO2CH2)3CC2H5 296.32 1.100 1.473620 157 110 1.220 e185 2-Ethyl-2-(hydroxy-methyl)-1,3-propanedioltri-methacrylate [H2C"C(CH3)CO2CH2]3CC2H5 338.40 1.060 1.472420 110 e186 N-Ethyl-3-hydroxy-piperidine 129.20 Merck: 12, 3890 0.970 1.475420 9515mm 47 e187 2,2-Ethylidenebis-(4,6-di-tert-butyl-phenol) CH3CH{C6H2[C(CH3)3]2OH}2 438.70 162–164 e188 2,2-Ethylidenebis-(4,6-di-tert-butyl-phenyl) fluoro-phosphite 486.66 201–203 e189 4,4-Ethylidenebis-phenol CH3CH2CH(C6H4OH)2 214.26 6, 1006 123–127 e190 5-Ethylidene-2-norborene 120.20 0.893 1.4895 38 e191 2-Ethylimidazole 96.13 23, 78 86 268 e192 Ethyl isobutyrate (CH3)2CHCO2C2H5 116.16 2, 291 0.87020 1.390320 88 110 13 misc alc, eth; sl s aq e193 Ethyl isothiocyanate CH3CH2NCS 87.14 4, 123 1.00318 4 1.514218 6 130–132 32 i aq; misc alc, eth 1.221 Ethyl hexyl ketone, n100 Ethyl hydrogen adipate, e177 N-Ethyl-N-(2-hydroxyethyl)-3-toluidine, e267 Ethyl 2-hydroxy-2-methylpropanoate, e182 Ethyl 2-hydroxypropionate, e194 Ethylidene bromide, d96 Ethylidene chloride, d225 Ethylidene dimethyl ether, d504 Ethylidene fluoride, d407 2,2-Ethyliminodiethanol, e125 Ethyl iodide, i31 Ethyl isopentanoate, e208 Ethyl isonipicotate, e250 Ethyl isopropylactate, e208 Ethyl isothiocyanatoformate, e39 Ethyl isovalerate, e208 e186 e188 e190 e191 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent e194 Ethyl ()-lactate CH3CH(OH)CO2C2H5 118.13 3, 264 1.032820 1.412420 26 154–155 46 misc aq, alc, eth, es-ters, PE e195 Ethyl ()-mandelate C6H5CH(OH)CO2C2H5 180.21 10, 202 1.115 1.512020 33–34 253–255 110 e196 Ethyl 2-mercapto-acetate HSCH2CO2C2H5 120.17 3, 255 1.0964 1.457120 5412mm 47 s alc, eth e197 Ethyl 3-mercapto-propionate HSCH2CH2CO2C2H5 134.20 33, 555 1.039 1.457020 7610mm 72 e198 Ethylmercury chloride CH3CH2HgCl 165.13 3.5 192 sublimes 0.78 eth; 2.6 chl e199 Ethyl methacrylate H2C"C(CH3)CO2C2H5 114.14 2, 423 0.917 1.411625 118 15 i aq; s alc, eth e200 Ethyl 4-methoxy-phenylacetate CH3OC6H4CO2C2H5 194.23 101, 83 1.097 1.507520 1387mm 46 e201 Ethyl 2-methylaceto-acetate CH3C("O)CH(CH3)CO2C2H5 144.17 3, 679 1.019 1.428020 187 62 i aq; s alc, eth e202 N-Ethyl-2-methyl-allylamine H2C"C(CH3)CH2NHC2H5 99.18 44, 1104 0.753 1.422120 105 7 e203 N-Ethyl-N-methyl-aniline C6H5N(CH3)C2H5 135.21 12, 162 0.947 1.547020 203–205 74 i aq; misc alc, eth e204 Ethyl 2-methyl-benzoate CH3C6H4CO2C2H5 164.21 9, 463 1.032 1.507020 221731mm 91 e205 Ethyl 3-methyl-benzoate CH3C6H4CO2C2H5 164.21 9, 476 1.030 1.505420 11020mm 101 e206 Ethyl 4-methyl-benzoate CH3C6H4CO2C2H5 164.21 9, 484 1.025 1.508520 235 99 e207 Ethyl 2-methylbutyrate CH3CH2CH(CH3)CO2C2H5 130.19 2, 305 0.869 1.396920 133 26 e208 Ethyl 3-methylbutyrate (CH3)2CHCH2CO2C2H5 130.19 22, 275 0.865620 1.396220 99 135 26 0.2 aq; misc alc, bz e209 2-Ethyl-2-methyl-1,3-dioxolane 116.16 192, 11 0.929 1.409020 116–117 12 e210 Ethyl methyl ether C2H5OCH3 60.10 1, 314 2.456 g/L 113 7.4 s aq; misc alc, eth 1.222 e210a 3-Ethyl-4-methyl-hexane (C2H5)2CHCH(CH3)C2H5 128.26 0.742020 1.413420 140 24 e211 2-Ethyl-4-methyl-imidazole 110.16 232, 72 0.975 1.500020 47–54 292–295 137 e212 Ethyl 4-methyl-5-imidazolecarboxy-late 154.17 251, 534 204–206 e213 4-Ethyl-2-methyl-2-(3-methylbutyl)-oxazolidine 185.3 0.877 1.442020 194 82 e214 3-Ethyl-2-methyl-pentane (C2H5)2CHCH(CH3)2 114.24 13, 489 0.719320 4 1.404020 115.0 115.7 21 i aq; sl s alc; s eth e215 3-Ethyl-3-methyl-pentane (C2H5)3CCH3 114.24 0.727420 1.407820 90.9 118.3 i aq; s eth e216 Ethyl 1-methyl-2-piperidinecarboxy-late 171.24 221, 485 0.975 1.451920 9611mm 73 e217 Ethyl 1-methyl-3-piperidinecarboxy-late 171.24 0.954 1.451020 8911mm 68 1.223 Ethyl levulinate, e236 Ethyl linoleate, e229 Ethyl mercaptan, e26a Ethyl 3-methylcrotonate, e126 Ethyl methyl ketone, b475 Ethyl 1-methylnipecotate, e216 Ethyl 2-methyl-4-oxo-2-cyclohexene-1-carboxylate, c7 Ethyl N-methyl-N-phenylcarbamate, m379 Ethyl 2-methylpipicolinate, e217 e209 e211 e212 e213 e216 e217 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent e218 Ethyl 3-methyl-1-piperidine propio-nate 199.30 22, 59 0.945 1.453020 11213mm 99 e219 2-Ethyl-2-methyl-1,3-propanediol HOCH2C(C2H5)(CH3)CH2OH 118.18 1, 487 41–44 226 110 e220 5-Ethyl-2-methyl-pyridine C2H5(CH3)C5H3N 121.18 20, 248 0.919 1.497020 178 66 s alc, bz, eth, acid e221 Ethyl methyl sulfide CH3CH2SCH3 76.15 1, 343 0.842 1.439220 106 66.7 15 i aq; misc alc, eth e222 Ethyl (methylthio)-acetate CH3SCH2CO2C2H5 134.20 1.043 1.458720 7225mm 59 e223 N-Ethylmorpholine 115.18 271, 203 0.905 1.441020 63 139 27 misc aq, alc, eth e224 Ethyl nitrate CH3CH2ONO2 91.13 1, 329 1.10025 4 1.384922 94.6 87.7 10 (CC) 1 aq; misc alc, eth e225 Ethyl nitrite CH3CH2ONO 75.07 1, 329 0.9015 15 17 35 misc alc, eth e226 4-Ethylnitrobenzene C2H5C6H4NO2 151.17 5, 358 1.118 1.544520 32 245–246 110 v s alc, eth e227 Ethyl 4-nitrobenzoate O2NC6H4CO2C2H5 195.17 9, 390 55–59 e228 Ethyl nonanoate CH3(CH2)7CO2C2H5 186.30 2, 353 0.866 1.421920 37 227 94 i aq; misc alc, eth e229 Ethyl cis,cis-9,12-octa-decadienoic acid H(CH2)5CH"CHCH2-CH"CH(CH2)7CO2C2H5 308.51 22, 461 0.8846 1.467520 1936mm 110 misc DMF, oils e230 Ethyl cis-9-octa-decenoate CH3(CH2)7CH"CH(CH2)7-CO2C2H5 310.53 2, 467 0.869 1.450020 32 21615mm 110 i aq; misc alc, eth e231 Ethyl octanoate CH3(CH2)7CO2C2H5 172.27 2, 348 0.878 1.4166 43 208 75 i aq; misc alc, eth e232 Ethyl oxalyl chloride CH3CH2OC("O)C("O)Cl 136.53 2, 541 1.2223 1.416420 135 41 d aq, alc; s bz, eth e233 Ethyl oxamate CH3CH2OC("O)C("O)NH2 117.10 2, 544 114–116 s aq, eth; i bz e234 2-Ethyl-2-oxazoline 99.13 0.982 1.437020 62 128 29 e235 Ethyl 2-oxocyclo-pentanecarboxylate (O")(C5H7)CO2C2H5 156.18 10, 597 1.054 1.448520 10211mm 77 e236 Ethyl 4-oxopentanoate CH3C("O)CH2CH2CO2C2H5 144.17 3, 675 1.012 1.422220 205–206 v s aq; misc alc e237 Ethyl 2-oxopropionate CH3C("O)CO2C2H5 116.12 3, 616 1.06016 4 1.40816 144 45 sl s aq; misc alc, eth e238 3-Ethylpentane (C2H5)3CH 100.20 13, 441 0.698220 4 1.393420 118.6 93.5 i aq; s alc, eth e239 Ethyl pentanoate CH3(CH2)3CO2C2H5 130.19 2, 301 0.87720 4 1.373220 91.3 145.5 0.2 aq; misc alc, eth e240 2-Ethylphenol C2H5C6H4OH 122.17 5, 470 1.037 1.537220 18 204 78 e241 3-Ethylphenol C2H5C6H4OH 122.17 6, 471 1.001 1.533020 4 11015mm 94 e242 4-Ethylphenol C2H5C6H4OH 122.17 6, 472 1.011 1.5239 45 218 100 i aq; misc alc, eth e243 Ethyl phenylacetate C6H5CH2CO2C2H5 164.20 9, 434 1.031 1.498020 229 77 i aq; misc alc, eth 1.224 e244 Ethyl 3-phenyl-glycidate 192.21 1.102 1.518020 960.5mm 110 e245 1-Ethylpiperazine 114.19 232, 5 0.899 1.469020 157 43 e246 Ethyl N-piperazino-carboxylate 158.20 232, 9 1.080 1.476520 273 110 e247 1-Ethylpiperidine 113.20 20, 17 0.834 1.444020 131 18 e248 2-Ethylpiperidine 113.20 20, 104 0.858 1.451020 143 31 s aq e249 Ethyl 3-piperidine-carboxylate 157.21 1.012 1.460120 1047mm 90 e250 Ethyl 4-piperidine-carboxylate 157.21 1.010 1.459120 204 80 s aq, alc, bz, eth e251 Ethyl N-piperidine-propionate 185.27 20, 62 0.927 1.454520 217–219 87 1.225 Ethyl nipecotate, e249 Ethyl oleate, e230 Ethyl oxirane, e3 Ethyl pelargonate, e228 Ethyl pentyl ketone, o37 Ethyl phenyl ether, e36 Ethyl picolinate, e259 Ethylpiperidinol, e186 Ethyl pivalate, e128 e218 e223 e234 e244 e245 e246 e247 e248 e249 e250 e251 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent e252 Ethyl 1-propenyl ether CH3CH"CHOC2H5 86.13 1, 435 0.778 1.398020 67–76 18 e253 Ethyl propionate CH3CH2CO2C2H5 102.13 2, 240 0.891720 1.383920 73.9 99 12 1.7 aq; misc alc, eth e254 Ethyl propyl ether CH3CH2OCH2CH2CH3 88.15 1, 354 0.739 1.369520 79 62–63 32 sl s aq; misc alc, eth e255 Ethyl propyl sulfide CH3CH2SCH2CH2CH3 104.21 13, 1432 0.8270 1.446220 117.0 118.5 s alc e256 2-Ethylpyridine CH3CH2(C5H4N) 107.16 20, 241 0.937 1.496420 149 29 sl s aq; s alc, eth e257 3-Ethylpyridine CH3CH2(C5H4N) 107.16 20, 242 0.954 1.501520 162–165 48 v s alc, eth; sl s aq e258 4-Ethylpyridine CH3CH2(C5H4N) 107.16 20, 243 0.942 1.500920 168 47 sl s aq; s alc, eth e259 Ethyl 2-pyridine-carboxylate 151.17 22, 35 1.1194 1.508820 2 240–241 107 misc aq, alc, eth e260 1-Ethyl-2-pyrrolidinone 113.16 0.992 1.465220 9720mm 76 e261 Ethyl salicylate C6H4(OH)CO2C2H5 166.18 10, 73 1.131 1.521920 2–3 232–234 107 misc alc, eth; sl s aq e262 Ethyl sorbate CH3CH"CHCH"CHCO2C2H5 140.18 2, 484 0.956 1.494220 195.5 69 e262a 2-Ethyltoluene CH3C6H4C2H5 120.19 51, 192 0.865 1.504020 81 165 39 e262b 3-Ethyltoluene CH3C6H4C2H5 120.19 5, 398 0.865 1.496020 95 161 38 e262c 4-Ethyltoluene CH3C6H4C2H5 120.19 5, 397 0.861 1.495020 62 162 36 e263 Ethyl 4-toluene-sulfonate CH3C6H4SO2OC2H5 200.26 11, 99 1.16645 4 1.511020 33 17315mm 157 i aq; s alc, eth e264 N-Ethyl-m-toluidine CH3C6H4NHC2H5 135.21 12, 857 0.957 1.545120 221 89 e265 N-Ethyl-o-toluidine CH3C6H4NHC2H5 135.21 0.938 1.547020 218 88 e266 6-Ethyl-o-toluidine C2H5C6H3(CH3)NH2 135.21 0.968 1.552520 33 231 89 e267 2-(N-Ethyl-m-toluidino)ethanol CH3C6H4N(C2H5)CH2CH2OH 179.26 1.019 1.554020 1151mm 110 e268 Ethyl trichloroacetate Cl3CCO2C2H5 191.44 2, 209 1.38320 4 1.444720 168 65 i aq; s alc, eth e269 Ethyltrichlorosilane C2H5SiCl3 163.51 4, 630 1.238 1.425220 106 99 13 e270 Ethyltriethoxysilane C2H5Si(OC2H5)3 192.33 44, 4223 0.895 1.392020 158–166 38 e271 Ethyltriphenyl-phosphonium iodide C2H5P(C6H5)3I 418.26 16, 760 169–171 e272 Ethyl undecanoate CH3(CH2)10CO2C2H5 214.35 2, 358 0.859 1.428020 1054mm 110 i aq; s org solvents e273 Ethyl 10-undecenoate H2C"CH(CH2)8CO2C2H5 212.34 2, 459 0.879 1.439020 258–259 110 e274 Ethylurea CH3CH2NHC("O)NH2 88.11 4, 115 1.21318 93–96 v s aq; 80 alc; i eth e275 N-Ethylurethane CH3CH2NHCO2C2H5 117.15 4, 114 0.98120 4 1.421120 8520mm 75 63 aq 1.226 e276 Ethyl vinyl ether CH3CH2OCH"CH2 72.11 1, 433 0.758920 1.376720 116 35 45 0.9 aq; s alc, eth e277 N-Ethyl-2,3-xylidine (CH3)2C6H3NHC2H5 149.24 12, 1101 0.917 1.546820 228 71 e278 1-Ethynyl-1-cyclohexanol HOC6H10C#CH 124.18 62, 100 0.967 31–33 180 62 2.4 aq; misc alc, bz, acet, ketones, PE e279 Eugenol 4-(H2C"CHCH2)C6H3-2-(OCH3)OH 164.20 6, 961 1.066 1.541020 12/10 254 110 1.227 1-Ethyl-1-propanol, p41 Ethyl propenoate, e60 1-Ethylpropylamine, a247a Ethyl pyruvate, e237 2-(Ethylthio)ethanol, e180 Ethyl thioglycolate, e196 Ethyl toluates, e204, e205, e206 Ethyl p-tolyl ether, m373 Ethyl trimethylacetate, e128 Ethyl vanillin, e46 Ethyne, a41 Ethynylbenzene, p84 Eugenol, m108 Eugenol methyl ether, a84 Fenchone, t376 Fenchyl alcohol, t375 N-9H-(2-Fluorenyl)acetamide, a13 e259 e260 f1 f1 Fluoranthene 202.26 5, 685 1.2520 4 108 384 sl s alc; s bz, eth f2 Fluorene 166.22 5, 625 1.2030 4 115 295 v s HOAc; s bz, eth f3 Fluorenone 180.21 7, 465 1.130099 4 1.636999 82–85 342 s alc, bz; v s eth f4 Fluorescein 332.31 19, 222 320 s hot alc, hot HOAc f5 Fluoroacetic acid FCH2CO2H 78.04 2, 193 33 165 sl s aq, alc f6 4-Fluoroacetophenone FC6H4COCH3 138.14 1.138 1.511020 196 71 f7 2-Fluoroaniline FC6H4NH2 111.12 121, 296 1.151 1.542020 29 183 60 f8 4-Fluoroaniline FC6H4NH2 111.12 12, 597 1.1725 1.539520 2 187 73 sl s aq; s alc, eth f9 2-Fluorobenzaldehyde FC6H4CHO 124.11 71, 132 1.178 1.522020 44.5 9146mm 55 f10 4-Fluorobenzaldehyde FC6H4CHO 124.11 71, 132 1.157 1.520020 10 181 56 f11 Fluorobenzene C6H5F 96.11 5, 198 1.024020 4 1.465720 42.2 84.7 15 0.15 aq; misc alc f12 2-Fluorobenzoic acid FC6H5CO2H 140.11 9, 333 1.46025 4 123–125 sl s aq; s alc, eth f13 4-Fluorobenzoic acid FC6H5CO2H 140.11 9, 333 1.47925 4 184–187 0.1 aq; s alc, eth f2 f3 f4 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent f14 2-Fluorobenzoyl chloride FC6H5COCl 158.56 91, 136 1.328 1.536520 4 9215mm 82 f15 4-Fluorobenzoyl chloride FC6H5COCl 158.56 91, 137 1.342 1.529620 9 8220mm 82 f16 4-Fluorobenzyl chloride FC6H5CH2Cl 144.58 1.207 1.513020 8226mm 60 f17 Fluoroethane CH3CH2F 48.06 1, 82 143.2 37.7 198 mL aq; v s alc, eth f18 Fluoromethane CH3F 34.04 1, 59 1.195 g/L 141.8 78.4 166 mL aq; v s alc, eth f19 3-Fluoro-1-methoxy-benzene FC6H4OCH3 126.13 1.104 1.488020 158743mm 43 f20 4-Fluoro-1-methoxy-benzene FC6H4OCH3 126.13 61, 98 1.114 1.487720 45 157 43 s eth f21 2-Fluoro-2-methyl-propane (CH3)3CF 76.11 14, 286 77 12 12 f22 4-Fluoro-3-nitroaniline FC6H3(NO2)NH2 156.12 12, 729 96–98 91 f23 1-Fluoro-4-nitro-benzene FC6H4NO2 141.10 5, 241 1.330020 4 1.531220 21 205 83 i aq; s alc, eth f24 4-Fluoro-3-nitro-toluene CH3C6H3(NO2)F 155.13 1.262 1.524020 28–30 241 110 f25 4-Fluorophenol FC6H4OH 112.10 6, 183 46–48 185 68 f26 2-Fluoropyridine F(C5H4N) 97.09 201, 80 1.128 1.468020 126 28 f27 2-Fluorotoluene FC6H4CH3 110.13 5, 290 1.001417 1.471617 62 115 12 v s alc, eth f28 3-Fluorotoluene FC6H4CH3 110.13 5, 290 0.997420 1.469120 87 115 9 s alc, eth f29 4-Fluorotoluene FC6H4CH3 110.13 5, 290 0.997520 1.469820 56 117 17 s alc, eth f30 Fluorotrichloro-methane FCCl3 137.37 1, 64 1.494 1.382120 110 24 none f31 Formaldehyde H2C"O 30.03 1, 558 0.81520 4 0.815320 92 19.5 56 122 aq; s alc, eth f32 Formamide HC("O)NH2 45.04 2, 26 1.133420 4 1.447520 2.6 220 154 misc aq, alc, acet f33 Formamidine acetate HC("NH)NH2 · HO2CCH3 104.11 158 dec f34 Formamidinesulfinic acid H2NC("NH)S(O)OH 108.12 31, 36 126 dec f35 Formanilide C6H5NHCHO 121.14 12, 230 1.144 47 271 110 2.5 aq f36 Formic acid HCO2H 46.03 2, 8 1.22020 4 1.370420 8.3 100.8 68 misc aq, alc, eth f37 2-Formylbenzoic acid HO2CC6H4HCO 150.13 10, 666 1.404 96–98 s aq; v s alc, eth 1.228 f38 Formylhydrazine HC("O)NHNH2 60.06 2, 93 54–56 110 v s alc, chl, eth; s bz f39 4-Formylmorpholine 115.13 273, 274 1.145 1.484820 236–237 110 f40 N-Formylpiperidine 113.16 20, 45 1.019 1.478020 222 91 f41 D-()-Fructose 180.16 31, 321 122 dec v s aq; 6.7 alc; s pyr f42 Fumaric acid HO2CCH"CHCO2H 116.07 2, 737 1.63520 4 287 subl 300 0.6 aq; 9 alc; 0.7 eth f43 Fumaroyl dichloride ClC("O)CH"CHC("O)Cl 152.96 2, 743 1.40820 1.498820 161–164 73 dec aq, alc f44 2-Furaldehyde 96.09 172, 305 1.159820 4 1.526220 36.5 161.8 60 8 aq; misc alc, eth f45 Furan 68.07 17, 27 0.951420 1.421420 85.6 31.4 35 1 aq; misc alc, eth f46 2-Furanacrylic acid 138.12 18, 300 142–144 286 0.2 aq; 1.1 bz; s alc, eth, HOAc f47 2,5-Furandimethanol 128.13 171, 90 74–76 f48 2-Furanmethanethiol 114.17 172, 116 1.132 1.530420 155 45 1.229 Fluorothane, b308 Fluorotrichloromethane, t237 2-Fluoro-5-(trifluoromethyl)aniline, a179 Formal, d507 Formaldehyde diethyl acetal, d307 Formic acid hydrazide, f38 Formylamide, f33 Formylphenols, h94, h95, h96 Formylpyridines, p261, p262, p263 Freon-11, t237 Freon-12, d218 Freon-12B2, d93 Freon-21, d233 Freon-22, c101 Freon-114, d271 2,5-Furandione, m2 2-Furanmethanol, f50 Furfural, f44 2-Furfuraldehyde, f44 f39 f40 f41 f44 f45 f46 f47 f48 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent f49 Furfuryl acetate 140.14 172, 115 1.117520 4 1.461820 175–177 65 i aq; s alc, eth f50 Furfuryl alcohol 98.10 17, 112 1.129520 4 1.486820 31 171 75 misc aq(dec); v s alc, eth f51 Furfurylamine 97.12 18, 584 1.099520 4 1.490020 70 145–146 46 misc aq; s alc, eth f52 Furfuryl methacrylate 166.18 173, 1248 1.078 1.482020 825mm 90 f53 -Furildioxime 220.18 19, 166 166–168 v s alc, eth; sl s bz f54 2-Furoic acid 112.08 18, 272 133–134 230–232 4 aq; s alc; v s eth f55 2-Furoyl chloride 130.53 18, 276 1.324 1.531020 2 170 85 dec aq, alc; s eth g1 D-()-Galactose 180.16 31, 295 167 200 aq; s pyr; sl s alc g2 Geraniol (CH3)2C"CHCH2CH2-C(CH3)"CHCH2OH 154.25 1, 457 0.889420 4 1.476620 230 76 i aq; misc alc, eth g3 Geranyl acetate (CH3)2C"CHCH2CH2-C(CH3)"CHCH2O2CCH3 196.29 2, 140 0.917415 15 1.462815 13825mm 104 v s alc; misc eth g4 Gerard reagent P [(C5H5N)CH2C("O)NHNH2] Cl 187.63 Merck: 12, 4436 dec 200 less soluble in polar solvents than T g5 Gerard reagent T [(CH3)3NCH2C("O)NHNH2] Cl 167.64 Merck: 12, 4436 192 v s aq, HOAc, glyc, ethylene glycol g6 D-Gluconic acid 196.16 3, 542 131 v s aq; sl s alc; i eth g7 -Gluconolactone 178.14 181, 405 153 50 aq; 1 alc; i eth g8 -D-()-Glucose 180.16 31, 83 1.562018 4 153–156 91 aq; 0.83 MeOH; s pyr g9 -D-Glucose penta-acetate 390.34 31, 119 109–111 0.15 aq; 1.3 alc; 3 eth g11 D-Glucurono-3,6-lactone 176.12 Merck: 11, 4362 176–178 27 aq; 2.8 MeOH g12 (S)-()-Glutamic acid HO2CCH2CH2CH(NH2)CO2H 147.13 4, 488 1.53820 4 d 247 subl 200 0.8 aq; i alc, eth g13 (S)-()-Glutamine H2NC("O)CH2CH2-CH(NH2)CO2H 146.15 4, 491 185 dec 5 aq; 0.0035 MeOH; i bz, chl, eth, acet g14 Glutaric acid HO2CCH2CH2CH2CO2H 132.12 2, 631 1.42920 4 1.4188106 98 303 43 aq20; v s alc, eth; s bz, chl; sl s PE g15 Glutaric anhydride 114.10 17, 411 55–57 15010mm 110 g16 Glutaric dialdehyde OCHCH2CH2CH2CHO 100.12 1, 776 1.433825 187–189 none s aq, alc g17 Glutaronitrile NCCH2CH2CH2CN 94.12 2, 635 0.988823 1.434520 29 286 110 s aq, alc, chl; i eth 1.230 g18 Glutaryl dichloride ClC("O)(CH2)3C("O)Cl 169.01 2, 634 1.324 1.472020 216–218 106 dec aq, alc; s eth g19 Glycerol HOCH2CH(OH)CH2OH 92.09 1, 502 1.261320 1.474620 18 290 199 misc aq, alc; 0.2 eth g20 Glyceryl tris(butyrate) (CH3CH2CH2CO2CH2)2CH-O2CCH2CH2CH3 302.37 2, 273 1.03220 4 1.435920 75 287–288 173 i aq; v s alc, eth 1.231 Furfuryl mercaptan, f48 Furylacrylic acid, d46 2-Furyl methyl ketone, a44 Gallic acid, t319 Gentisic acid, d432 Geranial, d665 D-Glucitol, s5 Glutaraldehyde, g16 Glycerol dichlorohydrin, d264 Glycerol -monochlorohydrin, c227 Glyceryl triacetate, p200 f49 f50 f51 f52 f53 f54 f55 g1 g6 g7 g8 g9 Galactitol, d824 g11 g12 g13 g15 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent g21 Glyceryl tris-(dodecanoate) [CH3(CH2)10CO2CH2]2CH-O2C(CH2)10CH3 639.02 2, 362 0.89460 4 1.440460 46 v s bz, eth; sl s alc g22 Glyceryl tris(nitrate) O2NOCH2CH(ONO2)CH2ONO2 227.09 1, 516 1.59420 4 1.478612 13.3 1605mm explodes 270 0.18 aq; 54 alc; misc eth g23 Glyceryl tris(oleate) [CH3(CH2)7CH"CH(CH2)7-CO2CH2]2CHO2C(CH2)7-CH"CH(CH2)7CH3 885.46 4, 468 0.91515 4 1.462140 4/5 23515mm s chl, eth, CCl4 g24 Glyceryl tris(palmitate) [CH3(CH2)14CO2CH2]2CH-O2C(CH2)14CH3 807.35 2, 373 0.866380 4 1.438180 65–66 310–320 v s bz, chl, eth g25 Glyceryl tris-(tridecanoate) [CH3(CH2)11CO2CH2]2CH-O2C(CH2)11CH3 723.18 2, 367 0.88560 4 1.442860 57 v s alc, bz, chl g26 Glycine H2NCH2CO2H 75.07 4, 333 1.1607 dec 240 25 aq; 0.6 pyr; i eth g27 N-Glycylglycine H2NCH2C("O)NHCH2CO2H 132.12 4, 371 260 dec s hot aq; sl s alc g28 Glyoxal HC("O)CHO 58.04 1, 759 1.14 1.382620 15 50.4 viol rxn aq; s anhyd solvents; mixtures with air may ex-plode g29 Glyoxylic acid HC("O)CO2H 74.04 3, 594 98 v s aq; sl s alc, eth g30 Guanidine H2NC("NH)NH2 59.07 3, 82 ca. 50 dec 160 v s aq, alc g31 Guanine 151.13 26, 449 300 s alk soln, dil acids; sl s alc, eth h1 Heptadecane CH3(CH2)15CH3 140.41 1, 173 0.776722 1.436025 22.0 302.2 148 s eth; sl s alc h1a 1-Heptadecanol CH3(CH2)16OH 256.48 11, 220 53.8 333 110 h2 Heptafluorobutyric acid CF3CF2CF2CO2H 214.04 1.625 1.30020 120 none h3 Heptaldehyde CH3(CH2)5CHO 114.19 12, 750 0.821615 4 1.428520 43 153 35 misc alc, eth; sl s aq h4 2,2,4,4,6,8,8-Hepta-methylnonane (CH3)3CCH2C(CH3)2CH2-CH(CH3)CH2C(CH3)3 226.45 0.793 1.439120 240 95 h5 1,1,1,3,5,5,5-Hepta-methyltrisiloxane [(CH3)3SiO]2SiHCH3 222.51 43, 1874 0.819 1.382020 142 27 h6 Heptane CH3(CH2)5CH3 100.21 1, 154 0.683820 4 1.387720 90.6 98.4 4 (CC) s alc, chl, eth h7 Heptanedioic acid HO2C(CH2)5CO2H 160.17 2, 670 1.32915 105.8 21210mm 5 aq; v s alc, eth h8 1-Heptanethiol CH3(CH2)6SH 132.27 1, 415 43.2 176.9 46 i aq 1.232 h9 Heptanoic acid CH3(CH2)5CO2H 130.19 2, 338 0.918120 4 1.422120 8 222 110 0.25 aq; s alc, eth h10 Heptanoic anhydride [CH3(CH2)5CO]2O 242.36 2, 340 0.923 1.433220 12.4 268 110 i aq; s alc, eth h11 1-Heptanol CH3(CH2)6OH 116.20 1, 414 0.821920 4 1.424220 34 176.4 73 misc alc, eth h12 2-Heptanol CH3(CH2)5CH(OH)CH3 116.20 1, 415 0.816720 1.421010 159 71 0.35 aq; s alc, bz, eth h13 3-Heptanol CH3(CH2)3CH(OH)CH2CH3 116.20 11, 205 0.822720 1.421420 70 157 60 sl s aq h14 2-Heptanone HC3(CH2)4C("O)CH3 114.19 1, 699 0.819715 4 1.411615 35 151 39 s alc, eth h15 3-Heptanone CH3(CH2)3C("O)CH2CH3 114.19 1, 699 0.819720 20 1.405520 39 147 46 0.43 aq; s alc, eth h16 4-Heptanone CH3(CH2)2C("O)(CH2)2CH3 114.19 1, 699 0.817 1.406820 32.1 143.7 48 (CC) 0.53 aq; misc alc, eth h17 Heptanoyl chloride CH3(CH2)5C("O)Cl 148.63 2, 340 0.960 1.430020 173 58 dec aq, alc; s eth h18 1-Heptene CH3(CH2)4CH"CH2 98.90 1, 219 0.697020 1.399920 120 93.6 8 0.1 aq; s alc, eth h18a cis-2-Heptene CH3(CH2)3CH"CHCH3 98.19 13, 825 0.70820 1.40620 98.4 6 h18b trans-2-Heptene CH3(CH2)3CH"CHCH3 98.19 1, 219 0.701220 1.404520 109.5 98 1 h19 1-Heptylamine CH3(CH2)6NH2 115.22 4, 193 0.777 1.424320 23 154–56 35 s alc, acet, eth, PE h20 1-Heptyne CH3(CH2)4C#CH 96.17 1, 256 0.733 1.407520 81 99–100 2 h21 Hexachloroacetone Cl3CC("O)CCl3 264.75 1, 657 1.743 1.511220 30 666mm none sl s aq; s acet h22 Hexachlorobenzene CCl6 284.78 5, 205 2.04424 232 325 242 s bz, chl, eth h23 Hexachloro-1,3-butadiene CL2C"CClCCl"CCl2 260.76 1, 250 1.655 1.555020 21 215 none s alc, eth h24 1,2,3,4,5,6-Hexachloro-cyclohexane, -isomer C6H6Cl6 290.83 51, 8 1.8720 113–115 s bz, chl 1.233 Glyceryl tris(laurate), g21 Glyceryl tris(myristate), g25 Glycidic acid, h88 Glycidol, e16 Glycidyl methacrylate, e17 Glycidyl phenyl ether, e14 Glycinol, e29 Glycinonitrile, a103 Glycolaldehyde, h87 Glycolaldehyde diethyl acetal, d305 Glycolic acid, h88 Glycol methacrylate, h126 Glyoxaline, i3 Guaiacol, m97 Heliotropin, m250 Hemimellitene, t357 Hemimellitic acid, b29 Heptaldehyde, h3 sec-Heptyl alcohol, h12 Heptyl bromide, b343 Heptyl chloride c147 Heptyl iodide, i34 Heptyl mercaptan, h8 Heptyl methyl ketone, n99 g31 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent h25 Hexachlorocyclo-1,3-pentadiene 272.77 1.70125 4 1.564420 10 239 none h27 Hexachloroethane Cl3CCCl3 236.74 1, 87 2.091 187 sublimes none s alc, bz, chl, eth h28 1,4,5,6,7,7-Hexachloro-5-norbornene-2,3-di-carboxylic anhydride 370.83 93, 4049 239–242 h29 Hexachlorophene CH3[C6H(Cl)3OH]2 406.91 63, 5407 163–165 none h30 Hexachloropropene Cl3CC(Cl)"CCl2 248.75 1, 200 1.765 1.548020 210 none h31 Hexadecane CH3(CH2)14CH3 226.45 1, 172 0.773320 4 1.434520 18.2 286.8 135 misc eth h32 1,2-Hexadecanediol CH3(CH2)13CH(OH)CH2OH 258.45 13, 2244 72–74 h33 1-Hexadecanethiol CH3(CH2)15SH 258.51 1, 430 0.840 1.472020 18–20 1847mm 101 sl s alc, s eth h34 Hexadecanoic acid CH3(CH2)14CO2H 256.43 2, 370 0.85262 4 1.427380 62 351 s hot: chl, eth h35 1-Hexadecanol CH3(CH2)15OH 242.45 1, 429 0.811660 1.435560 49.3 334 135 s alc, chl, eth h36 1-Hexadecene CH3(CH2)14CH"CH2 224.43 1, 226 0.78320 4 1.4401 4.1 284 132 s alc, eth, PE h37 1-Hexadecylamine CH3(CH2)15NH2 241.46 4, 202 45–48 330 140 v s alc, eth; s bz, chl h38 2,4-Hexadienal CH3CH"CHCH"CHCHO 96.13 12, 809 0.871 1.538620 7630mm 67 h39 1,5-Hexadiene H2C"CHCH2CH2CH"CH2 82.15 1, 253 0.692320 4 1.404220 140.7 59.5 27 s alc, eth h40 2,4-Hexadienoic acid CH3CH"CHCH"CO2H 112.13 2, 483 134.5 11910mm 127 0.2 aq; 13 alc; 9 acet; 2.3 bz; 11 diox; 1 CCl4 h41 Hexafluorobenzene C6F6 186.05 53, 523 1.618220 1.378120 5.1 80.3 10 h42 Hexafluoroethane F3CCF3 138.01 13, 132 1.59078 100.7 78.3 sl s alc, eth h43 1,1,1,3,3,3-Hexafluoro-2-propanol (CF3)2CHOH 168.04 1.59625 1.275020 3 58.2 none s aq, bz, CCl4 h44 Hexafluoropropene CF3CF"CF2 150.02 13, 697 153 28 h45 Hexamethylcyclotri-siloxane [-Si(CH3)2O-]3 222.48 43, 1884 64–66 133–135 35 h46 1,1,1,3,3,3-Hexamethyl-disilazane (CH3)3SiNHSi(CH3)3 161.40 4,3, 1861 0.77420 4 1.407120 126 8 h47 Hexamethyldisiloxane (CH3)3SiOSi(CH3)3 162.38 43, 1859 0.76420 4 1.377520 67 101 2 h48 Hexamethyleneimine 99.18 20, 94 0.880 1.463120 138749mm 18 1.234 h49 Hexamethylene-tetramine 140.19 1, 583 1.3315 280 subl 250 67 aq; 8 alc; 10 chl h50 Hexamethyl-phosphoramide [(CH3)2N]3P("O) 179.20 1.02720 1.458820 7 232740mm 105 misc aq h51 Hexanaldehyde CH3(CH2)4CHO 100.16 12, 745 0.833520 4 1.403520 56 131 32 v s alc, eth; sl s aq h52 Hexane CH3(CH2)4CH3 86.18 1, 142 0.659420 4 1.374920 95.4 68.7 22 misc alc, chl, eth h53 1,6-Hexanediamine H2N(CH2)6NH2 116.21 4, 269 42 205 81 v s aq; sl s alc, bz h54 1,6-Hexanedioic acid HO2C(CH2)4CO2H 146.14 2, 649 1.36025 4 152–154 337.5 196 1.4 aq; v s alc; s acet h55 DL-1,2-Hexanediol CH3(CH2)3CH(OH)CH2OH 118.18 11, 251 0.951 1.442520 223–224 110 h56 1,6-Hexanediol HO(CH2)6OH 118.18 1, 484 0.958 1.457925 42.8 208 101 v s aq, alc h57 2,5-Hexanediol CH3CH(OH)CH2CH2CH(OH)CH3 118.18 1, 485 0.961745 16 1.446520 50 220.8 101 s aq, alc, eth h58 1,6-Hexanediol diacrylate [H2C"CHCO2(CH2) ]2 3 226.28 1.010 1.456220 110 h59 1,6-Hexanediol dimethacrylate [H2C"C(CH3)CO2(CH2) ]2 3 254.33 0.995 1.458020 350 110 h60 2,5-Hexanedione CH3C("O)CH2CH2C("O)CH3 114.14 1, 788 0.97320 4 1.426020 9 188 78 misc aq, alc, eth h61 Hexanenitrile CH3(CH2)4CN 97.16 2, 324 0.805220 1.406920 80.3 163.6 43 i aq; s alc, eth h62 1-Hexanethiol CH3(CH2)5SH 118.24 13, 1659 0.842420 4 1.449620 80.5 152.7 20 i aq; v s alc, eth h63 1,2,6-Hexanetriol HOCH2CH(OH)(CH2)3CH2OH 134.17 14, 2784 1.106320 20 1.5820 32.8 1785mm 191 misc alc, acet; i bz 1.235 Hexachloro-2-propanone, h21 ,,,,,-Hexachloro-p-xylene, b225 Hexadecyl mercaptan, h33 ,,,,,-Hexafluoro-3,5-xylidine, h229 Hexahydroaniline, c375 Hexahydro-2H-azepin-2-one, o61 Hexahydrobenzaldehyde, c352 Hexahydrobenzene, c347 Hexahydrobenzoic acid, c353 Hexahydrobenzylamine, c362 Hexahydrophthalic acid, c356 Hexahydropyridine, p180 Hexamethylenediamine, h53 Hexamethylene diisocyanate, d461 Hexamethylene glycol, h56 Hexamethylethane, t100 2,6,10,15,19,23-Hexamethyl-2,6,10,14,18,22-tetracosene, s8 1,6,10,15,19,23-Hexamethyltetracosane, s7 1,6-Hexanedinitrile, d284 6-Hexanelactam, o61 h25 h28 h48 h49 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent h64 Hexanoic acid CH3(CH2)4CO2H 116.16 2, 321 0.926520 4 1.416820 3 205 102 1.1 aq; v s alc, eth h65 Hexanoic anhydride [CH3(CH2)4C("O)]2O 214.31 2, 324 0.926 1.428020 41 246–248 110 s alc h66 1-Hexanol CH3(CH2)5OH 102.18 1, 407 0.813620 1.418220 44.6 157.5 63 8 aq; misc bz, eth; s alc h67 2-Hexanol CH3(CH2)3CH(OH)CH3 102.18 1, 408 0.810825 4 1.412825 47 139.9 41 sl s aq; s alc, eth h68 3-Hexanol CH3CH2CH2CH(OH)CH2CH3 102.18 1, 408 0.819320 4 1.416020 135 41 h69 6-Hexanolactone 114.14 172, 290 1.030 1.463020 18 215 109 h70 2-Hexanone CH3(CH2)3C("O)CH3 100.16 1, 689 0.811320 1.400720 55.5 127.6 25 v s alc, eth h71 3-Hexanone CH3CH2CH2C("O)CH2CH3 100.16 1, 690 0.815 1.400220 123 35 h72 Hexanoyl chloride CH3(CH2)4C("O)Cl 134.61 2, 324 0.975420 4 1.426320 87 153 50 dec aq, alc; s eth h73 1-Hexene CH3(CH2)3CH"CH2 84.16 1, 215 0.673220 1.387920 139.8 63.5 9 0.005 aq h74 trans-2-Hexenoic acid CH3(CH2)2CH"CHCO2H 114.14 24, 1563 0.965 1.488520 33–35 217 110 h75 trans-3-Hexenoic acid CH3CH2CH"CHCH2CO2H 114.14 2, 435 0.963 1.439820 11–12 11922mm 110 h76 trans-2-Hexen-1-ol CH3CH2CH2CH"CHCH2OH 100.16 12, 486 0.849 1.434320 158–160 54 h77 5-Hexen-2-one H2C"CHCH2CH2C("O)CH3 98.15 1, 734 0.847 1.419720 128–129 23 h78 trans-2-Hexenyl acetate CH3C("O)CH2CH"CHCH2-CH2CH3 142.20 22, 151 0.898 1.427520 166 58 h79 Hexyl acetate CH3(CH2)5O2CCH3 144.21 2, 132 0.86020 20 1.409020 81 171 45 0.13 aq; v s alc, eth h80 Hexyl acrylate H2C"CHCO2(CH2)5CH3 156.23 23, 1228 0.888 1.428020 9024mm 68 h81 Hexylamine CH3(CH2)5NH2 101.19 4, 188 0.76325 4 1.418020 23 133 8 sl s aq; misc alc, eth h82 1-Hexyne CH3(CH2)3C#CH 82.14 1, 253 0.715220 4 1.398920 131.9 71.3 21 i aq; s alc, eth h83 L-Histidine 155.16 25, 513 282 dec 41 aq; v sl s alc h84 Hydantoin 100.08 24, 242 221–223 s alc, alk; sl s eth h85 Hydrazine H2NNH2 32.05 Merck: 12, 4809 1.003625 4 1.470020 1.4 113.5 52 misc aq, alc h86 1,4-Hydroquinone C6H4-1,4-(OH)2 110.11 6, 836 1.33215 172 286 7 aq; v s alc, eth; sl s bz h87 Hydroxyacetaldehyde HOCH2CHO 60.05 1, 817 1.366100 93–94 11012mm v s aq, alc; sl s eth h88 Hydroxyacetic acid HOCH2CO2H 76.05 3, 228 80 100 s aq, alc, acet, eth h89 1-Hydroxy-2-aceto-naphthone C10H6(OH)C("O)CH3 186.21 8, 149 98–100 325 sl d i aq; v s bz; s HOAc h90 Hydroxyacetone HOCH2C("O)CH3 74.08 11, 84 1.082 1.431520 17 146 56 misc aq, alc, eth 1.236 h91 2-Hydroxyaceto-phenone HOC6H4C("O)CH3 136.15 8, 85 1.13121 4 1.558420 4–6 213717mm 110 misc alc, eth; sl s aq h92 3-Hydroxyaceto-phenone HOC6H4C("O)CH3 136.15 8, 86 1.100100 1.535100 87–89 296 s aq; v s alc, bz, eth h93 4-Hydroxyaceto-phenone HOC6H4C("O)CH3 136.15 8, 87 1.109100 109–111 1483mm v s alc, eth; sl s aq h94 2-Hydroxybenz-aldehyde C6H4(OH)CHO 122.12 8, 31 1.167420 1.574020 7 196.7 78 1.7 aq86; s alc, eth h95 3-Hydroxybenz-aldehyde C6H4(OH)CHO 122.12 8, 58 103–105 19150mm s alc, bz, eth; sl s aq h96 4-Hydroxybenz-aldehyde C6H4(OH)CHO 122.12 8, 64 1.129130 4 117–119 1 aq; 70 acet; 4 bz65; v s alc, eth h97 2-Hydroxybenz-aldehyde oxime C6H4(OH)CH"NOH 137.14 8, 49 57 dec v s alc, bz, eth, acids h98 2-Hydroxybenzamide C6H4(OH)C("O)NH2 137.14 10, 87 140 dec 270 0.2 aq; s alc, chl, eth h99 2-Hydroxybenzoic acid C6H4(OH)CO2H 138.12 10, 43 1.44320 4 157–159 21120mm 0.2 aq; 37 alc; 33 eth; 33 acet; 2 chl; 0.7 bz 1.237 D-erythro-Hex-2-enonic acid -lactone, i69 Hexyl alcohol, h66 sec-Hexyl alcohol, e95 sec-Hexylamine, m371 Hexylbenzene, p116 Hexyl bromide, b346 Hexyl chloride, c149 Hexylene glycol, m360 Hexyl iodide, i36 Hexyl methyl ketone, o36 Hexyl propyl ketone, d20 Hippuric acid, b70 Homocysteine, a200 Homopiperidine, h48 Homoveratric acid, d513 Homoveratrylamine, d517 Hydroacrylonitrile, h173 2-Hydrazinoethanol, h125 Hydrazobenzene, d757 Hydrindene, i10 Hydrocinnamic acid, p150 Hydroquinone, d430 Hydroquinone dimethyl ether, d495 Hydroxyacetanilides, a15 thru a17 Hydroxybenzene, p65 2-Hydroxybenzenemethanol, h107 h69 h83 h84 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent h100 3-Hydroxybenzoic acid C6H4(OH)CO2H 138.12 10, 134 1.473 201–203 0.8 aq; 10 eth h101 4-Hydroxybenzoic acid C6H4(OH)CO2H 138.12 10, 149 1.4684 215–217 0.2 aq; v s alc; 23 eth h102 4-Hydroxybenzoic hydrazide HOC6H4C("O)NHNH2 152.15 10, 174 266 dec h103 4-Hydroxybenzo-phenone HOC6H4C("O)C6H5 198.22 82, 184 132–135 v s alc, eth; sl s aq h104 1-Hydroxybenzo-triazole 135.13 26, 41 155–158 h105 6-Hydroxy-1,3-benz-oxathiol-2-one 168.17 194, 2508 158–160 h106 2-Hydroxybenzyl alcohol HOC6H4CH2OH 124.13 6, 891 1.16125 83–85 subl 100 6.6 aq; v s alc, chl, eth; s bz h107 1-Hydroxy-2-butanone CH3CH2C("O)CH2OH 88.11 1, 826 1.026 1.428220 7860mm 60 h108 3-Hydroxy-2-butanone CH3C("O)CH(OH)CH3 88.11 1, 827 0.997217 4 1.417120 15 148 50 misc aq, alc; sl s eth h109 4-Hydroxycinnamic acid HOC6H4CH"CHCO2H 164.16 10, 297 210–213 s alc, eth; sl s aq h111 7-Hydroxycoumarin 162.14 18, 27 226–228 v s alc, chl, alk, HOAc h112 1-Hydroxy-1-cyclo-hexanecarbonitrile C6H10(OH)CN 125.17 10, 5 1.031 1.457620 29 60 h113 2-Hydroxy-3,5-diiodo-benzoic acid I2C6H2(OH)CO2H 389.91 10, 113 232–235 v s alc, eth; i bz, chl h114 4-Hydroxy-3,5-dinitro-benzoic acid HOC6H2(NO2)CO2H 228.12 1, 183 245 dec h115 3-Hydroxydiphenyl-amine HOC6H4NHC6H5 185.23 13, 410 80–82 340 h116 (2-Hydroxydiphenyl)-methane HOC6H4CH2C6H5 184.24 6, 675 1.599420 54 312 110 s organic solvents, alk h117 (4-Hydroxydiphenyl)-methane HOC6H4CH2C6H5 184.24 6, 675 84 322 s hot aq, org solvents, HOAc, alkalis 1.238 h118 2-(2-Hydroxyethoxy)-phenol HOCH2CH2C6H4OH 154.17 62, 782 99–100 1280.7mm h119 N-(2-Hydroxyethyl)-acetamide HOCH2CH2NHC("O)CH3 103.12 41, 430 1.123320 20 1.457520 63–65 1555mm 176 misc aq; sl s bz h120 2-Hydroxyethyl acetate CH3CO2CH2CH2OH 104.11 2, 141 1.10815 1.420120 188 88 misc aq, alc, chl, eth h121 2-Hydroxyethyl acrylate H2C"CHCO2CH2CH2OH 116.12 24, 1469 1.011 1.450020 9212mm 98 h122 3-(1-Hydroxyethyl)-aniline CH3CH(OH)C6H4NH2 137.18 133, 1654 66–69 h123 2-Hydroxyethyl disulfide HOCH2CH2SSCH2CH2OH 154.25 1, 471 1.261 1.565520 25–27 1583.5mm 110 h124 N-(2-Hydroxyethyl)-ethylenediamine-N,N,N-triacetic acid HO2CCH2N(CH2CH2OH)-CH2CH2N(CH2CO2H)2 278.26 212 dec h125 2-Hydroxyethyl-hydrazine HOCH2CH2NHNH2 76.10 41, 562 1.123 1.496120 70 220 73 misc aq; s alc h126 2-Hydroxyethyl methacrylate HOCH2CH2O2CC(CH3)"CH2 130.14 1.073 1.452020 673.5mm 97 h127 N-(2-Hydroxyethyl)-morpholine 131.18 27, 7 1.083 1.476020 227 99 misc aq h128 N-(2-Hydroxyethyl)-phthalimide 191.19 21, 469 126–128 h129 1-(2-Hydroxyethyl)-piperazine 130.19 232, 6 1.061 1.506520 246 110 1.239 m-Hydroxybenzotrifluoride, t304 Hydroxybutanedioic acids, h186, h187 5-Hydroxydecanoic acid, -lactone, d17 Hydroxyethanal, h87 3-(-Hydroxyethyl)aniline, a256 N-(2-Hydroxyethyl)-3-aza-1,5-pentanediol, t266 N-(2-Hydroxyethyl)ethyleneimine, a311 N-(2-Hydroxyethyl)piperidine, p182 2-(2-Hydroxyethyl)piperidine, p183 h104 h105 h111 h127 h128 h129 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent h130 N-(2-Hydroxyethyl)-piperazine-N-ethane-sulfonic acid 238.31 Merck: 12, 4687 234 dec sat’d aq: 2.25M0 h131 N-(2-Hydroxyethyl)-piperidine 129.20 20, 25 1.005915 4 1.480420 199–202 68 h132 N-(2-Hydroxyethyl)-pyridine HOCH2CH2NC5H4 123.16 21, 50 1.093 1.536820 1169mm 92 v s aq, alc, chl h133 N-(2-Hydroxyethyl)-pyrrolidine HOCH2CH2NC4H8 115.8 202, 5 0.985 1.471320 8113mm 56 h134 N-(2-Hydroxyethyl)-2-pyrrolidinone 129.16 214, 3142 1.143 1.496020 1422mm 110 h135 2-Hydroxyethyl salicylate (HO)C6H4CO2CH2CH2OH 182.18 10, 81 1.224 1.548020 16613mm 110 h136 (2-Hydroxyethyl)tri-phenylphosphonium bromide HOCH2CH2P(C6H5)3Br 387.26 16, 761 217–219 h137 8-Hydroxy-7-iodo-5-quinolinesulfonic acid 351.12 22, 408 269–270 dec h138 2-Hydroxyisobutyric acid (CH3)2C(OH)CO2H 104.11 3, 313 82 841.5mm v s aq, alc, eth h138a 2-Hydroxyisobutyro-nitrile (CH3)2C(OH)CN 85.11 3, 316 0.932 1.399020 19 8223mm 63 h139 Hydroxylamine HCl H2NOH · HCl 69.49 1.670 159 dec h140 4-Hydroxy-2-mercapto-6-methylpyrimidine 142.18 24, 351 330 dec v s aq NH3, alkalis; sl s alc, acet h141 4-Hydroxy-2-mercapto-6-propylpyrimidine 170.23 219–221 0.1 aq; 1.7 alc; 1.7 acet; v s alkalis h142 4-Hydroxy-3-methoxy-benzaldehyde CH3OC6H3(OH)CHO 152.15 8, 247 1.056 80–81 285 1 aq; s alc, chl, pyr h143 4-Hydroxy-3-methoxy-benzoic acid CH3OC6H3(OH)CO2H 168.15 10, 392 210–213 0.12 aq; v s alc 1.240 h144 2-Hydroxy-4-methoxy-benzophenone CH3OC6H3(OH)C("O)C6H5 228.25 8, 312 63–66 1605mm v s alc, chl, eth h145 4-Hydroxy-3-methoxy-benzyl alcohol CH3OC6H3(OH)CH2OH 154.17 6, 1113 113–115 h146 N-(Hydroxymethyl)-acrylamide H2C"CHC("O)NHCH2OH 101.11 24, 1472 1.074 1.43020 none h147 4-Hydroxy-3-methyl-2-butanone HOCH2CH(CH3)C("O)CH3 102.13 11, 422 0.993 1.434020 9215mm 81 h148 7-Hydroxy-4-methyl-coumarin 176.17 18, 31 190–192 s alc, HOAc; sl s eth h149 N-(Hydroxymethyl)-nicotinamide (C5H4N)C("O)NHCH2OH 152.15 10, 4750 152–154 h150 4-Hydroxy-4-methyl-2-pentanone (CH3)2C(OH)CH2C("O)CH3 116.16 Merck: 12, 3008 0.930625 4 1.423520 44 167.91 58 misc aq h151 N-(Hydroxymethyl)-phthalimide 177.16 21, 475 147–149 sl s aq, alc, bz 1.241 Hydroxyhydroquinone, b34 2-Hydroxyisobutyronitrile, h153 2-Hydroxy-3-methyl-2-cyclopenten-1-one, m223 (2-Hydroxymethyl)-2-nitro-1,3-propanediol, t442 1,3-Hydroxy-2-methyl-2-propylamine, a226 h130 h131 h134 h137 h140 h141 h148 h151 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent h152 4-Hydroxy-N-methyl-piperidine 115.18 211, 188 1.477520 29–31 200 h153 2-Hydroxy-2-methyl-propionitrile (CH3)2C(OH)CN 85.10 3, 316 0.926725 4 1.399220 19 95 63 s aq, alc, chl, eth h154 2-Hydroxy-2-methyl-propiophenone C6H5C("O)C(CH3)2OH 164.20 81, 553 1.077 1.533020 1034mm 110 h155 5-Hydroxy-2-methyl-pyridine HO(C5H2N)CH3 109.13 213, 480 168–170 h156 3-Hydroxy-2-methyl-4-pyrone 126.11 161–162 1.2 aq; v s hot aq; s alc, alk; sl s bz, eth h157 2-Hydroxy-1-naphth-aldehyde C10H6(OH)CHO 172.18 8, 143 82–85 19227mm h158 1-Hydroxy-2-naphthoic acid C10H6(OH)CO2H 188.18 10, 331 191–192 v s alc, bz, eth, alk h159 2-Hydroxy-1-naphthoic acid C10H6(OH)CO2H 188.18 10, 328 167 dec h160 3-Hydroxy-2-naphthoic acid C10H6(OH)CO2H 188.18 10, 333 222–223 v s alc, eth; s bz, chl h161 2-Hydroxy-1,4-naphthoquinone 174.16 8, 300 dec 191 s HOAc h162 4-Hydroxy-3-nitro-benzenearsonic acid HOC6H3(NO2)AsO(OH)2 263.04 161, 456 300 v s alc, acet, HOAc, alk; sl s aq; i eth h163 4-Hydroxy-3-nitro-benzoic acid HOC6H3(NO2)CO2H 183.12 10, 181 184–185 h164 5-Hydroxy-2-pentanone CH3C("O)CH2CH2CH2OH 102.13 1, 831 1.00720 4 1.437220 144100mm 93 misc aq; s alc, eth h165 4-Hydroxyphenylacetic acid HOC6H4CH2CO2H 152.15 10, 190 149–151 v s alc, eth; sl s aq h166 4-(4-Hydroxyphenyl)-2-butanone HOC6H4CH2CH2C("O)CH3 164.20 82, 117 82–83 h167 4-Hydroxyphenyl-glycine HOC6H4CH(NH2)CO2H 167.16 141, 659 240 dec sl s aq, alc, bz, acet 1.242 h168 N-(4-Hydroxyphenyl)-glycine HOC6H4NHCH2CO2H 167.16 13, 488 244 dec s alk, acid; v sl s aq, alc, acet, bz, eth h169 2-Hydroxy-3-phenyl-propiophenone HOC6H4C("O)CH2CH2C6H5 226.28 82, 202 1.596820 36–37 110 h170 1-(3-Hydroxyphenyl)-urea HOC6H4NHC("O)NH2 152.15 13, 417 182–184 h171 N-Hydroxyphthalimide 163.13 21, 500 233 dec h172 2-Hydroxypropionitrile CH3CH(OH)CN 71.08 32, 209 0.983425 1.402725 40 10350mm 76 misc aq, alc; s eth h173 3-Hydroxypropionitrile HOCH2CH2CN 71.08 3, 298 1.040425 4 1.424820 46 221 129 misc aq, alc, acet; 2,3 eth; i bz, PE h174 2-Hydroxypropio-phenone HOC6H4C("O)CH2CH3 150.18 8, 102 1.094 1.548020 11515mm 110 v s alc, eth; sl s aq h175 4-Hydroxypropio-phenone HOC6H4C("O)CH2CH3 150.18 8, 102 148 v s alc, eth; sl s aq h176 1-(2-Hydroxy-1-propoxy)-2-pro-panol CH3CH(OH)CH2OCH2-CH(OH)CH3 134.18 1.025220 20 1.444020 231.8 138 misc aq, alc h177 Hydroxypropyl acrylate H2C"CHCO2(CH2)3OH 130.14 24, 1469 1.044 1.445020 775mm 89 h178 Hydroxypropyl methacrylate H2C"C(CH3)CO2(CH2)3OH 144.17 24, 1532 1.066 1.447020 570.5mm 96 h179 2-Hydroxypyridine HOC5H4N 95.10 21, 43 105–107 280–281 aq, alc, bz, sl s eth h180 3-Hydroxypyridine HOC5H4N 95.10 126–129 1513mm v s aq, alc; sl s eth h181 4-Hydroxypyridine HOC5H4N 95.18 23012mm v s aq; i alc, bz, eth 1.243 1-Hydroxy-2-naphthalenecarboxylic acid, h158 2-Hydroxy-1-naphthalenecarboxylic acid, h159 3-Hydroxy-2-naphthalenecarboxylic acid, h160 6-Hydroxynicotinic acid, h182 Hydroxynitroanilines, a238, a239, a240 -Hydroxy--phenylacetophenone, b46 3-(p-Hydroxyphenyl)alanine, t455 2-Hydroxy-2-phenylbenzeneacetic acid, b37 3-Hydroxy-1-propanesulfonic acid -sultone, p197 2-Hydroxypropanoic acid, L1, L2 1-Hydroxy-2-propanone, h90 3-Hydroxypropionitrile, c323 1-(2-Hydroxy-1-propoxy)-2-propanol, b204 3-Hydroxy-1-propyne, p249 h152 h156 h161 h171 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent h182 2-Hydroxypyridine-5-carboxylic acid HO(C5H3N)CO2H 139.11 22, 215 300 sl s aq, alc, eth h183 3-Hydroxypyridine-N-oxide (HO)C5H4N"O 111.10 190–192 h184 8-Hydroxyquinoline 145.16 21, 91 72–74 267742mm v s alc, acet, bz, chl h185 8-Hydroxyquinoline-5-sulfonic acid 225.22 22, 407 300 v s aq; sl s alc, eth h186 DL-Hydroxysuccinic acid HO2CCH(OH)CH2CO2H 134.09 3, 435 131–133 56 aq; 45 EtOH; 18 acet; 0.8 eth; 23 diox h187 ()-Hydroxysuccinic acid HO2CCH(OH)CH2CO2H 134.09 3, 419 100 36 aq; 87 EtOH; 61 acet; 2.7 eth; 75 diox h188 N-Hydroxysuccinimide 115.09 21, 380 95–98 v s aq 1.244 i1 Icosane CH3(CH2)18CH3 282.56 1, 174 0.777737 1.434640 36.4 343.8 112 i2 1-Icosene CH3(CH2)17CH"CH2 280.54 13, 881 28.7 342.4 i3 1H-Imidazole 68.08 23, 45 90–91 257 145 v s aq, alc, chl, eth i4 2-Imidazolidinethione 102.16 24,4 203–204 2 aq; s alc, pyr; i bz, acet, chl, eth i5 2-Imidazolidone 86.09 24, 16 133–135 v s aq, hot alc i6 3,3-Iminobis(N,N-di-methyl)propylamine HN[(CH2)3N(CH3)2]2 187.33 43, 565 0.841 1.449020 78 13120mm 98 i7 Iminodiacetic acid HO2CCH2NHCH2CO2H 133.10 4, 365 243 dec 2 aq; v sl s bz, eth i8 Iminodiacetonitrile NCCH2NHCH2CN 95.11 4, 367 77 s aq, alc; sl s eth i9 Iminodibenzyl 195.27 105–108 i10 Indane 118.18 Merck: 12, 4966 0.963920 4 1.538320 51.4 178 50 s alc, chl, eth; i aq i11 5-Indanol 134.18 6, 575 51–53 255 110 v s alc, eth; sl s aq i12 1-Indanone 132.16 7, 360 1.109045 4 1.56145 40–42 243–245 111 s alc, eth; sl s aq i13 1,2,3-Indantrione hydrate 178.14 Merck: 12, 6645 dec 241 v s aq; s alc i14 Indene 116.16 5, 515 0.996820 4 1.576220 1.8 181.6 58 misc alc, bz, chl, eth i15 Indole 117.15 20, 304 1.0643 1.60960 52.54 253–254 110 s hot aq, bz, eth i16 Indole-3-acetic acid 175.19 22, 66 168–170 v s alc; s acet, eth i17 Indole-2,3-dione 147.13 21, 432 203.5 dec s hot aq, hot alc, alk i18 Indoline 119.17 20, 257 1.063 1.590620 221 92 sl s aq i19 Inositol 180.16 62, 1157 1.752 225 14 aq; sl s alc; i eth i20 Iodoacetamide ICH2CONH2 184.96 2, 223 93–96 s hot aq i21 Iodoacetic acid ICH2CO2H 185.95 2, 222 79–82 s aq, alc; v sl s eth 1.245 Icosane, e1 Imidodicarbonic diamide, b238 Imidole, p279 Indalone, b450 Indanamine, a195, a196 Indonaphthene, i14 5-Iodoanthranilic acid, a199 h184 h185 h188 i3 i4 i5 i9 i10 i11 i12 i13 i14 i15 i16 i17 i18 i19 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent i22 3-Iodoaniline IC6H4NH2 219.03 12, 670 1.821 1.682020 25 14615mm 110 i aq; s alc, eth i23 Iodobenzene C6H5I 204.01 5, 215 1.830820 1.620020 31 188 74 misc alc, chl, eth i24 Iodobenzene diacetate C6H5I(O2CCH3)2 322.10 5, 218 163–165 i25 2-Iodobenzoic acid IC6H4CO2H 248.02 9, 363 2.24925 4 162–164 s alc, eth; sl s aq i26 1-Iodobutane HC3CH2CH2CH2I 184.02 1, 123 1.615420 1.499920 103.5 130–131 33 i aq; s alc, eth i27 2-Iodobutane CH3CH2CH(I)CH3 184.02 1, 123 1.592020 1.499120 104.0 120 23 i aq; s alc, eth i28 Iodocyclohexane C6H11I 210.06 52, 13 1.62615 15 1.547220 180 i aq; s eth i29 1-Iododecane CH3(CH2)9I 268.19 1, 168 1.25720 4 1.485020 13215mm 110 i aq; s alc, eth i30 2-Iodododecane CH3(CH2)11I 296.24 11, 67 1.201 1.4844 3 16015mm 110 i31 Iodoethane CH3CH2I 155.97 1, 96 1.935820 1.513020 111 72.4 none 0.4 aq; misc alc, bz, chl, eth i32 2-Iodoethanol ICH2CH2OH 171.97 1, 339 2.219720 4 1.569420 755mm 65 s aq; v s alc, eth i33 Iodoform CHI3 393.73 1, 73 4.008 120–123 none 1.4 alc; 10 chl; 13 eth; v s bz, acet i34 1-Iodoheptane CH3(CH2)6I 226.10 1, 155 1.37320 4 1.490020 48 204 78 i aq; s alc, eth i35 1-Iodohexadecane CH3(CH2)15I 352.35 1, 172 1.121 1.480620 23 20710mm 110 i36 1-Iodohexane CH3(CH2)5I 212.08 1, 146 1.43720 4 1.492020 179–180 61 i aq i37 1-Iodomethane CH3I 141.94 1, 69 2.278920 4 1.530820 66.5 42.5 none 1.4 aq; misc alc, eth i38 1-Iodo-2-methyl-propane (CH3)2CHCH2I 184.02 1, 128 1.603520 1.496020 93.5 121 12 i aq; misc alc, eth i39 2-Iodo-2-methyl-propane (CH3)3CI 184.02 13, 326 1.5710 0 1.491820 38 100 7 dec aq; misc alc, eth i40 1-Iodo-3-nitrobenzene IC6H4NO2 249.01 5, 253 1.947750 4 36–38 280 71 i aq; s alc, eth i41 1-Iodo-4-nitrobenzene IC6H4NO2 249.01 5, 252 175–177 289772mm 110 i42 1-Iodononane CH3(CH2)8I 254.18 1, 166 1.288 1.487020 1088mm 85 i43 1-Iodooctadecane CH3(CH2)17I 380.40 1, 173 33–35 1972mm 110 i44 1-Iodooctane CH3(CH2)7I 240.13 1, 160 1.33020 4 1.488920 46 226 95 s alc, eth i47 1-Iodopentane CH3(CH2)4I 198.06 1, 133 1.51220 4 1.495420 85 155 51 sl s aq; s alc, eth i48 1-Iodopropane CH3CH2CH2I 169.99 1, 113 1.748920 1.505820 101 102 44 0.1 aq; misc alc, eth i49 2-Iodopropane (CH3)2CHI 169.99 1, 114 1.704220 1.499220 90 89.5 42 0.14 aq; misc alc, eth i50 3-Iodo-1-propene ICH2CH"CH2 167.97 1, 202 1.84522 4 1.554021 99 103 18 misc alc, chl, eth i51 5-Iodosalicylic acid IC6H3(OH)CO2H 264.02 10, 112 189–191 v s alc; i bz, chl 1.246 i52 2-Iodothiophene 210.04 17, 34 1.902 1.652020 40 7315mm 71 v s eth i53 2-Iodotoluene IC6H4CH3 218.04 5, 310 1.713 1.607920 211 90 i aq; s alc, eth i54 3-Iodotoluene IC6H4CH3 218.04 5, 311 1.698 1.604020 8210mm 82 i aq; misc alc, eth i55 4-Iodotoluene IC6H4CH3 218.04 5, 312 34–36 211 90 i56 Iodotrimethylsilane (CH3)3SiI 200.10 1.40620 4 1.471020 106 31 i57 1-Iodoundecane CH3(CH2)10I 282.21 11, 66 1.220 1.484920 1305mm 110 i58 -Ionone 192.30 7, 168 0.93220 1.498020 12411mm 104 s alc, bz, chl, eth i59 -Ionone 192.30 7, 167 0.94617 1.52117 12812mm 110 s alc, bz, chl, eth i60 Isatoic anhydride 163.13 27, 264 233 dec sl s aq, hot alc, acet i61 D-()-Isoascorbic acid 176.12 169 dec s aq, alc, acet, pyr i62 DL-Isoborneol 154.25 62, 80 214 subl v s alc, chl, eth i63 Isobutyl acetate (CH3)2CHCH2O2CCH3 116.16 2, 131 0.871220 1.390220 99 116.5 18 0.7 aq; v s alc i64 Isobutyl acetoacetate CH3COCH2CO2CH2CH(CH3)2 158.20 0.980 1.424020 10022mm 78 i65 Isobutyl acrylate H2C"CHCO2CH2CH(CH3)2 128.19 23, 1227 0.890 1.4140 132 32 i66 Isobutylamine (CH3)2CHCH2NH2 73.14 4, 163 0.72420 4 1.397220 86.6 68 9 misc aq, alc, acet, eth i67 Isobutylbenzene C6H5CH2CH(CH3)2 134.22 5, 414 0.853220 1.486620 51.5 172.8 55 misc alc, eth i68 Isobutyl chloroformate ClCO2CH2CH(CH3)2 136.58 3, 12 1.053 1.407020 128.8 27 misc bz, chl, eth i69 Isobutyl formate HCO2CH2CH(CH3)2 102.13 2, 21 0.877620 1.385520 95.5 98.4 10 1 aq; misc alc, eth i70 Isobutyl isobutyrate (CH3)2CHCH2O2CH(CH3)2 144.22 2, 291 0.854220 1.399920 80.7 148.5 38 0.5 aq; misc alc i71 Isobutyl methacrylate H2C"C(CH3)CO2CH2CH(CH3)2 142.19 23, 1287 0.88225 15 1.417025 155 41 misc alc, eth 1.247 Isatin, i17 Isoamyl acetate, i91 Isoamyl alcohol, m163 sec-Isoamyl alcohol, m164 Isoamyl bromide, b362 Isoamyl chloride, c169a Isoamyl nitrite, i92 1,3-Isobenzofurandione, p169 Isobutane, m390 Isobutene, m399 -Isobutoxy--phenylacetophenone, b48 Isobutylacetylene, m372 Isobutyl alcohol, m397 Isobutyl bromide, b371 Isobutyl chloride, c179 Isobutyl chlorocarbonate, i68 Isobutyl ether, d458 Isobutyl mercaptan, m395 Isobutyl methyl ketone, m370 i52 i58 i59 i60 i61 i62 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent i72 Isobutyl nitrate (CH3)2CHCH2ONO2 119.12 1, 377 1.01520 4 1.402820 123 21 i aq; misc alc, eth i73 Isobutyl nitrite (CH3)2CHCH2ONO 103.12 1, 377 0.87022 4 1.371522 67 21 misc alc; sl s aq (dec) i74 Isobutyl propionate C2H5CO2CH2CH(CH3)2 130.19 2, 241 0.8880 4 1.397420 71 137 26 i aq; misc alc i75 Isobutyl stearate CH3(CH2)16CO2CH2CH(CH3)2 340.57 ca. 20 i76 Isobutyltriethoxy-silane (CH3)2CHCH2Si(OC2H5)3 220.39 0.880 1.40020 190–191 60 i77 Isobutyltrimethoxy-silane (CH3)2CHCH2Si(OCH3)3 178.30 0.930 1.396020 137 39 i78 Isobutyl vinyl ether (CH3)2CHCH2OCH"CH2 100.16 13, 1862 0.770220 20 1.395020 112 83.4 13 0.2 aq i79 Isobutyraldehyde (CH3)2CHCHO 72.11 1, 671 0.798820 4 1.372320 65.9 64.5 18 (CC) 11 aq; misc alc, bz, acet, chl, eth i80 Isobutyramide (CH3)2CHCONH2 87.12 2, 293 1.013 127–129 216–220 i81 Isobutyric acid (CH3)2CHCO2H 88.11 2, 288 0.968120 1.392520 46 154 56 17 aq; misc alc, chl, eth i82 Isobutyric anhydride [(CH3)2CHCO]2O 158.20 2, 292 0.954 1.406220 56 182 59 i83 Isobutyronitrile (CH3)2CHCN 69.11 2, 294 0.770420 1.372020 71.5 104 8 v s alc, eth; sl s aq i84 Isobutyrophenone C6H5COCH(CH3)2 148.21 7, 316 0.98820 1.5172 217 84 i85 Isobutyryl chloride (CH3)2CHCOCl 106.55 2, 293 1.017 1.407320 90 91–93 1 dec aq, dec alc; s eth i86 Isodecyl acrylate H2C"CHCO2C10H21 212.34 0.875 1.442020 12110mm 106 i87 Isodecyl methacrylate H2C"C(CH3)CO2C10H21 226.36 0.878 1.443020 12610mm 110 i88 L-Isoleucine C2H5CH(CH3)CH(NH2)CO2H 131.18 4, 454 288 dec subl 168 4 aq; sl s hot alc i89 Isooctyl acrylate H2C"CHCO2C8H17 184.25 0.880 1.437020 12520mm 80 i90 Isooctyl diphenyl phosphite (C6H5O)2POC8H17 346.41 1.045 1.522020 188 i91 Isopentyl acetate CH3CO2CH2CH2CH(CH3)2 130.19 2, 132 0.87615 4 1.400720 78.5 142 25 0.25 aq; misc alc, eth i92 Isopentyl nitrite ONOCH2CH2CH(CH3)2 117.15 1, 402 0.872 1.386020 99 10 misc alc, eth; sl s aq i93 Isophorone 138.21 7, 65 0.95520 1.475920 8.1 215.2 84 1.2 aq i94 Isophorone diiso-cyanate 222.29 1.049 1.484120 15915mm 110 i95 Isopropenyl acetate CH3CO2C(CH3)"CH2 100.12 22, 278 0.909 1.400520 94 18 i96 3-Isopropenyl-,-di-methylbenzyl iso-cyanate H2C"C(CH3)C6H4C(CH3)2NCO 201.27 1.108 1.530020 268–271 110 i97 2-Isopropoxyethanol (CH3)2CHOCH2CH2OH 104.15 12, 519 0.903 1.410420 4413mm 45 1.248 i98 3-Isopropoxypropyl-amine (CH3)2CHO(CH2)3NH2 117.19 43, 739 0.845 1.419520 7985mm 39 i99 Isopropyl acetate (CH3)2CHO2CCH3 102.13 2, 130 0.871820 1.377020 73 89 2 3 aq; misc alc, eth i100 Isopropylamine (CH3)2CHNH2 59.11 4, 152 0.68625 4 1.371125 95 31.7 37 misc aq, alc, eth i101 2-Isopropylaniline (CH3)2CHC6H4NH2 135.2 12, 1147 0.955 1.547720 222 95 i102 4-Isopropyl-benzaldehyde (CH3)2CHC6H4CHO 148.21 7, 318 0.977 1.529820 236 93 i103 Isopropylbenzene (CH3)2CHC6H5 120.20 5, 393 0.86420 4 1.491520 96 152–154 36 s alc, bz, eth i104 4-Isopropylbenzyl alcohol (CH3)2CHC6H4CH2OH 150.22 6, 543 0.98215 1.520620 28 248.4 110 misc alc, eth; i aq i105 N-Isopropylbenzyl-amine C6H5CH2NHCH(CH3)2 149.24 0.892 1.502520 200 87 i106 Isopropyl butyrate CH3CH2CH2CO2CH(CH3)2 130.19 2, 271 0.859 1.393220 131 30 i107 Isopropyl chloro-acetate ClCH2CO2CH(CH3)2 136.58 2, 198 1.096 1.419020 149–150 70 i108 Isopropylcyclohexane C6H11CH(CH3)2 126.24 5, 41 0.802320 4 1.439920 90 155 35 v s alc, eth 1.249 Isobutyl octadecanoate, i75 Isobutyraldehyde, m389 Isobutyric acid, m402 Isocapronitrile, m361 Isocinchomeronic acid, p269 Isocrotonic acid, b483 Isocumene, p225 5-Isocyanato-1-(isocyanatomethyl)-1,3,3-trimethylcyclohexane, i94 Isodurene, t98 Isoeugenol, m108 Isohexane, m357 Isoleucinol, a211 Isomesityl oxide, m370 Isonicotinaldehyde, p263 Isonicotinic acid, p267 Isonicotinonitrile, c330 Isooctane, t381 Isopentane, m158 Isopentyl alcohol, m163 Isopentyl isopentanoate, m177 Isopentyl isovalerate, m177 Isophorone, t364 Isophthalic acid, b17 Isophthalonitrile, d283 Isophthaloyl dichloride, b15 Isoprene, m157 Isopropanolamine, a263 Isopropenyl acetate, p207 Isopropenylacetylene, m174 Isopropenyl methyl ether, m106 Isopropylacetylene, m178 Isopropylacrylic acid, m369 Isopropyl alcohol, p202 Isopropyl bromide, b401 Isopropyl chloride, c226 Isopropyl cyanide, i83 Isopropylethanol, m164 Isopropyl ether, d476 Isopropylethylene, m167 i93 i94 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent i109 Isopropyl hexadecanoate CH3(CH2)14CO2CH(CH3)2 298.51 22, 336 0.862 1.438520 110 i110 4,4-Isopropylidene-bis(2,6-dibromo-phenoxy)ethanol (CH3)2C[C6H2(Br)2OCH2CH2OH]2 632.01 107 i111 4,4-Isopropylidene-bis(diisodecyl phenyl phosphite) [(C10H21O)2POC6H4]2C(CH3)2 917.34 0.964 1.498020 336 110 i112 4,4-Isopropylidene-dicyclohexanol (CH3)2C(C6H10OH)2 240.39 62, 761 23414mm 110 i113 4,4-Isopropylidene-diphenol (CH3)2C(C6H4OH)2 228.29 6, 1011 137–140 2204mm i114 2-Isopropylimidazole 110.16 23, 83 129–131 256–260 i115 Isopropyl isocyanate (CH3)2CHCNO 85.11 4, 155 0.866 1.382520 74–75 2 i116 Isopropyl S-()-lactate (CH3)2CHO2CCH(OH)CH3 132.16 3, 282 0.99820 20 1.408225 166–168 57 s aq, alc, eth i117 2-Isopropyl-6-methyl-aniline (CH3)2CHC6H3(CH3)NH2 149.24 0.957 1.544020 41 i118 2-Isopropyl-1-methyl-benzene (CH3)2CHC6H4CH3 134.21 5, 419 0.876620 4 1.500620 71.5 178.2 misc alc, eth i119 3-Isopropyl-1-methyl-benzene (CH3)2CHC6H4CH3 134.21 5, 419 0.861020 4 1.493020 63.8 175.1 misc alc, eth i120 4-Isopropyl-1-methyl-benzene (CH3)2CHC6H4CH3 134.21 5, 420 0.857320 4 1.490920 68.9 177.1 47 misc alc, eth i121 2-Isopropyl-5-methyl-phenol (CH3)2CHC6H3(CH3)OH 150.22 6, 532 0.92580 4 51.5 232.5 i aq; v s alc, chl, eth i122 4-Isopropyl-3-methyl-phenol (CH3)2CHC6H3(CH3)OH 150.22 62, 491 111–114 i123 5-Isopropyl-3-methyl-phenol (CH3)2CHC6H3(CH3)OH 150.22 6, 526 51 110 i124 Isopropyl nitrate (CH3)2CHONO2 105.09 1, 363 1.03619 19 1.39120 102 12 i125 Isopropyl nitrite (CH3)2CHONO 89.09 Merck: 12, 5235 0.84425 4 1.352020 39752mm i126 1-Isopropyl-4-nitro-benzene (CH3)2CHC6H4NO2 165.19 52, 308 1.090 1.538020 10711mm 110 1.250 i127 2-Isopropylphenol (CH3)2CHC6H4OH 136.19 6, 504 1.01220 1.525920 15–16 212–213 88 misc alc, eth i128 3-Isopropylphenol (CH3)2CHC6H4OH 136.19 6, 505 0.994 1.525020 25 228 104 i129 4-Isopropylphenol (CH3)2CHC6H4OH 136.19 6, 505 0.99020 59–61 212 316 alc; 350 eth i130 4-Isopropylpyridine (CH3)2CH(C5H4N) 121.18 20, 248 0.938 1.498020 173 66 i131 Isopropyl tetra-decanoate (CH3)2CHO2C(CH2)12CH3 270.46 23, 923 0.850 1.435020 ca. 3 19320mm 110 s caster oil, cottonseed oil, acet, EtOAc, EtOH, toluene, min-eral oil i132 Isopulegol 154.25 6, 65 0.912 1.472520 9112mm 78 v sl s aq i133 Isoquinoline 129.16 20, 380 1.091030 4 1.620830 26.5 243.5 107 sl s aq; s acid k1 Ketene H2C"C"O 42.04 1, 724 151 49.8 s acet, eth; dec aq k2 8-Ketotricyclo-[5.2.1.02,6]decane 150.22 72, 133 1.063 1.502020 13230mm 101 L1 DL-Lactic acid CH3CH(OH)CO2H 90.08 3, 268 1.24915 4 16.8 12214mm 110 s aq, alc; i chl, PE L2 L-()-Lactic acid CH3CH(OH)CO2H 90.08 3, 261 1.206025 4 1.427020 53 11912mm 110 v s aq, alc, eth L3 -Lactose 342.32 31, 408 202 20 aq; v sl s alc 1.251 Isopropylidone acetone, m370 Isopropyl iodide, i49 Isopropyl mercaptan, p199 1-Isopropyl-4-methyl-1,3-cyclohexadiene, t10 2-Isopropyl-5-methylcyclohexanol, m12 1-Isopropyl-4-methyl-1,4-cyclohexadiene, t11 Isopropyl methyl ketone, m165 Isopropyl myristate, i131 Isopropyl palmitate, i109 Isopropyltoluenes, i118, i119, i120 Isopseudocumenol, t385 Isovaleraldehyde, m181 Isovaleric acid, m184 Isovaleronitrile, m185 Isovaleryl chloride, m186 Itaconic acid, m253 i114 i132 i133 k2 Keto-, see oxo-2-Ketobutyric acid, o60 5-Keto-1,7,7-trimethylnorcamphane, c3 4-Ketovaleric acid, o63 Lactonitrile, h172 L3 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent L4 -Lactose 342.32 31, 408 1.52520 202 45 aq; i alc, eth L5 DL-Leucine (CH3)2CHCH2CH(NH2)CO2H 131.18 4, 447 dec 332 subl 293 1 aq; 0.13 alc; i eth L6 L-Leucine (CH3)2CHCH2CH(NH2)CO2H 131.18 4, 437 1.29318 293 dec subl 145 2.4 aq25; 0.07 alc; 1 HOAc; i eth L7 R-()-Limonene 136.24 5, 133 0.841120 4 1.4730 96.5 178 49 misc alc, eth L8 S-()-Limonene 136.24 5, 136 0.84120 4 1.474620 96.5 178 48 misc alc, eth L9 ()-Limonene oxide 152.24 17, 44 0.929 1.466120 11450mm 65 L10 Linalool 154.25 1, 462 0.86515 1.461520 197720mm 76 misc alc, eth L11 Linalyl acetate 196.29 2, 141 0.89520 4 1.446020 220 90 misc alc, eth L12 S-()-Lysine H2N(CH2)4CH(NH2)CO2H 146.19 4, 435 212 dec v s aq; sl s alc; i eth 1.252 m1 Maleic acid HO2CH"CHCO2H 116.07 2, 748 1.590 130.5 70 aq; 70 alc; s acet, HOAc; sl s eth m2 Maleic anhydride 98.06 17, 432 1.48 52.8 202 103 s aq (to acid), alc (to ester); 227 acet; 53 chl; 50 bz; 112 EtOAc m3 Malonic acid HO2CCH2CO2H 104.06 2, 566 1.63 135–137 154 aq; 42 alc; 8 eth; 14 pyr m4 Malonodiamide H2NCOCH2CONH2 102.09 2, 582 172–175 9 aq; i alc, eth m5 Malononitrile NCCH2CN 66.06 2, 589 1.191020 4 1.414634 32–34 220 112 13 aq, 40 alc; 20 eth m6 Malonyl dichloride ClCOCH2COCl 140.95 21, 252 1.448619 4 1.462020 5519mm 47 dec hot aq; s eth m7 D-()-Maltose hydrate 360.32 31, 386 1.54017 119–121 dec 130 v s aq; sl s alc; i eth m8 DL-Mandelic acid C6H5CH(OH)CO2H 152.15 10, 192 1.30020 4 120–122 16 aq; 100 alc; s eth m9 Mandelonitrile C6H5CH(OH)CN 133.15 10, 193 1.117 1.531520 10 170 97 v s alc, cho, eth; i aq m10 Mannitol 182.17 1, 534 1.5220 166–168 2903.5mm 18 aq; 1.2 alc; i eth m11 D-()-Mannose 180.16 31, 284 1.5420 128–130 250 aq; 28 pyr; 0.8 alc m12 ()-Menthol 156.27 6, 28 0.89015 15 1.45825 41–43 212 93 v s alc, chl, eth, PE m13 ()-Menthone 154.25 7, 38 0.89520 4 1.451020 6 207 72 misc alc, eth; sl s aq m14 S-()-Menthyl acetate 198.31 6, 32 1.448020 229–230 77 1.253 Lauraldehyde, d817 Lauric acid, d809 Lauryl alcohol, d810 Laurylamine, d818 Lauryl bromide, b327 Lauryl mercaptan, d808 Lauryl methacrylate, d819 Lauryl sulfate, d820 Lepidine, m421 Leucinol, a212 Levulinic acid, o63 Limonene, m313a Linoleic acid, o1 Linolenic acid, o7 Luminol, a151 2,6-Lupetidine, d672 -Lutidine, e257 Lutidines, d685 thru d689 Malonic acid diamide, m4 Malonylurea, b1 Margaryl alcohol, h1a Mellitic acid, b20 MEM chloride, m74 Menadione, m321 1,8-Mentanediamine, d51 p-Mentha-1,8-diene, L17, L18 p-Mentha-6,8-dien-2-one, c20 Mercaptobenzene, t156 L4 L7, L8 L9 L11 m7 m10 m11 m12 m13 m14 Maleic hydrazide, d447 Malic acid, h186, h187 Malonaldehyde bis(dimethyl acetal), t92 Malonamide nitrile, c319 L10 m2 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent m15 Menthyl anthranilate 275.40 143, 885 1.040 1.542020 1793mm 110 m16 Mercaptoacetic acid HSCH2CO2H 92.12 3, 245 1.325 1.503020 16.5 965mm 110 misc aq, alc, bz, eth m17 2-Mercaptobenz-imidazole 150.20 24, 119 301–305 sl s aq; s alc m18 2-Mercaptobenzoic acid HSC6H4CO2H 154.19 10, 125 165–168 v s alc, HOAc m19 2-Mercaptobenzo-thiazole 167.25 27, 185 1.4220 4 180–181 dec 2 alc; 1 eth; 10 acet; 1 bz; s alk; i aq m20 2-Mercaptoethanol HSCH2CH2OH 78.13 1, 470 1.114320 4 1.500620 156.9 73 misc aq, alc, bz, eth m21 3-Mercapto-1,2-propanediol HSCH2CH(OH)CH2OH 108.16 1, 519 1.29514 14 1.524320 1185mm 110 misc alc; v s acet m22 2-Mercaptopropionic acid CH3CH(SH)CO2H 106.14 3, 289 1.22015 4 1.480920 10–14 10216mm 87 misc aq, alc, eth, acet m23 3-Mercaptopropionic acid HSCH2CH2CO2H 106.14 3, 299 1.218 1.491120 17–19 11115mm 93 m24 (3-Mercaptopropyl)-trimethoxysilane HS(CH2)3Si(OCH3)3 196.34 1.03920 4 1.444020 198 48 m25 Mercaptosuccinic acid HO2CCH2CH(SH)CO2H 150.15 3, 439 5–7 50 aq; 50 alc; s eth m26 2-Mercaptothiazoline 119.21 27, 140 105–107 m27 Methacrylaldehyde H2C"C(CH3)CHO 70.09 1, 731 0.847 1.416020 81 69 15 6 aq; misc alc, eth m28 Methacrylamide H2C"C(CH3)CONH2 85.11 22, 399 109–111 s alc; sl s eth m29 Methacrylic acid H2C"C(CH3)CO2H 86.09 2, 421 1.015320 4 1.431420 16 163 77 9 aq; misc alc, eth m30 Methacrylic anhydride [H2C"C(CH3)CO]2O 154.17 23, 1293 1.035 1.453020 8713mm 84 m30a Methacrylonitrile H2C"C(CH3)CN 67.91 2, 423 0.800120 4 1.400720 35.8 90.3 1.1 2.6 aq; misc acet, bz m31 Methacryloyl chloride H2C"C(CH3)COCl 104.54 22, 394 1.070 1.442020 95–96 2 m32 Methallylidene diacetate (CH3CO2)2CHC(CH3)"CH2 172.18 24, 292 1.039 1.424520 15 191 83 m33 Methane CH4 16.04 1, 56 0.7168 g/L 0.4240bp 182.5 161.5 3.3 mL aq; 47 mL alc m34 Methanesulfonic acid CH3SO3H 96.10 4, 4 1.481218 4 1.430320 20 16710mm 110 1.5 bz; misc aq m35 Methanesulfonic anhydride (CH3SO2)2O 174.19 4, 5 71 13810mm v s aq (dec) m36 Methanesulfonyl chloride CH3SO2Cl 114.55 4, 5 1.480518 4 1.451820 32 161 110 s alc, eth 1.254 m37 Methanethiol CH3SH 48.11 1, 288 1.966 g/L 123 6.0 2.3 aq; v s alc, eth m38 Methanol CH3OH 32.04 1, 273 0.791320 4 1.328420 97.7 64.7 11 misc aq, alc, bz, chl, eth m39 Methanol-d CH3OD 33.05 13, 1186 0.812720 4 1.327020 110 65.5 11 misc aq, alc, eth m40 Methanol-d4 CD3OD1 36.07 13, 1187 0.888 1.325620 65.4 11 misc aq, alc, eth m41 Methanol-13C 13CH3OH 33.03 13, 1187 0.815 1.329020 97.8 64 12 m42 DL-Methionine CH3SCH2CH2CH(NH2)CO2H 149.21 42, 938 1.340 281 dec 3 aq; i eth; v sl s alc m43 Methoxyacetic acid CH3OCH2CO2H 90.08 3, 232 1.174 1.415820 202–204 110 misc aq, alc, eth m44 2-Methoxyacet-ophenone CH3OC6H4COCH3 150.18 8, 85 1.09020 4 1.539320 13118mm 108 m45 3-Methoxyacet-ophenone CH3OC6H4COCH3 150.18 8, 86 1.094 1.541020 239–241 110 s aq m46 4-Methoxyacet-ophenone CH3OC6H4COCH3 150.18 8, 87 1.08241 4 1.5335 36–38 15426mm 110 v s alc, eth m47 3-Methoxyacrylonitrile CH3OCH"CHCN 83.09 0.990 1.455020 76 m48 2-Methoxyaniline CH3OC6H4NH2 123.16 13, 358 1.09815 15 1.573020 5–6 225 98 i aq; misc alc, eth m49 3-Methoxyaniline CH3OC6H4NH2 123.16 13, 404 1.096 1.579420 10 251 110 s alc, acid; sl s aq m50 4-Methoxyaniline CH3OC6H4NH2 123.16 13, 435 1.087 57–60 240–243 v s alc; sl s aq 1.255 Mesidine, t335 Mesitol, t387 Mesitylene, t359 Mesityl oxide, m370 Mesoxylurea, a73 Mesyl chloride, m36 Metanilic acid, a116 Methacholine chloride, a49 Methacrolein, m27 Methacrolein diacetate, m32 Methallyl alcohol, m400 Methallyl chloride, c182 Methanal, f31 Methanoic acid, f36 Methenamine, h49 Malononitrile dimer, a267 Methone, d596 Methoxyacetaldehyde dimethyl acetal, t340 m17 m19 m26 m15 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent m51 2-Methoxybenz-aldehyde CH3OC6H4CHO 136.15 8, 43 1.127 1.56020 37–39 238 117 sl s alc, bz; i eth m52 3-Methoxybenz-aldehyde CH3OC6H4CHO 136.15 8, 59 1.119 1.553320 14350mm 110 m53 4-Methoxybenz-aldehyde CH3OC6H4CHO 136.15 8, 67 1.119 1.571320 1 248 108 misc alc m54 4-Methoxybenzamide CH3OC6H4CONH2 151.17 102, 100 164–167 295 108 s aq; v s alc; sl s eth m55 Methoxybenzene CH3OC6H5 108.14 6, 138 0.994220 1.517020 37.5 153.8 51 1 aq; misc alc, eth m56 4-Methoxybenzene-sulfonyl chloride CH3OC6H4SO2Cl 206.65 11, 243 40–43 110 dec aq; s alc, eth m57 2-Methoxybenzoic acid CH3OC6H4CO2H 152.15 10, 64 1.180 100 200 0.5 aq; v s alc, eth m58 3-Methoxybenzoic acid CH3OC6H4CO2H 152.15 10, 137 104 17210mm s hot aq, alc, eth m59 4-Methoxybenzoic acid CH3OC6H4CO2H 152.15 10, 154 1.3854 185 275–280 0.04 aq; v s alc, chl m60 4-Methoxybenzoyl chloride CH3OC6H4COCl 170.60 10, 163 1.581020 22 14514mm 87 i aq (dec); s alc (dec); s acet, bz m61 4-Methoxybenzyl alcohol CH3OC6H4CH2OH 138.17 6, 897 1.10925 4 1.544220 23–25 259 110 i aq; s alc, eth m62 4-Methoxybenzylamine CH3OC6H4CH2NH2 137.18 13, 606 1.05015 1.546220 236–237 110 v s aq, alc, eth m63 2-Methoxybiphenyl CH3OC6H4C6H5 184.24 6, 672 1.023 1.610520 30–33 274 110 m64 3-Methoxy-1-butanol CH3OCH(CH3)CH2CH2OH 104.15 0.922920 20 1.414520 85 161.1 46 misc aq m65 4-Methoxy-3-buten-2-one CH3OCH"CHCOCH3 100.12 0.982 1.468020 200 63 m66 2-Methoxycinnam-aldehyde CH3OC6H4CH"CHCHO 162.19 44–48 1300.6mm 110 m67 1-Methoxy-1,4-cyclo-hexadiene 110.16 63, 367 0.940 1.481920 148–150 36 m68 2-Methoxydibenzo-furan 198.22 173, 1590 42–45 110 m69 7-Methoxy-3,7-dimethyloctanal (CH3)2C(OCH3)(CH2)3-CH(CH3)CH2CHO 186.30 0.877 1.437420 600.45mm 98 m70 2-Methoxy-1,3-dioxolane 104.11 194, 617 1.092 1.409120 129–130 31 1.256 m71 2-Methoxyethanol CH3OCH2CH2OH 76.10 1, 467 0.964620 1.402120 85.1 124 39 misc aq m72 2-(2-Methoxyethoxy)-acetic acid CH3OCH2CH2OCH2CO2H 134.13 33, 374 1.180 1.438020 245–250 110 m73 2-(2-Methoxyethoxy)-ethanol CH3OCH2CH2OCH2CH2OH 120.15 1.03520 4 1.426420 50 194 96 misc aq, alc, bz, eth, ketones m74 2-Methoxyethoxy-methyl chloride CH3OCH2CH2OCH2Cl 124.57 1.091 1.427020 5013mm 110 m75 2-Methoxyethyl acetate CH3CO2CH2CH2OCH3 118.13 2, 141 1.004920 1.400220 70 144 49 misc aq m76 2-Methoxyethyl acetoacetate CH3COCH2CO2CH2CH2OCH3 160.17 1.090 1.433920 12020mm 103 m77 2-Methoxyethylamine CH3OCH2CH2NH2 75.11 42, 718 0.864 1.405420 95 9 v s aq, alc m78 2-Methoxyethyl cyanoacetate CH3OCH2CH2O2CCH2CN 143.14 24, 1891 1.127 1.434020 1001mm 110 m79 1-Methoxy-2-indanol 164.20 6, 970 1.128 1.548220 14611mm 110 m80 2-Methoxy-5-methyl-aniline CH3OC6H3(CH3)NH2 137.18 132, 388 52–54 235 110 s aq; v s alc, bz, eth m81 4-Methoxy-2-methyl-aniline CH3OC6H3(CH3)NH2 137.18 132, 330 1.065 1.564720 13–14 248–249 110 s alc m82 3-Methoxy-3-methyl-1-butanol CH3OC(CH3)2CH2CH2OH 118.18 13, 2198 0.926 1.428020 173–175 71 m83 2-Methoxy-1-methyl-ethyl cyanoacetate NCCH2CO2CH(CH3)CH2OCH3 157.17 1.030 1.431020 1052mm 62 m84 2-Methoxy-4-methyl-phenol CH3OC6H3(CH3)OH 138.17 6, 878 1.092 1.537220 5 222 99 m85 5-Methoxy-2-methyl-4-nitroaniline CH3OC6H3(CH3)(NO2)NH2 182.18 133, 1575 168–170 m86 1-Methoxy-2-methyl-propylene oxide (CH3)2C9CH(OCH3) O 102.13 173, 1035 0.904 1.392920 94 6 m87 1-Methoxynaphthalene C10H7OCH3 158.20 6, 606 1.090 1.622020 13512mm 110 1.257 Methoxyethane, e210 2-Methoxyethoxychloromethane, m74 m67 m68 m70 m79 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent m88 2-Methoxynaphthalene C10H7OCH3 158.20 6, 640 73–75 274 s bz, eth, CS2 m89 2-Methoxy-4-nitro-aniline CH3OC6H3(NO2)NH2 168.15 13, 390 140–142 m90 2-Methoxy-5-nitro-aniline CH3OC6H3(NO2)NH2 168.15 13, 389 117–119 s alc, hot bz, HOAc m91 4-Methoxy-2-nitro-aniline CH3OC6H3(NO2)NH2 168.15 13, 521 123–126 sl s aq; s alc, eth m92 2-Methoxynitro-benzene CH3OC6H4NO2 153.14 6, 217 1.252720 4 1.516120 10.5 277 110 0.17 aq; s alc, eth m93 4-Methoxy-3-nitro-benzoic acid CH3OC6H3(NO2)CO2H 197.15 10, 181 192–194 m94 2-Methoxy-5-nitro-pyridine CH3O(C5H3N)NO2 154.13 213, 33 108–109 m95 4-Methoxy-2-nitro-toluene CH3OC6H3(NO2)CH3 167.16 6, 411 1.207 1.552520 17 267 110 m96 4-Methoxyphenethyl-amine CH3OC6H3CH2CH2NH2 151.21 13, 626 1.033 1.537920 14020mm 110 m97 2-Methoxyphenol CH3OC6H4OH 124.14 6, 768 1.112(lg) 1.5429 28 205 82 1.5 aq; misc alc, eth m98 3-Methoxyphenol CH3OC6H4OH 124.14 6, 813 1.131 1.551020 17.5 1155mm 110 misc alc, eth; sl s aq m99 4-Methoxyphenol CH3OC6H4OH 124.14 6, 843 55–57 243 110 v s bz; s alk m100 3-(4-Methoxy-phenoxy)-1,2-propanediol CH3OC6H4OCH2CH(OH)CH2OH 198.22 63, 4411 76–80 m101 4-Methoxyphenyl-acetic acid CH3OC6H4CH2CO2H 166.18 10, 190 86–88 1403mm 1 aq; v s alc; s eth m102 2-Methoxyphenyl-acetone CH3OC6H4CH2OCH3 164.20 83, 397 1.054 1.525020 13010mm 110 s alc, eth m103 2-(Methoxyphenyl)-acetonitrile CH3OC6H4CH2CN 147.18 10, 188 65–68 14315mm s hot bz m104 4-(Methoxyphenyl)-acetonitrile CH3OC6H4CH2CN 147.18 10, 191 1.085 1.530020 286–287 110 m105 1-Methoxy-2-propanol CH3OCH2CH(OH)CH3 90.12 12, 536 0.91920 20 1.402121 97 120.1 33 misc aq, acet, bz, eth m106 2-Methoxypropene CH3C(OCH3)"CH2 72.11 1, 435 0.735 1.382020 34–36 29 1.258 m107 trans-1-Methoxy-4-(1-propenyl)benzene CH3OC6H4CH"CHCH3 148.21 6, 566 0.988320 4 1.561520 21.4 237 90 misc chl, eth; 50 alc; s bz, EtOAc m108 2-Methoxy-4-propenyl-phenol CH3OC6H3(OH)CH"CHCH3 164.20 6, 955 1.08720 4 1.574820 10 266 112 misc alc, eth; sl s aq m109 2-Methoxy-4-(2-propenyl)phenol CH3OC6H3(OH)CH2CH"CH2 164.20 6, 961 1.066420 4 1.540820 9.2 255 112 misc alc, chl, eth; s HOAc, alk; i aq m110 3-Methoxypropionitrile CH3OCH2CH2CN 85.11 31, 113 0.937 1.403020 165 61 m111 4-Methoxypropio-phenone CH3OC6H4COCH2CH3 164.20 8, 103 1.071 1.546520 27–29 274 61 m112 3-Methoxypropylamine CH3O(CH2)3NH2 89.14 43, 739 0.874 1.417520 118733mm 22 m113 2-Methoxypyridine CH3O(C5H4N) 109.13 21, 44 1.038 1.502929 142 32 misc aq m114 6-Methoxy-1,2,3,4-tetrahydro-naphthalene 162.23 62, 537 1.033 1.540220 901mm 110 m115 6-Methoxy-1-tetralone 176.22 92, 889 77–79 17111mm m116 2-Methoxytoluene CH3OC6H4CH3 122.17 6, 352 0.985115 15 1.516120 170–172 51 i aq; v s alc, eth m117 3-Methoxytoluene CH3OC6H4CH3 122.17 6, 376 0.969725 25 1.513120 175–176 54 s alc, bz, eth; i aq m118 4-Methoxytoluene CH3OC6H4CH3 122.17 6, 392 0.96925 25 1.511220 174 53 s alc, eth; i aq m119 Methoxytrimethyl-silane CH3OSi(CH3)3 104.23 43, 1856 0.756020 4 1.367820 57–58 30 m120 N-Methylacetamide CH3CONHCH3 73.10 4, 58 0.946035 1.425335 30.6 206 108 s aq m121 4-Methylacetanilide CH3OCONHC6H4CH3 149.19 12, 920 150 307 m122 Methyl acetate CH3CO2CH3 74.08 2, 224 0.934220 4 1.361920 98 57 10 (CC) 24 aq; misc alc, eth m123 Methyl acetoacetate CH3COCH2CO2CH3 116.12 3, 632 1.075720 1.418620 27.5 171.7 77 50 aq; misc alc m124 4-Methylaceto-phenone CH3C6H4COCH3 134.18 7, 307 1.0051 1.532820 22–24 226 92 i aq; v s alc, eth 1.259 -Methoxy--phenylacetophenone, b49 3-Methoxypropionaldehyde dimethyl acetal, t341 6-Methoxytetralin, m114 m114 m115 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent m125 Methyl 4-acetoxy-benzoate CH3CO2C6H4CO2CH3 194.19 10, 159 82–84 m126 Methyl acrylate H2C"CHCO2CH3 86.09 2, 399 0.954120 4 1.404020 76.5 80.2 3 (CC) 6 aq; s alc, eth m127 Methylamine CH3NH2 31.06 4, 32 0.69911 4 93.5 6.3 0 959 mL aq; 10.5 bz m128 1-(Methylamino)-anthraquinone 237.26 14, 179 170–172 m129 Methyl 2-amino-benzoate H2NC6H4CO2CH3 151.17 14, 317 1.16819 4 1.582020 24 256 104 sl s aq; v s alc, eth m130 Methyl 3-amino-crotonate CH3C(NH2)"CHCO2CH3 115.13 3, 632 81–83 m131 2-(Methylamino)-ethanol CH3NHCH2CH2OH 75.11 4, 276 0.93720 1.438720 159 72 misc aq, alc, eth m132 4-Methylaminophenol sulfate (CH3NC6H4OH)2 · H2SO4 344.39 13, 441 260 dec 4 aq; sl s alc; i eth m133 Methyl 2-(amino-sulfonyl)benzoate H2HSO2C6H4CO2CH3 215.23 11, 377 126–128 m134 N-Methylaniline C6H5NHCH3 107.16 12, 135 0.98920 4 1.568420 57 196 78 sl s aq; s alc, eth m135 N-Methylanilinium trifluoroacetate C6H5NHCH3 · HO2CCF3 221.18 65–66 m136 2-Methyl-anthraquinone 222.24 7, 809 170–173 v s bz; s alc, eth m137 Methylarsonic acid CH3AsO(OH)2 139.96 4, 613 161 v s aq; s alc m138 4-Methylbenzaldehyde CH3C6H4CHO 120.15 7, 297 1.019417 4 1.544720 205 80 misc alc, eth; sl s aq m139 Methyl benzene-sulfonate C6H5SO2OCH3 172.20 112, 20 1.28890 4 1.515120 4 15420mm v s alc, chl, eth m140 2-Methylbenzimida-zole 132.17 23, 145 176–177 s alk, hot aq; sl s alc m141 Methyl benzoate C6H5CO2CH3 136.15 9, 109 1.093315 4 1.520515 15 199.5 83 0.2 aq; misc alc, eth m142 2-Methylbenzoic acid CH3C6H4CO2H 136.15 9, 462 1.062 103.7 258–259 sl s aq; v s alc m143 3-Methylbenzoic acid CH3C6H4CO2H 136.15 9, 475 1.054 111–113 263 0.09 aq; v s alc m144 4-Methylbenzoic acid CH3C6H4CO2H 136.15 9, 483 180 274–275 v s alc, eth m145 4-Methylbenzo-phenone CH3C6H4COC6H5 196.25 7, 440 57 326 v s bz, eth m146 2-Methylbenzothiazole 149.22 27, 46 1.173 1.617020 12–14 238 102 s alc, HOAc; i aq 1.260 m147 2-Methylbenzoxazole 133.15 27, 46 1.121 1.549720 8–10 178 75 m148 -Methylbenzyl acetate CH3CO2CH(CH3)C6H5 164.20 6, 476 1.028 1.494520 9512mm 91 m149 -Methylbenzyl alcohol C6H5CH(CH3)OH 122.17 6, 475 1.019113 4 1.526520 20 204745mm 85 v s alc; s bz, chl m150 2-Methylbenzyl alcohol CH3C6H4CH2OH 122.17 6, 484 1.540820 33–36 11014mm 104 5 aq; 5 alc; s eth m151 ()--Methylbenzyl-amine C6H5CH(CH3)NH2 121.18 12, 1094 0.940 1.526020 185 79 4.2 aq; misc alc, eth m152 4-Methylbenzylamine CH3C6H4CH2NH2 121.18 12, 1141 0.952 1.534020 12–13 195 75 m153 Methylbis(trimethyl-silyloxy)vinyl ether CH3Si[OSi(CH3)2]CH"CH2 148.55 44, 4184 0.864 1.397020 488.8mm 51 m154 Methyl bromoacetate BrCH2CO2CH3 152.98 2, 213 1.616 1.458620 5215mm 62 s alc m155 ()-Methyl 2-bromo-butyrate CH3CH2CH(Br)CO2CH3 181.04 2, 282 1.573 1.45220 13850mm 68 m156 Methyl 2-bromo-propionate CH3CH(Br)CO2CH3 167.01 2, 253 1.497 1.542020 5119mm 51 s alc m157 2-Methyl-1,3-butadiene H2C"C(CH3)CH"CH2 68.12 1, 252 0.68120 4 1.421620 146.0 34.1 53 misc alc, eth 1.261 Methylal, d507 Methyl alcohol, m38 Methylallene, b448 Methylaminoacetaldehyde dimethyl acetal, d508 -(1-Methylaminoethyl)benzyl alcohol, e2 Methylanilines, t180 thru t182 Methyl o-anisate, m304 Methyl p-anisate, m305 2-Methyl-p-anisidine, m80 5-Methyl-o-anisidine, m81 Methylanisoles, m116 thru m118 Methyl anthranilate, m129 Methylanthranilic acid, a207, a208 Methylbenzene, t166 4-Methylbenzenesulfonic acid, t176 Methyl benzilate, m239 2-Methylbenzonitrile, t184 4-Methylbenzonitrile, t185 o-Methylbenzyl alcohol, p109 N-Methylbenzylamine, b108 Methylbenzyl bromide, b343, b344 Methylbenzyl chlorides, c269 thru c271 Methylbis(2-chloroethoxy)silane, b162 N-Methylbis(2-chloroethyl)amine, b164 Methyl bromide, b225 m128 m136 m140 m146 m147 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent m158 2-Methylbutane CH3CH2CH(CH3)2 72.15 1, 134 0.619720 1.353720 159.9 27.8 56 0.005 aq; misc alc m159 2-Methyl-1-butenethiol CH3CH2CH(CH3)CH2SH 104.22 12, 421 0.848 1.446520 117 19 s alc, eth; i aq m160 2-Methyl-2-butanethiol CH3CH2C(CH3)2SH 104.22 11, 196 0.842 1.438520 103.9 99.1 1 s alc, eth; i aq m161 2-Methyl-1-butanol CH3CH2CH(CH3)CH2OH 88.15 1, 388 0.81620 4 1.410020 70 128 43 3 aq; misc alc, eth m162 2-Methyl-2-butanol CH3CH2C(CH3)2OH 88.15 1, 388 0.809620 1.405020 9.0 102.0 21 11 aq; misc alc, bz, chl, eth m163 3-Methyl-1-butanol (CH3)2CHCH2CH2OH 88.15 1, 392 0.812915 4 1.408515 117 131 45 2 aq; misc alc, bz, chl, eth, PE, HOAc m164 3-Methyl-2-butanol (CH3)2CHCH(OH)CH3 88.15 1, 391 0.817920 1.409120 112.9 38 2.8 aq; misc alc, eth m165 3-Methyl-2-butanone (CH3)2CHCOCH3 86.13 1, 682 0.80220 4 1.388020 92 94.3 6 misc alc, eth m165a 2-Methyl-1-butene C2H5C(CH3)"CH2 70.14 1, 211 0.650 1.378020 137.6 31 34 m166 2-Methyl-2-butene CH3CH"C(CH3)2 70.14 1, 211 0.662020 4 1.387820 133.8 38.6 45 misc alc, eth; i aq m167 3-Methyl-1-butene (CH3)2CHCH"CH2 70.14 1, 213 0.627220 4 1.363820 168 20 56 misc alc, eth m168 cis-2-Methyl-2-butenoic acid CH3CH"C(CH3)CO2H 100.12 2, 428 0.98347 4 1.443747 45 185 s alc, eth; v s hot aq m169 trans-2-Methyl-2-butenoic acid CH3CH"C(CH3)CO2H 100.12 2, 430 0.969 1.434281 64 198 s alc, eth; v s hot aq m170 3-Methyl-2-butenoic acid (CH3)2C"CHCO2H 100.12 2, 432 1.00624 69 194–195 s aq, alc, eth m171 2-Methyl-3-buten-2-ol (CH3)2C(OH)CH"CH2 86.13 1, 444 0.824 1.417020 2.6 98–99 13 m172 3-Methyl-2-buten-1-ol (CH3)2C"CHCH2OH 86.13 1, 444 0.848 1.444020 140 43 m173 3-Methyl-3-buten-1-ol H2C"C(CH3)CH2CH2OH 86.13 0.853 1.433720 36 m174 2-Methyl-1-buten-3-yne H2C"C(CH3)C#CH 66.10 11, 126 0.695 1.414020 113 32 6 m175 N-Methylbutylamine CH3CH2CH2CH2NCH3 87.17 4, 157 0.736 1.399520 75 91 1 m176 1-Methylbutylamine CH3CH2CH2CH(CH3)NH2 87.17 4, 177 0.738420 4 1.402920 91 35 misc aq, alc, eth m177 3-Methylbutyl 3-methylbutyrate (CH3)2CHCH2CH2O2CCH2-CH(CH3)2 172.27 2, 312 0.854125 1.410025 190.4 84 misc alc, eth m178 3-Methyl-1-butyne (CH3)2CHC#CH 68.12 1, 251 0.66620 4 1.374020 89.8 26.4 misc alc, eth m179 2-Methyl-3-butyne-2-ol (CH3)2C(OH)C#CH 84.12 11, 235 0.867220 20 1.420920 2.6 104 25 misc aq, acet, bz m180 2-Methylbutyraldehyde CH3CH2CH(CH3)CHO 86.13 11, 352 0.804 1.391920 90–92 4 m181 3-Methylbutyraldehyde (CH3)2CHCH2CHO 86.13 1, 684 0.78520 20 1.388220 51 92–93 19 misc alc, eth; sl s aq m182 Methyl butyrate CH3CH2CH2CO2CH3 102.13 2, 270 0.89820 4 1.386020 85.8 103 11 1.4 aq; misc alc, eth m183 2-Methylbutyric acid CH3CH2CH(CH3)CO2H 102.13 2, 305 1.405520 176.5 73 1.262 m184 3-Methylbutyric acid (CH3)2CHCH2CO2H 102.13 2, 309 0.930820 4 1.403320 29.3 176.5 70 4 aq; s alc, chl, eth m185 3-Methylbutyronitrile (CH3)2CHCH2CN 83.13 22, 278 0.792519 4 1.392720 101 129 misc alc, eth m186 3-Methylbutyryl chloride (CH3)2CHCH2COCl 120.58 2, 315 0.98520 4 1.416120 115–117 18 dec aq, alc; s eth m187 Methyl carbamate H2NCO2CH3 75.07 3, 21 1.13656 4 56–58 177 220 aq; 73 alc; s eth m188 Methyl chloroacetate ClCH2CO2CH3 108.52 2, 197 1.23820 20 1.422020 32 130 51 i aq; misc alc, eth m189 Methyl 2-chloroaceto-acetate CH3COCH(Cl)CO2CH3 150.56 1.236 1.446520 32.7 137 71 m190 Methyl 4-chloroaceto-acetate ClCH2COCH2CO2CH3 150.56 32, 426 1.305 1.456420 854mm 102 m191 Methyl 3-chloro-benzoate ClC6H4CO2CH3 170.60 9, 338 1.227 1.492320 21 10112mm 104 m192 Methyl-4-chloro-benzoate ClC6H4CO2CH3 170.60 9, 340 1.38220 42–44 106 s alc m193 Methyl 4-chloro-butyrate ClCH2CH2CH2CO2CH3 136.58 2, 278 1.126814 1.432120 175–176 59 v s eth; s alc, acet m194 Methyl chloroformate ClCO2CH3 94.50 3, 9 1.22320 4 1.386520 70–72 17 misc alc, bz, chl, eth m195 Methyl 3-(chloro-formyl)propionate CH3O2CCH2CH2COCl 150.56 22, 553 1.223 1.440220 653mm 73 m196 Methyl 2-chloro-propionate CH3CH(Cl)CO2CH3 122.55 2, 248 1.075 1.419320 132–133 38 s alc m197 2-Methylcinnam-aldehyde C6H5CH"C(CH3)CHO 146.19 7, 369 1.040717 4 1.604520 14927mm 79 m198 Methyl trans-cinnamate C6H5CH"CHCO2CH3 162.19 9, 581 36–38 262 110 m199 6-Methylcoumarin 160.17 17, 337 75–76 303725mm 1.263 3-Methyl-1-butencarboxylic acid, m369 cis-2-Methyl-2-butenedioic acid, c284 Methyl 2-buten-1-oate, m200 3-Methylbutyl acetate, i91 2-Methylbutylamine, a246 Methyl tert-butyl ether, b572 2-Methylbutyl isovalerate, m177 Methyl tert-butyl ketone, h70 Methyl caprate, m226 Methyl caproate, m270 Methyl caprylate, m349 Methyl carbazate, m275 Methyl carbitol, m73 4-Methylcatechol, d438 Methyl cellosolve, m71 Methyl cellosolve acetate, m75 Methyl chlorocarbonate, m194 Methyl chloroform, t231 m199 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent m200 Methyl crotonate CH3CH"CHCO2CH3 100.12 2, 410 0.944420 4 1.424220 121 4 v s alc, eth; i aq m201 Methyl cyanoacetate NCCH2CO2CH3 99.09 2, 584 1.122525 1.416625 22.5 201 110 misc alc, eth m202 Methylcyclohexane C6H11CH3 98.19 5, 29 0.769420 1.422120 126.6 100.9 4 m203 Methyl cyclohexane-carboxylate C6H11CO2CH3 142.20 9, 8 0.995416 4 1.443020 183 60 i aq; s alc, eth m204 4-Methyl-1,2-cyclo-hexanedicarboxylic anhydride 168.19 1.162 1.477420 110 m205 1-Methylcyclohexanol CH3C6H10OH 114.19 6, 11 0.925125 1.458725 25 155 67 i aq; b bz, chl m206 cis-2-Methylcyclo-hexanol CH3C6H10OH 114.19 62, 17 0.936020 4 1.464030 7 165 58 misc alc, eth m207 trans-2-Methylcyclo-hexanol CH3C6H10OH 114.19 6, 11 0.924720 4 1.461620 2 167.5 65 misc alc; s eth m208 cis-3-Methylcyclo-hexanol CH3C6H10OH 114.19 6, 12 0.915520 1.457220 6 168 62 misc alc, eth m209 trans-3-Methylcyclo-hexanol CH3C6H10OH 114.19 6, 12 0.921420 1.458020 0.5 167 62 m210 cis-4-Methylcyclo-hexanol CH3C6H10OH 114.19 6, 14 0.917020 1.461420 9.2 173 70 misc alc, eth m211 trans-4-Methylcyclo-hexanol CH3C6H10OH 114.19 6, 14 0.911821 4 1.455920 174 70 misc alc; s eth m212 2-Methylcyclo-hexanone CH3C6H9("O) 112.17 7, 14 0.92520 4 1.447820 162 46 (CC) i aq; s alc, eth m213 3-Methylcyclo-hexanone CH3C6H9("O) 112.17 7, 15 0.915520 4 1.446020 169 51 i aq; s alc, eth m214 4-Methylcyclo-hexanone CH3C6H9("O) 112.17 7, 18 0.91620 4 1.445520 171 40 i aq; s alc, eth m215 1-Methyl-1-cyclo-hexene 96.17 5, 66 0.80920 4 1.450220 121 111 3 i aq; s alc, eth m216 4-Methyl-1-cyclo-hexene 96.17 5, 67 0.799 1.441220 115.5 102 1 i aq; s alc, eth m217 6-Methyl-3-cyclo-hexene-1-methanol 126.20 0.954 1.483020 1.264 H3C CH2OH m218 N-Methylcyclohexyl-amine C6H11NHCH3 113.20 12, 6 0.868 1.456020 149 29 m219 3-Methylcyclohexyl-amine CH3C6H10NH2 113.20 12, 10 0.855 1.452520 150730mm 22 m220 4-Methylcyclohexyl-amine CH3C6H10NH2 113.20 12, 12 0.955 1.453120 151–154 26 m221 Methylcyclopentadiene dimer 160.26 54, 1435 0.941 1.497620 51 200 26 m222 Methylcyclopentane C5H9CH3 84.16 5, 27 0.748720 1.409720 142.4 71.8 23 0.013 aq m223 3-Methyl-1,2-cyclo-pentanedione 112.13 71, 310 105–107 m224 2-Methylcyclo-pentanone 98.15 72, 13 0.920020 4 1.434720 76 139 26 s aq; v s alc, eth m225 Methyl cyclopropane-carboxylate C3H5CO2CH3 100.12 91, 3 0.985 1.418120 119 17 m226 Methyl decanoate CH3(CH2)8CO2CH3 186.30 2, 356 0.873 1.425520 18 223 94 i aq; misc alc, eth m227 Methyl dichloroacetate Cl2CHCO2CH3 142.97 2, 203 1.380819 1.442120 52 143 80 i aq; s alc m228 Methyl 2,2-dichloro-1-methylcyclopro-panecarboxylate 183.03 1.245 1.463920 748mm 74 m229 Methyl 2,3-dichloro-propionate ClCH2CH(Cl)CO2CH3 157.00 21, 111 1.328220 4 1.444720 9250mm 42 s alc m230 N-Methyldiethanol-amine CH3N(CH2CH2OH)2 119.16 4, 284 1.037720 1.468520 248 126 misc aq, alc m231 Methyl 3,4-dimethoxy-benzoate (CH3O)2C6H3CO2CH3 196.20 10, 396 59–62 283 m232 Methyl 3,5-dimethoxy-benzoate (CH3O)2C6H3CO2CH3 196.20 10, 405 43 298 110 1.265 trans-2-Methylcrotonic acid, m169 Methyl cyanide, a29 Methyl 4,6-dimethyl-2-oxo-2H-pyran-5-carboxylate, m292 m204 m215 m216 m221 m223 m224 m228 m225 m217 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent m233 Methyl 3-(dimethyl-amino)propionate (CH3)2NCH2CH2CO2CH3 131.18 4, 403 0.917 1.418420 154 51 m234 Methyl 2,5-dimethyl-3-furoate 154.17 18, 398 1.037 1.475020 198 80 m235 Methyl 2,2-dimethyl-propionate (CH3)3CCO2CH3 116.16 21, 139 0.873 1.388020 101–103 1 misc alc, eth; sl s aq m236 N-Methyldioctylamine (C8H17)2NCH3 255.49 43, 381 1.066 1.442420 30.1 16515mm 110 m237 4-Methyl-1,3-dioxane 102.13 194, 49 0.976 1.415020 45 114 22 m238 N-Methyldiphenyl-amine (C6H5)2NCH3 183.26 12, 180 1.04820 4 1.619320 7.6 1356mm i aq; s alc, eth m239 Methyl diphenyl-glycolate (C6H5)2C(OH)CO2CH3 242.27 10, 344 74–76 18713mm m240 3-Methyl-1,1-diphenyl-urea (C6H5)2NCONHCH3 226.28 12,2, 852 172–174 m241 Methyleneaminoaceto-nitrile CH2"NCH2CN 68.08 Merck: 11, 5976 129 s hot aq, alc; sl s bz m242 N,N-Methylenebis-acrylamide H2C"CHC("O)NHCH2-NHC("O)CH"CH2 154.17 300 m243 2,2-Methylenebis-(4-chlorophenol) CH2[C6H3(Cl)OH]2 269.13 6,3, 5408 168–172 100 EtOH; 100 eth; s PE m244 4,4-Methylenebis-(2,6-di-tert-butyl-phenol CH2{C6H2[C(CH3)3]2OH}2 424.67 64, 6811 156–158 28940mm m245 4,4-Methylenebis-(N,N-dimethyl-aniline) CH2[C6H4N(CH3)2]2 254.38 13, 239 88–89 m246 1,1-Methylenebis(3-methylpiperidine) CH2[CH3C5H9N]2 210.37 0.887 1.473420 16050mm 110 m247 4,4-Methylenebis-(phenylisocyanate) CH2(C6H4NCO)2 250.26 13,3, 461 1.180 42–44 2005mm 110 m248 Methylene blue 373.90 27, 393 190 dec 4 aq; 1.3 alc; s chl m249 4,4-Methylenedi-aniline CH2(C6H4NH2)2 198.26 13, 238 89–91 399 221 v s alc, bz, eth; sl s aq 1.266 m250 3,4-Methylenedioxy-benzaldehyde 150.13 19, 115 37 264 110 0.2 aq; v s alc, eth m251 1,2-Methylenedioxy-benzene 122.12 19, 20 1.064 1.5398 173 55 m252 3,4-Methylenedioxy-6-propylbenzyldi-ethyleneglycol butyl ether 338.45 193, 779 1.059 1.498 1801mm 171 misc alc, bz, geons m253 Methylenesuccinic acid H2C"C(CO2H)CH2CO2H 130.10 2, 760 1.573 167 8.2 aq; 20 alc; v sl s bz, chl, eth, PE 1.267 Methyldinitrophenol, d715, d716 Methyl enanthate, m266 Methylene bromide, d110 Methylene bromochloride, b305 Methylene chloride, d235 4,4-Methylenedianiline, d46 Methylene dimethyl ether, d507 1,1-Methylenedipiperidine, d776 Methylene fluoride, d409 Methylene iodide, d452 -Methylene--propiolactone, d483 (1-Methylethyl)benzene, i103 Methyl ethyl ketone, b475 m234 m237 m248 m250 m251 m252 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent m254 N-Methylethylene-diamine CH3NHCH2CH2NH2 74.13 41, 415 0.841 1.439520 114–116 42 m255 N-Methylformamide HC("O)NHCH3 59.07 4, 58 0.998825 1.430025 4 199.5 98 misc aq m256 N-Methylformanilide C6H5N(CH3)CHO 135.17 12, 234 1.095 1.561020 8–13 244 126 m257 Methyl formate HCO2CH3 60.05 2, 18 0.981515 1.346515 99 31.7 19 30 aq; misc alc m258 5-Methylfuraldehyde 110.11 17, 289 1.107218 4 1.526320 187 72 s aq; v s alc; misc eth m259 2-Methylfuran 82.10 17, 36 0.91520 4 1.433220 88 63–66 22 0.3 aq m259a Methyl 2-furoate 126.11 18, 274 1.17920 1.487920 181 73 s alc, eth; sl s aq m260 Methylgermanium tribromide CH3GeBr3 327.35 2.633720 4 1.577020 168 m261 N-Methylglucamine 195.22 Merck: 12, 6154 128–129 100 aq25; 1.2 alc70 m262 Methyl--D-gluco-pyranoside 194.18 31, 179 1.4630 4 168 2000.2mm 63 aq; 1.6 alc; i eth m263 ()-2-Methylglutaro-nitrile NCCH2CH2CH(CH3)CN 108.14 2, 656 0.950 1.434020 45 269–271 126 m264 N-Methylglycine CH3NHCH2CO2H 89.09 4, 345 208 dec 42 aq; sl s alc m265 Methyl glycolate HOCH2CO2CH3 90.08 3, 236 1.16818 4 1.417020 74 151 67 s aq; misc alc, eth m266 Methyl heptanoate CH3(CH2)5CO2CH3 144.22 2, 339 0.881520 4 1.411520 55.8 173.5 52 s alc, eth; sl s aq m267 5-Methyl-2-heptanol (CH3)2CH(CH2)3CH(OH)CH3 130.23 1, 421 0.803 1.424020 172 67 m268 5-Methyl-3-heptanone C2H5CH(CH3)CH2COC2H5 128.22 11, 363 0.823 1.414220 157–162 43 m269 6-Methyl-5-hepten-2-one (CH3)2C"CHCH2CH2COCH3 126.20 13, 3010 0.85516 4 1.439220 67 7318mm 50 misc alc, eth m269a Methyl hexadecanoate CH3(CH2)14CO2CH3 270.46 2, 372 0.852 1.451220 32–34 19615mm 110 s alc, chl, eth m270 Methyl hexanoate CH3(CH2)4CO2CH3 130.19 2, 323 0.90380 4 1.403823 71 151 45 v s alc, eth m271 5-Methyl-2-hexanone (CH3)2CHCH2CH2COCH3 114.19 12, 756 0.88820 4 1.406220 73.9 144 3641 0.5 aq; misc alc, eth m272 1-Methylhexylamine CH3(CH2)4CH(NH2)CH3 115.22 4, 194 0.766518 1.417520 144 54 sl s aq; s alc, eth m273 1-Methylhydantoin 114.10 24, 244 157 subl s aq, alc; 3 eth m274 Methylhydrazine CH3NHNH2 46.07 42, 957 0.866 1.422520 52.4 87.5 21 misc aq, alc; s PE m275 Methyl hydrazino-carboxylate H2NNHCO2CH3 90.08 31, 46 70–73 10812mm m276 Methyl hydrogen glutarate HO2CCH2CH2CH2CO2CH3 146.14 22, 565 1.169 1.438120 15110mm 110 1.268 m277 Methyl hydrogen hexanedioate HO2C(CH2)4CO2H 160.17 2, 652 1.081 1.440120 8–9 16210mm 110 s alc m278 Methyl hydrogen succinate HO2CCH2CH2CO2H 132.12 2, 608 56–59 15120mm v s aq, alc, eth m279 Methyl hydroperoxide CH3OOH 48.04 12, 270 1.99715 4 1.364215 3865mm misc aq, alc, eth; s bz m280 Methylhydroquinone CH3C6H391,4-(OH)2 124.14 6, 874 128–130 m281 Methyl 4-hydroxy-benzoate HOC6H4CO2CH3 152.15 10, 158 126–128 270 dec v s alc, eth, acet; 0.25 aq m282 Methyl 2-hydroxy-isobutyrate (CH3)2C(OH)CO2CH3 118.13 32, 223 1.023 1.411220 127 42 v s aq, alc m283 Methyl 4-hydroxy-phenylacetate HOC6H4CH2CO2CH3 166.18 10, 191 57–60 1635mm m284 2-Methylimidazole 82.11 23, 46 1.030 1.496020 60 198 92 misc aq m285 2-Methylimidazole 82.11 23, 65 142–143 268 1.269 Methyl 2-furancarboxylate, m259a 5-Methylfurfural, m258 Methyl gallate, m454 -Methyl-D-glucopyranoside, m262 N-Methylguanidine acetic acid, c301 4-Methylhexahydrophthalic anhydride, m204 Methyl hydroxyacetate, m265 Methyl 2-hydroxypropionate, m296 2,2-Methyliminodiethanol, m230 2,2-Methyliminobis(acetaldehyde diethyl acetal), b176 Methyl iodide, i37 Methyl isoamyl ketone, m271 Methyl isobutenyl ketone, m370 Methyl isobutyl ketone, m367 Methyl isonicotinate, m413 Methyl isopentyl ketone, m271 2-Methyllactic acid, h138 m258 m259 m259a m261 m262 m273 m284 m285 m280 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent m286 4-Methylimidazole 82.11 23, 69 53–56 263 110 m287 2-Methyl-1H-indole 131.18 20, 311 1.0720 4 58–60 273 v s alc, eth; s hot aq m288 2-Methylindoline 133.19 20, 279 1.023 1.568120 229 93 m289 N-Methylisatoic anhydride 177.16 27, 265 165 dec m290 Methyl isobutyrate (CH3)2CHCO2CH3 102.13 2, 290 0.89120 1.384020 84.7 92.5 3 misc alc, eth; sl s aq m291 Methyl isocyanate CH3NCO 57.05 4, 77 0.967 1.369520 45 39 6 s aq m292 Methyl isodehydr-acetate 182.18 18, 410 68–70 16714mm m293 N-Methylisopropyl-amine (CH3)2CHNHCH3 73.14 41, 153 0.702 1.384020 50–53 31 m294 Methyl isothiocyanate CH3NCS 73.12 4, 77 1.069 1.525837 35 118 32 v s alc, eth; sl s aq m295 5-Methylisoxazole 83.09 27, 16 1.018 1.438620 122 30 m296 Methyl lactate CH3CH(OH)CO2CH3 104.10 3, 280 1.08820 4 1.413120 144–145 49 s aq (dec), alc, eth m297 Methyl mandelate C6H5CH(OH)CO2CH3 166.18 10, 202 1.175620 54–56 13512mm 110 s aq, alc, bz, chl m298 Methyl mercapto-acetate HSCH2CO2CH3 106.14 1.187 1.465720 4310mm 30 s alc, eth m299 Methyl 3-mercapto-propionate HSCH2CH2CO2CH3 120.17 32, 214 1.085 1.466020 5514mm 60 m300 Methyl methacrylate H2C"C(CH3)CO2CH3 100.12 22, 398 0.943320 1.414020 48 100 10 1,6 aq; s ketones, esters, CCl4 m301 Methyl methane-sulfonate CH3SO2OCH3 110.13 4, 4 1.294320 4 1.413820 202–203 104 20 aq; 100 DMF m302 Methyl methoxyacetate CH3OCH2CO2CH3 104.11 3, 236 1.051120 4 1.396420 130 35 v s alc, eth; sl s aq m303 Methyl 4-methoxy-acetoacetate CH3OCH2COCH2CO2CH3 146.14 34, 1939 1.129 1.431620 898.5mm 89 m304 Methyl 2-methoxy-benzoate CH3OC6H4CO2CH3 166.18 10, 71 1.157 1.533520 248 110 m305 Methyl 4-methoxy-benzoate CH3OC6H4CO2CH3 166.18 10, 159 51 245 110 m306 Methyl 4-methoxy-phenylacetate CH3OC6H4CH2CO2CH3 180.20 10, 191 1.135 1.516520 15819mm 36 m307 Methyl 4-methoxy-propionate CH3OCH2CH2CO2CH3 118.13 3, 297 1.009 1.4020 142–143 47 1.270 m308 1-Methyl-4-(methyl-amino)piperidine 128.22 0.882 1.467220 55 m309 Methyl 2-methyl-benzoate CH3C6H4CO2CH3 150.18 9, 463 1.073 1.519020 207–208 82 m310 Methyl 3-methyl-benzoate CH3C6H4CO2CH3 150.18 9, 475 1.063 1.516020 11327mm 95 m311 Methyl 4-methyl-benzoate CH3C6H4CO2CH3 150.18 9, 484 33–36 10415mm 90 m312 Methyl 2-methyl-butyrate C2H5CH(CH3)CO2CH3 116.16 2, 304 0.885 1.393120 115 32 sl s aq; misc alc, eth m313 2-Methyl-6-methylene-2-octanol C2H5C("CH2)(CH2)3C(CH3)2OH 156.27 0.784 1.443120 8410mm 76 m314 Methyl 2-methyl-3-furancarboxylate 140.14 1.116 1.473020 7520mm 63 1.271 Methyl mercaptan, m37 Methylmercaptoanilines, m436 4-Methylmercaptobenzaldehyde, m437 2-Methyl-2-methoxypropane, b572 7-Methyl-3-methylene-1,6-octadiene, m467 1-Methyl-4-(1-methylethenyl)cyclohexane, d736 5-Methyl-2-(1-methylethyl)cyclohexanol, m12 5-Methyl-2-(1-methylethyl)cyclohexanone, m13 m286 m287 m288 m289 m292 m295 m308 m314 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent m315 Methyl S-methylthio-methyl sulfoxide CH3S("O)CH2SCH3 124.22 1.191 1.548720 952.5mm 110 m316 Methyl 3-(methyl-thio)propionate CH3SCH2CH2CO2CH3 134.20 1.077 1.465020 7513mm 72 m317 4-Methylmorpholine 101.15 27, 6 0.920 1.434920 66 116 23 s aq, alc, eth m318 1-Methylnaphthalene C10H7CH3 142.20 5, 566 1.020220 1.617020 30.4 245 82 v s alc, eth m319 2-Methylnaphthalene C10H7CH3 142.20 5, 567 1.02920 4 1.602640 34.4 241 97 v s alc, eth m320 Methyl 1-naphthalene-acetate C10H7CH2CO2CH3 200.24 93, 3206 1.142 1.596120 1625mm 110 m321 2-Methyl-1,4-naphtho-quinone 172.18 72, 656 105–107 1.4 alc; 10 bz; s chl m322 Methyl 1-naphthyl ketone C10H7COCH3 170.21 7, 401 1.13360 4 1.628420 11 302 110 s alc, eth; i aq m323 Methyl 2-naphthyl ketone C10H7COCH3 170.21 7, 402 53–55 301 110 sl s alc; s CS2 m324 Methyl nitrate CH3ONO2 77.04 1, 284 1.207520 4 1.374820 83 64 expl sl s aq; s alc, eth m325 Methyl nitrite CH3ONO 61.04 1, 284 0.991(lq) 17.3 s alc, eth m326 N-Methyl-4-nitro-aniline O2NC6H4NHCH3 152.15 12, 714 152–154 m327 2-Methyl-3-nitro-aniline CH3C6H3(NO2)NH2 152.15 12, 848 88–90 305 m328 2-Methyl-4-nitro-aniline CH3C6H3(NO2)NH2 152.15 12, 846 1.1586140 4 131–133 v s alc; s bz m329 2-Methyl-5-nitro-aniline CH3C6H3(NO2)NH2 152.15 12, 844 104–107 s alc, acet, eth m330 4-Methyl-2-nitro-aniline CH3C6H3(NO2)NH2 152.15 12, 1000 115–116 v s alc; s eth m331 Methyl 2-nitro-benzoate O2NC6H4CO2CH3 181.15 9, 372 1.280 1.534020 13 1060.1mm 110 s alc, eth m332 Methyl 3-nitro-benzoate O2NC6H4CO2CH3 181.15 9, 378 78–80 279 m333 Methyl 4-nitro-benzoate O2NC6H4CO2CH3 181.15 9, 390 94–96 1.272 m334 2-Methyl-3-nitro-benzoic acid CH3C6H3(NO2)CO2H 181.15 9, 471 182–184 m335 3-Methyl-4-nitro-benzoic acid CH3C6H3(NO2)CO2H 181.15 9, 481 216–218 m336 4-Methyl-3-nitro-benzoic acid CH3C6H3(NO2)CO2H 181.15 9, 502 187–190 m337 5-Methyl-2-nitro-benzoic acid CH3C6H3(NO2)CO2H 181.15 9, 482 134–136 m338 2-Methyl-5-nitro-imidazole 127.10 231, 23 252–254 m339 3-Methyl-4-nitro-phenol CH3C6H3(NO2)OH 153.14 6, 386 127–129 m340 4-Methyl-2-nitro-phenol CH3C6H3(NO2)OH 153.14 6, 412 1.24040 4 1.57440 32–35 12522mm 108 v s alc, eth m341 2-Methyl-2-nitro-1-propanol O2NC(CH3)2CH2OH 119.12 1, 378 86–89 9510mm 350 aq m342 2-Methyl-2-nitropropyl methacrylate H2C"C(CH3)CO2CH2-C(CH3)2NO2 187.20 23, 1288 1.087 1.450020 1024mm 110 m343 N-Methyl-N-nitroso-4-toluenesulfonamide CH3C6H4SO2N(CH3)NO 214.24 111, 29 62 m344 Methyl 2-nonynoate CH3(CH2)5C#CCO2CH3 168.24 2, 490 0.915 1.448420 12120mm 100 m345 Methyl-5-norbornene-2,3-dicarboxylic anhydride 178.19 172, 461 1.232 1.506020 110 m346 Methyl octadecanoate CH3(CH2)16CO2CH3 298.51 2, 379 38 21515mm 110 s alc, eth 1.273 Methyl 2-methyllactate, m282 Methyl methyl-2-propenoate, m290 Methyl methylsulfinylmethyl sulfide, m315 Methyl myristate, m428 Methyl nicotinate, m412 4-Methyl-3-nitroanisol, m95 Methyl nonyl ketone, u9 m317 m321 m338 m345 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent m347 Methyl cis-9-octa-decenoate CH3(CH2)7CH"CH-(CH2)7CO2CH3 296.50 2, 467 0.83920 1.452120 19.9 1682mm 110 misc abs alc, eth m348 7-Methyl-1,6-octadiene (CH3)2C"CH(CH2)3CH"CH2 124.23 14, 1049 0.753 1.436020 143–144 26 m349 Methyl octanoate CH3(CH2)6CO2CH3 158.24 2, 348 0.877520 4 1.416025 40 192.9 72 v s alc, eth; i aq m350 Methyl 2-octynoate CH3(CH2)4C#CCO2CH3 154.21 2, 487 0.920 1.446020 217–220 88 m351 3-Methyl-2-oxazolidinone 101.11 1.170 1.454120 15 901mm 110 m352 2-Methyl-2-oxazoline 85.11 27, 13 1.005 1.434020 110 20 m353 3-Methyl-3-oxetane-methanol 102.13 173, 1128 1.024 1.446020 8040mm 98 m354 Methyl 2-oxocyclo-pentanecarboxylate (O")C5H7CO2CH3 142.16 10, 597 1.145 1.456020 10519mm 110 m355 Methyl 2-oxo-propionate CH3C("O)CO2CH3 102.09 3, 616 1.130 1.406520 134–137 39 misc alc, eth; sl s aq m356 trans-2-Methyl-1,3-pentadiene CH3CH"CHC(CH3)"CH2 82.15 1, 255 0.718 1.446920 75–76 12 m357 2-Methylpentane CH3CH2CH2CH(CH3)2 86.18 1, 148 0.653220 1.372520 154 60.3 29 m358 3-Methylpentane (CH3CH2)2CHCH3 86.18 1, 149 0.664320 1.376520 163 63 7 m359 2-Methyl-1,5-pentane-diamine H2N(CH2)3CH(CH3)CH2NH2 116.21 4, 270 0.860 1.459020 80 m360 2-Methyl-2,4-pentanediol (CH3)2C(OH)CH2CH(OH)CH3 118.18 1, 486 0.921620 4 1.427020 50 198 102 misc aq m361 4-Methylpentanenitrile (CH3)2CHCH2CH2CN 97.16 2, 329 0.803520 4 1.406120 51.1 156.5 45 s alc; misc eth m362 Methyl pentanoate CH3(CH2)3CO2CH3 116.16 2, 301 0.875 1.396220 128 22 sl s aq; misc alc, eth m363 2-Methylpentanoic acid CH3CH2CH2CH(CH3)CO2H 116.16 22, 288 0.924220 20 1.413520 85 196.4 107 1.3 aq m364 2-Methyl-1-pentanol CH3CH2CH2CH(CH3)CH2OH 102.18 1, 409 0.826220 1.418020 148 54 s alc, eth m365 3-Methyl-3-pentanol (CH3CH2)2C(CH3)OH 102.18 1, 411 0.828120 1.418620 23.6 123 46 misc alc, eth; sl s aq m366 4-Methyl-2-pentanol (CH3)2CHCH2CH(OH)CH3 102.18 1, 410 0.808020 1.411220 90 132 41 1.6 aq m367 4-Methyl-2-pentanone (CH3)2CHCH2COCH3 100.16 1, 691 0.797820 1.395820 84 116.5 18 1.7 aq; misc alc, bz, eth m368 2-Methyl-2-pentenal CH3CH2CH"C(CH3)CHO 98.15 14, 3471 0.861 1.450320 138 31 s alc 1.274 m369 4-Methyl-2-pentenoic acid (CH3)2CHCH"CHCO2H 114.14 22, 406 0.9529 1.4489 35 11520mm 46 i aq; v s alc m370 4-Methyl-3-penten-2-one (CH3)2C"CHCOCH3 98.15 1, 736 0.865320 1.444020 59 129.5 31 3.1 aq m370a 4-Methyl-2-pentyl acetate (CH3)2CHCH2CH(CH3)O2CCH3 144.21 0.880525 1.398020 147.5 45 m371 1-Methylpentylamine CH3(CH2)3CH(NH2)CH3 101.19 4, 190 0.76720 4 19 116–118 13 s aq, alc, PE m372 3-Methyl-1-pentyn-3-ol CH3CH2C(CH3)(OH)C#CH 98.15 12, 506 0.868820 4 1.431820 30.6 122 26 13 aq, misc bz, acet PE, EtOAc; s eth m373 4-Methylphenetole CH3C6H4OCH2CH3 136.19 6, 393 0.945 1.504420 189–191 70 m374 N-(4-Methylphenyl)-acetamide CH3C6H4NHCOCH3 149.19 12, 920 1.21215 150–153 307 s alc, EtOAc, HOAc m375 Methyl phenylacetate C6H5CH2CO2CH3 150.18 9, 434 1.044 1.507520 218 90 i aq; misc alc, eth m376 2-Methyl-1-phenyl-2-propanol CH6H5CH2C(CH3)2OH 150.22 6, 523 0.974 1.514020 25–26 9618mm 81 m377 1-Methyl-3-phenyl-propylamine C6H5CH2CH2CH(CH3)NH2 149.24 12, 1165 0.922 1.512320 222 97 m378 3-Methyl-1-phenyl-2-pyrazolin-5-one 174.20 24, 20 129–130 287265mm m379 Methyl phenyl sulfide C6H5SCH3 124.21 6, 297 1.058 1.588220 15 188 57 i aq; s alc 1.275 Methyl octyl ketone, d19 Methyl oleate, m347 o-Methylolphenol, h106 2-Methyloxacyclopropane, p232 Methyl oxirane, p232 Methyl palmitate, m269a Methyl pentyl ketone, h14 Methylphenols, c303 thru c305 Methyl-m-phenylene diisocyanate, t171 Methyl phenyl ether, m55 Methyl phenyl ketone, a31 2-Methyl-2-phenylpropane, b523 Methyl -picolinate, m413 m351 m352 m353 m378 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent m380 N-Methyl-N-phenyl-urethane C6H5N(CH3)CO2CH2CH3 179.22 12, 417 1.074 1.514920 243–244 110 m381 N-Methylpiperazine 100.17 0.903 1.465520 138 42 v s aq, alc, eth m382 2-Methylpiperazine 100.17 23, 17 65–67 155.6 65 78 aq; 37 acet; 32 bz m383 N-Methylpiperidine C5H10NCH3 99.19 20, 19 0.816 1.437820 106–107 3 v s aq; misc alc, eth m384 2-Methylpiperidine CH3C5H9N 99.19 20, 95 0.844 1.445920 5 119 8 v s aq; misc alc, eth m385 3-Methylpiperidine CH3C5H9N 99.19 20, 100 0.845 1.447020 126 17 v s aq m386 4-Methylpiperidine CH3C5H9N 99.19 20, 101 0.838 1.445820 124 7 v s aq m387 1-Methyl-3-piperdine-methanol 129.20 212, 8 1.013 1.477220 140–145 94 m388 1-Methyl-4-piperidone 113.16 212, 215 0.920 1.461420 60 m389 2-Methylpropan-aldehyde (CH3)2CHCHO 72.11 1, 671 0.789120 1.372720 65 64.1 40 9 aq; misc alc, bz, chl, eth m390 2-Methylpropane (CH3)3CH 58.12 1, 124 1.381025 138 11.7 87 13 mL aq; 1320 mL alc; 2890 mL eth m391 N-Methyl-1,3-propane-diamine H2NCH2CH2CH2NHCH3 88.15 41, 419 0.844 1.446820 139–141 35 m392 2-Methyl-1,2-propane-diamine (CH3)2C(NH2)CH2NH2 88.15 4, 266 0.841 1.441020 23 m393 2-Methyl-1,3-propane-diol HOCH2CH(CH3)CH2OH 90.12 1, 480 1.015 1.445020 91 12520mm 110 m394 1-Methyl-1-propane-thiol CH3CH2CH(SH)CH3 90.19 1, 373 0.824625 4 1.433825 165 84–85 21 sl s aq; v s alc, eth m395 2-Methyl-1-propane-thiol (CH3)2CHCH2SH 90.19 1, 378 0.835720 1.439620 79 88.5 9 v s alc, eth m396 2-Methyl-2-propane-thiol (CH3)3CSH 90.19 1, 383 0.794325 4 1.419825 1.1 64.1 4 i aq m397 2-Methyl-1-propanol (CH3)2CHCH2OH 74.12 1, 373 0.801620 1.395820 108 108 28 10 aq; misc alc, eth m398 2-Methyl-2-propanol (CH3)3COH 74.12 1, 379 0.788820 1.387720 25.8 82.4 11 misc aq, alc, eth m399 2-Methylpropene (CH3)2C"CH2 56.11 1, 207 0.6266mp 4 140 6.9 v s alc, eth m400 2-Methyl-2-propen-1-ol H2C"C(CH3)CH2OH 72.11 1, 443 0.857 1.426020 113–115 33 m401 Methyl propionate CH3CH2CO2CH3 85.11 2, 239 0.91520 4 1.377020 88 79.7 6 6 aq; misc alc, eth 1.276 m402 Methyl propionyl-acetate C2H5COCH2CO2CH3 130.15 33, 1212 1.037 1.422020 745mm 71 m403 4-Methylpropio-phenone CH3C6H4COCH2CH3 148.21 7, 317 0.993 1.528020 7.2 238–239 96 m404 Methyl propyl ether CH3CH2CH2OCH3 74.12 1, 354 0.73820 39.1 sl s aq; misc alc, eth m405 2-Methyl-2-propyl-1,3-propanediol CH3CH2CH2C(CH3)(CH2OH)2 132.20 11, 254 58–60 232 110 m406 Methyl propyl sulfide CH3SCH2CH2CH3 90.18 13, 1432 0.842420 1.444220 113.0 95.5 s aq m407 Methyl 2-propynyl ether CH3OCH2C#CH 70.09 1, 4541 0.830 1.396120 62 18 m408 2-Methylpyrazine 94.12 23, 94 1.030 1.504220 29 135 50 v s aq, alc, eth m409 2-Methylpyridine CH3C5H4N 93.13 20, 234 0.944320 1.495720 66.7 129 39 misc aq; s alc, eth m410 3-Methylpyridine CH3C5H4N 93.13 20, 239 0.956620 1.504020 18.3 144 36 misc aq, alc, eth m411 4-Methylpyridine CH3C5H4N 93.13 20, 240 0.954820 1.503720 3.8 145 57 misc aq, alc, eth m412 Methyl 3-pyridine-carboxylate (C5H4N)CO2CH3 137.14 22, 39 39 209 s aq, alc, bz m413 Methyl 4-pyridine-carboxylate (C5H4N)CO2CH3 137.14 22, 46 1.001 1.512220 8.5 207–209 82 m414 1-Methyl-2-pyridone 109.13 21, 268 1.112 1.569020 30–32 250740mm 110 1.277 Methylpiperidinol, h152 Methyl pivalate, m235 2-Methyl-1-propanamine, i66 2-Methyl-2-propanamine, b511 1-Methyl-1-propanethiol, b471 Methyl propargyl ether, m407 2-Methyl-2-propenenitrile, m30a Methyl propenoate, m126 2-Methylpropenoic acid, m29 2-Methylpropionaldehyde, i79 2-Methylpropionamide, i70 2-Methylpropionic acid, i81 2-Methylpropionic anhydride, i82 2-Methylpropionitrile, i83 1-Methylpropyl acetate, b502 2-Methylpropyl acetate, i63 2-Methyl-2-propylamine, b511 2-Methylpropylamine, i66 (1-Methylpropyl)benzene, b522 (2-Methylpropyl)benzene, i67 2-Methylpropyl formate, i69 Methyl propyl ketone, p42 2-Methylpropyl-2-methylpropanoate, i70 Methyl pyridyl ketones, a53, a54, a55 m381 m382 m387 m388 m408 m414 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent m415 Methyl 3-pyridyl-carbamate 152.15 223, 4076 121–123 m416 2-[3-(6-Methyl-2-pyridyl)propoxy]-ethanol 195.26 1.052 1.515020 110 m417 N-Methylpyrrole 81.12 20, 163 0.914 1.487520 57 112–113 15 i aq; misc alc, eth m418 N-Methylpyrrolidine 85.15 20, 4 0.81920 4 1.424720 80–81 21 misc aq, eth m419 N-Methyl-2-pyrrolidinone 99.13 21, 237 1.027925 1.468025 24.4 202 96 misc aq, alc, bz, eth m420 2-Methylquinoline 143.19 20, 387 1.058 1.610820 2 248 79 i aq; s chl, eth m421 4-Methylquinoline 143.19 20, 395 1.082620 4 1.620020 9–10 263 110 misc alc, bz, eth m422 6-Methylquinoline 143.19 20, 397 1.063 1.614020 259 110 m423 2-Methylquinozaline 144.18 231, 44 1.118 1.615620 180 245–247 107 misc aq m424 Methyl salicylate HOC6H4CO2CH3 152.15 10, 70 1.183120 1.536020 8 223 96 0.7 aq; misc alc, HOAc; s chl, eth m425 -Methylstyrene C6H5C(CH3)"CH2 118.18 5, 484 0.909 1.537520 24 165.5 45 m426 4-Methylstyrene CH3C6H4CH"CH2 118.18 5, 485 0.897 1.541220 170–175 45 m427 mono-Methyl succinate HO2CCH2CH162CO2CH3 132.12 2, 608 56–59 15120mm m428 Methyl tetradecanoate CH3(CH2)12CO2CH3 242.40 22, 326 0.855 1.436220 18.4 323 110 misc alc, bz, eth m429 2-Methyltetrahydro-furan 86.13 17, 12 0.855220 1.405620 78 11 m430 3-Methyltetrahydro-pyran 100.16 173, 77 0.863 1.420420 109733mm 6 m431 3-Methyltetrahydro-thiophene-1,1-dioxide 134.20 1.191 1.477220 276 110 m432 4-Methylthiazole 99.16 27.16 1.090 1.525720 134 32 m433 4-Methyl-5-thiazole-ethanol 143.21 27,3, 1754 1.196 1.550820 1357mm 110 m434 2-Methyl-2-thiazoline 101.17 27, 13 1.067 1.520020 101 145 37 m435 (Methylthio)aceto-nitrile CH3SCH2CN 87.14 1.039 1.482620 6315mm 67 m436 3-(Methylthio)aniline CH3SC6H4NH2 139.22 131, 141 1.130 1.642320 16516mm 110 1.278 m437 4-(Methylthio)benz-aldehyde CH3SC6H4CHO 152.22 81, 533 1.144 1.645220 901mm 110 m438 2-(Methylthio)benzo-thiazole 181.28 27, 109 43–46 110 m439 3-(Methylthio)-2-butanone CH3CH(SCH3)COCH3 118.20 14, 3993 0.975 1.471020 50–5420mm 44 m440 Methyl thiocyanate CH3SCN 73.12 3, 175 1.06820 1.468020 5 133 38 i aq; misc alc, eth m441 2-Methylthiophene 98.17 17, 37 1.019320 1.519920 63 113 7 m442 3-Methylthiophene 98.17 17, 38 1.021820 1.518020 69 115.4 11 i aq; misc alc, eth 1.279 1-Methyl-2-(3-pyridyl)pyrrolidine, n19 Methyl pyruvate, m355 Methyl stearate, m346 Methyl succinyl chloride, m195 Methylsulfonic acid, m34 Methyl theobromine, c1 Methyl thienyl ketone, a57 Methyl thioglycolate, m298 m415 m416 m417 m418 m422 m423 m429 m430 m419 m420 m421 m431 m432 m433 m434 m438 m441 m442 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent m443 5-Methyl-2-thiophene-carboxaldehyde 126.18 171, 151 1.170 1.586020 11425mm 82 m444 N-Methyl-2-thiourea CH3NHC("S)NH2 90.15 4, 70 119–121 v s aq, alc m445 N-Methyl-o-toluamide CH3C6H4CONHCH3 149.19 9, 465 1.15815 69–71 m446 N-Methyl-p-toluene-sulfonamide CH3C6H4SO2NHCH3 185.25 11, 105 76–79 m447 Methyl p-toluene-sulfonate CH3C6H4SO2OCH3 186.23 11, 99 1.234 27.5 1455mm 110 m448 Methyltriacetoxysilane CH3Si(O2CCH3)3 220.26 43, 1896 1.17520 4 1.40820 40–45 883mm 85 m449 Methyl trichloro-acetate Cl3CCO2CH3 177.42 2, 208 1.488 1.455820 153 72 m450 Methyltrichlorosilane CH3SiCl3 149.48 43, 1896 1.273 1.411020 66 15 m451 Methyltriethoxysilane CH3Si(OCH3)3 178.30 4, 629 0.895 1.384020 141–143 23 m452 Methyl trifluoro-acetate F3CCO2CH3 128.05 23, 427 1.273 1.290720 43 7 m453 Methyl trifluoro-methanesulfonate F3CSO2OCH3 164.10 34, 34 1.450 1.324420 94–99 38 m454 Methyl 3,4,5-tri-hydroxybenzoate (HO)3C6H2CO2CH3 184.15 10, 483 201–203 m455 Methyltrimethoxy-silane CH3Si(OCH3)3 136.22 44, 4203 0.955 1.370320 102 11 m456 Methyl trimethyl-acetate (CH3)3CCO2CH3 116.16 2, 320 0.873 1.390020 101 6 m457 N-Methyl-N-(tri-methylsilyl)tri-fluoroacetamide F3CC("O)N(CH3)Si(CH3)3 199.25 1.075 1.380220 132 25 m458 (Methyl)triphenyl-phosphonium bromide [CH3P(C6H5)3] Br 357.24 16, 760 230–234 m459 2-Methylundecanal CH3(CH2)8CH(CH3)CHO 184.32 0.83015 4 1.432120 171 93 s alc, eth m460 Methyl urea CH3NHCONH2 74.08 4, 64 1.204 101–102 v s aq, alc; i eth m461 N-Methyl–N-vinyl-acetamide CH3CON(CH3)CH"CH2 99.13 43, 442 0.959 1.482920 7025mm 58 1.280 m462 Methyl vinyl ether CH3OCH"CH2 58.08 13, 1857 0.751120 4 1.3947 123 5.5 56 0.8 aq; v s alc m463 Morpholine 87.12 27, 5 1.000520 1.454820 4.9 128 375 misc aq, alc, bz, eth m464 4-Morpholinepropio-nitrile 140.19 273, 337 1.037 1.471520 21 1212mm m465 N-Morpholino-1-cyclo-hexene 167.25 0.995 1.512820 12010mm 68 m466 3-(N-Morpholino)-1,2-propanediol 161.20 1.157 37–38 19130mm 110 m467 Myrcene (CH3)2C"CHCH2CH2-C("CH2)CH"CH2 136.24 1, 264 0.801320 1.470920 167 39 s alc, chl, eth, HOAc 1.281 4-Methyl-2-thiouracil, h125 Methyl o-toluate, m309 Methyl m-toluate, m311 Methyltrichlorosilane, t242 Methyl trimethylacetate, m235 -Methylumbelliferone, h148 Methyl undecyl ketone, t263 Methyl urethane, m187 Methyl valerate, m362 4-Methylvaleronitrile, m361 Methyl veratrate, m231 Michlers ketone, b178 Monoethyl adipate, e177 Monoglyme, d505 Monomethyl adipate, m277 Monomethyl glutarate, m276 Monomethyl succinate, m278 4-Morpholinocarboxyaldehyde, f39 1-Morpholinocyclopentene, c403 4-Morpholinoethanol, h127 MSTFA, m457 Myristic acid, t44 Myristolyl chloride, t46 Myristyl alcohol, t45 Myristyl bromide, b36 Naphthacene, b7 1-Naphthaleneacetamide, n13 1-Naphthaleneacetonitrile, n16 1,2-(1,8-Naphthalene)benzene, f1 Naphthalenediols, d439 thru d442 m443 m463 m464 m465 m466 n1 1-Naphthaldehyde C10H7CHO 156.18 7, 400 1.15020 4 1.652020 1–2 16115mm 110 s alc, eth n2 Naphthalene C10H8 128.17 5, 531 1.16220 4 1.5821100 80 217.7 79 0.3 aq; 7 alc; 33 bz; 50 chl n3 1-Naphthalene-carboxylic acid C10H7CO2H 172.18 9, 647 160–162 300 sl s aq; v s hot alc, eth n4 1,5-Naphthalene-diamine C10H6(NH2)2 158.20 13, 203 185–187 s hot aq, hot alc n5 1,8-Naphthalene-diamine C10H6(NH2)2 158.20 13, 204 1.126599 4 1.682899 66.5 20512mm sl s aq; s alc, eth TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent n6 1-Naphthalenesulfonic acid C10H7SO3H 208.24 11, 155 90 de-hydrates v s aq, alc; sl s eth n7 2-Naphthalenesulfonic acid C10H7SO3H 208.24 11, 171 124 de-hydrates v s aq, alc n8 1,8-Naphthalic anhydride 198.18 17, 521 268 sl s HOAc n9 1-Naphthol C10H7OH 144.17 6, 596 1.095499 4 1.620699 96 288 v s alc, bz, chl, eth n10 2-Naphthol C10H7OH 144.17 6, 627 1.2174 123 285 161 0.1 aq; 125 alc; 6 chl; 77 eth; s alk n11 1,4-Naphthoquinone 158.16 7, 724 1.422 126 s bz, chl, eth, hot alc n12 (2-Naphthoxy)acetic acid C10H7OCH2CO2H 202.21 6, 645 155–157 n13 2-(1-Naphthyl)-acetamide C10H7CH2ONH2 185.23 9, 666 182 i aq; s bz, CS2 n14 1-Naphthyl acetate C10H7O2CCH3 186.21 6, 608 43–46 110 s alc, eth n15 1-Naphthylacetic acid C10H7CH2CO2H 186.21 9, 666 135 dec 3.3 alc; v s chl, eth n16 1-Naphthylacetonitrile C10H7CH2CN 167.21 9, 667 1.619220 33–35 19418mm 110 s alc n17 1-Naphthylamine C10H7NH2 143.18 12, 1212 1.12325 25 1.6703 50 301 157 0.2 aq; v s alc, eth n18 1-Naphthyl isocyanate C10H7NCO 169.19 12, 1244 1.177 1.634420 4 267 110 n19 Nicotine 162.24 23, 117 1.009720 4 1.588220 79 12317mm 101 misc aq; v s alc, eth, PE n20 Nitrilotriacetic acid N(CH2CO2H)3 191.14 4, 369 242 dec 0.1 aq; s hot alc n21 3-Nitroacetophenone O2NC6H4COCH3 165.15 7, 288 76–78 202 s alc, eth n22 4-Nitroacetophenone O2NC6H4COCH3 165.15 7, 288 78–80 202 s alc n23 2-Nitroaniline O2NC6H4CH2 138.13 12, 687 1.44215 71 284 s hot aq, alc, chl n24 3-Nitroaniline O2NC6H4CH2 138.13 12, 698 1.43 114 306 0.1 aq; 5 alc; 6 eth n25 4-Nitroaniline O2NC6H4CH2 138.13 12, 711 1.43714 147 332 165 4 alc; 3.3 eth; s bz n26 3-Nitrobenzaldehyde O2NC6H4CHO 151.12 7, 250 1.279220 4 58 16423mm s alc, chl, eth n27 4-Nitrobenzaldehyde O2NC6H4CHO 151.12 7, 256 1.496 106–107 s alc, bz, HOAc n28 2-Nitrobenzamide O2NC6H4CONH2 166.12 9, 373 1.46232 174–178 317 s hot aq, hot alc, eth n29 3-Nitrobenzamide O2NC6H4CONH2 166.12 9, 381 140–143 n30 Nitrobenzene C6H5NO2 123.11 5, 233 1.20515 4 1.554615 5.8 210.8 88 v s alc, bz, eth 1.282 n31 3-Nitrobenzene-1,2-dicarboxylic acid O2NC6H3(CO2H)2 211.13 9, 823 216 dec 2 aq; v s hot alc n32 5-Nitrobenzene-1,3-dicarboxylic acid O2NC6H3(CO2H)2 211.13 9, 840 260 0.15 aq; v s alc, eth n33 2-Nitrobenzenesulfonyl chloride O2NC6H4SO2Cl 221.62 11, 67 65–67 s eth; d hot aq, alc n34 5-Nitrobenzimidazole 163.14 23, 135 207–209 s alc, acid n35 2-Nitrobenzoic acid O2NC6H4CO2H 167.12 9, 370 1.58 146–148 0.7 aq; 33 alc; 22 eth n36 3-Nitrobenzoic acid O2NC6H4CO2H 167.12 9, 376 1.494 140–142 0.3 aq; 33 alc; 40 acet n37 4-Nitrobenzoic acid O2NC6H4CO2H 167.12 9, 389 1.58 242.8 9 alc; 2 eth; 5 acet n38 4-Nitrobenzonitrile O2NC6H4CN 148.12 9, 397 146–149 s HOAC; sl s aq, alc n39 3-Nitrobenzoyl chloride O2NC6H4COCl 185.57 9, 381 32–35 275–278 110 dec aq, alc; v s eth n40 4-Nitrobenzoyl chloride O2NC6H4COCl 185.57 9, 394 75 205105mm dec aq, alc; s eth n41 2-Nitrobenzyl alcohol O2NC6H4CH2OH 153.14 6, 447 70–72 270 n42 3-Nitrobenzyl alcohol O2NC6H4CH2OH 153.14 6, 449 30–32 1803mm 110 s aq, alc, eth n43 4-Nitrobenzyl alcohol O2NC6H4CH2OH 153.14 6, 450 92–94 18512mm v s alc, eth; sl s aq n44 4-Nitrobenzyl bromide O2NC6H4CH2Br 216.04 5, 334 98–100 2 alc; v s eth 1.283 1-Naphthol-2-carboxylic acid, h158 3-Naphthol-2-carboxylic acid, h160 1-Naphthonitrile, c327 1-Naphthylamine, a228 N-1-Naphthylaniline, p132 1-Naphthyl bromide, b376 1-Naphthyl chloride, c185 Natural orange 6, h161 NBA, b247 NBS, b422 Neohexane, d567 Neohexene, d574 Neopentane, d673 Neopentyl alcohol, d676 Neopentyl glycol, d594 Neophyl chloride, c178 Neral, d666 Nicotinaldehyde, p262 Nicotinic acid, p266 Nicotinonitrile, c329 Ninhydrin, i13 Nioxime, c361 2,2,2-Nitrilotriethanol, t266 1,1,1-Nitrilotris(2-propanol), t325 2-Nitro-p-anisidine, m89 5-Nitro-o-anisidine, m90 Nitroanisoles, m81, m92 n8 n11 n19 n34 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent n45 4-Nitrobenzyl chloride O2NC6H4CH2Cl 171.58 5, 329 70–73 8 alc; s eth n46 2-Nitrobiphenyl O2NC6H4C6H5 199.21 5, 582 1.4425 4 1.61325 36.7 325 179 s alc, acet, CCl4 n47 4-Nitrobiphenyl O2NC6H4C6H5 199.21 5, 583 112–114 340 sl s alc; s chl, eth n48 1-Nitrobutane CH3CH2CH2CH2NO2 103.18 1, 123 0.97520 20 1.4112 81.3 152.8 47 sl s aq; misc alc, eth n49 3-Nitro-2-butanol CH3CH(NO2)CH(OH)CH3 119.12 1, 373 1.129625 4 1.441420 9210mm 91 n50 3-Nitrocinnamic acid O2NC6H4CH"CHCO2H 193.16 Merck: 12, 6692 200–201 1 alc n51 2-Nitrodiphenylamine O2NC6H4NHC6H5 214.22 12, 690 76 i aq; s alc n52 Nitroethane CH3CH2NO2 75.07 1, 99 1.052820 20 1.392020 90 114 28 4.5 aq; misc alc, eth; s alk, chl n53 5-Nitro-2-furaldehyde semicarbazone 198.14 173, 4467 242–244 s alk, chl, alk; 0.2 alc n54 1-nitroguanidine O2NNHC("NH)NH2 104.07 3, 126 dec 225 0.4 aq; sl s MeOH n55 5-Nitro-1H-indazole 163.14 23, 129 207–209 s alc, bz, eth, acet n56 Nitromethane CH3NO2 61.04 1, 74 1.132225 4 1.379525 28.4 101.2 35 11 aq; s alc, eth n57 1-Nitronaphthalene C10H7NO2 173.17 5, 553 1.223 59–60 304 s alc; v s chl, eth n58 3-Nitro-2-pentanol CH3CH2CH(NO2)CH(OH)CH3 133.15 1, 385 1.081825 4 1.443020 10010mm 90 n59 2-Nitrophenol O2NC6H4OH 139.11 6, 213 1.495 45 216 s alc, bz, eth, alk n60 4-Nitrophenol O2NC6H4OH 139.11 6, 226 1.270120 4 113–114 279 s aq; v s alc, chl, eth n61 4-Nitrophenyl acetate O2NC6H4O2CCH3 181.15 6, 233 77–79 s aq; v s alc, bz, eth n62 2-Nitrophenylacetic acid O2NC6H4CH2CO2H 181.15 9, 454 139–142 s hot aq, alc n63 4-Nitrophenylacetic acid O2NC6H4CH2CO2H 181.15 9, 455 153–155 s alc, bz, eth; sl s aq n64 4-Nitrophenylaceto-nitrile O2NC6H4CH2CN 162.15 9, 456 115–117 s alc, eth; i aq n65 2-Nitro-1,4-phenylene-diamine O2NC6H3(NH2)2 153.14 13, 120 137–140 n66 4-Nitro-1,2-phenylene-diamine O2NC6H3(NH2)2 153.14 13, 29 199–201 sl s aq; s HCl n67 4-Nitrophenyl-hydrazine O2NC6H4NHNH2 153.14 15, 468 156 dec s alc, chl, eth, hot bz 1.284 n68 2-Nitrophenyl phenyl ether O2NC6H4OC6H5 215.21 62, 222 1.253920 1.57520 20 1848mm s alc, eth n69 4-Nitrophenyl phenyl ether O2NC6H4OC6H5 215.21 6, 232 53–56 320 110 s bz, eth n70 3-Nitro-1,2-phthalic acid O2NC6H3(CO2H)2 211.13 9, 823 213–216 dec n71 4-Nitro-1,2-phthalic acid O2NC6H3(CO2H)2 211.13 9, 828 170–172 n72 3-Nitrophthalic anhydride 193.11 17, 486 163–165 sl s aq, bz n73 1-Nitropropane CH3CH2CH2NO2 89.09 1, 115 1.000920 1.401620 108 131.1 36 1.4 aq; misc org solv n74 2-Nitropropane (CH3)2CHNO2 89.09 1, 116 0.982120 1.394920 91.3 120.3 24 1.7 aq; misc org solv n75 2-Nitro-1-propanol CH3CH(NO2)CH2OH 105.09 1, 358 1.184125 4 1,437920 9910mm 100 s aq, alc, eth n76 4-Nitropyridine-N-oxide O2NC5H4N(:O) 140.10 203, 2528 159–162 n77 Nitrosobenzene C6H5NO 107.11 6, 230 67–69 5918mm n78 N-Nitrosodimethyl-amine (CH3)2NNO 74.08 8, 84 1.004820 4 1.436820 151 61 v s aq, alc, eth n79 4-Nitrosodiphenyl-amine C6H5NC6H4NO 198.22 Merck: 12, 6737 144–145 v s alc, bz, chl, eth n80 1-Nitroso-2-naphthol C10H6(NO)OH 173.16 7, 712 109–110 3 alc; s bz, eth, alk; 0.1 aq n81 1-Nitroso-2-naphthol-3,6-disulfonic acid disodium salt hydrate 377.26 112, 190 300 2.5 aq; sl s alc 1.285 4-Nitrobenzyl cyanide, n64 Nitrocresols, m339, m340 Nitroglycerine, g22 5-Nitroisophthalic acid, n32 3-Nitrophenyl disulfide, b216 3-Nitro-o-phthalic acid, n31 n53 n55 n72 n81 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent n82 4-Nitrosophenol HOC6H4NO 123.11 7, 622 126 dec 144 s aq; v s alc, eth; ex-plodes on contact with conc acid, alk, or fire n83 2-Nitrotoluene CH3C6H4NO2 137.14 5, 318 1.162219 15 1.547220 10 222 106 s alc, bz n84 3-Nitrotoluene CH3C6H4NO2 137.14 5, 321 1.158120 4 1.545920 15.5 231.9 101 misc alc, eth; s bz n85 4-Nitrotoluene CH3C6H4NO2 137.14 5, 323 1.392 52 238 106 s alc, bz, chl, eth n86 2-Nitro-,,-tri-fluorotoluene CF3C6H4NO2 191.11 52, 251 31–32 10520mm 95 v s alc, bz n87 3-Nitro-,,-tri-fluorotoluene CF3C6H4NO2 191.11 5, 327 1.43616 4 1.471520 2.4 200–205 87 s alc, eth n88 5-Nitrouracil 157.09 24, 320 300 n89 Nonadecane CH3(CH2)17CH3 268.51 1, 174 0.777632 4 1.433538 32 330 168 s eth; sl s alc n90 Nonane CH3(CH2)7CH3 128.26 1, 165 0.717620 4 1.405420 53.5 150.8 31 s abs alc, eth n91 1,9-Nonanediamine H2N(CH2)9NH2 158.29 4, 272 37–38 258 110 n92 Nonanedinitrile NC(CH2)7CN 150.23 2, 709 0.929 1.446020 17611mm 110 v s alc, bz, eth n93 1,9-Nonanedioic acid HO2C(CH2)7CO2H 188.22 2, 707 1.02920 4 106.5 286100mm 0.24 aq; v s alc; 3 eth n94 1,9-Nonanediol HO(CH2)7OH 160.26 1, 493 47–49 17715mm 110 n95 Nonanenitrile CH3(CH2)7CN 139.24 2, 354 0.85115 4 1.426020 34.2 224.0 81 s alc, eth n96 Nonanoic acid CH3(CH2)7CO2H 158.24 2, 352 0.90620 4 1.433020 12.5 254.5 100 s alc, chl, eth n97 -Nonanoic lactone 156.23 17, 245 0.976 1.447520 1226mm 110 n98 1-Nonanol CH3(CH2)8OH 144.26 1, 423 0.827920 4 1.433820 5.5 215 75 0.6 aq; misc alc, eth n99 2-Nonanone CH3(CH2)6COCH3 142.24 1, 709 0.832 1.421020 21 192743mm 64 n100 3-Nonanone CH3(CH2)5COCH2CH3 142.24 1, 709 0.821 1.420420 187–188 67 n101 5-Nonanone (CH3CH2CH2CH2)2CO 142.24 1, 710 0.80620 4 1.419020 50 186–187 60 misc alc, eth n102 Nonanoyl chloride CH3(CH2)7COCl 176.69 2, 353 0.94615 4 1.437720 60.5 215.4 95 dec aq, alc; s eth n103 3-Nonen-2-one CH3(CH2)4CH"CHCOCH3 140.23 13, 3017 0.848 1.448420 8512mm 81 n104 Nonyl aldehyde CH3(CH2)7CHO 142.24 1, 708 0.82719 19 1.424020 185 63 n105 Nonylamine CH3(CH2)8NH2 143.27 4, 198 0.782 1.433020 201 62 sl s aq; s alc, eth n106 Nopol 166.26 63, 396 0.973 1.493020 230–240 98 n107 Norbornane 96.17 51, 45 82–84 s alc n108 2-Norbornanone 110.16 7, 57 94–96 168–172 33 1.286 n109 exo-2-Norbornyl formate 140.18 6,3, 219 1.048 1.462220 6716mm 53 n110 ()-Norephedrine C6H5CH(OH)CH(CH3)NH2 151.21 132, 371 51–54 110 o1 cis,cis-9,12-Octadeca-dienoic acid CH3(CH2)4CH"CHCH2-CH"CH(CH2)7CO2H 280.44 2, 496 0.902520 4 1.469920 5 23016mm v s eth; 10 PE; s abs alc o2 Octadecanamide CH3(CH2)16CONH2 283.50 2, 383 102–104 25112mm s hot alc, hot eth o3 Octadecane CH3(CH2)16CH3 254.50 1, 173 0.776728 4 1.436728 28.2 316.3 165 s acet, eth; sl s alc o4 1-Octadecanethiol CH3(CH2)17SH 286.57 1,3, 1838 1.4648 31–35 360 185 s eth; sl s alc o5 Octadecanoic acid CH3(CH2)16CO2H 284.48 2, 377 0.84770 1.429980 69 383 4.9 alc; 20 bz; 50 chl; 3.9 acet; 16.6 CCl4; s toluene, pentyl acetate o6 1-Octadecanol CH3(CH2)17OH 270.50 1, 431 0.812358 4 1.438820 59.6 20310mm s alc, eth o7 9,12,15-Octadecatri-enoic acid CH3(CH2CH"CH2)3CH2-(CH2)6CO2H 278.44 2, 499 0.91418 4 1.480020 23017mm 110 s alc, bz, eth o8 1-Octadecene CH3(CH2)15CH"CH2 252.49 1, 226 0.79118 4 1.443920 17.7 314.9 148 s hot acet o9 9-Octadecen-1-amine CH3(CH2)7CH"CH(CH2)8NH2 267.50 0.813 1.459620 154 o10 cis-9-Octadecenoic acid CH3(CH2)7CH"CH(CH2)7CO2H 282.47 2, 463 0.893620 4 1.458120 13.4 360 189 s alc, bz, chl, eth 1.287 N-Nitrosophenylhydroxylamine, c317 Nitroso-R-salt, n81 3-Nitro-o-toluic acid, m334 3-Nitro-p-toluic acid, m336 4-Nitro-m-toluic acid, m331 6-Nitro-m-toluic acid, m337 2-Nitro-p-toluidine, m330 4-Nitro-o-toluidine, m328 5-Nitro-o-toluidine, m329 4-Nitroveratrole, d511 Nitroxylenes, d638 thru d641 Nonyl alcohol, n98 Nonyl iodide, i42 2,5-Norbornadiene, b134 exo-2-Norbornanamine, a245 5-Norbornen-2-carbaldehyde, b136 Norbornene, b135 Norbornylene, b135 Norcamphor, a104 Norleucine, a182 Norvaline, a248 NTA, n20 n108 n88 n97 n106 n107 n109 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent o11 trans-9-Octadecenoic acid CH3(CH2)7CH"CH(CH2)7CO2H 282.47 22, 441 0.85179 1.430899 44-45 288100mm s bz, chl, eth o12 cis-9-Octadecen-1-ol CH3(CH2)7CH"CH(CH2)8OH 268.49 1, 453 0.85020 4 1.461020 13–19 1958mm 110 s alc, eth; i aq o13 9-Octadecenoyl chloride CH3(CH2)7CH"CH9(CH2)7COCl 300.92 2, 469 0.912 1.463020 1803mm 110 o14 Octadecyl acrylate H2C"CHCO2(CH2)17CH3 324.55 24, 1468 0.800 32–34 110 o15 Octadecylamine CH3(CH2)17NH2 269.52 4, 196 0.77727 55–57 23232mm 110 s alc, bz, eth o16 Octadecyl isocyanate CH3(CH2)17NCO 299.51 43, 439 0.847 1.450120 15–16 1735mm 148 o17 Octadecyltrichloro-silane CH3(CH2)17SiCl3 387.94 0.984 1.460220 22310mm 89 o18 Octadecyl vinyl ether CH3(CH2)17OCH"CH2 296.54 0.82130 4 1.444030 28 1875mm 177 o19 1,7-Octadiene H2C"CH(CH2)4CH"CH2 110.20 0.746 1.422020 114–121 9 o20 1H,1H,5H-Octafluoro-1-pentanol HCF2CF2CF2CF2CH2OH 232.07 14, 1648 1.664720 1.317820 140–141 75 o21 Octamethylcyclotetra-siloxane [-(CH3)2SiO-]4 296.62 43, 1885 0.956 1.395820 17–18 176 60 o22 Octamethyltrisiloxane [(CH3)3SiO]2Si(CH3)2 236.54 43, 1879 0.820020 1.384820 ca. 80 153 29 s bz, PE; sl s alc o23 Octane CH3(CH2)6CH3 114.23 1, 159 0.702820 4 1.397420 56.8 125.7 22 s eth; sl s alc o24 1,8-Octanediamine H2N(CH2)8NH2 144.26 4, 271 50–52 225–226 165 o25 1,8-Octanedioic acid HO2C(CH2)6CO2H 174.20 2, 691 140–144 23015mm 0.16 aq; 0.6 eth; s alc o26 1,2-Octanediol CH3(CH2)5CH(OH)CH2OH 146.23 13, 2217 36–38 13210mm 110 o27 1,8-Octanediol HO(CH2)8OH 146.23 1, 490 59–61 17220mm v s alc; sl s aq, eth o28 Octanenitrile CH3(CH2)6CN 125.22 2, 349 0.813520 1.420220 45.6 198 73 s eth; sl s alc o29 1-Octanethiol CH3(CH2)7SH 146.30 13, 1710 0.843 1.452520 49.2 199.0 68 s alc o30 Octanoic acid CH3(CH2)6CO2H 144.21 2, 347 0.908820 4 1.427920 16.6 239 110 0.07 aq; v s alc, chl, eth, PE o31 -Octanoic lactone 142.20 17, 244 0.981 1.444020 234 110 o32 1-Octanol CH3(CH2)7OH 130.23 1, 418 0.825820 4 1.429020 15.5 195 81 0.06 aq; misc alc, chl, eth o33 ()-2-Octanol CH3(CH2)5CH(OH)CH3 130.23 1, 419 0.819320 4 1.420220 31.6 175 71 0.1 aq; misc, alc, eth o34 3-Octanol CH3(CH2)4CH(OH)CH2CH3 130.23 11, 208 0.819 1.426020 174–176 65 o35 4-Octanol CH3(CH2)3CH(OH)CH2CH2CH3 130.23 0.819220 1.42520 176.6 71 o36 2-Octanone CH3(CH2)5COCH3 128.22 1, 704 0.81920 4 1.415020 16 173 52 i aq; misc alc, eth 1.288 o37 3-Octanone CH3(CH2)4COCH2CH3 128.22 1, 706 0.822020 4 1.415020 167–168 46 i aq; misc alc, eth o38 4-Octanone CH3(CH2)3COCH2CH2CH3 128.22 1, 706 0.809 1.413920 164 45 o39 Octanoyl chloride CH3(CH2)6COCl 162.66 2, 348 0.955 1.435020 70 195 80 dec aq, alc; s eth o40 1-Octene CH3(CH2)5CH"CH2 112.22 1, 221 0.714920 4 1.408720 102 121 21 i aq; misc alc, eth o41 2-Octen-1-ylsuccinic anhydride 210.27 1.000 1.469420 8–12 16810mm 110 o42 Octyl acetate CH3CO2(CH2)7CH3 172.27 2, 134 0.868 1.418520 211 88 sl s aq; misc alc o43 Octyl aldehyde CH3(CH2)6CHO 128.22 1, 704 0.82120 4 1.418320 12–15 171 51 sl s aq; misc alc o44 Octylamine CH3(CH2)7NH2 129.25 4, 196 0.782 1.429020 5/1 175–177 62 i aq; s alc, eth o45 Octyl cyanoacetate NCCH2CO2(CH2)7CH3 197.28 0.934 1.449020 950.11mm 110 o46 Octyl gallate 3,4,5-(HO)3C6H2CO2(CH2)7CH3 282.34 103, 2079 101–104 o47 1-Octyl-2-pyrrolidine 197.32 0.920 1.465020 25 17215mm 110 o48 Octyltrichlorosilane CH3(CH2)7SiCl3 247.67 43, 1907 1.07020 1.447320 226730mm 96 o49 1-Octyne CH3(CH2)5C#CH 110.19 1, 258 0.745720 1.415920 79.3 126.2 17 i aq; s alc, eth o50 1-Octyn-3-ol CH3(CH2)4CH(OH)C#CH 126.20 13, 1996 0.864 1.441020 8319mm 63 o51 L-()-Ornithine H2N(CH2)3CH(NH2)CO2H 132.16 4, 420 140 v s aq, alc; sl s eth o52 Oxalic acid HO2CCO2H 90.04 2, 502 1.9017 4 190 dec 14 aq20; 40 alc; 1.3 eth o53 Oxalic acid dihydrate HO2CCO2H · 2H2O 126.07 2, 502 1.65319 4 2H2O, 102 14 aq; 40 alc; 1 eth o54 Oxalyl bromide BrC("O)C("O)Br 215.84 21, 236 1.522020 19 103720mm none o55 Oxalyl chloride ClC("O)C("O)Cl 126.93 2, 542 1.455 1.429020 10 64 none s eth; viol dec aq, alc 1.289 Octadecyl bromide, b384 Octadecyl iodide, i43 Octadecyl mercaptan, o4 2,3,4,6,7,8,9,10-Octahydropyrimidol[1,2-a]azepine, d62 Octaldehyde, o43 Octamethylene glycol, o27 Octanal, o43 1,8-Octanedicarboxylic acid, d10 tert-Octylamine, t103 Octyl bromide, b385 Octyl chloride, c204 Octyl cyanide, n95 Octyldimethylamine, d649 Octyl ether, d729 Octyl iodide, i44 Octyl sulfide, d730 Oleic acid, o11 Oleoxyl chloride, o13 Oleyl alcohol, o12 Oleylamine, o9 o-Orthanilic acid, a115 7-Oxabicyclo[2.2.1]heptane, c331b, e7 7-Oxabicyclo[4.1.0]heptane, e6 6-Oxabicyclo[3.1.0]hexane, e10 Oxacyclopentane, t69 o31 o41 o47 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent o56 Oxalyl dihydrazide H2NNHC("O)C("O)NHNH2 118.10 2, 559 240 dec s hot aq; sl s alc, eth o57 Oxamic hydrazide H2NC("O)C("O)NHNH2 103.08 2, 559 218 dec s alk; sl s aq; i eth o58 Oxamide H2NC("O)C("O)NH2 88.07 2, 545 1.66720 4 dec 350 sl s hot aq, alc o59 2-Oxazolidone 87.08 27, 135 86–89 22048mm o60 2-Oxobutyric acid CH3CH2C("O)CO2H 102.09 3, 629 1.20017 4 1.397220 32–34 8216mm 81 v s aq, alc; v sl s eth o61 2-Oxohexamethylene-imine 113.16 212, 216 1.0275 4 69.2 270 125 84 aq; v s alc, eth, chlorinated HC’s o62 5-Oxohexanonitrile CH3CO(CH2)3CN 111.14 33, 1234 0.975 1.432820 240 107 o63 4-Oxopentanoic acid CH3COCH2CH2CO2H 116.12 3, 671 1.144725 4 1.439620 33–35 246 137 v s aq, alc, bz, eth o64 2-Oxopropionaldehyde CH3C("O)CHO 72.06 1, 762 1.045524 1.420920 72 none s aq, alc o65 2-Oxopropionic acid CH3C("O)CO2H 88.06 3, 608 1.26715 4 1.431520 11.8 165 dec 82 misc aq, alc, eth o66 2-Oxo-1-pyrrolidine-propionitrile 138.17 1.120 1.488020 1400.3mm 110 o66a 2,2-Oxybis[2-methyl]-propane (CH3)3COC(CH3)3 130.23 0.7658 1.394920 107 dec acids o67 2,2-Oxydiacetic acid HO2CCH2OCH2CO2H 134.09 3, 234 142–145 dec v s aq, alc; sl s eth o68 4,4-Oxydianiline H2NC6H4OC6H4NH2 200.24 13, 441 190–192 218 o69 3,3-Oxydipropio-nitrile NCCH2CH2OCH2CH2CN 124.14 1.043 1.440520 1120.5mm 110 1.290 p1 Paraformaldehyde (CH2O)x 1, 566 165 dec 71 s(slow) aq; s alk; i alc, eth p2 Paraldehyde [-HC(CH3)O-]3 132.16 19, 385 0.998415 1.404920 12.6 124 11 aq; misc alc, chl p3 Parathion (C2H5O)2P("S)C6H4NO2 291.27 1.2625 4 1.537025 6 375 v s alc, bz, eth p4 Pentabromophenol C6Br5OH 488.62 6, 206 223–226 sl s alc, eth p5 Pentachloroacetone Cl2CHC("O)CCl3 230.31 1, 690 1, 656 1.496720 21 (anhyd) 192 none i aq; v s acet p6 Pentachlorobenzene C6HCl5 250.34 5, 205 1.834216 82–85 275–277 none v s bz, chl, eth p7 Pentachloroethane Cl2CHCCl3 202.30 1, 87 1.671225 4 1.503020 29.0 160 none 0.05 aq; misc alc, eth p8 Pentachloronitro-benzene C6Cl5(NO2) 295.34 5, 247 1.71825 4 140–143 s bz, chl p9 Pentachlorophenol C6Cl5OH 266.34 6, 194 1.97822 4 190–191 310 v s alc; s bz; 148 eth p10 Pentachloropyridine C5Cl5N 251.33 20, 232 124–126 p11 Pentadecane CH3(CH2)13CH3 212.42 1, 172 0.768420 4 1.431920 9.9 270 132 v s alc, eth p12 Pentadecanenitrile CH3(CH2)13CN 223.40 21, 163 0.825 1.442020 20–23 322 110 p13 8-Pentadecanone [CH3(CH2)7]2C"O 226.40 1, 717 41–43 178 110 s alc p14 3-Pentadecylphenol CH3(CH2)14C6H4OH 304.52 50–53 1951mm 110 p15 1,2-Pentadiene CH3CH2CH"C"CH2 68.12 1, 251 0.692620 4 1.420920 137.3 44.9 p16 cis-1,3-Pentadiene CH3CH"CHCH"CH2 68.12 1, 251 0.691010 1.436320 140.8 44.1 28 p17 trans-1,3-Pentadiene CH3CH"CHCH"CH2 68.12 1, 251 0.676020 1.430120 87.5 42.0 28 p18 1,4-Pentadiene H2C"CHCH2CH"CH2 68.12 1, 251 0.660822 4 1.388820 148.3 26.0 4 p19 Pentaerythritol C(CH2OH)4 136.15 1, 528 1.3825 4 1.548 260 6 aq; v sl s alc; i eth p20 Pentaerythritol diacrylate monostrearate CH3(CH2)16CO2CH2-C(CH2O2CCH"CH2)2-CH2OH 510.72 1.018 29–31 110 p21 Pentaerythritol triacrylate (H2C"CHCO2CH2)3CCH2OH 298.30 1.180 1.486420 110 p22 Pentaerythrityl tetranitrate C(CH2ONO2)4 316.15 12, 602 1.177320 4 140 explodes on shock s acet; sl s eth, alc p23 Pentaethylenehex-amine H2N(CH2CH2NH)4CH2CH2NH2 232.38 44, 1245 0.950 1.509620 110 p24 Pentamethylbenzene C6H(CH3)5 148.25 5, 443 0.91720 4 1.52720 54.4 231 91 v s alc, bz p25 1,2,3,4,5-Pentamethyl-cyclopentadiene 136.24 0.870 1.473320 5813mm 44 1.291 Oxapentadiene, f45 Oxetanone, p210 Oxirane, e147 2-Oxo-10-bornanesulfonic acid, c5 3-Oxobutanoic acid, a25 Oxolan-2-one, b617 3-Oxo-N-phenylbutanamide, a24 2,2-Oxybis(chloroethane), b163 1,1-Oxybis(chloromethane), b165a 1,1-Oxybis(2-ethoxyethane), b186 1,1-Oxybis(2-methoxyethane), b214 1,1-Oxybis(3-methylbutane), d466a 1,1-Oxybis(2-methylpropane), d458 1,1-Oxybis(pentane), d738 2,2-Oxybis(propane), d476 3,3-Oxybis(1-propene), d31 2,2-Oxydiethanethiol, b208 2,2-Oxydiethanol, b198 Palmitic acid, h34 Pelargonaldehyde, n104 Pelargonic acid, n96 Pelargononitrile, n95 Pelargonoyl chloride, n102 Pentaerythritol diformal, t125 Pentalin, p7 Pentamethylene glycol, p32 Pentamethylene oxide, t83 o59 o61 o66 p25 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent p26 N,N,N,N,N-Penta-methyldiethylene-triamine [(CH3)2NCH2CH2]2NCH3 173.30 4,4, 1245 0.830 1.442020 20 198 53 p27 1,5-Pentamethylene-tetrazole 138.17 262, 213 59–61 19412mm p28 Pentanal CH3CH2CH2CH2CHO 86.13 1, 676 0.809520 4 1.394220 92 103 12 1.4 aq; misc alc, eth p29 Pentane CH3CH2CH2CH2CH3 72.15 1, 130 0.626220 4 1.357520 129.7 36.0 49 misc alc, eth p30 1,5-Pentanediamine H2N(CH2)5NH2 102.18 4, 266 0.87325 4 1.459120 129.7 178–180 62 s aq, alc; sl s eth p31 1,2-Pentanediol CH3CH2CH2CH(OH)CH2OH 104.15 12, 548 0.971 1.439720 206 104 p32 1,5-Pentanediol HO(CH2)5OH 104.15 1, 481 0.994120 1.449420 18 239 129 s aq, alc; sl s eth p33 2,3-Pentanedione CH3CH2C("O)C("O)CH3 100.11 1, 776 0.957 1.406820 52 110–112 19 p34 2,4-Pentanedione CH3COCH2COCH3 100.11 1, 777 0.972125 1.451020 23.1 138 34 17 aq; misc alc, eth p35 Pentanenitrile CH3CH2CH2CH2CN 83.13 2, 301 0.803515 4 1.399115 92 141.3 40 i aq; s alc, eth p36 1-Pentanesulfonic acid, sodium salt CH3(CH2)4 Na SO3 174.19 43, 23 300 4 aq p37 1-Pentanethiol CH3(CH2)4SH 104.22 1, 384 0.840 1.446020 75.7 126.6 18 i aq; misc alc, eth p38 Pentanoic acid CH3(CH2)3CO2H 102.13 2, 299 0.939020 4 1.408020 33.7 186 96 2.4 aq; v s alc, eth p39 1-Pentanol CH3(CH2)4OH 88.15 1, 383 0.814620 4 1.410020 79 137.5 33 2.7 aq22; misc alc, eth p40 2-Pentanol CH3CH2CH2CH(OH)CH3 88.15 1, 384 0.809820 4 1.405420 73 119.3 34 16.6 aq20; misc alc, eth p41 3-Pentanol CH3CH2CH(OH)CH2CH3 88.15 1, 385 0.815025 4 1.407725 69 116 41 5.5 aq20; s alc, eth p42 2-Pentanone CH3CH2CH2COCH3 86.13 1, 676 0.809520 1.390020 76.8 102 7 misc acet, bz, eth, PE p43 3-Pentanone CH3CH2COCH2CH3 86.13 1, 679 0.814320 1.392020 39.0 102.0 13 3.4 aq p44 Pentanophenone C6H5CO(CH2)3CH3 162.23 7, 327 0.988 1.514320 1075mm 102 s alc, eth p45 Pentanoyl chloride CH3(CH2)3COCl 120.58 2, 301 1.016 1.421620 125–127 32 p46 1,4,7,10,13-Pentaoxa-cyclopentadecane [-CH2CH2O-]5 220.27 1.109 1.465020 1350.2mm 110 p47 2,5,8,11,14-Pentaoxa-pentadecane CH3(OCH2CH3)4OCH3 222.28 13, 2107 1.008720 4 1.433020 27 275–276 140 s aq; misc hydrocarbon solvents p48 1-Pentene CH3CH2CH2CH"CH2 70.14 1, 210 0.642920 4 1.371420 165 30.1 18 misc alc, bz, eth p49 cis-2-Pentene CH3CH2CH"CHCH3 70.14 1, 210 0.650320 4 1.381320 151 37.0 20 misc alc, eth p50 trans-2-Pentene CH3CH2CH"CHCH3 70.14 1, 210 0.648220 4 1.379220 140 36.3 45 misc alc, eth p51 cis-2-Pentenenitrile CH3CH2CH"CHCN 81.12 22, 400 0.820 1.426920 128 23 p52 trans-3-Pentenenitrile CH3CH"CHCH2CN 81.12 2, 427 0.837 1.422120 144–147 40 1.292 p53 Pentyl acetate CH3(CH2)4O2CCH3 130.19 2, 131 0.875320 1.402020 70.8 149.2 16 0.17 aq; misc alc, eth p54 Pentylamine CH3(CH2)4NH2 87.16 4, 175 0.754420 1.44820 55 104 1 v s aq; misc eth; s alc p55 Pentylbenzene CH3(CH2)4C6H5 148.25 5, 434 0.859420 4 1.488520 78.3 202.2 65 s alc, misc bz, eth p56 2-Pentylcinnam-aldehyde C6H5CH"C[(CH2)4CH3]CHO 202.30 72, 310 0.970 1.557120 290 110 p57 4-tert-Pentylphenol CH3CH2C(CH3)2C6H4OH 164.25 6, 548 0.96220 4 93 262 s alc, eth p58 1-Pentyne CH3CH2CH2C#CH 68.11 1, 250 0.690120 4 1.385220 106 40.2 34 v s alc; misc eth p59 Perfluoro-1-octane-sulfonyl fluoride CF3(CF2)7SO2F 502.12 24, 996 1.824 1.301020 154–155 none p60 Peroxyacetic acid CH3C("O)CO2H 76.05 2, 169 1.22615 4 1.387620 0.2 110 41 v s aq, alc, eth p61 Petroleum ether Principally pentanes and hexanes Merck: 12, 7329 0.640 1.363020 35–60 49 misc bz, chl, eth, CCl4; s glacial HOAc p62 Phenanthrene 178.23 5, 667 1.063 100 340 1.6 alc; 50 bz; 30 eth p63 1,10-Phenanthroline 180.21 23, 227 114–117 0.3 aq; 1.4 bz; s alc, acet p64 Phenethylisobutyrate (CH3)2CHCO2CH2CH2C6H5 192.26 62, 451 0.988 1.488020 250 108 1.293 Pentamethylethyl alcohol, t362 1,5-Pentanedicarboxylic acid, h7 Pentanedinitrile, g17 Pentanedioic acid, g14 3,6,9,12,15-Pentaoxaheptadecane, t53 2,5,8,11,14-Pentaoxapentadecane, b212 Pentetic acid, d363 Pentyl alcohol, p39 sec-Pentyl alcohol, p40 tert-Pentyl alcohol, m162 sec-Pentylamine, a246 tert-Pentylamine, d682 Pentyl bromide, b387 Pentyl chloride, c204a Pentyl cyanide, h61 Pentyl mercaptan, p37 Peracetic acid, p60 Perdeuterocyclohexane, c348 Perfluoropropane, h44 Perylene, d65 Phenacetin, e51 Phenacyl bromide, b251 Phenacyl chloride, c31 Phenazone, a299 1,2,4-Phenenyl triacetate, t193 Phenethyl acetate, p111 Phenethyl alcohol, p110 sec-Phenethyl alcohol, m149 Phenethylamine, p112 Phenethyl bromide, b334 Phenethyl chloride, c128 Phenetole, e36 p27 p62 p63 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent p65 Phenol C6H5OH 94.11 6, 110 1.057641 4 1.541841 41 182 79 6.7 aq; 8.2 bz; v s alc, chl, eth, alk p66 Phenolphthalein 318.33 18, 143 1.299 261–263 8.2 alc; 1 eth p67 Phenothiazine 199.28 27, 63 185.1 371 v s bz; s eth; sl s alc p68 Phenoxyacetic acid C6H5OCH2CO2H 152.15 6, 161 98–100 285 sl dec 1.3 aq; v s alc, bz, HOAc, CS2, eth p69 Phenoxyacetyl chloride C6H5OCH2COCl 170.60 6, 162 1.235 1.534020 225–226 108 dec aq, alc; s eth p70 4-Phenoxyaniline C6H5OC6H4NH2 185.23 13, 438 84 18914mm s hot aq; v s alc, eth p71 2-Phenoxybutyric acid CH3CH2CH(OC6H5)CO2H 180.20 6, 163 79–83 258 sl s aq p72 2-Phenoxyethanol C6H5OCH2CH2OH 138.17 6, 146 1.10222 4 1.537020 14 245.2 110 s aq; v s alc, eth p73 1-Phenoxy-2-propanol C6H5OCH2CH(OH)CH3 152.19 61, 85 1.06325 4 1.52320 13–18 240 135 p74 2-Phenoxypropionic acid CH3CH(OC6H5)CO2H 166.18 6, 163 116–119 265 s alc; sl s aq p75 3-Phenoxypropyl bromide C6H5O(CH2)3Br 215.10 6, 142 1.365 1.546020 13414mm 96 p76 3-Phenoxytoluene C6H5OC6H4CH3 184.24 6, 377 1.051 1.572720 271–273 110 p77 Phenylacetaldehyde C6H5CH2CHO 120.15 7, 292 1.02725 25 1.529020 33–34 195 86 sl s aq; s alc, eth p78 Phenylacetaldehyde dimethyl acetal C6H5CH2CH(OCH3)2 166.22 7, 293 1.004 1.493020 221 83 p79 Phenylacetaldehyde ethylene acetal 164.21 194, 220 1.100 1.522020 12012mm 107 p80 Phenyl acetate C6H5O2CCH3 136.15 6, 152 1.073 1.503020 196 76 misc alc, eth, chl p81 Phenylacetic acid C6H5CH2CO2H 136.15 9, 431 1.09177 4 76.5 265.5 s hot aq, alc, eth p82 Phenylacetonitrile C6H5CH2CN 117.15 9, 441 1.0214 1.523320 23.8 233.5 101 i aq; misc alc, eth p83 Phenylacetyl chloride C6H5CH2COCl 154.60 9, 436 1.169 1.532520 9512mm 102 dec aq, alc p84 Phenylacetylene C6H5C#CH 102.14 5, 511 0.9300 1.547020 44.9 142.4 31 misc alc, eth p85 Phenylacetylurea C6H5CH2CONHCONH2 178.19 Merck: 12, 7343 212–216 sl s alc, bz, chl, eth p86 ()-3-Phenylalanine C6H5CH2CH(NH2)CO2H 165.19 14, 495 271–273 1.4 aq p87 Phenyl 4-amino-salicylate H2NC6H3-2-(OH)CO2C6H5 229.24 Merck; 12, 7426 153 0.7 mg aq p88 4-Phenylazoaniline C6H5N"NC6H4NH2 197.24 161, 310 123–126 360 v s alc, bz, chl, eth 1.294 p89 Phenylazoformic acid 2-phenylhydrazide C6H5N"NCONHNHC6H5 240.27 16, 24 156–159 dec p90 4-Phenylazophenol C6H5N"NC6H4OH 198.23 16, 96 150–152 23020mm v s alc, eth p91 2-Phenylbenzimidazole 194.24 23, 230 293–296 s abs alc; sl s bz, chl p92 Phenyl benzoate C6H5CO2C6H5 198.22 9, 116 1.235 69–72 298–299 v s hot alc; sl s eth p93 N-Phenylbenzylamine C6H5CH2NHC6H5 183.25 12, 1023 1.061 35–38 306–307 110 s alc, chl, eth p94 trans-4-Phenyl-3-buten-2-one C6H5CH"CHCOCH3 146.19 7, 364 1.009745 4 1.583645 41.5 260–262 65 v s alc, bz, chl, eth p95 2-Phenyl-3-butyn-2-ol CH3C(OH)(C6H5)C#CH 146.19 62, 559 47–49 217–218 96 0.8 aq; s alc, bz, acet p96 3-Phenylbutyraldehyde CH3CH(C6H5)CH2CHO 148.21 71, 168 0.997 1.517920 9416mm 96 p97 2-Phenylbutyric acid CH3CH2CH(C6H5)CO2H 164.20 92, 356 1.055 1.516020 42–44 270–2 110 s bz, eth p98 2-Phenylbutyronitrile CH3CH2CH(C6H5)CN 145.21 9, 541 0.974 1.508620 11415mm 105 p99 Phenyl chloroformate C6H5O2CCl 156.57 6, 159 1.248 1.510720 719mm 75 p100 Phenyl dichloro-phosphate C6H5OP(O)Cl2 210.98 6, 179 1.412 1.523020 241–243 110 1.295 4-Phenoxybutyl bromide, b281 Phenylacetaldehyde dimethyl acetal, d516 N-Phenylacetamide, a18 2-Phenylacetoacetonitrile, a51 Phenylacetone, p147 -Phenylacetophenone, d26 -Phenylacrylic acid, c279 -Phenylallyl alcohol, c282 Phenylamine, a293 (Phenylamino)phenol, h115 N-Phenylaniline, d760 o-Phenylanisole, m63 Phenylarsonic acid, b12 Phenylazoformic acid 2-phenylhydrazide, d746 N-Phenylbenzamide, b5 Phenylbenzene, b138 -Phenylbenzenemethanamine, a159 Phenylbenzoic acid, b139 Phenylboric acid, b13 Phenyl bromide, b262 1-Phenylbutane, b521 2-Phenylbutane, b522 1-Phenyl-1,3-butanedione, b63 4-Phenyl-2-butanone, b77a Phenyl cellosolve, p72 Phenyl chloride, c47 Phenylcyclohexane, c376 2-Phenylcinchoninic acid, p153 -Phenyl-o-cresol, h116 p66 p67 p79 p91 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent p101 N-Phenyldiethanol-amine C6H5N(CH2CH2OH)2 181.24 12, 183 1.12060 20 56–80 350 sl dec 5 aq; v s alc; 29 eth; 25 bz p102 4-Phenyl-1,3-dioxane 164.21 191, 616 1.111 1.530020 250–251 110 p103 2-Phenyl-1,3-dioxolane 150.18 1.106 1.526020 800.3mm 98 p104 1,2-Phenylenediamine C6H4-1,2-(NH2)2 108.14 13, 6 103 257 v s alc, chl, eth; sl s aq p105 1,3-Phenylenediamine C6H4-1,3-(NH2)2 108.14 13, 33 1.13915 63.5 285 s aq, alc, acet, chl p106 1,4-Phenylenediamine C6H4-1,4-(NH2)2 108.14 13, 61 146 267 156 1 aq; s alc, chl, eth p107 1,4-Phenylene diiso-cyanate C6H4-1,4-(NCO)2 160.13 13, 105 97–98 260 110 p108 1-Phenyl-1,2-ethanediol C6H5CH(OH)CH2OH 138.17 6, 907 66–68 272–274 v s aq, alc, bz, eth, chl, HOAc p109 1-Phenylethanol CH3CH(OH)(C6H5) 122.17 6, 475 1.013020 1.527020 20 204 85 2.3 aq p110 2-Phenylethanol C6H5CH2CH2OH 122.17 6, 478 1.02325 25 1.531720 27 221 102 2 aq; misc alc, eth p111 2-Phenylethyl acetate CH3CO2CH2CH2C6H5 164.20 9, 510 0.984 1.498520 238–239 101 2 aq; misc alc, eth p112 2-Phenylethylamine C6H5CH2CH2NH2 212.18 12, 1096 0.964025 4 1.529025 0 197.5 90 80 aq15; s alc; i eth p113 1-Phenylethyl propionate C2H5CO2CH(CH3)C6H5 178.23 53, 1680 1.007 1.489520 925mm 94 p114 ()-2-Phenylglycine C6H5CH(NH2)CO2H 151.17 14, 460 subl 255 s org solvents, alk p115 1-Phenylheptane C6H5(CH2)6CH3 176.30 5, 451 0.860 1.485020 233 95 p116 1-Phenylhexane C6H5(CH2)5CH3 162.28 52, 337 0.861 1.486020 61 226 83 misc eth p117 Phenylhydrazine C6H5NHNH2 108.14 152, 44 1.097820 4 1.608020 19.5 243 88 misc alc, bz, chl, eth p118 Phenyl 1-hydroxy-2-naphthoate HOC10H6CO2C6H5 264.28 10, 332 94–96 p119 Phenyl 3-hydroxy-2-naphthoate C10H6(OH)CO2C6H5 264.28 10, 335 129–132 261160mm p120 2-Phenylimidazole 144.18 23, 182 144–147 p121 2-Phenyl-2-imidazoline 146.19 23, 154 94–99 p122 2-Phenyl-1,3-indandione 222.28 7, 808 148–150 p123 2-Phenylindole 193.25 20, 467 188–190 25010mm p124 Phenyl isocyanate C6H5NCO 119.12 12, 437 1.095620 4 1.535020 30 162–163 55 dec aq, alc; s eth p125 Phenyl isothiocyanate C6H5NCS 135.19 12, 453 1.128825 4 1.649720 21 221 87 i aq; s alc, eth p126 N-Phenylmaleimide 173.17 21, 400 85–87 16312mm s alc, chl, eth p127 Phenylmalonic acid C6H5CH(CO2H)2 180.16 153 dec 1.296 p128 Phenylmercury(II) acetate C6H5HgO2CCH3 336.74 Merck: 12, 7453 150–152 0.17 aq; s alc, bz, acet p129 Phenylmercury(II) chloride C6H5HgCl 313.15 Merck: 12, 7454 250–252 s bz, eth, pyr p130 Phenylmercury(II) hydroxide C6H5HgOH 294.70 16, 952 190 dec p131 N-Phenylmorpholine 163.22 27, 6 1.058270 51–54 268 110 1.0 aq; v s hot alc p132 N-Phenyl-1-naphthylamine C10H7NHC6H5 219.29 12, 1224 60–62 22615mm s alc, bz, chl, eth p133 N-Phenyl-2-naphthylamine C10H7NHC6H5 219.29 12, 1275 107–109 395 1.297 Phenylethane, e74 Phenylethanenitrile, p82 1-Phenylethanol, m149 Phenylethanolamine, a257 N-Phenylethanolamine, a295 1-Phenylethanone, a31 Phenylethene, s11 N-Phenylformamide, f35 Phenylglyoxylic acid, b69 Phenylglyoxylonitrile, b67 2,2-(Phenylimino)diethanol, p101 p-(2-Phenylisopropyl)phenol, m316a Phenyl mercaptan, t156 Phenylmethanol, b78 p122 p102 p103 p120 p121 p123 p126 p131 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent p134 2-Phenyl-2-oxazoline 147.18 27, 47 1.118 1.567020 12 750.3mm p135 2-Phenylphenol C6H5C6H4OH 170.21 62, 623 1.213 57–59 282 123 s alc, chl, eth, alk p136 4-Phenylphenol C6H5C6H4OH 170.21 6, 674 165–167 321 165 s alc, chl, eth, alk p137 N-Phenyl-1,4-phenylenediamine C6H5NHC6H4NH2 184.24 13, 76 73–75 p138 Phenylphosphinic acid C6H5PH(O)OH 142.09 16, 791 85–87 p139 Phenylphosphonic acid C6H5P(O)(OH)2 158.09 16, 803 163–166 p140 Phenylphosphonic dichloride C6H5P(O)Cl2 194.99 16, 804 1.375 1.560020 3 258 110 p141 N-Phenylpiperazine 162.24 233, 49 1.062120 4 1.587520 286 110 i aq; misc alc p142 1-Phenylpiperidine 161.25 20, 22 1.001 1.562020 3–4 257–258 106 p143 2-Phenyl-1,2-propanediol CH3C(C6H5)(OH)CH2OH 152.19 6, 930 44–45 16226mm 110 p144 3-Phenyl-1-propanethiol C6H5CH2CH2CH2SH 152.26 61, 253 1.010 1.549420 10910mm 90 p145 1-Phenyl-1-propanol C6H5CH(OH)CH2CH3 136.19 6, 502 0.991525 4 1.520020 219 90 misc alc, bz p146 3-Phenyl-1-propanol C6H5CH2CH2CH2OH 136.19 6, 503 1.008 1.525720 18 235 109 s aq; misc alc, eth p147 1-Phenyl-2-propanone C6H5CH2COCH3 134.18 72, 233 1.015720 4 1.516020 27 10013mm 84 v s alc, eth; misc bz p148 2-Phenylpropion-aldehyde CH3CH(C6H5)CHO 134.18 7, 305 1.00920 4 1.517520 202–205 76 i aq; s alc p149 3-Phenylpropion-aldehyde C6H5CH2CH2CHO 134.18 7, 304 1.019 1.523020 9812mm 95 p150 3-Phenylpropionic acid C6H5CH2CH2CO2H 150.18 9, 508 1.047100 4 47–49 280 110 0.6 aq; s bz, alc, chl, eth, HOAc, PE p151 1-Phenyl-3-pyrazolidinone 162.19 24, 2 121–123 10 hot aq; s hot alc, alk, acid p152 2-Phenylpyridine C6H5C5H4N 155.20 20, 424 1.086 1.633220 268–270 110 s alc, eth p153 2-Phenyl-4-quinoline-carboxylic acid 249.27 22, 103 214–215 0.8 alc; 1 eth; 0.3 chl p154 Phenyl salicylate C6H5(OH)CO2C6H5 214.22 10, 76 1.25 44–46 17312mm 110 17 alc; 66 bz; s acet, chl, eth; 0.015 aq p155 Phenylsuccinic acid HO2CCH2CH(C6H5)CO2H 194.19 9, 865 167–169 H2O, 168 s hot aq, alc, eth 1.298 N p156 (Phenylthio)acetic acid C6H5SCH2CO2H 168.21 6, 313 64–66 p157 S-Phenyl thio-isobutyrate (CH3)2CHC("O)SC6H5 152.22 6,4, 1524 1.056 1.546020 12910mm 110 p158 1-Phenyl-2-thiourea C6H5NHC(S)NH2 152.22 12, 388 1.3 154 0.25 aq; s alc, alk p159 Phenyltrichlorosilane C6H5SiCl3 211.55 16, 911 1.32920 1.523020 201 91 p160 Phenyltriethoxysilane C6H5Si(OC2H5)3 240.38 16, 911 0.996 1.460420 11310mm 42 p161 Phenyltrimethoxy-silane C6H5Si(OCH3)3 198.30 164, 1556 1.062 1.468020 233 99 p162 Phenyltrimethyl-ammonium bromide [C6H5N(CH3)3] Br 216.13 12, 158 215 dec v s aq; s hot alc p163 Phenyltrimethyl-ammonium chloride [C6H5N(CH3)3] Cl 171.67 12, 158 237 subl s aq; v s alc; sl s eth p164 Phenyltrimethyl-ammonium iodide [C6H5N(CH3)3] I 263.12 12, 159 227 subl s aq, alc; sl s acet p165 Phenyltrimethyl-ammonium tribro-mide [C6H5N(CH3)3] Br 3 375.95 12, 159 114–116 p166 Phenyltrimethylsilane C6H5Si(CH3)3 150.30 161, 525 0.873 1.490720 168–170 44 p167 Phenylurea C6H5NHCONH2 136.15 12, 346 1.302 145–147 238 s hot aq, hot alc, eth 1.299 1-Phenylpentane, p55 2-Phenylpropane, i103 3-Phenyl-2-propenoic acid, e279 3-Phenyl-2-propen-1-ol, c282 3-Phenyl-2-propenoyl chloride, c280 3-Phenylpropyl alcohol, p146 Phenyl propyl ketone, b619 3-Phenylpropyl mercaptan, p144 Phenyl sulfide, d770 Phenyl sulfone, d771 Phenylsulfonic acid, b23 Phenyl sulfoxide, d772 (Phenylthio)acetic acid, t157 Phenyl thiocarbamide, p158 -Phenyl-o-toluic acid, b84 Phenyl m-tolyl ether, p76 Phloroglucinol, t318 Phorone, d613 Phthalaldehydic acid, f37 p153 p134 p141 p142 p151 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent p168 1,2-Phthalic acid C6H4-1,2-(CO2H)2 166.13 9, 791 1.59320 4 230 rapid heating 0.6 aq; ;10 alc; 0.5 eth; v sl s chl p169 Phthalic anhydride 148.12 17, 469 1.53 131–134 295 151 0.6 aq(dec); s alc p170 Phthalide 134.13 17, 310 1.16499 4 72–74 290 s alc p171 Phthalimide 147.13 21, 458 234–236 v s alk; v sl s bz, PE p172 1,2-Phthaloyl dichloride C6H5-1,2-(COCl)2 203.02 9, 805 1.40920 1.568420 15–16 280–282 110 dec by aq, alc; s eth p173 Phthalylsulfathioazole 403.44 Merck: 12, 7533 272–277 s alk; sl s alc; i chl p174 Picric acid 2,4,6-(O2N)3C6H2OH 229.11 6, 265 1.76320 4 122–123 explodes 300 1.3 aq; 8.2 alc; 10 bz; 2.9 chl; 1.6 eth p175 ()--Pinene 136.24 5, 146 0.859120 4 1.465020 62 156 35 misc alc, eth p176 ()--Pinene 136.24 5, 154 0.859020 1.478020 61 166 38 p177 -Pinene oxide 152.24 5, 152 0.964 1.469020 10350mm 65 p178 Piperazine 86.14 23, 4 1.446113 108–110 145–146 109 v s aq; 50 alc; i eth p179 1,4-Piperazinebis-(ethanesulfonic acid) 302.37 Merck: 12, 7633 300 p180 Piperidine 85.15 20, 6 0.862220 4 1.452520 13 106 4 misc aq; s alc, bz, chl p181 1-Piperidinecarbo-nitrile 110.16 20, 56 0.951 1.470520 10210mm 97 p182 N-Piperidineethanol 129.20 20, 25 0.873225 25 1.480420 199–202 68 misc aq; s alc p183 2-Piperidineethanol 129.20 21, 2 1.01017 38–40 234 102 v s aq, alc, eth p184 1-Piperidinepropionic acid 157.21 203, 1049 105–110 1080.5mm p185 Piperidinepropionitrile 138.21 0.933 1.469520 11116mm 102 p186 2-(2-Piperidineethyl)-pyridine 190.29 0.985 1.526020 15017mm 110 p187 L-Proline 115.13 22, 2 228 dec 1.300 m-Phthalic acid, b17 p-Phthalic acid, b18 Phthalonitrile, d282 Pimelic ketone, c366 Pinacolone, d572 Pinacolyl alcohol, d571 Pivalic acid, d679 Pivalic anhydride, d680 Pivaloyl chloride, d681 1.301 Picolinaldehyde, p261 Picolines, m409 thru m411 Picolinic acids, p265, p267 Picolinonitrile, c328 Picolylamines, a218 thru a220 Picramide, t402 Pimelic acid, h7 Pipecolines, m381 thru m383 1-Piperazinoethanol, h129 1-Piperidinecarboxyaldehyde, f40 Piperonal, m250 Piperonyl butoxide, m252 cis-Piperylene, p16 Pivaldehyde, d677 Pivaloyloxymethyl chloride, c172 POPOP, b218 PPO, d779 Prehnitene, t97 Propadiene, a72 1-Propanal, p211 p175 p169 p170 p171 p173 p181 p177 p178 p179 p180 p182 p183 p187 p184 p185 p186 p176 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent p188 Propane CH3CH2CH3 44.10 1, 103 0.58442 1.34042 188 42.1 104 volumes per 100 vols solvent: 6.5 aq; 790 alc; 926 eth; 1300 chl; 1450 bz p189 1,2-Propanediamine CH3CH(NH2)CH2NH2 74.13 4, 257 0.87815 1.446020 119–120 33 misc aq, bz; s alc, eth p190 1,3-Propanediamine H2NCH2CH2CH2NH2 74.13 4, 261 0.88425 4 1.457520 12 140 48 misc alc, eth; s aq p191 1,2-Propanediol CH3CH(OH)CH2OH 76.10 1, 472 1.036420 4 1.433120 60 188 107 misc aq, acet, chl; s alc, eth p192 1,3-Propanediol HOCH2CH2CH2OH 76.10 1, 475 1.053820 1.439620 27 214 79 misc aq, alc p193 1,3-Propanediol bis-(4-aminobenzoate) CH2(CH2CO2CC6H4NH2)2 314.34 143, 1034 1.140 124–127 p194 1,2-Propanediol dibenzoate C6H5CO2CH2CH(CH3)-O2CC6H5 284.31 9, 129 1.160 1.545020 3 23212mm 110 p195 1,3-Propanedithiol HSCH2CH2CH2SH 108.23 1, 476 1.077220 4 1.540520 79 172.9 58 misc alc, bz, eth, chl p196 1-Propanesulfonyl chloride CH3CH2CH2SO2Cl 142.60 4, 8 1.286415 4 1.454220 668mm 80 dec hot aq, hot alc p197 1,3-Propane sultone 122.14 193, 4 1.392 31–33 18030mm 110 p198 1-Propanethiol CH3CH2CH2SH 76.16 1, 359 0.83625 4 1.438020 113 67–68 20 s alc, eth p199 2-Propanethiol CH3CH(SH)CH3 76.16 1, 367 0.80925 4 1.425520 131 52.6 34 misc alc, eth; sl s aq p200 1,2,3-Propanetriol tris(acetate) H3CCO2CH(CH2O2CCH3)3 218.21 2, 147 1.158020 1.430220 78 259 138 7.2 aq; misc alc, bz, chl, eth p201 1-Propanol CH3CH2CH2OH 60.10 1, 350 0.803720 1.384020 127 97.2 23 misc aq, alc, eth p202 2-Propanol (CH3)2CHOH 60.10 1, 360 0.785520 4 1.377220 89.5 82.4 12 misc aq, alc, chl, eth p203 2-Propenal H2C"CHCHO 56.07 1, 725 0.84120 4 1.401720 88 52.6 18 21 aq; s alc, eth p204 Propene H2C"CHCH3 42.08 1, 196 0.61048 4 1.356740 185.2 47.7 108 vols in 100 vols solvent: 45 aq; 1200 alc; 500 acet p205 2-Propene-1-thiol H2C"CHCH2SH 74.15 1, 440 0.92523 4 1.476520 67–68 21 misc alc, eth p206 trans-1,2,3-Propene-tricarboxylic acid 174.11 2, 849 190 dec 50 aq25; 50 88% alc12; sl s eth p207 1-Propen-2-yl acetate H2C"C(O2CCH3)CH3 100.12 0.909 1.400020 97 18 1.302 p208 4-(1-Propenyloxy-methyl)-1,3-dioxo-lan-2-one 158.16 1.100 1.461020 251–252 110 p209 2-Propenylphenol CH3CH"CHC6H4OH 134.18 61, 279 1.044 1.578020 230–231 90 p210 -Propiolactone 72.06 171, 130 1.146020 4 1.413120 33.4 162 70 37 aq(hyd); misc alc (reacts); bz, eth, acet p211 Propionaldehyde CH3CH2CHO 58.08 1, 629 0.807120 4 1.363620 81 48 30 30 aq; misc alc, eth p212 Propionamide CH3CH2CONH2 73.10 2, 243 0.959780 4 1.4160110 79 222.2 v s aq, alc, chl, eth p213 Propionic acid CH3CH2CO2H 74.09 2, 234 0.993420 4 1.380920 20.5 141.1 52 misc aq; s alc, chl, eth p214 Propionic anhydride [CH3CH2C("O)]2O 130.14 2, 242 1.011020 1.403720 45 170 63 dec aq; s alc, chl, eth p215 Propionitrile CH3CH2CN 55.08 2, 245 0.781820 4 1.365820 92.8 97.2 2 10 aq; misc alc, eth p216 Propionyl chloride CH3CH2COCl 92.53 2, 243 1.06520 4 1.405120 94 80 11 dec by aq, alc p217 Propiophenone C6H5COCH2CH3 134.18 72, 231 1.010520 4 1.525820 21 218.0 87 misc bz, eth, abs alc p218 2-Propoxyethanol CH3CH2CH2OCH2CH2OH 104.15 1, 468 0.913 1.413020 75 150–153 48 p219 2-(2-Propoxyethyl)-pyridine C5H4NCH2CH2OCH2CH2CH3 165.24 0.954 1.488020 95 p220 1-Propoxy-2-propanol C5H4NCH2CH2OCH2CH(OH)CH3 118.18 12, 536 0.885 1.411020 140–160 48 p221 Propoxytrimethylsilane CH3CH2CH2OSi(CH3)3 132.28 4,4, 3994 0.76820 4 1.384020 100735mm 2 p222 Propyl acetate CH3CH2CH2O2CCH3 102.13 2, 129 0.8878 1.384420 93 101.6 13 2.3 aq; misc alc, eth p223 Propylamine CH3CH2CH2NH2 59.11 4, 136 0.717320 1.387220 83 42.2 37 misc aq, alc, eth 1.303 1,3-Propanedicarboxylic acid, g14 Propanedioic acid, m3 1,2-Propanediol cyclic carbonate, p230 Propanenitrile, p215 1,2,3-Propanetriol, g19 Propanoic acid, p213 2-Propanone, a26 Propargyl alcohol, p249 Propargyl chloride, c241 Propenamide, a61 2-Propen-1-amine, a76 2-Propenenitrile, a63 3-Propenoic acid, a62 2-Propen-1-ol, a75 2-Propenyl acetate, a74 2-Propenylamine, a74 Propenylanisole, m107 N-2-Propenyl-2-propen-1-amine, d30 (2-Propenyl)thiourea, a97 Propiolic acid, p248 Propyl alcohol, p201 p197 p206 p208 p210 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent p224 2-(Propylamino)-ethanol C3H7NHCH2CH2OH 103.17 4, 282 0.900 1.441520 182746mm 78 p225 Propylbenzene CH3CH2CH2C6H5 120.20 5, 390 0.862120 4 1.491220 99.2 159.2 47 s alc, eth p226 Propyl benzoate C6H5CO2CH2CH2CH3 164.20 9, 112 1.03220 1.501020 51.6 230 98 i aq; s alc, eth p227 Propyl butyrate CH3CH2CH2CO2CH2CH2CH3 130.19 2, 271 0.87915 4 1.400020 95 143 38 sl s aq; misc alc, eth p228 Propyl chloroformate ClCO2CH2CH2CH3 122.55 3, 11 1.090 1.403420 105–106 28 misc bz, chl, eth p229 Propylcyclohexane CH3CH2CH2C6H11 126.24 52, 23 0.792920 4 1.437020 94.9 156.7 35 s bz, eth p230 Propylene carbonate 102.09 193, 1564 1.204120 1.421020 48.8 242 135 v s aq, alc, bz, eth p231 Propyleneimine NH CH3CH9CH2 57.09 20, 3 0.801725 1.408425 66.0 15 misc aq, alc, PE p232 1,2-Propylene oxide O CH3CH9CH2 58.08 17, 6 0.828720 1.366020 112 34 35 (CC) 41 aq; misc alc, eth p233 Propylene sulfide S CH3CH9CH2 74.15 172, 15 0.946 1.476020 72–75 10 p234 Propyl formate CH3CH2CH2O2CH 88.10 2, 21 0.905820 1.377920 92.9 80.9 3 2 aq; misc alc, eth p235 Propyl 4-hydroxy-benzoate HOC6H4CO2CH2CH2CH3 180.20 10, 160 95–98 0.05 aq; v s alc, eth p236 Propyl isocyanate CH3CH2CH2NCO 85.11 41, 366 0.908 1.394020 83–84 0 p237 Propyl lactate CH3CH(OH)CO2CH2CH2CH3 132.16 3, 265 0.99620 1.416725 8640mm s aq, alc, eth p238 Propyl nitrate CH3CH2CH2ONO2 105.09 1, 355 1.053820 4 1.397620 100 110.1 23 (may ex-plode on heat-ing) s alc, eth p239 2-Propylpentanoic acid (CH3CH2CH2)2CHCO2H 144.21 2, 350 0.921 1.425020 220 111 p240 2-Propylphenol CH3CH2CH2C6H4OH 136.19 6, 499 1.01520 1.527920 224–226 93 s alc, eth p241 Propylphosphonic dichloride CH3CH2CH2P(O)Cl2 160.97 4, 596 1.290 1.464320 9050mm 110 p242 Propyltrichlorosilane CH3CH2CH2SiCl3 177.53 4, 630 1.185120 4 1.42920 123–124 2 p243 1-Propyl-4-piperidone 141.22 0.936 1.460020 561mm 75 p244 Propyl propionate CH3CH2CO2CH2CH2CH3 116.16 2, 240 0.88320 1.393520 76 122.5 19 0.5 aq; 103 alc; 83 eth 1.304 p245 Propyl 3,4,5-tri-hydroxybenzoate (HO)3C6H2CO2CH2CH2CH3 212.20 Merck: 12, 8044 150 0.35 aq; 1 alc; 83 eth p246 Propyne CH3C#CH 40.06 1, 246 0.69120 4 1.372520 102.8 23.2 v s alc; 3000 mL eth p247 2-Propynyl benzene-sulfonate C6H5SO3CH2C#CH 196.23 113, 37 1.243 1.525020 30 1422mm 100 p248 2-Propynoic acid HC#CCO2H 70.05 2, 477 1.13820 4 1.432020 9 102200mm 58 s aq, alc, eth p249 2-Propyn-1-ol HC#CH2OH 56.06 1, 454 0.947820 1.432020 51.8 114 36 misc aq, alc, bz, chl p250 ()-Pulegone 152.24 7, 87 0.934615 4 1.487020 224 85 misc alc, chl, eth p251 Pyrazine 80.09 23, 91 1.03161 4 1.495361 55 115 55 v s aq, alc, eth p252 Pyrazinecarbonitrile 105.10 253, 777 1.174 1.534020 876mm 96 p253 Pyrazinecarboxylic acid 124.10 25, 125 225 dec sl s hot aq; 0.008 abs alc; i bz, chl, eth p254 Pyrazole 68.08 23, 39 1.4203 68 187 s aq, alc, bz, eth p255 Pyrene 202.26 5, 693 1.27123 151 404 s org solvents p256 Pyridazine 80.09 23, 89 1.103525 4 1.523023 8 208 85 misc aq, bz; v s alc, eth p257 Pyridine C5H5N 79.10 20, 181 0.982725 4 1.506725 41.6 115.2 20 misc aq, alc, eth p258 Pyridine-d5 C5D5N 84.14 203, 2305 1.050 1.509220 114.4 20 p259 2-Pyridinealdoxime (C5H4N)-2-CH"NOH 122.13 211, 288 110–112 1.305 Propyl bromide, b400 Propyl butanoate, p227 Propyl cyanide, b468a Propyl chloride, c225 Propylene, p204 sec-Propylene chlorohydrin, c230 Propylene dibromide, d120 Propylenediamine, p189 Propylene glycol, p191 Propylene glycol dimethyl ether, d518 Propylene glycol monomethyl ether, m105 Propylene glycol monophenyl ether, p73 Propylene oxide, e15 Propyl gallate, p245 Propyl iodide, i48 Propyl mercaptan, p198 6-Propyl-2-thiouracil, h140 Pseudocumene, t358 Pyrene, b52 3,6-Pyridazinediol, d447 p252 p230 p243 p250 p251 p253 p254 p255 p256 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent p260 4-Pyridinealdoxime (C5H4N)-4-CH"NOH 122.13 130–133 p261 2-Pyridinecarbox-aldehyde (C5H4N)-2-CHO 107.11 211, 287 1.126 1.537020 181 54 p262 3-Pyridinecarbox-aldehyde (C5H4N)-3-CHO 107.11 211, 288 1.135 1.549320 9715mm 60 p263 4-Pyridinecarbox-aldehyde (C5H4N)-4-CHO 107.11 21, 287 1.122 1.544020 7812mm 54 s aq, eth p264 3-Pyridinecarboxamide (C5H4N)-3-CONH2 122.13 22, 40 1.400 1.466 130–133 100 aq; 66 alc p265 2-Pyridinecarboxylic acid (C5H4N)-2-CO2H 123.11 22, 33 134–136 sublimes s aq, alc, bz; v s HOAc p266 3-Pyridinecarboxylic acid (C5H4N)-3-CO2H 123.11 22, 38 1.473 236.6 sublimes 1.4 aq; s alk; v s hot aq, hot alc p267 4-Pyridinecarboxylic acid (C5H4N)-4-CO2H 123.11 22, 45 319 26015mm 0.52 aq; i alc, bz, eth p268 2,3-Pyridinedi-carboxylic acid (C5H4N)-2,3-(CO2H)2 167.12 22, 150 188–190 dec 0.56 aq; s alk p269 2,5-Pyridinedi-carboxylic acid (C5H4N)-2,5-(CO2H)2 167.12 22, 153 256 dec s hot acid p270 2,6-Pyridinedi-carboxylic acid (C5H4N)-2,6-(CO2H)2 167.12 22, 154 248–250 dec sl s aq; v sl s alc p271 Pyridine-N-oxide C5H5NO 95.10 202, 131 61–65 270 p272 Pyridinium p-toluene-sulfonate C5H5NH O3SC6H4CH3 251.31 202, 129 117–119 p273 2-Pyridylcarbinol (C5H4N)-2-CH2OH 109.13 211, 203 1.131 1.542020 11316mm 110 v s aq, alc, eth p274 3-Pyridylcarbinol (C5H4N)-3-CH2OH 109.13 21, 50 1.124 1.544520 15428mm 110 v s aq, eth p275 3-(3-Pyridyl)-1-propanol (C5H4N)-3-CH2CH2CH2OH 137.18 213, 549 1.063 1.530020 1333mm 110 p276 3-(4-Pyridyl)-1-propanol (C5H4N)-4-CH2CH2CH2OH 137.18 214, 550 1.061 35–39 289 110 p277 Pyrimidine 80.09 23, 89 1.016 1.504020 22 124 31 misc aq; s alc, eth p278 2,4(1H,3H)-Pyrimidinedione 112.09 24, 312 335 0.3 aq; s alk p279 Pyrrole 67.09 20, 159 0.969120 4 1.508520 23.4 130 39 4.5 aq; v s alc, eth p280 Pyrrolidine 71.12 20, 4 0.858620 1.443120 58 86.5 3 misc aq; s alc, chl, eth 1.306 p281 1-Pyrrolidinebutyro-nitrile 138.21 0.926 1.460520 11518mm 99 p282 1-Pyrrolidinecarbo-dithioic acid, am-monium salt 164.29 153–155 p283 1-Pyrrolidinecarbo-nitrile 96.13 0.954 1.469020 771.8mm 107 p284 1-Pyrrolidino-1-cyclohexene 151.25 0.940 1.522520 11515mm 39 p285 2-Pyrrolidinone 85.11 21, 236 1.11625 4 1.480625 25 251 129 misc aq, alc, bz, chl, eth, EtOAc p286 3-(N-Pyrrolidino)-1,2-propanediol 145.20 201, 4 46–48 15830mm 110 1.307 2,3-Pyridinediol, d448 2-Pyridineethanol, h132 3-Pyridinol N-oxide, h183 Pyridinols, h179 thru h181 2(1H)-Pyridone, h179 2-(2-Pyridyl)pyridine, d790 Pyrocatechol, d428 Pyrogallol, t317 Pyromellitic acid, b27 Pyromellitic dianhydride, b28 Pyromucic aldehyde, f44 Pyrrolidinedithiocarbamate, p282 1-Pyrrolidineethanol, h133 4-(N-Pyrrolidino)butyronitrile, p281 Pyruvic acid, o65 Pyruvic aldehyde, o64 Pyruvic aldehyde dimethyl acetal, d520 p281 p277 p278 p279 p280 p282 p283 p284 p285 p286 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent q1 Quinhydrone 218.20 7, 617 1.40120 4 171–173 s hot aq, alc, eth q2 Quinine 324.44 23, 511 1.625 173–175 125 alc; 1.2 bz; 83 chl q3 Quinoline 129.16 20, 339 1.09520 4 1.627320 15 237 101 0.6 aq; misc alc, eth q4 Quinoxaline 130.15 23, 176 1.33448 4 1.623148 29–32 220–223 98 v s aq, alc, bz, eth q5 2-Quinoxalinol 146.15 24, 147 271–272 r1 D-Raffinose penta-hydrate 594.52 31, 462 80–82 dec 118 14 aq; 10 MeOH r2 Resorcinol C6H4-1,3-(OH)2 110.11 6, 796 1.272 110–112 280 111 aq; 111 alc; v s eth r3 Resorcinol 1,3-diacetate C6H4-1,3-(O2CCH3)2 194.19 6, 816 1.178 1.503020 14612mm 110 r4 Resorcinol monoacetate CH3CO2C6H4-3-(OH) 152.15 6, 816 1.223 1.537020 ca 283 110 i aq; misc alc, bz, chl, acet; s alk OH’s r5 Resorcinol monobenzoate C6H5CO2C6H4-3-(OH) 214.20 133–135 r6 Rhodamine B 479.02 19, 345 210–211 dec v s aq, alc r7 Rhodanine 133.19 27, 242 0.868 167–170 may ex-plode on rapid heating v s hot aq, alc, eth r8 Riboflavin 376.37 Merck: 12, 8367 dec 278– 282 v s alk(dec); i acet, bz, eth; sl s pentyl ace-tate, cyclohexanol r9 D-Ribose 150.13 1, 859 88–92 s aq; sl s alc s1 Saccharin 183.19 27, 168 0.828 228–230 0.34 aq; 3 alc; 8 acet 1.308 Quinaldine, m420 p-Quinone, b58 1.309 q5 q1 q2 q3 q4 r1 r6 r7 r8 r9 s1 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent s2 Safrole 162.19 19, 39 1.09520 1.537020 11.2 232–234 97 v s alc; misc chl, eth s3 Semicarbazide hydrochloride H2NNHCONH2 · HCl 111.53 3, 98 175–177 dec v s aq, alc; i eth s4 L-Serine HOCH2CH(NH2)CO2H 105.09 4, 505 222 dec s aq; v sl s alc, eth s5 D-Sorbitol 182.17 1, 533 1.4725 98–100 if hy-drated; 111 an-hyd 83 aq; s hot alc, acet s6 L-Sorbose 180.16 1, 927 1.6515 163–165 55 aq; v sl s alc s7 Squalane [(CH3)2CH(CH3)2CH(CH3)-(CH2)3CH(CH3)CH2CH2-]2 422.83 11, 72 0.811515 1.453015 38 350 218 s bz, chl, eth, PE s8 Squalene CH3[C(CH3)"CHCH2CH2]5-C(CH3)"C(CH3)2 470.73 11, 130 0.858420 4 1.496520 75 28525mm 200 v s eth, acet, PE s9 trans-Stilbene C6H5CH"CHC6H5 180.25 5, 630 0.970 122–124 307 v s bz, eth s10 ()-Strychnine 334.42 272, 723 1.3620 4 284–286 2705mm 0.66 alc; 20 chl; 0.55 bz; 0.15 mg aq s11 Styrene C6H5CH"CH2 104.15 5, 474 0.906020 1.546320 31 145 31 s alc, acet, eth, CS2 s12 Styrene oxide H2C9CHC6H5 O 120.15 17, 49 1.054 1.533820 37 194 79 s13 Succinamic acid H2NCOCH2CH2CO2H 117.10 2, 614 153–156 s aq; sl s alc; i eth s14 Succinamide H2NCOCH2CH2CONH2 116.12 2, 614 265 dec 0.45 aq; i alc, eth s15 Succinic acid HO2CCH2CH2CO2H 118.09 2, 601 1.552 188 235 dec 7.7 aq; 5.4 alc; 2.8 acet; 0.88 eth; i bz s16 Succinic anhydride 100.07 17, 407 119.6 261 s alc, chl; v sl s eth s17 Succinimide 99.09 21, 369 1.41 123–125 285–290 33 aq; 4 alc; i eth s18 Succinonitrile NCCH2CH2CN 80.09 2, 615 0.986460 1.417360 54.5 266 132 see b456 s19 Succinyl chloride ClCOCH2CH2COCl 154.98 2, 613 1.39515 4 1.47315 16–17 190 76 dec by aq, alc; s bz s20 Sucrose 342.30 31, 424 1.58725 4 185–187 200 aq; 0.59 alc s21 Sulfadiazine 250.28 Merck: 12, 9071 252–256 sl s aq, alc, acet; v s dil mineral acids, alk s22 Sulfamethazine 278.34 Merck: 12, 9083 198–201 0.15 aq; s alk 1.310 s23 Sulfamic acid HSO3NH2 97.09 Merck: 12, 9090 2.15 205 dec 15 aq; sl s alc, acet; s bases s24 Sulfanilamide H2NC6H4SO2NH2 172.21 14, 698 164–166 0.76 aq; 2.7 alc; 20 acet; s acid, alk s25 Sulfanic acid 4-(H2N)-C6H4SO3H 173.19 14, 695 d 288 1.45 aq; sl s hot MeOH s26 Sulfoacetic acid HCO2CH2SO3H 140.11 4, 21 84–86 245 dec s aq, alc; i eth, chl s27 2-Sulfobenzoic acid cyclic anhydride 184.17 19, 110 18618mm s bz, chl, eth; i aq 1.311 Salicylaldehyde, h94 Solketal, d599 Stearamide, o2 Stearic acid, o5 Stearyl bromide, b385 Stryene dibromide, d98 Stryene glycol, p108 Stryene oxide, e9 Suberic acid, o25 Suberonitrile, d285 Succinic acid monoamide, s13 Succinonitrile, b456 Sulfanilic acid, a117 Sulfolane, t107 s10 s2 s5 s6 s16 s17 s20 s21 s22 s27 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent s28 4,4-Sulfonylbis(2,6-dibromophenol) [2,6-(Br)29C6H2OH]2SO2 565.88 6, 865 303–306 s29 4,4-Sulfonylbis(methyl benzoate) (CH3O2CC6H4)2SO2 334.35 102, 109 195–196 s30 4,4-Sulfonyldiphenol (HOC6H4)2SO2 250.27 6, 861 1.366315 245–247 s alc, eth, acet; i aq s31 5-Sulfosalicylic acid HO3SC6H3(OH)CO2H 254.21 11, 411 120 anhyd v s aq, alc; s eth 1.312 t1 D-()-Tartaric acid 150.09 3, 520 1.759820 4 172–174 139 aq20; 59 MeOH; 33 EtOH; s glyc; 0.4 eth t2 L-()-Tartaric acid 150.09 3, 481 1.759820 4 168–170 139 aq20; 59 MeOH; 33 EtOH; s glyc; 0.4 eth t3 meso-Tartaric acid monohydrate HO2CCH(OH)CH(OH)-CO2H · H2O 168.11 3, 528 1.666 ; 20 4 1.737 also 140; also 159–160 125 aq20 t4 DL-Tartaric acid monohydrate HO2CCH(OH)CH(OH)-CO2H · H2O 168.11 3, 522 1.69720 4 210–212 20.6 aq20; 5 alc25; 1 eth t5 Tartrazine 534.37 25, 252 v s aq t6 Terephthaldicarbox-aldehyde C6H4-1,4-(CHO)2 134.13 7, 675 115–116 245–248 t7 m-Terphenyl C6H59C6H49C6H5 230.31 5, 695 1.195 87 363 t8 o-Terphenyl C6H59C6H49C6H5 230.31 52, 611 1.16 56.2 332 110 t9 p-Terphenyl C6H59C6H49C6H5 230.31 5, 695 1.213 210 376 110 t10 -Terpinene 136.24 5, 126 0.837520 4 1.477520 174 46 misc alc, eth t11 -Terpinene 136.24 5, 128 0.85315 4 1.475416 183 51 t12 Terpinen-4-ol 154.25 6, 55 0.933820 4 1.482020 36.4 906mm 79 v s alc, eth t13 -Terpineol 154.25 6, 57 0.933720 1.481320 40.5 220 90 t14 1,2,4,5-Tetrabromo-benzene C6H2Br4 393.72 5, 214 180–182 t15 3,4,5,6-Tetrabromo-cresol CH3C6Br4(OH) 423.75 6, 362 205–208 s alc, eth, alk t16 1,1,2,2,-Tetrabromo-ethane Br2CHCHBr2 345.67 1, 94 2.965520 1.635820 0 243.5 none misc alc, chl, eth, HOAc t17 Tetrabromophthalic anhydride 463.72 17, 485 274–276 sl s bz; i aq, alc t18 ,,,-Tetrabromo-o-xylene C6H4-1,2-(CHBr2)2 421.77 5, 367 114–116 v s chl t19 ,,,-Tetrabromo-m-xylene C6H4-1,3-(CHBr2)2 421.77 5, 375 105–108 t20 ,,,-Tetrabromo-p-xylene C6H4-1,4-(CHBr2)2 421.77 5, 386 254–256 t21 Tetrabutylammonium bromide (C4H9)4N Br 322.38 42, 634 102–104 t22 Tetrabutylammonium chloride (C4H9)4N Cl 277.92 43, 292 73–75 t23 Tetrabutylammonium hydrogen sulfate (C4H9)4N HSO 4 339.54 171–173 t24 Tetrabutylammonium iodide (C4H9)4N I 369.38 4, 157 145–147 sl s aq; s alc, eth t25 Tetrabutylammonium tetrafluoroborate (C4H9)4N BF 4 329.28 43, 293 160–162 t26 Tetrabutylammonium tribromide (C4H9)4N Br 3 482.20 44, 557 74–76 1.313 Sulfonyldianiline, d47, d48 Sylvan, m259 Sylvic acid, a1 2,4,5-T, t246 Taurine, a160 Terephthalaldehyde, b14 Terephthaldicarboxaldehyde, b14 Terephthalic acid, b18 Terephthaloyl chloride, b16 Tetrabromomethane, c13 Tetrabutoxysilane, t28 t11 t1 t2 t10 t12 t13 t17 t5 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent t27 N,N,N,N-Tetrabutyl-1,6-hexanediamine {-(CH2)3N[(CH2)3]2}2 340.64 0.820 1.451020 832mm 57 t28 Tetrabutyl ortho-silicate Si[O(CH2)3CH3]4 320.55 12, 398 0.89920 4 1.413120 275 78 t29 Tetrabutyl phos-phonium bromide [CH3(CH2)3]4PBr 339.35 100–103 t30 Tetrabutyltin (C4H9)4Sn 347.15 1.057 1.474220 97 14510mm 107 t31 1,1,3,3,-Tetrachloro-acetone Cl2CHC("O)CHCl2 195.86 1, 656 1.62415 4 1.49718 182745mm none v s acet, chl t32 1,2,3,4-Tetrachloro-benzene C6H2Cl4 215.89 5, 204 46–47 254 110 v s eth; sl s alc t33 1,2,4,5-Tetrachloro-benzene C6H2Cl4 215.89 5, 205 1.85822 139–142 240–246 110 s bz, chl, eth t34 Tetrachloro-1,2-benzoquinone C6Cl4-1,2-("O)2 245.88 7, 602 127–129 t35 Tetrachloro-1,4-benzo-quinone C6Cl4-1,4-("O)2 245.88 7, 636 290 dec s eth; sl s chl; i aq t36 Tetrachloro-1,2-difluoroethane Cl2CFCFCl2 203.83 1.644725 1.413025 26.0 92.8 0.012 aq t36a 1,1,1,2-Tetrachloro-ethane ClCH2CCl3 167.85 1, 86 1.540620 1.482120 70.2 130.5 47 t37 1,1,2,2-Tetrachloro-ethane Cl2CHCHCl2 167.85 1, 86 1.586625 4 1.491025 44 147 62 0.3 aq; misc alc, chl, eth, PE t38 Tetrachloroethylene Cl2C"CCl2 165.83 1, 187 1.623020 4 1.505720 22 121 45 misc alc, chl, eth t39 2,3,5,6-Tetrachloro-nitrobenzene HC6Cl4NO2 260.89 5, 247 1.74425 4 98–101 304 s alc, bz, chl t40 Tetrachlorophthalic anhydride 285.90 17, 484 254–258 371 dec hot aq; sl s eth t41 Tetracosane CH3(CH2)22CH3 338.66 1, 175 0.778651 1.428370 51 391 110 9.4 chl; s eth t42 Tetradecafluorohexane CF3(CF2)4CF3 338.05 13, 388 1.669 1.251520 4 58–60 none t43 Tetradecane CH3(CH2)12CH3 198.40 1, 171 0.762720 4 1.429020 5.5 253.6 99 v s alc, eth t44 Tetradecanoic acid CH3(CH2)12CO2H 228.38 2, 365 0.852570 4 1.427370 54 250100mm v s bz, chl, eth; s alc t45 1-Tetradecanol CH3(CH2)13OH 214.39 1, 428 0.815150 1.435850 39.5 289 110 s eth; sl s alc t46 Tetradecanoyl chloride CH3(CH2)12COCl 246.82 2, 368 0.908 1.449020 1 16815mm 110 dec aq, alc; s eth 1.314 t47 1-Tetradecene CH3(CH2)11CH"CH2 196.38 1, 226 0.77515 4 1.436020 12.9 251.2 115 v s alc, eth t48 Tetraethoxysilane (CH3CH2O)4Si 208.33 1, 334 0.93420 4 1.38320 77 168 46 dec aq; s alc t49 Tetraethylammonium bromide (CH3CH2)4N Br 210.16 4, 104 1.39720 4 285 dec v s aq, alc, acet, chl t50 Tetraethylammonium chloride (CH3CH2)4N Cl 165.71 4, 104 1.080121 4 141 aq; s alc; 8.2 chl t51 Tetra(ethylene glycol) (HOCH2CH2OCH2CH2)2O 194.23 1, 468 1.12520 20 1.457720 6 328 182 misc aq, alc, bz, eth t52 Tetra(ethylene glycol) diacrylate (H2C"CHCO2CH2CH2O-CH2CH2)2O 302.33 1.110 1.465020 110 t53 Tetra(ethylene glycol) diethyl ether C2H5(OCH2CH2)4OC2H5 250.34 13, 2107 0.970 1.432420 15911mm 110 s aq t54 Tetra(ethylene glycol) dimethacrylate [H2C"C(CH3)CO2CH2CH2-OCH2CH2]2O 330.37 24, 1531 1.080 1.463020 220 110 t55 Tetra(ethylene glycol) dimethyl ether CH3(OCH2CH2)4OCH3 222.28 13, 2107 1.008720 4 1.433020 30 275–276 140 s aq t56 Tetraethylene-pentamine (H2NCH2CH2NHCH2CH2)2NH 189.31 4,3, 543 0.99920 20 1.505520 40 340 185 misc aq, alc, eth t57 N,N,N,N-Tetraethyl-ethylenediamine (C2H5)2NCH2CH2N(C2H5)2 172.32 4, 251 0.808 1.434320 189–192 58 t58 Tetraethylgermanium (C2H5)4Ge 188.84 4, 631 0.998 1.442020 90 165.5 35 s alc, eth; i aq t59 Tetraethyllead (C2H5)4Pb 323.45 4, 639 1.65320 4 1.519020 136 8515mm 72 s bz; misc eth t60 Tetraethylsilane (C2H5)4Si 144.34 4, 625 0.765820 1.426820 82 154.7 26 i aq t61 N,N,N,N-Tetraethyl-sulfamide (C2H5)2NSO2N(C2H5)2 208.33 4, 129 1.030 1.448020 249–251 110 1.315 Tetracene, b7 Tetrachloromethane, c14 ,,,2-Tetrachlorotoluene, c58 ,,,4-Tetrachlorotoluene, c59 Tetradecyl alcohol, t45 Tetraethylmethane, d386a Tetraethyl orthosilicate, t48 t40 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent t62 Tetraethylthiuram disulfide [(C2H5)2NC("S)S]2 296.54 4, 122 1.30 71–72 3.8 alc; 7.1 eth; s bz, acet, chl; 0.02 aq t63 Tetraethyltin (C2H5)4Sn 234.94 4, 632 1.19920 1.473020 112 181 53 i aq; s eth t64 1,1,1,2-Tetrafluoro-ethane FCH2CF3 102.03 1,4, 123 26.5 t65 Tetrafluoroethylene F2C"CF2 100.02 13, 638 1.15140 142.5 76 i aq t66 2,2,3,3-Tetrafluoro-1-propanol HCF2CF2CH2OH 132.06 14, 1438 1.485320 4 1.319720 15 109–110 43 t67 1,2,3,6-Tetrahydro-benzaldehyde C6H9CHO 110.16 71, 48 0.940 1.474520 163–164 57 t68 1,2,3,4-Tetrahydro-carbazole 171.24 20, 416 118–120 325–330 t69 Tetrahydrofuran 72.11 17, 10 0.889220 4 1.405220 108.5 65 14 misc aq, alc, eth, PE t70 2,5-Tetrahydrofuran-dimethanol 132.16 1.154225 4 1.476625 50 265 misc aq, alc, bz, chl; s eth t71 Tetrahydro-2-furan-methanol 102.13 172, 106 1.052420 1.452020 80 178 75 misc aq, alc, bz, chl, eth, acet t72 Tetrahydro-2-furan-methylamine 101.15 182, 415 0.980 1.456020 154744mm 45 t73 Tetrahydrofurfuryl acetate 144.17 172, 107 1.061 1.437020 196 84 t74 Tetrahydrofurfuryl acrylate 156.18 173, 1104 1.064 1.460020 879mm 110 t75 Tetrahydrofurfuryl chloride 120.58 173, 61 1.110 1.455020 150–151 47 t76 Tetrahydrofurfuryl methacrylate 170.21 173, 1105 1.044 1.458020 520.4mm 90 t77 2(3)-(Tetrahydrofuryl-oxy)tetrahydropyran 186.25 1.030 1.461020 97 t78 1,2,3,4-Tetrahydro-isoquinoline 133.19 20, 275 1.064 1.566820 30 232–233 98 t79 Tetrahydrolinalool (CH3)2CHCH2CH2CH2-C(CH3)(OH)CH2CH3 158.29 1, 426 0.826 1.434020 76 736mm 76 1.316 t80 1,2,3,4-Tetrahydro-naphthalene C10H12 132.21 5, 491 0.970220 4 1.541420 35.8 207.6 77 misc alc, bz, chl, eth, acet, PE t81 cis-1,2,3,6-Tetrahydro-phthalic anhydride 152.15 17, 462 97–103 157 t82 cis-1,2,3,6-Tetrahydro-phthalimide 151.17 129–133 t83 Tetrahydropyran 86.14 17, 12 0.881420 4 1.420020 45 88 155 misc aq, alc, eth 1.317 Tetraethyl titanate(IV), t163 Tetrafluoromethane, c15 Tetraglyme, b212 1,2,3,4-Tetrahydrobenzene, c368 Tetrahydrodicyclopentadiene, t259 Tetrahydro-2,5-dimethoxyfuran, d525 Tetrahydrofurfuryl alcohol, t70 Tetrahydrofurfuralamine, t72 Tetrahydrolinalool, d668 Tetrahydro-2-methylfuran, m429 t72 t68 t69 t70 t71 t73 t78 t74 t75 t76 t77 t81 t82 t83 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent t84 Tetrahydropyran-2-methanol 116.16 1.025420 1.458020 70 187 93 misc aq, alc, bz, eth t85 3,4,5,6-Tetrahydro-pyrimidinethiol 116.19 24, 5 210–212 t86 1,2,3,4-Tetrahydro-quinoline 133.19 20, 262 1.061 1.594020 15–16 249 100 s aq; misc alc, eth t87 Tetrahydrothiophene 88.17 171, 5 0.998720 1.504020 96 121 12 misc alc, eth; i aq t88 2,2,4,4-Tetrahydroxy-benzophenone [(HO)2C6H3]2C"O 246.22 8, 496 200–203 t89 Tetrakis(dimethyl-amino)ethylene [(CH3)2N]2C"C[N(CH3)2]2 200.23 44, 167 0.861 1.480020 590.9mm 53 t90 N,N,N,N-Tetrakis(2-hydroxypropyl)-ethylenediamine [CH3CH(OH)CH2]2NCH2-CH2N[CH2CH(OH)CH3]2 292.40 44, 1685 1.013 1.481220 1810.8mm 110 t91 1,1,8,8-Tetramethoxy-octane (CH3O)2CH(CH2)6CH(OCH3)2 234.34 0.949 1.430020 1305mm 52 t92 1,1,3,3-Tetramethoxy-propane [(CH3O)2CH]2CH2 164.20 0.997 1.408120 183 54 t93 Tetramethyl-ammonium bromide (CH3)4N Br 154.06 4, 51 1.56 300 55 aq t94 Tetramethyl-ammonium chloride (CH3)4N Cl 109.60 4, 51 1.16920 4 300 s aq, hot alc t95 Tetramethyl-ammonium iodide (CH3)4N I 201.06 4, 51 1.829 300 sl s aq; v s abs alc t96 N,N-3,5-Tetramethyl-aniline (CH3)2C6H3N(CH3)2 149.24 12, 1131 0.913 1.544320 226–228 90 t97 1,2,3,4-Tetramethyl-benzene C6H2-1,2,3,4-(CH3)4 134.22 5, 430 0.90520 4 1.518720 6.2 205.0 68 misc alc, eth t98 1,2,3,5-Tetramethyl-benzene C6H2-1,2,3,5-(CH3)4 134.22 5, 430 0.890620 4 1.513420 23.7 198.0 63 s alc; v s eth t99 1,2,4,5-Tetramethyl-benzene C6H2-1,2,4,5-(CH3)4 134.22 5, 431 0.83881 4 79.3 196.8 73 v s alc, bz, eth t100 2,2,3,3-Tetramethyl-butane (CH3)3CC(CH3)3 114.23 1, 165 0.824220 100.7 106.5 4 1.318 t101 N,N,N,N-Tetra-methyl-1,3-butane-diamine (CH3)2NCH(CH3)CH2-CH2N(CH3)2 144.26 43, 570 0.787 1.431820 165 40 t102 N,N,N,N-Tetra-methyl-1,4-butane-diamine (CH3)2N(CH2)4N(CH3)2 144.26 4, 265 0.78620 1.428020 169 46 s aq, alc, eth t103 1,1,3,3-Tetramethyl-butylamine (CH3)3CCH2C(CH3)2NH2 129.25 4, 198 0.805 1.424020 137–143 32 s alc, eth, PE; i aq t104 1,3,5,7-Tetramethyl-cyclotetrasiloxane [-SiH(CH3)O-]4 240.51 44, 4099 0.991220 4 1.387020 69 134–135 t105 N,N,N,N-Tetra-methyldiamino-methane (CH3)2NCH2N(CH3)2 102.18 4, 54 0.749 1.400520 85 12 t106 1,1,3,3-Tetramethyl-disiloxane [(CH3)2CH]2O 134.33 44, 3991 0.75720 4 1.370020 70–71 10 t107 Tetramethylene sulfone 120.17 171, 5 1.260630 4 1.482030 27.6 285 177 misc aq, acet, toluene; s octanes, olifines, naphthenes t108 N,N,N,N-Tetra-methylethylene-diamine (CH3)2NCH2CH2N(CH3)2 116.21 4, 250 0.770 1.417920 55 120–122 10 t109 Tetramethyl-germanium (CH3)4Ge 132.73 4,2, 1008 0.978 1.389020 88 43.4 37 t110 1,1,3,3-Tetramethyl-guanadine [(CH3)2N]2C"NH 115.18 41, 335 0.918 1.469220 163 60 1.319 Tetrahydropyrrole, p280 6,7,8,9-Tetrahydro-5H-tetrazolazepine, p27 Tetrahydrothiophene 1,1-dioxide, t107 Tetraiodomethane, c16 Tetralin, t80 -Tetralonehydantoin, b40 N,N,N,N-Tetramethyldiaminomethane, t113 N,N,N,N-Tetramethyl-1,3-diamino-2-propanol, b180 2,2,5,5-Tetramethyl-3,4-dithiahexane, d171 Tetramethylene, c333 Tetramethyl glycol, b457 Tetramethylene oxide, t69 Tetramethylene sulfide, t87 Tetramethylethylene glycol, d569 t84 t85 t86 t87 t107 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent t111 N,N,N,N-Tetra-methyl-1,6-hexane-diamine [(CH3)2N(CH2)3-]2 172.32 41, 423 0.806 1.435920 209–210 73 t112 Tetramethyl lead (CH3)4Pb 267.33 4, 639 1.99520 4 27.5 110 38 misc alc, eth t113 N,N,N,N-Tetra-methylmethane-diamine (CH3)2NCH2N(CH3)2 102.18 4, 54 0.749 1.400520 85 12 t114 2,6,10,14-Tetra-methylpentadecane [(CH3)2CH(CH3)3-CH(CH3)CH2]2CH2 268.53 Merck: 12, 7932 0.782720 4 1.438520 100 296 110 s bz, chl, eth, PE t115 2,2,6,6-Tetramethyl-piperidinyl-1-oxy (free radical) 156.25 36–40 67 t116 N,N,N,N-Tetra-methyl-1,3-propane-diamine (CH3)2N(CH2)3N(CH3)2 130.24 4, 262 0.779 1.423420 145–146 31 t117 Tetramethylpyrazine 136.20 23, 99 84–86 190 t118 Tetramethylsilane (CH3)4Si 88.23 4, 625 0.641120 4 1.358020 99.5 26.5 27 v s alc, eth t119 1,1,3,3-Tetramethyl-2-thiourea (CH3)2NC("S)N(CH3)2 132.23 41, 336 75–77 245 0.002 alc, 0.002 eth; 0.012 acet; 0.025 bz; s chl t120 Tetramethylthiuram disulfide [(CH3)2NCS2-]2 240.43 4, 76 1.29 155–156 t121 Tetramethyltin (CH3)4Sn 178.83 4, 631 1.314925 1.5201 54 74–75 12 t122 1,1,3,3-Tetramethyl-urea (CH3)2NC("O)N(CH3)2 116.16 4, 74 0.968720 4 1.449325 0.6 176–177 77 misc aq, common org solvents t123 Tetranitromethane C(NO2)4 196.03 1, 80 1.622925 4 1.435825 13.8 126 110 v s alc, eth, alk t124 1,4,7,10-Tetraoxa-cyclododecane (12-Crown-4) 176.21 1.089 1.463020 16 700.5mm 110 t125 2,4,8,10-Tetraoxa-spiro[5.5]undecane 160.17 19, 436 52–55 831.5mm 108 t126 Tetraphenylboron sodium (C6H5)4B Na 342.23 Merck: 12, 8839 300 v s aq, acet; s chl 1.320 t127 1,1,4,4-Tetraphenyl-1,3-butadiene (C6H5)2C"CHCH"C(C6H5)2 358.49 5, 750 207–209 t128 Tetraphenyltin (C6H5)4Sn 427.11 1.4900 224–227 420 110 t129 Tetrapropoxysilane (C3H7O)4Si 264.4 1, 355 0.9162 4 1.40120 945mm 95 t130 Tetrapropylammonium bromide (CH3CH2CH2)4N Br 266.27 41, 364 270 dec s aq t131 1H-Tetrazole 70.06 26, 346 157–158 s aq, alc, acet t132 2-Thenoyltrifluoro-acetone 222.18 40–44 988mm t133 Theobromine 180.17 26, 457 357 sublimes 290– 295 100 aq; 0.045 alc; s alk; i bz, chl, eth 1.321 Tetramethylolmethane, p19 2,2,4,4-Tetramethyl-3-thiapentane, d147 Tetramethylthiuram disulfide, b183 Tetrantoin, b40 2,5,8,13-Tetraoxododecane, b211 Tetraphene, b6 Tetrapropoxytitanate(IV), t163 2-Thenoic acid, t155 t115 t117 t124 t125 t131 t132 t133 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent t134 Theophylline 180.17 26, 455 274–275 0.83 aq; 1.25 alc; 0.9 chl; s hot aq, alk, dil acids t135 Thiamine HCl 337.27 Merck: 12, 9430 dec 260 100 aq; 1 alc; 5.5 glyc t136 Thiazole 85.13 27, 15 1.200 1.539020 117–118 22 s alc, eth; sl s aq t137 N2-(2-Thiazolyl)-sulfanilamide 255.32 273, 4623 202 0.06 aq; 0.52 alc; s acet, dil mineral acids, alkalis t138 Thioacetamide CH3C("S)NH2 75.13 2, 232 112–114 16 aq; 16 alc; sl s eth t139 Thiobenzoic acid C6H5C("O)SH 138.19 9, 419 1.174 1.605020 15–18 12230mm 110 misc eth; v s alc; i aq t140 4,4-Thiobis(2-tert-butyl-6-methyl-phenol) 358.54 64, 6043 163–165 31640mm 240 t141 Thiocarbanilide C6H5NHC("S)NHC6H5 228.32 12, 394 1.3224 152–155 v s alc, eth t142 p-Thiocresol HSC6H4CH3 124.21 6, 416 42–44 195 68 s alc, eth; i aq t143 2,2-Thiodiacetic acid (HO2CCH2)2S 150.15 3, 253 128–131 s aq, alc t144 2,2-Thiodiethanol (HOCH2CH2)2S 122.19 1, 470 1.182420 4 1.520320 10.2 282 160 misc aq, alc; sl s eth t145 4,4-Thiodiphenol (HOC6H4)2S 218.27 6, 860 154–156 t146 3,3-Thiodipropionic acid (HO2CCH2CH2)2S 178.21 131–134 3.7 aq; v s hot aq, alc, acet t147 Thiolacetic acid CH3C("O)SH 76.12 2, 230 1.065 1.4630 17 88–91 11 s aq; v s alc t148 N-Thionylaniline C6H5N"SO 139.18 12, 578 1.236 1.627020 200 84 t149 Thionyl bromide SOBr2 207.88 Merck: 12, 9484 2.683 1.675020 52 138 misc bz, chl, CCl4; hyd by aq t150 Thionyl chloride SOCl2 118.97 Merck: 12, 9485 1.635 1.51720 101 76 none misc bz, chl, CCl4; hyd by aq t151 Thiophene C4H4S 84.14 17, 29 1.057325 4 1.525725 39.4 84 1 misc alc, eth; i aq t152 2-Thiopheneacetic acid (C4H3S)CH2CO2H 142.18 18, 293 63–67 16022mm t153 2-Thiophenecarbonyl chloride (C4H3S)COCl 146.60 18, 290 1.371 1.590020 206–208 90 t154 2-Thiophenecarbox-aldehyde (C4H3S)CHO 112.15 17, 285 1.200 1.590020 198 77 s eth 1.322 t155 2-Thiophenecarboxylic acid (C4H3S)CO2H 128.15 18, 289 127–130 260 s aq, chl; v s alc, eth t156 Thiophenol C6H5SH 110.18 6, 294 1.073 1.588020 14.9 169 50 v s alc; misc bz, eth t157 Thiophenoxyacetic acid C6H5SCH2CO2H 168.21 6, 313 64–66 t158 Thiophosphoryl chloride PSCl3 169.40 1.668 1.555020 36 () 40 () 125 none s bz, chl, CCl4, CS2 1.323 2-Thiabutane, e221 Thiacyclopentane, t87 1,3,4-Thiadiazole-2,5-dithiol, d486 3-Thiaheptane, b557 2-Thiahexane, b577 3-Thiahexane, e255 Thianaphthene, b60 5-Thianonane, d170 2-Thiapentane, m406 3-Thiapentane, d398 Thioanisole, m379 2-Thiobarbituric acid, d437 1,1-Thiobis(butane), d170 Thiocarbanilide, d791 2,2-Thiodiethanethiol, b209 Thiodiethylene glycol, t144 Thiodiglycol, t144 Thiodiglycolic acid, t143 Thioethanol, e26a Thioethanolamine, a161 1-Thioglycerol, m21 Thioglycolic acid, m16 t134 t135 t136 t137 t140 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent t159 Thiopropionic acid CH3CH2C("O)SH 90.14 2, 264 1.014 1.464020 108–110 11 t160 3-Thiosemicarbazide H2NC("S)NHNH2 91.14 3, 195 182–184 s aq, alc t161 Thiourea H2NC("S)NH2 76.12 3, 180 1.405 176–178 9 aq; s alc; sl s eth t162 Thioxanthen-9-one 212.27 17, 357 212–213 373715mm v s bz, chl, hot HOAc t162a Thymol 150.22 6, 532 0.969925 4 1.522720 51.5 233 102 0.1 aq; 100 alc; 140 eth; s HOAc, alk OH t163 Titanium(IV) ethoxide Ti(OC2H5)4 228.15 1, 335 1.088 1.504320 15210mm 28 t164 Titanium(IV) iso-propoxide Ti[OCH(CH3)2]4 284.26 12, 382 0.963 1.466020 18–20 220 22 s bz, chl, eth t165 Titanium(IV) propox-ide Ti(OCH2CH2CH3)4 284.26 13, 1423 1.033 1.498620 1703mm 42 t166 Toluene C6H5CH3 92.14 5, 280 0.866020 4 1.496020 94.9 110.6 4 misc alc, chl, eth, acet, HOAc; 0.067 aq t167 2,4-Toluenediamine CH3C6H3-2,4-(NH2)2 122.17 13, 124 99 292 s hot aq, alc, eth t168 2,5-Toluenediamine CH3C6H3-2,5-(NH2)2 122.17 13, 144 64 273–274 v s aq, alc, eth t169 2,6-Toluenediamine CH3C6H3-2,6-(NH2)2 122.17 13, 148 104–106 s aq, alc t170 3,4-Toluenediamine CH3C6H3-3,4-(NH2)2 122.17 13, 148 91–93 15618mm v s aq t171 Toluene-2,4-diiso-cyanate CH3C6H3-2,4-(NCO)2 174.16 13, 138 1.224420 4 1.568920 20–21 251 132 dec aq, alc; misc acet, bz, eth t172 p-Toluenesulfinic acid CH3C6H4SO2H 156.21 11, 9 85 v s alc, eth; sl s aq t173 o-Toluenesulfonamide CH3C6H4SO2NH2 171.22 11, 86 156–158 t174 p-Toluenesulfon-amide CH3C6H4SO2NH2 171.22 11, 104 138–140 0.2 aq; 3.6 alc t175 p-Toluenesulfonyl-hydrazide CH3C6H4SO2NHNH2 186.23 112, 66 110 dec t176 p-Toluenesulfonic acid CH3C6H4SO3H 172.20 11, 97 107 anhyd 14020mm 67 aq; s alc, eth t177 p-Toluenesulfonyl chloride CH3C6H4SO2Cl 190.65 11, 103 67–69 13410mm v s alc, bz, eth; i aq t178 p-Toluenesulfonyl fluoride CH3C6H4SO2F 174.19 112, 54 41–42 11216mm 105 1.324 H3C CH3 CH3 OH t179 p-Toluenesulfonyl isocyanate CH3C6H4SO2NCO 197.21 1.435520 14410mm 110 t180 m-Toluidine CH3C6H4NH2 107.16 12, 853 0.98920 4 1.568020 31 203 85 (CC) misc alc, eth t181 o-Toluidine CH3C6H4NH2 107.16 12, 772 0.99820 1.572020 16.3 200 85 1.7 aq; s alc, eth t182 p-Toluidine CH3C6H4NH2 107.16 12, 880 0.961920 1.553259 43.8 200 87 7.4 aq; v s alc, eth t183 m-Tolunitrile CH3C6H4CN 117.15 9, 477 0.97615 1.525620 23 210 86 0.09 aq; v s alc, eth t184 o-Tolunitrile CH3C6H4CN 117.15 9, 466 0.989 1.527920 13 205 84 i aq; misc alc, eth t185 p-Tolunitrile CH3C6H4CN 117.15 9, 489 0.978530 4 29.5 217 85 i aq; v s alc, eth t186 2-(p-Toluoyl)benzoic acid CH3C6H4COC6H4CO2H 240.26 10, 759 137–139 v s alc, bz, eth, acet t187 m-Toluoyl chloride CH3C6H4COCl 154.60 9, 477 1.173 1.548520 865mm 76 t188 o-Toluoyl chloride CH3C6H4COCl 154.60 9, 464 1.185 1.554920 9012mm 76 t189 p-Toluoyl chloride CH3C6H4COCl 154.60 9, 484 1.169 1.553020 2 225–227 82 t190 p-Tolyl acetate CH3CO2C6H4CH3 150.18 6, 397 1.048 1.501020 210–211 90 t191 1-(o-Tolyl)biguanide CH3C6H4NHC("NH)NH-C("NH)NH2 191.24 123, 1873 143–145 110 t192 m-Tolyl isocyanate CH3C6H4NCO 133.15 12, 864 1.033 1.530520 7612mm 65 s alc, eth; i aq t193 1,2,4-Triacetoxy-benzene C6H3(O2CCH3)3 252.22 6, 1089 98–100 t194 Triacetoxyvinylsilane (CH3CO2)3SiCH"CH2 232.26 1.167 1.422020 12825mm 76 t195 Triallylamine (H2C"CHCH2)3N 137.23 4, 208 0.790 1.451020 150–151 30 1.325 Thiolactic acid, m22 Thiomalic acid, m25 Thiosalicylic acid, m18 Thiosinamine, a97 2-Thioxo-4-thiazolidinone, r7 Threonine, a185 Tiglic acid, m169 Tioxolone, h105 TMS, t118 TMSi, t396 Tolan, d742 p-Tolualdehyde, m138 Toluenethiol, t142 Toluic acids, m142 thru 144 -Tolunitrile, p82 p-Tolylacetamide, m374 Tolyl bromide, b431 -Tolyl chloride, b90 Tolyl chlorides, c255 thru c257 t162 t162a TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent t196 Triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione 249.27 1.159 1.512920 1524mm 110 t197 1H-1,2,4-Triazole 69.07 26, 13 119–121 260 s aq, alc t198 Tribenzylamine (C6H5CH2)3N 287.41 12, 1038 0.99195 4 91–94 65 s hot alc, eth t199 Tribromoacetaldehyde Br3CCHO 280.76 1, 626 2.665 1.585020 174 65 s aq, alc, chl, eth t200 Tribromoacetic acid Br3CCO2H 296.76 2, 220 130–133 245 s aq, alc, eth t201 2,4,6-Tribromoaniline Br3C6H2NH2 329.83 12, 663 2.35 120–122 300 s hot alc, chl, eth t202 2,2,2-Tribromoethanol Br3CCH2OH 282.77 12, 338 73–79 9310mm 2 aq; s alc, bz, eth t203 1,1,2-Tribromo-ethylene BrCH"CBr2 264.74 1, 191 1.70821 1.624725 162.5 t204 Tribromomethane CHBr3 252.77 1, 68 2.900015 1.600515 8.1 149.6 83 0.3 aq; misc eth, MeOH t205 2,4,6-Tribromophenol Br3C6H2OH 330.82 6, 203 2.55 87–89 290746mm s alc, chl, eth; i aq t206 1,2,3-Tribromopropane BrCH2CH(Br)CH2Br 280.78 1, 112 2.390 1.58418 16.5 220 93 s alc, eth t207 Tributoxyborane (C4H9O)3B 230.16 12, 398 0.856720 1.409220 70 234 93 hyd aq t208 Tributylamine (C4H9)3N 185.36 4, 157 0.7784 1.428020 70 216 86 v s alc, eth; s acet t209 Tributylborane (C4H9)3B 182.16 42, 1022 0.747 10920mm 36 i aq; s most org solv t210 2,4,6-Tri-tert-butyl-phenol [(CH3)3C]3C6H2OH 262.44 0.86427 4 129–132 277 t211 Tributyl phosphate (C4H9O)3P(O) 266.32 12, 397 0.972725 1.422625 79 289 146 0.04 aq; misc org solv t212 Tributyl phosphite (C4H9O)3P 250.32 11, 187 0.92520 4 1.432620 1257mm 91 misc alc, bz, eth, PE t213 Tributyltin chloride (C4H9)3SnCl 325.49 43, 1926 1.200 1.490520 17325mm 110 t214 Tributyltin ethoxide (C4H9)3SnOC2H5 335.10 1.098 1.467220 920.1mm 40 t215 Tributyltin hydride (C4H9)3SnH 291.05 44, 4312 1.082 1.473020 800.4mm 40 t216 Tributyltin methoxide (C4H9)3SnOCH3 321.07 44, 4331 1.115 1.472020 970.06mm 98 t217 Trichloroacetamide Cl3CCONH2 162.40 2, 211 141–143 238–240 t218 Trichloroacetaldehyde Cl3CCHO 147.40 Merck: 12, 9755 1.51020 4 1.455720 57.5 97.8 dec aq, alc; s eth t219 Trichloroacetic acid Cl3CCO2H 163.39 2, 206 1.62961 4 1.620020 57.5 196.5 110 120 aq; v s alc, eth t220 Trichloroacetic anhydride (Cl3CCO)2O 308.75 2, 210 1.690 1.483820 14160mm none t221 1,1,3-Trichloroacetone ClCH2COCHCl2 161.42 1, 655 1.508 1.489220 13–15 172 79 t222 Trichloroacetonitrile Cl3CCN 144.39 2, 212 1.440325 4 1.440920 42 86 none 1.326 t223 2,2,4-Trichloro-acetophenone Cl2C6H3COCH2Cl 223.49 7, 283 52–55 1354mm 110 t224 Trichloroacetyl chloride Cl3CCOCl 181.83 2, 210 1.629 1.468920 146 118 t225 2,4,5-Trichloroaniline Cl3C6H2NH2 196.46 12, 627 93–95 270 s alc t226 2,4,6-Trichloroaniline Cl3C6H2NH2 196.46 12, 627 73–75 262 s alc, eth t227 1,2,3-Trichlorobenzene C6H3Cl3 181.45 5, 203 1.69 1.577620 53–55 218–220 126 v s bz, CS2; sl s alc t228 1,2,4-Trichlorobenzene C6H3Cl3 181.45 5, 204 1.45420 1.570720 17 213–214 110 misc bz, eth, PE t229 1,3,5-Trichlorobenzene C6H3Cl3 181.45 5, 204 1.66 1.566219 63.5 208 107 v s bz, eth, PE t230 Trichloro-3-chloro-propylsilane Cl(CH2)3SiCl3 211.98 1.350 1.466620 181–183 t231 1,1,1-Trichloroethane CH3CCl3 133.41 1, 85 1.339020 1.437920 30.4 74 1 s acet, bz, eth t232 1,1,2-Trichloroethane ClCH2CHCl2 133.41 1, 85 1.439720 1.471420 37 114 32 misc alc, eth t233 2,2,2-Trichloroethanol Cl3CCH2OH 149.40 1, 338 1.557 1.490020 18 151–153 8 aq; misc alc, eth t234 2,2,2-Trichloroethyl chloroformate ClCO2CH2CCl3 211.86 1.539 1.470320 171–172 t235 Trichloroethylene ClCH"CCl2 131.39 1, 187 1.464220 1.477320 84.8 87 32 0.1 aq; misc alc, chl, eth t236 Trichloroethylsilane C2H5SiCl3 163.51 4, 630 1.237320 1.425620 105.6 100.5 22 t237 Trichlorofluoro-methane Cl3CF 137.37 Merck: 12, 9770 1.48521 1.38420 111 23.8 0.14 aq; s alc, eth t238 ,,2-Trichloro-6-fluorotoluene ClC6H3(F)CHCl2 213.47 53, 701 1.446 1.550620 228–230 110 t239 Trichloroisocyanuric acid 232.41 25, 256 249–251 1.327 Triacetin, p200 1,3,5-Triazine-2,4,6-triol, c332 Tributyl borate, t207 Tributyrin, g20 Trichloroethanal, t218 ,,-Trichloroethoxycarbonyl chloride, t234 t196 t197 t239 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent t240 Trichloromethane-sulfenyl chloride Cl3CSCl 185.89 3, 135 1.70020 4 1.543620 146–148 t241 1,1,1-Trichloro-2-methyl-2-propanol (CH3)2C(OH)CCl3 177.46 1, 382 99 anhyd 167 s alc, bz, chl, eth t242 Trichloromethylsilane CH3SiCl3 149.48 43, 1896 1.27320 4 1.410820 90 66 9 t243 1,2,4-Trichloro-5-nitrobenzene Cl3C6H2NO2 226.45 5, 246 1.79020 49–55 288 110 v s bz, eth t244 2,4,5-Trichlorophenol Cl3C6H2OH 197.45 62, 180 67–69 253 615 acet; 163 bz; 525 eth; 615 MeOH; i aq t245 2,4,6-Trichlorophenol Cl3C6H2OH 197.45 6, 190 1.490175 4 69 246 none 525 acet; 113 bz; 354 eth; 525 MeOH; i aq t246 (2,4,5-Trichloro-phenoxy)acetic acid Cl3C6H2OCH2CO2H 255.49 63, 702 154–158 s alc; v sl s aq t247 1,2,3-Trichloropropane ClCH2CH(Cl)CH2Cl 147.43 1, 106 1.388920 1.485420 14.7 157 71 misc alc, eth; i aq t248 2,4,6-Trichloro-pyrimidine 183.43 23, 90 1.570020 23–25 110 t249 Trichlorosilane HSiCl3 135.45 Merck: 12, 9776 1.342 1.400020 127 31–32 13 dec aq; s bz, chl t250 4-(Trichlorosilyl)-butyronitrile Cl3Si(CH2)3CN 202.54 4,4, 4272 1.300 1.463020 237–238 92 t251 ,,-Trichlorotoluene C6H5CCl3 195.48 5, 300 1.372320 1.558020 5 219–223 127 s alc, bz, eth t252 ,2,4-Trichlorotoluene Cl2C6H3CH2Cl 195.48 54, 819 1.407 1.576020 2.6 248 110 t253 ,2,6-Trichlorotoluene Cl2C6H3CH2Cl 195.48 1.576120 36–39 11914mm 110 v s alc, eth t254 ,3,4-Trichlorotoluene Cl2C6H3CH2Cl 195.48 5, 300 1.411 1.576620 12414mm 110 t255 2,4,6-Trichloro-1,3,5-triazine 184.41 26, 35 146–148 190 i aq; s alc t256 1,1,1-Trichlorotri-fluoroethane Cl3CCF3 187.38 1.579 1.369920 13–14 46 t257 1,1,2-Trichlorotri-fluoroethane Cl2CFCClF2 187.38 13, 157 1.563525 1.355725 35 47.7 0.017 aq t258 Trichlorovinylsilane H2C"CHSiCl3 161.49 1.270 1.436020 95 90 10 1.328 t259 Tricyclo[5.2.1.02,6]-decane 136.24 5, 164 77–79 193 40 t260 Tricyclo[5.2.1.02,6]-decan-8-one 150.22 72, 133 1.063 1.502520 13230mm t261 Tridecane CH3(CH2)11CH3 184.37 1, 171 0.756320 4 1.425620 5 to 4 235 70 v s alc, eth t262 Tridecanoic acid CH3(CH2)11CO2H 214.35 2, 364 41–42 236100mm 110 v s alc, eth; i aq t263 2-Tridecanone CH3(CH2)10COCH3 198.35 1, 715 0.822 1.435020 29–31 13410mm 110 t264 7-Tridecanone [CH3(CH2)5]2CO 198.35 1, 715 0.825 30–32 264 110 t265 1-Tridecene CH3(CH2)10CH"CH2 182.35 1, 225 0.765820 1.434020 13 232.8 79 s alc; v s eth t266 Triethanolamine (HOCH2CH2)3N 149.19 4, 285 1.124220 4 1.485320 20.5 335.4 179 misc aq, alc, acet; 4.5 bz; 1.6 eth; s chl t267 3,4,5-Triethoxybenzoic acid (C2H5O)3C6H2CO2H 254.29 10, 481 110–112 t268 Triethoxyborane (C2H5O)3B 145.99 1, 335 0.864 1.374020 117–118 11 dec aq t269 Triethoxysilane (C2H5O)3SiH 164.28 1, 334 0.890 1.377020 134–135 26 t270 3-(Triethoxysilyl)-propionitrile (C2H5O)3SiCH2CH2CN 217.34 44, 4271 0.979 1.414020 224 100 t271 3-(Triethoxysilyl)-propyl isocyanate (C2H5O)3Si(CH2)3NCO 247.37 0.999 1.420020 283 77 t272 Triethoxyvinylsilane (C2H5O)3SiCH"CH2 190.32 0.90320 4 1.397820 160–161 34 t273 Triethylaluminum (C2H5)3Al 114.17 4, 643 0.83225 50 194 18 dec aq, air t274 Triethylamine (C2H5)3N 101.19 4, 99 0.727520 1.401020 114.7 88.8 7 5.5 aq; misc alc, eth; s acet, EtOAc t275 Triethylantimony (C2H5)3Sb 208.94 4, 618 1.32416 1.42 29 159.5 t276 Triethylarsine (C2H5)3As 162.11 4, 602 1.15020 4 140736mm i aq; misc alc, eth t277 Triethylborane (C2H5)3B 98.00 4, 641 0.696123 1.397020 02.9 95 i aq; dec by air 1.329 Trichloromethane, c145 (Trichloromethyl)benzene, t251 Tricyclophenylsilane, p159 3,3,3-Trichloropropylene oxide, e18 Tricine, t441 Tri-o-cresyl phosphate, t452 Tricyclene, t400a Tricyclo[3.3.1.13,7]decane, a65 Tricyclo[5.2.1.02,6]decane-4,8-dimethanol, b202 3-Triethoxysilylpropylamine, a273 Triethyl borate, t268 t248 t255 t259 t260 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent t278 Triethyl citrate HOC(CO2C2H5)(CH2CO2C2H5)2 276.29 3, 568 1.137 1.442020 1271mm 110 t279 Triethylenediamine 112.18 233, 484 158–160 62 45 aq; 13 acet; 77 alc; 51 bz t280 Tri(ethylene glycol) (HOCH2CH2OCH2-)2 150.17 1, 468 1.127415 1.455020 7 285 177 misc aq, alc, bz t281 Tri(ethylene glycol) dimethacrylate [H2C"C(CH3)CO2CH2-CH2OCH2-]2 286.33 24, 1531 1.092 1.460520 1725mm 110 t282 Tri(ethylene glycol) dimethyl ether (CH3OCH2CH2OCH2-)2 178.23 Merck: 12, 9820 0.99020 4 1.422420 45 216 111 misc aq, hydrocarbon solvents t283 Tri(ethylene glycol) divinyl ether H2C"CH(OCH2H2)3OCH"CH2 202.25 13, 2106 0.990 1.453020 12618mm 110 t284 Tri(ethylene glycol) monomethyl ether CH3(OCH2CH2)3OH 164.20 13, 2105 1.026 1.439920 12210mm 110 t285 Triethylenetetramine (H2NCH2CH2NHCH2-)2 146.24 4, 255 0.982 1.4971 12 266 143 t286 Triethylgallium (C2H5)3Ga 156.91 1.057630 82.3 142.6 1.330 t287 1,3,5-Triethylhexa-hydro-1,3,5-triazine 171.20 26, 2 0.894 1.459520 207–208 80 t288 Triethylindium (C2H5)3In 202.01 1.26020 1.53820 32 144 t289 Triethyl orthoacetate CH3C(OC2H5)3 162.23 2, 129 0.884725 4 1.395025 142 36 misc alc, chl, eth t290 Triethyl orthoformate HC(OC2H5)3 148.20 2, 20 0.89120 4 1.391020 76 146 30 dec aq; s alc, eth t291 Triethyl ortho-propionate CH3CH2C(OC2H5)3 176.26 2, 240 0.876 1.399520 155–160 60 v s alc, eth t292 Triethyl phosphate (C2H5O)3P(O) 182.16 1, 332 1.069520 1.405820 56 215 115 s aq(dec), alc, eth t293 Triethylphosphine (C2H5)3P 118.16 4, 582 0.80015 4 1.456320 88 128–129 17 i aq; misc alc, eth; py-rophoric t294 Triethyl phosphite (C2H5O)3P 166.16 1, 330 0.96920 4 1.413020 156 54 i aq(hyd); misc alc, acet, bz, eth, PE t295 Triethyl phosphono-acetate (CH3CH2O)2P(O)CH2CO2C2H5 224.19 41, 573 1.130 1.431020 1459mm 110 t296 Triethyl phosphono-formate (CH3CH2O)2P(O)CO2C2H5 212.17 32, 103 1.110 1.432020 13512mm 110 t297 Triethylsilane (C2H5)3SiH 116.28 4, 625 0.73120 4 1.41220 107–108 3 i aq; misc alc, eth t298 Triethyl thiophosphate (C2H5O)3P(S) 198.22 1, 333 1.082 1.448020 10016mm 107 t299 2,2,2-Trifluoro-acetamide CF3CONH2 113.04 22, 186 70–75 162.5 t300 Trifluoroacetic acid CF3CO2H 114.02 22, 186 1.489020 1.285020 15.3 73 misc aq t301 Trifluoroacetic anhydride [CF3C(O)]2O 210.03 22, 186 1.487 1.300 65 39–40 t302 1,1,1-Trifluoroacetone CF3C(O)CH3 112.05 12, 717 1.252 1.30 22 30 t303 1,3,5-Trifluorobenzene C6H3F3 132.09 1.277 1.415020 5.5 75–76 7 t304 ,,-Trifluoro-m-cresol CF3C6H4OH 162.11 61, 187 1.333 1.458820 1.8 178–179 73 t305 2,2,2-Trifluoroethanol CF3CH2OH 100.04 13, 1342 1.384220 4 1.290720 43.5 74 29 t306 2,2,2-Trifluoroethyl trifluoroacetate CF3CH2O2CCF3 196.05 23, 427 1.472518 4 1.281218 65.5 55 0 t307 Trifluoromethane HCF3 70.01 1, 59 1.52100 160 84 75 mL aq; 500 mL alc t308 Trifluoromethane-sulfonic acid CF3SO3H 150.07 34, 34 1.69525 1.325025 34 162 none v s aq; misc eth t309 Trifluoromethane-sulfonic anhydride (CF3SO2)2O 282.13 34, 35 1.677 1.321220 84 none dec aq, alc t310 3-(Trifluoromethyl)-aniline CF3C6H4NH2 161.13 12, 870 1.290 1.480020 5–6 187 85 t311 ,,-Trifluorotoluene C6H5CF3 146.11 5, 290 1.188620 1.414520 29 102 12 t312 Trihexyl O-acetyl-citrate CH3CO2C[CO2(CH2)5CH3]-[CH2CO2(CH2)5CH3]2 486.65 1.005 1.447020 110 t313 Trihexylamine [CH3(CH2)5]3N 269.52 4, 188 0.794 1.441520 163–265 110 v s alc, eth; i aq t314 Trihexyl O-butyl-citrate C3H7CO2C[CO2(CH2)5CH3]-[CH2CO2(CH2)5CH3]2 514.71 0.993 1.448020 55 110 t315 Trihexylchlorosilane [CH3(CH2)5]3SiCl 319.12 0.87120 4 1.45620 1555mm 1.331 Triethylenediamine, d61 Triethylene glycol, e139 Triethylene glycol dimethyl ether, b211 O,O,O-Triethyl phosphorothioate, t298 2,2,2-Trifluoroethyl mesylate, m453 2-(Trifluoromethyl)aniline, a126 3-(Trifluoromethyl)aniline, a127 Trifluoromethylbenzene, t311 m-Trifluoromethylphenol, t304 4,4,4-Trifluoro-1-(2-thienyl)-1,3-butanedione, t132 ,,-Trifluorotoluidines, a126 thru a128 Triglyme, b211 t279 t287 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent t316 Trihexylsilane [CH3(CH2)5]3SiH 284.60 44, 3915 0.799 1.44820 161 110 t317 1,2,3-Trihydroxy-benzene C6H3(OH)3 126.11 6, 1071 1.45 133 309 59 aq; 77 alc; 62 eth t318 1,3,5-Trihydroxy-benzene C6H3(OH)3 126.11 6, 1092 218–221 1 aq; 10 alc; s eth t319 3,4,5-Trihydroxy-benzoic acid (HO)3C6H2CO2H 170.12 10, 470 258–265 1.1 aq; 17 alc; 1 eth; 20 acet; i bz, chl, PE t320 2,3,4-Trihydroxy-benzophenone (HO)3C6H2COC6H5 230.22 8, 417 140–142 t321 1,2,6-Trihydroxy-hexane HO(CH2)4CH(OH)CH2OH 134.18 1,4, 2784 1.109 1.476020 1785mm 79 t322 Triisobutylaluminum [(CH3)2CHCH2]3Al 198.33 4, 643 0.786 1.449420 4–6 8610mm 18 pyrophoric t323 Triisobutylamine [(CH3)2CHCH2]3N 185.36 4, 166 0.766 1.423020 192–193 57 t324 Triisodecyl phosphite [(CH3)2CH(CH2)7O]3P 502.80 0.884 1.460020 0 166 235 t325 Triisopropanolamine [CH3CH(OH)CH2]3N 191.27 43, 762 0.999650 20 48–52 305.4 152 v s aq t326 Triisopropoxyborane [(CH3)2CHO]3B 188.08 1, 363 0.815 1.376420 139–141 10 t327 1,3,5-Triisopropyl-benzene C6H3[CH(CH3)2]3 204.36 5, 458 0.845 1.488020 232–236 86 t328 Triisopropyl ortho-formate CH[OCH(CH3)2]3 190.29 23, 39 0.854 1.397020 6618mm 42 t329 Triisopropyl phosphite [(CH3)2CHO]3P 208.24 1, 363 0.91420 4 1.411020 6411mm 67 i aq(sl hyd) t330 Triisopropylsilane [(CH3)2CH]3SiH 158.36 43, 1851 0.773 1.434420 8635mm 37 t331 3,4,5-Trimethoxy-benzaldehyde (CH3O)3C6H2CHO 196.20 8, 391 73–75 16510mm t332 1,2,3-Trimethoxy-benzene C6H3(OCH3)3 168.19 6, 1081 1.112 43–45 241 110 t333 1,2,4-Trimethoxy-benzene C6H3(OCH3)3 168.19 6, 1088 1.126 1.533020 247 110 t334 1,3,5-Trimethoxy-benzene C6H3(OCH3)3 168.19 6, 1101 51–53 255 85 t335 3,4,5-Trimethoxy-benzoic acid (CH3O)3C6H2CO2H 212.20 10, 481 168–171 22710mm v s alc, eth; s chl 1.332 t336 3,4,5-Trimethoxy-benzoyl chloride (CH3O)3C6H2COCl 230.65 10, 487 81–84 18518mm t337 3,4,5-Trimethoxy-benzyl alcohol (CH3O)3C6H2CH2OH 198.22 6, 1159 1.233 1.543920 22825mm 110 t338 Trimethoxyborane (CH3O)3B 103.91 1, 287 0.92023 4 1.356820 34 67–68 13 hyd aq; misc alc, eth t339 Trimethoxyboroxine [-OB(OCH3)-]3 173.53 1.195 1.399620 10 130 10 t340 1,1,2-Trimethoxy-ethane CH3OCH2CH(OCH3)2 120.15 13, 3183 0.932 1.392120 5956mm 23 t341 1,1,3-Trimethoxy-propane CH3OCH2CH2CH(OCH3)2 134.18 1, 820 0.942 1.400420 4617mm 40 t342 1,1,3-Trimethoxy-propylsilane CH3OCH2CH2CH2Si(OCH3)3 164.28 0.932 1.390020 142 40 t343 Trimethoxysilane (CH3O)3SiH 122.20 12, 274 0.960 1.357920 115 81 4 t344 3-(Trimethoxysilyl)-propylamine H2N(CH2)3Si(OCH3)3 179.29 1.027 1.424020 9215mm 83 t345 N-[3-(Trimethylsilyl)-propyl]aniline C6H5NH(CH2)3Si(OCH3)3 255.39 1.070 1.555020 310 110 t346 N1-[3-(Trimethoxysilyl)-propyl]ethylene-diamine (CH3O)3Si(CH2)3NHCH2CH2NH2 224.36 1.019 1.445020 14615mm 110 t347 3-(Trimethoxysilyl)-propyl methacrylate (CH3O)3Si(CH2)3O2CC(CH3)"CH2 248.35 1.04520 4 1.431020 190 92 t348 [3-(Trimethoxysilyl)-propyl]urea (CH3O)3Si(CH2)3NHCONH2 222.32 1.150 1.460020 217–250 98 t349 Trimethylacetic acid (CH3)3CCO2H 102.13 2, 319 0.889 33–35 163–164 63 t350 Trimethylacetic-anhydride [(CH3)3CCO]2O 186.25 2, 320 0.918 1.409020 193 57 t351 Trimethylacetyl chloride (CH3)3CCOCl 120.58 2, 320 0.979 1.412020 105–106 8 t352 Trimethylaluminum (CH3)3Al 72.09 4, 643 0.75220 1.43212 15 125–126 18 s alk; v sl s alc 1.333 Tri-(2-hydroxyethyl)amine, t266 1,2,6-Trihydroxyhexane, h63 1,2,3-Trihydroxypropane, g19 Triiodomethane, i33 Trimellitic acid, b30 Trimellitic anhydride, b32 Trimesic acid, b31 Trimesoyl chloride, b33 Trimethoxymethylsilane, m455 Trimethylacetaldehyde, d677 Trimethylacetamide, d678 Trimethylacetic acid, d679 Trimethylacetic anhydride, d680 Trimethylacetyl chloride, d681 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent t354 Trimethylamine (CH3)3N 59.11 4, 43 0.656 1.36310 117 2.9 7 41 aq; misc alc; s bz, chl, eth t355 2,4,6-Trimethylaniline (CH3)3C6H2NH2 135.21 12, 1160 0.963 1.551020 233 96 t356 1,3,3-Trimethyl-6-aza-bicyclo[3.2.1]octane 153.27 0.902 1.471620 194 75 t357 1,2,3-Trimethyl-benzene C6H3(CH3)3 120.20 5, 399 0.894420 4 1.513920 25.4 176.1 48 i aq; s alc, eth t358 1,2,4-Trimethyl-benzene C6H3(CH3)3 120.20 5, 400 0.875620 4 1.504820 43.9 169 48 s alc, bz, eth t359 1,3,5-Trimethyl-benzene C6H3(CH3)3 120.20 5, 406 0.863720 4 1.499420 44.7 165 44 misc alc, bz, eth t360 Trimethyl 1,2,4-benzenetri-carbox-ylate C6H3(CO2CH3)3 252.22 91, 429 1.261 1.521420 38–40 19412mm 110 t361 2,2,3-Trimethylbutane (CH3)2CHC(CH3)3 100.20 12, 121 0.690120 4 1.389020 24.9 80.9 6 s alc, eth t362 2,3,3-Trimethyl-2-butanol (CH3)3CC(CH3)2OH 116.20 12, 447 0.838025 4 1.423322 15–17 130.5 misc alc, eth t363 1,2,4-Trimethylcyclo-hexane C6H9(CH3)3 126.24 5, 42 0.786 1.433020 141–143 18 t364 3,5,5-Trimethylcyclo-hex-2-ene-1-one 138.2 7, 65 0.918 1.472020 8.1 215 80 1.2 aq t365 2,6,6-Trimethyl-2-cyclohexene-1,4-dione 152.19 74, 2032 1.491020 26–28 9411mm 96 t366 Trimethyl-1,6-diiso-cyanatohexane OCNCH2CH2C(CH3)CH2-C(CH3)CH2CNO 210.28 1.012 1.462020 149 110 t367 2,2,6-Trimethyl-4H-1,3-dioxin-4-one 142.16 193, 1604 1.088 1.462020 12–13 672mm 86 t368 4,4-Trimethylenebis-(1-methylpiperidine) 238.42 0.896 1.482020 13 21550mm 110 t369 4,4-Trimethylene-dipiperidine 210.37 65–58 t370 3,5,5-Trimethylhexanal (CH3)3CCH2CH(CH3)CH2CHO 142.24 13, 2894 0.817 1.421520 682.4mm 46 1.334 t370a 3,5,5-Trimethylhexane (CH3)2CHCH2CH(CH3)CH(CH3)2 128.26 0.721820 1.405120 128 131 t371 3,5,5-Trimethyl-1-hexanol (CH3)3CCH2CH(CH3)-CH2CH2OH 144.25 13, 1755 0.823620 4 1.430025 70 193–194 80 s alc, eth t372 3,5,5-Trimethyl-hexanoyl chloride (CH3)3CCH2CH(CH3)-CH2COCl 176.89 23, 834 0.930 1.436020 188–190 140 t374 Trimethylhydro-quinone (CH3)3C6H(OH)2 152.19 6, 931 172–174 s aq; v s alc, bz, eth t375 1,3,3-Trimethyl-2-norbornanol 154.25 6, 70 0.964120 4 39–45 201 73 s alc, eth 1.335 endo-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol, b245 2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene, p175 1,7,7-Trimethylbicyclo[2.2.1]hepten-2-one, c3 Trimethyl borate, t338 Trimethylchlorosilane, c266 ,,4-Trimethyl-3-cyclohexene-1-methanol, t13 3,5,5-Trimethylcyclohex-2-en-1-one, i93 1,2,2-Trimethyl-1,3-cyclopentanedicarboxylic acid, c4 Trimethylene chlorobromine, b307 Trimethylene chlorohydrin, c231 Trimethylenediamine, p190 Trimethylene dibromide, d121 Trimethylene dimercaptan, p195 Trimethylene glycol, p192 Trimethylethylene, m166 Trimethylgermanium bromide, b437 t356 t364 t365 t367 t368 t369 t375 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent t376 1,3,3-Trimethyl-2-norbornanone 152.24 7, 96 0.94818 1.463518 5 192–194 52 v s alc, eth t377 Trimethyl orthoacetate CH3C(OCH3)3 120.15 22, 128 0.942825 4 1.385925 107–109 16 v s alc, eth t378 Trimethyl orthoformate HC(OCH3)3 106.12 2, 19 0.967620 4 1.379020 100.6 15 t379 2,4,4-Trimethyl-2-oxazoline 113.16 0.887 1.421320 112–113 12 t380 2,2,3-Trimethylpentane (CH3)3CCH(CH3)CH2CH3 114.23 11, 62 0.716020 4 1.403020 112.3 110 21 s eth; sl s alc t381 2,2,4-Trimethylpentane (CH3)2CHCH2C(CH3)3 114.23 12, 127 0.691920 4 1.391520 107.4 99.2 12 s bz, chl, eth t382 2,3,4-Trimethylpentane (CH3)2CH[CH(CH3)]2CHCH3 114.23 13, 500 0.719020 4 1.404220 109.2 113–114 5 s alc, org solv t383 2,2,4-Trimethyl-1,3-pentanediol (CH3)2CHCH(OH)C(CH3)2CH2OH 146.22 13, 2225 0.92855 15 1.451315 52–56 232 113 1.8 aq; 75 alc; 22 bz; 25 acet t384 2,4,4-Trimethyl-1-pentene (CH3)3CCH2C(CH3)"CH2 112.22 13, 849 0.715020 4 1.411220 93 101–102 6 t385 2,3,5-Trimethylphenol (CH3)3C6H2OH 136.19 6, 518 92–95 230–231 t386 2,3,6-Trimethylphenol (CH3)3C6H2OH 136.19 62–64 t387 2,4,6-Trimethylphenol (CH3)3C6H2OH 136.19 6, 518 71–74 220 t388 2,4,6-Trimethyl-1,3-phenylenediamine (CH3)3C6H(NH2)2 152.23 131, 190 88–91 t389 Trimethyl phosphate (CH3O)3P(O) 140.08 1, 286 1.19720 1.396720 46 197 107 100 aq; s alc t390 Trimethyl phosphite (CH3O)3P 124.08 1, 285 1.04620 4 1.408020 78 111–112 27 dec aq; misc alc, acet, bz, PE t391 Trimethyl phosphono-acetate (CH3O)2P(O)CH2CO2CH3 182.11 1.125 1.437020 1180.85mm 110 t392 1,2,4-Trimethyl-piperazine 128.22 0.85125 25 1.448025 50 151746mm s aq, alc, acet, bz t393 2,4,6-Trimethylpyridine C5H2N(CH3)3 121.18 20, 250 0.916622 4 1.495925 46 171 57 3.5 aq; misc eth; s alc, bz, chl t394 N-(Trimethylsilyl)-acetamide CH3CONHSi(CH3)3 131.25 46–49 186 57 t395 Trimethylsilyl acetate CH3CO2Si(CH3)3 132.24 43, 1857 0.882 1.388020 32 108 4 t396 N-(Trimethylsilyl)-imidazole 140.26 0.956 1.475120 9414mm 5 1.336 t397 Trimethylsilyl methacrylate H2C"C(CH3)CO2Si(CH3)3 158.28 0.890 1.415020 5120mm 32 t398 Trimethylsilyl tri-fluoromethane sul-fonate CF3SO3Si(CH3)3 222.26 1.228 1.360020 7780mm 25 t399 Trimethylsulfonium iodide [(CH3)3S]I 204.07 215–220 sublime t400 Trimethylsulfoxonium iodide [(CH3)3S(O)]I 220.07 169 dec t400a 1,7,7-Trimethyltri-cyclo[2.2.1.O2,6]-heptane 136.24 5, 164 0.866880 1.429680 67.5 152.5 t401 Trimethylvinylsilane (CH3)3SiCH"CH2 100.24 0.649 1.392020 55 34 t402 2,4,6-Trinitroaniline (O2N)3C6H2NH2 228.12 12, 763 1.76214 188–190 explodes s hot acet; sl s alc t403 1,2,4-Trinitrobenzene C6H3(NO2)3 213.11 5, 271 1.7316 61–62 explodes 5.5 alc; 7.1 eth; i aq t404 1,3,5-Trinitrobenzene C6H3(NO2)3 213.11 5, 271 1.68820 4 122.5 explodes 0.035 aq; 1.9 alc; 1.5 eth; 6.2 bz t405 2,4,6-Trinitrotoluene (O2N)3C6H2CH3 227.13 5, 347 1.65420 4 80.1 explodes 1.5 alc; 4 eth; s bz, acet; 0.01 aq t406 Trioctylamine [(CH3(CH2)7]3N 353.68 4, 196 0.809 1.448520 365–367 110 t407 1,3,5-Trioxane 90.08 19, 381 1.17065 60.2 115 45 17.2 aq18; v s alc, bz, eth, EtOAc 1.337 Trimethylolpropane, e183 Trimethylolpropane triacrylate, e114 Trimethylolpropane trimethacrylate, e185 1,3,3-Trimethyl-2-oxabicyclo[2.2.2]octane, c277 Trimethylsilyl cyanide, c331 (N-Trimethyl)silyldiethylamine, d404 (N-Trimethyl)silyldimethylamine, d726 Trimethylsilyl iodide, i56 Trimethylsilylnitrile, c331 2,4,6-Trinitrophenol, p174 Triolein, g23 t376 t379 t392 t396 t400a t407 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent t408 4,7,10-Trioxa-1,13-tridecanediamine O[CH2CH2O(CH2)3NH2]2 220.31 4,4, 1625 1.005 1.464020 1484mm 110 t409 Tripentaerythritol (HOCH2)3CCH2OCH2-C(CH2OH)2CH2OCH2-C(CH2OH)3 372.41 225 dec t410 Triphenylamine (C6H5)3N 245.33 12, 181 0.7740 0 125–127 347–348 t411 Triphenylantimony (C6H5)3Sb 353.07 16, 891 1.434325 52–54 377 110 v s bz, eth; sl s alc t412 Triphenylarsine (C6H5)3As 306.24 16, 828 1.222548 1.613948 60–62 23314mm v s bz, eth; s alc t413 1,3,5-Triphenylbenzene (C6H5)3C6H3 306.41 5, 737 1.205 172–174 460 v s bz; s abs alc, eth t414 Triphenylborane (C6H5)3B 242.13 162, 636 145 20315mm t415 Triphenylmethane (C6H5)3CH 244.34 5, 698 1.013499 4 92–94 360 v s hot alc, eth; 49 chl; 7 bz; s PE t416 Triphenylmethanol (C6H5)3COH 260.34 6, 713 1.1990 4 160–163 360 v s alc, bz, eth; i aq t417 Triphenylmethyl bromide (C6H5)3CBr 323.24 5, 704 152–154 23015mm t418 Triphenylmethyl chloride (C6H5)3CCl 278.78 5, 700 110–112 23520mm t419 Triphenyl phosphate (C6H5O)3P(O) 326.29 6, 179 50–52 24410mm 223 misc alc; s bz, acet, chl, eth; i aq t420 Triphenylphosphine (C6H5)3P 262.29 16, 759 1.07581 4 79–81 377 181 v s eth; s bz, chl, HOAc; sl s alc; i aq t421 Triphenylphosphine oxide (C6H5)3P(O) 278.29 16, 783 156–158 t422 Triphenyl phosphite (C6H5O)3P 310.29 6, 177 1.184 1.590320 22–24 360 218 s alc, bz, chl, eth t423 Triphenylsilane (C6H5)3SiH 260.41 162, 605 42–44 1522mm 76 t424 Triphenyltin acetate CH3CO2Sn(C6H5)3 409.06 164, 1606 124–126 s eth; sl s alc, bz t425 Triphenyltin chloride (C6H5)3SnCl 385.46 16, 914 108 dec 24013.5mm t426 Triphenyltin hydroxide (C6H5)3SnOH 367.02 16, 914 124–126 t427 Tripropoxyborane (CH3CH2CH2O)3B 188.08 12, 369 0.857620 4 1.394820 175–177 32 v s alc; misc eth t428 Tripropylaluminum (CH3CH2CH2)3Al 156.25 4, 643 0.823 107 842mm 18 t429 Tripropylamine (CH3CH2CH2)3N 143.27 4, 139 0.753 1.416020 93.5 155–158 36 s aq, alc, eth t430 Tripropylene glycol H(OCH2CH2CH2)3OH 192.26 1.021 1.44225 273 141 s aq 1.338 t431 Tripropylene glycol butyl ether HO(CH2CH2CH2O)3(CH2)3CH3 248.4 0.932 1.43020 276 135 t432 Tripropylene glycol monomethyl ether HO(CH2CH2CH2O)3CH3 206.29 14, 2475 0.967 1.42825 42 242.4 127 misc aq, alc, eth t433 Tripropyl orthoformate HC(OCH2CH2CH3)3 190.28 2, 21 0.880520 4 1.407220 10840mm 72 t434 Tris(2-aminoethyl)-amine (H2NCH2CH2)3N 146.24 4, 256 0.977 1.497020 11415mm 110 t435 Tris(2-butoxyethyl) phosphate (C4H9OCH2CH2O)3P(O) 398.48 1.006 1.435920 2284mm 110 t436 Tris(2-chloroethyl) phosphate (ClCH2CH2O)3P(O) 285.49 12, 337 1.390 1.472120 330 232 t437 Tris(2-chloroethyl) phosphite (ClCH2CH2O)3P 269.49 1.35320 4 1.486320 1152mm 190 misc alc, bz, eth t438 Tris(2-ethylhexyl) phosphate [C4H9CH(C2H5)CH2O]3P(O) 434.65 13, 1734 0.924 1.443720 2154mm 110 i aq t439 Tris(hydroxymethyl)-aminomethane (HOCH2)3CNH2 121.14 4, 303 171–172 22010mm t440 1,1,1-Tris(hydroxy-methyl)ethane CH3C(CH2OH)3 120.15 1, 520 200–203 t441 N-[Tris(hydroxy-methyl)methyl]-glycine (HOCH2)3CNHCH2CO2H 179.17 Merck: 12, 9783 187 satd aq0 is 0.8M t442 Tris(hydroxymethyl)-nitromethane (HOCH2)3CNO2 151.12 1, 520 214 pure 175 tech 220 aq; v s alc; sl s bz t443 Tris[2-(2-methoxy-ethoxy)ethyl]amine (CH3OCH2CH2OCH2CH2)3N 323.43 1.011 1.448620 110 t444 Tris(2-methoxy-ethoxy)-vinylsilane H2C"CHSi(OCH2CH29OCH3)3 280.39 44, 4257 1.03425 4 1.42725 284–286 110 t445 Tris(2-methoxyethyl) borate (CH3OCH2CH2O)3B 236.08 13, 2118 1.010 1.415020 13515mm 87 t446 Tris(2-methylallyl)-amine [H2C"C(CH3)CH2]3N 179.31 43, 462 0.794 1.457520 8515mm 53 1.339 Trioxymethylene, t407 Tripalmitin, g24 Triphenylmethyl bromide, b440 Triphenyl azide, a310 Triphenyltin chloride, c267 Tripropyl borate, t427 TRIS, t439 Tris(dimethylamino)phosphine oxide, h50 Tris(dimethylamino)silyl chloride, c268a Tris(3,5-dioxaheptyl)amine, t443 Tris(7-methylnonyl) phosphite, t324 Tris(2-methylphenyl) phosphate, t452 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent t447 Tris(2,2,2-trifluoro-ethyl) phosphite (CF3CH2O)3P 328.07 14, 1371 1.487 1.324520 131743mm 110 t448 Tris[3-(trimethoxy-silyl)propyl] isocyanurate 615.86 1.170 1.461020 250 102 t449 Tris(trimethylsilyl) borate [(CH3)3SiO]3B 278.38 43, 1861 0.831 1.386120 186 42 t450 1,3,5-Trithiane 138.27 19, 382 216–218 s bz; sl s alc, eth t451 Trithiocarbonic acid (HS)2CS 110.21 3, 221 1.48320 4 1.822520 26.9 57.8 dec aq, alc; sl s eth t452 Tri-o-tolyl phosphate (CH3C6H4O)3P(O) 368.37 Merck: 12, 9893 1.195520 1.557520 11 410 225 sl s aq, alc; s eth t453 1,2,4-Trivinylcyclo-hexane (H2C"CH)3C6H9 162.28 0.836 1.478020 8820mm 68 t454 L-()-Tryptophan 204.23 22, 546 280–285 dec 1.14 aq25; s hot alc, alk; i eth, chl t455 L-Tyrosine (HO)C6H4CH2CH(NH2)CO2H 181.19 14, 605 1.456 342–344 0.045 aq; 0.01 alc; s alk; i eth u1 Undecanal CH3(CH2)9CHO 170.30 1, 712 0.825 1.432220 4 1155mm 96 i aq; s alc, eth u2 Undecane CH3(CH2)9CH3 156.31 1, 170 0.740220 4 1.417320 25.6 196 60 i aq; misc alc, eth u3 Undecanenitrile CH3(CH2)9CN 167.30 2, 358 0.823 1.433020 253 110 u4 Undecanoic acid CH3(CH2)9CO2H 186.30 2, 358 0.8907 1.429445 28.5 228160mm 110 s alc, chl, eth; i aq u5 Undecanoic -lactone 184.28 17, 247 0.949 1.450020 16613mm 110 u6 Undecanoic -lactone 184.28 173, 4257 0.969 1.459020 15510.5mm 110 u7 1-Undecanol CH3(CH2)10OH 172.31 1, 427 0.8324 1.440220 11 242.8 110 u8 2-Undecanol CH3(CH2)8CH(OH)CH3 172.31 1, 427 0.828 1.437020 2–3 13128mm 88 u9 2-Undecanone CH3(CH2)8COCH3 170.30 1, 173 0.829 1.430020 11–13 231–232 88 (CC) s alc, bz, chl, eth, acet; i aq u10 3-Undecanone CH3(CH2)7COCH2CH3 170.30 1, 713 0.827 1.429120 12–13 225–229 89 u11 6-Undecanone CH3(CH2)4CO(CH2)4CH3 170.30 1, 174 0.831 1.428020 14.6 228 88 i aq; v s alc, eth u12 10-Undecenal H2C"CH(CH2)8CHO 168.28 1,3, 3029 0.810 1.442720 92 u12a 1-Undecene H2C"CH(CH2)8CH3 154.30 1, 225 0.750320 1.426120 49 193 71 u13 10-Undecenoic acid H2C"CH(CH2)8CO2H 184.28 2, 458 0.90724 4 1.449320 24.5 1372mm 148 s alc, chl, eth; i aq u14 10-Undecen-1-ol H2C"CH(CH2)9OH 170.30 1, 452 0.85015 1.450020 2 245 93 1.340 CH3(CH2)3CH2 O O CH3(CH2)4CH3 O O u15 10-Undecenoyl chloride H2C"CH(CH2)8COCl 202.73 2, 459 0.944 1.454020 12210mm 93 u16 Urea (H2N)2CO 60.06 3, 42 1.335 133–135 dec mp 100 aq; 20 alc u17 Uric acid 168.11 26, 513 1.89320 300 dec s alk; i aq, alc, eth u18 Uridine 244.20 31, 23 166–167 s aq; hot alc, pyr 1.341 Trityl alcohol, t416 Triptamine, a170 Tyramine, a173 Undecyl alcohol, u7 Undecylenic aldehyde, u12 Undecyl-10-en-1-oic acid, u13 Undecylic aldehyde, u1 Undecyl iodide, i57 Uracil, p278 4-Ureidohydantoin, a71 Urethane, e102 t448 t450 t454 u5 u6 u17 u18 Umbelliferone, h111 TABLE 1.15 Physical Constants of Organic Compounds (Continued) No.
Name Formula Formula weight Beilstein reference Density, g/mL Refractive index Melting point,C Boiling point,C Flash point,C Solubility in 100 parts solvent v1 Valeric anhydride [CH3(CH2)3CO]2O 186.25 2, 301 0.942 1.421020 57 11216mm 101 v2 -Valerolactone 100.12 17, 235 1.057 1.433020 31 207–208 81 v3 -Valerolactone 100.12 17, 235 1.079 1.458020 600.5mm 100 v4 L-Valine (CH3)2CHCH(NH)CO2H 117.15 4, 427 1.230 315 subl 8.8 aq; v sl s alc, eth v5 Vinyl acetate H2C"CHO2CCH3 86.09 21, 63 0.93220 4 1.395420 93 72–73 8 2 aq; misc alc, eth v6 Vinyl benzoate C6H5CO2CH"CH2 148.16 91, 65 1.070 1.529020 9620mm 82 v7 4-Vinylbenzyl chloride H2C"CHC6H4CH2Cl 152.62 1.083 1.574020 229 104 v8 Vinylcyclohexane C6H11CH"CH2 110.20 51, 35 0.805 1.446320 126–127 20 v9 4-Vinyl-1-cyclohexene 108.18 51, 63 0.80320 4 1.464020 101 127 20 v10 2-Vinyl-1,3-dioxolane 100.12 1.001 1.430020 115–116 14 v11 N-Vinylformamide HCONHCH"CH2 71.08 1.014 1.494020 16 210 102 v12 1-Vinylimidazole 94.12 234, 569 1.039 1.530820 7913mm 81 v13 5-Vinyl-2-norbornene 120.20 0.841 1.480220 80 141 27 v14 Vinyl propionate CH3CH2CO2CH"CH2 100.12 23, 532 0.919 1.403020 80 94–95 6 v15 2-Vinylpyridine (C5H4N)CH"CH2 105.14 20, 256 0.975 1.549020 158–159 46 v s alc, chl, eth v16 4-Vinylpyridine (C5H4N)CH"CH2 105.14 202, 170 0.975 1.550020 6515mm 51 sl s hot aq, hot alc v17 N-Vinyl-2-pyrrolidinone 111.14 1.040 1.512020 9313mm 93 v18 Vinyltrimethoxysilane H2C"CHSi(OCH3)3 148.24 0.968 1.392020 123 22 x1 Xanthene 182.22 17, 73 101 310–312 s bz, eth; sl s alc, aq x2 Xanthen-9-carboxylic acid 226.23 182, 279 217 dec s hot alc, eth x3 9-Xanthenone 196.21 17, 354 174–176 350730mm 0.5 alc; v s chl x4 m-Xylene C6H4(CH3)2 106.17 5, 370 0.864220 1.497220 47.9 139 27 misc alc, eth; 0.02 aq x5 o-Xylene C6H4(CH3)2 106.17 5, 362 0.880820 4 1.505420 25.2 144–145 32 misc alc, eth; 0.017 aq x6 p-Xylene C6H4(CH3)2 106.17 5, 382 0.861120 4 1.495820 13 138 27 v s eth; s alc; 0.02 aq x7 Xylitol HOCH2(CHOH)3CH2OH 152.15 1, 531 1.52 95–97 64 aq; 1.2 EtOH; 6.0 MeOH x8 D-()-Xylose 150.13 31, 47 1.5350 156–158 117 aq; s hot alc, pyr x9 m-Xylylenediamine C6H4(CH2NH2)2 136.20 13, 186 1.032 1.570920 110 1.342 1.343 Valeraldehyde, p28 Valeric acid, p38 Valeronitrile, p35 Valeryl chloride, p45 Vanillic acid, h143 Vanillin, h142 Vanillyl alcohol, h145 Veratraldehyde, d492 Veratric acid, d496 Veratrole, d493 Veronal, d330 Vinylacetic acid, b485 Vinylbenzene, s11 Vinyl bromide, b336 Vinyl butyl ether, b609 Vinyl chloride, c129 Vinyl cyanide, a63 Vinylethylene, b449 Vinylidene chloride, d227 Vinyltrimethylsilane, t401 Vinyltris(2-methoxyethoxy)silane, t444 Vitamin B1, t135 Vitamin B2, r8 Vitamin C, a302 Xanthone, x3 Xylene-,-diol, b18 Xylenols, d659 thru d664 Xylidenes, d554 thru d559 o-Xylyl bromide, b443 Xylyl chlorides, c271 thru c273 p-Xylylene glycol, b19 v2 v3 v9 v10 v12 v13 v17 x1 x2 x3 x8 SECTION 2 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.1 GENERAL INFORMATION AND CONVERSION TABLES 2.3 Table 2.1 Fundamental Physical Constants 2.3 Table 2.2 Physical and Chemical Symbols and Definitions 2.6 Table 2.3 Mathematical Symbols and Abbreviations 2.23 Table 2.4 SI Prefixes 2.24 Table 2.5 Greek Alphabet 2.25 Table 2.6 Abbreviations and Standard Letter Symbols 2.26 Table 2.7 Conversion Factors 2.35 Table 2.8 Temperature Conversion Table 2.54 2.1.1 Conversion of Thermometer Scales 2.66 2.1.2 Density and Specific Gravity 2.66 2.1.3 Barometry and Barometric Corrections 2.70 Table 2.9 Barometer Temperature Correction—Metric Units 2.72 Table 2.10 Barometric Latitude-Gravity Table—Metric Units 2.75 Table 2.11 Barometric Correction for Gravity—Metric Units 2.77 Table 2.12 Reduction of the Barometer to Sea Level—Metric Units 2.78 Table 2.13 Viscosity Conversion Table 2.82 Table 2.14 Conversion of Weighings in Air to Weighings in Vacuo 2.83 Table 2.15 Hydrometer Conversion Table 2.85 Table 2.16 Pressure Conversion Chart 2.87 Table 2.17 Corrections to Be Added to Molar Values to Convert to Molal 2.88 Table 2.18 Molar Equivalent of One Liter of Gas at Various Temperatures and Pressures 2.88 Table 2.19 Factors for Reducing Gas Volumes to Normal (Standard) Temperature and Pressure (760 mmHg) 2.91 Table 2.20 Values of Absorbance for Percent Absorption 2.96 Table 2.21 Transmittance-Absorbance Conversion Table 2.98 Table 2.22 Wavenumber/Wavelength Conversion Table 2.101 2.2 MATHEMATICAL TABLES 2.102 2.2.1 Logarithms 2.102 Table 2.23 Derivatives and Differentiation 2.104 Table 2.24 Integrals 2.105 2.2.2 Surface Areas and Volumes 2.109 2.2.3 Trigonometric Functions of an Angle 2.113 2.2.4 Expansion in Series 2.115 Table 2.25 Some Constants 2.117 2.3 STATISTICS IN CHEMICAL ANALYSIS 2.117 2.3.1 Introduction 2.117 2.3.2 Errors in Quantitative Analysis 2.118 2.3.3 Representation of Sets of Data 2.118 2.3.4 The Normal Distribution of Measurements 2.119 Figure 2.10 The Normal Distribution Curve 2.119 Table 2.26a Ordinates (Y) of the Normal Distribution Curve at Values of z 2.121 Table 2.26b Areas Under the Normal Distribution Curve from 0 to z 2.122 2.3.5 Standard Deviation as a Measure of Dispersion 2.121 2.1 2.2 SECTION 2 2.3.6 Student’s Distribution or t Test 2.123 Table 2.27 Percentile Values for Student t Distribution 2.124 2.3.7 Hypotheses About Means 2.126 2.3.8 The Chi-square (2) Distribution 2.128 Table 2.28 Percentile Values for the Chi-square (2) Distribution 2.129 2.3.9 The F Statistic 2.130 Table 2.29 F Distribution 2.131 2.3.10 Curve Fitting 2.133 2.3.11 Control Charts 2.137 Bibliography 2.138 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.3 2.1 GENERAL INFORMATION AND CONVERSION TABLES TABLE 2.1 Fundamental Physical Constants E. R. Cohen and B. N. Taylor, CODATA Bull. 63:1–49 (1986); J. Res. Nat. Bur. Standards, 92:85 (1987).
A. Defined values Physical quantity Name of SI unit Symbol for SI unit Definition 1. Base SI units Amount of substance mole mol Amount of substance which contains as many specified entities as there are atoms of car-bon-12 in exactly 0.012 kg of that nuclide.
The elementary entities must be specified and may be atoms, molecules, ions, elec-trons, other particles, or specified groups of such particles.
Electric current ampere A Magnitude of the current that, when flowing through each of two straight parallel con-ductors of infinite length, of negligible cross-section, separated by 1 meter in a vacuum, results in a force between the two wires of 2 107 newton per meter of length.
Length meter m Distance light travels in a vacuum during 1/299 792 458 of a second.
Luminous intensity candela cd Luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540 1012 hertz and that has a radiant intensity in that direction of 1/683 watt per steradian.
Mass kilogram kg Mass of a cylinder of platinum-iridium alloy kept at Paris.
Temperature kelvin K Defined as the fraction 1/273.16 of the ther-modynamic temperature of the triple point of water.
Time second s Duration of 9 192 631 770 periods of the ra-diation corresponding to the transition be-tween the two hyperfine levels of the ground state of the cesium-133 atom.
2. Supplementary SI units Plane angle radian rad The plane angle between two radii of a circle which cut off on the circumference an arc equal in length to the radius.
Solid angle steradian sr The solid angle which, having its vertex in the center of a sphere, cuts off an area of the surface of the sphere equal to that of a square with sides of length equal to the ra-dius of the sphere.
2.4 SECTION 2 TABLE 2.1 Fundamental Physical Constants (Continued) B. Derived SI units Physical quantity Name of SI unit Symbol for SI unit Expression in terms of SI base units Absorbed dose (of radiation) gray Gy J · kg1 Activity (radioactive) becquerel Bq s1 m2 · s2 Capacitance (electric) farad F C · V1 m2 · kg1 · s4 · A2 Charge (electric) coulomb C A · s Conductance (electric) siemens S 1 m2 · kg1 · s3 · A2 Dose equivalent (radiation) sievert Sv J · kg1 m2 · s2 Energy, work, heat joule J N · m m2 · kg · s2 Force newton N m · kg · s2 Frequency hertz Hz s1 Illuminance lux lx cd · sr · m2 Inductance henry H V · A1 · s m2 · kg · s2 · A2 Luminous flux lumen Lm cd · sr Magnetic flux weber Wb V · s m2 · kg · s2 · A1 Magnetic flux density tesla T V · s · m2 kg · s2 · A1 Potential, electric (electromotive force) volt V J · C1 m2 · kg · s3 · A1 Power, radiant flux watt W J · s1 m2 · kg · s3 Pressure, stress pascal Pa N · m2 m1 · kg · s2 Resistance, electric ohm V · A1 m2 · kg · s3 · A2 Temperature, Celsius degree Celsius C C (K 273.15) C. Recommended consistent values of constants Quantity Symbol Value Anomalous electron moment correction e 1 0.001 159 615(15) Atomic mass constant mu 1 u 1.660 540 2(10) 1027 kg Avogadro constant L, NA 6.022 136 7(36) 1023 mol1 Bohr magneton (eh/4me) B 9.274 015 4(31) 1024 J · T1 Bohr radius a0 5.291 772 49(24) 1011 m Boltzmann constant k 1.380 658(12) 1023 J · K1 Charge-to-mass ratio for electron e/me 1.758 805(5) 1011 C · kg1 Compton wavelength of electron c 2.426 309(4) 1012 m Compton wavelength of neutron c,n 1.319 591(2) 1015 m Compton wavelength of proton c,p 1.321 410(2) 1015 m Diamagnetic shielding factor, spherical water molecule 1 (H2O) 1.000 025 64(7) Electron magnetic moment e 9.284 770 1(31) 1024 J · T1 Electron radius (classical) re 2.817 938(7) 1015 m Electron rest mass me 9.109 389 7(54) 1031 kg Elementary charge e 1.602 177 33(49) 1019 C Energy equivalents: 1 electron mass 0.511 003 4(14) MeV 1 electronvolt 1 eV/k 1.160 450(36) 104 K 1 eV/hc 8.065 479(21) 103 cm1 1 eV/h 2.417 970(6) 1014 Hz 1 neutron mass 939.573 1(27) MeV 1 proton mass 938.279 6(27) MeV The digits in parentheses following a numerical value represent the standard deviation of that value in terms of the final listed digits.
GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.5 TABLE 2.1 Fundamental Physical Constants (Continued) C. Recommended consistent values of constants (continued) Quantity Symbol Value 1 u 931.501 6(26) MeV Faraday constant F 96 485.309(29) C · mol1 Fine structure constant 0.007 297 353 08(33) 1 137.035 989 5(61) First radiation constant c1 3.741 774 9(22) 1016 W · m2 Gas constant R 8.314 510(70) J · K1 · mol1 g factor (Lande) for free electron ge 2.002 319 304 386(20) Gravitational constant G 6.672 59(85) 1011 m3 · kg1 · s2 Hartree energy Eh 4.359 748 2(26) 1018 J Josephson frequency-voltage ratio 4.835 939(13) 1014 Hz · V1 Magnetic flux quantum 0 2.067 851(5) 1015 Wb Magnetic moment of protons in water p/B 1.520 993 129(17) 103 Molar volume, ideal gas, p 1 bar, 0C 22.711 08(19) L · mol1 Neutron rest mass mn 1.674 928 6(10) 1027 kg Nuclear magneton N 5.050 786 6(17) 1027 J · T1 Permeability of vacuum 0 4 107 H · m1 exactly Permittivity of vacuum 0 8.854 187 816 1012 F · m1 h/2 1.054 572 66(63) 1034 J · s Planck constant h 6.626 0.75 5(40) 1034 J · s Proton magnetic moment p 1.410 607 61(47) 1026 J · T1 Proton magnetogyric ratio p 2.675 221 28(81) 108 s1 · T1 Proton resonance frequency per field in H2O /2 p 42.576 375(13) MHz · T1 Proton rest mass mp 1.672 623 1(10) 1027 kg Quantum-charge ratio h/e 4.135 701(11) 1015 J · Hz1 · C1 Quantum of circulation h/me 7.273 89(1) 104 J · s · kg1 Ratio, electron-to-proton magnetic moments e/p 6.582 106 88(7) 102 Rydberg constant R 1.097 373 153 4(13) 107 m1 Second radiation constant c2 1.438 769(12) 102 m · K Speed of light in vacuum c0 299 792 458 m · s1 exactly Standard acceleration of free fall gn 9.806 65 m · s2 exactly Standard atmosphere atm 101 325 Pa exactly Stefan-Boltzmann constant 5.670 51(19) 108 W · m2 · K4 Thomson cross section e 6.652 448(33) 1029 m2 Wien displacement constant b 0.289 78(4) cm · K Zeeman splitting constant B/hc 4.668 58(4) 105 cm1 · G1 D. Units in use together with SI units Physical quantity Name of unit Symbol for unit Value in SI units Area barn b 1028 m Energy electronvolt eV (e V) 1.60218 1019 J megaelectronvolt1 MeV Length a ˚ngstro ¨m2 A ˚ 1010 m; 0.1 nm Mass tonne t 103 kg; Mg The digits in parentheses following a numerical value represent the standard deviation of that value in terms of the final listed digits.
1 The term million electronvolts is frequently used in place of megaelectronvolts.
2 The a ˚ngstro ¨m and bar are approved for temporary use with SI units; however, they should not be introduced if not used at present.
2.6 SECTION 2 TABLE 2.1 Fundamental Physical Constants (Continued) D. Units in use together with SI units (continued) Physical quantity Name of unit Symbol for unit Value in SI units unified atomic mass unit u[ ma(12C)/12] 1.66054 1027 kg dalton3 Da Plane angle degree (/180) rad minute (/10 800) rad second (/648 000) rad Pressure bar2 bar 105 Pa 105 N m2 Time minute min 60 s hour h 3600 s day d 86 400 s Volume liter (litre) L, l dm3 103 m3 milliliter mL, ml cm3 106 m3 2 The a ˚ngstro ¨m and bar are approved for temporary use with SI units; however, they should not be introduced if not used at present.
3 The name dalton and symbol Da have not been approved although they are often used for large molecules.
TABLE 2.2 Physical and Chemical Symbols and Definitions Symbols separated by commas represent equivalent recommendations. Symbols for physical and chemical quan-tities should be printed in italic type. Subscripts and superscripts which are themselves symbols for physical quantities should be italicized; all others should be in Roman type. Vectors and matrices should be printed in boldface italic type, e.g., B, b. Symbols for units should be printed in Roman type and should remain unaltered in the plural, and should not be followed by a full stop except at the end of a sentence. References: International Union of Pure and Applied Chemistry, Quantities, Units and Symbols in Physical Chemistry, Blackwell, Oxford, 1988; “Manual of Symbols and Terminology for Physicochemical Quantities and Units,” Pure Applied Chem.
31:577–638 (1972), 37:499–516 (1974), 46:71–90 (1976), 51:1–41, 1213–1218 (1979); 53:753–771 (1981), 54:1239–1250 (1982), 55:931–941 (1983); IUPAP-SUN, “Symbols, Units and Nomenclature in Physics,” Phys-ica 93A: 1–60 (1978).
A. Atoms and molecules Name Symbol SI unit Definition Activity (radioactivity) A Bq A dNB/dt Atomic mass constant mu kg mu ma(12C)/12 Bohr magneton B J · T1 B eh/4me Bohr radius a0 m a0 2 0h2/mee2 Decay (rate) constant s1 A NB Dissociation energy D, Ed J From ground state D0 J From the potential minimum De J Electric dipole moment of a molecule p, C · m Ep p E Electric field gradient q V · m2 q
2V/
Electric polarizability of a molecule C · m2 · V1 p(induced) E Electron affinity Eea J Electron rest mass me kg Elementary charge, proton charge e C Fine structure constant e2/2 0hc g factor g GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.7 TABLE 2.2 Physical and Chemical Symbols and Definitions (Continued) A. Atoms and molecules (continued) Name Symbol SI unit Definition Hartree energy Eh J Eh h2/42mea2 0 Ionization energy Ei J Larmor circular frequency L s1 L (e/2m)B Larmor frequency L Hz L L/2 Longitudinal relaxation time T1 s Magnetogyric ratio C · kg1 /L Magnetic dipole moment of a molecule m, J · T1 Ep m B Magnetizability of a molecule J · T2 m B Mass of atom, atomic mass m, ma kg Neutron number N N A Z Nuclear magneton N J · T1 N (me/mp)B Nucleon number, mass number A Planck constant h J · s Planck constant/2 J · s h/2 Principal quantum number (H atom) n E hcR/n2 Proton number, atomic number Z Quadrupole interaction J eQq Quadrupole moment of a molecule Q; C · m2 Ep 0.5 Q: V V 1⁄3 Quadrupole moment eQ C · m2 eQ 2zz Rydberg constant R m1 R E /2hc h Transverse relaxation time T2 s B. Chemical reactions Name Symbol SI unit Definition Amount (of substance) n mol nB NB/L Atomic mass m, ma kg Atomic mass constanta mu kg mu ma(12C)/12 Avogadro constant L, NA mol1 Concentration, amount (concentration) c mol · m3 cB nB/V Degree of dissociation Density (mass) , kg · m3 mB/V Extent of reaction, advancement mol nB/BB Mass (molecular or formula unit) m, mf kg Mass fraction w wB mB/mi Molality (of a solute) m mol · kg1 mB nB/mA Molar mass M kg · mol1 MB m/nB Molar volume Vm m3 · mol1 Vm,B V/nB Molecular weight (relative molar mass) Mr Mr,B mB/mu Mole fractionb, number fraction x, y xB nB/ni Number concentration C, n m3 CB NB/V Number of entities (e.g., molecules, atoms, ions, formula units) N Pressure (partial) pB Pa pB yBp Pressure (total) p, P Pa Solubility s mol · m3 sB cB (saturated solution) a In biochemistry this unit is called the dalton, with symbol Da.
b For condensed phases x is used, and for gaseous mixtures y may be used.
2.8 SECTION 2 TABLE 2.2 Physical and Chemical Symbols and Definitions (Continued) B. Chemical reactions (continued) Name Symbol SI unit Definition Stoichiometric number Surface concentration mol · m2 B nB/A Volume fraction B VB/Vi Symbols for particles and nuclear reactions: Alpha particle Muon, positive Beta particle , Neutron n, n0 Deuteron d, 2H Photon Electron e, e Proton p, p Helion h Triton t, 3H Muon, negative The meaning of the symbolic expression indicating a nuclear reaction: initial incoming particles outgoing particles final , nuclide or quanta or quanta nuclide Examples: 14N(, p)17O, 23Na( , 3n)20Na States of aggregation: am amorphous solid cd condensed phase (solid or liquid) aq aqueous solution cr crystalline as, aqueous solution at fl fluid phase (gas or liquid) infinite dilution lc liquid crystal g gas vit vitreous substance l liquid mon monomeric form s solid pol polymeric form sln solution ads species adsorbed on a substance C. Chromatography Name Symbol Definition Adjusted retention time t R t t t R R M Adjusted retention volume V R V V V R R M Average linear gas velocity L/tM Band variance 2 Bed volume Vg Capacity, volume Qv Capacity, weight Qw Column length L Column temperature Column volume Vcol Vcol Dd2/4 c Concentration at peak maximum Cmax Concentration of solute in mobile phase CM Concentration of solute in sta-tionary phase CS Density of liquid phase L Diffusion coefficient, liquid film Df Diffusion coefficient, mobile phase DM GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.9 TABLE 2.2 Physical and Chemical Symbols and Definitions (Continued) C. Chromatography (continued) Name Symbol Definition Diffusion coefficient, stationary phase DS Distribution ratio Dc [A]S/[A]M 3 amount of A per cm stationary phase 3 amount of A per cm of mobile phase Dg amount A per gram dry stationary phase 3 amount A per cm of mobile phase Dv 3 amount A, stationary phase per cm bed volume 3 amount A per cm of mobile phase DS 2 amount of A per m of surface 3 amount of A per cm of mobile phase Elution volume, exclusion chro-matography Ve Flow rate, column Fc Fc (d2/4)( )(L/t ) c tot M Gas/liquid volume ratio Inner column volume Vi Interstitial (outer) volume Vo Kovats retention indices RI Matrix volume Vg Net retention volume VN V jV N R Obstruction factor Packing uniformity factor Particle diameter dp dp L/Nh Partition coefficient K K CS/CM (VR VM)/VS Partition ratio k k CSVS/CMVM K(VS/VM) Peak asymmetry factor AF Ratio of peak half-widths at 10% peak height Peak resolution Rs Rs (tR,2 tR,1)/0.5(W2 W1) Plate height H H L/Neff Plate number Neff 2 2 N L/H 16(t /W ) 5.54(t/W ) eff R b R 1/2 Porosity, column Pressure, column inlet pi Presure, column outlet Po Pressure drop P Pressure-gradient correction j 2 3[(p /p ) 1] i o j 3 2[(p /p ) 1] i o Recovery factor Rn Rn 1 (rDc 1)n; r Vorg/Vaq Reduced column length L/dp Reduced plate height h h H/dp Reduced velocity v v dp/DM Kdp/tMDM Relative retention ratio (k/k) 2 1 Retardation factorc Rf Rf dsolute/dmobile phase Retention time tR tR tM(1 k) L/ Retention volume VR VR tRFc Selectivity coefficientd kA,B kA,B [A]r[B]/[B]r[A] Separation factor A/B A/B (Dc)A/(Dc)B c The distance d corresponds to the movement of solute and mobile phase from the starting (sample spotting) line.
d Subscript “r” represents an ion-exchange resin phase. Two immiscible liquid phases might be represented similarly using subscripts “1” and “2.” TABLE 2.2 Physical and Chemical Symbols and Definitions (Continued) C. Chromatography (continued) Name Symbol Definition Specific retention volume V g V 273 R/(p Mw ) g L Thickness (effective) of station-ary phase df Total bed volume Vtot Transit time of nonretained solute tM, t0 Vapor pressure p Volume liquid phase in column VL Volume mobile phase in column VM Weight of liquid phase wL Zone width at baseline Wb Wb 4 Zone width at peak height 1⁄2 W1/2 D. Colloid and surface chemistry Name Symbol SI unit Definition Adsorbed amount of B ns B mol Area per molecule a, m2 aB A/N N Area per molecule in a filled monolayer am m2 am,B A/Nm,B Average molar masses: Mass-average Mm kg · mol1 Mm niM /niMi 2 i Number-average Mn kg · mol1 Mn niMi/ni Z-average MZ kg · mol1 MZ niM /niM 3 2 i i Contact angle rad Film tension f N · m1 f 2 f Film thickness t, h, m Reciprocal thickness of the double layer m1 [2F2Ic/ RT]1/2 Retarded van der Waals constant , B J Sedimentation coefficiente s s s v/a Specific surface area a, s, as m2/kg a A/m Surface coverage N /NB B Surface excess of B n B mol Surface pressure s, N · m1 s 0 Surface tension, interfacial tension , J · m2 (
G/
As)T,p Thickness of (surface or in-terfacial) layer , , t m Total surface excess con-centration mol · m2 i van der Waals constant J van der Waals-Hamaker constant AH J e v is the velocity of sedimentation and a is the acceleration of free fall or centrifugation.
2.10 SECTION 2 TABLE 2.2 Physical and Chemical Symbols and Definitions (Continued) E. Electricity and magnetism Name Symbol SI unit Definition Admittance Y S Y 1/Z Capacitance C F, C · V1 C Q/U Charge density C · m3 Q/V Conductance G S G 1/R Conductivity S · m1 1/ Dielectric polarization (di-pole moment per volume) P C · m2 P D 0E Electrical resistance R R U/I V/I Electric current I A I dQ/dt Electric current density j, J A · m2 I j dA Electric dipole moment p, C · m p Qr Electric displacement D C · m2 D E Electric field strength E V · m1 E F/Q grad V Electric flux C D dA Electric potential V, V, J · C1 V dW/dQ Electric potential difference U, V V U V2 V1 Electric susceptibility e e r 1 Electromotive force E V E (F/Q) ds Impedance Z Z R iX Loss angle f rad (/2) I U Magnetic dipole moment m, A · m2 Ep mB Magnetic field strength H A · m1 B H Magnetic flux Wb B dA Magnetization (magnetic di-pole moment per volume) M A · m1 M (B/0) H Magnetic susceptibility , r 1 Magnetic vector potential A Wb · m1 B A Molar magnetic suscepti-bility m n3/mol m Vm Mutual inductance M, L12 H E1 L12(dI2/dt) Permeability H · m1 B H Permeability of vacuum 0 H · m1 Permittivity F · m1 D E Permittivity of vacuum 0 F · m1 0 c 1 2 0 0 Poynting vector S W · m2 S E H Quantity of electricity, elec-tric charge Q C Reactance X X (U/I) sin Relative permeability r r /0 Relative permittivityg r r / 0 Resistivity · m E/j Self-inductance L H E L(dI/dt) Susceptance B S Y G iB f I and U are the phases of current and potential difference.
g This quantity was formerly called the dielectric constant.
GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.11 2.12 SECTION 2 TABLE 2.2 Physical and Chemical Symbols and Definitions (Continued) F. Electrochemistry Name Symbol SI unit Definition Charge density (surface) C · n2 Q/A Charge number of an ion z zB QB/e Charge number of electro-chemical cell reaction n, (z) Conductivity (specific con-ductance) S · m1 j/E Conductivity cell constant Kcell m1 Kcell R Current density (electric) j A · m2 j I/A Diffusion rate constant, mass transfer coefficient kd m · s1 kd,B |B|I1,B/nFcA Electric current I A I dQ/dt Electric mobility m2 · V1 · s1 B vB/E Electric potential difference (of a galvanic cell) V, E, U V V VR VL Electrochemical potential ˜ J · mol1 (
G/
n ) ˜ B B Electrode reaction rate con-stant k (varies) ni k I / nFA c ox a i i Electrokinetic potential (zeta potential) V Elementary charge (proton charge) e C emf, electromotive force E V E lim V I:0 emf of the cell E V E E (RT/nF) i ln ai Faraday constant F C · mol1 F eL Galvani potential difference V Inner electrode potential V E Ionic conductivity S · m2 · mol1 B |zB|FuB Ionic strength Ic, I mol · m3 Ic ciz2 1⁄2 c Mean ionic activity a a m /m0 Mean ionic activity coeffi-cient ( ) ( )( ) Mean ionic mobility m 1 mol · kg ( ) m (m )(m ) Molar conductivity (of an electrolyte) 2 1 S · m mol B cB pH pH c(H ) pH log 3 mol · dm Outer electrode potential V Q/4 0r Overpotential V E E IR I I0 u Reciprocal radius of ionic atmosphere 1 m (2F2I/ RT)1/2 Standard emf, standard po-tential of electrochemical cell reaction E0 V 0 0 E G /nF (RT/nF) ln K r Surface electric potential V Thickness diffusion layer m B DB/kd,B Transfer coefficient ||RT ln|I | c c nF E Transport number t tB jB/ji Volta potential difference V GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.13 TABLE 2.2 Physical and Chemical Symbols and Definitions (Continued) G. Electromagnetic radiation (continued) Name Symbol SI unit Definition Absorbance abs/0 Absorbance (decaidic) A A log(1 i) Absorbance (napierian) B B ln(1 i) Absorption coefficient: Linear (decaidic) a, K 1 m a A/l Linear (napierian) 1 m B/l Molar (decaidic) 2 1 m · mol a/d A/cl Molar (napierian) 2 1 m · mol /c B/cl Absorption index k k /4 ˜ Angle of optical rotation rad Circular frequency 1 1 s , rad · s 2 Complex refractive index n ˆ n ˆ ik Concentration, amount of substance c mol · m3 Concentration, mass kg · m3 Einstein transition probabil-ities: Spontaneous emission Anm 1 s dNn/dt AnmNn Stimulated absorption Bmn 1 s · kg dN /dt ( ˜ )B N n ˜ nm mn m Stimulated emission Bnm 1 s · kg dN /dt v ˜ ( ˜ )B N n nm mn m Emittance M/Mbb By blackbody Mbb First radiation constant c1 W · m2 2 c 2hc 1 0 Frequency Hz c/ Irradiance (radiant flux re-ceived) E, (I) 2 W · m E d/dA Molar refraction R, Rm 3 1 m · mol 2 (n 1) R Vm 2 (n 2) Path length (absorbing) l m Optical rotatory power [] rad [] / l Planck constant h J · s Planck constant/2 J · s h/2 Radiant energy Q, W J Radiant energy density , w J · m3 Q/V Radiant exitance, emitted radiant flux M 2 W · m M d/dAsource Radiant intensity I 1 W · sr I d/d Radiant power, radiant en-ergy per time , P W dQ/dt Refractive index n n c0/c Reflectance refl/0 Second radiation constant c2 K · m c2 hc0/k Spectral radiant energy density: In terms of frequency , w J · m · Hz 3 1 d/d In terms of wavelength , w J · m4 d/d In terms of wavenumber , w ˜ ˜ J · m2 d/d ˜ ˜ 2.14 SECTION 2 TABLE 2.2 Physical and Chemical Symbols and Definitions (Continued) G. Electromagnetic radiation (continued) Name Symbol SI unit Definition Speed of light: In a medium c m · s1 c c0/n In vacuum c0 m · s1 Stefan-Boltzmann constant W · m · K 2 4 Mbb T4 Transmittance , T tr/0 Wavelength m Wavenumber: In a medium m1 1/ In vacuum ˜ m1 ˜ /c 1/n 0 H. Kinetics Name Symbol SI unit Definition Activation energy Ea, E J · mol1 Ea RT2 d ln k/dT Boltzmann constant k, kB J · K1 Collision cross section m2 AB d2 AB Collision diameter d m dAB rA rB Collision frequency ZA s1 Collision frequency factor zAB, zAA m3 · mol · s 1 1 zAB ZAB/LcAcB Collision number ZAB, ZAA m · s 3 1 Half-life t1/2 s c(t1/2) c0/2 Overall order of reaction n n nB Partial order of reaction nB nB v k!cB Pre-exponential factor A (mol · m3)n · s 1 1 1 k A exp(Ea/RT) Quantum yield, photochem-ical yield Rate of change of quantity X X ˙ (varies) X ˙ dX/dt Rate of concentration change (chemical reac-tion) rB, vB mol · m · s 3 1 rB dcB/dt Rate constant, rate coeffi-cient k (mol · m3)n · s 1 1 1 nB v k!cB Rate of conversion change due to chemical reaction ˙ 1 mol · s ˙ d/dt Rate of reaction (based on concentration) v mol · m · s 3 1 1 v /V dc /dt B B Relaxation time s 1/(k1 k ) 1 Standard enthalpy of acti-vation H J · mol1 Standard entropy of activa-tion S J · mol · K 1 1 Standard Gibbs energy of activation G J · mol1 Volume of activation V m3 · mol1 V RT (
ln k/
p)T GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.15 TABLE 2.2 Physical and Chemical Symbols and Definitions (Continued) I. Mechanics Name Symbol SI unit Definition Acoustic factors: Absorption a a 1 Dissipation a Reflection Pr/P0 Transmission Ptr/P0 Angular momentum L J · s L r p Bulk modulus, compression modulus K Pa K V0(dp/dV) Density, mass density kg · m3 m/V Energy E J Fluidity, kinematic vis-cosity m · kg · s 1 1/ Force F N F dp/dt ma Friction coefficient , ( f ) Ffrict Fnorm Gravitational constant G N · m2 · kg2 F Gm1m2/r2 Hamilton function H J H(q, p) T(q, p) V(q) Kinematic viscosity m2 · s1 / Kinetic energy Ek J Ek mv2 1⁄2 Lagrange function L J L(q, q ˙) T(q, q ˙) V(q) Linear strain, relative elon-gation , e l/l Mass m kg Modulus of elasticity, Young’s modulus E Pa E / Moment of inertia I, J kg · m2 I mi 2 ri Momentum p kg · m · s1 p m Normal stress Pa F/A Potential energy Ep J E F · ds p Power P W P dW/dt Pressure p, P Pa, N · m2 p F/A Reduced mass kg m1m2/(m1 m2) Relative density d d /0 Shear modulus G Pa G / Shear strain x/d Shear stress Pa F/A Sound energy flux P, Pa W P dE/dt Specific volume " m3 · kg1 " V/ 1/ Surface density A, S kg · m2 A m/A Surface tension , N · m , J · m 1 2 dW/dA Torque, moment of a force T, (M) N · m T r F Viscosity (dynamic) , Pa · s x,z (d"x/dz) Volume (or bulk) strain V/V0 Weight G, (W, P) N G m · g Work W, w J W F ds 2.16 SECTION 2 TABLE 2.2 Physical and Chemical Symbols and Definitions (Continued) J. Solid state Name Symbol SI unit Definition Acceptor ionization energy Ea J Bragg angle rad n 2d sin Bloch function uk(r) 3/2 m (r) uk(r) exp(ik · r) Burgers vector b m Charge density of electrons C · m3 (r) e(r)(r) Circular wave vector: For particles (k) k, q m1 k 2/ For phonons (q) Conductivity tensor ik S · m1 1 Curie temperature TC K Debye circular frequency D s1 Debye circular wavenumber qD m1 Debye-Waller factor B, D Density of states NE J · m 1 3 NE dN(E)/dE Density of vibrational modes (spectral) N, g s · m3 N dN()/d Diffusion coefficient D m2 · s1 dN/dt DA dn/dx Diffusion length L m L (D)1/2 Displacement vector of an ion u m u R R0 Donor ionization energy Ed J Effective mass m kg Equilibrium position vector of an ion R0 m Fermi energy EF J Gap energy Eg Gru ¨neisen parameter , V/CV Hall coefficient AH, RH m3 · C1 E j RH(B j) Lattice plane spacing d m Lattice vector R, R0 m Lorenz coefficient L V2 · K2 L /T Madelung constant 2 N z z e A E coul 4 R 0 0 Mobility m2 · V · s 1 1 "drift/E Mobility ratio b b n/p Neel temperature TN K Number density, number concentration n m3 Order parameters: Long range s Short range Order of reflection n Particle position vector: Electron r m Ion position Rj m Peltier coefficient !
V Reciprocal lattice vector (circular) G m1 G R 2m GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.17 TABLE 2.2 Physical and Chemical Symbols and Definitions (Continued) J. Solid state (continued) Name Symbol SI unit Definition Relaxation time s 1/"F Residual resistivity R m Resistivity tensor · m E j Temperature K Thermal conductivity tensor W · m · K 1 1 Jq grad T Thermoelectric force E V Thomson coefficient V · K1 Translation vectors for the reciprocal lattice (circu-lar) b ; b ; b 1 2 3 a; b; c m1 ai bk 2ik Translation vectors for crystal lattice a1; a2; a3 a; b; c m R n a n a n a 1 1 2 2 3 3 Work function J E E F K. Space and time Name Symbol SI unit Definition Acceleration a, (g) m · s2 a d"/dt Angular velocity rad · s , s 1 1 d/dt Area A, As, S m2 Breadth b m Cartesian space coordinates x, y, z m Circular frequency, angular frequency rad · s , s 1 1 2 Diameter d m Distance d m Frequency , f Hz 1/T Generalized coordinate q, qi (varies) Height h m Length l m Length of arc s m Path length s m Period T s T t/N Plane angle , , , , rad, l s/r Position vector r m r xi yj zk Radius r m Relaxation time, time con-stant , T s |dt/d ln x| Solid angle , sr, l A/r2 Speed ", u, w, c m · s1 " |"| Spherical polar coordinates r, , m, l, l Thickness d, m Time t s Velocity ", u, w, c m · s " dr/dt Volume V, (") m3 2.18 SECTION 2 TABLE 2.2 Physical and Chemical Symbols and Definitions (Continued) L. Spectroscopy Name Symbol SI unit Definition Asymmetry parameter 2B A C A C Centrifugal distortion con-stants: A reduction J JK K J K m1 S reduction DJ DJK DK d1 d2 Degeneracy, statistical weight g, d, Electric dipole moment of a molecule p, C · m Ep p E Electron spin resonance (ESR), electron paramag-netic resonance (EPR): Hyperfine coupling con-stant: In liquids a, A Hz H ˆ hfs/h aS ˆ I In solids T Hz H ˆ hfs/h S ˆ T I g factor g h gBB Electronic term Te m1 Te Ee/hc Harmonic vibration wave-number e; r m1 Inertial defect kg · m2 IC IA IB Interatomic distances: Equilibrium distance re m Ground state distance r0 m Substitution structure dis-tance rs m Zero-point average dis-tance rz m Longitudinal relaxation time T1 s Nuclear magnetic resonance (NMR), chemical shift, scale 106( 0)/0 Coupling constant, direct (dipolar) DAB Hz Magnetogyric ratio C · kg1 2/Ih Shielding constant A BA (1 A)B Spin-spin coupling con-stant JAB Hz H/h JABIA · IB Principal moments of iner-tia IA; IB; IC kg · m2 IA # IB # IC Rotational constants: In frequency A; B; C Hz A h/82IA In wavenumber A ˜; B ˜; C ˜ m1 A ˜ h/82IA Rotational term F m1 F Erot/hc Spin orbit coupling constant A m1 Ts.o. A L ˜ · S ˜ Total term T m1 T Etot/hc Transition dipole moment of a molecule M, R C · m M p d GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.19 TABLE 2.2 Physical and Chemical Symbols and Definitions (Continued) L. Spectroscopy (continued) Name Symbol SI unit Definition Transition frequency Hz (E E)/h Transition wavenumber ˜ , () m1 ˜ T T Transverse relaxation time T2 s Vibrational anharmonicity constant ee; rs; gtt m1 Vibrational coordinates: Internal coordinates Ri, ri, j, etc.
Normal coordinates, di-mensionless qr Mass adjusted Qr Vibrational force constants: Diatomic f, (k) J · m2 f 2V/
r2 Polyatomic Dimensionless normal coordinates rst . . . , krst . . .
m1 Internal coordinates f ij (varies) f ij 2V/
ri
rj Symmetry coordinates Fij (varies) Fij 2V/
Si
Sj Vibrational quantum num-bers vr; lt Vibrational term G m1 G Evib/hc Angular momentum types Operator symbol Quantum number symbol Total Z axis z axis Electron orbital ˆ L L ML One electron only ˆ l l ml Electron orbital spin ˆ ˆ L S Electron spin ˆ S S MS One electron only s ˆ s ms Internal vibrational: Spherical top ˆ l l(l) Kl Other j ˆ, ˆ l(l) Nuclear orbital (rotational) ˆ R R KR, kR Nuclear spin ˆ I I MI Sum of J I ˆ F F MF Sum of N S ˆ J J MJ K, k Sum of R L(j) ˆ N N K, k M. Thermodynamics Name Symbol SI unit Definition Absolute activity B exp(B/RT) Activity (referenced to Henry’s law): Concentration basis ac B B a exp c,B RT 2.20 SECTION 2 TABLE 2.2 Physical and Chemical Symbols and Definitions (Continued) M. Thermodynamics (continued) Name Symbol SI unit Definition Molality basis am B B a exp m,B RT Mole fraction basis ax B B a exp x,B RT Activity (referenced to Raoult’s law) a B B a exp B RT Activity coefficient (refer-enced to Henry’s law): Concentration basis c ac,B c,BcB/c0 Molality basis m am,B m,BmB/m0 Mole fraction basis x ax,B x,BxB Activity coefficient (refer-enced to Raoult’s law) f fB aB/xB Affinity of reaction A J · mol1 A (
G/
)p,T Celsius temperature , t C /C T/K 273.15 Chemical potential J · mol1 B (
G/
nB)T,p,n Compressibility: Isentropic S Pa1 S (1/V)(
V/
p)S Isothermal T Pa1 T (1/V)(
V/
p)T Compressibility factor Z Z pVm/RT Cubic expansion coefficient , V, K1 (1/V)(
V/
T)p Enthalpy H J H U pV Entropy S J · K1 dS $ dq/T Equilibrium constant K0, K K exp(rG/RT) Equilibrium constant: Concentration basis Kc (mol · m 3) Kc ! c Molality basis Km (mol · m 1) Km ! m Pressure basis Kp Pa Kp ! p Fugacity f Pa f lim (p / ) B B B B T p:0 Fugacity coefficient B fB/pB Gibbs energy G J G H TS Heat q, Q J Heat capacity: At constant pressure Cp J · K1 Cp (
H/
T)p At constant volume CV J · K1 CV (
U/
T)V Helmholtz energy A J A U TS Internal energy U U q w Ionic strength: Concentration basis Ic, I mol · kg3 Ic 2 1⁄2m z B B Molality basis Im, I mol · kg1 2 1 I ⁄2m z m B B Joule-Thomson coefficient , JT K · Pa1 (
T/
p)H Linear expansion coeffi-cient 1 K1 1 (l/l)(
l/T) Massieu function J J · K1 J A/T Molar quantity X Xm (varies) Xm X/n Osmotic coefficient: Molality basis m ( )/(RTM m ) m A A A B Mole fraction basis x ( )/(RT ln x ) x A A A GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.21 TABLE 2.2 Physical and Chemical Symbols and Definitions (Continued) M. Thermodynamics (continued) Name Symbol SI unit Definition Osmotic pressure (ideal di-lute solution) Pa cBRT Partial molar quantity X XB (varies) X (X/nB)T,p,n Planck function Y J · K1 Y G/T Pressure coefficient Pa · K1 (P/T)V Ratio of heat capacities Cp/CV Relative pressure coeffi-cient p K1 p (1/p)(p/T)V Second virial coefficient B m3 · mol1 pVm RT(1 B/Vm · · ·) Specific quantity X x (varies) x X/m Standard chemical potential 0 J · mol1 Standard partial molar en-thalpy H0 J · mol1 H0 0 TS Standard partial molar en-tropy S0 J · mol · K 1 1 S0 (0/T) Standard reaction enthalpy rH0 J · mol1 rH0 H0 Standard reaction entropy rS0 J · mol · K 1 1 rS0 S0 Standard reaction Gibbs en-ergy rG0 J · mol1 rG0 0 Surface tension , J · m , 2 N · m1 (G/As)T,p Thermodynamic tempera-ture T K Work w, W J Symbols used as subscripts to denote a chemical reaction or process: ads adsorption mix mixing of fluids at atomization r reaction in general c combustion reaction sol solution of solute in solvent dil dilution of a solution sub sublimation (solid to gas) f formation reaction trs transition (two phases) fus melting, fusion (solid to liquid) Recommended superscripts: activated complex, transition state infinite solution E excess quantity pure substance id ideal standard N. Transport properties Name Symbol SI unit Definition Coefficient of heat transfer h, (k, K) W · m · K 2 1 h Jq/T Diffusion coefficient D m2 · s1 D Jn/(dc/dl) Flux (of a quantity X) JX, J (varies) JX A dX/dt 1 Heat flow rate W dq/dt Heat flux Jq W · m2 Jq /A Mass flow rate qm, m kg · s1 qm dm/dt Mass transfer coefficient kd m · s1 Thermal conductance G W · K1 G /T Thermal conductivity , k W · m · K 1 1 Jq/(dT/dl) 2.22 SECTION 2 TABLE 2.2 Physical and Chemical Symbols and Definitions (Continued) N. Transport properties (continued) Name Symbol SI unit Definition Thermal diffusivity a m2 · s1 a /cp Thermal resistance R K · W1 R 1/G Volume flow rate qv, V m3 · s1 qv dV/dt Dimensionless quantities: number Alfve ´n Al Al ()1/2/B Cowling number Co Co B2/2 Euler number Eu Eu p/2 Fourier number Fo Fo at/l2 Fourier number for mass transfer in binary mixtures Fo Fo Dt/l2 Froude number Fr Fr /(lg)1/2 Grashof number Gr Gr l3 go T2/2 Grashof number for mass transfer in binary mixtures Gr Gr l3g (/x)T,p (x/) Hartmann number Ha Ha Bl(/)1/2 Knudsen number Kn Kn /l Lewis number Le Le a/D Mach number Ma Ma /c Magnetic Reynolds number Rm, Rem Rm l Nusselt number Nu Nu hl/k Nusselt number for mass transfer in binary mixtures Nu Nu kdl/D Pe ´clet number Pe Pe l/a Pe ´clet number for mass transfer in binary mixtures Pe Pe l/D Prandtl number Pr Pr /a Rayleigh number Ra Ra l3 g T/a Reynolds number Re Re l/ Schmidt number Sc Sc /D Sherwood number Sh Sh kdl/D Stanton number St St h/cp Stanton number for mass transfer in binary mixtures St St kd/ Strouhal number Sr Sr lf/ Weber number We We 2 l/ Symbols used in the definitions of dimensionless quantities: Acceleration of free fall g Pressure p Area A Speed Cubic expansion coefficient Speed of sound c Density Surface tension Frequency f Temperature T Length l Time t Mass m Viscosity Mean free path Volume V Mole fraction x GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.23 TABLE 2.3 Mathematical Symbols and Abbreviations Symbol or abbreviation Meaning Plus Minus Plus or minus Minus or plus Identically equal to , center dot Multiplied by (ab, a b, a · b) Divided by (a/b, ab ) 1 Not equal to Approximately equal to Asymptotically equal to Greater than Less than Much greater than Much less than Greater than or equal to Less than or equal to , Proportional to : Tends to, approaches Infinity |a| Magnitude of a an nth power of a n 1/n a, a p nth root of a 1/2 a, a p Square root of a a, a ¯ Mean value of a n a , a i i i1 Product of ai log a or log10 a Common (or Briggsian) logarithm to the base 10 of a loga b Logarithm to the base a of b ln b, loge b Natural (Napierian) logarithm (to the base e) of b e Base (2.718) of natural system of logarithms Pi (3.1416) i Imaginary quantity, square root of minus one n!
n factorial (n! 1 · 2 · 3 · · · n) Angle Perpendicular to || Parallel to a a degrees (angle) a a minutes (angle); a prime a a seconds (angle); a double prime sin a sine of a cos a cosine of a tan a tangent of a cot a cotangent of a sec a secant of a cos a cosecant of a arcsin a, sin a 1 Inverse sine of a (angle whose sine is a) arccos a, cos a 1 Inverse sine of a (angle whose cosine is a) arctan a, tan a 1 Inverse tangent of a (angle whose tangent is a) sinh a Hyperbolic sine of a cosh a Hyperbolic cosine of a tanh a Hyperbolic tangent of a 2.24 SECTION 2 TABLE 2.3 Mathematical Symbols and Abbreviations (Continued) Symbol or abbreviation Meaning cotanh a Hyperbolic cotangent of a P(x, y) Rectangular coordinate of point P P(r, ) Polar coordinate of point P f(x), F(x) Function of x x Increment of x dy Total differential of y dy or f
(x) dx Derivative of y f(x) with respect to x 2 d y or f(x) 2 dx Second derivative of y f(x) with respect to x z x Partial derivative of z with respect to x 2 z x y Second partial derivative of z with respect to x and y Integral of b a Integral between the limits a and b lim f(x) x:a limit of f(x) as x tends to a n i1 Summation of ai between the limits 1 and n TABLE 2.4 SI Prefixes Submultiple Prefix Symbol Multiple Prefix Symbol 101 deci d 10 deka da 102 centi c 102 hecto h 103 milli m 103 kilo k 106 micro 106 mega M 109 nano n 109 giga G 1012 pico p 1012 tera T 1015 femto f 1015 peta P 1018 atto a 1018 exa E 1021 zepto z 1021 zetta Z 1024 yocto y 1024 yotta Y GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.25 TABLE 2.4 SI Prefixes (Continued) Numerical (multiplying) prefixes Number Prefix Number Prefix Number Prefix 0.5 hemi 19 nonadeca 39 nonatriaconta 1 mono 20 icosa 40 tetraconta l.5 sesqui 21 henicosa 41 hentetraconta 2 di (bis) 22 docosa 42 dotetraconta 3 tri (tris) 23 tricosa 43 tritetraconta 4 tetra (tetrakis) 24 tetracosa 44 tetratetraconta 5 penta 25 pentacosa 45 pentatetraconta 6 hexa 26 hexacosa 46 hexatetraconta 7 hepta 27 heptacosa 47 heptatetraconta 8 octa 28 octacosa 48 octatetraconta 9 nona 29 nonacosa 49 nonatetraconta 10 deca 30 triaconta 50 pentaconta 11 undeca 31 hentriaconta 60 hexaconta 12 dodeca 32 dotriaconta 70 heptaconta 13 trideca 33 tritriaconta 80 octaconta 14 tetradeca 34 tetratriaconta 90 nonaconta 15 pentadeca 35 pentatriaconta 100 hecta 16 hexadeca 36 hexatriaconta 110 decahecta 17 heptadeca 37 heptatriaconta 120 icosahecta 18 octadeca 38 octatriaconta 130 triacontahecta In the case of complex entities such as organic ligands (particularly if they are substituted) the multiplying prefixes bis-, tris-, tetrakis-, pentakis-, . . . are used, i.e., -kis is added starting from tetra-. The modified entity is often placed within paren-theses to avoid ambiguity.
TABLE 2.5 Greek Alphabet Capital Lower case Name Capital Lower case Name Alpha Nu Beta Xi Gamma Omicron Delta Pi !
" Epsilon # Rho $ % Zeta Sigma & Eta ' ( Tau ) Theta Upsilon + , Iota - Phi .
Kappa / 0 Chi 1 Lambda 2 3 Psi 4 Mu 5 6 Omega 2.26 SECTION 2 TABLE 2.6 Abbreviations and Standard Letter Symbols Abampere abamp Absolute abs Absolute activity Absorbance (decaidic) A Absorbance (napierian) B Absorptance Absorption coefficient, linear decaidic a, K Absorption coefficient, linear napierian Absorption coefficient, molar decaidic , " Absorption coefficient, molar napierian Absorption index k Acceleration a Acceleration due to gravity g, gn Acetyl Ac Acoustic absorption factor a Acoustic dissipation factor Acoustic reflection factor Acoustic transmission factor ( Activation energy Ea Activity (referenced to Raoult’s law) a Activity (referenced to Henry’s law): Concentration basis ac Molality basis am Mole fraction basis ax Activity (radioactive) A Activity coefficient (refer-enced to Raoult’s law) f Activity coefficient (refer-enced to Henry’s law): Concentration basis c Molality basis m Mole fraction basis x Adjusted retention time t R Adjusted retention volume V R Admittance Y Affinity of reaction A Alcohol alc Alfve ´n number Al Alkaline alk Alpha particle Alternating current ac Amorphous am Amount concentration c Amount of substance n Ampere A Amplification factor Angle of optical rotation Angstrom A ˚ , A Angular dispersion d/d Angular momentum Angular momentum terms j, J, l, L, N Angular velocity 6 Anhydrous anhyd Approximate (circa) ca.
Aqueous solution aq Aqueous solution at infinite dilution aq, Are, unit of area a Area A, S Area per molecule a, Astronomical unit AU Asymmetry parameter Atmosphere, unit of pressure atm Atomic mass ma Atomic mass constant mu Atomic mass unit amu Atomic number Z Atomic percent at.% Atomic weight at. wt.
Average av Average linear gas velocity Avogadro constant L, NA Axial angular momentum , 1, 5 Axial spin angular momen-tum , Bandwidth (10%) of a spec-tral filter
0.1 Band variance 2 Bar, unit of pressure bar Barn, unit of area b Barrel bbl Base of natural logarithms e Becquerel Bq Bed volume Vg Beta particle Bloch function uk(r) Body-centered cubic bcc Bohr b Bohr magneton B Bohr radius a0 Boiling point bp Boltzmann constant k, kB Bragg angle Breadth b British thermal unit Btu Bulk modulus K Bulk strain Burgers vector b Butyl Bu Calorie, unit of energy cal Calorie, international steam table calIT Candela cd Capacitance C GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.27 TABLE 2.6 Abbreviations and Standard Letter Symbols (Continued) Capacity, volume QV Capacity, weight QW Cartesian space coordi-nates x, y, z Celsius temperature t, Centimeter-gram-second system cgs Centrifugal distortion con-stants: A reduction , S reduction D, d Charge density of electrons Charge number of electro-chemical reaction n Charge number of an ion z Chemically pure CP Chemical potential Chemical shift Circa (approximate) ca.
Circular frequency 6 Circular wave vector: For particles k For phonons q Circumference divided by the diameter Citrate Cit Coefficient of heat transfer h Collision cross section Collision diameter d Collision frequency Z Collision frequency factor z Collision number Z Column volume Vcol Compare (confer) cf.
Complex refractive index n ˆ Component of angular mo-mentum k, K, m, M Compressibility: Isentropic S Isothermal T Compression factor Z Compression modulus K Compton wavelength of elec-tron c Compton wavelength of neu-tron c,n Compton wavelength of proton c,p Concentration (amount of substance) c Concentration (mass) Concentration at peak maximum Cmax Concentration of solute in mobile phase CM Concentration of solute in stationary phase CS Condensed phase (solid or liquid) cd Conductance G Conductivity , Conductivity cell constant Kcell Conductivity tensor ik Contact angle Coordinate, position vector r Coulomb C Counts per minute cpm, c/m Coupling constant, direct di-polar DAB Critical density dc Critical temperature tc Cross section Crystalline cr, cryst Cubic cub Cubic expansion coefficient , v, Curie Ci Cycles per second Hz Curie temperature Tc Dalton (atomic mass unit) Da Day d Debye, unit of electric dipole D Debye circular frequency 6D Debye circular wave-number qD Debye-Waller factor D, B Decay constant (radioactive) Decibel dB Decompose dec Degeneracy, statistical weight d, g, Degree of dissociation Degrees Baume Be Degrees Celsius C Degrees Fahrenheit F Density (mass) , Density, critical dc Density, relative d Density of liquid phase L Density of states NE, Density of vibrational modes (spectral) N6 Detect, determine (d) det(d) Determination detn Deuteron d Diamagnetic shielding factor 1 Diameter d Dielectric polarization P Differential thermal analysis DTA Diffusion coefficient D Diffusion coefficient, liquid film Df 2.28 SECTION 2 TABLE 2.6 Abbreviations and Standard Letter Symbols (Continued) Diffusion coefficient, mobile phase DM Diffusion coefficient, station-ary phase DS Diffusion current id Diffusion length L Diffusion rate constant, mass transfer coefficient kd Dilute dil Dirac delta function Direct current dc Direct dipolar coupling con-stant DAB Disintegration energy Q Disintegrations per minute dpm Displacement vector of an ion u Dissociation energy D, Ed From ground state D0 From the potential mini-mum De Distribution ratio D Donor ionization energy Ed Dropping mercury electrode dme Dyne, unit of force dyn Einstein transition probabili-ties A, B Spontaneous emission Anm Stimulated absorption Bmn Stimulated emission Bnm Electric charge Q Electric current I Electric current density j, J Electric dipole moment of a molecule p, Electric displacement D Electric field gradient q Electric field strength E Electric flux Electric mobility u, Electric polarizability of a molecule Electric potential V, Electric potential difference U, V Electric susceptibility 0e Electrical conductivity Electrical conductance G Electrical resistance R Electrochemical transfer co-efficient Electrokinetic potential % Electromagnetic unit emu Electromotive force E, emf Electron e e , Electron affinity Eea Electron magnetic moment e Electron paramagnetic reso-nance EPR Electron radius re Electron rest mass me Electron spin resonance ESR Electronvolt eV Electrostatic unit esu Elementary charge e Elution volume, exclusion chromatography Ve Emittance " By blackbody Mbb Energy E Energy density w, Energy per electron hole " pair of ion pair in detector Enthalpy H Entropy S Entropy unit e.u.
Equilibrium constant K, K0 Concentration basis Kc Molality basis Km Pressure basis Kp Equilibrium position vector of an ion R0 Equivalent weight equiv wt Erg, unit of energy erg Especially esp.
et alii (and others) et al.
et cetera (and so forth) etc.
Ethyl Et Ethylenediamine en Ethylenediamine-N,N,N
,N
-tetraacetic acid EDTA Euler number Eu Exempli gratia (for example) e.g.
Expansion coefficient Exponential exp Extent of reaction Fano factor F Farad F Faraday constant F Fermi, unit of length f Fermi energy EF Film tension f Film thickness h, t Fine structure constant Finite change First radiation constant c1 Flow rate q Flow rate, column chroma-tography Fc Fluid phase (gas or liquid) fl Fluidity GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.29 TABLE 2.6 Abbreviations and Standard Letter Symbols (Continued) Fluorescent efficiency F Fluorescent power PF Flux F, J Focal length f Foot ft For example (exempli gratia) e.g.
Force F Force constant (vibrational levels) k Formal concentration F Fourier number Fo Franklin, unit of electric charge Fr Freezing point fp Frequency f, v Friction coefficient f, Froude number Fr Fugacity f Fugacity coefficient Gallon gal Galvani potential difference Gamma, unit of mass Gamma radiation Gap energy (solid state) Eg Gas (physical state) g Gas constant R Gauss G g factor g Gibbs energy G Grade grad Grain, unit of mass gr Gram g Grand partition function Grashof number Gr Gravimetric grav Gravitational constant G Gray Gy Gru ¨neisen parameter , Half-life t1/2 Half-wave potential E1/2 Hall coefficient AH, RH Hamilton function H Harmonic vibration wave-number 6 Hartmann number Ha Hartree energy Eh Heat q, Q Heat capacity C At constant pressure Cp At constant volume Cv Heat flow rate Heat flux J Hectare, unit of area ha Height h Helion h Helmholtz energy A Henry H Hertz Hz Hexagonal hex Horsepower hp Hour h Hygroscopic hygr Hyperfine coupling constant a, A Hyperfine coupling tensor T ibidem (in the same place) ibid.
id est (that is) i.e.
Ignition ign Impedance Z Inch in Indices of a family of crys-tallographic planes hkl Indirect spin-spin coupling constant JAB Inductance L Inertial defect Infinitesimal change Infrared ir Inner column volume Vi Inner electric potential Inner electrode potential Inorganic inorg Inside diameter i.d.
Insoluble insol Interatomic distances: Equilibrium distance re Ground-state distance r0 Substitution structure dis-tance rs Zero-point average distance rz Internal energy U Interstitial (outer) volume Vo In the place cited (loco ci-tato) loc. cit.
In the same place ibid.
In the work cited op. cit.
Ionic conductivity , 1 Ionic strength I Concentration basis Ic Molality basis Im Ionization energy Ei Irradiance E Joule J Joule-Thomson coefficient , JT Kelvin K Kilocalorie kcal Kilogram kg Kilogram-force kgf Kilowatt-hour kWh Kinematic viscosity v, 2.30 SECTION 2 TABLE 2.6 Abbreviations and Standard Letter Symbols (Continued) Kinetic energy K, T, Ek Knudsen number Kn Kovats retention indices RI Lagrange function L Lambda, unit of volume Lande ´ g-factor g, ge Larmor circular frequency 6L Larmor frequency vL Lattice plane spacing d Lattice vector R, R0 Lattice vectors a, b, c Length l, L Length of arc s Lewis number Le Light year l.y.
Limit (mathematics) lim Linear expansion coefficient 1 Linear reciprocal dispersion d
/dx 1 D , Linear strain e, " Liquid l, lq Liquid crystal lc Liter L, 1 loco citato (in the place cited) loc. cit.
Logarithm, common log Logarithm, base e ln Longitudinal relaxation time T1 Lorenz coefficient L Loss angle Lumen lm Luminous intensity I Lux lx Mach number Ma Madelung constant Magnetic dipole moment of a molecule m, Magnetic field strength H Magnetic flux Magnetic flux density B Magnetic moment of protons in water p/B Magnetic quantum number Mj Magnetic Reynolds number Rm Magnetic susceptibility , 0 Magnetic vector potential A Magnetizability Magnetization M Magnetogyric ratio Mass m Mass absorption coefficient /, m Mass concentration , Mass density Mass flow rate qm Mass fraction w Massieu function J Mass number A Mass of atom m, ma Mass transfer coefficient kd Matrix volume Vg Maximum max Maxwell, unit of magnetic flux Mx Mean ionic activity a Mean ionic activity coeffi-cient Mean ionic mobility W Melting point mp Metallic met Metastable m Metastable peaks m Meter m Methyl Me Micrometer m Micron Mile mi Miller indices h, l, k Milliequivalent meq Millimeters of mercury, unit of pressure mmHg Millimole mM Minimum min Minute m, min Mixture mixt Mobility Mobility ratio b Modulus of elasticity E Molal m Molality b Molar M, M Molar (decadic) absorption coefficient " Molar ionic conductivity , 1 Molar magnetic suscepti-bility 0m Molar mass M Molar quantity X Xm Molar refraction R, Rm Molar volume Vm Mole mol Mole fraction, condensed phase x Gaseous mixtures y Mole percent mol % Molecular weight mol wt Moment of inertia I, J Momentum p Monoclinic mn Monomeric form mon Muon, negative Muon, positive GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.31 TABLE 2.6 Abbreviations and Standard Letter Symbols (Continued) Mutual inductance M, L Napierian absorbance B Napierian base e Napierian molar absorption coefficient Neel temperature TN Net retention volume VN Neutrino ve Neutron n Neutron magnetic moment N Neutron number N Neutron rest mass mn Newton N Normal concentration N Normal stress Nuclear magnetic resonance NMR Nuclear magneton N Nuclear spin angular mo-mentum I Nucleon number A Number concentration C Number density n Number of entities N Numerical aperture NA Nusselt number Nu Obstruction factor Oersted, unit of magnetic field Oe Ohm 5 opere citato (in the work cited) op. cit.
Optical speed f/number Orbital angular momentum: Quantum number L 0, 1, 2, 3, . . .
Series symbol S, P, D, F, . . .
Orbital angular momentum (molecules): Quantum number 1 0, 1, 2, . . .
Symbol , , , . . .
Orbital angular momenta of individual electrons l 0, 1, 2, 3, . . .
s, p, d, f, . . .
Order of Bragg reflection n Order of reaction n Order of reflection n Order parameters (solid state), long range s Short range Organic org Orthorhombic o-rh Osmotic coefficient Molality basis m Mole fraction basis x Osmotic pressure (ideal di-lute solution) Ounce oz Outer diameter o.d.
Outer electric potential 3 Overall order of reaction n Overpotential Oxalate Ox Oxidant ox Packing uniformity factor Page(s) p. (pp.) Parsec, unit of length pc Partial molar quantity X Partial order of reaction nB Particle diameter dp Particle position vector: Electron r Ion position Rj Partition coefficient K Partition function q, Q, z, Z, 5 Partition ratio k Parts per billion, volume ng/mL Parts per billion, weight ng/g Parts per million, volume g/mL Parts per million, weight /g Pascal Pa Path length (absorbing) l Peak asymmetry factor AF Peak resolution Rs Pe ´clet number Pe Peltier coefficient Percent % Period of time T Permeability Permeability of vacuum 0 Permittivity " Permittivity of vacuum "0 pH, expressed in activity paH Expressed in molarity pH Phenyl Ph, Phosphorescent efficiency -P Phosphorescent power PP Photochemical yield Photoluminescence power P Photon Pion Planck constant h Planck constant/2 Planck function Y Plane angle , , , , Plate height H Plate number, effective Neff Poise P Polymeric form pol Porosity, column " Positron Potential energy V, -, EP Pound lb 2.32 SECTION 2 TABLE 2.6 Abbreviations and Standard Letter Symbols (Continued) Pounds per square inch psi Powder pwd Power p Poynting vector S Prandtl number Pr Pressure (partial) p Pressure (total) p, P Pressure coefficient Pressure, column inlet pi Pressure, column outlet po Pressure, critical pc Pressure drop P Pressure-gradient correction j Principal moments of inertia IA; IB; IC Principal quantum number n Probability P Probability density P Product sign Propyl Pr Proton p Proton magnetic resonance pmr Proton magnetrogyric ratio p Proton number Z Proton rest mass mp Pyridine py Quadrupole interaction en-ergy tensor Quadrupole moment of a molecule Q, ) Quantity of electricity, elec-tric charge Q Quantum of energy hv Quantum yield Rad, unit of radiation dose rad Radian rad Radiant energy Q, W Radiant energy density , w Radiant energy flux dQ/dt Radiant exitance M Radiant flux received E Radiant intensity I Radiant intensity at time t after termination of excita-tion I(t) Radiant power -Radiant power incident on sample P0 Radiofrequency rf Radius r Rate of concentration change r Rate constant k Rate of reaction v Ratio of heat capacities Reactance X Reciprocal lattice a, b, c Reciprocal lattice vector (cir-cular) G Vectors for a; b, c Reciprocal radius of ionic at-mosphere Reciprocal temperature pa-rameter, 1/kT Reciprocal thickness of dou-ble layer Reduced column length Reduced mass Reduced plate height h Reduced velocity v Reductant red Reference ref Reflectance Reflection plane Refractive index n Relative permeability r Relative permittivity (dielec-tric constant) "r Relative pressure coefficient p Relative retention ratio Relaxation time ( Rem, unit of dose equivalent rem Residual resistivity (solid state) R Resistivity tensor Retardation factor Rf Retarded van der Waals con-stant B, Retention time tR Retention volume VR Revolutions per minute rpm Reynolds number Re Rhombic rh Rhombohedral rh-hed Roentgen R Root-mean-square rms Rotational constants: In frequency A, B, C In wavenumber A ˜; B ˜; C ˜ Rotational term (spectros-copy) F Rotation-reflection Sn Rydberg, unit of energy Ry Rydberg constant R, R Saturated satd Saturated calomel electrode SCE Schmidt number Sc Second s Second radiation constant c2 Second virial coefficient B Sedimentation coefficient s Selectivity coefficient k GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.33 TABLE 2.6 Abbreviations and Standard Letter Symbols (Continued) Self-inductance L Separation factor Shear modulus G Shear strain Shear stress ( Sherwood number Sh Shielding constant (NMR) Short-range order parameter Siemens S Sievert Sv Signal-to-noise ratio S/N Slightly sl Solid c, s Solid angle 6, 5 Solid angle over which lumi-nescence is measured (F, fluorescence; P, phospho-rescence; DF, delayed flu-orescence) 5F(P,DF) Solid angle over which radi-ation is absorbed in cell 5A Solubility s Soluble sol Solution soln, sln Solvent solv Sound energy flux P, Pa Spacing between crystal dif-fracting planes d Species adsorbed on a sub-stance ads Specific gravity sp gr Specific retention volume 0 Vg Specific surface area s Specific volume v, Spectral bandwidth of emis-sion monochromator
em Spectral bandwidth of excita-tion monochromator
ex Spectral bandwidth of mono-chromator
m Spectral radiant energy Q
, dQ/d Spectral radiant energy den-sity: In terms of frequency , w In terms of wavelength , w In terms of wavenumber , w ˜ ˜ Spectral radiant energy flux d/d Spectroscopic splitting factor g Speed u, w Speed of light: In a medium c In vacuum c0 Spherical polar coordinates r, , Spin angular momentum s, S Spin-lattice relaxation time T1 Spin orbit coupling constant A Spin-spin coupling constant JAB Spin-spin (or transverse) re-laxation time T2 Spin wavefunctions , Square sq Standard std Standard enthalpy of activa-tion H Standard enthalpy of forma-tion Hf 0 Standard entropy S0 Standard entropy of activa-tion S Standard Gibbs energy of ac-tivation G Standard Gibbs energy of formation Gf 0 Standard heat capacity Cp Standard hydrogen electrode SHE Standard partial molar en-thalpy H0 Standard partial molar en-tropy S0 Standard potential of electro-chemical cell reaction E0 Standard reaction enthalpy rH0 Standard reaction entropy rS0 Standard reaction Gibbs en-ergy rG0 Standard temperature and pressure STP Stanton number St Statistical weight W, , 6 Statistical weight of atomic states g Stefan-Boltzmann constant Steradian sr Stoichiometric number v Stokes St Summation sign Surface charge density Surface concentration Surface coverage Surface density A, S Surface electric potential 0 Surface pressure Surface tension , Susceptance B Svedberg, unit of time Sv Symmetrical sym Symmetry coordinate S Symmetry number s, Tartrate Tart Temperature , ) 2.34 SECTION 2 TABLE 2.6 Abbreviations and Standard Letter Symbols (Continued) Temperature, thermodynamic T Temperature at boiling point Tb Term value spectroscopy T Tesla T Tetragonal tetr Thermal conductance G Thermal conductivity , k Thermal diffusivity a Thermal resistance R Thermoelectric force E Thickness of diffusion layer Thickness of layer t Thickness (effective) of sta-tionary phase df Thickness of surface layer ( Thickness of various layers Thomson coefficient , ( Thomson cross section e Time t Time interval, characteristic T, ( Tonne t, ton Torr (mm of mercury) Torr Torque T Total bed volume Vtot Total term (spectroscopy) T Transconductance gm Transfer coefficient Transit time of nonretained solute tM, t0 Transition tr Transition dipole moment of a molecule M, R Transition frequency v Transition wavenumber v ˜ Translation (circular) b1; b2; b3 Translation vectors for crystal lattice a1; a2; a3 a; b; c Transmission factor ( Transmittance T, ( Transport number t Transverse relaxation time T2 Triclinic tric Trigonal trig Triton (tritium nucleus) t Ultrahigh frequency uhf Ultraviolet uv Unified atomic mass unit u United States Pharmacopoeia USP Vacuum vac van der Waals constant Vapor pressure p, vp Velocity u, w Versus vs Vibrational anharmonicity constant 0 Vibrational coordinates: Internal coordinates Ri, rI, j, etc.
Normal coordinates, di-mensionless qr Mass adjusted Qr Vibrational force constants: Diatomic f Polyatomic, dimensionless normal coordinates rst . . . ; krst . . .
Internal coordinates f ij Symmetry coordinates Fij Vibrational quantum number v Vibrational term G Viscosity , Vitreous substance vit Volt V Volt-ampere-reactive var Volta potential difference 3 Volume V, v Volume flow rate qv Volume fraction Volume in space phase 5 Volume liquid phase in col-umn VL Volume mobile phase in col-umn VM Volume of activation V Volume percent vol % Volume per volume v/v Volume strain Watt W Wavefunction , 3, 2 Wavelength Wavenumber (in a medium) Wavenumber in vacuum v ˜ Weber Wb Weber number We Weight W Weight of liquid phase wL Weight percent wt % Weight per volume w/v Wien displacement constant b Work w, W Work function -x unit X Yard yd Young’s modulus E Zeeman splitting constant B/hc Zone width at baseline Wb Zone width at one-half peak height W1/2 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.35 TABLE 2.7 Conversion Factors The data were compiled by L. P. Buseth for the 13th edition; some entries have been added or modified in view of recent data and SI units.
Relations which are exact are indicated by an asterisk (). Factors in parentheses are also exact. Other factors are within 5 in the last significant figure.
To convert Into Multiply by Abampere ampere 10 Abcoulomb coulomb 10 statcoulomb 2.998 1010 Abfarad farad 109 Abhenry henry 109 Abmho siemens 109 Abvolt volt 108 Acre hectare or square hectometer 0.404 685 64 square chain (Gunter’s) 10 square kilometer 0.004 046 873 square meter 4046.873 square mile (1/640) square rod 160 square yard 4840 Acre (U.S. survey) square meter 4046.873 Acre-foot cubic foot 4.3560 104 cubic meter 1233.482 gallon (U.S.) 3.259 105 Acre-inch cubic foot 3630 cubic meter 102.7902 Ampere per square centimeter ampere per square inch 6.4516 Ampere-hour coulomb 3600 faraday 0.037 31 Ampere-turn gilbert 1.256 637 Ampere-turn per centimeter ampere-turn per inch 2.540 A ˚ ngstro ¨m meter 1010 nanometer 0.1 Apostilb candela per square meter 0.318 309 9; (1/) lambert 104 Are acre 0.024 710 54 square meter 100 Assay ton gram 29.1667 Astronomical unit meter 1.496 00 1011 light-year 1.581 284 105 Atmosphere bar 1.013 25.0 foot of water (at 4C) 33.898 54 inch of mercury (at 0C) 29.921 26 kilogram per square centi-1.033 227 meter millimeter of mercury 760 millimeter of water (4C) 1.033 227 104 newton per square meter 1.013 250 105 pascal 101 325.0 pound per square inch 14.695 95 ton per square inch 0.007 348 torr 760 Atomic mass unit gram 1.6605 1024 Avogadro number molecules per mole 6.022 137 1023 2.36 SECTION 2 TABLE 2.7 Conversion Factors (Continued) To convert Into Multiply by Bar atmosphere 0.986 923 dyne per square centimeter 106 kilogram per square centimeter 1.019 716 millimeter of mercury 750.062 millimeter of water (4C) 1.019 716 104 newton per square meter 105 pascal 105 pound per square inch 14.503 77 Barn square meter 1028 Barrel (British) gallon (British) 36 liter 163.659 Barrel (petroleum) gallon (British) 34.9723 gallon (U.S.) 42 liter 158.987 Barrel (U.S. dry) bushel (U.S.) 3.281 22 cubic foot 4.083 33 liter 115.6271 quart (U.S. dry) 104.9990 Barrel (U.S. liquid) gallon (U.S.) 31.5 (variable) liter 119.2405 Barye dyne per square centimeter 1 Becquerel curie 2.7 1011 Biot ampere 10 Board foot cubic foot (1/12) cubic meter 2.359 737 103 Bohr meter 5.291 77 1011 Bohr magneton joule per tesla 9.274 02 1024 Bolt (U.S. cloth) foot 120 meter 36.576 Boltzmann constant joule per degree 1.3806 1023 British thermal unit (Btu) calorie 251.996 cubic foot-atmosphere 0.367 717 erg 1.0550 1010 foot-pound 778.169 horsepower-hour (British) 3.930 15 104 horsepower-hour (metric) 3.984 66 104 joule (International table) 1055.056 joule (thermochemical) 1054.350 kilogram-calorie 0.2520 kilogram-meter 107.5 kilowatt-hour 2.930 71 104 liter-atmosphere 10.4126 Btu per foot3 kilocalorie per cubic meter 8.899 15 Btu (International table)/ft3 joule per meter3 3.725 895 104 Btu (thermochemical)/ft3 joule per meter3 3.723 402 104 Btu (International table)/hour watt 0.293 071 1 Btu (thermochemical)/hour watt 0.292 875 1 Btu (International table)/pound joule per kilogram 2.326 103 Btu (thermochemical)/pound joule per kilogram 2.324 444 103 Btu (thermochemical)/(ft2 · h) watt per meter2 3.154 591 Btu (thermochemical)/minute watt 17.572 50 Btu (thermochemical)/pound joule per kilogram 2.324 444 103 Btu per square foot joule per square meter 1.135 65 104 Bucket (British, dry) gallon (British) 4 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.37 TABLE 2.7 Conversion Factors (Continued) To convert Into Multiply by Bushel (British) bushel (U.S.) 1.032 057 cubic foot 1.284 35 gallon (British) 8 gallon (U.S.) 9.607 60 liter 36.3687 Bushel (U.S.) barrel (U.S., dry) 0.304 765 bushel (British) 0.968 939 cubic foot 1.244 456 cubic meter 0.035 239 07 gallon (British) 7.751 51 gallon (U.S.) 9.309 18 liter 35.239 07 peck (U.S.) 4 pint (U.S., dry) 64 Cable length (international) foot 607.611 55 meter 185.2 mile (nautical) 0.1 Cable length (U.S. or British) foot 720 meter 219.456 mile (nautical) 0.118 407 mile (statute) 0.136 364 Caliber inch 0.01 millimeter 0.254 Calorie Btu 0.003 968 320 foot-pound 3.088 03 foot-poundal 99.3543 horsepower-hour (British) 1.559 61 106 joule 4.184 kilowatt-hour 1.163 106 liter-atmosphere 0.041 320 5 Calorie (15C) joule 4.1858 Calorie (international) joule 4.1868 Calorie per minute foot-pound per second 0.051 467 1 horsepower (British) 9.357 65 105 watt 0.069 78 Candela Hefner unit 1.11 lumen per steradian 1 Candela per square centimeter candela per square foot 929.0304 candela per square meter 104 lambert 3.141 593; () Carat (metric) gram 0.2 Celsius temperature Fahrenheit temperature (9/5)C 32 kelvin C 273.15 Centigrade heat unit or chu Btu 1.8 calorie 453.592 joule 1899.10 Centimeter foot 0.032 808 4 inch 0.393 700 8 mil 393.700 8 Centimeter of mercury (0C) pascal 1333.22 Centimeter of water (4C) pascal 98.063 8 Centimeter per second foot per minute 1.986 50 kilometer per hour 0.036 2.38 SECTION 2 TABLE 2.7 Conversion Factors (Continued) To convert Into Multiply by Centimeter per second knot 0.019 438 4 (continued) mile per hour 0.022 369 4 Centimeter per second squared foot per second squared 0.032 808 4 meter per second squared 0.01 Centimeter-dyne erg 1 joule 107 meter-kilogram 1.020 108 pound-foot 7.376 108 Centimeter-gram erg 980.665 joule 9.806 65 105 Centipoise kilogram per (meter-second) 0.001 pascal-second 0.001 pound per (foot-second) 0.006 72 Chain (Ramsden’s) foot 100 meter 30.48 Chain (Gunter’s) foot 66 meter 20.1168 Circular inch circular mil 106 square centimeter 5.067 075 square inch (/4) Circular millimeter square millimeter (/4) Circumference degree 360 gon (grade) 400 radian (2) Cord cord foot 8 cubic foot 128 Coulomb ampere-second 1 Coulomb per square centimeter coulomb per square inch 6.4516 Cubic centimeter cubic foot 3.531 47 105 cubic inch 0.061 023 744 dram (U.S., fluid) 0.270 512 2 gallon (British) 2.199 69 104 gallon (U.S.) 2.641 72 104 liter 0.001 minim (U.S.) 16.230 73 ounce (British, fluid) 0.035 195 1 ounce (U.S., fluid) 0.033 814 02 pint (British) 0.001 759 75 pint (U.S., dry) 0.001 816 17 pint (U.S., liquid) 0.002 113 376 Cubic centimeter-atmosphere joule 0.101 325 watt-hour 2.814 58 105 Cubic centimeter per gram cubic foot per pound 0.016 018 5 Cubic centimeter per second cubic foot per minute 0.002 118 88 liter per hour 3.6 Cubic decimeter (dm3) liter 1 Cubic foot acre-foot 2.295 68 105 board foot 12 cord (1/128) cord foot (1/16) cubic inch 1728 cubic meter 0.028 316 846 592 cubic yard (1/27) GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.39 TABLE 2.7 Conversion Factors (Continued) To convert Into Multiply by Cubic foot (continued) gallon (British) 6.228 835 gallon (U.S.) 7.480 519 liter 28.316 847 Cubic foot per hour liter per minute 0.471 947 Cubic foot per pound cubic meter per kilogram 0.062 428 0 Cubic foot-atmosphere Btu 2.719 48 calorie 685.298 joule 2869.205 kilogram-meter 292.577 liter-atmosphere 28.3168 watt-hour 0.797 001 Cubic inch cubic foot (1/1728) milliliter 16.387 064 Cubic inch per minute cubic centimeter per second 0.273 118 Cubic kilometer cubic mile 0.239 913 Cubic meter per kilogram cubic foot per pound 16.0185 Cubic yard bushel (British) 21.0223 bushel (U.S.) 21.6962 cubic foot 27 cubic meter 0.764 554 86 liter 764.555 Cubic yard per minute cubic foot per second 0.45 gallon (British) per second 2.802 98 gallon (U.S.) per second 3.366 23 liter per second 12.742 58 Cubit inch 18 Cup (U.S.) milliliter; centimeter3 236.6 Cup (metric) cubic centimeter 200 Curie becquerel 3.7 1010 Cycle per second hertz 1 Dalton kilogram 1.660 54 1027 unified atomic mass 1 Day (mean solar) hour 24 minute 1440 second 86 400 Debye coulomb-meter 3.335 64 1030 Decibel neper 0.115 129 255 Degree (plane angle) circumference (1/366) gon (grade) 1.111 11 minute (angle) 60 quadrant (1/90) radian (/180) revolution (1/360) second (angle) 3600 Degree (angle) per foot radian per meter 0.057 261 5 Degree (angle) per second radian per second 0.017 453 3 Degree Celsius degree Fahrenheit 1.8 degree Rankine 1.8 kelvin 1 Degree Fahrenheit degree Celsius (5/9) Degree Rankine kelvin (5/9) Denier tex (1/9) Dipole length (e cm) coulomb-meter 1.602 18 1021 2.40 SECTION 2 TABLE 2.7 Conversion Factors (Continued) To convert Into Multiply by Drachm (British) dram (apothecaries or troy) 1 Drachm (British, fluid) cubic centimeter 3.551 633 dram (U.S., fluid) 0.960 760 minim (British) 60 ounce (British, fluid) (1/8) Dram (apothecaries or troy) dram (weight) 2.194 285 7 grain 60 gram 3.887 934 6 ounce (troy) (1/8) pennyweight 2.5 pound (troy) (1/96) scruple 3 Dram (weight) grain 27.343 75 gram 1.771 845 2 ounce (weight) (1/16) pound (weight) (1/256) Dram (U.S., fluid) cubic centimeter 3.696 691 2 gallon (U.S.) (1/1024) gill (U.S.) (1/32) milliliter 3.696 691 2 minim (U.S.) 60 ounce (U.S., fluid) (1/8) pint (U.S., fluid) (1/128) Dyne kilogram (force) 1.019 716 106 newton 105 pound (force) 2.248 09 106 Dyne per centimeter newton per meter 0.001 Dyne per square centimeter bar 106 kilogram per square centimeter 1.019 716 106 millimeter of mercury (0C) 7.500 617 104 millimeter of water (4C) 0.010 197 16 newton per square meter 0.1 pascal 0.1 pound per square inch (psi) 1.450 38 105 Dyne-centimeter erg 1 foot-pound (force) 7.375 62 108 foot-poundal 2.373 04 106 joule 107 kilogram-meter (force) 1.019 716 108 newton-meter 107 Dyne-second/centimeter2 poise 1 pascal-second 0.1 Electron charge coulomb 1.602 18 1019 Electron charge-centimeter (e cm) coulomb-meter 1.602 18 1021 Electron charge-centimeter2 coulomb-meter squared 1.602 18 1023 Electron mass atomic mass unit 0.000 548 6 gram 9.1096 1028 Electronvolt erg 1.602 18 1012 joule 1.602 18 1019 kilojoule per mole 96.4853 Ell inch 45 Em, pica inch 0.167 millimeter 4.217 52 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.41 TABLE 2.7 Conversion Factors (Continued) To convert Into Multiply by EMU1 of capacitance farad 109 EMU of current ampere 10 EMU of electric potential volt 108 EMU of inductance henry 109 EMU of quantity (charge) coulomb 10 EMU of resistance ohm 109 EMU of work joule 107 ESU2 of capacitance farad 1.112 650 1012 ESU of current ampere 3.335 641 1010 ESU of electric potential volt 299.792 5 ESU of inductance henry 8.987 552 1011 ESU of quantity (charge) coulomb 3.335 556 1011 ESU of resistance ohm 8.987 552 1011 ESU of work joule 107 Erg dyne-centimeter 1 joule 107 watt-hour 2.777 78 1011 Erg per second Btu 5.69 106 watt 107 Erg per (cm2 second) watt per square meter 0.001 Erg per gauss ampere-centimeter squared 10 joule per tesla 0.001 Fahrenheit scale centigrade scale (5/9) Fahrenheit temperature (F) Celsius temperature (C) (F 32)(5/9) Faraday (based on carbon-12) coulomb 96 487.0 Faraday (chemical) coulomb 96 495.7 Faraday (physical) coulomb 96 521.9 Fathom foot 6 meter 1.828 8 Fermi meter 1015 Foot centimeter 30.48 inch 12 mile (nautical) 1.645 788 104 mile (statute) 1.893 939 104 yard (1/3) Foot of water (4C) atmosphere 0.029 499 8 bar 0.029 499 8 gram per square centimeter 30.48 inch of mercury (0C) 0.882 671 pascal 2989.067 Foot per minute centimeter per second 0.508 knot 0.009 874 73 mile per hour 0.011 363 6 Foot-candle lumen per square foot 1 lumen per square meter 10.7639 lux 10.76391 Foot-lambert candela per square centimeter 3.426 26 104 candela per square foot (1/) lambert 0.001 076 39 meter-lambert 10.7639 1 EMU, the electromagnetic system of electrical units based on dynamics.
2 ESU, the electrostatic system of electrical units based on static data.
2.42 SECTION 2 TABLE 2.7 Conversion Factors (Continued) To convert Into Multiply by Foot-pound Btu 0.001 285 07 calorie 0.323 832 foot-poundal 32.1740 horsepower (British) 5.050 51 107 joule 1.355 818 kilogram-meter 0.138 255 liter-atmosphere 0.013 380 9 newton-meter 1.355 818 watt-hour 3.766 161 104 Foot-pound per minute horsepower (British) 3.030 30 105 horsepower (metric) 3.072 33 105 watt 0.022 597 0 Foot-poundal Btu 3.994 11 105 calorie 0.010 064 99 foot-pound 0.031 081 0 joule 0.042 140 11 kilogram-meter 0.004 297 10 liter-atmosphere 4.158 91 104 watt-hour 1.170 56 105 Franklin coulomb 3.335 64 1010 Franklin per cm3 coulomb per cubic meter 3.335 64 104 Franklin per cm2 coulomb per square meter 3.335 64 106 Furlong chain (Gunter’s) 10 foot 600 meter 201.168 mile (1/8) Gallon (British, imperial) bushel (British) (1/8) cubic decimeter, liter 4.546 90 cubic foot 0.160 544 gallon (U.S., fluid) 1.200 95 gill (British) 32 liter 4.546 09 ounce (British) 160 quart (British) 4 Gallon (U.S.) barrel (petroleum) (1/42) cubic decimeter, liter 3.785 41 cubic foot 0.133 680 56 gallon (British) 0.832 674 liter 3.785 41 ounce (U.S., fluid) 128 quart (U.S., fluid) 4 Gallon (U.S.) per minute cubic foot per hour 8.020 83 cubic meter per hour 0.227 125 liter per minute 3.785 412 Gamma microgram 1 Gas constant calorie per mole-degree 1.987 joule per mole-degree 8.3143 liter-atmosphere per 0.082 057 mole-degree Gauss tesla 104 weber per square meter 104 Gilbert ampere-turn 0.795 775 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.43 TABLE 2.7 Conversion Factors (Continued) To convert Into Multiply by Gill (British) cubic centimeter, mL 142.065 cubic inch 8.669 36 gallon (British) (1/32) gill (U.S.) 1.200 95 ounce (British, fluid) 5 pint (British) (1/4) Gill (U.S.) cubic centimeter, mL 118.2941 gallon (U.S.) (1/32) liter 0.118 294 1 ounce (U.S., fluid) 4 quart (U.S.) (1/8) Gon (grade) circumference (1/400) minute (angle) 54 radian (2/400) Grade radian (2/400) Grain carat (metric) 0.323 994 55 milligram 64.798 91 ounce (weight) 0.002 285 714 3 ounce (troy) (1/480) pennyweight (1/24) pound (1/7000) scruple (1/20) Gram carat (metric) 5 dram 0.564 383 39 grain 15.432 358 ounce (weight) 0.035 273 962 ounce (troy) 0.032 150 747 pennyweight 0.643 014 93 pound 0.002 204 622 6 ton (metric) 106 Gram per (centimeter-second) poise 1 Gram per cubic centimeter kilogram per liter 1 pound per cubic foot 62.4280 pound per gallon (U.S.) 8.345 40 Gram per square meter ounce per square foot 0.327 706 Gram per ton (long) gram per ton (metric) 0.984 207 gram per ton (short) 0.892 857 Gram (force) dyne 980.665 newton 0.009 806 65 Gram per square centimeter pascal 98.0665 Gram-centimeter joule 9.806 65 105 Gram-square centimeter pound-square foot 2.373 04 106 Gray joule per kilogram 1 Hartree electron volt 27.211 40 hertz 6.579 683 90 1015 joule 4.359 75 1018 Hectare acre 2.471 054 are 100 meter squared 104 Hefner unit candela 0.9 Hemisphere sphere 0.5 spherical right angle 4 steradian (2) 2.44 SECTION 2 TABLE 2.7 Conversion Factors (Continued) To convert Into Multiply by Hertz cycle per second 1 Hogshead gallon (U.S.) 63 Horsepower (British) Btu per hour 2544.43 foot pound per hour 1.98 106 horsepower (metric) 1.013 87 joule per second 745.700 kilocalorie per hour 641.186 kilogram-meter per second 76.0402 watt 745.70 Horsepower (electric) watt 746 Horsepower-hour (British) Btu 2544.43 foot-pound 1.98 106 joule 2.684 52 106 kilocalorie 641.186 kilogram-meter 2.737 45 105 watt-hour 745.7 Hour (mean solar) day (1/24) minute 60 second 3600 week (1/168) Hundredweight (long) kilogram 50.802 345 44 pound 112 ton (long) (1/20) ton (metric) 0.050 802 345 ton (short) 0.056 Hundredweight (short) hundredweight (long) 0.892 857 Inch centimeter 2.54 foot (1/12) mil 1000 Inch of mercury (0C) atmosphere 0.033 421 05 inch of water (4C) 13.5951 millibar 33.863 88 millimeter of water (4C) 345.316 pascal 3386.388 pound per square inch, psi 0.491 1541 Inch of water (4C) inch of mercury (0C) 0.073 5559 millibar 2.490 89 millimeter of mercury (0C) 1.868 32 pascal 249.089 pound per square inch, psi 0.036 1273 Inch per minute foot per hour 5 meter per hour 1.524 millimeter per second 0.423 333 Joule Btu 9.478 170 104 calorie 0.2390 centigrade heat unit, chu 5.265 65 centimeter-dyne 107 cubic foot-atmosphere 0.000 348 529 cubic foot-(pound per in2) 0.005 121 959 erg 107 foot-pound 0.737 562 foot-poundal 23.7304 horsepower-hour (British) 3.725 06 107 liter-atmosphere 0.009 869 233 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.45 TABLE 2.7 Conversion Factors (Continued) To convert Into Multiply by Joule (continued) newton-meter 1 watt-second 1 Joule per centimeter kilogram (force) 10.197 16 newton 100 pound (force) 22.4809 Joule per gram Btu per pound 0.429 923 kilocalorie per kilogram 0.238 846 watt-hour per pound 0.125 998 Joule per second watt 1 Kilogram (force) dyne 9.806 65 105 newton 9.806 65 pound (force) 2.204 62 poundal 70.9316 Kilometer astronomical unit 6.684 59 109 mile (nautical) 0.539 956 80 mile (statute) 0.621 371 192 Kilowatt Btu per minute 56.8690 foot-pound per second 737.562 horsepower (British) 1.341 02 horsepower (metric) 1.359 62 joule per second 1000 kilocalorie per hour 859.845 Kilowatt-hour Btu 3412.14 horsepower-hour (British) 1.341 02 joule 3.6 106 kilocalorie 859.845 Knot foot per minute 101.2686 kilometer per hour 1.852 mile (nautical) per hour 1 mile (statute) per hour 1.150 78 Lambda decimeter cubed 106 microliter 1 Lambert candela per square meter (1/) 104; 3183.099 candela per square inch 2.053 61 foot-lambert 929.030 Langley joule per square meter 4.184 104 League (nautical) mile (nautical) 3 League (statute) mile (statute) 3 Light-year astronomical unit 6.323 97 104 meter 9.460 73 1015 Link chain 0.01 Liter cubic decimeter (dm3) 1 cubic foot 0.035 314 67 gallon (British) 0.219 969 gallon (U.S.) 0.264 172 1 quart (British) 0.879 877 quart (U.S.) 1.056 688 Liter per minute cubic foot per hour 2.118 88 gallon (British) per hour 13.198 gallon (U.S.) per hour 15.8503 Liter-atmosphere Btu 0.096 037 6 calorie 24.2011 cubic foot-atmosphere 0.035 314 7 cubic foot-pound per in2 0.518 983 2.46 SECTION 2 TABLE 2.7 Conversion Factors (Continued) To convert Into Multiply by Liter-atmosphere (continued) horsepower (British) 3.774 42 105 horsepower (metric) 3.826 77 105 joule 101.325 kilogram-meter 10.332 27 watt-hour 0.028 145 8 Lumen per square centimeter lux 104 phot 1 Lumen per square meter lumen per square foot 0.092 903 0 Lux lumen per square meter 1 Maxwell weber 108 Meter a ˚ngstro ¨m 1010 fathom 0.546 807 foot 3.280 839 895 inch 39.370 078 740 mile (nautical) 5.399 568 104 mile (statute) 6.213 712 104 Meter per second foot per minute 196.850 kilometer per hour 3.6 knot 1.943 844 mile per hour 2.236 936 Meter-candle lux 1 Meter-lambert candela per square meter (1/) foot-lambert 0.092 903 0 lambert 104 Mho (ohm1) siemen 1 Micron meter 106 Mil inch 0.001 micrometer 25.4 Mile (nautical) foot 6076.115 49 kilometer 1.852 mile (statute) 1.150 78 Mile (statute) chain (Gunter’s) 80 chain (Ramsden’s) 52.8 foot 5280 furlong 8 kilometer 1.609 344 light-year 1.701 11 1011 link (Gunter’s) 8000 link (Ramsden’s) 5280 mile (nautical) 0.868 976 rod 320 Mile per gallon (British) kilometer per liter 0.354 006 Mile per gallon (U.S.) kilometer per liter 0.425 144 Mile per hour foot per minute 88 kilometer per hour 1.609 344 knot 0.868 976 Milliliter cubic centimeter 1 Millimeter of mercury (0C) atmosphere (1/760) dyne per square centimeter 1333.224 millimeter of water (4C) 13.5951 pascal 133.322 pound per square inch (psi) 0.019 336 8 torr 1 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.47 TABLE 2.7 Conversion Factors (Continued) To convert Into Multiply by Millimeter of water (4C) atmosphere 0.009 678 41 millibar 0.098 066 5 millimeter of mercury (0C) 0.073 555 9 pascal 9.806 65 pound per square inch 0.001 422 33 Minim (British) milliliter 0.059 193 9 minim (U.S.) 0.960 760 Minim (U.S.) milliliter 0.061 611 5 Minute (plane angle) circumference 4.629 63 105 degree (angle) (1/60) gon (1/54) radian (/10,800) Minute hour (1/60) second 60 Month (mean of 4-year period) day 30.4375 hour 730.5 week 4.348 21 Nail (British) inch 2.25 Nanometer a ˚ngstro ¨m 10 Neper decibel 8.685 890 Nuclear magneton joule per tesla 5.050 79 1027 Neutron mass atomic mass unit 1.008 66 gram 1.6749 1024 Newton dyne 105 kilogram (force) 0.101 971 6 pound (force) 0.224 809 poundal 7.233 01 Newton per square meter See pascal Newton-meter foot-pound 0.737 562 joule 1 kilogram-meter 0.101 971 6 watt-second 1 Nit candela per square meter 1 Noggin (British) gill (British) 1 Nox lux 0.001 Oersted ampere per meter (in practice) (1000/4); 79.577 47 Ohm (mean international) ohm 1.000 49 Ohm (U.S. international) ohm 1.000 495 Ohm per foot ohm per meter 3.280 84 Ounce (avoirdupois) dram 16 grain 437.5 gram 28.349 5 ounce (troy) 0.911 458 33 pound (1/16) Ounce (troy) grain 480 gram 31.1035 ounce (avoirdupois) 1.097 142 9 pennyweight 20 pound (avoirdupois) 0.068 571 429 scruple 24 Ounce (British, fluid) cubic centimeter 28.413 06 gallon (British) (1/160) milliliter 28.413 06 2.48 SECTION 2 TABLE 2.7 Conversion Factors (Continued) To convert Into Multiply by Ounce (British, fluid) minim (British) 480 (continued) ounce (U.S., fluid) 0.960 760 pint (British) (1/20) quart (British) (1/40) Ounce (U.S., fluid) cubic centimeter 29.573 530 gallon (U.S.) (1/128) milliliter 29.573 530 pint (U.S., fluid) (1/16) quart (U.S., fluid) (1/32) Ounce (avoirdupois) per cubic foot kilogram per cubic meter 1.001 154 Ounce (avoirdupois)/gallon (U.S.) gram per liter 7.489 15 Ounce (avoirdupois) per ton (long) gram per ton (metric) 27.9018 milligram per kilogram 27.9018 Ounce (avoirdupois) per ton (short) gram per ton (metric) 31.25 milligram per kilogram 31.25 Parsec light-year 3.261 636 Part per million milligram per kilogram 1 milliliter per cubic meter 1 Pascal atmosphere 9.869 233 106 bar 105 dyne per square centimeter 10 inch of mercury 2.953 00 104 millimeter of mercury 7.500 62 103 millimeter of water 0.101 972 newton per square meter 1 pound per square inch 1.450 377 104 poundal per square foot 0.671 969 Pascal-second poise 10 Peck (British) gallon (British) 2 Peck (U.S.) bushel (U.S.) 0.25 Pennyweight grain 24 gram 1.555 173 84 ounce (troy) (1/20) pound 0.003 428 571 4 Phot lux 104 Pica (printer’s) inch 0.167 point 12 Pint (British) gallon (British) (1/8) liter 0.568 261 pint (U.S., fluid) 1.200 95 quart (British) 0.5 Pint (U.S., dry) bushel (U.S.) (1/64) liter 0.550 610 5 peck (U.S.) (1/16) pint (British) 0.968 939 quart (U.S., dry) 0.5 Pint (U.S., fluid) gallon (U.S.) (1/8) liter 0.473 176 5 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.49 TABLE 2.7 Conversion Factors (Continued) To convert Into Multiply by Pint (U.S., fluid) pint (British) 0.832 674 (continued) quart (U.S., fluid) 0.5 Planck’s constant joule-second 6.626 08 1034 Point (printer’s, Didot) millimeter 0.376 065 03 Point (printer’s, U.S.) millimeter 0.351 459 8 Poise dyne-second per square centimeter 1 pascal-second 0.1 Polarizability volume (40 cm3) coulomb squared-(meter squared per joule) 1.112 65 1016 Pole (British) foot 16.5 Pottle (British) gallon (British) 0.5 Pound gram 453.592 37 ounce (weight) 16 ton (long) 4.464 285 7 104 ton (short) (1/2000) Pound (troy) grain 5760 gram 373.241 721 6 ounce (troy) 12 pennyweight 240 pound (weight) 0.822 857 14 scruple 288 Pound per cubic foot kilogram per cubic meter 16.018 46 Pound per cubic inch gram per cubic centimeter 27.679 905 pound per cubic foot 1728 Pound per foot kilogram per meter 1.488 16 Pound per (foot-second) pascal-second 1.488 16 Pound per gallon (U.S.) gram per liter 119.8264 Pound per hour kilogram per day 10.886 22 Pound per inch kilogram per meter 17.857 97 Pound per minute kilogram per hour 27.215 54 Pound per square foot kilogram per square meter 4.882 43 Pound (force) kilogram (force) 0.453 592 newton 4.448 222 poundal 32.1740 Pound per square inch atmosphere 0.068 046 0 bar 0.068 948 0 inch of mercury (0C) 2.036 02 millimeter of mercury (0C) 51.7149 millimeter of water (4C) 703.070 pascal 6894.757 pound per square foot 144 Pound-second per square inch pascal-second 6894.76 Poundal gram (force) 14.0981 newton 0.138 255 pound (force) 0.031 081 0 Poundal per square foot pascal 1.488 164 Poundal-foot newton-meter 0.042 140 1 Poundal-second per square foot pascal-second 1.488 164 Proof (U.S.) percent alcohol by volume 0.5 Proton mass atomic mass unit 1.007 28 gram 1.6726 1024 Puncheon (British) gallon (British) 70 2.50 SECTION 2 TABLE 2.7 Conversion Factors (Continued) To convert Into Multiply by Quad Btu 1015 joule 1.055 1018 Quadrant circumference 0.25 degree (angle) 90 gon (grade) 100 minute (angle) 5400 radian (/2) Quadrupole area (e cm2) coulomb meter squared 1.602 18 1023 Quart (British) gallon (British) 0.25 liter 1.136 523 ounce (British, fluid) 40 pint (British) 2 quart (U.S., fluid) 1.200 95 Quart (U.S., dry) bushel (U.S.) (1/32) cubic foot 0.038 889 25 liter 1.101 221 peck (U.S.) (1/8) pint (U.S., dry) 2 Quart (U.S., fluid) gallon (U.S.) 0.25 liter 0.946 529 ounce (U.S., fluid) 32 pint (U.S., fluid) 2 quart (British) 0.832 674 Quartern (British, fluid) gill (British) 0.5 Quintal (metric) kilogram 100 Rad (absorbed dose) gray 0.01 joule per kilogram 0.01 Radian circumference (1/2) degree (angle) 57.295 780 minute (angle) 3437.75 quadrant (2/) revolution (1/2) Radian per centimeter degree per millimeter 5.729 58 degree per inch 145.531 Radian per second revolution per minute 9.549 30 Radian per second squared revolution per minute squared 572.958 Rankin (degree) kelvin (5/9) Ream quire 20 sheet 480 or 500 Register ton cubic foot 100 cubic meter 2.831 685 Rem (dose equivalent) sievert 0.01 Revolution degree (angle) 360 gon 400 quadrant 4 radian (2) Revolution per minute degree (angle) per second 6 radian per second 0.104 720 Revolution per minute squared radian per second squared 0.001 745 33 Revolution per second squared radian per second squared 6.283 185 revolution per minute squared 3600 Reyn pascal-second 6894.76 pound-second per square inch 1 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.51 TABLE 2.7 Conversion Factors (Continued) To convert Into Multiply by Rhe per pascal-second 10 Right angle degree 90 radian (/2) Rod (British, volume) cubic foot 1000 Rod (surveyer’s measure) chain (Gunter’s) 0.25 foot 16.5 link (Gunter’s) 25 meter 5.0292 Roentgen coulomb per kilogram 2.58 104 Rood (British) acre 0.25 square meter 1011.714 1 Rydberg joule 2.179 87 1018 Scruple dram (troy) (1/3) grain 20 gram 1.295 978 2 ounce (weight) 0.045 714 286 ounce (troy) (1/24) pennyweight (10/12) pound (1/350) Second (plane angle) degree 2.777 78 104 minute (1/60) radian (/6.48 105) Section square mile 1 Siemens mho (ohm1) 1 Slug geepound 1 kilogram 14.593 90 pound 32.1740 Speed of light centimeter per second 2.997 924 58 1010 Sphere steradian (4) Square centimeter circular mil 1.973 53 105 circular millimeter 127.3240 square inch 0.155 000 31 Square chain (Gunter’s) acre 0.1 square foot 4356 square meter 404.686 Square chain (Ramsden’s) square foot 104 Square degree (angle) steradian 3.046 17 104 Square foot acre 2.295 68 105 square centimeter 929.0304 square meter 0.092 903 04 square rod 0.003 673 09 Square inch circular mil 1.273 240 106 circular millimeter 821.4432 square centimeter 6.4516 Square kilometer acre 247.1054 hectare 100 square mile 0.386 102 16 Square link (Gunter’s) square foot 0.4356 Square link (Ramsden’s) square foot 1 Square meter are 0.01 square foot 10.763 91 square mile 3.861 01 107 2.52 SECTION 2 TABLE 2.7 Conversion Factors (Continued) To convert Into Multiply by Square meter (continued) square rod 0.039 536 9 square yard 1.195 990 Square mile acre 640 square kilometer 2.589 988 110 township (1/36) Square rod acre (1/160) square foot 272.25 square meter 25.292 853 Square yard square foot 9 square inch 1296 square meter 0.836 127 36 square rod 0.033 057 85 Statampere ampere 3.335 641 1010 Statcoulomb coulomb 3.335 641 1010 Statfarad farad 1.112 650 1012 Stathenry henry 8.987 552 1011 Statmho siemens 1.112 650 1012 Statohm ohm 8.987 552 1011 Statvolt volt 299.7925 Statweber weber 299.7925 Steradian sphere (1/4) spherical right angle (2/) square degree 3282.81 Stere cubic meter 1 Stilb candela/cm2 1 Stokes (kinematic viscosity) square meter per second 104 Stone (British) pound 14 Svedberg second 1013 Tablespoon (metric) cubic centimeter; milliter 14.79 Teaspoon (metric) cubic centimeter; milliliter 4.929 Tesla weber per square meter 1 Tex denier 9 gram per kilometer 1 Therm Btu 105 joule 1.054 804 108 Ton (assay) gram 29.166 67 Ton (long) hundredweight (long) 20 hundredweight (short) 22.4 kilogram 1016.046 908 8 pound 2240 ton (metric) 1.016 046 9 ton (short) 1.12 Ton (metric) hundredweight (long) 19.684 131 hundredweight (short) 22.046 226 kilogram 1000 pound 2204.6226 ton (long) 0.984 206 53 ton (short) 1.102 311 3 Ton (short) kilogram 907.184 74 pound 2000 Ton (force, long) newton 1186.553 Ton (force, metric) newton 9806.65 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.53 TABLE 2.7 Conversion Factors (Continued) To convert Into Multiply by Ton (force, short) newton 8896.44 Ton (force, long)/ft2 bar 1.072 518 pascal 1.072 518 105 Ton (force, metric)/m2 bar 0.098 066 5 pascal 9806.65 Ton (force, short)/ft2 bar 0.957 605 pascal 9.576 05 104 Tonne (metric) kilogram 1000 Torr atmosphere (1/760) millibar 1.333 224 millimeter of mercury (0C) 1 pascal 133.322; (101 325/760) Township (U.S.) square kilometer 93.2396 square mile 36 Unified atomic mass unit kilogram 1.660 54 1027 Unit pole weber 1.256 637 107 Volt (mean international) volt 1.000 34 Volt (U.S. international) volt 1.000 330 Volt-second weber 1 Watt Btu per hour 3.412 14 calorie per minute 14.3308 erg per second 107 foot-pound per minute 44.2537 horsepower (British) 0.001 341 02 horsepower (metric) 0.001 359 62 joule per second 1 kilogram-meter per second 0.101 972 Watt per square inch watt per square meter 1550.003 Watt-hour Btu 3.412 14 calorie 859.845 foot-pound 2655.22 horsepower-hour (British) 0.001 341 02 horsepower-hour (metric) 0.001 359 62 joule 3600 liter-atmosphere 35.5292 Watt-second joule 1 Weber maxwell 108 Week day 7 hour 168 Wey (British, capacity) bushel (British) 40 (variable) Wey (British, mass) pound 252 (variable) X unit meter 1.002 02 1013 Yard fathom 0.5 meter 0.9144 Year (mean of 4-years) day 365.25 week 52.178 87 Year (sidereal) day (mean solar) 365.256 36 2.54 SECTION 2 TABLE 2.8 Temperature Conversion Table The column of figures in bold and which is headed “Reading in F. or C. to be converted” refers to the temperature either in degrees Fahrenheit or Celsius which it is desired to convert into the other scale. If converting from Fahrenheit degrees to Celsius degrees, the equivalent temperature will be found in the column headed “C.”; while if converting from degrees Celsius to degrees Fahrenheit, the equivalent temperature will be found in the column headed “F.” This arrangement is very similar to that of Sauveur and Boylston, copyrighted 1920, and is published with their permission.
Reading in F. or C.
to be F.
converted C.
. . . . . . . .
458 272.22 . . . . . . . .
456 271.11 . . . . . . . .
454 270.00 . . . . . . . .
452 268.89 . . . . . . . .
450 267.78 . . . . . . . .
448 266.67 . . . . . . . .
446 265.56 . . . . . . . .
444 264.44 . . . . . . . .
442 263.33 . . . . . . . .
440 262.22 . . . . . . . .
438 261.11 . . . . . . . .
436 260.00 . . . . . . . .
434 258.89 . . . . . . . .
432 257.78 . . . . . . . .
430 256.67 . . . . . . . .
428 255.56 . . . . . . . .
426 254.44 . . . . . . . .
424 253.33 . . . . . . . .
422 252.22 . . . . . . . .
420 251.11 . . . . . . . .
418 250.00 . . . . . . . .
416 248.89 . . . . . . . .
414 247.78 . . . . . . . .
412 246.67 . . . . . . . .
410 245.56 . . . . . . . .
408 244.44 . . . . . . . .
406 243.33 . . . . . . . .
404 242.22 . . . . . . . .
402 241.11 . . . . . . . .
400 240.00 . . . . . . . .
398 238.89 . . . . . . . .
396 237.78 . . . . . . . .
394 236.67 . . . . . . . .
392 235.56 . . . . . . . .
390 234.44 . . . . . . . .
388 233.33 . . . . . . . .
386 232.22 . . . . . . . .
384 231.11 . . . . . . . .
382 230.00 . . . . . . . .
380 228.89 Reading in F. or C.
to be F.
converted C.
. . . . . . . .
378 227.78 . . . . . . . .
376 226.67 . . . . . . . .
374 225.56 . . . . . . . .
372 224.44 . . . . . . . .
370 223.33 . . . . . . . .
368 222.22 . . . . . . . .
366 221.11 . . . . . . . .
364 220.00 . . . . . . . .
362 218.89 . . . . . . . .
360 217.78 . . . . . . . .
358 216.67 . . . . . . . .
356 215.56 . . . . . . . .
354 214.44 . . . . . . . .
352 213.33 . . . . . . . .
350 212.22 . . . . . . . .
348 211.11 . . . . . . . .
346 210.00 . . . . . . . .
344 208.89 . . . . . . . .
342 207.78 . . . . . . . .
340 206.67 . . . . . . . .
338 205.56 . . . . . . . .
336 204.44 . . . . . . . .
334 203.33 . . . . . . . .
332 202.22 . . . . . . . .
330 201.11 . . . . . . . .
328 200.00 . . . . . . . .
326 198.89 . . . . . . . .
324 197.78 . . . . . . . .
322 196.67 . . . . . . . .
320 195.56 . . . . . . . .
318 194.44 . . . . . . . .
316 193.33 . . . . . . . .
314 192.22 . . . . . . . .
312 191.11 . . . . . . . .
310 190.00 . . . . . . . .
308 188.89 . . . . . . . .
306 187.78 . . . . . . . .
304 186.67 . . . . . . . .
302 185.56 . . . . . . . .
300 184.44 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.55 TABLE 2.8 Temperature Conversion Table (Continued) Reading in F. or C.
to be F.
converted C.
. . . . . . . .
298 183.33 . . . . . . . .
296 182.22 . . . . . . . .
294 181.11 . . . . . . . .
292 180.00 . . . . . . . .
290 178.89 . . . . . . . .
288 177.78 . . . . . . . .
286 176.67 . . . . . . . .
284 175.56 . . . . . . . .
282 174.44 . . . . . . . .
280 173.33 . . . . . . . .
278 172.22 . . . . . . . .
276 171.11 . . . . . . . .
274 170.00 457.6 272 168.89 454.0 270 167.78 450.4 268 166.67 446.8 266 165.56 443.2 264 164.44 439.6 262 163.33 436.0 260 162.22 432.4 258 161.11 428.8 256 160.00 425.2 254 158.89 421.6 252 157.78 418.0 250 156.67 414.4 248 155.56 410.8 246 154.44 407.2 244 153.33 403.6 242 152.22 400.0 240 151.11 396.4 238 150.00 392.8 236 148.89 389.2 234 147.78 385.6 232 146.67 382.0 230 145.56 378.4 228 144.44 374.8 226 143.33 371.2 224 142.22 367.6 222 141.11 364.0 220 140.00 360.4 218 138.89 356.8 216 137.78 353.2 214 136.67 349.6 212 135.56 346.0 210 134.44 Reading in F. or C.
to be F.
converted C.
342.4 208 133.33 338.8 206 132.22 335.2 204 131.11 331.6 202 130.00 328.0 200 128.89 324.4 198 127.78 320.8 196 126.67 317.2 194 125.56 313.6 192 124.44 310.0 190 123.33 306.4 188 122.22 302.8 186 121.11 299.2 184 120.00 295.6 182 118.89 292.0 180 117.78 288.4 178 116.67 284.8 176 115.56 281.2 174 114.44 277.6 172 113.33 274.0 170 112.22 270.4 168 111.11 266.8 166 110.00 263.2 164 108.89 259.6 162 107.78 256.0 160 106.67 252.4 158 105.56 248.8 156 104.44 245.2 154 103.33 241.6 152 102.22 238.0 150 101.11 234.4 148 100.00 230.8 146 98.89 227.2 144 97.78 223.6 142 96.67 220.0 140 95.56 216.4 138 94.44 212.8 136 93.33 209.2 134 92.22 205.6 132 91.11 202.0 130 90.00 198.4 128 88.89 194.8 126 87.78 191.2 124 86.67 187.6 122 85.56 184.0 120 84.44 2.56 SECTION 2 TABLE 2.8 Temperature Conversion Table (Continued) Reading in F. or C.
to be F.
converted C.
180.4 118 83.33 176.8 116 82.22 173.2 114 81.11 169.6 112 80.00 166.0 110 78.89 162.4 108 77.78 158.8 106 76.67 155.2 104 75.56 151.6 102 74.44 148.0 100 73.33 144.4 98 72.22 140.8 96 71.11 137.2 94 70.00 133.6 92 68.89 130.0 90 67.78 126.4 88 66.67 122.8 86 65.56 119.2 84 64.44 115.6 82 63.33 112.0 80 62.22 108.4 78 61.11 104.8 76 60.00 101.2 74 58.89 97.6 72 57.78 94.0 70 56.67 90.4 68 55.56 86.8 66 54.44 83.2 64 53.33 79.6 62 52.22 76.0 60 51.11 72.4 58 50.00 68.8 56 48.89 65.2 54 47.78 61.6 52 46.67 58.0 50 45.56 54.4 48 44.44 50.8 46 43.33 47.2 44 42.22 43.6 42 41.11 40.0 40 40.00 36.4 38 38.89 32.8 36 37.78 29.2 34 36.67 25.6 32 35.56 22.0 30 34.44 Reading in F. or C.
to be F.
converted C.
18.4 28 33.33 14.8 26 32.22 11.2 24 31.11 7.6 22 30.00 4.0 20 28.89 0.4 18 27.78 3.2 16 26.67 6.8 14 25.56 10.4 12 24.44 14.0 10 23.33 17.6 8 22.22 19.4 7 21.67 21.2 6 21.11 23.0 5 20.56 24.8 4 20.00 26.6 3 19.44 28.4 2 18.89 30.2 1 18.33 32.0 0 17.78 33.8 1 17.22 35.6 2 16.67 37.4 3 16.11 39.2 4 15.56 41.0 5 15.00 42.8 6 14.44 44.6 7 13.89 46.4 8 13.33 48.2 9 12.78 50.0 10 12.22 51.8 11 11.67 53.6 12 11.11 55.4 13 10.56 57.2 14 10.00 59.0 15 9.44 60.8 16 8.89 62.6 17 8.33 64.4 18 7.78 66.2 19 7.22 68.0 20 6.67 69.8 21 6.11 71.6 22 5.56 73.4 23 5.00 75.2 24 4.44 77.0 25 3.89 78.8 26 3.33 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.57 TABLE 2.8 Temperature Conversion Table (Continued) Reading in F. or C.
to be F.
converted C.
80.6 27 2.78 82.4 28 2.22 84.2 29 1.67 86.0 30 1.11 87.8 31 0.56 89.6 32 0.00 91.4 33 0.56 93.2 34 1.11 95.0 35 1.67 96.8 36 2.22 98.6 37 2.78 100.4 38 3.33 102.2 39 3.89 104.0 40 4.44 105.8 41 5.00 107.6 42 5.56 109.4 43 6.11 111.2 44 6.67 113.0 45 7.22 114.8 46 7.78 116.6 47 8.33 118.4 48 8.89 120.2 49 9.44 122.0 50 10.00 123.8 51 10.56 125.6 52 11.11 127.4 53 11.67 129.2 54 12.22 131.0 55 12.78 132.8 56 13.33 134.6 57 13.89 136.4 58 14.44 138.2 59 15.00 140.0 60 15.56 141.8 61 16.11 143.6 62 16.67 145.4 63 17.22 147.2 64 17.78 149.0 65 18.33 150.8 66 18.89 152.6 67 19.44 154.4 68 20.00 156.2 69 20.56 158.0 70 21.11 159.8 71 21.67 Reading in F. or C.
to be F.
converted C.
161.6 72 22.22 163.4 73 22.78 165.2 74 23.33 167.0 75 23.89 168.8 76 24.44 170.6 77 25.00 172.4 78 25.56 174.2 79 26.11 176.0 80 26.67 177.8 81 27.22 179.6 82 27.78 181.4 83 28.33 183.2 84 28.89 185.0 85 29.44 186.8 86 30.00 188.6 87 30.56 190.4 88 31.11 192.2 89 31.67 194.0 90 32.22 195.8 91 32.78 197.6 92 33.33 199.4 93 33.89 201.2 94 34.44 203.0 95 35.00 204.8 96 35.56 206.6 97 36.11 208.4 98 36.67 210.2 99 37.22 212.0 100 37.78 213.8 101 38.33 215.6 102 38.89 217.4 103 39.44 219.2 104 40.00 221.0 105 40.56 222.8 106 41.11 224.6 107 41.67 226.4 108 42.22 228.2 109 42.78 230.0 110 43.33 231.8 111 43.89 233.6 112 44.44 235.4 113 45.00 237.2 114 45.56 239.0 115 46.11 240.8 116 46.67 2.58 SECTION 2 TABLE 2.8 Temperature Conversion Table (Continued) Reading in F. or C.
to be F.
converted C.
242.6 117 47.22 244.4 118 47.78 246.2 119 48.33 248.0 120 48.89 249.8 121 49.44 251.6 122 50.00 253.4 123 50.56 255.2 124 51.11 257.0 125 51.67 258.8 126 52.22 260.6 127 52.78 262.4 128 53.33 264.2 129 53.89 266.0 130 54.44 267.8 131 55.00 269.6 132 55.56 271.4 133 56.11 273.2 134 56.67 275.0 135 57.22 276.8 136 57.78 278.6 137 58.33 280.4 138 58.89 282.2 139 59.44 284.0 140 60.00 285.8 141 60.56 287.6 142 61.11 289.4 143 61.67 291.2 144 62.22 293.0 145 62.78 294.8 146 63.33 296.6 147 63.89 298.4 148 64.44 300.2 149 65.00 302.0 150 65.56 303.8 151 66.11 305.6 152 66.67 307.4 153 67.22 309.2 154 67.78 311.0 155 68.33 312.8 156 68.89 314.6 157 69.44 316.4 158 70.00 318.2 159 70.56 320.0 160 71.11 321.8 161 71.67 Reading in F. or C.
to be F.
converted C.
323.6 162 72.22 325.4 163 72.78 327.2 164 73.33 329.0 165 73.89 330.8 166 74.44 332.6 167 75.00 334.4 168 75.56 336.2 169 76.11 338.0 170 76.67 339.8 171 77.22 341.6 172 77.78 343.4 173 78.33 345.2 174 78.89 347.0 175 79.44 348.8 176 80.00 350.6 177 80.56 352.4 178 81.11 354.2 179 81.67 356.0 180 82.22 357.8 181 82.78 359.6 182 83.33 361.4 183 83.89 363.2 184 84.44 365.0 185 85.00 366.8 186 85.56 368.6 187 86.11 370.4 188 86.67 372.2 189 87.22 374.0 190 87.78 375.8 191 88.33 377.6 192 88.89 379.4 193 89.44 381.2 194 90.00 383.0 195 90.56 384.8 196 91.11 386.6 197 91.67 388.4 198 92.22 390.2 199 92.78 392.0 200 93.33 393.8 201 93.89 395.6 202 94.44 397.4 203 95.00 399.2 204 95.56 401.0 205 96.11 402.8 206 96.67 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.59 TABLE 2.8 Temperature Conversion Table (Continued) Reading in F. or C.
to be F.
converted C.
404.6 207 97.22 406.4 208 97.78 408.2 209 98.33 410.0 210 98.89 411.8 211 99.44 413.6 212 100.00 415.4 213 100.56 417.2 214 101.11 419.0 215 101.67 420.8 216 102.22 422.6 217 102.78 424.4 218 103.33 426.2 219 103.89 428.0 220 104.44 431.6 222 105.56 435.2 224 106.67 438.8 226 107.78 442.4 228 108.89 446.0 230 110.00 449.6 232 111.11 453.2 234 112.22 456.8 236 113.33 460.4 238 114.44 464.0 240 115.56 467.6 242 116.67 471.2 244 117.78 474.8 246 118.89 478.4 248 120.00 482.0 250 121.11 485.6 252 122.22 489.2 254 123.33 492.8 256 124.44 496.4 258 125.56 500.0 260 126.67 503.6 262 127.78 507.2 264 128.89 510.8 266 130.00 514.4 268 131.11 518.0 270 132.22 521.6 272 133.33 525.2 274 134.44 528.8 276 135.56 532.4 278 136.67 536.0 280 137.78 539.6 282 138.89 Reading in F. or C.
to be F.
converted C.
543.2 284 140.00 546.8 286 141.11 550.4 288 142.22 554.0 290 143.33 557.6 292 144.44 561.2 294 145.56 564.8 296 146.67 568.4 298 147.78 572.0 300 148.89 575.6 302 150.00 579.2 304 151.11 582.8 306 152.22 586.4 308 153.33 590.0 310 154.44 593.6 312 155.56 597.2 314 156.67 600.8 316 157.78 604.4 318 158.89 608.0 320 160.00 611.6 322 161.11 615.2 324 162.22 618.8 326 163.33 622.4 328 164.44 626.0 330 165.56 629.6 332 166.67 633.2 334 167.78 636.8 336 168.89 640.4 338 170.00 644.0 340 171.11 647.6 342 172.22 651.2 344 173.33 654.8 346 174.44 658.4 348 175.56 662.0 350 176.67 665.6 352 177.78 669.2 354 178.89 672.8 356 180.00 676.4 358 181.11 680.0 360 182.22 683.6 362 183.33 687.2 364 184.44 690.8 366 185.56 694.4 368 186.67 698.0 370 187.78 701.6 372 188.89 2.60 SECTION 2 TABLE 2.8 Temperature Conversion Table (Continued) Reading in F. or C.
to be F.
converted C.
705.2 374 190.00 708.8 376 191.11 712.4 378 192.22 716.0 380 193.33 719.6 382 194.44 723.2 384 195.56 726.8 386 196.67 730.4 388 197.78 734.0 390 198.89 737.6 392 200.00 741.2 394 201.11 744.8 396 202.22 748.4 398 203.33 752.0 400 204.44 755.6 402 205.56 759.2 404 206.67 762.8 406 207.78 766.4 408 208.89 770.0 410 210.00 773.6 412 211.11 777.2 414 212.22 780.8 416 213.33 784.4 418 214.44 788.0 420 215.56 791.6 422 216.67 795.2 424 217.78 798.8 426 218.89 802.4 428 220.00 806.0 430 221.11 809.6 432 222.22 813.2 434 223.33 816.8 436 224.44 820.4 438 225.56 824.0 440 226.67 827.6 442 227.78 831.2 444 228.89 834.8 446 230.00 838.4 448 231.11 842.0 450 232.22 845.6 452 233.33 849.2 454 234.44 852.8 456 235.56 856.4 458 236.67 860.0 460 237.78 863.6 462 238.89 Reading in F. or C.
to be F.
converted C.
867.2 464 240.00 870.8 466 241.11 874.4 468 242.22 878.0 470 243.33 881.6 472 244.44 885.2 474 245.56 888.8 476 246.67 892.4 478 247.78 896.0 480 248.89 899.6 482 250.00 903.2 484 251.11 906.8 486 252.22 910.4 488 253.33 914.0 490 254.44 917.6 492 255.56 921.2 494 256.67 924.8 496 257.78 928.4 498 258.89 932.0 500 260.00 935.6 502 261.11 939.2 504 262.22 942.8 506 263.33 946.4 508 264.44 950.0 510 265.56 953.6 512 266.67 957.2 514 267.78 960.8 516 268.89 964.4 518 270.00 968.0 520 271.11 971.6 522 272.22 975.2 524 273.33 978.8 526 274.44 982.4 528 275.56 986.0 530 276.67 989.6 532 277.78 993.2 534 278.89 996.8 536 280.00 1000.4 538 281.11 1004.0 540 282.22 1007.6 542 283.33 1011.2 544 284.44 1014.8 546 285.56 1018.4 548 286.67 1022.0 550 287.78 1025.6 552 288.89 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.61 TABLE 2.8 Temperature Conversion Table (Continued) Reading in F. or C.
to be F.
converted C.
1029.2 554 290.00 1032.8 556 291.11 1036.4 558 292.22 1040.0 560 293.33 1043.6 562 294.44 1047.2 564 295.56 1050.8 566 296.67 1054.4 568 297.78 1058.0 570 298.89 1061.6 572 300.00 1065.2 574 301.11 1068.8 576 302.22 1072.4 578 303.33 1076.0 580 304.44 1079.6 582 305.56 1083.2 584 306.67 1086.8 586 307.78 1090.4 588 308.89 1094.0 590 310.00 1097.6 592 311.11 1101.2 594 312.22 1104.8 596 313.33 1108.4 598 314.44 1112.0 600 315.56 1115.6 602 316.67 1119.2 604 317.78 1122.8 606 318.89 1126.4 608 320.00 1130.0 610 321.11 1133.6 612 322.22 1137.2 614 323.33 1140.8 616 324.44 1144.4 618 325.56 1148.0 620 326.67 1151.6 622 327.78 1155.2 624 328.89 1158.8 626 330.00 1162.4 628 331.11 1166.0 630 332.22 1169.6 632 333.33 1173.2 634 334.44 1176.8 636 335.56 1180.4 638 336.67 1184.0 640 337.78 1187.6 642 338.89 Reading in F. or C.
to be F.
converted C.
1191.2 644 340.00 1194.8 646 341.11 1198.4 648 342.22 1202.0 650 343.33 1205.6 652 344.44 1209.2 654 345.56 1212.8 656 346.67 1216.4 658 347.78 1220.0 660 348.89 1223.6 662 350.00 1227.2 664 351.11 1230.8 666 352.22 1234.4 668 353.33 1238.0 670 354.44 1241.6 672 355.56 1245.2 674 356.67 1248.8 676 357.78 1252.4 678 358.89 1256.0 680 360.00 1259.6 682 361.11 1263.2 684 362.22 1266.8 686 363.33 1270.4 688 364.44 1274.0 690 365.56 1277.6 692 366.67 1281.2 694 367.78 1284.8 696 368.89 1288.4 698 370.00 1292.0 700 371.11 1295.6 702 372.22 1299.2 704 373.33 1302.8 706 374.44 1306.4 708 375.56 1310.0 710 376.67 1313.6 712 377.78 1317.2 714 378.89 1320.8 716 380.00 1324.4 718 381.11 1328.0 720 382.22 1331.6 722 383.33 1335.2 724 384.44 1338.8 726 385.56 1342.4 728 386.67 1346.0 730 387.78 1349.6 732 388.89 2.62 SECTION 2 TABLE 2.8 Temperature Conversion Table (Continued) Reading in F. or C.
to be F.
converted C.
1353.2 734 390.00 1356.8 736 391.11 1360.4 738 392.22 1364.0 740 393.33 1367.6 742 394.44 1371.2 744 395.56 1374.8 746 396.67 1378.4 748 397.78 1382.0 750 398.89 1385.6 752 400.00 1389.2 754 401.11 1392.8 756 402.22 1396.4 758 403.33 1400.0 760 404.44 1403.6 762 405.56 1407.2 764 406.67 1410.8 766 407.78 1414.4 768 408.89 1418.0 770 410.00 1421.6 772 411.11 1425.2 774 412.22 1428.8 776 413.33 1432.4 778 414.44 1436.0 780 415.56 1439.6 782 416.67 1443.2 784 417.78 1446.8 786 418.89 1450.4 788 420.00 1454.0 790 421.11 1457.6 792 422.22 1461.2 794 423.33 1464.8 796 424.44 1468.4 798 425.56 1472.0 800 426.67 1475.6 802 427.78 1479.2 804 428.89 1482.8 806 430.00 1486.4 808 431.11 1490.0 810 432.22 1493.6 812 433.33 1497.2 814 434.44 1500.8 816 435.56 1504.4 818 436.67 1508.0 820 437.78 1511.6 822 438.89 Reading in F. or C.
to be F.
converted C.
1515.2 824 440.00 1518.8 826 441.11 1522.4 828 442.22 1526.0 830 443.33 1529.6 832 444.44 1533.2 834 445.56 1536.8 836 446.67 1540.4 838 447.78 1544.0 840 448.89 1547.6 842 450.00 1551.2 844 451.11 1554.8 846 452.22 1558.4 848 453.33 1562.0 850 454.44 1565.6 852 455.56 1569.2 854 456.67 1572.8 856 457.78 1576.4 858 458.89 1580.0 860 460.00 1583.6 862 461.11 1587.2 864 462.22 1590.8 866 463.33 1594.4 868 464.44 1598.0 870 465.56 1601.6 872 466.67 1605.2 874 467.78 1608.8 876 468.89 1612.4 878 470.00 1616.0 880 471.11 1619.6 882 472.22 1623.2 884 473.33 1626.8 886 474.44 1630.4 888 475.56 1634.0 890 476.67 1637.6 892 477.78 1641.2 894 478.89 1644.8 896 480.00 1648.4 898 481.11 1652.0 900 482.22 1655.6 902 483.33 1659.2 904 484.44 1662.8 906 485.56 1666.4 908 486.67 1670.0 910 487.78 1673.6 912 488.89 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.63 TABLE 2.8 Temperature Conversion Table (Continued) Reading in F. or C.
to be F.
converted C.
1677.2 914 490.00 1680.8 916 491.11 1684.4 918 492.22 1688.0 920 493.33 1691.6 922 494.44 1695.2 924 495.56 1698.8 926 496.67 1702.4 928 497.78 1706.0 930 498.89 1709.6 932 500.00 1713.2 934 501.11 1716.8 936 502.22 1720.4 938 503.33 1724.0 940 504.44 1727.6 942 505.56 1731.2 944 506.67 1734.8 946 507.78 1738.4 948 508.89 1742.0 950 510.00 1745.6 952 511.11 1749.2 954 512.22 1752.8 956 513.33 1756.4 958 514.44 1760.0 960 515.56 1763.6 962 516.67 1767.2 964 517.78 1770.8 966 518.89 1774.4 968 520.00 1778.0 970 521.11 1781.6 972 522.22 1785.2 974 523.33 1788.8 976 524.44 1792.4 978 525.56 1796.0 980 526.67 1799.6 982 527.78 1803.2 984 528.89 1806.8 986 530.00 1810.4 988 531.11 1814.0 990 532.22 1817.6 992 533.33 1821.2 994 534.44 1824.8 996 535.56 1828.4 998 536.67 1832.0 1000 537.78 1850.0 1010 543.33 Reading in F. or C.
to be F.
converted C.
1868.0 1020 548.89 1886.0 1030 554.44 1904.0 1040 560.00 1922.0 1050 565.56 1940.0 1060 571.11 1958.0 1070 576.67 1976.0 1080 582.22 1994.0 1090 587.78 2012.0 1100 593.33 2030.0 1110 598.89 2048.0 1120 604.44 2066.0 1130 610.00 2084.0 1140 615.56 2102.0 1150 621.11 2120.0 1160 626.67 2138.0 1170 632.22 2156.0 1180 637.78 2174.0 1190 643.33 2192.0 1200 648.89 2210.0 1210 654.44 2228.0 1220 660.00 2246.0 1230 665.56 2264.0 1240 671.11 2282.0 1250 676.67 2300.0 1260 682.22 2318.0 1270 687.78 2336.0 1280 693.33 2354.0 1290 698.89 2372.0 1300 704.44 2390.0 1310 710.00 2408.0 1320 715.56 2426.0 1330 721.11 2444.0 1340 726.67 2462.0 1350 732.22 2480.0 1360 737.78 2498.0 1370 743.33 2516.0 1380 748.89 2534.0 1390 754.44 2552.0 1400 760.00 2570.0 1410 765.56 2588.0 1420 771.11 2606.0 1430 776.67 2624.0 1440 782.22 2642.0 1450 787.78 2660.0 1460 793.33 2.64 SECTION 2 TABLE 2.8 Temperature Conversion Table (Continued) Reading in F. or C.
to be F.
converted C.
2678.0 1470 798.89 2696.0 1480 804.44 2714.0 1490 810.00 2732.0 1500 815.56 2750.0 1510 821.11 2768.0 1520 826.67 2786.0 1530 832.22 2804.0 1540 837.78 2822.0 1550 843.33 2840.0 1560 848.89 2858.0 1570 854.44 2876.0 1580 860.00 2894.0 1590 865.56 2912.0 1600 871.11 2930.0 1610 876.67 2948.0 1620 882.22 2966.0 1630 887.78 2984.0 1640 893.33 3002.0 1650 898.89 3020.0 1660 904.44 3038.0 1670 910.00 3056.0 1680 915.56 3074.0 1690 921.11 3092.0 1700 926.67 3110.0 1710 932.22 3128.0 1720 937.78 3146.0 1730 943.33 3164.0 1740 948.89 3182.0 1750 954.44 3200.0 1760 960.00 3218.0 1770 965.56 3236.0 1780 971.11 3254.0 1790 976.67 3272.0 1800 982.22 3290.0 1810 987.78 3308.0 1820 993.33 3326.0 1830 998.89 3344.0 1840 1004.4 3362.0 1850 1010.0 3380.0 1860 1015.6 3398.0 1870 1021.1 3416.0 1880 1026.7 3434.0 1890 1032.2 3452.0 1900 1037.8 3470.0 1910 1043.3 Reading in F. or C.
to be F.
converted C.
3488.0 1920 1048.9 3506.0 1930 1054.4 3524.0 1940 1060.0 3542.0 1950 1065.6 3560.0 1960 1071.1 3578.0 1970 1076.7 3596.0 1980 1082.2 3614.0 1990 1087.8 3632.0 2000 1093.3 3650.0 2010 1098.9 3668.0 2020 1104.4 3686.0 2030 1110.0 3704.0 2040 1115.6 3722.0 2050 1121.1 3740.0 2060 1126.7 3758.0 2070 1132.2 3776.0 2080 1137.8 3794.0 2090 1143.3 3812.0 2100 1148.9 3830.0 2110 1154.4 3848.0 2120 1160.0 3866.0 2130 1165.6 3884.0 2140 1171.1 3902.0 2150 1176.7 3920.0 2160 1182.2 3938.0 2170 1187.8 3956.0 2180 1193.3 3974.0 2190 1198.9 3992.0 2200 1204.4 4010.0 2210 1210.0 4028.0 2220 1215.6 4046.0 2230 1221.1 4064.0 2240 1226.7 4082.0 2250 1232.2 4100.0 2260 1237.8 4118.0 2270 1243.3 4136.0 2280 1248.9 4154.0 2290 1254.4 4172.0 2300 1260.0 4190.0 2310 1265.6 4208.0 2320 1271.1 4226.0 2330 1276.7 4244.0 2340 1282.2 4262.0 2350 1287.8 4280.0 2360 1293.3 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.65 TABLE 2.8 Temperature Conversion Table (Continued) Reading in F. or C.
to be F.
converted C.
4298.0 2370 1298.9 4316.0 2380 1304.4 4334.0 2390 1310.0 4352.0 2400 1315.6 4370.0 2410 1321.1 4388.0 2420 1326.7 4406.0 2430 1332.2 4424.0 2440 1337.8 4442.0 2450 1343.3 4460.0 2460 1348.9 4478.0 2470 1354.4 4496.0 2480 1360.0 4514.0 2490 1365.6 4532.0 2500 1371.1 4550.0 2510 1376.7 4568.0 2520 1382.2 4586.0 2530 1387.8 4604.0 2540 1393.3 4622.0 2550 1398.9 4640.0 2560 1404.4 4658.0 2570 1410.0 4676.0 2580 1415.6 4694.0 2590 1421.1 4712.0 2600 1426.7 4730.0 2610 1432.2 4748.0 2620 1437.8 4766.0 2630 1443.3 4784.0 2640 1448.9 4802.0 2650 1454.4 4820.0 2660 1460.0 4838.0 2670 1465.6 4856.0 2680 1471.1 4874.0 2690 1476.7 4892.0 2700 1482.2 4910.0 2710 1487.8 4928.0 2720 1493.3 4946.0 2730 1498.9 Reading in F. or C.
to be F.
converted C.
4964.0 2740 1504.4 4982.0 2750 1510.0 5000.0 2760 1515.6 5018.0 2770 1521.1 5036.0 2780 1526.7 5054.0 2790 1532.2 5072.0 2800 1537.8 5090.0 2810 1543.3 5108.0 2820 1548.9 5126.0 2830 1554.4 5144.0 2840 1560.0 5162.0 2850 1565.6 5180.0 2860 1571.1 5198.0 2870 1576.7 5216.0 2880 1582.2 5234.0 2890 1587.8 5252.0 2900 1593.3 5270.0 2910 1598.9 5288.0 2920 1604.4 5306.0 2930 1610.0 5324.0 2940 1615.6 5342.0 2950 1621.1 5360.0 2960 1626.7 5378.0 2970 1632.2 5396.0 2980 1637.8 5414.0 2990 1643.3 5432.0 3000 1648.9 5450.0 3010 1654.4 5468.0 3020 1660.0 5486.0 3030 1665.6 5504.0 3040 1671.1 5522.0 3050 1676.7 5540.0 3060 1682.2 5558.0 3070 1687.8 5576.0 3080 1693.3 5594.0 3090 1698.9 5612.0 3100 1704.4 2.66 SECTION 2 2.1.1 Conversion of Thermometer Scales The following abbreviations are used: F, degrees Fahrenheit; C, degrees Celsius; K, degrees Kelvin; Re ´, degrees Reaumur; R, degrees Rankine; Z, degrees on any scale; (fp)“Z”, the freezing point of water on the Z scale; and (bp)“Z”, the boiling point of water on the Z scale. Reference: Dodds, Chemical and Metallurgical Engineering 38:476 (1931).
F 32 C Re ´ K 273 R 492 Z (fp)“Z” 180 100 80 100 180 (bp)“Z” (fp)“Z” Examples (1) To find the Fahrenheit temperature corresponding to 20C: F 32 C F 32 20 or 180 100 180 100 (20)(180) F 32 36 100 F 4 (2) To find the Reaumur temperature corresponding to 20F: F 32 Re ´ 20 32 Re ´ 180 80 180 80 20F 5.33Re ´ i.e., (3) To find the correct temperature on a thermometer reading 80C and that shows a reading of 0.30C in a melting ice/water mixture and 99.0C in steam at pressure of mercury: 760 mm C Z (fp)“Z” 80 (0.30) 100 (bp)“Z” (fp)“Z” 99.0 (0.30) i.e., C 80.87 (corrected) 2.1.2 Density and Specific Gravity 2.1.2.1 Hydrometers.
Various hydrometers and the relation between the various scales.
Alcoholometer.
This hydrometer is used in determining the density of aqueous ethyl alcohol solutions; the reading in degrees is numerically the same as the percentage of alcohol by volume.
The scale known as Tralle gives the percentage by volume. Wine and Must hydrometer relations are given below.
Ammoniameter.
This hydrometer, employed in finding the density of aqueous ammonia solu-tions, has a scale graduated in equal divisions from 0 to 40. To convert the reading to specific gravity multiply by 3 and subtract the resulting number from 1000.
Balling Hydrometer.
See under Saccharometers.
Barkometer or Barktrometer.
This hydrometer, which is used in determining the density of tanning liquors, has a scale from 0 to 80 Bk; the number to the right of the decimal point of a specific gravity reading is the corresponding Bk degree; thus, a specific gravity of 1.015 is 15 Bk.
GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.67 Baume ´ Hydrometers.
For liquids heavier than water: This hydrometer was originally based on the density of a 10% sodium chloride solution, which was given the value of 10, and the density of pure water, which was given the value of 0; the interval between these two values was divided into 10 equal parts. Other reference points have been taken with the result that so much confusion exists that there are about 36 different scales in use, many of which are incorrect. In general a Baume ´ hydrometer should have inscribed on it the temperature at which it was calibrated and also the temperature of the water used in relating the density to a specific gravity. The following expression gives the relation between the specific gravity and several of the Baume ´ scales: m Specific gravity m Baume ´ m 145 at 60/60F (15.56C) for the American Scale 144 for the old scale used in Holland 146.3 at 15C for the Gerlach Scale 144.3 at 15C for the Rational Scale generally used in Germany For liquids lighter than water: Originally the density of a solution of 1 gram of sodium chloride in 9 grams of water at 12.5C was given a value of 10Be ´. The scale between these points was divided into ten equal parts and these divisions were repeated throughout the scale giving a relation which could be expressed by the formula: Specific gravity 145.88/(135.88 Be ´), which is approximately equal to Other scales have since come into more general 146/(136 Be ´).
use such as that of the Bureau of Standards in which the specific gravity at 60/60F and that of the American Petroleum Institute (A.P.I. Scale) in which the specific 140/(130 Be ´) gravity at 60/60F 141.5/(131.5 API).
See also special table for conversion to density and Twaddell scale.
Beck’s Hydrometer.
This hydrometer is graduated to show a reading of 0 in pure water and a reading of 30 in a solution with a specific gravity of 0.850, with equal scale divisions above and below these two points.
Brix Hydrometer.
See under Saccharometers.
Cartier’s Hydrometer.
This hydrometer shows a reading of 22 when immersed in a solution having a density of 22 Baume ´ but the scale divisions are smaller than on the Baume ´ hydrometer in the ratio of 16 Cartier to 15 Baume ´.
Fatty Oil Hydrometer.
The graduations on this hydrometer are in specific gravity within the range 0.908 to 0.938. The letters on the scale correspond to the specific gravity of the various common oils as follows: R, rape; O, olive; A, almond; S, sesame; HL, hoof oil; HP, hemp; C, cotton seed; L, linseed. See also Oleometer below.
Lactometers.
These hydrometers are used in determining the density of milk. The various scales in common use are the following: New York Board of Health has a scale graduated into 120 equal parts, 0 being equal to the specific gravity of water and 100 being equal to a specific gravity of 1.029.
Quevenne lactometer is graduated from 15 to 40 corresponding to specific gravities from 1.015 to 1.040.
Soxhlet lactometer has a scale from 25 to 35 corresponding to specific gravities from 1.025 to 1.035 respectively.
2.68 SECTION 2 Oleometer.
A hydrometer for determining the density of vegetable and sperm oils with a scale from 50 to 0 corresponding to specific gravities from 0.870 to 0.970. See also Fatty Oil Hy-drometer above.
Saccharometers.
These hydrometers are used in determining the density of sugar solutions.
Solutions of the same concentration but of different carbohydrates have very nearly the same specific gravity and in general a concentration of 10 grams of carbohydrate per of solution 100 mL shows a specific gravity of 1.0386. Thus, the wt. of sugar in soln. is conc.
1000 mL (a) for conc.
12g/100 mL: (wt. of 1000 mL soln. 1000) 0.386; (b) for 12g/100 mL: (wt of 1000 mL soln. 1000) 0.385.
Brix hydrometer is graduated so that the number of degrees is identical with the percentage by weight of cane sugar and is used at the temperature indicated on the hydrometer.
Balling’s saccharometer is used in Europe and is practically identical with the Brix hydrom-eter.
Bates brewers’ saccharometer which is used in determining the density of malt worts is graduated so that the divisions express pounds per barrel (32 gallons). The relation between degrees Bates (b) and degrees Balling (B) is shown by the following formula: B 260b/(360 b).
See also below under Wine and Must Hydrometer.
Salinometer.
This hydrometer, which is used in the pickling and meat packing plants, is grad-uated to show percentage of saturation of a sodium chloride solution. An aqueous solution is completely saturated when it contains 26.4% pure sodium chloride. The range from 0% to 26.4% is divided into 100 parts, each division therefore representing 1% of saturation. In another type of salinometer, the degrees correspond to percentages of sodium chloride expressed in grams of sodium chloride per of water.
100 mL Sprayometer (Parrot and Stewart).
This hydrometer which is used in determining the density of lime sulfur solutions has two scales; one scale is graduated from 0 to 38 Baume ´ and the other scale is from 1.000 to 1.350 specific gravity.
Tralle Hydrometer.
See Alcoholometer above.
Twaddell Hydrometer.
This hydrometer, which is used only for liquids heavier than water, has a scale such that when the reading is multiplied by 5 and added to 1000 the resulting number is the specific gravity with reference to water as 1000. To convert specific gravity at 60/60F to Twaddell degrees, take the decimal portion of the specific gravity value and multiply it by 200; thus a specific gravity of See also special table for conversion 1.032 0.032 200 6.4 Tw.
to density and Baume ´ scale.
Wine and Must Hydrometer.
This instrument has three scales. One scale shows readings of 0 to 15 Brix for sugar (see Brix Hydrometer above); another scale from 0 to 15 Tralle is used for sweet wines to indicate the percentage of alcohol by volume; and a third scale from 0 to 20 Tralle is used for tart wines to indicate the percentage of alcohol by volume.
2.1.2.2 Conversion of Specific Gravity at 25/25C to Density at any Temperature from 0 to 40C. Liquids change volume with change in temperature, but the amount of this change, (coefficient of cubical expansion), varies widely with different liquids, and to some extent for the same liquid at different temperatures.
The table below, which is calculated from the relationship: density of water at 25C (0.99705) F (2.1) t 1 (25 t) Cf. Dreisbach, Ind. Eng. Chem., Anal. Ed. 12:160 (1940).
GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.69 may be used to find the density (weight of ) of a liquid at any temperature (t) between 0 t d , 1 mL and 40C if the specific gravity at 25/25C (S) and the coefficient of cubical expansion () are known. Substitutions are made in the equations: t d SF (2.2) t t d S (2.3) F t Factors (F t) Density tC sp. gr. 25/25 F t C.
b 103 0 5 10 15 20 25 30 35 40 1.3 1.0306 1.0237 1.0169 1.0102 1.0036 0.99705 0.99065 0.9843 0.9780 1.2 1.0279 1.0216 1.0154 1.0092 1.0031 0.99705 0.9911 0.9853 0.9794 1.1 1.0253 1.0195 1.0138 1.0082 1.0026 0.99705 0.9916 0.9963 0.9809 1.0 1.0227 1.0174 1.0123 1.0072 1.0021 0.99705 0.9921 0.9872 0.98234 0.9 1.0200 1.0153 1.0107 1.0060 1.0016 0.99705 0.99262 0.9882 0.9838 0.8 1.0174 1.0133 1.0092 1.0051 1.0011 0.99705 0.9931 0.98918 0.9851 0.7 1.0148 1.0113 1.0077 1.0041 1.0006 0.99705 0.9935 0.99015 0.98672 0.6 1.0122 1.0092 1.0061 1.0031 1.0001 0.99705 0.9941 0.9911 0.9882 0.5 1.0097 1.0072 1.0046 1.0021 0.99958 0.99705 0.9944 0.9921 0.9897 0.
1.0071 1.0051 1.0031 1.0011 0.99908 0.99705 0.9951 0.9931 0.9911 coefficient of cubical expansion.
Examples.
All examples are based upon an assumed coefficient of cubical expansion, , of 3 1.3 10 .
Example 1.
To find the density of a liquid at 20C, which has a specific gravity (S) of 20 d , 25 1.2500 : 25 From the table above at F 20C 1.0036.
t 20 t d d SF 1.2500 1.0036 1.2545 t Example 2.
To find the density at 20C of a liquid which has a specific gravity of 20 (d ) 17 1.2500 : 4 Since the density of water at 4C is equal to 1, specific gravity at 17 17/4 d 1.2500.
Substitution in Equation 3 with at 17C, by interpolation from the table, equal to 1.00756, F t gives Sp. gr. 25/25 S 1.2500 1.00756 Substitution of this value for S in Equation 2 with at 20C, from the table, equal to 1.0036, F t gives 20 t d d (1.2500 1.00756) 1.0036 1.2451 2.70 SECTION 2 Example 3.
To find the specific gravity at 20/4C of a liquid which has a specific gravity of 25 1.2500 : 4 Since the density of water at 4C, is equal to 1, specific gravity and, 25 25/4 d 1.2500; specific gravity 20 20/4 d .
Substitution in Equation 3, with and, with at 25C, from the table, equal to t d 1.2500; F t 0.99705, gives Sp. gr. 25/25 S 1.2500 0.99705 Substitution of this value for S in Equation 2, with at 20C, from the table, equal to 1.0036, F t gives 20 Sp. gr. 20/4 d (1.2500 0.99705) 1.0036 1.2582 Example 4.
To find the density at 25C of a liquid which has a specific gravity of 15 1.2500 : 15 Since the density of water at 15C 0.99910, 15 d sp. gr. 15/15 0.99910 1.2500 0.99910 Substitution in Equation 3, with at 15C, from the table, equal to 1.0102, gives F t Sp. gr. 25/25 S (1.2500 0.99910) 1.0102 Substitution of this value for S in Equation 2, with at 25, from the table, equal to 0.99705, F t gives 26 t d d (1.2500 0.99910 1.0102) 0.99705 1.2326 2.1.3 Barometry and Barometric Corrections In principle, the mercurial barometer balances a column of pure mercury against the weight of the atmosphere. The height of the column above the level of the mercury in the reservoir can be measured and serves as a direct index of atmospheric pressure. The space above the mercury in a barometer tube should be a Torricellian vacuum, perfect except for the practically negligible vapor pressure of mercury. The perfection of the vacuum is indicated by the sharpness of the click noted when the barometer tube is inclined. A barometer should be in a vertical position, suspended rather than fastened to a wall, and in a good light but not exposed to direct sunlight or too near a source of heat. The standard conditions for barometric measurements are 0C and gravity as at 45 latitude and sea level. There are numerous sources of error, but corrections for most of these are readily applied. Some of the corrections are very small, and their application may be questionable in view of the probably larger errors. The degree of consistency to be expected in careful measurements is about with a 6.4-mm tube, increasing to with a tube in diameter.
0.13 mm 0.04 mm 12.7 mm In reading a barometer of the Fortin type (the usual laboratory instrument for precision mea-surements), the procedure should be as follows: (1) Observe and record the temperature as indicated by the thermometer attached to the barometer. The temperature correction is very important and may be affected by heat from the observer’s body. (2) Set the mercury in the reservoir at zero level, so that the point of the pin above the mercury just touches the surface, making a barely noticeable dimple therein. Tap the tube at the top and verify the zero setting. (3) Bring the vernier down until the view at the light background is cut off at the highest point of the meniscus. Record the reading.
The corrections to be made on the reading are as follows: (1) Temperature, to correct for the difference in thermal expansion of the mercury and the brass (or glass) to which the scale is attached.
GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.71 This correction converts the reading into the value of 0C. The brass scale table is applicable to the Fortin barometer. See Tables 2.10 latitude-gravity correction, and 2.11 altitude-gravity correction, to compensate for differences in gravity, which would affect the height of the mercury column by variation in mass. If local gravity is unknown, an approximate correction may be made from the tables. Local values of gravity are often subject to irregularities which lead to errors even when the corrections here provided are made. It is, therefore, advisable to determine the local value of gravity, from which the correction can be effected in the following manner: g g 1 0 Bt Br Br g0 in which Bt and Br are the true and the observed heights of the barometer, respectively. g0 is standard gravity and g1 is the local gravity. It may be noted that for most localities, g1 is 2 (980 665 cm · s ), smaller than g0, which makes the correction negative. These corrections compensate the reading to gravity at 45 latitude and sea level. (3) Correction for capillary depression of the level of the meniscus. This varies with the tube diameter and actual height of the meniscus in a particular case.
Some barometers are calibrated to allow for an average value of the latter and approximating the correction. See table. (4) Correction for vapor pressure of mercury. This correction is usually neg-ligible, being only at 20C and at 40C. This correction is added. See table of 0.001 mm 0.006 mm vapor pressure of mercury.
The corrections above do not apply to aneroid barometers. These instruments should be calibrated at regular intervals by checking them against a corrected mercurial barometer.
For records on weather maps, meteorologists customarily correct barometer readings to sea level, and some barometers may be calibrated accordingly. Such instruments are not suitable for laboratory use where true pressure under standard conditions is required. Scale corrections should be specified in the maker’s instructions with the instrument, and are also indicated by the lack of correspondence between a gauge mark usually placed exactly from the zero point and the 76.2-cm scale 76.2 cm graduation.
2.72 SECTION 2 TABLE 2.9 Barometer Temperature Correction—Metric Units The values in the table below are to be subtracted from the observed readings to correct for the difference in the expansion of the mercury and the glass scale at different temperatures.
A. Glass scale Temp.
C.
Observed barometer height in millimeters 700 730 740 750 760 770 800 mm.
mm.
mm.
mm.
mm.
mm.
mm.
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 0.12 0.13 0.13 0.13 0.13 0.13 0.14 2 0.24 0.25 0.26 0.26 0.26 0.27 0.27 3 0.36 0.38 0.38 0.39 0.40 0.40 0.42 4 0.49 0.51 0.51 0.52 0.53 0.53 0.55 5 0.61 0.63 0.64 0.65 0.66 0.67 0.69 6 0.73 0.76 0.77 0.78 0.79 0.80 0.83 7 0.85 0.89 0.90 0.91 0.92 0.93 0.97 8 0.97 1.01 1.03 1.04 1.05 1.07 1.11 9 1.09 1.14 1.15 1.17 1.18 1.20 1.25 10 1.21 1.26 1.28 1.30 1.32 1.33 1.39 11 1.33 1.39 1.41 1.43 1.45 1.47 1.52 12 1.45 1.52 1.54 1.56 1.58 1.60 1.66 13 1.58 1.64 1.67 1.69 1.71 1.73 1.80 14 1.70 1.77 1.79 1.82 1.84 1.87 1.94 15 1.82 1.90 1.92 1.95 1.97 2.00 2.08 16 1.94 2.02 2.05 2.08 2.10 2.13 2.21 17 2.06 2.15 2.18 2.21 2.23 2.26 2.35 18 2.18 2.27 2.30 2.33 2.37 2.40 2.49 19 2.30 2.40 2.43 2.46 2.50 2.53 2.63 20 2.42 2.52 2.56 2.59 2.63 2.66 2.77 21 2.54 2.65 2.69 2.72 2.76 2.79 2.90 22 2.66 2.78 2.81 2.85 2.89 2.93 3.04 23 2.78 2.90 2.94 2.98 3.02 3.06 3.18 24 2.90 3.03 3.07 3.11 3.15 3.19 3.32 25 3.02 3.15 3.20 3.24 3.28 3.32 3.45 26 3.14 3.28 3.32 3.37 3.41 3.46 3.59 27 3.26 3.40 3.45 3.50 3.54 3.59 3.73 28 3.38 3.53 3.58 3.63 3.67 3.72 3.87 29 3.50 3.65 3.70 3.75 3.80 3.85 4.00 30 3.62 3.78 3.83 3.88 3.93 3.99 4.14 31 3.74 3.90 3.96 4.01 4.06 4.12 4.28 32 3.86 4.03 4.08 4.14 4.20 4.25 4.42 33 3.98 4.15 4.21 4.27 4.33 4.38 4.55 34 4.10 4.28 4.34 4.40 4.46 4.51 4.69 35 4.22 4.40 4.47 4.53 4.59 4.65 4.83 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.73 TABLE 2.9 Barometer Temperature Correction—Metric Units (Continued) The values in the table below are to be subtracted from the observed readings to correct for the difference in the expansion of the mercury and the glass scale at different temperatures.
B. Brass scale Temp.
C.
Observed barometer height in millimeters 640 650 660 670 680 690 700 mm.
mm.
mm.
mm.
mm.
mm.
mm.
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 0.10 0.11 0.11 0.11 0.11 0.11 0.11 2 0.21 0.21 0.22 0.22 0.22 0.23 0.23 3 0.31 0.32 0.32 0.33 0.33 0.34 0.34 4 0.42 0.42 0.43 0.44 0.44 0.45 0.46 5 0.52 0.53 0.54 0.55 0.55 0.56 0.57 6 0.63 0.64 0.65 0.66 0.66 0.67 0.68 7 0.73 0.74 0.75 0.76 0.78 0.79 0.80 8 0.84 0.85 0.86 0.87 0.89 0.90 0.91 9 0.94 0.95 0.97 0.98 1.00 1.01 1.03 10 1.04 1.06 1.07 1.09 1.11 1.12 1.14 11 1.15 1.16 1.18 1.20 1.22 1.24 1.25 12 1.25 1.27 1.29 1.31 1.33 1.35 1.37 13 1.35 1.38 1.40 1.42 1.44 1.46 1.48 14 1.46 1.48 1.50 1.53 1.55 1.57 1.59 15 1.56 1.59 1.61 1.64 1.66 1.68 1.71 16 1.67 1.69 1.72 1.74 1.77 1.80 1.82 17 1.77 1.80 1.82 1.85 1.88 1.91 1.94 18 1.87 1.90 1.93 1.96 1.99 2.02 2.05 19 1.98 2.01 2.04 2.07 2.10 2.13 2.16 20 2.08 2.11 2.15 2.18 2.21 2.24 2.28 21 2.18 2.22 2.25 2.29 2.32 2.35 2.39 22 2.29 2.32 2.36 2.40 2.43 2.47 2.50 23 2.39 2.43 2.47 2.50 2.54 2.58 2.62 24 2.49 2.53 2.57 2.61 2.65 2.69 2.73 25 2.60 2.64 2.68 2.72 2.76 2.80 2.84 26 2.70 2.74 2.79 2.83 2.87 2.91 2.96 27 2.81 2.85 2.89 2.94 2.98 3.02 3.07 28 2.91 2.95 3.00 3.05 3.09 3.14 3.18 29 3.01 3.06 3.11 3.15 3.20 3.25 3.29 30 3.12 3.16 3.21 3.26 3.31 3.36 3.41 31 3.22 3.27 3.32 3.37 3.42 3.47 3.52 32 3.32 3.37 3.43 3.48 3.53 3.58 3.63 33 3.42 3.48 3.53 3.59 3.64 3.69 3.75 34 3.53 3.58 3.64 3.69 3.75 3.80 3.86 35 3.63 3.69 3.74 3.80 3.86 3.91 3.97 2.74 SECTION 2 TABLE 2.9 Barometer Temperature Correction—Metric Units (Continued) B. Brass scale (continued) Observed barometer height in millimeters Temp.
710 720 730 740 750 760 770 780 C.
mm.
mm.
mm.
mm.
mm.
mm.
mm.
mm.
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.13 1 0.23 0.23 0.24 0.24 0.24 0.25 0.25 0.25 2 0.35 0.35 0.36 0.36 0.37 0.37 0.38 0.38 3 0.46 0.47 0.48 0.48 0.49 0.50 0.50 0.51 4 0.58 0.59 0.59 0.60 0.61 0.62 0.63 0.64 5 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 6 0.81 0.82 0.83 0.84 0.86 0.87 0.88 0.89 7 0.93 0.94 0.95 0.96 0.98 0.99 1.00 1.02 8 1.04 1.06 1.07 1.08 1.10 1.11 1.13 1.14 9 1.16 1.17 1.19 1.21 1.22 1.24 1.25 1.27 10 1.27 1.29 1.31 1.33 1.34 1.36 1.38 1.40 11 1.39 1.41 1.43 1.45 1.47 1.48 1.50 1.52 12 1.50 1.52 1.54 1.57 1.59 1.61 1.63 1.65 13 1.62 1.64 1.66 1.69 1.71 1.73 1.75 1.78 14 1.73 1.76 1.78 1.81 1.83 1.85 1.88 1.90 15 1.85 1.87 1.90 1.93 1.95 1.98 2.00 2.03 16 1.96 1.99 2.02 2.05 2.07 2.10 2.13 2.16 17 2.08 2.11 2.14 2.17 2.20 2.22 2.25 2.28 18 2.19 2.22 2.25 2.29 2.32 2.35 2.38 2.41 19 2.31 2.34 2.37 2.41 2.44 2.47 2.50 2.54 20 2.42 2.46 2.49 2.53 2.56 2.59 2.63 2.66 21 2.54 2.57 2.61 2.65 2.68 2.72 2.75 2.79 22 2.65 2.69 2.73 2.77 2.80 2.84 2.88 2.91 23 2.77 2.81 2.85 2.88 2.92 2.96 3.00 3.04 24 2.88 2.92 2.96 3.00 3.05 3.09 3.13 3.17 25 3.00 3.04 3.08 3.12 3.17 3.21 3.25 3.29 26 3.11 3.16 3.20 3.24 3.29 3.33 3.38 3.42 27 3.23 3.27 3.32 3.36 3.41 3.45 3.50 3.54 28 3.34 3.39 3.44 3.48 3.53 3.58 3.62 3.67 29 3.46 3.50 3.55 3.60 3.65 3.70 3.75 3.80 30 3.57 3.62 3.67 3.72 3.77 3.82 3.87 3.92 31 3.68 3.74 3.79 3.84 3.89 3.94 4.00 4.05 32 3.80 3.85 3.91 3.96 4.01 4.07 4.12 4.17 33 3.91 3.97 4.02 4.08 4.13 4.19 4.24 4.30 34 4.03 4.09 4.14 4.20 4.26 4.31 4.37 4.43 35 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.75 TABLE 2.9 Barometer Temperature Correction—Metric Units (Continued) C. Correction of a barometer for capillarity (Smithsonian Tables) Height of meniscus in millimeters 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Correction to be added in millimeters Diameter of tube, millimeters 4 0.83 1.22 1.54 1.98 2.37 . . . .
. . . .
. . . .
5 0.47 0.65 0.86 1.19 1.45 1.80 . . . .
. . . .
6 0.27 0.41 0.56 0.78 0.98 1.21 1.43 . . . .
7 0.18 0.28 0.40 0.53 0.67 0.82 0.97 1.13 8 . . . .
0.20 0.29 0.38 0.46 0.56 0.65 0.77 9 . . . .
0.15 0.21 0.28 0.33 0.40 0.46 0.52 10 . . . .
. . . .
0.15 0.20 0.25 0.29 0.33 0.37 11 . . . .
. . . .
0.10 0.14 0.18 0.21 0.24 0.27 12 . . . .
. . . .
0.07 0.10 0.13 0.15 0.18 0.19 13 . . . .
. . . .
0.04 0.07 0.10 0.12 0.13 0.14 TABLE 2.10 Barometric Latitude-Gravity Table—Metric Units Smithsonian Tables.
The values in the table below are to be subtracted from the barometric reading for latitudes from 0 to 45 inclusive, and are to be added from 46 to 90.
Deg.
Lat.
Barometer readings, millimeters 680 700 720 740 760 780 mm.
mm.
mm.
mm.
mm.
mm.
0 1.82 1.87 1.93 1.98 2.04 2.09 5 1.79 1.85 1.90 1.95 2.00 2.06 10 1.71 1.76 1.81 1.86 1.92 1.97 15 1.58 1.63 1.67 1.72 1.77 1.81 20 1.40 1.44 1.49 1.53 1.57 1.61 21 1.36 1.40 1.44 1.48 1.52 1.56 22 1.32 1.36 1.40 1.44 1.48 1.51 23 1.28 1.31 1.35 1.39 1.43 1.46 24 1.23 1.27 1.30 1.34 1.37 1.41 25 1.18 1.22 1.25 1.29 1.32 1.36 26 1.13 1.17 1.20 1.23 1.27 1.30 27 1.08 1.12 1.15 1.18 1.21 1.24 28 1.03 1.06 1.09 1.12 1.15 1.18 29 0.98 1.01 1.04 1.07 1.10 1.12 30 0.93 0.95 0.98 1.01 1.04 1.06 31 0.87 0.90 0.92 0.95 0.98 1.00 32 0.82 0.84 0.86 0.89 0.91 0.94 33 0.76 0.78 0.80 0.83 0.85 0.87 34 0.70 0.72 0.74 0.76 0.79 0.81 35 0.64 0.66 0.68 0.70 0.72 0.74 36 0.58 0.60 0.62 0.64 0.65 0.67 37 0.52 0.54 0.56 0.57 0.59 0.60 38 0.46 0.48 0.49 0.51 0.52 0.53 2.76 SECTION 2 TABLE 2.10 Barometric Latitude-Gravity Table—Metric Units (Continued) Deg.
Lat.
Barometer readings, millimeters 680 700 720 740 760 780 mm.
mm.
mm.
mm.
mm.
mm.
39 0.40 0.42 0.43 0.44 0.45 0.46 40 0.34 0.35 0.36 0.37 0.38 0.39 41 0.28 0.29 0.30 0.30 0.31 0.32 42 0.22 0.22 0.23 0.24 0.24 0.25 43 0.16 0.16 0.16 0.17 0.17 0.18 44 0.09 0.10 0.10 0.10 0.10 0.11 45 0.03 0.03 0.03 0.03 0.03 0.04 46 0.03 0.03 0.03 0.03 0.04 0.04 47 0.09 0.10 0.10 0.10 0.10 0.11 48 0.16 0.16 0.17 0.17 0.18 0.18 49 0.22 0.23 0.23 0.24 0.25 0.25 50 0.28 0.29 0.30 0.31 0.31 0.32 51 0.34 0.35 0.36 0.37 0.38 0.39 52 0.40 0.42 0.43 0.44 0.45 0.46 53 0.46 0.48 0.49 0.51 0.52 0.53 54 0.52 0.54 0.56 0.57 0.59 0.60 55 0.58 0.60 0.62 0.64 0.65 0.67 56 0.64 0.66 0.68 0.70 0.72 0.74 57 0.70 0.72 0.74 0.76 0.78 0.80 58 0.76 0.78 0.80 0.82 0.85 0.87 59 0.81 0.84 0.86 0.89 0.91 0.93 60 0.87 0.89 0.92 0.94 0.97 1.00 61 0.92 0.95 0.98 1.00 1.03 1.06 62 0.97 1.00 1.02 1.05 1.08 1.11 63 1.03 1.06 1.09 1.12 1.15 1.18 64 1.08 1.11 1.14 1.17 1.20 1.23 65 1.13 1.16 1.19 1.22 1.26 1.29 66 1.17 1.21 1.24 1.28 1.31 1.35 67 1.22 1.25 1.29 1.33 1.36 1.40 68 1.26 1.30 1.34 1.37 1.41 1.45 69 1.31 1.34 1.38 1.42 1.46 1.50 70 1.35 1.39 1.43 1.47 1.51 1.55 72 1.42 1.47 1.51 1.55 1.59 1.63 75 1.53 1.57 1.62 1.66 1.71 1.75 80 1.66 1.71 1.76 1.81 1.86 1.90 85 1.74 1.79 1.84 1.90 1.95 2.00 90 1.77 1.82 1.87 1.93 1.98 2.03 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.77 TABLE 2.11 Barometric Correction for Gravity—Metric Units The values in the table below are to be subtracted from the readings taken on a mercurial barometer to correct for the decrease in gravity with increase in altitude.
Observed barometer height in millimeters 400 450 500 550 600 650 700 750 800 mm.
mm.
mm.
mm.
mm.
mm.
mm.
mm.
mm.
Height above sealevel meters 100 . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
0.02 0.02 0.02 200 . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
0.04 0.05 0.05 300 . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
0.07 0.07 0.07 400 . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
0.09 0.10 0.10 500 . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
0.11 0.12 0.13 600 . . . .
. . . .
. . . .
. . . .
. . . .
0.12 0.13 0.14 . . . .
700 . . . .
. . . .
. . . .
. . . .
. . . .
0.14 0.15 0.16 . . . .
800 . . . .
. . . .
. . . .
. . . .
. . . .
0.16 0.18 0.19 . . . .
900 . . . .
. . . .
. . . .
. . . .
. . . .
0.18 0.20 0.22 . . . .
1000 . . . .
. . . .
. . . .
0.18 0.19 0.20 0.22 0.24 . . . .
1100 . . . .
. . . .
. . . .
0.19 0.21 0.22 0.24 . . . .
. . . .
1200 . . . .
. . . .
. . . .
0.21 0.23 0.24 0.26 . . . .
. . . .
1300 . . . .
. . . .
. . . .
0.22 0.24 0.26 0.29 . . . .
. . . .
1400 . . . .
. . . .
. . . .
0.24 0.26 0.28 0.31 . . . .
. . . .
1500 . . . .
. . . .
0.24 0.26 0.28 0.30 0.33 . . . .
. . . .
1600 . . . .
. . . .
0.25 0.28 0.30 0.32 . . . .
. . . .
. . . .
1700 . . . .
. . . .
0.27 0.30 0.32 0.34 . . . .
. . . .
. . . .
1800 . . . .
. . . .
0.28 0.31 0.34 0.36 . . . .
. . . .
. . . .
1900 . . . .
. . . .
0.30 0.33 0.36 0.39 . . . .
. . . .
. . . .
2000 . . . .
0.28 0.31 0.34 0.38 0.41 . . . .
. . . .
. . . .
2100 . . . .
0.30 0.33 0.36 0.40 . . . .
. . . .
. . . .
. . . .
2200 . . . .
0.31 0.35 0.38 0.41 . . . .
. . . .
. . . .
. . . .
2300 . . . .
0.32 0.36 0.40 0.43 . . . .
. . . .
. . . .
. . . .
2400 . . . .
0.34 0.38 0.42 0.45 . . . .
. . . .
. . . .
. . . .
2500 0.31 0.35 0.39 0.43 0.47 . . . .
. . . .
. . . .
. . . .
2600 0.33 0.37 0.41 . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
2800 0.35 0.40 0.44 . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
3000 0.38 0.42 0.47 . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
3200 0.40 0.46 . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
3400 0.43 0.48 . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
2.78 SECTION 2 TABLE 2.12 Reduction of the Barometer to Sea Level—Metric Units A barometer located at an elevation above sea level will show a reading lower than a barometer at sea level by an amount approximately 2.5 mm (0.1 in) for each 30.5 m (100 ft) of elevation. A closer approximation can be made by reference to the following tables, which take into account (1) the effect of altitude of the station at which the barometer is read, (2) the mean temperature of the air column extending from the station down to sea level, (3) the latitude of the station at which the barometer is read, and (4) the reading of the barometer corrected for its temperature, a correction which is applied only to mercurial barometers since the aneroid barometers are compensated for temperature effects.
Example.
A barometer which has been corrected for its temperature reads 650 mm at a station whose altitude is 1350 m above sea level and at a latitude of 30. The mean temperature (outdoor temperature) at the station is 20C.
Table A (metric units) gives for these conditions a temperature-altitude factor of ..................
135.2 The Latitude Factor Table gives for 135.2 at 30 lat. a correction of ................................
0.17 Therefore, the corrected value of the temperature-altitude factor is ..................................
135.37 Entering Table B (metric units), with a temperature-altitude factor of 135.37 and a barometric reading of 650 mm (corrected for temperature), the correction is found to be ..........................
109.6 Accordingly the barometric reading reduced to sea level is 650 109.6 759.6 mm.
Latitude Factor–English or Metric Units. For latitudes 0–45 add the latitude factor, for 45–90 subtract the latitude factor, from the values obtained in Table A.
Temp.—Alt.
Factor From Table A Latitude 0 10 20 30 45 50 0.1 0.1 0.1 0.1 0.0 100 0.3 0.3 0.2 0.1 0.0 150 0.4 0.4 0.3 0.2 0.0 200 0.5 0.5 0.4 0.3 0.0 250 0.7 0.6 0.5 0.3 0.0 300 0.8 0.8 0.6 0.4 0.0 350 0.9 0.9 0.7 0.5 0.0 90 80 70 60 45 A. Values of the temperature-altitude factor for use in Table B. Altitude in Meters Mean Temperature of Air Column in Centigrade Degrees 16 8 4 0 6 10 14 18 20 22 26 10 1.2 1.1 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 50 5.8 5.6 5.5 5.4 5.3 5.2 5.1 5.0 5.0 5.0 4.9 100 11.5 11.2 11.0 10.8 10.6 10.4 10.3 10.1 10.0 9.9 9.8 150 17.3 16.7 16.5 16.2 15.9 15.6 15.4 15.1 15.0 14.9 14.7 200 23.0 22.3 22.0 21.6 21.1 20.8 20.5 20.2 20.0 19.9 19.6 250 28.8 27.9 27.5 27.0 26.4 26.0 25.6 25.2 25.0 24.9 24.5 300 34.5 33.5 33.0 32.5 31.7 31.2 30.7 30.3 30.1 29.8 29.4 350 40.3 39.0 38.5 37.9 37.0 36.4 35.9 35.3 35.1 34.8 34.3 400 46.0 44.6 43.9 43.3 42.3 41.6 41.0 40.4 40.1 39.8 39.2 450 51.8 51.3 49.4 48.7 47.6 46.8 46.1 45.4 45.1 44.8 44.1 500 57.5 55.8 54.9 54.1 52.9 52.0 51.2 50.5 50.1 49.7 49.0 550 63.3 61.4 60.4 59.5 58.1 57.2 56.4 55.5 55.1 54.7 53.9 600 69.0 66.9 65.9 64.9 63.4 62.4 61.5 60.6 60.1 59.7 58.8 650 74.8 72.5 71.4 70.3 68.7 67.6 66.6 65.6 65.1 64.6 63.7 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.79 TABLE 2.12 Reduction of the Barometer to Sea Level—Metric Units (Continued) Altitude in Meters Mean Temperature of Air Column in Centigrade Degrees 16 8 4 0 6 10 14 18 20 22 26 700 80.6 78.1 76.9 75.7 74.0 72.9 71.7 70.7 70.1 69.6 68.6 750 86.3 83.7 82.4 81.1 79.3 78.1 76.9 75.7 75.1 74.6 73.5 800 92.1 89.2 87.9 86.5 84.6 83.3 82.0 80.8 80.1 79.6 78.4 850 97.8 94.8 93.4 92.0 89.8 88.5 87.1 85.8 85.2 84.5 83.3 900 103.6 100.4 98.9 97.4 95.1 93.7 92.2 90.8 90.2 89.5 88.2 950 109.3 106.0 104.4 102.8 100.4 98.9 97.4 95.9 95.2 94.5 93.1 1000 115.1 111.5 109.8 108.2 105.7 104.1 102.5 100.9 100.2 99.4 98.0 1050 120.8 117.1 115.3 113.6 111.0 109.3 107.6 106.0 105.2 104.4 102.9 1100 126.6 122.7 120.8 119.0 116.3 114.5 112.7 111.0 110.2 109.4 107.8 1150 132.3 128.3 126.3 124.4 121.6 119.7 117.9 116.1 115.2 114.4 112.7 1200 138.1 133.8 131.8 129.8 126.8 124.9 123.0 121.1 120.2 119.3 117.6 1250 143.8 139.4 137.3 135.2 132.1 130.1 128.1 126.2 125.2 124.3 122.5 1300 149.6 145.0 142.8 140.6 137.4 135.3 133.2 131.2 130.2 129.3 127.4 1350 155.3 150.6 148.3 146.0 142.7 140.5 138.4 136.3 135.2 134.2 132.3 1400 161.1 156.2 153.8 151.4 148.0 145.7 143.5 141.3 140.2 139.2 137.2 1450 166.8 161.7 159.3 156.8 153.3 150.9 148.6 146.4 145.3 144.2 142.1 1500 172.6 167.3 164.8 162.3 158.5 156.1 153.7 151.4 150.3 149.1 147.0 1550 178.3 172.9 170.2 167.7 163.8 161.3 158.8 156.4 155.3 154.1 151.8 1600 184.1 178.5 175.7 173.1 169.1 166.5 164.0 161.5 160.3 159.1 156.7 1650 189.8 184.0 181.2 178.5 174.4 171.7 169.1 166.5 165.3 164.1 161.6 1700 195.6 189.6 186.7 183.9 179.7 176.9 174.2 171.6 170.3 169.0 166.5 1750 201.4 195.2 192.2 189.3 185.0 182.1 179.3 176.6 175.3 174.0 171.4 1800 207.1 200.8 197.7 194.7 190.2 187.3 184.5 181.7 180.3 179.0 176.3 1850 212.9 206.3 203.2 200.1 195.5 192.5 189.6 186.7 185.3 183.9 181.2 1900 218.6 211.9 208.7 205.5 200.8 197.7 194.7 191.8 190.3 188.9 186.1 1950 224.4 217.5 214.2 210.9 206.1 202.9 199.8 196.8 195.3 193.9 191.0 2000 230.1 223.0 219.7 216.3 211.4 208.1 204.9 201.9 200.3 198.8 195.0 2050 235.9 228.6 225.1 221.7 216.7 213.3 210.1 206.9 205.3 203.8 200.8 2100 241.6 234.2 230.6 227.1 221.9 218.5 215.2 211.9 210.4 208.8 205.7 2150 247.4 239.8 236.1 232.5 227.2 223.7 220.3 217.0 215.4 213.8 210.6 2200 253.1 245.4 241.6 237.9 232.5 228.9 225.4 222.0 220.4 218.7 215.5 2250 258.9 250.9 247.1 243.4 237.8 234.1 230.6 227.1 225.4 223.7 220.4 2300 264.6 256.5 252.6 248.8 243.1 239.3 235.7 232.1 230.4 228.7 225.3 2350 270.4 262.1 258.1 254.2 248.3 244.5 240.8 237.2 235.4 233.6 230.2 2400 276.1 267.7 263.6 259.6 253.6 249.7 245.9 242.2 240.4 238.6 235.1 2450 281.9 273.2 269.1 265.0 258.9 254.9 251.0 247.3 245.4 243.6 240.0 2500 287.6 278.8 274.5 270.4 264.2 260.1 256.2 252.3 250.4 248.5 244.9 2550 293.4 284.4 280.0 275.8 269.5 265.3 261.3 257.3 255.4 253.5 249.8 2600 299.1 290.0 285.5 281.2 274.8 270.5 266.4 262.4 260.4 258.5 254.7 2650 304.9 295.5 291.0 286.6 280.0 275.7 271.5 267.4 265.4 263.4 259.6 2700 310.6 301.1 296.5 292.0 285.3 280.9 276.6 272.5 270.4 268.4 264.5 2750 316.4 306.7 302.0 297.4 290.6 286.1 281.8 277.5 275.4 273.4 269.4 2800 322.1 312.3 307.5 302.8 295.9 291.3 286.9 282.6 280.4 278.3 274.3 2850 327.9 317.8 313.0 308.2 301.2 296.5 292.0 287.6 285.4 283.3 279.2 2900 333.6 323.4 318.4 313.6 306.4 301.7 297.1 292.6 290.4 288.3 284.1 2950 339.4 329.0 323.9 319.0 311.7 306.9 302.2 297.7 295.5 293.3 289.0 3000 345.1 334.5 329.4 324.4 317.0 312.1 307.4 302.7 300.5 298.2 293.8 From Smithsonian Meteorological Tables, 3d ed., 1907.
2.80 SECTION 2 TABLE 2.12 Reduction of the Barometer to Sea Level—Metric Units (Continued) B. Values in millimeters to be added. Temp.
—Alt.
Factor Barometer Reading in Millimeters 790 770 750 730 710 690 670 1 0.9 0.9 0.9 0.8 0.8 0.8 5 4.6 4.4 4.3 4.2 4.1 4.0 10 9.1 8.9 8.7 8.5 8.2 8.0 15 13.8 13.4 13.1 12.7 12.4 12.0 20 18.4 17.9 17.5 17.0 16.5 16.1 25 22.5 21.9 21.3 20.7 20.1 30 27.1 26.4 25.7 25.0 24.2 35 31.7 30.8 30.0 29.2 28.4 40 36.3 35.3 34.4 33.5 32.5 31.6 45 39.9 38.8 37.8 36.7 35.6 750 730 710 690 670 650 630 50 44.4 43.3 42.1 40.9 39.7 55 49.0 47.7 46.4 45.1 43.8 60 53.6 52.2 50.8 49.3 47.9 65 58.3 56.7 55.2 53.6 52.1 70 61.3 59.6 57.9 56.2 75 65.8 64.0 62.2 60.4 80 70.4 68.5 66.6 64.6 62.7 60.8 85 75.0 73.0 70.9 68.9 66.8 64.8 90 77.5 75.3 73.1 71.0 68.8 95 82.1 79.7 77.4 75.1 72.8 710 690 670 650 630 610 100 86.6 84.2 81.8 79.3 76.9 105 91.2 88.7 86.1 83.5 81.0 110 95.9 93.2 90.5 87.8 85.1 115 100.5 97.7 94.8 92.0 89.2 120 102.2 99.3 96.3 93.3 125 106.8 103.7 100.6 97.5 94.4 130 111.4 108.2 104.9 101.7 98.5 135 116.0 112.7 109.3 105.9 102.6 140 120.7 117.2 113.7 110.2 106.7 145 121.7 118.1 114.5 110.8 670 650 630 610 590 570 150 126.3 122.5 118.8 115.0 155 130.9 127.0 123.1 119.2 160 135.5 131.5 127.4 123.4 165 140.2 136.0 131.8 127.6 170 140.5 136.2 131.9 127.5 123.2 175 145.1 140.6 136.2 131.7 127.2 180 149.7 145.1 140.5 135.9 131.3 185 154.3 149.5 144.8 140.0 135.3 190 158.9 154.0 149.2 144.3 139.4 195 158.6 153.5 148.5 143.5 From Smithsonian Meteorological Tables, 3d ed., 1907.
GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.81 TABLE 2.12 Reduction of the Barometer to Sea Level—Metric Units (Continued) B. Values in millimeters to be added. Temp.
—Alt.
Factor Barometer Reading in Millimeters 630 610 590 570 550 530 200 163.1 157.9 152.8 147.6 205 167.7 162.4 157.1 151.7 210 172.3 166.8 161.4 155.9 215 176.9 171.3 165.7 160.1 154.5 148.9 220 175.8 170.1 164.3 158.5 152.8 225 180.4 174.5 168.5 162.6 156.7 230 184.9 178.9 172.8 166.7 160.7 235 189.5 183.3 177.1 170.9 164.7 240 194.1 187.8 181.4 175.0 168.7 245 198.8 192.3 185.7 179.2 172.7 590 570 550 530 510 250 196.8 190.1 183.4 176.8 255 201.3 194.5 187.7 180.8 260 205.9 198.9 191.9 185.0 178.0 265 210.5 203.3 196.2 189.1 181.9 270 215.1 207.8 200.5 193.2 185.9 275 219.8 212.3 204.9 197.4 190.0 280 216.8 209.2 201.6 194.0 285 221.4 213.6 205.8 198.1 290 225.9 218.0 210.1 202.1 295 230.5 222.4 214.3 206.3 570 550 530 510 490 300 235.1 226.9 218.6 210.4 305 239.8 231.4 223.0 214.6 206.1 310 235.9 227.3 218.7 210.1 315 240.4 231.7 222.9 214.2 320 245.0 236.1 227.2 218.3 325 249.6 240.5 231.4 222.4 330 254.2 244.9 235.7 226.5 335 258.8 249.4 240.0 230.6 340 263.5 253.9 244.4 234.8 345 258.4 248.7 238.9 From Smithsonian Meteorological Tables, 3d ed., 1907.
2.82 SECTION 2 TABLE 2.13 Viscosity Conversion Table Centistokes to Saybolt, Redwood, and Engler units.
Poise cgs unit of absolute viscosity Centipoise 0.01 poise Stoke cgs unit of kinematic viscosity Centistoke 0.01 stoke Centipoises centistokes density (at temperature under consideration) Reyn (1 lb · s per sq in) 69 105 centpoises Cf. Jour. Inst. Pet. Tech., Vol. 22, p. 21 (1936); Reports of A. S. T. M. Committee D-2, 1936 and 1937.
The values of Saybolt Universal Viscosity at 100F and at 210F are taken directly from the comprehensive ASTM Viscosity Table, Special Technical Publication No. 43A (1953) by permission of the publishers, American Society for Testing Materials, 1916 Race St., Philadelphia 3, Pa.
Centistokes Saybolt Universal Viscosity at 100F.
130F.
210F.
Redwood Seconds at 70F.
140F.
200F.
Engler Degrees at all Temps.
2.0 32.62 32.68 32.85 30.2 31.0 31.2 1.14 3.0 36.03 36.10 36.28 32.7 33.5 33.7 1.22 4.0 39.14 39.22 39.41 35.3 36.0 36.3 1.31 5.0 42.35 42.43 42.65 37.9 38.5 38.9 1.40 6.0 45.56 45.65 45.88 40.5 41.0 41.5 1.48 7.0 48.77 48.86 49.11 43.2 43.7 44.2 1.56 8.0 52.09 52.19 52.45 46.0 46.4 46.9 1.65 9.0 55.50 55.61 55.89 48.9 49.1 49.7 1.75 10.0 58.91 59.02 59.32 51.7 52.0 52.6 1.84 11.0 62.43 62.55 62.86 54.8 55.0 55.6 1.93 12.0 66.04 66.17 66.50 57.9 58.1 58.8 2.02 14.0 73.57 73.71 74.09 64.4 64.6 65.3 2.22 16.0 81.30 81.46 81.87 71.0 71.4 72.2 2.43 18.0 89.44 89.61 90.06 77.9 78.5 79.4 2.64 20.0 97.77 97.96 98.45 85.0 85.8 86.9 2.87 22.0 106.4 106.6 107.1 92.4 93.3 94.5 3.10 24.0 115.0 115.2 115.8 99.9 100.9 102.2 3.34 26.0 123.7 123.9 124.5 107.5 108.6 110.0 3.58 28.0 132.5 132.8 133.4 115.3 116.5 118.0 3.82 30.0 141.3 141.6 142.3 123.1 124.4 126.0 4.07 32.0 150.2 150.5 151.2 131.0 132.3 134.1 4.32 34.0 159.2 159.5 160.3 138.9 140.2 142.2 4.57 36.0 168.2 168.5 169.4 146.9 148.2 150.3 4.83 38.0 177.3 177.6 178.5 155.0 156.2 158.3 5.08 40.0 186.3 186.7 187.6 163.0 164.3 166.7 5.34 42.0 195.3 195.7 196.7 171.0 172.3 175.0 5.59 44.0 204.4 204.8 205.9 179.1 180.4 183.3 5.85 46.0 213.7 214.1 215.2 187.1 188.5 191.7 6.11 48.0 222.9 223.3 224.5 195.2 196.6 200.0 6.37 50.0 232.1 232.5 233.8 203.3 204.7 208.3 6.63 60.0 278.3 278.8 280.2 243.5 245.3 250.0 7.90 70.0 324.4 325.0 326.7 283.9 286.0 291.7 9.21 80.0 370.8 371.5 373.4 323.9 326.6 333.4 10.53 90.0 417.1 417.9 420.0 364.4 367.4 375.0 11.84 100.0 463.5 464.4 466.7 404.9 408.2 416.7 13.16 At higher values use the same ratio as above for 100 centistokes; e.g., 102 Saybolt seconds at centistokes 102 4.635 100F.
To obtain the Saybolt Universal viscosity equivalent to a kinematic viscosity determined at tF., multiply the equivalent Saybolt Universal viscosity at 100F. by 0.000064; e.g., 10 centistokes at 210F are equivalent to 1 (t 100) 58.91 or 59.32 Saybolt Universal Viscosity at 210F.
1.0070, GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.83 TABLE 2.14 Conversion of Weighings in Air to Weighings in Vacuo If the mass of a substance in air is mf, its density m, the density of weights used in making the weighing w, and the density of air a, the true mass of the substance in vacuo, is m , vac 1 1 m m m vac f a f m w For most purposes it is sufficient to assume a density of 8.4 for brass weights, and a density of 0.0012 for air under ordinary conditions. The equation then becomes 1 1 m m 0.0012m vac f f 8.4 m The table which follows gives the values of k (buoyancy reduction factor), which is the correction necessary because of the buoyant effect of the air upon the object weighed; the table is computed for air with the density of 0.0012; m is the weight in grams of the object when weighed in air; weight of object reduced to “in vacuo” m km/1000.
Density of object weighed Buoyancy reduction factor, k Brass weights, density 8.4 Pt or Pt-Ir weights, density 21.5 Al or quartz weights, density 2.7 Gold weights, density 17 0.2 5.89 5.98 5.58 5.97 0.3 3.87 3.96 3.56 3.95 0.4 2.87 2.95 2.55 2.94 0.5 2.26 2.35 1.95 2.34 0.6 1.86 1.95 1.55 1.93 0.7 1.57 1.66 1.26 1.65 0.75 1.46 1.55 1.15 1.53 0.80 1.36 1.45 1.05 1.43 0.82 1.32 1.41 1.01 1.39 0.84 1.29 1.37 0.98 1.36 0.86 1.25 1.34 0.94 1.33 0.88 1.22 1.31 0.91 1.29 0.90 1.19 1.28 0.88 1.26 0.92 1.16 1.25 0.85 1.24 0.94 1.13 1.22 0.82 1.21 0.96 1.11 1.20 0.80 1.18 0.98 1.08 1.17 0.77 1.16 1.00 1.06 1.15 0.75 1.13 1.02 1.03 1.12 0.72 1.11 1.04 1.01 1.10 0.70 1.08 1.06 0.99 1.08 0.68 1.06 1.08 0.97 1.06 0.66 1.04 1.10 0.95 1.04 0.64 1.02 1.12 0.93 1.02 0.62 1.00 1.14 0.91 1.00 0.60 0.98 1.16 0.89 0.98 0.58 0.96 1.18 0.87 0.96 0.56 0.95 1.20 0.86 0.95 0.55 0.93 1.25 0.82 0.91 0.51 0.89 1.30 0.78 0.87 0.47 0.85 See Table 5.15, Specific Gravity of Air at Various Temperatures.
2.84 SECTION 2 TABLE 2.14 Conversion of Weighings in Air to Weighings in Vacuo (Continued) Density of object weighed Buoyancy reduction factor, k Brass weights, density 8.4 Pt or Pt-Ir weights, density 21.5 Al or quartz weights, density 2.7 Gold weights, density 17 1.35 0.75 0.83 0.44 0.82 1.40 0.71 0.80 0.40 0.79 1.50 0.66 0.74 0.35 0.73 1.6 0.61 0.69 0.30 0.68 1.7 0.56 0.65 0.25 0.64 1.8 0.52 0.61 0.21 0.60 1.9 0.49 0.58 0.18 0.56 2.0 0.46 0.54 0.15 0.53 2.2 0.40 0.49 0.09 0.48 2.4 0.36 0.44 0.05 0.43 2.6 0.32 0.41 0.01 0.39 2.8 0.29 0.37 0.02 0.36 3.0 0.26 0.34 0.05 0.33 3.5 0.20 0.29 0.11 0.27 4 0.16 0.24 0.15 0.23 5 0.10 0.18 0.21 0.17 6 0.06 0.14 0.25 0.13 7 0.03 0.12 0.28 0.10 8 0.01 0.09 0.30 0.08 9 0.01 0.08 0.32 0.06 10 0.02 0.06 0.33 0.05 12 0.04 0.04 0.35 0.03 14 0.06 0.03 0.37 0.02 16 0.07 0.02 0.38 0.00 18 0.08 0.01 0.39 0.00 20 0.08 0.00 0.39 0.01 22 0.09 0.00 0.40 0.02 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.85 TABLE 2.15 Hydrometer Conversion Table This table gives the relation between density (c.g.s.) and degrees on the Baume ´ and Twaddell scales. The Twaddell scale is never used for densities less than unity. See also Sec. 2.1.2.1, Hydrometers.
Density Degrees Baume ´ (NIST scale) Degrees Baume ´ (A.P.I.† scale) 0.600 103.33 104.33 0.605 101.40 102.38 0.610 99.51 100.47 0.615 97.64 98.58 0.620 95.81 96.73 0.625 94.00 94.90 0.630 92.22 93.10 0.635 90.47 91.33 0.640 88.75 89.59 0.645 87.05 87.88 0.650 85.38 86.19 0.655 83.74 84.53 0.660 82.12 82.89 0.665 80.52 81.28 0.670 78.95 79.69 0.675 77.41 78.13 0.680 75.88 76.59 0.685 74.38 75.07 0.690 72.90 73.57 0.695 71.43 72.10 0.700 70.00 70.64 0.705 68.57 69.21 0.710 67.18 67.80 0.715 65.80 66.40 0.720 64.44 65.03 0.725 63.10 63.67 0.730 61.78 62.34 0.735 60.48 61.02 0.740 59.19 59.72 0.745 57.92 58.43 0.750 56.67 57.17 0.755 55.43 55.92 0.760 54.21 54.68 0.765 53.01 53.47 0.770 51.82 52.27 0.775 50.65 51.08 0.780 49.49 49.91 0.785 48.34 48.75 0.790 47.22 47.61 0.795 46.10 46.49 0.800 45.00 45.38 0.805 43.91 44.28 0.810 42.84 43.19 0.815 41.78 42.12 0.820 40.73 41.06 Density Degrees Baume ´ (NIST scale) Degrees Baume ´ (A.P.I.† scale) 0.825 39.70 40.02 0.830 38.68 38.98 0.835 37.66 37.96 0.840 36.67 36.95 0.845 35.68 35.96 0.850 34.71 34.97 0.855 33.74 34.00 0.860 32.79 33.03 0.865 31.85 32.08 0.870 30.92 31.14 0.875 30.00 30.21 0.880 29.09 29.30 0.885 28.19 28.39 0.890 27.30 27.49 0.895 26.42 26.60 0.900 25.56 25.72 0.905 24.70 24.85 0.910 23.85 23.99 0.915 23.01 23.14 0.920 22.17 22.30 0.925 21.35 21.47 0.930 20.54 20.65 0.935 19.73 19.84 0.940 18.94 19.03 0.945 18.15 18.24 0.950 17.37 17.45 0.955 16.60 16.67 0.960 15.83 15.90 0.965 15.08 15.13 0.970 14.33 14.38 0.975 13.59 13.63 0.980 12.86 12.89 0.985 12.13 12.15 0.990 11.41 11.43 0.995 10.70 10.71 1.000 10.00 10.00 DENSITIES GREATER THAN UNITY Density Degrees Baume ´ (NIST scale) Degrees Twaddell 1.00 0.00 0 1.01 1.44 2 1.02 2.84 4 NIST, National Institute for Science and Technology (formerly the National Bureau of Standards, U.S.).
† A.P.I. is the American Petroleum Institute.
2.86 SECTION 2 TABLE 2.15 Hydrometer Conversion Table (Continued) Density Degrees Baume ´ (NIST scale) Degrees Twaddell 1.03 4.22 6 1.04 5.58 8 1.05 6.91 10 1.06 8.21 12 1.07 9.49 14 1.08 10.78 16 1.09 11.97 18 1.10 13.18 20 1.11 14.37 22 1.12 15.54 24 1.13 16.68 26 1.14 17.81 28 1.15 18.91 30 1.16 20.00 32 1.17 21.07 34 1.18 22.12 36 1.19 23.15 38 1.20 24.17 40 1.21 25.16 42 1.22 26.15 44 1.23 27.11 46 1.24 28.06 48 1.25 29.00 50 1.26 29.92 52 1.27 30.83 54 1.28 31.72 56 1.29 32.60 58 1.30 33.46 60 1.31 34.31 62 1.32 35.15 64 1.33 35.98 66 1.34 36.79 68 1.35 37.59 70 1.36 38.38 72 1.37 39.16 74 1.38 39.93 76 1.39 40.68 78 1.40 41.43 80 1.41 42.16 82 1.42 42.89 84 1.43 43.60 86 1.44 44.31 88 1.45 45.00 90 1.46 45.68 92 1.47 46.36 94 1.48 47.03 96 1.49 47.68 98 1.50 48.33 100 1.51 48.97 102 Density Degrees Baume ´ (NIST scale) Degrees Twaddell 1.52 49.60 104 1.53 50.23 106 1.54 50.84 108 1.55 51.45 110 1.56 52.05 112 1.57 52.64 114 1.58 53.23 116 1.59 53.80 118 1.60 54.38 120 1.61 54.94 122 1.62 55.49 124 1.63 56.04 126 1.64 56.58 128 1.65 57.12 130 1.66 57.65 132 1.67 58.17 134 1.68 58.69 136 1.69 59.20 138 1.70 59.71 140 1.71 60.20 142 1.72 60.70 144 1.73 61.18 146 1.74 61.67 148 1.75 62.14 150 1.76 62.61 152 1.77 63.08 154 1.78 63.54 156 1.79 63.99 158 1.80 64.44 160 1.81 64.89 162 1.82 65.31 164 1.83 65.77 166 1.84 66.20 168 1.85 66.62 170 1.86 67.04 172 1.87 67.46 174 1.88 67.87 176 1.89 68.28 178 1.90 68.68 180 1.91 69.08 182 1.92 69.48 184 1.93 69.87 186 1.94 70.26 188 1.95 70.64 190 1.96 71.02 192 1.97 71.40 194 1.98 71.77 196 1.99 72.14 198 2.00 72.50 200 NIST, National Institute for Science and Technology (formerly the National Bureau of Standards, U.S.).
GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.87 TABLE 2.16 Pressure Conversion Chart psi Inches H2O at 4C Inches Hg at 0C mmH2O at 4C mmHg at 0C atm Pascals (N · m2) 0.01 0.2768 0.0204 7.031 0.517 0.0007 68.95 0.02 0.5536 0.0407 14.06 1.034 0.0014 137.90 0.03 0.8304 0.0611 21.09 1.551 0.0020 206.8 0.04 1.107 0.0814 28.12 2.068 0.0027 275.8 0.05 1.384 0.1018 35.15 2.586 0.0034 344.7 0.06 1.661 0.1222 42.18 3.103 0.0041 413.7 0.07 1.938 0.1425 49.22 3.620 0.0048 482.6 0.08 2.214 0.1629 56.25 4.137 0.0054 551.6 0.09 2.491 0.1832 63.28 4.654 0.0061 620.5 0.10 2.768 0.2036 70.31 5.171 0.0068 689.5 0.20 5.536 0.4072 140.6 10.34 0.0136 1 379.9 0.30 8.304 0.6108 210.9 15.51 0.0204 2 068.5 0.40 11.07 0.8144 281.2 20.68 0.0272 2 758 0.50 13.84 1.018 351.5 25.86 0.0340 3 447 0.60 16.61 1.222 421.8 31.03 0.0408 4 137 0.70 19.38 1.425 492.2 36.20 0.0476 4 826 0.80 22.14 1.629 562.5 41.37 0.0544 5 516 0.90 24.91 1.832 632.8 46.54 0.0612 6 205 1.00 27.68 2.036 703.1 51.71 0.0689 6 895 2.00 55.36 4.072 1 072 103.4 0.1361 13 790 3.00 83.04 6.108 2 109 155.1 0.2041 20 684 4.00 110.7 8.144 2 812 206.8 0.2722 27 579 5.00 138.4 10.18 3 515 258.6 0.3402 34 474 6.00 166.1 12.22 4 218 310.3 0.4083 41 369 7.00 193.8 14.25 4 922 362.0 0.4763 48 263 8.00 221.4 16.29 5 625 413.7 0.5444 55 158 9.00 249.1 18.32 6 328 465.4 0.6124 62 053 10.0 276.8 20.36 7 031 517.1 0.6805 68 948 14.7 406.9 29.93 10 332 760.0 1.000 101 325 15.0 415.2 30.54 10 550 775.7 1.021 103 421 20.0 553.6 40.72 14 060 1 034 1.361 137 895 25.0 692.0 50.90 17 580 1 293 1.701 172 369 30.0 830.4 61.08 21 090 1 551 2.041 206 843 40.0 1 107 81.44 28 120 2 068 2.722 275 790 50.0 1 384 101.8 35 150 2 586 3.402 344 738 60.0 1 661 122.2 42 180 3 103 4.083 413 685 70.0 1 938 142.5 49 220 3 620 4.763 482 633 80.0 2 214 162.9 56 250 4 137 5.444 551 581 90.0 2 491 183.2 63 280 4 654 6.124 620 528 100.0 2 768 203.6 70 307 5 171 6.805 689 476 150.0 4 152 305.4 7 757 10.21 1 034 214 200.0 5 536 407.2 10 343 13.61 1 378 951 250.0 6 920 509.0 17.01 1 723 689 300.0 8 304 610.8 20.41 2 068 427 400.0 27.22 2 757 903 500.0 34.02 3 447 379 1 bar 105 pascal.
2.88 SECTION 2 TABLE 2.17 Corrections to Be Added to Molar Values to Convert to Molal Aqueous solution Temperature, C G J·mol1 H J·mol1 S J·deg ·mol 1 1 C p 1 1 J·deg ·mol 0 0.4 42.7 0.17 55.2 10 0.8 58.1 0.21 45.6 20 4.2 148.1 0.50 38.9 30 10.9 230.5 0.79 35.1 40 20.1 313.4 1.09 33.0 50 32.2 397.9 1.34 32.6 60 46.8 482.4 1.59 32.2 TABLE 2.18 Molar Equivalent of One Liter of Gas at Various Temperatures and Pressures The values in this table, which give the number of moles in 1 liter of gas, are based on the properties of an “ideal” gas and were calculated by use of the formula: P 273 1 Moles/liter 760 T 22.40 where P is the pressure in millimeters of mercury and T is the temperature in kelvins (tC 273).
To convert to moles per cubic foot multiply the values in the table by 28.316.
Pressure mm of mercury Temperature C 10 12 14 16 18 20 655 0.03712 0.03686 0.03660 0.03634 0.03610 0.03585 660 3731 3714 3688 3662 3637 3612 665 3768 3742 3716 3690 3665 3640 670 3796 3770 3744 3718 3692 3667 675 3825 3798 3772 3745 3720 3695 680 0.03853 0.03826 0.03800 0.03773 0.03747 0.03694 685 3881 3854 3827 3801 3775 3749 690 3910 3882 3855 3829 3802 3776 695 3938 3910 3883 3856 3830 3804 700 3967 3939 3911 3884 3858 3831 702 0.03978 0.03950 0.03922 0.03895 0.03869 0.03842 704 3989 3961 3934 3906 3880 3853 706 4000 3972 3945 3917 3891 3864 708 4012 3984 3956 3929 3902 3875 710 4023 3995 3967 3940 3913 3886 712 0.04035 0.04006 0.03978 0.03951 0.03924 0.03897 714 4046 4018 3989 3962 3935 3908 716 4057 4029 4001 3973 3946 3919 718 4068 4040 4012 3984 3957 3930 720 4080 4051 4023 3995 3968 3941 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.89 TABLE 2.18 Molar Equivalent of One Liter of Gas at Various Temperatures and Pressures (Continued) Pressure mm of mercury Temperature C 10 12 14 16 18 20 722 0.04091 0.04063 0.04034 0.04006 0.03979 0.03952 724 4103 4074 4045 4017 3990 3963 726 4114 4085 4057 4028 4001 3973 728 4125 4096 4068 4040 4012 3984 730 4136 4108 4079 4051 4023 3995 732 0.04148 0.04119 0.04090 0.04062 0.04034 0.04006 734 4159 4130 4101 4073 4045 4017 736 4171 4141 4112 4084 4056 4028 738 4182 4153 4124 4095 4067 4039 740 4193 4164 4135 4106 4078 4050 742 0.04204 0.04175 0.04146 0.04117 0.04089 0.04061 744 4216 4186 4157 4128 4100 4072 746 4227 4198 4168 4139 4111 4038 748 4239 4209 4179 4151 4122 4094 750 4250 4220 4191 4162 4133 4105 752 0.04261 0.04231 0.04202 0.04173 0.04144 0.04116 754 4273 4243 4213 4184 4155 4127 756 4284 4254 4224 4195 4166 4138 758 4295 4265 4235 4206 4177 4149 760 4307 4276 4247 4217 4188 4160 762 0.04318 0.04287 0.04258 0.04228 0.04199 0.04171 764 4329 4299 4269 4239 4210 4181 766 4341 4310 4280 4250 4221 4192 768 4352 4321 4291 4262 4232 4203 770 4363 4333 4302 4273 4243 4214 772 0.04375 0.04344 0.04314 0.04284 0.04254 0.04225 774 4386 4355 4325 4295 4265 4236 776 4397 4366 4336 4306 4276 4247 778 4409 4378 4347 4317 4287 4258 780 4420 4389 4358 4328 4298 4269 Pressure mm of mercury Temperature C 22 24 26 28 30 32 655 0.03561 0.03537 0.03515 0.03490 0.03467 0.03444 660 3588 3564 3541 3516 3493 3470 665 3614 3591 3568 3543 3520 3496 670 3642 3618 3595 3569 3546 3523 675 3669 3645 3622 3596 3572 3549 680 0.03697 0.03672 0.03649 0.03623 0.03599 0.03575 685 3724 3699 3676 3649 3625 3602 690 3751 3726 3702 3676 3652 3628 695 3778 3753 3729 3703 3678 3654 700 3805 3780 3756 3729 3705 3680 2.90 SECTION 2 TABLE 2.18 Molar Equivalent of One Liter of Gas at Various Temperatures and Pressures (Continued) Pressure mm of mercury Temperature C 22 24 26 28 30 32 702 0.03816 0.03790 0.03767 0.03740 0.03715 0.03691 704 3827 3801 3777 3750 3726 3701 706 3838 3812 3788 3761 3736 3712 708 3849 3823 3799 3772 3747 3722 710 3860 3834 3810 3783 3758 3733 712 0.03870 0.03844 0.03820 0.03793 0.03768 0.03744 714 3881 3855 3831 3804 3779 3754 716 3892 3866 3842 3815 3789 3765 718 3902 3877 3853 3825 3800 3775 720 3914 3888 3863 3836 3811 3786 722 0.03925 0.03898 0.03874 0.03847 0.03821 0.03796 724 3936 3909 3885 3857 3832 3807 726 3947 3920 3896 3868 3842 3817 728 3957 3931 3906 3878 3853 3828 730 3968 3941 3917 3889 3863 3838 732 0.03979 0.03952 0.03928 0.03900 0.03874 0.03849 734 3990 3963 3938 3910 3885 3859 736 4001 3974 3949 3921 3895 3870 738 4012 3985 3960 3932 3906 3880 740 4023 3995 3971 3942 3916 3891 742 0.04033 0.04006 0.03981 0.03953 0.03927 0.03901 744 4044 4017 3992 3964 3938 3912 746 4055 4028 4003 3974 3948 3922 748 4066 4039 4014 3985 3959 3933 750 4077 4049 4024 3996 3969 3943 752 0.04088 0.04060 0.04035 0.04006 0.03980 0.03954 754 4099 4071 4046 4017 3991 3964 756 4110 4082 4056 4028 4001 3975 758 4121 4093 4067 4038 4012 3985 760 4131 4103 4078 4049 4022 3996 762 0.04142 4114 4089 4060 4033 4006 764 4153 4125 4099 4070 4043 4017 766 4164 4136 4110 4081 4054 4027 768 4175 4147 4121 4092 4065 4038 770 4186 4158 4132 4102 4075 4048 772 0.04197 0.04168 0.04142 0.04113 0.04086 0.04059 774 4207 4179 4153 4124 4096 4070 776 4218 4190 4164 4134 4107 4080 778 4229 4201 4175 4145 4117 4091 780 4240 4211 4185 4155 4128 4101 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.91 TABLE 2.19 Factors for Reducing Gas Volumes to Normal (Standard) Temperature and Pressure (760 mmHg) Examples: (a) 20 mL of dry gas at 22C and 730 mL at 0C and 760 mm. (b) 20 mm 20 0.8888 17.78 mL of a gas over water at 22 and 730 corrected for aqueous tension; i.e., or mm 20 (factor 730 19.8 710.2 of dry gas at 22 and 710.2 at 0C and 760 mm. Mass mm) 20 mL mm 20 0.86475 17.30 mL in milligrams of 1 mL of gas at S.T.P.: acetylene, 1.173; carbon dioxide, 1.9769; hydrogen, 0.0899; nitric oxide (NO), 1.3402; nitrogen, 1.25057; oxygen, 1.42904.
Pressure mm of mercury Temperature C 10 11 12 13 14 15 16 17 670 0.8504 0.8474 0.8445 0.8415 0.8386 0.8357 0.8328 0.8299 672 0.8530 0.8500 0.8470 0.8440 0.8411 0.8382 0.8353 0.8324 674 0.8555 0.8525 0.8495 0.8465 0.8436 0.8407 0.8377 0.8349 676 0.8580 0.8550 0.8520 0.8490 0.8461 0.8431 0.8402 0.8373 678 0.8606 0.8576 0.8545 0.8516 0.8486 0.8456 0.8427 0.8398 680 0.8631 0.8601 0.8571 0.8541 0.8511 0.8481 0.8452 0.8423 682 0.8657 0.8626 0.8596 0.8566 0.8536 0.8506 0.8477 0.8448 684 0.8682 0.8651 0.8621 0.8591 0.8561 0.8531 0.8502 0.8472 686 0.8707 0.8677 0.8646 0.8616 0.8586 0.8556 0.8527 0.8497 688 0.8733 0.8702 0.8672 0.8641 0.8611 0.8581 0.8551 0.8522 690 0.8758 0.8727 0.8697 0.8666 0.8636 0.8606 0.8576 0.8547 692 0.8784 0.8753 0.8722 0.8691 0.8661 0.8631 0.8601 0.8572 694 0.8809 0.8778 0.8747 0.8717 0.8686 0.8656 0.8626 0.8596 696 0.8834 0.8803 0.8772 0.8742 0.8711 0.8681 0.8651 0.8621 698 0.8860 0.8828 0.8798 0.8767 0.8736 0.8706 0.8676 0.8646 700 0.8885 0.8854 0.8823 0.8792 0.8761 0.8731 0.8700 0.8671 702 0.8910 0.8879 0.8848 0.8817 0.8786 0.8756 0.8725 0.8695 704 0.8936 0.8904 0.8873 0.8842 0.8811 0.8781 0.8750 0.8720 706 0.8961 0.8930 0.8898 0.8867 0.8836 0.8806 0.8775 0.8745 708 0.8987 0.8955 0.8924 0.8892 0.8861 0.8831 0.8800 0.8770 710 0.9012 0.8980 0.8949 0.8917 0.8886 0.8856 0.8825 0.8794 712 0.9037 0.9006 0.8974 0.8943 0.8911 0.8880 0.8850 0.8819 714 0.9063 0.9031 0.8999 0.8968 0.8936 0.8905 0.8875 0.8844 716 0.9088 0.9056 0.9024 0.8993 0.8961 0.8930 0.8899 0.8869 718 0.9114 0.9081 0.9050 0.9018 0.8987 0.8955 0.8924 0.8894 720 0.9139 0.9107 0.9075 0.9043 0.9012 0.8980 0.8949 0.8918 722 0.9164 0.9132 0.9100 0.9068 0.9037 0.9005 0.8974 0.8943 724 0.9190 0.9157 0.9125 0.9093 0.9062 0.9030 0.8999 0.8968 726 0.9215 0.9183 0.9151 0.9118 0.9087 0.9055 0.9024 0.8993 728 0.9241 0.9208 0.9176 0.9144 0.9112 0.9080 0.9049 0.9017 730 0.9266 0.9233 0.9201 0.9169 0.9137 0.9105 0.9073 0.9042 732 0.9291 0.9259 0.9226 0.9194 0.9162 0.9130 0.9098 0.9067 734 0.9317 0.9284 0.9251 0.9219 0.9187 0.9155 0.9123 0.9092 736 0.9342 0.9309 0.9277 0.9244 0.9212 0.9180 0.9148 0.9117 738 0.9368 0.9334 0.9302 0.9269 0.9237 0.9205 0.9173 0.9141 740 0.9393 0.9360 0.9327 0.9294 0.9262 0.9230 0.9198 0.9166 742 0.9418 0.9385 0.9352 0.9319 0.9287 0.9255 0.9223 0.9191 744 0.9444 0.9410 0.9377 0.9345 0.9312 0.9280 0.9248 0.9216 746 0.9469 0.9436 0.9403 0.9370 0.9337 0.9305 0.9272 0.9240 748 0.9494 0.9461 0.9428 0.9395 0.9362 0.9329 0.9297 0.9265 2.92 SECTION 2 TABLE 2.19 Factors for Reducing Gas Volumes to Normal (Standard) Temperature and Pressure (Continued) Pressure mm of mercury Temperature C 10 11 12 13 14 15 16 17 750 0.9520 0.9486 0.9453 0.9420 0.9387 0.9354 0.9322 0.9290 752 0.9545 0.9511 0.9478 0.9445 0.9412 0.9379 0.9347 0.9315 754 0.9571 0.9537 0.9504 0.9470 0.9437 0.9404 0.9372 0.9339 756 0.9596 0.9562 0.9529 0.9495 0.9462 0.9429 0.9397 0.9364 758 0.9621 0.9587 0.9554 0.9520 0.9487 0.9454 0.9422 0.9389 760 0.9647 0.9613 0.9579 0.9546 0.9512 0.9479 0.9446 0.9414 762 0.9672 0.9638 0.9604 0.9571 0.9537 0.9504 0.9471 0.9439 764 0.9698 0.9663 0.9630 0.9596 0.9562 0.9529 0.9496 0.9463 766 0.9723 0.9689 0.9655 0.9620 0.9587 0.9554 0.9521 0.9488 768 0.9748 0.9714 0.9680 0.9646 0.9612 0.9579 0.9546 0.9513 770 0.9774 0.9739 0.9705 0.9671 0.9637 0.9604 0.9571 0.9538 772 0.9799 0.9764 0.9730 0.9696 0.9662 0.9629 0.9596 0.9562 774 0.9825 0.9790 0.9756 0.9721 0.9687 0.9654 0.9620 0.9587 776 0.9850 0.9815 0.9781 0.9746 0.9712 0.9679 0.9645 0.9612 778 0.9875 0.9840 0.9806 0.9772 0.9737 0.9704 0.9670 0.9637 780 0.9901 0.9866 0.9831 0.9797 0.9763 0.9729 0.9695 0.9662 782 0.9926 0.9891 0.9856 0.9822 0.9788 0.9754 0.9720 0.9686 784 0.9952 0.9916 0.9882 0.9847 0.9813 0.9778 0.9745 0.9711 786 0.9977 0.9942 0.9907 0.9872 0.9838 0.9803 0.9770 0.9736 788 1.0002 0.9967 0.9932 0.9897 0.9863 0.9828 0.9794 0.9761 Pressure mm of mercury Temperature C 18 19 20 21 22 23 24 25 670 0.8270 0.8242 0.8214 0.8186 0.8158 0.8131 0.8103 0.8076 672 0.8295 0.8267 0.8239 0.8211 0.8183 0.8155 0.8128 0.8100 674 0.8320 0.8291 0.8263 0.8235 0.8207 0.8179 0.8152 0.8124 676 0.8345 0.8316 0.8288 0.8259 0.8231 0.8204 0.8176 0.8149 678 0.8369 0.8341 0.8312 0.8284 0.8256 0.8228 0.8200 0.8173 680 0.8394 0.8365 0.8337 0.8308 0.8280 0.8252 0.8224 0.8197 682 0.8419 0.8390 0.8361 0.8333 0.8304 0.8276 0.8249 0.8221 684 0.8443 0.8414 0.8386 0.8357 0.8329 0.8301 0.8273 0.8245 686 0.8468 0.8439 0.8410 0.8382 0.8353 0.8325 0.8297 0.8269 688 0.8493 0.8464 0.8435 0.8406 0.8378 0.8349 0.8321 0.8293 690 0.8517 0.8488 0.8459 0.8430 0.8402 0.8373 0.8345 0.8317 692 0.8542 0.8513 0.8484 0.8455 0.8426 0.8398 0.8369 0.8341 694 0.8567 0.8537 0.8508 0.8479 0.8451 0.8422 0.8394 0.8366 696 0.8591 0.8562 0.8533 0.8504 0.8475 0.8446 0.8418 0.8390 698 0.8616 0.8587 0.8557 0.8528 0.8499 0.8471 0.8442 0.8414 700 0.8641 0.8611 0.8582 0.8553 0.8524 0.8495 0.8466 0.8438 702 0.8665 0.8636 0.8606 0.8577 0.8547 0.8519 0.8490 0.8462 704 0.8690 0.8660 0.8631 0.8602 0.8572 0.8543 0.8515 0.8486 706 0.8715 0.8685 0.8655 0.8626 0.8597 0.8568 0.8539 0.8510 708 0.8740 0.8710 0.8680 0.8650 0.8621 0.8592 0.8563 0.8534 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.93 TABLE 2.19 Factors for Reducing Gas Volumes to Normal (Standard) Temperature and Pressure (Continued) Pressure mm of mercury Temperature C 18 19 20 21 22 23 24 25 710 0.8764 0.8734 0.8704 0.8675 0.8645 0.8616 0.8587 0.8558 712 0.8789 0.8759 0.8729 0.8699 0.8670 0.8640 0.8611 0.8582 714 0.8814 0.8783 0.8753 0.8724 0.8694 0.8665 0.8636 0.8607 716 0.8838 0.8808 0.8778 0.8748 0.8718 0.8689 0.8660 0.8631 718 0.8863 0.8833 0.8802 0.8773 0.8743 0.8713 0.8684 0.8655 720 0.8888 0.8857 0.8827 0.8797 0.8767 0.8738 0.8708 0.8679 722 0.8912 0.8882 0.8852 0.8821 0.8792 0.8762 0.8732 0.8703 724 0.8937 0.8906 0.8876 0.8846 0.8816 0.8786 0.8757 0.8727 726 0.8962 0.8931 0.8901 0.8870 0.8840 0.8810 0.8781 0.8751 728 0.8986 0.8956 0.8925 0.8895 0.8865 0.8835 0.8805 0.8775 730 0.9011 0.8980 0.8950 0.8919 0.8889 0.8859 0.8829 0.8799 732 0.9036 0.9005 0.8974 0.8944 0.8913 0.8883 0.8853 0.8824 734 0.9060 0.9029 0.8999 0.8968 0.8938 0.8907 0.8877 0.8848 736 0.9085 0.9054 0.9023 0.8992 0.8962 0.8932 0.8902 0.8872 738 0.9110 0.9079 0.9048 0.9017 0.8986 0.8956 0.8926 0.8896 740 0.9135 0.9103 0.9072 0.9041 0.9011 0.8980 0.8950 0.8920 742 0.9159 0.9128 0.9097 0.9066 0.9035 0.9005 0.8974 0.8944 744 0.9184 0.9153 0.9121 0.9090 0.9059 0.9029 0.8998 0.8968 746 0.9209 0.9177 0.9146 0.9115 0.9084 0.9053 0.9023 0.8992 748 0.9233 0.9202 0.9170 0.9139 0.9108 0.9077 0.9047 0.9016 750 0.9258 0.9226 0.9195 0.9164 0.9132 0.9102 0.9071 0.9041 752 0.9283 0.9251 0.9219 0.9188 0.9157 0.9126 0.9095 0.9065 754 0.9307 0.9276 0.9244 0.9212 0.9181 0.9150 0.9119 0.9089 756 0.9332 0.9300 0.9268 0.9237 0.9206 0.9174 0.9144 0.9113 758 0.9357 0.9325 0.9293 0.9261 0.9230 0.9199 0.9168 0.9137 760 0.9381 0.9349 0.9317 0.9286 0.9254 0.9223 0.9192 0.9161 762 0.9406 0.9374 0.9342 0.9310 0.9279 0.9247 0.9216 0.9185 764 0.9431 0.9399 0.9366 0.9335 0.9303 0.9272 0.9240 0.9209 766 0.9456 0.9423 0.9391 0.9359 0.9327 0.9296 0.9265 0.9233 768 0.9480 0.9448 0.9415 0.9383 0.9352 0.9320 0.9289 0.9258 770 0.9505 0.9472 0.9440 0.9408 0.9376 0.9344 0.9313 0.9282 772 0.9530 0.9497 0.9464 0.9432 0.9400 0.9369 0.9337 0.9306 774 0.9554 0.9522 0.9489 0.9457 0.9425 0.9393 0.9361 0.9330 776 0.9579 0.9546 0.9514 0.9481 0.9449 0.9417 0.9385 0.9354 778 0.9604 0.9571 0.9538 0.9506 0.9473 0.9441 0.9410 0.9378 780 0.9628 0.9595 0.9563 0.9530 0.9498 0.9466 0.9434 0.9402 782 0.9653 0.9620 0.9587 0.9555 0.9522 0.9490 0.9458 0.9426 784 0.9678 0.9645 0.9612 0.9579 0.9546 0.9514 0.9482 0.9450 786 0.9702 0.9669 0.9636 0.9603 0.9571 0.9538 0.9506 0.9474 788 0.9727 0.9694 0.9661 0.9628 0.9595 0.9563 0.9531 0.9499 2.94 SECTION 2 TABLE 2.19 Factors for Reducing Gas Volumes to Normal (Standard) Temperature and Pressure (Continued) Pressure mm of mercury Temperature C 26 27 28 29 30 31 32 33 670 0.8049 0.8022 0.7996 0.7969 0.7943 0.7917 0.7891 0.7865 672 0.8073 0.8046 0.8020 0.7993 0.7967 0.7940 0.7914 0.7889 674 0.8097 0.8070 0.8043 0.8017 0.7990 0.7964 0.7938 0.7912 676 0.8121 0.8094 0.8067 0.8041 0.8014 0.7988 0.7962 0.7936 678 0.8145 0.8118 0.8091 0.8064 0.8038 0.8011 0.7985 0.7959 680 0.8169 0.8142 0.8115 0.8088 0.8061 0.8035 0.8009 0.7982 682 0.8193 0.8166 0.8139 0.8112 0.8085 0.8059 0.8032 0.8006 684 0.8217 0.8190 0.8163 0.8136 0.8109 0.8082 0.8056 0.8029 686 0.8241 0.8214 0.8187 0.8160 0.8133 0.8106 0.8079 0.8053 688 0.8265 0.8238 0.8211 0.8183 0.8156 0.8129 0.8103 0.8076 690 0.8289 0.8262 0.8234 0.8207 0.8180 0.8153 0.8126 0.8100 692 0.8313 0.8286 0.8258 0.8231 0.8204 0.8177 0.8150 0.8123 694 0.8338 0.8310 0.8282 0.8255 0.8227 0.8200 0.8174 0.8147 696 0.8362 0.8334 0.8306 0.8278 0.8251 0.8224 0.8197 0.8170 698 0.8386 0.8358 0.8330 0.8302 0.8275 0.8248 0.8221 0.8194 700 0.8410 0.8382 0.8354 0.8326 0.8299 0.8271 0.8244 0.8217 702 0.8434 0.8406 0.8378 0.8350 0.8322 0.8295 0.8268 0.8241 704 0.8458 0.8429 0.8401 0.8374 0.8346 0.8319 0.8291 0.8264 706 0.8482 0.8453 0.8425 0.8397 0.8370 0.8342 0.8315 0.8288 708 0.8506 0.8477 0.8449 0.8421 0.8393 0.8366 0.8338 0.8311 710 0.8530 0.8501 0.8473 0.8445 0.8417 0.8389 0.8362 0.8335 712 0.8554 0.8525 0.8497 0.8469 0.8441 0.8413 0.8386 0.8358 714 0.8578 0.8549 0.8521 0.8493 0.8465 0.8437 0.8409 0.8382 716 0.8602 0.8573 0.8545 0.8516 0.8488 0.8460 0.8433 0.8405 718 0.8626 0.8597 0.8569 0.8540 0.8512 0.8484 0.8456 0.8429 720 0.8650 0.8621 0.8592 0.8564 0.8536 0.8508 0.8480 0.8452 722 0.8674 0.8645 0.8616 0.8588 0.8559 0.8531 0.8503 0.8475 724 0.8698 0.8669 0.8640 0.8612 0.8583 0.8555 0.8527 0.8499 726 0.8722 0.8693 0.8664 0.8635 0.8607 0.8579 0.8550 0.8522 728 0.8746 0.8717 0.8688 0.8659 0.8631 0.8602 0.8574 0.8546 730 0.8770 0.8741 0.8712 0.8683 0.8654 0.8626 0.8598 0.8569 732 0.8794 0.8765 0.8736 0.8707 0.8678 0.8649 0.8621 0.8593 734 0.8818 0.8789 0.8759 0.8730 0.8702 0.8673 0.8645 0.8616 736 0.8842 0.8813 0.8783 0.8754 0.8725 0.8697 0.8668 0.8640 738 0.8866 0.8837 0.8807 0.8778 0.8749 0.8720 0.8692 0.8663 740 0.8890 0.8861 0.8831 0.8802 0.8773 0.8744 0.8715 0.8687 742 0.8914 0.8884 0.8855 0.8826 0.8796 0.8768 0.8739 0.8710 744 0.8938 0.8908 0.8879 0.8849 0.8820 0.8791 0.8762 0.8734 746 0.8962 0.8932 0.8903 0.8873 0.8844 0.8815 0.8786 0.8757 748 0.8986 0.8956 0.8927 0.8897 0.8868 0.8838 0.8809 0.8781 750 0.9010 0.8980 0.8950 0.8921 0.8891 0.8862 0.8833 0.8804 752 0.9034 0.9004 0.8974 0.8945 0.8915 0.8886 0.8857 0.8828 754 0.9058 0.9028 0.8998 0.8968 0.8939 0.8909 0.8880 0.8851 756 0.9082 0.9052 0.9022 0.8992 0.8962 0.8933 0.8904 0.8875 758 0.9106 0.9076 0.9046 0.9016 0.8986 0.8957 0.8927 0.8898 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.95 Pressure mm of mercury Temperature C 34 35 36 670 0.7839 0.7814 0.7789 672 0.7863 0.7837 0.7812 674 0.7886 0.7861 0.7835 676 0.7910 0.7884 0.7858 678 0.7933 0.7907 0.7882 680 0.7956 0.7931 0.7905 682 0.7980 0.7954 0.7928 684 0.8003 0.7977 0.7951 686 0.8027 0.8001 0.7975 688 0.8050 0.8024 0.7998 690 0.8073 0.8047 0.8021 692 0.8097 0.8071 0.8044 694 0.8120 0.8094 0.8068 696 0.8144 0.8117 0.8091 698 0.8167 0.8141 0.8114 700 0.8190 0.8164 0.8137 702 0.8214 0.8187 0.8161 704 0.8237 0.8211 0.8184 706 0.8261 0.8234 0.8207 708 0.8284 0.8257 0.8230 710 0.8307 0.8281 0.8254 712 0.8331 0.8304 0.8277 714 0.8354 0.8327 0.8300 716 0.8378 0.8350 0.8323 718 0.8401 0.8374 0.8347 720 0.8424 0.8397 0.8370 722 0.8448 0.8420 0.8393 724 0.8471 0.8444 0.8416 726 0.8495 0.8467 0.8440 728 0.8518 0.8490 0.8463 Pressure mm of mercury Temperature C 34 35 36 730 0.8541 0.8514 0.8486 732 0.8565 0.8537 0.8509 734 0.8588 0.8560 0.8533 736 0.8612 0.8584 0.8556 738 0.8635 0.8607 0.8579 740 0.8658 0.8630 0.8602 742 0.8682 0.8654 0.8626 744 0.8705 0.8677 0.8649 746 0.8729 0.8700 0.8672 748 0.8752 0.8724 0.8695 750 0.8775 0.8747 0.8719 752 0.8799 0.8770 0.8742 754 0.8822 0.8794 0.8765 756 0.8846 0.8817 0.8788 758 0.8869 0.8840 0.8812 760 0.8892 0.8864 0.8835 762 0.8916 0.8887 0.8858 764 0.8939 0.8910 0.8881 766 0.8963 0.8934 0.8905 768 0.8986 0.8957 0.8928 770 0.9009 0.8980 0.8951 772 0.9033 0.9004 0.8974 774 0.9056 0.9027 0.8998 776 0.9080 0.9050 0.9021 778 0.9103 0.9074 0.9044 780 0.9127 0.9097 0.9067 782 0.9150 0.9120 0.9091 784 0.9173 0.9144 0.9114 786 0.9197 0.9167 0.9137 788 0.9220 0.9190 0.9160 TABLE 2.19 Factors for Reducing Gas Volumes to Normal (Standard) Temperature and Pressure (Continued) Pressure mm of mercury Temperature C 26 27 28 29 30 31 32 33 760 0.9130 0.9100 0.9070 0.9040 0.9010 0.8980 0.8951 0.8922 762 0.9154 0.9124 0.9094 0.9064 0.9034 0.9004 0.8974 0.8945 764 0.9178 0.9148 0.9118 0.9087 0.9057 0.9028 0.8998 0.8969 766 0.9202 0.9172 0.9141 0.9111 0.9081 0.9051 0.9021 0.8992 768 0.9227 0.9196 0.9165 0.9135 0.9105 0.9075 0.9045 0.9015 770 0.9251 0.9220 0.9189 0.9159 0.9128 0.9098 0.9069 0.9039 772 0.9275 0.9244 0.9213 0.9182 0.9152 0.9122 0.9092 0.9062 774 0.9299 0.9268 0.9237 0.9206 0.9176 0.9146 0.9116 0.9086 776 0.9323 0.9292 0.9261 0.9230 0.9200 0.9169 0.9139 0.9109 778 0.9347 0.9316 0.9285 0.9254 0.9223 0.9193 0.9163 0.9133 780 0.9371 0.9340 0.9308 0.9278 0.9247 0.9217 0.9186 0.9156 782 0.9395 0.9363 0.9332 0.9301 0.9271 0.9240 0.9210 0.9180 784 0.9419 0.9387 0.9356 0.9325 0.9294 0.9264 0.9233 0.9203 786 0.9443 0.9411 0.9380 0.9349 0.9318 0.9287 0.9257 0.9227 788 0.9467 0.9435 0.9404 0.9373 0.9342 0.9311 0.9281 0.9250 2.96 SECTION 2 TABLE 2.20 Values of Absorbance for Percent Absorption To convert percent absorption (% A) to absorbance, find the present absorption to the nearest whole digit in the left-hand column; read across to the column located under the tenth of a percent desired, and read the value of absorbance. The value of absorbance corresponding to 26.8% absorption is thus 0.1355.
% A .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 0.0 .0000 .0004 .0009 .0013 .0017 .0022 .0026 .0031 .0035 .0039 1.0 .0044 .0048 .0052 .0057 .0061 .0066 .0070 .0074 .0079 .0083 2.0 .0088 .0092 .0097 .0101 .0106 .0110 .0114 .0119 .0123 .0128 3.0 .0132 .0137 .0141 .0146 .0150 .0155 .0159 .0164 .0168 .0173 4.0 .0177 .0182 .0186 .0191 .0195 .0200 .0205 .0209 .0214 .0218 5.0 .0223 .0227 .0232 .0236 .0241 .0246 .0250 .0255 .0259 .0264 6.0 .0269 .0273 .0278 .0283 .0287 .0292 .0297 .0301 .0306 .0311 7.0 .0315 .0320 .0325 .0329 .0334 .0339 .0343 .0348 .0353 .0357 8.0 .0362 .0367 .0372 .0376 .0381 .0386 .0391 .0395 .0400 .0405 9.0 .0410 .0414 .0419 .0424 .0429 .0434 .0438 .0443 .0448 .0453 10.0 .0458 .0462 .0467 .0472 .0477 .0482 .0487 .0491 .0496 .0501 11.0 .0506 .0511 .0516 .0521 .0526 .0531 .0535 .0540 .0545 .0550 12.0 .0555 .0560 .0565 .0570 .0575 .0580 .0585 .0590 .0595 .0600 13.0 .0605 .0610 .0615 .0620 .0625 .0630 .0635 .0640 .0645 .0650 14.0 .0655 .0660 .0665 .0670 .0675 .0680 .0685 .0691 .0696 .0701 15.0 .0706 .0711 .0716 .0721 .0726 .0731 .0737 .0742 .0747 .0752 16.0 .0757 .0762 .0768 .0773 .0778 .0783 .0788 .0794 .0799 .0804 17.0 .0809 .0814 .0820 .0825 .0830 .0835 .0841 .0846 .0851 .0857 18.0 .0862 .0867 .0872 .0878 .0883 .0888 .0894 .0899 .0904 .0910 19.0 .0915 .0921 .0926 .0931 .0937 .0942 .0947 .0953 .0958 .0964 20.0 .0969 .0975 .0980 .0985 .0991 .0996 .1002 .1007 .1013 .1018 21.0 .1024 .1029 .1035 .1040 .1046 .1051 .1057 .1062 .1068 .1073 22.0 .1079 .1085 .1090 .1096 .1101 .1107 .1113 .1118 .1124 .1129 23.0 .1135 .1141 .1146 .1152 .1158 .1163 .1169 .1175 .1180 .1186 24.0 .1192 .1198 .1203 .1209 .1215 .1221 .1226 .1232 .1238 .1244 25.0 .1249 .1255 .1261 .1267 .1273 .1278 .1284 .1290 .1296 .1302 26.0 .1308 .1314 .1319 .1325 .1331 .1337 .1343 .1349 .1355 .1361 27.0 .1367 .1373 .1379 .1385 .1391 .1397 .1403 .1409 .1415 .1421 28.0 .1427 .1433 .1439 .1445 .1451 .1457 .1463 .1469 .1475 .1481 29.0 .1487 .1494 .1500 .1506 .1512 .1518 .1524 .1530 .1537 .1543 30.0 .1549 .1555 .1561 .1568 .1574 .1580 .1586 .1593 .1599 .1605 31.0 .1612 .1618 .1624 .1630 .1637 .1643 .1649 .1656 .1662 .1669 32.0 .1675 .1681 .1688 .1694 .1701 .1707 .1713 .1720 .1726 .1733 33.0 .1739 .1746 .1752 .1759 .1765 .1772 .1778 .1785 .1791 .1798 34.0 .1805 .1811 .1818 .1824 .1831 .1838 .1844 .1851 .1858 .1864 35.0 .1871 .1878 .1884 .1891 .1898 .1904 .1911 .1918 .1925 .1931 36.0 .1938 .1945 .1952 .1959 .1965 .1972 .1979 .1986 .1993 .2000 37.0 .2007 .2013 .2020 .2027 .2034 .2041 .2048 .2055 .2062 .2069 38.0 .2076 .2083 .2090 .2097 .2104 .2111 .2118 .2125 .2132 .2140 39.0 .2147 .2154 .2161 .2168 .2175 .2182 .2190 .2197 .2204 .2211 40.0 .2218 .2226 .2233 .2240 .2248 .2255 .2262 .2269 .2277 .2284 41.0 .2291 .2299 .2306 .2314 .2321 .2328 .2336 .2343 .2351 .2358 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.97 TABLE 2.20 Values of Absorbance for Percent Absorption (Continued) % A .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 42.0 .2366 .2373 .2381 .2388 .2396 .2403 .2411 .2418 .2426 .2434 43.0 .2441 .2449 .2457 .2464 .2472 .2480 .2487 .2495 .2503 .2510 44.0 .2518 .2526 .2534 .2541 .2549 .2557 .2565 .2573 .2581 .2588 45.0 .2596 .2604 .2612 .2620 .2628 .2636 .2644 .2652 .2660 .2668 46.0 .2676 .2684 .2692 .2700 .2708 .2716 .2725 .2733 .2741 .2749 47.0 .2757 .2765 .2774 .2782 .2790 .2798 .2807 .2815 .2823 .2832 48.0 .2840 .2848 .2857 .2865 .2874 .2882 .2890 .2899 .2907 .2916 49.0 .2924 .2933 .2941 .2950 .2958 .2967 .2976 .2984 .2993 .3002 50.0 .3010 .3019 .3028 .3036 .3045 .3054 .3063 .3072 .3080 .3089 51.0 .3098 .3107 .3116 .3125 .3134 .3143 .3152 .3161 .3170 .3179 52.0 .3188 .3197 .3206 .3215 .3224 .3233 .3242 .3251 .3261 .3270 53.0 .3279 .3288 .3298 .3307 .3316 .3325 .3335 .3344 .3354 .3363 54.0 .3372 .3382 .3391 .3401 .3410 .3420 .3429 .3439 .3449 .3458 55.0 .3468 .3478 .3487 .3497 .3507 .3516 .3526 .3536 .3546 .3556 56.0 .3565 .3575 .3585 .3595 .3605 .3615 .3625 .3635 .3645 .3655 57.0 .3665 .3675 .3686 .3696 .3706 .3716 .3726 .3737 .3747 .3757 58.0 .3768 .3778 .3788 .3799 .3809 .3820 .3830 .3840 .3851 .3862 59.0 .3872 .3883 .3893 .3904 .3915 .3925 .3936 .3947 .3958 .3969 60.0 .3979 .3990 .4001 .4012 .4023 .4034 .4045 .4056 .4067 .4078 61.0 .4089 .4101 .4112 .4123 .4134 .4145 .4157 .4168 .4179 .4191 62.0 .4202 .4214 .4225 .4237 .4248 .4260 .4271 .4283 .4295 .4306 63.0 .4318 .4330 .4342 .4353 .4365 .4377 .4389 .4401 .4413 .4425 64.0 .4437 .4449 .4461 .4473 .4485 .4498 .4510 .4522 .4535 .4547 65.0 .4559 .4572 .4584 .4597 .4609 .4622 .4634 .4647 .4660 .4672 66.0 .4685 .4698 .4711 .4724 .4737 .4750 .4763 .4776 .4789 .4802 67.0 .4815 .4828 .4841 .4855 .4868 .4881 .4895 .4908 .4921 .4935 68.0 .4948 .4962 .4976 .4989 .5003 .5017 .5031 .5045 .5058 .5072 69.0 .5086 .5100 .5114 .5129 .5143 .5157 .5171 .5186 .5200 .5214 70.0 .5229 .5243 .5258 .5272 .5287 .5302 .5317 .5331 .5346 .5361 71.0 .5376 .5391 .5406 .5421 .5436 .5452 .5467 .5482 .5498 .5513 72.0 .5528 .5544 .5560 .5575 .5591 .5607 .5622 .5638 .5654 .5670 73.0 .5686 .5702 .5719 .5735 .5751 .5768 .5784 .5800 .5817 .5834 74.0 .5850 .5867 .5884 .5901 .5918 .5935 .5952 .5969 .5986 .6003 75.0 .6021 .6038 .6055 .6073 .6091 .6108 .6126 .6144 .6162 .6180 76.0 .6198 .6216 .6234 .6253 .6271 .6289 .6308 .6326 .6345 .6364 77.0 .6383 .6402 .6421 .6440 .6459 .6478 .6498 .6517 .6536 .6556 78.0 .6576 .6596 .6615 .6635 .6655 .6676 .6696 .6716 .6737 .6757 79.0 .6778 .6799 .6819 .6840 .6861 .6882 .6904 .6925 .6946 .6968 80.0 .6990 .7011 .7033 .7055 .7077 .7100 .7122 .7144 .7167 .7190 81.0 .7212 .7235 .7258 .7282 .7305 .7328 .7352 .7375 .7399 .7423 82.0 .7447 .7471 .7496 .7520 .7545 .7570 .7595 .7620 .7645 .7670 83.0 .7696 .7721 .7747 .7773 .7799 .7825 .7852 .7878 .7905 .7932 84.0 .7959 .7986 .8013 .8041 .8069 .8097 .8125 .8153 .8182 .8210 85.0 .8239 .8268 .8297 .8327 .8356 .8386 .8416 .8447 .8477 .8508 86.0 .8539 .8570 .8601 .8633 .8665 .8697 .8729 .8761 .8794 .8827 87.0 .8861 .8894 .8928 .8962 .8996 .9031 .9066 .9101 .9136 .9172 88.0 .9208 .9245 .9281 .9318 .9355 .9393 .9431 .9469 .9508 .9547 89.0 .9586 .9626 .9666 .9706 .9747 .9788 .9830 .9872 .9914 .9957 2.98 SECTION 2 TABLE 2.21 Transmittance-Absorbance Conversion Table From Meites, Handbook of Analytical Chemistry, 1963, McGraw-Hill Book Company; by permission.
This table gives absorbance values to four significant figures corresponding to % transmittance values which are given to three significant figures. The values of % transmittance are given in the left-hand column and in the top row. For example, 8.4% transmittance corresponds to an absorbance of 1.076.
Interpolation is facilitated and accuracy is maximized if the % transmittance is between 1 and 10, by mul-tiplying its value by 10, finding the absorbance corresponding to the result, and adding 1. For example, to find the absorbance corresponding to 8.45% transmittance, note that 84.5% transmittance corresponds to an absorb-ance of 0.0731, so that 8.45% transmittance corresponds to an absorbance of 1.0731. For % transmittance values between 0.1 and 1, multiply by 100, find the absorbance corresponding to the result, and add 2.
Conversely, to find the % transmittance corresponding to an absorbance between 1 and 2, subtract 1 from the absorbance, find the % transmittance corresponding to the result, and divide by 10. For example, an absorb-ance of 1.219 can best be converted to % transmittance by noting that an absorbance of 0.219 would correspond to 60.4% transmittance; dividing this by 10 gives the desired value, 6.04% transmittance. For absorbance values between 2 and 3, subtract 2 from the absorbance, find the % transmittance corresponding to the result, and divide by 100.
% Trans-mittance 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 . . . . . .
3.000 2.699 2.523 2.398 2.301 2.222 2.155 2.097 2.046 1 2.000 1.959 1.921 1.886 1.854 1.824 1.796 1.770 1.745 1.721 2 1.699 1.678 1.658 1.638 1.620 1.602 1.585 1.569 1.553 1.538 3 1.523 1.509 1.495 1.481 1.469 1.456 1.444 1.432 1.420 1.409 4 1.398 1.387 1.377 1.367 1.357 1.347 1.337 1.328 1.319 1.310 5 1.301 1.292 1.284 1.276 1.268 1.260 1.252 1.244 1.237 1.229 6 1.222 1.215 1.208 1.201 1.194 1.187 1.180 1.174 1.167 1.161 7 1.155 1.149 1.143 1.137 1.131 1.125 1.119 1.114 1.108 1.102 8 1.097 1.092 1.086 1.081 1.076 1.071 1.066 1.060 1.056 1.051 9 1.046 1.041 1.036 1.032 1.027 1.022 1.018 1.013 1.009 1.004 10 1.000 0.9957 0.9914 0.9872 0.9830 0.9788 0.9747 0.9706 0.9666 0.9626 11 0.9586 0.9547 0.9508 0.9469 0.9431 0.9393 0.9355 0.9318 0.9281 0.9245 12 0.9208 0.9172 0.9136 0.9101 0.9066 0.9031 0.8996 0.8962 0.8928 0.8894 13 0.8861 0.8827 0.8794 0.8761 0.8729 0.8697 0.8665 0.8633 0.8601 0.8570 14 0.8539 0.8508 0.8477 0.8447 0.8416 0.8386 0.8356 0.8327 0.8297 0.8268 15 0.8239 0.8210 0.8182 0.8153 0.8125 0.8097 0.8069 0.8041 0.8013 0.7986 16 0.7959 0.7932 0.7905 0.7878 0.7852 0.7825 0.7799 0.7773 0.7747 0.7721 17 0.7696 0.7670 0.7645 0.7620 0.7595 0.7570 0.7545 0.7520 0.7496 0.7471 18 0.7447 0.7423 0.7399 0.7375 0.7352 0.7328 0.7305 0.7282 0.7258 0.7235 19 0.7212 0.7190 0.7167 0.7144 0.7122 0.7100 0.7077 0.7055 0.7033 0.7011 20 0.6990 0.6968 0.6946 0.6925 0.6904 0.6882 0.6861 0.6840 0.6819 0.6799 21 0.6778 0.6757 0.6737 0.6716 0.6696 0.6676 0.6655 0.6635 0.6615 0.6596 22 0.6576 0.6556 0.6536 0.6517 0.6498 0.6478 0.6459 0.6440 0.6421 0.6402 23 0.6383 0.6364 0.6345 0.6326 0.6308 0.6289 0.6271 0.6253 0.6234 0.6216 24 0.6198 0.6180 0.6162 0.6144 0.6126 0.6108 0.6091 0.6073 0.6055 0.6038 25 0.6021 0.6003 0.5986 0.5969 0.5952 0.5935 0.5918 0.5901 0.5884 0.5867 26 0.5850 0.5834 0.5817 0.5800 0.5784 0.5766 0.5751 0.5735 0.5719 0.5702 27 0.5686 0.5670 0.5654 0.5638 0.5622 0.5607 0.5591 0.5575 0.5560 0.5544 28 0.5528 0.5513 0.5498 0.5482 0.5467 0.5452 0.5436 0.5421 0.5406 0.5391 29 0.5376 0.5361 0.5346 0.5331 0.5317 0.5302 0.5287 0.5272 0.5258 0.5243 30 0.5229 0.5214 0.5200 0.5186 0.5171 0.5157 0.5143 0.5129 0.5114 0.5100 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.99 TABLE 2.21 Transmittance-Absorbance Conversion Table (Continued) % Trans-mittance 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 31 0.5086 0.5072 0.5058 0.5045 0.5031 0.5017 0.5003 0.4989 0.4976 0.4962 32 0.4949 0.4935 0.4921 0.4908 0.4895 0.4881 0.4868 0.4855 0.4841 0.4828 33 0.4815 0.4802 0.4789 0.4776 0.4763 0.4750 0.4737 0.4724 0.4711 0.4698 34 0.4685 0.4672 0.4660 0.4647 0.4634 0.4622 0.4609 0.4597 0.4584 0.4572 35 0.4559 0.4547 0.4535 0.4522 0.4510 0.4498 0.4486 0.4473 0.4461 0.4449 36 0.4437 0.4425 0.4413 0.4401 0.4389 0.4377 0.4365 0.4353 0.4342 0.4330 37 0.4318 0.4306 0.4295 0.4283 0.4271 0.4260 0.4248 0.4237 0.4225 0.4214 38 0.4202 0.4191 0.4179 0.4168 0.4157 0.4145 0.4134 0.4123 0.4112 0.4101 39 0.4089 0.4078 0.4067 0.4056 0.4045 0.4034 0.4023 0.4012 0.4001 0.3989 40 0.3979 0.3969 0.3958 0.3947 0.3936 0.3925 0.3915 0.3904 0.3893 0.3883 41 0.3872 0.3862 0.3851 0.3840 0.3830 0.3820 0.3809 0.3799 0.3788 0.3778 42 0.3768 0.3757 0.3747 0.3737 0.3726 0.3716 0.3706 0.3696 0.3686 0.3675 43 0.3665 0.3655 0.3645 0.3635 0.3625 0.3615 0.3605 0.3595 0.3585 0.3575 44 0.3565 0.3556 0.3546 0.3536 0.3526 0.3516 0.3507 0.3497 0.3487 0.3478 45 0.3468 0.3458 0.3449 0.3439 0.3429 0.3420 0.3410 0.3401 0.3391 0.3382 46 0.3372 0.3363 0.3354 0.3344 0.3335 0.3325 0.3316 0.3307 0.3298 0.3288 47 0.3279 0.3270 0.3261 0.3251 0.3242 0.3233 0.3224 0.3215 0.3206 0.3197 48 0.3188 0.3179 0.3170 0.3161 0.3152 0.3143 0.3134 0.3125 0.3116 0.3107 49 0.3098 0.3089 0.3080 0.3072 0.3063 0.3054 0.3045 0.3036 0.3028 0.3019 50 0.3010 0.3002 0.2993 0.2984 0.2976 0.2967 0.2958 0.2950 0.2941 0.2933 51 0.2924 0.2916 0.2907 0.2899 0.2890 0.2882 0.2874 0.2865 0.2857 0.2848 52 0.2840 0.2832 0.2823 0.2815 0.2807 0.2798 0.2790 0.2782 0.2774 0.2765 53 0.2757 0.2749 0.2741 0.2733 0.2725 0.2716 0.2708 0.2700 0.2692 0.2684 54 0.2676 0.2668 0.2660 0.2652 0.2644 0.2636 0.2628 0.2620 0.2612 0.2604 55 0.2596 0.2588 0.2581 0.2573 0.2565 0.2557 0.2549 0.2541 0.2534 0.2526 56 0.2518 0.2510 0.2503 0.2495 0.2487 0.2480 0.2472 0.2464 0.2457 0.2449 57 0.2441 0.2434 0.2426 0.2418 0.2411 0.2403 0.2396 0.2388 0.2381 0.2373 58 0.2366 0.2358 0.2351 0.2343 0.2336 0.2328 0.2321 0.2314 0.2306 0.2299 59 0.2291 0.2284 0.2277 0.2269 0.2262 0.2255 0.2248 0.2240 0.2233 0.2226 60 0.2218 0.2211 0.2204 0.2197 0.2190 0.2182 0.2175 0.2168 0.2161 0.2154 61 0.2147 0.2140 0.2132 0.2125 0.2118 0.2111 0.2104 0.2097 0.2090 0.2083 62 0.2076 0.2069 0.2062 0.2055 0.2048 0.2041 0.2034 0.2027 0.2020 0.2013 63 0.2007 0.2000 0.1993 0.1986 0.1979 0.1972 0.1965 0.1959 0.1952 0.1945 64 0.1938 0.1931 0.1925 0.1918 0.1911 0.1904 0.1898 0.1891 0.1884 0.1878 65 0.1871 0.1864 0.1858 0.1851 0.1844 0.1838 0.1831 0.1824 0.1818 0.1811 66 0.1805 0.1798 0.1791 0.1785 0.1778 0.1772 0.1765 0.1759 0.1752 0.1746 67 0.1739 0.1733 0.1726 0.1720 0.1713 0.1707 0.1701 0.1694 0.1688 0.1681 68 0.1675 0.1669 0.1662 0.1656 0.1649 0.1643 0.1637 0.1630 0.1624 0.1618 69 0.1612 0.1605 0.1599 0.1593 0.1586 0.1580 0.1574 0.1568 0.1561 0.1555 70 0.1549 0.1543 0.1537 0.1530 0.1524 0.1518 0.1512 0.1506 0.1500 0.1494 71 0.1487 0.1481 0.1475 0.1469 0.1463 0.1457 0.1451 0.1445 0.1439 0.1433 72 0.1427 0.1421 0.1415 0.1409 0.1403 0.1397 0.1391 0.1385 0.1379 0.1373 73 0.1367 0.1361 0.1355 0.1349 0.1343 0.1337 0.1331 0.1325 0.1319 0.1314 2.100 SECTION 2 TABLE 2.21 Transmittance-Absorbance Conversion Table (Continued) % Trans-mittance 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 74 0.1308 0.1302 0.1296 0.1290 0.1284 0.1278 0.1273 0.1267 0.1261 0.1255 75 0.1249 0.1244 0.1238 0.1232 0.1226 0.1221 0.1215 0.1209 0.1203 0.1198 76 0.1192 0.1186 0.1180 0.1175 0.1169 0.1163 0.1158 0.1152 0.1146 0.1141 77 0.1135 0.1129 0.1124 0.1118 0.1113 0.1107 0.1101 0.1096 0.1090 0.1085 78 0.1079 0.1073 0.1068 0.1062 0.1057 0.1051 0.1046 0.1040 0.1035 0.1029 79 0.1024 0.1018 0.1013 0.1007 0.1002 0.0996 0.0991 0.0985 0.0980 0.0975 80 0.0969 0.0964 0.0958 0.0953 0.0947 0.0942 0.0937 0.0931 0.0926 0.0921 81 0.0915 0.0910 0.0904 0.0899 0.0894 0.0888 0.0883 0.0878 0.0872 0.0867 82 0.0862 0.0857 0.0851 0.0846 0.0841 0.0835 0.0830 0.0825 0.0820 0.0814 83 0.0809 0.0804 0.0799 0.0794 0.0788 0.0783 0.0778 0.0773 0.0768 0.0762 84 0.0757 0.0752 0.0747 0.0742 0.0737 0.0731 0.0726 0.0721 0.0716 0.0711 85 0.0706 0.0701 0.0696 0.0691 0.0685 0.0680 0.0675 0.0670 0.0665 0.0660 86 0.0655 0.0650 0.0645 0.0640 0.0635 0.0630 0.0625 0.0620 0.0615 0.0610 87 0.0605 0.0600 0.0595 0.0590 0.0585 0.0580 0.0575 0.0570 0.0565 0.0560 88 0.0555 0.0550 0.0545 0.0540 0.0535 0.0531 0.0526 0.0521 0.0516 0.0511 89 0.0506 0.0501 0.0496 0.0491 0.0487 0.0482 0.0477 0.0472 0.0467 0.0462 90 0.0458 0.0453 0.0448 0.0443 0.0438 0.0434 0.0429 0.0424 0.0419 0.0414 91 0.0410 0.0405 0.0400 0.0395 0.0391 0.0386 0.0381 0.0376 0.0372 0.0367 92 0.0362 0.0357 0.0353 0.0348 0.0343 0.0339 0.0334 0.0329 0.0325 0.0320 93 0.0315 0.0311 0.0306 0.0301 0.0297 0.0292 0.0287 0.0283 0.0278 0.0273 94 0.0269 0.0264 0.0259 0.0255 0.0250 0.0246 0.0241 0.0237 0.0232 0.0227 95 0.0223 0.0218 0.0214 0.0209 0.0205 0.0200 0.0195 0.0191 0.0186 0.0182 96 0.0177 0.0173 0.0168 0.0164 0.0159 0.0155 0.0150 0.0146 0.0141 0.0137 97 0.0132 0.0128 0.0123 0.0119 0.0114 0.0110 0.0106 0.0101 0.0097 0.0092 98 0.0088 0.0083 0.0079 0.0074 0.0070 0.0066 0.0061 0.0057 0.0052 0.0048 99 0.0044 0.0039 0.0035 0.0031 0.0026 0.0022 0.0017 0.0013 0.0009 0.0004 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.101 TABLE 2.22 Wavenumber/Wavelength Conversion Table This table is based on the conversion: wavenumber (in m). For example, 1 (in cm ) 10 000/wavelength 15.4 m is equal to 649 cm1.
Wavelength (m) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 cm1 1.0 10000 9091 8333 7692 7143 6667 6250 5882 5556 5263 2.0 5000 4762 4545 4348 4167 4000 3846 3704 3571 3448 3.0 3333 3226 3125 3030 2941 2857 2778 2703 2632 2564 4.0 2500 2439 2381 2326 2273 2222 2174 2128 2083 2041 5.0 2000 1961 1923 1887 1852 1818 1786 1754 1724 1695 6.0 1667 1639 1613 1587 1563 1538 1515 1493 1471 1449 7.0 1429 1408 1389 1370 1351 1333 1316 1299 1282 1266 8.0 1250 1235 1220 1205 1190 1176 1163 1149 1136 1124 9.0 1111 1099 1087 1075 1064 1053 1042 1031 1020 1010 10.0 1000 990 980 971 962 952 943 935 926 917 11.0 909 901 893 885 877 870 862 855 847 840 12.0 833 826 820 813 806 800 794 787 781 775 13.0 769 763 758 752 746 741 735 730 725 719 14.0 714 709 704 699 694 690 685 680 676 671 15.0 667 662 658 654 649 645 641 637 633 629 16.0 625 621 617 613 610 606 602 599 595 592 17.0 588 585 581 578 575 571 568 565 562 559 18.0 556 552 549 546 543 541 538 535 532 529 19.0 526 524 521 518 515 513 510 508 505 503 20.0 500 498 495 493 490 488 485 483 481 478 21.0 476 474 472 469 467 465 463 461 459 457 22.0 455 452 450 448 446 444 442 441 439 437 23.0 435 433 431 429 427 426 424 422 420 418 24.0 417 415 413 412 410 408 407 405 403 402 25.0 400 398 397 395 394 392 391 389 388 386 26.0 385 383 382 380 379 377 376 375 373 372 27.0 370 369 368 366 365 364 362 361 360 358 28.0 357 356 355 353 352 351 350 348 347 346 29.0 345 344 342 341 340 339 338 337 336 334 30.0 333 332 331 330 329 328 327 326 325 324 31.0 323 322 321 319 318 317 316 315 314 313 32.0 313 312 311 310 309 308 307 306 305 304 33.0 303 302 301 300 299 299 298 297 296 295 34.0 294 293 292 292 291 290 289 288 287 287 35.0 286 285 284 283 282 282 281 280 279 279 36.0 278 277 276 275 274 274 273 272 272 271 37.0 270 270 269 268 267 267 266 265 265 264 38.0 263 262 262 261 260 260 259 258 258 257 39.0 256 256 255 254 254 253 253 252 251 251 40.0 250 2.102 SECTION 2 2.2 MATHEMATICAL TABLES 2.2.1 Logarithms 2.2.1.1 Properties and Uses Definition of Logarithm.
The logarithm x of the number N to the base b is the exponent of the power to which b must be raised to give N. That is, x log N x or b N b The number N is positive and b may be any positive number except 1.
Properties of Logarithms 1. The logarithm of a product is equal to the sum of the logarithms of the factors; thus, log M · N log M log N b b b 2. The logarithm of a quotient is equal to the logarithm of the numerator minus the logarithm of the denominator; thus, M log log M log N b b b N 3. The logarithm of a power of a number is equal to the logarithm of the base multiplied by the exponent of the power; thus, p log M p · log M b b 4. The logarithm of a root of a number is equal to the logarithm of the number divided by the index of the root; thus 1 q log M log M b p b q Other properties of logarithms: p q p log b 1 log M log M b b p b q log N a log 1 0 log N log N · log a b b a b log b a N log N b log (b ) N b N b Systems of Logarithms.
There are two common systems of logarithms in use: (1) the natural (Napierian or hyperbolic) system which uses the base (2) the common (Brigg-e 2.71828 . . . ; sian) system which uses the base 10.
We shall use the abbreviation in this section.
log N log N 10 Unless otherwise stated, tables of logarithms are always tables of common logarithms.
Characteristic of a Common Logarithm of a Number.
Every real positive number has a real common logarithm such that if Neither zero nor any negative number has a a b, log a log b.
real logarithm.
A common logarithm, in general, consists of an integer, which is called the characteristic, and a decimal (usually endless), which is called the mantissa. The characteristic of any number may be determined from the following rules: GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.103 Rule I.
The characteristic of any number greater than 1 is one less than the number of digits before the decimal point.
Rule II. The characteristic of a number less than 1 is found by subtracting from 9 the number of ciphers between the decimal point and the first significant digit, and writing 10 after the result.
Thus the characteristic of log 936 is 2; the characteristic of log 9.36 is 0; of log 0.936 is 9 10; of log 0.00936 is 7 10.
Mantissa of a Common Logarithm of a Number.
An important consequence of the use of base 10 is that the mantissa of a number is independent of the position of the decimal point. Thus 93 600, 93.600, 0.000 936, all have the same mantissa. Hence in Tables of Common Logarithms only mantissas are given. A five-place table gives the values of the mantissa correct to five places of decimals.
Since it is possible to obtain logarithms by using hand calculators, this Handbook contains no logarithm tables.
Helpful Hints 1. When connecting numbers to logarithms, use as many decimal places in the mantissa as there are significant digits in the number.
2. When finding the antilogarithm, keep as many significant digits as there are decimal places in the mantissa.
Examples: log antilog 10.35 1.0149; 0.065 1.16.
Some writers use a dash over the characteristic to indicate a negative value; for example, log 0.004657 7.6681 10 3.6681 2.104 SECTION 2 TABLE 2.23 Derivatives and Differentiation Rules for differentiation.
From Baumeister and Marks, Standard Handbook for Mechanical Engineers, 7th ed., McGraw-Hill Book Company, New York (1967); by permission.
To find the derivative of a given function at a given point: (1) If the function is given only by a curve, measure graphically the slope of the tangent at the point in question; (2) if the function is given by a mathematical expression, use the following rules for differentiation. These rules give, directly, the differential, dy, in terms of dx; to find the derivative, dy/dx, divide through by dx.
Here u, v, w, . . . represents any functions of a variable x, or may themselves be independent variables. a is a constant which does not change in values in the same discussion; e 2.71828.
1. d(a u) du 2. d(au) a du 3. d(u v w · · ·) du dv dw · · · 4. d(uv) u dv v du du dv dw 5. d(uvw . . .) (uvw . . .) · · · u v w u v du u dv 6. d 2 v v m m1 7. d(u ) mu du 2 3 2 Thus, d(u ) 2u du; d(u ) 3u du; etc.
du 8. d u p 2 u p 1 du 9. d 2 u u u u 10. d(e ) e du u u 11. d(a ) (ln a)a du du 12. d ln u u du du 13. d log u (log e) (0.4343 . . .) 10 10 u u 14. d sin u cos u du 15. d csc u cot u csc u du 16. d cos u sin u du 17. d sec u tan u sec u du 2 18. d tan u sec u du 2 19. d cot u csc u du du 1 20. d sin u 2 1 u p du 1 21. d csc u 2 u u 1 p du 1 22. d cos u 2 1 u p du 1 23. d sec u 2 u u 1 p du 1 24. d tan u 2 1 u du 1 25. d cot u 2 1 u 26. d ln sin u cot u du 2 du 27. d ln tan u sin 2u 28. d ln cos u tan u du 2 du 29. d ln cot u sin 2u 30. d sinh u cosh u du 31. d csch u csch u coth u du 32. d cosh u sinh u du 33. d sech u sech u tanh u du 2 34. d tanh u sech u du 2 35. d coth u csch u du du 1 36. d sinh u 2 u 1 p du 1 37. d csch u 2 u u 1 p du 1 38. d cosh u 2 u 1 p du 1 39. d sech u 2 u 1 u p du 1 40. d tanh u 2 1 u du 1 41. d coth u 2 1 u v v1 42. d(u ) (u )(u ln u dv v du) GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.105 TABLE 2.24 Integrals From Baumeister and Marks, Standard Handbook for Mechanical Engineers, 7th ed., McGraw-Hill Book Company, New York (1967); by permission.
An integral of f(x) dx is any function whose differential is f(x) dx, and is denoted by f(x) dx. All the integrals of f(x) dx are included in the expression f(x) dx C, where f(x) dx is any particular integral, and C is an arbitrary constant. The process of finding (when possible) an integral of a given function consists in recognizing by inspection a function which, when differentiated, will produce the given function; or in transforming the given function into a form in which such recognition is easy. The most common integrable forms are collected in the following brief table; for a more extended list, see Peirce, Table of Integrals, Ginn, or Dwight, Table of Integrals and other Mathematical Data, Macmillan.
General formulas 1.
a du a du au C 2.
(u v) dx u dx v dx 3.
u dv uv v du 4.
f(x) dx f[F(y)]F(y) dy, x F(y) 5.
dy f(x, y) dx dx f(x, y) dy Fundamental integrals n1 x n 6.
x dx C, when n 1 n 1 dx 7.
ln x C ln cx x x x 8.
e dx e C 9.
sin x dx cos x C 10.
cos x dx sin x C dx 11.
cot x C 2 sin x dx 12.
tan x C 2 cos x dx 1 1 13.
sin x C cos x c 2 1 x p dx 1 1 14.
tan x C cot x c 2 1 x Rational functions n1 (a bx) n 15.
(a bx) dx C (n 1)b dx 1 1 16.
ln(a bx) C ln c(a bx) a bx b b 1 1 17.
dx C 2 x x dx 1 18.
C 2 (a bx) b(a bx) dx 1 x 1 1 19.
⁄2 ln C tanh x C, when x 1 2 1 x 1 x dx x 1 1 1 20.
⁄2 ln C coth x C, when x 1 2 x 1 x 1 dx 1 b 1 21.
tan x C 2 a bx a ab q p dx 1 ab bx p 22.
ln C [a 0, b 0] 2 a bx 2 ab ab bx p p 1 b 1 tanh x C a ab q p 2.106 SECTION 2 TABLE 2.24 Integrals (Continued) Rational functions (continued) dx 1 b cx 1 2 23.
tan C [ac b 0] 2 2 2 a 2bx cx ac b ac b p p 2 1 b ac b cx p ln C 2 2 2 b ac b ac b cx p p 2 [b ac 0] 1 b cx 1 tanh C 2 2 b ac b ac p p dx 1 2 24.
C, when b ac 2 a 2bx cx b cx (m nx) dx n mc nb dx 2 25.
ln (a 2bx cx ) 2 2 a 2bx cx 2c c a 2bx cx f(x) dx 26. In , if f(x) is a polynomial of higher than the first degree, divide 2 a 2bx cx by the denominator before integrating.
dx 1 b cx 27.
2 p 2 2 p1 (a 2bx cx ) 2(ac b )(p 1) (a 2bx cx ) (2p 3)c dx 2 2 p1 2(ac b )(p 1) (a 2bx cx ) (m nx) dx n 1 28.
2 p 2 p1 (a 2bx cx ) 2c(p 1) (a 2bx cx ) mc nb dx 2 p c (a 2bx cx ) m1 n1 x (a bx) (m 1)a m1 n m2 n 29.
x (a bx) dx x (a bx) dx (m n)b (m n)b m n x (a bx) na m1 n1 x (a bx) dx m n m n Irrational functions 2 3 30.
a bx dx (a bx) C p p 3b dx 2 31.
a bx C p b a bx p (m nx) dx 2 32.
(3mb 2an nbx) a bx C p 2 3b a bx p dx 33.
; substitute y a bx, and use 21 and 22 p (m nx) a bx p n f(x, a bx) p n 34.
dx; substitute a bx y p n F(x, a bx) p dx x x 1 1 35.
sin C cos c 2 2 a a a x p dx x 2 2 1 36.
ln (x a x ) C sinh c p 2 2 a a x p dx x 2 2 1 37.
ln (x x a ) C cosh c p 2 2 a x a p GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.107 TABLE 2.24 Integrals (Continued) Irrational functions (continued) dx 1 2 38.
ln (b cx c a 2bx cx ) C, when c 0 p p 2 a 2bx cx c p p 1 b cx 1 2 sinh C, when ac b 0 2 c ac b p p 1 b cx 1 2 cosh C, when b ac 0 2 c b ac p p 1 b cx 1 sin C, when c 0 2 c b ac p p (m nx) dx n mc nb dx 2 39.
a 2bx cx p 2 2 c c a 2bx cx a 2bx cx p p m m1 m2 m1 x dx x X (m 1)a x dx (2m 1)b x dx 40.
, 2 mc mc X mc X a 2bx cx p 2 when X a 2bx cx p 2 x a 2 2 2 2 2 2 41.
a x dx a x ln (x a x ) C p p p 2 2 2 x a x 2 2 1 a x sinh c p 2 2 a 2 x a x 2 2 2 2 1 42.
a x dx a x sin C p p 2 2 a 2 x a 2 2 2 2 2 2 43.
x a dx x a ln (x x a ) C p p p 2 2 2 x a x 2 2 1 x a cosh c p 2 2 a b cx 2 2 44.
a 2bx cx dx a 2bx cx p p 2c 2 ac b dx C 2 2c a 2bx cx p Transcendental functions x a x 45.
a dx C ln a n ax x e n n(n 1) n!
n ax 46.
x e dx 1 · · · C 2 2 n n a ax a x a x 47.
ln x dx x ln x x C ln x ln x 1 48.
dx C 2 x x x n (ln x) 1 n1 49.
dx (ln x) C x n 1 2 1 1 1 1 50.
sin x dx ⁄4 sin 2x ⁄2x C ⁄2 sin x cos x ⁄2x C 2 1 1 1 1 51.
cos x dx ⁄4 sin 2x ⁄2x C ⁄2 sin x cos x ⁄2x C cos mx 52.
sin mx dx C m sin mx 53.
cos mx dx C m 2.108 SECTION 2 TABLE 2.24 Integrals (Continued) Transcendental functions (continued) cos(m n)x cos(m n)x 54.
sin mx cos nx dx C 2(m n) 2(m n) sin(m n)x sin(m n)x 55.
sin mx sin nx dx C 2(m n) 2(m n) sin(m n)x sin(m n)x 56.
cos mx cos nx dx C 2(m n) 2(m n) 57.
tan x dx ln cos x C 58.
cot x dx ln sin x C dx x 59.
ln tan C sin x 2 dx x 60.
ln tan C cos x 4 2 dx x 61.
tan C 1 cos x 2 dx x 62.
cot C 1 cos x 2 2 1 63.
sin x cos x dx ⁄2 sin x C dx 64.
ln tan x C sin x cos x n1 cos x sin x n 1 n n2 65. sin x dx sin x dx n n n1 sin x cos x n 1 n n2 66. cos x dx cos x dx n n n1 tan x n n2 67.
tan x dx tan x dx n 1 n1 cot x n n2 68.
cot x dx cot x dx n 1 dx cos x n 2 dx 69.
n n1 n2 sin x (n 1) sin x n 1 sin x dx sin x n 2 dx 70.
n n1 n2 cos x (n 1) cos x n 1 cos x p1 q1 sin x cos x q 1 p q p q2 71. sin x cos x dx sin x cos x dx p q p q p1 q1 sin x cos p 1 p2 q sin x cos x dx p q p q p1 q1 sin x cos x p q 2 p q p2 q 72. sin x cos x dx sin x cos x dx p 1 p 1 p1 q1 sin x cos x q p 2 p q p q2 73. sin x cos x dx sin x cos x dx q 1 q 1 dx 2 a b 1 2 2 1 74.
tan tan ⁄2x C, when a b 2 2 a b cos x a b a b q p 2 2 1 b a cos x sin x b a p ln C 2 2 a b cos x b a 2 2 p [a b ] 2 b a 1 1 tanh tan ⁄2x C 2 2 b a b a q p cos x dx x a dx 75.
C a b cos x b b a b cos x If n, p, or q is an odd number, substitute cos x z or sin x z GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.109 TABLE 2.24 Integrals (Continued) Transcendental functions (continued) sin x dx 1 76.
ln (a b cos x) C a b cos x b A B cos x C sin x dy 77.
dx A a b cos x c sin x a p cos y cos y dy sin y dy (B cos u C sin u) (B sin u C cos u) , a p cos y a p cos y where b p cos u, c p sin u, and x u y a sin bx b cos bx ax ax 78.
e sin bx dx e C 2 2 a b a cos bx b sin bx ax ax 79.
e cos bx dx e C 2 2 a b 1 1 2 80.
sin x dx x sin x 1 x C p 1 1 2 81.
cos x dx x cos x 1 x C p 1 1 2 1 82.
tan x dx x tan x ⁄2 ln(1 x ) C 1 1 2 1 83.
cot x dx x cot x ⁄2 ln(1 x ) C 84.
sinh x dx cosh x C 85.
tanh x dx ln cosh x C 86.
cosh x dx sinh x C 87.
coth x dx ln sinh x C 1 x 88.
sech x dx 2 tan (e ) C x 89.
csch x dx ln tanh C 2 2 1 1 90.
sinh x dx ⁄2 sinh x cosh x ⁄2x C 2 1 1 91.
cosh x dx ⁄2 sinh x cosh ⁄2x C 2 92.
sech x dx tanh x C 2 93.
csch x dx coth x C 2.2.2 Surface Areas and Volumes Let a, b, c, d, and s denote lengths, A denote areas, and V denote volumes.
Triangle.
where b denotes the base and h the altitude.
A bh/2, Rectangle.
where a and b denote the lengths of the sides.
A ab, Parallelogram (opposite sides parallel).
where a and b denote the sides, h A ah ab sin , the altitude, and the angle between the sides.
Trapezoid (four sides, two parallel).
where a and b are the sides and h the 1 A ⁄2h(a b), altitude.
Adapted by permission from Burington, Handbook of Mathematical Tables and Formulas, 3d. ed., McGraw-Hill Book Company, New York (1959).
2.110 SECTION 2 Regular Polygon of n Sides (Fig. 2.1) 1 180 2 A na ctn where a is length of side 4 n a 180 R csc where R is radius of circumscribed circle 2 n a 180 r ctn where r is radius of inscribed circle 2 n 360 2 radians n n n 2 n 2 · 180 radians where and are the angles indicated in n n Fig. 2.1 a 2r tan 2R sin 2 2 Circle (Fig. 2.2).
Let C circumference S length of arc subtended by R radius l chord subtended by arc S D diameter h rise A area central angle in radians C 2R D 3.14159 . . .
d 1 1 S R ⁄2D D cos R 2 2 l 2 R d 2R sin 2d tan p 2 2 2 2 1 1 d ⁄2 4R l R cos ⁄2l ctn p 2 2 h R d S 2S d l l 1 1 1 2 cos 2 tan 2 sin R D R 2d D 2 2 1 A (circle) R ⁄4D 2 1 1 A (sector) ⁄2Rs ⁄2R 2 1 A (segment) A (sector) A (triangle) ⁄2R ( sin ) R h 2 1 2 R cos (R h) 2Rh h p R FIGURE 2.1 FIGURE 2.2 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.111 Perimeter of n-sided regular polygon inscribed in a circle 2nR sin n 2 2 1 Area of inscribed polygon ⁄2nR sin n Perimeter of n-sided regular polygon circumscribed about a circle 2nR tan n 2 Area of circumscribed polygon nR tan n Radius of circle inscribed in a triangle of sides a, b, and c is (s a)(s b)(s c) 1 r s ⁄2(a b c) s q Radius of circle circumscribed about a triangle is abc R 4 s(s a)(s b)(s c) p Ellipse (Fig. 2.3).
where a and b are lengths of semimajor A ab, and semiminor axes, respectively.
Parabola (Fig. 2.4) 2ld A 3 d 2 2 Height of d (l l ) 1 1 2 l d d1 Width of l l 1 d q 2 4 2 2d 2 2d Length of arc l 1 · · · 3 l 5 l Area by Approximation (Fig. 2.5).
If y0, y1, y2, . . . , are the length of a series of equally yn spaced parallel chords, and if h is their distance apart, the area enclosed by the boundary is given approximately by any one of the following formulae: 1 A h[ ⁄2(y y ) y y · · · y ] (Trapezoidal Rule) T 0 n 1 2 n1 FIGURE 2.3 FIGURE 2.4 FIGURE 2.5 2.112 SECTION 2 A h[0.4(y y ) 1.1(y y ) y y · · · y ] (Durand’s Rule) D 0 n 1 n1 2 3 n2 1 A ⁄3h[(y y ) 4(y y · · · y ) 2(y y · · · y )] S 0 n 1 3 n1 2 4 n2 (n even, Simpson’s Rule) In general, gives the most accurate approximation.
AS The greater the value of n, the greater the accuracy of approximation.
Cube.
total surface where a is length of side and d is length of 3 2 V a ; d a 2; area 6a , p diagonal.
Rectangular Parallelopiped.
total surface 2 2 2 V abc; d a b c ; area 2(ab bc p where a, b, and c are the lengths of the sides and d is length of diagonal.
ca), Prism or Cylinder V (area of base) · (altitude) Lateral area (perimeter of right section) · (lateral edge) Pyramid or Cone 1 V ⁄3(area of base) · (altitude) 1 Lateral area of regular pyramid ⁄2(perimeter of base) · (slant height) Frustum of Pyramid or Cone.
where h is the altitude and A1 and 1 V ⁄3(A A A · A )h, 1 2 p 1 2 A2 are the areas of the bases.
1 Lateral area of a regular figure ⁄2(sum of perimeters of base) · (slant height) Prismoid h V (A A 4A ) 1 2 3 6 where h altitude, A1 and A2 are the areas of the bases, and A3 is the area of the midsection parallel to bases.
Area of Surface and Volume of Regular Polyhedra of Edge l Name Type of surface Area of surface Volume Tetrahedron 4 equilateral triangles 1.73205l2 0.11785l3 Hexahedron (cube) 6 squares 6.00000l2 1.00000l3 Octahedron 8 equilateral triangles 3.46410l2 0.47140l3 Dodecahedron 12 pentagons 20.64578l2 7.66312l3 Icosahedron 20 equilateral triangles 8.66025l2 2.18170l3 Sphere (Fig. 2.6) 2 2 A (sphere) 4R D A (zone) 2Rh Dh 1 1 3 3 4 1 V (sphere) ⁄3R ⁄8D GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.113 2 2 2 1 V (spherical sector) ⁄3R h ⁄6D h 1 1 2 2 1 V (spherical segment of one base) ⁄6h (3r h ) 3 3 3 2 2 2 1 V (spherical segment of two bases) ⁄6h (3r 3r h ) 2 3 2 2 2 A (lune) 2R where is angle in radians of lune Ellipsoid.
where a, b, and c are the lengths 4 V ⁄3abc, of the semiaxes.
Torus (Fig. 2.7) 2 2 V 2 Rr 2 Area of surface S 4 Rr 2.2.3 Trigonometric Functions of an Angle Let x be any angle whose initial side lies on the positive x axis and whose vertex is at the origin, and (x, y) be any point on the terminal side of the angle. (x is positive if measured along OX to the right, from the y axis; and negative, if measured along OX to the left from the y axis. Likewise, y is positive if measured parallel to OY, and negative if measured parallel to OY.) Let r be the positive distance from the origin to the point. The trigonometric functions of an angle are defined as follows: y sine sin r x cosine cos r y tangent tan x x cotangent ctn cot y r secant sec x r cosecant x csc y exsecant x exsec sec 1 versine vers 1 cos coversine covers 1 sin 1 haversine hav ⁄2 vers FIGURE 2.6 FIGURE 2.7 FIGURE 2.8 2.114 SECTION 2 2.2.3.1 Signs of the Functions Quadrant sin cos tan ctn sec csc I II III IV 2.2.3.2 Relations between the Functions of a Single Angle 2 2 sin x cos x 1 sin x tan x cos x 1 cos x cot x tan x sin x 1 2 2 1 tan x sec x 2 cos x 1 2 2 1 cot x csc x 2 sin x tan x 1 2 sin x 1 cos x p 2 2 1 tan x 1 cot x p p 1 cot x 2 cos x 1 sin x p 2 2 1 tan x 1 cot x p p 2.2.3.3 Functions of Negative Angles.
cos(x) cos x; sin(x) sin x; tan(x) tan x.
2.2.3.4 Functions of the Sum and Difference of Two Angles sin(x y) sin x cos y cos x sin y cos(x y) cos x cos y sin x sin y tan x tan y tan(x y) 1 tan x tan y cot x cot y 1 cot(x y) cot x cot y sin(x y) sin x cos y cos x sin y From Baumeister and Marks, Standard Handbook for Mechanical Engineers, 7th ed., McGraw-Hill Book Company, New York (1967); by permission.
FIGURE 2.9 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.115 cos(x y) cos x cos y sin x sin y tan x tan y tan(x y) 1 tan x tan y cot x cot y 1 cot(x y) cot y cot x 1 1 sin x sin y 2 sin ⁄2(x y) cos ⁄2(x y) 1 1 sin x sin y 2 cos ⁄2(x y) sin ⁄2(x y) 1 1 cos x cos y 2 cos ⁄2(x y) cos ⁄2(x y) 1 1 cos x cos y 2 sin ⁄2(x y) sin ⁄2(x y) sin(x y) sin(x y) tan x tan y cot x cot y cos x cos y sin x sin y sin(x y) sin(y x) tan x tan y cot x cot y cos x cos y sin x sin y 2 2 2 2 sin x sin y cos y cos x sin(x y) sin(x y) 2 2 2 2 cos x sin y cos y sin x cos(x y) cos(x y) sin(45 x) cos(45 x) tan(45 x) cot(45 x) sin(45 x) cos(45 x) tan(45 x) cot(45 x) In the following transformations, a and b are supposed to be positive, 2 2 c a b , A p the positive acute angle for which B b/a: a cos x b sin x c sin(A x) c cos(B x) a cos x b sin x c sin(A x) c cos(B x) 2.2.4 Expansion in Series The range of values of x for which each of the series is convergent is stated at the right of the series.
2.2.4.1 Exponential and Logarithmic Series 2 3 4 x x x x x e 1 · · · ( x ) 1!
2!
3!
4!
2 3 m m m x mx 2 3 a e 1 x x x · · · (a 0, x ) 1!
2!
3!
where m ln a 2.3026 log a.
10 From Baumeister and Marks, Standard Handbook for Mechanical Engineers, 7th ed., McGraw-Hill Book Company, New York (1967); by permission.
2.116 SECTION 2 2 3 4 5 x x x x ln(1 x) x · · · (1 x 1) 2 3 4 5 2 3 4 5 x x x x ln(1 x) x · · · (1 x 1) 2 3 4 5 3 5 7 1 x x x x ln 2 x · · · (1 x 1) 1 x 3 5 7 x 1 1 1 1 1 ln 2 · · · (x 1 or 1 x) 3 5 7 x 1 x 3x 5x 7x 3 5 x 1 1 x 1 1 x 1 ln x 2 · · · (0 x ) x 1 3 x 1 5 x 1 3 5 x 1 x 1 x ln(a x) ln a 2 · · · 2a x 3 2a x 5 2a x (0 a , a x ) Series for the Trigonometric Functions.
In the following formulas, all angles must be expressed in radians. If D the number of degrees in the angle, and x its radian measure, then x 0.017453D.
3 5 7 x x x sin x x · · · ( x ) 3!
5!
7!
2 4 6 8 x x x x cos x 1 · · · ( x ) 2!
4!
6!
8!
3 5 7 9 x 2x 17x 62x tan x x · · · x 3 15 315 2835 2 2 3 5 7 1 x x 2x x cot x · · · ( x ) x 3 45 945 4725 3 5 7 y 3y 5y 1 sin y y · · · (1 y 1) 6 40 112 3 5 7 y y y 1 tan y y · · · (1 y 1) 3 5 7 1 1 1 1 1 1 cos y ⁄2 sin y cot y ⁄2 tan y Reversing a Series.
If then 2 3 4 5 2 2 y x bx cx dx ex · · · , x y by (2b provided the latter series 3 3 4 4 2 2 5 c)y (5b 5bc d)y (14b 21b c 6bd 3c e)y · · · , is convergent.
Fourier’s Series.
Let f(x) be a function which is finite in the interval from to x c x and whose graph has finite arc length in that interval. Then, for any value of x between c c and c, If is a point of discontinuity, f(x0) is to be defined as where f1(x0) is the limit of f(x) when x 1 x x ⁄2[f (x ) f (x )], 0 1 0 2 0 approaches x0 from below, and f2(x0) is the limit of f(x) when x approaches x0 from above.
GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.117 x 2c 3x 1 f(x) ⁄2a a cos a cos a cos · · · 0 1 2 3 c c c x 2x 3x b sin b sin b sin · · · 1 2 3 c c c where the constant coefficients are determined as follows: c c 1 nt 1 nt a f(t) cos dt b f(t) sin dt n n c c c c c c In case the curve is symmetrical with respect to the origin, the a’s are all zero, and the y f(x) series is a sine series. In case the curve is symmetrical with respect to the y axis, the b’s are all zero, and a cosine series results. (In this case, the series will be valid not only for values of x between c and c, but also for and .) A Fourier series can always be integrated term by term; x c x c but the result of differentiating term by term may not be a convergent series.
TABLE 2.25 Some Constants Constant Number of Number Log10 Pi () 3.14159 26535 89793 23846 0.49714 98726 94133 85435 Napierian Base (e) 2.71828 18284 59045 23536 0.43429 448 M log e 10 0.43429 44819 03251 82765 9.63778 43113 00536 78912 10 1 M loge 10 2.30258 50929 94045 68402 0.36221 569 180 degrees in 1 radian 57.2957 795 1.75812 263 180 radians in 1 0.01745 329 8.24187 737 10 10800 radians in 1 0.00029 08882 6.46372 612 10 648000 radians in 1 0.00000 48481 36811 095 4.68557 487 10 2.3 STATISTICS IN CHEMICAL ANALYSIS 2.3.1 Introduction Each observation in any branch of scientific investigation is inaccurate to some degree. Often the accurate value for the concentration of some particular constituent in the analyte cannot be deter-mined. However, it is reasonable to assume the accurate value exists, and it is important to estimate the limits between which this value lies. It must be understood that the statistical approach is con-cerned with the appraisal of experimental design and data. Statistical techniques can neither detect nor evaluate constant errors (bias); the detection and elimination of inaccuracy are analytical prob-lems. Nevertheless, statistical techniques can assist considerably in determining whether or not inaccuracies exist and in indicating when procedural modifications have reduced them.
By proper design of experiments, guided by a statistical approach, the effects of experimental variables may be found more efficiently than by the traditional approach of holding all variables constant but one and systematically investigating each variable in turn. Trends in data may be sought to track down nonrandom sources of error.
2.118 SECTION 2 2.3.2 Errors in Quantitative Analysis Two broad classes of errors may be recognized. The first class, determinate or systematic errors, is composed of errors that can be assigned to definite causes, even though the cause may not have been located. Such errors are characterized by being unidirectional. The magnitude may be constant from sample to sample, proportional to sample size, or variable in a more complex way. An example is the error caused by weighing a hygroscopic sample. This error is always positive in sign; it increases with sample size but varies depending on the time required for weighing, with humidity and tem-perature. An example of a negative systematic error is that caused by solubility losses of a precipitate.
The second class, indeterminate or random errors, is brought about by the effects of uncontrolled variables. Truly random errors are as likely to cause high as low results, and a small random error is much more probable than a large one. By making the observation coarse enough, random errors would cease to exist. Every observation would give the same result, but the result would be less precise than the average of a number of finer observations with random scatter.
The precision of a result is its reproducibility; the accuracy is its nearness to the truth. A sys-tematic error causes a loss of accuracy, and it may or may not impair the precision depending upon whether the error is constant or variable. Random errors cause a lowering of reproducibility, but by making sufficient observations it is possible to overcome the scatter within limits so that the accuracy may not necessarily be affected. Statistical treatment can properly be applied only to random errors.
2.3.3 Representation of Sets of Data Raw data are collected observations that have not been organized numerically. An average is a value that is typical or representative of a set of data. Several averages can be defined, the most common being the arithmetic mean (or briefly, the mean), the median, the mode, and the geometric mean.
The mean of a set of N numbers, x1, x2, x3, . . . , xN, is denoted by and is defined as: x x x x · · · x 1 2 3 N x (2.4) N It is an estimation of the unknown true value of an infinite population. We can also define the sample variance s2 as follows: N 2 (x x) i i1 2 s (2.5) N 1 The values of and s2 vary from sample set to sample set. However, as N increases, they may be x expected to become more and more stable. Their limiting values, for very large N, are numbers characteristic of the frequency distribution, and are referred to as the population mean and the population variance, respectively.
The median of a set of numbers arranged in order of magnitude is the middle value or the arithmetic mean of the two middle values. The median allows inclusion of all data in a set without undue influence from outlying values; it is preferable to the mean for small sets of data.
The mode of a set of numbers is that value which occurs with the greatest frequency (the most common value). The mode may not exist, and even if it does exist it may not be unique. The empirical relation that exists between the mean, the mode, and the median for unimodal frequency curves which are moderately asymmetrical is: Mean mode 3(mean median) (2.6) GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.119 The geometric mean of a set of N numbers is the Nth root of the product of the numbers: N x x x . . . x (2.7) p 1 2 3 N The root mean square (RMS) or quadratic mean of a set of numbers is defined by: N 2 2 RMS x x /N (2.8) p i i1 q 2.3.4 The Normal Distribution of Measurements The normal distribution of measurements (or the normal law of error) is the fundamental starting point for analysis of data. When a large number of measurements are made, the individual mea-surements are not all identical and equal to the accepted value , which is the mean of an infinite population or universe of data, but are scattered about , owing to random error. If the magnitude of any single measurement is the abscissa and the relative frequencies (i.e., the probability) of occurrence of different-sized measurements are the ordinate, the smooth curve drawn through the points (Fig. 2.10) is the normal or Gaussian distribution curve (also the error curve or probability curve). The term error curve arises when one considers the distribution of errors (x ) about the true value.
FIGURE 2.10 The Normal Distribution Curve.
2.120 SECTION 2 The breadth or spread of the curve indicates the precision of the measurements and is determined by and related to the standard deviation, a relationship that is expressed in the equation for the normal curve (which is continuous and infinite in extent): 2 1 1 x Y exp (2.9) 2 2 p where is the standard deviation of the infinite population. The population mean expresses the magnitude of the quantity being measured. In a sense, measures the width of the distribution, and thereby also expresses the scatter or dispersion of replicate analytical results. When (x )/ is replaced by the standardized variable z, then: 1 2 z (1/2) Y e (2.10) 2 p The standardized variable (the z statistic) requires only the probability level to be specified. It mea-sures the deviation from the population mean in units of standard deviation. Y is 0.399 for the most probable value, . In the absence of any other information, the normal distribution is assumed to apply whenever repetitive measurements are made on a sample, or a similar measurement is made on different samples.
Table 2.26a lists the height of an ordinate (Y) as a distance z from the mean, and Table 2.26b the area under the normal curve at a distance z from the mean, expressed as fractions of the total area, 1.000. Returning to Fig. 2.10, we note that 68.27% of the area of the normal distribution curve lies within 1 standard deviation of the center or mean value. Therefore, 31.73% lies outside those limits and 15.86% on each side. Ninety-five percent (actually 95.43%) of the area lies within 2 standard deviations, and 99.73% lies within 3 standard deviations of the mean. Often the last two areas are stated slightly different; viz. 95% of the area lies within 1.96 (approximately 2 ) and 99% lies within approximately 2.5 . The mean falls at exactly the 50% point for symmetric normal distributions.
Example 5 The true value of a quantity is 30.00, and for the method of measurement is 0.30.
What is the probability that a single measurement will have a deviation from the mean greater than 0.45; that is, what percentage of results will fall outside the range 30.00 0.45?
x 0.45 z 1.5 0.30 From Table 2.26b the area under the normal curve from 1.5 to 1.5 is 0.866, meaning that 86.6% of the measurements will fall within the range 30.00 0.45 and 13.4% will lie outside this range. Half of these measurements, 6.7%, will be less than 29.55; and a similar percentage will exceed 30.45. In actuality the uncertainty in z is about 1 in 15; therefore, the value of z could lie between 1.4 and 1.6; the corresponding areas under the curve could lie between 84% and 89%.
Example 6 If the mean value of 500 determinations is 151 and 15, how many results lie between 120 and 155 (actually any value between 119.5 and 155.5)?
119.5 151 z 2.10 Area: 0.482 15 155.5 151 z 0.30 0.118 15 Total area: 0.600 500(0.600) 300 results GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.121 2.3.5 Standard Deviation as a Measure of Dispersion Several ways may be used to characterize the spread or dispersion in the original data. The range is the difference between the largest value and the smallest value in a set of observations. However, almost always the most efficient quantity for characterizing variability is the standard deviation (also called the root mean square).
TABLE 2.26a Ordinates (Y) of the Normal Distribution Curve at Values of z z 0 1 2 3 4 5 6 7 8 9 0.0 0.3989 0.3989 0.3989 0.3988 0.3986 0.3984 0.3982 0.3980 0.3977 0.3973 0.1 0.3970 0.3965 0.3961 0.3956 0.3951 0.3945 0.3939 0.3932 0.3925 0.3918 0.2 0.3910 0.3902 0.3894 0.3885 0.3876 0.3867 0.3857 0.3847 0.3836 0.3825 0.3 0.3814 0.3802 0.3790 0.3778 0.3765 0.3752 0.3739 0.3725 0.3712 0.3697 0.4 0.3683 0.3668 0.3653 0.3637 0.3621 0.3605 0.3589 0.3572 0.3555 0.3538 0.5 0.3521 0.3503 0.3485 0.3467 0.3448 0.3429 0.3410 0.3391 0.3372 0.3352 0.6 0.3332 0.3312 0.3292 0.3271 0.3251 0.3230 0.3209 0.3187 0.3166 0.3144 0.7 0.3123 0.3101 0.3079 0.3056 0.3034 0.3011 0.2989 0.2966 0.2943 0.2920 0.8 0.2897 0.2874 0.2850 0.2827 0.2803 0.2780 0.2756 0.2732 0.2709 0.2685 0.9 0.2661 0.2637 0.2613 0.2589 0.2565 0.2541 0.2516 0.2492 0.2468 0.2444 1.0 0.2420 0.2396 0.2371 0.2347 0.2323 0.2299 0.2275 0.2251 0.2227 0.2203 1.1 0.2179 0.2155 0.2131 0.2107 0.2083 0.2059 0.2036 0.2012 0.1989 0.1965 1.2 0.1942 0.1919 0.1895 0.1872 0.1849 0.1826 0.1804 0.1781 0.1758 0.1736 1.3 0.1714 0.1691 0.1669 0.1647 0.1626 0.1604 0.1582 0.1561 0.1539 0.1518 1.4 0.1497 0.1476 0.1456 0.1435 0.1415 0.1394 0.1374 0.1354 0.1334 0.1315 1.5 0.1295 0.1276 0.1257 0.1238 0.1219 0.1200 0.1182 0.1163 0.1145 0.1127 1.6 0.1109 0.1092 0.1074 0.1057 0.1040 0.1023 0.1006 0.0989 0.0973 0.0957 1.7 0.0940 0.0925 0.0909 0.0893 0.0878 0.0863 0.0848 0.0833 0.0818 0.0804 1.8 0.0790 0.0775 0.0761 0.0748 0.0734 0.0721 0.0707 0.0694 0.0681 0.0669 1.9 0.0656 0.0644 0.0632 0.0620 0.0608 0.0596 0.0584 0.0573 0.0562 0.0551 2.0 0.0540 0.0529 0.0519 0.0508 0.0498 0.0488 0.0478 0.0468 0.0459 0.0449 2.1 0.0440 0.0431 0.0422 0.0413 0.0404 0.0396 0.0387 0.0379 0.0371 0.0363 2.2 0.0355 0.0347 0.0339 0.0332 0.0325 0.0317 0.0310 0.0303 0.0297 0.0290 2.3 0.0283 0.0277 0.0270 0.0264 0.0258 0.0252 0.0246 0.0241 0.0235 0.0229 2.4 0.0224 0.0219 0.0213 0.0208 0.0203 0.0198 0.0194 0.0189 0.0184 0.0180 2.5 0.0175 0.0171 0.0167 0.0163 0.0158 0.0154 0.0151 0.0147 0.0143 0.0139 2.6 0.0136 0.0132 0.0129 0.0126 0.0122 0.0119 0.0116 0.0113 0.0110 0.0107 2.7 0.0104 0.0101 0.0099 0.0096 0.0093 0.0091 0.0088 0.0086 0.0084 0.0081 2.8 0.0079 0.0077 0.0075 0.0073 0.0071 0.0069 0.0067 0.0065 0.0063 0.0061 2.9 0.0060 0.0058 0.0056 0.0055 0.0053 0.0051 0.0050 0.0048 0.0047 0.0046 3.0 0.0044 0.0043 0.0042 0.0040 0.0039 0.0038 0.0037 0.0036 0.0035 0.0034 3.1 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 0.0025 0.0025 3.2 0.0024 0.0023 0.0022 0.0022 0.0021 0.0020 0.0020 0.0019 0.0018 0.0018 3.3 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 0.0013 0.0013 3.4 0.0012 0.0012 0.0012 0.0011 0.0011 0.0010 0.0010 0.0010 0.0009 0.0009 3.5 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007 0.0007 0.0007 0.0006 3.6 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0004 3.7 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003 0.0003 0.0003 3.8 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 3.9 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 2.122 SECTION 2 The standard deviation is the square root of the average squared differences between the indi-vidual observations and the population mean: N 2 (x ) i (2.11) i1 N q TABLE 2.26b Areas Under the Normal Distribution Curve from 0 to z z 0 1 2 3 4 5 6 7 8 9 0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0754 0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 0.6 0.2258 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2518 0.2549 0.7 0.2580 0.2612 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852 0.8 0.2881 0.2910 0.2939 0.2967 0.2996 0.3023 0.3051 0.3078 0.3106 0.3133 0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177 1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319 1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441 1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706 1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767 2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986 3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990 3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993 3.2 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995 3.3 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997 3.4 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998 3.5 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 3.6 0.4998 0.4998 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 3.7 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 3.8 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 3.9 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.123 The standard deviation may be estimated by calculating the standard deviation s drawn from a small sample set as follows: N 2 (x x) i 2 2 2 (2.12) x x · · · [(x x · · ·) ]/N i1 1 2 1 2 s or s N N 1 q q where represents the deviation of each number in the array from the arithmetic mean. Since x x i two pieces of information, namely have been extracted from the data, we are left with s and x, N 1 degrees of freedom (df); that is, independent data points available for measurement of pre-cision. If a relatively large sample of data corresponding to N 30 is available, its mean can be taken as a measure of , and s as equal to .
So basic is the notion of a statistical estimate of a physical parameter that statisticians use Greek letters for the parameters and Latin letters for the estimates. For many purposes, one uses the variance, which for the sample is s2 and for the entire populations is 2. The variance s2 of a finite sample is an unbiased estimate of 2, whereas the standard deviation s is not an unbiased estimate of .
Because the standard deviation for the universe is a characteristic of the measuring procedure, it is possible to get a good estimate not only from a long series of repeated analyses of the same sample, but also by taking together several short series measured with slightly different samples of the same type. When a series of observations can be logically arranged into k subgroups, the variance is calculated by summing the squares of the deviations for each subgroup, and then adding all the k sums and dividing by N k because one degree of freedom is lost in each subgroup. It is not required that the number of repeated analyses in the different groups be the same. For two groups of observations consisting of NA and NB members of standard deviations sA and sB, respectively, the variance is given by: 2 2 (N 1)s (N 1)s A A B B 2 s (2.13) N N 2 A B Another measure of dispersion is the coefficient of variation, which is merely the standard de-viation expressed as a fraction of the arithmetic mean, viz., . It is useful mainly to show whether s/x the relative or the absolute spread of values is constant as the values are changed.
2.3.6 Student’s Distribution or t Test In the next several sections, the theoretical distributions and tests of significance will be examined beginning with Student’s distribution or t test. If the data contained only random (or chance) errors, the cumulative estimates and s would gradually approach the limits and . The distribution of x results would be normally distributed with mean and standard deviation . Were the true mean of the infinite population known, it would also have some symmetrical type of distribution centered around . However, it would be expected that the dispersion or spread of this dispersion about the mean would depend on the sample size.
The standard deviation of the distribution of means equals /N1/2. Since is not usually known, its approximation for a finite number of measurements is overcome by the Student t test. It is a measure of error between and The Student t takes into account both the possible variation of x.
the value of from on the basis of the expected variance 2/N1/2 and the reliability of using s in x place of . The distribution of the statistic is: x ts t or x (2.14) s/ N N p p 2.124 SECTION 2 The distribution of the t-statistic is symmetrical about zero and is a function of the degrees (x )s of freedom. Limits assigned to the distance on either side of are called confidence limits. The percentage probability that lies within this interval is called the confidence level. The level of significance or error probability (100 confidence level or 100 ) is the percent probability that will lie outside the confidence interval, and represents the chances of being incorrect in stating that lies within the confidence interval. Values of t are in Table 2.27 for any desired degrees of freedom and various confidence levels.
An analytical procedure is often tested on materials of known composition. These materials may be pure substances, standard samples, or materials analyzed by some other more accurate method.
Repeated determinations on a known material furnish data for both an estimate of the precision and a test for the presence of a constant error in the results. The standard deviation is found from Equation 12 (with the known composition replacing ). A calculated value for t (Eq. 14) in excess of the appropriate value in Table 2.27 is interpreted as evidence of the presence of a constant error at the indicated level of significance.
TABLE 2.27 Percentile Values for Student t Distribution df t0.995 t0.99 t0.975 t0.95 t0.90 t0.80 t0.75 t0.70 t0.60 t0.55 1 63.66 31.82 12.71 6.31 3.08 1.376 1.000 0.727 0.325 0.158 2 9.92 6.96 4.30 2.92 1.89 1.061 0.816 0.617 0.289 0.142 3 5.84 4.54 3.18 2.35 1.64 0.978 0.765 0.584 0.277 0.137 4 4.60 3.75 2.78 2.13 1.53 0.941 0.741 0.569 0.271 0.134 5 4.03 3.36 2.57 2.02 1.48 0.920 0.727 0.559 0.267 0.132 6 3.71 3.14 2.45 1.94 1.44 0.906 0.718 0.553 0.265 0.131 7 3.50 3.00 2.36 1.90 1.42 0.896 0.711 0.549 0.263 0.130 8 3.36 2.90 2.31 1.86 1.40 0.889 0.706 0.546 0.262 0.130 9 3.25 2.82 2.26 1.83 1.38 0.883 0.703 0.543 0.261 0.129 10 3.17 2.76 2.23 1.81 1.37 0.879 0.700 0.542 0.260 0.129 11 3.11 2.72 2.20 1.80 1.36 0.876 0.697 0.540 0.260 0.129 12 3.06 2.68 2.18 1.78 1.36 0.873 0.695 0.539 0.259 0.128 13 3.01 2.65 2.16 1.77 1.35 0.870 0.694 0.538 0.259 0.128 14 2.98 2.62 2.14 1.76 1.34 0.868 0.692 0.537 0.258 0.128 15 2.95 2.60 2.13 1.75 1.34 0.866 0.691 0.536 0.258 0.128 16 2.92 2.58 2.12 1.75 1.34 0.865 0.690 0.535 0.258 0.128 17 2.90 2.57 2.11 1.74 1.33 0.863 0.689 0.534 0.257 0.128 18 2.88 2.55 2.10 1.73 1.33 0.862 0.688 0.534 0.257 0.127 19 2.86 2.54 2.09 1.73 1.33 0.861 0.688 0.533 0.257 0.127 20 2.84 2.53 2.09 1.72 1.32 0.860 0.687 0.533 0.257 0.127 21 2.83 2.52 2.08 1.72 1.32 0.859 0.686 0.532 0.257 0.127 22 2.82 2.51 2.07 1.72 1.32 0.858 0.686 0.532 0.256 0.127 23 2.81 2.50 2.07 1.71 1.32 0.858 0.685 0.532 0.256 0.127 24 2.80 2.49 2.06 1.71 1.32 0.857 0.685 0.531 0.256 0.127 25 2.79 2.48 2.06 1.71 1.32 0.856 0.684 0.531 0.256 0.127 26 2.78 2.48 2.06 1.71 1.32 0.856 0.684 0.531 0.256 0.127 27 2.77 2.47 2.05 1.70 1.31 0.855 0.684 0.531 0.256 0.127 28 2.76 2.47 2.05 1.70 1.31 0.855 0.683 0.530 0.256 0.127 29 2.76 2.46 2.04 1.70 1.31 0.854 0.683 0.530 0.256 0.127 30 2.75 2.46 2.04 1.70 1.31 0.854 0.683 0.530 0.256 0.127 40 2.70 2.42 2.02 1.68 1.30 0.851 0.681 0.529 0.255 0.126 60 2.66 2.39 2.00 1.67 1.30 0.848 0.679 0.527 0.254 0.126 120 2.62 2.36 2.98 1.66 1.29 0.845 0.677 0.526 0.254 0.126 2.58 2.33 1.96 1.645 1.28 0.842 0.674 0.524 0.253 0.126 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.125 Example 7 A new method for the analysis of iron using pure FeO was replicated with five samples giving these results (in % Fe): 76.95, 77.02, 76.90, 77.20, and 77.50. Does a systematic error exist?
From Equation 4, is 77.11; and from Equation 5, s is 0.24 for 4 degrees of freedom. Because x is not known, the Student t0.975 (2.78 for 4 degrees of freedom) is used to calculate the confidence interval at the 95% probability level.
ts (2.78) (0.24) x 77.11 77.11 0.30 N 5 p p We used a two-tailed test. Upon rereading the problem, we realize that this was pure FeO whose iron content was 77.60% so that and the confidence interval does not include the known 77.60 value. Since the FeO was a standard, a one-tailed test should have been used since only random values would be expected to exceed 77.60%. Now the Student t value of 2.13 (for t0.05) should have been used, and now the confidence interval becomes A systematic error is 77.11 0.23.
presumed to exist.
The t test can be applied to differences between pairs of observations. Perhaps only a single pair can be performed at one time, or possibly one wishes to compare two methods using samples of differing analytical content. It is still necessary that the two methods possess the same inherent standard deviation. An average difference calculated, and individual deviations from are used to d d evaluate the variance of the differences.
Example 8 From the following data do the two methods actually give concordant results?
Sample Method A Method B Difference 1 33.27 33.04 d1 0.23 2 51.34 50.96 d2 0.38 3 23.91 23.77 d3 0.14 4 47.04 46.79 d4 0.25 0.25 d 2 (d d) p s 0.099 d N 1 0.25 t 4 1 4.30 p 0.099 From Table 2.27, (at 95% probability) and (at 99% probability). The t 3.18 t 5.84 0.975 0.995 difference between the two methods is probably significant.
If the t-value falls short of the formal significance level, this is not to be interpreted as proving the absence of a systematic error. Perhaps the data were insufficient in precision or in number to establish the presence of a constant error. Especially when the calculated value for t is only slightly short of the tabulated value, some additional data may suffice to build up the evidence for a constant error (or the lack thereof).
2.126 SECTION 2 Should there be more than one known material, a weighted average of the individual differences should be taken. The value of s should be based on the combined estimate from the two or more (x) materials (perhaps different primary standards for bases). Should the materials differ markedly in composition, a plot of the individual constant errors against composition should be made. If the constant error appear to depend upon the composition, they should not be pooled in a weighted average.
The t test is also used to judge whether a given lot of material conforms to a particular specifi-cation. If both plus and minus departures from the known value are to be guarded against, a two-tailed test is involved. If departures in only one direction are undesirable, then the 10% level values for t are appropriate for the 5% level in one direction. Similarly, the 2% level should be used to obtain the 1% level to test the departure from the known value in one direction only; these constitute a one-tailed test. More on this subject will be in the next section.
Sometimes just one determination is available on each of several known materials similar in composition. A single determination by each of two procedures (or two analysts) on a series of material may be used to test for a relative bias between the two methods, as in Example 2.4. Of course, the average difference does not throw any light on which procedure has the larger constant error. It only supplies a test as to whether the two procedures are in disagreement.
2.3.7 Hypotheses About Means Statistical methods are frequently used to give a “yes” or “no” answer to a particular question concerning the significance of data. When performing hypothesis tests on real data, we cannot set an absolute cutoff as to where we can expect to find no values from the population against which we are testing data, but we can set a limit beyond which we consider it very unlikely to find a member of the population. If a measurement is made that does in fact fall outside the specified range, the probability of its happening by chance alone can be rejected; something beyond the random-ness of the reference population must be operating. In other words, hypothesis testing is an attempt to determine whether a given measured statistic could have come from some hypothesized popula-tion.
In attempting to reach decisions, it is useful to make assumptions or guesses about the populations involved. Such assumptions, which may or may not be true, are called statistical hypotheses and in general are statements about the probability distributions of the populations. A common procedure is to set up a null hypothesis, denoted by H0, which states that there is no significant difference between two sets of data or that a variable exerts no significant effect. Any hypothesis which differs from a null hypothesis is called an alternative hypothesis, denoted by H1.
Our answer is qualified by a confidence level (or level of significance) indicating the degree of certainty of the answer. Generally confidence levels of 95% and 99% are chosen to express the probability that the answer is correct. These are also denoted as the 0.05 and 0.01 level of signifi-cance, respectively. When the hypothesis can be rejected at the 0.05 level of significance, but not at the 0.01 level, we can say that the sample results are probably significant. If, however, the hypothesis is also rejected at the 0.01 level, the results become highly significant.
The abbreviated table on the next page, which gives critical values of z for both one-tailed and two-tailed tests at various levels of significance, will be found useful for purposes of reference.
Critical values of z for other levels of significance are found by the use of Table 2.26b. For a small number of samples we replace z, obtained from above or from Table 2.26b, by t from Table 2.27, and we replace by: [ N/(N 1)] s p GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.127 Level of significance, 0.10 0.05 0.01 0.005 0.002 Critical values of z for one-tailed tests 1.28 or 1.28 1.645 or 1.645 2.33 or 2.33 2.58 or 2.58 2.88 or 2.88 Critical values of z for two-tailed tests 1.645 and 1.645 1.96 and 1.96 2.58 and 2.58 2.81 and 2.81 3.08 and 3.08 Procedures which enable us to decide whether to accept or reject hypotheses or to determine whether observed samples differ significantly from expected results are called tests of hypotheses, tests of significance, or rules of decision. For example, a set of z values outside the range 1.96 to 1.96 (at the 0.05 level of significance for a two-tailed test), constitute what is called the critical region or region of rejection of the hypothesis. The set of z results inside the range 1.96 to 1.96 could then be called the region of acceptance of the hypothesis.
Example 9 In the past a method gave A recent set of 10 results gave 0.050%.
and Is everything satisfactory at a level of significance of 0.05? Of 0.01?
x 0.053% s 0.003%.
We wish to decide between the hypotheses: H : 0.050% and the method is working properly, and 0 H : 0.050% and the method is not working properly.
1 A two-tailed test is required; that is, both tails on the distribution curve are involved: 0.053 0.050 t 10 1 3.00 p 0.003 Enter Table 2.27 for nine degrees of freedom under the column headed t0.975 for the 0.05 level of significance, and the column t0.995 for the 0.01 level of significance. At the 0.05 level, accept H0 if t lies inside the interval t0.975 to t0.975, that is, within 2.26 and 2.26; reject otherwise. Since t 3.00, we reject H0. At the 0.01 level of significance, the corresponding interval is 3.25 to 3.25, which t lies within, indicating acceptance of H0. Because we can reject H0 at the 0.05 level but not at the 0.01 level of significance, we can say that the sample results are probably significant and that the method is working properly.
Let us digress a moment and consider when a two-tailed test is needed, and what a one-tailed test implies. We “assume” that the measurements can be described by the curve shown in Fig. 2.10.
If so, then 95% of the time a sample from the specified population will fall within the indicated range and 5% of the time it will fall outside; 2.5% of the time it is outside on the high side of the range, and 2.5% of the time it is below the low side of the range. Our assumption implies that if does not equal the hypothesized value, the probability of its being above the hypothesized value is equal to the probability of its being below the hypothesized value.
There will be incidences when the foregoing assumptions for a two-tailed test will not be true.
Perhaps some physical situation prevents from ever being less than the hypothesized value; it can only be equal or greater. No results would ever fall below the low end of the confidence interval; only the upper end of the distribution is operative. Now random samples will exceed the upper bound only 2.5% of the time, not the 5% specified in two-tail testing. Thus, where the possible values are restricted, what was supposed to be a hypothesis test at the 95% confidence level is actually being performed at a 97.5% confidence level. Stated in another way, 95% of the population data lie within the interval below 1.65 and 5% lie above. Of course, the opposite situation might also occur and only the lower end of the distribution is operative.
2.128 SECTION 2 Example 10 Six samples from a bulk chemical shipment averaged 77.50% active ingredient with s 1.45%. The manufacturer claimed 80.00%. Can this claim be supported?
A one-tailed test is required since the alternative hypothesis states that the population parameter is equal to or less than the hypothesized value.
77.50 80.00 t 6 1 3.86 p 1.45 Since t0.95 2.01, and t0.99 3.36, the hypothesis is rejected at both the 0.05 and the 0.01 levels of significance. It is extremely unlikely that the claim is justified.
2.3.8 The Chi-square (2) Distribution The 2 distribution describes the behavior of variances. Actually there is not a single 2 distribution but a whole set of distributions. Each distribution depends upon the number of degrees of freedom (designated variously as df, d.f., or f) in that distribution. Table 2.28 is laid out so that the horizontal axis is labeled with probability levels, while the vertical axis is listed in descending order of in-creasing number of degrees of freedom. The entries increase both as you read down and across the table. Although Table 2.28 does not display the values for the mid-range of the distributions, at the 50% point of each distribution, the expected value of 2 is equal to the degrees of freedom. Estimates of the variance are uncertain when based only on a few degrees of freedom. With the 10 samples in Example 11, the standard deviation can vary by a large factor purely by random chance alone.
Even 31 samples gives a spread of standard deviation of 2.6 at the 95% confidence level.
Understanding the 2 distribution allows us to calculate the expected values of random variables that are normally and independently distributed. In least squares multiple regression, or in calibration work in general, there is a basic assumption that the error in the response variable is random and normally distributed, with a variance that follows a 2 distribution.
Confidence limits for an estimate of the variance may be calculated as follows. For each group of samples a standard deviation is calculated. These estimates of possess a distribution called the 2 distribution: 2 s 2 (2.15) 2 /df The upper and lower confidence limits for the standard deviation are obtained by dividing by two entries taken from Table 2.28. The estimate of variance at the 90% confidence 2 (N 1)s limits is for use in the entries and (for 5% and 95%) with N degrees of freedom.
2 2 0.05 0.95 Example 11 The variance obtained for 10 samples is (0.65)2. 2 is known to be (0.75)2. How reliable is s2 as an estimate of 2?
2 2 s (N 1) s (N 1) 2 2 2 0.975 0.025 2 2 (0.65) (10 1) (0.65) (10 1) 2 19.02 2.70 2 0.20 1.43 Thus, only one time in 40 will 9s2/2 be less than 2.70 by chance alone. Similarly, only one time GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.129 TABLE 2.28 Percentile Values for the Chi-square ( 2) Distribution df 2 0.995 2 0.99 2 0.975 2 0.95 2 0.90 2 0.75 2 0.50 2 0.25 2 0.10 2 0.05 2 0.025 2 0.01 2 0.005 1 7.88 6.63 5.02 3.84 2.71 1.32 0.455 0.102 0.0158 0.0039 0.0010 0.0002 0.0000 2 10.6 9.21 7.38 5.99 4.61 2.77 1.39 0.575 0.211 0.103 0.0506 0.0201 0.0100 3 12.8 11.3 9.35 7.81 6.25 4.11 2.37 1.21 0.584 0.352 0.216 0.115 0.072 4 14.9 13.3 11.1 9.49 7.78 5.39 3.36 1.92 1.06 0.711 0.484 0.297 0.207 5 16.7 15.1 12.8 11.1 9.24 6.63 4.35 2.67 1.61 1.15 0.831 0.554 0.412 6 18.5 16.8 14.4 12.6 10.6 7.84 5.35 3.45 2.20 1.64 1.24 0.872 0.676 7 20.3 18.5 16.0 14.1 12.0 9.04 6.35 4.25 2.83 2.17 1.69 1.24 0.989 8 22.0 20.1 17.5 15.5 13.4 10.2 7.34 5.07 3.49 2.73 2.18 1.65 1.34 9 23.6 21.7 19.0 16.9 14.7 11.4 8.34 5.90 4.17 3.33 2.70 2.09 1.73 10 25.2 23.2 20.5 18.3 16.0 12.5 9.34 6.74 4.87 3.94 3.25 2.56 2.16 11 26.8 24.7 21.9 19.7 17.3 13.7 10.3 7.58 5.58 4.57 3.82 3.05 2.60 12 28.3 26.2 23.3 21.0 18.5 14.8 11.3 8.44 6.30 5.23 4.40 3.57 3.07 13 29.8 27.7 24.7 22.4 19.8 16.0 12.3 9.30 7.04 5.89 5.01 4.11 3.57 14 31.3 29.1 26.1 23.7 21.1 17.1 13.3 10.2 7.79 6.57 5.63 4.66 4.07 15 32.8 30.6 27.5 25.0 22.3 18.2 14.3 11.0 8.55 7.26 6.26 5.23 4.60 16 34.3 32.0 28.8 26.3 23.5 19.4 15.3 11.9 9.31 7.96 6.91 5.81 5.14 17 35.7 33.4 30.2 27.6 24.8 20.5 16.3 12.8 10.1 8.67 7.56 6.41 5.70 18 37.2 34.8 31.5 28.9 26.0 21.6 17.3 13.7 10.9 9.39 8.23 7.01 6.26 19 38.6 36.2 32.9 30.1 27.2 22.7 18.3 14.6 11.7 10.1 8.91 7.63 6.84 20 40.0 37.6 34.2 31.4 28.4 23.8 19.3 15.5 12.4 10.9 9.59 8.26 7.43 21 41.4 38.9 35.5 32.7 29.6 24.9 20.3 16.3 13.2 11.6 10.3 8.90 8.03 22 42.8 40.3 36.8 33.9 30.8 26.0 21.3 17.2 14.0 12.3 11.0 9.54 8.64 23 44.2 41.6 38.1 35.2 32.0 27.1 22.3 18.1 14.8 13.1 11.7 10.2 9.26 24 45.6 43.0 39.4 36.4 33.2 28.2 23.3 19.0 15.7 13.8 12.4 10.9 9.89 25 46.9 44.3 40.6 37.7 34.4 29.3 24.3 19.9 16.5 14.6 13.1 11.5 10.5 26 48.3 45.6 41.9 38.9 35.6 30.4 25.3 20.8 17.3 15.4 13.8 12.2 11.2 27 49.6 47.0 43.2 40.1 36.7 31.5 26.3 21.7 18.1 16.2 14.6 12.9 11.8 28 51.0 48.3 44.5 41.3 37.9 32.6 27.3 22.7 18.9 16.9 15.39 13.6 12.5 29 52.3 49.6 45.7 42.6 39.1 33.7 28.3 23.6 19.8 17.7 16.0 14.3 13.1 30 53.7 50.9 47.0 43.8 40.3 34.8 29.3 24.5 20.6 18.5 16.8 15.0 13.8 40 66.8 63.7 59.3 55.8 51.8 45.6 39.3 33.7 29.1 26.5 24.4 22.2 20.7 50 79.5 76.2 71.4 67.5 63.2 56.3 49.3 42.9 37.7 34.8 32.4 29.7 28.0 60 92.0 88.4 83.3 79.1 74.4 67.0 59.3 52.3 46.5 43.2 40.5 37.5 35.5 70 104.2 100.4 95.0 90.5 85.5 77.6 69.3 61.7 55.3 51.7 48.8 45.4 43.3 80 116.3 112.3 106.6 101.9 96.6 88.1 79.3 71.1 64.3 60.4 57.2 53.5 51.2 90 128.3 124.1 118.1 113.1 107.6 98.6 89.3 80.6 73.3 69.1 65.6 61.8 59.2 100 140.2 135.8 129.6 124.3 118.5 109.1 99.3 90.1 82.4 77.9 74.2 70.1 67.3 in 40 will 9s2/2 be greater than 19.02. Consequently, it is not unlikely that s2 is a reliable estimate of 2.
Stated differently: 2 2 2 Upper limit: 9s /2.7 3.3s 2 2 2 Lower limit: 9s /19.02 0.48s Ten measurements give an estimate of 2 that may be as much as 3.3 times or only about one-half the true variance.
2.130 SECTION 2 2.3.9 The F Statistic The F statistic, along with the z, t, and 2 statistics, constitute the group that are thought of as fundamental statistics. Collectively they describe all the relationships that can exist between means and standard deviations. To perform an F test, we must first verify the randomness and independence of the errors. If then will be distributed properly as the F statistic. If the calculated 2 2 2 2 , s /s 1 2 1 2 F is outside the confidence interval chosen for that statistic, then this is evidence that 2 2 .
1 2 The F statistic describes the distribution of the ratios of variances of two sets of samples. It requires three table labels: the probability level and the two degrees of freedom. Since the F distri-bution requires a three-dimensional table which is effectively unknown, the F tables are presented as large sets of two-dimensional tables. The F distribution in Table 2.29 has the different numbers of degrees of freedom for the denominator variance placed along the vertical axis, while in each table the two horizontal axes represent the numerator degrees of freedom and the probability level.
Only two probability levels are given in Table 2.29: the upper 5% points (F0.95) and the upper 1% points (F0.99). More extensive tables of statistics will list additional probability levels, and they should be consulted when needed.
It is possible to compare the means of two relatively small sets of observations when the variances within the sets can be regarded as the same, as indicated by the F test. One can consider the distribution involving estimates of the true variance. With determined from a group of N1 obser-2 s1 vations and from a second group of N2 observations, the distribution of the ratio of the sample 2 s2 variances is given by the F statistic: 2 2 s / 1 1 F (2.16) 2 2 s / 2 2 The larger variance is placed in the numerator. For example, the F test allows judgment regarding the existence of a significant difference in the precision between two sets of data or between two analysts. The hypothesis assumed is that both variances are indeed alike and a measure of the same .
The fact that each sample variance is related to its own population variance means that the sample variance being used for the calculation need not come from the same population. This is a significant departure from the assumptions inherent in the z, t, and 2 statistics.
Example 12 Suppose Analyst A made five observations and obtained a standard deviation of 0.06, where Analyst B with six observations obtained The experimental variance s 0.03.
B ratio is: 2 (0.06) F 4.00 2 (0.03) From Table 2.28 with four degrees of freedom for A and five degrees of freedom for B, the value of F would exceed 5.19 five percent of the time. Therefore, the null hypothesis is valid, and com-parable skills are exhibited by the two analysts.
As applied in Example 12, the F test was one-tailed. The F test may also be applied as a two-tailed test in which the alternative to the null hypothesis is This doubles the probability 2 2 .
1 2 that the null hypothesis is invalid and has the effect of changing the confidence level, in the above example, from 95% to 90%.
If improvement in precision is claimed for a set of measurements, the variance for the set against which comparison is being made should be placed in the numerator, regardless of magnitude. An experimental F smaller than unity indicates that the claim for improved precision cannot be sup-ported. The technique just given for examining whether the precision varies with the two different analytical procedures, also serves to compare the precision with different materials, or with different operators, laboratories, or sets of equipment.
TABLE 2.29 F Distribution Interpolation should be performed using reciprocals of the degrees of freedom.
Upper 5% points (F ) 0.95 Degrees of freedom for denominator Degrees of freedom for numerator 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 1 161 200 216 225 230 234 237 239 241 242 244 246 248 249 250 251 252 253 254 2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5 3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53 4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63 5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.37 6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67 7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23 8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93 9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71 10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54 11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40 12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30 13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21 14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13 15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07 16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01 17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96 18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92 19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88 20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84 21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81 22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78 23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76 24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73 25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71 30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62 40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51 60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39 120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00 2.131 TABLE 2.29 F Distribution (Continued) Upper 1% points (F ) 0.99 Degrees of freedom for denominator Degrees of freedom for numerator 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 1 4052 5000 5403 5625 5764 5859 5928 5982 6023 6056 6106 6157 6209 6235 6261 6287 6313 6339 6366 2 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5 99.5 3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1 26.9 26.7 26.6 26.5 26.4 26.3 26.2 26.1 4 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.4 14.2 14.0 13.9 13.8 13.7 13.7 13.6 13.5 5 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02 6 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88 7 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65 8 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86 9 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31 10 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91 11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60 12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36 13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17 14 8.86 6.51 5.56 5.04 4.70 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00 15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87 16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75 17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65 18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57 19 8.19 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49 20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42 21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36 22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31 23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26 24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21 25 7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.62 2.53 2.45 2.36 2.27 2.17 30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01 40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80 60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60 120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00 2.132 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.133 2.3.10 Curve Fitting Very often in practice a relationship is found (or known) to exist between two or more variables. It is frequently desirable to express this relationship in mathematical form by determining an equation connecting the variables.
The first step is the collection of data showing corresponding values of the variables under consideration. From a scatter diagram, a plot of Y (ordinate) versus X (abscissa), it is often possible to visualize a smooth curve approximating the data. For purposes of reference, several types of approximating curves and their equations are listed. All letters other than X and Y represent constants.
1. Y a0 a1X 2. Y a0 a1X a2X2 3. Y a0 a1X a2X2 a3X3 4. Y a0 a1X a2 · · · an Xn Straight line Parabola or quadratic curve Cubic curve nth degree curve As other possible equations (among many) used in practice, these may be mentioned: 5. Y (a0 a1X)1 or 1/Y a0 a1X 6. Y abX or log Y log a (log b)X 7. Y aXb or log Y log a b log X 8. Y abX g 9. Y aXn g Hyperbola Exponential curve Geometric curve Modified exponential curve Modified geometric curve When we draw a scatter plot of all X versus Y data, we see that some sort of shape can be described by the data points. From the scatter plot we can take a basic guess as to which type of curve will best describe the X9Y relationship. To aid in the decision process, it is helpful to obtain scatter plots of transformed variables. For example, if a scatter plot of log Y versus X shows a linear relationship, the equation has the form of number 6 above, while if log Y versus log X shows a linear relationship, the equation has the form of number 7. To facilitate this we frequently employ special graph paper for which one or both scales are calibrated logarithmically. These are referred to as semilog or log-log graph paper, respectively.
2.3.10.1 The Least Squares or Best-fit Line.
The simplest type of approximating curve is a straight line, the equation of which can be written as in form number 1 above. It is customary to employ the above definition when X is the independent variable and Y is the dependent variable.
To avoid individual judgment in constructing any approximating curve to fit sets of data, it is necessary to agree on a definition of a best-fit line. One could construct what would be considered the best-fit line through the plotted pairs of data points. For a given value of X1, there will be a difference D1 between the value Y1 and the constituent value Y ˆ as determined by the calibration model. Since we are assuming that all the errors are in Y, we are seeking the best-fit line that minimizes the deviations in the Y direction between the experimental points and the calculated line.
This condition will be met when the sum of squares for the differences, called residuals (or the sum of squares due to error), N 2 2 2 2 ˆ (Y Y ) (D D · · · D ) i i 1 2 N i1 is the least possible value when compared to all other possible lines fitted to that data. If the sum of squares for residuals is equal to zero, the calibration line is a perfect fit to the data. With a 2.134 SECTION 2 mathematical treatment known as linear regression, one can find the “best” straight line through these real world points by minimizing the residuals.
This calibration model for the best-fit fit line requires that the line pass through the “centroid” of the points It can be shown that: (X, Y).
(X X) (Y Y) i i i b (2.17) 2 (X X) i i a Y bX (2.18) The line thus calculated is known as the line of regression of Y on X, that is, the line indicating how Y varies when X is set to chosen values.
If X is the dependent variable, the definition is modified by considering horizontal instead of vertical deviations. In general these two definitions lead to different least square curves.
Example 13 The following data were recorded for the potential E of an electrode, measured against the saturated calomel electrode, as a function of concentration C (moles liter1).
log C E, mV log C E, mV 1.00 106 2.10 174 1.10 115 2.20 182 1.20 121 2.40 187 1.50 139 2.70 211 1.70 153 2.90 220 1.90 158 3.00 226 Fit the best straight line to these data; Xi represents log C, and Yi represents E. We will perform the calculation manually, using the following tabular lay-out.
Xi Yi (X X) i 2 (X X) i (Y Y) i (X X)(Y Y) i i 1.00 106 0.975 0.951 60 58.5 1.10 115 0.875 0.766 51 44.6 1.20 121 0.775 0.600 45 34.9 1.50 139 0.475 0.226 27 12.8 1.70 153 0.275 0.076 13 3.6 1.90 158 0.075 0.006 8 0.6 2.10 174 0.125 0.016 8 1.0 2.20 182 0.225 0.051 16 3.6 2.40 187 0.425 0.181 21 8.9 2.70 211 0.725 0.526 45 32.6 2.90 220 0.925 0.856 54 50.0 3.00 226 1.025 1.051 60 61.5 Xi 23.7 Yi 1992 0 5.306 0 312.6 X 1.975 Y 166 GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.135 Now substituting the proper terms into Equation 17, the slope is: 312.6 b 58.91 5.306 and from Equation 18, and substituting the “centroid” values of the points , the intercept is: (X, Y) a 166 58.91(1.975) 49.64 The best-fit equation is therefore: E 49.64 58.91 log C 2.3.10.2 Errors in the Slope and Intercept of the Best-fit Line.
Upon examination of the plot of pairs of data points, the calibration line, it will be obvious that the precision involved in analyzing an unknown sample will be considerably poorer than that indicated by replicate error alone. The scatter of these original points about the calibration line is a good measure of the error to be expected in analyzing an unknown sample. And this same error is considerably larger than the replication error because it will include other sources of variability due to a variety of causes. One possible source of variability might be the presence of different amounts of an extraneous material in the various samples used to establish the calibration curve. While this variability causes scatter about the calibration curve, it will not be reflected in the replication error of any one sample if the sample is homogeneous.
The scatter of the points around the calibration line or random errors are of importance since the best-fit line will be used to estimate the concentration of test samples by interpolation. The method used to calculate the random errors in the values for the slope and intercept is now considered. We must first calculate the standard deviation sY/X, which is given by: 2 ˆ (Y Y) i i s (2.19) Y/X N 2 q Equation 19 utilizes the Y-residuals, Yi Y ˆ, where Y ˆ i are the points on the calculated best-fit line or the fitted Yi values. The appropriate number of degrees of freedom is N 2; the minus 2 arises from the fact that linear calibration lines are derived from both a slope and an intercept which leads to a loss of two degrees of freedom.
Now we can calculate the standard deviations for the slope and the intercept. These are given by: sY/X s (2.20) b 2 (X X) i i q 2 X i i s s (2.21) a Y/X 2 N (X X) i i q 2.136 SECTION 2 The confidence limits for the slope are given by b tb, where the t-value is taken at the desired confidence level and (N 2) degrees of freedom. Similarly, the confidence limits for the intercept are given by a tsa. The closeness of x ˆ to xi is answered in terms of a confidence interval for x0 that extends from an upper confidence (UCL) to a lower confidence (LCL) level. Let us choose 95% for the confidence interval. Then, remembering that this is a two-tailed test (UCL and LCL), we obtain from a table of Student’s t distribution the critical value of tc (t0.975) and the appropriate number of degrees of freedom.
Example 14 For the best-fit line found in Example 13, express the result in terms of confidence intervals for the slope and intercept. We will choose 95% for the confidence interval.
The standard deviation sY/X is given by Equation 19, but first a supplementary table must be constructed for the Y residuals and other data which will be needed in subsequent equations.
Y ˆ (Yi Y ˆ ) (Yi Y ˆ )2 2 Xi 108.6 2.55 6.50 1.00 114.4 0.56 0.31 1.21 120.3 0.67 0.45 1.44 138.0 1.00 1.00 2.25 149.8 3.21 10.32 2.89 161.6 3.57 12.94 3.61 173.4 0.65 0.42 4.41 179.2 2.76 7.61 4.84 191.0 4.02 16.16 5.76 208.7 2.30 5.30 7.29 220.5 0.48 0.23 8.41 226.4 0.40 0.16 9.00 61.20 52.11 Now substitute the appropriate values into Equation 19 where there are 12 2 10 degrees of freedom: 61.20 s 2.47 X/Y 10 q We can now calculate sb and sa from Equations 20 and 21, respectively: sY/X s 1.07 b 5.31 p and 52.11 s 2.47 2.23 a 12(5.306) q Now, using a two-tailed value for Student’s t: b ts 58.91 2.23(1.07) 58.91 2.39 b a ts 49.64 2.23(2.23) 49.64 4.97 a GENERAL INFORMATION, CONVERSION TABLES, AND MATHEMATICS 2.137 The best-fit equation expressed in terms of the confidence intervals for the slope and inter-cept is: E (49.6 5.0) (58.9 2.43) log C 4 1 To conclude the discussion about the best-fit line, the following relationship can be shown to exist among Y, Y ˆ, and : Y N N N 2 2 2 ˆ ˆ (Y Y) (Y Y) (Y Y ) (2.22) i i i i i1 i1 i1 The term on the left-hand side is a constant and depends only on the constituent values provided by the reference laboratory and does not depend in any way upon the calibration. The two terms on the right-hand side of the equation show how this constant value is apportioned between the two quan-tities that are themselves summations, and are referred to as the sum of squares due to regression and the sum of squares due to error. The latter will be the smallest possible value that it can possibly be for the given data.
2.3.11 Control Charts It is often important in practice to know when a process has changed sufficiently so that steps may be taken to remedy the situation. Such problems arise in quality control where one must, often quickly, decide whether observed changes are due to simple chance fluctuations or to actual changes in the amount of a constituent in successive production lots, mistakes of employees, etc. Control charts provide a useful and simple method for dealing with such problems.
The chart consists of a central line and two pairs of limit lines or simply of a central line and one pair of control limits. By plotting a sequence of points in order, a continuous record of the quality characteristic is made available. Trends in data or sudden lack of precision can be made evident so that the causes may be sought.
The control chart is set up to answer the question of whether the data are in statistical control, that is, whether the data may be retarded as random samples from a single population of data. Because of this feature of testing for randomness, the control chart may be useful in searching out systematic sources of error in laboratory research data as well as in evaluating plant-production or control-analysis data.1 To set up a control chart, individual observations might be plotted in sequential order and then compared with control limits established from sufficient past experience. Limits of 1.96 corre-sponding to a confidence level of 95%, might be set for control limits. The probability of a future observation falling outside these limits, based on chance, is only 1 in 20. A greater proportion of scatter might indicate a nonrandom distribution (a systematic error). It is common practice with some users of control charts to set inner control limits, or warning limits, at 1.96 and outer control limits of 3.00. The outer control limits correspond to a confidence level of 99.8%, or a probability of 0.002 that a point will fall outside the limits. One-half of this probability corresponds to a high result and one-half to a low result. However, other confidence limits can be used as well; the choice in each case depends on particular circumstances.
Special attention should be paid to one-sided deviation from the control limits, because systematic errors more often cause deviation in one direction than abnormally wide scatter. Two systematic errors of opposite sign would of course cause scatter, but it is unlikely that both would have entered at the same time. It is not necessary that the control chart be plotted in a time sequence. In any 1 G. Wernimont, Ind. Eng. Chem., Anal. Ed. 18:587 (1946); J. A. Mitchell, ibid. 19:961 (1947).
2.138 SECTION 2 situation where relatively large numbers of units or small groups are to be compared, the control chart is a simple means of indicating whether any unit or group is out of line. Thus laboratories, production machines, test methods, or analysts may be put arbitrarily into a horizontal sequence.
Usually it is better to plot the means of small groups of observations on a control chart, rather than individual observations. The random scatter of averages of pairs of observations is 1/(2)1/2 0.71 as great as that of single observations, and the likelihood of two “wild” observations in the same direction is vanishing small. The groups of two to five observations should be chosen in such a way that only change variations operate within the group, whereas assignable causes are sought for variations between groups. If duplicate analyses are performed each day, the pairs form logical groups.
Some measure of dispersion of the subgroup data should also be plotted as a parallel control chart. The most reliable measure of scatter is the standard deviation. For small groups, the range becomes increasingly significant as a measure of scatter, and it is usually a simple matter to plot the range as a vertical line and the mean as a point on this line for each group of observations.
Bibliography Alder, H. L., and E. B. Roessler, Introduction to Probability and Statistics, W. H. Freeman, San Francisco, 1972.
Bergmann, B., B. von Oepen, and P. Zinn, Anal. Chem., 59:2532 (1987).
Box, G., W. Hunter, and J. Hunter, Statistics for Experimenters, Wiley, New York, 1978.
Clayton, C. A., J. W. Hines, and P. D. Elkins, Anal. Chem., 59:2506 (1987).
Caulcutt, R., and R. Boddy, Statistics for Analytical Chemists, Chapman and Hall, London, 1983.
Dixon, W. J., and F. J. Massey, Introduction to Statistical Analysis, McGraw-Hill, New York, 1969.
Hirsch, R. F. “Analysis of Variance in Analytical Chemistry,” Anal. Chem., 49:691A (1977).
Jaffe, A. J., and H. F. Spirer, Misused Statistics—Straight Talk for Twisted Numbers, Marcel Dekker, New York, 1987.
Linnig, F. J., and J. Mandel, “Which Measure of Precision?” Anal. Chem., 36:25A (1964).
Mark, H., and J. Workman, Statistics in Spectroscopy, Academic Press, San Diego, CA, 1991.
Meier, P. C., and R. E. Zund, Statistical Methods in Analytical Chemistry, Wiley, New York, 1993.
Miller, J. C., and J. N. Miller, Statistics for Analytical Chemists, Halsted Press, John Wiley, New York, 1984.
Moore, D. S., Statistics: Concepts and Controversies, W. H. Freeman, New York, 1985.
Mulholland, H., and C. R. Jones, Fundamentals of Statistics, Plenum Press, New York, 1968.
Taylor, J. K., Statistical Techniques for Data Analysis, Lewis, Boca Raton, FL, 1990.
Youden, W. J., “The Sample, the Procedure, and the Laboratory,” Anal. Chem., 32:23A (1960).
Youden, W. J., Statistical Methods for Chemists, Wiley, New York, 1951.
Youden, W. J., Statistical Manual of the AOAC, AOAC, 1111 North 19th St., Arlington, VA, 22209.
SECTION 3 INORGANIC CHEMISTRY 3.1 NOMENCLATURE OF INORGANIC COMPOUNDS 3.1 3.1.1 Writing Formulas 3.1 3.1.2 Naming Compounds 3.3 3.1.3 Cations 3.6 3.1.4 Anions 3.6 3.1.5 Acids 3.8 3.1.6 Salts and Functional Derivatives of Acids 3.8 Table 3.1 Trivial Names Retained for Acids 3.9 3.1.7 Coordination Compounds 3.10 3.1.8 Addition Compounds 3.11 3.2 PHYSICAL PROPERTIES OF PURE SUBSTANCES 3.12 Table 3.2 Physical Constants of Inorganic Compounds 3.12 Table 3.3 Synonyms and Mineral Names 3.61 3.1 NOMENCLATURE OF INORGANIC COMPOUNDS The following synopsis of rules for naming inorganic compounds and the examples given in ex-planation are not intended to cover all the possible cases. For a more comprehensive and detailed description, see G. J. Leigh (ed.), Nomenclature of Inorganic Chemistry, 3d ed., Blackwell Scientific Publications, Oxford, 1990. This 289-page publication contains the Recommendations 1990 of the Commission on Nomenclature of Inorganic Chemistry and was prepared under the auspices of the International Union of Pure and Applied Chemistry (IUPAC). In particular, the latest report should be consulted for coordination compounds, boron compounds, and crystalline phases of variable composition.
3.1.1 Writing Formulas 3.1.1.1 Mass Number, Atomic Number, Number of Atoms, and Ionic Charge.
The mass num-ber, atomic number, number of atoms, and ionic charge of an element are indicated by means of four indices placed around the symbol: mass number ionic charge 15 3 SYMBOL N 7 2 atomic number number of atoms Ionic charge should be indicated by an Arabic superscript numeral preceding the plus or minus sign: Mg2, 3 PO .
4 3.1.1.2 Placement of Atoms in a Formula.
The electropositive constituent (cation) is placed first in a formula. If the compound contains more than one electropositive or more than one electroneg-ative constituent, the sequence within each class should be in alphabetical order of their symbols.
3.1 3.2 SECTION 3 The alphabetical order may be different in formulas and names; for example, NaNH4HPO4, am-monium sodium hydrogen phosphate.
Acids are treated as hydrogen salts. Hydrogen is cited last among the cations.
When there are several types of ligands, anionic ligands are cited before the neutral ligands.
3.1.1.3 Binary Compounds between Nonmetals.
For binary compounds between nonmetals, that constituent should be placed first which appears earlier in the sequence: Rn, Xe, Kr, Ar, Ne, He, B, Si, C, Sb, As, P, N, H, Te, Se, S, At, I, Br, Cl, O, F Examples: AsCl , SbH , H Te, BrF , OF , and N S .
3 3 3 3 2 4 4 3.1.1.4 Chain Compounds.
For chain compounds containing three or more elements, the se-quence should be in accordance with the order in which the atoms are actually bound in the molecule or ion.
Examples: SCN (thiocyanate), HSCN (hydrogen thiocyanate or thiocyanic acid), HNCO (hy-drogen isocyanate), HONC (hydrogen fulminate), and HPH2O2 (hydrogen phosphinate).
3.1.1.5 Use of Centered Period.
A centered period is used to denote water of hydration, other solvates, and addition compounds; for example, CuSO4 · 5H2O, copper(II) sulfate 5-water (or pen-tahydrate).
3.1.1.6 Free Radicals.
In the formula of a polyatomic radical an unpaired electron(s) is(are) indicated by a dot placed as a right superscript to the parentheses (or square bracket for coordination compounds). In radical ions the dot precedes the charge. In structural formulas, the dot may be placed to indicate the location of the unpaired electron(s).
D 2D (HO) (O ) ( B NH ) Examples: 2 3 3.1.1.7 Enclosing Marks.
Where it is necessary in an inorganic formula, enclosing marks (pa-rentheses, braces, and brackets) are nested within square brackets as follows: [ ( ) ], [ { ( ) } ], [ { [ ( ) ] } ], [ { { [ ( ) ] } } ] In an inorganic name the nesting order is different: { { { [ ( ) ] } } }, and so on.
3.1.1.8 Molecular Formula.
For compounds consisting of discrete molecules, a formula in ac-cordance with the correct molecular weight of the compound should be used.
Examples: S2Cl2, S8, N2O4, and H4P2O6; not SCl, S, NO2, and H2PO3.
3.1.1.9 Structural Formula and Prefixes.
In the structural formula the sequence and spatial arrangement of the atoms in a molecule are indicated.
Examples: NaO(O"C)H (sodium formate), Cl9S9S9Cl (disulfur dichloride).
Structural prefixes should be italicized and connected with the chemical formula by a hyphen: cis-, trans-, anti-, syn-, cyclo-, catena-, o- or ortho-, m- or meta-, p- or para-, sec- (secondary), tert-(tertiary), v- (vicinal), meso-, as- for asymmetrical, and s- for symmetrical.
The sign of optical rotation is placed in parentheses, () for dextrorotary, () for levorotary, and () for racemic, and placed before the formula. The wavelength (in nanometers is indicated by a right subscript; unless indicated otherwise, it refers to the sodium D-line.
INORGANIC CHEMISTRY 3.3 The italicized symbols d- (for deuterium) and t- (for tritium) are placed after the formula and connected to it by a hyphen. The number of deuterium or tritium atoms is indicated by a subscript to the symbol.
Examples: cis-[PtCl2(NH3)2] methan-d3-ol di-tert-butyl sulfate ()589[Co(en)3]Cl2 methan-ol-d 3.1.2 Naming Compounds 3.1.2.1 Names and Symbols for Elements.
Names and symbols for the elements are given in Table 3.2. Wolfram is preferred to tungsten but the latter is used in the United States. In forming a complete name of a compound, the name of the electropositive constituent is left unmodified except when it is necessary to indicate the valency (see oxidation number and charge number, formerly the Stock and Ewens-Bassett systems). The order of citation follows the alphabetic listing of the names of the cations followed by the alphabetical listing of the anions and ligands. The alphabetical citation is maintained regardless of the number of each ligand.
Example: K[AuS(S2)] is potassium (disulfido)thioaurate(1).
3.1.2.2 Electronegative Constituents.
The name of a monatomic electronegative constituent is obtained from the element name with its ending (-en, -ese, -ic, -ine, -ium, -ogen, -on, -orus, -um, -ur, -y, or -ygen) replaced by -ide. The elements bismuth, cobalt, nickel, zinc, and the noble gases are used unchanged with the ending -ide. Homopolyatomic ligands will carry the appropriate prefix.
A few Latin names are used with affixes: cupr- (copper), aur- (gold), ferr- (iron), plumb- (lead), argent- (silver), and stann- (tin).
For binary compounds the name of the element standing later in the sequence in Sec. 3.1.1.3 is modified to end in -ide. Elements other than those in the sequence of Sec. 3.1.1.3 are taken in the reverse order of the following sequence, and the name of the element occurring last is modified to end in -ide; e.g., calcium stannide.
ELEMENT SEQUENCE 3.1.2.3 Stoichiometric Proportions.
The stoichiometric proportions of the constituents in a for-mula may be denoted by Greek numerical prefixes: mono-, di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, nona- (Latin), deca-, undeca- (Latin), dodeca-, . . . , icosa- (20), henicosa- (21), . . . , tri-conta- (30), tetraconta- (40), . . . , hecta- (100), and so on, preceding without a hyphen the names of the elements to which they refer. The prefix mono can usually be omitted; occasionally hemi-( ) and sesqui- ( ) are used. No elisions are made when using numerical prefixes except in the 1 3 ⁄2 ⁄2 case of icosa- when the letter “i” is elided in docosa- and tricosa-. Beyond 10, prefixes may be replaced by Arabic numerals.
3.4 SECTION 3 When it is required to indicate the number of entire groups of atoms, the multiplicative numerals bis-, tris-, tetrakis-, pentakis-, and so on, are used (i.e., -kis is added starting from tetra-). The entity to which they refer is placed in parentheses.
Examples: Ca[PF6]2, calcium bis(hexafluorophosphate); and (C10H21)3PO4, tris(decyl) phos-phate instead of tridecyl which is (C13H27).
Composite numeral prefixes are built up by citing units first, then tens, then hundreds, and so on. For example, 43 is written tritetraconta- (or tritetracontakis-).
In indexing it may be convenient to italicize a numerical prefix at the beginning of the name and connect it to the rest of the name with a hyphen; e.g., di-nitrogen pentaoxide (indexed under the letter “n”).
3.1.2.4 Oxidation and Charge Numbers.
The oxidation number (Stock system) of an element is indicated by a Roman numeral placed in parentheses immediately following the name of the element. For zero, the cipher 0 is used. When used in conjunction with symbols the Roman numeral may be placed above and to the right. The charge number of an ion (Ewens-Bassett system) rather than the oxidation state is indicated by an Arabic numeral followed by the sign of the charge cited and is placed in parentheses immediately following the name of the ion.
Examples: P2O5, diphosphorus pentaoxide or phosphorus(V) oxide; mercury(I) ion or 2 Hg , 2 dimercury(2) ion; K2[Fe(CN)6], potassium hexacyanoferrate(II) or potassium hexacyanofer-rate(4); PbIVO4, dilead(II) lead(IV) oxide or trilead tetraoxide.
II Pb2 Where it is not feasible to define an oxidation state for each individual member of a group, the overall oxidation level of the group is defined by a formal ionic charge to avoid the use of fractional oxidation states; for example, .
O2 3.1.2.5 Collective Names.
Collective names include: Halogens (F, Cl, Br, I, At) Chalcogens (O, S, Se, Te, Po) Alkali metals (Li, Na, K, Rb, Cs, Fr) Alkaline-earth metals (Ca, Sr, Ba, Ra) Lanthanoids or lanthanides (La to Lu) Rare-earth metals (Sc, Y, and La to Lu inclusive) Actinoids or actinides (Ac to Lr, those whose 5f shell is being filled) Noble gases (He to Rn) A transition element is an element whose atom has an incomplete d subshell, or which gives rise to a cation or cations with an incomplete d subshell.
3.1.2.6 Isotopically Labeled Compounds.
The hydrogen isotopes are given special names: 1H (protium), 2H or D (deuterium), and 3H or T (tritium). The superscript designation is preferred because D and T disturb the alphabetical ordering in formulas.
Other isotopes are designated by mass numbers: 10B (boron-10).
Isotopically labeled compounds may be described by inserting the italic symbol of the isotope in brackets into the name of the compound; for example, H36Cl is hydrogen chloride[36Cl] or hy-drogen chloride-36, and 2H38Cl is hydrogen [2H] chloride[38Cl] or hydrogen-2 chloride-38.
INORGANIC CHEMISTRY 3.5 3.1.2.7 Allotropes.
Systematic names for gaseous and liquid modifications of elements are some-times needed. Allotropic modifications of an element bear the name of the atom together with the descriptor to specify the modification. The following are a few common examples: Symbol Trivial name Systematic name H Atomic hydrogen Monohydrogen O2 (Common oxygen) Dioxygen O3 Ozone Trioxygen P4 White phosphorus Tetraphosphorus S8 -Sulfur, -Sulfur Octasulfur Sn -Sulfur (plastic sulfur) Polysulfur Trivial (customary) names are used for the amorphous modification of an element.
3.1.2.8 Heteroatomic and Other Anions.
A few heteroatomic anions have names ending in -ide.
These are 9OH, hydroxide ion (not hydroxyl) 9NH9, imide ion 9CN, cyanide ion 9NH9NH2, hydrazide ion 9 , hydrogen difluoride ion HF2 9NHOH, hydroxylamide ion 9NH2, amide ion 9HS, hydrogen sulfide ion Added to these anions are 9 , triiodide ion I3 9O9O9, peroxide ion 9N3, azide ion 9S9S9, disulfide ion 9O3, ozonide ion 3.1.2.9 Binary Compounds of Hydrogen.
Binary compounds of hydrogen with the more elec-tropositive elements are designated hydrides (NaH, sodium hydride).
Volatile hydrides, except those of Periodic Group VII and of oxygen and nitrogen, are named by citing the root name of the element (penultimate consonant and Latin affixes, Sec. 3.1.2.2) followed by the suffix -ane. Exceptions are water, ammonia, hydrazine, phosphine, arsine, stibine, and bismuthine.
Examples: B2H6, diborane; B10H14, decaborane(14); B10H16, decaborane(16); P2H4, diphos-phane; Sn2H6, distannane; H2Se2, diselane; H2Te2, ditellane; H2S5, pentasulfane; and PbH4, plum-bane.
3.1.2.10 Neutral Radicals.
Certain neutral radicals have special names ending in -yl: HO hydroxyl ClO3 perchloryl CO carbonyl CrO2 chromyl ClO chlorosyl NO nitrosyl ClO2 chloryl NO2 nitryl (nitroyl) Similarly for the other halogens.
3.6 SECTION 3 PO phosphoryl SeO seleninyl SO sulfinyl (thionyl) SeO2 selenonyl SO2 sulfonyl (sulfuryl) UO2 uranyl S2O5 disulfuryl NpO2 neptunyl† Radicals analogous to the above containing other chalcogens in place of oxygen are named by adding the prefixes thio-, seleno-, and so on; for example, PS, thiophosphoryl; CS, thiocarbonyl.
3.1.3 Cations 3.1.3.1 Monatomic Cations.
Monatomic cations are named as the corresponding element; for example, Fe2, iron(II) ion; Fe3, iron(III) ion.
This principle also applies to polyatomic cations corresponding to radicals with special names ending in -yl (Sec. 3.1.2.10); for example, PO, phosphoryl cation; NO, nitrosyl cation; , 2 NO2 nitryl cation; oxygenyl cation.
2 O , 2 Use of the oxidation number and charge number extends the range for radicals; for example, uranyl(VI) or uranyl(2) cation; , uranyl(V) or uranyl(1) cation.
2 UO UO 2 2 3.1.3.2 Polyatomic Cations.
Polyatomic cations derived by addition of more protons than re-quired to give a neutral unit to polyatomic anions are named by adding the ending -onium to the root of the name of the anion element; for example, , phosphonium ion; H2I, iodonium ion; PH4 H3O, oxonium ion; , methyl oxonium ion.
CH OH 3 2 Exception: The name ammonium is retained for the ion; similarly for substituted ammo- NH4 nium ions; for example, , tetrafluoroammonium ion.
NF4 Substituted ammonium ions derived from nitrogen bases with names ending in -amine receive names formed by changing -amine into -ammonium. When known by a name not ending in -amine, the cation name is formed by adding the ending -ium to the name of the base (eliding the final vowel); e.g., anilinium, hydrazinium, imidazolium, acetonium, dioxanium.
Exceptions are the names uronium and thiouronium derived from urea and thiourea, respectively.
3.1.3.3 Multiple Ions from One Base.
Where more than one ion is derived from one base, the ionic charges are indicated in their names: , hydrazinium(1) ion; , hydrazinium(2) 2 N H N H 2 5 2 6 ion.
3.1.4 Anions See Secs. 3.1.2.2 and 3.1.2.8 for naming monatomic and certain polyatomic anions. When an organic group occurs in an inorganic compound, organic nomenclature (q.v.) is followed to name the organic part.
3.1.4.1 Protonated Anions.
Ions such as are recommended to be named hydrogensulfate HSO4 with the two words written as one following the usual practice for polyatomic anions. However, in the Nomenclature of Organic Chemistry, 1979 edition, hydrogen is used as a separate word; this practice is followed in this Handbook.
† Similarly for the other actinoid elements.
INORGANIC CHEMISTRY 3.7 3.1.4.2 Other Polyatomic Anions.
Names for other polyatomic anions consist of the root name of the central atom with the ending -ate and followed by the valence of the central atom expressed by its oxidation number. Atoms and groups attached to the central atom are treated as ligands in a complex.
Examples: ], hexahydroxoantimonate(V); [Fe(CN6]3, hexacyanoferrate(III); [Sb(OH)6 [Co(NO2)6]3, hexanitritocobaltate(III); [TiO(C2O4)2(H2O)2]2, oxobisoxalatodiaquatitanate(IV); [PCl6], hexachlorophosphate(V).
Exceptions to the use of the root name of the central atom are antimonate, bismuthate, carbonate, cobaltate, nickelate (or niccolate), nitrate, phosphate, tungstate (or wolframate), and zincate.
3.1.4.3 Anions of Oxygen.
Oxygen is treated in the same manner as other ligands with the number of -oxo groups indicated by a suffix; for example, , trioxosulfate.
2 SO3 The ending -ite, formerly used to denote a lower state of oxidation, may be retained in trivial names in these cases (note Sec. 3.1.5.3 also): arsenite 3 AsO3 peroxonitrite NOO2 BrO hypobromite phosphite 3 PO3 ClO hypochlorite sulfite 2 SO3 chlorite ClO2 disulfite 2 S O 2 5 IO hypoiodite dithionite 2 S O 2 4 nitrite NO2 thiosulfite 2 S O 2 2 hyponitrite 2 N O 2 2 selenite 2 SeO3 However, compounds known to be double oxides in the solid state are named as such; for example, Cr2CuO4 (actually Cr2O3 · CuO) is chromium(III) copper(II) oxide (and not copper chro-mite).
3.1.4.4 Isopolyanions.
Isopolyanions are named by indicating with numerical prefixes the num-ber of atoms of the characteristic element. It is not necessary to give the number of oxygen atoms when the charge of the anion or the number of cations is indicated.
Examples: Ca3Mo7O24, tricalcium 24-oxoheptamolybdate, may be shortened to tricalcium hep-tamolybdate; the anion, , is heptamolybdate(6); , disulfate(2); , diphos-6 2 4 Mo O S O P O 7 24 2 7 2 7 phate(V)(4).
When the characteristic element is partially or wholly present in a lower oxidation state than corresponds to its Periodic Group number, oxidation numbers are used; for example, [O2HP9O9PO3H]2, dihydrogendiphosphate(III,V)(2).
A bridging group should be indicated by adding the Greek letter immediately before its names and separating this from the rest of the complex by a hyphen. The atom or atoms of the characteristic element to which the bridging atom is bonded, is indicated by numbers.
5 [O P9S9PO 9O9PO ] , 1,2--thiotriphosphate(5) 3 2 3 Examples: 5 [S P9O9PS 9O9PS ] , di--oxo-octathiotriphosphate(5) 3 2 3 Named for esters formed from the hypothetical acid P(OH)3.
3.8 SECTION 3 3.1.5 Acids 3.1.5.1 Acids and -ide Anions.
Acids giving rise to the -ide anions (Sec. 3.1.2.2) should be named as hydrogen . . . -ide; for example, HCl, hydrogen chloride; HN3, hydrogen azide.
Names such as hydrobromic acid refer to an aqueous solution, and percentages such as 48% HBr denote the weight/volume of hydrogen bromide in the solution.
3.1.5.2 Acids and -ate Anions.
Acids giving rise to anions bearing names ending in -ate are treated as in Sec. 3.1.5.1; for example, H2GeO4, hydrogen germanate; H4[Fe(CN)6], hydrogen hex-acyanoferrate(II).
3.1.5.3 Trivial Names.
Acids given in Table 3.1 retain their trivial names due to long-established usage. Anions may be formed from these trivial names by changing -ous acid to -ite, and -ic acid to -ate. The prefix hypo- is used to denote a lower oxidation state and the prefix per- designates a higher oxidation state. The prefixes ortho- and meta- distinguish acids of differing water content; for example, H4SiO4 is orthosilicic acid and H2SiO3 is metasilicic acid. The anions would be named silicate(4) and silicate(2), respectively.
3.1.5.4 Peroxo- Group.
When used in conjunction with the trivial names of acids, the prefix peroxo- indicates substitution of 9O9 by 9O9O9.
3.1.5.5 Replacement of Oxygen by Other Chalcogens.
Acids derived from oxoacids by replace-ment of oxygen by sulfur are called thioacids, and the number of replacements are given by prefixes di-, tri-, and so on. The affixes seleno- and telluro- are used analogously.
Examples: HOO9C"S, thiocarbonic acid; HSS9C"S, trithiocarbonic acid.
3.1.5.6 Ligands Other than Oxygen and Sulfur.
See Sec. 3.1.7, Coordination Compounds, for acids containing ligands other than oxygen and sulfur (selenium and tellurium).
3.1.5.7 Differences between Organic and Inorganic Nomenclature.
Organic nomenclature is largely built upon the scheme of substitution, that is, the replacement of hydrogen atoms by other atoms or groups. Although rare in inorganic nomenclature: NH2Cl is called chloramine and NHCl2 dichloroamine. Other substitutive names are fluorosulfonic acid and chlorosulfonic acid derived from HSO3H. These and the names aminosulfonic acid (sulfamic acid), iminodisulfonic acid, and nitri-lotrisulfonic acid should be replaced by the following based on the concept that these names are formed by adding hydroxyl, amide, imide, and so on, groups together with oxygen atoms to a sulfur atom: HSO3F fluorosulfuric acid NH(SO3H)2 imidobis(sulfuric) acid HSO3Cl chlorosulfuric acid N(SO3H)3 nitridotris(sulfuric) acid NH2SO3H amidosulfuric acid 3.1.6 Salts and Functional Derivatives of Acids 3.1.6.1 Acid Halogenides.
For acid halogenides the name is formed from the corresponding acid radical if this has a special name (Sec. 3.1.2.10); for example, NOCl, nitrosyl chloride. In other cases these compounds are named as halogenide oxides with the ligands listed alphabetically; for example, BiClO, bismuth chloride oxide; VCl2O, vanadium(IV) dichloride oxide.
3.1.6.2 Anhydrides.
Anhydrides of inorganic acids are named as oxides; for example, N2O5, dinitrogen pentaoxide.
INORGANIC CHEMISTRY 3.9 TABLE 3.1 Trivial Names Retained for Acids Alphabetically by characteristic element.
H3AsO4 arsenic acid H3AsO3 arsenious acid H3BO3 orthoboric acid (or boric acid) HBO2 metaboric acid HBrO3 bromic acid HBrO2 bromous acid HBrO hypobromous acid H2CO3 carbonic acid HOCN cyanic acid HNCO isocyanic acid HONC fulminic acid HClO4 perchloric acid HClO3 chloric acid HClO2 chlorous acid HClO hypochlorous acid H2CrO4 chromic acid H2Cr2O7 dichromic acid H5IO6 orthoperiodic acid HIO4 periodic acid HIO3 iodic acid HIO hypoiodous acid HMnO4 permanganic acid H2MnO4 manganic acid HNO4 peroxonitric acid HNO3 nitric acid HNO2 nitrous acid H2NO2 nitroxylic acid H2N2O2 hyponitrous acid HOONO peroxonitrous acid H3PO4 orthophosphoric acid (or phosphoric acid) HPO3 metaphosphoric acid H3PO5 peroxomonophosphoric acid H4P2O7 diphosphoric acid (or pyro-phosphoric acid) H4P2O8 peroxodiphosphoric acid (HO)2OP (HO)2OP diphosphoric(IV) acid or hypophosphoric acid (HO)2P9O (HO)2P9O diphosphoric(III,V) acid H2PHO3 phosphonic acid H2P2H2O5 diphosphonic acid HPH2O2 phosphinic acid (formerly hypophosphorous acid) HReO4 perrhenic acid H2ReO4 rhenic acid H2SO4 sulfuric acid H2S2O7 disulfuric acid H2SO5 peroxomonosulfuric acid H2S2O3 thiosulfuric acid H2S2S6 dithionic acid H2SO3 sulfurous acid H2S2O5 disulfurous acid H2S2O2 thiosulfurous acid H2S2O4 dithionous acid H2SxO6 polythionic acid (x 3, 4, . . . ) (tri-, tetra-, . . . ) H2SO2 sulfoxylic acid HSb(OH)6 hexahydrooxoantimonic acid H2SeO4 selenic acid H2SeO3 selenious acid H4SiO4 orthosilicic acid H2SiO3 metasilicic acid HTcO4 pertechnetic acid H2TeO4 technetic acid H6TeO6 orthotelluric acid 3.1.6.3 Esters.
Esters of inorganic acids are named as the salts; for example, (CH3)2SO4, dimethyl sulfate. However, if it is desired to specify the constitution of the compound, the nomenclature for coordination compounds should be used.
3.1.6.4 Amides.
Names for amides are derived from the names of the acid radicals (or from the names of acids by replacing acid by amide); for example, SO2(NH2)2, sulfonyl diamide (or sulfuric diamide); NH2SO3H, sulfamidic acid (or amidosulfuric acid).
3.1.6.5 Salts.
Salts containing acid hydrogen are named by adding the word hydrogen before the name of the anion (however, see Sec. 3.1.4.1), for example, KH2PO4, potassium dihydrogen phos-phate; NaHCO3, sodium hydrogen carbonate (not bicarbonate); NaHPHO3, sodium hydrogen phos-phonate (only one acid hydrogen remaining).
Salts containing O2 and HO anions are named oxide and hydroxide, respectively. Anions are cited in alphabetical order which may be different in formulas and names.
Examples: FeO(OH), iron(III) hydroxide oxide; VO(SO4), vanadium(IV) oxide sulfate.
3.10 SECTION 3 3.1.6.6 Multiplicative Prefixes.
The multiplicative prefixes bis, tris, etc., are used with certain anions for indicating stoichiometric proportions when di, tri, etc., have been preempted to designate condensed anions; for example, AlK(SO4)2 · 12H2O, aluminum potassium bis(sulfate) 12-water (re-call that disulfate refers to the anion ).
2 S O 2 7 3.1.6.7 Crystal Structure.
The structure type of crystals may be added in parentheses and in italics after the name; the latter should be in accordance with the structure. When the typename is also the mineral name of the substance itself, italics are not used.
Examples: MgTiO3, magnesium titanium trioxide (ilmenite type); FeTiO3, iron(II) titanium tri-oxide (ilmenite).
3.1.7 Coordination Compounds 3.1.7.1 Naming a Coordination Compound.
To name a coordination compound, the names of the ligands are attached directly in front of the name of the central atom. The ligands are listed in alphabetical order regardless of the number of each and with the name of a ligand treated as a unit.
Thus “diammine” is listed under “a” and “dimethylamine” under “d.” The oxidation number of the central atom is stated last by either the oxidation number or charge number.
3.1.7.2 Anionic Ligands.
Whether inorganic or organic, the names for anionic ligands end in -o (eliding the final -e, if present, in the anion name). Enclosing marks are required for inorganic anionic ligands containing numerical prefixes, and for thio, seleno, and telluro analogs of oxo anions containing more than one atom.
If the coordination entity is negatively charged, the cations paired with the complex anion (with -ate ending) are listed first. If the entity is positively charged, the anions paired with the complex cation are listed immediately afterward.
The following anions do not follow the nomenclature rules: F fluoro hydrogen peroxo HO2 Cl chloro S2 thio (only for single sulfur) Br bromo disulfido 2 S2 I iodo HS mercapto O2 oxo CN cyano H hydrido (or hydro) CH2O methoxo or methanolato OH hydroxo CH2S methylthio or methanethiolato peroxo 2 O2 3.1.7.3 Neutral and Cationic Ligands.
Neutral and cationic ligands are used without change in name and are set off with enclosing marks. Water and ammonia, as neutral ligands, are called “aqua” and “ammine,” respectively. The groups NO and CO, when linked directly to a metal atom, are called nitrosyl and carbonyl, respectively.
3.1.7.4 Attachment Points of Ligands.
The different points of attachment of a ligand are denoted by adding italicized symbol(s) for the atom or atoms through which the attachment occurs at the end of the name of the ligand; e.g., glycine-N or glycinato-O,N. If the same element is involved in different possible coordination sites, the position in the chain or ring to which the element is attached is indicated by numerical superscripts: e.g., tartrato(3)-O1,O2, or tartrato(4)-O2,O3 or tar-trato(2)-O1,O4.
INORGANIC CHEMISTRY 3.11 3.1.7.5 Abbreviations for Ligand Names.
Except for certain hydrocarbon radicals, for ligand (L) and metal (M), and a few with H, all abbreviations are in lowercase letters and do not involve hyphens. In formulas, the ligand abbreviation is set off with parentheses. Some common abbrevia-tions are Ac acetyl en ethylenediamine acac acetylacetonato Him imidazole Hacac acetylacetone H2ida iminodiacetic acid Hba benzoylacetone Me methyl Bzl benzyl H3nta nitrilotriacetic acid Hbg biguanide nbd norbornadiene bpy 2,2-bipyridine ox oxalato(2) from parent H2ox Bu butyl phen 1,10-phenanthroline Cy cyclohexyl Ph phenyl D2dea diethanolamine pip piperidine dien diethylenetriamine Pr propyl dmf dimethylformamide pn propylenediamine H2dmg dimethylglyoxime Hpz pyrazole dmg dimethylglyoximato(2) py pyridine Hdmg dimethylglyoximato(1) thf tetrahydrofuran dmso dimethylsulfoxide tu thiourea Et ethyl H3tea triethanolamine H4edta ethylenediaminetetraacetic acid tren 2,2,2-triaminotriethylamine Hedta, edta coordinated ions derived trien triethylenetetraamine from H4edta tn trimethylenediamine Hea ethanolamine ur urea Examples: Li[B(NH2)4], lithium tetraamidoborate(1) or lithium tetraamidoborate(III); [Co(NH3)5Cl]Cl3, pentaamminechlorocobalt(III) chloride or pentaamminechlorocobalt(2) chlo-ride; K3[Fe(CN)5CO], potassium carbonylpentacyanoferrate(II) or potassium carbonylpentacyano-ferrate(3); [Mn{C6H4(O)(COO)}2(H2O)4], tetraaquabis[salicylato(2)]manganate(III) ion; [Ni(C4H7N2O2)2] or [Ni(dmg)] which can be named bis-(2,3-butanedione dioximato)nickel(II) or bis[dimethylglyoximato(2)]nickel(II).
3.1.8 Addition Compounds The names of addition compounds are formed by connecting the names of individual compounds by a dash (—) and indicating the numbers of molecules in the name by Arabic numerals separated by the solidus (diagonal slash). All molecules are cited in order of increasing number; those having the same number are cited in alphabetic order. However, boron compounds and water are always cited last and in that order.
Examples: 3CdSO4 · 8H2O, cadmium sulfate—water (3/8); Al2(SO4)3 · K2SO4 · 24H2O, alumi-num sulfate—potassium sulfate—water (1/1/24); AlCl3 · 4C2H5OH, aluminum chloride—ethanol (1/4).
3.12 SECTION 3 3.2 PHYSICAL PROPERTIES OF PURE SUBSTANCES TABLE 3.2 Physical Constants of Inorganic Compounds Names follow the IUPAC Nomenclature. Solvates are listed under the entry for the anhydrous salt. Acids are entered under Hydrogen and acid salts are entered as a subentry under hydrogen.
Formula weights are based upon the International Atomic Weights of 1993 and are computed to the nearest hundredth when justified. The actual significant figures are given in the atomic weights of the individual elements.
Each element that has neither a stable isotope nor a characteristic natural isotopic composition is represented in this table by one of that element’s commonly known radioisotopes identified by mass number and relative atomic mass.
Density values are given at room temperature unless otherwise indicated by the superscript figure; for example, 2.48715 indicates a density of 2.487 g/cm3 for the substance at 15C. A superscript 20 over a subscript 4 indicates a density at 20C relative to that of water at 4C. For gases the values are given as grams per liter (g/L).
Melting point is recorded in a certain case as and in some other cases as the distinction being made 250 d d 250, in this manner to indicate that the former is a melting point with decomposition at 250C while in the latter decomposition only occurs at 250C and higher temperatures. Where a value such as 150 is given it 6H O, 2 indicates a loss of 6 moles of water per formula weight of the compound at a temperature of 150C. For hydrates the temperature stated represents the compound melting in its water of hydration.
Boiling point is given at atmospheric pressure ( of mercury or 101 325 Pa) unless otherwise indicated; 760 mm thus 8215mm indicates that the boiling point is 82C when the pressure is of mercury. Also, subl 550 15 mm indicates that the compound sublimes at 550C. Occasionally decomposition products are mentioned.
Solubility is given in parts by weight (of the formula weight) per 100 parts by weight of the solvent (i.e., percent by weight) and at room temperature. Another unit frequently used is grams per of solvent (mL per 100 mL for liquids and gases). The symbols of the common mineral acids represent aqueous solutions of these 100 mL acids.
Abbreviations Used in the Table a, acid abs, absolute abs alc, anhydrous ethanol acet, acetone alk, alkali (aq NaOH or KOH) anhyd, anhydrous aq, aqueous aq reg, aqua regia atm, atmosphere BuOH, butanol bz, benzene c, solid state ca., approximately chl, chloroform conc, concentrated cub, cubic d, decomposes dil, dilute disprop, disproportionates EtOAc, ethyl acetate eth, diethyl ether EtOH, 95% ethanol expl, explodes fcc, face-centered cubic fctetr, face-centered tetragonal FP, flash point fum, fuming fus, fusion, fuses g, gas, gram glyc, glycerol h, hot hex, hexagonal HOAc, acetic acid i, insoluble ign, ignites L, liter lq, liquid MeOH, methanol min, mineral mL, milliliter org, organic oxid, oxidizing PE, petroleum ether pyr, pyridine s, soluble satd, saturated sl, slightly soln, solution solv, solvent(s) subl, sublimes sulf, sulfides tart, tartrate THF, tetrahyrofuran v, very vac, vacuum viol, violently volat, volatilizes , less than , greater than TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Actinium-227 Ac 227.0278 10.07 1050(50) ca. 3200 d aq; s acids bromide AcBr3 466.74 5.85 subl 800 s aq Aluminum Al 26.981539 2.70 660.323 2518 s HCl, H2SO4, alk acetylacetonate Al(C5H7O2)3 324.31 1.27 190–193 315 i aq; v s alc; s bz, eth ammonium bis(sulfate) 12-water AlNH4(SO4)2 · 12H2O 453.33 1.65 anhyd 280 14.3 g/100 mL aq; s glyc; i alc antimonide AlSb 148.74 4.26 1060 arsenide AlAs 101.90 3.76 1740 bis(acetylsalicylate) Al(OOCC6H4OCOCH3)2OH 402.30 v sl s aq, alc, eth borate (2/1) 2Al2O3 · B2O3 273.54 ca. 1050 i aq bromide AlBr3 266.69 3.20518 0 97.5 subl 253 d (viol) aq; s alc, acet, bz, CS2 butoxide, sec-Al(C4H9O)3 246.33 0.967 200–20630mm FP 27; v s org solv butoxide, tert-Al(C4H9O)3 246.33 1.02520 0 subl 180 v s org solv carbide (4/3) Al4C3 143.96 2.360 2100 d 2200400mm d aq; fire hazard chlorate Al(ClO3)3 277.35 v s aq; s alc chloride AlCl3 133.34 2.44025 192.6 subl 181.1 g/100 mL: 70 aq (viol), 10012 abs alc; s CCl4, eth; sl s bz ethoxide Al(C2H5O)3 162.16 1.14220 0 140 20514mm s hot aq d; v sl s alc, eth fluoride AlF3 83.98 2.88225 4 1090 subl 1272 0.56 aq; i a, alk, alc, acet hydroxide Al(OH)3 78.01 2.42 to Al2O3, 300 i aq; s acids, alkalis iodide AlI3 407.69 3.9817 191.0 382 d aq; s alc, eth, CS2 isopropoxide Al(C3H7O)3 204.25 1.034620 0 118.5 13510mm d aq; s alc, bz, chl, PE methoxide Al(CH3O)3 72.07 0 130 nitrate 9-water Al(NO3)3 · 9H2O 375.13 1.72 73 d 135 g/100 mL: 64 aq, 100 alc; s acet nitride AlN 40.99 3.05 d 2517 d aq, acid, alkali oxide (alpha-) AlO3 101.96 3.97 2054(6) 2980 i aq; v sl s a, alk perchlorate 6-water Al(ClO4)3 · 6H2O 433.43 2.020 120.8 anhyd 178 133 g/100 mL20 aq phenoxide Al(C6H5O)3 306.27 1.23 d 265 d aq; s alc, chl, eth phosphate AlPO4 121.95 2.56 1460 i aq; sl s a phosphide AlP 57.96 2.8515 4 2550 d aq phosphinate (hypophos-phite) Al(H2PO2)3 221.94 d to PH3, 220 i aq; s HCl, warm alkali 3.13 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Aluminum (continued) potassium bis(sulfate) 12-water AlK(SO4)2 · 12H2O 474.39 1.75720 9H2O, 92 anhyd, 200 11.4 g/100 mL aq; v s glyc; i alc propoxide Al(C3H7O)3 204.25 1.057820 0 106 24814mm d aq; s alc selenide Al2Se3 290.84 3.43720 4 947 d aq, acid silicon oxide (1/1) Al2O3 · SiO2 162.05 3.247 i aq; d HF; s fused alkali sodium bis(sulfate) 12-water AlNa(SO4)2 · 12H2O 458.28 1.67520 61 110 g/100 mL15 aq; i alc stearate Al(C18H35O2)3 877.41 1.070 117–120 i aq, alc; s bz, alk sulfate Al2(SO4)3 342.15 1.61 770 d 36.4 g/100 mL20 aq; sl s alc sulfate 18-water Al2(SO4)3 · 18H2O 666.46 1.6917 d 86.5 87 g/100 mL0 aq; i alc sulfide Al2S3 150.16 2.2013 1097 subl 1500 hyd aq; s acid tetrahydridoborate Al(BH4)3 71.53 64.5 44.5 d aq; ign air; expl in O2, 20 Americium Am 243 12 1176 2011 s a Ammonia NH3 17.03 lq: 0.6818 at bp g: 0.617515, 7.2atm 77.75 33.35 g/100 mL: 34 aq; 13.2 alc; s eth, organic solvents Ammonium acetate NH4C2H3O2 77.08 1.1720 114 d g/100 mL: 1484 aq, 7.915 MeOH; s alc amidosulfate NH4SO3NH2 114.13 131 d 160 v s aq; sl s alc benzoate NH4C6H5O2 139.15 1.260 198 subl 160 g/100 mL: 2015 aq, 2.8 alc; s glyc bromide NH4Br 97.94 2.429 452 (subl under pressure) d 397 vacuo 76 g/100 mL20 aq; v s acet, alc, eth calcium arsenate 6-water NH4CaAsO4 · 6H2O 305.13 1.90515 d 140 0.02 aq; s NH4Cl carbamate NH4COONH2 78.07 subl 60 v s aq; sl s alc; i eth carbonate 1-water (NH4)2CO3 · H2O 114.10 volatilizes 60 v s aq; i alc chloride NH4Cl 53.49 1.527425 237.8 520 g/100 mL: 2615 aq, 0.619 abs alc; i acet, eth chromate(VI) (NH4)2CrO4 152.07 1.9112 d 185 34 g/100 mL20 aq; sl s MeOH chromium(III) bissulfate 12-water NH4Cr(SO4)2 · 12H2O 478.34 1.72 94 d 7.2 g/100 mL0 aq copper(II) tetrachloride 2-water (NH4)2CuCl4 · 2H2O 277.46 1.993 anhyd, 110 d 120 40.3 g/100 mL20 aq; s alc 3.14 cyanide NH4CN 44.06 1.10 d 36 v s aq, alc dichromate(VI) (NH4)2Cr2O7 252.07 2.155 d 180 to Cr2O3 35.6 g/100 mL20 aq; s alc; flammable dihydrogen arsenate NH4H2AsO4 158.97 2.311 d 300 v s aq dihydrogen phosphate NH4H2PO4 115.03 1.80319 d 190 37 g/100 mL20 aq; sl s alc; i acet disulfatocobatate(II) 6-water (NH4)2[Co(SO4)2] · 6H2O 395.23 1.902 18 g/100 mL20 aq; v sl s alc disulfatoferrate(II) 6-water (NH4)2[Fe(SO4)2] · 6H2O 392.14 1.864 d 100 36.4 g/100 mL20 aq; i alc disulfatoferrate(III) 12-water NH4[Fe(SO4)2] · 12H2O 482.19 1.71 39–41 d 230 124 g/100 mL aq disulfatonickelate(II) 6-water (NH4)2[Ni(SO4)2] · 6H2O 395.00 1.923 8.95 g/100 mL20 aq dithiocarbamate NH4S(CS)NH2 110.20 20 1.4514 99 d v s aq; s alc; sl s eth diuranate(VI) (NH4)2U2O7 624.22 v sl s aq, alk; s acids fluoride NH4F 37.04 1.00925 d to NH3 HF 100 g/100 mL0 aq; s alc formate NH4OOCH 63.06 1.27 116 d 180 143 g/100 mL20 aq; s alc, eth heptamolybdate(VI)(6) 4-water (NH4)2Mo7O24 · 4H2O 1235.86 2.498 anhyd 90 d 190 43 g/100 mL aq; s acids; i alc hexachloropalladate(IV) (NH4)2[PdCl6] 355.20 2.418 d sl s aq hexachloroplatinate(IV) (NH4)2[PtCl6] 443.87 3.065 d 380 0.5 aq hexadecanoate NH4OOC(CH2)14CH3 273.45 21–22 s aq; sl s bz; i alc, acet hexafluoroaluminate(3) (NH4)3[AlF6] 195.09 1.78 d 100 v s aq hexafluorogallate (NH4)3GaF6 237.83 2.10 d 200 hexafluorogermanate (NH4)2GeF6 222.68 2.564 380 subl s aq; i eth hexafluorophosphate NH4[PF6] 163.00 18 2.1804 d 68 74.8 g/100 mL20 aq; s alc, acet hexafluorosilicate (NH4)2[SiF6] 178.15 2.011 d 18.6 g/100 mL20 aq; i alc, acet hexanitratocerate(IV) (NH4)2[Ce(NO3)6] 548.22 135 g/100 mL20 aq; s alc, HNO hydrogen carbonate NH4HCO3 79.06 1.586 107 (rapid heating) g/100 mL: 17.420 aq, 10 glyc hydrogen citrate (NH4)2HC6H5O7 226.19 1.48 100 g/100 mL aq; sl s alc hydrogen difluoride NH4HF2 57.04 1.51 124.6 240 d v s aq; sl s alc hydrogen oxalate hydrate NH4HC2O4 · H2O 125.08 1.556 anhyd, 170 s aq, alc; i bz, eth hydrogen phosphate (NH4)2HPO4 132.06 1.619 d 155 69 g/100 mL20 aq; i alc, acet hydrogen sulfate NH4HSO4 115.11 1.78 146.9 d 350 100 g/100 mL aq; i alc, acet hydrogen sulfide NH4HS 51.11 1.17 d 25 to NH3 H2S 128 g/100 mL0 aq; s glyc; i alc, acet hydrogen sulfite NH4HSO3 99.11 2.03 subl 150 in N2 267 g/100 mL10 aq 3.15 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Ammonium acetate (continued) hydrogen ()tartrate NH4HC4H4O6 167.12 1.68 d 200 2.215 aq; i alc hydroxide NH4OH 35.05 77 49% dissolved NH3 hypophosphite NH4H2PO2 83.03 d v s aq; sl s alc; i acet iodate NH4IO3 192.94 3.309 d 150 2.615 aq iodide NH4I 144.94 2.51425 subl 551 220 vacuo 167 g/100 mL20 aq; v s alc, acet lactate NH4C3H5O3 107.11 1.215 92 v s aq, alc, glyc; i acet, eth magnesium arsenate 6-water NH4MgAsO4 · 6H2O 289.36 1.923 d 0.03820 aq molybdate(VI)(2) (NH4)2MoO4 196.04 25 2.2764 d s acids nitrate NH4NO3 80.04 1.72525 169.6 d 210 g/100 mL: 19220 aq; 3.820 alc; 1720 MeOH; s acet octadecanoate NH4OOC(CH2)16CH3 301.50 21–22 sl s aq; s alc; i acet octanoate NH4OOC(CH2)6CH3 161.24 d on standing v s aq, alc, acet; sl s eth oxalate hydrate (NH4)2C2O4 · H2O 142.11 1.50 d 70 5.120 aq; s alc oxodioxalatotitanate(IV) (NH4)2TiO(C2O4)2 276.02 v s aq perchlorate NH4ClO4 117.49 1.95 d 240 g/100 mL25: 21.9 aq, 1.49 EtOH, 0.014 BuOH, 0.029 EtOAc permanganate NH4MnO4 136.97 2.20810 explodes, 110 0.815 aq peroxodisulfate (NH4)2S2O8 228.20 1.982 d 120 expl 180 58 g/100 mL0 aq phosphinate NH4PH2O2 83.04 1.634 200 d 240 g/100 mL: 100 aq, 5 alc; i acet phosphomolybdate hydrate (NH4)3PO4 · 12MoO3 · H2O 1894.36 d sl s aq picrate NH4C6H2N3O7 246.14 1.719 d expl 423 1.120 aq; sl s alc selenate(VI) (NH4)2SeO4 179.04 2.19320 4 d 117 g/100 mL7 aq; s HOAC; i alc stearate NH4C18H35O2 301.51 0.89 22 sl s aq, bz; s alc; i acet sulfamate NH4NH2SO3 114.13 131 d 160 v s aq; sl s alc sulfate (NH4)2SO4 132.14 1.76920 d 280 43.5 g/100 mL20 aq; i alc, acet sulfide (NH4)2S 68.14 d 0 v s aq; s alc, alk sulfite hydrate (NH4)2SO3 · H2O 134.16 1.41 d 60 75 g/100 mL20 aq; i alc, acet ()tartrate (NH4)2C4H4O6 184.15 1.601 d 58 g/100 mL15 aq; sl s alc tetraborate 4-water (NH4)2B4O7 · 4H2O 263.44 s aq; i alc 3.16 tetrachloroaluminate NH4[AlCl4] 186.83 304 s aq, eth tetrachloropalladate(II) (NH4)2[PdCl4] 284.29 2.170 d v s aq; i abs alc tetrachloroplatinate(II) (NH4)2[PtCl4] 372.97 2.936 140 d s aq; i alc tetrachlorozincate (NH4)2[ZnCl4] 243.28 1.879 150 d subl 341 v s aq tetrafluoroborate NH4[BF4] 104.84 1.871 subl 25 g/100 mL16 aq thiocyanate NH4SCN 76.12 1.305 149.6 d 170 128 g/100 mL0 aq; v s alc; s acet thiosulfate (NH4)2S2O3 148.21 1.679 d 150 2.1515 aq; i alc, eth vanadate(V)(1) NH4VO3 116.98 2.326 d 200 0.4820 aq Antimony Sb 121.760(1) 6.69725 630.7 1587 s hot conc H2SO4, aqua regia arsenide SbAs 196.68 6.0 680 (III) bromide SbBr3 361.47 4.35 96.6 280 s acet, bz, chl (III) chloride SbCl3 228.12 3.1420 4 73.4 220.3 10 g/100 mL20 aq; s alc, bz, chl (V) chloride SCl5 299.02 2.33620 4 3.5 7922mm d aq; s HCl, chl, CCl4 (III) fluoride SbF3 178.75 4.37920 20 292 376 444 g/100 mL20 aq (V) fluoride SbF3 216.75 2.9923 8.3 141 d viol aq; s HOAc; forms solids with alc, bz, CS2, eth hydride (stibine) SbH3 124.78 5.475 g/L 91.5 18.4 20 mL/100 mL20 aq; s CS2, alc (III) iodide SbI3 502.47 4.92 168 401 g/100 g25: 1.16 bz, 1.24 tol, 0.16 chl (III) oxide (valentinite) Sb2O3 291.52 5.7 655 1425 v sl s aq; s HCl, KOH (V) oxide Sb2O3 323.52 3.78 O2, 300 v sl s aq; sl s warm KOH, eth (III) selenide Sb2Se3 480.40 5.81 612 v sl s aq; s conc HCl (III) sulfate SB2(SO4)3 531.71 3.62 d sl s aq (III) sulfide Sb2S3 339.72 4.56 546 0.00220 aq (d); s H2SO4 (V) sulfide Sb2S5 403.85 4.120 75 d i aq; s HCl (d), NaOH (III) telluride Sb2Te3 626.32 6.52 620 i aq; s HNO3 triethyl Sb(C2H5)3 209.0 1.32414 29 159.5 i aq trimethyl Sb(CH3)3 166.9 1.52315 80.6 sl s aq Argon Ar 39.948(1) 1.7824 g/L0 189.38 185.87 3.36 mL/100 mL20 aq Arsenic As 74.92159(2) 5.72725 4 817 subl 615 i aq; s HNO3 (III) bromide AsBr3 314.63 3.397225 4 31.1 220.0 hyd aq; s HCl, CS2, PE (III) chloride AsCl3 181.28 2.149725 4 16.2 130.2 misc chl, CCl4, eth; s HCl (di-) disulfide As2S2 213.97 3.25419 320 565 s alkali; v sl s bz (III) fluoride AsF3 131.92 15 2.7315 5.95 57.8 s alc, bz, eth, HF (V) fluoride AsF5 169.91 7.46 g/L 79.8 52.8 hyd aq; s alc, bz, eth (III) hydride (arsine) AsH3 77.95 3.420 g/L 116.9 62.5 28 mL/100 mL20 aq; s bz, chl (III) iodide AsI3 455.63 4.73 140.9 424 s bz, tol; sl s aq, alc, eth (III) oxide (arsenolite) As2O3 197.84 3.86 274 460 1.820 aq; s alc 3.17 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Arsenic (continued) (III) oxide (claudetite) As2O3 197.84 3.74 313 460 sl s aq; s dil acid, alk (V) oxide As2O5 229.84 4.32 315 d 800 66 g/100 mL20 aq; s alc (III) selenide As2Se3 386.72 4.75 260 s alkali, HNO3 (III) sulfide As2S3 246.04 3.460 310 707 i aq; s alk, slowly s hot HCl (V) sulfide As2S5 310.17 subl 500 0.0003 aq; s alkali, HNO3 (III) telluride As2Te3 532.64 6.50 621 Astatine At 210 302 Barium Ba 137.33 3.5120 726.9 1845 d aq to Ba(OH) acetate hydrate Ba(C2H3O2)2 · H2O 273.43 2.19 anhyd 110 d 150 58.8 g/100 mL0 aq; 0.014 alc benzenesulfonate Ba(O3SC6H5)2 451.70 s aq; sl s alc bromate hydrate Ba(BrO3)2 · H2O 411.14 3.9918 d 260 0.9630 aq; s acet; i alc bromide BaBr2 297.14 4.781 856 1835 92 g/100 mL0 aq; s MeOH, acet carbonate BaCO3 197.34 4.2865 d 1300 to BaO CO2 0.0024 aq; s acids chlorate hydrate Ba(ClO3)2 · H2O 322.24 3.179 anhyd 120 O2, 250 34 g/100 mL20 aq; sl s alc, acet chloride BaCl2 208.24 3.85624 962 1560 36 g/100 mL20 aq; s MeOH; i acet, EtAc chloride dihydrate BaCl2 · 2H2O 244.26 3.097 anhyd 113 31.7 g/100 mL0 aq chromate(VI) BaCrO4 253.33 4.49820 d 0.00120 aq; s mineral acids cyanide Ba(CN)2 189.36 80 g/100 mL14 aq; s alc fluoride BaF2 175.32 4.89 1368 2260 0.16120 aq; s acids hexafluorosilicate Ba[SiF6] 279.40 4.2921 4 d 300 0.023525 aq; s NH4Cl soln; i alc hydrogen phosphate BaHPO4 233.31 4.16515 d 410 0.01 aq; s HCl, HNO3 hydroxide 8-water Ba(OH)2 · 8H2O 315.48 2.1816 78 3.920 aq iodate Ba(IO3)2 487.13 5.2320 d 476 0.03320 aq; s HCl iodide BaI2 391.14 5.15 711 2027 169 g/100 mL20 aq; s alc, acet manganate(VI)(2) BaMnO4 256.26 4.85 disprop to Ba(MnO4)2 MnO2 molybdate BaMoO4 297.27 4.975 1450 0.005825 aq niobate Ba(NbO3)2 419.14 5.44 1455 i aq nitrate Ba(NO3)2 261.34 3.2423 592 d 5.0 aq; v sl s alc, acet nitrite hydrate Ba(NO2)2 · H2O 247.35 3.17330 d 115 54.8 g/100 mL0 aq; i alc 3.18 oxalate BaC2O4 225.35 2.658 400 d i aq oxide BaO 153.33 5.72 1973 3088 3.520 aq; s acids, EtOH perchlorate Ba(ClO4)2 336.23 3.20 505 g/100 mL25: 129 aq, 78 EtOH, 42 BuOH, 81 EtOAc; i eth perchlorate 3-water Ba(ClO4)2 · 3H2O 390.27 2.74 d 400 198 g/100 mL25 aq; s MeOH; sl s acet permanganate Ba(MnO4)2 375.20 3.77 d 200 v s aq peroxide BaO2 169.33 4.96 450 d O2, 800 1.50 aq selenide BaSe 216.29 5.02 1780 d aq stearate Ba(C18H35O2)2 704.28 1.145 160 i aq sulfate BaSO4 233.39 4.5015 1580 d 1600 0.00285 aq sulfide BaS 169.39 4.2515 2230 7.920 aq; dec in acids sulfite BaSO3 217.39 4.44 d 0.020 aq; i alc tetracyanoplatinate(II)-4-water Ba[Pt(CN)4] · 4H2O 508.54 2.076 2.86 aq; i alc thiocyanate 2-water Ba(SCN)2 · 2H2O 289.53 2.28618 d 160 170 g/100 mL20 aq; s alc, acet thiosulfate hydrate BaS2O3 · H2O 267.47 3.518 d 220 0.2120 aq; i alc, acet, eth, CS titanate(IV)(2) BaTiO3 233.19 6.02 1625 i aq vanadate Ba3(VO4)2 641.86 5.14 707 zirconate BaZrO3 276.55 5.52 2500 i aq, alk; sl s acids Berkelium ( form) Bk 247 14.78 1050 ( form) Bk 247 13.25 986 Beryllium Be 9.012 1.847720 1287 2467 i aq; s acid, alk bromide BeBr2 168.82 3.46525 508 521 v s aq; s alc; 18.6 pyr carbide Be2C 30.04 1.9015 d 2127 d aq; s acids, alkali giving CH4 chloride BeCl2 79.92 1.89925 415 (alpha) 482.3 42 g/100 mL aq; s alc, eth, pyr, CS2 fluoride BeF2 47.01 1.986 555 subl 10361mm v s aq (slowly) hydride BeH2 11.03 0.65 H2, 220 d aq (slowly), acids (rapidly) hydroxide Be(OH)2 43.03 1.909 93 s hot conc acids and alkali (viol) iodide BeI2 262.82 4.32 480 487 hyd aq violently; s alc, eth, CS2 nitrate 3-water Be(NO3)2 · 3H2O 187.07 1.557 60.5 d 125 166 g/100 mL20 aq nitride Be3N2 55.05 2.71 2200 d hot aq, alkali oxide BeO 25.01 3.025 2578 (alpha) 3787 s conc H2SO4 selenate 4-water BeSeO4 · 4H2O 224.03 2.03 anhyd 300 d 560 49 g/100 mL25 aq silicate Be2SiO4 110.11 3.0 1560 i aq sulfate 4-water BeSO4 · 4H2O 177.14 1.713 anhyd 270 d 580 39 g/100 mL20 aq; i alc sulfide BeS 41.08 2.36 d i aq; s HNO3 3.19 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Bismuth Bi 208.9804 9.78 271.5 1564 i aq; s hot H2SO4 (III) bromide BiBr3 448.69 5.72 218 453 d aq; s dil acids, acet bromide oxide BiBrO 304.88 8.08215 d i aq; s acids (III) chloride BiCl3 315.34 4.75 233.5 447 d aq; s HCl, alc, eth, acet chloride oxide BiClO 260.43 7.7215 d i aq; s HCl (III) fluoride BiF3 265.98 8.32 727 900 i aq; s HF (V) fluoride BiF5 303.97 5.5525 154.4 subl 550 d (viol) aq giving O3 BiF3 hydride BiH3 212.00 9.303 g/L 67 16.8 very unstable liquid (III) hydroxide Bi(OH)3 260.00 4.96215 water, 100 d aq; s HCl (III) iodide BiI3 589.69 5.77820 4 408.6 subl 439 i aq; s HCl, alc iodide oxide BiIO 351.88 7.922 d red heat i aq; s HCl (III) nitrate 5-water Bi(NO3)3 · 5H2O 485.07 2.83 anhyd 80 d aq; s HNO3, acet, glyc (III) oxide Bi2O3 465.96 8.76 817 1890 i aq; s HCl, HNO3 (V) oxide Bi2O5 497.96 5.10 d 150 i aq; s KOH (III) phosphate BiPO4 303.95 6.32315 d s conc HCl, HNO3 (III) selenide Bi2Se3 654.84 7.7020 4 710 d d i aq; d aq reg (III) sulfate Bi2(SO4)3 706.14 5.08 d 405 d aq, alc; s HCl (III) sulfide Bi2S3 514.16 6.78 850 i aq, EtAc; s HNO3, HCl (III) telluride Bi2Te3 800.76 7.74 588.5 i aq; s alc Boranes diborane(6) B2H6 27.67 1.214 g/L 165.5 92.5 FP 68; s NH4OH, conc H2SO4 tetraborane(10) B4H10 53.32 2.340 g/L 120 18 sl s aq; s bz pentaborane(9) B5H9 63.13 0.60 46.81 60.0 hyd aq pentaborane(11) B5H11 65.14 0.745 123 63 d aq hexaborane(10) B6H10 74.95 0.67 62.3 108 d d hot aq decaborane(14) B10H14 122.22 0.948 99.5 213 sl s aq; s bz, CS2, eth Borazine B3H6N3 80.50 lq: 0.81bp 58 55 sl s aq (d) Boric acids, see under Hydrogen Boron B 10.811 2.34 2076 3864 i aq carbide B4C 55.25 2.51025 4 2350 3500 s fused alkalis tribromide BBr3 250.52 2.6 46.0 91.3 d aq, alc 3.20 trichloride BCl3 117.17 5.141 g/L 107 12.7 d aq, alc trifluoride BF3 67.81 3.077 g/LSTP 127.1 100.4 332 g/100 mL0 aq; s bz, chl, CCl4 trifluoride 1-diethyl ether BF3 · O(C2H5)2 141.94 1.125 60.4 125.7 d aq trifluoride 1-methanol BF3 · HOCH3 131.89 1.203 594mm nitride BN 24.82 2.18 2967 sl s hot acids oxide B2O3 69.62 2.55 450.0 2065 3.3 aq (slowly); s alc, glyc Bromine Br2 159.808 3.102325 4 7.25 58.8 3.4 g/100 mL20 aq; v s alc, chl, eth pentafluoride BF5 174.90 2.460 60.5 40.76 explodes with water; s HF trifluoride BF3 136.90 2.80325 8.77 125.74 d viol aq; d alk; smokes in air Cadmium Cd 112.411 8.6525 321 765 i aq, alk; s HNO3, hot HCl acetate Cd(C2H3O2)2 230.50 2.341 255 d v s aq; s alc bromide CdBr2 272.22 5.192 566 963 99 g/100 mL20 aq; s acet; sl s eth carbonate CdCO3 172.42 4.2584 d 500 s acids, NH4OH chloride CdCl2 183.32 4.0525 568 960 120 g/100 mL25 aq cyanide Cd(CN)2 164.44 2.226 d 200 1.71 g/100 mL15 aq; sl s alc fluoride CdF2 150.41 6.33 1110 1748 4.3 g/100 mL25 aq hydroxide Cd(OH)2 146.43 4.79 H2O, 130 CaO, 200 0.0002620 aq; s acids iodide CdI2 366.22 5.670 388 742 84.7 g/100 mL20 aq; s alc, acet, eth nitrate 4-water Cd(NO3)2 · 4H2O 308.48 2.455 59.4 167 g/100 mL25 aq; s alc, acet oxide CdO 128.41 8.15 cubic 1540 i aq; s acids phosphide Cd3P2 399.18 5.96 700 s dil acid selenide CdSe 191.37 5.8115 1350 i aq; d acids sulfate-water (3/8) 3CdSO4 · 8H2O 769.56 3.08 monohydrate, 80 94.4 g/100 mL25 aq; i alc, EtAc sulfide CdS 144.48 4.83 1750 0.1318 aq; s acids telluride CdTe 240.01 15 6.204 1041 i aq; d HNO3 tungstate(VI) CdWO4 360.25 8.0 i aq, dil acids; s alkali CN’s Calcium Ca 40.078(4) 1.55 842 1484 d aq; s acids acetate Ca(C2H3O2)2 158.17 1.50 d 160 37.4 g/100 mL0 aq; i alc, bz, acet arsenate Ca3(AsO4)2 398.07 3.620 0.01325 aq bromide CaBr2 199.89 3.38 742 1815 143 g/100 mL20 aq; v s alc, acet carbide CaC2 64.10 2.222 2300 reacts with aq giving C2H2 carbonate (aragonite) CaCO3 100.09 2.83 d 825 to CaO s dil acids carbonate (calcite) CaCO3 100.09 2.711 d 825 to CaO 0.0013 g/100 mL20; s acids chlorate 2-water Ca(ClO3)2 · 2H2O 243.01 2.711 anhyd 100 167 g/100 mL20 aq; s alc chloride CaCl2 110.98 25 2.164 775 ca. 1940 42 g/100 mL20 aq; s alc, acet chloride 6-water CaCl2 · 6H2O 219.07 1.71 anhyd 200 74.5 g/100 mL20 aq; v s alc chlorite Ca(ClO2)2 174.99 2.7125 100 167 g/100 mL aq; s alc 3.21 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Calcium (continued) chromate(VI) 2-water CaCrO4 · 2H2O 192.10 2.50 anhyd 200 sl s aq; s dil acids citrate 4-water CaC6H6O7 · 4H2O 570.51 anhyd 120 0.10 aq; i alc cyanamide CaCN2 80.10 2.29 ca. 1340 subl no known solv without dec cyanide Ca(CN)2 92.11 s 350 s aq dichromate(VI) CaCr2O7 256.10 30 2.3704 d 100 v s aq; i eth; d alc dihydrogen phosphate hydrate Ca(H2PO4)2 · H2O 252.07 18 2.2204 anhyd 100 d 200 1.830 aq diphosphate (pyrophos-phate) Ca2P2O7 254.10 3.09 1353 i aq; s HCl, HNO3 fluoride CaF2 78.08 3.180 1418 2533 0.001520 aq; s conc mineral acids formate Ca(CHO2)2 130.11 2.015 300 d 16.6 g/100 mL20 aq; i alc ()gluconate Ca[OOC(CHOH)2CH4OH]2 430.38 3.7220 aq glycerophosphate Ca[C3H5(OH)3]PO4 210.16 d 170 1.6620 aq; i alc hexafluorosilicate Ca[SiF6] 182.17 2.662 i aq, acet hydride CaH2 42.09 1.70 1000 d aq, alc hydroxide Ca(OH)2 74.09 2.343 H2O, 580 0.1710 aq; s acids hypochlorite Ca(OCl)2 142.99 2.35 100 d d aq evolving Cl2; i alc iodate Ca(IO3)2 389.88 15 4.5194 d 540 0.100 aq; i alc iodide CaI2 293.89 3.956 783 1755 68 g/100 mL20 aq; v s alc, acet; i eth lactate 5-water Ca(C3H5O3)2 · 5H2O 308.30 3H2O, 100 anhyd 120 5.415 aq; v sl s alc magnesium carbonate Ca[Mg(CO3)2] 184.41 2.872 d 730 0.03218 aq; s HCl molybdate(VI)(2) CaMoO4 200.02 4.35 s conc mineral acids nitrate Ca(NO3)2 164.09 2.504 56l 152 g/100 mL30 aq nitride Ca3N2 148.25 2.67 1195 d aq; s dilute acids (d) nitrite 4-water Ca(NO2)2 · 4H2O 204.15 1.674 d 84.5 g/100 mL18 aq; sl s alc oleate Ca(C18H33O2)2 603.01 83–84 d 400 0.04 aq; s chl, bz; v sl s alc, eth oxalate hydrate CaC2O4 · H2O 146.11 2.2 anhyd 200 0.0006 aq; s acids oxide CaO 56.08 3.34 2900 3500 0.1325 aq; s acids palmitate Ca(C16H31O2)2 550.93 d 155 0.003 aq; sl s bz, chl, HOAc ()panthothenate (vitamin B3) Ca[O2CH2CH2NHO-CH(OH)C(CH3)2CH2OH]2 476.55 d 195–196 36 g/100 mL aq; sl s alc, acet 3.22 perchlorate Ca(ClO4)2 238.98 2.65 d 270 g/100 mL25: 112 aq, 89.5 EtOH, 68 BuOH, 57 EtOAc, 43 acet permanganate 5-water Ca(MnO4)2 · 5H2O 368.03 2.4 d 338 g/100 mL aq peroxide CaO2 72.08 2.92 explodes 275 sl s aq; s acids phenoxide Ca(OC6H5)2 226.28 d in air sl s aq, alc phosphate Ca3(PO4)2 310.18 3.14 1670 0.0325 aq; s HCl, HNO3; i alc phosphide Ca3P2 182.18 2.51 ca. 1600 d aq; s acids; i alc, eth phosphinate Ca(PH2O2)2 170.06 d 300 15.4 g/100 mL aq; sl s glyc propanoate Ca(OOCC3H5)2 186.22 s aq; sl s alc; i acet, bz salicylate 2-water Ca(C7H5O3)2 · 2H2O 350.34 anhyd 200 d 240 2.815 aq; 0.01516 EtOH selenate 2-water CaSeO4 · 2H2O 219.07 2.75 anhyd 200 d 698 9.2 g/100 mL25 aq selenide CaSe 119.04 3.82 silicate Ca2SiO4 172.24 3.27 2130 i aq stearate Ca(C18H35O2)2 607.04 179–180 0.00415 aq; s hot pyr; i acet, chl succinate 3-water CaC4H6O4 · 3H2O 212.22 1.2820 aq; s acids; i alc sulfate CaSO4 136.14 2.960 1460 0.20 aq; s acids sulfate hemihydrate CaSO4 · 0.5H2O 145.15 anhyd 163 0.320 aq; s acids, glyc sulfate 2-water CaSO4 · 2H2O 172.17 2.32 1.5 H2O, 128 anhyd 163 0.2620 aq; s acid, glyc sulfide CaS 72.14 2.59 2525 0.02 (d) aq; d acids sulfite 2-water CaSO3 · 2H2O 156.17 anhyd 100 0.004 aq; s acids d; sl s alc ()tartrate 4-water CaC4H4O6 · 4H2O 260.21 anhyd 200 0.004525 aq; s acids; sl s alc telluride CaTe 167.68 4.873 tetraborate CaB4O7 195.36 s dil acids tetrahydridoaluminate Ca[AlH4]2 102.10 ign moist air d viol aq, alc; i bz, eth thiocyanate 3-water Ca(SCN)2 · 3H2O 210.29 d 160 150 g/100 mL aq; v s alc thioglycollate 3-water Ca(-OOCCH2S-) · 3H2O 184.24 H2O, 95 d 220 s aq; v sl s alc, chl; i bz, eth thiosulfate 6-water CaS2O3 · 6H2O 260.30 1.872 d 45 92 g/100 mL25 aq; i alc titanate CaTiO3 135.84 3.98 1980 tungstate(VI)(2) CaWO4 287.93 6.06220 0.0032 aq; d hot acids Californium-252 Cf 252.1 900 chloride CfCl3 358.5 5.88 Carbon (diamond) C 12.011 3.513 350063.5atm 3930 i aq, alc (graphite) C 2.267 subl 3915–4020 dioxide CO2 44.01 c: 1.5679 g: 1.975 g/L0 78.44 subl 88 mL/100 mL20 aq diselenide CSe2 169.93 2.662625 4 45.5 125.1 i aq; s acet, eth; misc CCl4; d alc disulfide CS2 76.14 1.2555 111.6 46.56 FP 30; 0.2920 aq; s alc, eth 3.23 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Carbon (continued) hydride (methane) CH4 16.04 0.415164 182.48 161.49 s bz monoxide CO 28.01 lq: 0.814195 g: 1.250 g/L0 205.05 191.49 2.3 mL/100 mL20 aq; 16 mL/100 ml alc; s HOAc, EtAc suboxide C3O2 68.03 1.1140 4 2.985 g/L 111.3 6.8 d aq to malonic acid; sl s CS2 tetrabromide CBr4 331.65 3.42 90.1 190 i aq; s alc, chl, eth tetrachloride CCl4 153.82 25 1.58925 22.9 76.7 0.05 mL/100 mL aq; s alc, chl, eth tetrafluoride CF4 88.00 1.96184 183.6 127.8 sl s aq tetraiodide CI4 519.63 20 4.344 171 subl 130 slowly hyd aq; s bz, chl, eth Carbonyl bromide COBr2 187.82 2.5 64.5 hyd aq chloride COCl2 98.92 4.340 g/L 127.9 8.2 hyd aq; s bz, HOAc fluoride COF2 66.01 lq: 1.139 g: 2.896 g/L 114.0 83.1 hyd aq sulfide COS 60.07 2.636 g/L 138.81 50.23 54 mL/100 mL20 aq; s alc, CS2 Cerium Ce 140.11 6.773 795 3440 i aq; s acids (III) bromide CeBr3 379.83 5.18 733 1460 s aq, alc (III) chloride CeCl3 246.47 3.9725 817 1730 s aq, alc (III) fluoride CeF3 197.11 6.157 1430 2327 i but slowly hyd aq; s H2SO4 (IV) fluoride CeF4 216.11 4.77 d 550 i aq (III) iodide CeI3 520.83 766 1400 s aq (III) nitrate 3-water Ce(NO3)3 3H2O 380.17 anhyd 150 d 200 234 g/100 mL20 aq (IV) oxide CeO2 172.11 7.65 2400 i aq; s acids (III) sulfate Ce2(SO4)3 568.42 3.912 d 1000 9.72 g/100 mL21 aq (IV) sulfate Ce(SO4)2 332.24 3.91 d 195 hyd aq; s dil H2SO4 Cesium Cs 132.9054 1.878515 28.44 668.2 d aq; s acids bromide CsBr 212.81 4.44 636 1300 107 g/100 mL18 aq; s alc; i acet carbonate Cs2CO3 325.82 4.24 792 v s aq; 11 g/100 mL20 alc; s eth chloride CsCl 168.36 3.99 646 1300 g/100 mL: 18720 aq; 3425 MeOH; v s alc fluoride CsF 151.90 4.115 703 1231 322 g/100 mL18 aq hydroxide CsOH 149.91 3.68 272 990 386 g/100 mL15 aq; s alc 3.24 iodate CsIO3 307.81 4.93420 565 2.625 aq iodide CsI 259.81 4.510 621 1280 76.5 g/100 mL20 aq; s EtOH; i acet nitrate CsNO3 194.91 3.66 414 d 849 23 g/100 mL20 aq; s acet; v sl s alc oxide Cs2O 281.81 4.65 490 v s aq perchlorate CsClO4 232.36 3.327 250 g/100 mL25: 1.96, 0.0086 EtOH, 0.118 acet, 0.0048 BuOH; i EtOAc, eth selenate Cs2SeO4 408.77 4.453 244 g/100 mL12 aq sulfate Cs2SO4 361.87 4.243 1005 179 g/100 mL20 aq; i alc, acet, pyr Chlorine Cl2 70.905 g: 2.9820 g/L lq: 1.564935 101.5 34.04 199 mL/100 mL25 aq dioxide ClO2 67.45 2.960 g/L 59.6 10.9 11.2 g/100 mL10 aq fluoride ClF 54.45 4.057 g/L 155.6 100.1 d viol aq; organics burst into flame heptoxide Cl2O7 182.90 1.80525 91.5 82 hyd aq slowly; explodes on concus-sion or on contact with flame or I2 monoxide Cl2O 86.90 3.813 g/L 120.6 2.2 v s aq (forms HClO); s CCl4 pentafluoride ClF5 130.44 5.724 g/L 103 13.1 trifluoride ClF3 92.45 g: 4.057 g/L lq: 1.825bp 20 76.3 11.75 hyd viol aq; organic matter and glass wool burst into flame trioxide (dimer) (ClO3)2 166.90 1.9220 3.5 200 reacts with aq Chromium Cr 51.996 7.15 1907 2679 s dil HCl (II) acetate Cr(C2H3O2)2 170.09 1.79 sl s aq, alc; s a; i eth (III) acetate Cr(C2H3O2)3 229.13 s aq (II) bromide CrBr2 211.80 4.236 842 s aq, alc (III) bromide CrBr3 291.71 4.68 s hot aq; v s alc (II) chloride CrCl2 122.90 2.8825 814 subl 1300 v s aq (III) chloride CrCl3 158.35 2.87 1152 d 1300 s aq, alc (slow); i acet (II) fluoride CrF2 89.99 3.79 894 sl s aq; s hot HCl (III) fluoride CrF3 108.99 3.8 1400 aq, alc; s HF, HCl (III) formate 6-water Cr(CHO2)3 · 6H2O 295.15 d 300 s aq hexacarbonyl Cr(CO)6 220.06 1.77 d 130 explodes 210 i aq, alc; s eth, chl (III) hydroxide Cr(OH)3 101.02 d i aq; s acids (III) nitrate 9-water Cr(NO3)3 · 9H2O 400.15 1.80 66 d 100 208 g/100 mL15 aq; s alc (III) oxide Cr2O3 151.99 5.21 2330 3000 i aq, alc; sl s acids, alkalis (IV) oxide CrO2 84.00 4.89 197 O2, 250 i aq; s HNO3 (VI) oxide CrO3 99.99 2.7025 198 d 250 61.7 g/100 mL aq; may ign organics 3.25 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Chromium (continued) (III) phosphate CrPO4 146.97 4.6 1800 i aq, acids, aq reg potassium bissulfate 12-water CrK(SO4)2 · 12H2O 499.41 1.82625 89 anhyd 400 22 g/100 mL25 aq; i alc (II) sulfate 7-water CrSO4 · 7H2O 274.17 22.9 g/100 mL0 aq; sl s alc (III) sulfate 18-water Cr2(SO4)3 · 18H2O 716.45 1.7 d 100 220 g/100 mL20 aq Chromyl chloride CrO2Cl2 154.90 25 1.91454 96.5 117 d aq; s bz, chl, eth, CCl4 fluoride CrO2F2 121.99 31.6885mm subl 29.6 Cobalt Co 58.9332 8.90 1494 2927 i aq; s dil HNO3 (II) acetate 4-water Co(C2H3O2)2 · 4H2O 249.08 1.70519 anhyd 140 s aq; 2.1 g/100 mL15 MeOH (III) acetate Co(C2H3O2)3 236.07 d 100 s aq, HOAc, alc (II) bromide CoBr2 218.74 25 4.9094 678 (in N2) 112 g/100 mL20 aq; s alc, acet (II) carbonate CoCO3 118.94 4.13 d 0.1815 aq; s hot acids (II) chloride CoCl2 129.84 25 3.3674 735 1049 53 g/100 mL20 aq; s alc, acet, eth, glyc, pyr (II) chloride 6-water CoCl2·6H2O 237.93 1.924 anhyd 110 97 g/100 mL20 aq (II) chromate CoCrO4 174.93 4.0 d i aq; s acids (II) cyanide Co(CN)2 110.97 25 1.8724 d 300 0.004218 aq; s KCN (II) fluoride CoF3 96.93 4.46 1127 1400 1.3620 aq; s warm mineral acids (III) fluoride CoF3 115.93 3.88 926 d aq (II) formate 2-water Co(CHO2)2 · 2H2O 185.00 22 2.1294 anhyd 140 d 175 5.03 g/100 mL30 aq; i alc (II) hydroxide Co(OH)2 92.95 3.37 168 (vacuo) 0.00018 aq; v s acids (III) hydroxide Co(OH)3 109.96 4.46 H2O, 100 d 0.00032 aq; s acids (II) iodide (alpha, black) CoI2 312.74 25 5.5844 515 (vacuo) 570 (vacuo) 203 aq (II) nitrate 6-water Co(NO3)3 · 6H2O 291.03 1.88 55 d 74 155 g/100 mL30 aq; v s alc (II) oxalate CoC2O4 146.95 3.021 d 250 0.00218 aq (II) oxide CoO 74.93 6.44 s1935 i aq; s acids, alkalis (II,III) oxide Co3O4 240.80 6.07 d 900 i aq; s acids, alkalis (II) phosphate 8-water Co3(PO4)2 · 8H2O 510.87 2.769 anhyd 200 v sl s aq; s mineral acids (II) sulfate 7-water CoSO4 · 7H2O 281.10 2.03 anhyd 420 d 1140 65 g/100 mL20 aq; sl s alc (II) sulfide CoS 91.00 5.4518 1180 i aq; s acids (II) thiocyanate 3-water Co(SCN)2 · 3H2O 229.14 anhyd 105 7.818 aq; s alc, eth 3.26 Copper Cu 63.546 8.9620 1084.62 2561.5 i; s HNO3, hot H2SO4 (II) acetate 1-water Cu(C2H3O2) · H2O 199.65 1.882 115 d 240 8 g/100 mL aq; 0.48 MeOH; sl s eth acetate meta-arsenate (1/3) Cu(C2H3O2)2 · 3Cu(AsO2)2 1013.80 unstable in acids, bases; s NH4OH (II) borate(1) Cu(BO2)2 149.17 3.859 s a; i aq (I) bromide CuBr 143.45 4.98 497 1345 v sl s aq; s HCl, HBr, NH4OH (II) bromide CuBr2 223.35 4.71 498 900 126 g/100 mL aq; s alc, acet, pyr; i bz (II) carbonate hydroxide CuCO3 · Cu(OH)2 221.12 4.0 d 200 i aq; s acids (1/1) (malachite) (II) chlorate 6-water Cu(ClO3)2 · 6H2O 338.54 65 d 100 242 g/100 mL18 aq; v s alc; s acet (I) chloride CuCl 99.00 4.14 430 1400 0.024 aq; s conc HCl, conc NH4OH (II) chloride CuCl2 134.45 3.386 300 d 73 g/100 mL20 aq; s alc, acet (II) chloride 2-water CuCl2 · 2H2O 170.48 2.51 anhyd 200 d 300 76.4 g/100 mL25 aq; v s alc; s acet (I) chromium(III) Cr2O3 · Cu2O 295.07 5.2420 d 900 i aq; s HNO3 oxide (1/1) (II) citrate 2.5-water Cu2C6H4O7 · 2.5H2O 360.22 anhyd 100 0.17 aq; s acids (I) cyanide CuCN 89.56 2.92 473 (in N2) d i aq; s NH4OH, KCN; d hot dil HCl (II) fluoride CuF2 101.54 4.23 836 1676 4.75 g/100 mL20 aq; s acids (II) formate Cu(CHO2)2 153.58 1.831 12.5 aq (II) hexafluorosilicate 4-water Cu[SiF6] · 4H2O 277.60 2.56 d 124 g/100 mL20 aq (II) hydroxide Cu(OH)2 97.56 3.368 d 160 i aq; s acids (I) iodide CuI 190.45 5.67 606 1290 i aq; s KCN, NH4OH, KI (II) nitrate 3-water Cu(NO3)2 · 3H2O 241.60 2.32 114.5 170 d 138 g/100 mL0 aq; v s alc (II) oleate Cu(OOCC17H33)2 626.46 i aq; sl s alc; s eth (II) oxalate hemihydrate CuC2O4 · 0.5H2O 160.57 anhydr 200 d 310 0.002 aq; s NH4OH (I) oxide Cu2O 143.09 25 6.04 1235 O2, 1800 i aq; s HCl (II) oxide CuO 79.54 14 6.3154 1450 i aq, alc; s acids, KCN (II) perchlorate Cu(ClO4)2 262.45 2.22523 d 130 146 g/100 mL30 aq; s eth, EtAc; i bz (II) phosphate 3-water Cu3(PO4)2 · 3H2O 434.63 d i aq; s acids (II) salicylate 4-water Cu(C7H5O3)2 · 4H2O 409.83 dehyd in air v s aq; s alc (II) selenate 5-water CuSeO4 · 5H2O 296.58 2.559 anhyd 265 d ca. 480 25 g/100 mL20 aq; v sl s acet (I) selenide Cu2Se 206.05 21 6.844 1113 d HCl (II) selenide CuSe 142.51 6.0 d 550 s acids (II) stearate Cu(OOCC17H35)2 630.50 250 i aq, alc, eth; s hot bz, pyr (II) sulfate CuSO4 159.61 3.603 d 560 14.3 g/100 mL0 aq; i alc (II) sulfate 5-water CuSO4 · 5H2O 249.69 16 2.2844 anhyd 200 32 g/100 mL20 aq; s MeOH, glyc 3.27 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Copper (continued) (I) sulfide Cu2S 159.16 20 5.64 1130 i aq; d HNO3, s KCN (II) sulfide CuS 95.61 4.76 i aq; s hot HNO3, KCN (I) sulfite hydrate Cu2SO3 · H2O 225.16 3.8315 d sl s aq; s HCl (II) tartrate 3-water CuC4H4O6 · 3H2O 265.66 0.4220 aq; s acids, alkalis (I) thiocyanate CuSCN 121.62 2.85 1084 0.00044 aq; s NH4OH, eth, alkali SCN (II) tungstate(VI)(2-) CuWO4 · 2H2O 347.41 0.115 aq; d acids; s NH4OH Curium-244 Cm 244.063 13.51 1340 3110 s acids Cyanogen NC9CN 52.03 2.335 g/L 27.84 21.15 mL/100 mL: 45020 aq, 230 alc; azide NC9N3 68.04 s acetonitrile; pure azide detonates upon shock. Handle only in sol-vents.
bromide NCBr 105.92 2.005 52 61.5 v s aq, alc, eth chloride NCCl 61.47 2.697 g/L 6.5 13.8 s aq, alc, eth fluoride NCF 45.02 1.975 g/L 82 46 Deuterium D2 or 2H2 4.03 0.169mp lq 252.89 249.49 sl s aq oxide D2O 20.03 1.105620 3.82 101.43 misc aq Dysprosium Dy 162.50 8.54025 1412 2567 s acids bromide DyBr3 402.21 4.78 880 1480 s aq chloride DyCl3 268.86 3.67 680 1530 s aq fluoride DyF3 219.50 7.465 1154 2230 i aq oxide Dy2O3 373.00 7.8127 2408 s aq Einsteinium Es 252.083 8.84 860 Erbium Er 167.26 9.066 1529 2868 s acid chloride ErCl3 273.62 4.1 776 1500 s aq; sl s alc oxide Er2O3 382.52 8.640 2418 0.000525 aq; s acids sulfate 8-water Er2(SO4)3 · 8H2O 766.83 3.205 anhyd 110 d 630 16.0 g/100 mL20 aq Europium Eu 151.965 5.244 822 1527 s acids (III) chloride EuCl3 258.32 4.89 623 d s aq (III) oxide Eu2O3 351.93 7.42 2350 i aq; s acids (III) sulfate 8-water Eu2(SO4)3 · 8H2O 736.24 8H2O, 375 2.5620 aq 3.28 Fermium-257 Fm 257.0951 1527 Fluorine F2 38.00 1.513bp lq 1.667 g/L 219.61 188.13 d aq viol; ignites organics and sili-cates nitrate FONO2 81.00 1.507bp lq 175 45.9 hyd aq; s acet; ignites alc, eth; liquid explodes on slight concussion perchlorate FOClO3 118.45 5.20 g/L 167.3 15.9 explodes on slightest provocation Francium-223 Fr 223.02 Gadolinium Gd 157.25 7.90 1312 3273 s acids chloride GdCl3 263.61 4.520 609 1580 s aq fluoride GdF3 214.25 7.047 1231 2277 i aq nitrate 6-water Gd(NO3)3 · 6H2O 451.36 2.332 91 s aq, alc oxide Gd2O3 362.50 7.40715 2340 s acids sulfate 8-water Gd2(SO4)2 · 8H2O 746.81 3.01018 anhyd 400 d 500 4.08 aq Gallium Ga 69.723 5.90429.6 (c) 6.09529.8 (lq) 29.7646 2203 s conc HCl, halogens, alkalis antimonide GaSb 191.48 5.614 712 s HCl arsenide GaAs 144.65 25 5.3184 1238 s HCl chloride GaCl3 176.08 2.47 77.9 201.2 d aq; s bz, CCl4, CS2 fluoride GaF3 126.72 4.47 1000 subl 950 0.00425 aq; s HF nitrate Ga(NO3)3 255.74 d 110 : Ga2O3, 200 v s aq phosphide GaP 100.70 1465 selenide GaSe 148.68 5.0325 960 d triethyl Ga(C2H5)3 146.90 1.05830 82.3 142.8 trimethyl Ga(CH3)3 114.84 1.15115 15.7 55.8 Germanium Ge 72.61 5.323 937.3 2830 i aq; s hot H2SO4 (IV) bromide GeBr4 392.23 3.132 26.1 186.4 hyd aq; s bz, eth IV) chloride GeCl4 214.42 1.879 49.5 86.5 hyd aq; s bz, eth; sl s dil HCl (IV) fluoride GeF4 148.60 6.521 g/L 15 d 1000 hyd aq; s dil HCl hydride (germane) GeH4 76.64 3.363 g/L 164.8 88.1 sl s hot HCl (IV) oxide GeO2 104.61 4.25 1115 1200 0.4320 aq; s acids, alkalis sulfide GeS2 136.74 3.01 530 Gold Au 196.967 19.3 1064.18 2856 s aq reg, KCN, hot H2SO4 (I) chloride AuCl 232.42 7.57 289 s HCl, HBr, KCN (III) chloride AuCl3 303.33 4.7 d 160 subl 180 68 g/100 mL20 aq; s EtOH (I) cyanide AuCN 222.99 7.1420 4 d s aq reg, KCN, NH4OH (III) cyanide 3-water Au(CN)3 · 3H2O 329.07 d 50 v s aq; sl s alc 3.29 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Gold (continued) diantimonide AuSb2 440.47 460 (III) fluoride AuF3 253.96 6.75 subl 300 d 500 (III) oxide Au2O3 441.93 d 150 s HCl, KCN (I) sodium thiosulfate 2-water AuNa3(S2O3)2 · 2H2O 526.24 3.09 anhyd 160 50 g/100 mL aq; i alc stannide AuSn 315.66 418 (III) sulfide Au2S3 490.13 8.754 d 197 i aq; s Na2S Hafnium Hf 178.49 13.31 2227 4450 s HF chloride HfCl4 320.30 432 subl 317 hyd aq; s acet, MeOH oxide HfO2 210.49 9.6820 2774 i aq Helium He 4.00260 0.176 g/L 0.1249 (lq) 272.1525atm 268.935 0.861 mL/100 mL20 aq Holmium Ho 164.9304 8.79 1474 2720 s acids; oxidizes in moist air bromide HoBr3 404.64 4.86 914 1470 s aq chloride HoCl3 271.29 3.7 718 1510 s aq Hydrazine H2N9NH2 32.05 1.003625 4 2.0 113.5 FP 52; misc aq, alc hydrate H2N9NH2 · H2O 50.06 1.030 51.7 & 65 118–119 misc aq, alc; i chl, eth Hydrazinium(1) chloride H2N9NH3Cl 68.51 1.5 89 d 240 v s aq; i org solv (2) chloride ClH3N9NH3Cl 104.97 1.423 198 d 200 v s aq; sl s alc (1) iodide H2N9NH3I 159.96 125 s aq (1) perchlorate H2N9NH3ClO4 132.51 1.93915 137 d 145 d aq; s alc (2) sulfate (H3NNH3)SO4 130.13 1.378 254 d 3.420 aq; i alc (1) tartrate (H2N9NH3)2C4H4O6 182.13 183 6.0 g/100 mL0 aq Hydrogen H2 2.0159 0.07099bp (lq) 0.088 g/L 259.35 252.88 1.9 mL aq amidosulfate (sulfamate) H2NSO3H 97.09 2.126 205 d 14.7 g/100 mL aq; sl s alc, acet azide HN3 43.03 1.1260 80 37 v s aq; (very explosive) borate(1) (cubic) HBO2 43.83 2.486 236 v sl s aq borate(3) (ortho) H3BO3 61.83 1.43515 171.0 d 357 5.56 g/100 mL30 aq bromide HBr 80.91 3.388 g/L20 86.87 66.71 193 g/100 mL25 aq; misc alc 3.30 bromide (constant boiling) 48% HBr H2O 1.49 11 126 v s aq bromide-d 2HBr 81.91 3.39 g/L20 87.46 66.5 v s aq bromosulfate HOSO2Br 240.90 6 to 8 d hyd aq chlorate (40% solution) HClO3 84.46 1.28220 4 chloride HCl 36.46 1.526 g/L20 114.18 85.05 72 g/100 mL20 aq chloride (constant boiling) 20.24% HCl H2O 1.097 110 v s aq chloride-d 2HCl 37.47 1.49 g/L25 114.64 84.72 v s aq chlorosulfate HSO3Cl 116.52 1.753 80 152 hyd viol : HCl H2SO4 cyanate HOCN 43.03 1.14020 4 86 23.5 s aq d; s bz, eth cyanide HCN 27.03 0.687 13.4 25.6 misc aq deuteride 1H2H or HD 3.02 256.56 251.03 diphosphate(IV) (HO)2OP9PO(OH)2 162.01 70 d 100 d aq diphosphate(V) H4P2O7 177.98 61 709 g/100 mL23 aq fluoride HF 20.01 0.922 g/L0 83.57 19.52 v s aq, alc; 2.54 g/100 g5 bz fluoride (constant boiling) 35.35% HF H2O 120 v s aq fluoride-d 2HF 21.02 83.6 18.65 s aq fluoroborate H[BF4] 87.81 d 130 v s aq fluorophosphate H2PO3F 99.99 1.818 80 fluorosulfate HOSO2F 100.07 25 1.7264 87.3 165.5 s aq hexafluorosilicate 2-water H2[SiF6] · 2H2O 180.11 1.463 19 60–70% aq solution iodate HIO3 175.91 0 4.6294 110 :H5IO6 220 :I2O5 269 g/100 mL20 aq; s alc; i eth iodide HI 127.91 5.37 g/L20 50.8 35.1 234 g/100 mL10 aq; misc alc iodide (constant boiling) 57% HI H2O 1.70 127 v s aq iodide-d HI 128.91 51.87 35.7 v s aq molybdate hydrate H2MoO4 · H2O 179.97 3.12415 H O, 70 0.13318 aq; s alk nitrate HNO3 63.02 1.54920 lq 41.59 83 v s nitrate (constant boiling) 69% HNO3 H2O 1.4120 120.5 misc aq oxide (water) H2O 18.02 1.000 0.00 100.00 oxide-d2 D2O or 2H2O 20.03 1.104425 3.81 101.42 misc aq perchlorate 2-water HClO4 · 2H2O 136.49 1.6720 17.8 203 v s aq (commercial 72% acid) periodate(1) (meta) HIO4 191.91 subl 110 d 138 440 g/100 mL25 aq periodate(5) H5IO6 227.94 122 d 130–140 misc aq; s alc peroxide H2O2 34.01 1.4630 0.43 152 misc aq; s alc, eth peroxodisulfate HO3S9O9OSO3H 194.14 d 60 v s aq phosphate(V)(1) (meta) HPO3 79.98 2.2–2.5 subl red heat slowly s aq : H3PO4; s alc phosphate(V)(3) (ortho) H3PO4 98.00 1.86825 42.35 d 213 v s aq commercial 85% acid 1.685 anhyd 150 H4P2O7, 200 : HPO3, 300 3.31 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Hydrogen (continued) phosphate(V)(3)-d3 2H3PO4 101.03 1.90825 46.0 v s aq phosphide, see Phosphine phosphinate HPH2O2 66.0 1.49319 26.5 d 50 s aq phosphonate (phosphorous acid) H2PHO3 82.00 25 1.6514 73 d 180 v s aq, alc selenate H2SeO4 144.98 15 2.95084 58 260 vs aq (viol) selenide H2Se 80.98 bp 2.124 65.73 41.4 9.5 mL/100 mL20 aq; s CS2 sulfate H2SO4 98.08 1.831820 10.38 335.5 misc aq sulfate-d2 2H2SO4 or D2SO4 100.09 1.8620 14.35 misc aq sulfide H2S 34.08 1.5392 g/L0 85.49 60.33 0.334 mL25 aq tellurate(IV) H2TeO3 177.63 3.0 d to TeO2 0.0007 aq; s acid, alkali tellurate(VI) (monoclinic) H6TeO6 229.66 3.068 2H2O, 120 320 : TeO 30 g/100 mL18 aq telluride H2Te 129.62 5.687 g/L 49 2 s aq d trithiocarbonate (HS)2CS 110.21 20 1.4834 26.9 57.8 d aq, alc tungstate(VI)(2) H2WO4 249.86 5.5 anhyd 100 i aq; s HF, alkalis Hydroxylamine HONH2 33.03 40 1.2044 33 5822mm v s aq, MeOH; sl s bz, eth Hydroxylammonium chloride HONH3Cl 69.49 1.68020 150.5 d g/100 mL: 8317 aq, 12.520 MeOH, 5.120 EtOH; s glyc sulfate (HONH3)2SO4 164.14 170 69 g/100 mL20 aq Indium In 114.82 7.31 156.60 2072 s acids antimonide InSb 236.58 5.77 525 i aq arsenide InAs 189.74 5.67 942 chloride InCl3 221.18 4.0 583 subl 500 212 g/100 mL25 aq fluoride InF3 171.82 4.39 1170 0.04025 aq; s dilute acids oxide In2O3 277.63 7.179 850 s hot mineral acids phosphide InP 145.79 4.81 1062 v sl s acids telluride In2Te3 612.44 5.75 667 trimethyl In(CH3)3 159.93 1.568 88.4 135.8 d aq; s acet, bz Iodine I2 253.809 4.6325 113.60 185.24 g/100 mL25: 0.029 aq, 14.1 bz, 16.5 CS2, 21.4 EtOH, 25.2 eth, 2.6 CCl4; s chl, HOAc 3.32 heptafluoride IF7 259.89 lq: 2.86 6.45 4.77 subl s aq (d), s NaOH monobromide IBr 206.81 4.416 40 116 d s aq, alc, eth, CS2 monochloride ICl 162.36 29 3.104 27.2 -form 97 d d aq; s alc, eth, HOAc pentafluoride IF5 221.90 3.1925 9.43 100.5 d aq viol pentoxide I2O5 333.81 4.98 d 275 187 g/100 mL13 aq trichloride ICl3 233.26 3.2024 33 64 subl d aq; s alc, bz, HCl Iridium Ir 192.217 20 22.654 2447 2550 s K2SO4 fusion, KOH KNO3 fusion hexafluoride IrF6 306.21 4.82 44.4 53.6 d aq (III) oxide Ir2O3 432.43 d 1000 to Ir O2 s boiling HCl (IV) oxide IrO2 224.22 11.7 d 1100 0.000220 aq; s HCl trichloride IrCl3 298.58 5.30 d 763 i acids, alkalis Iron Fe 55.845 7.86 1535 2861 i aq; s acids (III) arsenate 2-water FeAsO4 · 2H2O 230.79 3.18 1020 v sl s aq; s acids (II) bromide FeBr2 126.75 3.16 677 1023 117 g/100 mL20 aq; v s alc (III) bromide FeBr3 295.67 4.5 d s aq, alc, eth, HOAc (tri-) carbide Fe3C 179.55 7.694 1227 s acids (II) carbonate FeCO3 115.85 3.9 d 0.07218 aq; s acids (II) chloride FeCl2 126.75 3.16 677 1024 62.5 g/100 mL20 aq; v s alc, acet (III) chloride FeCl3 162.20 2.898 304 316 74 g/100 mL0 aq; s alc, acet, eth disulfide (pyrite) FeS2 119.98 5.02 d 602 s acids d (II) fluoride FeF2 93.84 4.09 1100 1837 sl s aq; s dil HF; i alc, bz, eth (III) fluoride FeF3 112.84 3.87 subl 1000 0.09125 aq; s HF (III) hexacyanoferrate(II) Fe4[Fe(CN)6]3 859.23 1.80 250 d i aq; s HCl (II) hydroxide Fe(OH)2 89.86 3.4 0.006 aq; s acids (III) hydroxide oxide FeO(OH) 88.85 4.26 anhyd 136 i aq, alc; s HCl (II) iodide FeI2 309.65 5.315 587 1093 s aq (III) nitrate 9-water Fe(NO3)3 · 9H2O 404.00 1.684 47 d 100 138 g/100 mL20 aq (di-) nitride Fe2N 125.70 6.35 d 200 s HCl (II) oxalate 2-water FeC2O4 · 2H2O 179.89 2.28 d 150 0.04418 aq; s mineral acids (II) oxide FeO 71.84 6.0 1377 d 3414 i aq; s acids (II,III) oxide Fe3O4 231.53 5.17 1597 i aq; s acids (III) oxide Fe2O3 159.69 5.25 1565 i aq; s HCl pentacarbonyl Fe(CO)5 195.90 1.49 20.0 103.9 FP 20; i aq; s alc, bz, eth (II) phosphate 8-water Fe3(PO4)2 · 8H2O 501.60 2.58 i aq; s acids phosphide Fe2P 142.66 6.85 1370 s hot mineral acids 3.33 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Iron (continued) (II) selenide FeSe 134.81 6.78 d s HCl (II) silicate(2) FeSiO3 131.93 3.5 1140 (II) silicate(4) Fe2SiO4 203.77 4.30 1220 d HCl (II) sulfate 7-water FeSO4 · 7H2O 278.01 1.89 anhyd 300 d 671 48 g/100 mL20 aq (III) sulfate Fe2(SO4)3 399.88 3.09718 d 1178 slowly s aq (hyd); sl s alc (II) sulfide FeS 87.92 4.7 1190 d 0.000618 aq; s acid (III) thiocyanate Fe(SCN)3 230.09 v s aq Krypton Kr 83.80 3.7493 g/L 157.36 153.22 5.94 mL/100 mL20 aq difluoride KrF2 121.80 3.24 subl60 s anhyd HF Lanthanum La 138.9055 6.162 920 3464 i aq; s HCl chloride LaCl3 245.26 3.84 852 1812 v s aq chloride 7-water LaCl3 · 7H2O 371.37 anhyd 852 (in HCl atm) v s aq; s alc fluoride LaF3 195.90 5.9 1493 2327 nitrate 6-water La(NO3)3 · 6H2O 433.01 40 d 126 181 g/100 mL20 aq; v s alc oxide La2O3 325.81 6.51 2305 4200 s acids sulfate La2(SO4)3 566.00 3.60 d white heat 2.33 g/100 mL20 aq; i alc sulfate 9-water La2(SO4)3 · 9H2O 728.14 2.821 anhyd 400 2.92 g/100 mL20 aq; i alc Lawrencium Lr 262 1627 Lead Pb 207.2 20 11.34 (fcc) 4 327.43 1749 s hot conc HNO3, HCl, H2SO4 (II) acetate 3-water Pb(C2H3O2)2 · 3H2O 427.3 2.55 75 d 200 g/100 mL: 6315 aq, 3.3 alc (IV) acetate Pb(C2H3O2)4 443.4 2.228 75–180 s hot HOAc, bz, chl, conc HX acids (II) azide Pb(N3)2 291.2 4.7 expl 350 or when shocked 0.02318 aq; v s HOAc (II) borate(1) hydrate Pb(BO2)2 · H2O 310.8 5.598 anhyd anhyd 160 mp 500 s acids (II) bromide PbBr2 367.0 6.69 371 912 0.4500 aq; s acids; i alc (II) carbonate PbCO3 267.2 6.61 d 340 : PbO i aq; s acids, alkalis (II) chlorate Pb(ClO3)2 374.1 3.89 d 230 140 g/100 mL18 aq; v s alc (II) chloride PbCl2 278.1 5.98 501 950 0.9920 aq (II) chloride fluoride PbClF 261.7 7.05 3.34 (II) chromate(VI)(2) PbCrO4 323.2 6.12 844 d i aq; s dil HNO3, alkalis (II) fluoride PbF2 245.2 8.445 830 1297 0.06420 aq (IV) fluoride PbF4 283.2 6.7 600 hyd aq (II) formate Pb(CHO2)2 297.2 4.63 d 190 1.6 g/100 mL20 aq (II) hydrogen arsenate PbHAsO4 347.1 5.94 d 280 to Pb2As2O7 s HNO3, alkalis (II) hydroxide Pb(OH)2 241.2 7.59 d 145 0.01620 aq; s acids, alkalis (II) iodide PbI2 461.0 6.16 410 872 0.06320 aq; s KI, Na2S2O3, alkalis (II) molybdate(VI)(2) PbMoO 367.1 6.7 1065 s acids, alkalis (II) nitrate Pb(NO3)2 331.2 4.53 470 g/100 mL: 5620 aq, 1.3 MeOH (II) oleate Pb(C18H33O2)2 770.1 s alc, bz, eth (II) oxalate PbC2O4 295.2 5.28 d 300 s acids, alkalis (II) oxide (litharge) PbO 223.2 9.35 (red) 886 1472 d 0.001720 aq; s HNO3 (IV) oxide PbO2 239.2 9.64 d 290, Pb3O4 d 595, PbO s HCl, dil HNO3 H2O23, H2C2O4 (II,IV) oxide (red lead) Pb3O4 685.6 8.92 d 595 : PbO s HNO3, hot HCl (II) phosphate Pb3(PO4)2 811.5 7.0 1014 s HNO3, alkalis (II) selenide PbSe 286.2 8.15 1078 s HNO3 (II) silicate(2) PbSiO3 283.3 6.5 764 s acids (II) silicate(4) Pb2SiO4 506.5 7.60 743 (II) stearate Pb(C18H35O2)2 774.2 1.4 125 0.0535 aq; s hot alc (II) sulfate PbSO4 303.3 6.29 1170 0.00425 aq; s NaOH (II) sulfide PbS 239.3 7.60 1118 1300 subl 0.000618 aq; s HNO3, hot dil HCl (II) telluride PbTe 334.8 8.16 924 i acids and alkalis tetraethyl Pb(C2H5)4 323.45 1.653 137 200 i aq; s bz, hydrocarbons tetramethyl Pb(CH3)4 267.35 1.995 30.2 110 s hydrocarbons (II) thiocyanate Pb(SCN)2 323.4 3.82 d 190 0.4418 aq, s HNO3, NaOH Lithium Li 6.941 0.53420 180.54 1341 d aq to LiOH acetate 2-water LiC2H3O2 · 2H2O 102.02 1.3 58 d 63 g/100 mL20 aq; v s alc aluminate(1) LiAlO2 65.92 2.554 1700 amide LiNH2 22.96 1.178 380 d 450 vacuo d aq (: LiOH NH3); i bz, eth benzoate LiC7H5O2 128.06 300 g/100 mL: 33 aq; 7.7 alc borate(1) LiBO2 49.75 2.18 849 1719 2.7 g/100 mL20 aq; i alc borohydride Li[BH4] 21.78 0.66 268 d 380 s aq, eth, THF, aliphatic amines bromate LiBrO3 134.85 3.62 179 g/100 mL20 aq bromide LiBr 86.84 3.464 552 1289 164 g/100 mL aq; s alc, eth carbonate Li2CO3 73.89 2.11 720 d 1300 1.3 g/100 mL20 aq; i alc; s acids 3.35 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Lithium (continued) chloride LiCl 42.39 2.07 613 1360 77 g/100 mL20 aq; s alc, acet chromate(VI)(2) 2-water Li2CrO4 · 2H2O 165.91 2.15 anhyd 75 142 g/100 mL18 aq; s EtOH citrate 4-water Li3C6H5O7 · 4H2O 281.98 anhyd 105 61 g/100 mL15 aq; sl s alc fluoride LiF 25.94 2.640 848 1681 0.1325 aq; s acids hexafluoroaluminate(3) Li3[AlF6] 161.79 1012 hydride LiH 7.95 0.76–0.77 680 d 950 no solvent known; flammable hydride-d Li2H or LiD 8.96 0.881 686 hydroxide LiOH 23.95 1.45 471.2 1626 12.4 g/100 mL20 aq; sl s alc iodate LiIO3 181.84 4.502 450 66 g/100 mL aq; in alc iodide LiI 133.84 4.061 469 1174 165 g/100 mL20 aq & alc; v s acet nitrate LiNO3 68.95 2.38 255 50 g/100 mL20 aq; s alc nitride Li3N 34.83 1.27 813 d aq oxide Li2O 29.88 2.013 1570 2563 forms LiOH in aq perchlorate LiClO4 106.39 2.43 236 d 400 LiCl O2 47.4 g/100 mL25 aq; v s organic solv peroxide Li2O2 45.88 2.31 d 195 to Li2O silicate(2) Li2SiO3 89.97 2.5225 4 1201 d dil HCl sulfate Li2SO4 109.95 2.22 859 34.5 g/100 mL20 aq; i alc tetraborate(2) Li2B4O7 169.12 917 sl s aq tetrahydridoaluminate Li[AlH4] 37.95 0.917 d 137 d aq, alc; g/100 mL: 30 eth, 13 THF; flammable tetrahydridoborate LiBH4 21.79 0.666 268 d 380 s aq pH 7; s eth, THF Lutetium Lu 174.967 9.841 1663 3402 s acids chloride LuCl3 281.33 3.98 892 subl 750 s aq sulfate 8-water Lu2(SO4)3 · 8H2O 782.25 42.3 g/100 mL20 aq Magnesium Mg 24.305 1.73820 651 1100 i aq; s dilute acids acetate Mg(C2H3O2)2 142.00 1.42 323 d 53.4 g/100 mL20 aq; v s alc aluminate(2) MgAl2O4 142.25 3.6 2135 v sl s HCl amide Mg(NH2)2 56.35 25 1.394 ign in air d viol water giving NH3 borate(1) 8-water Mg(BO2)2 · 8H2O 254.04 2.30 sl s aq; s acids bromide MgBr2 184.11 3.722 711 d 1158 101 g/100 mL20 aq 3.36 carbonate MgCO3 84.31 3.05 990 0.01 aq; s acids chloride MgCl2 95.21 2.33 714 1412 54.6 g/100 mL20 aq fluoride MgF2 62.30 3.148 1263 2270 0.01325 aq; s HNO3 (di-) germanide Mg2Ge 121.22 3.09 1115 hexafluorosilicate 6-water Mg[SiF6] · 6H2O 274.47 1.788 SiF4, 120 51 g/100 mL20 aq; i alc hydride MgH2 26.32 1.45 d 200 vacuo ign in air d aq and alc violently hydrogen phosphate 3-water MgHPO4 · 3H2O 174.33 2.1315 anhyd 205 d 550 sl s aq; s acids hydroxide Mg(OH)2 58.32 2.36 350 d 0.00125 aq; s acids iodide MgI2 278.12 4.43 634 0 140 g/100 mL20 aq; s alc lactate 3-water MgC6H10O6 · 3H2O 256.51 4 g/100 mL aq; sl s alc mandelate MgC16H14O6 326.59 0.004100 aq; i alc nitrate Mg(NO3)2 · 6H2O 256.41 1.464 95 d 129 120 g/100 mL20 aq; v s alc nitride Mg3N2 100.93 2.712 d 270 d aq; s acids oleate Mg(C18H33O2)2 587.22 sl s alc, eth, PE oxide MgO 40.30 3.65–3.75 2800 3600 i aq, alc; s acids perchlorate Mg(ClO4)2 223.21 2.21 d 251 g/100 mL25: 73 aq, 18 EtOH, 44.6 BuOH, 54 EtOAc, 32 acet permanganate Mg(MnO4)2 262.19 v s aq peroxide MgO2 56.30 3.0 d 100 s acids peroxoborate 7-water Mg(BO3)2 · 7H2O 268.09 sl s aq d; s dilute acids phosphate 5-water Mg3(PO4)2 · 5H2O 352.96 1.6415 anhyd 400 0.02 aq; s acids silicate(2) MgSiO3 100.39 25 3.1924 d 1557 i aq; v sl s HF silicate(4) Mg2SiO4 140.69 3.21 1898 i aq; d hot HCl (di-) silicide Mg2Si 76.70 2.0 1100 d aq, HCl (di-) stannide Mg2Sn 167.32 3.60 778 s aq, HCl sulfate 7-water MgSO4 · 7H2O 246.47 1.67 anhyd 250 27.2 g/100 mL aq; sl s alc sulfite 6-water MgSO3 · 6H2O 212.46 1.725 anhyd 200 mp: 2227 0.6625 aq tungstate(VI)(2) MgWO4 272.14 6.89 i aq; d acids Manganese Mn 54.9380 7.2120 1244 fctetr 2095 d aq; s acids acetate 4-water Mn(C2H3O2)2 · 4H2O 245.09 1.589 80 38 g/100 mL50 aq; v s alc bromide MnBr2 214.75 4.39 698 1027 147 g/100 mL20 aq; s alc (tri-) carbide Mn3C 176.83 6.89 1520 d aq; s acid carbonate MnCO3 114.95 3.125 d 200 0.006525 aq; s acids chloride MnCl2 125.84 2.977 650 1210 74 g/100 mL20 aq; s alc, pyr; i eth chloride 4-water MnCl2 · 4H2O 187.91 2.01 97.5 anhyd 198 143 g/100 mL aq; s alc; i eth decacarbonyl Mn2(CO)10 389.98 1.75 d 110 i aq; s organic solvents 3.37 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Manganese (continued) diphosphate Mn2P2O7 283.82 3.707 1196 i aq; s acid (II) fluoride MnF2 92.93 3.98 930 1820 0.6640 aq; s HF, conc HCl (III) fluoride MnF3 111.93 3.54 d 600 hyd aq; s acid hydroxide Mn(OH)2 88.95 3.258 d 0.00218 aq; s acids iodide MnI2 308.75 5.04 638 1017 s aq nitrate 6-water Mn(NO3)2 · 6H2O 287.04 1.8 25.8 v s aq, alc (II) oxide MnO 70.94 5.37 1840 i aq; s acids (III) oxide Mn2O3 157.87 4.89 877 d i aq; s HCl giving off Cl2 (IV) oxide MnO2 86.94 5.08 O2, 530 s HCl; i HNO3, cold H2SO4 (II,IV) oxide Mn3O4 228.81 4.84 1567 i aq; s HCl (VII) oxide Mn2O7 221.87 2.396 ca. 20 ca. 25 explodes 85; v s aq phosphinate hydrate Mn(PH2O2)2 · H2O 202.93 d to PH3 15 g/100 mL aq; i alc silicate, meta-MnSiO3 131.02 3.48 1290 i aq, HCl sulfate MnSO4 151.00 3.25 700 d 850 52 g/100 mL aq; i alc sulfate hydrate MnSO4 · H2O 169.02 2.95 anhyd 400–450 70 g/100 mL20 aq sulfate 7-water MnSO4 · 7H2O 277.11 2.09 anhyd 280 115 g/100 mL20 aq sulfide MnS 87.00 3.99 1610 0.000618 aq; s acids titanate(IV)(2) Mn2TiO4 150.84 4.54 1360 Mercury Hg 200.59 13.534 38.83 356.7 i aq; s HNO3, hot conc H2SO4 (II) acetate Hg(C2H3O2)2 318.68 3.28 178–180 d g/100 mL: 4010 aq, 7.515 MeOH (II) benzoate Hg(C7H5O2)2 424.83 165 v s NaCl soln; sl s alc (I) bromide Hg2Br2 560.99 7.307 subl 393 d i aq, alc, eth; d hot HCl (II) bromide HgBr2 360.40 6.05 237 322 subl g/100 mL: 0.5620 aq; 2025 alc; v s HCl, HBr (I) chloride Hg2Cl2 472.09 7.16 subl 382 d without melt-ing s aqua regia; i aq, alc, eth (II) chloride HgCl2 271.50 5.4 277 304 g/100 mL20: 7.15 aq, 26 alc, 4 eth 8.3 glyc, 0.5 bz; s HOAc, EtAc (II) cyanide Hg(CN)2 252.63 4.00 d 320 g/100 mL20: 9.3 aq, 25 MeOH, 8 EtOH (I) fluoride Hg2F2 439.18 8.73 570 d hydrolyses in water 3.38 (II) fluoride HgF2 238.59 8.95 d 645 d 650 hyd aq; s HF (II) fulminate Hg(ONC)2 284.62 4.42 explodes sl s aq; s alc; dangerously flammable (I) iodide Hg2I2 654.99 7.70 290 d subl 140 i aq, alc, eth; s KI (II) iodide HgI2 454.40 6.28 259 350 subl g/100 mL: 0.00625 aq, 0.8 alc, 0.8 eth, 1.7 acet (I) nitrate 2-water Hg2(NO3)2 · 2H2O 561.22 4.79 70 d hyd aq; s HNO3 (II) nitrate Hg(NO3)2 324.60 4.3 79 d v s aq; s acet (I) oxide Hg2O 417.18 9.8 d 100 i aq; s HNO3 (II) oxide HgO 216.59 11.14 d 500 0.00525 aq; s dil HCl, HNO , I, CN (I) sulfate Hg2SO4 497.24 7.56 d 0.0625 aq; s HNO3 (II) sulfate HgSO4 296.65 6.47 d d aq; s acid (II) sulfide (cinnabar) HgS 232.66 8.17 subl 583 : blk HgO, 386 i aq; s aqua regia (II) thiocyanate Hg(SCN)2 316.76 3.71 d 165 0.06325 aq; s HCl Molybdenum Mo 95.94 10.28 2622 4825 s hot H2SO4, HNO3, fused KNO3 (III) bromide MoBr3 335.65 4.89 subl 977 d alkalis (IV) chloride MoCl4 237.75 317 407 s conc acids (V) chloride MoCl5 273.19 2.928 194 268 s conc acids, dry eth, dry alc (VI) fluoride MoF6 209.93 2.54 17.6 35.0 hyd aq; s alkalis; 31 g/100 g HF hexacarbonyl Mo(CO)6 264.00 1.96 150 d subl s bz (IV) oxide MoO2 127.94 6.47 d 1100 i aq (VI) oxide MoO3 143.94 26 4.6964 801 1155 0.0528 aq; s conc mineral acids, alk (III) sulfide Mo2S3 288.07 5.9115 1807 d 1867 d hot HNO3 (IV) sulfide MoS2 160.07 15 5.0615 2375 subl 450 s aqua regia Neodymium Nd 144.24 7.01 1024 3074 s hot aq, acids chloride NdCl3 250.60 4.134 760 1600 98 g/100 mL20 aq; s alc oxide Nd2O3 336.48 7.28 1900 s dilute acids sulfate 8-water Nd2(SO4)3 · 8H2O 720.79 2.85 d 700–800 8.87 g/100 mL20 aq Neon Ne 20.180 0.8999 g/L0 248.67 246.05 1.05 mL20 aq Neptunium Np 237.0482 20.2 644 3900 s HCl (IV) oxide NpO2 269 11.1 2547 Nickel Ni 58.69 8.90820 1453 2884 i aq; s HNO3 acetate 4-water Ni(C2H3O2)2 · 4H2O 248.86 1.744 d 16 g/100 mL aq; s alc acetylacetonate Ni(C5H7O2)2 256.91 1.45517 230 23511atm s aq, alc, bz, chl; i eth bromide NiBr2 218.50 5.098 963 subl 100 g/100 mL20 aq carbonate hydroxide (1/2) NiCO3 · 2Ni(OH)2 304.12 2.6 s dilute acids 3.39 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Nickel (continued) carbonyl Ni(CO)4 170.73 1.31 19.3 43 (expl 60) s EtOH, bz, acet chloride NiCl 129.60 3.51 1009 subl 973 61 g/100 mL20 aq chloride 6-water NiCl2 · 6H2O 237.69 100 g/100 mL20 aq; s alc cyanide 4-water Ni(CN)2 · 4H2O 182.79 anhyd 400 0.00618 aq; s KCN, NH4OH dimethylglyoxime Ni(HC2H6N2O2)2 288.92 subl 250 i aq; s abs alc, dilute acids (tri-) disulfide Ni3S2 240.21 5.87 790 d 2967 s HNO3 fluoride NiF2 96.69 4.72 1450 1740 4 g/100 mL20 aq; i alc, eth formate 2-water Ni(CHO2)2 · 2H2O 184.78 2.15420 anhyd 130 d 180–200 s aq; i alc nitrate 6-water Ni(NO3)2 · 6H2O 290.81 2.05 56.7 136.7 150 g/100 mL20 aq (II) oxide NiO 74.71 7.45 2000 s acids (III) oxide Ni2O3 165.42 4.83 O2, 600 s hot HCl, HNO3, H2SO4 sulfate NiSO4 154.78 3.68 SO3, 840 29 g/100 mL0 aq sulfate 6-water NiSO4 · 6H2O 262.86 2.07 anhyd 280 40 g/100 mL20 aq sulfide NiS 90.77 5.3–5.6 976 d 2047 s HNO3, KHS tetracarbonyl Ni(CO)4 170.74 1.318517 19.3 42.3 explodes 63; FP 4; s organic sol-vents Niobium Nb 92.9064 8.5720 2468 4860 s fused alkali hydroxides (V) chloride NbCl5 270.20 2.75 206 247.0 s HCl, CCl4 (V) fluoride NbF5 187.91 80 2.6964 80.0 234.9 hyd aq, alc; sl s CS2, CCl4 (V) oxide Nb2O5 265.82 4.55 1512 s HF, hot H2SO4 Nitrogen N2 28.0341 1.165 g/L20 210.01 195.79 mL/100 mL: 1.620 aq, 0.112 alc 15N2 30.01 1.25 g/L20 209.952 195.73 (I) oxide N2O 44.02 1.843 g/L20 90.81 88.46 1300 mL aq; s alc, eth (II) oxide NO 30.01 1.249 g/L20 163.64 151.76 4.6 mL/100 mL20 aq (III) oxide N2O3 76.02 1.447 g/L2 100.7 2 s eth (IV) oxide dimer N2O4 92.02 20 1.4484 9.3 21.15 d s conc HNO3, conc H2SO4, chl (V) oxide N2O5 108.01 2.05 30 47.0 v s chl; s CCl4 selenide N4Se4 371.87 4.2 explosive sl s bz, CS2 sulfide N4S4 184.28 2.2418 180 185 s organic solvents trichloride NCl3 120.37 1.65320 27 71 i aq; s bz, CS2, CCl4 trifluoride NF3 70.01 2.96 g/L20 208.5 129.06 3.40 Nitrosyl chloride NOCl 65.47 1.5925 61.5 5.5 hyd aq; s fuming H2SO4 fluoride NOF 49.01 2.788 g/L20 132.5 59.9 hyd aq hydrogen sulfate NOHSO4 127.08 d 73.5 d aq; s H2SO4 tetrafluoroborate NO[BF4] 116.83 25 2.1854 subl 2500.01mm d aq Nitryl chloride NO2Cl 81.46 2.81 g/L100 145 14.3 d aq fluoride NO2F 65.00 2.7 g/L20 166.0 72.4 d aq Osmium Os 190.2 22.6120 3045 5225 s molten alkali or oxidizing fluxes hexafluoride OsF6 304.2 32.1 45.9 hyd aq tetrachloride OsCl4 332.0 20 4.384 subl 450 slow hyd aq tetraoxide OsO4 254.20 4.91 40.6 130.0 g/100 mL: 7.2425 aq; 37525 CCl4; s bz, eth, alc Oxygen O2 31.9988 1.331 g/L20 218.4 182.96 mL/100 mL20: 3.13 aq, 14.3 alc difluoride OF2 54.00 2.26 g/L20 223.8 145.3 6.8 mL/100 mL0 aq (di-) difluoride O2F2 70.00 1.45bp (lq) 154 d 100 Ozone O3 48.00 1.998 g/L20 192.5 111.9 49.4 mL/100 mL0 aq Palladium Pd 106.42 12.02320 1555 3167 s hot HNO3, H2SO4 acetate Pd(C2H3O2)2 224.49 205 d i aq, alc; s acet, chl, eth chloride PdCl2 177.30 4.018 680 d 680 s alc, acet, HCl nitrate Pd(NO3)2 230.42 d s dil HNO3 oxide PdO 122.40 8.7020 879 d s 48% HBr; sl s aqua regia Perchloryl fluoride ClO3F 102.46 0.637 g/L 147.74 46.67 Phosphorus (white) P4 molecules 123.8950 1.82325 44.15 280.3 g/100 mL: 2.86 bz, 2.50 chl, 1.25 CS2; 0.025 abs alc, 1.0 eth (red) P4 123.8950 2.34 597 subl 416 i aq; ignites in air, 260 hydride, see Phosphine pentabromide PBr5 430.56 3.4620 106 d d aq; s CCl4, CS2 pentachloride PCl5 208.27 2.11920 subl 100 166 d hyd aq; s CCl4, CS2 pentafluoride PF5 125.98 5.805 g/L 93.8 84.6 hyd aq pentoxide (dimer) P4O10 283.88 2.30 340 subl 360 d aq; s H2SO4 pentasulfide P2S5 222.29 2.09 288 514 hyd aq; s alkali; 0.22217 CS2 tribromide PBr3 270.73 2.8515 41.5 173.2 d aq, alc; s acet, CS2 trichloride PCl3 137.35 1.57520 4 93.6 76.1 d aq, alc; s bz, chl trifluoride PF3 87.98 3.907 g/L 151.30 101.38 hyd aq trioxide (dimer) P4O6 219.90 2.13620 4 23.8 173 (N2 atm) hyd aq; s bz, CS2 (tetra-) triselenide P4Se3 360.80 1.31 245–246 360–400 flammable in air; s bz, acet, chl, CS2 (tetra-) trisulfide P4S3 220.09 2.0317 167 407 100 g/100 mL17 CS2; s tolune 3.41 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Phosphine PH3 34.00 1.529 g/L 133.81 87.78 mL/100 mL17: 1025 CS2, 726 bz, 319 HOAc, 26 aq; s alc, eth Phosphonium iodide PH4I 161.91 2.86 18.5 subl 62.5 d aq Phosphoryl chloride difluor-ide POClF2 120.43 1.6560 96.4 3.1 dichloride fluoride POCl2F 136.89 1.549720 80.1 52.90 tribromide POBr3 286.72 2.822 56 191.7 d s bz, CS2, eth trichloride POCl3 153.35 1.64525 1.25 105 d aq, alc Platinum Pt 195.08 21.0920 1769 3824 s aqua regia, fused alkali (II) chloride PtCl2 266.00 5.87 d 581 i aq, alc; s HCl, NH4OH (IV) chloride PtCl4 336.90 4.30325 d 370 143 g/100 mL25 aq (VI) fluoride PtF6 309.08 3.826 (lq) 61.3 69.14 (II) oxide PtO 211.09 14.915 d 550 i aq; s HCl (IV) oxide PtO2 227.09 10.2 450 i aqua regia (IV) sulfide PtS2 259.22 7.66 d 225 s HCl, HNO3 Plutonium Pu 239.052 20 19.8164 639.5 3230 i aq; s acids (III) bromide PuBr3 478.79 6.69 681 d 1300 s aq (III) chloride PuCl3 345.42 5.70 760 1767 i aq; v s acids (III) fluoride PuF3 296.06 9.32 1425 d 2000 hyd aq (IV) fluoride PuF4 315.05 7.00 1037 d i aq (VI) fluoride PuF6 353.05 4.86 51.59 62.16 (II) hydride PuH2 241.08 10.40 ca. 727 (III) hydride PuH3 242.08 9.61 ca. 327 (II) oxide PuO 255.05 13.9 1900 (III) oxide Pu2O3 526.12 10.2 2085 (in He) (IV) oxide PuO2 271.05 11.46 2390 (in He) d 2800 (III) sulfide Pu2S3 574.30 9.95 1727 Polonium Po 208.9824 9.196 alpha 9.398 beta 254 962 sl s aq; s acids (IV) chloride PoCl4 350.79 300 (in Cl2) 390 (in Cl2) sl hyd aq; v s HCl; s alc, acet (IV) oxide PoO 240.98 d 550 v s dilute HCl 3.42 Potassium K 39.0983 0.89 63.38 759 d aq to KOH; s acids acetate KC2H3O2 98.14 1.57 292 g/100 mL: 200 aq, 34 alc arsenate K3AsO4 256.21 2.8 1310 19 g/100 mL aq; slowly s glyc; s alc borate(1) KBO2 81.91 947 1401 71 g/100 mL30 aq bromate KBrO3 167.00 3.27 350 d 370 6.9 g/100 mL20 aq bromide KBr 119.00 2.75 734 1435 g/100 mL: 6520 aq, 22 glyc, 0.4 alc carbonate K2CO3 138.21 2.29 901 d to K2O 90 g/100 mL20 aq; i alc chlorate KClO3 122.55 2.32 368 d 400 g/100 mL: 7.320 aq, 2 glyc chloride KCl 74.55 1.988 771 1437 g/100 mL: 3420 aq, 7 glyc, 0.4 alc chromate(VI) K2CrO4 194.19 2.732 975 64 g/100 mL20 aq; i alc citrate hydrate K3C6H5O7 · H2O 324.42 1.98 anhyd 180 d 230 g/100 mL: 154 aq; 40 glyc cyanate KOCN 81.11 2.05 d 700 s aq; sl s alc cyanide KCN 65.12 1.55 634 1625 g/100 mL: 50 aq, 50 glyc, 4 MeOH dichromate(VI) K2Cr2O7 294.19 25 2.6764 398 d 500 11.7 g/100 mL20 aq dicyanoargentate(I) K[Ag(CN)2] 199.01 2.36 25 g/100 mL30 aq dihydrogen arsenate KH2AsO4 180.03 2.867 288 g/100 mL: 196 aq, 63 glyc; i alc dihydrogen phosphate KH2PO4 136.09 2.338 d 400 (KPO3) 22.6 g/100 mL20 aq; i alc dioxide KO2 71.10 2.14 509 d v s aq with decomposition diphosphate(V) 3-water K4P2O7 · 3H2O 384.38 2.33 anhyd 300 mp: 1090 s aq; i alc disulfate(IV) K2S2O5 222.32 s aq; flammable if ground disulfate(VI) (pyrosulfate) K2S2O7 254.32 2.28 325 s aq ethyldithiocarbonate KOCSSC2H5 160.30 1.558 d 200 v s aq fluoride KF 58.10 2.48 859.9 1505 95 g/100 mL20 aq formate KCHO 84.12 1.91 167.5 d mp 250 g/100 mL aq gluconate KC6H11O7 234.25 d 180 v s aq; i alc, bz, chl heptaiodobis-muthate(III)(4) K4[BiI7] 1253.82 d aq; s alkali iodide solutions hexachloroplatinate(IV) K2[PtCl6] 485.99 3.50 d 250 0.4820 aq hexacyanoferrate(II) 3-water K4[Fe(CN)6] · 3H2O 422.39 1.85 anhyd 100 d 28 g/100 mL20 aq hexacyanoferrate(III) K3[Fe(CN)6] 329.25 1.89 d 40 g/100 mL20 aq (slow); sl s alc hexafluorosilicate K2[SiF6] 220.27 2.27 d sl s aq; i alc hexafluorozirconate K2[ZrF6] 283.41 3.58 2.7 g/100 mL20 aq hexanitritocobaltate(III) 1.5-water K3[Co(NO2)6] · 1.5H2O 479.30 d 200 0.08918 aq; s HOAc; v sl s alc hydride KH 40.11 1.43 417 d d aq hydrogen carbonate KHCO3 100.11 2.17 d 100 34 g/100 mL20 aq; i alc 3.43 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Potassium (continued) hydrogen difluoride KHF 78.10 2.37 238.80 d 477 39 g/100 mL20 aq; s alc hydrogen phosphate K2HPO4 174.18 d to K2P2O7 150 g/100 mL aq hydrogen phthalate KHC8H4O4 204.22 1.636 d 8.3 g/100 mL aq; sl s alc hydrogen sulfate KHSO4 136.17 2.24 197 d to K2S2O7 48 g/100 mL20 aq hydrogen sulfide KHS 72.17 1.70 455 s aq, alc hydrogen tartrate KHC4H4O6 188.18 1.956 0.520 aq; s acids; v sl s alc hydroxide KOH 56.11 2.044 406 1323 g/100 mL: 11220 aq, 33 alc, 40 glyc iodate KIO3 214.00 3.89 560 d 8.1 g/100 mL20 aq; i alc iodide KI 166.00 3.12 681 1345 g/100 mL: 14420 aq, 4.5 alc, 50 glyc manganate(VI) K2MnO4 197.13 190 d s aq; stable in KOH molybdate(VI) K2MoO4 238.14 2.3 919 d 1400 160 g/100 mL aq nitrate KNO3 101.10 2.11 333 d 400 g/100 mL: 3220 aq, 0.16 alc, s glyc nitrite KNO2 85.10 1.915 441 d 350 306 g/100 mL20 aq; sl s alc oxalate hydrate K2C2O4 · H2O 184.23 2.13 anhyd 160 d to K2CO3 36 g/100 mL20 aq oxide K2O 94.20 2.35 350 d d aq to KOH, s alc oxobisoxalatodiaquati-tanate(IV) K2[TiO(C2O4)2(H2O)2] 354.18 v s aq perchlorate KClO4 138.55 2.52 d 400 2.0425 aq; 0.003625 BuOH; 0.0013 EtOAc periodate KIO4 230.010 3.618 582 0.4220 aq, sl s KOH permanganate KMnO4 158.03 2.7 d 240 : O2 6.34 g/100 mL20 aq; d HCl peroxide K2O2 110.20 490 d aq peroxodicarbonate hydrate K2C2O6 · H2O 216.24 6.5 g/100 mL aq; d hot aq peroxodisulfate K2S2O8 270.32 2.48 d 100 2.5 g/100 mL20 aq; i alc perrhenate KReO4 289.30 4.38 555 1370 0.9920 aq phenolsulfonate hydrate KC6H4(OH)SO3 · H2O 240.28 1.87 s aq, alc phosphate K3PO4 212.27 17 2.5644 1340 50.8 g/100 mL20 aq; i alc selenocyanate KSeCN 144.08 d 100 s aq silicate(2) K2SiO3 154.29 976 s aq sodium hexanitritocobal-tate(III) hydrate K2Na[Co(NO2)6] · H2O 454.18 1.633 d 135 0.07 aq 3.44 sodium tartrate 4-water KNaC4H4O6 · 4H2O 282.23 1.790 70–80 anhyd 130–140 54 g/100 mL15 aq sorbate KC6H7O2 150.22 25 1.36320 d 270 g/100 mL: 58.220 aq, 6.5 alc stannate(IV) 3-water K2SnO3 · 3H2O 298.94 3.197 anhyd 140 100 g/100 mL20 aq; i alc stearate KOOCC17H35 322.57 readily soluble hot aq or alc sulfate K2SO4 174.26 2.66 1069 1670 g/100 mL: 1120 aq, 1.3 glyc, i alc sulfide K2S 110.26 1.74 948 sulfite 2-water K2SO3 · 2H2O 194.29 d 28.6 g/100 mL20 aq tartrate hemihydrate K2C4H4O6 · 0.5H2O 235.28 1.98 anhyd 155 d 200 138 g/100 mL20 aq tellurate(IV) K2TeO3 253.79 s aq tetrachloroaurate(III) K[AuCl4] 377.88 3.75 d 357 61.8 g/100 mL20 aq tetrafluoroborate K[BF4] 125.90 20 2.5054 530 0.4520 aq tetrahydridoborate K[BH4] 53.94 1.11 d 497 g/100 mL: 2125 aq, 3.520 MeOH tetraiodocadmate 2-water K4[CdI4] · 2H2O 698.21 21 3.3594 g/100 mL: 13715 aq, 7115 alc, 4 eth tetraiodomercurate(II) K2[HgI4] 786.48 v s aq; s alc, acet, eth thiocyanate KSCN 97.18 1.89 173 d 500 g/100 mL: 21720 aq, 200 acet, 8 alc thiosulfate K2S2O3 190.33 d 400 155 g/100 mL20 aq; i alc trihydrogen bisoxalate 2-water KH3(C2O4) · 2H2O 254.20 1.836 d 1.8 aq trisoxalatoantimonate(III) K3[Sb(C2O4)3] 503.12 a aq trithiocarbonate K2CS3 186.41 d v s aq uranyl(VI) acetate hydrate K(UO2)(C2H3O2)2 · H2O 504.28 3.29615 anhyd 275 s aq Praseodymium Pr 140.9077 6.475 -form 935 3520 s hot water and acids chloride PrCl3 247.27 4.0 769 to 782 1710 104 g/100 mL13 aq; s alc (III) oxide Pr2O3 329.81 7.07 oxidizes to Pr6O11 i aq; s acids (IV) PrO2 172.91 6.82 tr 350 to Pr6O11 Promethium-147 Pm 146.915 7.22 1080 3000 est bromide PmBr3 386.7 5.38 727 1667 s aq chloride PmCl3 153.4 737 1670 s aq Protoactinium Pa 231.0359 15.37 1568(8) 4227 (IV) chloride PaCl4 372.85 4.72 subl 400 i aq; s HCl (V) chloride PaCl5 408.31 3.74 301 420 hyd aq; s THF, CH3CN Radium Ra 226.03 5.5 700.1 1737 d aq; s acids bromide RaBr2 385.88 5.79 728 subl 900 s aq chloride RaCl2 296.93 4.91 1000 s aq Radon Rn 222.0 9.73 g/L 71 62 23 mL/100 mL20 aq; s org solv 3.45 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Rhenium Re 186.207 21.02 3180 5678 s HNO3 chloride trioxide ReClO3 269.66 4.5 128 hyd in water to HReO4; s CCl4 (IV) fluoride ReF4 262.20 5.38 124.5 795 hyd aq (VI) fluoride ReF6 300.20 3.58 18.5 33.8 52.5 g/100 mL anhyd HF; s HNO3 (VII) fluoride ReF7 319.20 3.65 48.3 73.7 hyd aq (VI) oxide ReO3 234.20 6.9–7.4 disprop 400 750 s HNO3 (VII) oxide Re2O7 484.41 6.1 300.3 360.3 v s aq, org solv (VII) sulfide Re2S7 596.88 4.866 d 460 i aq; s HNO3 (VI) tetrachloride oxide ReCl4O 344.02 3.309 29.3 225 hyd aq; s CCl4 Rhodium Rh 102.9055 12.4120 1963 3727 s fused KHSO4 (III) chloride RhCl3 209.26 5.38 d 450 i aq; s KOH, KCN (III) fluoride RhF3 159.90 5.4 subl 600 i acids, alkalis (III) oxide Rh2O3 253.81 8.20 d 1100 i aq reg, KOH tetracarbonyldi--chloro-dichloride Rh2(CO)4Cl2 388.76 124–125 s org solv except hydrocarbons Rubidium Rb 85.4678 1.532 39.31 691 d aq to RbOH acetate RbC2H3O2 144.52 246 86 g/100 mL45 aq bromide RbBr 165.37 3.35 682 1346 108 g/100 mL20 aq carbonate Rb2CO3 230.95 837 d 900 g/100 mL: 45020 aq, 0.7419 alc chlorate RbClO3 168.94 3.184 342 5.4 g/100 mL20 aq chloride RbCl 120.92 2.76 715 1390 g/100 mL: 9120 aq, 1.1 MeOH dihydrogen phosphate RbH2PO4 182.47 840 s aq fluoride RbF 104.47 3.2 833 1410 131 g/100 mL18 aq hexachloroplatinate(IV) Rb2[PtCl6] 578.75 3.94 d 0.02820 aq hydroxide RbOH 102.47 3.20 301 180 g/100 mL18 aq; s alc iodide RbI 212.37 3.55 642 1304 163 g/100 mL25 aq; s alc nitrate RbNO3 147.47 3.11 305 l9.5 g/100 mL20 aq oxide Rb2O 186.93 4.0 400 d s aq : RbOH sulfate Rb2SO4 267.00 3.5 1050 48 g/100 mL20 aq Ruthenium Ru 101.07 20 12.454 2334 4150 s fused alkali, oxidizing fluxes (III) chloride (hexagonal) RuCl3 207.43 3.11 d 500 i aq; s HCl, alc (V) fluoride RuF5 196.06 3.90 86.5 227 d aq (IV) oxide RuO2 133.07 6.97 d i aq; s fused alkali 3.46 Samarium Sm 150.36 7.52 1074 1794 s acids (II) chloride SmCl2 221.27 3.687 855 2030 s aq dec; i alc (III) chloride SmCl3 256.72 4.46 682 d 93.4 g/100 mL20 aq (III) fluoride SmF3 207.36 6.643 1306 2427 i aq; s H2SO4 (III) oxide Sm2O3 348.72 8.347 2335 s acids (III) sulfate 8-water Sm2(SO4)3 · 8H2O 733.03 2.93 anhyd 450 2.7 g/100 mL20 aq Scandium Sc 44.956 2.985 hex 1541 2836 d aq chloride ScCl3 151.31 2.39 967 967 v s aq; i alc oxide Sc2O3 137.91 3.864 2485 s hot or conc acids sulfate 5-water Sc2(SO4)3 · 5H2O 468.17 2.519 anhyd 250 d 550 54.6 g/100 mL25 aq Selenium (hexagonal) Se 78.96 4.8120 4 217 685 s eth, KOH, KCN; i aq, alc (IV) bromide SeBr4 398.58 4.029 123 d aq; s HBr, chl, CS2 (IV) chloride SeCl4 220.77 2.6 305 subl 196 d aq (di-) dibromide Se2Br2 317.73 3.60415 4 225 d d aq; s chl, CS2 dibromide oxide SeBr2O 254.77 3.3850 41.6 217 d d aq (di-) dichloride Se2Cl2 228.83 2.77425 4 85 127 dec d aq; s bz, chl, CS2 dichloride oxide SeCl2O 165.867 2.44 8.5 177.2 d aq; misc bz, chl, CCl4, CS2 difluoride oxide SeF2O 132.96 2.8 15 125 d aq (IV) fluoride SeF4 154.95 2.75 10 106 reacts aq viol; misc alc, eth; s chl (VI) fluoride SeF6 192.95 8.467 g/L 34.6 (di-) hexasulfide Se2S6 350.32 2.44 121.5 s CS2; 1.2 g/100 mL20 bz (IV) oxide SeO2 110.96 3.95 340 subl 315 w/w %: 3814 aq, 1012 MeOH, 4.35 acet, 6.714 EtOH, 1.112 HOAc; s H2SO4 (tetra-) tetrasulfide Se4S4 444.10 3.20 113 d i aq; 0.04 g/100 mL20 bz; s CS2 Silane SiH4 32.12 1.409 g/L 185 111.9 d aq slowly; i alc, bz, chl, eth chloro-SiH3Cl 66.56 2.921 g/L 118 30.4 dichloro-SiH2Cl2 101.01 4.432 g/L 122 8.3 d aq iodo-SiH3I 158.01 2.035 57 45.5 d aq trichloro-SiHCl3 135.45 1.331 128 33 d aq; s bz, chl Silicon Si 28.0855 2.33 1412 3265 s HF HNO3, fused alkali oxides carbide (beta) SiC 40.10 3.16 2830 s fused alkali oxides dioxide ( quartz) SiO2 60.08 2.648 573 tr quartz 2950 i aq; s HF dioxide - tungsten trioxide -water (silicotungstic acid) SiO2 · 12WO3 · 26H2O 3310.66 v s aq, alc disulfide SiS2 92.22 2.04 1090 s d aq, alc; i bz 3.47 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Silicon (continued) tetrabromide SiBr4 347.70 2.81 5.2 154 hyd aq viol tetrachloride SiCl4 169.90 1.5 68.8 57.6 hyd aq; s bz, CCl4, eth tetrafluoride SiF4 104.08 4.567 g/L 90.3 86 hyd aq; s HF tetraiodide SiI4 535.70 4.1 120.5 287.3 d aq; 2.2 g/100 mL27 CS2 (tri-) tetranitride Si3N4 140.28 3.17 1878 i aq; s HF Silver Ag 107.8682 10.49 961.78 2164 s HNO3 acetate AgC2H3O2 166.91 3.259 d 1.0420 aq; s dil HNO3 antimonide Ag3Sb 445.35 559 azide AgN3 149.89 4.9 exp 252 i aq; s KCN, HNO3 (explosive) bromide AgBr 187.77 6.473 432 1500 i aq; s KCN carbonate Ag2CO3 275.75 6.077 218 0.00320 aq; s KCN, HNO3, NH4OH chlorate AgClO3 191.32 20 4.4304 231 d 270 10 g/100 mL15 aq chloride AgCl 143.32 5.56 455 1547 i aq; 7.7 g/100 mL NH4OH, KCN, Na2S2O3 chromate(VI) Ag2CrO4 331.73 5.62525 0.00220 aq; s HNO3, NH4OH cyanide AgCN 133.89 3.95 320 d i aq; s KCN fluoride AgF 126.87 5.852 435 1150 182 g/100 mL20 aq; s HF, CH3CN (II) fluoride AgF2 145.87 4.57 690 d 700 hyd viol aq iodate AgIO3 282.77 5.52520 200 d 0.05325 aq; 40 g/100 mL 10% NH4OH iodide (alpha) AgI 234.77 5.68330 558 1505 i aq; s KCN, KI, (NH4)2CO3 nitrate AgNO3 169.87 4.35219 212 d 440 g/100 mL: 21620 aq, 3.3 alc, 0.4 acet nitrite AgNO2 153.87 4.453 d 140 0.3325 aq; d dilute acids oxalate Ag2C2O4 303.76 5.034 explodes 140 0.00420 aq; s HNO3, NH4OH oxide Ag2O 231.73 25 7.224 d 200 (d light) 0.00225 aq; s dil HNO3, NH4OH (II) oxide AgO 123.87 25 7.4834 d 100 i aq; d alk and acids perchlorate AgClO4 207.32 2.80625 d 486 557 g/100 mL20 aq; s bz, glyc, pyr permanganate AgMnO4 226.80 4.49 d by light 0.9 aq; d alc 3.48 phosphate Ag3PO4 418.62 6.37 849 0.006 aq; v s dil HNO3, KCN, (NH4)2CO3 selenate(IV) Ag2SeO3 342.69 5.93 530 d 530 sl s aq; s HNO3 sulfate Ag2SO4 311.80 5.45 660 d 1085 0.8020 aq (slow); s HNO3, NH4OH, H2SO4 sulfide (agentite) Ag2S 247.80 20 7.2344 845 d i aq; s HNO3, alk CN’s Sodium Na 22.98977 0.96820 97.82 881.4 d aq to NaOH acetate NaC2H3O2 82.03 1.528 324 75 g/100 mL20 aq acetate 3-water NaC2H3O2 · 3H2O 136.08 1.45 anhyd 120 d 120 g/100 mL: 12520 aq, 5.1 alc aluminate(1) NaAlO2 81.97 4.63 1650 v s aq; i alc aluminum sulfate 12-water NaAl(SO4)2 · 12H2O 458.28 1.61 60 110 g/100 mL15 aq; i alc amide NaNH2 39.01 1.39 210 subl 400 d 500, reacts aq viol ammonium phosphate 4-water NaNH4HPO4 · 4H2O 209.07 1.54 80 anhyd 280 14.3 g/100 mL aq arsenate(III)(1) NaAsO2 129.91 1.87 v s aq; sl s alc ascorbate NaC6H7O6 198.11 d 218 62 g/100 mL20 aq azide NaN3 65.01 1.84620 d to Na N2 41 g/100 mL20 aq; 0.3 alc benzoate NaO2C6H5 144.11 g/100 mL: 6325 aq; 1.3 alc bismuthate(V)(1) NaBiO3 279.96 d i cold aq; dec by hot aq & acids bismuthide Na3Bi 277.95 766 d aq bromate NaBrO3 150.89 3.34 381 d 40 g/100 mL20 aq; i alc bromide NaBr 102.89 20 3.2004 755 1390 g/100 mL: 9020 aq, 6 alc; 16 MeOH carbonate Na2CO3 105.99 2.53320 858.1 d 29 g/100 mL20 aq; s glyc; i alc carbonate hydrate Na2CO3 · H2O 124.00 2.25 anhyd 100 g/100 mL: 33 aq, 14 glyc; i alc carbonate 10-water Na2CO3 · 10H2O 286.14 1.46 34 d 50 g/100 mL aq; s glyc carbonate - hydrogen Na2CO3 · NaHCO3 226.02 2.112 13 g/100 mL0 aq carbonate 2-water (trona) · 2H2O chlorate(V) NaClO3 106.44 2.5 248 d 300 : O2 g/100 mL: 9620 aq, 0.77 alc, 25 glyc chloride NaCl 58.44 2.17 800.8 1465 g/100 mL: 3620 aq, 10 glyc chlorite NaClO2 90.44 d 180–200 34 g/100 mL17 aq chromate(VI) Na2CrO4 161.97 2.72 792 84 g/100 mL20 aq citrate 2-water Na3C6H5O7 · 2H2O 294.10 anhyd 150 77 g/100 mL25 aq; i alc cyanate NaOCN 65.01 1.89 550 s aq d; 0.220 alc cyanide NaCN 49.01 1.6 563 58.7 g/100 mL20 aq cyanohydridoborate Na[BH3CN] 62.84 1.12 240 d g/100 mL: 212 aq, 37.2 THF; v s NaOH; i bz, eth 3.49 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Sodium (continued) dichromate 2-water Na2Cr2O7 · 2H2O 298.00 25 2.3484 anhyd 100; mp 356 d 400 73.1 g/100 mL20 aq diethyldithiocarbamate NaS2CN(C2H5)2 · 3H2O 225.31 anhyd 94–96 s aq, alc dihydrogen arsenate(V) hydrate NaH2AsO4 · H2O 181.94 2.53 anhyd 130 d 200 s aq dihydrogen diphos-phate(V) Na2H2P2O7 221.94 1.9 d 220 4.5 g/100 mL0 aq dihydrogen phosphate(V) dihydrate NaH2PO4 · 2H2O 156.01 1.91 anhyd 100 d NaPO3, 200 71 g/100 mL0 aq; i alc dimethylarsonate 3-water (cacodylate) NaO2As(CH3)2 214.03 anhyd 120 g/100 mL: 200 aq, 40 alc dioxide NaO2 54.99 552 diphosphate(V) Na4P2O7 265.90 2.53 988 2.260 aq dithionate(V) 2-water Na2S2O6 · 2H2O 242.14 2.19 anhyd 110 d 267 to Na2SO4 SO2 13.4 g/100 mL20 aq; i alc dithionate(III) Na2S2O4 174.11 d 22 g/100 mL20 aq; sl s alc diuranate(VI) Na2U2O7 634.03 i aq; s acids dodecylbenzenesulfonate NaO3SC6H4C12H25 348.49 dodecylsulfate NaO3SOC12H25 288.38 10 g/100 mL aq ethoxide NaOC2H5 68.06 300 d aq; s abs alc ethylenebis(imino-diacetate) (EDTA) (NaOOCCH2)2NC2H4-N(CH2COONa)2 380.20 103 g/100 mL aq ethylsulfate NaO3SOC2H5 148.12 140 g/100 mL aq; s alc fluoride NaF 41.99 2.78 996 1704 4 g/100 mL15 aq; i alc formate NaHCO2 68.01 1.92 253 d 253 81 g/100 mL20 aq; s glyc; sl s alc gluconate NaC6H11O7 218.14 59 g/100 mL25 aq; sl s alc; i eth glycerophosphate Na2C3H5(OH)2PO4 216.04 d 130 67 g/100 mL aq; i alc hexachloroplatinate(IV) 6-water Na2[PtCl6] · 6H2O 561.88 2.50 6H2O, 110 v s aq; s alc 3.50 hexacyanoferrate(II) 10-water Na4[Fe(CN)6] · 10H2O 484.06 1.46 anhyd 82 d 435 28 g/100 mL20 aq hexacyanoferrate(III) hy-drate Na3[Fe(CN)6] · H2O 298.93 18.9 g/100 mL0 aq hexafluoroaluminate Na3[AlF6] 209.94 2.97 1009 s aq hexanitritocobaltate(III) Na3[Co(NO2)6] 403.98 v s aq; sl s alc hydride NaH 24.00 1.39 425 d ign spontaneously moisture; d alc viol hydrogen arsenate(V) 7-water Na2HAsO4 · 7H2O 312.01 1.87 anhyd 130 d 150 61 g/100 mL15 aq; s glyc; sl s alc hydrogen carbonate NaHCO3 84.01 2.20 to Na2CO3 270 8 g/100 mL20 aq; i alc hydrogen difluoride NaHF2 62.00 2.08 d 160 3.7 g/100 mL20 aq hydrogen phosphate 7-water Na2HPO4 · 7H2O 268.07 1.7 d 25 g/100 mL40 aq; v sl s alc hydrogen sulfate NaHSO4 120.06 2.435 315 d 50 g/100 mL20 aq; d alc hydrogen sulfide NaHS 56.06 1.79 350 s aq, alc, eth hydrogen sulfite NaHSO3 104.06 1.48 d g/100 mL: 29 aq, 1.4 alc hydroxide NaOH 40.00 2.130 323 1388 g/100 mL: 10820 aq, 14 abs alc, 24 MeOH; s glyc hydroxymethanesulfinate dihydrate Na[HOCH2SO2] · 2H2O 154.12 63–64 d 64 v s aq; i abs alc, bz, eth hypochlorite 5-water NaClO · 5H2O 164.52 1.6 18 d by CO2 from air 29 g/100 mL0 aq iodate NaIO3 197.89 4.28 d 8.1 g/100 mL20 aq iodide NaI 149.89 3.67 660 1304 g/100 mL: 20020 aq, 100 glyc, 50 alc; s acet lactate NaOOCCHOHCH3 112.06 d misc aq, alc methoxide NaOCH3 54.02 300 d aq; s alc molybdate(VI) 2-water Na2MoO4 · 2H2O 241.95 3.5 anhyd 100 mp 687 65 g/100 mL20 aq nitrate NaNO3 85.00 2.26 307 d 500 g/100 mL: 8820 aq, 0.8 alc nitrite NaNO2 69.00 2.17 271 d 320 67 g/100 mL20 aq oxalate Na2C2O4 134.00 2.34 d 250 3.4 g/100 mL20 aq; i alc oxide Na2O 61.98 2.27 dull red heat d 400 d aq to NaOH violently pentacyanonitrosylfer-rate(III) 2-water (nitro-prusside) Na2[Fe(CN)5NO] · 2H2O 297.65 1.72 40 g/100 mL16 aq 3.51 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Sodium (continued) perchlorate NaClO4 122.44 2.52 480 d g/100 mL25; 114 aq, 1.5 BuOH, 8.4 EtOAc periodate KIO4 213.89 3.865 d 300 10.3 g/100 mL20 aq peroxide Na2O2 77.98 2.805 675 d v s aq (dec) peroxoborate 4-water NaBO3 · 4H2O 153.88 d 60 2.5 g/100 mL aq peroxodisulfate(VI) Na2S2O8 238.11 d 55 g/100 mL aq; d by alc perrhenate NaReO4 273.19 5.24 300 33 g/100 mL20 aq phosphate Na3PO4 163.94 2.537 1340 12.1 g/100 mL20 aq phosphate 12-water Na3PO4 · 12H2O 380.12 1.62 73.4 11H2O, 100 28.3 g/100 mL20 aq; i alc phosphinate hydrate NaPH2O2 · H2O 105.99 anhyd 200 d to PH3 100 g/100 mL20 aq; s glyc, alc propanoate NaOOCC2H5 96.06 g/100 mL25: 100 aq, 4.1 alc salicylate NaOOCC6H4OH 160.10 g/100 mL: 11020 aq, 11 alc, 25 glyc selenate(VI) Na2SeO4 188.94 3.098 27 g/100 mL20 aq silicate(2) meta-Na2SiO3 122.06 2.614 1089 s aq; hyd by hot aq; i alc silicate(2) 5-water Na2SiO3 · 5H2O 212.14 1.749 72.2 anhyd 100 v s aq silicate(4) Na4SiO4 184.04 1018 s aq stannate(IV) 3-water Na2SnO3 · 3H2O 266.71 d 140 (slow) 59 g/100 mL20 aq; i alc stearate NaOOCC17H35 306.47 d sl s aq sulfate Na2SO4 142.04 2.7 8800 d 2227 28 g/100 mL20 aq sulfate 10-water Na2SO4 · 10H2O 322.20 1.46 32.4 anhyd 100 67 g/100 mL25 aq; s glyc; i alc sulfide Na2S 78.05 1.856 1172 vacuo 18.6 g/100 mL20 aq; sl s alc sulfide 9-water Na2S · 9H2O 240.18 1.43 d 50 200 g/100 mL aq; sl s alc sulfite Na2SO3 126.04 2.63 d 31 g/100 mL20 aq; s glyc; i alc tartrate dihydrate Na2C4H4O6 · 2H2O 230.08 1.82 anhyd 120 29 g/100 mL6 aq; i alc tetraborate Na2B4O7 201.22 2.4 742.5 2.620 aq tetraborate 10-water (bo-rax) Na2B4O7 · 10H2O 381.37 1.73 75 d anhyd 320 g/100 mL: 6.3 aq, 100 glyc tetrachloroaluminate Na[AlCl4] 191.78 2.01 151 s aq tetrachloroaurate Na[AuCl4] · 2H2O 397.80 d 100 166 g/100 mL27 aq; s alc, chl tetrafluoroborate Na[BF4] 109.82 2.47 384 d 108 g/100 mL27 aq tetrahydridoborate Na[BH4] 37.83 1.074 497 d 315 1825 DMF; 16.420 MeOH (reacts) 3.52 thiocyanate NaSCN 81.07 287 134 g/100 mL20 aq thiosulfate Na2S2O3 158.11 2.345 s aq; i alc thiosulfate 5-water Na2S2O3 · 5H2O 248.19 1.69 anhyd 100 d 100 70 g/100 mL20 aq (dec slowly) trimetaphosphate 6-water (NaPO3)3 · 6H2O 414.04 1.786 53 anhyd 100 22 g/100 mL aq; i alc tungstate(VI) dihydrate Na2WO4 · 2H2O 329.85 3.25 anhyd 100 mp: 695.6 88 g/100 mL0 aq; i alc vanadate(V) NaVO3 121.93 s hot aq Strontium Sr 87.62 2.64 757 1366 d to Sr(OH)2 in water bromide SrBr2 247.43 4.216 657 2045 100 g/100 mL20 aq carbonate SrCO3 147.63 3.5 d 1100 to SrO CO2 i aq; s acids chlorate Sr(ClO3)2 254.52 3.152 120 d : O2 167 g/100 mL20 aq chloride SrCl2 158.53 3.052 874 1250 52.9 g/100 mL20 aq chromate(VI) SrCrO4 203.61 3.89 d 0.1220 aq; s HCl fluoride SrF2 125.62 4.24 1477 2460 0.01120 aq; s hot HCl hydrogen phosphate SrHPO4 183.60 3.544 i aq; s acids hydroxide Sr(OH)2 121.64 3.625 535 H2O, 744 0.820 aq iodate Sr(IO2)2 437.43 5.04515 0.0315 aq iodide SrI2 341.43 4.42 402 1773 d 178 g/100 mL20 aq; s alc lactate 3-water Sr(OOCCHOHCH3)2 · 3H2O 319.81 anhyd 150 33 g/100 mL aq nitrate Sr(NO3)2 211.63 2.99 570 645 69.5 g/100 mL20 aq; sl s alc, acet oxide SrO 103.62 4.7 2430 0.6920 aq perchlorate Sr(ClO4)2 286.52 3.0025 g/100 mL25: 157 aq, 71 BuOH, 77 EtOAc, 90 acet peroxide SrO2 119.62 4.78 215 d 0.01820 aq; d hot aq sulfate SrSO4 183.68 3.96 1607 0.01320 aq; sl s acid sulfide SrS 119.69 3.70 2227 sl s aq; s acid (dec) Sulfinyl bromide (Thionyl) SOBr2 207.87 20 2.6884 52 140 hyd aq (slow); misc bz, chl, CCl4 chloride SOCl2 118.97 1.638 104.5 76 hyd aq; misc bz, chl, CCl4 fluoride SOF2 86.06 3.776 g/L 129.5 43.8 hyd aq; s bz, chl, eth Sulfonyl chloride (Sulfuryl) SO2Cl2 134.97 20 1.66744 54.1 69.3 hyd aq; misc bz, eth, HOAc diamide SO2(NH2)2 96.11 1.807 93 d 250 s aq, hot EtOH, acet fluoride SO2F2 102.06 4.478 g/L 135.8 55.38 mL gas/100 mL: 4 aq, 24 alc, 136 CCl4, 210 toluene Sulfur (gamma) S 32.066 1.92 106.8 444.72 23 g/100 mL0 CS2; s alc, bz (alpha) orthorhombic S8 256.53 2.0820 tr 94.5 to beta form 444.6 i aq; s organic solvents (beta) monoclinic tr slowly to rhombic S8 256.53 1.96 115.21 444.6 23 g/100 mL0 CS ; s alc, bz 3.53 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Sulfur (continued) (di-) decafluoride S2F10 254.11 2.08 52.7 30 d fusion with KOH (di-) dichloride ClSSCl 135.04 1.688 77 137 hyd aq; s alc, bz, eth, CS2, CCl4 dichloride SCl2 102.97 1.622 122 59.5 hyd aq dioxide SO2 64.07 2.811 g/L 75.47 10 mL/100 mL: 393720 aq, 25 alc, 32 MeOH; s chl, eth hexafluoride SF6 146.06 6.409 g/L 50.8 subl 63.8 sl s aq; s alc, KOH tetrafluoride SF4 108.06 4.742 g/L 121.0 38 d aq viol; v s bz trioxide (alpha) SO3 80.06 62.3 vp 73mm at 25 stable modification (beta) SO3 80.06 32.5 vp 344mm at 25 (gamma) SO3 80.06 1.92 16.8 44.8 v s aq (slow) Sulfuryl, see Sulfonyl Tantalum Ta 180.9479 16.69 2996 5429 s HF, fused alkali (slowly) (V) bromide TaBr5 580.47 4.99 265 349 hyd aq; s abs alc, eth carbide TaC 192.96 14.3 3880 4780 sl s HF (di-) carbide Ta2C 373.91 15.1 3327 (V) chloride TaCl5 358.21 3.68 216 239.3 hyd aq; s abs alc diboride TaB2 202.57 11.2 3140 (V) fluoride TaF5 275.94 4.7420 96.8 229.5 s aq, eth, conc HNO3 (V) iodide TaI 815.47 5.80 496 543 hyd aq; s eth nitride TaN 194.95 13.7 3090 sl s aq reg; reacts alkalis (V) oxide Ta2O5 441.89 8.2 1785 s HF; d fused KHSO4 or KOH Technetium-98 Tc 97.9072 11 2157 4265 s HNO3, aq reg, conc H2SO4 (VI) fluoride TcF6 212.91 3.0 37.4 55.3 s HCl (IV) oxide TcO2 130.91 6.9 subl 1000 s acid, alkali (VII) oxide Tc2O7 309.81 119.5 310.6 s aq Tellurium Te 127.60 6.24 449.8 989.9 s HNO3, KOH, conc H2SO4 (IV) bromide TeBr 447.22 4.3 380 20 d s HBr, eth, HOAc (II) chloride TeCl2 198.51 6.9 208 328 disprop with eth, diox; s acid (IV) chloride TeCl4 269.41 3.0 225 380 hyd aq; s HCl, abs alc, bz (IV) fluoride TeF4 203.59 129 d 195 d aq (VI) fluoride TeF6 241.59 10.601 g/L 37.68 subl 38.9 hyd aq, KOH 3.54 (IV) iodide TeI4 635.22 5.05 280 hyd aq; s HI, alkali; sl s acet (IV) oxide TeO2 159.60 5.9 733 1245 s HCl, HF, NaOH Terbium Tb 158.9254 8.23 1356 3230 s acids chloride TbCl3 265.28 4.35 588 1550 v s aq nitrate 6-water Tb(NO3)3 · 6H2O 453.03 89.3 s aq Thallium Tl 204.383 11.85 303.5 1457 i aq; s HNO3 (I) bromide TlBr 284.29 7.5 460 820 0.0520 aq; s alc (I) carbonate Tl2CO3 468.78 7.11 272 4.1 g/100 mL20 aq; i alc (I) chloride TlCl 239.84 7.00 430 720 0.3320 aq; i alc (I) cyanide TlCN 230.40 6.523 d 16.8 g/100 mL28 aq; s alc, acid (I) ethoxide TlOC2H5 249.44 3.49 3 d 130 s eth; sl s alc; d aq (I) fluoride TlF 223.38 8.36 326 826 78.6%15 aq (III) fluoride TlF3 261.38 8.65 550 d d aq (I) iodide (rhombic) TlI 331.29 7.1 442 823 i aq, alc; s KI (I) nitrate TlNO3 266.39 5.55 206 d 450 9.55 g/100 mL20 aq; i alc (I) oxide Tl2O 424.77 9.52 579 1080 v s aq; s acid, alc (III) oxide (hexagonal) Tl2O3 456.77 10.2 834 O2, 875 i aq; d by HCl, H2SO4 (I) selenate(VI) Tl2SeO4 551.73 6.875 400 2.8 g/100 mL20 aq; i alc, eth (I) selenide Tl2Se 487.73 9.05 340 i aq, acid (I) sulfate Tl2SO4 504.83 6.77 632 d 4.87 g/100 mL20 aq (I) sulfide Tl2S 440.83 8.39 448 1367 0.0220 aq; s mineral acids Thiocarbonyl chloride S"CCl 114.98 1.50915 73.5 d aq; s eth Thiocyanogen (SCN)2 116.16 ca. 2 d aq; s alc, CS2, eth Thionyl, see Sulfinyl Thiophosphoryl tribromide PSBr3 302.78 2.8517 38.0 209 d s aq, eth, CS2 trichloride (alpha) PSCl3 169.41 1.635 40.8 125 hyd aq; s bz, chl, CS2 trifluoride PSF3 120.03 148.8 52.2 Thiosulfinyl difluoride S"SF2 102.13 165 10.6 hyd aq Thorium Th 232.038 11.7 1750 4788 s acids chloride ThCl4 373.85 4.59 770 921 s aq, alc fluoride ThF4 308.03 6.1 1110 1680 s acids iodide ThI4 739.66 6.00 570 837 hyd aq nitrate Th(NO3)4 400.06 d 630, ThO2 191 g/100 mL20 aq; v s alc oxide ThO2 264.04 10.0 3390 4400 s hot H2SO4 sulfate 9-water Th(SO4)2 · 9H2O 586.30 2.77 anhyd 400 1.57 g/100 mL25 aq Thullium Tm 168.9342 9.32 1545 1950 s acids chloride TmCl3 275.29 824 1490 s aq, alc fluoride TmF3 225.93 7.971 1158 2230 s H2SO4 3.55 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Tin (white) Sn 118.710 7.265 231.928 2602 s conc HCl, hot H2SO4 (II) acetate Sn(C2H3O2)2 236.80 2.31 182.5 240 d aq; s dilute HCl (II) bromide SnBr2 278.52 5.12 215 639 85 g/100 mL0 aq; s alc, eth (IV) bromide SnBr4 438.33 3.34 31 205 v a (hyd) aq; s acet, alc (II) chloride SnCl2 189.61 3.90 246.9 623 84 g/100 mL0 aq; s acet, alc, eth (IV) chloride SnCl4 260.52 2.234 3.3 114.1 s aq (hyd), alc, acet, bz, eth (II) fluoride SnF2 156.71 4.57 213 850 30% aq (IV) fluoride SnF4 194.70 4.78 subl 705 hyd aq hexafluorozirconate Sn[ZrF6] 323.92 4.21 s aq (II) iodide SnI2 372.52 5.285 320 714 0.9820 aq (d); s bz, chl, alk Cl or I (IV) iodide SnI4 626.33 4.46 143 364 hyd aq; s alc, bz, chl, eth, CCl4, CS2 (II) oxalate SnC2O4 206.73 3.56 280 d s dilute HCl (II) oxide SnO 134.71 6.45 to SnO2, 300 s acids, conc KOH (IV) oxide SnO2 150.71 6.95 1630 s hot conc KOH (slow) (II) selenide SnSe 197.67 6.179 861 s aqua regia, alkali sulfides (II) sulfate SnSO4 214.77 4.15 to SnO2, 378 18.9 g/100 mL20 aq; s dilute H2SO4 (II) sulfide SnS 150.78 5.08 880 1210 s conc HCl, hot conc H2SO4 (IV) sulfide SnS2 182.84 4.5 d 600 s aq reg, alkali hydroxides & sul-fides (II) telluride SnTe 246.31 6.5 790 i aq Titanium (hexagonal) Ti 47.867 4.506 1668 3287 s hot acid, HF (III) bromide TiBr3 287.58 4.24 subl 794 (IV) bromide TiBr4 367.48 3.37 39 230 hyd aq; 187 g/100 mL abs alc (II) chloride TiCl2 118.77 3.13 1035 1500 d aq; s alc (III) chloride TiCl3 154.23 2.64 425 d s aq (heat evolved), alc (IV) chloride TiCl4 189.68 1.73 25 136.4 s cold aq, alc dihydride TiH2 49.88 3.752 d 450 (IV) fluoride TiF4 123.86 2.798 400 subl 285.5 s aq (slow hyd); s alc, pyr (IV) iodide TiI4 555.49 4.3 150 377 s dry nonpolar solvents (IV) isopropoxide Ti[OCH(CH3)2]4 284.22 20 0.97114 20 220 d aq; s bz, chl, eth (II) oxide TiO 63.87 4.95 1750 3660 s H2SO4 3.56 (III) oxide Ti2O3 143.73 4.486 1842 s H2SO4, hot HF (IV) oxide (rutile) TiO2 79.87 4.23 1843 s HF, hot conc H2SO4 oxide sulfate TiOSO4 159.94 d aq (III) sulfate Ti2(SO4)3 383.93 s dilute HCl, dilute H2SO4 Tungsten W 183.84 19.25 3387 5900 s HNO3 HF, fusion NaOH NaNO3 (V) bromide WBr5 583.36 286 333 hyd aq; s chl, eth (VI) bromide WBr6 663.26 6.9 309 subl 327 hyd aq; s eth CS2 (V) chloride WCl5 361.10 3.875 242 286 hyd aq (VI) chloride WCl6 396.56 3.52 279 347 hyd aq; s CS2, CCl4 dichloride dioxide WCl2O2 286.74 4.67 265 d 369 hyd aq; s HCl (VI) fluoride WF6 297.83 3.441 2.3 17.5 hyd aq; s anhyd HF (IV) oxide WO2 215.84 10.8 1550 d 1724 s acids, KOH (VI) oxide WO3 231.84 7.16 1472 1837 i aq; s hot alkali (IV) sulfide WS2 247.97 7.6 d 1250 s HNO3 HF tetrachloride oxide WCl4O 341.65 11.92 211 227 hyd aq tetrafluoride oxide WF4O 275.83 5.07 106 186 Uranium U 238.0289 19.1 1135 4131 s acid (IV) bromide UBr4 557.65 5.55 519 777 v s aq (III) chloride UCl3 344.39 5.51 837 1657 v s aq (IV) chloride UCl4 379.84 4.725 590 790 v s aq (d); s polar org solvents (V) chloride UCl5 415.29 287 527 d aq; s CS2 (VI) chloride UCl6 450.75 3.6 177 392 hyd aq; s chl (IV) fluoride UF4 314.02 6.70 1036 1417 s conc acids (d); alk (d) (VI) fluoride UF6 352.02 5.09 64.0 subl 56.5 hyd aq; s chl, CCl4 (III) hydride UH3 241.05 11.1 i aq (IV) iodide UI4 745.65 5.6 506 757 s aq (IV) oxide (pitchblende) UO2 270.03 10.97 2827 s conc HNO3 (VI) oxide UO3 286.03 7.29 d 1300 i aq; s HCl, HNO3 octaoxide [(V,VI) oxide] U3O8 842.08 8.38 d 1300 to UO2 s HNO3 peroxide 2-water UO4·2H2O 338.06 d 90–195 to U2O7 (slow) d 200 to UO2 d by HCl Uranyl(VI) acetate 2-water UO2(C2H3O2)2 · 2H2O 422.13 2.893 anhyd 110 d 275 7.7 g/100 mL15 aq; sl s alc chloride UO2Cl2 340.93 5.43 577 320 g/100 mL18 aq; s acet, alc fluoride UO2F2 308.03 6.37 d 300 v s aq nitrate 6-water UO2(NO3)2 · 6H2O 502.13 2.807 60 d 118 155 g/100 mL20 aq; v s alc, eth sulfate 3-water UO2SO4 · 3H2O 420.14 3.28 d 100 g/100 mL: 21 aq, 4 alc 3.57 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Vanadium V 50.9415 6.1119 1917 3421 s HF, HNO3, hot H2SO4, aq reg (IV) chloride VCl4 192.75 1.82 25.7 148 hyd aq; s nonpolar solvents dichloride oxide VCl2O 137.86 2.88 disprop 384 hyd (slow) aq; s abs alc, HOAc (III) fluoride VF3 107.94 3.363 1400 subl 800 i almost all organic solvents (IV) fluoride VF4 126.94 3.15 subl 120 (vac) & disprop s aq, acet, HOAc (V) fluoride VF5 145.93 2.50 19.5 48 hyd aq; v s anhyd HF, acet, alc (II) oxide VO 66.94 5.76 1790 s HCl (III) oxide V2O3 149.88 4.87 1940 sl s acids (IV) oxide VO2 82.94 4.34 1967 s acids, alkalis (V) oxide V2O5 181.88 3.35 670 d 1800 0.07 aq; s conc acids, alkalis (IV) oxide sulfate VOSO4 163.00 s aq (III) sulfate V2(SO4)3 390.07 410 (vac) s (slow) aq, HNO3 (III) sulfide V2S3 198.08 4.72 d 600 s hot acids, alkali sulfides Xenon Xe 131.29 5.761 g/L 111.8 108.04 10.8 mL/100 mL20 aq difluoride XeF 169.29 4.32 129.0 subl 114.3 2.5 g/100 mL0 aq hexafluoride XeF6 245.28 3.56 49.5 75.6 hyd aq tetrafluoride XeF4 207.28 4.04 117.1 subl 115.7 hyd aq; s F3CCOOH trioxide XeO3 179.29 4.55 explodes 25 s aq giving xenic acid Ytterbium Yb 173.04 6.90 819 1196 s acids (II) chloride YbCl2 243.95 5.27 721 1930 s aq (III) chloride 6-water YbCl3 · 6H2O 387.49 2.57 anhyd 180 mp: 865 v s aq (III) fluoride YbF3 230.04 8.17 1157 2230 s H2SO4 (III) nitrate 4-water Yb(NO3)3 · 4H2O 431.12 s aq (III) oxide Yb2O3 394.08 9.18 2435 s dilute acids (III) sulfate 8-water Yb2(SO4)3 · 8H2O 778.39 3.3 34.8 g/100 mL20 aq Yttrium Y 88.9059 4.472 1522 3345 s hot water (d) chloride YCl3 195.26 2.61 721 1510 79 g/100 mL20 aq; s alc fluoride YF3 145.90 4.0 1152 2230 s conc acids (d) 3.58 nitrate 6-water Y(NO3)3 · 6H2O 383.01 2.68 3H2O, 100 171 g/100 mL20 aq oxide Y2O3 225.81 5.03 2440 4300 s acids sulfate 8-water Y2(SO4)3 · 8H2O 610.12 2.56 anhyd 400 d 1000 9.6 g/100 mL20 aq Zinc Zn 65.39 7.14 419.527 907 i aq; s acids, alkalis (slow) acetate dihydrate Zn(C2H3O2)2 · 2H2O 219.51 1.735 237 d g/100 mL: 41.620 aq, 3.3 alc arsenate(III)(1) Zn(AsO2)2 279.23 s acids arsenate(V)(3) 8-water Zn3(AsO4)2 · 8H2O 618.13 3.33 s acids and alkalis bromide ZnBr2 225.20 4.5 394 697 g/100 mL: 47125 aq, 200 alc; s KOH, eth carbonate ZnCO3 125.40 4.4 CO2, 300 0.0225 aq; s acids, KOH, NH4 salts chloride ZnCl2 136.29 2.907 290 732 g/100 ml: 39520 aq, 77 alc, 50 glyc; v s acet chromate(VI) ZnCrO4 181.39 3.40 s acids cyanide Zn(CN)2 117.43 1.852 d 800 0.05818 aq; s acids, KCN, KOH fluoride ZnF2 103.39 4.9 872 1500 s HNO3, HCl, NH4OH hexafluorosilicate 6-water Zn[SiF6] · 6H2O 315.56 2.104 d 100 v s aq iodate Zn(IO3)2 415.20 5.063 d 0.8720 aq; s HNO3, KOH iodide ZnI2 319.20 4.74 446 625 d g/100 mL: 33220 aq, 50 glyc; v s alc nitrate 6-water Zn(NO3)2 · 6H2O 297.49 2.067 6H2O, 131 146 g/100 mL0 aq; v s alc oxide ZnO 81.39 5.60 1975 i aq; s acids, KOH, NH4OH peroxide ZnO2 97.39 1.57 d 150 explodes 212 d (slow) aq; s dilute acids (d) 1,4-phenolsulfonate 8-water Zn[C6H4(OH)SO3]2 · 8H2O 555.84 anhyd 120 g/100 mL: 63 aq, 56 alc phosphate(V) Zn3(PO4)2 386.11 3.998 900 s acids, NH4OH phosphide Zn3P2 258.12 4.55 420 1100 d aq, HCl (viol); s bz, CS2 propionate Zn(C3H5O2)2 211.53 32%15 aq; 2.8%15 alc selenide ZnSe 144.35 5.65 1100 d dilute HNO3 silicate(2) Zn2SiO4 222.86 4.10 1512 i aq or dilute acids stearate Zn(C18H35O2)2 632.34 1.095 130 d dil acids; s bz; i aq, alc, eth sulfate ZnSO4 161.45 3.8 680 d 53.8%20 aq sulfate 7-water ZnSO4 · 7H2O 287.56 1.97 anhyd 280 d 500 g/100 mL: 167 aq, 40 glyc; i alc sulfide (wirzite) ZnS 97.46 4.09 1722 i aq; s dilute mineral acids telluride ZnTe 192.99 6.34 1239 d (slow) aq or dilute HCl thiocyanate Zn(SCN)2 181.56 0.14 aq; s alc 3.59 TABLE 3.2 Physical Constants of Inorganic Compounds (Continued) Name Formula Formula weight Density Melting point, C Boiling point, C Solubility in 100 parts solvent Zirconium Zr 91.224 6.52 1852 3577 s aq reg, HF, hot H3PO4, fusion with KOH KNO3 (IV) bromide ZrBr4 410.84 3.98 450 subl 357 carbide ZrC 103.23 6.73 3532 5100 sl s conc H2SO4 (II) chloride ZrCl2 162.13 3.6 727 1292 d aq (IV) chloride ZrCl4 233.03 2.80 437 (25 atm) subl 334 hyd aq to ZrCl2O; s alc, eth diboride ZrB2 112.85 6.17 3245 d 4193 dichloride oxide 8-water ZrCl2O · 8H2O 322.25 1.91 anhyd 210 d 410 v s aq, alc dihydride ZrH2 93.24 5.61 i aq (IV) fluoride ZrF4 167.22 4.436 932tp subl 912 1.32 g/100 mL20 aq (IV) hydroxide Zr(OH)4 159.25 3.25 to ZrO2, 500 s mineral acids (IV) iodide ZrI4 598.84 499 (sealed tube) subl 432.5 s aq (d), eth (IV) nitrate 5-water Zr(NO3)4 · 5H2O 429.32 d 100 v s aq; s alc (IV) oxide ZrO2 123.22 5.68 2678 4300 s hot H2SO4, HF (slow) (IV) silicate(4) ZrSiO4 183.31 4.56 d 1540 to ZrO2 SiO2 unaffected by aqueous reagents sulfate 4-water Zr(SO4)2 · 4H2O 355.41 2.80 anhyd 380 52.5 g/100 g aqueous solution 3.60 INORGANIC CHEMISTRY 3.61 TABLE 3.3 Synonyms and Mineral Names Acanthite, see Silver sulfide Alabandite, see Manganese sulfide Alamosite, see Lead(II) silicate(2) Altaite, see Lead telluride Alumina, see Aluminum oxide Alundum, see Aluminum oxide Alunogenite, see Aluminum sulfate 18-water Amphibole, see Magnesium silicate(2) Andalusite, see Aluminum silicon oxide (l/1) Anglesite, see Lead sulfate Anhydrite, see Calcium sulfate Anhydrone, see Magnesium perchlorate Aragonite, see Calcium carbonate Arcanite, see Potassium sulfate Argentite, see Silver sulfide Argol, see Potassium hydrogen tartrate Arkansite, see Titanium(IV) oxide Arsenolite, see Arsenic(III) oxide dimer Arsine, see Arsenic hydride Auric and aurous, see under Gold Azoimide, see Hydrogen azide Azurite, see Copper(II) carbonate—dihydroxide (2/1) Baddeleyite, see Zirconium(IV) oxide Baking soda, see Sodium hydrogen carbonate Barite (barytes), see Barium sulfate Bieberite, see Cobalt sulfate 7-water Bismuthine, see Bismuth hydride Bismuthinite, see Bismuth sulfide Bleaching powder, see Calcium hydrochlorite Bleaching solution, see Sodium hydrochlorite Blue copperas, see Copper(II) sulfate 7-water Boracic acid, see Hydrogen borate Borax, see Sodium tetraborate 10-water Braunite, see Manganese(III) oxide Brimstone, see Sulfur Bromellite, see Beryllium oxide Bromosulfonic acid, see Hydrogen bromosulfate Bromyrite, see Silver bromide Brookite, see Titanium(IV) oxide Brucite, see Magnesium hydroxide Bunsenite, see Nickel oxide Cacodylate, see Sodium dimethylarsonate 3-water Caesium, see under Cesium Calamine, see Zinc carbonate Calcia, see Calcium oxide Calcite, see Calcium carbonate Calomel, see Mercury(I) chloride Caro’s acid, see Hydrogen peroxosulfate Cassiopeium, see Lutetium Cassiterite, see Tin(IV) oxide Caustic potash, see Potassium hydroxide Caustic soda, see Sodium hydroxide Celestite, see Strontium sulfate Cementite, see tri-Iron carbide Cerargyrite, see Silver chloride Cerussite, see Lead carbonate Chalcanthite, see Copper(II) sulfate 5-water Chalcocite, see Copper(I) sulfide Chalk, see Calcium carbonate Chile nitre, see Sodium nitrate Chile saltpeter, see Sodium nitrate Chloromagnesite, see Magnesium chloride Chlorosulfonic acid, see Hydrogen chlorosulfate Cinnabar, see Mercury(II) sulfide Claudetite, see Arsenic(III) oxide dimer Clausthalite, see Lead selenide Clinoenstatite, see Magnesium silicate(2) Columbium, see under Niobium Corrosive sublimate, see Mercury(II) chloride Corundum, see Aluminum oxide Cotunite, see Lead chloride Covellite, see Copper(II) sulfide Cream of tartar, see Potassium hydrogen tartrate Crocoite, see Lead chromate(VI)(2) Cryolite, see Sodium hexafluoroaluminate Cryptohalite, see Ammonium hexafluorosilicate Cupric and cuprous, see under Copper Cuprite, see Copper(I) oxide Dakin’s solution, see Sodium hypochlorite Dehydrite, see Magnesium perchlorate Dental gas, see Nitrogen(I) oxide Diamond, see Carbon Dichlorodisulfane, see di-Sulfur dichloride Diuretic salt, see Potassium acetate Dolomite, see Calcium magnesium carbonate (1/1) Dry ice, see Carbon dioxide (solid) Enstatite, see Magnesium silicate(2) Epsom salts, see Magnesium sulfate 7-water Epsomite, see Magnesium sulfate 7-water Eriochalcite, see Copper(II) chloride Fayalite, see Iron(II) silicate(4) Ferric and ferrous, see under Iron Fluorine oxide, see Oxygen difluoride Fluoristan, see Tin(II) fluoride Fluorite, see Calcium fluoride Fluorosulfonic acid, see Hydrogen fluorosulfate Fluorspar, see Calcium fluoride Forsterite, see Magnesium silicate(4) Freezing salt, see Sodium chloride Fulminating mercury, see Mercury fulminate Galena, see Lead sulfite Glauber’s salt, see Sodium sulfate 10-water Goethite, see Iron(II) hydroxide oxide Goslarite, see Zinc sulfate 7-water Graham’s salt, see Sodium phosphate(1) Graphite, see Carbon 3.62 SECTION 3 TABLE 3.3 Synonyms and Mineral Names (Continued) Greenockite, see Cadmium sulfide Gruenerite, see Iron(II) silicate(2) Guanajuatite, see Bismuth selenide Gypsum, see Calcium sulfate 2-water Halite, see Sodium chloride Hausmannite, see Manganese(II,IV) oxide Heavy hydrogen, see Hydrogen[2H] or name fol-lowed by -d Heavy water, see Hydrogen[2H] oxide Heazlewoodite, see tri-Nickel disulfide Hematite, see Iron(III) oxide Hermannite, see Manganese silicate Hessite, see Silver telluride Hieratite, see Potassium hexafluorosilicate Hydroazoic acid, see Hydrogen azide Hydrophilite, see Calcium chloride Hydrosulfite, see Sodium dithionate(III) Hypo (photographic), see Sodium thiosulfate 5-water Hypophosphite, see under Phosphinate Ice, see Hydrogen oxide (solid) Iceland spar, see Calcium carbonate Iodyrite, see Silver iodide Jeweler’s borax, see Sodium tetraborate 10-water Jeweler’s rouge, see Iron(III) oxide Kalinite, see Aluminum potassium bis(sulfate) Kernite, see Sodium tetraborate Kyanite, see Aluminum silicon oxide (1/1) Laughing gas, see Nitrogen(I) oxide Lautarite, see Calcium iodate Lawrencite, see Iron(II) chloride Lechatelierite, see Silicon dioxide Lime, see Calcium oxide Litharge, see Lead(II) oxide Lithium aluminum hydride, see Lithium tetrahydri-doaluminate Lodestone, see Iron(II,III) oxide Lunar caustic, see Silver nitrate Lye, see Sodium hydroxide Magnesia, see Magnesium oxide Magnesite, see Magnesium carbonate Magnetite, see Iron(II,III) oxide Malachite, see Copper carbonate dihydroxide Manganosite, see Manganese(II) oxide Marcasite, see Iron disulfide Marshite, see Copper(I) iodide Mascagnite, see Ammonium sulfate Massicotite, see Lead oxide Mercuric and mercurous, see under Mercury Metacinnabar, see Mercury(II) sulfide Millerite, see Nickel sulfide Mirabilite, see Sodium sulfate Mohr’s salt, see Ammonium iron(II) sulfate 6-water Moissanite, see Silicon carbide Molybdenite, see Molybdenum disulfide Molybdite, see Molybdenum(VI) oxide Molysite, see Iron(III) chloride Montroydite, see Mercury(II) oxide Morenosite, see Nickel sulfate 7-water Mosaic gold, see Tin disulfide Muriatic acid, see Hydrogen chloride, aqueous solu-tions Nantokite, see Copper(I) chloride Natron, see Sodium carbonate Naumannite, see Silver selenide Neutral verdigris, see Copper(II) acetate Nitre (niter), see Potassium nitrate Nitric oxide, see Nitrogen(II) oxide Nitrobarite, see Barium nitrate Nitromagnesite, see Magnesium nitrate 6-water Nitroprusside, see Sodium pentacyanonitrosylfer-rate(II) 2-water Oldhamite, see Calcium sulfide Opal, see Silicon dioxide Orpiment, see Arsenic trisulfide Oxygen powder, see Sodium peroxide Paris green, see Copper acetate arsenate(III) (1/3) Pawellite, see Calcium molybdate(VI)(2) Pearl ash, see Potassium carbonate Perborax, see Sodium peroxoborate Periclase, see Magnesium oxide Persulfate, see Peroxodisulfate Phosgene, see Carbonyl chloride Phosphine, see Hydrogen phosphide Pickling acid, see Hydrogen sulfate Pitchblende, see Uranium(IV) oxide Plaster of Paris, see Calcium sulfate hemihydrate Plattnerite, see Lead(IV) oxide Polianite, see Manganese(IV) oxide Polishing powder, see Silicon dioxide Potash, see Potassium carbonate Potassium acid phthalate, see Potassium hydrogen phthalate Prussic acid, see Hydrogen cyanide Pyrite, see Iron disulfide Pyrochroite, see Manganese(II) hydroxide Pyrohytpophosphite, see diphosphate(IV) Pyrolusite, see Manganese(IV) oxide Pyrophanite, see Manganese titanate(IV)(2) Pyrophosphate, see Diphosphate(V) Pyrosulfuric acid, see Hydrogen disulfate Quartz, see Silicon dioxide Quicksilver, see Mercury Realgar, see di-Arsenic disulfide Red lead, see Lead(II,IV) oxide Rhodochrosite, see Manganese carbonate INORGANIC CHEMISTRY 3.63 TABLE 3.3 Synonyms and Mineral Names (Continued) Rhodonite, see Manganese silicate(1) Rochelle salt, see Potassium sodium tartrate 4-water Rock crystal, see Silicon dioxide Rutile, see Titanium(IV) oxide Sal soda, see Sodium carbonate 10-water Saltpeter, see Potassium nitrate Scacchite, see Manganese chloride Scheelite, see Calcium tungstate(VI)(2) Sellaite, see Magnesium fluoride Senarmontite, see Antimony(III) oxide Siderite, see Iron(II) carbonate Siderotil, see Iron(II) sulfate 5-water Silica, see Silicon dioxide Silicotungstic acid, see Silicon oxide—tungsten oxide—water (l/12/26) Sillimanite, see Aluminum silicon oxide (l/1) Smithsonite, see Zinc carbonate Soda ash, see Sodium carbonate Spelter, see Zinc metal Sphalerite, see Zinc sulfide Spherocobaltite, see Cobalt(II) carbonate Spinel, see Magnesium aluminate(2) Stannic and stannous, see under Tin Stibine, see Antimony hydride Stibnite, see Antimony(III) sulfide Stolzite, see Lead tungstate(VI)(2) Strengite, see Iron(III) phosphate Strontianite, see Strontium carbonate Sugar of lead, see Lead acetate Sulfamate, see Amidosulfate Sulphate, see Sulfate Sulfurated lime, see Calcium sulfide Sulfuretted hydrogen, see Hydrogen sulfide Sulphur, see Sulfur Sulfuryl, see Sulfonyl Sycoporite, see Cobalt sulfide Sylvite, see Potassium chloride Szmikite, see Manganese(II) sulfate hydrate Tarapacaite, see Potassium chromate(VI) Tellurite, see Tellurium dioxide Tenorite, see Copper(II) oxide Tephroite, see Manganese silicate(1) Thenardite, see Sodium sulfate Thionyl, see Sulfinyl Thorianite, see Thorium dioxide Topaz, see Aluminum hexafluorosilicate Tridymite, see Silicon dioxide Troilite, see Iron(II) sulfide Trona, see Sodium carbonate—hydrogen carbonate dihydrate Tschermigite, see Aluminum ammonium bis(sulfate) Tungstenite, see Tungsten disulfide Tungstite, see Hydrogen tungstate Uraninite, see Uranium(IV) oxide Valentinite, see Antimony(III) oxide Verdigris, see Copper acetate hydrate Vermillion, see Mercury(II) sulfide Villiaumite, see Sodium fluoride Vitamin B3, see Calcium ()pantothenate Washing soda, see Sodium carbonate 10-water Whitlockite, see Calcium phosphate Willemite, see Zinc silicate(4) Wolfram, see Tungsten Wuestite, see Iron(II) oxide Wulfenite, see Lead molybdate(VI)(2) Wurtzite, see Zinc sulfide Zincite, see Zinc oxide Zincosite, see Zinc sulfate Zincspar, see Zinc carbonate Zirconia, see Zirconium oxide SECTION 4 PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.1 ELEMENTS 4.1 Table 4.1 Electronic Configuration and Properties of the Elements 4.2 4.2 IONIZATION ENERGY 4.6 Table 4.2 Ionization Energy of the Elements 4.6 Table 4.3 Ionization Energy of Molecular and Radical Species 4.8 4.3 ELECTRON AFFINITY 4.24 Table 4.4 Electron Affinities of Elements, Molecules, and Radicals 4.24 4.4 ELECTRONEGATIVITY 4.28 Table 4.5 Electronegativities of the Elements 4.29 4.5 BOND LENGTHS AND STRENGTHS 4.29 4.5.1 Atom Radius 4.29 Table 4.6 Atom Radii and Effective Ionic Radii of Elements 4.30 4.5.2 Ionic Radii 4.34 4.5.3 Covalent Radii 4.35 Table 4.7 Covalent Radii for Atoms 4.35 Table 4.8 Octahedral Covalent Radii for CN 6 4.36 Table 4.9 Bond Lengths between Carbon and Other Elements 4.36 Table 4.10 Bond Lengths between Elements Other than Carbon 4.39 Table 4.11 Bond Dissociation Energies 4.41 4.6 BOND AND GROUP DIPOLE MOMENTS 4.53 Table 4.12 Bond Dipole Moments 4.53 Table 4.13 Group Dipole Moments 4.54 4.7 MOLECULAR GEOMETRY 4.56 Table 4.14 Spatial Orientation of Common Hybrid Bonds 4.56 Figure 4.1 Crystal Lattice Types 4.57 Table 4.15 Crystal Structure 4.58 4.8 NUCLIDES 4.58 Table 4.16 Table of Nuclides 4.58 4.9 WORK FUNCTION 4.80 Table 4.17 Work Functions of the Elements 4.80 4.10 RELATIVE ABUNDANCES OF NATURALLY OCCURRING ISOTOPES 4.81 Table 4.18 Relative Abundances of Naturally Occurring Isotopes 4.81 4.1 ELEMENTS The electronic configuration for an element’s ground state (Table 4.1) is a shorthand representation giving the number of electrons (superscript) found in each of the allowed sublevels (s, p, d, f) above a noble gas core (indicated by brackets). In addition, values for the thermal conductivity, the electrical resistance, and the coefficient of linear thermal expansion are included.
4.1 TABLE 4.1 Electronic Configuration and Properties of the Elements Name Symbol Atomic number Electronic configuration Thermal conductivity, W·(m·K)1 at 25C Electrical resistivity, ·cm at 20C Coefficient of linear thermal expansion (25C), m·m1( 106) Actinium Ac 89 [Rn] 6d2 7s 12 Aluminum Al 13 [Ne] 3s2 3p 237 2.6548 23.1 Americium Am 95 [Rn] 5f 7 7s2 10 Antimony (stibium) Sb 51 [Kr] 4d10 5s2 5p3 24.4 41.7 11.0 Argon Ar 18 [Ne] 3s2 3p6 0.017 72 Arsenic As 33 [Ar] 3d10 4s2 4p3 50.2 33.3 Astatine At 85 [Xe] 4f 14 5d10 6s2 6p5 1.7 Barium Ba 56 [Xe] 6s2 18.4 33.2 20.6 Berkelium Bk 97 [Rn] 5f 8 6d 7s2 10 Beryllium Be 4 [He] 2s2 200 3.56 11.3 Bismuth Bi 83 [Xe] 4f14 5d10 6s2 6p3 7.97 129 13.4 Boron B 5 [He] 2s2 2p 27.4 1.5 1012 5–7 Bromine Br 35 [Ar] 3d10 4s2 4p5 0.122 7.8 1018 Cadmium Cd 48 [Kr] 4d10 5s2 96.6 7.27 (22C) 30.8 Calcium Ca 20 [Ar] 4s2 201 3.36 22.3 Californium Cf 98 [Rn] 5f 10 7s2 Carbon (amorphous) (diamond) (graphite) C 6 [He] 2s2 2p2 1.59 900–2320 119–165 0.8 1375 Cerium Ce 58 [Xe] 4f 5d 6s2 11.3 82.8 (, hex) 6.3 Cesium Cs 55 [Xe] 6s 35.9 20.5 Chlorine Cl 17 [Ne] 3s2 3p5 0.0089 109 Chromium Cr 24 [Ar] 3d5 4s 93.9 12.5 4.9 Cobalt Co 27 [Ar] 3d7 4s2 100 6.24 13.0 Copper (cuprum) Cu 29 [Ar] 3d10 4s 401 1.678 16.5 Curium Cm 96 [Rn] 5f 7 6d 7s2 Dysprosium Dy 66 [Xe] 4f 10 6s2 10.7 92.6 9.9 Einsteinium Es 99 [Rn] 5f 11 7s2 Erbium Er 68 [Xe] 4f 14 6s2 14.5 86.0 12.2 Europium Eu 63 [Xe] 4f 7 6s2 13.9 90.0 35.0 4.2 Fermium Fm 100 [Rn] 5f 12 7s2 Fluorine F 9 [He] 2s2 2p5 0.0277 Francium Fr 87 [Rn] 7s Gadolinium Gd 64 [Xe] 4f 7 5d 6s2 10.5 131 9.4 (100C) Gallium Ga 31 [Ar] 3d10 4s2 4p 29.4(lq) 40.6(c) 25.795 (30C) 120 Germanium Ge 32 [Ar] 3d10 4s2 4p2 60.2 53 000 6.0 Gold (aurum) Au 79 [Xe] 4f 14 5d10 6s 318 2.214 14.2 Hafnium Hf 72 [Xe] 4f 14 5d2 6s2 23.0 33.1 5.9 Helium He 2 1s2 0.1513 Holmium Ho 67 [Xe] 4f 11 6s2 16.2 81.4 11.2 Hydrogen H 1 1s 0.1805 Indium In 49 [Kr] 4d10 5s2 5p 81.8 8.37 32.1 Iodine I 53 [Kr] 4d10 5s2 5p5 449 1.3 1015 (0C) Iridium Ir 77 [Xe] 4f 14 5d7 6s2 147 4.71 6.4 Iron (ferrum) Fe 26 [Ar] 3d6 4s2 80.4 9.61 11.8 Krypton Kr 36 [Ar] 3d10 4s2 4p6 9.43 Lanthanum La 57 [Xe] 5d 6s2 13.4 61.5 12.1 Lawrencium Lr 103 [Rn] 4f 14 6d 7s2 Lead (plumbum) Pb 82 [Xe] 4f 14 5d10 6s2 6p2 35.3 20.8 28.9 Lithium Li 3 1s2 2s 84.8 9.28 46 Lutetium Lu 71 [Xe] 4f 14 5d 6s2 16.4 58.2 9.9 Magnesium Mg 12 [Ne] 3s2 156 4.39 24.8 Manganese Mn 25 [Ar] 3d5 4s2 7.81 144 21.7 Mendelevium Md 101 [Rn] 5f 13 7s2 Mercury (hydrargyrum) Hg 80 [Xe] 4f 14 5d10 6s2 8.30 95.8(lq); 21(c) Molybdenum Mo 42 [Kr] 4d5 5s 138 5.34 4.8 Neodymium Nd 60 [Xe] 4f 4 6s2 16.5 64.3 9.6 Neon Ne 10 1s2 2s2 2p6 0.0491 Neptunium Np 93 [Rn] 5f 4 6d 7s2 6.3 122.0 (22C) Nickel Ni 28 [Ar] 3d8 4s2 90.9 6.93 13.4 Niobium Nb 41 [Kr] 4d4 5s 53.7 15.2 (0C) 7.3 Nitrogen N 7 1s2 2s2 2p3 0.025 83 Nobelium No 102 [Rn] 5f 14 7s2 Osmium Os 76 [Xe] 4f 14 5d6 6s2 87.6 8.12 (0C) 5.1 Oxygen O 8 1s2 2s2 2p4 0.026 58 (g) 0.149 (lq) Palladium Pd 46 [Kr] 4d10 71.8 10.54 11.8 4.3 TABLE 4.1 Electronic Configuration and Properties of the Elements (Continued) Name Symbol Atomic number Electronic configuration Thermal conductivity, W·(m·K)1 at 25C Electrical resistivity, ·cm at 20C Coefficient of linear thermal expansion (25C), m·m1( 106) Phosphorus (white) P 15 [Ne] 3s2 3p3 0.236 17 10 Platinum Pt 78 [Xe] 4f 14 5d9 6s 71.6 10.6 8.8 Plutonium Pu 94 [Rn] 5f 6 7s2 6.74 146.0 (0C) 46.7 Polonium Po 84 [Xe] 4f 14 5d10 6s2 6p4 0.2 40.0 (0C) alpha Potassium (kalium) K 19 [Ar] 4s 102.5 7.2 Praseodymium Pr 59 [Xe] 4f 3 6s2 12.5 70.0 6.7 Promethium Pm 61 [Xe] 4f 5 6s2 17.9 64.0 (25C) est [11.] Protactinium Pa 91 [Rn] 5f 2 6d 7s2 47 19.1 (22C) Radium Ra 88 [Rn] 7s2 18.6 100 Radon Rn 86 [Xe] 4f 14 5d10 6s2 6p6 0.003 61 Rhenium Re 75 [Xe] 5f 14 5d5 6s2 48.0 19.3 6.2 Rhodium Rh 45 [Kr] 4d8 5s 150 4.33 (0C) 8.2 Rubidium Rb 37 [Kr] 5s 58.2 12.8 Ruthenium Ru 44 [Kr] 4d7 5s 117 7.1 (0C) 6.4 Samarium Sm 62 [Xe] 4f 6 6s2 13.3 94.0 12.7 Scandium Sc 21 [Ar] 3d 4s2 15.8 56.2 10.2 Selenium (amorphous) Se 34 [Ar] 3d10 4s2 4p4 0.519 1.2 (0C) 37 Silicon Si 14 [Ne] 3s2 3p2 149 105 4.4 Silver (argentum) Ag 47 [Kr] 4d10 5s 429 1.587 18.9 Sodium (natrium) Na 11 [Ne] 3s 142 4.77 71 Strontium Sr 38 [Kr] 5s2 35.4 13.2 22.5 Sulfur (amorphous) S 16 [Ne] 3s2 3p4 0.205 2 1023 Tantalum Ta 73 [Xe] 4f 14 5d3 6s2 57.5 13.5 6.3 Technetium Tc 43 [Kr] 4d5 5s2 50.6 22.6 (100C) Tellurium Te 52 [Kr] 4d10 5s2 5p4 1.97–3.38 (5.8–33) 103 Terbium Tb 65 [Xe] 4f 9 6s2 11.1 115 10.3 Thallium Tl 78 [Xe] 4f 14 5d10 6s2 6p 46.1 18 29.9 Thorium Th 90 [Rn] 6d2 7s2 54.0 15.4 (22C) 11.1 Thullium Tm 69 [Xe] 4f 13 6s2 16.9 67.6 13.3 Tin (stannum) Sn 50 [Kr] 4d10 5s2 5p2 66.8 11.5 (0C) 22.0 Titanium Ti 22 [Ar] 3d2 4s2 21.9 42.0 8.6 Tungsten (wolframium) W 74 [Xe] 4f 14 5d4 6s2 173 5.28 4.5 Uranium U 92 [Rn] 5f 3 6d 7s2 27.5 28.0 (0C) 13.9 Vanadium V 23 [Ar] 3d3 4s2 30.7 19.7 8.4 Xenon Xe 54 [Kr] 4d10 5s2 5p6 0.005 65 Ytterbium Yb 70 [Xe] 4f 14 6s2 38.5 25 26.3 Yttrium Y 39 [Kr] 4d 5s2 17.2 59.6 10.6 Zinc Zn 30 [Ar] 3d10 4s2 116 5.9 30.2 Zirconium Zr 40 [Kr] 4d2 5s2 22.6 42.1 5.7 Source: Ho, C. Y., Powell, R. W., and Liley, P. E., J. Phys. Chem. Ref. Data 3:Suppl. 1 (1974), (thermal conductivity); Ho, C. Y., et al., J. Phys. Chem. Ref. Data, 12:183 (1983); 13:1069, 1097, 1131 (1984), (electrical resistivity); Touloukian, Y.
S., Thermophysical Properties of Matter, Vol. 12, Thermal Expansion, Plenum, New York, 1975.
4.5 4.6 SECTION 4 4.2 IONIZATION ENERGY TABLE 4.2 Ionization Energy of the Elements The minimum amount of energy required to remove the least strongly bound electron from a gaseous atom (or ion) is called the ionization energy and is expressed in MJ · mol1. Remember that 96.485 kJ 1.000 eV 23.0605 kcal. In Table 4.2 the successive stages of ionization are indicated by the heading of each column: I denotes first spectra arising from a neutral atom; viz., M(gas) : M (gas) e II, second spectra from singly ionized atoms, and so on for successive stages of ionization.
At.
no.
Element Spectrum (in MJ · mol1) I II III IV V VI 1 H 1.312 2 He 2.372 5.251 3 Li 0.520 7.298 11.815 4 Be 0.899 1.757 14.849 21.007 5 B 0.801 2.427 3.660 25.027 32.828 6 C 1.086 2.353 4.620 6.223 37.832 47.191 7 N 1.402 2.856 4.578 7.475 9.445 53.268 8 O 1.314 3.388 5.300 7.469 10.989 13.326 9 F 1.681 3.374 6.147 8.408 11.022 15.164 10 Ne 2.081 3.952 6.122 9.370 12.177 15.238 11 Na 0.496 4.562 6.912 9.543 13.353 16.610 12 Mg 0.738 1.451 7.733 10.540 13.629 17.994 13 Al 0.578 1.817 2.745 11.577 14.831 18.377 14 Si 0.786 1.577 3.231 4.355 16.091 19.784 15 P 1.012 1.903 2.912 4.956 6.274 21.268 16 S 1.000 2.251 3.361 4.564 7.004 8.495 17 Cl 1.251 2.297 3.822 5.158 6.54 9.362 18 Ar 1.521 2.666 3.931 5.771 7.238 8.787 19 K 0.419 3.051 4.411 5.877 7.976 9.649 20 Ca 0.590 1.145 4.912 6.474 8.144 10.496 21 Sc 0.631 1.235 2.389 7.089 8.844 10.719 22 Ti 0.658 1.310 2.652 4.175 9.573 11.516 23 V 0.650 1.414 2.828 4.507 6.299 12.362 24 Cr 0.653 1.592 2.987 4.743 6.70 8.738 25 Mn 0.717 1.509 3.248 4.94 6.99 9.22 26 Fe 0.759 1.561 2.957 5.63 7.24 9.56 27 Co 0.758 1.646 3.232 4.95 7.67 9.84 28 Ni 0.737 1.753 3.393 5.30 7.34 10.4 29 Cu 0.745 1.958 3.555 5.536 7.70 9.9 30 Zn 0.906 1.733 3.833 5.73 7.95 10.4 31 Ga 0.579 1.979 2.963 6.2 32 Ge 0.762 1.537 3.302 4.410 9.022 33 As 0.947 1.798 2.735 4.837 6.043 12.31 34 Sc 0.941 2.045 2.974 4.143 6.99 7.883 35 Br 1.140 2.10 3.47 4.56 5.76 8.55 36 Kr 1.351 2.350 3.565 5.07 6.24 7.57 37 Rb 0.403 2.632 3.9 5.08 6.85 8.14 38 Sr 0.549 1.064 4.138 5.5 6.91 8.76 39 Y 0.616 1.181 1.980 5.96 7.43 8.97 40 Zr 0.660 1.267 2.218 3.313 7.75 PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.7 TABLE 4.2 Ionization Energy of the Elements (Continued) At.
no.
Element Spectrum (in MJ · mol1) I II III IV V VI 41 Nb 0.664 1.382 2.416 3.695 4.877 9.847 42 Mo 0.685 1.558 2.621 4.477 5.91 6.641 43 Tc 0.702 1.472 2.850 44 Ru 0.711 1.617 2.747 45 Rh 0.720 1.744 2.997 46 Pd 0.805 1.875 3.177 47 Ag 0.731 2.073 3.361 48 Cd 0.868 1.631 3.616 49 In 0.558 1.821 2.704 5.2 50 Sn 0.709 1.412 2.943 3.930 6.974 51 Sb 0.834 1.595 2.44 4.26 5.4 10.4 52 Te 0.869 1.795 2.698 3.610 5.668 6.82 53 I 1.008 1.846 3.2 54 Xe 1.170 2.046 3.099 55 Cs 0.376 2.234 56 Ba 0.503 0.965 57 La 0.538 1.067 1.850 4.820 5.94 58 Ce 0.528 1.047 1.949 3.547 6.325 7.487 59 Pr 0.523 1.018 2.086 3.761 5.551 60 Nd 0.530 1.035 2.13 3.90 61 Pm 0.535 1.052 2.15 3.97 62 Sm 0.543 1.068 2.26 3.99 63 Eu 0.547 1.085 2.40 4.12 64 Gd 0.592 1.167 1.99 4.26 65 Tb 0.564 1.112 2.114 3.839 66 Dy 0.572 1.126 2.20 3.99 67 Ho 0.581 1.139 2.204 4.10 68 Er 0.589 1.151 2.194 4.13 69 Tm 0.596 1.163 2.285 4.13 70 Yb 0.603 1.174 2.417 4.203 71 Lu 0.524 1.34 2.022 4.366 72 Hf 0.68 1.44 2.25 3.216 73 Ta 0.761 74 W 0.770 75 Re 0.760 76 Os 0.84 77 Ir 0.88 78 Pt 0.87 1.791 79 Au 0.890 1.98 80 Hg 1.007 1.810 3.30 81 Tl 0.589 1.971 2.878 82 Pb 0.716 1.450 3.081 4.083 6.64 83 Bi 0.703 1.610 2.466 4.371 5.40 8.52 84 Po 0.812 85 At 86 Rn 1.037 87 Fr 88 Ra 0.509 0.979 89 Ac 0.67 1.17 90 Th 0.587 1.11 1.93 2.78 91 Pa 0.568 4.8 SECTION 4 TABLE 4.2 Ionization Energy of the Elements (Continued) At.
no.
Element Spectrum (in MJ · mol1) I II III IV V VI 92 U 0.598 93 Np 0.605 94 Pu 0.585 95 Am 0.578 96 Cm 0.581 97 Bk 0.601 98 Cf 0.608 99 Es 0.619 100 Fm 0.627 101 Md 0.635 102 No 0.642 Source: C. E. Moore, National Standard Reference Data Series 34, U.S. Government Printing Office, Washington, D.C., 1970; W. C. Martin, Zalubas, R., and Hagan, L., J. Phys. Chem. Reference Data, 3:771 (1974) and National Standard Reference Data Series, National Bureau of Standards (U.S.), No. 60 (1978) for the Rare Earth Elements; and Cohen, E. R. and Taylor, B.
N., J. Phys. Chem. Reference Data, 17:1795 (1988).
TABLE 4.3 Ionization Energy of Molecular and Radical Species This table gives the first ionization potential in MJ · mol1 and in electron volts. Also listed is the enthalpy of formation of the ion at 25C (298 K).
Compounds containing carbon Species Ionization energy In MJ · mol1 In electron volts f H (ion) in kJ · mol1 Acenaphthene 0.741 7.68 896 Acenaphthylene 0.793 8.22(4) 1053 Acetaldehyde 0.98696(7) 10.2290(7) 821 Acetamide 0.931(3) 9.65(3) 693 Acetic acid 1.029(2) 10.66(2) 596 Acetic anhydride 0.965 10.0 398 Acetone 0.9364 9.705 719 Acetonitrile 1.1766(5) 12.194(5) 1252 Acetophenone 0.896(3) 9.29(3) 810 Acetyl chloride 1.047(5) 10.85(5) 804 Acetyl fluoride 1.111(2) 11.51(2) 667 Acetylene 1.1000(2) 11.400(2) 1328 Allene 0.935(1) 9.69(1) 1126 Allyl alcohol 0.933(5) 9.67(5) 808 Allylamine 0.845 8.76 891 3-Amino-1-propanol 0.87 9.0 651 Aniline 0.7449(2) 7.720(2) 832 Anthracene 0.719(3) 7.45(3) 949 Azoxybenzene 0.78 8.1 1123 Azulene 0.715(2) 7.41(2) 1004 Benzaldehyde 0.916(2) 9.49(2) 878 Benzamide 0.912 9.45 811 PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.9 TABLE 4.3 Ionization Energy of Molecular and Radical Species (Continued) Species Ionization energy In MJ · mol1 In electron volts f H (ion) in kJ · mol1 Benzene 0.89212(2) 9.2459(2) 975 Benzenethiol 0.801(2) 8.30(2) 913 Benzoic acid 0.914 9.47 620 Benzonitrile 0.928 9.62 1146 Benzophenone 0.873(5) 9.05(5) 923 p-Benzoquinone 0.969(2) 10.04(18) 847 Benzoyl chloride 0.920 9.54 816 Benzyl alcohol 0.82 8.5 720 Benzylamine 0.834(5) 8.64(5) 917 Biphenyl 0.767(2) 7.95(2) 950 Bromoacetylene 0.995(2) 10.31(2) 1242 Bromobenzene 0.866(2) 8.98(2) 971 Bromochlorodifluoromethane 1.141 11.83 702 Bromochloromethane 1.039(1) 10.77(1) 1085 Bromodichloromethane 1.02 10.6 973 Bromoethane 0.992 10.28 930 Bromoethylene 0.946(2) 9.80(2) 1025 Bromomethane 1.0171(3) 10.541(3) 979 1-Bromonaphthalene 0.781 8.09 956 Bromopentafluorobenzene 0.923(2) 9.57(2) 212 1-Bromopropane 0.982(1) 10.18(1) 898 2-Bromopropane 0.972(1) 10.07(1) 874 3-Bromopropene 0.972(1) 10.07(1) 1018 p-Bromotoluene 0.837(1) 8.67(1) 908 Bromotrichloromethane 1.02 10.6 980 Bromotrifluoromethane 1.10 11.4 451 1,2-Butadiene 0.871 9.03 1034 1,3-Butadiene 0.8750 9.069 985 Butanal 0.949(2) 9.84(2) 742 Butanenitrile 1.08 11.2 1110 2-Butanone 0.918(4) 9.51(4) 677 trans-2-Butenal 0.939(1) 9.73(1) 835 1-Butene 0.924(2) 9.58(2) 924 cis-2-Butene 0.8788(8) 9.108(8) 871 trans-2-Butene 0.8780(8) 9.100(8) 866 1-Buten-3-yne 0.924(2) 9.58(2) 1230 Butyl acetate 0.965 10.0 479 sec-Butyl acetate 0.955 9.90 453 Butyl ethyl ether 0.903 9.36 610 Butylbenzene 0.838(1) 8.69(1) 826 sec-Butylbenzene 0.837(1) 8.68(1) 820 tert-Butylbenzene 0.834(2) 8.64(2) 812 Butylcyclohexane 0.908 9.41 695 Butylcyclopentane 0.960(3) 9.95(3) 793 p-tert-Butylphenol 0.75 7.8 552 p-tert-Butyltoluene 0.799 8.28 745 1-Butyne 0.9821(5) 10.178(5) 1147 2-Butyne 0.9226(5) 9.562(5) 1068 Camphor 0.845(3) 8.76(3) 577 Caprolactam 0.875(2) 9.07(2) 629 Carbazole 0.730(3) 7.57(3) 961 4.10 SECTION 4 TABLE 4.3 Ionization Energy of Molecular and Radical Species (Continued) Species Ionization energy In MJ · mol1 In electron volts f H (ion) in kJ · mol1 Carbon 1.0865 11.260 1803 Carbon (C2) 1.188 12.31 2000 Carbon dioxide 1.3289(2) 13.773(2) 935 Carbon monoxide 1.35217 14.0139 1242 Carbon oxyselenide 1.000(1) 10.36(1) 929 Carbon oxysulfide 1.07812(15) 11.1736(15) 936 Carbon sulfide 0.97149(19) 10.0685(20) 1089 Carbon sulfide (CS) 1.093(1) 11.33(1) 1368 Carbonyl fluoride 1.257 13.03 617 Carbonyltrihydroboron (BH3CO) 1.075(2) 11.14(2) 962 Chloroacetaldehyde 1.011(3) 10.48(3) 815 Chloroacetic acid 0.984 10.2 597 Chloroacetyl chloride 1.06 11.0 815 Chloroacetylene 1.021(2) 10.58(2) 1276 m-Chloroaniline 0.781(10) 8.09(10) 835 o-Chloroaniline 0.820 8.50 883 p-Chloroaniline 0.789 8.18 844 Chlorobenzene 0.874(2) 9.06(2) 929 Chlorodibromomethane 0.1022(1) 10.59(1) 1030 1-Chloro-1,1-difluoroethane 1.156(1) 11.98(1) 626 1-Chloro-2,2-difluoroethylene 0.946(4) 9.80(4) 628 Chlorodifluoromethane 1.18 12.2 693 Chloroethane 1.058(2) 10.97(2) 946 2-Chloroethanol 1.015 10.52 756 Chloroethylene 0.964(2) 9.99(2) 985 Chlorofluoromethane 1.130(1) 11.71(1) 870 Chloromethane 1.083(1) 11.22(1) 1001 Chloromethylene 0.949 9.84 1247 Chloromethylidine (CCl) 0.86(2) 8.9(2) 1244 1-Chloronaphthalene 0.784 8.13 906 m-Chloronitrobenzene 0.957(10) 9.92(10) 995 p-Chloronitrobenzene 0.961(10) 9.96(10) 999 Chloropentafluorobenzene 0.938(2) 9.72(2) 126 Chloropentafluoroethane 1.22 12.6 99 m-Chlorophenol 0.835 8.65 680 p-Chlorophenol 0.834 8.69 692 1-Chloropropane 1.044(3) 10.82(3) 912 2-Chloropropane 1.040(2) 10.78(2) 895 3-Chloropropene 0.96 9.9 950 m-Chlorotoluene 0.852(2) 8.83(2) 869 o-Chlorotoluene 0.852(2) 8.83(2) 869 p-Chlorotoluene 0.838(2) 8.69(2) 855 Chlorotrifluoroethylene 0.947 9.81(3) 373 Chlorotrifluoromethane 1.195 12.39 485 Chrysene 0.732 7.59(2) 1016 Coronene 0.703 7.29 1026 m-Cresol 0.800 8.29 668 o-Cresol 0.785 8.14 660 p-Cresol 0.784 8.13 659 cis-Crotonic acid 0.973 10.08 625 trans-Crotonic acid 0.96 9.9 604 PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.11 TABLE 4.3 Ionization Energy of Molecular and Radical Species (Continued) Species Ionization energy In MJ · mol1 In electron volts f H (ion) in kJ · mol1 Cumene 0.842 8.73(1) 847 Cyanamide 1.00 10.4 1137 Cyanate (NCO) 1.135(1) 11.76(1) 1290 Cyanide (CN) 1.360 14.09 1795 Cyanoacetylene 1.123(1) 11.64(1) 1475 Cyanogen 1.290(1) 13.37(1) 1597 Cyanogen chloride 1.191(1) 12.34(1) 1329 Cyanogen fluoride 1.285(1) 13.32(1) 1323 Cyclobutane 0.957(5) 9.92(5) 986 Cyclobutanone 0.9025 9.354 815 Cyclobutene 0.910 9.43 1067 Cycloheptane 0.962 9.97 844 Cyclohexane 0.951(3) 9.86(3) 828 Cyclohexanol 0.941 9.75 651 Cyclohexanone 0.882(1) 9.14(1) 656 Cyclohexene 0.8631(10) 8.945(10) 859 Cyclohexylamine 0.832(23) 8.62(24) 727 Cyclohexylcyclohexane 0.908 9.41 690 Cyclooctane 0.942 9.76 817 Cyclopropane 0.951 9.86 1005 Cyclopropanecarbonitrile 0.989 10.25 1173 Cyclopropanone 0.88(1) 9.1(1) 895 Cyclopropene 0.930 9.67(1) 1209 Cyclopropylamine 0.84 8.7 916 Cyclopropylbenzene 0.806 8.35 956 cis-Decahydronaphthalene 0.893 9.26 724 trans-Decahydronaphthalene 0.892 9.24 710 Decane 0.931 9.65 682 1-Decene 0.909(1) 9.42(1) 786 Diazomethane 0.8683(1) 8.999(1) 1098 1,4-Dibromobutane 0.979 10.15 879 1,2-Dibromoethane 1.001 10.37 963 Dibromofluoromethane 1.069(3) 11.07(3) 687 Dibromomethane 1.013(2) 10.50(2) 1013 1,2-Dibromopropane 0.975 10.1 903 1,3-Dibromopropane 0.990 10.26 919 1,2-Dibromotetrafluoroethane 1.07 11.1 280 Dibutyl ether 0.910 9.43 575 Di-sec-butyl ether 0.879 9.11 511 Di-tert-butyl ether 0.850 8.81 486 Dibutyl sulfide 0.79 8.2 624 Di-tert-butyl sulfide 0.77 8.0 583 Dibutylamine 0.742(3) 7.69(3) 586 Dichloroacetyl chloride 1.06 11.0 819 Dichloroacetylene 0.974 10.09 1183 m-Dichlorobenzene 0.879(1) 9.11(1) 907 o-Dichlorobenzene 0.876(1) 9.08(1) 909 p-Dichlorobenzene 0.856(1) 8.89(1) 882 Dichlorodifluoromethane 1.134(4) 11.75(4) 656 Dichlorodimethylsilane 1.03 10.7 576 1,1-Dichloroethane 1.067 11.06 937 4.12 SECTION 4 TABLE 4.3 Ionization Energy of Molecular and Radical Species (Continued) Species Ionization energy In MJ · mol1 In electron volts f H (ion) in kJ · mol1 1,2-Dichloroethane 1.065 11.04 931 1,1-Dichloroethylene 0.945(4) 9.79(4) 947 cis-1,2-Dichloroethylene 0.932(1) 9.66(1) 936 trans-1,2-Dichloroethylene 0.931(2) 9.65(2) 935 Dichlorofluoromethane 1.11 11.5 829 Dichloromethane 1.092(1) 11.32(1) 996 Dichloromethylene 1.000 10.36 1163 1,2-Dichloropropane 1.049(5) 10.87(5) 886 1,3-Dichloropropane 1.047(5) 10.85(5) 888 1,2-Dichlorotetrafluoroethane 1.18 12.2 252 Dicyclopropyl ketone 0.88 9.1 1041 1,1-Diethoxyethane 0.944 9.78 490 Diethyl oxalate 0.95 9.8 205 m-Diethylbenzene 0.819(1) 8.49(1) 798 o-Diethylbenzene 0.821 8.51 804 p-Diethylbenzene 0.810 8.40 790 Diethylene glycol dimethyl ether 0.96 9.8 448 m-Difluorobenzene 0.900(1) 9.33(1) 591 o-Difluorobenzene 0.895(1) 9.28(1) 602 p-Difluorobenzene 0.882(1) 9.14(1) 575 1,1-Difluoroethane 1.145(3) 11.87(3) 643 1,1-Difluoroethylene 0.993(1) 10.29(1) 650 cis-1,2-Difluoroethylene 0.987 10.23 690 Difluoromethane 1.226 12.71 774 Difluoromethylene 1.102(1) 11.42(1) 897 2,5-Dihydrothiophene 0.81 8.4 898 Diiodomethane 0.913(2) 9.46(2) 1030 Diisobutyl sulfide 0.807(5) 8.36(5) 627 Diisobutylamine 0.754 7.81 574 Diisopropyl ether 0.888(5) 9.20(5) 569 Diisopropyl sulfide 0.833(5) 8.63(5) 630 Diisopropylamine 0.746(3) 7.73(3) 602 Diketene 0.93(2) 9.6(2) 736 Dimethoxymethane 0.92 9.5 569 Dimethyl disulfide 0.71 7.4(3) 690 Dimethyl ether 0.9673(23) 10.025(25) 783 Dimethyl oxalate 0.965 10.0 287 o-Dimethyl phthalate 0.930(7) 9.64(7) 277 Dimethyl sulfide 0.838(1) 8.69(1) 801 Dimethyl sulfoxide 0.878 9.01 718 Dimethylamine 0.794(8) 8.23(8) 776 N,N-Dimethylaniline 0.687(2) 7.12(2) 787 2,2-Dimethylbutane 0.971 10.06 787 2,3-Dimethylbutane 0.967 10.02 791 3,3-Dimethyl-2-butanone 0.879(2) 9.11(2) 589 2,3-Dimethyl-1-butene 0.875(1) 9.07(1) 812 2,3-Dimethyl-2-butene 0.798(1) 8.27(1) 729 3,3-Dimethyl-1-butyne 0.946(5) 9.80(5) 1050 1,1-Dimethylcyclohexane 0.909 9.42 728 cis-1,2-Dimethylcyclohexane 0.944 9.78 772 cis-1,3-Dimethylcyclohexane 0.963 9.98 778 PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.13 TABLE 4.3 Ionization Energy of Molecular and Radical Species (Continued) Species Ionization energy In MJ · mol1 In electron volts f H (ion) in kJ · mol1 cis-1,4-Dimethylcyclohexane 0.958 9.93 782 trans-1,2-Dimethylcyclohexane 0.908 9.41 728 trans-1,3-Dimethylcyclohexane 0.920 9.53 743 trans-1,4-Dimethylcyclohexane 0.922 9.56 738 cis-1,2-Dimethylcyclopentane 0.957(5) 9.92(5) 828 trans-1,2-Dimethylcyclopentane 0.960(5) 9.95(5) 823 N,N-Dimethylformamide 0.881(2) 9.13(2) 689 2,6-Dimethyl-4-heptanone 0.872(3) 9.04(3) 515 1,1-Dimethylhydrazine 0.702(4) 7.28(4) 786 2,4-Dimethyl-3-pentanone 0.864(1) 8.95(1) 552 2,3-Dimethylpyridine 0.854(2) 8.85(2) 922 2,4-Dimethylpyridine 0.854(3) 8.85(3) 918 2,5-Dimethylpyridine 0.849(5) 8.80(5) 916 2,6-Dimethylpyridine 0.847(3) 8.86(3) 913 3,4-Dimethylpyridine 0.883 9.15 953 3,5-Dimethylpyridine 0.893 9.25 965 N,N-Dimethyl-o-toluidine 0.714(2) 7.40(2) 814 1,3-Dioxane 0.95 9.8 607 1,4-Dioxane 0.887(1) 9.19(1) 571 1,3-Dioxolane 0.96 9.9 658 Diphenyl ether 0.781(3) 8.09(3) 766 Diphenylacetylene 0.762(2) 7.90(2) 1164 Diphenylamine 0.691(4) 7.16(4) 908 1,2-Diphenylethane 0.84(1) 8.7(1) 983 Diphenylmethane 0.825(3) 8.55(3) 963 Dipropyl ether 0.894(5) 9.27(5) 602 Dipropyl sulfide 0.801(2) 8.30(2) 676 Dipropylamine 0.746(3) 7.73(3) 641 Divinyl ether 0.84 8.7 827 5,7-Dodecadiyne 0.837 8.67 1079 Dodecafluorocyclohexane 1.27 13.2 1095 Epichlorohydrin 0.98 10.2 875 1,2-Epoxybutane 0.98 10.15 862 Ethane 1.112(1) 11.52(1) 1027 1,2-Ethanediamine 0.83 8.6 812 Ethanethiol 0.8959(5) 9.285(5) 849 Ethanol 1.010(2) 10.47(2) 776 Ethanolamine 0.865 8.96 664 Ethyl benzoate 0.86 8.9 537 Ethyl formate 1.024(1) 10.61(1) 639 Ethyl methyl ether 0.938 9.72 722 Ethyl methyl sulfide 0.824(10) 8.54(10) 765 Ethyl pentyl ether 9.16 9.49 602 Ethyl vinyl ether 0.85 8.8 707 Ethylamine 0.855(2) 8.86(2) 808 N-Ethylaniline 0.740 7.67 794 Ethylbenzene 0.846(1) 8.77(1) 876 2-Ethyl-1-butene 0.874(2) 9.06(2) 818 Ethylcyclohexane 0.920 9.54 748 Ethylcyclopentane 0.976(2) 10.12(2) 850 Ethylene 1.0382(4) 10.507(4) 1066 4.14 SECTION 4 TABLE 4.3 Ionization Energy of Molecular and Radical Species (Continued) Species Ionization energy In MJ · mol1 In electron volts f H (ion) in kJ · mol1 Ethylene glycol 0.980 10.16 593 Ethylene oxide 1.0195(10) 10.566(10) 967 Ethyleneimine 0.89(1) 9.2(1) 1014 p-Ethylphenol 0.756 7.84 613 Ethynyl (HC#C) 1.13 11.7 1694 Fluoranthene 0.768(4) 7.95(4) 1057 Fluorene 0.761(3) 7.89(3) 950 Fluoroacetylene 1.086 11.26 1195 Fluorobenzene 0.8877(5) 9.200(5) 772 Fluoroethane 1.12 11.6 856 Fluoroethylene 1.0000(15) 10.363(15) 861 Fluoromethane 1.203(2) 12.47(2) 956 Fluoromethylene 1.012 10.49 1121 Fluoromethylidene (CF) 0.879(1) 9.11(1) 1134 p-Fluoronitrobenzene 0.955 9.90 826 1-Fluoropropane 1.09 11.3 806 2-Fluoropropane 1.069(2) 11.08(2) 776 3-Fluoropropene 0.975 10.11 821 m-Fluorotoluene 0.860(1) 8.91(1) 709 o-Fluorotoluene 0.860(1) 8.91(1) 709 p-Fluorotoluene 0.848(1) 8.79(1) 701 Formaldehyde 1.0492(2) 10.874(2) 940 Formamide 0.980(6) 10.16(6) 796 Formic acid 1.093(1) 11.33(1) 715 Fulminic acid (HCNO) 1.045 10.83 1263 Fulvene 0.807 8.36 1031 Fumaric acid 1.03 10.7 355 Furan 0.8571(3) 8.883(3) 822 Glyoxal 0.975 10.1 763 1-Heptanal 0.931(2) 9.65(2) 668 Heptane 0.957(5) 9.92(5) 770 1-Heptanol 0.949(3) 9.84(3) 614 2-Heptanol 0.936(3) 9.70(3) 580 3-Heptanol 0.934(3) 9.68(3) 578 4-Heptanol 0.927(3) 9.61(3) 572 2-Heptanone 0.897(1) 9.30(1) 596 1-Heptene 0.911 9.44 849 2-Heptene 0.853(2) 8.84(2) 782 3-Heptene 0.861 8.92 790 Hexachlorobenzene 0.866 8.98 822 Hexachloroethane 1.07 11.1 920 1,5-Hexadiene 0.896(5) 9.29(5) 980 Hexafluoroacetone 1.104 11.44 294 Hexafluorobenzene 0.9558 9.906 10 Hexafluoroethane 1.29 13.4 50 Hexafluoropropene 1.023(3) 10.60(3) 103 Hexamethylbenzene 0.757 7.85 670 1-Hexanal 0.933(5) 9.67(5) 686 Hexane 0.977 10.13 810 Hexanoic acid 0.976 10.12 463 1-Hexanol 0.954(3) 9.89(3) 639 PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.15 TABLE 4.3 Ionization Energy of Molecular and Radical Species (Continued) Species Ionization energy In MJ · mol1 In electron volts f H (ion) in kJ · mol1 2-Hexanol 0.946(3) 9.80(3) 611 3-Hexanol 0.929(3) 9.63(3) 599 2-Hexanone 0.902(2) 9.35(2) 626 3-Hexanone 0.880(2) 9.12(2) 600 1-Hexene 0.911(4) 9.44(4) 869 cis-2-Hexene 0.865(1) 8.97(1) 818 trans-2-Hexene 0.865(1) 8.97(1) 814 Hexylamine 0.833(5) 8.63(5) 699 1-Hexyne 0.960 9.95(5) 1081 Hydrogen cyanide (HCN) 1.312(1) 13.60(1) 1447 Hydrogen isocyanide (HNC) 1.21(1) 12.5(1) 1407 p-Hydroquinone 0.767(3) 7.95(3) 504 Imidazole 0.850(1) 8.81(1) 997 Indane 0.90 9.3 864 Indene 0.785(1) 8.14(1) 949 Iodobenzene 0.8380 8.685 1003 Iodoethane 0.9018 9.346 893 1-Iodohexane 0.8857 9.179 794 Iodomethane 0.9203 9.538 936 1-Iodopropane 0.8943 9.269 862 2-Iodopropane 0.8853 9.175 844 Isobutylbenzene 0.838(1) 8.68(1) 816 Isocyanic acid 1.120(3) 11.61(3) 1016 Isophthalic acid 0.963(20) 9.98(20) 268 Isopropylcyclohexane 0.900 9.33 704 Isoquinoline 0.8239(3) 8.539(3) 1032 Isoxazole 0.958(5) 9.93(5) 1038 Ketene 0.927(2) 9.61(2) 880 Maleic anhydride 1.04 10.8 645 Mesityl oxide 0.876(3) 9.08(3) 692 Methacrylic acid 0.979 10.15 611 Methane 1.207 12.51 1133 Methanethiol 9.108(5) 9.440(5) 888 Methanol 1.047(1) 10.85(1) 845 Methoxy 0.83 8.6 845 Methoxybenzene (Anisole) 0.792(2) 8.21(2) 724 2-Methoxyethanol 0.93 9.6 562 Methyl 0.949(1) 9.84(1) 1095 Methyl acetate 0.991(2) 10.27(2) 581 Methyl acrylate 0.96 9.9 611 Methyl azide 0.947(2) 9.81(2) 1227 Methyl benzoate 0.899(3) 9.32(3) 611 Methyl chloroacetate 0.99 10.3 575 Methyl 2,2-dimethylpropanoate 0.955(4) 9.90(4) 466 Methyl formate 1.0435(5) 10.815(5) 688 Methyl pentanoate 1.00(2) 10.4(2) 532 Methyl pentyl ether 0.933 9.67 657 Methyl vinyl ether 0.862(2) 8.93(2) 761 Methylacrylonitrile 0.998 10.34 1127 Methylamine 0.865(2) 8.97(2) 843 2-Methylaniline 0.718(2) 7.44(2) 772 4.16 SECTION 4 TABLE 4.3 Ionization Energy of Molecular and Radical Species (Continued) Species Ionization energy In MJ · mol1 In electron volts f H (ion) in kJ · mol1 3-Methylaniline 0.724(2) 7.50(2) 778 4-Methylaniline 0.698(2) 7.24(2) 753 N-Methylaniline 0.707(2) 7.33(2) 791 Methylcyclohexane 0.930 9.64 775 1-Methylcyclohexanol 0.95(2) 9.8(2) 586 Methylcyclopentane 0.950(3) 9.85(3) 845 Methylcyclopropane 0.913 9.46 936 2-Methyldecane 0.934 9.68 685 Methylene 1.0031(3) 10.396(3) 1386 N-Methylformamide 0.945 9.79 756 2-Methylheptane 0.949 9.84 734 5-Methyl-2-hexanone 0.895(1) 9.28(1) 586 Methylhydrazine 0.740(2) 7.67(2) 835 Methylidyne 1.027(1) 10.64(1) 1622 Methylisocyanate 1.030(2) 10.67(2) 900 1-Methyl-4-isopropylbenzene (p-Cymene) 0.800 8.29 771 1-Methylnaphthalene 0.757 7.85 870 2-Methylnaphthalene 0.75 7.8 866 Methyloxirane 0.986(2) 10.22(2) 892 2-Methylpentane 0.976 10.12 802 3-Methylpentane 0.973 10.08 801 2-Methyl-3-pentanone 0.878(1) 9.10(1) 592 3-Methyl-2-pentanone 0.889(1) 9.21(1) 600 4-Methyl-2-pentanone 0.897(1) 9.30(1) 609 2-Methyl-1-pentene 0.876(1) 9.08(1) 817 2-Methyl-2-pentene 0.828 8.58 761 4-Methyl-1-pentene 0.912(1) 9.45(1) 862 4-Methyl-cis-2-pentene 0.866(1) 8.98(1) 809 4-Methyl-trans-2-pentene 0.865(1) 8.97(1) 804 2-Methylpropanal 0.9364(5) 9.705(5) 721 2-Methylpropanenitrile 1.09 11.3 1115 2-Methylpropenal 0.951 9.86 834 2-Methylpropene (Isobutene) 0.8915(3) 9.239(3) 875 2-Methylpyridine 0.870(3) 9.02(3) 970 3-Methylpyridine 0.872(3) 9.04(3) 979 4-Methylpyridine 0.872(3) 9.04(3) 976 Methylsilane 1.03 10.7 1003 m-Methylstyrene 0.786(2) 8.15(2) 908 o-Methylstyrene 0.888(2) 9.20(2) 908 p-Methylstyrene 0.78(1) 8.1(1) 895 Methyltrichlorosilane 1.096(3) 11.36(3) 548 Naphthalene 0.785(1) 8.14(1) 936 1-Naphthol 0.749(3) 7.76(3) 719 2-Naphthol 0.757(5) 7.85(5) 727 Nickel carbonyl 0.798(4) 8.27(4) 200 m-Nitroaniline 0.802(2) 8.31(2) 865 o-Nitroaniline 0.798(1) 8.27(1) 861 p-Nitroaniline 0.804(1) 8.34(1) 850 Nitrobenzene 0.951(2) 9.86(2) 1019 Nitroethane 1.050(5) 10.88(5) 948 PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.17 TABLE 4.3 Ionization Energy of Molecular and Radical Species (Continued) Species Ionization energy In MJ · mol1 In electron volts f H (ion) in kJ · mol1 Nitromethane 1.063(4) 11.02(4) 988 m-Nitrophenol 0.86 9.0 755 o-Nitrophenol 0.88 9.1 782 p-Nitrophenol 0.88 9.1 761 1-Nitropropane 1.043(3) 10.81(3) 919 2-Nitropropane 1.033(5) 10.71(5) 894 m-Nitrotoluene 0.15(2) 9.48(2) 944 o-Nitrotoluene 0.912(4) 9.45(4) 966 p-Nitrotoluene 0.91 9.4 936 Nonane 0.938 9.72 710 2-Nonanone 0.884 9.16 545 5-Nonanone 0.875 9.07 530 Octafluoronaphthalene 0.854 8.85 368 Octafluoropropane 1.291 13.38 491 Octafluorotoluene 0.96 9.9 233 Octane 0.948 9.82 739 1-Octene 0.910(1) 9.43(1) 829 1-Octyne 0.960(2) 9.95(2) 1040 2-Octyne 0.898(1) 9.31(1) 961 3-Octyne 0.890(1) 9.22(1) 952 4-Octyne 0.888(1) 9.20(1) 946 Oxazole 0.93 9.6 910 Oxetane 0.9328(5) 9.668(5) 853 2-Oxetanone 0.936(1) 9.70(1) 653 Oxomethyl (HCO) 0.782(5) 8.10(5) 826 Pentafluorobenzene 0.929 9.63 122 Pentafluorophenol 0.888(2) 9.20(2) 71 2,3,4,5,6-Pentafluorotoluene 0.91 9.4 64 Pentanchloroethane 1.06 11.0 919 Pentylamine 0.837 8.67 728 Perylene 0.666(1) 6.90(1) 975 Phenanthrene 0.758(2) 7.86(2) 963 Phenetole 0.784(2) 8.13(2) 683 Phenol 0.817 8.47 721 Phenylacetic acid 0.797 8.26 479 m-Phenylenediamine 0.689 7.14 777 o-Phenylenediamine 0.69 7.2 787 p-Phenylenediamine 0.663(5) 6.87(5) 759 Phthalic anhydride 0.96 10.0 593 -Pinene 0.779 8.07 808 Propanal 0.9603(5) 9.953(5) 773 Propanamide 0.92 9.5 720 Propane 1.057(5) 10.95(5) 952 Propanenitrile 1.142(2) 11.84(2) 1194 1-Propanethiol 0.8872(5) 9.195(5) 819 2-Propanethiol 0.882 9.14 806 Propanoic acid 1.0155(3) 10.525(3) 568 1-Propanol 0.986(3) 10.22(3) 731 2-Propanol 0.976(8) 10.12(8) 704 4.18 SECTION 4 TABLE 4.3 Ionization Energy of Molecular and Radical Species (Continued) Species Ionization energy In MJ · mol1 In electron volts f H (ion) in kJ · mol1 Propenal 0.975(6) 10.103(6) 900 Propene 0.939(2) 9.73(2) 959 Propenenitrile 1.053(1) 10.91(1) 1237 Propenoic acid 1.023 10.60 701 1-Propylamine 0.847(2) 8.78(2) 777 2-Propylamine 0.841(3) 8.72(3) 758 Propylbenzene 0.841(1) 8.72(1) 849 Propylcyclohexane 0.913 9.46 720 Propylcyclopentane 0.965(4) 10.00(4) 817 Propyleneimine 0.87 9.0 960 Propynal 1.04 10.8 1155 Propyne 1.000(1) 10.36(1) 1186 2-Propyn-1-ol 1.014 10.51 1060 Pyrene 0.715 7.41 933 Pyridazine 0.834 8.64 1112 Pyrimidine 0.891 9.23 1087 Pyrrole 0.7920(5) 8.208(5) 900 2-Pyrrolidone 0.89 9.2 674 Quinoline 0.832(1) 8.62(1) 1041 cis-Stilbene 0.753(2) 7.80(2) 1005 trans-Stilbene 0.743(3) 7.70(3) 977 Styrene 0.813(6) 8.43(6) 961 Succinic anhydride 1.02 10.6 500 Succinonitrile 1.158(24) 12.10(25) 1377 Terephthalic acid 0.951(20) 9.86(20) 232 m-Terphenyl 0.773(1) 8.01(1) 1057 o-Terphenyl 0.77 8.0 1056 p-Terphenyl 0.751(1) 7.78(1) 1035 Tetrabromomethane 0.995(2) 10.31(2) 1079 Tetrachloro-1,2-difluoroethane 1.09 11.3 563 1,1,1,2-Tetrachloroethane 1.07 11.1 920 1,1,2,2-Tetrachloroethane 1.121 11.62 971 Tetrachloroethylene 0.899 9.32 887 Tetrachloromethane 1.107(1) 11.47(1) 1011 Tetraethylsilane 0.86 8.9 595 1,2,3,4-Tetrafluorobenzene 0.920(1) 9.53(1) 284 1,2,3,5-Tetrafluorobenzene 0.920(1) 9.53(1) 263 1,2,4,5-Tetrafluorobenzene 0.902(1) 9.35(1) 254 Tetrafluoroethylene 0.976(2) 10.12(2) 315 Tetrahydrofurane 0.908(2) 9.41(2) 724 1,2,3,4-Tetrahydronaphthalene 0.817 8.47 842 1,2,4,5-Tetramethylbenzene 0.776(1) 8.04(1) 730 2,2,3,3-Tetramethylbutane 0.95 9.8 720 Thiacyclobutane 0.838 8.69 899 Thiophene 0.856(4) 8.87(4) 971 p-Tolualdehyde 0.900(5) 9.33(5) 825 Toluene 0.851(1) 8.82(1) 901 m-Toluic acid 0.910(20) 9.43(20) 579 o-Toluic acid 0.88 9.1 558 p-Toluic acid 0.891(20) 9.23(20) 560 PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.19 TABLE 4.3 Ionization Energy of Molecular and Radical Species (Continued) Species Ionization energy In MJ · mol1 In electron volts f H (ion) in kJ · mol1 m-Tolunitrile 0.901 9.34 1085 o-Tolunitrile 0.905 9.38 1085 p-Tolunitrile 0.899 9.32 1083 Tribromomethane 1.011(2) 10.48(2) 1035 Tributylamine 0.71 7.4 492 Trichloroacetyl chloride 1.06 11.0 827 1,2,4-Trichlorobenzene 0.872 9.04 880 1,3,5-Trichlorobenzene 0.899(2) 9.32(2) 899 1,1,1-Trichloroethane 1.06 11.0 917 1,1,2-Trichloroethane 1.06 11.0 911 Trichloroethylene 0.914(1) 9.47(1) 895 Trichlorofluoromethane 1.136(2) 11.77(2) 868 Trichloromethane 1.097(2) 11.37(2) 992 Trichloromethylbenzene 0.926 9.60 914 1,1,2-Trichlorotrifluoroethane 1.157(2) 11.99(2) 429 Triethanolamine 0.76 7.9 206 Triethylamine 0.724 7.50 631 Trifluoroacetic acid 1.106 11.46 75 Trifluoroacetonitrile 1.337 13.86 838 1,1,1-Trifluoro-2-bromo-2-chloroethane 1.06 11.0 362 1,1,1-Trifluoroethane 1.24(1) 12.9(1) 496 Trifluoroethylene 0.978 10.14 489 Trifluoroiodomethane 0.987 10.23 397 Trifluoromethane 1.337 13.86 643 Trifluoromethyl (CF3) 0.86 8.9 399 Trifluoromethylbenzene 0.9345(4) 9.685(4) 335 3,3,3-Trifluoropropene 1.05 10.9 437 Triiodomethane 0.893(2) 9.25(2) 1010 Trimethylamine 0.755462 7.82960 731 1,2,3-Trimethylbenzene 0.812(2) 8.42(2) 803 1,2,4-Trimethylbenzene 0.798(1) 8.27(1) 784 1,3,5-Trimethylbenzene 0.811(1) 8.41(1) 796 Trimethylborate 0.96 10.0 65 Trimethylchlorosilane 0.979 10.15 624 3,5,5-Trimethylcyclohex-2-en-1-one 0.875 9.07 670 2,2,4-Trimethylpentane 0.951 9.86 713 2,2,4-Trimethyl-3-pentanone 0.849(1) 8.80(1) 511 2,4,6-Trimethylpyridine 0.88(1) 8.9(1) 580 Trioxane 0.99 10.3 528 Undecane 0.922 9.56 650 Urea 0.94 9.7 690 Vinyl acetate 0.887 9.19 572 m-Xylene 0.826(1) 8.56(1) 843 o-Xylene 0.826(1) 8.56(1) 844 p-Xylene 0.814(1) 8.44(1) 832 2,3-Xylenol 0.797 8.26 640 2,4-Xylenol 0.77 8.0 609 2,6-Xylenol 0.777(2) 8.05(2) 615 3,4-Xylenol 0.781 8.09 624 4.20 SECTION 4 TABLE 4.3 Ionization Energy of Molecular and Radical Species (Continued) Inorganic compounds Species Ionization energy In MJ · mol1 In electron volts f H (ion) in kJ · mol1 Aluminum tribromide 1.00 10.4 593 Aluminum trichloride 1.159 12.01 573 Aluminum trifluoride 1.394 14.45 282 Aluminum triiodide 0.88 9.1 673 Amidogen (NH2) 1.075(1) 11.14(1) 1264 Ammonia 0.980(1) 10.16(1) 934 Antimony trichloride 0.97(1) 10.1(1) 661 Arsenic trichloride 1.018(3) 10.55(3) 754 Arsenic trifluoride 1.239(5) 12.84(5) 452 Arsine 0.954 9.89 1021 Barium oxide 0.667(6) 6.91(6) 543 Bismuth trichloride 1.00 10.4 736 Borane (BH3) 1.19(1) 12.3(1) 1287 Boron dioxide (BO2) 1.30(3) 13.5(3) 1001 Boron oxide (B2O3) 1.303(14) 13.50(15) 460 Boron tribromide 1.014(2) 10.51(2) 809 Boron trichloride 1.119(2) 11.60(2) 718 Boron trifluoride 1.501(3) 15.56(3) 365 Boron triodide 0.893(3) 9.25(3) 964 Bromine (Br2) 1.0146(5) 10.515(5) 1046 Bromine chloride (BrCl) 1.062 11.01 1079 Bromine fluoride (BrF) 1.136(1) 11.77(1) 1077 Bromine pentafluoride 1.271(1) 13.17(1) 840 Bromosilane (BrSiH3) 1.02 10.6 943 Calcium oxide 0.67 6.9 691 Cesium chloride 0.756(5) 7.84(5) 510 Cesium fluoride 1.221(1) 12.65(1) 1170 Cesium fluoride 0.849(10) 8.80(10) 489 Chlorine (Cl2) 1.1424(5) 11.840(5) 1108 Chlorine difluoride 1.232(5) 12.77(5) 1128 Chlorine dioxide 1.000(2) 10.36(2) 1096 Chlorine oxide 1.057 10.95 1159 Chlorine trifluoride 1.221(5) 12.65(5) 1057 Chlorosilane (ClSiH3) 1.10 11.4 899 Chromyl chloride (CrO2Cl2) 1.12 11.6 580 Diborane (B2H6) 1.098(3) 11.38(3) 1134 Dichlorosilane (Cl2SiH2) 1.10 11.4 765 Difluoramine (HNF2) 1.112(8) 11.53(8) 1046 Difluoroamidogen (NF2) 1.122(1) 11.628(1) 1155 Difluorosilane (F2SiH2) 1.18 12.2 386 Dioxygen fluoride 1.22(2) 12.6(2) 1228 Disilane 0.94 9.7 1015 Disulfur oxide 1.017(4) 10.54(4) 967 Fluorine (F2) 1.5146(3) 15.697(3) 1515 Fluorosilane (FSiH3) 1.13 11.7 752 Gallium bromide 1.003 10.40 711 Gallium chloride 1.112 11.52 648 Gallium triiodide 0.907 9.40 765 Gallium(I) fluoride 0.93(5) 9.6(5) 700 PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.21 TABLE 4.3 Ionization Energy of Molecular and Radical Species (Continued) Species Ionization energy In MJ · mol1 In electron volts f H (ion) in kJ · mol1 Germane (GeH4) 1.093 11.33 1185 Germanium oxide (GeO) 1.085(1) 11.25(1) 1044 Germanium sulfide (GeS) 0.963(2) 9.98(2) 1055 Germanium tetrachloride 1.1270(5) 11.68(5) 629 Germanium tetrafluoride 1.50 15.5 307 Germanium tetraiodide 0.909 9.42 850 Hafnium bromide 1.05 10.9 366 Hafnium chloride 1.13 11.7 246 Hexaborane (B6H10) 0.87 9.0 965 Hydrazine 7.82(14) 8.10(15) 877 Hydrazoic acid (HN3) 1.0344(24) 10.720(25) 1328 Hydrogen (H2) 1.488413(5) 15.42589(5) 1488 Hydrogen bromide 1.125(3) 11.66(3) 1087 Hydrogen chloride 1.2299 12.747 1137 Hydrogen fluoride 1.5481(3) 16.044(3) 1276 Hydrogen iodide 1.0004(1) 10.368(1) 1028 Hydrogen peroxide 1.017 10.54 881 Hydrogen selenide 0.9535(1) 9.882(1) 983 Hydrogen sulfide 1.0085(8) 10.453(8) 988 Hydroperoxy (HOO) 1.095(1) 11.35(1) 1106 Hydroxyl (OH) 1.254 13.00 1293 Hydroxylamine (NH2OH) 0.947 10.00 923 Hypochlorous acid (HOCl) 1.073(1) 11.12(1) 993 Hypofluorous acid (HOF) 1.226(1) 12.71(1) 1130 Imidogen (NH) 1.302(1) 13.49(1) 1678 Iodine (I2) 0.90694(12) 9.3995(12) 969 Iodine bromide 0.9446(4) 9.790(4) 986 Iodine chloride 0.9734(10) 10.088(10) 991 Iodine fluoride 1.025 10.62 930 Iodine pentafluoride 1.2488(5) 12.943(5) 408 Lead oxide (PbO) 0.976(10) 9.08(10) 939 Lead(II) chloride 0.96 10.0 789 Lead(II) fluoride 1.11 11.5 679 Lead(II) sulfide 0.825 8.5(5) 954 Lithium bromide 0.84 8.7 685 Lithium chloride 0.923 9.57 727 Lithium hydride 0.74 7.7 882 Lithium iodide 0.72 7.5 633 Lithium oxide 0.815 8.45(20) 895 Magnesium fluoride 1.29 13.4 569 Magnesium oxide 0.93 9.7 992 Mercapto (SH) 1.001 10.37 1140 Mercury(II) bromide 1.019(3) 10.560(3) 935 Mercury(II) chloride 1.0988(3) 11.380(3) 952 Mercury(II) iodide 0.91748(22) 9.5088(22) 900 Molybdenum hexafluoride 1.40(1) 14.5(1) 159 Molybdenum(V) chloride 0.84 8.7 392 Niobium(V) chloride 1.058 10.97 656 Nitric acid 1.153(1) 11.95(1) 1019 4.22 SECTION 4 TABLE 4.3 Ionization Energy of Molecular and Radical Species (Continued) Species Ionization energy In MJ · mol1 In electron volts f H (ion) in kJ · mol1 Nitric oxide 0.893900(6) 9.26436(6) 985 Nitrogen (N2) 1.59336 15.5808 1503 Nitrogen dioxide 0.941(1) 9.75(1) 974 Nitrogen pentoxide 1.15 11.9 1161 Nitrogen tetroxide 1.04(2) 10.8(2) 1050 Nitrogen trichloride 0.9765(10) 10.12(10) 1244 Nitrogen trifluoride 1.254(2) 13.00(2) 1125 Nitrosyl bromide 0.981(3) 10.17(3) 1065 Nitrosyl chloride (NOCl) 1.049(1) 10.87(1) 1099 Nitrosyl fluoride (NOF) 1.219(3) 12.63(3) 1152 Nitrous acid (HONO) 1.09 11.3 977 Nitrous oxide (N2O) 1.2433 12.886 1325 Nitryl chloride (NO2Cl) 1.142 11.84 1155 Nitryl fluoride (NO2F) 1.263 13.09 1154 Osmium tetroxide 1.1895 12.320 850 Oxygen (O2) 1.1647(1) 12.071(1) 1165 Oxygen dichloride 1.056 10.94 1135 Oxygen difluoride (OF2) 1.265(1) 13.11(1) 1290 Oxygen fluoride 1.232 12.77 1341 Ozone (O3) 1.199 12.43 1342 Pentaborane (B5H9) 0.955(4) 9.90(4) 1028 Perchloryl fluoride (ClO3F) 1.2490(5) 12.945(5) 1224 Phosphine (PH3) 0.9522(2) 9.869(2) 958 Phosphorus (P2) 1.016 10.53 1160 Phosphorus nitride 1.143 11.85 1248 Phosphorus pentachloride 1.03 10.7 656 Phosphorus pentafluoride 1.46 15.1 137 Phosphorus sulfur trichloride (PSCl3) 0.956 9.91 668 Phosphorus tribromide 0.94 9.7 798 Phosphorus trichloride 0.956 9.91 668 Phosphorus trifluoride 1.104 11.44 146 Phosphoryl chloride (POCl3) 1.096(2) 11.36(2) 540 Phosphoryl trifluoride (POF3) 1.231(1) 12.76(1) 24 Potassium bromide 0.757(10) 7.85(10) 578 Potassium chloride 0.77(4) 8.0(4) 557 Potassium iodide 0.696(29) 7.21(30) 570 Rhenium(VII) oxide 1.23(2) 12.7(2) 125 Rubidium bromide 0.766(3) 7.94(3) 583 Rubidium chloride 0.820(3) 8.50(3) 590 Ruthenium tetroxide 1.172(3) 12.15(3) 988 Silane 1.124 11.65 1158 Silicon oxide (SiO) 1.103 11.43 1002 Silicon tetrachloride 1.136(1) 11.79(1) 527 Silicon tetrafluoride 1.51 15.7 100 Silver chloride 0.973 10.08 1065 Silver fluoride 1.06(3) 11.0(3) 1071 Sodium bromide 0.802(10) 8.31(10) 660 Sodium chloride 0.861(6) 8.92(6) 681 Sodium iodide 0.737(2) 7.64(2) 659 Stibine (SbH3) 0.920(3) 9.54(3) 1067 PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.23 TABLE 4.3 Ionization Energy of Molecular and Radical Species (Continued) Species Ionization energy In MJ · mol1 In electron volts f H (ion) in kJ · mol1 Strontium oxide 0.675(14) 7.00(15) 662 Sulfur (S2) 0.9027(2) 9.356(2) 1031 Sulfur chloride pentafluoride 1.1921(5) 12.335(5) 144 Sulfur dichloride 0.912(3) 9.45(3) 895 Sulfur difluoride 0.973 10.08 676 Sulfur dioxide 1.189(2) 12.32(2) 892 Sulfur hexafluoride 1.479(3) 15.33(3) 259 Sulfur oxide (SO) 0.996(2) 10.32(2) 1001 Sulfur pentafluoride 1.01(1) 10.5(1) 97 Sulfur trioxide 1.235(4) 12.80(4) 839 Sulfuryl chloride (SO2Cl2) 1.163 12.05 807 Sulfuryl fluoride (SO2F2) 1.110 11.5 679 Tantalum(V) chloride 1.069 11.08 348 Tetraborane (B4H10) 1.038(4) 10.76(4) 1105 Tetrafluorohydrazine (gauche) 1.152(3) 11.94(3) 1119 Thallium(I) bromide 0.882(2) 9.14(2) 844 Thallium(I) chloride 0.936(3) 9.70(3) 869 Thallium(I) fluoride 1.015 10.52 835 Thionitrosyl fluoride (NSF) 1.111(4) 11.51(4) 1090 Thionyl chloride 1.058 10.96 844 Thionyl fluoride 1.182 12.25 688 Thiophosphoryl trifluoride (PSF3) 1.066(4) 11.05(4) 58 Thorium(IV) oxide 0.847(14) 8.70(15) 342 Tin(II) bromide 0.87 9.0 830 Tin(II) chloride 0.965 10.0 760 Tin(II) fluoride 1.07 11.1 586 Tin(II) oxide 0.926(2) 9.60(2) 944 Tin(II) sulfide 0.85 8.8 966 Tin(IV) bromide 1.02 10.6 709 Tin(IV) chloride 1.146(5) 11.88(5) 673 Tin(IV) hydride 1.037 10.75 1200 Titanium(IV) bromide 0.99 10.3 375 Titanium(IV) chloride 1.124(14) 11.65(15) 363 Titanium(IV) oxide 0.920(10) 9.54(10) 623 trans-Difluorodiazine 1.24 12.8 1315 Trifluoramine oxide (NOF3) 1.279(1) 13.26(1) 1116 Trifluorosilane (F3SiH) 1.35 14.0 150 Trisilane 0.89 9.2 1009 Tungsten(VI) chloride 0.92 9.5 348 Uranium hexafluoride 1.350(10) 14.00(10) 796 Uranium(IV) oxide 5.2(1) 5.4(1) 57 Uranium(VI) oxide 1.01(5) 10.5(5) 214 Vanadium(IV) chloride 0.89 9.2 210 Vanadium(V) oxychloride (VOCl3) 1.120 11.61 425 Water 1.2170(10) 12.612(10) 975 Xenon difluoride 1.192(1) 12.35(1) 1083 Xenon tetrafluoride 1.221(10) 12.65(10) 1016 Zirconium bromide 1.03 10.7 388 Zirconium chloride 1.08 11.2 392 Source: Sharon, G., et al., J. Phys. Chem. Ref. Data, 17:Suppl. No. 1 (1988).
4.24 SECTION 4 4.3 ELECTRON AFFINITY TABLE 4.4 Electron Affinities of Atoms, Molecules, and Radicals Electron affinity of an atom (molecule or radical) is defined as the energy difference between the lowest (ground) state of the neutral and the lowest state of the corresponding negative ion in the gas phase.
A(g) e A(g) Data are limited to those negative ions which, by virtue of their positive electron affinity, are stable. Uncertainty in the final data figures is given in parentheses. Calculated values are enclosed in brackets.
A. Atoms Atom Electron affinity, in eV in kJ · mol1 Aluminum 0.441(10) 42.5(10) Antimony 1.046(5) 100.9(5) Arsenic 0.81(3) 78.(3) Astatine [2.8(3)] [270.(30)] Barium [0.15] [14.] Bismuth 0.946(10) 91.3(10) Boron 0.277(10) 26.7(10) Bromine 3.363590(3) 324.5367(3) Calcium 0.0185(25) 1.78(24) Carbon 1.2629(3) 121.85(3) Cesium 0.471626(25) 45.5048(24) Chlorine 3.61269 348.570 Chromium 0.666(12) 64.3(12) Cobalt 0.662(3) 63.9(3) Copper 1.235(5) 119.2(5) Fluorine 3.401190(4) 328.1638(4) Francium [0.46] Gallium 0.30(15) 29.(15) Germanium 1.233(3) 119.0(3) Gold 2.30863(3) 222.748(3) Hafnium [0.] [0.] Hydrogen 0.75195(19) 72.552(18) Hydrogen-d1 deuterium 0.75459(7) 72.807(7) Indium 0.3(2) 29.(2) Iodine 3.05904(1) 295.151(1) Iridium 1.565(8) 151.0(8) Iron 0.151(3) 14.6(3) Lanthanum [0.5(3)] [48.(30)] Lead 0.364(8) 35.1(8) Lithium 0.6180(5) 59.63(5) Molybdenum 0.748(2) 72.2(2) Nickel 1.156(10) 111.5(10) Niobium 0.893(25) 86.2(24) Osmium [0.2(1)] [19.(10)] Oxygen 1.4611103(7) 140.97523(7) Palladium 0.562(5) 54.2(5) Phosphorus 0.7465(3) 72.03(3) Platinum 2.128(2) 205.3(2) Polonium [1.9(3)] [183.(30)] PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.25 TABLE 4.4 Electron Affinities of Atoms, Molecules, and Radicals (Continued) A. Atoms (continued) Atom Electron affinity, in eV in kJ · mol1 Potassium 0.50147(10) 48.384(10) Rhenium [0.15(15)] [14.(14)] Rubidium 0.48592(2) 46.884(2) Ruthenium [1.05(15)] [101.(14)] Scandium 0.188(20) 18.1(19) Selenium 2.020670(25) 194.9643(24) Silver 1.302(7) 125.6(7) Sodium 0.547926(25) 52.86666(24) Strontium 0.048(6) 4.6(6) Sulfur 2.077104(1) 200.4094(1) Tantalum 0.322(12) 31.1(12) Technetium [0.55(20)] [53.(19)] Tellurium 1.9708(3) 190.15(3) Thallium 0.2(2) 19.(19) Tin 1.112(4) 107.3(4) Titanium 0.079(14) 7.6(14) Tungsten 0.815(2) 78.6(2) Vanadium 0.525(12) 50.7(12) Yttrium 0.307(12) 29.6(12) Zirconium 0.426(14) 41.1(14) B. Molecules Molecule Electron affinity, in eV in kJ · mol1 BF3 2.65 256 BH3 0.038(15) 3.7(15) 1,4-Benzoquinone 1.91(10) 184.(10) Br2 2.55(10) 246.(10) CBrF3 0.91(20) 89.(19) CF3I 1.57(20) 151.(19) COS 0.46(20) 44.(19) CS2 0.895(20) 86.3(19) C6F6 hexafluorobenzene 0.52(10) 50.(10) 1,2-C6H4(NO3)2 (also 1,3-) 1.65(10) 159.(10) 1,4-C6H4(NO3)2 2.00(10) 193.(10) C6H5Br bromobenzene 1.15(11) 111.(11) C6H5Cl chlorobenzene 0.82(11) 79.(11) C6H5I iodobenzene 1.41(11) 136.(11) C6H5NO2 nitrobenzene 1.01(10) 97.(10) 1,4-C6H4(CN)NO2 1.72(10) 166.(10) Cl2 2.38(10) 229.(10) CoH2 1.450(14) 139.9(13) CsCl 0.455(10) 43.9(10) CuO 1.777(6) 171.5(6) F2 3.08(10) 297.(10) FeO 1.493(5) 144.1(5) I2 2.55(5) 246.(5) 4.26 SECTION 4 TABLE 4.4 Electron Affinities of Atoms, Molecules, and Radicals (Continued) B. Molecules (continued) Molecule Electron affinity, in eV in kJ · mol1 IBr 2.55(10) 246.(10) IrF6 6.5(4) 627.(40) KBr 0.642(10) 61.9(10) KCl 0.582(10) 56.1(10) KI 0.728(10) 70.2(10) LiCl 0.593(10) 54.3(10) LiH 0.342(12) 33.0(12) MoO3 2.9(2) 280.(20) NO 0.026(5) 2.5(5) NO2 2.273(5) 219.3(5) N2O 0.22(10) 21.(10) NaBr 0.788(10) 76.0(10) NaCl 0.727(10) 70.1(10) NaI 0.865(10) 83.5(10) NaK 0.465(30) 44.9(30) O2 0.451(7) 43.5(7) O3 2.103(3) 202.9(9) OsF6 6.0(3) 579.(29) PBr3 1.59(15) 153.(14) PCl3 0.82(10) 79.(10) PF5 0.75(15) 72.(14) POCl3 1.41(2) 136.(2) PbO 0.722(6) 69.7(6) PtF6 7.0(4) 675.(40) RbCl 0.544(10) 52.5(10) RuF6 7.5(3) 724.(28) SF4 1.5(2) 145.(19) SF6 1.05(10) 101.(10) SO2 1.107(8) 106.8(8) SeF6 2.9(2) 280.(19) SeO 1.456(20) 140.5(l9) SeO2 1.823(50) 175.9(48) TeF6 3.34(17) 322.(16) TeO 1.695(22) 163.5(21) UF6 5.1(2) 492.(19) V4O10 4.2(6) 405.(60) WO3 3.9(2) 376.(19) C. Radicals Radical Electron affinity, in eV in kJ · mol1 AsH2 1.27(3) 123.(3) CCl2 1.591(10) 153.5(10) CF2 0.165(10) 15.9(10) CH 1.238(8) 119.4(8) CHBr 1.454(5) 140.3(5) CHCl 1.210(5) 117.5(5) CHF 0.542(5) 52.3(5) PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.27 TABLE 4.4 Electron Affinities of Atoms, Molecules, and Radicals (Continued) C. Radicals (continued) Radical Electron affinity, in eV in kJ · mol1 CHI 1.42(17) 137.(17) CHO2 3.498(5) 337.5(5) CH2 0.652(6) 62.9(6) CH2S 0.465(23) 44.9(22) CH2"SiH 2.010(10) 193.9(10) CH3 0.08(3) 7.7(3) CH3CH2O ethoxide 1.726(33) 166.5(32) CH3O 1.570(22) 151.5(21) CH3S 1.861(4) 179.6(4) CH3SCH2 0.868(51) 83.7(49) CH3Si 0.852(10) 82.2(10) CH3SiH2 1.19(4) 115.(4) C2F2 difluorovinylidene 2.255(6) 217.6(6) C2H2 vinylidene 0.490(6) 47.3(6) CH2"CH vinyl 0.667(24) 64.3(23) C2H3O acetaldehyde enolate 1.82476(12) 176.062(12) CH3CH2S 1.953(6) 188.4(6) HC#C9CH2 0.893(25) 86.2(24) CH3CHCN 1.247(12) 120.3(12) C2H5O ethoxide 1.726(33) 166.5(31) C2H5S ethyl sulfide 1.953(6) 188.4(6) C3H3 propargyl radical 0.893(25) 86.2(24) CH3CH9CN 1.247(12) 120.3(12) C3H5 allyl 0.362(19) 34.9(18) C3H5O acetone enolate 1.758(19) 169.2(18) propionaldehyde enolate 1.621(6) 156.4(6) C3H5O2 methyl acetate enolate 1.80(6) 174.(6) C3H7O propoxide 1.789(33) 172.6(31) isopropyl oxide 1.839(29) 177.4(28) C3H7S propyl sulfide 2.00(2) 193.(2) isopropyl sulfide 2.02(2) 195.(2) C4H5O cyclobutanone enolate 1.801(8) 173.8(8) C4H7O butyraldehyde enolate 1.67(5) 161.(5) C4H9O tert-butoxyl 1.912(54) 184.5(52) C4H9S butyl sulfide 2.03(2) 196.(2) tert-butyl sulfide 2.07(2) 200.(2) C5H5 cyclopentadienyl 1.804(7) 174.1(7) C5H7 pentadienyl 0.91(3) 88.(3) C5H7O cyclopentanone enolate 1.598(7) 154.2(7) C5H9O 3-pentanone enolate 1.69(5) 163.(5) C5H11S pentyl sulfide 2.09(2) 202.(2) C6H5 phenyl 1.096(6) 105.7(6) C6H5NH anilide 1.70(3) 164.(3) C6H5O phenoxyl 2.253(6) 217.4(6) C6H5S thiophenoxide 2.47(6) 238.(6) C6H5CH2 benzyl 0.912(6) 88.0(6) C6H5CH2O benzyl oxide 2.14(2) 206.(2) C6H9O cyclohexanone enolate 1.526(10) 147.2(10) H2C"CH9CH"CH9CH"CH9CH2 heptatrienyl 1.27(3) 122.(3) CN 3.862(4) 372.6(4) 4.28 SECTION 4 TABLE 4.4 Electron Affinities of Atoms, Molecules, and Radicals (Continued) C. Radicals (continued) Radical Electron affinity, in eV in kJ · mol1 CNCH2 cyanomethyl 1.543(14) 148.9(14) CO3 2.69(14) 259.(14) CS 0.205(21) 19.8(20) ClO 2.275(6) 219.5(6) HCO 0.313(5) 30.2(5) HNO 0.338(15) 32.6(14) HO2 1.078(17) 104.0(6) FO 2.272(6) 219.2(6) N3 2.70(12) 260.(12) NCO 3.609(5) 348.2(5) NCS 3.537(5) 341.3(5) NH 0.370(4) 35.7(4) NO3 3.937(14) 379.9(14) NS 1.194(11) 115.2(11) O2Aryl 0.52(2) 50.(2) OClO 2.140(8) 206.5(8) OH 1.82767(2) 176.343(2) OIO 2.577(8) 248.6(8) PH 1.028(10) 99.2(10) PH2 1.27(1) 123.(1) PO 1.092(10) 105.4(10) PO2 3.42(1) 330.(1) SF 2.285(6) 220.5(6) SH 2.314344(4) 223.300(4) SO 1.125(5) 108.5(5) SeH 2.21252(3) 213.475(3) SiF3 2.95(10) 285.(10) SiH 1.277(9) 123.2(9) SiH2 1.124(20) 108.4(19) SiH3 1.406(14) 106.7(14) Source: H. Hotop and W. C. Lineberger, J. Phys. Chem. Reference Data 14:731 (1985).
4.4 ELECTRONEGATIVITY Electronegativity is the relative attraction of an atom for the valence electrons in a covalent bond.
It is proportional to the effective nuclear charge and inversely proportional to the covalent radius: 0.31(n 1 c) 0.50 r where n is the number of valence electrons, c is any formal valence charge on the atom and the sign before it corresponds to the sign of this charge, and r is the covalent radius. Originally the element fluorine, whose atoms have the greatest attraction for electrons, was given an arbitrary electroneg-ativity of 4.0. A revision of Pauling’s values based on newer data assigns 3.90 to fluorine. Values in Table 4.5 refer to the common oxidation states of the elements.
PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.29 TABLE 4.5 Electronegativities of the Elements H 2.20 Li 0.98 Be 1.57 B 2.04 C 2.55 N 3.04 O 3.44 F 3.90 Na 0.93 Mg 1.31 Al 1.61 Si 1.90 P 2.19 S 2.58 Cl 3.16 K 0.82 Ca 1.00 Sc 1.36 Ti 1.54 V 1.63 Cr 1.66 Mn 1.55 Fe 1.83 Co 1.88 Ni 1.91 Cu 1.90 Zn 1.65 Ga 1.81 Ge 2.01 As 2.18 Se 2.55 Br 2.96 Rb 0.82 Sr 0.95 Y 1.22 Zr 1.33 Nb 1.6 Mo 2.16 Tc 2.10 Ru 2.2 Rh 2.28 Pd 2.20 Ag 1.93 Cd 1.69 In 1.78 Sn 1.96 Sb 2.05 Te 2.1 I 2.66 Cs 0.79 Ba 0.89 La 1.10 Hf 1.3 Ta 1.5 W 1.7 Re 1.9 Os 2.2 Ir 2.2 Pt 2.2 Au 2.4 Hg 1.9 Tl 1.8 Pb 1.8 Bi 1.9 Po 2.0 At 2.2 Fr 0.7 Ra 0.9 Ac 1.1 Lanthanides Ce 1.12 Pr 1.13 Nd 1.14 Sm 1.17 Gd 1.20 Dy 1.22 Ho 1.23 Er 1.24 Tm 1.25 Lu 1.0 Actinides Th 1.3 Pa 1.5 U 1.7 Np 1.3 Pu 1.3 Am 1.3 Cm 1.3 Bk 1.3 Cf 1.3 Es 1.3 Fm 1.3 Md 1.3 No 1.3 Source: L. Pauling, The Chemical Bond, Cornell University Press, Ithaca, New York, 1967; L. C. Allen, J. Am. Chem.
Soc. 111:9003 (1989); A. L. Allred, J. Inorg. Nucl. Chem. 17:215 (1961).
The greater the difference in electronegativity, the greater is the ionic character of the bond. The amount of ionic character I is given by: 2 & & I 0.46 0.035( ) A B A B The bond is fully covalent when (A B) 0.5 (and I 6%).
4.5 BOND LENGTHS AND STRENGTHS 4.5.1 Atom Radius The atom radius of an element is the shortest distance between like atoms. It is the distance of the centers of the atoms from one another in metallic crystals and for these materials the atom radius is often called the metal radius. Except for the lanthanides (CN 6), CN 12 for the elements. The atom radii listed in Table 4.6 are taken mostly from A. Kelly and G. W. Groves, Crystallography and Crystal Defects, Addison-Wesley, Reading, Mass., 1970.
4.30 SECTION 4 TABLE 4.6 Atom Radii and Effective Ionic Radii of Elements Effective ionic radii, pm Element Atom radius, pm Ion charge Coordination number 4 6 8 12 Actinium 187.8 3 111 Aluminum 143.1 3 39 53.5 Americium 173 2 126 3 97.5 109 4 89 95 5 86 6 80 Antimony 145 3 245 1 89 3 76 76 5 60 Arsenic 124.8 3 222 3 58 5 33.5 46 Astatine 1 227 5 57 7 62 Barium 217.3 2 136 142 160 Berkelium 2 118 3 98 4 87 93 Beryllium 111.3 1 195 2 27 45 Bismuth 154.7 3 213 3 103 111 5 76 Boron 86 1 35 3 11 27 Bromine 1 196 3 59 5 31 47 7 25 Cadmium 148.9 2 78 95 110 131 Calcium 197 2 100 112 135 Californium 186(2) 2 117 3 95 4 82.1 Carbon 4 260 4 15 16 Cerium 181.8 3 102 114.3 134 4 87 97 114 Cesium 265 1 167 174 188 Chlorine 1 181 5 34 7 8 27 Chromium 128 1 81 2 73 LS 80 HS 3 61.5 CN 3 PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.31 TABLE 4.6 Atom Radii and Effective Ionic Radii of Elements (Continued) Effective ionic radii, pm Element Atom radius, pm Ion charge Coordination number 4 6 8 12 Chromium 4 41 55 (continued) 5 34.5 49 57 6 26 44 Cobalt 125 2 38 65 LS 90 74.5 HS 3 54.5 LS 61 HS 4 40 53 HS Copper 128 1 60 77 2 57 73 3 54 LS Curium 174 3 4 97 85 95 Dysprosium 178.1 2 107 119 3 91.2 102.7 Einsteinium 186(2) 3 98 Erbium 176.1 3 89.0 100.4 Europium 208.4 2 117 125 135 3 94.7 106.6 Fluorine 71.7 1 131 133 7 8 Francium 270 1 180 Gadolinium 180.4 3 93.8 105.3 Gallium 135 2 120 3 47 62.0 Germanium 128 2 73 4 39.0 53.0 Gold 144 1 137 3 68 85 Hafnium 159 4 58 71 83 Holmium 176.2 3 90.1 101.5 112 Hydrogen 1 154 Indium 167 1 140 3 62 80.0 92 Iodine 1 220 5 95 7 42 53 Iridium 135.5 3 68 4 62.5 5 57 Iron 126 2 61 LS 63 HS 78 HS 92 HS 3 55 LS 49 HS 64.5 HS 78 HS 4 58.5 6 25 Lanthanum 183 3 103.2 116.0 136 CN 10 4.32 SECTION 4 TABLE 4.6 Atom Radii and Effective Ionic Radii of Elements (Continued) Effective ionic radii, pm Element Atom radius, pm Ion charge Coordination number 4 6 8 12 Lead 175 2 98 119 129 149 4 78 94 Lithium 152 1 59 76 Lutetium 173.8 3 86.1 97.7 Magnesium 160 2 57 72.0 89 Manganese 127 2 3 66 HS 67 LS 83 HS 58 LS 64.5 HS 96 96 4 39 53 5 6 33 25.5 7 25 46 Mercury 151 1 111 119 2 96 102 114 Molybdenum 139 3 69 4 65.0 5 46 61 6 41 59 73† Neodymium 181.4 2 129 3 98.3 110.9 127 Neptunium 155 2 110 3 4 101 87 98 5 6 7 75 72 71 Nickel 124 2 55 69.0 3 56 LS 60 HS 4 48 LS Niobium 146 3 72 4 68 79 5 48 64 74 Nitrogen 3 146 1 25 3 5 16 13 Nobelium 2 110 Osmium 135 4 5 6 7 63.0 57.5 54.5 52.5 8 39 Oxygen 2 138 140 142 Palladium 137 2 3 4 64 86 76 61.5 CN 3 † CN 7 PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.33 TABLE 4.6 Atom Radii and Effective Ionic Radii of Elements (Continued) Effective ionic radii, pm Element Atom radius, pm Ion charge Coordination number 4 6 8 12 Phosphorus 108 3 212 3 44 5 17 38 Platinum 138.5 2 4 5 80 62.5 57 Plutonium 159 3 4 5 6 100 86 74 71 96 Polonium 164 2 4 6 (230) 94 67 108 Potassium 232 1 137 138 151 164 Praseodymium 182.4 3 4 99 85 112.6 96 Promethium 183.4 3 97 109.3 Protoactinium 163 3 104 4 5 90 78 101 91 Radium (220) 2 148 170 Rhenium 137 4 63 5 6 58 55 7 38 53 Rhodium 134 3 66.5 4 5 60 55 Rubidium 248 1 152 161 172 Ruthenium 134 3 68 4 5 62.0 56.5 7 8 38 36 Samarium 180.4 2 127 3 95.8 107.9 124 Scandium 162 3 74.5 87.0 Selenium 116 2 198 4 6 50 42 Silicon 118 4 26 40.0 Silver 144 1 100 115 130 2 3 79 67 94 75 Sodium 186 1 99 102 118 139 Strontium 215 2 118 126 144 Sulfur 106 2 4 184 37 6 12 29 Tantalum 146 3 72 4.34 SECTION 4 TABLE 4.6 Atom Radii and Effective Ionic Radii of Elements (Continued) Effective ionic radii, pm Element Atom radius, pm Ion charge Coordination number 4 6 8 12 Tantalum 4 68 (continued) 5 64 74 Technetium 136 4 64.5 5 60 7 37 56 Tellurium 142 2 221 4 6 66 43 97 56 Terbium 177.3 3 92.3 104.0 4 76 88 Thallium 170 1 150 159 170 3 75 88.5 98 Thorium 179 4 94 105 121 Thullium 175.9 2 103 3 88.0 99.4 105 Tin 151 2 118 4 55 69.0 81 Titanium 147 2 3 86 67.0 4 42 60.5 74 Tungsten 139 4 5 66 62 6 42 60 Uranium 156 3 4 5 102.5 89 76 100 117 6 52 73 86 Vanadium 134 2 79 3 4 64.0 58 72 5 35.5 54 Xenon 8 40 48 Ytterbium 193.3 2 3 102 86.8 114 98.5 104 Yttrium 180 3 90.0 101.9 108 Zinc 134 2 60 74.0 90 Zirconium 160 4 59 72 84 89 CN 11 4.5.2 Ionic Radii One of the major factors in determining the structures of the substances that can be thought of as made up of cations and anions packed together is ionic size. It is obvious from the nature of wave functions that no ion has a precisely defined radius. However, with the insight afforded by electron PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.35 density maps and with a large base of data, new efforts to establish tables of ionic radii have been made, the most successful being those of Shannon and Prewitt. Pertinent references: R. D. Shannon and C. T. Prewitt, Acta Crystallographica B25:925 (1969); B26:1046 (1970) and R. D. Shannon, Acta Crystallographica A32:751 (1976).
Shannon and Prewitt base their effective ionic radii on the assumption that the ionic radius of O2 (CN 6) is 140 pm and that of F (CN 6) is 133 pm. Also taken into consideration is the coordination number (CN) and electronic spin state (HS and LS, high spin and low spin) of first-row transition metal ions. These radii are empirical and include effects of covalence in specific metal-oxygen or metal-fluorine bonds. Older “crystal ionic radii” were based on the radius of F (CN 6) equal to 119 pm; these radii are 14–18 percent larger than the effective ionic radii.
4.5.3 Covalent Radii Covalent radii (Table 4.7) are the distance between two kinds of atoms connected by a covalent bond of a given type (single, double, etc.).
TABLE 4.7 Covalent Radii for Atoms Element Single-bond radius, pm Double-bond radius, pm Triple-bond radius, pm Aluminum 126 Antimony 141 131 Arsenic 121 111 Beryllium 106 Boron 88 Bromine 114 104 Cadmium 148 Carbon 77.2 66.7 60.3 Chlorine 99 89 Copper 135 Fluorine 64 54 Gallium 126 Germanium 122 112 Hydrogen 30 Indium 144 Iodine 133 123 Magnesium 140 Mercury 148 Nitrogen 70 60 55 Oxygen 66 55 Phosphorus 110 100 93 Silicon 117 107 100 Selenium 117 107 Silver 152 Sulfur 104 94 87 Tellurium 137 127 Tin 140 130 Zinc 131 Single-bond radii are for a tetrahedral structure.
(CN 4) 4.36 SECTION 4 TABLE 4.8 Octahedral Covalent Radii for CN 6 Atom Octahedral covalent radius, pm Atom Octahedral covalent radius, pm Cobalt(II) 132 Nickel(III) 130 Cobalt(III) 122 Nickel(IV) 121 Gold(IV) 140 Osmium(II) 133 Iridium(III) 132 Palladium(IV) 131 Iron(II) 123 Platinum(IV) 131 Iron(IV) 120 Rhodium(III) 132 Nickel(II) 139 Ruthenium(II) 133 TABLE 4.9 Bond Lengths between Carbon and Other Elements Bond type Bond length, pm Carbon-carbon Single bond Paraffinic: 9C9C9 154.1(3) In presence of 9C"C9 or of aromatic ring 153(1) In presence of 9C"O bond 151.6(5) In presence of two carbon-oxygen bonds 149(1) In presence of two carbon-carbon double bonds 142.6(5) Aryl-C"O 147(2) In presence of one carbon-carbon triple bond: 9C9C#C9 146.0(3) In presence of one carbon-nitrogen triple bond: 9C9C#N 146.6(5) In compounds with tendency to dipole formation, e.g., C"C9C"O 144(1) In aromatic compounds 139.5(3) In presence of carbon-carbon double and triple bonds: 9C"C9C#C9 142.6(5) In presence of two carbon-carbon triple bonds: 9C#C9C#C9 137.3(4) Double bond Single: 9C"C9 133.7(6) Conjugated with a carbon-carbon double bond: 9C"C9C"C9 133.6(5) Conjugated with a carbon-oxygen double bond: 9C"C9C"O 136(1) Cumulative: 9C"C"C9 or 9C"C"O 130.9(5) Triple bond Simple: 9C#C9 120.4(2) Conjugated: 9C#C9C"C9, 9C#C9C"O, or 9C#C9aryl 120.6(4) Bond type Bond length, pm Carbon-halogen Fluorine Chlorine Bromine Iodine Paraffinic: R9X 137.9(5) 176.7(2) 193.8(5) 213.9(1) Olenfinic: 9C"C9X 133.3(5) 171.9(5) 189(1) 209.2(5) Aromatic: Ar-X 132.8(5) 170(1) 185(1) 205(1) Acetylenic: 9C#C9X (127) 163.5(5) 179.5(10) 199(2) PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.37 TABLE 4.9 Bond Lengths between Carbon and Other Elements (Continued) Bond type Bond length, pm Carbon-hydrogen Paraffinic In methane (in CD4, 109.2) 109.4 In monosubstituted carbon: H9C9Y 109.6(5) In disubstituted carbon: X Y H9C9 X Z H9C9Y 107.3(5) In trisubstituted carbon: 107.0(7) Olefinic Simple: H9C"C9 108.3(5) Cumulative carbon-carbon double bonds: H9C"C"C9 107(1) Cumulative carbon-carbon-oxygen double bonds: H9C9C"C"O 108(1) Aromatic 108.4(5) Acetylenic (in C2H2, 105.9) 105.5(5) In small rings 108.1(5) In presence of a carbon triple bond: H9C#C9 111.5(4) Carbon-nitrogen Single bond Paraffinic: 3-covalent nitrogen: RNH2, R2NH, R3N 147.2(5) 4-covalent nitrogen: R3N-BX3 RNH , 3 147.9(5) In 9C9N" 147.5(10) In aromatic compounds 143(1) In conjugated heterocyclic systems (partial double bond) 135.3(5) In 9N9C"O (partial double bond) 132.2(5) Double bond: 9C"N9 132 Triple bond (in CN radical, 117.74): 9C#N 115.7(5) Carbon-oxygen Single bond Paraffinic and saturated heterocyclic: 9C9O9 142.6(5) Strained, as in epoxides: 9C9C9 O 143.5(5) In aromatic compounds, as Ar-OH 136(1) Longer bond in carboxylic acids and esters (HCOOH, 131.2) 135.8(5) In conjugated heterocyclics, as furan 137.1(16) Double bond In CO 111.5 In CO 112.8 In CO2 117.7 In HCO 119.8(8) In carbonyls 114.5(10) In aldehydes and ketones 121.5(5) 4.38 SECTION 4 TABLE 4.9 Bond Lengths between Carbon and Other Elements (Continued) Bond type Bond length, pm Carbon-oxygen (continued) In acyl halides: R9CO9X 117.1(4) Shorter bond in carboxylic acids and esters 123.3(5) In zwitterion forms 126(1) In O"C" 116.0(1) In isocyanates: RN"C"O 117(1) In conjugated systems, as in partial triple bond: O"C9C"C 121.5(5) In 1,4-quinones 115(2) In metal acetylacetonates 128(2) In calcite: CaCO3 129(1) Carbon-selenium Single bond Paraffinic: 9C9Se9 198(2) In presence of fluorine, as in perfluorocompounds: 9CF9Se9 195(2) Double bond In Se"C", as SeCS and SeCO 170.9(3) In CSe radical 167 Carbon-silicon Alkyl substituent: H3C9Si or H2C9Si 187.0(5) Aryl substituent: aryl9Si 184.3(5) Electronegative substituent: R9Si9X 185.4(5) Carbon-sulfur Single bond Paraffinic: 9C9S9 181.7(5) In presence of fluorine, as in perfluoro compounds: 9CF9S9 183.5(1) In heterocyclic systems: partial double bonds 171.8(5) Double bonds In S"C; thiophene, S"CR2 171(1) In sulfoxides and sulfones 180(1) In presence of second carbon-carbon double bond: S"C9C"C9 155.5(1) In SC radical [in 155.4(5)] CS , 2 153.49(2) Bond type Bond length, pm Bond type Bond length, pm Other elements and carbon C-Al 224(4) C-As 198(1) C-B 156(1) C-Be 193 C-Bi 230 C-Co 183(2) C-Cr 192(4) C-Fe 184(2) C-Ge Alkyl 193(3) Aryl 194.5(5) PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.39 TABLE 4.9 Bond Lengths between Carbon and Other Elements (Continued) Bond type Bond length, pm Bond type Bond length, pm Other elements and carbon (continued) C-Hg 207(1) in Hg(CN)2 199(2) C-In 216(4) C-Mo 208(4) C-Ni 210.7(5) C-Pb (alkyl) 230(1) C-Pd 227(4) C-Sb (paraffinic) 220.2(16) C-Sn Alkyl 214.3(5) Electronegative 218(2) substituent C-Te 190.4 C-Tl 270.5(5) C-W 206 TABLE 4.10 Bond Lengths between Elements Other than Carbon Elements Bond type Bond length, pm Elements Bond type Bond length, pm Boron B-B B2H6 177(1) B-Br BBr3 187(2) B-Cl BCl3 172(1) B-F BF3, R2BF 129(1) B-H Boranes Bridge 121(2) 139(2) B-N Borazoles 142(1) B-O B(OH)3, (RO)3B 136(5) Hydrogen H-Al AlH 164.6 H-As AsH3 151.9 H-Be BeH 134.3 H-Br HBr 140.8 H-Ca CaH 200.2 H-Cl HCl 127.4 H-F HF 91.7 H-Ge GeH4 153 H-I HI 160.9 H-K KH 224.4 H-Li LiH 159.5 H-Mg MgH 173.1 H-Na NaH 188.7 H-Sb H3Sb 170.7 H-Se H2Se 146.0 H-Sn SnH4 170.1 D-Br DBr (2HBr) 141.44 D-Cl DCl 127.46 D-I DI 161.65 T-Br TBr (3HBr) 141.44 T-Cl TCl 127.40 Nitrogen N-Cl NO2Cl 179(2) N-F NF3 136(2) N-H NH4 NH3, RNH2 H2NNH2 R9CO9NH2 HN"C"S 103.4(3) 101.2 103.8 99(3) 101.3(5) N-D ND (N2H) 104.1 N-N HN3 R2NNH2 N2O N2 102(1) 145.1(5) 112.6(2) 111.6 N-O NO2Cl RO9NO2 NO2 124(1) 136(2) 118.8(5) N"O N2O RNO2 NO 118.6(2) 122(1) 106.19 N-Si SiN 157.2 Oxygen O-H H2O ROH OH HOOH D2O (2H2O) OD 95.8 97(1) 102.89 96.0(5) 95.75 96.99 O-O HO9OH 148(1) O2 122.7 O2 126(2) 2 O2 149(2) 4.40 SECTION 4 TABLE 4.10 Bond Lengths between Elements Other than Carbon (Continued) Elements Bond type Bond length, pm Elements Bond type Bond length, pm Oxygen (continued) O3 127.8(5) O-Al AlO 161.8 O-As As2O6 bridges 179 O-Ba BaO 190.0 O-Cl ClO2 OCl2 148.4 168 O-Mg MgO 174.9 O-Os OsO4 166 O-Pb PbO 193.4 Phosphorus P-Br PBr3 223(1) P-Cl PCl3 200(2) P-F PFCl2 155(3) P-H PH3, PH4 142.4(5) P-I PI3 252(1) P-N Single bond 149.1 P-O Single bond p3 bonding sp3 bonding 144.7 167 154(4) P-S p3 bonding sp3 bonding In rings 212(5) 208(2) 220(3) P-C Single bond p3 bonding 156.2 187(2) Silicon Si-Br SiBr4, R3SiBr 216(1) Si-Cl SiCl4, R3SiCl 201.9(5) Si-F SiF4, R3SiF SiF6 156.1(3) 158 Si-H SiH4 R3SiH 148.0(5) 147.6(5) Si-I SiI4 R3SiI 234 246(2) Si-O R3SiOR 153.3(5) Si-Si H3SiSiH3 230(2) Sulfur S-Br SOBr2 227(2) S-Cl S2Cl2 158.5(5) S-F SOF2 158.5(5) S-H H2S RSH D2S 133.3 132.9(5) 134.5 S-O SO2 SOCl2 143.21 145(2) S-S RSSR 205(1) PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.41 TABLE 4.11 Bond Dissociation Energies The bond dissociation energy (enthalpy change) for a bond A9B which is broken through the reaction AB : A B is defined as the standard-state enthalpy change for the reaction at a specified temperature, here at 298 K.
That is, Hf Hf (A) Hf (B) Hf (AB) 298 298 298 298 All values refer to the gaseous state and are given at 298 K. Values of 0 K are obtained by subtracting RT 3⁄2 from the value at 298 K.
To convert the tabulated values to kcal/mol, divide by 4.184.
Bond Hf298, kJ/mol Bond Hf298, kJ/mol Aluminum Al9Al 186(9) Al9As 180 Al9Au 326(6) Al9Br 439(8) Al9C 255 Al9Cl 494(13) AlCl9Cl 402(8) AlCl29Cl 372(8) AlO9Cl 515(84) Al9Cu 216(10) Al9D 291 Al9F 664(6) AlF9F 546(42) AlF29F 544(46) AlO9F 761(42) Al9H 285(6) Al9I 368(4) Al9Li 176(15) Al9N 297(96) Al9O 512(4) AlCl9O 540(41) AlF9O 582 Al9P 213(13) Al9Pd 259(12) Al9S 374(8) Al9Se 334(10) Al9Si 251(3) Al9Te 268(10) Al9U 326(29) Antimony Sb9Sb 299(6) Sb9Br 314(59) Sb9Cl 360(50) Sb9F 439(96) Sb9N 301(50) Antimony (continued) Sb9O 372(84) Sb9P 357 Sb9S 379 Sb9Te 277.4(38) Arsenic As9As 382(11) As9Cl 448 As9Ga 209.6(12) As9H 272(12) As9N 582(126) As9O 481(8) As9P 534(13) As9S (478) As9Se 96 As9Tl 198(15) Astatine At9At (115.9) Barium Ba9Br 370(8) Ba9Cl 444(13) Ba9F 487(7) Ba9I 431(4) Ba9O 563(42) Ba9OH 477(42) Ba9S 400(19) Beryllium Be9Be 59 Be9Br 381(84) Be9Cl 388(9) 4.42 SECTION 4 TABLE 4.11 Bond Dissociation Energies (Continued) Bond Hf298, kJ/mol Bond Hf298, kJ/mol Beryllium (continued) BeCl9Cl 540(63) Be9F 577(42) Be9H 226(21) Be9O 448(21) Be9S 372(59) Bismuth Bi9Bi 197(4) Bi9Br 267(4) Bi9Cl 305(8) Bi9D 284 Bi9F 259(29) Bi9Ga 159(17) Bi9H 279 Bi9O 343(6) Bi9P 280(13) Bi9Pb 142(15) Bi9S 316(5) Bi9Sb 251(4) Bi9Se 280(6) Bi9Te 232(11) Bi9Tl 121(13) Boron B9B 297(21) H3B9BH3 146 OB9BO 506(84) B9Br 435(21) B9C 448(29) B9Cl 536(29) BO9Cl 460(42) B9D 341(6) B9F 766(13) BF9F 523(63) BF29F 557(84) B9H 330(4) B9I 384(21) B9N 389(21) B9O 806(5) BCl9O 715(41) B9P 347(17) B9S 581(9) B9Se 462(15) B9Si 289(29) B9Te 354(20) Bromine Br9Br 193.870(4) Br9C 280(21) Br9CH3 284(8) Br9CH2Br 255(13) Br9CHBr2 259(17) Br9CBr3 209(13) Br9CCl3 218(13) Br9CF3 285(13) Br9CF2CF3 287.4(63) Br9CF2CF2CF3 278.2(63) Br9CHF2 289 Br9Cl 218.84(4) Br9CN 381 Br9CO9C6H5 268 Br9F 233.8(2) Br9N 276(21) Br9NF2 222 Br9NO 120.1(63) Br9O 235.1(4) Cadmium Cd9Cd 11.3(8) Cd9Br 159(96) Cd9Cl 206.7(34) Cd9F 305(21) Cd9H 69.0(4) Cd9I 138(21) Cd9In 138 Cd9O 142(42) Cd9S 196 Cd9Se 310 Calcium Ca9Ca 14.98(46) Ca9Br 321(23) Ca9Cl 398(13) Ca9F 527(21) Ca9H 167.8 Ca9I 285(63) Ca9O 464(84) Ca9S 314(19) Carbon C9C 607(21) H3C9CH3 368 PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.43 TABLE 4.11 Bond Dissociation Energies (Continued) Bond Hf298, kJ/mol Bond Hf298, kJ/mol Carbon (continued) (CH3)2C9CH3 335 (CH3)2C9C(CH3)2 282.4 CH39C6H5 389 CH39CH2C6H5 301 (CH3)3C9C(C6H5)3 63 CH39allyl 301 CH39vinyl 121 CH39C#CH 490 CH2"CH9CH"CH2 418 HC#C9C#CH 628 H2C"CH2 682 HC#CH 962 CH39CN 506(21) CH39CH2CN 305(8) CH39CH(CH3)CN 331(8) CH39C(C6H5)CN(CH3) 251 CH3CH29CH2CN 321.8(71) NC9CN 603(21) C6H59C6H5 418 CH39CF3 423.4(46) CH2F9CH2F 368(8) CF39CF3 406(13) CF2"CF2 318(13) CF39CN 501 CH39CHO 314 CH39CO 342.7 CH3CO9CF3 308.8 CH3CO9COCH3 280(8) C6H5CO9COC6H5 277.8 Aryl9CH2COCH29aryl 273.6 C6H5CH29COOH 284.9 (C6H5CH2)2CH9COOH 248.5 C9Cl 397(29) C9F 536(21) C9H 337.2(8) C9I 209(21) C9N 770(4) CF39NF2 272(13) CH39NH2 331(13) C6H5CH29NH2 301(4) CH39NHC6H5 285 CH39N(CH3)C6H5 272 C6H5CH29NHCH3 289(4) C6H5CH29N(CH3)2 255(4) CH39(N"NCH3) 219.7 C2H59(N"NC2H5) 209.2 (CH3)3C9N"NC(CH3)3 182.0 Aryl9CH2N"NCH29aryl 157 Carbon (continued) CF39(N"NCF3) 231.0 H2C"NH 644(21) HC#N 937 CH39NO 174.9(38) C2H59NO 175.7(54) C3H79NO 167.8(75) (CH3)2CH9NO 171.5(54) n-C4H99NO 215.5(42) C6H59NO 215.5(42) Cl3C9NO 134 F3C9NO 130 C6F59NO 211.3(42) NC9NO 121(13) CH39NO2 247(13) C2H59NO2 259 C9O 1076.5(4) CH39OCH3 335 CH39OC6H5 381 CH39OCH2C6H5 280 C2H59OC6H5 213 C6H5CH29OCOCH3 285 C6H5CH29OCOC6H5 289 CH3CO9OCH3 406 CH39OSOCH3 280 CH2"CHCH29OSOCH3 209 C6H5CH29OSOCH3 222 C"O 749 H2C"O 732 OC"O 532.2(4) SC"O 628 C#O 1075 C9P 513(8) C9S 699(8) CH39SH 305(13) CH39SC6H5 285(8) CH39SCH2C6H5 247(8) OC9S 310.4 C9Se 582(96) Cerium Ce9Ce 243(21) Ce9F 582(42) Ce9N 519(21) Ce9O 795(13) Ce9S 573(13) Ce9Se 495(15) Ce9Te 389(42) 4.44 SECTION 4 TABLE 4.11 Bond Dissociation Energies (Continued) Bond Hf298, kJ/mol Bond Hf298, kJ/mol Cesium Cs9Cs 41.75(93) Cs9Br 397.5(42) Cs9Cl 439(21) Cs9F 514(8) Cs9H 178.1(38) Cs9I 339(4) Cs9O 297(25) Cs9OH 385(13) Chlorine Cl9Cl 242.580(16) Cl9C 338(42) Cl9CH3 339(21) Cl9 CH3 213 Cl9C(CH3)3 328.4 Cl9CH2Cl 310(13) Cl9CCl3 293(21) Cl9CF3 360(33) Cl9CCl2F 305(8) Cl9CClF2 318(8) Cl9CF2CF2 346.0(71) Cl9CH"CH2 351 Cl9CN 439 Cl9COCl 328 Cl9COCH3 349.4 Cl9COC6H5 310(13) Cl9Cl 393 Cl9ClO 143.3(42) O3Cl9ClO4 243 Cl9F 250.54(8) O3Cl9F 255 Cl9N 389(50) Cl9NCl 280 Cl9NCl2 381 Cl9NF2 ca. 134 Cl9NH2 251(25) Cl9NO 159(6) Cl9NO2 142(4) Cl9O 272(4) OCl9O 243(13) O2Cl9O 201(4) Cl9P 289(42) Cl9SiCl3 464 Chromium Cr9Cr 155(21) Cr9Br 328(24) Cr9Cl 366(24) Chromium (continued) Cr9Cu 155(21) Cr9F 437(20) Cr9Ge 170(29) Cr9H 280(50) Cr9I 287(24) Cr9N 378(19) Cr9O 427(29) OCr9O 531(63) O2Cr9O 477(84) Cr9S 339(21) Cobalt Co9Co 167(25) Co9Br 331(42) Co9Cl 398(8) Co9Cu 162(17) Co9F 435(63) Co9Ge 239(25) Co9I 235(81) Co9O 368(21) Co9S 343(21) Copper Cu9Cu 202(4) Cu9Br 331(25) Cu9Cl 383(21) Cu9F 431(13) Cu9Ga 216(15) Cu9Ge 209(21) Cu9H 280(8) Cu9I 197(21) Cu9Ni 206(17) Cu9O 343(63) Cu9S 285(17) Cu9Se 293(38) Cu9Sn 177(17) Cu9Te 176(38) Curium Cm9O 736 Dysprosium Dy9F 527(21) Dy9O 611(42) Dy9Se 322(42) Dy9Te 234(42) PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.45 TABLE 4.11 Bond Dissociation Energies (Continued) Bond Hf298, kJ/mol Bond Hf298, kJ/mol Erbium Er9F 565(17) Er9O 611(13) Er9S 418(42) Er9Se 326(42) Er9Te 239(42) Europium Eu9Eu 33.5(165) Eu9Cl ca. 326 Eu9F 528(18) Eu9O 557(13) Eu9S 364(15) Eu9Se 301(15) Eu9Te 243(15) Fluorine F9F 156.9(96) F9F 251 F9CH3 452(21) F9C(CH3)3 439 F9C6H5 485 F9CCl3 444(21) F9CCl2F 460(25) F9CClF2 490(25) F9CF3 523(17) F9COCH3 498 F9FO 272(13) F9FO2 81.0 F9N 301(42) F9NF 318(25) F9NF2 243(8) F9NO 235.6(42) F9NO2 197(25) Gadolinium Gd9F 590(27) Gd9O 716(17) Gd9S 525(15) Gd9Se 431(15) Gallium Ga9Ga 138(21) Ga9Br 444(17) (CH3)3Ga9CH3 253 Ga9Cl 481(13) Ga9F 577(15) Ga9H 274 Ga9I 339(10) Gallium (continued) Ga9O 285(63) Ga9P 230(13) Ga9Sb 209(13) Ga9Te 251(25) Germanium Ge9Ge 274(21) Ge9Br 255(29) Ge9Cl 431.8(4) Ge9F 485(21) Ge9H 321.3(8) Ge9O 662(13) Ge9S 551.0(25) Ge9Se 490(21) Ge9Si 301(21) Ge9Te 402(8) Gold Au9Au 221.3(21) Au9B 368(11) Au9Be 285(8) Au9Bi 293(84) Au9Cl 343(10) Au9Co 215(13) Au9Cr 215(6) Au9Cu 232(9) Au9Fe 187(17) Au9Ga 294(15) Au9Ge 277(15) Au9H 314(10) Au9La 80(5) Au9Li 68.0(16) Au9Mg 243(42) Au9Mn 185(13) Au9Ni 274(21) Au9Pb 130(42) Au9Pd 143(21) Au9Rh 231(29) Au9S 418(25) Au9Si 312(12) Au9Sn 244(17) Au9Te 247(67) Au9U 318(29) Hafnium Hf9C 548(63) Hf9N 534(29) Hf9O 791(8) 4.46 SECTION 4 TABLE 4.11 Bond Dissociation Energies (Continued) Bond Hf298, kJ/mol Bond Hf298, kJ/mol Hydrogen H9H 436.002(4) H9 2H or H9D 439.446(4) 2H9 2H or D9D 443.546(4) H9Br 365.7(21) H9C 337.2(8) H9CH 452(33) H9CH2 473(4) H9CH3 431(8) 2H9C2H3 or D9CD3 442.75(25) H9C#CH 523(4) H9CH"CH2 427 H9CH2CH3 410(4) H9CH2C#CH 392.9(50) H9CH2CH"CH2 356 H9cyclopropyl 423(13) H9CH2CH2CH3 410(8) H9CH(CH3)2 395.4 H9cyclobutyl 397(13) H9CH2CH(CH3)2 360 H9CH(CH3)CH2CH3 397(4) H9C(CH3)3 381 H9 H9 H9CH H9CH2 CH"CH2 CH"CH2 C CH3 CH3 CH3 339(4) 335(4) 343(4) 414(4) H9C(CH3)2CH"CH2 331 H9cyclopentyl 395(42) H9CH2C(CH3)3 418(4) H9C6H5 431 H9CH2C6H5 356(4) H9C(C6H5)3 314 H9 310 H9cyclohexyl 399.6(42) H9cycloheptyl 387.0(42) H9norbornyl 406(13) H9CH2Br 410(25) H9CHBr2 435 H9CH2Cl 423 Hydrogen (continued) H9CHCl2 414.2 H9CCl3 377(8) H9CBr3 377(8) H9CCl2CHCl2 393(8) H9CH2F 423(8) H9CHF2 423(8) H9CF3 444(13) H9CF2Cl 435(4) H9CH2CF3 446(45) H9CF2CH3 416(4) H9CF2CF3 431(63) H9CH2I 431(8) H9CHI2 431(8) H9CN 540(25) H9CH2CN ca. 389 H9CH(CH3)CN 377(8) H9C(CH3)2CN 364(8) H9CH2NH2 397(8) H9CH2Si(CH3)3 414(4) H9CH2COCH3 393(75) H9Cl 431.8(4) H9CO 126(8) H9CHO 364(4) H9COOH 377 H9COCH3 364(4) H9COCH2CH3 364(4) H9 O 385 H9COC6H5 364(4) H9COCF3 381(8) H9F 568.6(13) H9I 298.7(8) H9N 314(17) H9NH 377(8) H9NH2 435(8) H9NHCH3 431(8) H9N(CH3)2 397(8) H9NHC6H5 335(13) H9N(CH3)C6H5 310(13) HNF2 318(13) H9N3 356 H9NO 205 H9O 428.0(21) H9OH 498.7(8) H9OCH3 436.8(42) H9OCH2CH3 436.0 H9OC(CH3)3 439(4) H9OC6H5 368(25) H9ONO 327.6(25) PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.47 TABLE 4.11 Bond Dissociation Energies (Continued) Bond Hf298, kJ/mol Bond Hf298, kJ/mol Hydrogen (continued) H9ONO2 423.4(25) H9OOH 374(8) H9OOCCH3 469(17) H9OOCCH2CH3 460(17) H9OOCC3H7 431(17) H9P 343(29) H9S 344(12) H9SH 381(4) H9SCH3 ca. 368 H9Se 305(2) H9Si 298.49(46) H9SiH3 393(13) H9Si(CH3)3 377(13) H9Te 268(2) Indium In9In 100(8) In9Br 418(21) In9Cl 439(8) In9F 506(15) In9O 360(21) In9P 197.9(85) In9S 289(17) In9Sb 152(11) In9Se 247(17) In9Te 218(17) Iodine I9I 152.549(8) I9Br 179.1(4) I9CH3 232(13) I9C2H5 223.8 I9CH(CH3)2 222 I9C(CH3)3 207.1 I9CH2CF3 234(4) I9CF2CH3 216(4) I9C3F7 209(4) I9CH"CHCH3 172 I9C6H5 268(4) I9C6F5 276 I9Cl 213.3(4) I9COCH3 219.7 I9CN 305(4) I9F 280(4) I9N 159(17) I9NO 71(4) I9NO2 75(4) I9O 184(21) Iridium Ir9O 352(21) Ir9Si 463(21) Iron Fe9Fe 100(21) Fe9Br 247(96) Fe9Cl ca. 352 Fe9O 409(13) Fe9S 339(21) Fe9Si 297(25) Krypton Kr9Kr 5.4(8) Kr9F 54 Lanthanum La9La 247(21) La9C 506(63) La9F 598(42) La9N 519(42) La9O 799(13) La9S 577(25) Lead Pb9Pb 339(25) Pb9Br 247(38) Pb(CH3)39CH3 207(42) Pb9Cl 301(29) Pb9F 356(8) Pb9H 176(21) Pb9I 197(38) Pb9O 378(4) Pb9S 346.0(17) Pb9Se 303(4) Pb9Te 251(13) Lithium Li9Li 106(4) Li9Br 423(21) Li9Cl 469(13) Li9F 577(21) Li9H 247 Li9I 352(13) Li9Na 88 Li9O 341(6) Li9OH 427(21) 4.48 SECTION 4 TABLE 4.11 Bond Dissociation Energies (Continued) Bond Hf298, kJ/mol Bond Hf298, kJ/mol Lutetium Lu9Lu 142(34) Lu9F 569(42) Lu9O 695(13) Lu9S 507(15) Lu9Te 326(17) Magnesium Mg9Mg 8.522(4) Mg9Br 297(63) Mg9Cl 318(13) Mg9F 462(21) MgF9F 569(42) Mg9H 197(50) Mg9I ca. 285 Mg9O 394(35) Mg9OH 238(21) Mg9S 310(75) Manganese Mn9Mn 42(29) Mn9Br 314(10) Mn9Cl 361(10) Mn9F 423(15) Mn9I 283(10) Mn9Cu 159(17) Mn9O 402(34) Mn9S 301(17) Mn9Se 201(13) Mercury Hg9Hg 17.2(21) Hg9Br 72.8(42) CH39HgCH3 240.6 C2H59HgC2H5 182.8(42) C3H79HgC3H7 197.1 Isopropyl9Hgisopropyl 170.3 C6H59HgC6H5 285 Hg9Cl 100(8) Hg9F 130(38) Hg9H 39.8 Hg9I 38 Hg9K 8.24(21) Hg9Na 6.7 Hg9S 213 Hg9Se (167) Hg9Te (142) Molybdenum Mo9I 372 Mo9O 607(34) MoO9O 678(84) MoO29O 565(84) Neodymium Nd9F 545(13) Nd9O 703(34) Nd9S 474(15) Nd9Se 385(17) Nd9Te 305(17) Neon Ne9Ne 3.93 Neptunium Np9O 720(29) Nickel Ni9Ni 261.9(25) Ni9Br 360(13) Ni9Cl 372(21) Ni9F 435 Ni9H 289(13) Ni9I 293(21) Ni9O 391.6(38) Ni9S 360(21) Ni9Si 318(17) Niobium Nb9O 753(13) Nitrogen N9N 945.33(59) N9Br 276(21) ON9Br 28.7(15) N9Cl 389(50) ON9Cl 159(6) O2N9Cl 142(4) N9F 301(42) FN9F 318(21) F2F9N 243(8) ON9F 236(4) O2N9F 188(21) PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.49 TABLE 4.11 Bond Dissociation Energies (Continued) Bond Hf298, kJ/mol Bond Hf298, kJ/mol Nitrogen (continued) N9I 159(17) F2N9NF2 88(4) H2N9NH2 297(8) H2N9NHCH3 271 H2N9N(CH3)2 264 H2N9NHC6H5 213 HN9N2 38 ON9N 480.7(42) ON9NO2 39.8(8) O2N9NO2 57.3(21) HN"NH 456(42) N#N 946 N9O 630.57(13) HN"O 481 NN9O 167 ON9O 305 N9P 617(21) N9S 464(21) Osmium O3Os9O 301(21) Oxygen O9O 498.34(20) O9Br 235.1(4) HO9CH3 377(13) HO9CH"CH2 364 HO9CH2CH"CH2 456 HO9C6H5 431 HO9CH2C6H5 322 HO9CHO 402(13) HO9COCH3 452(21) HO9COC2H5 180 O9Cl 272(4) HO9Cl 251(13) O9F 222(17) O9FO 467 FO9OF 261(84) O9I 184(21) HO9I 234(13) O9N 630.57(13) HO9NCH3 209 HO9OC(CH3)3 192(8) HO9OH 213.8(21) O9OH 268(4) CF3O9OCF3 192 CH3O9OCH3 157.3(8) Oxygen (continued) C2H5O9OC2H5 159 C3H7O9OC3H7 155 Palladium Pd9O 234(29) Phosphorus P9P 490(11) P9Br 266.5 P9C 513(8) P9Cl 289(42) P9F 439(96) P9H 343(29) P9N 617(21) P9O 596.6 Br3P"O 498(21) Cl3P"O 510(21) F3P"O 544(21) P9S 346.0(17) P"S 347 P9Se 363(10) P9Te 298(10) Platinum Pt9B 478(17) Pt9H 352(38) Pt9O 347(34) Pt9P 417(17) Pt9Si 501(18) Potassium K9K 57.3(42) K9Br 383(8) K9Cl 427(8) K9F 497.5(25) K9H 183(15) K9I 331(13) K9Na 63.6(29) K9O 239(34) K9OH 343(8) Praseodymium Pr9F 582(46) Pr9O 753(17) Pr9S 492.5(46) 4.50 SECTION 4 TABLE 4.11 Bond Dissociation Energies (Continued) Bond Hf298, kJ/mol Bond Hf298, kJ/mol Praseodymium (continued) Pr9Se 446(23) Pr9Te 326(42) Promethium Pm9F 540(42) Pm9O 674(63) Pm9S 423(63) Pm9Se 339(63) Pm9Te 255(63) Radium Ra9Cl 343(75) Rhodium Rh9Rh 285(21) Rh9B 476(21) Rh9C 583.7(63) Rh9O 377(63) Rh9Si 395(18) Rh9Ti 391(15) Rubidium Rb9Rb 45.6(21) Rb9Br 389(13) Rb9Cl 448(21) Rb9F 494(21) Rb9H 167(21) Rb9I 335(13) Rb9O 255(84) Rb9OH 351(8) Ruthenium Ru9O 481(63) O3Ru9O 439 Ru9Si 397(21) Ru9Th 592(42) Samarium Sm9Cl 423(13) Sm9F 531(18) Sm9O 619(13) Sm9S 389 Sm9Se 331(15) Sm9Te 272(15) Scandium Sc9Sc 163(21) Sc9Br 444(63) Sc9C 393(63) Sc9Cl 318 Sc9F 589(13) Sc9N 469(84) Sc9O 674(13) Sc9S 478(13) Sc9Se 385(17) Sc9Te 289(17) Selenium Se9Se 332.6(4) Se9Br 297(84) Se9C 582(96) Se9Cl 322 Se9F 339(42) Se9H 305(2) Se9N 381(63) Se9O 423(13) Se9P 364(10) Se9S 381(21) Se9Si 531(25) Se9Te 268(8) Silicon Si9Si 327(10) Si9Br 343(50) Si9C 435(21) Si9Cl 456(42) Si9F 540(13) Si9H 298.49(46) Si9I 339(84) Si9N 439(38) Si9O 798(8) Si9S 619(13) Si9Se 531(25) H3Si9SiH3 339(17) (CH3)3Si9Si(CH3)3 339 (Aryl)3Si9Si(aryl)3 368(31) Si9Te 506(38) Silver Ag9Ag 163(8) Ag9Au 203(9) Ag9Bi 193(42) PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.51 TABLE 4.11 Bond Dissociation Energies (Continued) Bond Hf298, kJ/mol Bond Hf298, kJ/mol Silver (continued) Ag9Br 293(29) Ag9Cl 341.4 Ag9Cu 176(8) Ag9F 354(16) Ag9Ga 180(15) Ag9Ge 175(21) Ag9H 226(8) Ag9I 234(29) Ag9In 176(17) Ag9O 213(84) Ag9Sn 136(21) Ag9Te 293(96) Sodium Na9Na 77.0 Na9Br 370(13) Na9Cl 410(8) Na9F 481(8) Na9H 201(21) Na9I 301(8) Na9K 63.6(29) Na9O 257(17) Na9OH 381(13) Na9Rb 59(4) Strontium Sr9Br 332(19) Sr9Cl 406(13) Sr9F 542(7) Sr9H 163(8) Sr9I 263(42) Sr9O 454(15) Sr9OH 381(42) Sr9S 314(21) Sulfur S9S 429(6) S9Cl 255 S9F 343(5) O2S9F 71 S9N 464(21) S9O 521.70(13) OS9O 551.4(84) O2S9O 348.1(42) HS9SH 272(21) Tantalum Ta9N 611(84) Ta9O 805(13) Tellurium Te9B 354(20) Te9H 268(2) Te9I 193(42) Te9O 391(8) Te9P 298(10) Te9S 339(21) Te9Se 268(8) Terbium Tb9F 561(42) Tb9O 707(13) Tb9S 515(42) Tb9Te 339(42) Thallium Tl9Tl 63 Tl9Br 333.9(17) Tl9Cl 372.8(21) Tl9F 445(19) Tl9H 188(8) Tl9I 272(8) Thorium Th9Th 289 Th9C 484(25) Th9N 577.4(21) Th9O 854(13) Th9P 377 Thullium Tm9F 569(42) Tm9O 557(13) Tm9S 368(42) Tm9Se 276(42) Tm9Te 276(42) Tin Sn9Sn 195(17) Sn9Br 339(4) 4.52 SECTION 4 TABLE 4.11 Bond Dissociation Energies (Continued) Bond Hf298, kJ/mol Bond Hf298, kJ/mol Tin (continued) BrSn9Br 326 Br3Sn9Br 272 (C2H5)3Sn9C2H5 ca. 238 Sn9Cl 406(13) Sn9F 467(13) Sn9H 267(17) Sn9I 234(42) Sn9O 548(21) Sn9S 464(3) Sn9Se 401.3(59) Sn9Te 319.2(8) Titanium Ti9Ti 141(21) Ti9Br 439 Ti9C 435(25) Ti9Cl 494 Ti9F 569(34) Ti9H ca. 159 Ti9I 310(42) Ti9N 464 Ti9O 662(16) Ti9S 426(8) Ti9Se 381(42) Ti9Te 289(17) Tungsten W9Cl 423(42) W9F 548(63) W9O 653(25) OW9O 632(84) O2W9O 598(42) W9P 305(4) Uranium U9O 761(17) OU9O 678(59) O2U9O 644(88) U9S 523(10) Vanadium V9V 242(21) V9Br 439(42) V9C 469(63) Vanadium (continued) V9Cl 477(63) V9F 590(63) V9N 477(8) V9O 644(21) V9S 490(16) V9Se 347(21) Xenon Xe9Xe 6.53(30) Xe9F 13.0(4) Xe9O 36.4 Ytterbium Yb9Cl 322 Yb9F 521(10) Yb9H 159(38) Yb9O 397.9(63) Yb9S 167 Yttrium Y9Y 159(21) Y9Br 485(84) Y9C 418(63) Y9Cl 527(42) Y9F 605(21) Y9N 481(63) Y9O 715.1(30) Y9S 528(11) Y9Se 435(13) Y9Te 339(13) Zinc Zn9Zn 29 Zn9Br 142(29) C2H5C9C2H5 ca. 201 Zn9Cl 229(20) Zn9F 368(63) Zn9H 85.8(21) Zn9I 138(29) Zn9O 284.1 Zn9S 205(13) Zn9Se 136(13) Zn9Te 205 PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.53 TABLE 4.11 Bond Dissociation Energies (Continued) Bond Hf298, kJ/mol Bond Hf298, kJ/mol Zirconium Zr9C 561(25) Zr9F 623(63) Zr9N 565(25) Zirconium (continued) Zr9O 760(8) Zr9S 575(17) Source: T. L. Cottrell, The Strengths of Chemical Bonds, 2d ed., Butterworth, London, 1958; B. deB. Darwent, National Standard Reference Data Series, National Bureau of Standards, no. 31, Washington, 1970; S. W. Benson, J. Chem. Educ.
42:502 (1965); and J. A. Kerr, Chem. Rev. 66:465 (1966).
4.6 BOND AND GROUP DIPOLE MOMENTS All bonds between equal atoms are given zero values. Because of their symmetry, methane and ethane molecules are nonpolar. The principle of bond moments thus requires that the CH3 group moment equal one H9C moment. Hence the substitution of any aliphatic H by CH3 does not alter the dipole moment, and all saturated hydrocarbons have zero moments as long as the tetrahedral angles are maintained.
TABLE 4.12 Bond Dipole Moments Bond Moment, D Bond Moment, D H9C Aliphatic 0.3 Aromatic 0.0 C9C 0.0 C#C 0.0 C9O Ether, aliphatic 0.74 Alcohol, aliphatic 0.7 C"O Aliphatic 2.4 Aromatic 2.65 O9H 1.51 C9S 0.9 C"S 2.0 S9H 0.65 S9O (0.2) S"O Aliphatic 2.8 Aromatic 3.3 C9N, aliphatic 0.45 C"N 1.4 C#N (nitrile) 3.6 NC (isonitrile) 3.0 N9H 1.31 N9O 0.3 N"O 2.0 N (lone pair on sp3 N) 1.0 C9P, aliphatic 0.8 P9O (0.3) P"O 2.7 P9S 0.5 P"S 2.9 B9C, aliphatic 0.7 B9O 0.25 Se9C 0.7 Si9C 1.2 Si9H 1.0 Si9N 1.55 To convert debye units D into coulomb-meters, multiply by 30 3.33564 10 .
4.54 SECTION 4 TABLE 4.12 Bond Dipole Moments (Continued) Bond Moment, D Bond Moment, D H9Sb 0.08 H9As 0.10 H9P 0.36 H9I 0.38 H9Br 0.78 H9Cl 1.08 H9F 1.94 C9Te 0.6 N9F 0.17 P9I 0.3 P9Br 0.36 P9Cl 0.81 As9I 0.78 As9Br 1.27 As9Cl 1.64 As9F 2.03 Sb9I 0.8 Sb9Br 1.9 Sb9Cl 2.6 S9Cl 0.7 Cl9O 0.7 I9Br 1.2 I9Cl 1 Br9Cl 0.57 Br9F 1.3 Cl9F 0.88 Li9C 1.4 K9Cl 10.6 K9F 7.3 Cs9Cl 10.5 Cs9F 7.9 Dative (coordination) bonds N : B 2.6 O : B 3.6 S : B 3.8 P : B 4.4 N : O 4.3 P : O 2.9 S : O 3.0 As : O 4.2 Se : O 3.1 Te : O 2.3 P : S 3.1 P : Se 3.2 Sb : S 4.5 To convert debye units D into coulomb-meters, multiply by 30 3.33564 10 .
TABLE 4.13 Group Dipole Moments Group Moment, D Aromatic C9X Aliphatic C9X C9CH3 0.37 0.0 C9C2H5 0.37 0.0 C9C(CH3)3 0.5 0.0 C9CH"CH2 0.4 0.6 C9C#CH 0.7 0.9 C9F 1.47 1.79 To convert debye units D into coulomb-meters, multiply by 30 3.33564 10 .
The group moment always includes the C9X bond. When the group is attached to an aromatic system, the moment contains the contributions through resonance of those polar structures postulated as arising through charge shifts around the ring.
All values for bond and group dipole moments in Tables 4.12 and 4.13 were obtained in benzene solutions.
PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.55 TABLE 4.13 Group Dipole Moments (Continued) Group Moment, D Aromatic C9X Aliphatic C9X C9Cl 1.59 1.87 C9Br 1.57 1.82 C9I 1.40 1.65 C9CH2F 1.77 C9CF3 2.54 2.32 C9CH2Cl 1.85 1.95 C9CHCl2 2.04 1.94 C9CCl3 2.11 1.57 C9CH2Br 1.86 1.96 C9C#N 4.05 3.4 C9NC 3.5 3.5 C9CH2CN 1.86 2.0 C9C"O 2.65 2.4 C9CHO 2.96 2.49 C9COOH 1.64 1.63 C9CO9CH3 2.96 2.49 C9CO9OCH3 1.83 1.75 C9CO9OC2H5 1.9 1.8 C9OH 1.6 1.7 C9OCH3 1.28 1.28 C9OCF3 2.36 C9OCOCH3 1.69 C9OC6H5 1.16 1.16 C9CH2OH 1.58 1.68 C9NH2 1.53 1.46 C9NHCH3 1.71 C9N(CH3)2 1.58 0.86 C9NHCOCH3 3.69 C9N(C6H5)2 (0.3) 0.3 C9NCO 2.32 2.8 C9N3 1.44 C9NO 3.09 C9NO2 4.01 2.70 C9CH2NO2 3.3 3.4 C9SH 1.22 1.55 C9SCH3 1.34 1.40 C9SCF3 2.50 C9SCN 3.59 3.6 C9NCS 2.9 3.3 C9SC6H5 1.51 1.5 C9SF5 3.4 C9SOCF3 3.88 (C9)2SO2 5.05 4.53 (C9)2SO2CH3 4.73 (C9)2SO2CF3 4.32 C9SeH 1.08 C9SeCH3 1.31 1.32 C9Si(CH3)3 0.44 0.4 To convert debye units D into coulomb-meters, multiply by 30 3.33564 10 .
4.56 SECTION 4 4.7 MOLECULAR GEOMETRY TABLE 4.14 Spatial Orientation of Common Hybrid Bonds On the assumption that the pairs of electrons in the valency shell of a bonded atom in a molecule are arranged in a definite way which depends on the number of electron pairs (coordination number), the geometrical arrange-ment or shape of molecules may be predicted. A multiple bond is regarded as equivalent to a single bond as far as molecular shape is concerned.
Coordination Number Orbitals Hybridized Geometrical Arrangement Minimum Radius Ratio sp dp Linear 2 p2 ds d2 Bent (angular) 3 sp2 ds2 Trigonal planar 0.155 p3 d2p Trigonal pyramidal sp2d p2d2 Square planar 4 sp3 d3s Tetrahedral 0.225 d4 Tetragonal pyramidal 5 sp3d d3sp Trigonal bipyramidal 0.155 6 d2sp3 Octahedral 0.414 d4sp Trigonal prism 7 One atom above the face of an octahedron, which is distorted chiefly by separating the atoms at the cor-ners of this face.
0.592 8 d4sp3 Square antiprism (dodec-ahedral) 0.645 Cube 0.732 9 Formed by adding atoms beyond each of the vertical faces of a right triangular prism.
0.732 12 Cube-octahedron 1.000 PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.57 FIGURE 4.1 Crystal lattice types.
4.58 SECTION 4 TABLE 4.15 Crystal Structure Unit cells of the different lattice types in each system are illustrated in Fig. 4.1.
System Characteristics Essential Symmetry Axes in Unit Cell Angles in Unit Cell Cubic Three axes equal and mutually perpendicular Four threefold axes a b c 90 Tetragonal Two equal axes and one un-equal axis mutually perpen-dicular One fourfold axis a b c 90 Orthorhombic (or rhom-bic) Three unequal axes mutually perpendicular Three mutually perpendicular twofold axes, or two planes inter-secting in a two-fold axis a b c 90 Hexagonal or trigonal Three equal axes inclined at 120 with a fourth axis un-equal and perpendicular to the other three One sixfold axis or one threefold axis a b c a b c 90; 120 90 Monoclinic Two axes at an oblique angle with a third perpendicular to the other two One twofold axis or one plane a b c 90; 90 Triclinic Three unequal axes intersecting obliquely No planes or axes of symmetry a b c 90 Rhombohedral Two equal axes making equal angle with each other 4.8 NUCLIDES TABLE 4.16 Table of Nuclides Explanation of Column Headings Nuclide. Each nuclide is identified by element name and the mass number A, equal to the sum of the numbers of protons Z and neutrons N in the nucleus. The m following the mass number (for example, 69mZn) indicates a metastable isotope. An asterisk preceding the mass number indicates that the radionuclide occurs in nature.
Half-life. The following abbreviations for time units are employed: y years, d days, h hours, min minutes, s seconds, ms milliseconds, and ns nanoseconds.
Natural abundance. The natural abundances listed are on an “atom percent” basis for the stable nuclides present in naturally occurring elements in the earth’s crust.
Thermal neutron absorption cross section. Simply designated “cross section,” it represents the ease with which a given nuclide can absorb a thermal neutron (energy less than or equal to 0.025 eV) and become a different nuclide. The cross section is given here in units of barns (1 barn 1024 cm2). If the mode of reaction is other than (n,), it is so indicated.
Major radiations. In the last column are the principal modes of disintegration and energies of the radiations in million electronvolts (MeV). Symbols used to represent the various modes of decay are: , alpha particle emission K, electron capture , beta particle, negatron IT, isomeric transition , positron x, X-rays of indicated element (e.g., O-x, , gamma radiation oxygen X-rays, and the type, K or L) For and , values of Emax are listed. Radiation types and energies of minor importance are omitted unless useful for identification purposes. For detailed decay schemes the literature should be consulted.
PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.59 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Hydrogen 1 99.985(1) 0.332(2) 2 0.015(1) 0.000 52(1) 3 12.32 y (0.0186) Beryllium 7 53.28 d K, (0.478) 9 100 0.008(1) 10 1.52 l06 y (0.555) Boron 10 19.9(2) 3837(10)(n, ) 11 80.1(6) 0.005(3) Carbon 11 20.3 min (0.961) 12 98.89(1) 0.0035(1) 14 5715 y (0.156) Nitrogen 13 9.965 min (1.190) 14 99.634(9) 1.8(1)(n, p) Oxygen 15 122.2 s (2.754) 19 26.9 s (4.82); (0.197, 1.357) Fluorine 18 1.8295 h (0.635); K, O-x 19 100 0.0095(7) (2.754) 20 11.00 s (5.40); (1.63) Sodium 22 2.605 y 2800.(300)(n, p) (0.545, 1.83); K, Ne-x, (1.275) 23 100 0.53 24 14.659 h (1.39); (2.75, 1.37) Magnesium 24 78.89(3) 0.053(6) 25 10.00(1) 0.17(5) 27 9.45 min 0.07(2) (1.75, 1.59); (0.844, 1.014) 28 20.90 h (0.459); (1.342, 0.942, 0.401, 0.031) Aluminum 26 7.1 105 y (1.16); K, Mg-x; (1.809) 27 100 0.230(2) 28 2.25 min (2.865); (1.778) Silicon 28 92.23(2) 0.17(1) 29 4.67(2) 0.12(1) 30 3.10(1) 0.107(4) 31 2.62 h 0.073(6) (1.471); (1.266) 32 1.6 102 y (0.213) Phosphorus 30 2.50 min (3.245) 31 100 0.16(2) 32 14.28 d (1.710) 33 25.3 d (0.249) Sulfur 32 95.02(9) 0.55(2) 34 4.21(8) 0.29(6) 35 87.51 d (0.167) 37 5.05 min (4.75, 1.64); (3.103, 0.908) 38 2.84 h (1.00, 3.0); (1.942, 0.196) 4.60 SECTION 4 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Chlorine 35 75.77(5) 43.7(4) 36 3.01 105 y 46.(2) (0.709); K, S-x 37 24.23(5) 0.4 38 37.24 min (4.91, 1.11, 2.77); (2.168, 1.642) 39 55.6 min (1.91, 2.18, 3.45); (1.267, 0.250, 1.52) Argon 37 35.0 d K, Cl-x 39 268 y (0.565) 40 99.600(3) 0.64(3) 41 1.82 h 0.5(1) (1.20, 2.49); (1.29) 42 33 y (0.60) Potassium 39 93.258(4) 2.1(2) 40 1.26 109 y 0.0117(1) 30.(8) (1.312); K, Ar-x; (1.461) 41 6.730(4) 1.46(3) 42 12.360 h (3.523, 1.97); (1.525) 43 22.3 h (0.825, 0.45, 1.24, 1.814); (0.618, 0.373, 0.39, 0.221) Calcium 40 96.941(18) 0.41(3) 42 1.02 105 y 4 43 0.135(6) 6.(1) 44 2.086(12) 0.8(2) 45 162.7 d 15 (0.257) 47 4.536 d (1.98, 0.684); (1.297) 49 8.72 min (1.95, 0.89); (3.084, 4.07) Scandium 42m 61.6 s (2.82); (0.438, 1.227, 1.524) 43 3.89 h (1.22) 44m 2.442 d IT, Sc-x; (0.271) 44 3.927 h (1.47); K, (1.16) 45 100 27 46m 19.5 s (0.142) 46 83.81 d 8.(1) (0.357); (1.12, 0.889); Ti-x 47 3.341 d (0.439, 0.60); (0.159) 48 1.821 d (0.65); (1.31, 1.04, 0.984) Titanium 44 47.3 y K, (0.68, 0.078) 45 3.08 h (1.044); K, Sc-x 48 73.72(3) 7.9(9) 49 5.41(2) 1.9(5) 50 5.18(2) 0.179(3) 51 5.76 min (2.14, 1.50); (0.320, 0.928) Vanadium 48 16.0 d (0.698); (0.511, 0.945, 0.983, 1.312, 2.24) PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.61 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Vanadium 49 330 d K, Ti-x (cont.) 50 1.4 1017 y 0.250(2) 40.(20) 51 99.750(2) 4.9(1) 52 3.75 min (2.47); (1.434) Chromium 48 21.6 h K, V-x; (0.116, 0.305) 50 4.345(13) 15.(1) 51 27.70 d K, V-x; (0.320) 52 83.79(2) 0.8(1) 53 9.50(2) 18.(2) Manganese 51 46.2 min (2.2); (0.749, 1.15) 52 5.60 d (0.575); (0.511, 0.744, 1.434) 53 3.7 106 y 70.(10) 54 312.2 d 10 (0.834) 55 100 13.3(1) 56 2.5785 h (1.028, 1.03, 0.718); (0.847, 1.81, 2.11) Iron 52 8.275 h (0.804); K, Mn-x; (0.169) 54 5.85(4) 2.7(5) 55 2.73 y 13.(2) K, Mn-x 56 91.75(4) 2.6(2) 57 2.12(1) 2.5(5) 59 44.51 d 13.(3) (0.273, 0.475); (1.10, 1.29) Cobalt 55 17.53 h (1.04, 1.50); K, Fe-x; (0.932, 0.480, 1.41) 56 77.3 d (1.46); K, Fe-x; (0.847, 1.04, 1.24, 1.77, 2.60, 3.26, 2.02) 57 271.77 d K, Fe-x; (0.136, 0.122) 58m 9.1 h 1.4(1) 105 (0.025) 58 70.88 d 1.9(2) 103 K, (0.474); Fe-x; (0.811) 59 100 19 60m 10.47 min 58.(8) (1.55) 60 5.271 y 2.0(2) (0.318); (1.173, 1.332) 61 1.650 h (1.22); (0.842– 0.909) Nickel 56 6.08 d K, Co-x; (0.158, 0.270, 0.480, 0.75, 0.812, 1.56) 57 35.6 h K, (0.849, 0.712); Co-x, (1.378, 0.0127, 1.76) 58 68.077(9) 4.6(4) 60 26.22(1) 2.9(3) 63 100 y 24.(3) (0.067) 4.62 SECTION 4 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Nickel (cont.) 64 0.926(1) 1.8(1) 65 2.517 h 22.(2) (2.14, 0.65, 1.020); (1.48, 0.366, 1.116) 66 2.275 d (0.23) Copper 61 3.408 h (1.220); K, Ni-x; (0.283, 0.656) 63 69.17(3) 4.5(2) 64 12.701 h 270 (0.578); (0.65); Ni-x; (1.346) 65 30.83(3) 2.17(3) 66 5.07 min 1.4(1) 102 (2.74); (1.039) 67 2.580 d (0.395, 0.484, 0.577); (0.185, 0.092) Zinc 62 9.26 h K, (0.66); Cu-x; (0.041, 0.597) 64 48.6(3) 0.46 65 243.8 d 66.(8) K, (0.325), Cu-x; (1.116) 66 27.9(2) 1.0(2) 67 4.1(1) 6.9(1) 68 18.8(4) 0.87 69m 13.76 h IT, Zn-x, (0.439) 69 56 min (0.905) 71m 3.97 h (1.45); (0.386, 0.487, 0.620) 72 46.5 h (0.30, 0.25); (0.145, 0.191) Gallium 66 9.5 h (1.84, 4.153); (1.039, 2.752) 67 3.260 d K, Zn-x; (0.093, 0.184, 0.300) 68 1.130 h (1.83); K, Zn-x; (1.077) 69 60.108(9) 1.68(7) 70 21.1 min (1.65); (0.175, 1.042) 71 39.892(9) 4.7(2) 72 14.10 h (0.64, 1.51, 2.52, 3.15); (0.63, 2.20, 2.50) 73 3.120 d (1.59); (0.053, 0.297) Germanium 66 2.66 h K, (1.02); Ga-x; (0.044, 0.382) 68 270.8 d Ga, K-x 69 1.63 d (0.70, 1.22); (1.107, 0.574) 71 11.2 d Ga-x 72 27.66(3) 0.9(2) 73 7.73(1) 15.(1) 74 35.94(2) 0.3 75 1.380 h (1.19); (0.265, 0.419) PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.63 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Germanium (cont.) 77 11.30 h (0.71, 1.38, 2.19); (0.211, 0.215, 0.264) 78 1.45 h (0.95); (0.277, 0.294) Arsenic 71 2.70 d K, (0.81); Ge-x; (0.175, 1.096) 72 1.083 d (3.339, 2.498, 1.884); K, Ge-x; (0.834, 1.051) 73 80.30 d K, (0.0534, 0.0133) 74 17.78 d (0.94); (0.71, 1.35); (0.596, 0.635) 75 100 4.0(4) 76 1.096 d (2.97, 2.41, 1.79); (0.559, 0.657) 77 38.8 h (0.683); (0.239, 0.250, 0.521) 78 91 min (4.21); (0.614, 0.70, 1.31) Selenium 72 8.40 d K, As-x; (0.046) 73 7.1 h (1.32); (0.361, 0.067) 74 0.89(2) 50.(4) 75 119.78 d K, (0.265, 0.136); As-x 77m 17.5 s (0.162) 77 7.63(6) 42.(4) 80 49.61(10) 0.5 81 18.5 min (1.58); (0.276, 0.290, 0.828) Bromine 75 1.62 h (3.03); (0.287) 76 16.2 h 224.(42) (1.9, 3.68); K, Se-x; (0.559, 1.86) 77 2.376 d (0.239, 0.521) 79 50.69(7) 10.8 80m 4.42 h IT, Br-x; (0.037, 0.049) 80 17.66 min (1.997, 1.38); K, (0.85), Se-x; (0.617) 81 49.31(7) 2.6 82 1.4708 d (0.444); (0.554, 0.619, 0.776) Krypton 76 14.8 h K, (0.252) 77 1.24 h (1.875, 1.700, 1.550); K, Br-x; (0.130, 0.147) 79 1.455 d (1.626); (0.261, 0.398, 0.606) 81m 13 s IT, Kr-x; (0.190) 81 2.10 105 y K, Br-x; (0.276) 83 11.5(1) 183.(30) 84 57.0(3) 0.10 85m 4.48 h (0.83); (0.151, 0.305) 4.64 SECTION 4 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Krypton 85 10.72 y (0.67); (0.517) (cont.) 87 1.27 h (3.49, 0.389, 1.38); (0.403, 2.55) 88 2.84 h (2.91); (0.196, 2.392) Rubidium 84 32.9 d (0.894); (2.681); (0.882) 85 72.17(2) 0.5 86 18.65 d 20 (1.775); (1.08) 87 4.88 1010 y 27.83(2) 0.10(1) (0.283) 88 17.7 min 1.2(3) (5.31); (1.836, 0.898) 89 15.4 min (1.26, 2.2, 4.49); (1.032, 1.248, 2.196) Strontium 82 25.36 d K, Rb-x 85m 1.126 h K, Rb-x, Sr-x; (0.150, 0.231) 85 64.84 d K, Rb-x; (0.514) 87m 2.795 h IT, (0.388) 88 82.58(1) 0.0058(4) 89 50.52 d 0.42(4) (1.497); (0.909) 90 29.1 y 0.0097(7) (0.546) 91 9.5 h (1.09, 1.36, 2.66); (0.556, 0.750, 1.024) 92 2.71 h (0.55, 1.5); (1.383) Yttrium 85m 4.86 h (2.24); K, Sr-x; (0.767, 0.232, 2.124) 85 2.68 h (1.58, 1.15); K, Sr-x; (0.504, 0.232) 86 14.74 h (5.24); (0.307, 0.628, 1.077, 1.153, 1.921) 87m 12.9 h Y-x; (0.381) 88 106.6 d (0.76); (0.898, 1.836, 2.734, 3.219) 90 2.67 d 7 (2.28); (2.186) 91m 49.71 min Y-x; IT; (0.556) 91 58.5 d 1.4(3) (1.545); (1.21) 92 3.54 h (3.64); (0.448, 0.561, 0.934, 1.405) 93 10.2 h (2.88); (0.267, 0.947, 1.918) Zirconium 86 16.5 h K, Y-x; (0.243, 0.612) 87 1.73 h (2.260); K, Y-x; (0.381, 1.228) 88 83.4 d K, Y-x; (0.393) 89 3.27 d K, (0.897); Y-x; (0.909) 91 11.22(4) 1.2(3) 93 1.5 106 y (0.091) 95 64.02 d (0.366, 0.400); (0.724, 0.757) 97 16.90 h (1.91); (0.743) PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.65 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Niobium 89 2.03 h (3.320); (1.627) 90 14.60 h (1.50); K, Zr-x; (0.141, 1.129, 2.186, 2.319) 91m 62 d IT, Nb-x; (0.1045, 1.205) 91 700 y Mo-x 92m 10.15 d K, (0.913, 0.934, 1.848) 93m 16.1 y Nb-x 93 100 1.1 94m 6.26 min (0.871) 94 2.4 104 y (0.473); (0.703, 0.871) 95m 3.61 d (0.204, 0.236) 95 35.0 d 7 (0.160); (0.765) 96 23.4 h (0.748, 0.500); (0.778, 1.091) 97m 58.1 s IT; (0.766) 97 1.23 h (1.267); (0.481, 0.658) Molybdenum 90 5.67 h K, (1.085); Nb-x; (0.122, 0.257) 93m 6.85 h IT, Mo-x; (0.264, 0.685, 1.477) 95 15.92(5) 13.4(5) 97 9.55(3) 2.5(3) 98 24.13(7) 0.14(1) 99 2.75 d (1.357); Tc-x; (0.181, 0.366, 0.739) 101 14.6 min (2.23, 0.7); (0.192, 0.591) Technetium 93 2.73 h (0.81); (1.363, 1.477, 1.520) 94 4.88 h (4.256); (0.449, 0.703, 0.850, 0.871) 95m 61 d (0.71); (0.204, 0.582, 0.835) 95 20.0 h K, Mo-x; (0.766, 1.074) 96 4.3 d K, Mo-x; (0.778, 0.813, 0.850, 1.122) 97m 90 d K, Tc-x; (0.0965) 97 2.6 106 y K, Mo-x 98 4.2 106 y (0.40); (0.652, 0.745) 99m 6.012 h IT, Tc-x; (0.141, 0.143) 99 2.13 105 y 20 (0.292) Ruthenium 95 1.64 h (1.20, 0.91); (0.290, 0.336, 0.627) 97 2.88 d K, Tc-x; (0.216, 0.324, 0.461) 100 12.6(1) 5.8(6) 4.66 SECTION 4 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Ruthenium 101 17.0(1) 5.(1) (cont.) 102 31.6(2) 1.2(1) 103 39.27 d 20 (0.12, 0.223); (0.295, 0.4444, 0.497, 0.557, 0.610) 105 4.44 h (1.187, 0.11, 1.134); (0.149, 0.263, 0.317, 0.469, 0.676, 0.724) 106 1.020 y (0.0394) Rhodium 99m 4.7 h (0.74); (0.277, 0.341, 0.618, 1.261) 99 16 d (0.54, 0.68); (0.089, 0.353, 0.528) 100 20.8 h (2.62, 2.07); (0.446, 0.540, 0.588, 0.823, 1.553, 2.376) 101m 4.35 d K, IT, Ru-x, Rh-x; (0.127, 0.307, 0.545) 101 3.3 y K, Ru-x; (0.127, 0.198, 0.325) 102m 207 d (1.15); (1.29, 0.82); (0.469, 0.475, 0.557, 0.628, 1.103) 102 2.9 y K, Ru-x; (0.475, 0.631, 0.697, 0.767, 1.047, 1.103) 103m 56.12 min IT, Rh-x, (0.0.040) 103 100 145 104m 4.36 min 800.(100) (0.051, 0.097, 0.556) 104 42.3 s 40.(30) (2.44), (0.358, 0.556, 1.237) 105m 40 s IT, Rh-x; (0.130) 105 35.4 h 1.1(3) 104 (0.567, 0.247); (0.280, 0.306, 0.319) 106m 2.18 h (0.92); (0.222, 0.451, 0.512, 0.616, 0.717, 0.784, 1.046, 1.528) 106 29.80 s (3.54, 3.0, 2.4); (0.512, 0.622) Palladium 100 3.63 d K, Rh-x; (0.0748, 0.0840, 0.0327) 101 8.47 h K, Rh-x; (0.776); (0.296, 0.590) 103 16.99 d K, Rh-x; (0.357, 0.497) 105 22.33(8) 22.(2) 107 6.5 106 y 1.8(2) (0.03) 108 26.46(9) 8.7 109 13.5 h (1.028); Ag-x; (0.088, 0.311, 0.636) PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.67 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Palladium (cont.) 111m 5.5 h (0.35, 0.77); (0.070, 0.172, 0.391) 111 23.4 min (2.2); (0.060, 0.245, 0.580, 0.650, 1.389, 1.459) 112 21.4 h (0.28); (0.018) Silver 103 1.10 h (1.7, 1.3); (0.119, 0.148) 104 69 min (0.99); (0.556, 0.926, 0.942) 105 41.29 d K, Pd-x; (0.064, 0.280, 0.344, 0.443) 106m 8.4 d K, Pd-x; (0.451, 0.512, 0.717, 1.046) 107m 44.2 s K, Ag-x; (0.093) 107 51.839(7) 35 108m 130 y (0.434, 0.614, 0.723) 108 2.42 min (1.65); (0.90); (0.434, 0.619, 0.633) 109 48.161(7) 91 110m 249.8 d 82.(11) (0.087, 0.530); IT, (0.658, 0.764, 0.885, 0.937, 1.384) 111m 1.08 min K, Ag-x; (0.060, 0.245) 111 7.47 d 3.(2) (1.04); (0.245, 0.342) 112 3.13 h (3.94, 3.4); (0.607, 0.617, 1.39) Cadmium 107 6.52 h (0.302); K, Ag-x; (0.093, 0.829) 109 462 d K, Ag-x; (0.088) 111m 48.5 min K, Cd-x; (0.151, 0.245) 111 12.80(8) 24.(3) 113m 14.1 y (0.59); (0.264) 113 9 1015 y 12.22(6) 20 060.(40) 115m 44.6 d (1.62); (0.934, 1.29, 0.485) 115 2.228 d (1.11, 0.593); In-x; (0.231, 0.260, 0.336, 0.492, 0.528) 117m 3.4 h (0.72); (0.159, 0.553); In-x 117 2.49 h (0.67, 2.2); (0.221, 0.273, 0.345, 1.303) Indium 109 4.2 h K, Cd-x; (0.79); (0.203, 0.623) 110m 4.9 h (0.658, 0.885, 0.937) 110 1.15 h (2.22); K, Cd-x; (0.658) 111 2.805 d K, Cd-x; (0.171, 0.245) 4.68 SECTION 4 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Indium 113m 1.658 h IT, In-x; (0.392) (cont.) 114m 49.51 d IT, K, In-x; (0.190) 114 1.1983 min (1.99); K, Cd-x, (0.40); (0.558, 0.573, 1.30) 115m 4.486 h (0.83); K, In-x; (0.336, 0.497) 115 4.4 1014 y 95.71(2) 205 (0.495) 116m 54.1 min (1.00); (0.138, 0.417, 1.09, 1.293) 117m 1.94 h (1.77); (0.159, 0.315, 0.553) 117 44 min (0.74); (0.159, 0.397, 0.553) Tin 110 4.1 h K, In-x; (0.283) 113 115.1 d 9 K, In-x, (0.392, 0.255) 116 14.53(11) 1.1(1) 117m 13.60 d K, Sn-x; (0.159) 119m 293 d K, Se-x; (0.239) 119 8.59(4) 2.(1) 121m 55 y (0.354); K, In-x; (0.0372) 121 1.128 d (0.383) 123 129.2 d (1.42); (0.160, 1.030, 1.089) 125 9.63 d (2.35); (1.067) 127 2.10 h (2.42, 3.2); (0.823, 1.096) Antimony 115 32.1 min (1.51); (0.499) 116m 1.00 h (1.16); (0.407, 0.543, 0.973, 1.293) 117 2.80 h (0.57); (0.159) 118m 5.00 h (0.254, 1.051, 1.280) 118 3.6 min (2.65); (1.230) 119 38.1 h (0.0239) 120 15.89 min (1.72); (0.704, 1.171) 121 57.21(5) 6 122 2.72 d (1.414); (1.980); (0.564, 0.693, 1.141, 1.257) 123 42.7(9) 3.3 124 60.20 d (0.61, 2.301); (0.603, 0.646, 1.69, 0.723) 126 12.4 d (1.9); (0.279, 0.415, 0.666, 0.695, 0.720) 127 3.84 d (0.89, 1.10, 1.50); (0.252, 0.291, 0.412, 0.437, 0.686, 0.784) 128 9.1 h (2.3); (0.215, 0.314, 0.527, 0.743, 0.754) PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.69 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Antimony (cont.) 129 4.40 h (0.65); (0.181, 0.359, 0.460, 0.545, 0.813, 0.915, 1.030) Tellurium 116 2.49 h (0.0937) 117 1.03 h (1.78); (0.920, 1.716, 2.300) 119m 4.69 d (0.154, 0.271, 1.213) 119 16.0 h (0.627; (0.644, 0.700) 121m 154 d (0.212) 121 16.8 d (0.508, 0.573) 123m 119.7 d (0.159) 125 7.139(6) 1.6(2) 127m 109 d (0.77); (0.088) 127 9.35 h (0.696); (0.360) 129m 33.6 d (1.60); (0.460, 0.696) 129 1.160 h (1.453, 0.989); I-x, (0.460, 0.487) 131m 1.35 d (0.42); IT, Te-x, I-x; (0.150, 0.774, 0.794, 0.852) 131 25.0 min (2.14, 1.69, 1.35); I-x; (0.150, 0.453, 0.493) 132 25.0 min (0.215); (0.050, 0.112, 0.228) Iodine 121 2.12 h (1.2); (2.12) 122 3.6 min (3.1); (0.564) 123 13.2 h K, Te-x; (0.159) 124 4.18 d (1.54, 2.14, 0.75); (0.603, 0.723, 1.691) 125 59.4 d 9.(1) 102 K, Te-x; (0.035) 126 13.0 d (1.13); (0.87, 1.25); (0.389, 0.662) 127 100 6.15(10) 128 24.99 min 22.(4) (2.13); (0.443, 0.527) 129 1.7 107 y (0.15); (0.040) 130 12.36 h 18.(3) (1.13); (0.87, 1.25); (0.389, 0.662) 131 8.040 d 0.7 (0.606); (0.284, 0.364, 0.637) 132 208 h (0.80, 1.03, 1.2, 1.6, 2.16); (0.098, 0.506, 0.523, 0.630, 0.651, 0.667, 0.723, 0.955) 133 20.8 h (1.24); (0.511, 0.530, 0.875) 135 6.57 h (0.9, 1.3); (0.418, 0.527, 1.132, 1.260) Xenon 123 2.00 h (1.51); (0.149, 0.178) 125 17.1 h (0.188, 0.243) 4.70 SECTION 4 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Xenon (cont.) 127m 1.15 min (0.127, 0.173) 127 36.4 d (0.172, 0.203, 0.375) 129m 8.89 d (0.040, 0.197) 129 26.4(6) 22.(5) 131m 11.9 d (0.164) 131 21.2(4) 90.(10) 133m 2.19 d (0.233) 133 5.243 d 190.(90) (0.346); Cs-x; (0.081) 135m 15.3 min (0.527) 135 9.1 h (0.91); (0.250, 0.608) Cesium 126 1.64 min (3.4, 3.7); (0.0389, 0.491, 0.925) 127 6.2 h (0.65, 1.06); (0.125, 0.412) 128 3.62 min (2.44, 2.88); (0.443) 129 1.336 d (0.372, 0.412) 132 6.48 d (0.465, 0.630, 0.668) 133 100 28 134m 2.91 h IT, K, Cs-x; (0.127) 134 2.065 y 140.(10) (0.658, 0.089); (0.563, 0.569, 0.605, 0.796) 135 2.3 106 y 8.9(5) (0.205) 136 13.16 d (0.341); (0.341, 0.819, 1.048) 137 30.2 y (0.514); K, Ba-x; (0.662) Barium 126 1.65 h (0.218, 0.234, 0.258) 128 2.43 d (0.273); K, Cs-x 129m 2.17 h (0.177, 0.182, 0.202, 1.459) 129 2.2 h (1.42); (0.129, 0.214, 0.221) 131 11.7 d (0.124, 0.216, 0.496) 133m 1.621 d (0.276) 133 10.53 y 4.(1) (0.081, 0.356) 135m 1.196 d IT, Ba-x; (0.268) 135 6.59(2) 5.8 137 11.23(4) 5.(1) 137m 2.552 min IT, K, Ba-x; (0.662) 138 71.70(7) 0.41(2) 139 1.396 h 5.1 (2.27, 2.14); K, La-x; (0.166, 1.254, 1.421) 140 12.75 d (0.48, 1.02); (0.163, 0.305, 0.537) 142 10.7 min (1.0, 1.1); (0.231, 0.255, 0.309, 1.204) PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.71 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Lanthanum 131 59 min (1.42, 1.94); (0.526, 0.109, 0.366) 132 4.8 h (2.6, 3.2, 3.7); (0.465, 0.567) 133 3.91 h (1.2); (0.279, 0.290, 0.302) 134 6.5 min (2.67); (0.605) 135 19.5 h (0.481) 136 8.87 min (1.8); (0.816) 138 1.06 1011 y 57.(6) 139 99.9098(2) 9.2(2) 140 1.68 d 2.7(3) (1.670, 1.35) 141 3.90 h (2.43) 142 1.54 h (2.11, 2.98, 4.52) Cerium 132 3.5 h (0.154, 0.182) 133 5.4 h (1.3); (0.058, 0.131, 0.472, 0.510) 135 17.7 h (0.8); (0.266, 0.300, 0.607) 137m 1.43 d IT K, Ce-x; (0.169, 0.254) 137 9.0 h (0.447) 139 137.6 d (0.166) 140 88.43(10) 0.58(4) 141 32.50 d (0.436, 0.581); K, Pr-x; (0.145) 142 11.13(10) 0.97(3) 143 1.38 d 6.1(7) (1.404, 1.110); K, Pr-x; (0.293) 144 284.6 d 1.0(1) (0.318, 0.185); K, Pr-x; (0.080, 0.134) Praseodymium 136 13.1 min (2.98); (0.540, 0.552) 137 1.28 h (1.68); (0.434, 0.514, 0.837) 138m 2.1 h (1.65); (0.304, 0.789, 1.038) 139 4.41 h (1.09); (0.255, 1.347, 1.631) 141 100 11.5 142 19.12 h 20.(3) (2.164); (1.576) 143 13.57 d 90.(10) (0.933); (0.742) 145 5.98 h (1.80); (0.073, 0.676, 0.748) Neodymium 139m 5.5 h (1.17); (0.114, 0.738) 141 2.49 h (0.802) 142 27.13(2) 19.(1) 143 12.18(6) 220.(10) 144 2.1 1015 y 23.8(1) 3.6(3) 145 8.3(6) 47.(6) 4.72 SECTION 4 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Neodymium 146 17.19(9) 1.5(2) (cont.) 147 10.98 d 440.(150) (0.805); (0.091, 0.531) 149 1.73 h (1.03, 1.13); (0.211, 0.114) Promethium 143 265 d K, Nd-x; (0.742) 144 360 d K, Nd-x; (0.618, 0.696) 146 5.53 y 8.4(2) 103 K, (0.795); Nd-x; (0.453, 0.75) 147 2.6234 y 180 (0.224); (0.122, 0.197) 148m 41.29 d 106.(8) 102 (0.69, 0.50, 0.40); IT, Pm-x, Sm-x; (0.550, 0.630, 0.726) 148 5.37 d 1000 (1.02, 2.47); (0.550, 0.915, 1.465) 149 2.212 d 14.(2) 102 (1.072, 0.78); (0.286, 0.591, 0.859) 150 2.68 h (1.6, 2.3, 1.8); (0.334, 1.166, 0.132) 151 1.183 d 150 (0.84); (0.168, 0.275, 0.340) Samarium 142 1.208 h (1.0); K, Pr-x 144 3.1(1) 1.6(1) 145 340 d 280.(20) (0.061, 0.492); K, Pm-x 146 1.03 108 y (2.50) 147 1.06 1011 y 15.0(2) 56.(4) (2.23) 148 7 1015 y 11.3(1) 2.4(6) (1.96) 149 1016 y 13.8(1) 401.(6) 102 150 7.4(1) 102.(5) 151 90 y (0.076) 152 26.7(2) 206.(15) 153 1.929 d 420.(180) (0.64, 0.69); (0.103) 154 22.7(2) 7.5(3) 155 22.2 min (1.52); (0.104) 156 9.4 h (0.43, 0.71); (0.166, 0.204) Europium 148 54.5 d (0.92); (0.550, 0.630) 149 93.1 d K, Sm-x; (0.277, 0.328) 150m 12.8 h (1.013); (0.334, 0.407) 150 36 y (0.334, 0.439, 0.584) 151 47.8(5) 9000 152m 9.30 h (1.85); (0.122, 0.841, 0.963) 152 13.48 y 11.(2) 103 K, (1.47, 0.690); K, Gd-x, K, Sm-x; (0.122, 0.344, 1.408) 153 52.2(5) 320.(20) PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.73 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Europium (cont.) 154 8.59 y 1.5(3) 103 (0.27, 0.58, 0.843, 1.87); (0.123, 0.723, 1.274) 155 4.76 y 3.9(2) 103 (0.15); (0.087, 0.105) 156 15.2 d (0.30, 0.49, 1.2, 2.45); (0.089, 0.646, 0.723, 0.812) 157 15.13 h (1.30); (0.064, 0.371, 0.411) 158 45.9 min (2.5); (0.898, 0.944, 0.977) Gadolinium 146 48.3 d (0.35); (0.115, 0.155) 147 1.588 d (0.93); (0.229, 0.370, 0.396, 0.929) 151 124 d (2.73); (0.154, 0.243) 153 241.6 d (0.94, 0.103) 155 14.80(5) 61.(1) 103 157 15.65(3) 2.54(3) 105 158 24.84(12) 2.3(5) 159 18.56 h (0.971); Tb-x; (0.363) 160 21.86(4) 1.5(7) Terbium 158 180 y (0.944, 0.962) 159 100 23.2(5) 160 72.3 d 5.7(11) 102 (0.57, 0.86); (0.299, 0.879, 0.966) Dysprosium 159 144 d 8.(2) 103 K, Tb-x; (0.326) 161 18.9(2) 600.(150) 162 25.5(2) 170.(20) 163 24.9(2) 120.(10) 164 28.2(2) 2000 165 2.33 h 3.5(3) 103 (1.29); Ho-x; (0.095) 165m 1.26 min (0.108, 0.515) Holmium 156 56 min (0.138, 0.267) 159 33.0 min (0.121, 0.132, 0.253, 0.310) 167 3.1 h (0.31, 0.62, 0.96); (0.238, 0.321, 0.347) 165 100 61 166m 1.2 103 y 9.14(65) 103 Er-x; (0.810, 0.712, 0.184) 166 1.117 d (1.855, 1.776); (1.379) Erbium 166 33.6(2) 20 167 22.95(15) 7.(2) 102 168 26.8(2) 2.0(6) 169 9.40 d (0.35) 170 14.9(2) 6.2(2) 4.74 SECTION 4 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Erbium (cont.) 171 7.52 h 370.(40) (1.49); Tm-x; (0.112, 0.296, 0.308) 172 2.05 d (0.28, 0.36); (0.407, 0.610) Thullium 166 7.70 h (0.184, 0.779, 1.273, 2.052) 169 100 106 170 128.6 d 100.(20) (0.968, 0.884) 171 1.92 y 160 (0.096); (0.067) 172 2.65 d (1.79, 1.86); (1.387, 1.466, 1.530, 1.609) 173 8.2 h (0.80, 0.86); (0.399, 0.461) Ytterbium 165 9.9 min (1.58); (1.090) 166 2.363 d (0.184, 0.779, 1.273, 2.052) 169 32.03 d 3.6(3) 103 (0.110, 0.177, 0.198) 171 14.3(2) 50.(10) 173 16.12(21) 16.(2) 174 31.8(4) 120 175 4.19 d (0.466); Lu-x; (0.396) 176 12.7(2) 3.1(2) 177 1.9 h (1.40); K, Lu-x; (0.150) 178 1.23 h (0.25); (0.141, 0.325, 0.352, 0.381, 0.613) Lutetium 164 3.14 min (1.6, 3.8); (0.124, 0.262, 0.740, 0.864, 0.880) 165 16.7 min (2.06); (0.121, 0.132, 0.174, 0.204) 175 97.41(2) 24 176m 3.66 h (1.229, 1.317); Hf-x; (0.0884) 176 3.8 1016 y 2100 (0.202, 0.307) 177 6.75 d 10.(3) 102 (0.497), Hf-x; (0.113, 0.208) Hafnium 178 27.297(4) 85 179 13.629(6) 46 †179m1 18.7 s (0.161, 0.214) †179m2 25.1 d (0.123, 0.146, 0.363, 0.454) 180 35.100(7) 13.(1) 180m 5.519 h IT, Hf-x; (0.215, 0.332, 0.443) 181 42.4 d 30.(25) (0.408); Ta-x; (0.133, 0.346, 0.482) † Two different metastable states possessing the same mass number but different half-lives.
PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.75 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Hafnium (cont.) 183 1.07 h (1.18, 1.54); (0.459, 0.784) 184 4.1 h (0.74, 0.85, 1.10); (0.139, 0.345) Tantalum 181 99.988(2) 20 182m 16.5 min (0.147, 0.172, 0.184) 182 114.43 d 8.2(6) 103 (0.25, 0.44, 0.52); (0.068, 1.121) 183 5.1 d (0.62); (0.108, 0.246, 0.304) 184 8.7 h (1.17); (0.253, 0.414) Tungsten 182 26.50(3) 20.(1) 183 14.31(1) 10.5(3) 184 30.64(1) 2 185 74.8 d 3.3 (0.433); (0.125) 186 28.43(4) 37.(2) 187 23.9 h 70.(10) (1.315, 0.624; K, Re-x; (0.072, 0.480, 0.686) 188 69.4 d (0.349); (0.227, 0.291) Rhenium 182m 12.7 h (0.55, 1.74); (1.121, 1.221) 184 38 d (0.790, 0.903) 185 37.40(2) 110 186 3.718 d (1.07, 0.933); K, W-x, Os-x; (0.123, 0.137, 0.632, 0.768) 187 4.2 1010 62.60(2) 74 188 16.94 h (2.12, 1.96); Os-x; (0.155) 189 24 h (1.01); (0.147, 0.22, 0.245) Osmium 186 2 1015 y 1.58(2) 80 188 13.3(1) 5 190m 9.9 min IT, Os-x; (0.187, 0.361, 0.503, 0.616) 190 26.4(2) 13 191 15.4 d 3.8(6) 102 (0.143); Os-x; (0.129) 192 41.0(3) 3.(1) 193 30.5 h (1.04); Ir-x; (0.139, 0.460) 196 34.9 min (0.84); (0.126, 0.408) Iridium 184 3.0 h (2.3, 2.9); (0.120, 0.264, 0.390) 185 14 h (0.254, 1.829) 186 15.7 h (0.137, 0.296, 0.435) 188 1.72 d (0.155, 0.478, 0.633, 2.215) 4.76 SECTION 4 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Iridium 189 13.2 d K, Os-x; (0.245) (cont.) 190 11.8 d (0.187, 0.407, 0.519, 0.558, 0.605) 191 37.27(9) 920 192 73.83 d (0.672); K, Pt-x; (0.316, 0.468) 193 62.73(9) 116 194 19.3 h 1.5(3) 103 (2.25); (0.294, 0.328, 0.645) 195m 3.9 h (0.41, 0.97); (0.320, 0.365, 0.433, 0.685) Platinum 187 2.35 h (0.105, 0.110, 0.201, 0.285, 0.709) 188 10.2 d (0.188, 0.195) 189 10.89 h K, Ir-x; (0.094, 0.608, 0.721) 194 32.9(6) 1.2 195m 4.02 d IT, Pt-x; (0.099) 195 33.8(6) 28.(1) 196 25.3(6) 55 197m 1.573 h IT, Pt-x; (0.053, 0.346) 197 18.3 h (0.719); K, Au-x; (0.191, 0.269) 199m 14.1 s (0.392) 199 30.8 min 16 (0.90, 1.14); (0.186, 0.317, 0.494, 0.549) 200 12.5 h (0.136, 0.227, 0.244) Gold 197 100 98.7(1) 197m 7.8 s IT, K, Au-x; (0.130, 0.279) 198 2.694 d 26.5(15) 103 (0.961); K, Hg-x; (0.412) 199 3.139 d (0.292, 0.250); K, Hg-x; (0.158, 0.208) 200m 18.7 h (0.56); (0.111, 0.368, 0.498, 0.597, 0.760) 200 48.4 min (2.2); (0.368, 1.225) Mercury 196 0.15(1) 3150 197m 23.8 h IT, K, Hg-x; (0.134) 197 2.6725 d K, Au-x; (0.077) 199m 42.6 min (0.158) 199 16.87(10) 2.1(2) 103 200 23.10(16) 60 202 29.86(20) 4.9(5) 203 46.61 d (0.213); (0.279) Thallium 201 3.040 d K, Hg-x; (0.135, 0.167) 202 12.23 d K, Hg-x; (0.440) 203 29.52(1) 11.(1) 204 3.78 y 22.(2) (0.763); K, Hg-x PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.77 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Thallium 205 70.48(1) 0.11(2) (cont.) 206 4.20 min (1.53); K, Pb-x; (0.803) 207 4.77 min (1.43); (0.897) 208 3.053 min (1.796, 1.28, 1.52); (0.277, 0.511, 0.583, 0.614) 209 2.16 min (1.8); (1.567, 0.465) 210 1.30 min (1.9, 1.3); (0.298, 0.798) Lead 201 9.33 h (0.331, 0.361) 203 2.1615 d (0.279) 204m 1.120 h IT, Pb-x; (0.375, 0.899, 0.912) 207 22.1(1) 0.70(1) 209 3.253 h (0.645) 210 22.6 y (3.72) 211 36.1 min (1.36); (0.405, 0.427, 0.832) 212 10.64 h (0.569, 0.28); Bi-x; (0.239) 214 26.9 min (0.67, 0.73); (0.24, 0.30, 0.352) Bismuth 205 15.31 d (0.703, 1.764) 206 6.243 d (0.516, 0.803, 0.881) 209 100 0.034 210 5.013 d (1.16); (0.266, 0.352) 212 1.0092 h (2.25); (0.288, 0.727, 0.786, 1.621); Tl-x; (6.05, 6.09) 214 19.7 min (3.26); (0.609, 1.120, 1.764) Polonium 204 3.53 h (0.270, 0.884, 1.016) 205 1.7 h (0.837, 0.850, 0.872, 1.001) 206 8.8 d (5.233); (0.286, 0.312, 0.807) 208 2.898 y (5.116) 209 102 y (4.88); IT, K, Bi-x; (0.260, 0.896) 210 138.38 d (5.304); (0.803) 212 298 ns (8.784) 214 0.1637 ms (7.686) 216 145 ms (6.778) 218 3.04 min (5.18) Astatine 207 1.81 h (5.76); (0.168, 0.588, 0.814) 208 1.63 h (5.641); K, Po-x, (0.177, 0.660, 0.685, 0.845, 1.028) 4.78 SECTION 4 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Astatine (cont.) 209 5.41 h (5.65), K, Po-x; (0.545, 0.782, 0.790) 210 8.1 h K, Po-x; (0.245, 0.528, 1.181, 1.437, 1.483) 211 7.214 h (5.87); K, Po-x; (0.669, 0.742) Radon 210 2.4 h (6.039); (0.196, 0.458, 0.571, 0.649) 211 14.68 h (5.784, 5.851); (0.169, 0.250, 0.370, 0.674, 0.678, 1.363) 212 24 min (6.260) 220 55.6 s (6.288) 222 2.8235 d 0.74(5) (5.49); (0.510) Francium 212 20 min (6.41, 6.26); (1.186, 1.275) 220 27.4 s (6.686, 0.641, 6.582); (0.106, 0.154, 0.162) 221 4.8 min (6.341); (0.218, 0.409) 222 14.3 min (0.178) 223 22.0 min (0.117) Radium 224 3.66 d 12.0(5) (5.685, 5.45); K, Rn-x; (0.241, 0.409, 0.650) 226 1599 y 13 (4.78, 4.60); K, Rn-x; (0.186, 0.262) 228 5.76 y 36.(5) (0.0135) Actinium 227 21.77 y 8.8(7) 102 (0.045); (4.95, 4.94); K, Th-x; (0.084, 0.160, 0.270) 228 6.15 h (2.18, 1.85, 1.11); K, Th-x; (0.339, 0.911, 0.969) Thorium 226 30.6 min (6.337, 6.228); (0.206, 0.242) 228 1.913 y 1.2(2) 102 (5.42, 5.34, 5.18); K, Ra-x 230 7.54 104 y 23.4(5) (4.68, 4.62); K, Ra-x; (0.068) 231 1.063 d (0.305, 0.218, 0.138) 232 1.405 1010 y 7.37(4) (4.01, 3.95); (0.059) 233 22.3 min 1.5(1) 103 (1.245); (0.459) 234 24.10 d 1.8(5) (0.198, 0.102); K, Pa-x Protactinium 230 17.4 d 1.5(3) 103 (0.51); (0.444, 0.455, 0.899, 0.952) 231 3.25 104 y 2.0(1) 102 (5.06, 5.03, 5.01, 4.95, 4.73); K, Ac-x; (0.260, 0.284, 0.300, 0.330) PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.79 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Protactinium (cont.) 232 1.31 d 4.6(10) 102 (1.34); (0.109, 0.150, 0.894, 0.969) 233 27.0 d (0.256, 0.15, 0.568); K,L U-x; (0.300, 0.312, 0.341) 234m 1.17 min (2.29); IT, K, U-x 235 24.4 min (1.4) Uranium 230 20.8 d (5.89, 5.82) 232 68.9 y 73.(2) (5.320, 5.263) 233 1.592 105 y 47.(2) (4.825, 4.783); L, Th-x; (0.029, 0.042, 0.055, 0.097, 0.119, 0.146, 0.164, 0.22, 0.291, 0.32) 234 2.454 105 y 0.0055(5) 96.(2) (4.776, 4.723); L, Th-x; (0.121) 235 7.037 108 y 0.720(1) 95.(5) (4.40, 4.37, 4.22); K,L Th-x; (0.14, 0.16, 0.186, 0.20) 237 6.75 d 100 238 4.46 109 y 99.2745(15) 2.7(1) (4.196, 4.147) 239 23.47 min 22.(2) (1.21, 1.29) Neptunium 236 1.55 105 y (0.49), (0.104, 0.160) 237 2.14 106 y 180 (4.79, 4.77); K,L Pa-x 238 2.117 d 51 (1.2); (0.984, 1.029) 239 2.355 d 5.1(2) 102 (0.438, 0.341); (0.228, 0.278) Plutonium 237 45.7 d K,L Np-x 238 87.74 y (5.50, 5.46); K, U-x; (0.0435) 239 2.411 104 y 2.7(1) 102 (5.16, 5.14, 5.11); K, U-x; (0.375, 0.414, 0.129) 240 6.537 103 y 2.9(1) 102 (5.168, 5.124); L, U-x 242 3.763 105 y 19.(1) (4.90, 4.86); (0.045, 0.103) 244 8.2 107 y 1.7(1) (4.59, 4.55); L, U-x 246 10.85 d (0.150, 0.35); (0.224) Americium 241 432.2 y 600 (5.49, 5.44); (0.12, 0.14) 243 7370 y 80 (5.277, 5.234); (0.075) Curium 242 162.8 d 20 (6.113, 6.069); L, Pu-x 243 28.5 y 1.3(1) 102 (5.786, 5.742) 244 18.11 y 15.(1) (5.805, 5.753); (0.099, 1.526) Berkelium 247 1.4 103 y (5.532, 5.678, 5.712) 249 320 d 7.(1) 102 (5.42); (0.125) 250 3.217 h (0.74); (0.989, 1.032) 4.80 SECTION 4 TABLE 4.16 Table of Nuclides (Continued) Element A Half-life Natural abundance, % Cross section, barns Radiation (MeV) Californium 251 900 y 2.9(2) 102 (5.677, 5.851, 6.014) 252 2.645 y 20.(2) (6.118, 6.076); L, Cm-x; (0.043, 0.100) Einsteinium 253 20.47 d 186 (6.64); (0.389) 254 275.7 d 28.(3) (6.43) 255 40 d 55 (0.29); (6.26) Fermium 255 20.1 h 26.(3) (7.023) 257 100.5 d (6.519); L, Cf-x; (0.179, 0.241) Mendelevium 258 51.5 d (6.718, 6.763); (0.368) 260 32 d Nobelium 255 3.1 min (8.12, 7.93); (0.187) 259 58 min (7.52, 7.55) Lawrencium 260 3 min 261 40 min 262 3.6 h Source: R. B. Firestone and V. S. Shirley, eds., Table of Isotopes, 8th ed., Wiley, New York, 1997, and V. S. Shirley, ed., Table of Radioactive Isotopes, 8th ed., Wiley-Interscience, New York, 1986.
4.9 WORK FUNCTION TABLE 4.17 Work Functions of the Elements The work function is the energy necessary to just remove an electron from the metal surface in thermoelectric or photoelectric emission. Values are dependent upon the experimental technique (vacua of 109 or torr, 10 10 clean surfaces, and surface conditions including the crystal face identification).
Element , eV Element , eV Ag 4.64 Al 4.19 As (3.75) Au 5.32 B (4.75) Ba 2.35 Be 5.08 Bi 4.36 C (5.0) Ca 2.71 Cd 4.12 Ce 2.80 Co 4.70 Cr 4.40 Cs 1.90 Cu 4.70 Eu 2.5 Fe 4.65 Ga 4.25 Ge 5.0 Gd 3.1 Hf 3.65 Hg 4.50 In 4.08 Ir 5.6 K 2.30 La 3.40 Li 3.10 Mg 3.66 Mn 3.90 Mo 4.30 Na 2.70 PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.81 TABLE 4.17 Work Functions of the Elements (Continued) Element , eV Element , eV Nb 4.20 Nd 3.1 Ni 5.15 Os 4.83 Pb 4.18 Pd 5.00 Po 4.6 Pr 2.7 Pt 5.40 Rb 2.20 Re 4.95 Rh 4.98 Ru 4.80 Sb 4.56 Sc 3.5 Se 5.9 Si 4.85 Sm 2.95 Sn 4.35 Sr 2.76 Ta 4.22 Tb 3.0 Te 4.70 Th 3.71 Ti 4.10 Tl 4.02 U 3.70 V 4.44 W 4.55 Y 3.1 Zn 4.30 Zr 4.00 Source: S. Trasatti, J. Chem. Soc. Faraday Trans. I 68:229 (1972); N. D. Lang and W. Kohn, Phys. Rev. B 3:1215 (1971).
4.10 RELATIVE ABUNDANCES OF NATURALLY OCCURRING ISOTOPES TABLE 4.18 Relative Abundances of Naturally Occurring Isotopes Element Mass number Percent Element Mass number Percent Aluminum 27 100 Antimony 121 57.21(5) 123 42.79(5) Argon 36 0.337(3) 38 0.063(1) 40 99.600(3) Arsenic 75 100 Barium 130 0.106(2) 132 0.101(2) 134 2.42(3) 135 6.59(2) 136 7.85(4) 137 11.23(4) 138 71.70(7) Beryllium 9 100 Bismuth 209 100 Boron 10 19.9(2) 11 80.1(2) Bromine 79 50.69(7) 81 49.31(7) Cadmium 106 1.25(4) 108 0.89(2) 110 12.49(12) 111 12.80(8) Cadmium 112 24.13(14) 113 12.22(8) 114 28.7(3) 116 7.49(9) Calcium 40 96.941(18) 42 0.647(9) 43 0.135(6) 44 2.088(12) 46 0.004(3) 48 0.187(4) Carbon 12 98.89(1) 13 1.11(1) Cerium 136 0.19(1) 138 0.25(1) 140 88.43(10) 142 11.13(10) Cesium 133 100 Chlorine 35 75.77(7) 37 24.23(7) Chromium 50 4.345(13) 52 83.79(2) 53 9.50(2) 54 2.365(7) Cobalt 59 100 4.82 SECTION 4 TABLE 4.18 Relative Abundances of Naturally Occurring Isotopes (Continued) Element Mass number Percent Element Mass number Percent Copper 63 69.17(3) 65 30.83(3) Dysprosium 156 0.06(1) 158 0.10(1) 160 2.34(6) 161 18.9(2) 162 25.5(2) 163 24.9(2) 164 28.2(2) Erbium 162 0.14(1) 164 1.61(2) 166 33.6(2) 167 22.95(15) 168 26.8(2) 170 14.9(2) Europium 151 47.8(5) 153 52.2(5) Fluorine 19 100 Gadolinium 152 0.20(1) 154 2.18(3) 155 14.80(5) 156 20.47(4) 157 15.65(3) 158 24.84(12) 160 21.86(4) Gallium 69 60.108(9) 71 39.892(9) Germanium 70 21.23(4) 72 27.66(3) 73 7.73(1) 74 35.94(2) 76 7.44(2) Gold 197 100 Hafnium 174 0.162(3) 176 5.206(5) 177 18.606(13) 178 27.297(4) 179 13.629(6) 180 35.100(7) Helium 4 100 Holmium 165 100 Hydrogen 1 99.985(1) 2 0.015(1) Indium 113 4.29(2) 115 95.71(2) Iodine 127 100 Iridium 191 37.27(9) 193 62.73(9) Iron 54 5.85(4) 56 91.75(4) 57 2.12(1) 58 0.26(1) Krypton 78 0.35(2) 80 2.25(2) 82 11.6(1) 83 11.5(1) 84 57.0(3) 86 17.3(2) Lanthanum 138 0.0902(2) 139 99.9098(2) Lead 204 1.4(1) 206 24.1(1) 207 22.1(1) 208 52.4(1) Lithium 6 7.5(2) 7 92.5(2) Lutetium 175 97.41(2) 176 2.59(2) Magnesium 24 78.99(3) 25 10.00(1) 26 11.01(2) Manganese 55 100 Mercury 196 0.15(1) 198 9.97(8) 199 16.87(10) 200 23.10(16) 201 13.18(8) 202 29.86(20) 204 6.87(4) Molybdenum 92 14.84(4) 94 9.25(3) 95 15.92(5) 96 16.68(5) 97 9.55(3) 98 24.13(7) 100 9.63(3) Neodymium 142 27.13(12) 143 12.18(6) 144 23.80(12) 145 8.30(6) 146 17.19(9) 148 5.76(3) 150 5.64(3) Neon 20 90.48(3) 21 0.27(1) 22 9.25(3) Nickel 58 68.077(9) 60 26.223(8) 61 1.140(1) 62 3.634(2) 64 0.926(1) Niobium 93 100 Nitrogen 14 99.634(9) 15 0.366(9) PROPERTIES OF ATOMS, RADICALS, AND BONDS 4.83 TABLE 4.18 Relative Abundances of Naturally Occurring Isotopes (Continued) Element Mass number Percent Element Mass number Percent Osmium 184 0.020(3) 186 1.58(2) 187 1.6(4) 188 13.3(1) 189 16.1(1) 190 26.4(2) 192 41.0(3) Oxygen 16 99.76(1) 17 0.04 18 0.20(1) Palladium 102 1.02(1) 104 11.14(8) 105 22.33(8) 106 27.33(3) 108 26.46(9) 110 11.72(9) Phosphorus 31 100 Platinum 190 0.01(1) 192 0.79(6) 194 32.9(6) 195 33.8(6) 196 25.3(6) 198 7.2(2) Potassium 39 93.258(4) 40 0.0117(1) 41 6.730(3) Praseodymium 141 100 Protoactinium 230 100 Rhenium 185 37.40(2) 187 62.60(2) Rhodium 103 100 Rubidium 85 72.17(2) 87 27.83(2) Ruthenium 96 5.52(6) 98 1.88(6) 99 12.7(1) 100 12.6(1) 101 17.0(1) 102 31.6(2) 104 18.7(2) Samarium 144 3.1(1) 147 15.0(2) 148 11.3(1) 149 13.8(1) 150 7.4(1) 152 26.7(2) 154 22.7(2) Scandium 45 100 Selenium 74 0.89(2) 76 9.36(11) 77 6.63(6) 78 23.78(9) 80 49.61(10) 82 8.73(6) Silicon 28 92.23(2) 29 4.67(2) 30 3.10(1) Silver 107 51.839(7) 109 48.161(7) Sodium 23 100 Strontium 84 0.56(1) 86 9.86(1) 87 7.00(1) 88 82.58(1) Sulfur 32 95.02(9) 33 0.75(4) 34 4.21(8) 36 0.02(1) Tantalum 180 0.012(2) 181 99.988(2) Tellurium 120 0.096(2) 122 2.603(4) 123 0.908(2) 124 4.816(6) 125 7.139(6) 126 18.952(11) 128 31.687(11) 130 33.799(10) Terbium 159 100 Thallium 203 29.52(1) 205 70.48(1) Thorium 228 100 Thullium 169 100 Tin 112 0.97(1) 114 0.65(1) 115 0.34(1) 116 14.53(11) 117 7.68(7) 118 24.23(11) 119 8.59(4) 120 32.59(10) 122 4.63(3) 124 5.79(5) Titanium 46 8.25(3) 47 7.44(2) 48 73.72(3) 49 5.41(2) 50 5.4(1) Tungsten 180 0.12(1) 182 26.50(3) 183 14.31(1) 184 30.64(1) 4.84 SECTION 4 TABLE 4.18 Relative Abundances of Naturally Occurring Isotopes (Continued) Element Mass number Percent Element Mass number Percent Tungsten (cont.) 186 28.43(4) Uranium 234 0.0055(5) 235 0.720(1) 238 99.275(2) Vanadium 50 0.250(2) 51 99.750(2) Xenon 124 0.10(1) 126 0.09(1) 128 1.91(3) 129 26.4(6) 130 4.1(1) 131 21.2(4) 132 26.9(5) 134 10.4(2) 136 8.9(1) Ytterbium 168 0.13(1) 170 3.05(6) 171 14.3(2) 172 21.9(3) 173 16.12(2) 174 31.8(4) 176 12.7(2) Yttrium 89 100 Zinc 64 48.6(3) 66 27.9(2) 67 4.1(1) 68 18.8(4) 70 0.6(1) Zirconium 90 51.45(3) 91 11.22(4) 92 17.15(2) 94 17.38(4) 96 2.80(2) Source: A. H. Wapstra and G. Audi, “The 1983 Atomic Mass Evaluation,” Nucl. Phys., A432:1-54 (1985) and references cited for Table 4.16.
SECTION 5 PHYSICAL PROPERTIES 5.1 SOLUBILITIES 5.3 Table 5.1 Solubility of Gases in Water 5.3 Table 5.2 Solubilities of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures 5.9 5.2 VAPOR PRESSURES 5.24 Table 5.3 Vapor Pressure of Mercury 5.24 Table 5.4 Vapor Pressure of Ice in Millimeters of Mercury 5.26 Table 5.5 Vapor Pressure of Liquid Ammonia, NH3 5.27 Table 5.6 Vapor Pressure of Water 5.28 Table 5.7 Vapor Pressure of Deuterium Oxide 5.29 5.2.1 Vapor-Pressure Equations 5.30 Table 5.8 Vapor Pressures of Various Inorganic Compounds 5.31 Table 5.9 Vapor Pressures of Various Organic Compounds 5.39 5.3 BOILING POINTS 5.57 Table 5.10 Boiling Points of Water 5.57 Table 5.11 Binary Azeotropic (Constant-Boiling) Mixtures 5.58 Table 5.12 Ternary Azeotropic Mixtures 5.77 5.4 FREEZING MIXTURES 5.83 Table 5.13 Compositions of Aqueous Antifreeze Solutions 5.83 5.4.1 Propylene Glycol–Glycerol 5.86 5.5 DENSITY AND SPECIFIC GRAVITY 5.87 Table 5.14 Density of Mercury and Water 5.87 Table 5.15 Specific Gravity of Air at Various Temperatures 5.88 5.5.1 Density of Moist Air 5.88 5.5.2 Specific Gravity Corrections for the Buoyant Effect of Air 5.89 5.6 VISCOSITY, SURFACE TENSION, DIELECTRIC CONSTANT, DIPOLE MOMENT, AND REFRACTIVE INDEX 5.90 Table 5.16 Viscosity and Surface Tension of Various Organic Substances 5.90 Table 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances 5.105 Table 5.18 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Inorganic Substances 5.130 Table 5.19 Refractive Index, Viscosity, Dielectric Constant, and Surface Tension of Water at Various Temperatures 5.134 5.6.1 Refractive Index 5.135 Table 5.20 Atomic and Group Refractions 5.136 5.6.2 Surface Tension 5.136 5.6.3 Dipole Moments 5.136 5.6.4 Dielectric Constants 5.137 5.6.5 Viscosity 5.137 Table 5.21 Aqueous Glycerol Solutions 5.138 Table 5.22 Aqueous Sucrose Solutions 5.138 5.7 COMBUSTIBLE MIXTURES 5.139 Table 5.23 Properties of Combustible Mixtures in Air 5.139 5.8 THERMAL CONDUCTIVITY 5.148 Table 5.24 Thermal Conductivities of Gases as a Function of Temperature 5.148 Table 5.25 Liquid Thermal Conductivity of Various Substances 5.151 Table 5.26 Thermal Conductivity of Various Solids 5.154 5 1 5.2 SECTION 5 5.9 MISCELLANY 5.155 Table 5.27 Compressibility of Water 5.155 Table 5.28 Mass of Water Vapor in Saturated Air 5.156 Table 5.29 Van der Waals’ Constants for Gases 5.157 Table 5.30 Triple Points of Various Materials 5.168 5.9.1 Some Physical Chemistry Equations for Gases 5.169 PHYSICAL PROPERTIES 5.3 5.1 SOLUBILITIES TABLE 5.1 Solubility of Gases in Water The column (or line entry) headed “” gives the volume of gas (in milliliters) measured at standard conditions (0C and 760 mm or 101.325 kN · m2) dissolved in 1 mL of water at the temperature stated (in degrees Celsius) and when the pressure of the gas without that of the water vapor is 760 mm. The line entry “A” indicates the same quantity except that the gas itself is at the uniform pressure of 760 mm when in equilibrium with water.
The column headed “1” gives the volume of the gas (in milliliters) dissolved in 1 mL of water when the pressure of the gas plus that of the water vapor is 760 mm.
The column headed “q” gives the weight of gas (in grams) dissolved in 100 g of water when the pressure of the gas plus that of the water vapor is 760 mm.
Temp.
C Acetylene q Air (103) % oxygen in air Ammonia q Bromine q 0 1.73 0.200 29.18 34.91 1130 89.5 60.5 42.9 1 1.68 0.194 28.42 34.87 — — — — 2 1.63 0.188 27.69 34.82 — — 54.1 38.3 3 1.58 0.182 26.99 34.78 — — — — 4 1.53 0.176 26.32 34.74 1047 79.6 48.3 34.2 5 1.49 0.171 25.68 34.69 — — — — 6 1.45 0.167 25.06 34.65 — — 43.3 30.6 7 1.41 0.162 24.47 34.60 — — — — 8 1.37 0.157 23.90 34.56 947 72.0 38.9 27.5 9 1.34 0.154 23.36 34.52 — — — — 10 1.31 0.150 22.84 34.47 870 68.4 35.1 24.8 11 1.27 0.146 22.34 34.43 — — — — 12 1.24 0.142 21.87 34.38 857 65.1 31.5 22.2 13 1.21 0.138 21.41 34.34 837 63.6 — — 14 1.18 0.135 20.97 34.30 — — 28.4 20.0 15 1.15 0.131 20.55 34.25 770 — — — 16 1.13 0.129 20.14 34.21 775 58.7 25.7 18.0 17 1.10 0.125 19.75 34.17 — — — — 18 1.08 0.123 19.38 34.12 — — 23.4 16.4 19 1.05 0.119 19.02 34.08 — — — — 20 1.03 0.117 18.68 34.03 680 52.9 21.3 14.9 21 1.01 0.115 18.34 33.99 — — — — 22 0.99 0.112 18.01 33.95 — — 19.4 13.5 23 0.97 0.110 17.69 33.90 — — — — 24 0.95 0.107 17.38 33.86 639 48.2 17.7 12.3 25 0.93 0.105 17.08 33.82 — — — — 26 0.91 0.102 16.79 33.77 — — 16.3 11.3 27 0.89 0.100 16.50 33.73 — — — — 28 0.87 0.098 16.21 33.68 586 44.0 15.0 10.3 29 0.85 0.095 15.92 33.64 — — — — 30 0.84 0.094 15.64 33.60 530 41.0 13.8 9.5 35 — — — — — — — — 40 — — 14.18 — 400 31.6 9.4 6.3 45 — — — — — — — — 50 — — 12.97 — 290 23.5 6.5 4.1 60 — — 12.16 — 200 16.8 4.9 2.9 70 — — — — — 11.1 3.8 1.9 80 — — 11.26 — — 6.5 3.0 1.2 90 — — — — — 3.0 — — 100 — — 11.05 — — 0.0 — — Free from NH3 and CO2; total pressure of air water vapor is 760 mm.
TABLE 5.1 Solubility of Gases in Water (Continued) Temp.
C Carbon dioxide q Carbon monoxide q Chlorine l q Ethane q Ethylene q Hydrogen q 0 1.713 0.334 6 0.035 37 0.004 397 — — 0.098 74 0.013 17 0.226 0.028 1 0.021 48 0.000 192 2 1 1.646 0.321 3 0.034 55 0.004 293 — — 0.094 76 0.012 63 0.219 0.027 2 0.021 26 0.000 190 1 2 1.584 0.309 1 0.033 75 0.004 191 — — 0.090 93 0.012 12 0.211 0.026 2 0.021 05 0.000 188 1 3 1.527 0.297 8 0.032 97 0.004 092 — — 0.087 25 0.011 62 0.204 0.025 3 0.020 84 0.000 186 2 4 1.473 0.287 1 0.032 22 0.003 996 — — 0.083 72 0.011 14 0.197 0.024 4 0.020 64 0.000 184 3 5 1.424 0.277 4 0.031 49 0.003 903 — — 0.080 33 0.010 69 0.191 0.023 7 0.020 44 0.000 182 4 6 1.377 0.268 1 0.030 78 0.003 813 — — 0.077 09 0.010 25 0.184 0.022 8 0.020 25 0.000 180 6 7 1.331 0.258 9 0.030 09 0.003 725 — — 0.074 00 0.009 83 0.178 0.022 0 0.020 07 0.000 178 9 8 1.282 0.249 2 0.029 42 0.003 640 — — 0.071 06 0.009 43 0.173 0.021 4 0.019 89 0.000 177 2 9 1.237 0.240 3 0.028 78 0.003 559 — — 0.068 26 0.009 06 0.167 0.020 7 0.019 72 0.000 175 6 10 1.194 0.231 8 0.028 16 0.003 479 3.148 0.997 2 0.065 61 0.008 70 0.162 0.020 0 0.019 55 0.000 174 0 11 1.154 0.223 9 0.027 57 0.003 405 3.047 0.965 4 0.063 28 0.008 38 0.157 0.019 4 0.019 40 0.000 172 5 12 1.117 0.216 5 0.027 01 0.003 332 2.950 0.934 6 0.061 06 0.008 08 0.152 0.018 8 0.019 25 0.000 171 0 13 1.083 0.209 8 0.026 46 0.003 261 2.856 0.905 0 0.058 94 0.007 80 0.148 0.018 3 0.019 11 0.000 169 6 14 1.050 0.203 2 0.025 93 0.003 194 2.767 0.876 8 0.056 94 0.007 53 0.143 0.017 6 0.018 97 0.000 168 2 15 1.019 0.197 0 0.025 43 0.003 130 2.680 0.849 5 0.055 04 0.007 27 0.139 0.017 1 0.018 83 0.000 166 8 16 0.985 0.190 3 0.024 94 0.003 066 2.597 0.823 2 0.053 26 0.007 03 0.136 0.016 7 0.018 69 0.000 165 4 17 0.956 0.184 5 0.024 48 0.003 007 2.517 0.797 9 0.051 59 0.006 80 0.132 0.016 2 0.018 56 0.000 164 1 18 0.928 0.178 9 0.024 02 0.002 947 2.440 0.773 8 0.050 03 0.006 59 0.129 0.015 8 0.018 44 0.000 162 8 19 0.902 0.173 7 0.023 60 0.002 891 2.368 0.751 0 0.048 58 0.006 39 0.125 0.015 3 0.018 31 0.000 161 6 5.4 20 0.878 0.168 8 0.023 19 0.002 838 2.299 0.729 3 0.047 24 0.006 20 0.122 0.014 9 0.018 19 0.000 160 3 21 0.854 0.164 0 0.022 81 0.002 789 2.238 0.710 0 0.045 89 0.006 02 0.119 0.014 6 0.018 05 0.000 158 8 22 0.829 0.159 0 0.022 44 0.002 739 2.180 0.691 8 0.044 59 0.005 84 0.116 0.014 2 0.017 92 0.000 157 5 23 0.804 0.154 0 0.022 08 0.002 691 2.123 0.673 9 0.043 35 0.005 67 0.114 0.013 9 0.017 79 0.000 156 1 24 0.781 0.149 3 0.021 74 0.002 646 2.070 0.657 2 0.042 17 0.005 51 0.111 0.013 5 0.017 66 0.000 154 8 25 0.759 0.144 9 0.021 42 0.002 603 2.019 0.641 3 0.041 04 0.005 35 0.108 0.013 1 0.017 54 0.000 153 5 26 0.738 0.140 6 0.021 10 0.002 560 1.970 0.625 9 0.039 97 0.005 20 0.106 0.012 9 0.017 42 0.000 152 2 27 0.718 0.136 6 0.020 80 0.002 519 1.923 0.611 2 0.038 95 0.005 06 0.104 0.012 6 0.017 31 0.000 150 9 28 0.699 0.132 7 0.020 51 0.002 479 1.880 0.597 5 0.037 99 0.004 93 0.102 0.012 3 0.017 20 0.000 149 6 29 0.682 0.129 2 0.020 24 0.002 442 1.839 0.584 7 0.037 09 0.004 80 0.100 0.012 1 0.017 09 0.000 148 4 30 0.665 0.125 7 0.019 98 0.002 405 1.799 0.572 3 0.036 24 0.004 68 0.098 0.011 8 0.016 99 0.000 147 4 35 0.592 0.110 5 0.018 77 0.002 231 1.602 0.510 4 0.032 30 0.004 12 — — 0.016 66 0.000 142 5 40 0.530 0.097 3 0.017 75 0.002 075 1.438 0.459 0 0.029 15 0.003 66 — — 0.016 44 0.000 138 4 45 0.479 0.086 0 0.016 90 0.001 933 1.322 0.422 8 0.026 60 0.003 27 — — 0.016 24 0.000 134 1 50 0.436 0.076 1 0.016 15 0.001 797 1.225 0.392 5 0.024 59 0.002 94 — — 0.016 08 0.000 128 7 60 0.359 0.057 6 0.014 88 0.001 522 1.023 0.329 5 0.021 77 0.002 39 — — 0.016 00 0.000 117 8 70 — — 0.014 40 0.001 276 0.862 0.279 3 0.019 48 0.001 85 — — 0.016 0 0.000 102 80 — — 0.014 30 0.000 980 0.683 0.222 7 0.018 26 0.001 34 — — 0.016 0 0.000 079 90 — — 0.014 2 0.000 57 0.39 0.127 0.017 6 0.000 8 — — 0.016 0 0.000 046 100 — — 0.014 1 0.000 00 0.00 0.000 0.017 2 0.000 0 — — 0.016 0 0.000 000 5.5 TABLE 5.1 Solubility of Gases in Water (Continued) Temp.
C Carbon dioxide q Carbon monoxide q Chlorine l q Ethane q Ethylene q Hydrogen q TABLE 5.1 Solubility of Gases in Water (Continued) Temp.
C Hydrogen sulfide q Methane q Nitric oxide q Nitrogen q Oxygen q Sulfur dioxide l q 0 4.670 0.706 6 0.055 63 0.003 959 0.073 81 0.009 833 0.023 54 0.002 942 0.048 89 0.006 945 79.789 22.83 1 4.522 0.683 9 0.054 01 0.003 842 0.071 84 0.009 564 0.022 97 0.002 869 0.047 58 0.006 756 77.210 22.09 2 4.379 0.661 9 0.052 44 0.003 728 0.069 93 0.009 305 0.022 41 0.002 798 0.046 33 0.006 574 74.691 21.37 3 4.241 0.640 7 0.050 93 0.003 619 0.068 09 0.009 057 0.021 87 0.002 730 0.045 12 0.006 400 72.230 20.66 4 4.107 0.620 1 0.049 46 0.003 513 0.066 32 0.008 816 0.021 35 0.002 663 0.043 97 0.006 232 69.828 19.98 5 3.977 0.600 1 0.048 05 0.003 410 0.064 61 0.008 584 0.020 86 0.002 600 0.042 87 0.006 072 67.485 19.31 6 3.852 0.580 9 0.046 69 0.003 312 0.062 98 0.008 361 0.020 37 0.002 537 0.041 80 0.005 918 65.200 18.65 7 3.732 0.562 4 0.045 39 0.003 217 0.061 40 0.008 147 0.019 90 0.002 477 0.040 80 0.005 773 62.973 18.02 8 3.616 0.544 6 0.044 13 0.003 127 0.059 90 0.007 943 0.019 45 0.002 419 0.039 83 0.005 632 60.805 17.40 9 3.505 0.527 6 0.042 92 0.003 039 0.058 46 0.007 747 0.019 02 0.002 365 0.038 91 0.005 498 58.697 16.80 10 3.399 0.511 2 0.041 77 0.002 955 0.057 09 0.007 560 0.018 61 0.002 312 0.038 02 0.005 368 56.647 16.21 11 3.300 0.496 0 0.040 72 0.002 879 0.055 87 0.007 393 0.018 23 0.002 263 0.037 18 0.005 246 54.655 15.64 12 3.206 0.481 4 0.039 70 0.002 805 0.054 70 0.007 233 0.017 86 0.002 216 0.036 37 0.005 128 52.723 15.09 13 3.115 0.467 4 0.038 72 0.002 733 0.053 57 0.007 078 0.017 50 0.002 170 0.035 59 0.005 014 50.849 14.56 14 3.028 0.454 0 0.037 79 0.002 665 0.052 50 0.006 930 0.017 17 0.002 126 0.034 86 0.004 906 49.033 14.04 15 2.945 0.441 1 0.036 90 0.002 599 0.051 47 0.006 788 0.016 85 0.002 085 0.034 15 0.004 802 47.276 13.54 16 2.865 0.428 7 0.036 06 0.002 538 0.050 49 0.006 652 0.016 54 0.002 045 0.033 48 0.004 703 45.578 13.05 17 2.789 0.416 9 0.035 25 0.002 478 0.049 56 0.006 524 0.016 25 0.002 006 0.032 83 0.004 606 43.939 12.59 18 2.717 0.405 6 0.034 48 0.002 422 0.048 68 0.006 400 0.015 97 0.001 970 0.032 20 0.004 514 42.360 12.14 19 2.647 0.394 8 0.033 76 0.002 369 0.047 85 0.006 283 0.015 70 0.001 935 0.031 61 0.004 426 40.838 11.70 5.6 20 2.582 0.384 6 0.033 08 0.002 319 0.047 06 0.006 173 0.015 45 0.001 901 0.031 02 0.004 339 39.374 11.28 21 2.517 0.374 5 0.032 43 0.002 270 0.046 25 0.006 059 0.015 22 0.001 869 0.030 44 0.004 252 37.970 10.88 22 2.456 0.364 8 0.031 80 0.002 222 0.045 45 0.005 947 0.014 98 0.001 838 0.029 88 0.004 169 36.617 10.50 23 2.396 0.355 4 0.031 19 0.002 177 0.044 69 0.005 838 0.014 75 0.001 809 0.029 34 0.004 087 35.302 10.12 24 2.338 0.346 3 0.030 61 0.002 133 0.043 95 0.005 733 0.014 54 0.001 780 0.028 81 0.004 007 34.026 9.76 25 2.282 0.337 5 0.030 06 0.002 091 0.043 23 0.005 630 0.014 34 0.001 751 0.028 31 0.003 931 32.786 9.41 26 2.229 0.329 0 0.029 52 0.002 050 0.042 54 0.005 530 0.014 13 0.001 724 0.027 83 0.003 857 31.584 9.06 27 2.177 0.320 8 0.029 01 0.002 011 0.041 88 0.005 435 0.013 94 0.001 698 0.027 36 0.003 787 30.422 8.73 28 2.128 0.313 0 0.028 52 0.001 974 0.041 24 0.005 342 0.013 76 0.001 672 0.026 91 0.003 718 29.314 8.42 29 2.081 0.305 5 0.028 06 0.001 938 0.040 63 0.005 252 0.013 58 0.001 647 0.026 49 0.003 651 28.210 8.10 30 2.037 0.298 3 0.027 62 0.001 904 0.040 04 0.005 165 0.013 42 0.001 624 0.026 08 0.003 588 27.161 7.80 35 1.831 0.264 8 0.025 46 0.001 733 0.037 34 0.004 757 0.012 56 0.001 501 0.024 40 0.003 315 22.489 6.47 40 1.660 0.236 1 0.023 69 0.001 586 0.035 07 0.004 394 0.011 84 0.001 391 0.023 06 0.003 082 18.766 5.41 45 1.516 0.211 0 0.022 38 0.001 466 0.033 11 0.004 059 0.011 30 0.001 300 0.021 87 0.002 858 — — 50 1.392 0.188 3 0.021 34 0.001 359 0.031 52 0.003 758 0.010 88 0.001 216 0.020 90 0.002 657 — — 60 1.190 0.148 0 0.019 54 0.001 144 0.029 54 0.003 237 0.010 23 0.001 052 0.019 46 0.002 274 — — 70 1.022 0.110 1 0.018 25 0.000 926 0.028 10 0.002 668 0.009 77 0.000 851 0.018 33 0.001 856 — — 80 0.917 0.076 5 0.017 70 0.000 695 0.027 00 0.001 984 0.009 58 0.000 660 0.017 61 0.001 381 — — 90 0.84 0.041 0.017 35 0.000 40 0.026 5 0.001 13 0.009 5 0.000 38 0.017 2 0.000 79 — 100 0.81 0.000 0.017 0 0.000 00 0.026 3 0.000 00 0.009 5 0.000 00 0.017 0 0.000 00 — — Atmospheric nitrogen containing 98.815% N2 by volume 1.185% inert gases.
5.7 TABLE 5.1 Solubility of Gases in Water (Continued) Temp.
C Hydrogen sulfide q Methane q Nitric oxide q Nitrogen q Oxygen q Sulfur dioxide l q TABLE 5.1 Solubility of Gases in Water (Continued) Substance 0 10 20 30 40 60 80 Argon 0.052 8 0.041 3 0.033 7 0.028 8 0.025 1 0.020 9 0.018 4 Helium A 0.009 8 0.009 11 0.008 6 0.008 39 0.008 41 0.009 02 70 0.009 42 Hydrogen bromide l 612 582 25 533 50 469 75 406 Hydrogen chloride 512 475 442 412 385 339 Krypton 0.110 5 0.081 0 0.062 6 0.051 1 0.043 3 0.035 7 Neon A 9 0.011 7 0.010 6 0.010 0 42 0.009 48 73 0.009 84 Nitrous oxide A 0.88 0.63 Ozone g · L1 0.039 4 12 0.029 9 19 0.021 0 27 0.0139 0.004 2 0 Radon 0.510 0.326 0.222 0.162 0.126 0.085 Xenon 0.242 0.174 0.123 0.098 0.082 5.8 TABLE 5.2 Solubilities of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures Solubilities are expressed as the number of grams of substance of stated molecular formula which when dissolved in 100 g of water make a saturated solution at the temperature stated (C).
Substance Formula 0 10 20 30 40 60 80 90 100 Aluminum chloride AlCl3 43.9 44.9 45.8 46.6 47.3 48.1 48.6 49.0 fluoride AlF3 0.56 0.56 0.67 0.78 0.91 1.1 1.32 1.72 nitrate Al(NO3)3 60.0 66.7 73.9 81.8 88.7 106 132 153 160 perchlorate Al(ClO4)3 122 128 133 182 sulfate Al2(SO4)3 31.2 33.5 36.4 40.4 45.8 59.2 73.0 80.8 89.0 thallium(l) sulfate Al2Tl2(SO4)4 3.15 4.60 6.39 9.37 14.39 35.35 Ammonium aluminum sulfate NH4Al(SO4)2 2.10 5.00 7.74 10.9 14.9 26.7 azide NH4N3 16.0 25.3 37.1 bromide NH4Br 60.5 68.1 76.4 83.2 91.2 108 125 135 145 chloride NH4Cl 29.4 33.2 37.2 41.4 45.8 55.3 65.6 71.2 77.3 chloroiridate(IV) (NH4)2TrCl6 0.56 0.71 0.95 1.20 1.56 2.45 4.38 chloroplatinate(IV) (NH4)2PtCl6 0.289 0.374 0.499 0.637 0.815 1.44 2.16 2.61 3.36 chromate (NH4)2CrO4 25.0 29.2 34.0 39.3 45.3 59.0 76.1 chromium(III) sulfate (NH4)Cr(SO4)2 3.95 18.8 32.6 cobalt(II) sulfate (NH4)2Co(SO4)2 6.0 9.5 13.0 17.0 22.0 33.5 49.0 58.0 75.1 dichromate (NH4)2Cr2O7 18.2 25.5 35.6 46.5 58.5 86.0 115 156 dihydrogen arsenate NH4H2AsO4 33.7 48.7 63.8 83.0 107 122 dihydrogen phosphate NH4H2PO4 22.7 29.5 37.4 46.4 56.7 82.5 118 173 dithionate (NH4)2S2O6 133 151 166 179 formate NH4CHO2 102 143 204 311 533 hydrogen carbonate NH4HCO3 11.9 16.1 21.7 28.4 36.6 59.2 109 170 354 hydrogen phosphate (NH4)2HPO4 42.9 62.9 68.9 75.1 81.8 97.2 hydrogen tartrate NH4C4H5O6 1.00 1.88 2.70 iodide NH4I 155 163 172 182 191 209 229 250 iron(II) sulfate (NH4)2Fe(SO4)2 12.5 17.2 26.4 33 46 5.9 5.10 TABLE 5.2 Solubilities of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures (Continued) Substance Formula 0 10 20 30 40 60 80 90 100 Ammonium magnesium sulfate (NH4)2Mg(SO4)2 11.8 14.6 18.0 21.7 25.8 35.1 48.3 65.7 nickel sulfate (NH4)2Ni(SO4)2 1.00 4.00 6.50 9.20 12.0 17.0 nitrate NH4NO3 118 150 192 242 297 421 580 740 871 oxalate (NH4)2C2O4 2.2 3.21 4.45 6.09 8.18 14.0 22.4 27.9 34.7 perchlorate NH4ClO4 12.0 16.4 21.7 27.7 34.6 49.9 68.9 selenite (NH4)2SeO3 96 105 115 126 143 192 sulfate (NH4)2SO4 70.6 73.0 75.4 78.0 81 88 95 103 sulfite (NH4)2SO3 47.9 54.0 60.8 68.8 78.4 104 144 150 153 tartrate (NH4)2C4H4O6 45.0 55.0 63.0 70.5 76.5 86.9 thioantimonate(V) (NH4)3SbS4 71.2 91.2 120 thiocyanate NH4SCN 120 144 170 208 234 346 vanadate NH4VO3 0.48 0.84 1.32 2.42 zinc sulfate (NH4)2Zn(SO4)2 7.0 9.5 12.5 16.0 20.0 30.0 46.6 58.0 72.4 Antimony(III) chloride SbCl3 602 910 1087 1368 [completely miscible at 72] fluoride SbF3 385 444 562 Arsenic hydride (760 mm), cc AsH3 42 30 28 oxide (pent-) As2O5 59.5 62.1 65.8 69.8 71.2 73.0 75.1 76.7 oxide (tri-) As2O3 1.20 1.49 1.82 2.31 2.93 4.31 6.11 8.2 Barium acetate Ba(C2H3O2)2 · 3H2O 58.8 62 72 75 78.5 75.0 74.0 74.8 azide Ba(N3)2 12.5 16.1 17 17.4 bromate Ba(BrO3)2 · H2O 0.29 0.44 0.65 0.95 1.31 2.27 3.52 4.26 5.39 bromide BaBr2 · 2H2O 98 101 104 109 114 123 135 149 n-butyrate Ba(C4H7O2)2 37.0 36.1 35.4 34.9 35.2 37.2 41.7 45.5 95 48.1 caproate Ba(C6H11O2)2 · 3.5H2O 11.71 8.38 6.89 5.87 5.79 8.39 14.71 19.28 chlorate Ba(ClO3)2 · H2O 20.3 26.9 33.9 41.6 49.7 66.7 84.8 105 chloride BaCl2 · 2H2O 31.2 33.5 35.8 38.1 40.8 46.2 52.5 55.8 59.4 chlorite Ba(ClO2)2 43.9 44.6 45.4 47.9 53.8 66.6 80.8 fluoride BaF2 0.159 0.160 0.162 formate Ba(CHO2)2 26.2 28.0 29.9 31.9 34.0 38.6 44.2 47.6 51.3 hydroxide Ba(OH)2 1.67 2.48 3.89 5.59 8.22 20.94 101.4 iodate Ba(IO3)2 0.035 0.046 0.057 iodide BaI2 · 2H2O 182 201 223 250 264 291 301 nitrate Ba(NO3)2 4.95 6.67 9.02 11.48 14.1 20.4 27.2 34.4 nitrite Ba(NO2)2 · H2O 50.3 60 72.8 102 151 222 261 325 perchlorate Ba(ClO4)2 · 3H2O 239 336 416 495 575 653 propionate Ba(C3H5O2)2 · H2O 57.2 56.8 57.5 59.0 62.0 67.8 73.0 82.7 isosuccinate BaC4H4O4 0.421 0.432 0.418 0.393 0.366 0.306 0.237 sulfamate Ba(SO3NH2)2 18.3 22.3 26.8 32.5 38.5 49.6 61.5 73.5 sulfide BaS 2.88 4.89 7.86 10.38 14.89 27.69 49.91 67.34 60.29 tartrate Ba(C2H2O3)2 0.021 0.024 0.028 0.032 0.035 0.044 0.053 Beryllium nitrate Be(NO3)2 97 102 108 113 125 178 sulfate BeSO4 37.0 37.6 39.1 41.4 45.8 53.1 67.2 82.8 Boric acid H3BO3 2.67 3.73 5.04 6.72 8.72 14.81 23.62 30.38 40.25 Cadmium bromide CdBr2 56.3 75.4 98.8 129 152 153 156 160 chlorate Cd(ClO3)2 299 308 322 348 376 455 chloride CdCl2 · 2.5H2O 90 100 113 132 CdCl2 · H2O 135 135 135 135 136 140 147 formate Cd(CHO2)2 8.3 11.1 14.4 18.6 25.3 59.5 80.5 85.2 94.6 iodide CdI2 78.7 84.7 87.9 92.1 100 111 125 nitrate Cd(NO3)2 122 136 150 167 194 310 713 perchlorate Cd(ClO4)2 · 6H2O 180 188 195 203 221 243 272 selenate CdSeO4 72.5 68.4 64.0 58.9 55.0 44.2 32.5 27.2 22.0 sulfate CdSO4 75.4 76.0 76.6 78.5 81.8 66.7 63.1 60.8 Calcium acetate Ca(OAc)2 · 2H2O 37.4 36.0 34.7 33.8 33.2 32.7 33.5 31.1 29.7 benzoate Ca(OBz)2 · 3H2O 2.32 2.45 2.72 3.02 3.42 4.71 6.87 8.55 8.70 bromide CaBr2 · 6H2O 125 132 143 34 185 213 278 295 105 312 butyrate Ca(C4H7O2)2 20.31 19.15 18.20 17.25 16.40 15.15 14.95 15.85 cacodylate Ca(C2H6AsO2)2 · 9H2O 48 52 59 71 chloride CaCl2 · 6H2O 59.5 64.7 74.5 100 128 137 147 154 159 chromate CaCrO4 4.5 2.25 1.83 1.49 0.83 (mn) CaCrO4 · 2H2O 17.3 16.6 16.1 formate Ca(CHO2)2 16.15 16.60 17.05 17.50 17.95 18.40 gluconate Ca(C6H11O7)2 · H2O 3.72 5.29 12.11 36.80 96 57.2 hydrogen carbonate Ca(HCO3)2 16.15 16.60 17.05 17.50 17.95 18.40 hydroxide Ca(OH)2 0.189 0.182 0.173 0.160 0.141 0.121 0.086 0.076 5.11 TABLE 5.2 Solubilities of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures (Continued) Substance Formula 0 10 20 30 40 60 80 90 100 Calcium iodate Ca(IO3)2 · 6H2O 0.090 0.24 0.38 0.52 0.65 0.66 0.67 iodide CaI2 64.6 66.0 67.6 69.0 70.8 74 78 81 lactate Ca(C3H5O3)2 · 5H2O 3.1 15 5.4 7.9 levulinate Ca(C10H14O6) · 2H2O 38.1 16 45.1 55.0 45 70.3 55 88.7 malonate Ca(C3H2O4) 0.29 0.33 0.36 0.40 0.42 0.46 0.48 nitrate Ca(NO3)2 · 4H2O 102 115 129 152 191 358 363 nitrite Ca(NO2)2 · 4H2O 63.9 18 84.5 104 134 151 166 178 propionate Ca(C3H5O2)2 · H2O 42.80 39.85 38.25 39.85 42.15 48.44 selenate CaSeO4 · 2H2O 9.73 9.77 9.22 8.79 7.14 succinate Ca(C3H2O2)2 · 3H2O 1.127 1.22 1.28 1.18 0.89 0.68 0.66 sulfamate Ca(SO3NH2)2 56.5 62.8 72.3 84.5 100.1 150.0 215.2 95 242 sulfate 1 CaSO · ⁄2H O 4 2 0.32 25 0.29 35 0.26 45 0.21 65 0.145 75 0.12 0.071 CaSO4 · 2H2O 0.223 0.244 18 0.255 0.264 0.265 65 0.244 75 0.234 0.205 tartrate CaC4H4O6 · 4H2O 0.026 0.029 0.034 0.046 0.063 0.091 0.130 uranyl carbonate Ca2UO2(CO3)3 · 10H2O 0.1 0.423 0.8 55 1.5 valerate Ca(C5H9O2)2 9.82 9.25 8.80 8.40 8.05 7.78 7.95 8.20 8.78 isovalerate Ca(C5H9O2)2 · 3H2O 26.05 22.70 21.80 21.68 22.00 18.38 16.88 16.65 16.55 Carbon disulfide CS2 0.204 0.194 0.179 0.155 0.111 oxide sulfide (STP) mL/100 mL COS 133.3 83.6 56.1 40.3 tetrafluoride (STP) mL/100 g CF4 0.595 0.490 0.415 0.366 Cerium(III) ammonium nitrate Ce(NH4)2(NO3)5 242 276 318 376 681 (IV) ammonium nitrate Ce(NH4)2(NO3)6 135 150 169 213 (III) ammonium sulfate Ce(NH4)(SO4)2 5.53 4.49 3.48 2.02 1.33 (III) selenate Ce2(SeO3)3 39.5 37.2 35.2 33.2 32.6 13.7 4.6 2.1 5.12 (III) sulfate Ce2(SO4)3 · 9H2O 21.4 9.84 7.24 5.63 3.87 Ce2(SO4)3 · 8H2O 9.43 7.10 5.70 4.04 Cesium aluminum sulfate Cs2Al2(SO4)4 18.8 0.30 0.40 0.61 0.85 2.00 5.40 10.5 22.7 bromate CsBrO3 0.21 25 3.66 4.53 35 5.30 chlorate CsClO3 3.8 6.2 9.5 13.8 26.2 45.0 58.0 79.0 chloride CsCl 2.46 175 187 197 208 230 250 260 271 chloroaurate(III) CsAuCl4 161 0.5 0.8 1.7 3.3 8.9 19.5 27.7 37.9 chloroplatinate(IV) Cs2PtCl6 0.0047 0.0064 0.0087 0.0119 0.0158 0.0290 0.0525 0.0675 0.0914 formate CsCHO2 335 381 450 533 694 iodide CsI 44.1 58.5 76.5 96 45 124 150 190 205 nitrate CsNO3 9.33 14.9 23.0 33.9 47.2 83.8 134 163 197 perchlorate CsClO4 0.8 1.0 1.6 2.6 4.0 7.3 14.4 20.5 30.0 sulfate Cs2SO4 167 173 179 184 190 200 210 215 220 Chlorine dioxide ClO2 2.76 6.00 15 8.70 Chromium(III) nitrate Cr(NO3)3 5 108 15 124 25 130 35 152 (VI) oxide CrO3 164.8 167.2 172.5 183.9 191.6 206.8 (III) perchlorate Cr(ClO4)3 104 123 130 Cobalt(II) bromide CoBr2 91.9 112 128 163 227 241 257 chlorate Co(ClO3)2 135 162 180 195 214 316 chloride CoCl2 43.5 47.7 52.9 59.7 69.5 93.8 97.6 101 106 iodate Co(IO3)2 1.02 0.90 0.88 0.82 0.73 0.70 nitrate Co(NO3)2 84.0 89.6 97.4 111 125 174 204 300 nitrite Co(NO2)2 0.076 0.24 0.40 0.61 0.85 sulfate CoSO4 25.5 30.5 36.1 42.0 48.8 55.0 53.8 45.3 38.9 CoSO4 · 7H2O 44.8 56.3 65.4 73.0 88.1 101 Copper(II) ammonium chloride CuCl2 · 2NH4Cl 28.2 12 32.0 35.0 38.3 43.8 56.6 76.5 76.5 ammonium sulfate CuSO4 · (NH4)2SO4 11.5 15.1 19.4 24.4 30.5 46.3 69.7 86.1 107 bromide CuBr2 107 116 126 128 50 131 chloride CuCl2 68.6 70.9 73.0 77.3 87.6 96.5 104 108 120 fluorosilicate CuSiF6 73.5 76.5 81.6 25 84.1 50 91.2 75 93.2 nitrate Cu(NO3)2 83.5 100 125 156 163 182 208 222 247 potassium sulfate CuSO4 · K2SO4 5.1 7.2 10.0 13.6 18.2 selenate CuSeO4 12.04 14.53 17.51 21.04 25.22 36.50 53.68 sulfate CuSO4 · 5H2O 23.1 27.5 32.0 37.8 44.6 61.8 83.8 114 tartrate CuC4H4O6 · 3H2O 15 0.020 0.042 0.089 0.142 0.197 0.144 Gadolinium bromate Gd(BrO3)3 · 9H2O 50.2 70.1 95.6 126 166 sulfate Gd2(SO4)3 3.98 3.30 2.60 2.32 5.13 TABLE 5.2 Solubilities of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures (Continued) Substance Formula 0 10 20 30 40 60 80 90 100 Germanium(IV) oxide GeO2 0.49 0.43 0.50 0.61 Holmium sulfate Ho2(SO4)3 · 8H2O 8.18 25 6.71 4.52 Hydrazinium (1) nitrate N2H5NO3 175 266 402 607 2127 (2) sulfate N2H6SO4 2.87 3.89 4.15 9.08 14.39 (1) sulfate (N2H5)2SO4 221 300 554 Hydrogen bromide HBr 221.2 210.3 15 204.0 50 171.5 75 150.5 130.0 chloride HCl 82.3 77.2 72.1 67.3 63.3 56.1 selenide, mL at STP H2Se 386 351 289 Iodine I2 0.014 0.020 0.029 0.039 0.052 0.100 0.225 0.315 0.445 Iridium(IV) ammonium chloride (NH4)2IrCl6 0.556 0.706 0.77 1.21 1.57 2.46 4.38 dec sodium chloride Na2IrCl6 15 34.46 56.17 96.00 191.2 279.3 Iron(II) ammonium sulfate FeSO4 · (NH4)2SO4 · 6H2O 17.23 31.0 36.47 45.0 (II) bromide FeBr2 101 109 117 124 133 144 168 176 184 (II) chloride FeCl2 49.7 59.0 62.5 66.7 70.0 78.3 88.7 92.3 94.9 (III) chloride FeCl3 · 6H2O 74.4 91.8 106.8 (II) fluoro-silicate FeSiF6 · 6H2O 72.1 74.4 25 77.0 50 83.7 75 88.1 106 100.1 (II) nitrate Fe(NO3)2 · 6H2O 113 134 266 (III) nitrate Fe(NO3)3 · 9H2O 112.0 137.7 175.0 (III) perchlorate Fe(ClO4)3 289 368 422 478 772 (II) sulfate FeSO4 · 7H2O 28.8 40.0 48.0 60.0 73.3 100.7 79.9 68.3 57.8 Lanthanum bromate La(BrO3)3 98 120 149 200 nitrate La(NO3)3 100 136 168 247 selenate La2(SeO3)3 50.5 45 45 45 45 18.5 5.4 2.2 sulfate La2(SO4)3 3.00 2.72 2.33 1.90 1.67 1.26 0.91 0.79 0.68 Lead(II) acetate Pb(C2H3O2)2 19.8 29.5 44.3 69.8 116 bromide PbBr2 0.45 0.63 0.86 1.12 1.50 2.29 3.23 3.86 4.55 chloride PbCl2 0.67 0.82 1.00 1.20 1.42 1.94 2.54 2.88 3.20 fluorosilicate PbSiF6 190 222 403 428 463 5.14 iodide PbI2 0.044 0.056 0.069 0.090 0.124 0.193 0.294 0.42 nitrate Pb(NO3)2 37.5 46.2 54.3 63.4 72.1 91.6 111 133 Lithium acetate LiC2H3O2 31.2 35.1 40.8 50.6 68.6 ammonium sulfate LiNH4SO4 55.2 55.9 56.1 56.5 azide LiN3 61.3 64.2 67.2 71.2 75.4 86.6 100 benzoate LiC7H5O2 38.9 41.6 44.7 53.8 borate (meta-) LiBO2 0.90 1.3 2.7 5.7 10.9 bromate LiBrO3 154 166 179 198 221 269 308 329 355 bromide LiBr 143 147 160 183 211 223 245 266 carbonate Li2CO3 1.54 1.43 1.33 1.26 1.17 1.01 0.85 0.72 chlorate LiClO3 241 283 372 488 604 777 chloride LiCl 69.2 74.5 83.5 86.2 89.8 98.4 112 121 128 chloroaurate(III) LiAuCl4 113 136 167 206 324 599 cyanoplatinate(II) Li2Pt(CN)4 105 141 153 160 178 216 239 formate LiCHO2 32.3 35.7 39.3 44.1 49.5 64.7 92.7 116 138 hydrogen phosphite Li2HPO3 9.97 7.61 7.11 6.03 4.43 hydroxide LiOH 11.91 12.11 12.35 12.70 13.22 14.63 16.56 19.12 iodide LiI 151 157 165 171 179 202 435 440 481 molybdate Li2MoO4 82.6 79.5 79.4 78.0 73.9 nitrate LiNO3 53.4 60.8 70.1 138 152 175 nitrite LiNO2 70.9 82.5 96.8 114 133 177 233 272 324 perchlorate LiClO4 42.7 49.0 56.1 63.6 72.3 92.3 128 151 phosphate (meta-) LiPO3 0.101 25 0.058 0.048 selenite Li2SeO3 25.0 23.3 21.5 19.6 17.9 14.7 11.9 11.1 9.9 sulfate Li2SO4 36.1 35.5 34.8 34.2 33.7 32.6 31.4 30.9 tartrate (d-) Li2C4H4O6 42.0 31.8 27.1 26.6 27.2 29.5 thiocyanate LiSCN 114 131 153 vanadate Li3VO4 2.50 4.82 6.28 4.38 2.67 Magnesium acetate Mg(C2H3O2)2 56.7 59.7 53.4 68.6 75.7 118 bromide MgBr2 98 99 101 104 106 112 125 chlorate Mg(ClO3)2 114 123 135 155 178 242 268 chloride MgCl2 52.9 53.6 54.6 55.8 57.5 61.0 66.1 69.5 73.3 fluorosilicate MgSiF6 26.3 30.8 34.9 44.4 formate Mg(CHO2)2 14.0 14.2 14.4 14.9 15.9 17.9 20.5 22.2 23.9 iodate Mg(IO3)2 7.2 8.6 10.0 11.7 15.2 15.5 15.6 iodide MgI2 120 140 173 186 5.15 TABLE 5.2 Solubilities of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures (Continued) Substance Formula 0 10 20 30 40 60 80 90 100 Magnesium nitrate Mg(NO3)2 62.1 66.0 69.5 73.6 78.9 78.9 91.6 106 selenate MgSeO4 20.0 30.4 38.3 44.3 48.6 55.8 sulfate MgSO4 22.0 28.2 33.7 38.9 44.5 54.6 55.8 52.9 50.4 sulfite MgSO3 0.339 0.446 0.573 0.751 0.959 0.779 0.642 0.622 tartrate MgC4H4O6 0.54 0.78 1.06 1.02 Manganese bromide MnBr2 127 136 147 157 169 197 225 226 228 chloride MnCl2 63.4 68.1 73.9 80.8 88.5 109 113 114 115 fluoride MnF2 1.06 0.67 0.44 0.48 nitrate Mn(NO3)2 102 118 139 206 oxalate MnC2O4 0.020 0.024 0.028 0.033 sulfate MnSO4 52.9 59.7 62.9 62.9 60.0 53.6 45.6 40.9 35.3 Mercury(II) bromide HgBr2 0.30 0.40 0.56 0.66 0.91 1.68 2.77 4.9 (II) chloride HgCl2 3.63 4.82 6.57 8.34 10.2 16.3 30.0 61.3 (I) perchlorate Hg2(ClO4)2 282 325 367 407 455 499 541 580 Molybdenum trioxide MoO3 0.134 0.285 0.454 1.08 1.74 Neodymium bromate Nd(BrO3)3 43.9 59.2 75.6 95.2 116 chloride NdCl3 96.7 98.0 99.6 102 105 nitrate Nd(NO3)3 127 133 142 145 159 211 selenate Nd2(SeO3)3 46.2 44.6 41.8 39.9 39.9 43.9 7.0 3.3 sulfate Nd2(SO4)3 13.0 9.7 7.1 5.3 4.1 2.8 2.2 1.2 Nickel bromide NiBr2 113 122 131 138 144 153 154 155 chlorate Ni(ClO3)2 111 120 133 155 181 221 308 chloride NiCl2 53.4 56.3 60.8 70.6 73.2 81.2 86.6 87.6 fluoride NiF2 2.55 2.56 2.56 2.59 iodate Ni(IO3)2 1.15 1.06 1.00 Ni(IO3)2 · 4H2O 0.74 1.09 1.43 iodide NiI2 124 135 148 161 174 184 187 188 nitrate Ni(NO3)2 79.2 94.2 105 119 158 187 188 perchlorate Ni(ClO4)2 105 107 110 113 117 5.16 Nickel sulfate NiSO4 · 6H2O (pale blue) 40.1 43.6 47.6 (green) 44.4 46.6 49.2 55.6 64.5 70.1 76.7 NiSO4 · 7H2O 26.2 32.4 37.7 43.4 50.4 Osmium tetroxide OsO4 5.26 5.75 6.43 Oxalic acid H2C2O4 3.54 6.08 9.52 14.23 21.52 44.32 84.5 120 Potassium acetate KC2H3O2 216 233 256 283 324 350 381 398 aluminum sulfate KAl(SO4)2 3.00 3.99 5.90 8.39 11.7 24.8 71.0 109 azide KN3 41.4 46.2 50.8 55.8 61.0 106 benzoate KC7H5O2 65.8 70.7 76.7 82.1 bromate KBrO3 3.09 4.72 6.91 9.64 13.1 22.7 34.1 49.9 bromide KBr 53.6 59.5 65.3 70.7 75.4 85.5 94.9 99.2 104 cadmium bromide KCdBr3 116 133 150 170 191 233 276 298 325 cadmium chloride KCdCl3 26.6 32.3 38.9 45.6 53.1 67.5 83.5 101 carbonate K2CO3 105 108 111 114 117 127 140 148 156 chlorate KClO3 3.3 5.2 7.3 10.1 13.9 23.8 37.6 46.0 56.3 chloride KCl 28.0 31.2 34.2 37.2 40.1 45.8 51.3 53.9 56.3 chloroaurate(III) KAuCl4 38.3 61.8 94.9 145 405 chloroplatinate(IV) K2PtCl6 0.48 0.60 0.78 1.00 1.36 2.45 3.71 5.03 chromate K2CrO4 56.3 60.0 63.7 66.7 67.8 70.1 74.5 citrate K3C6H5O7 153 172 194 cobalt(II) sulfate K2Co(SO4)2 8.5 11.7 15.5 19.3 23.3 32.5 47.7 copper(II) sulfate K2Cu(SO4)2 5.1 7.2 10.0 13.6 18.2 cyanoplatinate(II) K2Pt(CN)4 11.6 19.8 33.9 52.0 78.3 139 177 194 dichromate K2Cr2O7 4.7 7.0 12.3 18.1 26.3 45.6 73.0 dihydrogen phosphate KH2PO4 14.8 18.3 22.6 28.0 33.5 50.2 70.4 83.5 dithionate K2S2O6 2.6 4.2 6.6 9.3 ferricyanide K3Fe(CN)6 30.2 38 46 53 59.3 70 91 ferrocyanide K4Fe(CN)6 14.3 21.1 28.2 35.1 41.4 54.8 66.9 71.5 74.2 fluoride KF 44.7 53.5 94.9 108 138 142 150 fluorogermanate(IV) K2GeF6 0.25 0.36 0.50 0.66 0.96 fluorosilicate K2SiF6 0.077 0.102 0.151 0.202 0.253 fluorotitanate(IV) K2TiF6 0.55 0.91 1.28 formate KCHO2 313 337 361 398 471 580 658 hydrogen carbonate KHCO3 22.5 27.4 33.7 39.9 47.5 65.6 5.17 TABLE 5.2 Solubilities of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures (Continued) Substance Formula 0 10 20 30 40 60 80 90 100 Potassium hydrogen KHF2 24.5 30.1 39.2 46.8 56.5 78.8 114 fluoride hydrogen selenite KH3(SeO3)2 115 162 215 300 408 900 hydrogen sulfate KHSO4 36.2 48.6 54.3 61.0 76.4 96.1 122 hydrogen tartrate KC4H5O6 0.231 0.358 0.523 0.762 hydroxide KOH 95.7 103 112 126 134 154 178 iodate KIO3 4.60 6.27 8.08 10.3 12.6 18.3 24.8 32.3 iodide KI 128 136 144 153 162 176 192 198 206 iron(II) sulfate K2Fe(SO4)2 19.6 24.5 32.1 39.1 44.9 57.2 magnesium sulfate K2Mg(SO4)2 14.0 19.5 25.0 30.4 36.6 50.2 63.4 nickel sulfate K2Ni(SO4)2 3.37 4.50 5.94 7.72 9.85 15.4 23.0 27.8 33.4 nitrate KNO3 13.9 21.2 31.6 45.3 61.3 106 167 203 245 nitrite KNO2 279 292 306 320 329 348 376 390 410 oxalate K2C2O4 25.5 31.9 36.4 39.9 43.8 53.2 63.6 69.2 75.3 perchlorate KClO4 0.76 1.06 1.68 2.56 3.73 7.3 13.4 17.7 22.3 periodate KIO4 0.17 0.28 0.42 0.65 1.0 2.1 4.4 5.9 permanganate KMnO4 2.83 4.31 6.34 9.03 12.6 22.1 peroxodisulfate K2S2O8 1.65 2.67 4.70 7.75 11.0 perrhenate KReO4 0.34 0.63 0.99 1.47 2.2 4.58 8.7 phosphate K3PO4 81.5 92.3 108 133 salicylate KC7H5O3 21.2 32.4 47.1 61.3 78.6 116 156 selenate K2SeO4 107 109 111 113 115 119 121 122 selenite K2SeO3 169 186 203 217 217 220 217 sulfate K2SO4 7.4 9.3 11.1 13.0 14.8 18.2 21.4 22.9 24.1 sulfite K2SO3 106 106 107 107 108 112 tellurate K2TeO4 8.8 27.5 50.4 thioantimonate(V) K3SbS4 306 320 302 315 381 thiocyanate KSCN 177 198 224 255 289 372 492 571 675 thiosulfate K2S2O3 96 155 175 205 238 293 312 zinc sulfate K2Zn(SO4)2 · 6H2O 13.0 18.9 25.9 35.0 44.9 72.1 5.18 Praseodymium bromate Pr(BrO3)3 55.9 73.0 91.8 114 144 nitrate Pr(NO3)3 112 162 178 selenate Pr2(SeO3)3 36.2 32.4 31.2 30.4 5.43 3.6 sulfate Pr2(SO4)3 19.8 15.6 12.6 9.89 2.56 5.04 3.5 1.1 0.91 Rubidium aluminum sulfate Rb2Al2(SO4)4 0.72 1.05 1.50 2.20 3.25 7.40 21.6 bromate RbBrO3 3.6 5.1 bromide RbBr 90 99 108 119 132 158 chlorate RbClO3 2.1 3.4 5.4 8.0 11.6 22 38 49 63 chloride RbCl 77 84 91 98 104 115 127 133 143 chloroaurate(III) RbAuCl4 4.8 9.9 15.5 21.5 36.2 54.6 65.8 79.2 chloroplatinate(IV) Rb2PtCl6 0.014 0.020 0.028 0.040 0.056 0.090 0.182 0.247 0.333 chromate Rb2CrO4 62.0 67.5 73.6 78.9 85.6 95.7 cobalt sulfate Rb2Co(SO4)2 5.10 7.47 10.8 14.5 18.2 30.2 44.9 55.0 70.1 dichromate (mn) Rb2Cr2O7 5.9 10.0 15.2 32.3 (tric) 5.8 9.5 14.8 32.4 formate RbCHO2 443 554 614 694 900 iron(III) sulfate RbFe(SO4)2 · 12H2O 8.0 20 35 52 nitrate RbNO3 19.5 33.0 52.9 81.2 117 200 310 374 452 perchlorate RbClO4 1.09 1.19 1.55 2.20 3.26 6.27 11.0 15.5 22.0 salicylate RbC7H5O3 187 212 238 268 324 sulfate Rb2SO4 37.5 42.6 48.1 53.6 58.5 67.5 75.1 78.6 81.8 Samarium bromate Sm(BrO3)3 34.2 47.6 62.5 79.0 98.5 chloride SmCl3 92.4 93.4 94.6 96.9 Selenic acid H2SeO4 426 567 1328 Selenious acid H2SeO3 90.1 122.2 166.7 235.6 344.4 383.1 383.1 385.4 Selenium dioxide SeO2 222 257 291 335 440 Silver acetate AgC2H3O2 0.73 0.89 1.05 1.23 1.43 1.93 2.59 bromate AgBrO3 0.11 0.16 0.23 0.32 0.57 0.94 1.33 chlorate AgClO3 10.4 15.3 20.9 26.8 fluoride AgF 85.9 120 172 190 203 nitrate AgNO3 122 167 216 265 311 440 585 652 733 nitrite AgNO2 0.16 0.22 0.34 0.51 0.73 1.39 perchlorate AgClO4 455 484 525 594 635 793 sulfamate AgNH2SO3 2.30 4.82 7.53 10.3 15.3 28.5 sulfate Ag2SO4 0.57 0.70 0.80 0.89 0.98 1.15 1.30 1.36 1.41 5.19 TABLE 5.2 Solubilities of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures (Continued) Substance Formula 0 10 20 30 40 60 80 90 100 Sodium acetate NaC2H3O2 36.2 40.8 46.4 54.6 65.6 139 153 161 170 aluminum sulfate Na2Al2(SO4)4 37.4 39.3 39.7 41.7 43.8 azide NaN3 38.9 39.9 40.8 55.3 benzoate NaC7H5O2 62.6 62.8 62.8 62.9 63.1 64.5 68.6 70.6 73.3 borate (penta-) Na2B10O16 6.4 8.6 12.0 16.4 22.0 37.9 63.4 83.5 108 borate (tetra-) Na2B4O7 1.11 1.60 2.56 3.86 6.67 19.0 31.4 41.0 52.5 bromate NaBrO3 24.2 30.3 36.4 42.6 48.8 62.6 75.7 90.8 bromide NaBr 80.2 85.2 90.8 98.4 107 118 120 121 121 carbonate Na2CO3 7.00 12.5 21.5 39.7 49.0 46.0 43.9 43.9 chlorate NaClO3 79.6 87.6 95.9 105 115 137 167 184 204 chloride NaCl 35.7 35.8 35.9 36.1 36.4 37.1 38.0 38.5 39.2 chloroaurate(III) NaAuCl4 139 151 178 227 900 chloroiridate(IV) Na2IrCl6 31.6 39.3 56.2 96.1 192 279 chromate Na2CrO4 31.7 50.1 84.0 88.0 96.0 115 125 126 cyanide NaCN 40.8 48.1 58.7 71.2 dichromate Na2Cr2O7 163 172 183 198 215 269 376 405 415 diethyl barbiturate NaC8H11N2O3 12.7 21.5 24.7 48.0 dihydrogen phosphate (ortho-) NaH2PO4 56.5 69.8 86.9 107 133 172 211 234 dihydrogen phosphate (pyro-) Na2H2P2O7 4.47 6.95 12.0 17.1 18.4 dithionate Na2S2O6 6.3 11.1 15.1 19.6 24.7 36.1 49.3 56.3 64.7 dodecanesulfonate NaC12H25SO3 0.13 0.25 6.54 dodecanoate NaC12H23O2 4.58 22.7 105 170 EDTA (Y) Na2H2Y · 2H2O 10.6 11.1 12.8 14.2 17.0 22.2 24.3 98 27.0 ferrocyanide Na4Fe(CN)6 11.2 14.8 18.8 23.8 29.9 43.7 62.1 fluoride NaF 3.66 4.06 4.22 4.40 4.68 4.89 5.08 fluoroberyllate Na2BeF4 1.33 1.44 1.92 2.24 2.62 2.73 fluorogermanate Na2GeF 1.52 1.68 2.25 2.83 3.36 fluorosilicate Na2SiF6 4.35 5.7 7.2 8.6 10.3 14.3 18.7 21.5 24.5 5.20 formate NaCHO2 43.9 62.5 81.2 102 108 122 138 147 160 germanate Na2GeO3 14.4 18.8 23.8 28.7 37.2 65.0 116 hydrogen arsenate Na2HAsO4 5.9 13.0 33.9 49.3 69.5 144 186 188 198 hydrogen carbonate NaHCO3 7.0 8.1 9.6 11.1 12.7 16.0 hydrogen phosphate Na2HPO4 1.68 3.53 7.83 22.0 55.3 82.8 92.3 102 104 hydrogen phosphite Na2HPO3 418 424 429 566 hydrogen succinate NaC4H5O4 17.5 25.3 34.8 47.7 61.6 74.5 90.1 hydroxide NaOH 98 109 119 129 174 hydroxostannate(IV) Na2Sn(OH)6 46.0 43.7 42.7 38.9 hypochlorite NaClO 29.4 36.4 53.4 100 110 iodate NaIO3 2.48 4.59 8.08 10.7 13.3 19.8 26.6 29.5 33.0 iodide NaI 159 167 178 191 205 257 295 302 molybdate Na2MoO4 44.1 64.7 65.3 66.9 68.6 71.8 nitrate NaNO3 73.0 80.8 87.6 94.9 102 122 148 180 nitrite NaNO2 71.2 75.1 80.8 87.6 94.9 111 133 160 oxalate Na2C2O4 2.69 3.05 3.41 3.81 4.18 4.93 5.71 6.50 perchlorate NaClO4 167 183 201 222 245 288 306 329 periodate NaIO4 1.83 5.6 10.3 19.9 30.4 phosphate Na3PO4 4.5 8.2 12.1 16.3 20.2 29.9 60.0 68.1 77.0 potassium tartrate NaKC4H4O6 31.9 46.6 67.8 102 salicylate NaC7H5O3 44.7 95.3 111 117 130 144 selenate Na2SeO4 13.3 25.2 26.9 77.0 81.8 78.6 74.8 73.0 72.7 selenite Na2SeO3 78.6 81.2 86.2 94.2 96.5 91.6 86.6 84.5 82.5 sulfate Na2SO4 4.9 9.1 19.5 40.8 48.8 45.3 43.7 42.7 42.5 Na2SO4 · 7H2O 19.5 30.0 44.1 sulfide Na2S 9.6 12.1 15.7 20.5 26.6 39.1 55.0 65.3 sulfite Na2SO3 14.4 19.5 26.3 35.5 37.2 32.6 29.4 27.9 thioantimonate(V) Na3SbS4 13.4 20.0 27.9 37.2 49.3 53.8 88.3 thiocyanate NaSCN 111 134 164 176 192 210 218 thiosulfate Na2S2O3 · 5H2O 50.2 59.7 70.1 83.2 104 tungstate Na2WO4 71.5 73.0 77.6 90.8 97.2 vanadate NaVO3 19.3 22.5 26.3 33.0 40.8 Strontium acetate Sr(C2H3O2)2 37.0 42.9 41.1 39.5 38.3 36.8 36.1 36.2 36.4 bromide SrBr2 85.2 93.4 102 112 123 150 182 223 chloride SrCl2 43.5 47.7 52.9 58.7 65.3 81.8 90.5 101 chromate SrCrO4 0.085 0.090 0.058 Properly called dihydrogen ethylenediaminetetraacetate (Na2H2EDTA · 2H2O).
5.21 TABLE 5.2 Solubilities of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures (Continued) Substance Formula 0 10 20 30 40 60 80 90 100 Strontium fluoride SrF2 0.0113 0.0117 0.0119 formate Sr(CHO2)2 9.1 10.6 12.7 15.2 17.8 25.0 31.9 32.9 34.4 hydroxide Sr(OH)2 0.91 1.25 1.77 2.64 3.95 8.42 20.2 44.5 91.2 iodide SrI2 165 178 192 218 270 365 383 nitrate Sr(NO3)2 39.5 52.9 69.5 88.7 89.4 93.4 96.9 98.4 nitrite Sr(NO2)2 65 72 79 97 130 134 oxide SrO 1.03 1.05 3.40 9.15 13.13 12.15 sulfate SrSO4 0.0113 0.0129 0.0132 0.0138 0.0141 0.0131 0.0116 0.0115 Sulfamic acid H2NSO3H 14.7 18.6 21.3 26.1 29.5 37.1 47.1 Telluric acid H2TeO4 16.2 33.8 41.6 50.0 57.2 77.5 106 155 Terbium bromate Tb(BrO3)3 · 9H2O 66.4 89.7 117 152 198 Thallium(I) azide TlN3 0.171 0.236 0.364 bromide TlBr 0.022 0.032 0.048 0.068 0.097 0.177 carbonate Tl2CO3 5.3 12.2 27.2 chlorate TlClO3 2.00 3.92 50 12.7 36.6 57.3 chloride TlCl 0.21 0.25 0.33 0.42 0.52 0.80 1.20 1.80 hydroxide TlOH 25.4 29.6 35.0 40.4 49.4 73.3 106 126 150 iodide TlI 0.002 0.006 0.015 0.035 0.070 0.120 nitrate TlNO3 3.90 6.22 9.55 14.3 21.0 46.1 110 200 414 nitrite TlNO2 17.9 28.9 40.3 53.2 83.6 216 1150 750 perchlorate TlClO4 6.00 8.04 13.1 19.7 28.3 50.8 81.5 picrate TlOC6H2(NO2)3 0.135 0.40 0.57 0.83 1.73 selenate Tl2SeO4 2.17 2.80 8.50 10.8 sulfate Tl2SO4 2.73 3.70 4.87 6.16 7.53 11.0 14.6 16.5 18.4 Thorium nitrate Th(NO3)4 186 187 191 sulfate Th(SO4)2 · 4H2O 4.04 1.63 Th(SO4)2 · 9H2O 0.74 0.99 1.38 1.99 3.00 Tin(II) iodide SnI2 0.99 1.17 1.42 2.11 3.04 3.58 4.20 Uranium(IV) sulfate U(SO4)2 · 4H2O 10.1 9.0 7.7 U(SO4)2 · 8H2O 11.9 17.9 29.2 55.8 5.22 Uranyl nitrate UO2(NO3)2 98 107 122 141 167 317 388 426 474 oxalate UO2C2O4 0.45 0.50 0.61 0.80 1.22 1.94 3.16 Ytterbium sulfate Yb2(SO4)3 44.2 37.5 22.2 17.2 10.4 6.4 5.8 4.7 Yttrium bromide YBr3 63.9 75.1 87.3 101 116 123 chloride YCl3 77.3 78.1 78.8 79.6 80.8 nitrate Y(NO3)3 93.1 106 123 143 163 200 sulfate Y2(SO4)3 8.05 7.67 7.30 6.78 6.09 4.44 2.89 2.2 Zinc bromide ZnBr2 389 446 528 591 618 645 672 chlorate Zn(ClO3)2 145 152 200 209 223 chloride ZnCl2 342 363 395 437 452 488 541 614 formate Zn(CHO2)2 3.70 4.30 5.20 6.10 7.40 11.8 21.2 28.8 38.0 iodide ZnI2 430 432 445 467 490 510 nitrate Zn(NO3)2 98 138 211 sulfate (rh) ZnSO4 41.6 47.2 53.8 61.3 70.5 75.4 71.1 60.5 sulfate (mn) 54.4 60.0 65.5 tartrate ZnC4H4O6 0.022 0.041 0.060 0.104 0.059 5.23 5.24 SECTION 5 5.2 VAPOR PRESSURES TABLE 5.3 Vapor Pressure of Mercury Temp. C mm of Hg Temp. C mm of Hg Temp. C mm of Hg 0 0.000 185 2 0.000 228 4 0.000 276 6 0.000 335 8 0.000 406 10 0.000 490 12 0.000 588 14 0.000 706 16 0.000 846 18 0.001 009 20 0.001 201 22 0.001 426 24 0.001 691 26 0.002 000 28 0.002 359 30 0.002 777 32 0.003 261 34 0.003 823 36 0.004 471 38 0.005 219 40 0.006 079 42 0.007 067 44 0.008 200 46 0.009 497 48 0.010 98 50 0.012 67 52 0.014 59 54 0.016 77 56 0.019 25 58 0.022 06 60 0.025 24 62 0.028 83 64 0.032 87 66 0.037 40 68 0.042 51 70 0.048 25 72 0.054 69 74 0.061 89 76 0.069 93 78 0.078 89 80 0.088 80 82 0.100 0 84 0.112 4 86 0.126 1 88 0.1413 90 0.1582 92 0.1769 94 0.1976 96 0.2202 98 0.2453 100 0.2729 102 0.3032 104 0.3366 106 0.3731 108 0.4132 110 0.4572 112 0.5052 114 0.5576 116 0.6150 118 0.6776 120 0.7457 122 0.8198 124 0.9004 126 0.9882 128 1.084 130 1.186 132 1.298 134 1.419 136 1.551 138 1.692 140 1.845 142 2.010 144 2.188 146 2.379 148 2.585 150 2.807 152 3.046 154 3.303 156 3.578 158 3.873 160 4.189 162 4.528 164 4.890 166 5.277 168 5.689 170 6.128 172 6.596 174 7.095 176 7.626 178 8.193 180 8.796 182 9.436 184 10.116 186 10.839 188 11.607 190 12.423 192 13.287 194 14.203 196 15.173 198 16.200 200 17.287 202 18.437 204 19.652 206 20.936 208 22.292 210 23.723 212 25.233 214 26.826 216 28.504 218 30.271 220 32.133 222 34.092 224 36.153 226 38.318 228 40.595 230 42.989 232 45.503 234 48.141 236 50.909 238 53.812 240 56.855 242 60.044 244 63.384 246 66.882 248 70.543 250 74.375 252 78.381 254 82.568 256 86.944 258 91.518 260 96.296 262 101.28 264 106.48 266 111.91 268 117.57 270 123.47 272 129.62 274 136.02 PHYSICAL PROPERTIES 5.25 TABLE 5.3 Vapor Pressure of Mercury (Continued) Temp. C mm of Hg Temp. C mm of Hg Temp. C mm of Hg 276 142.69 278 149.64 280 156.87 282 164.39 284 172.21 286 180.34 288 188.79 290 197.57 292 206.70 294 216.17 296 226.00 298 236.21 300 246.80 302 257.78 304 269.17 306 280.98 308 293.21 310 305.89 312 319.02 314 332.62 316 346.70 318 361.26 320 376.33 322 391.92 324 408.04 326 424.71 328 441.94 330 459.74 332 478.13 334 497.12 336 516.74 338 537.00 340 557.90 342 579.45 344 601.69 346 624.64 348 648.30 350 672.69 352 697.83 354 723.73 356 750.43 358 777.92 360 806.23 362 835.38 364 865.36 366 896.23 368 928.02 370 960.66 372 994.34 374 1028.9 376 1064.4 378 1100.9 380 1138.4 382 1177.0 384 1216.6 386 1257.3 388 1299.1 390 1341.9 392 1386.1 394 1431.3 396 1477.7 398 1525.2 400 1574.1 430 2464 460 3715 490 5420 520 7691 550 10650 600 22.87 atm 650 35.49 atm 700 52.51 atm 750 74.86 atm 800 103.31 atm 850 138.42 atm 900 180.92 atm 950 226.58 atm 1000 290.5 atm 1050 358.1 atm 1100 437.3 atm 1150 521.3 atm 1200 616.8 atm 1250 721.4 atm 1300 835.9 atm Critical point.
5.26 SECTION 5 TABLE 5.4 Vapor Pressure of Ice in Millimeters of Mercury For temperatures from 99 to 0C.
The values in the table are for ice in contact with its own vapor. Where the ice is in contact with air at a temperature tC, this correction must be added: Correction 20p/(100)(t 273).
t, C p, mm Hg t, C p, mm Hg t, C p, mm Hg 99 0.000 012 98 0.000 015 97 0.000 018 96 0.000 022 95 0.000 027 94 0.000 033 93 0.000 040 92 0.000 048 91 0.000 058 90 0.000 070 89 0.000 084 88 0.000 10 87 0.000 12 86 0.000 14 85 0.000 17 84 0.000 20 83 0.000 24 82 0.000 29 81 0.000 34 80 0.000 40 79 0.000 47 78 0.000 56 77 0.000 66 76 0.000 77 75 0.000 90 74 0.001 05 73 0.001 23 72 0.001 43 71 0.001 67 70 0.001 94 69 0.002 25 68 0.002 61 67 0.003 02 66 0.003 49 65 0.004 03 64 0.004 64 63 0.005 34 62 0.006 14 61 0.007 03 60 0.008 08 59 0.009 25 58 0.010 6 57 0.012 1 56 0.013 8 55 0.015 7 54 0.017 8 53 0.020 3 52 0.023 0 51 0.026 1 50 0.029 6 49 0.033 4 48 0.037 8 47 0.042 6 46 0.048 1 45 0.054 1 44 0.060 9 43 0.068 4 42 0.076 8 41 0.086 2 40 0.096 6 39 0.108 1 38 0.120 9 37 0.135 1 36 0.150 7 35 0.168 1 34 0.187 3 33 0.208 4 32 0.231 8 31 0.257 5 30.0 0.285 9 29.5 0.301 29.0 0.317 28.5 0.334 28.0 0.351 27.5 0.370 27.0 0.389 26.5 0.409 26.0 0.430 25.5 0.453 25.0 0.476 24.5 0.500 24.0 0.526 23.5 0.552 23.0 0.580 22.5 0.609 22.0 0.640 21.5 0.672 21.0 0.705 20.5 0.740 20.0 0.776 19.5 0.814 19.0 0.854 18.5 0.895 18.0 0.939 17.5 0.984 17.0 1.031 16.5 1.080 16.0 1.132 15.5 1.186 15.0 0.241 14.5 1.300 14.0 1.361 13.5 1.424 13.0 1.490 12.5 1.559 12.0 1.632 11.5 1.707 11.0 1.785 10.5 1.866 10.0 1.950 9.8 1.985 9.6 2.021 9.4 2.057 9.2 2.093 9.0 2.131 8.8 2.168 8.6 2.207 8.4 2.246 8.2 2.285 8.0 2.326 7.8 2.367 7.6 2.408 7.4 2.450 7.2 2.493 7.0 2.537 6.8 2.581 6.6 2.626 6.4 2.672 6.2 2.718 6.0 2.765 5.8 2.813 5.6 2.862 5.4 2.912 5.2 2.962 5.0 3.013 4.8 3.065 4.6 3.117 4.4 3.171 4.2 3.225 4.0 3.280 3.8 3.336 3.6 3.393 3.4 3.451 3.2 3.509 PHYSICAL PROPERTIES 5.27 TABLE 5.4 Vapor Pressure of Ice in Millimeters of Mercury (Continued) t, C p, mm Hg t, C p, mm Hg t, C p, mm Hg 3.0 3.568 2.8 3.360 2.6 3.691 2.4 3.753 2.2 3.816 2.0 3.880 1.8 3.946 1.6 4.012 1.4 4.079 1.2 4.147 1.0 4.217 0.8 4.287 0.6 4.359 0.4 4.431 0.2 4.504 0.0 4.579 TABLE 5.5 Vapor Pressure of Liquid Ammonia, NH3 tC.
p in atm tC.
p in atm tC.
p in atm 78 0.0582 76 0.0683 74 0.0797 72 0.0929 70 0.1078 68 0.1246 66 0.1437 64 0.1651 62 0.1891 60 0.2161 58 0.2461 56 0.2796 54 0.3167 52 0.3578 50 0.4034 48 0.4536 46 0.5087 44 0.5693 42 0.6357 40 0.7083 38 0.7875 36 0.8738 34 0.9676 32 1.0695 30 1.1799 28 1.2992 26 1.4281 24 1.5671 22 1.7166 20 1.8774 18 2.0499 16 2.2349 14 2.4328 12 2.6443 10 2.8703 8 3.1112 6 3.3677 4 3.6405 2 3.9303 0 4.2380 2 4.5640 4 4.9090 6 5.2750 8 5.6610 10 6.0685 12 6.4985 14 6.9520 16 7.4290 18 7.9310 20 8.4585 22 9.0125 24 9.5940 26 10.2040 28 10.8430 30 11.512 32 12.212 34 12.943 36 13.708 38 14.507 40 15.339 42 16.209 44 17.113 46 18.056 48 19.038 50 20.059 52 21.121 54 22.224 56 23.372 58 24.562 60 25.797 62 27.079 64 28.407 66 29.784 68 31.211 70 32.687 72 34.227 74 35.813 76 37.453 78 39.149 80 40.902 82 42.712 84 44.582 86 46.511 88 48.503 90 50.558 92 52.677 94 54.860 96 57.111 98 59.429 100 61.816 102 64.274 104 66.804 106 69.406 108 72.084 110 74.837 112 77.668 114 80.578 116 83.570 118 86.644 120 89.802 122 93.045 124 96.376 126 99.796 128 103.309 130 106.913 132 110.613 132.3 111.3(c.p.) 5.28 SECTION 5 TABLE 5.6 Vapor Pressure of Water For temperatures from 10 to 120C.
The values in the table are for water in contact with its own vapor. Where the water is in contact with air at a temperature t in degrees Celsius, the following correction must be added: Correction (when t 40C) p(0.775 0.000 313t)/100; correction (when t 50C) p(0.0652 0.000 087 5t)/100.
t, C p, mm Hg t, C p, mm Hg t, C p, mm Hg t, C p, mm Hg 10.0 2.149 9.5 2.236 9.0 2.326 8.5 2.418 8.0 2.514 7.5 2.613 7.0 2.715 6.5 2.822 6.0 2.931 5.5 3.046 5.0 3.163 4.5 3.284 4.0 3.410 3.5 3.540 3.0 3.673 2.5 3.813 2.0 3.956 1.5 4.105 1.0 4.258 0.5 4.416 0.0 4.579 0.5 4.750 1.0 4.926 1.5 5.107 2.0 5.294 2.5 5.486 3.0 5.685 3.5 5.889 4.0 6.101 4.5 6.318 5.0 6.543 5.5 6.775 6.0 7.013 6.5 7.259 7.0 7.513 7.5 7.775 8.0 8.045 8.5 8.323 9.0 8.609 9.5 8.905 10.0 9.209 10.5 9.521 11.0 9.844 11.5 10.176 12.0 10.518 12.5 10.870 13.0 11.231 13.5 11.604 14.0 11.987 14.5 12.382 15.0 12.788 15.2 12.953 15.4 13.121 15.6 13.290 15.8 13.461 16.0 13.634 16.2 13.809 16.4 13.987 16.6 14.166 16.8 13.347 17.0 14.530 17.2 14.715 17.4 14.903 17.6 15.092 17.8 15.284 18.0 15.477 18.2 15.673 18.4 15.871 18.6 16.071 18.8 16.272 19.0 16.477 19.2 16.685 19.4 16.894 19.6 17.105 19.8 17.319 20.0 17.535 20.2 17.753 20.4 17.974 20.6 18.197 20.8 18.422 21.0 18.650 21.2 18.880 21.4 19.113 21.6 19.349 21.8 19.587 22.0 19.827 22.2 20.070 22.4 20.316 22.6 20.565 22.8 20.815 23.0 21.068 23.2 21.324 23.4 21.583 23.6 21.845 23.8 22.110 24.0 22.387 24.2 22.648 24.4 22.922 24.6 23.198 24.8 23.476 25.0 23.756 25.2 24.039 25.4 24.326 25.6 24.617 25.8 24.912 26.0 25.209 26.2 25.509 26.4 25.812 26.6 26.117 26.8 26.426 27.0 26.739 27.2 27.055 27.4 27.374 27.6 27.696 27.8 28.021 28.0 28.349 28.2 28.680 28.4 29.015 28.6 29.354 28.8 29.697 29.0 30.043 29.2 30.392 29.4 30.745 29.6 31.102 29.8 31.461 30.0 31.824 30.2 32.191 30.4 32.561 30.6 32.934 30.8 33.312 31.0 33.695 31.2 34.082 31.4 34.471 31.6 34.864 31.8 35.261 32.0 35.663 32.2 36.068 32.4 36.477 32.6 36.891 32.8 37.308 33.0 37.729 33.2 38.155 33.4 38.584 33.6 39.018 33.8 39.457 34.0 39.898 34.2 40.344 34.4 40.796 34.6 41.251 34.8 41.710 35.0 42.175 35.2 42.644 35.4 43.117 35.6 43.595 35.8 44.078 36.0 44.563 36.2 45.054 36.4 45.549 36.6 46.050 36.8 46.556 37.0 47.067 37.2 47.582 37.4 48.102 37.6 48.627 37.8 49.157 38.0 49.692 38.2 50.231 38.4 50.774 38.6 51.323 38.8 51.879 39.0 52.442 39.2 53.009 39.4 54.580 39.6 54.156 39.8 54.737 40.0 55.324 40.5 56.81 41.0 58.34 41.5 59.90 42.0 61.50 42.5 63.13 43.0 64.80 43.5 66.51 44.0 68.26 PHYSICAL PROPERTIES 5.29 TABLE 5.6 Vapor Pressure of Water (Continued) t, C p, mm Hg t, C p, mm Hg t, C p, mm Hg t, C p, mm Hg 44.5 70.05 45.0 71.88 45.5 73.74 46.0 75.65 46.5 77.61 47.0 79.60 47.5 81.64 48.0 83.71 48.5 85.85 49.0 88.02 49.5 90.24 50.0 92.51 50.5 94.86 51.0 97.20 51.5 99.65 52.0 102.09 52.5 104.65 53.0 107.20 53.5 109.86 54.0 112.51 54.5 115.28 55.0 118.04 55.5 120.92 56.0 123.80 56.5 126.81 57.0 129.82 57.5 132.95 58.0 136.08 58.5 139.34 59.0 142.60 59.5 145.99 60.0 149.38 60.5 152.91 61.0 156.43 61.5 160.10 62.0 163.77 62.5 167.58 63.0 171.38 63.5 175.35 64.0 179.31 64.5 183.43 65.0 187.54 65.5 191.82 66.0 196.09 66.5 200.53 67.0 204.96 67.5 209.57 68.0 214.17 68.5 218.95 69.0 223.73 69.5 228.72 70.0 233.7 70.5 238.8 71.0 243.9 71.5 249.3 72.0 254.6 72.5 260.2 73.0 265.7 73.5 271.5 74.0 277.2 74.5 283.2 75.0 289.1 75.5 295.3 76.0 301.4 76.5 307.7 77.0 314.1 77.5 320.7 78.0 327.3 78.5 334.2 79.0 341.0 79.5 348.1 80.0 355.1 80.5 362.4 81.0 369.7 81.5 377.3 82.0 384.9 82.5 392.8 83.0 400.6 83.5 408.7 84.0 416.8 84.5 425.2 85.0 433.6 85.5 442.3 86.0 450.9 86.5 459.8 87.0 468.7 87.5 477.9 88.0 487.1 88.5 496.6 89.0 506.1 89.5 515.9 90.0 525.76 90.5 535.83 91.0 546.05 91.5 556.44 92.0 566.99 92.5 577.71 93.0 588.60 93.5 599.66 94.0 610.90 94.5 622.31 95.0 633.90 95.2 638.59 95.4 643.30 95.6 648.05 95.8 652.82 96.0 657.62 96.2 662.45 96.4 667.31 96.6 672.20 96.8 677.12 97.0 682.07 97.2 687.04 97.4 692.05 97.6 697.10 97.8 702.17 98.0 707.27 98.2 712.40 98.4 717.56 98.6 722.75 98.8 727.98 99.0 733.24 99.2 738.53 99.4 743.85 99.6 749.20 99.8 754.58 100.0 760.00 101.0 787.57 102.0 815.86 103.0 845.12 104.0 875.06 105.0 906.07 106.0 937.92 107.0 970.60 108.0 1004.42 109.0 1038.92 110.0 1074.56 111.0 1111.20 112.0 1148.74 113.0 1187.42 114.0 1227.25 115.0 1267.98 116.0 1309.94 117.0 1352.95 118.0 1397.18 119.0 1442.63 120.0 1489.14 TABLE 5.7 Vapor Pressure of Deuterium Oxide t, C p, mm Hg t, C p, mm Hg t, C p, mm Hg 0 3.65 20 15.2 80 331.6 1 3.93 30 28.0 90 495.5 2 4.29 40 49.3 100 722.2 3 4.65 50 83.6 101.43 760.0 3.8 5.05 60 136.6 10 7.79 70 216.1 5.30 SECTION 5 Eq.
Vapor-pressure equation dp/dT [d(ln p)/d(1/T)] 1 B log p A t C 2.303pB 2 (t C) 2 2.303BT 2 (t C) 2 B log p A T 2.303pB 2 T 2.303B 3 B log p A C log T T 2.303B C p 2 T T 2.303B CT Equations 1 and 2 are easily rearranged to calculate the temperature of the normal boiling point: B t C (5.1) A log p B T (5.2) A log p The constants in the Antoine equation may be estimated by selecting three widely spaced data points and substituting in the following equations in sequence: y y t t t t 3 2 2 1 3 1 1 y y t t t C 2 1 3 2 3 y y 3 1 B (t C)(t C) 1 3 t t 3 1 B A y 2 t C 2 In these equations, y log p .
i i 5.2.1 Vapor-Pressure Equations Numerous mathematical formulas relating the temperature and pressure of the gas phase in equilib-rium with the condensed phase have been proposed. The Antoine equation (Eq. 1) gives good correlation with experimental values. Equation 2 is simpler and is often suitable over restricted temperature ranges. In these equations, and the derived differential coefficients for use in the Hag-genmacher and Clausius-Clapeyron equations, the p term is the vapor pressure of the compound in pounds per square inch (psi), the t term is the temperature in degrees Celsius, and the T term is the absolute temperature in kelvins ( ).
tC 273.15 PHYSICAL PROPERTIES 5.31 TABLE 5.8 Vapor Pressures of Various Inorganic Compounds Substance State Eq.
Range, C A B C Aluminum AlCl3 2 70–190 16.24 6 006 Al2O3 2 1840–2000 14.22 28 200 Ammonium NH3 c 1 9.963 82 1 617.907 272.55 liq 1 7.360 50 926.132 240.17 NH4Br subl c 1 9.220 0 3 947 227.0 NH4Cl subl c 1 9.355 7 3 703.7 232.0 NH4I subl c 1 9.147 0 3 858 226.0 NH4N3 c 1 10.433 4 2 821.0 240.0 Antimony Sb c 2 1070–1325 9.051 9 871 SbBr3 2 235–324 8.005 2 873 SbCl3 2 170–253 8.090 2 582.3 SbI3 2 330–445 7.831 3 350.55 Sb2Se3 subl c 2 8.790 6 6 432.3 Argon Ar c 1 7.505 81 399.085 272.63 liq 1 6.616 51 304.227 267.32 Arsenic As 2 440–815 10.800 6 947 2 800–860 6.692 2 460 AsCl3 2 50–100 7.953 2 042.7 As2O3 2 100–310 12.127 5 815.81 2 315–490 6.513 2 722.2 Barium Ba 2 930–1130 15.765 18 280 BaH2 [97% pure] 2 500–1000 6.86 4 000 Bismuth Bi 2 1210–1420 8.876 10 446 BiCl3 2 91–213 2.681 685.519 Boron BBr3 2 40 to 90 7.655 1 740.3 BCl3 1 6.188 11 756.89 214.0 B(CH3)3 2 118 to 20 7.459 5 1 157.99 B2H6 liq 1 6.366 38 521.490 241.98 B5H11 liq 2 43 to 8.4 7.901 1 690.3 Bromine Br2 c 1 9.7209 2 041.3 260.1 liq 1 6.877 80 1 119.68 221.38 BrF3 liq 1 7.729 74 1 673.95 219.48 BrF5 liq 1 7.273 68 1 219.28 236.40 BrO2F liq 1 7.436 51 1 195.8 260.1 Cadmium Cd 2 150–321 8.564 5 693 2 500–840 7.897 5 218 CdI2 2 385–450 9.269 6 383 Calcium Ca 2 500–700 9.697 10 185 2 960–1100 16.240 19 325 Crystalline solid.
5.32 SECTION 5 TABLE 5.8 Vapor Pressures of Various Inorganic Compounds (Continued) Substance State Eq.
Range, C A B C Carbon C [as C(g)] liq 1 11.042 8 37 736 302.2 [as C2(g)] liq 1 12.583 2 43 281 318.3 [all species] liq 1 9.381 3 27 240 264.0 Carbon CNBr subl c 1 9.488 9 2 041.8 251.70 CNF 1 76 to 47 6.778 9 697.61 224.95 CO c I 1 7.414 8 342.50 269.0 liq 1 6.694 22 291.743 267.99 CO2 c 1 9.810 66 1 347.786 273.00 C3O2 liq 1 71 to 7 7.188 99 1 100.94 249.15 COCl2 liq 1 6.971 33 998.770 236.68 COF2 1 109 to 84 6.885 5 576.70 228.58 COS 1 111 to 49 6.907 23 804.48 250.0 CS2 1 3–80 6.942 79 1 169.11 241.59 CSe2 1 0–50 6.776 73 1 353.20 219.95 CSeS 1 16 to 84 6.699 6 1 161.97 219.59 Cesium Cs 2 200–350 6.949 3 833.7 CsBr 2 978–1305 7.990 8 022.53 CsCl 2 986–1295 8.340 8 523.94 CsF 2 1033–1255 7.703 7 359.21 CsH 2 245–378 11.79 5 900 2 340–440 9.25 4 410 CsI 2 1052–1280 9.124 9 699.11 Chlorine Cl2 c 1 9.705 12 1 444.19 267.13 liq 1 6.937 90 861.34 246.33 ClF liq 1 6.989 682.1 256 ClF3 liq 1 7.366 85 1 096.28 232.63 ClF5 1 6.269 33 653.06 206.6 ClO2 liq 1 6.036 11 590.09 176.15 Cl2O liq 1 7.132 68 1 021.56 238.16 ClOClO3 liq 1 7.538 67 1 404.18 257.00 Cl2O7 liq 1 6.869 29 1 214.00 220.79 ClO2F liq 1 6.677 15 809.78 218.96 ClO3F liq 1 6.895 19 791.73 243.88 Copper CuBr 2 997–1351 5.460 4 173.2 CuCl 2 878–1369 5.454 4 215.0 CuI 2 991–1154 5.570 4 215.0 Fluorine F2 liq 1 6.765 88 304.35 266.54 FNO3 liq 1 6.658 6 769.5 248.0 Germanium GeCl4 2 10.4–86 7.340 2 010.9 Helium 3He liq 1 271.13 to 270.86 4.272 7 5.594 273.840 liq 1 271.13 to 269.92 5.100 0 11.062 274.950 4He 1 271.4 to 270.1 4.558 7 8.1548 273.710 1 271.4 to 268.9 5.320 75 14.6515 274.950 1 271.4 to 268.1 6.004 60 24.0668 276.650 PHYSICAL PROPERTIES 5.33 TABLE 5.8 Vapor Pressures of Various Inorganic Compounds (Continued) Substance State Eq.
Range, C A B C Hydrogen 1H2 normal, 25% para c 1 6.043 86 66.507 274.630 liq 1 5.824 38 67.5078 275.700 equilibrium c 1 6.042 07 65.961 274.60 liq 1 5.814 64 66.7945 275.650 1H2H (DH) c 1 6.960 08 99.968 276.590 liq 1 6.016 12 77.1349 275.620 2H2 (D2) normal, c 1 7.726 05 135.461 278.550 66.7% ortho liq 1 6.128 25 83.5251 275.216 2H2 equilibrium, c 1 7.751 10 135.58 278.50 97.8% ortho liq 1 6.044 68 79.5888 274.680 3H2 (T2) normal, 25% c 1 6.184 03 76.7445 271.850 para liq 1 6.089 21 81.8971 273.650 1HBr c 1 7.667 61 878.57 253.2 liq 1 6.287 53 540.82 225.44 2HBr (DBr) c 1 7.500 93 820.68 247.3 liq 1 6.162 38 505.68 220.6 1HCl c 1 8.134 73 941.57 268.06 liq 1 7.170 00 745.80 258.88 2HCl (DCl) c 1 7.850 47 843.32 258.32 liq 1 6.935 96 668.20 249.50 HCN liq 1 16 to 46 7.528 2 1329.5 260.4 1HF liq 1 7.680 98 1475.60 287.88 2HF (DF) liq 1 7.217 04 1268.37 273.87 1HI c 1 7.315 6 894.32 239.6 liq 1 5.608 9 416.04 188.1 2HI (DI) c 1 7.314 9 889.52 238.8 liq 1 5.601 8 413.98 187.8 HN3 liq 1 6.857 1 066 232 HNO3 liq 1 7.511 9 1 406 221.0 1H2O [See Tables 5.4 and 5.6] 2H2O (D2O) [See Table 5.7] H2 18O 1 0–60 8.133 2 1 762.39 235.660 1 60–120 7.972 08 1 668.84 227.700 H2O2 liq 1 7.969 17 1 886.76 220.6 HPO2F liq 1 6.735 3 1 342.9 232.0 H2S c 1 7.614 18 885.319 250.25 liq 1 6.993 92 768.130 249.09 H2S2 liq 1 6.974 1 232 225 H2S3 liq 1 6.807 1 488 209 H2S4 liq 1 6.945 1 772 196 H2S5 liq 1 7.320 2 104 189 HSO3Cl liq 1 7.049 1 480 201 HSO3F liq 1 7.399 5 1 521 174.0 H2Se c 1 7.635 4 927.6 240.0 liq 1 6.966 0 787.67 235.0 H2Te liq 1 7.000 935 229 Iodine I2 c 1 9.810 9 2 901.0 256.00 liq 1 7.018 1 1 610.9 205.0 ICl liq 1 7.702 1 1 517.9 217.0 IF5 c 1 10.964 2 538 245 liq 1 7.464 8 1 460 216.0 IF7 c 1 7.998 1 340 256 5.34 SECTION 5 TABLE 5.8 Vapor Pressures of Various Inorganic Compounds (Continued) Substance State Eq.
Range, C A B C Iridium IrF6 c 2 0.4–44 8.618 1 868 liq 2 44–54 7.952 1 657 Iron FeCl2 liq 2 708–834 9.794 7 455 liq 2 700–930 8.33 7 061 FeCl3 c 2 160–304 15.11 7 142 FeI2 2 517–577 13.183 10 778 2 601–686 9.674 7 716 Krypton Kr c 1 7.539 55 539.48 269.8 liq 1 6.630 70 416.38 264.45 Lead Pb 2 525–1325 7.827 9 845.4 PbBr2 2 735–918 8.064 6 163.1 PbCl2 2 500–950 8.961 7 411.4 PbF2 2 1078–1289 8.391 8 623.2 Lithium LiBr 2 1010–1265 8.068 7 975.5 LiCl 2 1045–1325 7.939 8 142.7 LiF 2 1398–1666 8.753 11 407 LiH 2 500–650 11.227 9 600 2 700–800 9.926 8 204 LiI 2 940–1140 8.011 7 500 Magnesium Mg 2 900–1070 12.993 13 579.8 MgH2 2 337–415 9.78 3 857 Mercury Hg [See Table 5.3] HgBr2 2 130–270 10.094 4 168.0 HgCl2 2 130–270 10.094 4 118.34 2 275–309 8.409 3 187.1 Hg2Cl2 1 8.521 51 3 110.96 168.0 HgI2 2 266–360 8.115 3 278.5 Neon Ne c 1 7.065 16 110.61 272.00 liq 1 6.084 44 78.380 270.550 Neptunium NpF6 liq 3 55.1–76.8 0.010 23 1 191.1 2.582 5 Nickel Ni(CO)4 2 2–40 7.780 1 556.5 Niobium NbBr5 liq 2 8.92 3 850 NbCl5 liq 2 210–254 8.37 2 827 NbF5 liq 2 8.439 2 824 Nitrogen N2 natural c 1 7.345 12 322.222 269.980 liq 1 6.494 57 255.680 266.550 15N2 c 1 7.363 96 323.17 269.88 liq 1 6.494 14 255.535 266.451 NCl3 1 6.956 1 190 221 NF3 liq 1 6.779 66 501.913 257.79 NH3 [See Table 5.5] PHYSICAL PROPERTIES 5.35 TABLE 5.8 Vapor Pressures of Various Inorganic Compounds (Continued) Substance State Eq.
Range, C A B C Nitrogen (continued) N2H4 liq 1 7.801 9 1 679.07 227.7 NO natural c 1 9.628 26 758.736 266.00 liq 1 8.743 00 682.938 268.27 N2O c 1 9.437 00 1 174.020 268.22 liq 1 7.003 94 654.260 247.16 N2O4 equilibrium c 1 10.736 31 2 075.53 252.80 mixture liq 1 8.917 12 1 798.54 276.80 N2O5 c 1 11.644 5 2 510 253.0 NOCl c 1 8.540 8 1 397.3 261.0 liq 1 7.361 54 1 094.73 249.70 N2O3 2 25 to 0 10.30 2 057.9 NOF liq 1 6.443 5 556.13 216.0 NO2Cl liq 1 5.372 3 395.40 174.0 NO2F liq 1 6.833 4 654.55 238.0 Osmium OsF5 2 75–180 9.75 3 429 OsF6 2 34–48 7.470 1 473 OsF8 2 38–47 7.650 1 525 OsO4 2 38 to 40 10.710 0 2 951.00 OsO3F2 2 59–105 7.994 1 911 Oxygen O2 liq 1 6.691 44 319.013 266.697 O3 liq 1 6.837 552.5 251.0 OF2 liq 1 7.236 19 545.05 269.91 O2F2 liq 1 6.779 02 756.39 250.16 O3F2 2 79–114 6.134 3 675.57 Palladium PdCl2 2 680–857 6.32 5 032 Phosphorus P red, V subl c 1 11.060 5 323 220 white subl c 1 6.936 9 1 907.6 190.0 P4 black, o-rh 1 12.405 6 671 247 PBr3 liq 1 40 to 173 6.915 5 1 590.5 221.0 PBr5 liq 1 to 104 6.948 1 320 214 PBrF2 liq 1 133 to 16 6.904 2 885.12 236.0 PBr2F liq 1 115 to 78 6.858 0 1 210.3 226.0 PCl3 liq 1 92 to 76 6.826 7 1 196 227.0 PCl5 c 1 to 160 10.206 8 2 903.1 237.0 liq 1 7.033 1 490 200.0 PClF2 liq 1 165 to 47 6.639 6 780.88 255.0 PCl2F liq 1 144 to 14 6.796 56 982.332 237.00 P(OCN)3 liq 2 2 to 169 8.745 5 2 595 PF3 liq 1 152 to 101 6.860 4 620.22 257.0 PF5 liq 1 93.8 to 84.5 6.914 4 647.21 245.0 PH3 c 1 7.482 35 794.496 265.20 liq 1 6.715 59 645.512 256.066 P2H4 liq 1 6.862 8 1 137 227.0 P4O6 liq 1 24–175 6.716 37 1 412.8 193.0 P4O10 c III 1 9.707 0 3 822 201.0 c I 1 10.843 2 6 424 213 liq 1 6.935 2 3 069 152 POBr3 liq 1 51–192 7.007 8 1 609.2 198.0 5.36 SECTION 5 TABLE 5.8 Vapor Pressures of Various Inorganic Compounds (Continued) Substance State Eq.
Range, C A B C Phosphorus (continued) POBrCl2 liq 1 31–165 6.924 1 411 213 POBrClF liq 1 6.914 1 214 222 POBrF2 liq 1 85 to 32 7.101 9 1 118.9 233.0 POBr2F liq 1 117 to 110 6.721 2 1 328.9 236.0 POCl3 liq 1 1.2–105 6.865 8 1 297.2 220.0 POClF2 liq 1 96 to 3 6.926 6 946.96 231.0 POCl2F liq 1 80 to 53 7.084 65 1 201.86 233.00 POF3 c 1 10.930 5 1 783 261.0 liq 1 7.115 5 810.1 231.0 PO(OCN)3 2 5–193 9.168 2 2 931 PO(SCN)3 2 14–300 8.533 0 3 240 P4S10 2 9.17 4 940 PSBr3 c 2 10.105 3 196.2 liq 2 8.338 3 2 641.9 PS(OCN)3 2 10.032 3 492 Platinum Pt 2 1425–1765 7.786 25 384 PtF6 liq 1 61.3–81.7 89.15 5 686 27.49 Polonium Po liq 1 7.041 4 5 017.6 241.0 PoCl4 liq 1 7.554 2 360 115 Potassium K 2 260–760 7.183 4 434.33 KBr 2 1095–1375 7.936 8 555.3 KCl 2 1116–1418 8.130 8 863.4 KF 2 1278–1500 9.000 10 838 KOH 2 1170–1327 7.330 7 103.3 KI 2 1063–1333 7.949 8 132.2 Protactinium liq 2 17.27 7 377 Radon Rn c 1 7.495 5 884.41 255.0 liq 1 6.701 5 718.25 250.0 Rhenium ReF5 c 2 9.024 3 037 ReF6 c 3 3.45 to 18.5 9.123 0 1 765.4 0.1790 liq 3 18.5–48 18.208 1 1 956.7 3.599 ReF7 c 3 14.5 to 48.3 13.043 2 2 205.8 1.470 3 liq 3 48.3–74.6 21.583 5 244.28 9.908 3 ReO2 c 2 650–785 11.65 14 437 liq 2 480–660 5.345 4 742 ReO3 c 2 325–420 15.16 10 882 liq 2 300–480 7.745 4 966 Re2O7 liq 2 230–360 8.98 3 868 ReOF4 liq 2 108–172 10.09 3 206 ReOF5 liq 2 41–73 7.727 1 679 ReS2 c 2 500–700 3.214 4 976 Re2S7 c 2 260–410 8.86 4 800 Rubidium Rb 2 250–370 6.976 3 969.5 RbCl 2 1142–1395 9.111 10 373 RbF 2 1142–1400 8.570 9 568.4 PHYSICAL PROPERTIES 5.37 TABLE 5.8 Vapor Pressures of Various Inorganic Compounds (Continued) Substance State Eq.
Range, C A B C Ruthenium RuOF4 2 120–160 8.60 2 616 Selenium Se liq 1 7.631 6 4 213.0 202.0 SeCl4 c 1 10.250 9 3 068.8 225.0 SeF4 liq 1 7.888 7 1 603.0 215.0 SeF6 c 1 8.385 4 1 121.4 250.0 SeO2 1 6.577 81 1 879.81 179.0 SeOCl2 liq 1 6.257 3 970.87 112.0 SeOF2 liq 1 7.420 1 380 178 Silicon SiCl4 liq 1 0–53 6.857 26 1 138.92 228.88 SiH4 2 160 to 112 6.881 645.9 Si2H6 2 115 to 14.6 7.258 1 133.4 Si3H8 2 70 to 52 7.676 1 559.1 Silver AgCl 2 1255–1442 8.179 9 688.7 Sodium Na 2 180–883 7.553 5 395.4 NaCl 2 976–1155 8.329 7 9 417.07 NaCI 2 1156–1430 8.548 9 704.3 NaCN 2 800–1360 7.472 8 122.81 NaF 2 1562–1701 8.640 11 396.6 NaI 2 1063–1307 8.371 8 623.2 NaOH 2 1010–1402 7.030 6 894 Strontium Sr 2 940–1140 16.056 18 802.8 Sulfur S equilibrium liq 1 6.843 59 2 500.12 186.30 S2Br2 liq 1 7.177 1 660 185 SCl2 liq 1 8.454 1 594 227 S2Cl2 liq 1 6.783 6 1 341 206.0 S2F2 liq 1 6.684 628 256 SF4 liq 1 6.839 5 823.4 248.0 SF6 c 1 8.416 0 1 096.5 262.0 S2F10 liq 1 7.067 6 1 100.6 234.0 SO2 c 1 9.754 3 1 553.8 225.0 liq 1 7.282 28 999.900 237.190 SO3 “icelike” c III 1 10.565 7 2 273.8 255.0 “woollike” c II 1 11.590 1 2 665.6 264.0 c I 1 14.255 9 3 692.1 273.0 liq 1 9.050 85 1 735.31 236.50 SOBr2 liq 1 7.056 1 445 206 SOCl2 liq 1 7.287 45 1 446.7 252.7 SOClF liq 1 7.173 1 1 100.1 244.00 SOF2 liq 1 6.959 06 775.48 234.00 SOF4 liq 1 7.071 8 840.3 249.0 S2O2F10 liq 1 6.874 1 110 229 S2O5Cl2 liq 1 7.019 1 460 202 S2O5ClF liq 1 7.015 6 1 257.4 204.0 S2O5F2 liq 1 6.881 1 120 229 S2O5F4 liq 1 6.885 1 140 227 5.38 SECTION 5 TABLE 5.8 Vapor Pressures of Various Inorganic Compounds (Continued) Substance State Eq.
Range, C A B C Sulfur (continued) SO2BrF liq 1 7.142 8 1 155 231.0 SO2Cl2 liq 1 7.001 7 1 209 224.0 SO2ClF liq 1 6.521 5 793.73 210.70 SO2F2 liq 1 6.907 0 784.3 250 Tantalum TaBr5 liq 2 8.11 3 260 TaCl5 liq 2 220–240 8.68 2 970 TaF5 liq 2 8.524 2 834 TaI5 liq 2 7.67 3 950 Technetium TcF6 liq 3 37.4–51.7 24.808 7 2 405 5.803 6 TcO3F liq 2 18.3–51.8 8.417 2 065 Tc2O7 c 2 18.279 7 205 liq 2 8.999 3 571 Tellurium Te liq 1 7.301 0 5 370.6 221 TeCl4 liq 1 7.558 6 2 355 115 TeF6 liq 1 6.748 8 807.0 247.0 Te2F10 liq 1 6.901 8 1 150 227.0 TeO2 2 450–733 12.328 4 13 222 Thallium Tl 2 950–1200 6.1240 6 268 TlF 2 282–298 12.52 5 484 Thorium ThF4 liq 2 10.821 15 270 ThH2 2 up to 883 9.50 7 650 Tin SnCl4 2 52 to 38 9.824 2 441.23 SnH4 2 148 to 49 7.400 999.68 Titanium TiCl2 subl c 2 9.30 8 500 TiCl3 subl c 2 455–550 10.401 8 296 TiCl4 liq 2 23 to 136 7.683 1 964 TiI4 liq 2 160–360 7.577 3 054 Tungsten W 2 2230–2770 9.920 46 850 Uranium UF6 liq 1 64–116 6.994 64 1 126.288 221.963 liq 1 116–230 7.690 69 1 683.165 302.148 UH3 dissociation 2 200–430 9.39 4 590 U2H3 (UD3) 2 9.43 4 500 U3H3 (UT3) 2 9.46 4 471 Vanadium VBr2 c 2 541–716 9.08 10 460 subl c 2 800–905 5.9 9 830 VBr3 2 314–427 11.12 7 470 VCl2 subl c 2 910–1100 5.725 9 721 VCl3 2 352–567 11.20 9 777 VCl4 liq 2 30–153 7.62 2 020 VF3 subl c 2 650–920 12.357 15 603 VF5 subl c 2 20 to 19.5 8.168 2 608 liq 2 19.5–45.5 7.549 2 423 PHYSICAL PROPERTIES 5.39 TABLE 5.8 Vapor Pressures of Various Inorganic Compounds (Continued) Substance State Eq.
Range, C A B C Vanadium (continued) VI2 subl c 2 850–1016 2.56 5 600 VOCl3 liq 2 15.4–125 7.69 1 920 Xenon Xe c 1 7.484 5 714.896 264.0 liq 1 6.642 89 566.282 258.660 XeF2 subl c 1 10.019 47 2 683.96 261.68 XeF4 subl c 1 10.913 87 3 095.06 269.56 Zinc Zn c 2 250–419 9.200 6 946.6 TABLE 5.9 Vapor Pressures of Various Organic Compounds Substance Eq.
Range, C A B C Acenaphthene 1 147–187 7.728 19 2 534.234 245.576 2 147–288 8.033 2 834.99 Acetaldehyde 1 liq 8.005 52 1 600.017 291.809 Acetic acid 1 liq 7.387 82 1 533.313 222.309 Acetic anhydride 1 liq 7.149 48 1 444.718 199.817 Acetone 1 liq 7.117 14 1 210.595 229.664 Acetonitrile 1 liq 7.119 88 1 314.4 230 Acetophenone 2 30–100 9.135 2 2 878.8 Acetyl bromide 1 liq 5.197 02 545.784 150.396 Acetyl chloride 1 liq 6.948 87 1 115.954 223.554 Acetylene 1 130 to 83 9.140 2 1 232.6 280.9 1 82 to 72 7.099 9 711.0 253.4 Acetyl iodide 1 liq 4.181 44 355.452 108.160 Acrylic acid 1 20–70 8.538 67 2305.843 266.547 Acrylonitrile 1 20 to 140 7.038 55 1 232.53 222.47 Allyl isothiocyanate 1 10–50 5.126 58 791.434 154.019 m-Aminobenzotrifluoride 1 0–96 7.651 86 1 940.6 218.0 96–300 7.170 30 1 650.21 193.58 p-Aminophenol 1 130–185 3.357 50 699.157 331.343 Aniline 1 102–185 7.320 10 1 731.515 206.049 Anthracene 2 100–160 8.91 3 761 1 176–380 7.674 01 2 819.63 247.02 9,10-Anthracenedione 2 224–286 12.305 5 747.9 2 285–370 8.002 3 341.94 Benzene 1 12 to 3 9.106 4 1 885.9 244.2 1 8–103 6.905 65 1 211.033 220.790 Benzenethiol 1 52–198 6.990 19 1 529.454 203.048 Benzoic acid 2 60–110 9.033 3 333.3 Benzonitrile 1 liq 6.746 31 1 436.72 181.0 Benzophenone 1 48–202 7.349 66 2 331.4 195.0 1 200–306 7.162 94 2 051.855 173.074 Benzotrifluoride 1 20 to 180 7.007 08 1 331.30 220.58 Benzoyl chloride 2 140–200 7.924 5 2 372.1 Benzyl acetate 1 46–156 8.457 05 2 623.206 259.067 Benzyl alcohol 1 122–205 7.198 17 1 632.593 172.790 5.40 SECTION 5 TABLE 5.9 Vapor Pressures of Various Organic Compounds (Continued) Substance Eq.
Range, C A B C Biphenyl 1 69–271 7.245 41 1 998.725 202.733 2-(2-Biphenylyloxy)ethanol 1 240–300 8.005 87 2 776.761 206.914 Bromobenzene 1 56–154 6.860 64 1 438.817 205.441 2-Bromobenzyl cyanide 1 85–152 5.044 59 734.821 59.273 1-Bromobutane 1 78 to 23 5.281 38 685.001 160.880 Bromochloromethane 1 16–68 6.496 06 942.267 192.587 Bromochlorodifluoromethane 1 95 to 10 6.839 98 935.632 240.330 2-Bromo-2-chloro-1,1,1-trifluoro-ethane 1 51 to 55 6.945 02 1 127.856 227.341 Bromocyclohexane 1 68–260 6.979 80 1 572.19 217.38 p-Bromodiphenyl ether 1 25–190 7.009 3 1 902.7 153.3 1 190–400 6.681 43 1 683.84 132.90 Bromoethane 1 28–75 6.988 6 1 121.9 234.7 Bromoethene 1 88 to 16 6.997 4 1 009.9 251.6 2-Bromoethylbenzene 1 127–217 7.800 2 235.4 238.7 4-Bromoethylbenzene 1 liq 6.982 09 1 632.60 193 2-Bromo-2-methylpropane 1 0–72.8 7.395 9 1 512.7 262.2 1-Bromonaphthalene 1 liq 7.003 50 1 927.05 186.0 o-Bromostyrene 1 liq 6.910 38 1 631.2 195 p-Bromostyrene 1 7.228 38 1 743.67 218.0 4-Bromotoluene 1 85–280 7.007 62 1 612.35 206.36 2-Bromovinylbenzene 1 110–129 0.564 97 82.913 191.71 4-Bromovinylbenzene 1 119–147 12.504 2 7 349.00 559.02 1,2-Butadiene 1 69 to 34 7.398 22 1 219.877 259.776 1 26 to 30 6.993 83 1 041.117 242.274 1,3-Butadiene 1 80 to 62 7.035 55 998.106 245.233 1 58 to 15 6.849 99 930.546 238.854 n-Butane 1 77 to 19 6.808 96 935.86 238.73 1-Butanethiol 1 2 to 123 6.927 54 1 281.018 218.100 2-Butanethiol 1 13 to 110 6.886 98 1 229.904 222.021 1-Butanol 1 15–131 7.476 80 1 362.39 178.77 2-Butanol 1 25–120 7.474 31 1 314.19 186.55 2-Butanone 1 43–88 7.063 56 1 261.34 221.97 1-Butene 1 82 to 13 6.792 90 908.80 238.54 2-Butene cis 1 73 to 23 6.884 68 967.32 237.87 trans 1 76 to 20 6.883 37 967.50 240.84 Butyl acetate 1 60–126 7.127 12 1 430.418 210.745 n-Butylamine trimethylboron 1 0–99 8.465 21 1 980.98 193.60 n-Butylbenzene 1 62–213 6.983 17 1 577.965 201.378 sec-Butylbenzene 1 87–174 6.942 19 1 533.95 204.39 t-Butylbenzene 1 84–170 6.922 55 1 505.987 203.490 n-Butyl borate 1 117–218 7.406 87 1 905.035 186.134 n-Butyl-t-butyl ether 1 83–124 6.955 56 1 348.702 206.303 Butyl carbitol 1 50–153 7.741 14 2 056.904 195.655 Butyl cellosolve 1 93–170 6.956 59 1 399.903 172.154 sec-Butyl chloroacetate 1 30–172 7.933 38 2 103.30 249.29 n-Butylcyclohexane 1 60–211 6.910 30 1 538.518 200.833 sec-Butylcyclohexane 1 91–180 6.890 96 1 530.70 202.373 t-Butylcyclohexane 1 84–173 6.856 80 1 501.724 206.108 n-Butylcyclopentane 1 41–185 6.899 35 1 457.08 205.99 n-Butyl formate 1 29–112 7.693 6 1 698.7 247.4 sec-Butyl formate 1 30–100 6.493 972.9 176.0 n-Butyl--hydroxyisobutyrate 1 112–185 8.421 7 2 617.32 287.09 PHYSICAL PROPERTIES 5.41 TABLE 5.9 Vapor Pressures of Various Organic Compounds (Continued) Substance Eq.
Range, C A B C 1-n-Butylnaphthalene 1 25–170 7.434 47 2 227.7 202.2 1 170–345 7.081 4 1 971.5 180 2-n-Butylnaphthalene 1 25–170 7.438 08 2 242.2 202.3 1 170–345 7.084 8 1 984.3 180 n-Butyl nitrate 1 0–70 8.054 27 1 992.83 254.30 1-Butyl pentafluoropropionate 1 82–116 6.651 00 1 108.02 177.04 2-sec-Butylphenol 1 179–240 6.951 93 1 593.74 163.79 2-t-Butylphenol 1 135–225 7.217 56 1 822.81 196.23 4-t-Butylphenol 1 198–252 7.000 38 1 627.51 155.24 Butyl phenyl ether 1 119–210 7.299 7 1 882.70 215.82 n-Butyl propionate 1 32–93 9.484 89 2 852.58 296.98 n-Butyl trifluoroacetate 1 71–104 8.567 94 2 305.22 301.06 1-Butyl trimethylsilyl ether 1 71–124 7.763 00 1 884.68 261.31 1-Butyne 1 68 to 27 6.981 98 988.75 233.01 2-Butyne 1 51 to 34 7.037 91 896.91 199.06 1 31 to 47 7.073 38 1 101.71 235.81 n-Butyraldehyde 1 31–74 6.385 44 913.59 185.48 Butyric acid 1 90–163 7.739 9 1 764.7 199.9 Camphor 2 0–180 8.799 2 797.39 1 178–232 6.106 1 043.6 116.4 Capric acid 1 153–187 6.255 3 1 106.3 57.96 Caproic acid 1 98–179 6.924 9 1 340.8 126.6 Capronitrile 1 92–164 7.123 1 1 597.2 212.8 Caprylic acid 1 130–206 7.770 64 1 933.05 159.36 Carbazole 1 253–358 7.086 3 2 179.4 163.5 Carbitol 1 40–151 7.640 81 1 801.31 183.97 Chloroacetic acid 1 104–190 7.550 16 1 723.365 179.98 4-Chloroacetophenone 1 122–212 7.084 57 1 693.63 190.95 Chloroacetyl chloride 1 28–107 7.149 77 1 340.79 208.70 N-Chloroaniline 1 61–125 3.037 67 171.35 14.99 2-Chloroaniline 1 20–108 7.562 65 1 998.6 220.0 1 108–300 7.192 40 1 762.74 200.0 3-Chloroaniline 1 15–125 7.559 39 2 073.75 215 1 125–310 7.236 03 1 857.75 196.64 o-Chloroanisole 1 115–186 7.121 36 1 655.80 188.77 Chlorobenzene 1 62–131.7 6.978 08 1 431.05 217.55 o-Chlorobenzotrichloride 1 30–150 7.504 30 2 228.07 220.0 1 150–350 7.117 94 1 951.37 196.27 1-Chloro-4-bromobenzene 2 23–63 11.629 3 643.30 1-Chlorobutane 1 17 to 78.6 6.836 94 1 173.79 218.13 2-Chlorobutane 1 0–40 6.799 23 1 149.12 224.68 1-Chlorodecane 1 86–225.9 6.939 86 1 639.06 177.94 1-Chlorododecane 1 116–246 6.834 08 1 654.82 155.09 Chloroethane 1 56 to 12.2 6.986 47 1 030.01 238.61 2-Chloroethylbenzene 1 6.981 69 1 556.0 201.0 3-Chloroethylbenzene 1 6.990 82 1 577.3 200 4-Chloroethylbenzene 1 6.983 09 1 577.0 200 Chloroethylene 1 65 to 13 6.891 17 905.01 239.48 Chloroform 1 35 to 61 6.493 4 929.44 196.03 1-Chloroheptane 1 34–160 6.916 70 1 453.96 199.83 1-Chlorohexadecane 1 166–327 7.282 03 2 152.61 162.73 1-Chlorohexane 1 15–136 7.051 36 1 461.72 215.57 Chlorohexylisocyanate 1 90–180 7.740 95 2 340.50 241.90 5.42 SECTION 5 TABLE 5.9 Vapor Pressures of Various Organic Compounds (Continued) Substance Eq.
Range, C A B C Chloromethane 1 75 to 5 7.093 49 948.58 249.34 Chloromethoxytrichlorosilane 1 0–50 7.312 92 1 545.71 226.10 2-Chloro-2-methylpropane 1 22–47 4.896 334.99 114.0 1-Chlorononane 1 69–205 7.046 54 1 655.57 192.26 1-Chlorooctane 1 54–184 7.051 52 1 600.24 200.28 Chloropentafluorobenzene 1 36–140 7.068 83 1 389.19 213.75 p-Chlorophenetole 1 122–212 7.084 57 1 693.63 190.95 2-Chlorophenol 1 80–200 6.877 31 1 471.61 193.17 -Chloro--phenylethyl alcohol 1 166–259 6.917 33 1 635.63 145.87 1-Chlorophenylisocyanate 1 50–160 12.265 9 6 532.55 499.59 m-Chlorophenylisocyanate 1 71–158 6.797 29 1 512.43 180.90 Chloroprene 1 20–60 6.161 50 783.45 179.7 1-Chloropropane 1 25 to 47 6.926 48 1 110.19 227.94 2-Chloropropane 1 0–30 7.771 1 582 288 3-Chloro-1-propene 1 13–44 5.297 16 418.375 128.168 2-Chloropropionitrile 1 0–84 7.329 73 1 732.55 211.79 1 84–240 7.200 85 1 657.25 205.3 -Chloropropyltrichlorosilane 1 87–179 7.156 4 1 679.07 210.38 1-Chlorotetradecane 1 142–296.8 7.200 7 2 018.9 170.6 o-Chlorotoluene 1 0–65 7.367 97 1 735.8 230.0 1 65–220 6.947 63 1 497.2 209.0 1-Chloro-2,4,6-trinitrobenzene 1 200–270 3.080 9 184.93 117.9 1-Chloroundecane 1 101–245 6.967 6 1 709.4 172.9 o-Chlorovinylbenzene 1 98–155 6.956 6 1 602.2 204.5 p-Chlorovinylbenzene 1 100–127 9.969 1 4 093.5 392.4 2-Chlorovinyldichloroarsine cis 1 68–109 5.487 9 785.09 115.61 trans 1 50–150 6.814 0 1 465.07 178.53 3-Chlorovinyldichloroarsine 1 66–110 2.810 5 97.17 27.51 o-Cresol 1 120–191 6.911 7 1 435.50 165.16 m-Cresol 1 150–201 7.508 0 1 856.36 199.07 p-Cresol 1 128–202 7.035 08 1 511.08 161.85 Cyanic acid 1 76 to 6 7.568 59 1 251.86 243.79 Cyclobutane 1 60 to 12 6.916 31 1 054.54 241.37 Cyclobutanone 1 24 to 25 6.116 68 933.95 183.19 Cyclobutene 1 77 to 2 7.305 7 1 166.0 261.06 Cycloheptane 1 68–159 6.853 95 1 331.57 216.35 1,3,5-Cycloheptatriene 1 0–65 6.974 33 1 376.84 220.75 Cyclohexane 1 20–81 6.841 30 1 201.53 222.65 Cyclohexanethiol 1 84–203 6.886 73 1 476.70 209.83 Cyclohexanol 1 94–161 6.255 3 912.87 109.13 Cyclohexene 1 6.886 17 1 229.973 224.10 Cyclohexyl acetate 1 95–172 7.975 86 2 167.99 252.30 Cyclohexylamine 1 61–128 6.689 54 1 229.42 188.80 1-Cyclohexylamino-2-propanol 1 150–238 7.011 56 1 655.02 162.59 Cyclohexylpentafluoropropionate 1 82–155 7.725 5 1 844.73 224.89 Cyclohexyltrifluoroacetate 1 72–147 7.802 35 1 954.66 249.33 Cyclohexyltrimethylsilyl ether 1 91–168 8.090 52 2 276.62 267.94 Cyclooctane 1 97–194 6.861 87 1 437.79 210.02 1,3,5,7-Cyclooctatetraene 1 0–75 7.006 69 1 472.11 215.84 Cyclopentane 1 40 to 72 6.886 76 1 124.162 231.36 Cyclopentanethiol 1 81–173 6.914 97 1 388.63 212.05 Cyclopentanone 1 0–26 2.902 47 162.90 63.22 Cyclopentene 1 6.920 66 1 121.818 223.45 PHYSICAL PROPERTIES 5.43 TABLE 5.9 Vapor Pressures of Various Organic Compounds (Continued) Substance Eq.
Range, C A B C Cyclopentyl-1-thiaethane 1 83–199 6.940 83 1 480.70 208.47 Cyclopropane 1 90 to 32 6.887 88 856.01 246.50 o-Cymene 1 81–180 7.266 10 1 768.45 224.95 m-Cymene 1 79–176 7.123 74 1 644.95 212.76 p-Cymene 1 107–178 7.050 74 1 608.91 208.72 Decahydronaphthalene cis 1 68–228 6.875 29 1 594.460 203.39 trans 1 61–219 6.856 81 1 564.683 206.26 Decane 1 58–203 6.943 65 1 495.17 193.86 1-Decanethiol 1 109–271 6.998 1 1 713.6 177.0 1-Decanol 1 25–52 11.560 4 055 273.2 1 103–230 6.922 44 1 472.01 133.98 1-Decene 1 54–199 6.934 77 1 484.98 195.707 Decylbenzene 1 203–298 7.035 96 1 903.98 160.33 Decylcyclohexane 1 197–298 7.019 37 1 899.33 161.35 Decylcyclopentane 1 182–279 6.999 12 1 822.05 163.05 Deuterodiborane 1 155 to 94 6.480 83 545.20 244.73 Diacetone alcohol 1 28–115 8.502 42 2 400.56 263.79 1,3-Diacetylbenzene 1 50–145 0.056 24 64.188 196.97 1,4-Diacetylbenzene 1 116–157 2.803 71 177.25 46.43 Diacetylene 1 78 to 0 4.990 79 356.36 143.22 Diallyl sulfide 1 10–40 4.829 30 643.18 142.34 4,4-Diaminodiphenylmethane 1 198–272 3.172 31 210.49 137.41 Diamyl ether 1 105–187 7.067 10 1 604.77 196.58 Dibenzyl ketone 2 285–325 8.257 3 244.42 1,2-Dibromobenzene 1 20–117 7.501 28 2 093.7 230 1 117–300 7.102 65 1 825.77 207.0 Dibromodichloroethane 1 25–130 5.197 53 763.44 110.81 Dibromodifluoromethane 1 26 to 23 7.152 22 1 181.612 253.85 1,2-Dibromoethane 1 52–131 6.721 48 1 280.82 201.75 1,2-Dibromoethylene cis 1 26–78 7.038 74 1 349.84 209.26 trans 1 4–71 4.581 11 393.641 103.56 1,2-Dibromopropane 1 0–50 7.303 98 1 644.4 232.0 1 50–250 6.891 05 1 419.60 212.0 1,3-Dibromopropane 1 0–71 7.549 84 1 890.56 240.0 1 71–275 7.198 74 1 678.26 222.0 Di-n-butyl ether 1 89–140 6.796 3 1 297.29 191.03 Di-t-butyl ether 1 4–109 6.932 9 1 348.53 233.79 Di-n-butyl phthalate 1 126–202 6.639 80 1 744.20 113.69 Di-n-butyl sebacate 1 128–208 7.587 66 2 364.89 147.54 Di-n-butyl sulfide 1 10–40 6.769 3 1 208.80 217.51 1,2-Dichlorobenzene 1 131–181 7.143 78 1 704.49 219.42 1,3-Dichlorobenzene 1 91–173 7.040 1 1 607.05 213.38 1,4-Dichlorobenzene 1 95–174 7.020 8 1 590.9 210.2 Dichlorobenzotrichloride 1 20–167 7.439 54 2 190.0 200 1 167–340 6.985 24 1 868.91 172.00 Dichlorobenzyl chloride 1 20–138 7.504 57 2 125.9 213.8 1 138–350 7.147 35 1 881.38 192.93 1,1-Dichloroethane 1 39 to 18 6.977 0 1 174.02 229.06 1,2-Dichloroethane 1 31 to 99 7.025 3 1 271.3 222.9 1,1-Dichloroethylene 1 28 to 32 6.972 2 1 099.4 237.2 1,2-Dichloroethylene cis 1 0–84 7.022 3 1 205.4 230.6 trans 1 38 to 85 6.965 1 1 141.9 231.9 2,2-Dichloroethyl sulfide 1 15–76 8.587 41 2 588.23 246.06 5.44 SECTION 5 TABLE 5.9 Vapor Pressures of Various Organic Compounds (Continued) Substance Eq.
Range, C A B C 1,2-Dichloroethyltrichlorosilane 1 102–181 7.826 2 144.9 253.1 Dichloromethane 1 40 to 40 7.409 2 1 325.9 252.6 2-(2,4-Dichlorophenoxy)-ethanol 1 212–286 7.240 09 2 004.31 157.25 3,4-Dichlorophenylisocyanate 1 60–190 8.679 3 3 312.3 333.9 1,2-Dichloropropane 1 45–96 6.980 7 1 308.1 222.8 3,4-Dichlorotoluene 1 0–105 7.343 94 1 882.5 215.0 1 105–330 6.979 25 1 655.44 195.0 Diethanolamine 1 194–241 8.138 8 2 327.9 174.4 1,1-Diethoxyethane 1 0–70 6.757 63 1 191.60 203.12 Diethoxymethane 1 0–75 6.908 41 1 229.52 217.01 Diethylaluminum chloride 1 44–125 8.229 70 2 484.53 255.45 Diethylamine 1 31–61 5.801 6 583.30 144.1 N,N-Diethylaniline 1 50–218 7.466 0 1 993.57 218.5 1,2-Diethylbenzene 1 liq 6.987 80 1 576.940 200.51 1,3-Diethylbenzene 1 liq 7.003 60 1 575.310 200.96 1,4-Diethylbenzene 1 liq 6.998 20 1 588.310 201.97 Diethyldichlorosilane 1 48–128 6.862 9 1 346.3 207.7 Diethyl disulfide 1 15–61 7.349 89 1 695.00 227.29 1 61–230 6.975 07 1 485.970 208.96 Diethylene glycol 1 130–243 7.636 7 1 939.4 162.7 Diethyl ether 1 61 to 20 6.920 32 1 064.07 228.80 Diethyl ethylphosphate 1 76–134 4.101 6 315.17 15.50 N,N-Diethylformamide 1 30–90 6.395 4 1 203.8 165.6 Diethyl ketone 1 6.857 91 1 216.3 204 3,3-Diethylpentane 1 63–147 6.896 03 1 453.48 215.83 3,5-Diethylphenol 1 114–248 7.651 3 2 228 218.5 Diethylpropylphosphonate 1 87–134 4.558 1 446.50 26.17 Diethyl sulfide 1 0–150 6.928 36 1 257.83 218.66 1,2-bis-Difluoroamino-4-methyl-pentane 1 20 to 20 8.009 11 1 944.92 245.44 Difluoromethane 1 82 to 32 7.138 9 821.7 244.7 1,2-Dihydroxybenzene 1 118–246 7.577 2 054 187 1,3-Dihydroxybenzene 1 151–276 7.889 2 231 169 1,2-Diiodoethylene cis 1 29–152 5.522 797.8 106.4 trans 1 77–130 6.093 1 1 197.0 172.3 Diisoamyl sulfide 1 10–80 1.959 8 390.61 219.33 p-Diisopropylbenzene 1 120–211 6.993 3 1 663.88 194.41 Diisopropyl ether 1 23–67 6.849 5 1 139.34 218.7 2,4-Diisopropylphenol 1 122–255 6.714 1 506 138 1,2-Dimethoxyethane 1 0–60 6.718 9 1 050.5 209.2 N,N-Dimethylacetamide 1 30–90 9.720 9 3 273.8 334.5 Dimethylamine 1 72 to 6.9 7.082 12 960.242 221.67 bis-Dimethylaminoborane 1 25 to 62.5 5.584 52 774.371 170.64 N-Dimethylaminodiborane 1 38 to 14 8.340 1 1 917.35 302.73 bis-Dimethylaminodifluorosilane 1 24–88 5.952 748.7 146.9 N,N-Dimethylaniline 1 71–197 7.367 7 1 857.08 220.36 Dimethyl beryllium 1 100–180 19.089 9 11 535.45 496.64 1,4-Dimethyl-bicyclo(2,2,1)-heptane 1 56–119 6.761 96 1 342.66 213.53 2,3-Dimethyl-bicyclo(2,2,1)-heptane trans 1 72–138 6.868 15 1 420.32 212.94 2,3-Dimethyl-1,3-butadiene 1 0–68.5 7.119 7 1 299.69 238.09 2,2-Dimethylbutane 1 42 to 73 6.754 83 1 081.176 229.34 PHYSICAL PROPERTIES 5.45 TABLE 5.9 Vapor Pressures of Various Organic Compounds (Continued) Substance Eq.
Range, C A B C 2,3-Dimethylbutane 1 35 to 81 6.809 83 1 127.187 228.90 2,3-Dimethyl-2-butanethiol 1 56–167 6.839 56 1 354.24 215.96 2,3-Dimethyl-1-butene 1 36 to 78 6.862 36 1 134.675 229.37 2,3-Dimethyl-2-butene 1 21 to 97 6.950 58 1 215.428 225.44 3,3-Dimethyl-1-butene 1 47 to 64 6.677 51 1 010.516 224.91 Dimethyl cadmium 1 2 to 23 6.490 55 1 126.36 201.07 1,1-Dimethylcyclohexane 1 10–147 6.798 21 1 321.705 217.85 1,2-Dimethylcyclohexane cis 1 18–158 6.837 46 1 367.311 215.84 trans 1 13–151 6.833 08 1 353.881 219.13 1,3-Dimethylcyclohexane cis 1 11–147 6.838 83 1 338.473 218.07 trans 1 15–152 6.834 55 1 343.687 215.39 1,4-Dimethylcyclohexane cis 1 15–152 6.832 87 1 345.613 216.15 trans 1 10–147 6.817 73 1 330.437 218.58 1,1-Dimethylcyclopentane 1 12 to 113 6.817 24 1 219.474 221.95 1,2-Dimethylcyclopentane cis 1 3 to 125 6.850 08 1 269.140 220.21 trans 1 9 to 117 6.844 22 1 242.748 221.69 1,3-Dimethylcyclopentane cis 1 10–116 6.837 15 1 237.456 222.01 trans 1 9 to 117 6.838 17 1 240.023 221.62 Dimethyldichlorosilane 1 28–72 7.062 1 1 280.29 235.65 1,2-Dimethyldisilane 1 46 to 0 4.024 3 255.4 129.2 Dimethyl ether 1 71 to 25 6.976 03 889.264 241.96 N,N-Dimethylformamide 1 30–90 6.928 0 1 400.87 196.43 2,2-Dimethylhexane 1 6.837 15 1 273.59 215.07 2,3-Dimethylhexane 1 6.870 04 1 315.50 214.16 2,4-Dimethylhexane 1 6.853 05 1 287.88 214.79 2,5-Dimethylhexane 1 6.859 84 1 287.27 214.41 3,3-Dimethylhexane 1 6.851 21 1 307.88 217.44 3,4-Dimethylhexane 1 6.879 86 1 330.04 214.86 1,1-Dimethylhydrazine 1 35 to 20 7.408 13 1 305.91 225.53 1,2-Dimethylhydrazine 1 1–25 5.611 9 633.59 143.17 N,N-Dimethylhydroxylamine 1 17–90 7.565 8 1 415.96 201.93 O,N-Dimethylhydroxylamine 1 45 to 42.2 7.405 4 1 245.58 233.06 Dimethylmalononitrile 1 49–140 7.035 5 1 546.99 202.00 1,3-Dimethylnaphthalene 1 20–148 7.634 7 2 295.4 232.4 1 148–310 7.269 8 2 076.0 210 1,4-Dimethylnaphthalene 1 20–148 7.634 7 2 345.8 232.6 (same for 1,6- and 1,7-) 1 148–310 7.269 8 2 076.0 210 1,8-Dimethylnaphthalene 1 25–150 7.407 89 2 123.2 201.2 1 150–320 7.056 4 1 879 180 2,3-Dimethylnaphthalene 1 20–155 7.403 96 2 111.9 201.1 1 155–315 7.052 7 1 869 180 2,6-Dimethylnaphthalene 1 20–150 7.396 8 2 080.3 200.8 1 150–310 7.046 0 1 841 180 2,7-Dimethylnaphthalene 1 25–150 7.398 75 2 085.9 200.9 1 150–310 7.047 8 1 846 180 2,2-Dimethylpentane 1 19 to 103 6.814 80 1 190.033 223.30 2,3-Dimethylpentane 1 10 to 115 6.853 82 1 238.017 221.82 2,4-Dimethylpentane 1 17 to 105 6.826 21 1 192.04 225.32 3,3-Dimethylpentane 1 14 to 112 6.826 67 1 228.663 225.32 2,4-Dimethyl-3-pentanone 1 48–125 6.968 53 1 382.84 213.06 Dimethyl-o-phthalate 1 82–151 4.522 32 700.31 51.42 2,2-Dimethylpropane 1 14 to 29 6.604 27 883.42 227.78 2,2-Dimethyl-1-propanol 1 55–115 7.875 3 1 604.7 208.2 5.46 SECTION 5 TABLE 5.9 Vapor Pressures of Various Organic Compounds (Continued) Substance Eq.
Range, C A B C 2,5-Dimethylpyrrole 1 100–199 7.203 06 1 509.60 181.76 2,4-Dimethylquinoline 1 185–269 7.025 4 1 830.29 174.44 2,6-Dimethylquinoline 1 188–267 6.931 12 1 748.73 166.37 Dimethyl sulfide 1 22 to 20 7.150 9 1 195.58 242.68 3,3-Dimethyl-2-thiabutane 1 liq 6.847 09 1 259.648 218.69 2,2-Dimethyl-3-thiapentane 1 liq 6.850 86 1 323.24 212.89 2,4-Dimethyl-3-thiapentane 1 liq 6.871 18 1 327.12 212.55 2,3-Dimethylthiophene 1 50–205 6.924 9 1 430.0 212 2,4-Dimethylthiophene 1 50–205 6.993 9 1 450.7 212.0 2,5-Dimethylthiophene 1 47–200 6.961 1 1 427.7 213.2 3,4-Dimethylthiophene 1 54–205 6.996 1 1 467.1 211.5 1,3-Dinitrobenzene 1 252–292 4.337 229.2 137 2,4-Dinitrotoluene 1 200–299 5.798 1 118 61.8 2,6-Dinitrotoluene 1 150–260 4.372 380 43.6 3,5-Dinitrotoluene 1 220–270 1.556 30.59 302 1,4-Dioxane 1 20–105 7.431 55 1 554.68 240.34 Dipentene 1 21–170 7.111 6 1 613.42 207.8 2,2-Diphenol 1 171–325 8.193 5 3 067.6 253.1 Diphenyldichlorosilane 1 192–281 6.999 03 1 918.20 161.41 Diphenyl ether 1 204–271 7.011 04 1 799.71 177.74 Diphenylmethane 1 217–282 6.291 1 261 105 Di-n-propyl ether 1 26–89 6.947 6 1 256.5 219.0 Disilanyl chloride 1 46 to 18 7.104 8 1 211.8 245.2 2,3-Dithiabutane 1 6–135 6.977 92 1 346.342 218.86 5,6-Dithiadecane 1 101–263 6.963 8 1 684.1 181.3 3,4-Dithiahexane 1 40–182 6.975 07 1 485.970 208.96 4,5-Dithiaoctane 1 72–226 6.975 29 1 603.793 195.85 Dodecane 1 91–247 6.997 95 1 639.27 181.84 1-Dodecanethiol 1 7.024 4 1 817.8 164.1 Dodecanoic acid 1 106–176 7.860 8 2 159.1 143.2 1-Dodecanol 1 138–214 7.539 86 2 003.29 168.13 1-Dodecene 1 89–244 6.976 07 1 621.11 182.45 Durenol 1 108–249 7.758 2 432 250 Eicosane 1 198–379 7.152 2 2 032.7 132.1 1-Eicosanethiol 1 7.114 2 125 119 1-Eicosene 1 liq 7.135 1 2 043.0 137.9 Ethane 1 142 to 75 6.829 15 663.72 256.68 Ethanethiol 1 49 to 56 6.952 06 1 084.531 231.39 Ethanol 1 2 to 100 8.321 09 1 718.10 237.52 Ethanolamine 1 65–171 7.456 8 1 577.67 173.37 Ethyl acetate 1 15–76 7.101 79 1 244.95 217.88 m-Ethylacetophenone 1 19–143 3.767 2 708.05 182.6 p-Ethylacetophenone 1 21–94 4.274 6 629.34 120.9 Ethylamine 1 20 to 90 7.054 13 987.31 220.0 N-Ethylaniline 1 50–207 7.422 8 1 903.4 214.3 Ethylbenzene 1 26–164 6.957 19 1 424.255 213.21 2-Ethyl-1-butene 1 28 to 88 6.997 12 1 218.352 231.30 Ethyl butyl ether 1 38–92 6.944 4 1 256.4 216.9 Ethyl chloroacetate 1 25–146 6.967 1 355.9 188.2 p-Ethylchlorobenzene 1 109–184 6.951 1 1 557.1 198.1 Ethylcyclohexane 1 20–160 6.867 28 1 382.466 214.99 Ethylcyclopentane 1 0.1 to 129 6.887 09 1 298.599 220.68 Ethylene 1 153 to 91 6.744 19 594.99 256.16 PHYSICAL PROPERTIES 5.47 TABLE 5.9 Vapor Pressures of Various Organic Compounds (Continued) Substance Eq.
Range, C A B C Ethylene glycol 1 50–200 8.090 8 2 088.9 203.5 Ethylene glycol monoethyl ether 1 63–134 7.874 6 1 843.5 234.2 Ethylene glycol monomethyl ether 1 56–124 7.849 8 1 793.9 236.9 Ethylene oxide 1 49 to 12 7.128 43 1 054.54 237.76 Ethyl formate 1 4–54 7.009 0 1 123.94 218.2 3-Ethylhexane 1 6.890 98 1 327.88 212.60 2-Ethyl-1-hexanol 1 74–184 6.914 7 1 339.7 147.8 2-Ethyl-2-hexenal 1 54–175 6.861 3 1 457.4 190.6 Ethyl iodoacetate 1 29–89 4.073 7 374.64 54.8 Ethyl isothiocyanate 1 10–50 7.106 0 1 567.5 234.2 Ethyl methyl ether 1 5–7.7 5.518 434.5 158 Ethyl methyl ketone 1 6.974 21 1 209.6 216 3-Ethyl-5-methylphenol 1 195–247 7.040 83 1 615.44 152.6 2-Ethyl-4-methyl-1-pentanol 1 70–176 6.582 6 1 134.6 129.2 Ethyl nitrate 1 0–60 7.163 7 1 338.8 224.9 3-Ethylpentane 1 7 to 119 6.875 64 1 251.827 219.89 2-Ethylphenol 1 86–208 7.800 3 2 140.4 227 3-Ethylphenol 1 97–218 7.468 1 856 187 4-Ethylphenol 1 101–218 8.291 2 423 229 Ethyl phenyl ether 1 117–181 7.021 38 1 508.39 194.49 Ethyl n-propanoate 1 34–98 6.994 9 1 260.6 207.4 Ethyl n-propyl ether 1 20–63 6.985 1 1 188.5 226.4 Ethyl n-propyl ketone 1 75–133 7.000 82 1 365.79 208.01 m-Ethylstyrene 1 7.039 28 1 614.0 198 p-Ethylstyrene 1 6.900 71 1 570.9 198 Ethyl trichloroacetate 1 44–95 7.725 4 1 927.0 233.7 Ethyl trichlorosilane 1 28–96 6.606 1 118 201 Ethyl triexthoxysilane 1 64–153 6.886 8 1 377.9 183.0 Ethyl vinyldichlorosilane 1 45–122 6.859 1 331 210.8 Fenchyl alcohol 1 59–200 5.693 797.6 84.6 Fluoranthene 1 197–384 6.373 1 756 118 Fluorene 1 161–300 7.761 8 2 637.1 243.2 Fluorobenzene 1 18 to 84 7.187 0 1 381.8 235.6 m-Fluorobenzotrifluoride 1 40–137 7.006 59 1 304.35 215.67 bis-(Fluorocarbonyl)-peroxide 1 47 to 7 9.608 4 2 247.64 319.83 p-Fluorotoluene 1 68–155 6.994 26 1 374.055 217.40 Formaldehyde 1 109 to 22 7.195 8 970.6 244.1 Formic acid 1 37–101 7.581 8 1 699.2 260.7 Formyl fluoride 1 95 to 61 5.270 362 175 Furan 1 2–61 6.975 27 1 060.87 227.74 2-Furfuraldehyde 1 56–161 6.575 9 1 198.7 162.8 Glycerol 1 183–260 6.165 1 036 28 Glyceryl-1,3-diacetate 1 100–190 6.407 3 1 092.0 119.3 Guaiacol 1 82–205 6.161 1 051 116 Hemellitenol 1 123–248 6.972 1 563 134 Heptadecane 1 161–337 7.014 3 1 865.1 149.20 1-Heptadecene 1 7.008 67 1 868.9 152.50 Heptane 1 2 to 124 6.896 77 1 264.90 216.54 1-Heptanethiol 1 58–206 6.952 49 1 525.311 197.70 Heptanoic acid 1 112–150 5.287 4 665.54 42.07 1-Heptanol 1 60–176 6.647 67 1 140.64 126.56 1-Heptene 1 6 to 118 6.901 87 1 258.345 219.30 Hexadecane 1 149–321 7.028 67 1 830.51 154.45 5.48 SECTION 5 TABLE 5.9 Vapor Pressures of Various Organic Compounds (Continued) Substance Eq.
Range, C A B C 1-Hexadecanethiol 1 7.075 1 990 140 1-Hexadecanol 1 50–103 7.281 7 1 909.7 128.1 1 145–190 6.158 6 1 380.0 91 1-Hexadecene 1 7.040 11 1 840.52 157.57 1,5-Hexadiene 1 0–59 6.574 1 1 013.5 214.8 Hexafluoroacetone 1 79 to 27 6.650 2 725.90 219.9 Hexafluorobenzene 1 5–114 7.032 95 1 227.98 215.49 Hexafluorodisiloxane 1 39 to 23 7.471 2 1 169.3 278.1 Hexafluoroethane 1 93 to 78 6.793 35 657.06 246.2 Hexahydroindane cis 1 77–168 6.868 22 1 497.33 207.67 trans 1 71–161 6.861 19 1 475.70 209.66 Hexamethyldisiloxane 1 36–138 6.773 79 1 202.03 208.25 Hexane 1 25 to 92 6.876 01 1 171.17 224.41 1-Hexanethiol 1 40–181 6.946 64 1 454.004 204.95 1-Hexanol 1 35–157 7.860 45 1 761.26 196.66 2-Hexanol 1 25–142 7.261 0 1 371.7 173.2 3-Hexanol 1 25–138 7.689 1 670.0 211.8 1-Hexene 1 16–64 6.857 70 1 148.62 225.35 3-Hexyne 1 20 to 24 5.895 863.3 194 Hydroquinone 1 159–286 8.137 2 461 183 3-Hydroxy-3-methyl-2-butanone 1 45–146 7.340 9 1 653.6 227.5 Iodobenzene 1 20–188 7.011 9 1 640.1 208.8 Iodoethane 1 30–60 6.959 1 232 229 Isoamyl acetate 1 41–95 7.436 1 606.6 216 Isobutylbenzene 1 86–174 6.935 56 1 530.05 204.59 Isobutyl borate 1 99–200 7.197 1 745.8 193 Isobutyl cellosolve 1 71–159 7.694 8 1 825.9 219.6 Isobutylcyclohexane 1 85–172 6.867 97 1 493.10 203.16 Isobutyl nitrate 1 0–70 8.164 3 2 022.7 262.4 Isobutyraldehyde 1 13–63 6.735 1 1 053.2 209.1 Isobutyric acid 1 58–152 4.894 382.6 38 Isocaproic acid 1 96–133 6.258 1 038.6 130 Isopropylbenzene 1 39–181 6.936 66 1 460.793 207.78 Isopropyl borate 1 65–139 8.070 2 120 269 o-Isopropylbromobenzene 1 132–210 6.717 8 1 462.7 170.9 Isopropyl caprate 1 90–178 9.959 4 013.9 326.5 Isopropyl caprylate 1 65–146 8.032 2 2 213.6 220.9 Isopropyl cellosolve 1 67–140 7.500 0 1 639.2 213.3 Isopropyl chloroacetate 1 35–153 8.382 2 328 275 Isopropylcyclohexane 1 71–155 6.873 14 1 453.20 209.44 Isopropylcyclopentane 1 47–127 6.887 36 1 380.12 218.05 Isopropyl laurate 1 117–196 8.532 6 2 951.6 240.7 Isopropyl myristate 1 140–193 10.418 0 4 866.48 314.17 Isopropyl nitrate 1 0–70 7.266 6 1 434.4 255.2 Isopropyl palmitate 1 160–197 10.916 4 5 572.0 364.8 o-Isopropylphenol 1 97–215 8.167 2 343 229 p-Isopropylphenol 1 108–228 8.666 2 810 258 Isopropyl phenyl ether 1 72–175 6.517 6 1 238.0 163.0 Isopropyl stearate 1 182–207 0.079 3 10.41 221 Isopseudocumenol 1 106–233 5.602 768 49 Isoquinoline 1 167–244 6.912 2 1 723.4 184.3 Isovaleric acid 1 86–104 3.946 55 255.41 11.3 Ketene 1 88 to 49 7.615 1 036 269 PHYSICAL PROPERTIES 5.49 TABLE 5.9 Vapor Pressures of Various Organic Compounds (Continued) Substance Eq.
Range, C A B C Lauric acid 1 106–176 7.860 8 2 159.1 143.2 Lepidine 1 199–266 7.271 2 1 946.14 177.64 2,3-Lutidine 1 155–162 7.447 8 1 832.6 240.1 2,4-Lutidine 1 150–160 7.339 0 1 733.4 230.4 2,5-Lutidine 1 85–157 7.081 0 1 539.6 209.6 2,6-Lutidine 1 79–144 7.056 7 1 470.2 208.0 3,4-Lutidine 1 172–180 7.362 0 1 840.1 231.5 3,5-Lutidine 1 163–173 7.333 1 1 783.6 228.7 Mesitol 1 94–221 6.659 1 392 148 Mesityl oxide 1 14–130 6.635 8 1 186.1 186.0 Methacrylonitrile 1 6.980 2 1 274.96 220.7 Methane c 1 195 to 183 7.193 09 451.64 268.49 liq 1 181 to 152 6.695 61 405.42 267.78 Methanol 1 14 to 65 7.897 50 1 474.08 229.13 1 64–110 7.973 28 1 515.14 232.85 Methoxybenzene 1 110–164 7.052 69 1 489.99 203.57 N-Methylacetamide 1 40–90 2.631 1 121.7 9.3 Methyl acetate 1 1–56 7.065 2 1 157.63 219.73 Methylal 1 0–35 6.872 2 1 049.2 220.6 Methylamine 1 83 to 6 7.336 9 1 011.5 233.3 N-Methylaniline 1 50–200 7.081 9 1 631.3 192.4 Methyl benzoate 1 111–199 7.273 1 847 221 Methyl borate 1 31–68 7.646 0 1 491.5 245.5 Methyl boric anhydride 1 0–55 8.004 1 1 726.1 257.9 2-Methyl-1,3-butadiene 1 52 to 24 7.011 87 1 126.159 238.88 1 19 to 55 6.885 64 1 071.578 233.51 3-Methyl-1,2-butadiene 1 45 to 20 7.151 95 1 194.537 239.47 1 20 to 62 6.943 50 1 103.901 230.89 2-Methylbutane 1 57 to 49 6.833 15 1 040.73 235.45 2-Methyl-1-butanethiol 1 liq 6.913 85 1 347.317 215.07 3-Methyl-1-butanethiol 1 liq 6.914 91 1 342.509 214.45 2-Methyl-2-butanethiol 1 liq 6.828 37 1 254.885 218.76 2-Methyl-1-butanol 1 34–129 7.067 30 1 195.26 156.83 3-Methyl-1-butanol 1 25–153 7.258 21 1 314.36 169.36 2-Methyl-2-butanol 1 25–102 6.519 3 863.4 135.3 3-Methyl-2-butanol 1 25–111 6.942 1 1 090.9 157.2 2-Methyl-1-butene 1 53 to 52 6.846 37 1 039.69 236.65 3-Methyl-1-butene 1 63 to 41 6.824 55 1 012.37 236.65 2-Methyl-2-butene 1 48 to 60 6.966 59 1 124.33 236.63 Methyl butyl ether 1 23–69 6.887 1 1 162.1 219.9 3-Methyl-1-butyne 1 55 to 47 6.884 80 1 014.81 227.11 2-Methyl-3-butyn-2-ol 1 21–106 6.657 5 976.5 154.1 Methyl n-butyrate 1 6.972 11 1 272.73 208.5 Methyl caprate 1 107–188 7.190 0 1 783.8 181.6 Methyl caproate 1 44–105 7.409 3 1 672.74 218.98 Methyl caprylate 1 100–146 6.916 5 1 496.3 176.5 Methyl carbitol 1 112–193 7.424 1 751 192 Methyl cellosolve acetate 1 70–144 7.125 1 1 447.0 196.1 Methyl chloroacetate 1 45–130 7.004 4 1 306.3 187.3 Methylcyclohexane 1 3 to 127 6.823 00 1 270.763 221.42 Methylcyclopentane 1 24 to 96 6.862 83 1 186.059 226.04 Methyldichlorosilane 1 1–41 7.027 8 1 167.8 240.7 1-Methyl-2-ethylbenzene 1 48–194 7.003 14 1 535.374 207.30 5.50 SECTION 5 TABLE 5.9 Vapor Pressures of Various Organic Compounds (Continued) Substance Eq.
Range, C A B C 1-Methyl-3-ethylbenzene 1 46–190 7.015 82 1 529.184 208.51 1-Methyl-4-ethylbenzene 1 46–191 6.998 02 1 527.113 208.92 1-Methyl-1-ethylcyclopentane 1 43–122 6.859 20 1 347.602 217.21 1-Methyl-2-ethylcyclopentane cis 1 49–129 6.905 88 1 388.412 216.89 2-Methyl-3-ethylpentane 1 6.867 31 1 318.12 215.31 3-Methyl-3-ethylpentane 1 6.867 31 1 347 219.68 3-Methyl-5-ethylphenol 1 111–233 7.958 2 236 208 2-Methyl-5-ethylpyridine 1 52–177 5.050 517 59 N-Methylformamide 1 96–200 7.497 4 1 849.4 201.1 Methyl formate 1 21–32 3.027 3.02 11.9 2-Methylheptane 1 42–119 6.917 35 1 337.47 213.69 3-Methylheptane 1 43–120 6.899 44 1 331.53 212.41 4-Methylheptane 1 6.900 65 1 327.66 212.57 2-Methylhexane 1 9 to 115 6.873 18 1 236.026 219.55 3-Methylhexane 1 8 to 117 6.867 64 1 240.196 219.22 Methylhydrazine 1 2–25 6.576 2 1 007.5 181.4 N-Methylhydroxylamine 1 40–65 7.045 6 1 223.3 172.1 O-Methylhydroxylamine 1 63 to 48 7.363 9 1 225.3 225.2 Methyl isobutyl ketone 1 22–116 6.672 7 1 168.4 191.9 1-Methyl-2-isopropylbenzene 1 liq 6.940 4 1 548.05 203.15 1-Methyl-3-isopropylbenzene 1 liq 6.940 5 1 539.05 203.93 1-Methyl-4-isopropylbenzene 1 liq 6.923 7 1 537.06 203.05 3-Methylisoquinoline 1 176–225 6.969 2 1 717.3 166.9 Methyl isothiocyanate 1 10–50 2.896 8 103.6 45.4 Methyl laurate 1 158–212 6.767 1 1 589.72 140.5 Methyl linolate 1 166–206 6.111 1 1 660.1 118.8 Methyl methacrylate 1 39–89 8.409 2 2 050.5 274.4 Methyl myristate 1 166–238 7.622 3 2 283.93 184.8 1-Methylnaphthalene 1 108–278 7.035 92 1 826.948 195.00 2-Methylnaphthalene 1 105–274 7.068 50 1 840.268 198.40 Methyl oleate 1 166–205 7.544 1 2 656.9 200.7 Methyl palmitate 1 148–202 9.594 4 4 146.43 297.76 2-Methylpentane 1 32 to 83 6.839 10 1 135.410 226.57 3-Methylpentane 1 30 to 87 6.848 87 1 152.368 227.13 2-Methyl-2-pentanethiol 1 56–165 6.858 5 1 343.79 212.8 2-Methyl-1-pentanol 1 25–150 7.520 1 1 564.7 189.2 2-Methyl-4-pentanol 1 25–133 8.467 1 2 174.9 257.8 2-Methyl-1-pentene 1 30 to 85 6.850 30 1 138.516 224.70 3-Methyl-1-pentene 1 38 to 77 6.755 23 1 086.316 226.20 4-Methyl-1-pentene 1 38 to 77 6.835 29 1 121.302 229.687 2-Methyl-2-pentene 1 26 to 90 6.923 67 1 183.837 225.51 3-Methyl-2-pentene cis 1 26 to 91 6.910 73 1 186.402 226.70 trans 1 23 to 94 6.926 34 1 194.527 224.83 4-Methyl-2-pentene cis 1 35 to 79 6.841 29 1 120.707 226.59 trans 1 33 to 81 6.880 30 1 142.874 227.14 Methyl phenyl ether 1 110–164 7.052 69 1 489.99 203.57 2-Methylpiperidine 1 51–158 6.818 59 1 274.61 205.40 2-Methylpropane 1 87 to 7 6.910 48 946.35 246.68 2-Methyl-1-propanethiol 1 10 to 113 6.887 46 1 237.282 220.31 2-Methyl-2-propanethiol 1 1–88 6.787 81 1 115.565 221.31 2-Methyl-1-propanol 1 20–115 7.327 05 1 248.48 172.92 2-Methyl-2-propanol 1 26–83 9.170 6 2 206.4 267.9 2-Methylpropene 1 82 to 12 6.684 66 866.25 234.64 PHYSICAL PROPERTIES 5.51 TABLE 5.9 Vapor Pressures of Various Organic Compounds (Continued) Substance Eq.
Range, C A B C N-Methylpropionamide 1 30–90 0.9103 119.4 148.0 Methyl propionate 1 21–79 6.942 4 1 170.2 208.8 2-Methyl-2-propylamine 1 19–75 6.783 2 993.33 210.50 Methyl propyl ether 1 0–39 6.118 6 708.69 179.9 2-Methylpyridine 1 80–168 7.032 4 1 415.73 211.63 3-Methylpyridine 1 74–185 7.050 21 1 481.78 211.25 4-Methylpyridine 1 75–186 7.041 77 1 480.68 210.50 1-Methylpyrrole 1 49–149 7.085 0 1 368.66 212.80 6-Methylquinoline 1 187–266 6.927 2 1 746.08 166.46 7-Methylquinoline 1 238–258 7.597 7 2 229.4 214.9 Methyl salicylate 1 79–220 7.083 3 1 712.8 187.1 Methyl stearate 1 204–240 2.357 0 68.92 156.5 o-Methylstyrene 1 32–112 7.212 9 1 664.08 214.59 1 75–255 6.884 61 1 485.41 200.0 m-Methylstyrene 1 10–72 7.275 34 1 695.4 220.0 1 72–250 6.879 28 1 471.44 200.0 p-Methylstyrene 1 68–170 7.011 2 1 535.1 200.7 -Methylstyrene 1 6.923 66 1 486.88 202.4 -Methylstyrene 1 6.923 39 1 499.80 201.0 Methyl sulfoxide 1 20–50 7.763 7 2 048.7 231.6 3-Methyl-2-thiabutane 1 13 to 109 6.901 96 1 232.170 221.67 2-Methylthiacyclopentane 1 liq 6.944 12 1 409.503 214.41 3-Methylthiacyclopentane 1 67–179 6.949 1 1 431.8 213.6 2-Methyl-3-thiapentane 1 liq 6.891 30 1 293.05 215.04 Methyl-2-thiazole 1 80–128 7.042 1 1 407.05 209.33 2-Methylthiophene 1 9–138 6.938 97 1 326.48 214.31 3-Methylthiophene 1 11–141 6.986 11 1 363.83 216.78 Methyl trichlorosilane 1 13–64 7.088 2 1 289.2 239.9 2-Methyl-5-vinylpyridine 1 69–183 6.156 1 023 129 Morpholine 1 0–44 7.718 13 1 745.8 235.0 1 44–170 7.160 30 1 447.70 210.0 Naphthalene c 1 86–250 7.010 65 1 733.71 201.86 liq 1 125–218 6.818 1 1 585.86 184.82 1-Naphthol 1 141–282 7.284 21 2 077.56 184.0 2-Naphthol 1 144–288 7.347 14 2 135.00 183.0 Nicotine 1 134–246 6.789 1 650 176 o-Nitroaniline 2 150–260 8.868 4 3 336.50 m-Nitroaniline 2 170–260 8.818 8 3 440.9 p-Nitroaniline 2 190–260 9.559 5 4 039.73 Nitrobenzene 1 134–211 7.115 6 1 746.6 201.8 m-Nitrobenzotrifluoride 1 10–105 7.653 15 2 006.1 220.0 1 104–280 7.180 25 1 710.60 195.12 Nitromethane 1 56–136 7.281 66 1 446.94 227.60 1-Nitropropane 1 59–131 7.114 6 1 467.45 215.23 o-Nitrotoluene 1 129–222 5.851 946 96 p-Nitrotoluene 1 148–233 6.994 8 1 720.39 184.9 Nonadecane 1 184–366 7.015 3 1 932.8 137.6 1-Nonadecene 1 liq 7.115 1 1 997.4 142.7 Nonafluorocyclopentane 1 17–75 6.945 3 1 051.7 220.1 Nonane 1 39–179 6.938 93 1 431.82 202.01 1-Nonanethiol 1 93–251 6.983 9 1 655.6 183.7 Nonanoic acid 1 137–177 3.235 9 143.97 75.6 1-Nonanol 1 94–214 7.827 8 1 953.8 181.9 5.52 SECTION 5 TABLE 5.9 Vapor Pressures of Various Organic Compounds (Continued) Substance Eq.
Range, C A B C 1-Nonene 1 35–175 6.954 30 1 436.20 205.69 Octadecane 1 172–352 7.002 2 1 894.3 143.30 1-Octadecanethiol 1 liq 7.096 2 061 129 1-Octadecanol 1 120–218 6.461 6 1 599 90 1-Octadecene 1 7.060 65 1 997.4 147.50 Octane 1 19–152 6.918 68 1 351.99 209.15 1-Octanethiol 1 76–229 6.969 09 1 593.0 190.61 1-Octanol 1 0–80 12.070 1 4 506.8 319.9 1 70–195 6.837 90 1 310.62 136.05 2-Octanol 1 72–180 6.388 8 1 060.4 122.5 3-Octanol 1 76–176 5.221 5 560.3 64.7 4-Octanol 1 71–176 5.739 6 760.5 89.5 1-Octene 1 15–147 6.934 95 1 355.46 213.05 5-Oxyhydrindene 1 120–251 9.213 7 3 665.8 326.4 Pentachloroethane 1 25–162 6.740 1 378 197 Pentadecane 1 136–304 7.023 59 1 789.95 161.38 1-Pentadecene 1 7.022 91 1 788.58 163.347 1,2-Pentadiene 1 42 to 26 7.259 90 1 250.293 241.96 1 21 to 67 6.918 20 1 104.991 228.85 1,3-Pentadiene cis 1 43 to 22 7.193 87 1 223.602 240.62 1 18 to 66 6.910 89 1 101.923 229.37 trans 1 45 to 20 7.102 12 1 185.389 239.41 1 18 to 64 6.913 17 1 103.840 231.72 1,4-Pentadiene 1 57 to 37 7.174 01 1 155.378 244.30 1 33 to 47 6.835 43 1 017.995 231.46 2,3-Pentadiene 1 39 to 18 7.202 53 1 231.768 237.56 1 14 to 70 6.962 16 1 126.837 227.84 Pentafluorobenzene 1 49–94 7.036 65 1 254.07 216.02 Pentafluorochloroacetone 1 40 to 32 6.848 4 925.3 225.4 Pentafluorochlorethane 1 95 to 39 6.833 34 802.97 242.27 Pentafluorophenol 1 105–155 7.066 0 1 379.15 183.91 2,2,3,3,3-Pentafluoropropanol 1 0–23 6.308 7 830.56 153.8 Pentafluorotoluene 1 39–138 7.084 78 1 392.20 213.67 bis-Pentamethyldisilanoxydisilane 1 169–201 8.556 64 3 051.316 258.85 bis-Pentamethyldisilanyl ether 1 88–183 8.161 44 2 575.250 273.32 Pentane 1 50 to 58 6.852 96 1 064.84 233.01 Pentanenitrile 1 69–141 7.104 9 1 519.4 218.4 1-Pentanethiol 1 19–153 6.933 11 1 369.479 211.31 Pentanoic acid 1 72–174 5.412 591 60 1-Pentanol 1 37–138 7.177 58 1 314.56 168.11 2-Pentanol 1 25–120 7.275 75 1 271.92 170.37 3-Pentanol 1 21–116 7.414 93 1 354.42 183.41 2-Pentanone 1 56–111 7.021 93 1 313.85 215.01 3-Pentanone 1 56–111 7.025 29 1 310.28 214.19 1-Pentene 1 55 to 51 6.844 24 1 044.01 233.50 2-Pentene cis 1 49 to 58 6.843 08 1 052.44 228.69 trans 1 49 to 58 6.899 83 1 080.76 232.57 1-Pentyne 1 44 to 61 6.967 34 1 092.52 227.18 2-Pentyne 1 33 to 78 7.046 14 1 189.87 229.60 Perdeuterobenzene 1 10–82 6.892 35 1 198.39 219.43 Perdeuterocyclohexane 1 10–80 6.837 86 1 190.38 222.40 Perfluorobutane 1 39 to 4 7.035 1 990.27 240.4 Perfluorobutene 1 28 to 20 9.222 2 401.6 382 PHYSICAL PROPERTIES 5.53 TABLE 5.9 Vapor Pressures of Various Organic Compounds (Continued) Substance Eq.
Range, C A B C Perfluorocyclobutane 1 32 to 0 6.815 29 862.49 225.19 Perfluorocyclohexane 1 19–65 6.04 597 136 Perfluorocyclopentane 1 17–56 7.039 6 1 069.3 234.6 Perfluoroheptane 1 2 to 106 6.937 72 1 181.14 208.66 Perfluorohexane 1 30–57 6.875 2 1 080.8 213.4 Perfluoromethylcyclohexane 1 33–111 6.824 06 1 133.76 211.22 Perfluorooctane 1 37–105 5.902 5 1 225.93 198.99 Perfluoropentane 1 9–65 7.017 9 1 072.9 230.0 Perfluoropiperidine 1 29–81 6.853 4 1 059.95 217.2 Perfluoropropane 1 79 to 36 6.919 4 825.8 241.2 Perfluoropropene 1 41 to 20 7.355 1 012.1 257 Phenanthrene 1 176–379 7.260 82 2 379.04 203.76 Phenol 1 107–182 7.133 0 1 516.79 174.95 -Phenylethyl acetate 1 149–233 6.834 3 1 555.2 160.8 -Phenylethyl alcohol 1 82–190 1.508 91 263 o-Phenylethylphenol 1 169–250 4.506 0 516.8 32.1 p-Phenylethylphenol 1 174–251 4.304 1 459.3 52.4 Phenylisocyanate 1 10–80 0.708 0 106.4 146.6 4-Phenylphenol 1 177–308 8.657 5 3 022.8 216.1 Phosgene 1 68 to 68 6.842 97 941.25 230 Phthalic anhydride 2 160–285 8.022 2 868.5 -Pinene 1 19–156 6.852 5 1 446.4 208.0 -Pinene 1 19–166 6.898 4 1 511.7 210.2 Piperidine 1 42–144 6.855 69 1 238.80 205.43 Propadiene 1 99 to 16 5.713 7 458.06 196.07 Propane 1 108 to 25 6.803 38 804.00 247.04 1-Propanethiol 1 25 to 91 6.928 46 1 183.307 224.62 2-Propanethiol 1 37 to 75 6.877 34 1 113.895 226.16 1-Propanol 1 2–120 7.847 67 1 499.21 204.64 2-Propanol 1 0–101 8.117 78 1 580.92 219.61 2-Propen-1-ol 1 21–97 11.187 0 4 068.5 392.7 Propionic acid 1 56–139.5 6.403 950.2 130.3 Propionic anhydride 1 67–167 5.819 5 810.3 108.7 Propionitrile 1 84 to 22 5.278 2 665.52 159.10 Propiophenone 1 132–201 7.370 1 894 205 Propyl acetate 1 39–101 7.016 15 1 282.28 208.60 1-Propylamine 1 23–77 6.926 51 1 044.05 210.84 2-Propylamine 1 4–61 6.890 25 985.69 214.07 n-Propylbenzene 1 43–188 6.951 42 1 491.297 207.14 n-Propyl borate 1 85–179 7.399 8 1 741 206 n-Propyl caprate 1 97–186 8.701 22 2 945.99 253.63 n-Propyl caproate 1 43–120 8.667 1 2 556.0 262.9 n-Propyl caprylate 1 70–153 8.516 7 2 599.5 246.2 n-Propyl cellosolve 1 77–149 7.146 4 1 440.6 187.7 n-Propylcyclohexane 1 40–186 6.886 46 1 460.800 207.94 n-Propylcyclopentane 1 21–158 6.903 92 1 384.386 213.16 Propylene 1 112 to 32 6.778 11 770.85 245.51 1,2-Propylene oxide 1 35 to 130 7.064 92 1 113.6 232 n-Propyl formate 1 26–82 6.848 1 127 203 n-Propyl laurate 1 124–205 8.068 9 2 692.4 222.5 n-Propyl myristate 1 147–200 9.216 8 3 744.68 272.87 n-Propyl nitrate 1 0–70 6.954 9 1 294.4 206.7 n-Propyl palmitate 1 166–204 14.129 2 9 759.2 539.7 5.54 SECTION 5 TABLE 5.9 Vapor Pressures of Various Organic Compounds (Continued) Substance Eq.
Range, C A B C o-(n-Propyl)phenol 1 104–222 9.215 3 254 292 p-(n-Propyl)phenol 1 0–234 8.329 6 2 661 254 n-Propyl phenyl ether 1 101–190 7.734 3 2 146.2 252.3 Propyne 1 90 to 6 6.784 85 803.73 229.08 Pseudocumenol 1 107–232 6.915 1 547 152 Pyrene 1 200–395 5.618 4 1 122.0 15.2 Pyridine 1 67–153 7.041 15 1 373.80 214.98 Pyrogallol 1 177–309 6.092 1 031 12 Pyrrole 1 66–166 7.294 70 1 501.56 210.42 Quinaldine 1 178–248 7.179 00 1 857.84 184.50 Quinoline 1 164–238 6.817 59 1 668.73 186.26 Spiropentane 1 3–71 6.917 00 1 090.08 231.10 Styrene 1 32–82 7.140 16 1 574.51 224.09 Terpenyl acetate 1 37–150 6.443 46 1 377.27 143.85 -Terpineol 1 84–217 8.141 2 2 479.4 253.7 Terpinolene 1 40–179 7.169 1 706 211 Tetrabutyl tin 1 100–300 6.545 1 649 148 1,1,2,2-Tetrachloro-1,2-difluoro-ethane 1 10–91.5 10.995 4 437.1 455.2 1,1,1,2-Tetrachloroethane 1 59–130 6.898 75 1 365.88 209.74 1,1,2,2-Tetrachloroethane 1 25–130 6.631 7 1 228.1 179.9 Tetrachloroethylene 1 37–120 6.976 83 1 386.92 217.53 Tetrachloromethane 1 6.879 26 1 212.021 226.41 Tetradecane 1 122–286 7.013 00 1 740.88 167.72 1-Tetradecanethiol 1 7.048 5 1 909.2 151.9 1-Tetradecanol 1 130–264 6.674 1 1 204.5 54.0 1-Tetradecene 1 119–283 7.030 65 1 754.09 171.52 1,2,3,4-Tetrafluorobenzene 1 6–50 7.084 6 1 339.23 223.49 1,2,3,5-Tetrafluorobenzene 1 6–50 6.986 17 1 245.20 218.35 Tetrafluoroethylene 1 131 to 65 6.896 59 683.84 245.93 Tetrafluoromethane 1 6.972 31 540.50 260.10 Tetrahydrofuran 1 23–100 6.995 15 1 202.29 226.25 Tetraiodothiophene 1 65 to 24 5.585 44 871.25 175.59 Tetralin 1 94–206 7.070 55 1 741.30 208.26 1,2,3,4-Tetramethylbenzene 1 80–217 7.059 4 1 690.54 199.48 1,2,3,5-Tetramethylbenzene 1 75–228 7.077 9 1 675.43 201.14 1,2,4,5-Tetramethylbenzene 1 74–227 7.080 0 1 672.43 201.43 2,2,3,3-Tetramethylbutane 1 0–65 6.876 65 1 329.93 226.36 Tetramethyl lead 1 0–60 6.937 7 1 335.3 219.1 2,2,3,3-Tetramethylpentane 1 57–141 6.830 60 1 398.67 213.84 2,2,3,4-Tetramethylpentane 1 52–134 6.834 18 1 375.59 214.94 2,2,4,4-Tetramethylpentane 1 43–123 6.796 20 1 324.59 216.02 Tetramethylsilane 1 64 to 21 6.822 39 1 033.72 235.62 2-Thiabutane 1 26 to 90 6.938 49 1 182.562 224.78 Thiacyclobutane 1 5 to 120 7.016 67 1 321.331 224.51 Thiacyclohexane 1 29–170 6.905 18 1 422.47 211.72 Thiacyclopentane 1 14–148 6.995 40 1 401.939 219.61 Thiacyclopropane 1 35 to 77 7.037 25 1 194.37 232.42 3-Thiaheptane 1 33–172 6.941 02 1 421.32 205.81 4-Thiaheptane 1 32–170 6.935 77 1 413.44 205.73 2-Thiahexane 1 17–150 6.945 83 1 363.808 212.07 3-Thiahexane 1 14–144 6.933 80 1 341.57 212.51 PHYSICAL PROPERTIES 5.55 TABLE 5.9 Vapor Pressures of Various Organic Compounds (Continued) Substance Eq.
Range, C A B C 2-Thiapentane 1 4 to 120 6.955 45 1 284.32 219.66 3-Thiapentane 1 13 to 109 6.928 36 1 257.833 218.66 2-Thiapropane 1 47 to 58 6.948 79 1 090.755 230.80 Thiazole 1 63–118 7.142 01 1 425.35 216.26 Thiophene 1 12 to 108 6.959 26 1 246.02 221.35 Toluene 1 6–137 6.954 64 1 344.800 219.48 o-Toluidine 1 118–200 7.082 03 1 627.72 187.13 m-Toluidine 1 122–203 7.093 67 1 631.43 183.91 p-Toluidine 1 7.260 22 1 758.55 201.0 m-Tolyl pentafluoropropionate 1 98–174 7.427 20 1 707.59 201.70 p-Tolyl pentafluoropropionate 1 99–176 8.078 6 2 223.8 252.1 m-Tolyl trifluoroacetate 1 91–166 7.681 0 1 874.84 223.48 p-Tolyl trifluoroacetate 1 92–169 7.913 8 2 055.41 238.99 Tribromomethane 1 30–101 6.821 8 1 376.7 201.0 1,2,3-Tribromopropane 1 128–205 7.037 2 1 735.32 195.42 Trichloroacetic acid 1 112–198 7.273 0 1 594.3 165.4 Trichloroacetonitrile 1 17–83 7.183 5 1 368.3 232.5 Trichloroacetyl chloride 1 32–119 6.990 75 1 390.47 220.11 1,1,1-Trichloroethane 1 6 to 17 8.643 4 2 136.6 302.8 1,1,2-Trichloroethane 1 50–114 6.951 85 1 314.41 209.20 Trichloroethylene 1 18–86 6.518 3 1 018.6 192.7 Trichlorofluoromethane 1 6.884 28 1 043.004 236.88 Trichlorosilane 1 2–32 6.773 9 1 009.0 227.2 bis-Trichlorosilylethane 1 91–160 7.835 11 2 241.769 249.84 1,1,1-Trichloro-2,2,2-trifluoro-ethane 1 14–36 4.437 3 204.1 83.9 1,1,2-Trichloro-1,2,2-trifluoro-ethane 1 25 to 83 6.880 3 1 099.9 227.5 Tridecane 1 107–267 7.007 56 1 690.67 174.22 1-Tridecene 1 105–264 6.981 02 1 672.00 174.95 Triethanolamine 1 252–305 10.067 5 4 542.78 297.76 Triethyl aluminum 1 57–126 11.646 1 4 466.59 322.87 Triethylamine 1 50–95 5.858 8 695.7 144.8 Triethyl borate 1 29–109 7.511 1 1 641.7 236.3 Triethylsilanol 1 24–140 7.793 7 1 756.1 202.4 Trifluoroacetic acid 1 12–72 8.389 1 895 273 Trifluoroacetic anhydride 1 2 to 39 6.135 8 1 026.1 202.0 Trifluoroacetonitrile 1 132 to 68 7.127 6 773.82 249.9 1,3,5-Trifluorobenzene 1 6–50 6.919 8 1 197.13 219.12 Trifluorochloroethylene 1 67 to 11 6.896 16 848.33 293.64 1,1,1-Trifluoroethane 1 110 to 48 6.903 78 788.20 243.23 2,2,2-Trifluoroethanol 1 0.5 to 25 6.788 2 978.13 173.06 Trifluoromethane 1 128 to 82 7.088 6 705.33 249.78 bis-(Trifluoromethyl)-acetoxyphos-phine 1 0–40 7.391 31 1 426.254 220.37 2,2,2-Trifluoro-1-methylbenzene 1 55–139 6.970 45 1 306.35 217.38 bis-(Trifluoromethyl)-chlorophos-phine 1 80 to 0 7.661 06 1 386.652 267.14 Trifluoromethylhypofluorite 1 145–189 6.950 6 650.1 18.4 bis-(Trifluoromethyl)-iodophos-phine 1 0–47 6.901 39 1 180.723 222.95 Triisobutylene 1 56–179 7.002 1 1 613.47 212.5 5.56 SECTION 5 TABLE 5.9 Vapor Pressures of Various Organic Compounds (Continued) Substance Eq.
Range, C A B C Trimethyl aluminum 1 64–127 7.570 29 1 734.72 242.78 Trimethylamine 1 80 to 3 6.857 55 955.94 237.52 1,2,3-Trimethylbenzene 1 57–205 7.040 82 1 593.958 207.08 1,2,4-Trimethylbenzene 1 52–198 7.043 83 1 573.257 208.56 1,3,5-Trimethylbenzene 1 49–193 7.074 36 1 569.622 209.58 2,2,3-Trimethylbutane 1 19 to 106 6.792 30 1 200.563 226.05 Trimethylchlorosilane 1 2–55 7.055 8 1 245.5 240.7 1,1,3-Trimethylcyclohexane 1 55–137 6.839 51 1 394.88 215.73 1,1,2-Trimethylcyclopentane 1 36–115 6.822 38 1 309.81 218.58 1,1,3-Trimethylcyclopentane 1 29–106 6.809 31 1 275.92 219.89 1,2,4-Trimethylcyclopentane cis, cis, trans 1 39–118 6.857 38 1 335.69 219.16 cis, trans, cis 1 33–110 6.851 3 1 307.10 219.92 1,3,5-Trimethyl-2-ethylbenzene 1 88–210 6.790 8 1 505.8 174.7 1,4,5-Trimethyl-2-ethylbenzene 1 87–132 3.029 3 116.4 34.6 2,2,5-Trimethylhexane 1 46–125 6.837 75 1 325.54 210.91 2,4,4-Trimethylhexane 1 51–131 6.856 54 1 371.81 214.40 Trimethylhydrazine 1 16 to 14 7.106 80 1 189.88 222.06 O,N,N-Trimethylhydroxylamine 1 79 to 23 6.765 8 979.55 222.2 2,2,3-Trimethylpentane 1 6.825 46 1 294.88 218.42 2,2,4-Trimethylpentane 1 24–100 6.811 89 1 257.84 220.74 2,3,3-Trimethylpentane 1 6.843 53 1 328.05 220.38 2,3,4-Trimethylpentane 1 36–114 6.853 96 1 315.08 217.53 2,4,4-Trimethyl-1-pentene 1 3 to 128 6.834 57 1 273.416 220.62 2,4,4-Trimethyl-2-pentene 1 2–131 6.859 22 1 272.717 214.99 2,3,5-Trimethylphenol 1 186–247 7.080 12 1 685.90 166.14 Trimethylsilanol 1 18–85 8.126 6 1 657.6 219.2 2,4,5-Trimethylstyrene 1 79–216 7.331 5 1 880.7 205.7 2,4,6-Trimethylstyrene 1 90–208 7.089 1 1 702.61 195.93 1,2,4-Trinitrobenzene 1 250–300 3.194 87 199 1,3,5-Trinitrobenzene 1 202–312 5.534 5 993.6 11.2 2,4,6-Trinitrobenzene 1 249–342 9.621 1 4 987.9 329.9 2,4,6-Trinitrotoluene 1 230–250 7.671 52 2 669.4 205.6 -Trioxane 1 56–114 7.818 6 1 783.3 247.1 Trivinylarsine 1 22–66 7.894 1 2 115.6 293.9 Trivinyl bismuth 1 20–74 7.237 2 1 667.0 215.1 Trivinylphosphine 1 16–61 7.928 4 2 102.0 301.3 Trivinylstibine 1 20–70 8.322 1 2 446.3 303.8 Undecane 1 75–226 6.972 20 1 569.57 187.70 1-Undecanethiol 1 7.012 2 1 767.4 170.4 1-Undecene 1 72–222 6.966 77 1 563.21 189.87 Urethane 1 7.421 64 1 758.21 205.0 Vinyl acetate 1 22–72 7.210 1 1 296.13 226.66 o-Xylene 1 32–172 6.998 91 1 474.679 213.69 m-Xylene 1 28–166 7.009 08 1 462.266 215.11 p-Xylene 1 27–166 6.990 52 1 453.430 215.31 2,3-Xylenol 1 149–218 7.053 97 1 617.57 170.74 2,4-Xylenol 1 144–212 7.055 39 1 587.46 169.34 2,5-Xylenol 1 144–212 7.051 56 1 592.70 170.74 2,6-Xylenol 1 145–204 7.070 70 1 628.32 187.60 3,4-Xylenol 1 172–229 7.079 19 1 621.45 159.26 3,5-Xylenol 1 155–223 7.130 76 1 639.86 164.16 PHYSICAL PROPERTIES 5.57 5.3 BOILING POINTS TABLE 5.10 Boiling Points of Water A. Barometric Pressures at Various Temperatures Temp. C.
0.0 0.2 0.4 0.6 0.8 mm of Hg mm of Hg mm of Hg mm of Hg mm of Hg 80 355.40 358.28 361.19 364.11 367.06 81 370.03 373.01 376.02 379.05 382.09 82 385.16 388.25 391.36 394.49 397.64 83 400.81 404.00 407.22 410.45 413.71 84 416.99 420.29 423.61 426.95 430.32 85 433.71 437.12 440.55 444.01 447.49 86 450.99 454.51 458.06 461.63 465.22 87 468.84 472.48 476.14 479.83 483.54 88 487.28 491.04 494.82 498.63 502.46 89 506.32 510.20 514.11 518.04 521.99 90 525.97 529.98 534.01 538.07 542.15 91 546.26 550.40 554.56 558.75 562.96 92 567.20 571.47 575.76 580.08 584.43 93 588.80 593.20 597.63 602.09 606.57 94 611.08 615.62 620.19 624.79 629.41 95 634.06 638.74 643.45 648.19 652.96 96 657.75 662.58 667.43 672.32 677.23 97 682.18 687.15 692.15 697.19 702.25 98 707.35 712.47 717.63 722.81 728.03 99 733.28 738.56 743.87 749.22 754.59 100 760.00 765.44 770.91 776.42 781.95 B. Boiling Points of Water at Various Pressures Pressure, atm.
Boiling Point, C.
Pressure, atm.
Boiling Point, C.
Pressure, atm.
Boiling Point, C.
Pressure, atm.
Boiling Point, C.
0.5 80.9 7 164.2 14 194.1 21 213.9 1 100.0 8 169.6 15 197.4 22 216.2 2 119.6 9 174.5 16 200.4 23 218.5 3 132.9 10 179.0 17 203.4 24 220.8 4 142.9 11 183.2 18 206.1 25 222.9 5 151.1 12 187.1 19 208.8 26 225.0 6 158.1 13 190.7 20 211.4 27 227.0 5.58 SECTION 5 TABLE 5.11 Binary Azeotropic (Constant-Boiling) Mixtures An azeotrope is a mixture that cannot be separated by distillation.
A. Binary azeotropes containing water System BP of azeotrope, C Composition, wt % Water Other component Inorganic acids Hydrogen bromide 126 52.5 47.5 Hydrogen chloride 108.58 79.78 20.22 Hydrogen fluoride 111.35 64.4 35.6 Hydrogen iodide 127 43 57 Hydrogen peroxide zeotrope Nitric acid 120.7 32.6 67.4 Perchloric acid 203 28.4 71.6 Organic acids Formic acid 107.2 22.6 77.4 Acetic acid zeotrope Propionic acid 99.9 82.3 17.7 Isobutyric acid 99.3 79 21 Butyric acid 99.4 81.6 18.4 Pentanoic acid 99.8 89 11 Isopentanoic acid 99.5 81.6 18.4 Perfluorobutyric acid 97 71 29 Crotonic acid 99.9 97.8 2.2 Alcohols Ethanol 78.17 4 96 Allyl alcohol 88.9 27.7 72.3 1-Propanol 71.7 71.7 28.3 2-Propanol 80.3 12.6 87.4 1-Butanol 92.7 42.5 57.5 2-Butanol 87.0 26.8 73.2 2-Methyl-2-propanol 79.9 11.7 88.3 1-Pentanol 95.8 54.4 45.6 2-Pentanol 91.7 36.5 63.5 3-Pentanol 91.7 36.0 64.0 2,2-Dimethyl-2-propanol 87.35 27.5 72.5 1-Hexanol 97.8 67.2 32.8 1-Octanol 99.4 90 10 Cyclopentanol 96.25 58 42 1-Heptanol 98.7 83 17 Phenol 99.52 90.8 9.2 2-Methoxyphenol 99.5 87.5 12.5 1-Phenylphenol 99.95 98.75 1.25 Benzyl alcohol 99.9 91 9 2,3-Dimethyl-2,3-butanediol zeotrope Furfuryl alcohol 98.5 80 20 PHYSICAL PROPERTIES 5.59 TABLE 5.11 Binary Azeotropic (Constant-Boiling) Mixtures (Continued) System BP of azeotrope, C Composition, wt % Water Other component Aldehydes Propionaldehyde 47.5 2 98 Butyraldehyde 68 6 94 Pentanal 83 19 81 Paraldehyde 90 28.5 71.5 Furaldehyde 97.5 65 35 Amines N-Methylbutylamine 82.7 15 85 Furfurylamine 99 74 26 Piperidine 92.8 35 65 Pyridine 93.6 41.3 58.7 2-Methylpyridine 93.5 48 52 3-Methylpyridine 97 60 40 4-Methylpyridine 97.35 62.8 37.2 2,6-Dimethylpyridine 96.02 51.8 48.2 Dibutylamine 97 50.5 49.5 Dihexylamine 99.8 92.8 7.2 Triallylamine 95 38 62 Tributylamine 99.65 79.7 20.3 Aniline 98.6 80.8 19.2 N-Ethylaniline 99.2 83.9 16.1 1-Methyl-2-(2-pyridyl)pyrrolidine 99.85 97.5 2.5 Halogenated hydrocarbons Chloroform 56.1 2.8 97.2 Carbon tetrachloride 42.6 2.8 97.2 Trichloroethylene 73.4 17 83 Tetrachloroethylene 88.5 17.2 82.8 1,2-Dichloroethane 72 8.3 91.7 1-Chloropropane 44 2.2 97.8 1,2-Dichloropropane 78 12 88 Chlorobenzene 90.2 28.4 71.6 Esters Ethyl formate 52.6 5 95 Isopropyl formate 65.0 3 97 Propyl formate 71.6 2.3 97.7 Isobutyl formate 80.4 7.8 92.2 Butyl formate 83.8 14.5 85.5 Isopentyl formate 90.2 21 79 Pentyl formate 91.6 28.4 71.6 Benzyl formate 99.2 80 20 Ethyl acetate 70.38 8.47 91.53 Allyl acetate 83 14.7 85.3 5.60 SECTION 5 TABLE 5.11 Binary Azeotropic (Constant-Boiling) Mixtures (Continued) System BP of azeotrope, C Composition, wt % Water Other component Esters (continued) Isopropyl acetate 76.6 10.6 89.4 Propyl acetate 82.4 14 86 Isobutyl acetate 87.4 16.5 83.5 Butyl acetate 90.2 28.7 71.3 Isopentyl acetate 93.8 36.3 63.7 Pentyl acetate 95.2 41 59 Hexyl acetate 97.4 61 39 Phenyl acetate 98.9 75.1 24.9 Benzyl acetate 99.6 87.5 12.5 Methyl propionate 71.4 3.9 96.1 Ethyl propionate 81.2 10 90 Isopropyl propionate 85.2 19.9 80.1 Propyl propionate 88.9 23 77 Isobutyl propionate 92.75 52.2 47.8 Isopentyl propionate 96.55 48.5 51.5 Methyl butyrate 82.7 11.5 88.5 Ethyl butyrate 87.9 21.5 78.5 Propyl butyrate 94.1 36.4 63.6 Isobutyl butyrate 96.3 46 54 Butyl butyrate 97.2 53 47 Isopentyl butyrate 98.05 63.5 36.5 Methyl isobutyrate 77.7 6.8 93.2 Ethyl isobutyrate 85.2 15.2 84.8 Propyl isobutyrate 92.2 30.8 69.2 Isobutyl isobutyrate 95.5 39.4 60.6 Isopentyl isobutyrate 97.4 56.0 44.0 Methyl isopentanoate 87.2 19.2 80.8 Ethyl isopentanoate 92.2 30.2 69.8 Propyl isopentanoate 96.2 45.2 54.8 Isobutyl isopentanoate 97.4 55.8 44.2 Isopentyl isopentanoate 98.8 74.1 25.9 Ethyl pentanoate 94.5 40 60 Ethyl hexanoate 97.2 54 46 Methyl benzoate 99.08 79.2 20.8 Ethyl benzoate 99.4 84.0 16.0 Propyl benzoate 99.7 90.9 9.1 Butyl benzoate 99.9 94 6 Isopentyl benzoate 99.9 95.6 4.4 Ethyl phenylacetate 99.7 91.3 8.7 Methyl cinnamate 99.9 95.5 4.5 Methyl phthalate 99.95 97.5 2.5 Diethyl o-phthalate 99.98 98.0 2.0 Ethyl chloroacetate 95.2 45.1 54.9 Butyl chloroacetate 98.12 75.5 24.5 Methyl acrylate 71 7.2 92.8 Isobutyl carbonate 98.6 74 26 Ethyl crotonate 93.5 38 62 Methyl lactate 99 80 20 PHYSICAL PROPERTIES 5.61 TABLE 5.11 Binary Azeotropic (Constant-Boiling) Mixtures (Continued) System BP of azeotrope, C Composition, wt % Water Other component Esters (continued) 1,2-Ethanediol diacetate 99.7 84.6 15.4 Ethyl nitrate 74.35 22 78 Propyl nitrate 84.8 20 80 Isobutyl nitrate 89.0 25 75 Methyl sulfate 98.6 73 27 Ethers Ethyl vinyl ether 34.6 1.5 98.5 Diethyl ether 34.2 1.3 98.7 Ethyl propyl ether 59.5 4 96 Diisopropyl ether 62.2 4.5 95.5 Butyl ethyl ether 76.6 11.9 88.1 Diisobutyl ether 88.6 23 77 Dibutyl ether 92.9 33 67 Diisopentyl ether 97.4 54 46 1,1-Diethoxyethane 82.6 14.5 85.5 Diphenyl ether 99.33 96.75 3.25 Methoxybenzene 95.5 40.5 59.5 Hydrocarbons Pentane 34.6 1.4 98.6 Hexane 61.6 5.6 94.4 Heptane 79.2 12.9 87.1 2,2,4-Trimethylpentane 78.8 11.1 88.9 Nonane 94.8 82 18 Undecane 98.85 96.0 4.0 Dodecane 99.45 98 2 Acrolein 52.4 2.6 97.4 Cyclohexene 70.8 8.93 91.07 Cyclohexane 69.5 8.4 91.6 1-Octene 88.0 28.7 71.3 Benzene 69.25 8.83 91.17 Toluene 84.1 13.5 86.5 Ethylbenzene 92.0 33.0 67.0 m-Xylene 92 35.8 64.2 Isopropylbenzene 95 43.8 56.2 Naphthalene 98.8 84 16 Ketones Acetone zeotrope 2-Butanone 73.5 11 89 2-Pentanone 83.3 19.5 80.5 Cyclopentanone 94.6 42.4 57.6 4-Methyl-2-pentanone 87.9 24.3 75.7 5.62 SECTION 5 TABLE 5.11 Binary Azeotropic (Constant-Boiling) Mixtures (Continued) System BP of azeotrope, C Composition, wt % Water Other component Ketones (continued) 2-Heptanone 95 48 52 3-Heptanone 94.6 42.2 57.8 4-Heptanone 94.3 40.5 59.5 4-Hydroxy-4-methyl-2-pentanone 98.8 87.3 12.7 4-Methyl-3-penten-2-one 91.8 34.8 65.2 Nitriles Acetonitrile 76.5 16.3 83.7 Isobutyronitrile 82.5 23 l77 Butyronitrile 88.7 32.5 67.5 Acrylonitrile 70.6 14.3 85.7 Miscellaneous Hydrazine 120 32.3 67.7 Acetamide zeotrope Nitromethane 83.59 23.6 76.4 Nitroethane 87.22 28.5 71.5 2,5-Dimethylfuran 77.0 11.7 88.3 Trioxane 91.4 30 70 Carbon disulfide 42.6 2.8 97.2 B. Binary azeotropes containing organic acids System BP of azeotrope, C Composition, wt % Acid Other component Formic acid 2-Methylbutane 27.2 4 96 Pentane 34.2 20 80 Hexane 60.6 28 72 Methylcyclopentane 63.3 29 71 Cyclohexane 70.7 70 30 Methylcyclohexane 80.2 46.5 53.5 Heptane 78.2 56.5 43.5 Octane 90.5 63 37 Benzene 71.05 31 69 Toluene 85.8 50 50 o-Xylene 95.5 74 26 m-Xylene 92.8 71.8 28.2 Styrene 97.8 73 27 PHYSICAL PROPERTIES 5.63 TABLE 5.11 Binary Azeotropic (Constant-Boiling) Mixtures (Continued) System BP of azeotrope, C Composition, wt % Acid Other component Formic acid (continued) Iodomethane 42.1 6 94 Chloroform 59.15 15 85 Carbon tetrachloride 66.65 18.5 81.5 Trichloroethylene 74.1 25 75 Tetrachloroethylene 88.2 50 50 Bromoethane 38.2 3 97 1,2-Dibromoethane 94.7 51.5 48.5 1,2-Dichloroethane 77.4 14 86 1-Bromopropane 64.7 27 73 2-Bromopropane 56.0 14 86 1-Chloropropane 45.6 8 92 2-Chloropropane 34.7 1.5 98.5 1-Chloro-2-methylpropane 63.0 19 81 Bromobenzene 98.1 68 32 Chlorobenzene 93.7 59 41 Fluorobenzene 73.0 27 73 o-Chlorotoluene 100.2 83 17 Pyridine 127.43 61.4 38.6 2-Methylpyridine 158.0 25 75 2-Pentanone 105.3 32 68 3-Pentanone 105.4 33 67 Nitromethane 97.07 45.5 54.5 Diethyl sulfide 82.2 35 65 Diisopropyl sulfide 93.5 62 38 Dipropyl sulfide 98.0 83 17 Carbon disulfide 42.55 17 83 Acetic acid Hexane 68.3 6.0 94.0 Heptane 91.7 23 67 Octane 105.7 53.7 46.3 Nonane 112.9 69 31 Decane 116.75 79.5 20.5 Undecane 117.9 95 5 Cyclohexane 78.8 9.6 90.4 Methylcyclohexane 96.3 31 69 Benzene 80.05 2.0 98.0 Toluene 100.6 28.1 71.9 o-Xylene 116.6 78 22 m-Xylene 115.35 72.5 27.5 p-Xylene 115.25 72 28 Ethylbenzene 114.65 66 34 Styrene 116.8 85.7 14.3 Isopropylbenzene 116.0 84 16 Triethylamine 163 67 33 Nitromethane 101.2 96 4 5.64 SECTION 5 TABLE 5.11 Binary Azeotropic (Constant-Boiling) Mixtures (Continued) System BP of azeotrope, C Composition, wt % Acid Other component Acetic acid (continued) Nitroethane 112.4 30 70 Pyridine 138.1 51.1 48.9 2-Methylpyridine 144.1 40.4 59.6 3-Methylpyridine 152.5 30.4 69.6 4-Methylpyridine 154.3 30.3 69.7 2,6-Dimethylpyridine 148.1 22.9 77.1 Carbon tetrachloride 76 98.46 1.54 Trichloroethylene 86.5 96.2 3.8 Tetrachloroethylene 107.4 61.5 38.5 1,2-Dibromoethane 114.4 55 45 2-Iodopropane 88.3 9 91 1-Bromobutane 97.6 18 82 1-Bromo-2-methylpropane 90.2 12 88 Chlorobenzene 114.7 58.5 41.5 Trichloronitromethane 107.65 80.5 19.5 1,4-Dioxane 119.5 77 23 Diisopropyl sulfide 111.5 48 52 Propionic acid Heptane 97.8 2 98 Octane 120.9 21.5 78.5 Nonane 134.3 54.0 46.0 Decane 139.8 80.5 19.5 o-Xylene 135.4 43 57 p-Xylene 132.5 34 66 1,3,5-Trimethylbenzene 139.3 77 23 Isopropylbenzene 139.0 65 35 Propylbenzene 139.5 75 25 Camphene 138.0 65 35 -Pinene 136.4 58.5 41.5 Methoxybenzene 140.8 96 4 Pyridine 148.6 67.2 32.8 2-Methylpyridine 154.5 55.0 45.0 1,2-Dibromoethane 127.8 17.5 82.5 1-Iodo-2-methylpropane 119.5 9 91 Chlorobenzene 128.9 18 82 Dipropyl sulfide 136.5 45 55 Butyric acid Undecane 162.4 84.4 15.5 o-Xylene 143.0 10 90 m-Xylene 138.5 6 94 p-Xylene 137.8 5.5 94.5 Ethylbenzene 135.8 4 96 PHYSICAL PROPERTIES 5.65 TABLE 5.11 Binary Azeotropic (Constant-Boiling) Mixtures (Continued) System BP of azeotrope, C Composition, wt % Acid Other component Butyric acid (continued) Styrene 143.5 15 85 1,2,4-Trimethylbenzene 159.5 45 55 1,3,5-Trimethylbenzene 158.0 38 62 Isopropylbenzene 149.5 20 80 Propylbenzene 154.5 28 72 Butylbenzene 162.5 75 25 Naphthalene zeotrope Indene 163.7 84 16 Camphene 152.3 2.8 97.2 Methoxybenzene 152.9 12 88 Pyridine 163.2 92.0 8.0 2-Furaldehyde 159.4 42.5 57.5 1,2-Dibromoethane 131.1 3.5 96.5 1-Iodobutane 129.8 2.5 97.5 Chlorobenzene 131.75 2.8 97.2 1,4-Dichlorobenzene 162.0 57 43 o-Bromotoluene 163.0 72 28 m-Bromotoluene 163.6 79.5 20.5 p-Bromotoluene 161.5 75 25 -Chlorotoluene 160.8 65 35 Ethyl bromoacetate 157.4 84 16 Propyl chloroacetate 160.5 40 60 Isobutyric acid 2,7-Dimethyloctane 148.6 48 52 o-Xylene 141.0 22 78 m-Xylene 139.9 15 85 p-Xylene 136.4 13 87 Styrene 142.0 27 73 1,2,4-Trimethylbenzene 152.3 63 37 Isopropylbenzene 146.8 35 65 Propylbenzene 149.3 49 51 Camphene 148.1 45 55 D-Limonene 152.5 78 22 Methoxybenzene 149.0 42 58 Ethyl bromoacetate 153.0 40 60 Ethyl 2-oxopropionate 153.0 60 40 1,2-Dibromoethane 130.5 6.5 93.5 1-Iodobutane 128.8 7 93 1-Bromohexane 148.0 35 65 Bromobenzene 148.6 35 65 Chlorobenzene 131.5 8 92 o-Bromotoluene 153.9 85 15 -Chlorotoluene 153.5 80 20 Diisopentyl ether 154.2 93 7 Ethyl bromoacetate 153.0 40 60 5.66 SECTION 5 TABLE 5.11 Binary Azeotropic (Constant-Boiling) Mixtures (Continued) C. Binary azeotropes containing alcohol System BP of azeotrope, C Composition, wt % Alcohol Other component Methanol Pentane 30.9 7 93 Cyclopentane 38.8 14 86 Cyclohexane 53.9 36.4 63.6 Methylcyclohexane 59.2 54 46 Heptane 59.1 51.5 48.5 Octane 62.8 67.5 32.5 Nonane 64.1 83.4 16.6 Benzene 57.5 39.1 60.9 Fluorobenzene 59.7 32 68 Toluene 63.5 72.5 27.5 Bromomethane 3.55 99.55 0.45 Iodomethane 37.8 95.5 4.5 Bromodichloromethane 63.8 60 40 Chloroform 53.4 87.4 12.6 Carbon tetrachloride 55.7 79.44 20.56 Bromoethane 34.9 5.3 94.7 1,2-Dichloroethane 61.0 32 68 Trichloroethylene 59.3 38 62 1-Bromopropane 54.5 21 79 2-Bromopropane 48.6 15.0 85.0 1-Chloropropane 40.5 9.5 90.5 2-Chloropropane 33.4 6 94 2-Iodopropane 61.0 38 62 1-Chlorobutane 57.0 27 73 Isobutyl formate 64.6 95 5 Methyl acetate 53.5 19 81 Methyl acrylate 62.5 54 46 Methyl nitrate 52.5 73 27 Acetone 55.5 12.1 87.9 1,4-Dioxane zeotrope Dipropyl ether 63.8 72 28 Methyl tert-butyl ether 51.3 14.3 85.7 Diethyl sulfide 61.2 62 38 Carbon disulfide 39.8 71 29 Thiophene 59.7 16.4 83.6 Nitromethane 64.4 9.1 90.9 Ethanol Pentane 34.3 5 95 Cyclopentane 44.7 7.5 92.5 Hexane 58.7 21 79 Cyclohexane 64.8 29.2 70.8 Heptane 70.9 49 51 PHYSICAL PROPERTIES 5.67 TABLE 5.11 Binary Azeotropic (Constant-Boiling) Mixtures (Continued) System BP of azeotrope, C Composition, wt % Alcohol Other component Ethanol (continued) Octane 77.0 78 22 Benzene 67.9 31.7 68.3 Fluorobenzene 70.0 75 25 Toluene 76.7 68 32 Bromodichloromethane 75.5 72 28 Iodomethane 41.2 96.8 3.2 Chloroform 59.3 93 7 Trichloronitromethane 77.5 34 66 Carbon tetrachloride 65.0 84.2 15.8 1,2-Dichloroethane 70.5 37 63 3-Chloro-1-propene 44 5 95 1-Bromopropane 62.8 20.5 79.5 2-Bromopropane 55.6 10.5 89.5 1-Chloropropane 45.0 6 94 2-Chloropropane 35.6 2.8 97.2 1-Iodopropane 75.4 44 56 2-Iodopropane 71.5 27 73 1-Bromobutane 75.0 43 57 1-Chlorobutane 65.7 20.3 79.7 2-Butanone 74.8 40 60 1,1-Diethoxyethane 78.0 76 24 Dipropyl ether 74.5 44 56 Acetronitrile 72.5 44 56 Acrylonitrile 70.8 41 59 Nitromethane 76.1 29 71 Carbon disulfide 42.6 91 9 Diethyl sulfide 72.6 56 44 1-Propanol Hexane 65.7 4 96 Cyclohexane 74.7 18.5 81.5 Methylcyclohexane 87.0 34.7 65.3 Heptane 84.6 34.7 65.3 Octane 93.9 70 30 Benzene 77.1 16.9 83.1 Toluene 92.5 51.2 48.8 o-Xylene zeotrope m-Xylene 97.1 94 6 p-Xylene 96.9 92.2 7.8 Styrene 97.0 8 92 Propyl formate 80.7 3 97 Butyl formate 95.5 64 36 Propyl acetate 94.7 51 49 Ethyl propionate 93.4 48 52 Methyl butyrate 94.4 49 51 Dipropyl ether 85.7 30 70 5.68 SECTION 5 TABLE 5.11 Binary Azeotropic (Constant-Boiling) Mixtures (Continued) System BP of azeotrope, C Composition, wt % Alcohol Other component 1-Propanol (continued) 1,1-Diethoxyethane 92.4 37 63 1,4-Dioxane 95.3 55 45 Chloroform zeotrope Carbon tetrachloride 73.4 92.1 7.9 Trichloronitromethane 94.1 58.5 41.5 Iodethane 70 93 7 1,2-Dichloroethane 80.7 19 81 Tetrachloroethylene 94.0 52 48 1-Bromopropane 69.7 9 91 1-Chlorobutane 74.8 18 82 Chlorobenzene 96.5 80 20 Fluorobenzene 80.2 18 82 Nitromethane 89.1 48.4 51.6 1-Nitropropane 97.0 8.8 91.2 Carbon disulfide 45.7 94.5 5.5 2-Propanol Pentane 35.5 6 94 Hexane 62.7 23 77 Cyclohexane 69.4 32 68 Heptane 76.4 50.5 49.5 Octane 81.6 84 16 Benzene 71.7 33.7 66.3 Fluorobenzene 74.5 30 70 Toluene 80.6 69 31 Chloroform 60.8 4.2 95.8 Trichloronitromethane 81.9 35 65 Carbon tetrachloride 69.0 18 82 1,2-Dichloroethane 74.7 43.5 56.5 Iodoethane 67.1 15 85 3-Bromo-1-propene 66.5 20 80 1-Chloropropane 46.4 2.8 97.2 1-Bromopropane 66.8 20.5 79.5 2-Bromopropane 57.8 12 88 1-Iodopropane 79.8 42 58 2-Iodopropane 76.0 32 68 1-Chlorobutane 70.8 23 77 Ethyl acetate 75.3 25 75 Isopropyl acetate 81.3 60 40 Methyl propionate 76.4 37 63 Acrylonitrile 71.7 56 44 Butylamine 74.7 60 40 2-Butanone 77.5 32 68 1,1-Diethoxyethane 81.3 63 37 Ethyl propyl ether 62.0 10 90 Diisopropyl ether 66.2 14.1 85.9 PHYSICAL PROPERTIES 5.69 TABLE 5.11 Binary Azeotropic (Constant-Boiling) Mixtures (Continued) System BP of azeotrope, C Composition, wt % Alcohol Other component 1-Butanol Cyclohexane 79.8 9.5 90.5 Cyclohexene 82.0 5 95 Hexane 68.2 3.2 96.8 Methylcyclohexane 95.3 20 80 Heptane 93.9 18 82 Octane 108.5 45.2 54.8 Nonane 115.9 71.5 28.5 Toluene 105.5 27.8 72.2 o-Xylene 116.8 75 25 m-Xylene 116.5 71.5 28.5 p-Xylene 115.7 68 32 Ethylbenzene 115.9 65.1 34.9 Butyl formate 105.8 23.6 76.4 Isopentyl formate 115.9 69 31 Butyl acetate 117.2 47 53 Isobutyl acetate 114.5 50 50 Ethyl butyrate 115.7 64 36 Ethyl isobutyrate 109.2 17 83 Methyl isopentanoate 113.5 40 60 Ethyl borate 113.0 52 48 Ethyl carbonate 116.5 63 37 Isobutyl nitrate 112.8 45 55 Dibutyl ether 117.8 82.5 17.5 Diisobutyl ether 113.5 48 52 1,1-Diethoxyethane 101.0 13 87 Carbon tetrachloride 76.6 97.6 2.4 Tetrachloroethylene 110.0 68 32 2-Bromo-2-methylpropane 90.2 7 93 2-Iodo-2-methylpropane 110.5 30 70 Chlorobenzene 115.3 56 44 Paraldehyde 115.8 52 48 Hexaldehyde 116.8 77.1 22.9 Ethylenediamine 124.7 35.7 64.3 Pyridine 118.6 69 31 1-Nitropropane 115.3 32.2 67.8 Butyronitrile 113.0 50 50 Diisopropyl sulfide 112.0 45 55 2-Methyl-2-propanol Cyclohexene 80.5 14.2 85.8 Cyclohexane 78.3 14 86 Methylcyclopentane 71.0 5 95 Hexane 68.3 2.5 97.5 Methylcyclohexane 92.6 32 68 Heptane 90.8 27 73 2,5-Dimethylhexane 98.7 42 58 1,3-Dimethylcyclohexane 102.2 56 44 2,2,4-Trimethylpentane 92.0 27 73 Benzene 79.3 7.4 92.6 Chlorobenzene 107.1 63 37 Fluorobenzene 84.0 9 91 5.70 SECTION 5 TABLE 5.11 Binary Azeotropic (Constant-Boiling) Mixtures (Continued) System BP of azeotrope, C Composition, wt % Alcohol Other component 2-Methyl-2-propanol (continued) Toluene 101.2 45 55 Ethylbenzene 107.2 80 20 p-Xylene 107.1 88.6 11.4 Butyl formate 103.0 40 60 Isobutyl formate 97.4 12 88 Propyl acetate 101.0 17 83 Isobutyl acetate 107.6 92 8 Methyl butyrate 101.3 25 75 Ethyl isobutyrate 105.5 52 48 Methyl chloroacetate 107.6 12 88 Dipropyl ether 89.5 10 90 Isobutyl vinyl ether 82.7 6.2 93.8 1,1-Diethoxyethane 98.2 20 80 2-Pentanone 101.8 19 81 3-Pentanone 101.7 20 80 1,2-Dichloroethane 83.5 6.5 93.5 1-Bromobutane 95.0 21 79 1-Chlorobutane 77.7 4 96 2-Bromo-2-methylpropane 88.8 12 88 2-Iodo-2-methylpropane 104.0 36 64 1-Nitropropane 105.3 15.2 84.8 Isobutyl nitrate 105.6 36 64 Diisopropyl sulfide 105.8 73 27 3-Methyl-1-butanol Heptane 97.7 7 93 Octane 117.0 30 70 Toluene 109.7 10 90 Ethylbenzene 125.7 49 51 Isopropylbenzene 131.6 94 6 Camphene 130.9 24 76 Bromobenzene 131.7 85 15 o-Fluorotoluene 112.1 14.0 86.0 Butyl acetate 125.9 16.5 83.5 Paraldehyde 123.5 22.0 78.0 Dibutyl ether 129.8 65 35 Cyclohexanol o-Xylene 143.0 14 86 m-Xylene 138.9 5 95 Propylbenzene 153.8 40 60 Indene 160.0 75 25 Camphene 151.9 41 59 Cineole 160.6 92 8 PHYSICAL PROPERTIES 5.71 TABLE 5.11 Binary Azeotropic (Constant-Boiling) Mixtures (Continued) System BP of azeotrope, C Composition, wt % Alcohol Other component Allyl alcohol Methylcyclohexane 85.0 42 58 Hexane 65.5 4.5 95.5 Cyclohexane 74.0 58 42 2,5-Dimethylhexane 89.3 50 50 Octane 93.4 68 32 Benzene 76.75 17.36 82.64 Toluene 92.4 50 50 Propyl acetate 94.2 53 47 Methyl butyrate 93.8 55 45 1,2-Dichloroethane 79.9 18 82 3-Iodo-1-propene 89.4 28 72 Chlorobenzene 96.2 85 15 Diethyl sulfide 85.1 45 55 Phenol 2,7-Dimethyloctane 159.5 6 94 Decane 168.0 35 65 Tridecane 180.6 83.1 16.9 Butylbenzene 175.0 46 54 1,2,4-Trimethylbenzene 166.0 25 75 1,3,5-Trimethylbenzene 163.5 21 79 Indene 177.8 47 53 Camphene 156.1 22 78 Benzaldehyde 175.6 51.0 49.0 1-Octanol 195.4 13 87 2-Octanol 184.5 50 50 Dipentyl ether 180.2 78 22 Diisopentyl ether 172.2 15 85 2-Methylpyridine 185.5 75.4 24.6 3-Methylpyridine 188.9 71.2 29.8 4-Methylpyridine 190.0 67.5 32.5 2,4-Dimethylpyridine 193.4 57.0 43.0 2,6-Dimethylpyridine 185.5 72.5 27.5 2,4,6-Trimethylpyridine 195.2 52.3 47.7 Aniline 185.8 41.9 58.1 Ethylene diacetate 195.5 39.2 60.8 Iodobenzene 177.7 53 47 Benzyl alcohol Naphthalene 204.1 60 40 D-Limonene 176.4 11 89 1,3,5-Triethylbenzene 203.2 57 43 o-Cresol zeotrope m-Cresol 207.1 61 39 5.72 SECTION 5 TABLE 5.11 Binary Azeotropic (Constant-Boiling) Mixtures (Continued) System BP of azeotrope, C Composition, wt % Alcohol Other component Benzyl alcohol (continued) p-Cresol 206.8 62 38 N-Methylaniline 195.8 30 70 N,N-Dimethylaniline 193.9 6.5 93.5 N-Ethylaniline 202.8 50 50 N,N-Diethylaniline 204.2 72 28 Iodobenzene 187.8 12 88 Nitrobenzene 204.0 58 42 o-Bromotoluene 181.3 7 93 Borneol 205.1 85.8 14.2 2-Ethoxyethanol Methylcyclohexane 98.6 15 85 Heptane 96.5 14 86 Octane 116.0 38 62 Toluene 110.2 10.8 89.2 Ethylbenzene 127.8 48 52 p-Xylene 128.6 50 50 Styrene 130.0 55 45 Propylbenzene 134.6 80 20 Isopropylbenzene 133.2 67 33 Camphene 131.0 65 35 Propyl butyrate 133.5 72 28 2-Butoxyethanol Dipentene 164.0 53 47 1,3,5-Trimethylbenzene 162.0 32 68 Butylbenzene 169.6 73.4 26.6 Camphene 154.5 30 70 o-Cresol 191.6 15 85 Phenetole 167.1 52 48 Cineole 168.9 58.5 41.5 Benzaldehyde 171.0 91 9 Diisobutyl sulfide 163.8 42 58 1,2-Ethanediol Heptane 97.9 3 97 Decane 161.0 23 77 Tridecane 188.0 55 45 Toluene 110.1 2.3 97.7 Styrene 139.5 16.5 83.5 Stilbene 196.8 87 13 m-Xylene 135.1 6.55 93.45 p-Xylene 134.5 6.4 93.6 1,3,5-Trimethylbenzene 156 13 87 Propylbenzene 152 19 81 PHYSICAL PROPERTIES 5.73 TABLE 5.11 Binary Azeotropic (Constant-Boiling) Mixtures (Continued) System BP of azeotrope, C Composition, wt % Alcohol Other component 1,2-Ethanediol (continued) Isopropylbenzene 147.0 18 82 Naphthalene 183.9 51 49 1-Methylnaphthalene 190.3 60.0 40.0 2-Methylnaphthalene 189.1 57.2 42.8 Anthracene 197 98.3 1.7 Indene 168.4 26 74 Acenaphthene 194.65 74.2 25.8 Fluorene 196.0 82 18 Camphene 152.5 20 80 Camphor 186.2 40 60 Biphenyl 192.3 66.5 33.5 Diphenylmethane 193.3 68.5 31.5 Benzyl alcohol 193.1 56 44 2-Phenylethanol 194.4 69 31 o-Cresol 189.6 27 73 m-Cresol 195.2 60 40 3,4-Dimethylphenol 197.2 89 11 Menthol 188.6 51.5 48.5 Ethyl benzoate 186.1 46.5 53.5 o-Bromotoluene 166.8 25 75 Dibutyl ether 139.5 6.4 93.6 Methoxybenzene 150.5 10.5 89.5 Diphenyl ether 193.1 60 40 Benzyl phenyl ether 195.5 87 13 Acetophenone 185.7 52 48 2,4-Dimethylaniline 188.6 47 53 N,N-Dimethylaniline 175.9 33.5 66.5 m-Toluidine 188.6 42 58 2,4,6-Trimethylpyridine 170.5 9.7 90.3 Quinoline 196.4 79.5 20.5 Tetrachloroethylene 119.1 94 6 1,2-Dibromoethane 129.8 4 96 Chlorobenzene 130.1 94.4 5.6 -Chlorotoluene 167.0 30 70 Nitrobenzene 185.9 59 41 o-Nitrotoluene 188.5 48.5 51.5 1,2-Ethanediol monoacetate Indene 180.0 20 80 1-Octanol 189.5 71 29 Phenol 197.5 65 35 o-Cresol 199.5 51 49 m-Cresol 206.5 31 69 p-Cresol 206.0 33 67 Dipentyl ether 180.8 42 58 Diisopentyl ether 170.2 28 72 m-Bromotoluene 182.0 32 68 5.74 SECTION 5 TABLE 5.11 Binary Azeotropic (Constant-Boiling) Mixtures (Continued) D. Binary azeotropes containing ketones System BP of azeotrope, C Composition, wt % Ketone Other component Acetone Cyclopentane 41.0 36 64 Pentane 32.5 20 80 Cyclohexane 53.0 67.5 32.5 Hexane 49.8 59 41 Heptane 55.9 89.5 10.5 Diethylamine 51.4 38.2 61.8 Methyl acetate 55.8 48.3 51.7 Diisopropyl ether 54.2 61 39 Chloroform 64.4 78.1 21.9 Carbon tetrachloride 56.1 11.5 88.5 Carbon disulfide 39.3 67 33 Ethylene sulfide 51.5 57 43 2-Butanone Cyclohexane 71.8 40 60 Hexane 64.2 28.6 71.4 Heptane 77.0 70 30 2,5-Dimethylhexane 79.0 95 5 Benzene 78.33 44 56 2-Methyl-2-propanol 78.7 69 31 Butylamine 74.0 35 65 Ethyl acetate 77.1 11.8 88.2 Methyl propionate 79.0 60 40 Butyl nitrite 76.7 30 70 1-Chlorobutane 77.0 38 62 Fluorobenzene 79.3 75 25 E. Miscellaneous binary azeotropes System BP of azeotrope, C Composition, wt % Solvent Other component Solvent: acetamide Dipentene 169.2 18 82 Biphenyl 213.0 50.5 49.5 Diphenylmethane 215.2 56.5 43.5 1,2-Diphenylethane 218.2 68 32 o-Xylene 142.6 11 89 PHYSICAL PROPERTIES 5.75 TABLE 5.11 Binary Azeotropic (Constant-Boiling) Mixtures (Continued) System BP of azeotrope, C Composition, wt % Solvent Other component Solvent: acetamide (continued) m-Xylene 138.4 10 90 p-Xylene 137.8 8 92 Styrene 144 12 88 4-Isopropyl-1-methylbenzene 170.5 19 81 Naphthalene 199.6 27 73 1-Methylnaphthalene 209.8 43.8 56.2 2-Methylnaphthalene 208.3 40 60 Indene 177.2 17.5 82.5 Acenaphthene 217.1 64.2 35.8 Camphene 155.5 12 88 Camphor 199.8 23 77 Benzaldehyde 178.6 6.5 93.5 3,4-Dimethylphenol 221.1 96 4 2-Methoxy-4-(2-propenyl)phenol 220.8 88 12 N-Methylaniline 193.8 14 86 N-Ethylaniline 199.0 18 82 N,N-Diethylaniline 198.1 24 76 Diphenyl ether 214.6 52 48 Safrole 208.8 32 68 Tetrachloroethylene 120.5 97.4 2.6 Solvent: aniline Nonane 149.2 13.5 86.5 Decane 167.3 36 64 Undecane 175.3 57.5 42.5 Dodecane 180.4 71.5 28.5 Tridecane 182.9 86.2 13.8 Tetradecane 183.9 95.2 4.8 Butylbenzene 177.8 46 54 1,2,4-Trimethylbenzene 168.6 13.5 86.5 1,3,5-Trimethylbenzene 164.3 12.0 88.0 Indene 179.8 41.5 58.5 1-Octanol 183.9 83 17 o-Cresol 191.3 8 92 Dipentyl ether 177.5 55 45 Diisopentyl ether 169.3 28 72 Hexachloroethane 176.8 66 34 Solvent: pyridine Heptane 95.6 25.3 74.7 Octane 109.5 56.1 43.9 Nonane 115.1 89.9 10.1 Toluene 110.1 22.2 77.8 Phenol 183.1 13.1 86.9 Piperidine 106.1 8 92 5.76 SECTION 5 TABLE 5.11 Binary Azeotropic (Constant-Boiling) Mixtures (Continued) System BP of azeotrope, C Composition, wt % Solvent Other component Solvent: thiophene Methylcyclopentane 71.5 14 86 Cyclohexane 77.9 41.2 58.8 Hexane 68.5 11.2 88.8 Heptane 83.1 83.2 16.8 2,3-Dimethylpentane 80.9 64 36 2,4-Dimethylpentane 76.6 42.7 57.3 Solvent: benzene Methylcyclopentane 71.7 16 84 Cyclohexene 78.9 64.7 35.3 Cyclohexane 77.6 51.9 48.1 Hexane 68.5 4.7 95.3 Heptane 80.1 99.3 0.7 2,2-Dimethylpentane 75.9 46.3 53.7 2,3-Dimethylpentane 79.4 78.8 21.2 2,4-Dimethylpentane 75.2 48.3 51.7 2,2,4-Trimethylpentane 80.1 97.7 2.3 Solvent: bis(2-hydroxyethyl) ether Biphenyl 232.7 48 52 Diphenylmethane 236.0 52 48 1,3,5-Trimethylbenzene 210.0 22 78 Naphthalene 212.6 22 78 1-Methylnaphthalene 277.0 45 55 2-Methylnaphthalene 225.5 39 61 Acenaphthene 239.6 62 38 Fluorene 243.0 80 20 Benzyl acetate 214.9 7 93 Bornyl acetate 223.0 18 82 Ethyl fumarate 217.1 10 90 Dimethyl o-phthalate 245.4 96.3 3.7 Methyl salicylate 220.6 15 85 2-Hydroxy-1-isopropyl-4-methylbenzene 232.3 13 87 1,2-Dihydroxybenzene 259.5 46 54 Safrole 225.5 33 67 Isosafrole 233.5 46 54 Benzyl phenyl ether 241.5 80 20 Nitrobenzene 210.0 10 90 m-Nitrotoluene 224.2 25 75 o-Nitrophenol 216.0 10.5 89.5 Quinoline 233.6 29 71 p-Dibromobenzene 212.9 13 87 PHYSICAL PROPERTIES 5.77 TABLE 5.12 Ternary Azeotropic Mixtures A. Ternary azeotropes containing water and alcohols System BP of azeotrope, C Composition, wt % Water Alcohol Other component Methanol Chloroform 52.3 1.3 8.2 90.5 2-Methyl-1,3-butadiene 30.2 0.6 5.4 94.0 Methyl chloroacetate 67.9 6.3 81.2 13.5 Ethanol Acetonitrile 72.9 1 55 44 Acrylonitrile 69.5 8.7 20.3 71.0 Benzene 64.9 7.4 18.5 74.1 Butylamine 81.8 7.5 42.5 50.0 Butyl methyl ether 62 6.3 8.6 85.1 Carbon disulfide 41.3 1.6 5.0 93.4 Carbon tetrachloride 62 4.5 10.0 85.5 Chloroform 55.3 2.3 3.5 94.2 Crotonaldehyde 78.0 4.8 87.9 7.3 Cyclohexane 62.6 4.8 19.7 75.5 1,2-Dichloroethane 66.7 5 17 78 1,1-Diethoxyethane 77.8 11.4 27.6 61.0 Diethoxymethane 73.2 12.1 18.4 69.5 Ethyl acetate 70.2 9.0 8.4 82.6 Heptane 68.8 6.1 33.0 60.9 Hexane 56.0 3 12 85 Toluene 74.4 12 37 51 Trichloroethylene 67.0 5.5 16.1 78.4 Triethylamine 74.7 9 13 78 1-Propanol Benzene 67 7.6 10.1 82.3 Carbon tetrachloride 65.4 5 11 84 Cyclohexane 66.6 8.5 10.0 81.5 1,1-Dipropoxyethane 87.6 27.4 51.6 21.0 Dipropoxymethane 86.4 8.0 44.8 47.2 Dipropyl ether 74.8 11.7 20.2 68.1 3-Pentanone 81.2 20 20 60 Propyl acetate 82.5 17.0 10.0 73.0 Propyl formate 70.8 13 5 82 Tetrachloroethylene 81.2 12.5 20.7 66.8 2-Propanol Benzene 66.5 7.5 18.7 73.8 Butylamine 83 12.5 40.5 47.0 5.78 SECTION 5 TABLE 5.12 Ternary Azeotropic Mixtures (Continued) System BP of azeotrope, C Composition, wt % Water Alcohol Other component 2-Propanol (continued) Cyclohexane 64.3 7.5 18.5 74.0 Toluene 76.3 13.1 38.2 48.7 Trichloroethylene 69.4 7 20 73 1-Butanol Butyl acetate 89.4 37.3 27.4 35.3 Butyl formate 83.6 21.3 10.0 68.7 Dibutyl ether 90.6 29.9 34.6 35.5 Heptane 78.1 41.4 7.6 51.0 Hexane 61.5 19.2 2.9 77.9 Nonane 90.0 69.9 18.3 11.8 Octane 86.1 60.0 14.6 25.4 2-Butanol Carbon tetrachloride 65 4.05 4.95 91.00 Cyclohexane 69.7 8.9 10.8 80.3 Isooctane 76.3 9 19 72 2-Methyl-1-propanol Isobutyl acetate 86.8 30.4 23.1 46.5 Isobutyl formate 80.2 17.3 6.7 76.0 Toluene 81.3 17.9 16.4 65.7 2-Methyl-2-propanol Benzene 67.3 8.1 21.4 70.5 Carbon tetrachloride 64.7 3.1 11.9 85.0 Cyclohexane 65.0 8 21 71 3-Methyl-1-butanol Isopentyl acetate 93.6 44.8 31.2 24.0 Isopentyl formate 89.8 32.4 19.6 48.0 Allyl alcohol Benzene 68.2 8.6 9.2 82.2 Carbon tetrachloride 65.2 5 11 84 Cyclohexane 66.2 8 11 81 Hexane 59.7 8.5 5.1 86.4 TABLE 5.12 Ternary Azeotropic Mixtures (Continued) B. Other ternary azeotropes System BP of azeotrope, C Composition, wt % System BP of azeotrope, C Composition, wt % Water 32.5 0.4 Water 71.4 7.9 Acetone 7.6 Nitromethane 29.7 2-Methyl-1,3-butadiene 92.0 Heptane 62.4 Water 66 8.2 Water 80.7 17.4 Acetonitrile 23.3 Nitromethane 58.3 Benzene 68.5 Nonane 24.3 Water 67 6.4 Water 77.4 12.4 Acetonitrile 20.5 Nitromethane 44.3 Trichloroethylene 73.1 Octane 43.3 Water 68.6 3.5 Water 33.1 2.1 Acetonitrile 9.6 Nitromethane 6.5 Triethylamine 86.9 Pentane 91.4 Water 63.6 5 Water 82.8 20.6 2-Butanone 35 Nitromethane 73.3 Cyclohexane 60 Undecane 6.1 Water 55.0 4 Water 93.5 40.5 Butyraldehyde 21 Pyridine 54.5 Hexane 75 Dodecane 5.0 Water 107.6 21.3 Water 93.1 38.5 Formic acid 76.3 Pyridine 51.0 Isopentanoic acid 2.4 Undecane 10.5 Water 107.0 15.5 Water 92.3 35.5 Formic acid 66.8 Pyridine 45.5 Isobutyric acid 17.7 Decane 19.0 5.79 TABLE 5.12 Ternary Azeotropic Mixtures (Continued) System BP of azeotrope, C Composition, wt % System BP of azeotrope, C Composition, wt % Water 107.6 19.5 Water 90.5 30.5 Formic acid 75.9 Pyridine 37.0 Butyric acid 4.6 Nonane 32.5 Water 107.2 18.6 Water 86.7 22.4 Formic acid 71.9 Pyridine 25.5 Propionic acid 9.5 Octane 52.0 Water 105 11.0 Water 78.6 14.0 Hydrogen bromide 10.4 Pyridine 15.5 Chlorobenzene 78.6 Heptane 70.5 Water 96.9 20.2 Acetic acid 134.4 23 Hydrogen chloride 5.3 Pyridine 55 Chlorobenzene 74.5 Acetic anhydride 22 Water 107.3 64.8 Acetic acid 134.1 31.4 Hydrogen chloride 15.8 Pyridine 38.2 Phenol 19.4 Decane 30.4 Water 116.1 54 Acetic acid 129.1 13.5 Hydrogen fluoride 10 Pyridine 25.2 Fluorosilic acid 36 Ethylbenzene 61.3 Water 75.1 11.5 Acetic acid 98.5 3.4 Nitroethane 75.1 Pyridine 10.6 Heptane 64.0 Heptane 86.0 Water 59.5 8.4 Acetic acid 128.0 20.7 Nitroethane 9.3 Pyridine 29.4 Hexane 82.3 Nonane 49.9 Water 82.4 19.1 Acetic acid 115.7 10.4 Nitromethane 68.1 Pyridine 20.1 Decane 12.8 Octane 69.5 5.80 Water 83.1 21.5 Acetic acid 132.2 17.7 Nitromethane 75.3 Pyridine 30.5 Dodecane 3.2 o-Xylene 51.8 Acetic acid 129.2 10.2 Methanol 47.4 14.6 Pyridine 22.5 Methyl acetate 36.8 p-Xylene 67.3 Hexane 48.6 Acetic acid 163.0 75.0 Ethanol 63.2 10.4 2,6-Dimethylpyridine 13.8 Acetone 24.3 Undecane 11.2 Chloroform 65.3 Acetic acid 147.0 12.6 Ethanol 70.1 8 2,6-Dimethylpyridine 74.3 Acetonitrile 34 Decane 13.1 Triethylamine 58 Acetic acid 141.3 19.9 Ethanol 64.7 29.6 2-Methylpyridine 46.8 Benzene 12.8 Decane 33.3 Cyclohexane 57.6 Acetic acid 135.0 12.8 Ethanol 57.3 9.5 2-Methylpyridine 38.4 Chloroform 56.1 Nonane 48.8 Hexane 34.4 Acetic acid 121.3 3.6 1-Propanol 73.8 15.5 2-Methylpyridine 24.8 Benzene 30.4 Octane 71.6 Cyclohexane 54.2 Acetic acid 77.2 7.6 2-Propanol 69.1 31.1 Benzene 34.4 Benzene 15.0 Cyclohexane 58.0 Cyclohexane 53.9 Acetic acid 132 15 1-Butanol 77.4 4 2-Methyl-1-butanol 54 Benzene 48 Isopentyl acetate 31 Cyclohexane 48 Propionic acid 149.3 29.5 1-Butanol 108.7 11.9 2-Methylpyridine 32.0 Pyridine 20.7 Decane 38.5 Toluene 76.4 5.81 TABLE 5.12 Ternary Azeotropic Mixtures (Continued) System BP of azeotrope, C Composition, wt % System BP of azeotrope, C Composition, wt % TABLE 5.12 Ternary Azeotropic Mixtures (Continued) System BP of azeotrope, C Composition, wt % System BP of azeotrope, C Composition, wt % Propionic acid 140.1 16.5 1,2-Ethanediol 185.0 8.7 2-Methylpyridine 21.5 Phenol 74.6 Nonane 42.0 2,6-Dimethylpyridine 16.7 Propionic acid 123.7 4.5 1,2-Ethanediol 185.1 5.9 2-Methylpyridine 10.5 Phenol 79.1 Octane 85.0 2-Methylpyridine 15.0 Propionic acid 153.4 43.0 1,2,-Ethanediol 186.4 15.9 2-Methylpyridine 40.0 Phenol 67.7 Undecane 17.0 3-Methylpyridine 16.4 Propionic acid 147.1 55.5 1,2-Ethanediol 188.6 29.5 Pyridine 26.4 Phenol 54.8 Undecane 18.1 2,4,6-Trimethylpyridine 15.7 Methanol 57.5 23 Acetone 60.8 3.6 Acetone 30 Chloroform 68.8 Chloroform 47 Hexane 27.6 Methanol 47 14.6 Acetone 49.7 51.1 Acetone 30.8 Methyl acetate 5.6 Hexane 59.6 Hexane 43.3 Methanol 53.7 17.4 Chloroform 62.0 79.7 Acetone 5.8 Ethyl formate 5.3 Methyl acetate 76.8 2-Bromopropane 15.7 Methanol 50.8 17.8 1,4-Dioxane 101.8 44.3 Methyl acetate 48.6 2-Methyl-1-propanol 26.7 Cyclohexane 33.6 Toluene 29.0 5.82 PHYSICAL PROPERTIES 5.83 5.4 FREEZING MIXTURES TABLE 5.13 Compositions of Aqueous Antifreeze Solutions Freezing point of ethyl alcohol-water mixtures Specific gravity 20/4C. (68F.) % alcohol by weight % alcohol by volume Freezing point C.
F.
0.99363 2.5 3.13 1.0 30.2 0.98971 4.8 6.00 2.0 28.4 0.98658 6.8 8.47 3.0 26.6 0.98006 11.3 14.0 5.0 23.0 0.97670 13.8 17.0 6.1 21.0 0.97336 16.4 20.2 7.5 18.5 0.97194 17.5 21.5 8.7 16.3 0.97024 18.8 23.1 9.4 15.1 0.96823 20.3 24.8 10.6 12.9 0.96578 22.1 27.0 12.2 10.0 0.96283 24.2 29.5 14.0 6.8 0.95914 26.7 32.4 16.0 3.2 0.95400 29.9 36.1 18.9 2.0 0.94715 33.8 40.5 23.6 10.5 0.93720 39.0 46.3 28.7 19.7 0.92193 46.3 53.8 33.9 29.0 0.90008 56.1 63.6 41.0 41.8 0.86311 71.9 78.2 51.3 60.3 Freezing point of methyl (wood) alcohol-water mixtures Specific gravity 15.6C. (60F.) % alcohol by weight % alcohol by volume Freezing point C.
F.
0.993 3.9 5 2.2 28 0.986 8.1 10 5.0 23 0.980 12.2 15 8.3 17 0.974 16.4 20 11.7 11 0.968 20.6 25 15.6 4 0.963 24.9 30 20.0 4 0.956 29.2 35 25.0 13 0.949 33.6 40 30.0 22 0.942 38.0 45 35.6 32 Values are for pure alcohol. Since some commercial antifreezes contain small amounts of water, slightly higher volume concentrations than those given in the table may be required. Antifreezes also contain corrosion inhibitors and other additives to make them function properly as cooling liquids. These affect freezing point slightly and specific gravity to a greater degree. If a protection table is furnished by the manufacturer it should be used in preference to the values given above for the pure substance.
5.84 SECTION 5 TABLE 5.13 Compositions of Aqueous Antifreeze Solutions (Continued) Freezing point of Prestone-water mixtures† % Prestone Specific gravity Freezing point By weight By volume 15/15C. (59F.) C.
F.
10 9.2 1.013 3.6 25.6 15 13.8 1.019 5.6 22.0 20 18.3 1.026 7.9 17.8 25 23.0 1.033 10.7 12.8 30 28.0 1.040 14.0 6.8 40 37.8 1.053 22.3 8.2 50 47.8 1.067 33.8 28.8 60 58.1 1.079 49.3 56.7 Freezing point of ethyl alcohol-water mixtures Specific gravity 15.6C. (60F.) % alcohol by volume Freezing point C.
F.
0.990 5 1.7 29 0.984 10 3.3 26 0.978 15 6.1 21 0.972 20 8.3 17 0.964 25 11.1 12 0.955 30 14.4 6 0.945 35 17.8 0 0.933 40 18.3 1 0.922 45 18.9 2 0.910 50 20.0 4 0.899 55 21.7 7 0.887 60 23.3 10 0.875 65 24.4 12 0.864 70 26.7 16 0.852 75 32.2 26 0.840 80 41.7 43 † Eveready Prestone marketed for antifreeze purposes, is 97% ethylene glycol containing fractional percentages of soluble and insoluble ingredients to prevent foaming, creepage and water corrosion in automobile cooling systems.
PHYSICAL PROPERTIES 5.85 TABLE 5.13 Compositions of Aqueous Antifreeze Solutions (Continued) Freezing point of propylene glycol-water mixtures Specific gravity 15.6C. (60F.) % glycol by volume Freezing point C.
F.
1.004 5 1.1 30 1.006 10 2.2 28 1.012 15 3.9 25 1.017 20 6.7 20 1.020 25 8.9 16 1.024 30 12.8 9 1.028 35 16.1 3 1.032 40 20.6 5 1.037 45 26.7 16 1.040 50 33.3 28 Freezing point of glycerol-water mixtures† % Glycerol by weight Specific gravity 15/15C. (59F.) Specific gravity 20/20C. (68F.) Freezing point C.
F.
10 1.02415 1.02395 1.6 29.1 20 1.04935 1.04880 4.8 23.4 30 1.07560 1.07470 9.5 14.9 40 1.10255 1.10135 15.5 4.3 50 1.12985 1.12845 22.0 7.4 60 1.15770 1.15605 33.6 28.5 70 1.18540 1.18355 37.8 36.0 80 1.21290 1.21090 19.2 2.3 90 1.23950 1.23755 1.6 29.1 100 1.26557 1.26362 17.0 62.6 Values are for pure alcohol. Since some commercial antifreezes contain small amounts of water, slightly higher volume concentrations than those given in the table may be required. Antifreezes also contain corrosion inhibitors and other additives to make them function properly as cooling liquids. These affect freezing point slightly and specific gravity to a greater degree. If a protection table is furnished by the manufacturer it should be used in preference to the values given above for the pure substance.
† The values are those reported by Bosart and Snoddy (Jour. Ind. Eng. Chem., 19, 506 (1927)), and Lane (Jour. Ind. Eng.
Chem., 17, 924 (1925)) but modified by adding 2F to all temperatures below 0F in accordance with the suggestion of the Procter and Gamble Co.
5.86 SECTION 5 TABLE 5.13 Compositions of Aqueous Antifreeze Solutions (Continued) Freezing point of magnesium chloride brines % MgCl2 by weight Spec. grav.
15.6C. (60F.) Freezing point C.
F.
% MgCl2 by weight Spec. grav.
15.6C. (60F.) Freezing point C.
F.
5 1.043 3.11 26.4 18 1.161 22.1 7.7 6 1.051 3.89 25.0 19 1.170 25.6 12.2 7 1.060 4.72 23.5 20 1.180 27.4 17.3 8 1.069 5.67 21.8 21 1.190 30.6 23.0 9 1.078 6.67 20.0 22 1.200 32.8 27.0 10 1.086 7.83 17.9 23 1.210 28.9 20.0 11 1.096 9.05 15.7 24 1.220 25.6 14.0 12 1.105 10.5 13.1 25 1.230 23.3 10.0 13 1.114 12.1 10.3 26 1.241 21.1 6.0 14 1.123 13.7 7.3 27 1.251 19.4 3.0 15 1.132 15.6 4.0 28 1.262 18.3 1.0 16 1.142 17.6 0.4 29 1.273 17.2 1.0 17 1.151 19.7 3.5 30 1.283 16.7 2.0 Freezing point of sodium chloride brines Compiled in collaboration with C. D. Looker, Ph.D., International Salt Co., Inc.
% NaCl by weight Spec. grav.
15C. (59F.) Freezing point C.
F.
% NaCl by weight Spec. grav.
15C. (59F.) Freezing point C.
F.
0 1.000 0.00 32.0 15 1.112 10.88 12.4 1 1.007 0.58 31.0 16 1.119 11.90 10.6 2 1.014 1.13 30.0 17 1.127 12.93 8.7 3 1.021 1.72 28.9 18 1.135 14.03 6.7 4 1.028 2.35 27.8 19 1.143 15.21 4.6 5 1.036 2.97 26.7 20 1.152 16.46 2.4 6 1.043 3.63 25.5 21 1.159 17.78 0.0 7 1.051 4.32 24.2 22 1.168 19.19 2.5 8 1.059 5.03 22.9 23 1.176 20.69 5.2 9 1.067 5.77 21.6 23.3 (E) 1.179 21.13 6.0 10 1.074 6.54 20.2 24 1.184 17.0 1.4 11 1.082 7.34 18.8 25 1.193 10.4 13.3 12 1.089 8.17 17.3 26 1.201 2.3 27.9 13 1.097 9.03 15.7 26.3 1.203 0.0 32.0 14 1.104 9.94 14.1 Saturation temperatures of sodium chloride dihydrate; at these temperatures NaCl · 2H2O separates leaving the brine of the eutectic composition (E).
5.4.1 Propylene Glycol–Glycerol Propylene glycol, a satisfactory antifreeze with the advantage of being nontoxic, can be combined with glycerol, also an efficient nontoxic antifreeze, to give a mixture that can be tested for freezing point with an ethylene glycol (Prestone) hydrometer. A mixture of 70% propylene glycol and 30% glycerol (% by weight of water-free materials), when diluted, can be tested on the standard instrument used for ethylene glycol solutions.
PHYSICAL PROPERTIES 5.87 5.5 DENSITY AND SPECIFIC GRAVITY TABLE 5.14 Density of Mercury and Water The density of mercury and pure air-free water under a pressure of 101 325 Pa(1 atm) is given in units of grams per cubic centimeter For mercury, the values are based on the density at 20C being 3 (g · cm ).
Water attains its maximum density of 0.999 at 3.98C. For water, the tem-3 3 13.545 884 g · cm .
973 g · cm perature (tm, C) of maximum density at different pressures (p) in atmospheres is given by t 3.98 0.0225(p 1) m Density of water Temp., C Density of mercury Density of water Temp., C Density of mercury 20 13.644 59 18 13.639 62 16 13.634 66 14 13.629 70 12 13.624 75 10 13.619 79 8 13.614 85 6 13.609 90 4 13.604 96 2 13.600 02 0.999 84 0 13.595 08 0.999 94 2 13.590 15 0.999 97 4 13.585 22 0.999 94 6 13.580 29 0.999 85 8 13.575 36 0.999 70 10 13.570 44 0.999 50 12 13.565 52 0.999 24 14 13.560 60 0.998 94 16 13.555 70 0.998 60 18 13.550 79 0.998 20 20 13.545 88 0.997 77 22 13.540 97 0.997 30 24 13.536 06 0.996 78 26 13.531 17 0.996 23 28 13.526 26 0.995 65 30 13.521 37 0.995 03 32 13.516 47 0.994 37 34 13.511 58 0.993 69 36 13.506 70 0.992 97 38 13.501 82 0.992 22 40 13.496 93 0.991 44 42 13.492 07 0.990 63 44 13.487 18 0.989 79 46 13.482 29 0.988 93 48 13.477 42 0.988 04 50 13.472 56 0.987 12 52 13.467 68 0.986 18 54 13.462 82 0.985 21 56 13.457 96 0.984 22 58 13.453 09 0.983 20 60 13.448 23 0.982 16 62 13.443 37 0.981 09 64 13.438 52 0.980 01 66 13.433 67 0.978 90 68 13.428 82 0.977 77 70 13.423 97 0.976 61 72 13.419 13 0.975 44 74 13.414 28 0.974 24 76 13.409 43 0.973 03 78 13.404 60 0.971 79 80 13.399 77 0.970 53 82 13.394 92 0.969 26 84 13.390 09 0.967 96 86 13.385 26 0.966 65 88 13.380 42 0.965 31 90 13.375 60 0.963 96 92 13.370 77 0.962 59 94 13.365 94 0.961 20 96 13.361 12 0.959 79 98 13.356 30 0.958 36 100 13.351 48 120 13.303 4 140 13.255 4 160 13.207 6 180 13.159 8 200 13.112 0 220 13.064 5 240 13.016 9 260 12.969 2 280 12.921 5 300 12.873 7 5.88 SECTION 5 TABLE 5.15 Specific Gravity of Air at Various Temperatures The table below gives the weight in of 1 mL of air at 760 mm of mercury pressure and at the 4 grams 10 temperature indicated. Density in grams per milliliter is the same as the specific gravity referred to water at 4C as unity. To convert to density referred to air at 70F as unity, divide the values below by 12.00.
tC.
Sp.
4 Gr. 10 tC.
Sp.
4 Gr. 10 tC.
Sp.
4 Gr. 10 tC.
Sp.
4 Gr. 10 25 24 23 22 21 14.240 14.182 14.125 14.069 14.013 15 16 17 18 19 12.255 12.213 12.170 12.129 12.087 60 62 64 66 68 10.596 10.532 10.470 10.408 10.347 140 142 144 146 148 8.541 8.500 8.459 8.419 8.379 20 19 18 17 16 13.957 13.902 13.847 13.793 13.739 20 21 22 23 24 12.046 12.004 11.964 11.923 11.883 70 72 74 76 78 10.286 10.227 10.168 10.109 10.052 150 155 160 165 170 8.339 8.242 8.147 8.054 7.963 15 14 13 12 11 13.685 13.632 13.580 13.527 13.476 25 26 27 28 29 11.843 11.803 11.764 11.725 11.686 80 82 84 86 88 9.995 9.938 9.882 9.828 9.773 175 180 185 190 195 7.874 7.787 7.702 7.619 7.537 10 9 8 7 6 13.424 13.373 13.322 13.272 13.222 30 31 32 33 34 11.647 11.609 11.570 11.533 11.495 90 92 94 96 98 9.719 9.666 9.613 9.561 9.509 200 205 210 215 220 7.457 7.379 7.303 7.228 7.155 5 4 3 2 1 13.173 13.124 13.075 13.026 12.978 35 36 37 38 39 11.458 11.420 11.383 11.347 11.310 100 102 104 106 108 9.458 9.408 9.358 9.308 9.259 230 240 250 260 270 7.013 6.881 6.753 6.624 6.504 0 1 2 3 4 12.931 12.883 12.836 12.790 12.743 40 41 42 43 44 11.274 11.238 11.202 11.167 11.132 110 112 114 116 118 9.211 9.163 9.116 9.069 9.022 280 290 300 310 320 6.389 6.277 6.166 6.062 5.942 5 6 7 8 9 12.697 12.652 12.606 12.561 12.517 45 46 47 48 49 11.097 11.062 11.027 10.993 10.958 120 122 124 126 128 8.976 8.931 8.886 8.841 8.797 330 340 350 360 370 5.847 5.755 5.664 5.578 5.493 10 11 12 13 14 12.472 12.428 12.385 12.341 12.298 50 52 54 56 58 10.924 10.857 10.791 10.725 10.660 130 132 134 136 138 8.753 8.710 8.667 8.625 8.583 380 400 420 440 460 5.407 5.248 5.101 4.952 4.812 5.5.1 Density of Moist Air The density of moist air depends upon the temperature, the humidity, and the barometric pressure.
It is expressed by the equation PHYSICAL PROPERTIES 5.89 P 0.3783e d D t t 760 where dt is the density of the moist air at the temperature t; Dt is the density of dry air at the temperature t (see Table 5.15, Specific Gravity of Air at Various Temperatures); P is the height of the barometer after correction and reduction to standard conditions, and is expressed in millimeters of mercury (see Sec. 2.1.3, Barometry and Barometric Corrections); e is the vapor pressure of water at the temperature of the dew point and is expressed in millimeters of mercury (see Table 5.6, Vapor Pressure of Water).
Example. To find the density of moist air at a temperature of 20C, with a dew point of 10C, and a corrected barometric pressure of 750 mm.
Reference to Table 5.15 shows that D at 20C is equal to 0.001 204 6 g/mL. Reference to Table 5.6 shows that at 10C (the temperature of the dew point) e is equal to 9.209 mm. Therefore, 750 (0.3783 9.209) d 0.001 204 6 760 0.001 183 2 g/mL 1.1832 g/L 5.5.2 Specific Gravity Corrections for the Buoyant Effect of Air 5.5.2.1 Determinations Made with a Pyknometer W W d 2 2 D d 0.0012 1 vac W W 1 1 W W 2 2 S 0.0012 1 vac W W 1 1 where Dvac density of the liquid in grams per milliliter at tC corrected for the buoyant effect of air W1 weight in air of the water required to fill the pyknometer at tC W2 weight in air of the liquid required to fill the pyknometer at tC d density of water in grams per milliliter at tC Svac specific gravity of the liquid at tC referred to water at tC corrected for the buoyant effect of air When the weight of the water is determined at a temperature of tC, and that of the liquid at a different temperature t, the equations above are modified as follows: W W W 2 2 2 D d 0.0012 d 1 0.000 026 (t t) d vac W W W 1 1 1 W W W 2 2 2 S 0.0012 1 0.000 026 (t t) d vac W W W 1 1 1 5.5.2.2 Determinations Made with a Plummet or Sinker.
The equations above may also be used when the density is determined with plummet or sinker, but in this case W weight of the plummet in air minus its weight in water 1 W weight of the plummet in air minus its weight in the liquid 2 5.90 SECTION 5 5.6 VISCOSITY, SURFACE TENSION, DIELECTRIC CONSTANT, DIPOLE MOMENT, AND REFRACTIVE INDEX TABLE 5.16 Viscosity and Surface Tension of Various Organic Substances For the majority of substances the dependence of the surface tension on the temperature can be given as: a bt where a and b are constants and t is the temperature in degrees Celsius. In the SI system the surface tensions are expressed in mN · m1 ( dyn · cm1).
A compilation of some 2200 liquid compounds has been prepared by J. J. Jasper, J. Phys. Chem. Reference Data 1:841 (1972).
The SI unit of viscosity is pascal-second (Pa · s) or newton-second per meter squared (N · s · m2). Values tabulated are mN · s · m2 ( centipoise, cP). The temperature in degrees Celsius at which the viscosity of a substance was measured is shown in parentheses after the value.
Surface tension, mN · m1 Substance a b Liquid range, C Viscosity, mN · s · m2 Acetaldehyde 23.90 0.1360 123 to 21 0.2797(0), 0.2557(10), 0.22(20) Acetaldoxime 34.23 0.1134 12() or 46.5() to 114.5 Acetamide 47.66 0.1021 81 to 222 1.63(94), 1.32(105), 1.06(120) Acetanilide 46.21 0.0912 114 to 304 2.22(120), 1.90(130) Acetic acid 29.58 0.0994 16.7 to 118 1.056(25), 0.786(50), 0.424(110) Acetic anhydride 35.52 0.1436 73 to 139 1.241(0), 0.907(20), 0.699(40) Acetone 26.26 0.112 94 to 56 0.395(0), 0.306(25), 0.256(50) Acetonitrile 29.58 0.1178 44 to 81.6 0.397(10), 0.329(30), 0.2753(50) Acetophenone 41.92 0.1154 20 to 202 1.511(30), 1.192(45), 0.634(100) Acetyl chloride 26.7(15) 113 to 51 0.368(25), 0.294(50) Acrylic acid 28.1(30) 14 to 141 Acrylonitrile 29.58 0.1178 83.5 to 77.3 Allyl acetate 28.73 0.1186 up to 104 Allyl alcohol 27.53 0.0902 129 to 97 1.218(25), 0.759(50), 0.553(70) Allylamine 27.49 0.1287 88 to 55 Allyl isothiocyanate 36.76 0.1074 80 to 152 2-Aminoethanol 51.11 0.1117 10.3 to 171 Aniline 44.83 0.1085 6 to 186 3.847(25), 2.029(50), 1.247(75) Benzaldehyde 40.72 0.1090 26 to 179 Benzamide 47.26 0.0705 129 to 290 Benzene 28.88(20) 27.56(30) 5.5 to 80 0.649(20), 0.566(30), 0.395(60) Benzenesulfonyl chloride 45.48 0.1117 14.5 to 251 Benzenethiol 41.41 0.1202 14.9 to 169 Benzonitrile 41.69 0.1159 12.7 to 191 1.447(15), 1.111(30), 0.883(50) Benzophenone 46.31 0.1128 48 to 305 Benzoyl bromide 45.85 0.1397 24 to 219 Benzoyl chloride 41.34 0.1084 1 to 197 Benzyl alcohol 38.25 0.1381 15.2 to 205 5.474(25), 2.760(50), 1.618(75) Benzylamine 42.33 0.1213 10 to 180 1.624(25), 1.080(50), 0.769(75) Benzyl benzoate 48.07 0.1065 21 to 323 8.454(25) Benzyl chloride 39.92 0.1227 43 to 179 PHYSICAL PROPERTIES 5.91 TABLE 5.16 Viscosity and Surface Tension of Various Organic Substances (Continued) Surface tension, mN · m1 Substance a b Liquid range, C Viscosity, mN · s · m2 Benzyl ethyl ether 32.82(20) 29.97(40) up to 186 Biphenyl 41.52 0.0931 69 to 256 Bis(2-ethoxyethyl) ether 29.74 0.1176 45 to 188 Bis(2-hydroxyethyl) ether 46.97 0.0880 10.4 to 246 Bis(2-methoxyethyl) ether 32.47 0.1164 68 to 162 Bromobenzene 38.14 0.1160 30.6 to 156 1.196(15), 0.985(30), 0.385(1423) 1-Bromobutane 28.71 0.1126 112.4 to 101.6 0.633(20), 0.606(25), 0.471(50) ()-2-Bromobutane 27.48 0.1107 112.7 to 91.4 Bromochloromethane 33.32(20) 88 to 68 Bromocyclohexane 36.13 0.1117 up to 165.8 1-Bromodecane 31.26 0.0856 30 to 240 Bromodichloromethane 35.11 0.1294 55 to 87 1-Bromododecane 32.58 0.0882 11 to bp Bromoethane 26.52 0.1159 119 to 38.2 0.477(10), 0.374(25) Bromoform 48.14 0.1308 8 to 149 1-Bromoheptane 30.74 0.0982 58 to 180 1-Bromohexadecane 33.37 0.0861 17.8 to 336 1-Bromohexane 29.81 0.0967 85 to 158 Bromomethane 26.52 0.1159 94 to 3.56 1-Bromo-3-methylbutane 28.10 0.0996 112 to 119.7 1-Bromo-2-methylpropane 26.96 0.1059 119 to 91.5 1-Bromonaphthalene 46.44 0.1018 1.8 to 281 1-Bromononane 31.36 0.0894 ca. 55 to 201 1-Bromooctane 31.00 0.0928 55 to 201 1-Bromopentane 29.51 0.1049 88 to 129.6 p-Bromophenol 48.88 0.1070 64 to 238 1-Bromopropane 28.30 0.1218 110.1 to 71 0.539(15), 0.459(30), 0.338(70) 2-Bromopropane 26.21 0.1183 89 to 59.5 0.536(15), 0.437(30), 0.359(50) 3-Bromopropene 29.45 0.1257 119 to 70 0.620(0), 0.471(25), 0.373(50) 1-Bromotetradecane 32.93 0.0878 6 to 178 o-Bromotoluene 36.62 0.0998 26 to 181 p-Bromotoluene 36.40 0.0997 28.5 to 184 1-Bromoundecane 31.94 0.0861 9 to 138 Butanal 26.67 0.0925 99 to 74.8 Butane 14.87 0.1206 138.3 to 0.5 1,3-Butanediol 37.8(25) 50 to 207.5 2,3-Butanediol 36(25) 25 to 182 Butanenitrile 112 to 117.6 0.553(25), 0.418(50), 0.330(75) Butanesulfonyl chloride 37.33 0.0977 1-Butanethiol 28.07 0.1142 116 to 98.5 Butanoic acid 28.35 0.0920 6 to 163.5 1.540(20), 0.980(40), 0.323(60) Butanoic anhydride 28.93(20) 28.44(25) 66 to 199.5 1-Butanol 27.18 0.0898 89.5 to 117.7 5.185(0), 2.948(20), 1.782(40) ()-2-Butanol 23.47(20) 22.62(30) 114.7 to 99.5 3.907(20), 1.332(50), 0.698(75) 2-Butanone 26.77 0.1122 86.7 to 79.6 0.428(20), 0.349(40), 0.249(75) 1-Butene 15.19 0.1323 185 to 6.5 2-Butene 16.11 0.1289 106 to 0.9 3-Butenenitrile 31.40 0.1085 87 to 119 2-Butoxyethanol 28.18 0.0816 75 to 168 5.92 SECTION 5 TABLE 5.16 Viscosity and Surface Tension of Various Organic Substances (Continued) Surface tension, mN · m1 Substance a b Liquid range, C Viscosity, mN · s · m2 2-(2-Butoxyethoxy)ethanol 30.0(25) 68.1 to 230.4 Butyl acetate 27.55 0.1068 77 to 126 0.734(20), 0.688(25), 0.500(50) ()-sec-Butyl acetate 23.33(22) 21.24(42) 99 to 112 0.676(25), 0.493(50), 0.370(75) tert-Butyl acetate 24.69 0.1102 up to 98 Butylamine 26.24 0.1122 50 to 77 0.830(0), 0.574(25), 0.409(50) sec-Butylamine 23.75 0.1057 104 to 63 0.770(0), 0.571(25), 0.367(50) tert-Butylamine 19.44 0.1028 66 to 44 Butylbenzene 31.28 0.1025 88 to 183 1.035(20), 0.683(50), 0.515(75) sec-Butylbenzene 30.48 0.0979 82.7 to 173 tert-Butylbenzene 30.10 0.0985 58.1 to 168.5 Butyl butanoate 27.65 0.0965 91.5 to 166 Butyl ethyl ether 22.75 0.1049 124 to 92 Butyl formate 27.08 0.1026 91.5 to 106 0.940(0), 0.691(20), 0.472(50) Butyl methyl ether 22.17 0.1057 115.5 to 70 Butyl nitrate 30.35 0.1126 up to 133 Butyl propanoate 27.37 0.0993 89 to 146.8 4-tert-Butylpyridine 35.48 0.0951 ca. 44 to 197 Butyl stearate 33.0(25) 32.7(30) 26 to 343 Butyl vinyl ether 21.99(20) 92 to 94.2 Carbon disulfide 35.29 0.1484 111.6 to 46.5 0.429(0), 0.363(20), 0.352(25) Carbon tetrachloride 29.49 0.1224 23 to 76.7 1.321(0), 0.908(25), 0.656(50) D-()-Carvone 36.54 0.0920 15 to 230 Chloroacetic acid 43.27 0.1117 61 to 189 3.15(50), 1.92(75) o-Chloroaniline 43.41 0.0904 14 to 208.8 3.316(25), 1.913(50), 1.248(75) p-Chloroaniline 48.69 0.1099 72.5 to 232 Chlorobenzene 35.97 0.1191 45.3 to 131.7 0.799(20), 0.631(40), 0.512(60) 1-Chlorobutane 25.97 0.1117 123.1 to 78.4 0.556(0), 0.422(25), 0.329(50) 2-Chlorobutane 24.40 0.1118 131.3 to 68.2 0.439(15) Chlorocyclohexane 33.90 0.1101 44 to 142 1-Chlorododecane 31.56 0.0904 9 to 116 1-Chloro-2,3-epoxypropane 39.76 0.1360 57.2 to 116.1 1.03(25) Chloroethane 21.18(5) 20.58(10) 139 to 12.3 0.416(25), 0.319(0), 0.279(10) 2-Chloroethanol 38.9(20) 67.5 to 128.6 3.913(15) Chloroform 29.91 0.1295 63.6 to 61.1 0.706(0), 0.596(15), 0.514(30) 1-Chloroheptane 28.94 0.0961 69 to 161 1-Chlorohexane 28.32 0.1038 1-Chloro-3-methylbutane 25.51 0.1076 104 to 99 1-Chloro-2-methylpropane 24.40 0.1099 130.3 to 68.9 0.462(20), 0.373(40) 2-Chloro-2-methylpropane 20.06(15) 18.35(30) 26 to 50.8 0.543(15) 1-Chloronaphthalene 44.12 0.1035 2.3 to 259 2.940(25) o-Chloronitrobenzene 48.10 0.1171 33 to 246 m-Chloronitrobenzene 49.71 0.1417 44 to 236 p-Chloronitrobenzene 45.84 0.1046 84 to 242 1-Chlorooctane 29.64 0.0961 58 to 182 1-Chloropentane 27.09 0.1076 99 to 108 0.580(20) o-Chlorophenol 42.5 0.1122 9.8 to 175 3.589(25), 1.835(50), 1.131(75) m-Chlorophenol 43.7 0.1009 33 to 214 11.55(25), 4.725(45), 4.041(50) p-Chlorophenol 46.0 0.1049 43 to 220 4.99(50) 1-Chloropropane 24.41 0.1246 122.8 to 47 0.436(0), 0.372(15), 0.318(30) PHYSICAL PROPERTIES 5.93 TABLE 5.16 Viscosity and Surface Tension of Various Organic Substances (Continued) Surface tension, mN · m1 Substance a b Liquid range, C Viscosity, mN · s · m2 2-Chloropropane 21.37 0.0883 117 to 36 0.401(0), 0.335(15), 0.299(30) 3-Chloro-1-propene 25.50 0.0946 134.5 to 45 0.347(15) o-Chlorotoluene 35.6 to 159 1.267(25), 0.883(50), 0.662(75) m-Chlorotoluene 47.8 to 161.8 0.964(25), 0.710(50), 0.547(75) p-Chlorotoluene 34.93 0.1082 7.5 to 162.4 0.837(25), 0.621(50), 0.483(75) Chlorotrimethylsilane 19.51 0.0875 40 to 57 o-Cresol 39.43 0.1011 30 to 191 3.035(50), 1.562(75), 0.961(100) m-Cresol 38.00 0.0924 12 to 202 12.9(25), 4.417(50), 2.093(75) p-Cresol 38.58 0.0962 34.8 to 202 5.607(45) Cycloheptanol 35.02 0.0923 2 to 185 Cyclohexane 27.62 0.1188 6.6 to 80.7 0.980(20), 0.912(25), 0.650(50) Cyclohexanol 35.33 0.0966 25.4 to 161 57.5(25), 41.07(30), 12.3(50) Cyclohexanone 37.67 0.1242 31 to 155.7 2.453(15), 1.803(30), 1.321(50) Cyclohexene 29.23 0.1223 103.5 to 83 0.882(0), 0.625(25), 0.467(50) Cyclohexylamine 34.19 0.1188 18 to 134 1.079(25), 0.692(50), 0.485(75) Cyclooctane 32.02 0.1090 14.8 to 151.1 Cyclopentane 25.53 0.1462 94 to 50 0.555(0), 0.413(25), 0.321(50) Cyclopentanol 35.04 0.1011 19 to 140 0.439(20) Cyclopentanone 35.55 0.1100 51 to 130.6 Cyclopentene 25.94 0.1495 135.1 to 44.2 cis-Decahydronaphthalene 32.18(20) 31.01(30) 43 to 195.8 3.042(25), 1.875(50), 1.271(75) trans-Decahydronaphthalene 29.89(20) 28.87(30) 30.4 to 187.3 1.948(25), 1.289(50), 0.917(75) Decamethylcyclopentasiloxane 19.56 0.0565 38 to 101 Decamethyltetrasiloxane 86.20(25) 68 to 194 1.28(20) Decane 25.67 0.0920 29.7 to 174.1 1.277(0), 0.838(25), 0.598(50) 1-Decanol 30.34 0.0732 6.9 to 232 10.9(25), 4.590(50) 1-Decene 25.84 0.0919 66 to 170.6 0.805(20) Dibenzylamine 43.27 0.1086 26 to 300 Dibenzyl ether 38.2(35) 2 to 298 3.711(25) p-Dibromobenzene 41.84 0.1007 87.3 to 220 1,4-Dibromobutane 48.24 0.1190 20 to 198 1,2-Dibromoethane 42.85 0.1320 10 to 131.7 1.721(20), 1.286(40), 0.648(100) 1,2-Dibromopropane 36.81 0.1155 55.5 to 142 1.5(25) Dibromotetrafluoroethane 18.9(20) 18.1(25) 110.5 to 47 0.72(25) Dibutylamine 26.50 0.0952 62 to 159.6 0.918(25), 0.619(50), 0.449(75) Dibutyl decanedioate 10 to 345 9.03(25) Dibutyl ether 24.78 0.0934 95 to 140 0.637(25), 0.466(50), 0.356(75) Dibutyl maleate 32.46 0.0865 80 to 281 5.62(20), 4.76(25) Dibutyl o-phthalate 33.40(20) 35 to 340 19.91(20), 11.17(35), 7.85(45) Dichloroacetic acid 37.8 0.0927 9 to 194 3.23(50), 1.92(75) o-Dichlorobenzene 35.55(30) 17 to 180.4 1.324(25), 0.962(50), 0.739(75) m-Dichlorobenzene 38.30 0.1147 24.8 to 173.1 1.044(25), 0.783(50), 0.628(75) p-Dichlorobenzene 34.66 0.0879 53 to 174.1 0.839(55), 0.668(79) 1,4-Dichlorobutane 37.79 0.1174 38 to 163 1,1-Dichloroethane 27.03 0.1186 97 to 57.3 0.505(15), 0.464(25), 0.362(50) 1,2-Dichloroethane 35.43 0.1428 35.7 to 83.5 1.125(0), 0.779(25), 0.576(50) 1,1-Dichloroethylene 122.6 to 31.6 0.442(0), 0.358(20) cis-1,2-Dichloroethylene 28(20) 80.1 to 60 0.785(25), 0.575(0), 0.444(25) trans-1,2-Dichloroethylene 25(20) 49.8 to 48.7 0.522(25), 0.398(0), 0.317(25) 2,2-Dichloroethyl ether 40.57 0.1306 up to 178.5 2.41(20), 2.065(25) 5.94 SECTION 5 TABLE 5.16 Viscosity and Surface Tension of Various Organic Substances (Continued) Surface tension, mN · m1 Substance a b Liquid range, C Viscosity, mN · s · m2 Dichloromethane 30.41 0.1284 95 to 40 0.533(0), 0.449(15), 0.393(30) 2,4-Dichlorophenol 46.59 0.1221 42 to 210 1,2-Dichloropropane 31.42 0.1240 100 to 96 0.865(20), 0.700(25) 1,3-Dichloropropane 36.40 0.1233 99.5 to 122 2,2-Dichloropropane 23.60(20) 22.53(30) 35 to 69 0.769(15), 0.619(30) ,-Dichlorotoluene 41.26 0.1035 16 to 205 Diethanolamine 28 to 269 368(30), 109.5(50), 28.7(75) 1,1-Diethoxyethane 23.46 0.1030 100 to 102.2 1,2-Diethoxyethane 74 to 121.4 0.65(20) Dimethoxymethane 23.87 0.1291 up to 88 Diethylamine 22.71 0.1143 50 to 55.5 N,N-Diethylaniline 36.59 0.1040 38 to 217 3.838(0), 1.15(50), 0.750(75) Diethyl carbonate 28.62 0.1100 43 to 126 0.868(15), 0.748(25) Diethyl decanedioate 34.68 0.0959 Diethyl ether 18.92 0.0908 116 to 34.6 0.283(0), 0.224(25) Diethyl ethyl phosphonate 30.63 0.0975 up to 198 1.627(15), 0.969(45), 0.743(65) Di(2-ethylhexyl) o-phthalate 50 to 384 33.67(35), 21.40(45) Diethyl maleate 34.67 0.1039 8.8 to 225.3 3.57(20), 3.14(25) Diethyl 1,3-propanedioate (malonate) 33.91 0.1042 49.9 to 199.3 2.15(20), 1.94(25) Diethyl oxalate 34.32 0.1119 40.6 to 185.4 2.311(15), 1.618(30) Diethyl o-phthalate 38.47 0.0963 40 to 295 9.18(35), 6.41(45) Diethyl succinate 33.97 0.1041 21 to 217.7 Diethyl sulfate 35.47 0.0976 25 to 208 Diethyl sulfide 27.33 0.1106 104 to 92.1 0.558(0), 0.422(25) 1,2-Dihydroxybenzene 47.6 0.0849 104 to 245.5 1,3-Dihydroxybenzene 54.8 0.0717 110 to 276 Diiodomethane 70.21 0.1613 6 to 181 Diisobutylamine 24.00 0.0912 77 to 139 Diisopentyl ether 24.76 0.0871 up to 172.5 1.40(11), 1.012(20) Diisopropylamine 21.03 0.1077 61 to 83.5 0.393(25), 0.300(50), 0.237(75) Diisopropyl ether 19.89 0.1048 87 to 68 0.379(25) 1,2-Dimethoxybenzene 34.4 0.0642 22.5 to 206 3.281(25), 2.184(40) 1,1-Dimethoxyethane 23.90 0.1159 113 to 64.5 1,2-Dimethoxyethane 48.0(25) 68 to 85 0.670(10), 0.530(10), 0.455(25) Dimethoxymethane 23.59 0.1199 104.8 to 42 0.340(15), 0.325(20) N,N-Dimethylacetamide 32.40(30) 29.50(50) 20 to 165.5 1.956(25), 1.279(50), 0.896(75) Dimethylamine 29.50 0.1265 92 to 6.9 0.300(25), 0.232(0) N,N-Dimethylaniline 38.14 0.1049 2.5 to 194 1.300(25), 0.911(50), 0.675(75) 2,4-Dimethylaniline 39.34 0.0996 14 to 214 2,2-Dimethylbutane 18.29 0.0990 100 to 49.7 0.351(25), 0.330(30) 2,3-Dimethylbutane 19.38 0.1000 128 to 58 0.361(25), 0.342(30) 2,3-Dimethyl-1-butanol 26.22 0.0992 14 to 118 Dimethyl carbonate 31.94 0.1343 0.5 to 91 1,1-Dimethylcyclopentane 23.78 0.1016 70 to 87.5 Dimethyl ether 14.97 0.1478 141 to 24.9 N,N-Dimethylformamide 36.76(20) 34.40(40) 60 to 153 1.176(0), 0.794(25), 0.624(50) 2,4-Dimethylheptane 23.21 0.0929 100 to 133 2,5-Dimethylheptane 23.21 0.0929 100 to 136 PHYSICAL PROPERTIES 5.95 TABLE 5.16 Viscosity and Surface Tension of Various Organic Substances (Continued) Surface tension, mN · m1 Substance a b Liquid range, C Viscosity, mN · s · m2 2,6-Dimethylheptane 22.17 0.0887 103 to 135 Dimethyl hexanedioate 38.26 0.1138 8 to 112 14(20) Dimethyl maleate 40.73 0.1220 19 to 202 3.54(20), 3.21(25) Dimethyl malonate 39.72 0.1208 62 to 181 2,2-Dimethylpentane 19.94 0.0957 124 to 79 2,3-Dimethylpentane 21.96 0.0995 up to 90 0.406(20) 2,4-Dimethylpentane 20.09 0.0972 120 to 80.4 0.361(20) 3,3-Dimethylpentane 21.59 0.0996 135 to 86 2,4-Dimethylphenol 34.57 0.0869 24.5 to 211 2,5-Dimethylphenol 36.72 0.0850 74.5 to 211.5 1.55(80) 3,4-Dimethylphenol 35.75 0.0910 61 to 227 3.00(80) 3,5-Dimethylphenol 34.09 0.0807 64 to 222 2.42(80) Dimethyl o-phthalate 5.5 to 284 14.4(25), 5.309(50), 2.824(75) 2,2-Dimethylpropane 12.05(20) 10.98(30) 16.6 to 9.5 0.328(0), 0.303(5) Dimethyl succinate 39.00 0.1191 19 to 196.4 Dimethyl sulfate 41.26 0.1163 31.8 to 188 Dimethyl sulfide 26.07 0.0805 98 to 37 0.356(0), 0.289(20), 0.265(36) Dimethyl sulfite 36.48 0.1253 up to 127 0.715(30), 0.436(80) Dimethyl sulfoxide 43.54(20) 42.41(30) 18.5 to 189 2.47(20), 1.192(55), 0.849(80) 1,4-Dioxane 36.23 0.1391 11.8 to 101.2 1.439(15), 1.087(30), 0.787(50) Dipentyl ether 26.66 0.0925 69 to 190 1.188(15), 0.922(30) Dipentyl o-phthalate 32.56 0.0739 17.03(35), 11.51(45) Dipentyl sulfide 29.55 0.0876 Dipentylamine 45.36 0.1017 53 to 302 4.66 (55), 1.04(130) Diphenyl ether 28.70 0.0780 27 to 258 2.130(50), 1.407(75), 1.023(100) 1,2-Dipropoxyethane 25.03 0.0972 Dipropoxymethane 25.17 0.0953 Dipropylamine 24.86 0.1022 63 to 109 0.517(25), 0.377(50), 0.288(75) Dipropyl carbonate 28.94 0.1015 up to 168 Dipropylene glycol butyl ether 28.2(25) up to 103 4.23(25) Dipropylene glycol ethyl ether 27.7(25) 3.11(25) Dipropylene glycol isopropyl ether 25.9(25) up to 80 386(25) Dipropylene glycol methyl ether 28.8(25) 117 to 188 3.1(25) Dipropyl ether 22.60 0.1047 126 to 89.6 0.542(0), 0.396(25), 0.304(50) Dodecane 27.12 0.0884 10 to 216 2.277(0), 1.378(25), 0.930(50) 1-Dodecanol 31.25 0.0748 24 to 259 Epichlorohydrin 39.76 0.1360 26 to 117 1.20(25) 1,2-Epoxybutane 23.9(20) 150 to 63 0.419(15), 0.358(30) 1,2-Ethanediamine 44.77 0.1398 11 to 117.3 1.54(20), 1.226(30) 1,2-Ethanediol 50.21 0.0890 12.6 to 197.3 26.09(15), 13.55(30) Ethanesulfonic acid 45.74 0.0824 17 to 123 Ethanesulfonyl chloride 43.43 0.1177 up to 177 Ethanethiol 25.06 0.0793 148 to 35 0.364(0), 0.287(25) Ethanol 24.05 0.0832 114 to 78 1.786(0), 1.074(25), 0.694(50) Ethanolamine 51.11 0.1117 10.5 to 171 21.1(25), 8.560(50), 3.935(75) Ethoxybenzene (phenetol) 35.17 0.1104 29.5 to 170 1.364(15), 1.197(25), 0.817(50) 2-Ethoxyethanol 30.59 0.0897 70 to 135 2.04(20), 1.85(25) Ethyl acetate 26.29 0.1161 84 to 77 0.578(0), 0.423(25), 0.325(50) 5.96 SECTION 5 TABLE 5.16 Viscosity and Surface Tension of Various Organic Substances (Continued) Surface tension, mN · m1 Substance a b Liquid range, C Viscosity, mN · s · m2 Ethyl acetoacetate 34.42 0.1015 45 to 181 1.419(20), 1.508(25) Ethylamine 22.63 0.1372 81 to 16.6 N-Ethylaniline 39.00 0.1070 63.5 to 203 2.047(25), 1.231(50), 0.825(75) Ethylbenzene 31.48 0.1094 95 to 136 1360.631(25), 0.482(50), 0.380(75) Ethyl benzoate 37.16 0.1059 35 to 212 2.407(15), 1.751(30) Ethyl butanoate 26.55 0.1045 98 to 121 0.771(15), 0.613(25) 2-Ethylbutanoic acid 26.3(20) 14 to 194 3.3(20) 2-Ethyl-1-butanol 25.06(15) 24.32(25) 15 to 146 8.021(15), 5.892(25) Ethyl carbamate 50 to 184 0.916(105), 0.715(120) Ethyl chloroacetate 34.18 0.1177 21 to 144 Ethyl chloroformate 28.90 0.1084 81 to 93 Ethyl trans-cinnamate 39.99 0.1045 10 to 271 8.7(20) Ethyl crotonate 29.31 0.1066 up to 138 Ethyl cyanoacetate 38.80 0.1092 22 to 206 3.256(15), 2.148(30) Ethylcyclohexane 27.78 0.1054 111 to 132 1.139(0), 0.784(25), 0.579(50) Ethyl dichloroacetate 34.89 0.1158 up to 155 Ethyl dodecanoate 30.05 0.0863 10 to 271 Ethylene carbonate 36 to 248 1.85(40) Ethylenediamine 44.77 0.1398 11 to 117 1.540(18) Ethylene glycol 50.21 0.0890 up to 198 26.09(15), 13.35(30), 6.554(50) Ethyleneimine 7.9(20) 78 to 56 0.418(25) Ethylene oxide 27.66 0.1664 111 to 10.6 0.3(0) Ethyl formate 26.47 0.1315 80 to 54 0.419(15), 0.358(30), 0.300(50) Ethyl fumarate 33.90 0.1056 68 to 148 Ethylhexadecanoate 32.86 0.0859 22 to 191 Ethyl hexanoate 27.73 0.0960 up to 168 2-Ethyl-1-hexanol 30.0(22) 70 to 185 6.271(25), 2.631(50), 1.360(75) Ethyl isobutanoate 25.33 0.1046 88 to 110 Ethyl isothiocyanate 38.69 0.1326 6 to 132 Ethyl lactate 30.72 0.0983 26 to 155 2.44(25) Ethyl 3-methylbutanoate 25.79 0.1006 99 to 135 Ethyl methyl ether 18.56 0.1317 113 to 7.4 Ethyl methyl sulfide 27.63 0.1286 106 to 67 0.373(20), 0.354(25) Ethyl nitrate 30.81 0.1345 95 to 88 3-Ethylpentane 22.52 0.1032 119 to 93.5 Ethyl pentanoate 27.15 0.0999 91 to 145 0.847(20) Ethyl propanoate 26.72 0.1168 74 to 99 0.564(15), 0.473(30), 0.380(50) Ethyl propyl ether 21.92 0.1054 79 to 63 0.401(0), 0.323(20), 0.225(60) Ethyl salicylate 31.00 0.1091 2 to 234 1.772(45) Ethyl thiocyanate 37.28 0.1226 up to 145 o-Ethyltoluene 32.33 0.1060 81 to 165 p-Ethyltoluene 30.98 0.1075 62 to 162 Ethyl trichloroacetate 32.97 0.1073 up to 168 Fluorobenzene 29.67 0.1204 42 to 85 0.620(15), 0.517(30), 0.423(50) 1-Fluorohexane 23.41 0.1001 103 to 93 1-Fluoropentane 22.81 0.1315 120 to 63 o-Fluorotoluene 62 to 115 0.680(20), 0.601(30) m-Fluorotoluene 32.31 0.1257 87 to 115 0.608(20), 0.534(30) p-Fluorotoluene 30.44 0.1109 56 to 117 0.622(20), 0.522(30) PHYSICAL PROPERTIES 5.97 TABLE 5.16 Viscosity and Surface Tension of Various Organic Substances (Continued) Surface tension, mN · m1 Substance a b Liquid range, C Viscosity, mN · s · m2 Formamide 59.13 0.0842 2.6 to 220 4.320(15), 2.296(30), 1.833(50) Formanilide 44.30 0.0875 47 to 271 1.65(120) Formic acid 39.87 0.1098 8 to 101 1.966(15), 1.607(25), 1.030(50) Furan 24.10(20) 23.38(25) 86 to 31 0.380(20), 0.361(25) 2-Furancarboxaldehyde 46.41 0.1327 36.5 to 162 2.501(0), 1.587(25), 1.143(50) 2-Furanmethanol ca.
38(20) 31 to 171 4.62(25) Glycerol 63.14(17) 62.5(25) 18 to 290 934(25), 152(50), 39.8(75) Glycerol tris(acetate) 37.88 0.081 Glycerol tris(nitrate) 55.74 0.2504 13 to 160 36.0(20), 13.6(40) Glycerol tris(oleate) 36.03 0.0699 5 to 233 Glycerol tris(palmitate) 32.26 0.0672 65 to 320 Glycerol tris(sterate) 32.73 0.0685 Heptanal 28.64 0.0920 43 to 153 0.977(15) Heptane 22.10 0.0980 91 to 98 0.523(0), 0.416(20), 0.341(40) Heptanoic acid 29.88 0.0848 8 to 222 3.84(25), 2.282(50), 1.488(75) 1-Heptanol 34 to 176 8.53(15), 5.810(25), 2.603(50) 2-Heptanol up to 159 3.955(25), 1.799(50), 0.987(75) 3-Heptanol 70 to 157 1.957(50), 0.976(75), 0.584(100) 4-Heptanol 4.207(25), 1.695(50), 0.882(75) 2-Heptanone 28.76 0.1056 35 to 151 0.854(15), 0.686(30), 0.407(50) 4-Heptanone 28.11 0.1060 32 to 143.7 0.736(20) 1-Heptene 22.28 0.0991 120 to 93.6 0.441(0), 0.340(25), 0.273(50) Heptylamine 25.96 0.0783 23 to 156 1.314(25), 0.865(50), 0.600(75) Hexadecane 29.18 0.0854 18.2 to 286.8 3.032(25), 1.879(50), 1.260(75) 1,5-Hexadiene 20.93 0.1028 140.7 to 59.5 0.275(20), 0.244(36) Hexafluorobenzene 22.6(20) 5.1 to 80.3 2.789(25), 1.730(50), 1.151(75) Hexamethyldisiloxane 17.01 0.0763 67 to 101 Hexamethylphosphoramide 33.8(20) 7 to 232 3.47(20) Hexane 20.44 0.1022 95.4 to 68.7 0.405(0), 0.313(20), 0.271(40) Hexanenitrile 29.64 0.0907 80 to 163.6 1.041(15), 0.830(30), 0.650(50) Hexanoic acid 28.05(20) 27.55(25) 3 to 205 3.525(15), 2.511(30) 1-Hexanol 27.81 0.0801 44.6 to 157.5 6.203(15), 3.872(30), 2.271(50) 2-Hexanone 28.18 0.1092 55.5 to 127.6 0.584(25), 0.429(50), 0.329(75) 1-Hexene 20.47 0.1027 140 to 63.5 0.326(0), 0.252(25), 0.202(50) Hexyl acetate 28.44 0.0970 81 to 171 4-Hydroxy-4-methyl-2-pentanone 31.0(20) 44 to 168 6.621(0), 2.798(25), 1.829(50) Iodobenzene 41.52 0.1123 31 to 188 1.554(25), 1.117(50), 0.854(75) 1-Iodobutane 30.82 0.1031 103.5 to 131 2-Iodobutane 30.32 0.1056 104 to 120 Iodoethane 31.67 0.1286 111 to 72.4 0.617(15), 0.540(30), 0.444(50) 1-Iodoheptane 32.18 0.0887 48 to 204 1-Iodohexadecane 34.49 0.0880 23 to 207 1-Iodohexane 31.63 0.0845 up to 180 Iodomethane 33.42 0.1234 66.5 to 42.5 0.594(0), 0.500(20), 0.424(40) 1-Iodo-2-methylpropane 30.26 0.1072 93.5 to 121 0.875(20), 0.697(40) 1-Iodooctane 32.51 0.0915 46 to 226 1-Iodopentane 31.41 0.1014 85 to 155 1-Iodopropane 31.64 0.1136 101 to 102.6 0.837(15), 0.670(30), 0.541(50) 5.98 SECTION 5 TABLE 5.16 Viscosity and Surface Tension of Various Organic Substances (Continued) Surface tension, mN · m1 Substance a b Liquid range, C Viscosity, mN · s · m2 2-Iodopropane 29.35 0.1107 90 to 89.5 0.732(15), 0.620(30), 0.506(50) p-Iodotoluene 39.23 0.0965 up to 211 -Ionone 34.10 0.0949 124 -Ionone 35.36 0.0950 128 Isobutanenitrile 24.93(20) 23.84(30) 71.5 to 104 0.551(15), 0.456(30) Isobutyl acetate 25.59 0.1013 99 to 116.5 0.676(25), 0.493(50), 0.370(75) Isobutylamine 24.48 0.1092 86.6 to 68 0.770(0), 0.571(25), 0.367(50) Isobutylbenzene 29.39 0.0961 51.5 to 172.8 Isobutyl formate 26.14 0.1122 95.5 to 98.4 0.680(20) Isobutyl propanoate 30.92 0.1270 71 to 137 Isopentyl acetate 26.75 0.0989 78.5 to 142 0.872(20), 0.790(25) Isophorone 8.1 to 215.2 4.201(0), 2.329(25), 1.415(50) Isopropyl acetate 24.44 0.1072 73 to 89 0.559(20) Isopropylamine 19.91 0.0972 95 to 31.7 0.454(0), 0.325(25) Isopropylbenzene 30.32 0.1054 96 to 154 1.075(0), 0.737(25), 0.547(50) Isopropyl formate 24.56 0.1147 0.512(20) Lactonitrile 38.31 0.0960 40 to 103 2.01(30) D-Limonene 29.50 0.0929 96.5 to 178 ()-Mandelonitrile 45.90 0.0988 10 to 170 Methacrylic acid 26.5(25) 16 to 163 1.32(20) Methacrylonitrile 24.4(20) 35.8 to 90.3 0.392(20) Methanesulfonic acid 52.28 0.0893 20 to 167 Methanethiol 28.09 0.1696 123 to 6.0 Methanol 24.00 0.0773 97.7 to 64.7 0.793(0), 0.676(10), 0.544(25) o-Methoxybenzaldehyde 45.34 0.1105 37 to 238 p-Methoxybenzaldehyde 44.69 0.1047 1 to 248 Methoxybenzene 38.11 0.1204 37.5 to 153.8 1.152(15), 1.056(25), 0.747(50) 2-Methoxyethanol 33.30 0.0984 85.1 to 124 1.71(20), 1.60(25) 2-(2-Methoxyethoxy)ethanol 34.8(25) 29.9(75) 50 to 194 3.48(25), 1.61(60) 1-Methoxy-2-nitrobenzene 48.62 0.1185 10.5 to 277 o-Methoxyphenol 41.2 0.0943 28 to 205 p-Methoxytoluene 36.20 0.1071 up to 174 N-Methylacetamide 33.67(30) 30.62(50) 30.6 to 206 3.88(30), 2.54(45) Methyl acetate 27.95 0.1289 98 to 57 0.477(0), 0.364(25), 0.284(50) Methyl acetoacetate 34.98 0.0944 27.5 to 171.7 Methyl acrylate 76.5 to 80.2 1.398(20) Methylamine 22.87 0.1488 93.5 to 6.3 0.319(25) N-Methylaniline 39.32 0.0970 57 to 196 2.042(25), 1.222(50), 0.825(75) o-Methylaniline 3.823(25), 1.936(50), 1.198(75) m-Methylaniline 3.306(25), 1.679(50), 1.014(75) Methyl benzoate 40.10 0.1171 15 to 199.5 2.298(15), 0.206(20), 1.673(30) 2-Methyl-1,2-butadiene 0.266(0.3), 0.233(20) 2-Methylbutane 17.20 0.1103 up to 30 0.376(25), 0.277(0), 0.214(25) Methyl butanoate 27.48 0.1145 85.8 to 103 0.580(20), 0.459(40), 0.406(50) 3-Methylbutanoic acid 27.28 0.0886 29.3 to 176.5 2.731(15), 2.411(20) 2-Methyl-1-butanol 21.5(25) 70 to 128 5.50(20), 4.453(25), 1.963(50) 2-Methyl-2-butanol 24.18 0.0748 9.0 to 102.0 5.48(15), 2.81(30) 3-Methyl-1-butanol 25.76 0.0820 117 to 131 4.81(15), 2.96(30), 1.842(50) 3-Methyl-2-butanol 23.0(25) up to 112.9 3.51(25) PHYSICAL PROPERTIES 5.99 TABLE 5.16 Viscosity and Surface Tension of Various Organic Substances (Continued) Surface tension, mN · m1 Substance a b Liquid range, C Viscosity, mN · s · m2 2-Methyl-1-butene 18.81 0.1148 137.6 to 31 2-Methyl-2-butene 19.70 0.1271 133.8 to 38.6 3-Methyl-1-butene 16.42 0.1031 168 to 20 2-Methylbutyl acetate 26.75 0.0989 99 to 117 0.872(20) 3-Methylbutyronitrile 27.58 0.0827 101 to 129 Methyl chloroacetate 37.90 0.1304 32 to 130 Methyl cyanoacetate 41.32 0.1074 22.5 to 201 3.824(50), 3.398(55), 2.687(65) Methylcyclohexane 26.11 0.1130 126.6 to 100.9 0.679(25), 0.501(50), 0.390(75) cis-2-Methylcyclohexanol 32.45 0.0770 (mixed isomers) 7 to 165 18.08(25), 13.60(30) trans-2-Methylcyclohexanol 2 to 167.5 37.13(25), 25.14(30) cis-3-Methylcyclohexanol 29.08 0.0629 (mixed isomers) 6 to 168 19.7(25), 17.23(30) trans-3-Methylcyclohexanol 28.80(30) 0.5 to 167 25.62(16), 15.60(30) cis-4-Methylcyclohexanol 29.07 0.0690 (mixed isomers) 9.2 to 173 2-Methylcyclohexanone 34.06 0.1027 up to 162 3-Methylcyclohexanone 33.06 0.0925 up to 169 4-Methylcyclohexanone 32.83 0.0935 up to 171 Methylcyclopentane 24.63 0.1163 142.2 to 71.8 0.653(0), 0.478(25), 0.364(50) Methyl decanoate 30.33 0.0912 18 to 223 Methyl dichloroacetate 37.00 0.1219 52 to 143 Methyl dodecanoate 31.37 0.0893 4.8 to 262 N-Methylformamide 37.96(30) 35.02(50) 4 to 199.5 1.678(25), 1.155(50), 0.824(75) Methyl formate 28.29 0.1572 99 to 31.7 0.424(0), 0.360(15), 0.325(25) Methyl heptanoate 28.95 0.0987 55.8 to 173.5 4-Methyl-3-heptanol 123 to 170 1.085(25), 0.702(50), 0.497(75) 5-Methyl-3-heptanol 91 to 172 1.178(25), 0.762(50), 0.536(75) Methyl hexadecanoate (palmitate) 31.50 0.0775 32 to 196 2-Methylhexane 21.22 0.0966 118 to 90 0.378(20) 3-Methylhexane 21.73 0.0970 119 to 92 0.372(20), 0.350(25) Methyl hexanoate 28.47 0.1045 71 to 151 Methyl isobutanoate 25.99 0.1131 84.7 to 92.5 0.672(0), 0.523(20), 0.419(40) 1-Methyl-4-isopropylbenzene (p-cymene) 28.83 0.0877 3.402(20) Methyl methacrylate 28-29(30) 48 to 100 0.632(20) 1-Methylnaphthalene 39.96 0.0934 30.4 to 245 Methyl octadecanoate 32.20 0.0775 38 to 215 2-Methyloctane 23.76 0.0940 80.3 to 143.2 4-Methyloctane 24.22 0.0940 113 to 142 Methyl octanoate 29.93 0.1002 40 to 192.9 Methyl oleate 31.3(25) 25.4(100) 19.9 to 218 4.88(20) 2-Methylpentane 19.37 0.0997 154 to 60.3 0.372(0), 0.286(25), 0.226(50) 3-Methylpentane 20.26 0.1060 163 to 63 0.395(0), 0.307(25), 0.292(30) 5.100 SECTION 5 TABLE 5.16 Viscosity and Surface Tension of Various Organic Substances (Continued) Surface tension, mN · m1 Substance a b Liquid range, C Viscosity, mN · s · m2 4-Methylpentanenitrile 28.89 0.0917 51.1 to 156.5 0.980(20), 0.843(30) Methyl pentanoate 27.85 0.1044 up to 128 0.713(20) 2-Methyl-1-pentanol 26.98 0.0819 up to 148 3-Methyl-1-pentanol 26.92 0.0789 up to 153 4-Methyl-1-pentanol 25.93 0.0743 up to 152 2-Methyl-2-pentanol 25.07 0.0861 103 to 121 3-Methyl-2-pentanol 27.14 0.0919 up to 134 4-Methyl-2-pentanol 24.67 0.0821 90 to 122 4.074(25) 2-Methyl-3-pentanol 26.43 0.0914 up to 126 3-Methyl-3-pentanol 25.48 0.0888 23.6 to 123 4-Methyl-2-pentanone 23.64(20) 19.62(60) 84 to 116.5 0.585(20), 0.522(30), 0.406(50) Methyl phenyl sulfide 42.81 0.1238 15 to 188 N-Methyl propanamide 31.29(20) 29.12(50) 43 to 146 6.06(20), 4.58(30), 3.56(40) 2-Methylpropanenitrile 72 to 108 0.551(15), 0.456(30) Methyl propanoate 27.58 0.1258 88 to 80 0.581(0), 0.431(25), 0.333(50) 2-Methylpropanoic acid 25.55(20) 25.13(25) 47 to 154 1.857(0), 1.226(25), 0.863(50) 2-Methyl-1-propanol 24.53 0.0795 108 to 108 4.70(15), 2.876(30) 2-Methyl-2-propanol 20.02(15) 19.10(30) 25.8 to 82.4 1.421(50), 0.678(75) 2-Methylpropene 14.84 0.1319 140 to 6.9 1-Methylpropyl acetate 25.72 0.1054 2-Methyl-1-propylamine 24.48 0.1092 87 to 68 21.7(25) 2-Methylpropyl formate 26.14 0.1122 96 to 98 0.680(20) 2-Methylpyridine 36.11 0.1243 66.7 to 129 0.805(20), 0.710(30) 3-Methylpyridine 37.35 0.1153 18.3 to 144 4-Methylpyridine 37.71 0.1141 3.8 to 145 N-Methyl-2-pyrrolidinone 24.4 to 202 1.666(25) Methyl salicylate 42.15 0.1174 8 to 223 1.102(75), 0.815(100) Methyl tetradecanoate 31.00 0.0800 18.4 to 323 2-Methyltetrahydrofuran 75 to 78 0.777(20), 0.601(0), 0.536(10) Methyl thiocyanate 40.66 0.1305 5 to 133 64.3(0) Morpholine 37.63(20) 36.24(30) 4.9 to 128 2.53(15), 1.79(30), 1.247(50) Naphthalene 80 to 217.7 0.967(80), 0.780(100) p-Nitroaniline 60.62 0.0923 147 to 332 Nitrobenzene 48.62 0.1185 5.8 to 210.8 2.165(15), 1.863(25), 1.262(50) Nitroethane 35.27 0.1255 90 to 114 0.940(0), 0.688(25), 0.526(50) Nitromethane 40.72 0.1678 28.4 to 101.2 0.692(15), 0.596(30), 0.481(50) 1-Nitro-2-methoxybenzene 48.62 0.1185 95 to 273 o-Nitrophenol 47.35 0.1174 45 to 216 2.343(45) 1-Nitropropane 32.62 0.1009 108 to 131.1 0.798(25), 0.589(50), 0.460(75) 2-Nitropropane 32.18 0.1158 91.3 to 120.3 0.750(25) o-Nitrotoluene 44.10 0.1174 10 to 222 2.37(20), 1.63(40) m-Nitrotoluene 43.54 0.1118 15.5 to 231.9 0.233(20), 1.60(40) p-Nitrotoluene 42.26 0.0974 52 to 238 1.20(60) Nonane 24.72 0.0935 53.5 to 150.8 0.964(0), 0.666(25), 0.488(50) Nonanoic acid 12.5 to 254.5 7.011(25), 3.712(50), 2.234(75) 1-Nonanol 29.79 0.0789 5.5 to 215 14.3(20), 9.123(25), 4.032(50) 5-Nonanone 28.72 0.0975 50 to 187 1.199(25), 0.834(50), 0.619(75) 1-Nonene 24.90 0.0938 81 to 146 0.620(20), 0.586(25) Octadecane 29.98 0.0843 28.1 to 316.3 2.487(50), 1.609(75), 1.132(100) PHYSICAL PROPERTIES 5.101 TABLE 5.16 Viscosity and Surface Tension of Various Organic Substances (Continued) Surface tension, mN · m1 Substance a b Liquid range, C Viscosity, mN · s · m2 Octamethylcyclotetrasiloxane 20.19 0.0811 17 to 176 2.20(20) Octane 23.52 0.0951 56.8 to 125.7 0.546(20), 0.433(40), 0.355(60) Octanenitrile 29.61 0.0802 45.6 to 205 1.811(15), 1.356(30) Octanoic acid 29.21(20) 28.7(25) 16.6 to 239 5.020(25), 2.656(50), 1.654(75) 1-Octanol 29.09 0.0795 15.5 to 195 10.64(15), 6.125(30), 3.232(50) 2-Octanol 27.96 0.0820 31.6 to 180 1-Octene 23.68 0.0958 102 to 121 0.470(20), 0.447(25) Oleic acid 32.80(20) 27.94(90) 13.4 to 360 38.80(20), 27.64(25) 4-Oxopentanoic acid 41.69 0.0763 33 to 246 Paraldehyde 28.28 0.1062 12.6 to 124 1.079(25), 0.692(50), 0.485(75) Parathion 39.2(25) 6 to 375 15.30(25) Pentachloroethane 37.09 0.1178 29.9 to 160 2.741(15), 2.070(30), 1.491(50) Pentadecane 28.78 0.0857 9.9 to 270 2.814(22) Pentanal 27.96 0.1010 92 to 103 Pentane 18.25 0.1121 129.7 to 36.0 0.351(25), 0.274(0), 0.224(25) 1,5-Pentanediol 43.2(20) 18 to 239 128(20) 2,4-Pentanedione 33.28 0.1144 23.1 to 138 0.6(20) Pentanenitrile 27.44(20) 26.33(30) 92 to 141.3 0.779(15), 0.637(30) Pentanoic acid 28.90 0.0887 33.7 to 186 2.359(15), 1.774(30), 0.979(70) 1-Pentanol 27.54 0.0874 79 to 137.5 4.650(15), 3.619(25), 1.820(50) 2-Pentanol 25.96 0.1004 73 to 119.3 5.130(15), 2.780(30), 1.447(50) 3-Pentanol 24.60(20) 23.76(30) 69 to 116 7.337(15), 3.306(30), 1.473(50) 2-Pentanone 24.89 0.0655 76.8 to 102 0.641(0), 0.473(25), 0.362(50) 3-Pentanone 27.36 0.1047 39.0 to 102 0.592(0), 0.444(25), 0.345(50) 1-Pentene 18.20 0.1099 165 to 30.1 0.313(25), 0.241(0), 0.195(25) cis-2-Pentene 19.71 0.1172 151 to 37.0 trans-2-Pentene 18.90 0.0997 140 to 36.3 Pentyl acetate 27.66 0.0994 70.8 to 149.2 0.924(20), 0.862(25) Pentylamine 24.4(13) 55 to 104 1.030(0), 0.702(25), 0.493(50) Phenol 43.54 0.1069 41 to 182 3.437(50), 1.784(75), 1.099(100) 2-Phenylacetamide 46.26 0.0788 157 to bp Phenyl acetate 45 to 196 1.799(45) Phenylacetonitrile 44.57 0.1155 23.8 to 233.5 1.93(25) 1-Phenylethanol 42.88 0.1038 20 to 204 Phenylhydrazine 48.14 0.1292 19.5 to 243 13.0(25), 4.553(50), 1.850(75) Phenyl isothiocyanate 42.73 0.1086 30 to 163 Phenyl salicylate 45.20 0.0976 44 to 173 ()--Pinene 28.35 0.0944 64 to 156 1.61(25) L--Pinene 28.26 0.0934 61 to 166 1.70(20), 1.41(25) Piperidine 31.79 0.1153 11 to 106 1.573(25), 0.958(50), 0.649(75) 1,2-Propanediol (see propylene glycol) 1,3-Propanediol 47.43 0.0903 27 to 214 56.0(20), 18.0(40) Propanenitrile (propionitrile) 29.63 0.1153 92.8 to 97.2 0.294(25), 0.240(50), 0.202(75) 1-Propanethiol 27.38 0.1272 113 to 68 0.503(0), 0.385(25) 2-Propanethiol 24.26 0.1174 131 to 52.6 0.477(0), 0.357(25), 0.280(50) Propanoic acid 28.68 0.0993 20.5 to 141.1 1.030(25), 0.749(50), 0.569(75) Propanoic anhydride 30.30(20) 29.70(25) 45 to 170 1.144(20), 1.061(25) 1-Propanol 25.26 0.0777 127 to 97.2 2.522(15), 1.722(30), 1.107(50) 5.102 SECTION 5 TABLE 5.16 Viscosity and Surface Tension of Various Organic Substances (Continued) Surface tension, mN · m1 Substance a b Liquid range, C Viscosity, mN · s · m2 2-Propanol 22.90 0.0789 89.5 to 82.4 2.859(15), 1.765(30), 1.028(50) 2-Propen-1-ol (allyl alcohol) 27.53 0.0902 129 to 98 1.363(20), 0.914(40) Propionaldehyde (propanal) 81 to 48 0.357(15), 0.321(25) Propionamide 39.05 0.0909 79 to 222.2 Propyl acetate 26.60 0.1120 93 to 101.6 0.768(0), 0.544(25), 0.406(50) Propylamine 24.86 0.1243 83 to 42.2 0.376(25) Propylbenzene 31.13 0.1075 99.2 to 159.2 Propyl benzoate 36.55 0.1069 51.6 to 98 Propyl butanoate 27.06 0.1000 95 to 143 0.831(20) 1,2-Propylene glycol 60 to 188 40.4(0), 11.3(25), 4.770(50) Propyleneimine up to 66 0.491(25) 1,2-Propylene oxide 112 to 34 0.327(20), 0.28(25) Propyl formate 26.77 0.1119 92.9 to 80.9 0.669(0), 0.574(20), 0.417(40) Propyl isobutanoate 25.83 0.1015 up to 135 0.831(20) Propyl nitrate 29.67 0.1237 100 to 110.1 Propyl pentanoate 27.72 0.0984 75.9 to 122.5 1.053(20) Propyl propanoate 26.85 0.1059 76 to 122.5 0.673(20) Propyne 14.51 0.1482 102.8 to 23.2 2-Propyn-1-ol 38.59 0.1270 51.8 to 114 1.68(20) Pyridazine 50.55 0.1036 8 to 208 Pyridine 39.82 0.1306 41.6 to 115.2 1.361(0), 0.879(25), 0.637(50) Pyrimidine 32.85 0.1010 22 to 124 Pyrrole 39.81 0.1100 23.4 to 130 2.085(0), 1.225(25), 0.828(50) Pyrrolidine 31.48 0.0900 58 to 86.5 1.071(0), 0.704(25), 0.512(50) 2-Pyrrolidone 25 to 251 13.3(25) Quinoline 45.25 0.1063 15 to 237 3.337(25), 1.892(50), 1.201(75) Salicylaldehyde 45.38 0.1242 7 to 197 2.90(20), 1.71(30), 1.669(45) Squalane 38 to 350 6.08(20) Squalene 75 to 285 12(25) Stearic acid 67 to 184 11.6(70) Styrene 32.0(20) 30.98(30) 31 to 145 1.050(0), 0.696(25), 0.507(50) Succinonitrile 53.26 0.1079 54.5 to 266 2.591(60), 2.008(75) 1,1,2,2-Tetrabromoethane 52.37 0.1463 0 to 243.5 13.50(11), 9.797(20) 1,1,2,2-Tetrachlorodifluoro-ethane 26.13 0.1133 26.0 to 92.8 1.21(25), 1.208(30) 1,1,2,2-Tetrachloroethane 38.75 0.1268 70.2 to 130.5 1.844(15), 1.456(30) Tetrachloroethylene 32.86(15) 31.27(30) 22 to 121 1.932(15), 0.798(30), 0.654(53) Tetradecane 28.30 0.0869 5.5 to 253.6 2.128(25), 1.376(50), 0.953(75) Tetradecanoic acid 33.90 0.0932 54 to 250 1-Tetradecanol 32.72 0.0703 39.5 to 289 Tetraethylene glycol 45(25) 6 to 328 44.9(25) Tetraethyl lead 30.50 0.0969 136 to 85 Tetraethylsilane 25.22 0.1079 82 to 154.7 Tetraethyl silicate 23.63 0.0979 82.5 to 169 Tetrahydrofuran 26.5(25) 108.5 to 65 0.605(0), 0.460(25), 0.359(50) 2,5-Tetrahydrofurandimethanol 50 to 265 225(25) Tetrahydro-2-furanmethanol 39.96 0.1008 80 to 178 6.24(20) 1,2,3,4-Tetrahydronaphthalene 35.55 0.0954 35.8 to 207.6 2.202(20), 2.003(25) Tetrahydropyran 45 to 88 0.826(20), 0.764(25) PHYSICAL PROPERTIES 5.103 TABLE 5.16 Viscosity and Surface Tension of Various Organic Substances (Continued) Surface tension, mN · m1 Substance a b Liquid range, C Viscosity, mN · s · m2 Tetrahydropyran-2-methanol 34.1(25) 70 to 187 11.0(20) Tetrahydrothiophene-1,1-diox-ide (sulfolane) 35.5(30) 27.6 to 287.3 9.87(30), 6.280(50), 3.818(75) Tetrahydrothiophene oxide 52(30), 19(80) Thiacyclohexane 36.06(20) 33.74(40) Thiacyclopentane 38.44 0.1342 1.042(20), 0.971(25) 2,2-Thiodiethanol 53.8(20) 10.2 to 282 65.2(20) Thiophene 34.00 0.1328 39.4 to 84 0.871(0), 0.662(20), 0.353(82) Thymol 33.95 0.0821 49 to 232 Toluene 30.90 0.1189 94.9 to 110.6 0.623(15), 0.523(30), 0.424(50) p-Toluenesulfonyl chloride 42.41 0.0903 67 to 134 o-Toluidine 42.87 0.1094 16.5 to 200 5.195(15), 4.39(20) m-Toluidine 40.33 0.0979 31 to 203 4.418(15), 2.741(30) p-Toluidine 39.58 0.0957 43.8 to 200 1.945(45), 1.557(60) m-Tolunitrile 38.85 0.1013 23 to 210 p-Tolunitrile 39.79 0.1100 29.5 to 85 Tribenzylamine 42.41 0.0953 91-94 to bp Tribromomethane 48.14 0.1308 8.1 to 149.6 2.152(15), 1.741(30), 1.367(50) 1,2,3-Tribromopropane 47.99 0.1267 16.5 to 220 Tributylamine 26.47 0.0831 70 to 216 1.35(25) Tributyl borate 26.2(20) 25.8(25) 70 to 234 1.776(20), 1.601(25) Tributyl phosphite 27.57 0.0865 up to 125 1.9(25) Tributyl phosphate 28.71 0.0666 79 to 289 11.1(15), 3.39(25) Trichloroacetaldehyde 27.66 0.1197 57.5 to 97.8 Trichloroacetic acid 35.4 0.0895 57.5 to 196.5 1,1,1-Trichloroethane 28.28 0.1242 30.4 to 74 0.903(15), 0.725(30), 0.578(50) 1,1,2-Trichloroethane 37.40 0.1351 37 to 114 0.119(20), 0.110(25) Trichloroethylene 29.5(20) 28.8(25) 84.8 to 87 0.703(0), 0.545(25), 0.444(50) Trichlorofluoromethane 18(25) 111 to 23.8 0.740(25), 0.539(0) 2,4,6-Trichlorophenol 43.13 0.0955 69 to 246 1,2,3-Trichloropropane 37.8(20) 37.05(25) 14.7 to 157 Trichlorosilane 20.43 0.1076 127 to 32 0.332(20), 0.316(25) ,,-Trichlorotoluene 5 to 223 3.07(10), 2.55(17) 1,1,2-Trichloro-1,2,2-trifluoro-ethane 17.75(20) 16.56(30) 35 to 47.7 0.711(20), 0.627(30) Tridecane 27.73 0.0872 5 to 235 2.909(0), 1.724(25), 1.129(50) 1-Tridecene 28.01 0.0884 13 to 232.8 Triethanolamine 20.5 to 335.4 609(25), 114(50), 31.5(75) Triethylamine 22.70 0.0992 114.7 to 88.8 0.455(0), 0.347(25), 0.273(50) Triethylene glycol 47.33 0.0880 7 to 285 49.0(20), 8.5(60) Triethyl phosphate 31.81 0.0928 56 to 215 1.684(40), 1.376(55) Triethyl phosphite 25.73 0.0878 up to 156 0.72(25) Trifluoroacetic acid 15.64 0.1844 15.3 to 73 0.926(20), 0.808(25), 0.571(50) 2,2,2-Trifluoroethanol 20.6(33) 43.5 to 74 1.996(20) Trimethylamine 16.24 0.1133 117 to 2.9 0.321(33.5) 1,2,3-Trimethylbenzene 30.91 0.1040 25.4 to 176.1 1,2,4-Trimethylbenzene 31.76 0.1025 43.9 to 169 0.894(15), 0.730(30) 1,3,5-Trimethylbenzene 29.79 0.0897 44.7 to 165 1.154(20) 2,2,3-Trimethylbutane 20.70 0.0973 24.9 to 80.9 0.579(20) 5.104 SECTION 5 TABLE 5.16 Viscosity and Surface Tension of Various Organic Substances (Continued) Surface tension, mN · m1 Substance a b Liquid range, C Viscosity, mN · s · m2 cis,cis-1,3,5-Trimethylcyclo-hexane 0.632(20), 0.558(30) trans-1,3,5-Trimethylcyclo-hexane 107.4 to 140.5 0.714(20), 0.624(30) Trimethylene sulfide 36.3(20) 35.0(30) 73.2 to 95 0.638(20), 0.607(25) 3,5,5-Trimethyl-1-hexanol 70 to 194 11.06(25) 2,2,3-Trimethylpentane 22.46 0.0895 112.3 to 110 0.598(20) 2,2,4-Trimethylpentane 20.55 0.0888 107.4 to 99.2 0.502(20) Trimethyl phosphite 27.18(20) 24.88(40) 78 to 112 0.61(20) 2,4,6-Trimethylpyridine 46 to 171 1.498(20) Triphenylamine 46.2 0.0955 125 to 348 Triphenyl phosphite 22 to 360 6.95(45) Tripropylamine 24.58 0.0878 93.5 to 158 Tripropylene glycol 34(25) up to 273 56.1(25) Tripropylene glycol butyl ether 28.8(25) up to 276 6.58(25) Tripropylene glycol ethyl ether 28.2(25) 5.17(25) Tripropylene glycol isopropyl ether 27.4(25) 7.7(25) Tripropylene glycol methyl ether 30.0(25) 42 to 242.4 5.96(25) Tris(m-tolyl) phosphite 37.55(15), 9.132(45), 5.075(65) Tris(p-tolyl) phosphite 35.52(15), 8.794(45), 5.017(65) Tri-o-tolyl phosphate 40.9(20) 11 to 410 38.8(35), 16.8(55) Undecane 26.26 0.0901 25.6 to 196 1.707(0), 1.098(25), 0.761(50) Vinyl acetate 23.95(20) 22.54(30) 93 to 73 0.421(20) o-Xylene 32.51 0.1101 25.2 to 145 1.084(0), 0.760(25), 0.561(50) m-Xylene 31.23 0.1104 47.9 to 139 0.795(0), 0.581(25), 0.445(50) p-Xylene 30.69 0.1074 13 to 138 0.603(25), 0.457(50), 0.359(75) PHYSICAL PROPERTIES 5.105 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances The temperature in degrees Celsius at which the dielectric constant and dipole moment were measured is shown in this table in parentheses after the value. In some cases, the dipole moment was determined with the substance dissolved in a solvent, and the solvent used is also shown in parentheses after the temperature.
The dielectric constant (permittivity) tabulated is the relative dielectric constant, which is the ratio of the actual electric displacement to the electric field strength when an external field is applied to the substance, which is the ratio of the actual dielectric constant to the dielectric constant of a vacuum. The table gives the static dielectric constant , measured in static fields or at relatively low frequencies where no relaxation effects occur.
The dipole moment is given in debye units D. The conversion factor to SI units is 1 D 3.33564 30 10 C · m.
Alternative names for entries are listed in Table 1.15 at the bottom of each double page.
List of Abbreviations B, benzene g, gas C, CCl4 Hx, hexane cHex, cyclohexane lq, liquid D, 1,4-dioxane Substance Dielectric constant, Dipole moment, D Acetaldehyde 21.8 (10), 21.0 (18) 2.75 Acetaldehyde oxime 4.70 (25) 0.830 (20, lq), 0.90 (25, B) Acetamide 67.6 (91) 3.76 Acetanilide 3.65 (25, B) Acetic acid 6.20 (20) 1.70 Acetic anhydride 23.3 (0), 22.45 (20) 2.8 Acetone 21.0 (20), 20.7 (25), 17.6 (56) 2.88 Acetonitrile 36.64 (20), 26.6 (82) 3.924 Acetophenone 17.44 (25), 8.64 (202) 3.02 ()-erythro-2-Acetoxy-2-bromo-butane 7.268 (25) ()-threo-2-Acetoxy-2-bromobutane 7.414 (25) Acetyl bromide 16.2 (20) 2.43 (20, B) Acetyl chloride 16.9 (2), 15.8 (22) 2.72 Acetylene 2.484 (77) Acrylonitrile 33.0 (20) 3.87 Allene 2.025 (4) Allylamine 1.2 Allyl alcohol 19.7 (20) 1.61 Allyl isocyanate 15.15 (15) Allyl isothiocyanate 17.2 (18) 3.2 (20, B) Allyl nitrite 9.12 (25) 2-Aminoethanol 31.94 (20), 37.72 (25) 2.59 (25, D) 2-(2-Aminoethylamino)ethanol 21.81 (20) N-(2-Aminoethyl)-1,2-ethane-diamine 12.62 (20) 1.9 Aniline 7.06 (20), 5.93 (70) 1.13 Benzaldehyde 19.7 (0), 17.85 (20) 3.0 Benzaldehyde oxime (mp 30) 3.8 (20) 1.2 (25, B) (mp 128) 1.5 (25, B) Benzamide 3.42 (25, B) Benzene 2.292(15), 2.283 (20), 2.274 (25) 0 Benzeneacetonitrile 17.87 (26) 3.5 Benzenesulfonyl chloride 28.90 (50) 4.50 (20, B) Benzenethiol 4.38 (25), 4.26 (30) 1.13 (25, lq), 1.19 (20, B) Benzonitrile 25.9 (20), 24.0 (40) 4.18 Benzophenone 14.60 (18), 11.4 (50) 3.09 (50, lq), 2.98 (25, B) 5.106 SECTION 5 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D Benzoyl bromide 21.33 (20), 20.74 (25) 3.40 (20, B) Benzoyl chloride 29.0 (0), 23 (23) 3.16 (25, B) Benzoyl fluoride 22.7 (20) Benzyl acetate 5.1 (21), 5.34 (930) 1.80 (25, B) Benzyl alcohol 13.0 (20), 11.92 (30), 9.5 (70) 1.71 Benzylamine 5.5 (1), 5.18 (20) 1.15 (20, lq), 1.38 (25, B) Benzyl benzoate 5.26 (30) 2.06 (30, B) Benzyl chloride 7.0 (13), 6.85 (25) 1.83 (20, B) Benzylethylamine 4.3 (20) Benzyl ethyl ether 3.90 (25) Benzyl formate 6.34 (30) N-Benzylmethylamine 4.4 (19) Biphenyl 2.53 (75) 0 Bis(2-aminoethyl)amine 12.62 (20) Bis(2-chloroethyl) ether 21.20 (20) 2.6 Bis(3-chloropropyl) ether 10.10 (20) Bis(2-ethoxyethyl) ether 1.92 (25, B) Bis(2-hydroxyethyl) ether 31.69 (20) 2.31 (20, B) Bis(2-hydroxyethyl)sulfide 28.61 (20) Bis(2-hydroxypropyl) ether 20.38 (20) Bis(2-methoxyethyl) ether 7.23 (25) ()-Bornyl acetate 4.6 (21) 1.89 (22) 3-Bromoaniline 13.0 (20) 2.67 (20, B) 4-Bromoaniline 7.06 (30) 2.88 (25, B) 2-Bromoanisole 8.96 (30) 4-Bromoanisole 7.40 (30) Bromobenzene 5.45 (20), 5.40 (25) 1.70 1-Bromobutane 7.88 (10), 7.32 (10), 7.07 (20) 2.08 ()-2-Bromobutane 8.64 (25) 2.23 2-Bromobutanoic acid 7.2 (20) cis-2-Bromo-2-butene 5.38 (20) trans-2-Bromo-2-butene 6.76 (20) 1-Bromo-2-chlorobenzene 6.80 (20) 2.15 (20, B) 1-Bromo-3-chlorobenzene 4.58 (20) 1.52 (22, B) 1-Bromo-4-chlorobenzene 0.1 (25, B) 1-Bromo-2-chloroethane 7.41 (10) 1.09 cis-1-Bromo-2-chloroethene 7.31 (17) trans-1-Bromo-2-chloroethene 2.50 (17) Bromochlorodifluoromethane 3.92 (150) Bromochloromethane 7.79 1.66 (25, B) 3-Bromo-1-chloro-2-methylpropane 8.90 (30) Bromocyclohexane 11 (65), 8.003(30) 1.08 (25, lq), 2.3 (25, B) 1-Bromodecane 4.75 (1), 4.44 (25) 2.08 (20, lq), 1.90 (25, lq) Bromodichloromethane 1.31 (25, B) 1-Bromododecane 4.07 (25) 2.01 (25, lq), 1.89 (25, B) Bromoethane 13.6 (60), 9.39 (20), 9.01 (25) 2.03 (g), 2.04 (20, lq) 1-Bromo-2-ethoxypentane 6.45 (25) 2.32 (25, B) 2-Bromo-3-ethoxypentane 6.40 (25) 2.07 (25, B) 3-Bromo-2-ethoxypentane 8.24 (25) 2.15 (25, B) 1-Bromo-2-ethylbenzene 5.55 (25) 1-Bromo-3-ethylbenzene 5.56 (25) 1-Bromo-4-ethylbenzene 5.42 (25) PHYSICAL PROPERTIES 5.107 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D Bromoethylene 5.63 (5), 4.78 (25) 1.42 1-Bromo-2-fluorobenzene 4.72 (25) 1-Bromo-3-fluorobenzene 4.85 (25) 1-Bromo-4-fluorobenzene 2.60 (25) Bromoform 4.39 (20) 1.00, 0.92 (25, lq) 1-Bromoheptane 5.33 (25), 4.48 (90) 2.17, 2.02 (20, lq) 2-Bromoheptane 6.46 (22) 2.08 (20, B) 3-Bromoheptane 6.93 (22) 2.06 (20, B) 4-Bromoheptane 6.81 (22) 2.06 (20, B) 1-Bromohexadecane 3.71 (25) 1.98 (20, lq), 1.96 (25, C) 1-Bromohexane 6.30 (1), 5.82 (25) 2.06 (20, lq) Bromomethane 9.82 (0), 9.71 (3), 1.0068 (100, g) 1.82 (Bromomethyl)benzene 6.658 (20) 1-Bromo-3-methylbutane 8.04 (56), 6.33 (18) 1.95 (20, B) 2-Bromo-2-methylbutane 9.21 (25) 2-Bromo-3-methylbutanoic acid 6.5 (20) 1-Bromo-2-methylpropane 10.98 (20), 7.2 (25) 1.92 (25, lq), 1.99 (20, B) 2-Bromo-2-methylpropane 10.98 (20) 1-Bromonaphthalene 5.83 (25), 5.12 (20) 1.29 (25, lq) 3-Bromonitrobenzene 20.2 (55) 1-Bromononane 5.42 (20), 4.74 (25) 1.95 (25, lq) 1-Bromooctane 6.35 (50) 1.99 (20, lq), 1.88 (25, lq) 1-Bromopentadecane 3.9 (20) 1-Bromopentane 9.9 (90), 6.32 (25) 2.20 3-Bromopentane 8.37 (25) 1-Bromopropane 8.09 (20) 2.18 2-Bromopropane 9.46 (20) 2.21 2-Bromopropanoic acid 11.0 (21) 3-Bromopropene 7.0 (20) 1.9 2-Bromopyridine 23.18 (25) 1-Bromotetradecane 3.84 (25) 1.92 (20, lq), 1.83 (25, lq) o-Bromotoluene 4.64 (20), 4.28 (58) 1.45 (20, B) m-Bromotoluene 5.566 (20), 5.36 (58) 1.77 (20, B) p-Bromotoluene 5.503 (20), 5.49 (58) 1.95 (20, B) Bromotrichloromethane 2.40 (20) Bromotrifluoromethane 3.73 (150) 0.65 1-Bromoundecane 4.73 (9) 1,3-Butadiene 2.050 (8) 0.403 Butanal 13.45 (25) 2.72 Butane 1.7697 (22) 0 1,2-Butanediol 22.4 (25) 1,3-Butanediol 28.8 (25) 1,4-Butanediol 33 (15), 31.9 (25), 30 (38) 4.07 1,3-Butanediol dinitrate 18.85 (20) 2,3-Butanediol dinitrate 28.85 (20) 1,3-Butanedione 4.04 (25) Butanenitrile 24.83 (20) 4.07 Butanesulfonyl chloride 3.94 (25, D) 1,2,3,4-Butanetetrol 28.2 (120) 1-Butanethiol 5.20 (15), 5.07 (25), 4.59 (50) 1.54 (25, lq or B) 2-Butanethiol 5.645 (15) Butanoic acid 2.97 (20) 1.65 (30, B) 5.108 SECTION 5 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D Butanoic anhydride 12.8 (20) 1-Butanol 17.84 (20), 8.2 (118) 1.66 ()-2-Butanol 17.26 (20), 16.6 (25) 1.66 (30, B) 2-Butanone 18.56 (20), 15.3 (60) 2.78 2-Butanone oxime 3.4 (20) trans-2-Butenal 3.67 1-Butene 2.2195 (53), 1.0032 (20, g) 0.438 cis-2-Butene 1.960 (23) 0.253 trans-2-Butene 0 3-Butenenitrile 28.1 (20) 4.53 2-Butoxyethanol 9.43 (25) 2.08 (25, B) Butoxyethyne 6.62 (25) 2.05 (25, lq) N-Butylacetamide 104.0 (20) N-sec-Butylacetamide 100.0 (100) Butyl acetate 6.85 (73), 5.07 (20) 1.86 (22, B) sec-Butyl acetate 5.135 (20) 1.9 tert-Butyl acetate 5.672 (20) 1.91 (25, B) tert-Butylacetic acid 2.85 (23) Butyl acrylate 5.25 (28) Butylamine 4.71 (20) 1.00 sec-Butylamine 4.4 (21) 1.28 (25, B) tert-Butylamine 1.29 (25, B) Butylbenzene 2.36 (20) 0 sec-Butylbenzene 2.36 (20) 0 tert-Butylbenzene 2.36 (20) 0.83 Butyl butanoate 4.39 (25) Butyl ethyl ether 1.24 Butyl formate 6.10 (30), 2.43 (80) 2.08 (26, lq), 2.03 (25, B) Butyl isocyanate 12.29 (20) Butyl methyl ether 1.25 (25, B) 2-tert-Butyl-4-methylphenol 1.31 (20, B) Butyl nitrate 13.10 (20) 2.99 (20, B) tert-Butyl nitrite 11.47 (25) Butyl oleate 4.00 (25) N-Butylpropanamide 100.6 (25) Butyl propanoate 4.838 (20) 1.79 (23, B) 4-tert-Butylpyridine 2.87 (25, C) Butylsilane 2.537 (20) Butyl stearate 3.11 (30) 1.88 (24, B) Butyl trichloroacetate 7.480 (20) Butyl vinyl ether 1.25 (25, Hx) 4-Butyrolactone 39.0 (20) 4.27 Camphor 11.35 (20) 2.91 (20, B), 3.10 (25, B) Carbon disulfide 3.0 (112), 2.64 (20) 0 Carbon tetrachloride 2.24 (20), 2.228 (25) 0 Carbon tetrafluoride 1.0006 (25, g) 0 D-()-Carvone 11 (22) 2.8 (15, B) Chloroacetic acid 20 (20), 12.35 (65) 2.31 (30, B) o-Chloroaniline 13.40 (20) 1.78 (20, B) m-Chloroaniline 13.3 (20) 2.68 (20, B) p-Chloroaniline 2.99 (25, B) Chlorobenzene 5.69 (20), 4.2 (120) 1.69 PHYSICAL PROPERTIES 5.109 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D 2-Chloro-1,3-butadiene 4.914 (20) 1-Chlorobutane 9.07 (30), 7.276 (20) 2.05 (g), 2.0 (20, B) 2-Chlorobutane 8.564 (20), 7.09 (30) 2.04 (g), 2.1 (20, B) Chlorocyclohexane 10.9 (47), 7.951 (30) 2.2 (25, B) Chlorodifluoromethane 6.11 (24) 1.42 (g) 2-Chloro-N,N-dimethylacetamide 39.2 (25) 1-Chlorododecane 4.2 (20) 2.11 (25, lq), 1.94 (20, B) 1-Chloro-2,3-epoxypropane 25.6 (1), 22.6 (22) 1.8 (25, C) Chloroethane 1.013 (19, g), 9.45 (20) 2.05 2-Chloroethanol 25.80 (20), 13 (132) 1.78 (2-Chloro)ethylbenzene 4.36 (25) (3-Chloro)ethylbenzene 5.18 (25) (4-Chloro)ethylbenzene 5.16 (25) 2-Chlorofluorobenzene 6.10 (25) 3-Chlorofluorobenzene 4.96 (25) 4-Chlorofluorobenzene 3.34 (25) Chloroform 4.807 (25), 4.31 (50) 1.04 1-Chloroheptane 5.52 (20) 1.86 (22, B) 2-Chloroheptane 6.52 (22) 2.05 (22, B) 3-Chloroheptane 6.70 (22) 2.06 (22, B) 4-Chloroheptane 6.54 (22) 2.06 (22, B) 1-Chlorohexane 6.104 (20) 1.94 (20, B) 6-Chloro-1-hexanol 21.6 (31) 1-Chloro-2-isocyanatoethane 29.1 (15) Chloromethane 1.0069 (g), 12.6 (20), 10.0 (22) 1.892 1-Chloro-3-methylbutane 7.63 (70), 6.05 (20) 1.94 (20, B) 2-Chloro-2-methylbutane 12.31 (50) 4-Chloromethyl-1,3-dioxolan-2-one 97.5 (40) Chloromethyl methyl ether 1.88 (C) (Chloromethyl)oxirane 22.6 (20) 1.8 1-Chloro-2-methylpropane 7.87 (38), 7.027 (20) 2.00 2-Chloro-2-methylpropane 10.95 (0), 9.66 (20) 2.13 1-Chloronaphthalene 5.04 (25) 1.33 (25, lq), 1.52 (25, B) o-Chloronitrobenzene 37.7 (50), 32 (80) 4.64 m-Chloronitrobenzene 20.9 (50), 18 (80) 3.73 p-Chloronitrobenzene 8.09 (120) 2.83 2-Chloro-2-nitropropane 31.9 (23) 4-Chloro-3-nitrotoluene 28.07 (28) 1-Chlorooctane 5.05 (25) 2.14 (25, lq) Chloropentafluoroethane 0.52 1-Chloropentane 6.654 (20) 2.16 o-Chlorophenol 7.40 (21), 6.31 (25) 2.19 m-Chlorophenol 6.255 (20) 2.19 (25, B) p-Chlorophenol 11.18 (41) 2.11 1-Chloropropane 8.59 (20) 2.05 2-Chloropropane 9.82 (20) 2.17 3-Chloro-1,2-propanediol 31.0 (20) 3-Chloro-1,2-propanediol dinitrate 17.50 (20) 3-Chloro-1-propanol 36.0 (58) 1-Chloro-2-propanol 59.0 (120) 1-Chloro-2-propanone 30 (19) 2.22 (g), 2.37 (20, Hx) 2-Chloro-1-propene 8.92 (26) 1.647 5.110 SECTION 5 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D 3-Chloro-1-propene 8.2 (20) 1.94 2-Chloropyridine 27.32 (20) 4-Chlorothiophenol 3.59 (65) o-Chlorotoluene 4.72 (20), 4.2 (55) 1.56 m-Chlorotoluene 5.76 (20), 5.0 (60) 1.77 (20, lq), 1.8 (22, B) p-Chlorotoluene 6.25 (20), 5.6 (55) 2.21 Chlorotrifluoromethane 1.0013 (29, g), 3.01 (150) 0.50 2-Chloro-1-trifluoromethyl-5-nitrobenzene 9.8 (30) 4-Chloro-1-trifluoromethyl-3-nitrobenzene 12.8 (30) 3-Chloro-1,1,1-trifluoropropane 7.32 (22) Chlorotrimethylsilane 2.09 (20, B) Cineole 4.57 (25) Cinnamaldehyde 17 (20), 16.9 (24) 3.74 o-Cresol 6.76 (25) 1.45 (25, B) m-Cresol 12.44 (25) 1.61 (25, B) p-Cresol 13.05 (25) 1.54 (20, B) Crotonic acid 2.13 (30, B) Cyanoacetic acid 33.4 (4) Cyanoacetylene 72.3 (19) 3.724 2-Cyanopyridine 93.77 (30) 3-Cyanopyridine 20.54 (50) 4-Cyanopyridine 5.23 (80) Cyclobutanone 14.27 (25) 2.89 Cycloheptane 2.078 (30) Cycloheptanone 13.16 (25) 1,3-Cyclohexadiene 2.68 (89) 0.38 (20, B) 1,4-Cyclohexadiene 2.211 (23) Cyclohexane 2.05 (15), 2.02 (25) 0 Cyclohexanecarboxylic acid 2.6 (31) 1,4-Cyclohexanedione 15.0 (25), 4.40 (78) 1.41 Cyclohexanethiol 5.420 (25) Cyclohexanol 16.40 (20), 15.0 (25), 7.24 (100) 1.86 (25, C) Cyclohexanone 20 (40), 16.1 (20) 2.87 Cyclohexanone oxime 3.04 (89) 0.83 (25, B) Cyclohexene 2.6 (105), 2.218 (20) 0.332 Cyclohexylamine 4.55 (20) 1.22 (20, lq), 1.26 (20, B) Cyclohexylbenzene 0 Cyclohexylmethanol 9.7 (60), 8.1 (80) 1.68 (20, B) Cyclohexyl nitrite 9.33 (25) o-Cyclohexylphenol 3.97 (55) p-Cyclohexylphenol 4.42 (131) Cyclooctane 2.116 (22) 0 cis-Cyclooctene 2.306 (23) Cyclopentane 1.9687 (20) 0 Cyclopentanecarbonitrile 22.68 (20) Cyclopentanol 25 (20), 18.5 (10) 1.72 (25, C) Cyclopentanone 16 (51), 13.58 (25) 3.30 Cyclopentene 2.083 (22) 0.20 p-Cymene 2.243 (20), 2.23 (25) 0 cis-Decahydronaphthalene 2.22 (20) 0 PHYSICAL PROPERTIES 5.111 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D trans-Decahydronaphthalene 2.18 (20) 0 Decamethylcyclopentasiloxane 2.5 (20) Decamethyltetrasiloxane 2.4 (20) 0.79 (25, lq) Decane 1.991 (20), 1.844 (130) 0 1-Decanol 8.1 (20) 1.71 (20, B), 1.62 (25, B) 1-Decene 2.14 (20) 0 meso-2,3-Diacetoxybutane 6.644 (25) Diallyl sulfide 4.9 (20) 1.33 (25, B) Dibenzofuran 3.0 (100) 0.88 (25, B) Dibenzylamine 3.6 (20) 0.97 (20, lq), 1.02 (20, B) Dibenzyl decanedioate 4.6 (25) Dibenzyl ether 3.82 (20) 1.39 (21, B) o-Dibromobenzene 7.86 (20) 2.13 (20, B) m-Dibromobenzene 4.21 (20) 1.5 (20, B) p-Dibromobenzene 2.57 (95) 0 1,2-Dibromobutane 4.74 (20) 1,3-Dibromobutane 9.14 (20) 1,4-Dibromobutane 8.68 (30) 2.16 (20, lq), 2.06 (20, B) 2,3-Dibromobutane 6.36 (20), 5.75 (25) 2.20 meso-2,3-Dibromobutane 6.245 (25) ()-2,3-Dibromobutane 5.758 (25) 1,2-Dibromodichloromethane 2.54 (25) 1,2-Dibromodifluoromethane 2.94 (0) 0.66 1,2-Dibromoethane 4.96 (20), 4.78 (25), 4.09 (131) 1.11 cis-1,2-Dibromoethylene 7.08 (25) trans-1,2-Dibromoethylene 2.88 (25) Dibromomethane 7.77 (10) 1.43 cis-1,2-Dibromoethylene 7.7 (0), 7.08 (25) 1.35 (B) trans-1,2-Dibromoethylene 2.9 (0), 2.88 (25) 0 1,2-Dibromoheptane 3.8 (25) 1.78 (25, D) 2,3-Dibromoheptane 5.1 (25) 2.15 (25, B) 3,4-Dibromoheptane 4.7 (25) 2.15 (25, B) meso-3,4-Dibromohexane 4.67 (25) ()-3,4-Dibromohexane 6.732 (25) 1,6-Dibromohexane 8.52 (25) Dibromomethane 7.77 (10), 6.7 (40) 1.43 1,2-Dibromo-2-methylpropane 4.1 (20) 1,2-Dibromopentane 4.39 (25) ()-erythro-2,3-Dibromopentane 5.43 (25) ()-threo-2,3-Dibromopentane 6.507 (25) 1,4-Dibromopentane 9.05 (20) 1,5-Dibromopentane 9.14 (30) 1,2-Dibromopropane 4.60 (10), 4.3 (20) 1.13 1,3-Dibromopropane 9.48 (20) Dibromotetrafluoroethane 2.34 (25) Dibutylamine 2.78 (20) 1.06 (20, lq), 1.05 (20, B) Dibutyl decanedioate 4.54 (20) 2.64 (25, B) Dibutyl ether 3.08 (20) 1.18 Dibutyl maleate 2.70 (25, B) Dibutyl o-phthalate 6.58 (20), 6.436 (30), 5.99 (45) 2.97 (20, lq), 2.85 (30, B) Dibutyl sulfide 4.29 (25) 1.6 Dichloroacetic acid 8.33 (20), 7.8 (61) 5.112 SECTION 5 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D Dichloroacetic anhydride 15.8 (25) 1,1,-Dichloroacetone 14.6 (20) o-Dichlorobenzene 10.12 (20), 9.93 (25), 7.10 (90) 2.50 m-Dichlorobenzene 5.02 (20), 5.04 (25), 4.22 (90) 1.72 p-Dichlorobenzene 2.394 (55) 0 1,2-Dichlorobutane 7.74 (25) 1,4-Dichlorobutane 9.30 (35) 2.22 Dichlorodifluoromethane 3.50 (150), 2.13 (29) 0.51 4-Chloro-1,3-dioxalan-2-one 62.0 (40) 4,5-Dichloro-1,3-dioxalan-2-one 31.8 (40) 1,1-Dichloroethane 10.10 (20) 2.06 1,2-Dichloroethane 12.7 (10), 10.42 (20) 1.48 1,1-Dichloroethylene 4.60 (20), 4.60 (25) 1.34 cis-1,2-Dichloroethylene 9.20 (25) 1.90 trans-1,2-Dichloroethylene 2.14 (20) 0 2,2-Dichloroethyl ether 21.2 (20) 2.61 (20, B) Dichlorofluoromethane 5.34 (28) 1.29 (g) 1,6-Dichlorohexane 8.60 (35) Dichloromethane 9.14 (20), 8.93 (25), 1.0065 (100, g) 1.60 1,3-Dichloroisopropyl nitrate 13.28 (20) (Dichloromethyl)benzene 6.9 (20) 2.1 Dichloromethyl isocyanate 7.36 (15) 1,2-Dichloro-2-methylpropane 7.15 (23) 2,4-Dichloro-1-nitrobenzene 13.06 (28) 1,1-Dichloro-1-nitroethane 16.3 (30) 1,2-Dichloropentane 6.89 (20) 1,5-Dichloropentane 9.92 (25) 2,4-Dichlorophenol 1.60 (25, B) 1,2-Dichloropropane 8.37 (20), 8.93 (26), 7.90 (35) 1.87 (25, B) 1,3-Dichloropropane 10.27 (30) 2.08 2,2-Dichloropropane 11.37 (20) 2.62 1,1-Dichloro-2-propanone 14 (20) 1,2-Dichlorotetrafluoroethane 2.48 (0), 2.26 (25) 0.53 2,4-Dichlorotoluene 5.68 (28) 1.7 2,6-Dichlorotoluene 3.36 (28) 3,4-Dichlorotoluene 9.39 (28) 3.0 Diethanolamine 25.75 (20) 2.84 (25, B) 1,1-Diethoxyethane 3.80 (25) 1.08 1,2-Diethoxyethane 3.90 (20) 1.99 (20, B), 1.65 (25, B) Diethoxymethane 2.527 (20) N,N-Diethylacetamide 32.1 (20) N,N-Diethylacetoacetamide 40.8 (25) Diethylamine 3.680 (20) 0.92 N,N-Diethylaniline 5.5 (19) 1.40 (20, lq), 1.80 (20, B) Diethyl carbonate 2.82 (24) 1.10 N,N-Diethyl-N,N-dimethylurea 17.89 (25) Diethyl decanedioate 5.0 (30) 2.38 (20, lq), 2.52 (20, B) Diethylene glycol 3.182 (20) 2.3 Diethylene glycol diethyl ether 5.70 Diethyl ether 4.267 (20), 3.97 (40) 1.15 Diethyl ethyl phosphonate 11.00 (15), 9.86 (45) 2.95 (32, lq), 2.91 (20, C) N,N-Diethylformamide 29.6 (20) PHYSICAL PROPERTIES 5.113 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D Diethyl fumarate 6.56 (23) 2.40 (20, B) Diethyl glutarate 6.7 (30) 2.46 (30, lq) Diethyl glycol 31.82 (20) Di(2-ethylhexyl) o-phthalate 5.3 (20), 4.91 (35), 4.77 (45) 2.8 Diethyl maleate 8.58 (23), 7.56 (25) 2.56 (25, B) Diethyl methanephosphate 13.405 (40) Diethyl 1,3-propanedioate (malonate) 8.03 (25), 7.55 (31) 2.49 (20, lq), 2.54 (25, B) Diethyl nonanedioate 5.13 (30) Diethyl oxalate 8.266 (20) 2.49 (20, D) Diethyl o-phthalate 7.34 (35), 7.13 (45) 2.8 (25, B) Diethylsilane 2.544 (20) Diethyl succinate 6.098 (20) 2.3 Diethyl sulfate 29.2 (20) 4.46 (25, D) Diethyl sulfide 5.72 (25), 5.24 (50) 1.54 Diethyl sulfite 15.6 (20), 14 (50) Diethylzinc 2.55 (20) 0.62 (25, B) o-Difluorobenzene 13.38 (28) 2.46 m-Difluorobenzene 5.01 (28) 1.51 1,1-Difluoroethane 2.27 Difluoromethane 53.74 (121) 1.978 2,3-Dihydropyran 5.136 (35) 1,2-Dihydroxybenzene 17.57 (115) 2.60 (25, B) 1,3-Dihydroxybenzene 13.55 (120) 2.09 (44, B) 1,4-Dihydroxybenzene 1.4 (44, B) 1,2-Diiodobenzene 5.7 (20), 5.41 (50) 1.70 (20, B) 1,3-Diiodobenzene 4.3 (25), 4.11 (50) 1.22 (20, B) 1,4-Diodobenzene 2.88 (120) 0.19 (20, B) cis-1,2-Diiodoethylene 4.46 (72) 0.71 (B) trans-1,2-Diiodoethylene 3.19 (77) 0 Diiodomethane 5.316 (25) 1.08 (25, B) Diisobutylamine 2.7 (22) 1.10 (25, B) 1,6-Diisocyanatohexane 14.41 (15) Diisopentylamine 2.5 (18) 1.48 (30, B) Diisopentyl ether 2.82 (20) 0.98 (20, lq), 1.23 (25, B) Diisopropylamine 1.26 (25, B) Diisopropyl ether 3.88 (25), 3.805 (30) 1.13 1,2-Dimethoxybenzene 4.45 (20), 4.09 (25) 1.32 (25, B) Dimethoxydimethylsilane 3.663 (25) 1,2-Dimethoxyethane 7.60 (10), 7.30 (23.5) 1.71 (25, B) Dimethoxymethane 2.644 (20) 0.74 N,N-Dimethylacetamide 38.85 (21), 37.78 (25) 3.80 2-Dimethylamino-2-methyl-1-propanol 12.36 (25) Dimethylamine 6.32 (0), 5.26 (25) 1.01 N,N-Dimethylaniline 4.90 (25), 4.4 (70) 1.68 2,4-Dimethylaniline 4.9 (20) 1.40 (25, B) 2,3-Dimethyl-1,3-butadiene 2.102 (20) N,N-Dimethylbutanamide 29.7 (20) 2,2-Dimethylbutane 1.869 (20) 0 2,3-Dimethylbutane 1.889 (20) 0 3,3-Dimethyl-2-butanone 12.73 (20) 5.114 SECTION 5 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D 2,2-Dimethyl-1-butanol 10.5 (20) Dimethyl carbonate 3.087 (25) 0.90 cis-1,2-Dimethylcyclohexane 2.06 (25) 0 trans-1,2-Dimethylcyclohexane 2.04 (25) 0 1,1-Dimethylcyclopentane 0 Dimethyl disulfide 9.6 (25) 1.8 Dimethyl ether 6.18 (15), 5.02 (25), 2.97 (110) 1.30 N,N-Dimethylformamide 38.25 (20), 36.71 (25) 3.82 (25, B) 2,4-Dimethylheptane 1.9 (20) 0 2,5-Dimethylheptane 1.9 (20) 0 2,6-Dimethylheptane 2 (20) 0 2,6-Dimethyl-4-heptanone 9.91 (20) 2.66 (25, C) 2,2-Dimethylhexane 1.95 (20) 0 2,5-Dimethylhexane 1.96 (21) 0 3,3-Dimethylhexane 1.96 (20) 0 3,4-Dimethylhexane 1.98 (19) 0 Dimethyl hexanedioate 6.84 (20) 2.28 (20, B) 1,3-Dimethylimidazolidin-2-one 37.60 (25) Dimethyl maleate 2.48 (25, C) Dimethyl malonate 9.82 (20) 2.41 (20, B) Dimethyl methanephosphate 22.3 (20) N,N-Dimethyl methanesulfonamide 80.4 (50) 1,2-Dimethylnaphthalene 2.61 (25) 0 1,6-Dimethylnaphthalene 2.73 (20) 0 4,4-Dimethyloxazolidine-2-one 39.2 (60) N,N-Dimethylpentanamide 26.4 (20) 2,2-Dimethylpentane 1.915 (20) 0 2,3-Dimethylpentane 1.929 (20) 0 2,4-Dimethylpentane 1.902 (20) 0 3,3-Dimethylpentane 1.942 (20) 0 Dimethyl pentanedioate 7.87 (20) 2,4-Dimethyl-3-pentanone 2.7 2,3-Dimethylphenol 4.81 (70) 2,4-Dimethylphenol 5.06 (30) 1.48 (20, B), 1.98 (60, B) 2,5-Dimethylphenol 5.36 (65) 1.43 (20, B), 1.52 (60, B) 2,6-Dimethylphenol 4.90 (40) 1.4 3,4-Dimethylphenol 9.02 (60) 1.77 (20, B) 3,5-Dimethylphenol 9.06 (50) 1.76 (20, B) Dimethyl o-phthalate 8.66 (20), 8.25 (25), 8.11 (45) 2.8 (25, B) 2,2-Dimethylpropanal 9.051 (20) 2.66 N,N-Dimethylpropanamide 34.6 (20) 2,2-Dimethylpropanamide 20.13 (25) 2,2-Dimethylpropane 1.769 (23), 1.678 (98) 0 2,2-Dimethylpropane nitrile 21.1 (20) 3.95 N,N-Dimethylpropanamide 33.1 2,2-Dimethyl-1-propanol 8.35 (60) 2,5-Dimethylpyrazine 2.436 (20) 0 2,6-Dimethylpyrazine 2.653 (35) 2,4-Dimethylpyridine 9.60 (20) 2.3 2,6-Dimethylpyridine 7.33 (20) 1.7 2,6-Dimethylpyridine-1-oxide 46.11 (25) 2,3-Dimethylquinoxaline 2.3 (25) 0 PHYSICAL PROPERTIES 5.115 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D Dimethyl succinate 7.19 (20) 2.09 (20, B) Dimethyl sulfate 55.0 (25) 4.31 (25, D) Dimethyl sulfide 6.70 (21) 1.554 Dimethyl sulfite 22.5 (23) 2.93 (20, B) Dimethyl sulfone 47.39 (110) Dimethyl sulfoxide 47.24 (20), 41.9 (55) 3.96 (25, B) cis-2,5-Dimethyltetrahydrofuran 5.03 (23) N,N-Dimethylthioformamide 47.5 (25) N,N-Dimethyl-o-toluidine 3.4 (20) 0.88 (25, B) N,N-Dimethyl-p-toluidine 3.9(20) 1.29 (25, B) m-Dinitrobenzene 22.9 (92) 2,2-Dinitropropane 42.4 (52) Dinonyl hexanedioate 2.53 (25, B) Dinonyl o-phthalate 4.65 (35), 4.52 (45) Dioctyl decanedioate 4.0 (27) Dioctyl o-phthalate 5.1 (25) 3.06 (25, C) 1,4-Dioxane 2.219 (20), 2.21 (25) 0 1,3-Dioxolane 1.19 1,3-Dioxolan-2-one 89.78 (40) Dipentene 2.38 (25) Dipentyl ether 2.80 (25) 0.98 (20, lq), 1.24 (25, B) Dipentyl o-phthalate 5.79 (35), 5.62 (45) 2.71 (20, lq) Dipentyl sulfide 3.83 (25) 1.59 (25, B) Dipentylamine 3.3 (52) 1.31 (20, C), 1.01 (25, B) 1,2-Diphenylethane 2.4 (110) 0 (110, lq), 0.45 (25, B) Diphenyl ether 3.73 (10), 3.63 (30) 1.3 Diphenylmethane 2.7 (18), 2.57 (26) 0.26 (30, lq), 0.3 (25, B) Dipropylamine 2.923 (20) 1.01 (20, lq), 1.03 (20, B) Dipropyl ether 3.38 (24) 1.21 N,N-Dipropylformamaide 23.5 (20) Dipropyl sulfone 32.62 (30) Dipropyl sulfoxide 30.37 (30) Divinyl ether 3.94 (15) 0.78 Dodecamethylcyclohexasiloxane 2.6 (20) Dodecamethylpentasiloxane 2.5 (20) Dodecane 2.05 (10), 2.01 (20) 0 1-Dodecanol 5.15 (20), 6.5 (25) 1.52 (20, B) 1-Dodecene 2.15 (20) 0 6-Dodecyne 2.17 (25) 1,2-Epoxybutane 2.01 (20, B) Erythritol 28 (128) Ethane 1.936 (178), 1.0015 (0) 0 1,2-Ethanediamine 16.8 (18), 13.82 (20) 1.96 1,2-Ethanediol 41.4 (20), 37.7 (25) 2.28 1,2-Ethanediol diacetate 7.7 (17) 2.34 (30, B) 1,2-Ethanediol dinitrate 28.26 (20) 1,2-Ethanediol monoacetate 12.95 (30) 1,2-Ethanedithiol 7.26 (20) Ethanesulfonyl chloride 3.89 (25, B) Ethanethiol 6.9 (15), 6.667 (25) 1.58 Ethanol 25.3 (20), 20.21 (55) 1.69 Ethanolamine 31.94 (20) 5.116 SECTION 5 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D Ethoxyacetylene 8.05 (25) 4-Ethoxyaniline 7.43 (25) Ethoxybenzene (phenetol) 4.216 (20) 1.45 2-Ethoxyethanol 13.38 (25) 2.24 (30, B) 2-Ethoxyethyl acetate 7.567 (30) 2.25 (30, B) 1-Ethoxy-2-methylbutane 3.96 (20) 1-Ethoxynaphthalene 3.3 (19) 1-Ethoxypentane 3.6 (23) -Ethoxytoluene 3.9 (20) Ethoxytrimethylsilane 3.013 (25) N-Ethylacetamide 135.0 (20) Ethyl acetate 6.081 (20), 5.30 (77) 1.78 Ethyl acetoacetate 14.0 (20) 3.22 (18, B, keto form) 2.04 (80, CS2, enol form) Ethyl acrylate 6.05 (30) 2.0 Ethylamine 8.7 (0), 6.94 (10) 1.22 N-Ethylaniline 5.87 (20) 4-Ethylaniline 4.84 (25) Ethylbenzene 2.446 (20) 0.59 Ethyl benzoate 6.20 (20) 2.00 Ethyl 2-bromoacetate 8.75 (30) Ethyl -bromobutanoate 8 (20) 2.40 (25, B) Ethyl 2-bromo-2-methylpropanoate 8.55 (30) Ethyl 2-bromopropanoate 9.4 (20), 8.57 (30) N-Ethylbutanamide 107.0 (25) Ethyl butanoate 5.18 (28) 1.74 (22, B) 2-Ethylbutanoic acid 2.72 (23) 2-Ethyl-1-butanol 6.19 (90) Ethyl tert-butyl ether 7.07 (25) Ethyl carbamate 14.2 (50), 14.14 (55) 2.59 (30, D) Ethyl chloroacetate 11.4 (21) 2.65 (25, B) Ethyl chlorocarbonate 9.736 (36) Ethyl cis-3-chlorocrotonate 7.67 (76) Ethyl trans-3-chlorocrotonate 4.70 (54) Ethyl chloroformate 11 (20) 2.56 (35, B) Ethyl 2-chloropropanoate 11.95 (30) Ethyl 3-chloropropanoate 10.19 (30) Ethyl trans-cinnamate 6.1 (18), 5.83 (20) 1.86 (20, B) Ethyl crotonate 5.4 (20) 1.95 (24, B) Ethyl cyanoacetate 31.62 (10), 26.9 (20) 2.2 Ethylcyclobutane 1.965 (20) Ethylcyclohexane 2.054 (20) 0 Ethylcyclopropane 1.933 (20) Ethyl dichloroacetate 12 (2), 10 (22) 2.63 (25, B) Ethyl dodecanoate 3.4 (20), 2.7 (143) 1.3 (20, lq) Ethylene 1.001 44 (0, g), 1.483 (3) 0 Ethylene carbonate 89.78 (40), 69.4 (91) 4.87 (25, B) Ethylenediamine 13.82 (20) 1.98 Ethylene dinitrate 28.3 (20) 3.58 (25, B) 2,2-(Ethylenedioxy)diethanol 23.69 (20) 5.58 (lq) Ethylene glycol 41.4 (20), 37.7 (25) 2.28 Ethylene glycol diacetate 7.7 (17) PHYSICAL PROPERTIES 5.117 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D Ethyleneimine 18.3 (25) 1.90 Ethylene oxide 14 (1), 12.42 (20) 1.89 Ethylene sulfite 39.6 (25) N-Ethylformamide 102.7 (25) Ethyl formate 8.57 (15), 7.16 (25) 1.94 Ethyl fumarate 6.5 (23) Ethyl furan-2-carboxylate 9.02 (20) Ethylhexadecanoate 3.2 (20), 2.71 (104) 1.2 (lq) 3-Ethylhexane 1.96 (20) 0 2-Ethyl-1,2-hexanediol 18.73 (20) Ethyl hexanoate 4.45 (20) 1.80 (20, B) 2-Ethyl-1-hexanol 7.58 (25), 4.41 (90) 1.74 (25, B) 2-Ethylhexyl acetate 1.8 Ethyl 2-iodopropanoate 8.6 (20) Ethyl isocyanate 19.7 (20) Ethyl isopentyl ether 3.96 (20) Ethyl isothiocyanate 19.6 (20) 3.67 (20, B) Ethyl lactate 15.4 (30) 2.4 (20, B) Ethyl maleate 8.6 (23) Ethyl methacrylate 5.68 (30) Ethyl 3-methylbutanoate 4.71 (20) Ethyl-N-methyl carbamate 21.10 (25) Ethyl methyl carbonate 2.985 (20) Ethyl methyl ether 1.17 3-Ethyl-2-methylpentane 1.99 (18) 0 Ethyl nitrate 19.7 (20) 2.93 (20, B) Ethyl 9-octadecanoate 3.2 (25) 1.83 (20, lq) 3-Ethyloxazolidine-2-one 66.8 (25) 4-Ethyloxazolidine-2-one 42.6 (25) Ethyl 4-oxopentanoate 12 (21) 3-Ethylpentane 1.942 (20) 0 Ethyl pentanoate 4.71 (18) 1.76 (28, B) 3-Ethyl-3-pentanol 3.158 (20) Ethyl pentyl ether 3.6 (23) 1.2 (20, B) Ethyl phenylacetate 5.3 (21) 1.82 (30) Ethyl phenyl sulfide 4.08 (25, B) N-Ethyl propanamide 126.8 (25) Ethyl propanoate 5.76 (20) 1.75 (22, B) Ethyl propyl ether 1.16 (25, B) 2-Ethylpyridine 8.33 (20) 4-Ethylpyridine 10.98 (20) Ethyl salicylate 7.99 (30) 2.85 (25, B) Ethyl stearate 2.98 (40), 2.69 (100) 1.65 (40, lq) Ethyl thiocyanate 29.3 (21) 3.33 (20, B) p-Ethyltoluene 2.24 (25) 0 Ethyl trichloroacetate 8.428 (20) 2.56 (25, B) Ethyltrimethylsilazine 2.275 (30) Ethyl vinyl ether 1.26 (20, B) Fluorobenzene 5.465 (20), 5.42 (25), 4.7 (60) 1.60 4-Fluorobenzene sulfonylchloride 12.65 (40) 2-Fluoroiodobenzene 8.22 (25) 3-Fluoroiodobenzene 4.62 (25) 5.118 SECTION 5 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D 4-Fluoroiodobenzene 3.12 (25) Fluoromethane 51.0 (142) 1.858 2-Fluoro-2-methylbutane 5.89 (20) 1.92 (25, B) 1-Fluoropentane 3.93 (20) 1.85 (25, B) o-Fluorotoluene 4.23 (25), 4.22 (30), 3.9 (60) 1.37 m-Fluorotoluene 5.41 (25), 4.9 (60) 1.82 p-Fluorotoluene 5.88 (25), 5.86 (30), 5.3 (60) 2.00 Formamide 111.0 (20), 103.5 (40) 3.73 Formanilide 3.37 (25, C) Formic acid 58.5 (15), 57.0 (21), 51.1 (25) 1.41 2-Furaldehyde 42.1 (20), 34.9 (50) 3.63 (25, B) Furan 2.88 (4) 0.66 2-Furfuryl acetate 5.85 (20) Furfuryl alcohol 16.85 (25) 1.92 (25, lq) Glycerol 46.5 (20), 42.5 (25) 2.68 (25, D) Glycerol tris(acetate) 7.2 (20) 2.73 (25, B) Glycerol tris(nitrate) 19.25 (20) 3.38 (25, B) Glycerol tris(oleate) 3.2 (26) 3.11 (23, B) Glycerol tris(palmitate) 2.9 (65) 2.80 (23, B) Glycerol tris(sterate) 2.8 (70) 2.86 (23, B) 1,6-Heptadiene 2.161 (20) Heptacosafluorotributylamine 2.15 (20) 2,2,3,3,4,4,4-Heptafluoro-1-butanol 14.4 (25) Heptanal 9.1 (20) 2.26 (40, lq), 2.58 (22, B) Heptane 1.921 (20), 1.85 (70) 0 1-Heptanethiol 4.194 (20) Heptanoic acid 3.04 (15), 2.6 (71) 1-Heptanol 11.75 (20) 1.73 (20, B) ()-2-Heptanol 9.72 (21) 1.73 (20, B) ()-3-Heptanol 7.07 (23) 1.73 (20, B) 4-Heptanol 6.18 (23) 1.72 (20, B) 2-Heptanone 11.95 (20), 8.27 (100) 2.61 (22, B) 3-Heptanone 12.7 (20) 2.81 (22, B) 4-Heptanone 12.60 (20), 9.46 (80) 2.74 (20, B) 1-Heptene 2.09 (20) 0 Heptylamine 3.81 (20) Hexachloroacetone 3.93 (19) Hexachloro-1,3-butadiene 2.55 (20) Hexadecamethylcyclooctasiloxane 2.7 (20) Hexadecane 2.046 (30) 0 1-Hexadecanol 3.8 (50) 1.67 (25, B) 1,5-Hexadiene 2.125 (26) 2,4-Hexadiene 2.207 (25) 0.31 (25, B) cis,cis-2,4-Hexadiene 2.163 (24) trans,trans-2,4-Hexadiene 2.123 (24) Hexafluoroacetone 2.104 (71) Hexafluorobenzene 2.029 (25) 0 1,1,1,3,3,3-Hexafluoro-2-propanol 16.70 (20) Hexamethyldisiloxane 2.2 (20) 0.37 (25, lq) Hexamethylphosphorotriamide 31.3 (20) 5.5, 4.31 (25, lq) Hexane 1.904 (15), 1.890 (20) 0 Hexanedinitrile 32.45 (25) 3.8 (25, B) PHYSICAL PROPERTIES 5.119 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D Hexanenitrile 17.26 (25) 1-Hexanethiol 4.436 (20) 1,2,6-Hexanetriol 31.5 (12) Hexanoic acid 2.600 (25) 1.13 (25, lq) 1-Hexanol 13.03 (20), 8.5 (75) 1.55 (20, B) ()-2-Hexanol 11.06 (25) 3-Hexanol 9.66 (25) 2-Hexanone 14.6 (15), 14.56 (20) 2.68 (22, B) 1-Hexene 2.051 (20) 0 cis-2-Hexene 0 trans-2-Hexene 1.978 (22) 0 cis-3-Hexene 2.069 (23) 0 trans-3-Hexene 1.954 (20) 0 Hexyl acetate 4.42 (20) Hexylamine 4.08 (20) 1-Hexyne 2.621 (23) 0.83 2-Hydroxyacetophenone 21.33 (25) 2-Hydroxybutanoic acid 37.7 (23) 3-Hydroxybutanoic acid 31.5 (23) N-(2-Hydroxyethyl)acetamide 96.6 (25) 4-Hydroxy-4-methyl-2-pentanone 18.2 (25) 3.24 (20, B) 3-Hydroxypropanoic acid 30.0 (23) Iodobenzene 4.59 (20) 1.70 1-Iodobutane 6.27 (20), 4.52 (130) 2.10 2-Iodobutane 7.873 (20) 2.12 1-Iodododecane 3.9 (20) 1.87 (20, C) Iodoethane 10.2 (50), 7.82 (20) 1.91 1-Iodoheptane 4.92 (22) 1.86 (22, B) 3-Iodoheptane 6.39 (22) 1.95 (22, B) 1-Iodohexadecane 3.5 (20) 1-Iodohexane 5.37 (20) 1.94 (20, C) Iodomethane 6.97 (20) 1.62 1-Iodo-3-methylbutane 5.6 (19) 1.85 (20, B) 2-Iodo-2-methylbutane 8.19 (20) 2.20 (20, B) 1-Iodo-2-methylpropane 6.47 (20) 1.89 (20, B) 2-Iodo-2-methylpropane 6.65 (10) 1-Iodooctane 4.6 (25) 1.80 (25, lq), 1.90 (20, C) 2-Iodooctane 5.8 (20) 2.07 (20, C) 1-Iodopentane 5.78 (20) 1.90 (20, B) 3-Iodopentane 7.432 (20) 1-Iodopropane 7.07 (20) 2.03 2-Iodopropane 8.19 (25) 2.01 (20, B) 3-Iodopropene 6.1 (19) p-Iodotoluene 4.4 (35) 1.72 (22, B) -Ionone 11 (18) -Ionone 12 (20) Iron pentacarbonyl 2.602 (20) Isobutanenitrile 20.4 (24) 3.61 (25, B) Isobutene 2.1225 (15) 0.503 N-Isobutylacetamide 111.0 (20) Isobutyl acetate 5.068 (20) 1.87 (22, B) Isobutylamine 4.43 (21) 1.27 (25, B) 5.120 SECTION 5 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D Isobutylbenzene 2.319 (20), 2.298 (30) 0.31 (20, lq) Isobutyl butanoate 4.1 (20) 1.9 Isobutyl chlorocarbonate 9.1 (20) Isobutyl formate 6.41 (20) 1.89 (20, B) Isobutyl isocyanate 11.64 (20) Isobutyl nitrate 2.7 (20) Isobutyl pentanoate 3.8 (19) Isobutylsilane 2.497 (20) Isobutyl trichloroacetate 7.667 (20) Isobutyl vinyl ether 3.34 (20) Isobutyronitrile 20.4 (24) 3.61 (25, B) Isopentyl acetate 4.72 (20), 4.63 (30) 1.84 (22, B), 1.76 (30, lq) Isopentyl butanoate 4.0 (20) Isopentyl pentanoate 3.6 (19) 1.8 (28, B) Isopentyl propanoate 4.2 (20) Isopropyl acetate 1.86 (22, B) Isopropylamine 5.627 (20) 1.19 Isopropylbenzene 2.38 (20) 0.79 Isopropyl carborane 45.0 (20) N-Isopropylformamide 65.7 (25) 1-Isopropyl-4-methylbenzene 2.24 (20) 0 Isopropyl nitrite 13.92 (13) Isoquinoline 11.0 (25) 2.73 Lactic acid 22 (17) Lactonitrile 38 (20) D-Limonene 2.4 (20), 2.37 (25) 1.57 (25, B) ()-Limonene 2.3 (20) 0.63 (25, B) Maleic anhydride 52.75 (53) ()-Mandelonitrile 17.8 (23) D-Mannitol 24.6 (170) Menthol 1.55 (20, B) Methacrylic acid 1.65 Methacrylonitrile 3.69 Methane 1.676 (182), 1.000 94 (0) 0 Methanesulfonyl chloride 34.0 (20) Methanethiol 1.52 (g) Methanol 41.8 (20), 33.0 (20) 1.70 2-Methoxyaniline 5.230 (30) 3-Methoxyaniline 8.76 (25) 4-Methoxyaniline 7.85 (60) o-Methoxybenzaldehyde 4.34 (20, B) p-Methoxybenzaldehyde 22.3 (22), 22.0 (30), 10.4 (248) 3.26 (35, B) Methoxybenzene 4.30 (21), 3.9 (70) 1.38 2-Methoxyethanol 17.2 (25), 16.0 (30) 2.36 N-(2-Methoxyethyl)acetamide 80.7 (25) 2-Methoxyethyl acetate 8.25 (20) 2.13 (30, B) 1-Methoxy-2-nitrobenzene 45.75 (20) 4.83 o-Methoxyphenol 11.95 (25) m-Methoxyphenol 11.59 (25) p-Methoxyphenol 11.05 (60) 2-Methoxy-4-(2-propenyl)phenol 2.46 (25, B) o-Methoxytoluene 3.5 (20) PHYSICAL PROPERTIES 5.121 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D m-Methoxytoluene 3.5 (20) p-Methoxytoluene 4.0 (20) Methoxytrimethylsilane 3.248 (25) N-Methylacetamide 178.9 (30), 138.6 (60) 4.39 (20, D) Methyl acetate 7.07 (15), 7.03 (20), 6.68 (25) 1.72 Methyl acrylate 7.03 (30) 1.77 (25, B) Methylamine 16.7 (58), 11.4 (10), 10.0 (18) 1.31 Methyl 2-aminobenzoate 21.9 (25) N-Methylaniline 5.96 (20) 1.67 (25, B) 2-Methylaniline 6.138 (25) 3-Methylaniline 5.816 (25) 4-Methylaniline 5.058 (25) N-Methylbenzenesulfonamide 67.1 (30) Methyl benzoate 6.64 (30) 1.86 (25, B) 2-Methyl-1,2-butadiene 2.1 (25) 0.15 2-Methyl-1,3-butadiene 2.098 (20) 0.25 2-Methylbutane 1.871 (0), 1.845 (20) 0.13 2-Methyl-2-butanethiol 5.083 (20) Methyl butanoate 5.6 (20), 5.48 (29) 1.72 (22, B) 3-Methylbutanoic acid 2.64 (20) 0.63 (25) 2-Methyl-1-butanol 15.63 (25) 1.9 2-Methyl-2-butanol 5.78 (25) 1.72 (20, B) 3-Methyl-1-butanol 15.63 (20), 14.7 (25), 5.82 (130) 1.82 (25, B) 3-Methyl-2-butanol 12.1 (25) 3-Methyl-2-butanone 10.37 (20) 2-Methyl-1-butene 2.180 (20) 0.52 (20, lq) 2-Methyl-2-butene 1.979 (23) 0.11 (25, lq), 0.34 (25, B) 3-Methyl-1-butene 1.0028 (100, g) 0.320 2-Methyl-1-butene-2-one 10.39 (30) 2-Methylbutyl acetate 4.63 (30) 1.82 (22) 3-Methylbutyl 3-methylbutanoate 4.39 (15) 3-Methylbutyronitrile 18 (220) 3.62 (25, C) Methyl carbamate 18.48 (55) Methyl chloroacetate 12.0 (20) N-Methyl-2-chloroacetamide 92.3 (50) Methyl 4-chlorobutanoate 9.51 (30) Methyl crotonate 6.664 (20) Methyl cyanoacetate 29.3 (20), 19.23 (50), 17.57 (65) Methylcyclohexane 2.024 (20) 0 2-Methylcyclohexanol 1.95 (25, B) cis-3-Methylcyclohexanol 16.05 (20) 1.91 trans-3-Methylcyclohexanol 8.05 (20) 1.75 4-Methylcyclohexanol 1.9 (25, B) 2-Methylcyclohexanone 16 (15), 14.0 (20) 2.98 (25, B) 3-Methylcyclohexanone 18 (80), 12.4 (20) 3.06 (25, B) 4-Methylcyclohexanone 15 (41), 12.35 (20) 3.07 (25, B) Methylcyclopentane 1.985 (20) 0 1-Methylcyclopentanol 7.11 (37) Methyl decanoate 1.65 (20, Hx) Methyl dodecanoate 1.70 (20, Hx) N-Methylformamide 200.1 (15), 189.0 (20), 182.4 (25) 3.83 Methyl formate 9.20 (15), 8.5 (20) 1.77 5.122 SECTION 5 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D 2-Methylfuran 2.76 (20) 0.65 Methyl furan-2-carboxylate 11.01 (20) (mono)Methyl glutarate 8.37 (20) 2-Methylheptane 1.95 (20) 0 2-Methyl-2-heptanol 3.38 (7), 2.46 (25) 2-Methyl-3-heptanol 3.37 (20), 3.75 (60) 1.63 (20, B) 2-Methyl-4-heptanol 3.30 (20), 3.65 (60) 3-Methyl-3-heptanol 3.74 (20), 2.89 (60) 3-Methyl-4-heptanol 9.1 (20), 7.4 (20) 4-Methyl-3-heptanol 5.25 (20), 4.62 (55) 4-Methyl-4-heptanol 2.87 (20), 3.27 (60) 2-Methylhexane 1.922 (20) 0 3-Methylhexane 1.920 (20) 0 Methyl hexanoate 4.615 (20) 1.70 (20, Hx) 2-Methyl-2-hexanol 3.257 (24) 3-Methyl-2-hexanol 4.990 (24) 3-Methyl-3-hexanol 3.248 (25) 5-Methyl-2-hexanone 13.53 (20) Methyl isobutanoate 1.98 (20, B) Methylisocyanate 21.75 (16) 2.8 Methyl methacrylate 6.32 (30) 1.68 (25, B) N-Methyl methanesulfonamide 104.4 (25) Methyl o-methoxybenzene 7.7 (21) Methyl p-methoxybenzoate 4.3 (33) N-Methyl-2-methylbutanamide 123.0 (34) N-Methyl-3-methylbutanamide 114.0 (26) Methyl 3-(methylthio)propanoate 8.66 (30) 1-Methylnaphthalene 2.92 (20) 0 Methyl nitrate 23.9 (20) Methyl nitrite 20.77 (73) Methyl o-nitrobenzoate 28 (25) 3.67 (30, B) 2-Methyloctane 1.97 (20) 0 3-Methyloctane 0 4-Methyloctane 1.97 (20) 0 Methyl oleate 3.211 (20) 2-Methyl-1,3-pentadiene 2.422 (25) 3-Methyl-1,3-pentadiene 2.426 (25) 4-Methyl-1,3-pentadiene 2.599 (20) N-Methylpentanamide 131.0 (13) 2-Methylpentane 1.886 (20) 0 3-Methylpentane 1.886 (20) 0 2-Methyl-2,4-pentanediol 23.4 (20) 2.9 4-Methylpentanenitrile 17.5 (22) 3.53 (25, B) Methyl pentanoate 4.992 (20) 1.62 (22, B) 3-Methyl-1-pentanol 15.2 (25) 3-Methyl-3-pentanol 4.322 (20) 4-Methyl-2-pentanone 15.6 (0), 15.1 (20), 11.78 (40) 4-Methylpentenenitrile 17.5 (22) 3.5 4-Methyl-3-penten-2-one 15.6 (0) 2.8 1-Methyl-1-phenylhydrazine 7.3 (19) 1.84 (15, B) Methyl phenyl sulfide 1.38 (20, B) Methyl phenyl sulfone 37.9 (100) PHYSICAL PROPERTIES 5.123 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D 2-Methylpropanal 2.6 N-Methylpropanamide 170.0 (20), 151 (40) 3.59 2-Methyl-1-propanamine 4.43 (21) 1.3 2-Methylpropane 1.752 (25) 0.132 2-Methylpropanenitrile 24.42 (20) 4.29 2-Methyl-1-propanethiol 4.961 (25) 2-Methyl-2-propanethiol 5.475 (20) 1.66 Methyl propanoate 6.200 (20) 1.70 (22, B) 2-Methylpropanoic acid 2.58 (20) 1.08 (25, lq) 2-Methylpropanoic anhydride 13.6 (19) 2-Methyl-1-propanol 26 (34), 17.93 (20) 1.64 2-Methyl-2-propanol 12.47 (25), 10.9 (30), 8.49 (50) 1.67 (22, B) 2-Methylpropene 0.50 2-Methyl-2-propenenitrile 3.69 2-Methylpropenoic acid 1.6 2-Methylpropyl acetate 5.07 (20) 1.87 (22, B) 2-Methyl-1-propylamine 4.43 (21) 1.27 (27) (2-Methylpropyl)benzene 2.32 (20) 0 2-Methylpropyl formate 6.41 (20) 1.88 (22) 2-Methylpyridine 10.18 (20) 1.85 3-Methylpyridine 11.10 (30) 2.41 (25, B) 4-Methylpyridine 12.2 (20) 2.70 2-Methylpyridine-1-oxide 36.4 (50) 3-Methylpyridine-1-oxide 28.26 (45) N-Methylpyrrolidine 32.2 (25) N-Methyl-2-pyrrolidinone 32.55 (20), 32.2 (25) 4.09 (30, B) Methyl salicylate 9.41 (30), 8.80 (41) 2.47 (25, B) 3-Methyl sulfolane 29.4 (25) Methyl tetradecanoate 1.62 (25, B) 2-Methyltetrahydrofuran 6.97 (25) Methyl tetrahydrothiophene-2-carboxylate 7.30 (20) Methyl thiocyanate 4.3 (19) 3.34 (20, B) 2-Methylthiophene 0.674 3-Methylthiophene 0.95 Methyl thiophene-2-carboxylate 8.81 (20) Methyl trifluoromethyl sulfone 32.0 (20) Morpholine 7.42 (25) 1.55 -Myrcene 2.3 (25) Naphthalene 2.54 (90) 0 1-Naphthonitrile 16 (70) 2-Naphthonitrile 17 (70) o-Nitroaniline 47.3 (80), 34.5 (90) 4.28 (20, B) m-Nitroaniline 35.6 (125) p-Nitroaniline 78.5 (155), 56.3 (160) 6.3 (25, B) o-Nitroanisole 45.75 (20) 4.83 m-Nitroanisole 25.7 (45) p-Nitroanisole 26.95 (65) Nitrobenzene 35.6 (20), 34.82 (25), 24.9 (90) 4.22 m-Nitrobenzyl alcohol 22 (20) 2-Nitrobiphenyl 3.83 (20, B) Nitroethane 29.11 (15), 28.06 (30), 27.4 (35) 3.23 5.124 SECTION 5 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D 2-Nitro-ethylbenzene 21.9 (0) Nitromethane 37.27 (20), 35.87 (30), 35.1 (35) 3.46 1-Nitro-2-methoxybenzene 4.83 o-Nitrophenol 16.50 (50) 3.14 (25, B) m-Nitrophenol 35.45 (100) p-Nitrophenol 42.20 (120) 1-Nitropropane 24.70 (15), 23.24 (30), 22.7 (35) 3.66 2-Nitropropane 26.74 (15), 25.52 (30) 3.73 N-Nitrosodimethylamine 53 (20) 4.01 (20, B) o-Nitrotoluene 26.36 (20), 22.0 (58) 3.72 (20, B) m-Nitrotoluene 24.95 (30), 22 (58) 4.20 (20, B) p-Nitrotoluene 22.2 (58) 4.47 (25, B) Nonane 1.972 (20), 1.85 (110) 0 Nonanoic acid 2.48 (22) 0.8 1-Nonanol 1.72 (20, B) 1-Nonene 2.18 (20) 0 (trans, trans)-9,12-Octadecadienoic acid 2.70 (70), 2.60 (120) 1.40 (18, Hx) Octamethylcyclotetrasiloxane 2.4 (20) 0.42 (25, lq), 0.67 (25, B) Octamethyltrisiloxane 2.3 (20) 0.64 (25, lq) Octane 1.948 (20), 1.83 (110) 0 Octanenitrile 13.90 (20) Octanoic acid 2.85 (15), 2.45 (20) 1.15 (25, lq) 1-Octanol 11.3 (10), 10.30 (20) 1.72 (20, B) 2-Octanol 8.13 (20), 6.52 (40) 1.65 (20, B) 2-Octanone 9.51 (20), 7.42 (100) 2.72 (15, B) 1-Octene 2.113 (20) 0 cis-2-Octene 2.06 (25) 0 trans-2-Octene 2.00 (25) 0 Oleic acid 2.34 (20) 1.2 Oxalyl chloride 3.470 (21) 0.93 (20, B) Palmitic acid 2.3 (70) Paraldehyde 13.9 (25) 1.43 Parathion 4.98 (25, B) Pentachloroethane 3.73 (20), 3.716 (25) 0.92 2,3,4,5,6-Pentachlorotoluene 4.8 (20) Pentadecane 0 cis-1,3-Pentadiene 2.32 (25) 0.50 (25, B) 1,4-Pentadiene 2.054 (24) Pentanal 10.1 (17), 10.00 (20) 2.59 (20, B) Pentane 2.011 (90), 1.837 (20) 0 1,2-Pentanediol 17.31 (24) 1,4-Pentanediol 26.74 (23) 1,5-Pentanediol 26.2 (20) 2.45 (20, D) 2,3-Pentanediol 17.37 (24) 2,4-Pentanediol 24.69 (21) 2,4-Pentanedione 26.52 (30) 3.03 Pentanenitrile 20.04 (20) 4.12, 3.57 (25, B) 1-Pentanethiol 4.85 (20), 4.55 (25), 4.23 (50) 1.54 (25, lq) Pentanoic acid 2.66 (21) 1.61 (20, D) 1-Pentanol 16.9 (20), 15.13 (25) 1.71 (20, B) 2-Pentanol 13.71 (25) 1.66 (22, B) PHYSICAL PROPERTIES 5.125 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D 3-Pentanol 13.35 (25) 1.64 (22, B) 2-Pentanone 15.45 (20), 11.73 (80) 2.72 (22, B) 3-Pentanone 19.4 (20), 17.00 (20) 2.72 (20, B) 2-Pentanone oxime 3.3 (25) 1-Pentene 2.011 (20) 0.5 cis-2-Pentene 0 trans-2-Pentene 0 Pentyl acetate 4.79 (20) 1.75 Pentylamine 4.27 (20) 1.55 (30, B) Pentyl formate 5.7 (19) 1.90 Pentyl nitrate 9.0 (18) Pentyl nitrite 7.21 (25) tert-Pentyl nitrite 10.88 (25) Phenanthrene 2.8 (20) 0 Phenol 12.40 (30), 9.78 (60) 1.224 Phenoxyacetylene 4.76 (25) 1.42 (25, lq) Phenyl acetate 5.40 (25) 1.54 (22, B) Phenylacetic acid 3.47 (80) Phenylacetonitrile 17.87 (26), 8.5 (234) 3.47 (27, B) Phenylacetylene 2.98 (20) 0.72 (20, B) 1-Phenylethanol 8.77 (20), 7.6 (90) 1.51 (20, B) 2-Phenylethanol 12.31 (20) Phenylhydrazine 7.15 (20) 1.67 (25, B) Phenyl isocyanate 8.94 (20) Phenyl isothiocyanate 10 (20) 1-Phenylpropene 2.7 (20) 2-Phenylpropene 2.3 (20) 3-Phenylpropene 2.6 (20) Phenyl salicylate 6.3 (50) Phosgene 4.7 (0), 4.3 (22) Phthalide 36 (75) ()--Pinene 2.64 (25), 2.26 (30) 0.60 (25, B) L--Pinene 2.76 (20) Piperidine 4.33 (20) 1.19 (25, B) Propanal 18.5 (17) 2.52 Propane 1.668 (20) 0.084 1,2-Propanediamine 10.2 1,3-Propanediamine 9.55 1.96 (25, B) 1,2-Propanediol 32.0 (20), 27.5 (30) 2.27 (25, D) 1,3-Propanediol 35.1 (20) 2.52 (25, D) 1,2-Propanediol dinitrate 26.80 (20) 1,3-Propanediol dinitrate 18.97 (20) 1,2-Propanedithiol 7.24 (20) 1,3-Propanedithiol 8.11 (30) Propanenitrile 29.7 (20) 4.05 1-Propanethiol 5.94 (15), 1.55 (25) 1.68 2-Propanethiol 5.95 (25) 1.61 1,2,3-Propanetriol 1-acetate 38.57 (31), 7.11 (20) Propanoic acid 3.30 (10), 3.44 (25) 1.76 Propanoic anhydride 18.30 (20) 1-Propanol 20.8 (20), 20.33 (25) 1.55 2-Propanol 20.18 (20), 18.3 (25), 16.2 (40) 1.58 5.126 SECTION 5 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D 2-Propenal 3.12 Propene 2.137 (53), 1.88 (20), 1.44 (90) 0.366 Propenenitrile 33.0 (20) 3.87 2-Propen-1-ol 21.6 (15), 19.7 (20) 1.60 Propionaldehyde (propanal) 18.5 (17) 2.75 Propionamide 3.4 (30, B) Propyl acetate 5.62 (20) 1.86 (25, B) N-Propylacetamide 117.8 (25) Propylamine 5.31 (20), 5.08 (26) 1.17 Propylbenzene 2.37 (20), 2.351 (30) 0 Propyl benzoate 5.78 (30) t Propyl butanoate 4.3 (20) Propyl carbamate 12.06 (65) Propylene carbonate 66.14 (20) 4.9 Propyleneimine 1.77 (cis), 1.60 (trans) 1,2-Propylene oxide 2.00 Propyl formate 7.72 (19), 6.92 (30) 1.91 (22, B) Propyl nitrate 14 (18) 3.01 (20, B) Propyl nitrite 12.35 (23) Propyl pentanoate 4 (19) N-Propylpropanamide 118.1 (25) Propyl propanoate 5.25 (20) 1.79 (22, B) Propyl trichloroacetate 8.32 (25) Propyne 3.218 (27) 0.784 2-Propyn-1-ol 20.8 (20) 1.13 Pulegone 9.5 (20) 2.00 (25, B) Pyridazine 4.22 Pyrazine 2.80 (50) 0 Pyridine 13.26 (20), 12.3 (25), 9.4 (116) 2.215 Pyridine-1-oxide 35.94 (70) Pyrimidine 2.33 1H-Pyrrole 8.00 (20), 8.13 (25) 1.74 Pyrrolidine 8.30 (20) 1.58 (20, B) 2-Pyrrolidone 3.55 (25, B) Quinoline 9.16 (20), 9.00 (25) 2.29 Safrole 3.1 (21) Salicylaldehyde 18.35 (20) 2.86 (20, B) D-Sorbitol 35.5 (80) Squalane 1.911 (100) 0 Squalene 0.68 (25, B) Stearic acid 2.29 (70), 2.26 (100) 1.76 (25, D) Styrene 2.47 (20), 2.43 (25), 2.32 (75) 0.13 (25, lq) Succinonitrile 62.6 (25), 56.5 (57), 54 (68) 3.68 (30, toluene) -Terpinene 2.45 (25) Terpinolene 2.29 (25) 1,1,2,2-Tetrabromoethane 8.6 (3), 7.0 (22), 6.72 (30) 1.41 1,1,2,2-Tetrachlorodifluoroethane 2.52 (35) 1,1,1,2-Tetrachloroethane 9.22 (66) 1,1,2,2-Tetrachloroethane 8.50 (20) 1.32 Tetrachloroethylene 2.30 (25), 2.268 (30) 0 1,1,3,4-Tetrachlorohexafluoro-butane 2.86 (20) PHYSICAL PROPERTIES 5.127 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D Tetradecafluorohexane 1.76 (25) Tetradecamethylhexasiloxane 2.5 (20) 1.58 (20, lq) Tetradecane 0 Tetradecanoic acid 0.76 (25, B) 1-Tetradecanol 4.72 (38), 4.40 (48) 1.69 (25, C) Tetraethylene glycol 20.44 (20) 5.84 (20, lq) Tetraethyl lead 0.3 (20, B) Tetraethylsilane 2.09 (20) 0 Tetraethyl silicate 4.1 (20) 1.72 (32, B) Tetrafluoromethane 1.685 (147) 2,2,3,3-Tetrafluoro-1-propanol 21.03 (25) Tetrahydrofuran 11.6 (70), 7.52 (22) 1.75 (25, B) Tetrahydro-2-furanmethanol 13.61 (23), 13.48 (30) 2.12 (35, lq) 2-Tetrahydrofurfuryl acetate 9.65 (20) 1,2,3,4-Tetrahydronaphthalene 2.77 (25) 0 1,2,3,4-Tetrahydro-2-naphthol 11.7 (20), 6.7 (90) Tetrahydropyran 5.66 (20), 5.61 (25) 1.74 Tetrahydrothiophene 1.9 Tetrahydrothiophene-1,1-dioxide (sulfolane) 43.26 (30) 4.81 (25, B) Tetrahydrothiophene-S-oxide 42.96 (25), 42.5 (30) Tetrakis(methylthio)methane 2.818 (70) Tetramethoxymethane 2.40 (20) Tetramethyl germanium 1.817 (24) 1,1,3,3-Tetramethylguanidine 11.5 (25) Tetramethylsilane 1.921 (20) 0 Tetramethyl silicate 6.0 (20) 1,1,2,2-Tetramethylurea 23.10 (20) 3.47 (25, B) Tetranitromethane 2.317 (25) 0 Tetrathiomethylmethane 2.82 (70) Thiacyclopentane 1.90 (25, B) Thioacetic acid 14.30 (25) Thiophene 2.74 (20), 2.57 (25) 0.55 Thymol 1.55 (25, B) Toluene 2.385 (20), 2.364 (30) 0.375 o-Toluidine 6.34 (18), 6.14 (25), 5.71 (58) 1.60 (25, B) m-Toluidine 5.95 (18), 5.82 (25), 5.45 (58) 1.45 (25, B) p-Toluidine 5.06 (60) 1.52 (25, B) m-Tolunitrile 4.21 (22, B) p-Tolunitrile 4.47 (20, B) Tribenzylamine 0.65 (20, B) 2,2,2-Tribromoacetaldehyde 7.6 (20) 1.70 (20, C) Tribromochloromethane 2.60 (60) Tribromofluoromethane 3.00 (20) Tribromomethane 4.404 (10), 4.39 (20) 0.99 Tribromonitromethane 9.03 (25) 1,2,3-Tribromopropane 6.45 (20), 6.00 (30) 1.59 (25, B) Tributylamine 2.34 (20) 0.78 (25, B) Tributyl borate 2.23 (20) 0.78 (25, C) Tributyl phosphate 8.34 (20), 7.96 (30) 3.07 (25, B) Tributyl phosphite 1.92 (20, C) Trichloroacetaldehyde 7.6 (40), 6.9 (20), 6.8 (25) 1.96 (25, B) 5.128 SECTION 5 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D Trichloroacetic acid 4.34 (60) 1.1 (25, B, dimer) Trichloroacetic anhydride 5.0 (25) Trichloroacetonitrile 7.85 (19) 1.93 (19, lq) 4,4,4-Trichlorobutanal 10.0 (18) 1,2,2-Trichloro-1,1-difluoroethane 4.01 (30) 1,1,1-Trichloroethane 7.1 (7), 7.24 (20) 1.755 1,1,2-Trichloroethane 7.19 (25) 1.45 Trichloroethylene 3.42 (16), 3.39 (28) 0.77 (30, lq), 0.95 (30, B) Trichloroethylsilane 2.0 Trichlorofluoromethane 3.00 (25), 2.28 (29) 0.45 (Trichloromethyl)benzene 6.9 (21) 2.0 Trichloromethylsilane 1.87 (25, B) Trichloronitromethane 7.32 (25) 2,4,6-Trichlorophenol 1.88 (25, D) 1,2,3-Trichloropropane 7.5 (20) 1.61 Trichlorosilane 0.86 ,,-Trichlorotoluene 6.9 (21) 2.17 (20, B) 1,1,2-Trichloro-1,2,2-trifluoroethane 2.41 (25) Tridecane 2.02 (20) 0 1-Tridecene 2.14 (20) 0 Triethanolamine 29.36 (25) 3.57 (25, B) Triethoxymethane 4.779 (20) Triethylaluminum 2.9 (20) Triethylamine 2.418 (20) 0.66 Triethylborane 1.874 (20) Triethylene glycol 23.69 (20) 5.58 (20, lq) Triethylenetetramine 10.76 (20) Triethyl orthovanadate 3.333 (25) Triethyl phosphate 13.43 (15), 13.20 (25), 10.93 (65) 3.08 (25, B) Triethylphosphine oxide 35.5 (50) Triethylphosphine sulfide 39.0 (98) Triethyl phosphite 5.0 1.82 (25, D) Trifluoroacetic acid 8.42 (20), 5.76 (50) 2.28 Trifluoroacetic anhydride 2.7 (25) 1,1,1-Trifluoroethane 2.347 2,2,2-Trifluoroethanol 27.68 (20) 2.03 (25, cHex) Trifluoromethane 5.2 (26) 1.651 (Trifluoromethyl)benzene 9.22 (25) 2.86 1-Trifluoromethyl-3-nitrobenzene 17.0 (30) ,,-Trifluorotoluene 9.2 (30), 8.1 (60) Trimethoxymethylsilane 4.9 (25) Trimethylamine 2.44 (25) 0.612 1,2,3-Trimethylbenzene 2.66 (20), 2.609 (30) 0 1,2,4-Trimethylbenzene 2.38 (20), 2.36 (30) 0 1,3,5-Trimethylbenzene 2.28 (20) 0 Trimethyl borate 2.276 (20) 0.82 (25, C) 2,2,3-Trimethylbutane 1.930 (20) 0 Trimethylchlorosilane 10.21 (0) Trimethylene sulfide 1.85 2,2,5-Trimethylhexane 0 2,3,5-Trimethylhexane 0 2,2,3-Trimethylpentane 1.962 (20) 0 PHYSICAL PROPERTIES 5.129 TABLE 5.17 Dielectric Constant (Permittivity) and Dipole Moment of Various Organic Substances (Continued) Substance Dielectric constant, Dipole moment, D 2,2,4-Trimethylpentane 1.940 (20) 0 2,3,3-Trimethylpentane 1.98 (20) 0 2,3,4-Trimethylpentane 1.97 (20) 0 Trimethyl phosphate 20.6 (20) 3.2 Trimethylphosphine sulfide 71.6 (20) Trimethyl phosphite 1.83 (20, C) 2,4,6-Trimethylpyridine 7.807 (25) 1.95 (25, B) 2,4,6-Trinitrophenol 4.0 (21) 1,3,5-Trioxane 15.55 (65) 2.08 Triphenyl phosphite 3.67 (45), 3.57 (65) 2.04 (25, B) Tris(4-ethylphenyl) phosphite 3.74 (15), 3.61 (45) 2.08 (25, B) Tris(2-methylphenyl) phosphate 6.7 (25) 2.9 Tris(3-methylphenyl) phosphate 3.0 Tris(4-methylphenyl) phosphate 3.2 Tris(m-tolyl) phosphite 3.67 (15), 3.53 (45) 1.62 (25, B) Tris(p-tolyl) phosphite 3.88 (15), 3.74 (45) 1.77 (25, B) Tri-o-tolyl phosphate 6.92 (40) 2.84 (40, C) Undecane 2.00 (20), 1.84 (150) 0 2-Undecanone 2.71 (15, B) 1-Undecene 2.14 (20) 0 Urea 4.59 (25, D) Vinyl acetate 1.79 (25, B) Vinyl chloride 6.26 (17) 1.45 Vinyl isocyanate 10.62 (25) 2-Vinylpyridine 9.126 (20) 4-Vinylpyridine 10.50 (20) o-Xylene 2.562 (20), 2.54 (30) 0.62 m-Xylene 2.359 (20), 2.35 (30) 0.33 (20, lq), 0.37 (20, B) p-Xylene 2.273 (20), 2.22 (50) 0 Xylitol 40.0 (20) 5.130 SECTION 5 TABLE 5.18 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Inorganic Substances For the majority of compounds the dependence of the surface tension on the temperature can be given as: a bt where a and b are constants and t is the temperature in degrees Celsius.
The values of the dipole moment are for the gas phase.
Substance Viscosity, 2 mN · s · m Dielectric constant, Dipole moment, D Surface tension, 1 mN · m a b Air 0.018220, 0.0231127 1.000 536 4 AlBr3 3.38100 5.2 Ar (g) 0.023320, 0.0288127 1.000 517 2 (lq) 1.538191, 1.325132 0 34.28 0.2493 AsBr3 8.8335 1.61 54.41 0.1043 AsCl3 12.620 1.59 41.67 0.097 81 AsH3 (arsine) 2.4072, 2.0520 0.20 BBr3 2.580 0 31.90 0.1280 BCl3 0 BF3 0.017127, 0.0217127 0 2.92 0.2030 B2H6 (diborane) 1.87292.5 0 3.13 0.1783 B4H10 0.486 B5H9 21.125 2.13 B6H10 2.50 B3H6N3 0 Br2 (g) 1.012820 (lq) 1.2520, 1.0316, 0.74425 3.148425 0 45.5 0.1820 BrF3 2.2220 106.825 1.1 38.30 0.0999 BrF5 0.6224 7.9124.5 1.51 25.24 0.1098 Cl2 (g) 0.013220 0 (lq) 2.14765, 1.9114 19.87 0.1897 ClF3 0.4812 4.39420, 4.2925 0.554 26.9 0.1660 ClF5 4.2880 ClO3F 2.194123 0.023 12.24 0.1576 CO (g) 0.017520, 0.0221127 1.000 700 0.112 (lq) 30.20 0.2073 CO2 (g) 0.014720, 0.0197127 1.000 922 0 (lq) 0.07120 1.600C, 50 atm, 1.44923 6.1410 2.6710 COCl2 4.3422 1.17 22.59 0.1456 COF2 0.95 COS 4.4788 0.712 12.12 0.1779 COSe 3.4710 0.73 CS 1.98 PHYSICAL PROPERTIES 5.131 TABLE 5.18 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Inorganic Substances (Continued) Substance Viscosity, 2 mN · s · m Dielectric constant, Dipole moment, D Surface tension, 1 mN · m a b CS2 (g) 1.00290 0 (lq) 0.4290, 0.37520, 0.35225 2.63220 35.29 0.1484 CrO2Cl2 2.620 0.47 D2 (deuterium) 0.012627, 0.0154127 1.290255, 1.277253 DH 1.26916.78 K 6.537 0.1883 D2O 0.011125 (g), 1.09825 (lq) 79.7520, 78.2525 1.87 71.7220 68.3840 F2 1.491220, 1.54202 16.10 0.1646 GaCl3 0.85 35.0 0.1000 GeBr4 35.5130 33.7050 GeBr4 2.95526 35.5130 33.7050 GeCl4 2.4630, 2.43025 0 22.4430 GeClH3 2.13 H2 (g) 0.008820, 0.109127 1.000 253 8 0 t (lq) 1.27913.5 K, 1.22820.4 K 2.80258 2.12254 HBr (g) 1.003 130 0.827 (lq) 0.8367 8.2386, 3.8225 13.10 0.2079 He (g) 0.019627, 0.024427 1.000 065 0 0 (lq) (II) 1.05552.055 K 0.3510.50 K 0.3172.00 K (III) 0.1513.61 K 0.1311.13 K (IV) 0.3720.50 K 0.3541.40 K HCl (g) 0.014627, 0.0197127 1.00460 1.109 (lq) 0.5195 14.3114, 4.6028 HClO 1.3 HCN 0.2350, 0.20618, 0.18325 114.920 2.98 19.4510 18.3320 HCNO (iso-cyanate) 1.6 HCNS 1.7 HF 0.2560 83.60 1.826 10.41 0.078 67 HFO 2.23 HI (g) 1.002 340 0.448 (lq) 3.8753, 2.9022 HN3 (azide) 1.70 H2O (see Table 5.19) H2O2 1.2520 84.20, 74.617 1.573 78.97 0.1549 HNO3 2.17 H2S (g) 1.00400 0.97 (lq) 0.4120 5.9310 48.95 0.1758 H2Se 0.24 22.32 0.1482 5.132 SECTION 5 TABLE 5.18 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Inorganic Substances (Continued) Substance Viscosity, 2 mN · s · m Dielectric constant, Dipole moment, D Surface tension, 1 mN · m a b HSO3Cl 2.4320 6060 HSO3F 1.5625 ca. 12025 H2SO4 24.5425 10025 H2Te 0.2 29.03 0.2619 Hg 1.55220, 1.52625, 1.40250 0 490.6 0.2049 I2 1.98116 11.1118 0 IBr 0.726 IF 1.95 IF5 37.1320 2.18 33.16 0.1318 IF7 1.9723 IOF5 1.7525 Kr (g) 0.025020, 0.0331127 0.05 (lq) 1.644153.4 40.576 (in K) 0.2890 (in K) Mn2O7 3.2820 Ne (g) 0.030320, 0.0389127 1.000 063 920 0 (lq) 1.1907247.1 N2 (g) 0.017620, 0.0222127 1.000 548 020 0 (lq) 1.468210, 1.454203 26.42 (in K) 0.2265 (in K) NH3 (g) 1.00720 1.471 (lq) 0.25433.5 22.433.5, 16.6120 37.9150 35.3840 N2H4 (hydra-zine) 0.9720, 0.87625, 0.62850 52.920, 51.725 1.75 72.41 0.2407 Ni(CO)4 18.11 0.1117 NO 0.019227, 0.0238127 0.159 67.48 0.5853 N2O (g) 0.014620, 0.0194127 1.001 130 0.161 (lq) 1.5215 5.09 0.2032 NO2 0.5320, 0.40225 0.316 N2O4 2.5625, 2.4420 0.5 N2O3 2.122 NOBr 13.415 1.8 NOCl 18.212 1.9 29.49 0.1493 NO2Cl 0.53 NOF 1.73 14.00 0.1165 NO2F 0.47 8.26 0.1854 NO3 31.1370 O2 (g) 0.020420, 0.0261127 1.000 494 720 0 (lq) 1.568218.7, 1.507193 33.72 0.2561 O3 4.75183 0.534 38.1183 PHYSICAL PROPERTIES 5.133 TABLE 5.18 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Inorganic Substances (Continued) Substance Viscosity, 2 mN · s · m Dielectric constant, Dipole moment, D Surface tension, 1 mN · m a b OF2 0.297 O2F2 (FOOF) 1.44 OsO4 0 P (lq) 4.09634 PBr3 3.920 0.56 45.34 0.1283 PCl3 0.6620, 0.52925, 0.43950 3.4325, 3.5017 0.78 31.14 0.1266 PCl5 2.85160, 2.7165 0.9 PCl2F3 2.81345 PCl3F2 2.3755 PCl4F 2.650.5 PF3 1.03 PF5 0 PH3 2.915 0.574 PI3 4.1265 0 61.66 0.067 71 PO3 40.44 0.1158 POCl3 1.06525 13.725 2.54 35.22 0.1275 POF3 1.868 PSCl3 5.822 1.42 37.00 0.1272 PSF3 0.64 PbCl4 2.7820 ReO2Cl3 57.00 0.2485 ReO3Cl 54.05 0.1979 S 3.499134 SCl2 2.91525 0.36 S2Cl2 dimer 4.7915 1.0 46.23 0.1464 S2F2 FSSF isomer 1.45 SSF2 isomer 1.03 SF4 0.632 12.87 0.1734 SF6 0.015327, 0.0198127 1.8150 0 5.66 0.1190 S2F10 2.02020 0 SO2 (g) 0.012927, 0.0175127 1.00930 1.63 (lq) 16.325 26.58 0.1948 SO3 3.1118 0 SOBr2 9.0620 9.11 46.28 0.0750 SOCl2 9.2520, 8.67525 1.45 36.10 0.1416 SOF2 1.63 SO2Cl2 9.1520 1.81 32.10 0.1328 SO2F2 1.12 SbCl3 33.275 3.93 47.87 0.1238 SbCl5 3.2220 0 SbF5 49.07 0.1937 SbH3 0.12 Se (lq) 5.44237.5 SeF4 1.78 38.61 0.1274 5.134 SECTION 5 TABLE 5.18 Viscosity, Dielectric Constant, Dipole Moment, and Surface Tension of Selected Inorganic Substances (Continued) Substance Viscosity, 2 mN · s · m Dielectric constant, Dipole moment, D Surface tension, 1 mN · m a b SeF6 0 SeOCl2 46.220 2.64 SeO2 2.62 SiCl4 99.425, 96.250 2.2480 0 20.78 0.099 62 SiF4 0 SiH4 0 SiHCl3 0.4150, 0.32625 0.86 20.43 0.1076 SiH3Cl 1.31 SnBr4 3.16930 0 SnCl4 3.0140, 2.8920 0 29.92 0.1134 TeF6 0 TiCl4 2.84314, 2.8020 0 33.5420 31.0640 UF6 (g) 1.002 9267 0 (lq) 2.1865 25.5 0.1240 VCl4 3.0525 0 VOBr3 3.625 VOCl3 3.425 0.3 36.3620 33.6040 Xe (g) 0.022820, 0.030127 1.001 23 0 (lq, II) 1.880111.9 0.3451.00 K 0.3172.00 K XeF6 4.10125 TABLE 5.19 Refractive Index, Viscosity, Dielectric Constant, and Surface Tension of Water at Various Temperatures Temp., C Refractive index, nD Viscosity, mN · s · m2 Dielectric constant, Surface tension, mN · s · m2 0 1.333 95 1.793 87.90 75.83 5 1.333 88 1.521 85.84 75.09 10 1.333 69 1.307 83.96 74.36 15 1.333 39 1.135 82.00 73.62 20 1.333 00 1.002 80.20 72.88 25 1.332 50 0.890 3 78.35 72.14 30 1.331 94 0.797 7 76.60 71.40 35 1.331 31 0.719 0 74.83 70.66 40 1.330 61 0.653 2 73.17 69.92 50 1.329 04 0.547 0 69.58 68.45 60 1.327 25 0.466 5 66.73 66.97 70 1.325 11 0.404 0 63.73 65.49 80 0.354 4 60.86 64.01 90 0.314 5 58.12 62.54 100 0.281 8 55.51 61.07 PHYSICAL PROPERTIES 5.135 5.6.1 Refractive Index The refractive index n is the ratio of the velocity of light in a particular substance to the velocity of light in vacuum. Values reported refer to the ratio of the velocity in air to that in the substance saturated with air. Usually the yellow sodium doublet lines are used; they have a weighted mean of 589.26 nm and are symbolized by D. When only a single refractive index is available, approximate values over a small temperature range may be calculated using a mean value of 0.000 45 per degree for dn/dt, and remembering that decreases with an increase in temperature. If a transition point nD lies within the temperature range, extrapolation is not reliable.
The specific refraction is given by the Lorentz and Lorenz equation, rD 2 n 1 1 D R · D 2 n 2 D where is the density at the same temperature as the refractive index, and is independent of tem-perature and pressure. The molar refraction is equal to the specific refraction multiplied by the molecular weight. It is a more or less additive property of the groups or elements comprising the compound. A set of atomic refractions is given in Table 5.19; an extensive discussion will be found in Bauer, Fajans, and Lewin, in Physical Methods of Organic Chemistry, 3d ed., A. Weissberger (ed.), vol. 1, part II, chap. 28, Wiley-Interscience, New York, 1960.
The empirical Eykman equation 2 n 1 1 D · constant n 0.4 D offers a more accurate means for checking the accuracy of experimental densities and refractive indices, and for calculating one from the other, than does the Lorentz and Lorenz equation.
The refractive index of moist air can be calculated from the expression 103.49 177.4 86.26 5748 6 (n 1) 10 p p 1 p 1 2 3 T T T T where p1 is the partial pressure of dry air (in mmHg), p2 is the partial pressure of carbon dioxide (in mmHg), p3 is the partial pressure of water vapor (in mmHg), and T is the temperature (in kelvins).
Example: 1-Propynyl acetate has and at 20C; the molecular n 1.4187 density 0.9982 D weight is 98.102. From the Lorentz and Lorenz equation, 2 (1.4187) 1 1 r · 0.2528 D 2 (1.4187) 2 0.9982 The molar refraction is Mr (98.102)(0.2528) 24.80 D From the atomic and group refractions in Table 5.19, the molar refraction is computed as follows: 6 H 6.600 5 C 12.090 1 C#C 2.398 1 O(ether) 1.643 1 O(carbonyl) 2.211 24.942 Mr D 5.136 SECTION 5 TABLE 5.20 Atomic and Group Refractions Group MrD Group MrD H 1.100 N (primary aliphatic amine) 2.322 C 2.418 N (sec-aliphatic amine) 2.499 Double bond (C"C) 1.733 N (tert-aliphatic amine) 2.840 Triple bond (C#C) 2.398 N (primary aromatic amine) 3.21 Phenyl (C6H5) 25.463 N (sec-aromatic amine) 3.59 Naphthyl (C10H7) 43.00 N (tert-aromatic amine) 4.36 O (carbonyl) (C"O) 2.211 N (primary amide) 2.65 O (hydroxyl) (O9H) 1.525 N (sec amide) 2.27 O (ether, ester) (C9O9) 1.643 N (tert amide) 2.71 F (one fluoride) 0.95 N (imidine) 3.776 (polyfluorides) 1.1 N (oximido) 3.901 Cl 5.967 N (carbimido) 4.10 Br 8.865 N (hydrazone) 3.46 I 13.900 N (hydroxylamine) 2.48 S (thiocarbonyl) (C"S) 7.97 N (hydrazine) 2.47 S (thiol) (S9H) 7.69 N (aliphatic cyanide) (C#N) 3.05 S (dithia) (9S9S9) 8.11 N (aromatic cyanide) 3.79 Se (alkyl selenides) 11.17 N (aliphatic oxime) 3.93 3-membered ring 0.71 NO (nitroso) 5.91 4-membered ring 0.48 NO (nitrosoamine) 5.37 NO2 (alkyl nitrate) (alkyl nitrite) (aliphatic nitro) (aromatic nitro) (nitramine) 7.59 7.44 6.72 7.30 7.51 5.6.2 Surface Tension The surface tension of a liquid, , is the force per unit length on the surface that opposes the expansion of the surface area. In the literature the surface tensions are expressed in 1 dyn · cm ; in the SI system. For the large majority of compounds the dependence 1 1 1 dyn · cm 1 mN · m of the surface tension on the temperature can be given as a bt where a and b are constants and t is the temperature in degrees Celsius. The values of a and b given in Tables 5.16 and 5.18 can be used to calculate the values of surface tension for the particular compound within its liquid range. For example, the least-squares constants for acetic anhydride (liquid from 73 to 140C) are 35.52 and 0.1436, respectively. At 20C, 1 35.52 0.1436(20) 32.64 dyn · cm .
A compilation of data of some 2200 pure liquid compounds has been prepared by Jasper, J. Phys.
Chem. Reference Data 1:841 (1972).
5.6.3 Dipole Moments The permanent dipole moment of an isolated molecule depends on the magnitude of the charge and on the distance separating the positive and negative charges. It is defined as q r i i i PHYSICAL PROPERTIES 5.137 where the summation extends over all charges (electrons and nuclei) in the molecule. The numerical values of the dipole moment, expressed in the c.g.s. system of units, are in debye units, D, where esu of The conversion factor to SI units is 18 1 D 10 charge centimeters.
30 1 D 3.335 64 10 C · m [coulomb-meter] Tables 5.17 and 5.18 contain a selected group of compounds for which the dipole moment is given. An extensive collection of dipole moments (approximately 7000 entries) is contained in A. L. McClellan, Tables of Experimental Dipole Moments, W. H. Freeman, San Francisco, 1963. A critical survey of 500 compounds in the gas phase is given by Nelson, Lide, and Maryott, NSRDS-NBS 10, Washington, D.C., 1967.
5.6.4 Dielectric Constants If two oppositely charged plates exist in a vacuum, there is a certain force of attraction between them, as stated by Coulomb’s law: 1 q q 1 2 F · 2 4 r 0 where F is the force, in newtons, acting on each of the charges q1 and q2, r is the distance between the charges, is the dielectric constant of the medium between the plates, and 0 is the permittivity of free space. q1, q2 are expressed in coulombs and r in meters. If another substance, such as a solvent, is in the space separating these charges (or ions in a solution), their attraction for each other is less. The dielectric constant is a measure of the relative effect a solvent has on the force with which two oppositely charged plates attract each other. The dielectric constant is a unitless number.
Dielectric constants for a selected group of inorganic and organic compounds are included in Tables 5.17 and 5.18. An extensive list has been compiled by Maryott and Smith, National Bureau Standards Circular 514, Washington, D.C., 1951.
For gases the values of the dielectric constant can be adjusted to somewhat different conditions of temperature and pressure by means of the equation ( 1) p t,p ( 1) 760[1 0.003 411(t 20)] 20,1 atm where p is the pressure (in mmHg) and t is the temperature (in C). The errors associated with this equation probably do not exceed 0.02% for gases between 10 and 30C and for pressures between 700 and 800 mm. The dielectric constants of selected gases will be found in Table. 5.18.
5.6.5 Viscosity The dynamic viscosity, or coefficient of viscosity, of a Newtonian fluid is defined as the force per unit area necessary to maintain a unit velocity gradient at right angles to the direction of flow between two parallel planes a unit distance apart. The SI unit is pascal-second or newton-second per meter squared The c.g.s. unit of viscosity is the poise [P]; The dynamic 2 2 [N · s · m ].
1 cP 1 mN · s · m .
viscosity decreases with the temperature approximately according to the equation: log A B/T. Values of A and B for a large number of liquids are given by Barrer, Trans. Faraday Soc.
39:48 (1943).
5.138 SECTION 5 Kinematic viscosity v is the ratio of the dynamic viscosity to the density of a fluid. The SI unit is meter squared per second The c.g.s. units are called stokes 2 1 2 [m · s ].
[cm · s 1]; poises stokes density.
Fluidity is the reciprocal of the dynamic viscosity.
The primary reference liquid for viscosity measurements is water. The absolute viscosity of water at 20C is 1.0019 (0.0003) mN · s · m2 (or centipoise), as determined by Swindells, Coe, and Godfrey, J. Research Natl. Bur. Standards 48:1 (1952). The relative viscosity of water, is / , 20 0.8885 at 25C, 0.7960 at 30C, and 0.6518 at 40C. Values at temperatures between 15 and 60C are best represented by Cragoe’s equation: 2 1.2348(20 t) 0.001 467(t 20) log t 96 20 The Reynolds number for flow in a tube is defined by where d is the diameter of the tube, dv/ , is the average velocity of the fluid along the tube, is the density of the fluid, and is its dynamic v viscosity. At flow velocities corresponding with values of the Reynolds number of greater than 2000, turbulence is encountered.
TABLE 5.21 Aqueous Glycerol Solutions % Weight glycerol Grams per liter Relative density 25/25C Viscosity, mN · s · m2 20C 25C 30C 100 1261 1.262 01 1 495 942 622 99 1246 1.259 45 1 194 772 509 98 1231 1.256 85 971 627 423 97 1216 1.254 25 802 521 353 96 1201 1.251 65 659 434 296 95 1186 1.249 10 543.5 365 248 80 966.8 1.209 25 61.8 45.72 34.81 50 563.2 1.127 20 6.032 5.024 4.233 25 265.0 1.061 15 2.089 1.805 1.586 10 102.2 1.023 70 1.307 1.149 1.021 TABLE 5.22 Aqueous Sucrose Solutions % Weight sucrose Grams per liter Relative density 20/4C Viscosity, mN · s · m2 15C 20C 25C 75 1034 1.379 0 4 039 2 328 1 405 70 943.0 1.347 2 746.9 481.6 321.6 65 855.6 1.316 3 211.3 147.2 105.4 60 771.9 1.286 5 79.49 58.49 40.03 50 614.8 1.299 6 19.53 15.43 12.40 40 470.6 1.176 4 7.463 6.167 5.164 30 338.1 1.127 0 3.757 3.187 2.735 PHYSICAL PROPERTIES 5.139 5.7 COMBUSTIBLE MIXTURES TABLE 5.23 Properties of Combustible Mixtures in Air The autoignition temperature is the minimum temperature required for self-sustained combustion in the absence of an external ignition source. The value depends on specified test conditions. The flammable (explosive) limits specify the range of concentration of the vapor in air (in percent by volume) for which a flame can propagate.
Below the lower flammable limit, the gas mixture is too lean to burn; above the flammable limit, the mixture is too rich. Additional compounds can be found in National Fire Protection Association, National Fire Protection Handbook, 14th ed., 1991.
For alternative nomenclature, see Table 1.15.
Substance Autoignition temperature, C Flammable (explosive) limits, percent by volume of fuel (25C, 760 mm) Lower Upper Acetaldehyde 175 4.0 60 Acetanilide 540 Acetic acid, glacial 463 4.0 19.9 Acetic anhydride 316 2.7 10.3 Acetone 465 2.5 12.8 Acetonitrile 524 3.0 16.0 Acetophenone 570 Acetylacetone 340 Acetylene 305 3.0 65 Acetyl chloride 390 Acrolein 220 2.8 31.0 Acrylic acid (2-propenoic acid) 438 2.4 8.0 Acrylonitrile 481 3.0 17.0 Adiponitrile 550 2 5 Allyl acetate 374 Allyl alcohol 378 2.5 18.0 Allylamine 374 2.2 22 Ammonia, anhydrous 651 16 25 Aniline 615 1.3 11 Asphalt 485 Benzaldehyde 192 Benzene 498 1.2 7.8 Benzoyl peroxide 80 Benzyl acetate 460 Benzyl alcohol 436 Benzyl benzoate 480 Benzyl chloride 585 1.1 Bis(2-aminoethyl)amine 399 Bis(2-chloroethyl) ether 369 2.7 Biscyclohexyl 245 0.7 5.1 Bis(2-hydroethyl) ether 229 Bromobenzene 565 1-Bromobutane 265 2.6 6.6 Bromoethane 511 6.8 8.0 Bromomethane 537 10 16.0 1-Bromopropane 490 5.140 SECTION 5 TABLE 5.23 Properties of Combustible Mixtures in Air (Continued) Substance Autoignition temperature, C Flammable (explosive) limits, percent by volume of fuel (25C, 760 mm) Lower Upper 3-Bromopropene 295 4.4 7.3 1,3-Butadiene 420 2.0 11.5 Butanal (butyraldehyde) 218 1.9 12.5 Butane 287 1.9 8.5 1,3-Butanediol 395 2,3-Butanediol 402 Butanenitrile 501 1.65 Butanoic acid (butyric acid) 443 2.0 10.0 Butanoic anhydride (butyric anhydride) 279 0.9 5.8 1-Butanol 343 1.4 11.2 2-Butanol 415 1.7 11 2-Butanone 404 1.4 11.4 trans-2-Butenal (crotonaldehyde) 232 2.1 15.9 1-Butene 384 1.6 9.3 cis-2-Butene 324 1.7 trans-2-Butene 324 1.8 9.7 1-Butene oxide 1.5 18.3 3-Buten-1-ol 4.7 34 2-Butoxyethanol 238 4 13 2-(2-Butoxyethoxy)ethyl acetate 299 Butyl acetate 425 1.7 7.6 sec-Butyl acetate 1.7 9.8 Butylamine 312 1.7 9.8 tert-Butylamine 380 1.7 8.9 Butylbenzene 410 0.8 5.8 sec-Butylbenzene 418 0.8 6.9 tert-Butylbenzene 450 0.7 5.7 Butyl formate 322 1.7 8.2 Butyl methyl ketone 423 1 8 Butyl 2-methyl-2-propenoate 294 2 8 Butyl propanoate 427 Butyl stearate 355 Butyl vinyl ether 255 2-Butyne 1.4 Camphor 466 0.6 3.5 Carbon disulfide 90 1.3 50.0 Carbon monoxide 609 12.5 74.2 Carbonyl sulfide 12 28.5 Chlorobenzene 593 1.3 9.6 1-Chloro-1,3-butadiene 4.0 20.0 1-Chlorobutane 240 1.8 10.1 2-Chloro-2-butene 2.3 9.3 1-Chloro-2,3-epoxypropane 411 4 21 1-Chloro-1,1-difluoroethane 6.2 17.9 1-Chloro-2,4-dinitrobenzene 2.0 22 1-Chloro-2,3-epoxypropane 411 3.8 21 Chloroethane 519 3.8 15.4 2-Chloroethanol 425 4.9 15.9 Chloromethane 632 8.1 17.4 1-Chloro-3-methylbutane 1.5 7.4 1-Chloro-2-methylpropane 2.0 8.8 PHYSICAL PROPERTIES 5.141 TABLE 5.23 Properties of Combustible Mixtures in Air (Continued) Substance Autoignition temperature, C Flammable (explosive) limits, percent by volume of fuel (25C, 760 mm) Lower Upper 3-Chloro-2-methyl-1-propene 2.3 9.3 1-Chloronaphthalene 588 1-Chloropentane 260 1.6 8.6 1-Chloropropane 520 2.6 11.1 2-Chloropropane 593 2.8 10.7 1-Chloro-1-propene 4.5 16 2-Chloro-1-propene 4.5 16 3-Chloro-1-propene 485 2.9 11.1 Chlorotrifluoroethylene 24 40.3 m-Cresol 558 1.1 o-Cresol 599 1.4 p-Cresol 558 1.1 Cumene 424 0.9 6.5 Cyanogen 6.6 32 Cyclobutane 1.8 Cyclohexane 245 1.3 8 Cyclohexanol 300 1 9 Cyclohexanone 420 1.1 9.4 Cyclohexene 244 1.2 Cyclohexyl acetate 334 Cyclohexylamine 293 1 9 Cyclopentane 361 1.5 Cyclopentene 395 Cyclopropane 500 2.4 10.4 p-Cymene 436 0.7 5.6 trans-Decahydronaphthalene 255 0.7 5.4 Decane 210 0.8 5.4 Decene 235 Diborane(6) 38 to 52 0.8 88 Dibutylamine 1.1 6 Dibutyl decanedioate (dibutyl sebacate) 365 0.44 Dibutyl ether 194 1.5 7.6 Dibutyl o-phthalate 402 0.5 1,2-Dichlorobenzene 648 2.2 9.2 1,1-Dichloroethane 458 5.4 11.4 1,2-Dichloroethane 413 6.2 16 1,1-Dichloroethylene 570 6.5 15.5 cis-1,2-Dichloroethylene 460 3 15 trans-1,2-Dichloroethylene 460 6 13 Dichloromethane 556 13 23 1,2-Dichloropropane 557 3.4 14.5 Diethanolamine [2,2-iminobis(ethanol)] 662 2 13 1,1-Diethoxyethane (acetal) 230 1.6 10.4 Diethylamine 312 1.8 10.1 Diethylene glycol [bis(2-hydroxyethyl) ether] 224 2 17 Diethylene glycol dibutyl ether 310 Diethylene glycol monoethyl ether acetate 425 Diethylene glycol monomethyl ether 240 1.4 22.7 Diethylenetriamine 358 2 6.7 Diethyl ether 180 1.9 36.0 3,3-Diethylpentane 290 0.7 5.7 5.142 SECTION 5 TABLE 5.23 Properties of Combustible Mixtures in Air (Continued) Substance Autoignition temperature, C Flammable (explosive) limits, percent by volume of fuel (25C, 760 mm) Lower Upper Diethyl peroxide 2.3 15.9 Diethyl sulfate 436 1,1-Difluoroethylene 5.5 21.3 1,3-Dihydroxybenzene (resorcinol) 664 1,4-Dihydroxybenzene 516 Diisopropylamine 316 1.1 7.1 Diisopropyl ether 443 1.4 7.9 Dimethoxymethane 237 2.2 13.8 N,N-Dimethylacetamide 490 2.0 11.5 Dimethylamine (anhydrous) 400 2.8 14.4 N,N-Dimethylaniline 371 2,3-Dimethylaniline 1.0 2,2-Dimethylbutane 405 1.2 7.0 2,3-Dimethylbutane 405 1.2 7.0 3,3-Dimethyl-2-butanone 423 1 8 cis-1,2-Dimethylcyclohexane 304 trans-1,2-Dimethylcyclohexane 304 Dimethyl ether 350 3.4 27.0 N,N-Dimethylformamide 445 2.2 15.2 2,6-Dimethyl-4-heptanol 0.8 6.1 2,6-Dimethyl-4-heptanone 396 0.8 6.2 2,3-Dimethylhexane 438 1,1-Dimethylhydrazine 249 2 95 2,3-Dimethylpentane 335 1.1 6.7 Dimethyl 1,2-phthalate 490 0.9 2,2-Dimethylpropane 450 1.4 7.5 Dimethyl sulfate 188 Dimethyl sulfide 206 2.2 19.7 Dimethyl sulfoxide 215 2.6 42 1,4-Dioxane 180 2.0 22 Dipentene 237 Dipentyl ether 170 Diphenylamine 634 Diphenyl ether 618 0.8 1.5 Dipropylamine 299 Dipropyl ether 188 1.3 7.0 Divinyl ether 360 1.7 27.0 Dodecane 203 0.6 1-Dodecanol 275 1,2-Epoxybutane 439 1.7 19 Ethane 515 3.0 12.5 1,2-Ethanediamine 385 2.5 12.0 1,2-Ethanediol 398 3.2 22 Ethanethiol 299 2.8 18.2 Ethanol 363 3.3 19 Ethanolamine 410 3.0 23.5 2-Ethoxyethanol 235 3 18 2-Ethoxyethyl acetate 379 2 8 1-Ethoxypropane 1.7 9.0 Ethyl acetate 426 2 11.5 Ethyl acetoacetate 295 1.4 9.5 PHYSICAL PROPERTIES 5.143 TABLE 5.23 Properties of Combustible Mixtures in Air (Continued) Substance Autoignition temperature, C Flammable (explosive) limits, percent by volume of fuel (25C, 760 mm) Lower Upper Ethyl acrylate 372 1.4 14 Ethylamine 385 3.5 14.0 Ethylbenzene 432 0.8 6.7 Ethyl benzoate 490 Ethyl butanoate 463 2-Ethylbutanoic acid 463 Ethyl chloroformate 500 Ethylcyclobutane 210 1.2 7.7 Ethylcyclohexane 238 0.9 6.6 Ethylene 490 2.7 36.0 Ethylene glycol diacetate 482 1.6 8.4 Ethylene glycol dimethyl ether 202 Ethylene glycol ethyl ether acetate 379 2 8 Ethylene glycol monobutyl ether 238 4 13 Ethylene glycol methyl ether acetate 392 2 12 Ethylene glycol monoethyl ether 235 3 18 Ethyleneimine 320 3.3 54.8 Ethylene oxide 429 3.0 100 Ethyl formate 455 2.8 16.0 2-Ethylhexanal 197 2-Ethyl-1,3-hexanediol 360 2-Ethyl-1-hexanol 231 0.88 9.7 2-Ethylhexyl acetate 268 0.76 8.14 Ethyl lactate 400 1.5 Ethyl methyl ether 2.0 10.0 3-Ethyl-2-methylpentane 460 Ethyl nitrate 85 explodes 3.8 Ethyl nitrite 90 explodes 3.0 50.0 Ethyl propanoate 440 1.9 11 Ethyl vinyl ether 202 1.7 28 Formaldehyde 430 7.0 73.0 Formic acid, 90% 434 18 57 2-Furaldehyde (furfural) 316 2.1 19.3 Furan 2.3 14.3 Furfuryl alcohol 491 1.8 16.3 Gasoline, 50-100 octane 280 to 456 1.4 7.6 Glycerol 370 3 19 Heptane 204 1.05 6.7 2-Heptanone (methyl pentyl ketone) 393 1.1 7.9 4-Heptanone (diisobutyl ketone) 396 0.8 7.1 1-Heptene 260 1,1,2,3,4,4-Hexachlorobutadiene 610 Hexane 225 1.1 7.5 1,6-Hexanedioic acid 420 Hexanoic acid 380 2-Hexanone 423 1 8 1-Hexene 253 Hydrazine 23 to 270 4.7 100 Hydrogen 400 4.1 74.2 Hydrogen cyanide, 96% 538 5.6 40.0 Hydrogen sulfide 260 4 46 5.144 SECTION 5 TABLE 5.23 Properties of Combustible Mixtures in Air (Continued) Substance Autoignition temperature, C Flammable (explosive) limits, percent by volume of fuel (25C, 760 mm) Lower Upper N-Hydroxyethyl-1,2-ethanediamine 368 1-Hydroxy-2-methylbenzene 599 1.4 1-Hydroxy-3-methylbenzene 559 1.1 1-Hydroxy-4-methylbenzene (see p-cresol) 4-Hydroxy-4-methyl-2-pentanone 643 1.8 6.9 Isobutanal 196 1.6 10.6 Isobutyl acetate 421 1 10.5 Isobutylamine 378 2 12 Isobutylbenzene 427 0.8 6.0 Isobutyl isobutyrate 432 0.96 7.59 Isopentane 420 1.4 7.6 Isopentyl acetate 360 1.0 7.5 Isoprene 220 2 9 Isopropyl acetate 460 1.8 8 Isopropyl alcohol 399 2.5 12.7 Isopropylamine 402 2.3 10.4 Isopropylbenzene (cumene) 424 0.8 6.5 Isopropyl formate 485 4-Isopropyl-1-methylbenzene 436 Kerosene 210 0.7 5.0 Maleic anhydride 477 1.4 7.1 Methacrylic acid 68 1.6 8.8 Methacrylonitrile 2 6.8 Methane 650 5.3 15.0 Methanethiol 3.9 21.8 Methanol 464 6.0 36 Methoxybenzene (anisole) 475 2-Methoxyethanol 285 1.8 14 2-Methoxyethyl acetate 392 1.5 12.3 Methyl acetate 454 3.1 16 Methyl acetoacetate 280 Methyl acetylacetate 280 Methyl acrylate 468 2.8 25 Methylamine 430 4.9 20.7 2-Methylbutane 1.4 7.6 2-Methyl-1-butanol 385 1.4 9.0 2-Methyl-2-butanol 437 1.2 9.0 3-Methyl-1-butanol 350 1.2 9.0 3-Methylbutyl acetate 360 1.0 7.5 2-Methyl-2-butene 275 1.6 8.7 3-Methyl-1-butene 365 1.5 9.1 2-Methyl-1-buten-3-one 1.8 9.0 Methyl chloroformate 504 Methylcyclohexane 250 1.2 6.7 cis-2-Methylcyclohexanol 296 trans-2-Methylcyclohexanol 296 cis-4-Methylcyclohexanol 295 trans-4-Methylcyclohexanol 295 Methylcyclopentane 258 1.0 8.35 Methyl formate 449 4.5 23 2-Methylhexane 280 1.0 6.0 PHYSICAL PROPERTIES 5.145 TABLE 5.23 Properties of Combustible Mixtures in Air (Continued) Substance Autoignition temperature, C Flammable (explosive) limits, percent by volume of fuel (25C, 760 mm) Lower Upper 3-Methylhexane 280 5-Methyl-2-hexanone 191 1.0 8.2 Methylhydrazine 196 2.5 97.2 Methyl isobutyl ketone (MIBK) 448 1 8 2-Methyllactonitrile 688 Methyl methacrylate 1.7 8.2 1-Methyl-4-(1-methylethenyl)-cyclohexene (dipentene) 237 1-Methylnaphthalene 529 2-Methylpentane 264 1.0 7.0 3-Methylpentane 278 1.2 7.0 2-Methyl-2,4-pentanediol 306 1 9 2-Methyl-1-pentanol 310 1.1 9.65 4-Methyl-2-pentanol 1.0 5.5 4-Methyl-2-pentanone 452 2 8.0 4-Methyl-3-penten-2-one 344 1.4 7.2 2-Methylpropanal 223 1.6 10.6 2-Methyl-1-propanamine 378 2 12 2-Methylpropane 460 1.8 8.4 2-Methylpropanenitrile 482 Methyl propanoate 469 2.5 13 2-Methylpropanoic acid 481 2.0 9.2 2-Methyl-1-propanol 415 1.7 10.6 2-Methyl-2-propanol (t-butyl alcohol) 478 2.4 8.0 2-Methyl-1-propene 465 1.8 9.6 2-Methylpropyl acetate 421 1.3 10.5 2-Methylpropyl formate 320 1.7 8 2-Methylpyridine 538 N-Methyl-2-pyrrolidone 346 1 10 Methyl salicylate 454 -Methylstyrene 574 1.9 6.1 Methyl vinyl ether 2.6 39 Morpholine 290 1 11 Naphtha, coal tar 277 Naphthalene 526 0.9 5.9 Neoprene 4.0 20 Nicotine 244 0.75 4.0 Nitrobenzene 482 1.8 9 2-Nitrobiphenyl 179 Nitroethane 414 3.4 17 Nitroglycerine 270 Nitromethane 418 7.3 22 1-Nitropropane 421 2.2 2-Nitropropane 428 2.6 11 Nonane 205 0.8 2.9 Octadecanoic acid (stearic acid) 395 cis-9-Octadecenoic acid (oleic acid) 362 Octane 206 1.0 6.5 1-Octene 230 Paraldehyde 238 1.3 Pentaborane(9) 0.42 Pentanamine 2.2 22 5.146 SECTION 5 TABLE 5.23 Properties of Combustible Mixtures in Air (Continued) Substance Autoignition temperature, C Flammable (explosive) limits, percent by volume of fuel (25C, 760 mm) Lower Upper Pentane 260 1.5 7.8 1,5-Pentanediol 335 Pentanoic acid 400 1-Pentanol 300 1.2 10.0 2-Pentanol 343 3-Pentanol 435 1.2 9.0 2-Pentanone (methyl propyl ketone) 452 1.5 8.2 3-Pentanone (diethyl ketone) 450 1.6 1-Pentene 275 1.5 8.7 Pentyl acetate 360 1.1 7.5 Pentylamine 2.2 22 Petroleum ether (solvent naphtha) 288 1.1 5.9 Phenol 715 1.8 8.6 Phosphorus, red 260 Phosphorus, white 30 Phosphorus pentasulfide 142 o-Phthalic anhydride 570 1.7 10.4 Picric acid 300 (explodes) -Pinene 275 -Pinene 275 Piperidine 1 10 1-Propanal 207 2.6 17 1-Propanamine (propylamine) 318 2.0 10.4 Propane 450 2.1 9.5 1,2-Propanediol 371 2.6 12.5 1,3-Propanediol 400 Propanenitrile 512 3.1 14 1,2,3-Propanetriol (glycerol) 370 3 19 1,2,3-Propanetriol triacetate (triacetin) 433 1.0 Propanoic acid 465 2.9 12.1 Propanoic anhydride 285 1.3 9.5 1-Propanol 412 2.2 13.7 2-Propanol 399 2.0 12.7 Propene 460 2.4 10.1 Propyl acetate 450 1.7 8 Propylbenzene 450 0.8 6.0 Propyl formate 455 Propyl nitrate 175 2 100 Propyne 1.7 Pyridine 482 1.8 12.4 Quinoline 480 Sodium 115 (dry air) Styrene 490 0.9 6.8 Sulfur (di-) dichloride 233 1,1,2,2-Tetrabromoethane 335 Tetrabromoethylene 335 1,1,1,2-Tetrachloroethane 5 12 PHYSICAL PROPERTIES 5.147 TABLE 5.23 Properties of Combustible Mixtures in Air (Continued) Substance Autoignition temperature, C Flammable (explosive) limits, percent by volume of fuel (25C, 760 mm) Lower Upper 1,1,2,2-Tetrachloroethane 20 54 Tetrahydrofuran 321 2 11.8 Tetrahydrofurfuryl alcohol 282 1.5 9.7 1,2,3,4-Tetrahydronaphthalene 385 0.8 5.0 2,2,3,3-Tetramethylpentane 430 0.8 4.9 2,2-Thiodiethanol 298 Titanium, powder 250 Toluene 480 1.1 7.1 Toluene diisocyanate 0.9 9.5 o-Toluidine (also p-) 482 Tributylamine 1 5 1,1,1-Trichloroethane 537 7.5 12.5 1,1,2-Trichloroethane 460 6 28 Trichloroethylene 420 8 10.5 (Trichloromethyl)benzene 211 Trichloromethylsilane 404 7.6 20 1,2,3-Trichloropropane 3.2 12.6 Trichlorosilane 104 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 680 Tri-o-cresyl phosphate 385 Triethanolamine 1 10 Triethylamine 249 1.2 8.0 Triethylene glycol 371 0.9 9.2 Triethyl phosphate 454 Trimethylamine 190 2.0 11.6 1,2,3-Trimethylbenzene (hemimellitene) 470 0.8 6.6 1,2,4-Trimethylbenzene (pseudocumene) 500 0.9 6.4 1,3,5-Trimethylbenzene 559 1 5 2,2,3-Trimethylbutane 412 1,1,3-Trimethyl-3-cyclohexen-5-one 462 0.8 3.8 3,5,5-Trimethylcyclohex-2-ene-1-one 460 0.8 3.8 2,2,3-Trimethylpentane 346 2,2,4-Trimethylpentane 418 1.1 6.0 2,3,3-Trimethylpentane 425 Trioxane 414 3.6 28.7 Tri-o-tolyl phosphate 385 Turpentine 0.8 Vinyl acetate 402 2.6 13.4 Vinyl bromide 530 9 15 Vinyl butanoate 1.4 8.8 Vinyl chloride 472 3.6 33.0 4-Vinyl-1-cyclohexene 269 Vinyl fluoride 2.6 21.7 Vinylidene 573 5.6 16.0 m-Xylene 527 1.1 7.0 o-Xylene 463 0.9 6.7 p-Xylene 528 1.1 7.0 5.8 THERMAL CONDUCTIVITY TABLE 5.24 Thermal Conductivities of Gases as a Function of Temperature The coefficient k, expressed in J · sec1 · cm1 · K1, is the quantity of heat in joules, transmitted per second through a sample one centimeter in thickness and one square centimeter in area when the temperature difference between the two sides is one degree kelvin (or Celsius). The tabulated values are in microjoules. To convert to microcalories, divide values by 4.184. To convert to mW · m1 · K1, divide values by 10.
Substance Temperature, C 40 20 0 20 40 60 80 100 120 140 160 Acetone 80 95 107 124 140 156 173 190 207 Acetaldehyde 109 126 142 159 176 195 Acetonitrile 112 124 137 151 166 Acetylene 11875 184 205 224 248 269 290 Air 242 256 270 284 299 311 324 336 342149 Ammonia 16460 218 238 259 280 301 321 Argon 166 176 186 196 206 211 Benzene 126 146 165 184 205 226 Boron trifluoride 186 241 Bromine 42 45 50 54 59 Bromomethane 82 94 104 117 1-Butanamine 1356.5 176110 Butane 135 154 174 193 213 233 Carbon dioxide 144 160 176 192 207 215 Carbon disulfide 67 76 85 Carbon monoxide 228 245 262 278 Carbon tetrachloride 59 64 70 75 80 86 109184 Chlorine 64 72 79 85 93 100 Chlorodifluorimethane 103 110 116 122 Chloroethane 90 105 120 134 151 167 186 204 Chloroform 75 84 91 99 107 116 Chloromethane 84 105 117 130 142 155 Cyclohexane 77 99 120 141 163 184 206 230 256 Cyclopropane 192 218 243 270 5.148 Deuterium 1150 1222 1297 1372 1448 1523 Deuterium oxide 263 358220 Dibromomethane 74110 Dichlorodifluoromethane 81 84 92 100 138 194200 1,1-Dichloroethane 69 81 93 105 117 129 144 1,2-Dichloroethane 127 140 Dichlorofluoromethane 91 94 97 100 Dichloromethane 93 161 1,2-Dichlorotetrafluoroethane 99 153 211227 Diethylamine 118 179 199 218 243 268 Diethyl ether 113 135 157 178 200 222 244 269 351213 1,4-Dioxane 167 187 207 Ethane 137 159 182 204 228 257 288 316 344 Ethanol 126 141 155 209 Ethene 23049 Ethyl acetate 115 133 151 170 191 211 234 Ethylamine 136 153 169 206 Ethylene 137 158 178 220 241 262 282 Ethylene oxide 193 256 279 Ethyl formate 79 100 121 142 164 186 206 226 Ethyl nitrate 159 178 197 Fluorine 212 230 247 264 278 294 309 325 Helium 1276 1343 1423 1481 1540 1598 1661 1720 1778 Heptane 100 115 130 174 Hexane 109 178 201 224 247 271 Hydrogen 1494 1607 1724 1828 1925 2025 Hydrogen bromide 64 70 77 84 90 97 104 Hydrogen chloride 107 117 128 138 148 191 240227 Hydrogen cyanide 99 110 121 132 143 Hydrogen sulfide 116 129 143 156 169 Iodomethane 46 53 60 68 75 82 89 Krypton 79 85 95 110 Methane 257 280 307 334 361 387 416 445 Methanol 174 197 221 241 263 284 Methyl acetate 67 15070 177 195 215 237 2-Methylbutane 122 215 2-Methylpropane 141 156 176 196 23393 271 421227 5.149 Substance Temperature, C 40 20 0 20 40 60 80 100 120 140 160 TABLE 5.24 Thermal Conductivities of Gases as a Function of Temperature (Continued) Substance Temperature, C 40 20 0 20 40 60 80 100 120 140 160 2-Methyl-2-propanol 225 Neon 410 433 454 476 497 518 537 556 Nitric oxide 205 221 238 254 269 285 301 317 Nitrogen 211 226 241 256 270 282 295 307 320 333 385227 Nitromethane 139 155 Nitrous oxide 121 137 152 168 184 Octafluorocyclobutane 120 190 Oxygen 211 228 245 261 278 294 311 328 Pentane 130 218 Propane 116 132 151 171 192 215 238 262 330 353 379 2-Propanol 15131 250127 Sulfur dioxide 83 163 106 Sulfur hexafluoride 126 201 275227 338327 Tetrafluoromethane 235 235 Thiophene 152110 1,1,2-Trichlorotrifluoroethane 87 133 Triethylamine 195 216 239 Water 142 159 175 191 207 224 241 257 Xenon 3673 54 72 89227 104327 5.150 PHYSICAL PROPERTIES 5.151 TABLE 5.25 Liquid Thermal Conductivity of Various Substances All values of thermal conductivity, k, are in millijoules cm1 · s1 · K1. To convert to mJ · cm1 · s1 · K1 into mW · m1 · K1, divide by 10.
Substance Thermal conductivity in mJ · cm1 · s1 · K1 25C 0C 20C 25C 50C 75C 100C Acetaldehyde 1.900 Acetic acid 1.58 1.53 1.49 1.44 Acetic anhydride 2.209 Acetone 1.98780 1.69 1.61 1.5140 Acetonitrile 2.08 1.98 1.88 1.78 1.68 Allyl alcohol 1.8030 Aniline 1.7717 Argon 1.259189 Benzaldehyde 1.51 1.41 1.31 1.21 Benzene 1.411 1.329 1.247 Bromobenzene 1.113 Bromoethane 1.029 1-Bromo-2-methylpropane 1.16312 1-Bromopentane 0.983 Bromopropane 1.07512 Butanoic acid 1.50612 1-Butanol 1.538 1.54 1.49 2-Butanone 1.58 1.51 1.45 1.39 1.33 Butyl acetate 1.368 2-Butyne 1.37 1.29 1.21 Carbon disulfide 1.54 1.49 Carbon tetrachloride 1.10020 1.071 1.029 0.974 Chlorobenzene 1.36 1.31 1.27 1.22 1.17 1.12 Chloroethane 1.45 1.32 1.19 1.06 0.93 Chloroform 1.27 1.22 1.17 1.12 1.07 1.02 (Chloromethyl)oxirane 1.42 1.37 1.31 1.25 1.19 1.14 1-Chloro-2-methylpropane 1.16312 1-Chloropentane 1.18412 Chloropropane 1.18412 4-Chlorotoluene 1.297 m-Cresol 1.498 1.45280 Cyclohexane 1.243 1.23 1.17 1.11 Cyclohexene 1.42 1.36 1.30 1.24 1.18 Cyclohexanol 1.34 1.31 Cyclopentane 1.40 1.33 1.26 Cyclopentene 1.43 1.36 1.29 Decane 1.44 1.38 1.32 1.26 1.19 1.13 1-Decanol 1.62 1.56 1.50 1.45 Dibromomethane 1.20 1.14 1.08 1.03 0.97 Dibutyl phthalate 1.44 1.40 1.36 1.33 1.29 1.25 1,2-Dichloroethane 1.264 Dichlorofluoromethane 0.134 Dichloromethane 1.59020 1.564 1.477 Diethyl ether 1.50 1.40 1.30 1.20 1.10 1.00 Diisopropyl ether 1.096 2,3-Dimethylbutane 1.03832 0.996 N,N-Dimethylformamide 1.84 1.78 1.71 1.65 Dimethyl phthalate 1.501 1.473 1.443 1.409 1.373 5.152 SECTION 5 TABLE 5.25 Liquid Thermal Conductivity of Various Substances (Continued) Substance Thermal conductivity in mJ · cm1 · s1 · K1 25C 0C 20C 25C 50C 75C 100C 1,4-Dioxane 1.59 1.47 1.35 1.23 Diphenyl ether 1.39 1.35 1.31 Dodecane 1.57 1.52 1.46 1.40 1.35 1-Dodecanol 1.46 1.42 1.39 1.35 Ethanol 1.76 1.69 1.62 Ethanolamine 2.99 2.86 2.74 2.61 Ethoxybenzene 1.497 Ethyl acetate 1.62 1.53 1.44 1.35 1.26 Ethylbenzene 1.30 1.24 1.18 1.12 Ethylene glycol 2.56 2.56 2.56 2.56 2.56 Ethyl formate 1.58112 Furan 1.42 1.34 1.26 Glycerol 2.92 2.95 2.97 3.00 Heptane 1.378 1.303 1.259 1.228 1.152 1.077 1-Heptanol 1.66 1.59 1.53 1.47 1.41 Hexadecane 1.40 1.35 1.30 1.25 Hexane 1.37 1.28 1.218 1.20 1.11 1.92 0.93 1-Hexanol 1.59 1.54 1.50 1.45 1.41 1.37 2-Hexanone 1.51 1.45 1.39 1.33 1.27 1.21 1-Hexene 1.37 1.29 1.21 1.13 Hydrochloric acid, 38% 4.40232 Hydrogen 1.180253 Iodobenzene 1.06320 1.276 0.93780 Iodoethane 1.10930 1-Iodo-2-methylpropane 0.87012 1-Iodopentane 0.84912 Iodopropane 0.92012 Isopentyl acetate 1.297 Isopropylbenzene 1.28 1.20 1.12 1.07 Mercury 72.5 77.7 82.5 86.8 90.7 94.3 Methanol 2.14 2.07 2.021 2.00 1.93 Methoxybenzene 1.70 1.63 1.56 1.50 1.43 1.36 Methyl acetate 1.74 1.64 1.53 1.43 1.33 1.22 Methyl butanoate 1.402 3-Methylbutanoic acid 1.305 3-Methyl-1-butanol 1.47730 Methylcyclohexane 1.27630 Methylcyclopentane 1.209 1.15138 N-Methylformamide 2.03 2.01 1.99 1.96 1-Methyl-4-isopropylbenzene 1.32 1.27 1.22 1.17 1.12 1.07 2-Methylpentane 1.08432 1.033 Methyl pentanoate 1.31812 4-Methylpentanoic acid 1.42712 4-Methyl-3-pentene-2-one 1.70 1.63 1.56 1.49 1.42 1.34 2-Methyl-1-propanol 1.42312 2-Methyl-2-propanol 1.15938 1.06777 Nitrobenzene 1.510 Nitromethane 2.15130 Nonane 1.44 1.38 1.31 1.24 1.15180 1.11 PHYSICAL PROPERTIES 5.153 TABLE 5.25 Liquid Thermal Conductivity of Various Substances (Continued) Substance Thermal conductivity in mJ · cm1 · s1 · K1 25C 0C 20C 25C 50C 75C 100C 1-Nonanol 1.66 1.61 1.55 1.49 1.43 Octadecane 1.46 1.42 1.37 Octane 1.43 1.35 1.28 1.20 1.13 1.06 1-Octanol 1.68 1.657 1.61 1.54 1.47 1.41 Palmitic acid 1.598 Pentachloroethane 1.251 Pentane 1.32 1.22 1.138 1.13 1.03 0.95 0.87 Pentanoic acid 1.36012 1-Pentanol 1.57 1.53 1.49 1.45 1-Pentene 1.31 1.24 1.16 Pentyl acetate 1.289 Phenol 1.56 1.53 1.51 Phenylhydrazine 1.724 1,2-Propanediol 2.02 2.00 1.99 1.98 1.97 Propanoic acid 1.72812 1-Propanol 1.62 1.58 1.54 1.49 1.45 1.41 2-Propanol 1.46 1.41 1.35 1.29 1.24 1.18 1,2-Propylene glycol 2.008 Propyl formate 1.49412 Pyridine 1.69 1.65 1.61 1.58 Silicon tetrachloride 0.99 0.96 Sodium 753.1300 Sodium chloride (aq, satd) 5.732 Stearic acid 1.598 Styrene 1.48 1.42 1.37 1.31 1.26 1.20 Sulfuric acid, 90% 3.54032 1,1,2,2-Tetrachloroethane 1.138 Tetrachloroethylene 1.17 1.10 1.04 0.97 Tetrachloromethane 1.04 0.99 0.93 0.88 Tetradecane 1.36 1.31 1.26 1.21 1-Tetradecanol 1.67 1.62 1.57 Tetrahydrofuran 1.32 1.26 1.20 1.14 Thiophene 1.99 1.95 1.91 1.86 Toluene 1.59080 1.386 1.347 1.311 1.236 1.161 1,1,1-Trichloroethane 1.06 1.01 0.96 Trichloroethylene 1.35960 1.24 1.160 1.08 1.00 Trichloromethane 1.27 1.22 1.17 1.12 1.07 Tridecane 1.37 1.32 1.27 1.22 Triethylamine 1.46480 1.209 1.11344 Trimethylamine 1.43 1.33 1,3,5-Trimethylbenzene 1.47 1.41 1.36 1.30 1.24 1.18 2,2,4-Trimethylpentane 0.96638 0.84177 Undecane 1.40 1.35 1.29 1.23 Water 5.610 5.983 6.071 6.435 6.668 6.791 m-Xylene 1.30 1.24 1.18 1.13 o-Xylene 1.31 1.26 1.20 1.14 p-Xylene 1.30 1.24 1.18 1.12 5.154 SECTION 5 TABLE 5.26 Thermal Conductivity of Various Solids All values of thermal conductivity, k, are in millijoules cm1 · s1 · K1. To convert to mW · m1 · K1m, divide values by 10. For values in millicalories, divide by 4.184.
Substance t, C k Asphalt 20 7.447 Basalt 20 21.76 Bauxite 600 5.56 Boiler scale 66 13.1 Brick, common 20 6.3 Blotting paper 20 0.628 Cardboard 20 2.1 Cement, Portland 90 2.97 Chalk 20 9.2 Chemical elements, see Table 4.1 Coal 0 1.69 Concrete 20 9.2 Cork, sp. grav. 0.2 30 0.54 Cork meal 100 0.556 Cotton, sp. grav. 0.081 0 0.569 Diatomaceous earth 20 0.54 Ebonite 0 1.58 Eiderdown 20 0.046 Feathers (with air) 9 0.238 Feldspar 20 23.4 Felt (dark gray) 40 0.623 Fire brick 20 4.6 Flannel 60 0.148 Flint 20 10.0 Glass, crown 12.5 6.82 flint 12.5 5.98 Jena 22 9.50 quartz 0 13.89 100 19.12 soda 20 7.1 100 7.5 Granite 20 34.2 Graphite, sp. grav. 1.58 50 441.4 Graphite powder, sp. grav. 0.7 40 11.92 Gypsum 0 13.0 Horse hair, sp. grav. 0.172 20 0.510 Ice 23.8 Leather, cowhide 84 1.76 Linen 20 0.879 Magnesia brick 20 11.3 1130 30.1 Marble, white 32.6 Mica 41 3.60 Naphthalene 0 3.77 Paper 20 1.3 Paraffin 0 2.88 Plaster of Paris 20 2.93 Porcelain 95 10.38 Quartz, parallel to axis 0 136.0 100 90.0 PHYSICAL PROPERTIES 5.155 TABLE 5.26 Thermal Conductivity of Various Solids (Continued) Substance t, C k Quartz, perpendicular to axis 0 72.43 100 55.77 Plastics, see Section 10 Roofing paper 0 1.90 Rubber, natural and synthetic, see Section 10 Sand, dry 20 3.89 Sandstone, sp. grav. 2.259 40 18.37 Silk, sp. grav. 0.101 0 0.510 Slate 20 19.66 Soil, dry 20 1.38 Wax, bees 20 0.866 Wood, maple, parallel to face 20 4.25 perpendicular to face 50 1.82 Wood, oak, parallel to face 15 3.49 perpendicular to face 15 2.09 Wood, pine, parallel to face 20 3.49 perpendicular to face 15 1.51 5.9 MISCELLANY TABLE 5.27 Compressibility of Water In the table below are given the relative volumes of water at various temperatures and pressures. The volume at 0C and one normal atmosphere (760 mm of Hg) is taken as unity.
P, atm 10C.
0C.
10C.
20C.
40C.
60C.
80C.
1 1.0017 1.0000 1.0001 1.0016 1.0076 1.0168 1.0287 500 0.9788 0.9767 0.9778 0.9804 0.9867 0.9967 1.0071 1000 0.9581 0.9566 0.9591 0.9619 0.9689 0.9780 0.9884 1500 0.9399 0.9394 0.9424 0.9456 0.9529 0.9617 0.9717 2000 0.9223 0.9241 0.9277 0.9312 0.9386 0.9472 0.9568 2500 0.9083 0.9112 0.9147 0.9183 0.9257 0.9343 0.9437 3000 0.8962 0.8993 0.9028 0.9065 0.9139 0.9225 0.9315 3500 0.8852 0.8884 0.8919 0.8956 0.9030 0.9115 0.9203 4000 0.8751 0.8783 0.8818 0.8855 0.8931 0.9012 0.9097 4500 0.8658 0.8692 0.8725 0.8762 0.8838 0.8919 0.9001 5000 0.8573 0.8606 0.8639 0.8675 0.8752 0.8832 0.8913 6000 . . . . . .
0.8452 0.8481 0.8517 0.8595 0.8674 0.8752 7000 . . . . . .
. . . . . .
0.8340 0.8374 0.8456 0.8534 0.8610 8000 . . . . . .
. . . . . .
. . . . . .
0.8244 0.8330 0.8408 0.8483 9000 . . . . . .
. . . . . .
. . . . . .
0.8128 0.8219 0.8297 0.8371 10000 . . . . . .
. . . . . .
. . . . . .
0.8027 0.8119 0.8196 0.8268 11000 . . . . . .
. . . . . .
. . . . . .
. . . . . .
0.8023 0.8101 0.8172 12000 . . . . . .
. . . . . .
. . . . . .
. . . . . .
0.7931 0.8009 0.8080 5.156 SECTION 5 TABLE 5.28 Mass of Water Vapor in Saturated Air The values in the table are grams of water contained in a cubic meter (m3) of saturated air at a total pressure 101 325 Pa (1 atm).
C g·m3 C g·m3 C g·m3 30 0.341 12 10.65 53 95.56 29 0.375 13 11.35 54 100.0 28 0.413 14 12.05 55 104.5 27 0.456 15 12.80 56 109.1 26 0.504 16 13.60 57 114.1 25 0.554 17 14.45 58 119.2 24 0.607 18 15.35 59 124.7 23 0.667 19 16.30 60 130.2 22 0.733 20 17.30 61 136.0 21 0.804 21 18.35 62 142.1 20 0.883 22 19.40 63 148.4 19 0.968 23 20.55 64 154.9 18 1.063 24 21.75 65 161.3 17 1.164 25 23.05 66 167.9 16 1.273 26 24.35 67 175.1 15 1.375 27 25.75 68 182.6 14 1.510 28 27.20 69 190.3 13 1.650 29 28.75 70 198.2 12 1.800 30 30.35 71 206.5 11 1.965 31 32.05 72 215.1 10 2.140 32 33.80 73 223.7 9 2.331 33 35.60 74 233.0 8 2.539 34 37.55 75 242.0 7 2.761 35 39.55 76 251.2 6 3.003 36 41.65 77 261.1 5 3.250 37 43.90 78 271.6 4 3.512 38 46.20 79 282.3 3 3.810 39 48.60 80 293.4 2 4.131 40 51.21 81 304.8 1 4.473 41 53.86 82 316.6 0 4.849 42 56.61 83 328.7 1 5.199 43 59.51 84 341.2 2 5.569 44 62.53 85 353.6 3 5.947 45 65.52 86 366.2 4 6.35 46 68.61 87 379.9 5 6.80 47 72.00 88 394.1 6 7.25 48 75.56 89 408.6 7 7.75 49 79.24 90 423.5 8 8.25 50 83.05 91 439.0 9 8.80 51 87.04 92 454.8 10 9.40 52 91.22 93 471.2 11 10.00 PHYSICAL PROPERTIES 5.157 TABLE 5.29 Van der Waals’ Constants for Gases The van der Waals’ equation of state for a real gas is: 2 n a P (V nb) nRT for n moles 2 V where P is the pressure, V the volume (in liters per mole 0.001 m3 per mole in the SI system), T the temperature (in degrees Kelvin), n the amount of substance (in moles), and R the gas constant. To use the values of a and b in the table, P must be expressed in the same units as in the gas constant. Thus, the pressure of a standard atmosphere may be expressed in the SI system as follows: 2 1 atm 101,325 N · m 101,325 Pa 1.01325 bar The appropriate value for the gas constant is: 1 1 1 1 0.083 144 1 L · bar · K · mol or 0.082 056 L · atm · K · mol The van der Waals’ constants are related to the critical temperature and pressure, tc and Pc, in Table 6.5 by: 2 2 27 R T RT c c a and b 64 P 8 P c c Substance a, L2 · bar · mol2 b, L · mol1 Acetaldehyde 11.37 0.08695 Acetic acid 17.71 0.1065 Acetic anhydride 26.8 0.157 Acetone 16.02 0.1124 Acetonitrile 17.89 0.1169 Acetyl chloride 12.80 0.08979 Acetylene 4.516 0.05218 Acrylic acid 19.45 0.1127 Acrylonitrile 18.37 0.1222 Allene 8.235 0.07467 Allyl alcohol 15.17 0.1036 Aluminum trichloride 42.63 0.2450 2-Aminoethanol 7.616 0.0431 Ammonia 4.225 0.03713 Ammonium chloride 2.380 0.00734 Aniline 29.14 0.1486 Antimony tribromide 42.08 0.1658 Argon 1.355 0.03201 Arsenic trichloride 17.23 0.1039 Arsine 6.327 0.06048 Benzaldehyde 30.30 0.1553 Benzene 18.82 0.1193 Benzonitrile 33.89 0.1727 Benzyl alcohol 34.7 0.173 Biphenyl 47.16 0.2130 Bismuth trichloride 33.89 0.1025 Boron trichloride 15.60 0.1222 Boron trifluoride 3.98 0.05443 Bromine (Br2) 9.75 0.0591 Bromobenzene 28.96 0.1541 Bromochlorodifluoromethane 12.79 0.1055 Bromoethane 11.89 0.08406 Bromomethane 6.753 0.05390 Bromotrifluoromethane 8.502 0.0891 5.158 SECTION 5 TABLE 5.29 Van der Waals’ Constants for Gases (Continued) Substance a, L2 · bar · mol2 b, L · mol1 1,2-Butadiene 12.76 0.1025 1,3-Butadiene 12.17 0.1020 Butanal 19.48 0.1292 Butane 13.93 0.1168 Butanenitrile 25.76 0.1568 Butanoic acid 28.18 0.1609 1-Butanol 20.90 0.1323 2-Butanol 20.94 0.1326 2-Butanone 19.97 0.1326 1-Butene 12.76 0.1084 cis-2-Butene 12.58 0.1066 trans-2-Butene 12.58 0.1066 3-Butenenitrile 25.76 0.1568 Butyl acetate 31.22 0.1919 1-Butylamine 19.41 0.1301 sec-Butylamine 18.37 0.1273 tert-Butylamine 17.78 0.1310 Butylbenzene 44.071 0.2378 sec-Butylbenzene 43.74 0.2347 tert-Butylbenzene 42.77 0.2310 Butyl benzoate 57.97 0.2857 Butylcyclohexane 41.19 0.2201 sec-Butylcyclohexane 48.89 0.2604 tert-Butylcyclohexane 48.34 0.2614 Butyl ethyl ether 27.05 0.1815 2-Butylhexadecafluorotetrahydrofuran 45.41 0.3235 1-Butyne 13.31 0.1023 2-Butyne 13.68 0.0998 Carbon dioxide 3.658 0.04284 Carbon disulfide 11.25 0.07262 Carbon monoxide 1.472 0.03948 Carbon oxysulfide (COS) 6.975 0.06628 Carbon tetrachloride 20.01 0.1281 Carbon tetrafluoride 4.029 0.06319 Carbonyl chloride 10.65 0.08340 Carbonyl sulfide 3.933 0.05817 Chlorine 6.343 0.05422 Chlorine pentafluoride 9.581 0.08214 Chlorobenzene 25.80 0.1454 1-Chlorobutane 23.22 0.1527 2-Chlorobutane 20.01 0.1370 1-Chloro-1,1-difluoroethane 11.91 0.1035 2-Chloro-1,1-difluoroethylene 10.49 0.09335 Chloroethane 11.7 0.090 Chloroform 15.34 0.1019 Chloromethane 7.566 0.06477 2-Chloro-2-methylpropane 18.98 0.1334 Chloropentafluoroacetone 17.08 0.1482 Chloropentafluorobenzene 29.53 0.1843 Chloropentafluoroethane 11.27 0.1137 1-Chloropropane 16.11 0.1141 2-Chloropropane 14.53 0.1068 Chlorotrifluoromethane 6.873 0.08110 PHYSICAL PROPERTIES 5.159 TABLE 5.29 Van der Waals’ Constants for Gases (Continued) Substance a, L2 · bar · mol2 b, L · mol1 Chlorotrifluorosilane 7.994 0.09240 Chlorotrimethylsilane 22.58 0.1617 m-Cresol 31.86 0.1609 o-Cresol 28.33 0.1447 p-Cresol 28.11 0.1422 Cyanogen 7.803 0.06952 Cyclobutane 12.39 0.0960 Cycloheptane 27.20 0.1645 Cyclohexane 21.95 0.1413 Cyclohexanol 28.93 0.1586 Cyclohexanone 31.1 0.170 Cyclohexene 75.04 0.1339 Cyclopentane 16.94 0.1180 Cyclopentanone 75.84 0.1211 Cyclopentene 15.61 0.1097 Cyclopropane 8.293 0.07420 p-Cymene 43.65 0.2386 Decane 52.88 0.3051 Decanenitrile 34.71 0.1988 1-Decanol 57.45 0.2971 1-Decene 49.96 0.2888 Deuterium (normal) 0.2583 0.02397 Deuterium oxide 5.584 0.03090 Diborane (B2H6) 6.048 0.07437 Dibromodifluoromethane 15.69 0.1186 1,2-Dibromoethane 13.98 0.08664 1,2-Dibromotetrafluoroethane 20.45 0.1494 Dibutylamine 34.61 0.2030 Dibutyl ether 33.06 0.2017 Dibutyl sulfide 49.3 0.2702 1,2-Dichlorobenzene 34.59 0.1767 1,3-Dichlorobenzene 35.44 0.1846 1,4-Dichlorobenzene 34.64 0.1802 Dichlorodifluoromethane 10.45 0.09672 Dichlorodifluorosilane 11.34 0.1095 1,1-Dichloroethane 15.73 0.1072 1,2-Dichloroethane 17.0 0.108 1,1-Dichloroethylene 13.74 0.09893 trans-1,2-Dichloroethylene 13.63 0.09573 Dichlorofluoromethane 11.48 0.09060 Dichloromethane 12.44 0.08689 1,2-Dichloropropane 21.62 0.1335 Dichlorosilane 12.59 0.09992 1,1-Dichlorotetrafluoroethane 15.49 0.1318 1,2-Dichlorotetrafluoroethane 15.72 0.1338 Dideuterium oxide 5.535 0.03062 Diethanolamine 45.61 0.2273 Diethylamine 19.40 0.1383 1,4-Diethylbenzene 45.03 0.2439 Diethylene glycol 29.02 0.1519 Diethyl ether 17.46 0.1333 3,3-Diethylhexane 47.69 0.2707 3,4-Diethylhexane 47.93 0.2760 5.160 SECTION 5 TABLE 5.29 Van der Waals’ Constants for Gases (Continued) Substance a, L2 · bar · mol2 b, L · mol1 3,3-Diethyl-2-methylpentane 47.20 0.2629 3,3-Diethylpentane 40.64 0.2374 Diethyl sulfide 22.85 0.1462 Difluoroamine 5.028 0.04446 cis-Difluorodiazine 3.043 0.03987 trans-Difluorodiazine 3.539 0.04851 1,1-Difluoroethane 9.691 0.08931 1,1-Difluoroethylene 6.000 0.07058 Difluoromethane 6.184 0.06268 Dihexyl ether 69.17 0.3752 Dihydrogen disulfide 16.15 0.1006 Diisopropyl ether 25.26 0.1836 Dimethoxyethane 21.65 0.1439 Dimethoxymethane 17.28 0.1195 N,N-Dimethoxyacetamide 30.19 0.1689 Dimethylamine 10.44 0.08510 N,N-Dimethylaniline 37.92 0.1967 2,2-Dimethylbutane 22.55 0.1644 2,3-Dimethylbutane 23.29 0.1660 2,3-Dimethyl-1-butene 22.59 0.2566 3,3-Dimethyl-1-butene 21.55 0.1567 2,3-Dimethyl-2-butene 23.83 0.1621 1,1-Dimethylcyclohexane 34.30 0.2068 cis-1,2-Dimethylcyclohexane 36.44 0.2143 trans-1,2-Dimethylcyclohexane 34.89 0.2086 cis-1,3-Dimethylcyclohexane 34.30 0.2068 trans-1,3-Dimethylcyclohexane 35.11 0.2093 cis-1,4-Dimethylcyclohexane 35.47 0.2114 trans-1,4-Dimethylcyclohexane 34.54 0.2086 1,1-Dimethylcyclopentane 25.37 0.1653 cis-1,2-Dimethylcyclopentane 27.04 0.1706 trans-1,2-Dimethylcyclopentane 25.67 0.1663 Dimethyl ether 8.690 0.07742 N,N-Dimethylformamide 23.57 0.1293 2,2-Dimethylheptane 41.29 0.2551 2,2-Dimethylhexane 34.87 0.2260 2,3-Dimethylhexane 35.24 0.2228 2,4-Dimethylhexane 34.97 0.2251 2,5-Dimethylhexane 35.49 0.2299 3,3-Dimethylhexane 34.72 0.2201 3,4-Dimethylhexane 35.06 0.2196 1,1-Dimethylhydrazine 14.69 0.1001 2,4-Dimethyl-3-isopentane 47.05 0.2729 Dimethyl oxalate 28.97 0.1644 2,2-Dimethylpentane 28.49 0.1951 2,3-Dimethylpentane 28.96 0.1921 2,4-Dimethylpentane 28.79 0.1974 3,3-Dimethylpentane 28.48 0.1892 2,3-Dimethylphenol 31.35 0.1545 2,4-Dimethylphenol 33.49 0.1687 2,5-Dimethylphenol 29.99 0.1512 2,6-Dimethylphenol 33.64 0.1710 3,4-Dimethylphenol 31.32 0.1529 PHYSICAL PROPERTIES 5.161 TABLE 5.29 Van der Waals’ Constants for Gases (Continued) Substance a, L2 · bar · mol2 b, L · mol1 3,5-Dimethylphenol 40.92 0.2037 2,2-Dimethylpropane 17.17 0.1410 2,3-Dimethylpropane 23.13 0.1669 2,2-Dimethyl-1-propanol 22.25 0.1444 Dimethyl sulfide 13.34 0.09453 N,N-Dimethyl-1,2-toluidine 41.71 0.2225 1,4-Dioxane 19.29 0.1171 Diphenyl ether 54.61 0.2538 Diphenylmethane 60.46 0.2798 Dipropylamine 24.82 0.1591 Dipropyl ether 27.12 0.1821 Dodecafluorocyclohexane 25.09 0.1955 Dodecafluoropentane 25.58 0.2161 Dodecane 69.14 0.3741 1-Dodecanol 72.69 0.3598 1-Dodecene 68.17 0.3694 Ethane 5.570 0.06499 1,2-Ethanediamine 16.30 0.09796 Ethanethiol 13.23 0.09447 Ethanol 12.56 0.08710 Ethoxybenzene 35.70 0.1996 Ethyl acetate 20.57 0.1401 Ethyl acrylate 23.70 0.1530 Ethylamine 10.79 0.08433 Ethylbenzene 30.86 0.1782 Ethyl benzoate 43.73 0.2236 Ethyl butanoate 30.53 0.1922 Ethylcyclohexane 35.70 0.2089 Ethylcyclopentane 27.90 0.1746 3-Ethyl-2,2-dimethylhexane 47.24 0.2752 4-Ethyl-2,2-dimethylhexane 46.45 0.2784 3-Ethyl-2,3-dimethylhexane 47.35 0.2692 4-Ethyl-2,3-dimethylhexane 47.49 0.2742 3-Ethyl-2,4-dimethylhexane 47.31 0.2736 4-Ethyl-2,4-dimethylhexane 45.52 0.2613 3-Ethyl-2,5-dimethylhexane 47.42 0.2800 3-Ethyl-3,4-dimethylhexane 47.00 0.2682 Ethylene 4.612 0.05821 Ethylene glycol dimethyl ether 21.65 0.1439 Ethylene glycol ethyl ether acetate 33.97 0.05594 Ethylene oxide 8.922 0.06779 Ethyl formate 15.91 0.1115 3-Ethylhexane 35.76 0.2253 Ethyl mercaptan 11.24 0.08098 2-Ethyl-1-methylbenzene 40.66 0.2226 3-Ethyl-1-methylbenzene 41.67 0.2331 4-Ethyl-1-methylbenzene 40.63 0.2262 1-Ethyl-1-methylcyclopentane 34.18 0.2058 Ethyl methyl ether 12.70 0.1034 3-Ethyl-2-methylheptane 48.81 0.2847 Ethyl methyl ketone 20.13 0.1340 3-Ethyl-2-methylpentane 34.74 0.2183 3-Ethyl-2-methylpentane 34.53 0.2134 5.162 SECTION 5 TABLE 5.29 Van der Waals’ Constants for Gases (Continued) Substance a, L2 · bar · mol2 b, L · mol1 Ethyl 2-methylpropanoate 29.05 0.1872 Ethyl methyl sulfide 19.45 0.1300 3-Ethylpentane 29.49 0.1944 Ethyl phenyl ether 35.16 0.1963 Ethyl propanoate 25.86 0.1688 Ethyl propyl ether 22.45 0.1600 m-Ethyltoluene 41.73 0.2334 o-Ethyltoluene 40.67 0.2226 p-Ethyltoluene 40.63 0.2262 Ethyl vinyl ether 16.17 0.1213 Fluorine 1.171 0.02896 Fluorobenzene 20.10 0.1279 Fluoroethane 8.170 0.07758 Fluoroethylene 5.984 0.06504 Fluoromethane 5.009 0.05617 Formaldehyde 7.356 0.06425 Furan 12.74 0.0926 2-Furaldehyde (furfural) 22.23 0.1182 Germanium tetrachloride 23.12 0.1489 Germanium tetrahydride 5.743 0.06555 Glycerol 22.98 0.07037 Hafnium tetrachloride 26.01 0.1282 Helium (equilibrium) 0.0346 0.02356 Heptane 30.89 0.2038 1-Heptanol 37.22 0.2097 2-Heptanol 35.72 0.2093 2-Heptanone 31.78 0.1850 1-Heptene 28.82 0.09400 Hexadecafluoroheptane 40.58 0.3046 1,5-Hexadiene 21.79 0.1532 Hexafluoraoacetone 12.66 0.1264 Hexafluorobenzene 26.63 0.1641 Hexane 24.97 0.1753 Hexanenitrile 35.50 0.1996 Hexanoic acid 39.94 0.2150 1-Hexanol 31.35 0.1829 2-Hexanol 30.25 0.1840 3-Hexanol 29.44 0.1803 2-Hexanone 30.27 0.1837 3-Hexanone 29.84 0.1824 1-Hexene 23.12 0.1634 cis-2-Hexene 23.86 0.1641 trans-2-Hexene 23.75 0.1640 cis-3-Hexene 23.77 0.1638 trans-3-Hexene 24.25 0.1663 Hexylcyclopentane 59.38 0.3206 Hydrazine 8.46 0.0462 Hydrogen (normal) 0.2484 0.02651 Hydrogen bromide 4.500 0.04415 Hydrogen chloride 3.700 0.04061 Hydrogen cyanide 11.29 0.08806 Hydrogen deuteride 0.2527 0.02516 Hydrogen fluoride 9.565 0.0739 PHYSICAL PROPERTIES 5.163 TABLE 5.29 Van der Waals’ Constants for Gases (Continued) Substance a, L2 · bar · mol2 b, L · mol1 Hydrogen iodide 6.309 0.05303 Hydrogen selenide 5.523 0.0479 Hydrogen sulfide 4.544 0.04339 Indane 34.63 0.1802 Iodobenzene 33.54 0.1658 Iodomethane 12.34 0.08327 Isobutyl acetate 29.05 0.1845 Isobutylamine 19.30 0.1325 Isobutylbenzene 40.40 0.2215 Isobutylcyclohexane 40.39 0.2195 Isobutyl formate 22.82 0.1476 Isopropylamine 14.30 0.1080 Isopropylbenzene 36.20 0.2044 Isopropylcyclohexane 42.06 0.2342 Isopropylcyclopentane 35.11 0.2082 4-Isopropylheptane 48.28 0.2832 2-Isopropyl-1-methylbenzene 45.14 0.2401 3-Isopropyl-1-methylbenzene 44.00 0.2354 4-Isopropyl-1-methylbenzene 43.94 0.2398 3-Isopropyl-2-methylhexane 50.93 0.2870 Ketene 19.1 0.1044 Krypton 2.325 0.0396 Mercury 5.193 0.01057 Methane 2.300 0.04301 Methanethiol 8.911 0.06756 Methanol 9.472 0.06584 Methoxybenzoate 28.60 0.1579 Methyl acetate 15.75 0.1108 Methyl acrylate 19.67 0.1308 Methylamine 7.106 0.05879 2-Methyl-1,3-butadiene 17.74 0.1307 3-Methyl-1,3-butadiene 17.46 0.1245 2-Methylbutane 18.29 0.1415 Methyl butanoate 25.83 0.1661 3-Methylbutanoic acid 33.94 0.1923 2-Methyl-1-butanol 24.51 0.1518 3-Methyl-1-butanol 24.72 0.1526 2-Methyl-2-butanol 23.24 0.1523 3-Methyl-2-butanol 23.30 0.1493 3-Methyl-2-butanone 23.20 0.1494 2-Methyl-1-butene 16.9 0.129 3-Methyl-1-butene 18.08 0.1405 2-Methyl-2-butene 17.26 0.1279 Methylcyclohexane 27.51 0.1713 Methylcyclopentane 21.87 0.1463 N-Methylethylamine 19.39 0.1391 Methyl formate 11.54 0.08406 2-Methylfuran 14.67 0.1160 2-Methylheptane 36.78 0.2342 3-Methylheptane 36.40 0.2301 4-Methylheptane 36.21 0.2297 2-Methylhexane 30.01 0.2016 3-Methylhexane 29.70 0.1977 5.164 SECTION 5 TABLE 5.29 Van der Waals’ Constants for Gases (Continued) Substance a, L2 · bar · mol2 b, L · mol1 Methylhydrazine 11.67 0.07334 Methyl isobutanoate 24.87 0.1639 Methyl isocyanate 12.6 0.09161 1-Methyl-2-isopropylbenzene 42.7 0.234 1-Methyl-4-isopropylbenzene 45.27 0.2478 Methyl 2-methylpropanoate 24.50 0.163 7 2-Methyloctane 43.50 0.2641 2-Methylpentane 23.83 0.1707 3-Methylpentane 23.75 0.1677 2-Methyl-2,4-pentanediol 39.05 0.2054 Methyl pentanoate 29.39 0.1847 2-Methyl-3-pentanol 27.96 0.1730 3-Methyl-3-pentanol 27.45 0.1699 4-Methyl-2-pentanol 22.38 0.1388 4-Methyl-2-pentanone 29.08 0.1815 2-Methyl-2-pentene 23.86 0.1641 cis-3-Methyl-2-pentene 23.86 0.1641 trans-3-Methyl-2-pentene 24.60 0.1656 cis-4-Methyl-2-pentene 23.03 0.1675 trans-4-Methyl-2-pentene 23.32 0.1685 2-Methylpropanal 18.49 0.1285 2-Methyl-1-propanamine 19.30 0.1325 2-Methylpropane (isobutane) 13.36 0.1168 Methyl propanoate 20.51 0.1377 2-Methylpropanoic acid 28.9 0.170 2-Methyl-1-propanol 20.35 0.1324 2-Methyl-2-propanol 18.81 0.1324 2-Methylpropene 12.73 0.1086 2-Methylpropyl acetate 29.05 0.1845 2-Methylpropyl formate 22.54 0.1476 2-Methylpyridine 24.45 0.1403 3-Methylpyridine 27.08 0.1496 4-Methylpyridine 25.89 0.1428 1-Methylstyrene 36.69 0.1999 2-Methyltetrahydrofuran 22.37 0.1484 2-Methylthiophene 22.10 0.1299 3-Methylthiophene 21.98 0.1282 Methyl vinyl ether 11.65 0.09520 Morpholine 20.36 0.1174 Naphthalene 40.32 0.1920 Neon 0.208 0.01709 Niobium pentafluoride 25.22 0.1220 Nitric oxide (NO) 1.46 0.0289 Nitroethane 24.13 0.1544 Nitrogen-14 15.18 0.1288 Nitrogen chloride difluoride 6.447 0.06089 Nitrogen dioxide (NO2) 5.36 0.0443 Nitrogen trifluoride 3.58 0.05364 Nitrous oxide (N2O) 3.852 0.04435 Nitromethane 17.18 0.1041 Nitrosyl chloride 6.191 0.05014 Nonane 45.11 0.2702 1-Nonanol 50.00 0.2634 PHYSICAL PROPERTIES 5.165 TABLE 5.29 Van der Waals’ Constants for Gases (Continued) Substance a, L2 · bar · mol2 b, L · mol1 1-Nonene 43.68 0.2629 Octadecafluorooctane 44.27 0.3143 Octafluorocyclobutane 15.81 0.1450 Octafluoropropane 12.96 0.1338 Octamethylcyclotetrasiloxane 75.30 0.4579 Octane 37.86 0.2370 1-Octanol 44.71 0.2371 2-Octanol 41.98 0.2376 1-Octene 35.01 0.2227 cis-2-Octene 35.42 0.2176 Osmium tetraoxide 2.79 0.2447 Oxygen 1.382 0.03186 Oxygen difluoride 2.726 0.04516 Ozone 3.570 0.04977 Pentadecane 95.91 0.4834 1-Pentadecene 99.00 0.5011 1,2-Pentadiene 18.13 0.1284 cis-1,3-Pentadiene 17.98 0.1292 1,4-Pentadiene 17.58 0.1311 Pentafluorobenzene 23.45 0.1571 2,2,3,3,4-Pentamethylpentane 46.85 0.2593 2,2,3,4,4-Pentamethylpentane 47.82 0.2716 Pentanal 25.21 0.1622 Pentane 19.13 0.1449 Pentanenitrile 34.16 0.1772 Pentanoic acid 33.68 0.1867 1-Pentanol 25.81 0.1572 2-Pentanol 24.89 0.1585 2-Pentanone 24.85 0.1578 3-Pentanone 24.65 0.1565 1-Pentene 17.86 0.1370 cis-2-Pentene 17.83 0.1338 trans-2-Pentene 18.30 0.1391 Pentylbenzene 51.85 0.2718 Pentyl formate 27.97 0.1730 1-Pentyne 17.53 0.1266 Perchloryl fluoride (ClO3F) 7.371 0.07130 Phenol 22.93 0.1177 Phosgene 10.65 0.08340 Phosphine 4.693 0.05155 Phosphonium chloride 4.111 0.04545 Phosphorus 53.6 0.157 Phosphorus chloride difluoride 8.47 0.0833 Phosphorus dichloride fluoride 12.50 0.0962 Phosphorus trifluoride 4.954 0.06510 Phosphoryl chloride difluoride 11.90 0.1001 Phosphoryl trifluoride 8.26 0.0849 Piperidine 20.84 0.1250 Propadiene 8.23 0.0747 Propanal 14.08 0.0995 Propane 9.385 0.09044 1,2-Propanediol 18.74 0.1068 1,3-Propanediol 21.11 0.1143 5.166 SECTION 5 TABLE 5.29 Van der Waals’ Constants for Gases (Continued) Substance a, L2 · bar · mol2 b, L · mol1 Propanenitrile 21.57 0.1369 Propanoic acid 23.49 0.1386 1-Propanol 16.26 0.1080 2-Propanol 15.82 0.1109 2-Propenal 14.44 0.1017 Propene 8.411 0.08211 Propyl acetate 26.23 0.1700 Propylamine 15.26 0.1095 Propylbenzene 37.14 0.2073 Propylcyclopentane 38.80 0.2189 Propylcyclohexane 38.59 0.2255 Propylene oxide 13.78 0.1019 Propyl formate 20.79 0.1377 Propyne 8.40 0.0744 Pyridine 19.77 0.1136 Pyrrole 18.82 0.1049 Pyrrolidine 16.84 0.1056 Quinoline 36.70 0.1672 Radon 6.601 0.06239 Selenium 33.4 0.0675 Silicon chloride trifluoride 7.95 0.0921 Silicon tetrachloride 20.96 0.1470 Silicon tetrafluoride 5.259 0.072361 Silicon tetrahydride (silane) 4.30 0.0579 Styrene 32.15 0.1799 Sulfur (S) 24.3 0.0660 Sulfur dioxide 6.714 0.05636 Sulfur hexafluoride (SF6) 7.857 0.08786 Sulfur trioxide 8.57 0.0622 1,1,2,2-Tetrachlorodifluoroethane 25.74 0.1665 Tetrachloroethylene 24.98 0.1435 Tetrachloromethane 20.01 0.1281 Tetradecafluorohexane 30.75 0.2448 Tetradecafluoromethylcyclohexane 29.66 0.2171 1-Tetradecanol 89.91 0.4289 Tetraethylsilane 40.85 0.2411 Tetrafluoroethylene 6.954 0.08085 Tetrafluorohydrazine (N2F4) 7.426 0.08564 Tetrafluoromethane 4.040 0.06325 Tetrahydrofuran 16.39 0.1082 Tetrahydropyran 20.02 0.1247 1,2,4,5-Tetramethylbenzene 45.8 0.2422 2,2,3,3-Tetramethylbutane 32.76 0.2056 2,2,3,3-Tetramethylhexane 45.11 0.2580 2,2,3,4-Tetramethylhexane 47.36 0.2721 2,2,3,5-Tetramethylhexane 46.45 0.2753 2,2,4,4-Tetramethylhexane 48.26 0.2819 2,2,4,5-Tetramethylhexane 47.05 0.2802 2,2,5,5-Tetramethylhexane 45.03 0.2760 2,3,3,4-Tetramethylhexane 47.13 0.2653 2,3,3,5-Tetramethylhexane 46.79 0.2733 2,3,4,4-Tetramethylhexane 47.32 0.2691 2,3,4,5-Tetramethylhexane 46.86 0.2723 PHYSICAL PROPERTIES 5.167 TABLE 5.29 Van der Waals’ Constants for Gases (Continued) Substance a, L2 · bar · mol2 b, L · mol1 3,3,4,4-Tetramethylhexane 47.46 0.2615 2,2,3,3-Tetramethylpentane 39.29 0.2304 2,2,3,4-Tetramethylpentane 39.37 0.2367 2,2,4,4-Tetramethylpentane 38.76 0.2403 2,3,3,4-Tetramethylpentane 39.65 0.2325 Tetramethylsilane 20.81 0.1653 Thiophene 17.21 0.1058 Tin(IV) chloride 27.25 0.1641 Titanium(IV) chloride 25.47 0.1423 Toluene 24.89 0.1499 1,2-Toluidine 33.36 0.1681 1,3-Toluidine 34.06 0.1717 1,4-Toluidine 31.74 0.1602 Tributoxyborane 81.34 0.3891 Tributylamine 65.31 0.3645 1,1,1-Trichloroethane 20.14 0.1317 1,1,2-Trichloroethane 25.47 0.1508 Trichloroethylene 17.21 0.1127 Trichlorofluoromethane 14.68 0.1111 Trichlorofluorosilane 15.67 0.1277 Trichloromethane 15.34 0.1019 Trichloromethylsilane 23.77 0.1638 1,2,3-Trichloropropane 31.29 0.1713 1,1,2-Trichlorotrifluoroethane 20.25 0.1481 1,2,2-Trichlorotrifluoroethane 20.25 0.1481 Tridecane 79.09 0.4176 1-Tridecanol 81.20 0.3942 1-Tridecene 77.93 0.4121 Tridecylcyclopentane 139.6 0.6536 Triethanolamine 32.14 0.3340 Triethylamine 27.59 0.1836 Trifluoroacetic acid 21.61 0.1567 1,1,1-Trifluoroethane 9.302 0.09572 Trifluoromethane 5.378 0.06403 Trimethylamine 13.37 0.1101 1,2,3-Trimethylbenzene 37.28 0.1999 1,2,4-Trimethylbenzene 38.03 0.2088 1,3,5-Trimethylbenzene 37.87 0.2118 2,2,3-Trimethylbutane 27.86 0.1869 2,2,3-Trimethyl-1-butene 28.57 0.1910 1,1,2-Trimethylcyclopentane 33.31 0.2048 1,1,3-Trimethylcyclopentane 33.42 0.2091 2,2,3-Trimethylheptane 48.07 0.2801 2,2,4-Trimethylheptane 47.49 0.2847 2,3,4-Trimethylheptane 47.96 0.2785 3,3,4-Trimethylheptane 47.68 0.2730 2,2,3-Trimethylhexane 40.5 0.2452 2,2,4-Trimethylhexane 40.50 0.2516 2,2,5-Trimethylhexane 40.38 0.2533 2,2,3-Trimethylpentane 33.92 0.2145 2,2,4-Trimethylpentane 33.61 0.2202 2,3,3-Trimethylpentane 34.03 0.2114 2,3,4-Trimethylpentane 34.28 0.2157 5.168 SECTION 5 TABLE 5.29 Van der Waals’ Constants for Gases (Continued) Substance a, L2 · bar · mol2 b, L · mol1 2,2,4-Trimethyl-1,3-pentanediol 19.96 0.2692 Tungsten(VI) fluoride (WF6) 13.25 0.1063 Undecane 60.88 0.3396 1-Undecene 59.17 0.3310 Uranium(VI) fluoride (UF6) 16.01 0.1128 Vinyl acetate 32.31 0.2296 Vinyl chloride 9.62 0.07975 Vinyl fluoride 5.98 0.06502 Vinyl formate 11.38 0.08541 Xenon 4.192 0.05156 Xenon difluoride 12.46 0.7037 Xenon tetrafluoride 15.52 0.09035 m-Xylene 31.41 0.1814 o-Xylene 31.06 0.1756 p-Xylene 31.54 0.1824 Water 5.537 0.03052 Zirconium(IV) chloride 30.59 0.1401 TABLE 5.30 Triple Points of Various Materials Substance Triple point, K Pressure, mmHg Ammonia 195.46 45.58 Argon 83.78 516 Boron tribromide 226.67 Bromine 280.4 44.1 Carbon dioxide 216.65 Cyclopropane 145.59 Deuterium oxide 276.97 1-Hexene 133.39 Hydrogen, normal 13.95 54 Hydrogen, para 13.81 Hydrogen bromide 186.1 232 Hydrogen chloride 158.8 Iodine heptafluoride 279.6 Krypton 115.95 548 Methane 90.67 87.60 Methane-d1 90.40 84.52 Methane-d2 90.14 81.80 Methane-d3 89.94 80.12 Methane-d4 89.79 79.13 Molybdenum oxide tetrafluoride 370.3 Molybdenum pentafluoride 340 Neon 24.55 324 Neptunium hexafluoride 328.25 758.0 Niobium pentabromide 540.6 Niobium pentachloride 476.5 Nitrogen 63.15 94 1-Octene 171.45 Oxygen 54.34 PHYSICAL PROPERTIES 5.169 TABLE 5.30 Triple Points of Various Materials (Continued) Substance Triple point, K Pressure, mmHg Phosphorus, white 863 32 760 Plutonium hexafluoride 324.74 533.0 Propene 103.95 Radon 202 500 Rhenium dioxide trifluoride 363 Rhenium heptafluoride 321.4 Rhenium oxide pentafluoride 313.9 Rhenium pentafluoride 321 Succinonitrile (NIST standard) 331.23 Sulfur dioxide 197.68 1.256 Tantalum pentabromide 553 Tantalum pentachloride 489.0 Tungsten oxide tetrafluoride 377.8 Uranium hexafluoride 337.20 1 139.6 Water 273.16 Xenon 161.37 612 5.9.1 Some Physical Chemistry Equations for Gases A number of physical chemistry relationships, not enumerated in other sections (see Index), will be discussed in this section.
Boyle’s law states that the volume of a given quantity of a gas varies inversely as the pressure, the temperature remaining constant. That is, constant V or PV constant P A convenient form of the law, true strictly for ideal gases, is P V P V 1 1 2 2 Charles’ law, also known as Gay-Lussac’s law, states that the volume of a given mass of gas varies directly as the absolute temperature if the pressure remains constant, that is, V constant T Combining the laws of Boyle and Charles into one expression gives P V P V 1 1 2 2 T T 1 2 In terms of moles, Avogadro’s hypothesis can be stated: The same volume is occupied by one mole of any gas at a given temperature and pressure. The number of molecules in one mole is known as the Avogadro number constant N .
A The behavior of all gases that obey the laws of Boyle and Charles, and Avogadro’s hypothesis, can be expressed by the ideal gas equation: PV nRT 5.170 SECTION 5 where R is called the gas constant and n is the number of moles of gas. If pressure is written as force per unit area and the volume as area times length, then R has the dimensions of energy per degree per mole—8.314 J · K1 · mol1 or 1.987 cal · K1 · mol1.
Dalton’s law of partial pressures states that the total pressure exerted by a mixture of gases is equal to the sum of the pressures which each component would exert if placed separately into the container: P p p p · · · total 1 2 3 There are two ways to express the fraction which one gaseous component contributes to the total mixture: (1) the pressure fraction, and (2) the mole fraction, p /P , n /n .
i total i total 5.9.1.1 Equations of State (PVT Relations for Real Gases) 1. Virial equation represents the experimental compressibility of a gas by an empirical equation of state: 2 PV A B P C P · · · p p p or Cv PV A B V · · · v v 2 V where A, B, C, . . . are called the virial coefficients and are a function of the nature of the gas and the temperature.
2. Van der Waals’ equation: 2 an P (V nb) nRT 2 V where the term an2/V2 is the correction for intermolecular attraction among the gas molecules and the nb term is the correction for the volume occupied by the gas molecules. The constants a and b must be fitted for each gas from experimental data (Table 5.28); consequently the equation is semiempirical. The constants are related to the critical-point constants (Table 6.5) as follows: 2 a 3P V c Vc b 3 8P V c c R 3Tc Substitution into van der Waals’ equation and rearrangement leads to only the terms P/Pc, V/Vc, and T/Tc, which are called the reduced variables and For 1 mole of gas, P , V , T .
R R R 3 1 8 P V T R R R 2 V 3 3 R 3. Berthelot’s equation of state, used by many thermodynamicists, is 2 9 PT T c c PV nRT 1 1 6 2 128 P T T c PHYSICAL PROPERTIES 5.171 This equation requires only knowledge of the critical temperature and pressure for its use and gives accurate results in the vicinity of room temperature for unassociated substances at moderate pres-sures.
5.9.1.2 Properties of Gas Molecules Vapor Density.
Substitution of the Antoine vapor-pressure equation for its equivalent log P in the ideal gas equation gives B log log M log R log (t 273.15) A vap t C where vap is the vapor density in g·mL1 at tC, M is the molecular weight, R is the gas constant, and A, B, and C are the constants of the Antoine equation for vapor pressure. Since this equation is based on the ideal gas law, it is accurate only at temperatures at which the vapor of any specific compound follows this law. This condition prevails at reduced temperatures (TR) of about 0.5 K.
Velocities of Molecules.
The mean square velocity of gas molecules is given by 3kT 3RT 2 u m M where k is Boltzmann’s constant and m is the mass of the molecule.
The mean velocity is given by 2 1/2 8u u 3 Viscosity.
On the assumption that molecules interact like hard spheres, the viscosity of a gas is 1/2 5 mkT 2 16 where is the molecular diameter.
Mean Free Path.
The mean free path of a gas molecule l and the mean time between collisions are given by m l 2 2 p 1 4 u 5P Graham’s Law of Diffusion.
The rates at which gases diffuse under the same conditions of temperature and pressure are inversely proportional to the square roots of their densities: 1/2 r 1 2 r 2 1 Since for an ideal gas, it follows that MP/RT 1/2 r M 1 2 r M 2 1 5.172 SECTION 5 Henry’s Law.
The solubility of a gas is directly proportional to the partial pressure exerted by the gas: p kx i i Joule-Thompson Coefficient for Real Gases.
This expresses the change in temperature with respect to change in pressure at constant enthalpy: T P H SECTION 6 THERMODYNAMIC PROPERTIES 6.1 ENTHALPIES AND GIBBS ENERGIES OF FORMATION, ENTROPIES, AND HEAT CAPACITIES 6.1 6.1.1 Some Thermodynamic Relations 6.2 Table 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds 6.5 Table 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds 6.51 Table 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds 6.81 Table 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds 6.124 6.2 CRITICAL PHENOMENA 6.142 Table 6.5 Critical Properties 6.143 6.1 ENTHALPIES AND GIBBS ENERGIES OF FORMATION, ENTROPIES, AND HEAT CAPACITIES The tables in this section contain values of the enthalpy and Gibbs energy of formation, entropy, and heat capacity at 298.15 K (25C). No values are given in these tables for metal alloys or other solid solutions, for fused salts, or for substances of undefined chemical composition.
The physical state of each substance is indicated in the column headed “State” as crystalline solid (c), liquid (lq), or gaseous (g). Solutions in water are listed as aqueous (aq).
The values of the thermodynamic properties of the pure substances given in these tables are, for the substances in their standard states, defined as follows: For a pure solid or liquid, the standard state is the substance in the condensed phase under a pressure of 1 atm (101 325 Pa). For a gas, the standard state is the hypothetical ideal gas at unit fugacity, in which state the enthalpy is that of the real gas at the same temperature and at zero pressure.
The values of fH and fG that are given in the tables represent the change in the appropriate thermodynamic quantity when one mole of the substance in its standard state is formed, isothermally at the indicated temperature, from the elements, each in its appropriate standard reference state. The standard reference state at 25C for each element has been chosen to be the standard state that is thermodynamically stable at 25C and 1 atm pressure. The standard reference states are indicated in the tables by the fact that the values of fH and fG are exactly zero.
The values of S represent the virtual or “thermal” entropy of the substance in the standard state at 298.15 K (25C), omitting contributions from nuclear spins. Isotope mixing effects are also ex-cluded except in the case of the 1H9 2H system.
Solutions in water are designated as aqueous, and the concentration of the solution is expressed in terms of the number of moles of solvent associated with 1 mol of the solute. If no concentration is indicated, the solution is assumed to be dilute. The standard state for a solute in aqueous solution is taken as the hypothetical ideal solution of unit molality (indicated as std. state or ss). In this state 6.1 6.2 SECTION 6 the partial molal enthalpy and the heat capacity of the solute are the same as in the infinitely dilute real solution.
For some tables the uncertainty of entries is indicated within parentheses immediately following the value; viz., an entry 34.5(4) implies 34.50.4 and an entry 34.5(12) implies 34.51.2.
References: D. D. Wagman, et al., The NBS Tables of Chemical Thermodynamic Properties, in J. Phys. Chem. Ref. Data, 11: 2, l982; M. W. Chase, et al., JANAF Thermochemical Tables, 3rd ed., American Chemical Society and the American Institute of Physics, 1986 (supplements to JANAF appear in J. Phys. Chem. Ref. Data); Thermodynamic Research Center, TRC Thermodynamic Tables, Texas A&M University, College Station, Texas; I. Barin and O. Knacke, Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1973; J. B. Pedley, R. D. Naylor, and S. P. Kirby, Thermochemical Data of Organic Compounds, 2nd ed., Chapman and Hall, London, 1986; V. Majer and V. Svoboda, Enthalpies of Vaporization of Organic Compounds, International Union of Pure and Applied Chemistry, Chemical Data Series No. 32, Blackwell, Oxford, 1985.
6.1.1 Some Thermodynamic Relations 6.1.1.1 Enthalpy of Formation.
Once standard enthalpies are assigned to the elements, it is possible to determine standard enthalpies for compounds. For the reaction: C(graphite) O (g) : CO (g) H 393.51 kJ (6.1) 2 2 Since the elements are in their standard states, the enthalpy change for the reaction is equal to the standard enthalpy of CO2 less the standard enthalpies of C and O2, which are zero in each instance.
Thus, H 393.51 0 0 393.51 kJ (6.2) f Tables of enthalpies, such as Tables 6.1 and 6.3, can be used to determine the enthalpy for any reaction at 1 atm and 298.15 K involving the elements and any of the compounds appearing in the tables.
The solution of 1 mole of HCl gas in a large amount of water (infinitely dilute real solution) is represented by: HCl(g) inf H O : H (aq) Cl (aq) (6.3) 2 The heat evolved in the reaction is H 74.84 kJ. With the value of fH from Table 6.3, one has for the reaction: H H[H (aq)] H[Cl (aq)] H[HCl(g)] (6.4) f f f f for the standard enthalpy of formation of the pair of ions H and Cl in aqueous solution (standard state, m 1). To obtain the fH values for individual ions, the enthalpy of formation of H(aq) is arbitrarily assigned the value zero at 298.15 K. Thus, from Eq. (6.4): H[Cl (aq)] 74.84 (92.31) 167.15 kJ f With similar data from Tables 6.1 and 6.3, the enthalpies of formation of other ions can be deter-mined. Thus, from the fH[KCl(aq, std. state, m 1 or aq, ss)] of 419.53 kJ and the foregoing value for fH[Cl(aq, ss)]: H[K (aq, ss)] H[KCl(aq, ss)] H[Cl (aq, ss)] f f f 419.53 (167.15) 252.38 kJ (6.5) THERMODYNAMIC PROPERTIES 6.3 6.1.1.2 Enthalpy of Vaporization (or Sublimation) When the pressure of the vapor in equilib-rium with a liquid reaches 1 atm, the liquid boils and is completely converted to vapor on absorption of the enthalpy of vaporization Hv at the normal boiling point Tb. A rough empirical relationship between the normal boiling point and the enthalpy of vaporization (Trouton’s rule) is: Hv 1 1 88 J · mol · K (6.6) Tb It is best applied to nonpolar liquids which form unassociated vapors.
To a first approximation, the enthalpy of sublimation Hs at constant temperature is: Hs Hm Hv (6.7) where Hm is the enthalpy of melting.
The Clapeyron equation expresses the dynamic equilibrium existing between the vapor and the condensed phase of a pure substance: dP Hv (6.8) dT TV where V is the volume increment between the vapor phase and the condensed phase. If the con-densed phase is solid, the enthalpy increment is that of sublimation.
Substitution of V RT/P into the foregoing equation and rearranging gives the Clausius-Cla-peyron equation, dP Hv (6.9) 2 P dT RT or d(ln P) Hv R (6.10) 1/T which may be used for calculating the enthalpy of vaporization of any compound provided its boiling point at any pressure is known. If an Antoine equation is available (such as Eq. (5.1), page 5.30), differentiation and insertion into the foregoing equation gives: 2 4.5757T B Hv (6.11) 2 (T C 273.15) Inclusion of a compressibility factor into the foregoing equation, as suggested by the Haggen-macher equation improves the estimate of Hv: 2 3 1/2 RT dP T P c Hv 1 (6.12) 3 P dT T Pc where Tc and Pc are critical constants (Table 6.5). Although critical constants may be unknown, the compressibility factor is very nearly constant for all compounds belonging to the same family, and an estimate can be deduced from a related compound whose critical constants are available.
6.1.1.3 Heat Capacity (or Specific Heat) The temperature dependence of the heat capacity is complex. If the temperature range is restricted, the heat capacity of any phase may be represented adequately by an expression such as: 2 C a bT cT (6.13) p 6.4 THERMODYNAMIC PROPERTIES in which a, b, and c are empirical constants. These constants may be evaluated by taking three pieces of data: (T1, Cp,1), (T2, Cp,2), and (T3, Cp,1), and substituting in the following expressions: C C C p,1 p,2 p,3 c (6.14) (T T )(T T ) (T T )(T T ) (T T )(T T ) 1 2 1 3 2 1 2 3 3 2 3 1 C C p,1 p,2 [(T T )c] b (6.15) 1 2 T T 1 2 2 (C bT ) cT a (6.16) p,1 1 1 Smoothed data presented at rounded temperatures, such as are available in Tables 6.2 and 6.4, plus the Cp values at 298 K listed in Table 6.1 and 6.3, are especially suitable for substitution in the foregoing parabolic equations. The use of such a parabolic fit is appropriate for interpolation, but data extrapolated outside the original temperature range should not be sought.
6.1.1.4 Enthalpy of a System The enthalpy increment of a system over the interval of temperature from T1 to T2, under the constraint of constant pressure, is given by the expression: T2 H H C dT (6.17) 2 1 p T1 The enthalpy over a temperature range that includes phase transitions, melting, and vaporization, is represented by: T T 2 m H H C (c,II) dT Ht C (c,I) dT Hm 2 1 p p T T 1 1 T T b 2 C (1q) dT Hv C (g) dT (6.18) p p T T m b Integration of heat capacities, as expressed by Eq. (6.13), leads to: 2 2 3 3 b(T T ) c(T T ) 2 1 2 1 H a(T T ) (6.19) 2 1 2 3 6.1.1.5 Entropy In the physical change of state, Hm Sm (6.20) Tm is the entropy of melting (or fusion), Hv Sv (6.21) Tb is the entropy of vaporization, and Hs Ss (6.22) Ts is the entropy of sublimation.
THERMODYNAMIC PROPERTIES 6.5 A general expression for the entropy of a system, involving any phase transitions, is T T C (c,II) dT C (c,I) dT t m p p Ht Hm S S 2 1 T T T T T T 1 b T T C (1q) dT C (g) dT b m p p Hv (6.23) T T T T T m b If Cp is independent of temperature, T2 S C (ln T ln T ) 2.303 C log (6.24) p 2 1 p T1 If the heat capacities change with temperature, an empirical equation like Eq. (6.13) may be inserted in Eq. (6.23) before integration. Usually the integration is performed graphically from a plot of either Cp/T versus T or Cp versus ln T.
TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 Acenaphthene c 70.34 188.9 190.4 Acenaphthylene c 186.7 166.4 Acetaldehyde lq 192.2 127.6 160.4 89.0 g 166.1 133.0 263.8 55.3 Acetaldoxime c 77.9 lq 81.6 Acetamide c 317.0 115.0 91.3 Acetamidoguanidine nitrate c 494.0 1-Acetamido-2-nitroguanidine c 193.6 5-Acetamidotetrazole c 5.0 Acetanilide c 210.6 Acetic acid lq 484.4 390.2 159.9 123.6 g 432.2 374.2 283.5 63.4 ionized; std. state, m 1 aq 486.34 369.65 86.7 6.3 Acetic anhydride lq 624.4 489.14 268.8 168.230 Acetone lq 248.4 152.7 198.8 126.3 g 217.1 152.7 295.3 74.5 Acetonitrile lq 31.4 86.5 149.7 91.5 g 74.0 91.9 243.4 52.2 Acetophenone lq 142.5 17.0 249.6 204.6 Acetyl bromide lq 223.5 Acetyl chloride lq 272.9 208.2 201.0 117.0 g 242.8 205.8 295.1 67.8 Acetylene g 227.4 209.0 201.0 44.1 Acetylene-d2 g 221.5 205.9 208.9 49.3 Acetylenedicarboxylic acid c 578.2 Acetyl fluoride g 442.1 1-Acetylimidazole c 574.0 Acetyl iodide lq 163.5 Acridine c 179.4 Adamantane c 194.1 6.6 SECTION 6 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 Adenine c 96.0 299.6 151.1 147.0 ()-Alanine c 561.2 369.4 132.3 ()-Alanine c 604.0 370.5 129.3 ()-Alanine c 563.6 372.3 132.3 -Alanine c 558.0 ()-N-Alanylglycine c 777.8 489.9 213.5 ()-Alanylglycine c 827.0 533.0 195.2 Allene g 190.5 Alloxan monohydrate c 1000.7 762.3 186.7 Allylamine lq 10.0 Allyl tert-butyl sulfide lq 91.0 Allyl ethyl sulfone lq 406.0 Allyl methyl sulfone lq 385.1 Allyl trichloroacetate lq 395.3 Allyl (see Propene) Aminetrimethylboron c 284.1 79.3 218.0 3-Aminoacetophenone c 173.3 4-Aminoacetophenone c 182.1 2-Aminoacridine c 166.4 9-Aminoacridine c 159.2 2-Aminobenzoic acid c 400.9 3-Aminobenzoic acid c 411.6 4-Aminobenzoic acid c 412.9 2-Aminobiphenyl c 112.2 4-Aminobiphenyl c 81.2 4-Aminobutanoic acid c 581.0 2-Aminoethanesulfonic acid c 785.9 562.3 154.1 140.7 ionized; std. state, m 1 aq 719.8 509.8 200.1 2-Aminoethanol lq 195.5 2-Aminohexanoic acid (norleucine) c 639.1 4-Aminohexanoic acid c 646.2 5-Aminohexanoic acid c 643.3 6-Aminohexanoic acid c 639.1 ()-2-Amino-3-hydroxy-butanoic acid c 759.5 2-Amino-2-(hydroxymethyl)-1,1-propanediol c 717.8 3-Aminonitroguanidine c 22.1 5-Aminopentanoic acid c 604.1 5-Aminotetrazole c 207.8 3-Amino-1,2,4-triazole c 76.8 Aniline lq 31.3 149.2 191.4 191.9 g 87.5 7.0 317.9 107.9 Anthracene c 129.2 286.0 207.6 210.5 9,10-Anthraquinone c 207.5 D-()-Arabinose [also ()-] c 1057.9 ()-Arginine c 623.5 240.5 250.8 232.0 L-()-Ascorbic acid c 1164.6 L-()-Asparagine c 789.4 530.6 174.6 L-()-Aspartic acid c 973.3 730.7 170.2 THERMODYNAMIC PROPERTIES 6.7 cis-Azobenzene c 310.2 trans-Azobenzene c 365.2 Azoisopropane g 35.8 Azomethane g 148.8 239.7 289.9 78.0 Azomethane-d6 g 119.3 218.3 305.7 90.6 Azopropane g 51.5 Azulene g 289.1 353.4 338.1 128.5 Barbituric acid c 637.2 Benzaldehyde lq 87.0 9.4 172.0 Benzamide c 202.6 Benzanilide c 93.4 1,2-Benzanthracene c 170.9 2,3-Benzanthracene c 160.4 359.2 215.5 1,2-Benzanthracene-9,10-dione c 231.9 Benzene lq 49.0 124.4 173.4 136.0 g 82.6 129.7 269.2 82.4 Benzeneboronic acid c 720.1 1,2-Benzenediamine c 0.3 1,3-Benzenediamine c 7.8 1,4-Benzenediamine c 3.1 1,3-Benzenedicarboxylic acid c 803.0 1,4-Benzenedicarboxylic acid c 816.1 1,2,4,5-Benzenetetra-carboxylic acid c 1571.0 Benzenethiol (thiophenol) lq 63.7 134.0 222.8 173.2 g 111.3 147.6 336.9 104.9 1,2,3-Benzenetricarboxylic acid c 1160.0 1,2,4-Benzenetricarboxylic acid c 1179.0 1,3,5-Benzenetricarboxylic acid c 1190.0 1,2,3-Benzenetriol c 551.1 1,2,4-Benzenetriol c 563.8 1,3,5-Benzenetriol c 584.6 p-Benzidine c 70.7 Benzil c 153.9 Benzoic acid c 385.2 245.3 167.6 146.8 Benzoic anhydride c 415.4 Benzonitrile lq 163.2 209.1 165.2 g 215.8 260.8 321.0 109.1 Benzo[def]phenanthrene c 125.5 269.5 224.8 236.0 Benzophenone c 34.5 140.2 245.2 224.8 Benzo[f]quinoline c 150.6 Benzo[h]quinoline c 149.7 1,4-Benzoquinone c 185.7 83.6 162.8 129.0 Benzo[b]thiophene c 100.6 1,2,3-Benzotriazole c 250.0 Benzotrifluoride lq 636.7 Benzoyl bromide lq 107.3 Benzoyl chloride lq 158.0 Benzoylformic acid c 482.4 N-Benzoylglycine c 609.8 369.57 239.3 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.8 SECTION 6 Benzoyl iodide lq 53.5 3,4-Benzphenanthrene c 184.9 Benzylamine lq 34.2 Benzyl alcohol lq 160.7 27.5 216.7 218.0 Benzyl bromide lq 16.0 Benzyl chloride lq 32.6 182.4 N-Benzyldiphenylamine c 184.7 Benzyl ethyl sulfide lq 4.9 Benzyl iodide lq 57.3 Benzyl methyl ketone lq 151.9 Benzyl methyl sulfide lq 26.2 Bicyclo[1.1.0]butane g 217.1 Bicyclo[2.2.1]hepta-2,5-dione lq 213.0 Bicyclo[2.2.1]heptane c 95.1 Bicyclo[4.1.0]heptane lq 36.7 Bicyclo[2.2.1]heptene lq 90.0 203.9 130.0 Bicyclo[3.1.0]hexane g 38.6 Bicyclohexyl lq 273.7 Bicyclo[2.2.2]octane c 146.9 Bicyclo[4.2.0]octane g 26.2 Bicyclo[5.1.0]octane g 16.6 Bicyclo[2.2.2]oct-2-ene g 23.3 Bicyclopropyl g 129.3 Biphenyl c 99.4 254.2 209.4 198.4 2-Biphenylcarboxylic acid c 349.0 (1,1-Biphenyl)-4,4-diamine c 70.7 Biphenylene c 334.0 Bis(2-chloroethyl) ether lq 220.9 Bis(dimethylthiocarbonyl) disulfide c 41.6 Bis(2-hydroxyethyl) ether lq 1621.0 441.0 135.1 g 571.1 Bromoacetone g 181.0 Bromoacetylene g 253.7 55.7 Bromobenzene lq 60.9 126.0 219.2 154.3 4-Bromobenzoic acid c 378.3 1-Bromobutane lq 143.8 12.9 369.8 109.3 2-Bromobutane lq 154.8 19.25 g 120.3 25.8 370.3 110.8 Bromochlorodifluoromethane g 471.5 448.4 318.5 74.6 1-Bromo-2-chloroethane lq 130.127 Bromochlorofluoromethane g 295.0 278.6 304.3 63.2 Bromochloromethane lq 52.7 g 50.2 39.3 287.6 1-Bromo-2-chloro-1,1,2-trifluoroethane g 644.8 2-Bromo-2-chloro-1,1,1-trifluoroethane g 690.4 1-Bromodecane lq 344.7 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.9 Bromodichlorofluoromethane g 269.5 246.8 330.6 80.0 Bromodichloromethane g 58.6 42.5 316.4 67.4 Bromodifluoromethane g 424.9 447.3 295.1 58.7 Bromoethane lq 90.5 25.8 198.7 100.8 g 61.9 23.9 286.7 64.5 Bromoethylene (vinyl bromide) lq 107.715 g 79.2 81.7 275.8 55.4 Bromofluoromethane g 252.7 241.5 276.3 49.2 1-Bromoheptane lq 218.4 1-Bromohexane lq 194.2 453.0 203.5 Bromoiodomethane g 50.2 39.2 307.5 Bromomethane lq 78.77 g 35.4 26.3 246.4 42.5 2-Bromo-2-methylpropane lq 163.8 151.0 g 132.4 28.2 332.0 116.5 1-Bromooctane lq 245.1 Bromopentafluoroethane g 1064.4 1-Bromopentane lq 170.2 132.2 g 129.0 5.7 408.8 1-Bromopropane lq 121.8 86.4 g 87.0 22.5 330.9 2-Bromopropane lq 130.5 132.2 g 99.4 27.2 316.2 89.4 cis-1-Bromopropene g 40.8 3-Bromopropene g 45.2 N-Bromosuccinimide c 335.9 -Bromotoluene lq 23.4 Bromotrichloromethane g 41.1 12.4 332.8 85.3 Bromotrifluoroethane g 694.5 Bromotrifluoromethane g 648.3 622.6 297.8(5) 69.3 Bromotrimethylsilane lq 325.9 Bromotrinitromethane g 80.3 Brucine c 496.2 1,2-Butadiene g 162.3 199.5 293.0 80.1 1,3-Butadiene lq 88.5 199.0 123.6 g 110.0 150.7 278.7 79.5 1,3-Butadiyne g 472.8 444.0 250.0 73.6 Butanal lq 239.2 163.7 g 204.9 114.8 243.7 103.4 Butanamide lq 346.9 Butane lq 104.50.5 g 125.6 17.2 310.1 97.5 1,2-Butanediamine lq 120.2 ()-1,2-Butanediol lq 523.6 1,3-Butanediol lq 501.0 227.230 1,4-Butanediol lq 503.3 223.4 200.1 2,3-Butanediol lq 541.5 213.0 Butanedinitrile c 139.7 lq 160.562 2,3-Butanedione lq 365.8 1,4-Butanedithiol lq 105.7 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.10 SECTION 6 Butanenitrile lq 5.8 15967 g 33.6 108.7 325.4 97.0 1-Butanethiol lq 124.7 4.1 276.0 171.2 2-Butanethiol lq 131.0 0.17 271.4 Butanoic acid lq 533.8 377.7 222.2 178.6 Butanoic anhydride lq 283.7 1-Butanol lq 327.3 162.5 225.8 177.0 g 275.0 150.8 362.8 122.6 ()-2-Butanol lq 342.6 177.0 214.9 196.9 g 292.9 167.6 359.5 113.3 2-Butanone lq 273.3 151.4 239.1 158.9 g 238.5 339.9 101.7 Butanophenone lq 188.9 trans-2-Butenal lq 138.7 95.4 cis-Butenedinitrile c 268.2 1-Butene lq 20.8 227.0 118.0 g 0.1 71.3 305.6 85.7 cis-2-Butene lq 29.8 219.9 127.0 g 7.1 65.9 300.8 78.9 trans-2-Butene g 11.4 63.0 296.5 87.8 cis-2-Butenenitrile lq 95.1 trans-2-Butenenitrile lq 95.1 3-Butenenitrile g 159.7 193.4 298.4 82.1 cis-2-Butenoic acid lq 347.0 trans-2-Butenoic acid c 430.5 cis-2-Butenedioic acid c 788.7 trans-2-Butenedioic acid c 811.1 1-Buten-3-yne g 304.6 306.0 279.4 73.2 2-Butoxyethanol lq 281.0 N-Butylacetamide lq 380.8 Butyl acetate lq 529.2 227.8 Butylamine lq 127.7 179.2 g 92.0 49.2 363.3 118.6 sec-Butylamine lq 137.5 g 104.6 40.7 351.3 117.2 tert-Butylamine g 150.6 192.1 g 121.0 28.9 337.9 120.0 Butylbenzene lq 63.2 243.4 g 13.1 144.7 439.5 416.3 sec-Butylbenzene lq 66.4 tert-Butylbenzene lq 70.7 238.0 sec-Butyl butanoate lq 492.6 Butyl chloroacetate lq 538.4 Butyl 2-chlorobutanoate lq 655.2 Butyl 3-chlorobutanoate lq 610.9 Butyl 4-chlorobutanoate lq 618.0 Butyl 2-chloropropanoate lq 572.0 Butyl 3-chloropropanoate lq 558.2 Butyl crotonate lq 467.8 Butylcyclohexane lq 263.1 345.0 271.0 g 213.4 56.4 458.5 207.1 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.11 Butylcyclopentane g 168.3 61.4 456.2 177.5 Butyl dichloroacetate lq 550.2 Butyl ethyl ether lq 159.0 Butyl ethyl sulfide (3-thiaheptane) g 125.2 32.0 453.0 162.0 tert-Butyl ethyl sulfide lq 187.3 Butyl formate lq 200.2 tert-Butyl hydroperoxide lq 293.6 Butyllithium lq 132.2 Butyl methyl ether lq 290.6 295.3 192.7 tert-Butyl methyl ether lq 313.6 265.3 187.5 Butyl methyl sulfide (2-thiahexane) lq 142.8 17.1 307.5 200.9 tert-Butyl methyl sulfide lq 156.9 276.1 199.9 Butyl methyl sulfone lq 535.8 tert-Butyl methyl sulfone c 556.0 cis-Butyl 9-octadecanoate lq 816.9 tert-Butyl peroxide lq 380.9 Butyl trichloroacetate lq 545.8 Butylurea c 419.5 Butyl vinyl ether lq 218.8 232.0 1-Butyne g 165.2 202.1 290.8 81.4 2-Butyne g 145.7 185.4 283.3 78.0 2-Butynedinitrile g 529.2 2-Butynedioic acid c 577.4 3-Butynoic acid c 241.8 -Butyrolactone lq 420.9 141.4 ()-Camphor c 319.4 271.2 -Caprolactam c 329.4 9H-Carbazole c 101.7 Carbonyl bromide g 96.2 110.9 309.1 61.8 Carbonyl chloride g 219.1 204.9 283.5 57.7 Carbonyl chloride fluoride g 276.7 52.4 Carbonyl fluoride g 639.8 46.8 Chloroacetamide c 338.5 Chloroacetic acid c 510.5 Chloroacetyl chloride lq 283.7 Chloroacetylene g 242.0 54.3 2-Chlorobenzaldehyde lq 118.4 3-Chlorobenzaldehyde lq 126.0 4-Chlorobenzaldehyde c 146.4 Chlorobenzene lq 11.0 89.2 209.2 150.2 2-Chlorobenzoic acid c 404.5 3-Chlorobenzoic acid c 423.3 4-Chlorobenzoic acid c 428.9 163.2 Chloro-1,4-benzoquinone c 220.6 1-Chlorobutane lq 188.1 175.0 g 154.6 38.8 358.1 107.6 ()-2-Chlorobutane lq 192.8 g 161.2 53.5 359.6 108.5 2-Chlorobutanoic acid lq 575.5 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.12 SECTION 6 3-Chlorobutanoic acid lq 556.3 4-Chlorobutanoic acid lq 566.3 Chlorocyclohexane lq 207.2 1-Chloro-1,1-difluoroethane lq 130.521 g 307.2 82.5 1-Chloro-2,2-difluoroethylene g 315.5 289.1 303.0 72.1 2-Chloro-1,1-difluoroethylene g 331.4 305.0 302.4 Chlorodifluoromethane lq 93.041 g 482.6 450.0 281.0 55.9 2-Chloro-1,4-dihydroxybenzene c 382.81 Chlorodimethylsilane lq 79.8 1-Chloro-2,3-epoxypropane lq 148.5 125.1 1-Chloroethane lq 136.8 59.3 190.8 104.3 g 112.1 60.5 275.8 62.6 2-Chloroethanol lq 295.4 1-Chloro-2-ethylbenzene lq 54.1 1-Chloro-4-ethylbenzene lq 51.7 Chloroethylene (vinyl chloride) lq 89.4 g 37.3 53.6 263.9 53.7 2-Chloroethyl ethyl ether g 301.3 2-Chloroethyl vinyl ether g 170.1 Chloroethyne g 213.0 197.0 241.9 54.3 1-Chloro-1-fluoroethane g 313.4 2-Chlorohexane lq 246.1 Chlorofluoromethane g 290.8 265.5 264.3 47.0 Chlorohydroquinone c 382.8 Chloroiodomethane g 12.6 15.4 296.1 Chloromethane lq 75.624 g 81.9 58.5 234.6 40.8 1-Chloro-3-methylbutane lq 216.0 175.1 g 179.7 2-Chloro-2-methylbutane g 202.2 2-Chloro-3-methylbutane g 185.1 1-Chloro-2-methylpropane lq 191.1 158.6 g 159.4 49.7 355.0 108.5 2-Chloro-2-methylpropane lq 211.2 172.8 g 182.2 64.1 322.2 114.2 1-Chloronaphthalene lq 54.6 212.6 2-Chloronaphthalene c 55.2 1-Chlorooctane lq 291.3 198.5 Chloropentafluoroacetone g 1121.0 Chloropentafluoroethane lq 184.2 g 1188.8 1-Chloropentane lq 213.2 g 175.0 37.4 397.0 130.5 3-Chlorophenol c 206.4 4-Chlorophenol c 197.9 1-Chloropropane lq 160.6 132.2 g 131.9 50.7 319.1 84.6 2-Chloropropane lq 172.1 g 144.9 62.5 304.2 87.3 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.13 2-Chloro-1,3-propanediol lq 517.5 3-Chloro-1,2-propanediol lq 525.3 2-Chloropropanoic acid lq 522.5 131.6 3-Chloropropanoic acid c 549.3 2-Chloro-1-propene g 21.0 3-Chloro-1-propene (allyl chloride) lq 125.1 g 0.63 43.6 306.7 75.4 N-Chlorosuccinimide c 358.1 -Chlorotoluene lq 32.6 o-Chlorotoluene lq 166.8 2-Chloro-1,1,1-trifluoro-ethane g 326.4 154.6 Chlorotrifluoroethylene g 505.5 523.8 322.1 83.9 Chlorotrifluoromethane g 707.8 667.4 285.4 66.9 Chlorotrimethylsilane lq 384.1 Chlorotrinitromethane lq 27.1 g 18.4 Chrysene c 145.3 ()-Cinchonidine c 29.7 Cinchonine c 31.0 cis-Cinnamic acid c 315.0 trans-Cinnamic acid c 338.5 Cinnamic anhydride c 347.7 Citric acid c 1543.9 1236.4 166.2 Codeine monohydrate c 632.6 Creatine c 537.2 o-Cresol c 204.6 165.4 154.6 lq 233.640 g 128.6 37.1 357.6 130.3 m-Cresol lq 194.0 212.6 224.9 g 132.3 40.5 356.8 122.5 p-Cresol c 199.3 167.3 150.2 lq 221.040 g 125.4 30.9 347.6 124.5 Cuban c 541.3 Cyanamide c 58.8 Cyanide (CN) g 437.6 407.5 202.6 29.2 Cyanogen g 306.7 297.2 241.9 56.9 Cyanogen bromide g 140.5 165.3 248.3 46.9 Cyanogen chloride g 138.0 131.0 236.2 45.0 Cyanogen fluoride g 639.8 224.7 41.8 Cyanogen iodide c 166.2 185.0 96.2 g 205.5 196.6 256.8 48.3 Cyclobutane g 27.7 110.0 265.4 72.2 Cyclobutanecarbonitrile lq 103.0 Cyclobutene g 156.7 174.7 263.5 67.1 Cyclobutylamine g 41.2 Cyclododecane c 306.6 1,3-Cycloheptadiene g 94.3 Cycloheptane lq 156.6 54.1 242.6 123.1 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.14 SECTION 6 Cycloheptanone lq 299.4 1,3,5-Cycloheptatriene lq 142.2 243.1 214.6 162.8 Cycloheptene g 9.2 Cyclohexane lq 156.4 26.7 204.4 154.9 g 123.4 31.8 298.3 106.3 cis-Cyclohexane-1,2-dicarboxylic acid c 961.1 trans-Cyclohexane-1,2-dicarboxylic acid c 970.7 Cyclohexanethiol lq 140.7 255.6 192.6 g 96.1 Cyclohexanol lq 348.1 133.3 199.6 208.2 Cyclohexanone lq 271.2 255.6 182.2 g 226.1 90.8 322.2 109.7 Cyclohexene lq 38.5 101.6 214.6 148.3 1-Cyclohexenylmethanol lq 382.4 Cyclohexylamine lq 147.7 Cyclohexylbenzene lq 76.6 261.3 Cyclohexylcyclohexane lq 329.3 Cyclooctane lq 167.7 Cyclooctanone lq 326.0 1,3,5,7-Cyclooctatetraene lq 254.5 358.6 220.3 184.0 Cyclooctene lq 74.0 1,3-Cyclopentadiene g 134.3 179.3 267.8 Cyclopentane lq 105.1 36.4 204.3 128.9 g 76.4 38.6 292.9 83.0 cis-1,2-Cyclopentanediol c 484.9 trans-1,2-Cyclopentanediol c 489.9 Cyclopentanethiol lq 89.5 46.8 256.9 165.2 Cyclopentanol lq 300.1 127.8 206.3 184.1 Cyclopentanone lq 235.7 154.5 Cyclopentene lq 4.4 108.5 201.3 122.4 g 34.0 110.8 291.8 75.1 1-Cyclopentenylmethanol lq 34.3 Cyclopentylamine lq 95.1 241.0 181.2 Cyclopropane g 53.3 104.4 237.4 55.6 Cyclopropanecarbonitrile g 182.8 Cyclopropene g 277.1 286.3 223.3 Cyclopropylamine lq 45.8 187.7 147.1 g 77.0 Cyclopropylbenzene lq 100.3 ()-Cysteine c 534.1 ()-Cystine c 1032.7 Cytosine c 221.3 132.6 Decafluorobutane lq 127.220 cis-Decahydronaphthalene lq 219.4 68.9 265.0 232.0 trans-Decahydronaphthalene lq 230.6 57.7 265.0 228.5 Decanal g 330.9 66.5 578.6 239.7 Decane lq 300.9 17.5 425.5 314.4 Decanedioic acid c 1082.8 1,10-Decanediol c 693.5 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.15 1-Decanenitrile lq 158.4 1-Decanethiol lq 276.5 476.1 350.4 g 211.5 61.4 610.1 255.6 Decanoic acid c 713.7 1-Decanol lq 478.1 132.2 430.5 370.6 1-Decene lq 173.8 105.0 425.0 300.8 1-Decyne g 41.2 252.2 524.5 219.7 Deoxybenzoin c 71.0 Diacetamide c 489.0 Diacetyl peroxide lq 535.3 1,2-Diallyl phthalate lq 550.6 2,2-Diaminodiethylamine lq 25440 2,6-Diaminopyridine c 6.5 Diazomethane g 192.5 217.8 242.8 52.5 Dibenz[de,kl]anthracene c 182.8 1,2-Dibenzoylethane c 255.6 trans-1,2-Dibenzoylethylene c 114.7 109.8 319.2 Dibenzoylmethane c 223.5 Dibenzoyl peroxide c 369.6 Dibenzyl c 44.1 260.0 269.4 255.2 Dibenzyl sulfide c 99.0 Dibenzyl sulfone c 282.6 1,2-Dibromobutane g 91.5 13.1 408.8 127.1 1,3-Dibromobutane lq 148.0 1,4-Dibromobutane g 87.8 2,3-Dibromobutane g 102.0 Dibromochlorofluoromethane g 231.8 223.4 342.8 82.4 Dibromochloromethane g 20.9 18.8 327.7 69.2 1,2-Dibromo-1-chloro-1,2,2-trifluoroethane lq 691.7 g 656.6 1,2-Dibromocycloheptane lq 157.6 1,2-Dibromocyclohexane lq 162.8 1,2-Dibromocyclooctane lq 173.3 Dibromodifluoroethane g 36.9 327.7 80.8 Dibromodichloromethane g 29.3 19.5 347.8 87.1 Dibromodifluoromethane g 429.7 419.1 325.3 77.0 1,1-Dibromoethane lq 66.2 1,2-Dibromoethane lq 79.2 20.9 223.3 136.0 g 37.5 cis-1,2-Dibromoethylene g 313.3 68.8 trans-1,2-Dibromoethylene g 313.5 70.3 Dibromofluoromethane g 223.4 221.1 316.8 65.1 Dibromomethane lq 105.3 g 14.8 16.2 293.2 54.7 1,3-Dibromo-2-methylpropane g 137.6 1,3-Dibromotetrafluoroethane lq 817.7 g 789.1 1,2-Dibromopropane lq 160.0 g 71.5 17.7 376.1 102.8 1,2-Dibromotetrafluoroethane lq 180.3 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.16 SECTION 6 Dibutoxymethane lq 549.4 Dibutylamine lq 206.0 292.9 Dibutyl disulfide g 160.6 53.9 572.8 231.1 Di-tert-butyl disulfide lq 255.2 Dibutyl ether lq 377.9 278.2 g 332.8 88.5 500.4 204.0 Di-sec-butyl ether lq 401.5 g 360.9 Di-tert-butyl ether lq 399.6 276.1 g 362.0 Dibutylmercury lq 97.9 Dibutyl peroxide lq 380.7 Dibutyl 1,2-phthalate c 842.6 498.0 Dibutyl sulfate lq 904.6 Dibutyl sulfide lq 220.7 32.2 405.1 284.3 Di-tert-butyl sulfide lq 232.4 Dibutyl sulfite lq 693.1 Dibutyl sulfone c 610.2 Dichloroacetic acid lq 496.3 ionized aq 507.1 Dichloroacetyl chloride lq 280.4 1,2-Dichlorobenzene lq 17.5 162.4 g 30.2 82.7 341.5 113.5 1,3-Dichlorobenzene lq 20.7 171 g 25.7 78.6 343.5 113.8 1,4-Dichlorobenzene c 42.3 lq 175.4 147.8 g 22.5 77.2 336.7 113.9 Dichlorodifluoromethane lq 117.2 g 477.4 439.4 300.8 72.3 1,3-Dichlorobutane g 195.0 1,4-Dichlorobutane g 183.4 Dichlorodimethylsilane g 461.1 335.4 101.1 Dichlorodiphenylsilane lq 278.2 1,1-Dichloroethane lq 158.4 126.3 g 127.7 73.8 305.1 76.2 1,2-Dichloroethane lq 167.4 128.4 g 126.4 73.9 308.4 78.7 1,1-Dichloroethylene lq 23.9 111.3 g 2.8 25.4 289.1 67.0 cis-1,2-Dichloroethylene g 4.6 24.4 289.5 65.1 trans-1,2-Dichloroethylene lq 23.1 116.8 g 5.0 28.6 289.9 66.7 Dichlorofluoromethane g 283.0 253.0 293.1 6l.0 1,1-Dichloro-1-fluoroethane g 320.2 88.7 1,1-Dichlorofluoroethylene g 313.9 76.5 1,1-Dichlorofluoromethane lq 112.6 Dichloromethane lq 124.2 177.8 101.2 g 95.4 68.9 270.3 51.0 Dichloropentadienyliron c 141.0 1,2-Dichloropropane lq 198.8 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.17 g 162.8 83.1 354.8 98.2 1,3-Dichloropropane g 159.2 82.6 367.2 99.6 2,2-Dichloropropane g 173.2 84.6 326.0 105.9 1,3-Dichloro-2-propanol lq 385.4 2,3-Dichloro-1-propanol lq 381.3 2,3-Dichloropropene lq 73.3 1,2-Dichlorotetrafluoromethane lq 164.2 g 916.3 2,2-Dichlorotetrafluoroethane lq 960.2 111.7 2,2-Dichloro-1,1,1-trifluoro-ethane g 352.8 102.5 Dicyanoacetylene lq 500.4 Dicyanobenzene c 275.4 1,4-Dicyanobutane lq 85.1 128.7 1,4-Dicyano-2-butyne c 366.5 Dicyanodiamide c 22.6 179.5 129.3 118.8 Dicyclopentadiene c 116.7 Diethanolamine c 493.8 lq 233.530 1,1-Diethoxyethane lq 491.4 238.0 1,2-Diethoxyethane lq 451.4 259.4 Diethoxymethane lq 450.4 1,3-Diethoxypropane lq 482.1 2,2-Diethoxypropane lq 538.5 Diethylamine lq 103.7 169.2 g 72.2 72.1 352.2 115.7 Diethylamine hydrochloride c 358.6 Diethylbarbituric acid (veronal) c 747.7 1,2-Diethylbenzene g 19.0 141.1 434.3 182.6 1,3-Diethylbenzene g 21.8 136.7 439.3 176.9 1,4-Diethylbenzene g 22.3 137.9 434.0 176.2 Diethyl carbonate lq 681.5 212.4 cis-1,2-Diethylcyclopropane lq 79.9 trans-1,2-Diethylcyclopropane lq 83.3 Diethyl disulfide lq 120.0 9.5 269.3 171.4 g 79.4 22.3 414.5 141.3 Diethylenediamine c 13.4 240.2 85.8 Diethylene glycol lq 628.5 244.8 g 571.1 441.0 135.1 Diethylene glycol dibutyl ether lq 45220 Diethylene glycol diethyl ether lq 341.415 Diethylene glycol dimethyl ether lq 274.1 Diethylene glycol monoethyl ether lq 301.0 Diethylene glycol monomethyl ether lq 271.1 Diethyl ether lq 279.5 116.7 172.4 172.6 g 252.1 122.3 342.7 119.5 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.18 SECTION 6 Di-2-ethylhexyl phthalate lq 704.7 Diethyl malonate lq 805.5 260.7 Diethylmercury lq 30.1 182.8 Diethyl oxalate lq 805.5 3,3-Diethylpentane lq 275.4 278.2 Diethyl peroxide lq 223.3 Diethyl 1,2-phthalate lq 776.6 425.1 366.1 Diethyl selenide lq 96.2 Diethyl sulfate lq 813.2 Diethyl sulfide lq 119.4 269.3 171.4 g 83.6 17.8 368.0 117.0 Diethyl sulfite lq 600.7 Diethyl sulfone c 515.5 Diethyl sulfoxide lq 268.0 N,N-Diethylurea c 372.2 Diethylzinc lq 16.7 1,2-Difluorobenzene lq 330.0 222.6 159.0 g 293.8 242.0 321.9 106.5 1,3-Difluorobenzene lq 343.9 223.8 159.1 g 309.2 257.0 320.4 106.3 1,4-Difluorobenzene lq 342.3 157.5 g 306.7 252.8 315.6 106.9 2,2-Difluorobiphenyl c 295.9 4,4-Difluorobiphenyl c 296.5 1,1-Difluoroethane lq 118.4 g 497.0 443.0 282.4 67.8 1,1-Difluoroethylene g 335.0 321.5 266.2 60.1 Difluoromethane g 452.2 425.4 246.6 42.9 9,10-Dihydroanthracene c 66.4 1,2-Dihydronaphthalene lq 71.5 1,4-Dihydronaphthalene lq 84.2 Dihydro-2H-pyran lq 157.4 5,12-Dihydrotetracene c 106.4 2,3-Dihydrothiophene lq 52.9 g 90.7 133.5 303.5 79.8 2,5-Dihydrothiophene g 86.9 131.6 297.1 83.3 2,5-Dihydrothiophene-1,1-dioxide c 318.9 2,4-Dihydroxyacetophenone c 573.6 1,2-Dihydroxybenzene (pyrocatechol) c 354.1 210.0 150.2 132.2 1,3-Dihydroxybenzene c 368.0 209.2 147.7 131.0 1,4-Dihydroxybenzene (p-hydroquinone) c 364.5 207.0 140.2 136.0 Dihydroxymalonic acid c 1216.3 2,4-Dihydroxy-5-methyl-pyrimidine c 468.2 2,4-Dihydroxy-6-methyl-pyrimidine c 456.9 Diiodoacetylene g 313.1 70.3 1,2-Diiodobenzene c 172.4 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.19 1,3-Diiodobenzene c 187.0 1,4-Diiodobenzene lq 30.0 c 160.7 1,2-Diiodoethane g 75.0 78.5 348.5 82.3 Diiodomethane lq 66.9 90.4 174.1 134.0 g 119.5 95.8 309.7 57.7 1,2-Diiodopropane g 35.6 1,3-Diiodopropane lq 9.0 Diisobutylamine lq 218.5 Diisopentyl ether lq 379100 Diisopropylamine lq 178.5 Diisopropyl ether lq 351.5 216.8 g 319.2 121.9 390.2 158.3 Diisopropylmercury lq 13.0 Diisopropyl sulfide lq 181.6 313.0 232.0 g 142.1 27.1 415.5 169.2 Diketene lq 233.1 1,2-Dimethoxybenzene lq 290.4 1,1-Dimethoxybutane lq 468.1 2,2-Dimethoxybutane lq 485.1 1,1-Dimethoxyethane lq 420.2 1,2-Dimethoxyethane lq 376.7 193.3 Dimethoxymethane lq 377.8 244.0 161.3 1,1-Dimethoxypentane lq 494.6 2,2-Dimethoxypentane lq 509.2 1,1-Dimethoxypropane lq 443.3 2,2-Dimethoxypropane lq 459.0 1,1-Dimethoxy-2-methyl-propane lq 476.2 N,N-Dimethylacetamide lq 278.3 175.6 Dimethylamine lq 43.9 70.0 182.3 137.7 g 18.5 68.5 273.0 70.7 4-(Dimethylamino)benz-aldehyde c 137.6 Dimethylaminomethanol lq 253.6 N,N-Dimethylaminotri-methylsilane lq 279.5 N,N-Dimethylaniline lq 47.7 214.629 2,6-Dimethylaniline lq 238.9 2,3-Dimethylbenzoic acid c 450.4 2,4-Dimethylbenzoic acid c 458.5 2,5-Dimethylbenzoic acid c 456.1 2,6-Dimethylbenzoic acid c 440.7 3,4-Dimethylbenzoic acid c 468.8 3,5-Dimethylbenzoic acid c 466.4 3,3-Dimethylbiphenyl lq 20.0 2,2-Dimethylbutane lq 213.8 272.5 191.9 g 186.1 9.2 358.2 141.9 2,3-Dimethylbutane lq 207.4 287.8 189.7 g 178.3 4.1 365.8 140.5 3,3-Dimethyl-2-butanone lq 328.6 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.20 SECTION 6 2,3-Dimethyl-1-butene 62.6 79.0 365.6 143.5 2,3-Dimethyl-2-butene lq 101.4 270.2 174.7 g 68.2 76.1 364.6 123.6 3,3-Dimethyl-1-butene g 60.5 98.2 343.8 126.5 2,3-Dimethyl-2-butenoic acid c 455.6 Dimethylcadmium lq 63.6 139.3 201.9 132.0 1,1-Dimethylcyclohexane lq 218.7 26.5 267.2 209.2 g 180.9 35.2 365.0 154.4 cis-1,2-Dimethylcyclohexane lq 211.8 274.1 210.2 g 172.1 41.2 374.5 165.5 trans-1,2-Dimethylcyclohexane lq 218.2 273.2 209.4 g 180.0 34.5 370.9 159.0 cis-1,3-Dimethylcyclohexane lq 222.9 272.6 209.4 g 184.6 29.8 370.5 157.3 trans-1,3-Dimethylcyclohexane lq 215.7 276.3 212.8 g 176.5 36.3 376.2 157.3 cis-1,4-Dimethylcyclohexane lq 215.6 271.1 212.1 g 176.6 38.0 370.5 157.3 trans-1,4-Dimethylcyclohexane lq 222.4 268.0 210.2 g 184.5 31.7 364.8 157.7 1,1-Dimethylcyclopentane g 138.2 39.0 359.3 133.3 cis-1,2-Dimethylcyclopentane lq 165.3 269.2 g 129.5 45.7 366.1 134.14 trans-1,2-Dimethylcyclopentane g 136.6 38.4 366.8 134.5 cis-1,3-Dimethylcyclopentane g 135.9 39.2 366.8 134.5 trans-1,3-Dimethylcyclopentane g 133.6 41.5 366.8 134.5 1,1-Dimethylcyclopropane lq 33.3 cis-1,2-Dimethylcyclopropane lq 26.3 trans-1,2-Dimethylcyclopropane lq 30.7 cis-2,4-Dimethyl-1,3-dioxane lq 465.2 4,5-Dimethyl-1,3-dioxane lq 451.6 5,5-Dimethyl-1,3-dioxane lq 461.3 4,4-Dimethyldiphenylamine c 11.72 Dimethyl disulfide lq 62.6 7.0 235.4 146.1 Dimethyl ether g 184.1 112.6 266.4 64.4 N,N-Dimethylformamide lq 239.3 150.6 Dimethyl fumarate lq 729.3 Dimethylglyoxime c 199.7 2,2-Dimethylheptane lq 288.2 2,6-Dimethyl-4-heptanone lq 408.5 297.3 2,2-Dimethylhexane lq 261.9 3.0 331.9 2,3-Dimethylhexane lq 252.6 9.1 342.7 2,4-Dimethylhexane lq 257.0 3.7 345.7 2,5-Dimethylhexane lq 260.4 2.5 338.7 249.2 3,3-Dimethylhexane lq 257.5 5.2 339.4 246.6 3,4-Dimethylhexane lq 251.8 8.5 347.2 Dimethyl hexanedioate lq 886.6 cis-2,2-Dimethyl-3-hexene lq 126.4 trans-2,2-Dimethyl-3-hexene lq 144.9 cis-2,5-Dimethyl-3-hexene lq 151.0 trans-2,5-Dimethyl-3-hexene lq 159.2 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.21 5,5-Dimethylhydantoin c 533.3 1,1-Dimethylhydrazine lq 48.9 206.7 198.0 164.1 1,2-Dimethylhydrazine lq 52.7 212.6 199.2 171.0 3,5-Dimethylisoxazole lq 63.2 Dimethyl maleate lq 703.8 263.2 Dimethylmaleic anhydride c 581.6 Dimethyl malonate lq 795.8 Dimethylmercury lq 59.8 140.3 209.0 g 94.4 146.1 306.0 83.3 6,6-Dimethyl-2-methylene-bicyclo[3.1.1]heptane lq 7.7 Dimethyl oxalate lq 756.3 2,2-Dimethylpentane lq 238.3 300.3 221.1 g 205.9 0.1 392.9 166.0 2,3-Dimethylpentane lq 233.1 218.3 g 198.9 0.7 414.0 166.0 2,4-Dimethylpentane lq 234.6 303.2 224.2 g 201.7 3.1 396.6 166.0 3,3-Dimethylpentane lq 234.2 g 201.2 2.6 399.7 166.0 Dimethyl pentanedioate lq 205.9 2,4-Dimethyl-3-pentanone lq 352.9 318.0 233.7 g 311.5 2,4-Dimethyl-1-pentene g 83.8 4,4-Dimethyl-1-pentene g 81.6 2,4-Dimethyl-2-pentene g 88.7 cis-4,4-Dimethyl-2-pentene g 72.6 trans-4,4-Dimethyl-2-pentene g 88.8 2,7-Dimethylphenanthrene c 36.4 4,5-Dimethylphenanthrene c 89.0 9,10-Dimethylphenanthrene c 47.7 2,3-Dimethylphenol c 241.2 206.9 2,4-Dimethylphenol lq 228.7 2,5-Dimethylphenol c 246.6 2,6-Dimethylphenol c 237.4 3,4-Dimethylphenol c 242.3 3,5-Dimethylphenol c 244.4 Dimethyl 1,2-phthalate lq 678 303.1 Dimethyl 1,3-phthalate c 730.0 Dimethyl 1,4-phthalate c 732.6 261.1 2,2-Dimethylpropane lq 163.96 g 168.0 1.5 306.4 121.6 2,2-Dimethylpropanenitrile lq 39.8 232.0 179.4 2,2-Dimethyl-1,3-propanediol c 551.2 2,2-Dimethylpropanoic acid lq 564.4 2,2-Dimethylpropanoic anhydride lq 779.9 2,2-Dimethyl-1-propanol lq 399.4 2,3-Dimethylpyridine lq 19.4 243.7 189.5 2,4-Dimethylpyridine lq 16.2 248.5 184.8 2,5-Dimethylpyridine lq 18.7 248.8 184.7 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.22 SECTION 6 2,6-Dimethylpyridine lq 12.7 249.2 185.2 3,4-Dimethylpyridine lq 18.3 240.7 191.8 3,5-Dimethylpyridine lq 22.5 241.7 184.5 Dimethyl succinate lq 835.1 2,2-Dimethylsuccinic acid c 987.8 meso-2,3-Dimethylsuccinic acid c 977.5 Dimethyl sulfate lq 735.5 Dimethyl sulfide lq 65.4 118.1 g 37.5 7.0 285.9 74.1 Dimethyl sulfite lq 523.6 Dimethyl sulfone c 450.1 302.5 142.0 lq 373.1 272 g 310.6 100.0 Dimethyl sulfoxide lq 204.2 99.2 188.3 153.0 1,5-Dimethyltetrazole c 188.7 2,2-Dimethylthiacyclopropane lq 24.2 5,5-Dimethyl-4-thia-1-hexene lq 90.7 N,N-Dimethylurea c 319.1 N,N’-Dimethylurea c 312.1 Dimethylzinc lq 23.4 201.6 129.2 2,3-Dinitroaniline c 11.7 2,4-Dinitroaniline c 67.8 2,5-Dinitroaniline c 44.4 2,6-Dinitroaniline c 50.6 3,4-Dinitroaniline c 32.6 3,5-Dinitroaniline c 38.9 2,4-Dinitroanisole c 186.6 2,6-Dinitroanisole c 189.1 1,2-Dinitrobenzene c 1.8 211.5 216.3 1,3-Dinitrobenzene c 27.4 184.6 220.9 1,4-Dinitrobenzene c 38.7 1,1-Dinitroethane lq 148.2 1,2-Dinitroethane lq 165.2 Dinitromethane lq 104.9 g 58.9 1,5-Dinitronaphthalene c 30.5 2,4-Dinitro-1-naphthol c 181.4 2,4-Dinitrophenol c 232.6 2,6-Dinitrophenol c 210.0 1,1-Dinitropropane lq 163.2 1,3-Dinitropropane lq 207.1 2,2-Dinitropropane lq 181.2 2,4-Dinitroresorcinol c 415.5 2,4-Dinitrotoluene c 71.6 2,6-Dinitrotoluene c 51.0 1,3-Dioxane lq 379.7 143.9 1,4-Dioxane lq 353.9 188.1 270.2 153.6 g 315.8 180.8 299.8 94.1 1,3-Dioxolane lq 333.5 118.0 g 298.0 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.23 1,3-Dioxolan-2-one c 581.6 133.950 1,3-Dioxol-2-one lq 459.9 Dipentene lq 50.8 249.4 Dipentyl ether lq 250 N,N-Diphenylacetamide c 43.1 Diphenylacetylene c 312.4 225.9 Diphenylamine c 130.6 Diphenylboron bromide lq 16.1 cis,cis-1,4-Diphenylbutadiene c 198.8 trans,trans-1,4-Diphenyl-butadiene c 178.8 Diphenylbutadiyne c 518.4 1,4-Diphenylbutane c 9.9 1,4-Diphenyl-1,4-butanedione c 256.2 7.8 324.7 1,4-Diphenyl-2-butene-1,4-dione c 114.7 111.5 319.2 Diphenyl carbonate c 401.2 175.9 278.4 Diphenyl disulfide c 148.5 Diphenyl disulfone c 643.2 Diphenyleneimine c 126.8 1,1-Diphenylethane lq 48.7 245.1 335.9 1,2-Diphenylethane lq 51.5 67.2 270.3 Diphenylethanedione c 154.0 Diphenyl ether c 32.1 233.9 216.6 lq 14.9 144.2 291.3 268.6 1,1-Diphenylethylene lq 172.4 Diphenylethyne c 312.4 6,6-Diphenylfulvene c 197.4 1,2-Diphenylhydrazine c 221.3 Diphenylmercury c 279.5 Diphenylmethane c 71.7 239.3 lq 89.7 276.9 233.1 1,3-Diphenyl-2-propanone c 84.0 Diphenyl sulfide lq 163.4 Diphenyl sulfone c 225.0 Diphenyl sulfoxide c 9.7 1,3-Diphenylurea c 122.6 Dipropylamine lq 156.1 253.075 Dipropyl disulfide lq 171.3 19.1 373.6 Dipropyl ether lq 328.8 323.9 221.6 g 292.9 105.6 422.5 158.3 Dipropylmercury lq 20.9 Dipropyl sulfate lq 859.0 Dipropyl sulfide lq 171.5 g 125.3 33.2 448.4 161.2 Dipropyl sulfite lq 646.8 Dipropyl sulfone lq 548.2 Dipropyl sulfoxide lq 329.4 2,2’-Dipyridyl ketone c 19.7 1,3-Dithiane g 10.0 72.4 333.5 110.4 1,2-Dithiolane g 0.0 47.7 313.5 86.5 1,3-Dithiolane g 10.0 54.7 323.3 84.7 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.24 SECTION 6 Divinyl ether lq 39.8 g 13.6 Divinyl sulfone lq 207.4 Docosanoic acid c 983.0 cis-13-Docosenic acid c 866.0 trans-13-Docosenic acid c 960.7 Dodecane lq 350.9 28.1 490.6 376.0 g 289.7 50.0 622.5 280.3 Dodecanedioic acid c 1130.0 Dodecanoic acid c 774.6 lq 737.9 404.3 1-Dodecanol lq 528.5 438.1 1-Dodecene lq 226.2 484.8 360.7 g 165.4 137.9 618.3 269.6 1-Dodecyne g 0.04 268.6 602.4 265.4 Dulcitol c 1346.8 1,2-Epoxybutane lq 168.9 230.9 147.0 Ergosterol c 789.9 Ethane g 84.0 32.0 229.1 52.5 Ethane-d6 g 107.4 47.3 244.5 64.6 1,2-Ethanediamine lq 63.0 209.2 172.6 1,2-Ethanediol lq 455.3 323.2 163.2 149.3 g 392.2 304.5 303.8 82.7 Ethanedithioamide c 20.8 Ethanedioyl dichloride lq 367.6 1,2-Ethanedithiol lq 54.4 Ethanethiol lq 73.6 5.5 207.0 117.9 g 46.1 4.8 296.1 72.7 Ethanol lq 277.6 174.8 161.0 112.3 g 234.8 167.9 281.6 65.6 Ethene (see Ethylene) Ethoxybenzene lq 152.6 228.5 2-Ethoxyethyl acetate lq 376.0 2-Ethoxyethanol lq 210.8 Ethyl acetate lq 479.3 332.7 257.7 170.7 g 443.6 327.4 362.8 113.6 Ethylamine lq 130.0 g 47.4 36.3 283.8 71.5 Ethyl 4-aminobenzoate c 418.0 N-Ethylaniline lq 4.0 188.7 239.3 Ethylbenzene lq 12.3 183.2 g 29.9 130.6 360.5 Ethyl benzoate lq 246.0 2-Ethylbenzoic acid c 441.3 3-Ethylbenzoic acid c 445.8 4-Ethylbenzoic acid c 460.7 2-Ethyl-1-butene g 56.0 80.0 376.6 133.6 Ethyl trans-2-butenoate (ethyl crotonate) lq 420.1 228.0 Ethyl carbamate c 520.5 Ethyl 4-chlorobutanoate lq 566.5 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.25 Ethyl chloroformate lq 505.1 Ethylcyclobutane g 27.5 Ethylcyclohexane lq 211.9 29.1 280.9 211.8 g 171.7 39.3 382.6 158.8 1-Ethylcyclohexene lq 106.7 Ethylcyclopentane lq 163.4 37.3 279.9 185.8 1-Ethylcyclopentene g 19.7 Ethylcyclopropane lq 24.8 Ethyl diethylcarbamate lq 592.3 Ethyl 2,2-dimethylpropanoate lq 577.2 g 536.0 Ethylene g 52.5 68.4 219.3 42.9 Ethylene-d4 g 38.2 59.2 230.5 51.9 Ethylene carbonate c 581.5 133.9 Ethylenediaminetetra-acetic acid c 1759.4 Ethylenediammonium chloride c 513.4 2,2-(Ethylenedioxy)bis-ethanol lq 804.2 Ethylene glycol dibutyl ether lq 35020 Ethylene glycol diethyl ether lq 451.4 259.4 Ethylene glycol dimethyl ether lq 376.6 193.3 Ethyleneimine lq 91.9 g 126.5(9) 178.0 250.6 52.6 Ethylene oxide lq 78.0 11.8 153.9 88.0 g 52.6(6) 13.1 242.4 47.9 Ethyl formate lq 149.3 2-Ethylhexanal lq 342.5 3-Ethylhexane lq 250.4 g 210.7 2-Ethyl-1-hexanol lq 432.8 347.0 317.5 Ethyl hydroperoxide g 198.9 Ethylidenecyclohexane lq 103.5 Ethylidenecyclopentane lq 56.7 Ethyl isocyanide lq 108.4 Ethyl isopropyl sulfide lq 156.1 Ethyl lactate lq 254 Ethyllithium c 58.6 Ethylmercury bromide c 107.5 Ethylmercury chloride c 141.1 Ethylmercury iodide c 65.7 1-Ethyl-2-methylbenzene g 1.3 131.1 399.2 157.9 2-Ethyl-3-methyl-1-butene g 79.5 Ethyl 2-methylbutanoate lq 566.8 Ethyl 3-methylbutanoate lq 570.9 Ethyl methyl ether g 216.4 117.7 309.2 93.3 3-Ethyl-2-methylpentane lq 249.6 g 211.0 21.3 441.1 3-Ethyl-3-methylpentane lq 252.8 g 214.8 19.9 433.0 3-Ethyl-2-methyl-1-pentene g 100.3 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.26 SECTION 6 Ethyl methyl sulfide lq 91.6 239.1 144.6 g 59.6 11.4 333.1 95.1 Ethyl nitrate g 154.1 36.9 348.3 97.4 Ethyl nitrite g 104.2 103.5 99.2 1-Ethyl-2-nitrobenzene lq 48.7 1-Ethyl-4-nitrobenzene lq 55.4 Ethyl 3-oxobutanoate lq 248.0 3-Ethylpentane lq 224.9 314.5 219.6 g 189.6 11.0 411.5 166.0 Ethyl pentanoate lq 553.0 2-Ethylphenol lq 208.8 3-Ethylphenol lq 214.3 4-Ethylphenol c 224.4 206.9 Ethylphosphonic acid c 1051.4 Ethylphosphonic dichloride lq 613.4 Ethyl propanoate lq 502.7 196.1 g 463.3 323.7 Ethyl propyl ether g 272.2 295.0 197.2 Ethyl propyl sulfide lq 144.8 309.5 198.4 g 104.7 23.6 414.1 139.3 2-Ethylpyridine lq 7.4 S-Ethyl thioacetate lq 268.2 2-Ethyltoluene g 1.3 131.1 399.2 157.9 3-Ethyltoluene g 1.8 126.4 404.2 152.2 4-Ethyltoluene g 3.2 85.3 398.9 151.5 N-Ethylurea c 357.8 Ethyl -vinylacrylate lq 338.1 Ethyl vinyl ether lq 167.4 g 140.8 Ethynylbenzene g 327.3 361.8 321.7 114.9 Ethynylsilane g 269.4 72.6 Fluoranthene c 189.9 345.6 230.5 230.2 Fluoroacetamide c 496.6 Fluoroacetic acid c 688.3 Fluoroacetylene g 269.4 72.6 Fluorobenzene lq 150.6 205.9 146.4 g 116.0 69.0 302.6 94.4 2-Fluorobenzoic acid c 567.6 3-Fluorobenzoic acid c 582.0 4-Fluorobenzoic acid c 585.7 Fluoroethane g 263.2 211.0 264.5 58.6 2-Fluoroethanol lq 465.7 Fluoroethylene g 138.8 Fluoromethane g 237.8 213.8 222.8 37.5 1-Fluoropropane g 285.9 200.3 304.2 82.6 2-Fluoropropane g 293.5 204.2 292.1 82.0 Fluorosyltrifluoromethane g 766.0 707.0 322.4 79.4 4-Fluorotoluene lq 186.9 79.8 237.1 171.2 Fluorotribromomethane g 190.4 193.1 345.8 Fluorotrinitromethane lq 220.9 Formaldehyde g 108.6 102.5 218.8 35.4 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.27 Formamide lq 254.0 107.6 g 193.9 141.0 248.6 45.4 Formanilide c 151.5 Formic acid lq 424.7 361.4 129.0 99.5 g 378.7 351.0 248.7 45.2 Formyl fluoride g 376.6 368.1 246.5(8) 40.0 D-()-Fructose c 1265.6 D-()-Fucose c 1099.1 Fullerene-C60 c 2327.0 2302.0 426.0 520.0 Fumaric acid c 811.7 655.6 168.0 142.0 Fumaronitrile c 268.2 Furan lq 62.3 177.0 114.8 g 34.9 0.88 267.2 65.4 2-Furancarboxaldehyde lq 201.6 163.2 2-Furancarboxylic acid c 498.4 2-Furanmethanol lq 276.2 154.2 215.5 204.0 Furfuryl alcohol lq 276.2 204.0 Furylacrylic acid c 459.0 Furylethylene lq 10.5 D-()-Galactose c 1286.3 918.8 205.4 D-Gluconic acid c 1587.0 D-()-Glucose c 1273.3 910.4 212.1 D-()-Glutamic acid c 1009.7 727.5 191.2 L-()-Glutamic acid c 1005.2 731.3 188.2 L-Glutamine c 826.4 Glutaric acid c 960.0 Glyceraldehyde lq 598.0 Glycerol lq 668.5 477.0 206.3 218.9 Glyceryl 1-acetate lq 909.1 Glyceryl 1-benzoate c 777.3 Glyceryl 2-benzoate c 772.8 Glyceryl 1,3-diacetate lq 1120.7 Glyceryl 1-dodecanoate c 1160.9 Glyceryl 2-dodecanoate c 1152.6 Glyceryl 1-hexadecanoate c 1281.5 Glyceryl 1-hexanoate c 1109.0 Glyceryl 2-hexanoate c 1095.8 Glyceryl 1-octadecanoate c 1324.8 Glyceryl 1-tetradecanoate c 1222.6 Glyceryl triacetate lq 1330.8 Glyceryl trinitrate lq 370.9 Glyceryl tris(dodecanoate) c 2046.0 Glyceryl tris(tetradecanoate) c 2176.0 Glycine c 528.5 368.6 103.5 99.2 ionized; std. state aq 469.8 315.0 111.0 H3NCH2COOH; std. state aq 517.9 384.2 190.2 Glycylglycine c 747.7 490.6 190.0 Glyoxal g 212.0 Glyoxime c 90.5 Glyoxylic acid c 835.5 Guanidine c 56.0 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.28 SECTION 6 Guanidine carbonate c 971.9 557.4 295.4 258.9 Guanidine nitrate c 387.0 Guanidine sulfate c 1205.0 Guanine c 183.9 47.4 160.3 Guanylurea nitrate c 427.2 L-Gulonic acid--lactone c 1219.6 Heptadecane g 393.9 82.1 817.3 394.7 Heptadecanoic acid c 924.4 475.7 1-Heptadecene g 268.4 179.9 813.1 383.9 Heptanal lq 311.5 100.6 335.4 230.1 g 264.0 86.7 461.7 Heptane lq 224.2 224.9 g 187.7 8.0 427.9 166.0 Heptanedioic acid c 1009.4 Heptanenitrile lq 82.8 1-Heptanethiol g 150.0 36.2 493.3 186.9 Heptanoic acid lq 610.2 265.4 1-Heptanol lq 403.3 142.3 320.1 272.1 g 336.4 120.9 480.3 178.7 2-Heptanone lq 232.6 1-Heptene lq 97.9 327.6 211.8 g 62.3 95.8 423.6 155.2 cis-2-Heptene lq 105.1 trans-2-Heptene lq 109.5 cis-3-Heptene lq 104.3 trans-3-Heptene lq 109.3 1-Heptyne g 103.0 226.7 407.7 151.1 Hexabromoethane g 441.9 139.3 Hexachlorobenzene c 127.6 1.1 260.2 201.3 g 35.5 44.2 441.2 173.2 Hexachloroethane c 202.8 237.3 198.2 g 143.6 54.9 398.7 136.7 Hexadecafluoroethylcyclo-hexane lq 3420.0 Hexadecafluoroheptane lq 3420.8 3093.0 561.8 419.0 Hexadecane lq 456.1 501.6 g 374.8 83.7 778.3 371.8 Hexadecanoic acid c 891.5 316.1 452.4 460.7 1-Hexadecanol c 686.7 98.7 451.9 422.0 lq 635.4 96.6 606.7 1-Hexadecene lq 328.7 587.9 488.9 g 248.5 171.5 774.1 361.0 1,5-Hexadiene lq 54.1 2,4-Hexadienoic acid c 390.8 1,5-Hexadiyne lq 384.2 Hexafluoroacetone g 1249.3 Hexafluoroacetylacetone c 2286.7 Hexafluorobenzene lq 991.3 280.8 156.6 g 955.4 79.4 383.2 Hexafluoroethane g 1344.2 1255.8 332.3 106.7 cis-Hexahydroindane g 127.2 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.29 trans-Hexahydroindane g 131.4 Hexamethylbenzene c 162.4 117.4 306.3 245.6 1,1,1,3,3,3-Hexamethyldi-silazane lq 518.0 Hexamethyldisiloxane lq 814.6 541.8 433.8 311.4 g 777.7 534.5 535.0 238.5 Hexamethylenetetramine c 125.5 434.8 163.4 Hexamethylphosphoric triamide lq 321 Hexanal g 248.4 100.1 422.9 148.2 Hexanamide c 423.0 lq 397.0 Hexane lq 198.8 3.8 296.1 195.6 g 167.1(8) 0.25 388.4 143.1 1,6-Hexanedioic acid lq 985.4 207.3 232.2 1,2-Hexandediol lq 577.1 1,6-Hexanediol c 569.9 Hexanedinitrile lq 85.1 128.7 1-Hexanethiol g 129.9 27.8 454.3 164.1 Hexanoic acid lq 583.9 225.0 1-Hexanol lq 377.5 152.3 287.4 240.4 g 317.6 135.6 441.4 155.6 2-Hexanol lq 392.9 3-Hexanol lq 392.4 286.2 2-Hexanone lq 322.0 213.3 3-Hexanone lq 320.2 305.3 216.9 1-Hexene lq 74.1 83.6 295.1 183.3 g 43.5 84.45 384.6 132.3 cis-2-Hexene lq 83.9 g 52.3 76.2 386.5 125.7 trans-2-Hexene lq 85.5 g 53.9 76.4 380.6 132.4 cis-3-Hexene lq 79.0 g 47.6 83.0 379.6 123.6 trans-3-Hexene lq 86.1 Hexyl acetate lq 282.8 g 54.4 77.6 374.8 132.8 1-Hexyne g 123.6 218.6 368.7 128.2 ()-Histidine c 466.7 Hydantoin c 448.5 Hydrazine lq 50.6 149.2 121.2 98.9 Hydrazinecarbothioamide c 24.7 Hydrazobenzene c 221.3 Hydroxyacetic acid c 663.6 2-Hydroxyacetophenone c 357.7 3-Hydroxyacetophenone c 370.7 4-Hydroxyacetophenone c 364.4 2-Hydroxybenzaldehyde lq 279.9 2-Hydroxybenzaldoxime c 183.7 2-Hydroxybenzoic acid c 589.9 421.3 178.2 159.1 3-Hydroxybenzoic acid c 584.9 417.3 177.0 157.3 4-Hydroxybenzoic acid c 584.5 416.5 175.7 155.1 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.30 SECTION 6 ()-2-Hydroxybutanoic acid lq 679.1 2-Hydroxy-2,4,6-cyclohepta-trienone c 239.2 2-Hydroxyisobutanoic acid c 744.3 2-Hydroxy-1-isopropyl-4-methylbenzene c 309.6 3-Hydroxy-4-methoxybenz-aldehyde c 453.6 4-Hydroxy-4-methyl-2-pentanone lq 221.3 2-Hydroxymethyl-1,3-propane-diol c 744.6 3-Hydroxy-2-naphthalene-carboxylic acid c 547.7 5-Hydroxy-1-pentanal lq 479.9 trans-()-4-Hydroxyproline c 661.1 (S)-2-Hydroxypropanoic acid c 694.0 2-Hydroxypropanonitrile lq 138.9 34.3 2-Hydroxypyridine c 166.3 3-Hydroxypyridine c 132.0 4-Hydroxypyridine c 144.6 8-Hydroxyquinoline c 81.2 ()-2-Hydroxysuccinic acid c 1103.7 884.7 ()-2-Hydroxysuccinic acid c 1105.7 Hypoxanthene c 110.8 76.9 145.6 134.5 Icosane g 455.8 117.3 934.1 463.3 Icosanoic acid c 1011.9 545.1 Icosene g 330.2 205.1 929.9 452.5 Imidazole c 49.8 Iminodiacetic acid c 932.6 Indane lq 11.5 150.8 56.0 190.3 1H-Indazole c 151.9 Indene lq 110.6 217.6 215.3 186.9 1H-Indole c 86.7 Indole-2,3-dione c 268.2 Iodoacetone g 130.5 Iodobenzene lq 117.1 205.4 158.7 g 164.9 187.8 334.1 100.8 2-Iodobenzoic acid c 302.3 3-Iodobenzoic acid c 316.9 4-Iodobenzoic acid c 316.1 Iodocyclohexane lq 97.2 Iodoethane lq 40.0 14.7 211.7 115.1 g 8.1 l9.2 306.0 66.9 Iodoethylene g 285.0 57.9 Iodomethane g 14.4 15.6 254.1 44.1 2-Iodo-2-methylpropane lq 107.5 162.3 g 72.0 23.6 342.2 118.3 1-Iodonaphthalene lq 161.5 2-Iodonaphthalene c 144.3 2-Iodophenol c 95.8 3-Iodophenol c 94.5 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.31 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 4-Iodophenol c 95.4 1-Iodopropane lq 66.0 126.8 g 30.0 2-Iodopropane lq 74.8 91.0 g 40.3 20.1 324.5 90.1 3-Iodopropanoic acid c 460.0 3-Iodo-1-propene g 91.5 -Iodotoluene lq 57.7 3-Iodotoluene lq 79.1 4-Iodotoluene lq 67.4 Isobutanenitrile g 25.4 103.6 313.3 96.4 Isobutylamine lq 132.6 183.2 Isobutylbenzene lq 69.8 Isobutyl trichloroacetate lq 553.4 Isocyanomethane g 163.5 165.7 246.9 52.9 ()-Isoleucine c 637.9 347.2 208.0 188.3 ()-Isoleucine c 635.3 Isoxazole g 78.6 Isopropenyl acetate lq 386.4 Isopropyl acetate lq 518.9 199.4 Isopropylamine lq 112.3 218.3 163.8 g 83.7 32.2 312.2 97.5 Isopropylbenzene lq 41.1 124.3 279.8 210.7 g 4.0 137.0 388.6 151.7 1-Isopropyl-2-methylbenzene lq 73.3 1-Isopropyl-3-methylbenzene lq 78.6 1-Isopropyl-4-methylbenzene lq 78.0 119.1 306.6 Isopropyl methyl ether lq 278.8 253.8 161.9 g 252.0 120.9 332.3 111.1 2-Isopropyl-5-methylphenol c 309.7 Isopropyl methyl sulfide lq 105.7 263.1 172.4 g 90.5 13.4 359.3 117.2 Isopropyl nitrate g 191.0 40.7 373.2 120.7 2-Isopropylphenol lq 233.7 3-Isopropylphenol lq 252.5 4-Isopropylphenol lq 265.9 Isopropyl thioacetate lq 298.2 Isopropyl trichloroacetate lq 536.0 Isoquinoline c 144.5 lq 196.8 Ketene g 47.5 48.3 247.6 51.8 ()-Lactic acid c 694.1 522.9 142.3 ()-Lactic acid lq 674.5 518.2 192.1 -Lactose c 2236.7 1567.0 386.2 ()-Leucine c 637.3 347.2 208.0 ()-Leucine c 637.4 346.3 211.8 201.0 ()-Limonene lq 54.5 249.0 ()-Lysine c 678.6 Malic acid c 789.4 625.1 160.8 137.0 Maleic anhydride c 469.8 (R)-Malic acid c 1105.7 (S)-Malic acid c 1103.6 6.32 SECTION 6 Malonamide c 546.0 Malonic acid c 891.0 Malonodiamide c 546.1 Malononitrile c 186.6 D-()-Maltose c 2220.9 1726.3 ()-Mandelic acid c 579.4 ()-Mannitol c 1337.1 942.2 238.5 D-()-Mannose c 1263.0 2-Mercaptopropanoic acid lq 468.2 343.9 228.9 Methane g 74.6 50.5 186.3 35.7 Methane-d4 g 88.2 59.5 198.9 40.3 Methanethiol lq 46.7 7.7 169.2 90.5 g 22.9 9.9 255.1 50.3 Methanol lq 239.1 166.6 126.8 81.2 g 201.0 162.3 239.9 44.1 ()-Methionine c 577.5 505.8 231.5 2-Methoxybenzaldehyde c 266.5 3-Methoxybenzaldehyde lq 276.1 4-Methoxybenzaldehyde lq 267.2 Methoxybenzene lq 114.8 199.0 g 67.9 2-Methoxybenzoic acid c 538.5 3-Methoxybenzoic acid c 553.5 4-Methoxybenzoic acid c 561.7 2-Methoxyethanol lq 171.1 2-Methyoxyethyl acetate lq 310.0 2-Methoxytetrahydropyran lq 442.3 5-Methoxytetrazole c 69.1 1-Methoxy-2,4,6-trinitro-benzene c 157.5 Methyl (CH3) g 145.7 147.9 194.2 38.7 Methyl acetate lq 445.8 141.9 g 413.3 324.4 86.0 Methyl acrylate lq 362.2 243.2 239.5 158.8 g 333.0 237.6 Methylamine lq 47.2 35.7 150.2 102.1 g 22.5 32.7 242.9 50.1 N-Methylaniline lq 32.2 207.1 o-Methylaniline lq 6.3 209.6 g 56.4 167.6 351.0 130.2 m-Methylaniline lq 8.1 227.0 g 54.6 165.4 352.5 125.5 p-Methylaniline lq 23.5 g 55.3 167.7 347.0 126.2 Methyl benzoate lq 343.5 221.3 2-Methylbenzoic acid c 416.5 lq 174.9 3-Methylbenzoic acid c 426.1 lq 163.6 4-Methylbenzoic acid c 429.2 lq 169.0 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.33 2-Methylbenzoic anhydride c 533.5 4-Methylbenzoic anhydride c 520.9 1-Methylbicyclo[4.1.0]heptane lq 59.9 1-Methylbicyclo[3.1.0]hexane lq 33.2 2-Methylbiphenyl lq 108.0 3-Methylbiphenyl lq 85.4 4-Methylbiphenyl c 55.2 2-Methyl-1,3-butadiene lq 48.2 229.3 152.6 g 75.5 145.9 315.6 104.6 3-Methyl-1,2-butadiene g 129.7 198.6 319.7 105.4 2-Methylbutane lq 178.4 260.4 164.8 g 154.0 14.8 343.6 118.8 2-Methyl-2-butanethiol lq 162.8 290.1 198.1 g 127.1 9.2 386.9 143.5 3-Methyl-1-butanethiol g 114.9 3-Methyl-2-butanethiol lq 158.8 2-Methylbutanoic acid lq 554.4 3-Methylbutanoic acid lq 561.6 197.1 2-Methyl-1-butanol lq 356.6 220.1 3-Methyl-1-butanol lq 356.4 210.0 2-Methyl-2-butanol lq 379.5 175.3 229.3 247.1 ()-3-Methyl-2-butanol lq 366.6 232.2 3-Methyl-2-butanone lq 299.5 268.5 179.9 g 262.5 2-Methyl-1-butene lq 61.1 254.0 157.2 g 35.3 65.6 339.5 110.0 3-Methyl-1-butene lq 51.5 253.3 156.1 g 27.6 74.8 333.5 118.6 2-Methyl-2-butene lq 68.6 251.0 152.8 g 41.8 59.7 338.6 105.0 trans-2-Methyl-2-butenedioic acid [also cis] c 824.4 cis-2-Methyl-2-butenoic acid c 455.6 trans-2-Methyl-2-butenoic acid c 490.8 3-Methylbutyl acetate lq 248.5 3-Methyl-1-butyne g 136.4 205.5 319.0 104.7 Methyl trans-2-butenoate lq 382.8 Methylcyclobutane lq 44.5 Methylcyclobutanecarboxylic acid lq 395.0 Methylcyclohexane lq 190.1 20.3 247.9 184.9 g 154.7 27.3 343.3 135.0 cis-2-Methylcyclohexanol lq 390.2 20017 trans-2-Methylcyclohexanol lq 415.8 20017 cis-3-Methylcyclohexanol lq 416.1 29217 trans-3-Methylcyclohexanol lq 394.4 20217 cis-4-Methylcyclohexanol lq 413.2 20217 trans-4-Methylcyclohexanol lq 433.3 20217 2-Methylcyclohexene lq 81.2 Methylcyclopentane lq 138.0 31.5 247.9 158.7 g 106.2 35.8 339.9 109.8 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.34 SECTION 6 1-Methylcyclopentanol lq 343.3 2-Methylcyclopentanone lq 265.3 1-Methylcyclopentene g 3.8 102.1 326.4 100.8 3-Methylcyclopentene g 7.4 115.0 330.5 100.0 4-Methylcyclopentene g 14.6 121.6 328.9 100.0 1-Methylcyclopropene lq 1.7 g 243.6 Methylenecyclobutane g 121.6 Methylenebutanedioic acid c 841.1 Methylenecyclohexane lq 61.3 Methylenecyclohexene lq 12.7 Methylenecyclopropane g 200.5 Methyl decanoate lq 640.4 Methyl 2,2-dimethylpropanoate lq 530.0 257.9 2-Methyl-1,3-dioxane lq 436.4 4-Methyl-1,3-dioxane c 416.1 N-Methyldiphenylamine lq 120.5 4-Methyldiphenylamine c 49.0 Methyl dodecanoate lq 693.0 Methylene (CH2) g 390.4 372.9 194.9 33.8 Methylenebutanedioic acid c 841.1 Methylenecyclohexane lq 61.3 2-Methylenecyclohexanol lq 277.6 3-Methylenecyclohexene lq 12.7 2-Methylenecyclopentanol lq 46.9 Methylenecyclopropane g 200.5 Methylenesuccinic acid c 841.2 Methylene sulfate c 688.7 N-Methylformamide lq 123.8 Methyl formate lq 386.1 119.1 g 357.4 297.2 285.3 64.4 Methyl 2-furancarboxylate lq 450.0 2-Methyl-2,5-furandione lq 504.5 -Methyl-()-glucoside c 1233.4 N-Methylglycine c 513.3 Methylglyoxal g 27.1 Methylglyoxime c 126.8 2-Methylheptane lq 255.0 356.4 252.0 g 215.4 12.8 452.5 3-Methylheptane lq 252.3 362.6 250.2 g 212.5 13.7 461.6 4-Methylheptane lq 251.6 251.1 g 212.0 16.7 453.3 Methyl heptanoate lq 567.1 285.1 2-Methylhexane lq 229.5 323.3 222.9 g 194.6 3.2 420.0 166.0 3-Methylhexane lq 226.4 214.2 g 192.3 4.6 424.1 166.0 Methyl hexanoate lq 540.2 5-Methyl-1-hexene g 65.7 cis-3-Methyl-3-hexene g 79.4 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.35 trans-3-Methyl-3-hexene g 76.8 Methylhydrazine lq 54.2 179.9 165.9 134.9 g 94.7 186.9 278.7 71.1 2-Methyl-1H-indole c 60.7 3-Methyl-1H-indole c 68.2 Methyl isocyanate lq 92.0 Methyl isocyanide g 163.5 165.7 246.8 52.9 1-Methyl-4-isopropylbenzene lq 78.0 236.4 Methyl isopropyl sulfide g 90.4 13.4 359.3 117.2 Methyl isothiocyanate c 79.4 g 131.0 144.4 252.3 65.5 5-Methylisoxazole lq 5.6 Methylmercury bromide c 86.2 Methylmercury chloride c 116.3 Methylmercury iodide c 43.5 Methyl 2-methylbutanoate lq 534.3 Methyl 3-methylbutanoate lq 538.9 7-Methyl-3-methylene-1,6-octadiene lq 14.5 (R)-1-Methyl-4-(1-methyl-ethenyl)cyclohexene lq 54.5 24920 1-Methylnaphthalene lq 56.3 189.4 254.8 224.4 2-Methylnaphthalene c 44.9 192.6 220.0 196.0 g 106.7 216.2 380.0 159.8 Methyl nitrate lq 156.3 43.5 217.2 157.3 g 124.4 39.3 318.5 76.5 Methyl nitrite g 66.1 1.0 284.3 63.2 Methyl nitroacetate lq 464.0 2-Methyl-5-nitroaniline c 91.3 4-Methyl-3-nitroaniline c 71.7 1-Methyl-2-nitrobenzene lq 9.7 1-Methyl-3-nitrobenzene lq 31.5 1-Methyl-4-nitrobenzene c 48.1 2-Methyl-2-nitropropane c 229.8 2-Methyl-2-nitro-1,3-propanediol c 575.3 2-Methyl-2-nitro-1-propanol c 410.0 2-Methylnonane lq 309.8 420.1 313.3 5-Methylnonane lq 307.9 423.8 314.4 Methyl phenylcarbamate c 186.7 Methyl cis-9-octadecanoate lq 734.5 Methyl octanoate lq 590.3 2-Methyl-2-oxazoline g 130.5 2-Methylpentane lq 204.6 290.6 193.7 g 174.8 5.0 380.5 144.2 3-Methylpentane lq 202.4 292.5 190.7 g 172.1 2.1 379.8 143.1 2-Methyl-2,4-pentanediol lq 236.0 Methyl pentanoate lq 514.2 229.3 2-Methyl-1-pentanol lq 248.0 2-Methyl-3-pentanol lq 396.4 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.36 SECTION 6 3-Methyl-2-pentanol lq 275.9 3-Methyl-3-pentanol lq 293.4 4-Methyl-2-pentanol lq 394.7 273.0 2-Methyl-3-pentanone lq 325.9 4-Methyl-2-pentanone lq 213.3 2-Methyl-1-pentene g 59.4 77.6 382.2 135.6 2-Methyl-2-pentene g 66.9 71.2 378.4 126.6 3-Methyl-1-pentene g 49.5 86.4 376.8 142.4 cis-3-Methyl-2-pentene g 62.3 73.2 378.4 126.6 trans-3-Methyl-2-pentene g 63.1 71.3 381.8 126.6 4-Methyl-1-pentene g 51.3 90.0 367.7 126.5 cis-4-Methyl-2-pentene g 57.5 82.1 373.3 133.6 trans-4-Methyl-2-pentene g 61.5 79.6 368.3 141.4 Methyl 2-methylpropenoate lq 191.2 4-Methyl-3-penten-2-one lq 212.5 Methyl pentyl sulfide g 122.9 35.1 450.7 163.7 3-Methyl-1-phenyl-1-butanone lq 220.2 Methyl phenyl sulfide lq 43.0 Methyl phenyl sulfone c 345.4 Methylphosphonic acid c 1054 ()-2-Methylpiperidine lq 124.9 2-Methylpropanal lq 247.4 g 215.8 N-Methylpropanamide lq 179 2-Methylpropanamine lq 132.6 183.2 2-Methylpropane g 134.2 20.9 294.6 130.512 2-Methyl-1,2-propanediamine lq 133.9 2-Methyl-1,2-propanediol lq 539.7 2-Methylpropanenitrile lq 13.8 2-Methyl-1-propanethiol g 97.3 5.6 362.9 118.3 2-Methyl-2-propanethiol g 109.6 0.7 338.0 121.0 2-Methylpropanoic acid lq 173 2-Methyl-1-propanol lq 334.7 214.7 181.2 g 283.9 167.35 359.0 111.3 2-Methyl-2-propanol lq 359.2 193.3 219.8 g 312.5 177.7 326.7 113.6 2-Methylpropene g 16.9 58.1 293.6 89.1 2-Methylpropenoic acid lq 161.1 1-Methyl-2-propylbenzene lq 72.5 1-Methyl-3-propylbenzene lq 76.2 1-Methyl-4-propylbenzene lq 75.1 (2-Methylpropyl)benzene lq 69.8 240.6 Methyl propyl ether lq 266.0 262.9 165.4 g 238.2 109.9 349.5 112.5 Methyl propyl sulfide g 82.3 18.4 371.7 117.4 2-Methylpyridine lq 56.7 166.5 217.9 158.4 g 99.2 177.1 325.0 100.0 3-Methylpyridine lq 61.9 214.0 216.3 158.7 g 106.4 184.3 325.0 99.6 4-Methylpyridine lq 59.2 209.1 159.0 1-Methyl-1H-pyrrole lq 62.4 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.37 2-Methyl-1H-pyrrole lq 23.3 3-Methyl-1H-pyrrole lq 20.5 N-Methylpyrrolidone lq 262.2 307.8 2-Methylquinoline c 164.4 Methyl salicylate lq 531.8 249.0 Methylsilane g 256.5 65.9 -Methylstyrene g 113.0 208.5 383.7 145.2 cis-()-Methylstyrene g 121.3 216.9 383.7 145.2 trans-()-Methylstyrene g 117.2 213.7 380.3 146.0 Methylsuccinic acid c 958.2 Methylsuccinic anhydride lq 617.6 Methyl tetradecanoate lq 743.9 2-Methylthiacyclopentane g 63.3 4-Methylthiazole lq 68.0 Methylthiirane g 45.8 2-Methylthiophene lq 44.6 149.8 g 83.5 122.9 320.6 95.4 3-Methylthiophene lq 43.1 g 82.6 121.8 321.3 94.9 Methyl p-tolyl sulfone c 372.8 5-Methyluracil c 462.8 Methylurea c 332.8 Morphine monohydrate c 711.7 Morpholine lq 164.8 Murexide c 1212.1 Naphthalene c 77.9 201.6 167.4 165.7 g 150.6 224.1 333.1 131.9 1-Naphthaleneacetic acid c 359.2 2-Naphthaleneacetic acid c 371.9 1-Naphthoic acid c 333.5 2-Naphthoic acid c 346.1 1-Naphthol c 121.0 166.9 2-Naphthol lq 124.2 1,4-Naphthoquinone c 183.4 1-Naphthyl acetate c 288.2 2-Naphthyl acetate c 304.3 1-Naphthylamine c 67.8 2-Naphthylamine c 59.7 Nicotine lq 39.3 Nitrilotriacetic acid c 1311.9 1307.5 Nitroacetone lq 278.6 2-Nitroaniline c 26.1 178.2 176.2 166.0 3-Nitroaniline c 38.3 174.1 176.2 158.8 4-Nitroaniline c 42.0 151.0 176.2 167.0 Nitrobenzene lq 12.5 146.2 224.3 185.8 2-Nitrobenzoic acid c 378.5 196.4 208.4 3-Nitrobenzoic acid c 394.7 220.5 205.0 4-Nitrobenzoic acid c 392.2 222.0 210.0 181.2 3-Nitrobiphenyl c 65.1 4-Nitrobiphenyl c 40.5 1-Nitrobutane g 143.9 10.1 394.5 124.9 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.38 SECTION 6 2-Nitrobutane g 163.6 6.2 383.3 123.5 3-Nitro-2-butanol lq 390.0 N-Nitrodiethylamine lq 106.2 2-Nitrodiphenylamine c 64.4 Nitroethane lq 143.9 134.4 g 102.3 4.9 315.4 78.2 2-Nitroethanol lq 350.7 2-Nitrofuran c 104.1 5-Nitrofurancarboxylic acid c 516.8 1-Nitroguanidine c 92.4 Nitromethane lq 113.1 14.4 171.8 106.6 g 74.3 6.8 275.0 57.3 (Nitromethyl)benzene lq 22.8 1-Nitronaphthalene c 42.6 1-Nitroso-2-naphthol c 50.5 2-Nitroso-1-naphthol c 61.8 4-Nitroso-1-naphthol c 107.8 1-Nitropropane lq 167.2 175.3 g 123.8 2-Nitropropane lq 180.3 170.3 g 139.0 1-Nitro-2-propanone c 294.7 4-Nitrosodiphenylamine c 213.0 -Nitrostyrene c 30.5 4-Nitrotoluene c 48.1 172.3 Nonadecane g 435.1 108.9 895.2 440.4 1-Nonadecene g 309.6 196.7 891.0 429.7 1-Nonanal g 310.3 74.9 539.6 216.8 Nonane lq 274.7 284.4 g 228.2 24.8 505.7 211.7 1-Nonanethiol g 190.8 53.0 571.2 232.7 Nonanoic acid lq 659.7 362.4 1-Nonanol g 376.3 110.5 558.6 224.3 2-Nonanone lq 397.2 5-Nonanone lq 398.2 401.4 303.6 1-Nonene g 103.5 112.7 501.5 201.0 Norleucine c 639.1 Octadecane c 567.4 480.2 485.6 g 414.6 100.5 856.2 417.6 Octadecanoic acid c 947.7 501.5 1,8-Octadecanoic acid c 1038.1 1-Octadecene g 289.0 188.3 852.0 406.8 cis-9-Octadecenoic acid lq 743.5 577.050 trans-9-Octadecenoic acid c 910.9 1,7-Octadiyne lq 334.4 Octafluorocyclobutane lq 209.86 g 1542.6 1398.8 400.4 156.2 Octafluoropropane g 1783.1 Octafluorotoluene lq 1311.1 355.5 262.3 1-Octanal g 289.6 83.3 500.7 194.0 Octanamide c 473.2 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.39 Octane lq 250.1 254.6 g 208.6 16.4 466.7 188.9 1-Octanenitrile lq 107.3 1-Octanethiol g 44.9 44.6 582.2 209.8 Octanoic acid lq 636.0 297.9 1-Octanol lq 426.5 143.1 377.4 305.1 2-Octanol lq 330.1 2-Octanone lq 384.5 140.3 373.8 273.3 1-Octene lq 121.8 241.0 g 81.4 104.2 462.5 178.1 cis-2-Octene lq 135.7 239.0 trans-2-Octene lq 135.7 239.0 1-Octyne g 82.4 235.4 496.6 174.0 ()-Ornithine c 652.7 Oxalic acid c 821.7 697.9 109.8 91.0 Oxalic acid dihydrate c 1492.0 Oxaloyl dichloride lq 367.6 Oxaloyl dihydrazide c 295.2 Oxamic acid c 661.2 Oxamide c 504.4 342.7 118.0 Oxazole g 5.5 2-Oxetanone lq 329.9 175.3 122.1 Oxindole c 172.4 2-Oxohexamethyleneimine c 329.4 95.1 168.6 156.8 Oxomethyl (HCO) g 43.1 28.0 224.7 34.6 2-Oxo-1,5-pentanedioic acid c 1026.2 4-Oxopentanoic acid c 697.1 2-Oxopropanoic acid lq 584.5 463.4 179.5 8-Oxypurine c 64.4 Papaverine c 502.3 Paraformaldehyde c 177.6 Paraldehyde lq 687.0 Pentachloroethane lq 187.6 173.8 g 142.0 70.3 381.5 118.1 Pentachlorofluoroethane g 317.2 234.0 391.8 Pentachlorophenol c 292.4 144.1 251.9 202.0 Pentacyclo[4.2.0.02,5.03,8.04,7]-octane c 541.8 Pentadecane g 352.8 75.2 739.4 349.0 Pentadecanoic acid c 861.7 443.3 1-Pentadecene g 227.2 163.1 735.2 338.2 1-Pentadecyne g 61.8 293.9 719.3 33.41 1,2-Pentadiene g 140.7 210.4 333.5 105.4 cis-1,3-Pentadiene g 81.5 145.8 324.3 94.6 trans-1,3-Pentadiene g 76.5 146.73 319.7 103.3 1,4-Pentadiene g 105.7 170.3 333.5 105.0 2,3-Pentadiene g 133.1 205.9 324.7 101.3 Pentaerythritol c 920.6 613.8 198.1 190.4 Pentaerythritol tetranitrate c 538.6 Pentafluorobenzoic acid c 1239.6 Pentafluoroethane g 1104.6 1029.3 333.7 95.7 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.40 SECTION 6 Pentafluorophenol c 1024.1 2,3,4,5,6-Pentafluorotoluene lq 883.8 306.4 225.8 Pentamethylbenzene c 133.6 g 74.5 123.3 443.9 216.5 Pentamethylbenzoic acid c 536.1 Pentanal g 228.5 108.3 383.0 125.4 Pentanamide c 379.5 1-Pentanamine lq 218.0 Pentane lq 173.5 9.3 262.7 167.2 g 146.9 8.4 349.0 120.2 1,5-Pentanediol lq 531.5 321.3 2,4-Pentanedione lq 423.8 208.2 g 380.6 397.9 120.1 1,5-Pentanedithiol g 71.0 Pentanenitrile lq 33.1 180 1-Pentanethiol lq 151.3 Pentanoic acid lq 559.4 259.8 210.3 g 491.9 357.2 439.8 1-Pentanol lq 351.6 208.1 g 294.7 146.0 402.5 133.1 2-Pentanol lq 365.2 g 311.0 3-Pentanol lq 368.9 239.7 g 311.4 158.2 382.0 2-Pentanone lq 297.3 184.1 g 259.0 137.1 376.2 121.0 3-Pentanone lq 296.5 266.0 190.9 1-Pentene lq 46.0 262.6 154.0 g 21.2 79.1 345.8 109.6 cis-2-Pentene lq 53.7 258.6 151.7 g 27.6 71.8 346.3 101.8 trans-2-Pentene lq 58.2 256.5 157.0 g 31.9 69.9 340.4 108.5 cis-2-Pentenenitrile lq 71.8 trans-2-Pentenenitrile lq 74.9 trans-3-Pentenenitrile lq 80.9 2-Pentenoic acid lq 446.4 3-Pentenoic acid lq 434.8 4-Pentenoic acid lq 430.6 cis-3-Penten-1-yne lq 226.5 trans-3-Penten-1-yne lq 228.2 Pentyl acetate lq 261.0 1-Pentyne g 144.4 210.3 329.8 106.7 2-Pentyne g 128.9 194.2 331.8 98.7 Perfluoropiperidine lq 2020.5 1768.5 393.4 296.8 Perylene c 182.8 -Phellandrene lq 41.3 Phenanthrene c 116.2 268.3 215.1 220.6 9,10-Phenanthrenedione c 154.7 Phenazine c 237.0 Phenol c 165.1 50.4 144.0 127.4 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.41 lq 199.841 g 96.4 32.9 315.6 103.6 Phenoxyacetic acid c 513.8 Phenyl acetate lq 334.9 Phenylacetic acid c 398.7 Phenylacetylene g 327.3 363.5 321.7 114.9 ()-3-Phenyl-2-alanine c 466.9 211.7 213.6 203.0 Phenyl benzoate c 241.0 Phenylboron dichloride lq 299.4 1-Phenylcyclohexene lq 16.8 Phenylcyclopropane lq 100.3 N-Phenyldiacetimide c 362.5 1,3-Phenylenediamine c 7.8 154.5 159.6 Phenyl formate lq 268.7 N-Phenylglycine c 402.5 ()-2-Phenylglycine c 431.8 Phenylhydrazine lq 141.0 217.0 Phenyl 2-hydroxybenzoate c 436.6 Phenylmethanethiol lq 43.5 Phenylmethyl acetate lq 148.5 N-Phenyl-2-naphthylamine c 159.8 1-Phenyl-1-propanone lq 167.2 1-Phenyl-2-propanone lq 151.9 1-Phenylpyrrole c 154.3 2-Phenylpyrrole c 139.2 Phenylsuccinic acid c 841.0 S-Phenyl thioacetate lq 122.0 Phenyl vinyl ether lq 26.2 Phosgene g 220.9 206.8 283.8 57.7 Phthalamide c 433.1 l,2-Phthalic acid c 782.0 591.6 207.9 188.3 l,3-Phthalic acid c 803.0 1,4-Phthalic acid c 816.1 Phthalic anhydride c 460.1 331.0 180.0 160.0 Phthalonitrile c 280.6 Picric acid c 214.4 -Pinene lq 16.4 -Pinene lq 7.7 Piperazine c 45.6 240.2 85.8 2,5-Piperazinedione c 446.5 Piperidine lq 86.4 210.0 179.9 2-Piperidone c 306.6 112.1 164.9 (lq 307.8) L-Proline c 515.2 Propadiene g 190.5 202.4 243.9 59.0 Propanal lq 215.3 137.2 g 185.6 130.5 304.5 80.7 Propanamide c 338.2 Propane lq 98.343 g 103.8 23.4 270.2 73.6 Propanediamide c 546.1 ()-1,2-Propanediamine lq 97.8 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.42 SECTION 6 1,2-Propanediol lq 485.7 190.8 1,3-Propanediol lq 464.9 1,2-Propanedione lq 309.1 Propanedinitrile lq 186.4 1,2-Propanedithiol lq 79.4 1,3-Propanedithiol lq 79.4 Propanenitrile lq 15.5 89.2 189.3 119.3 1-Propanethiol lq 99.9 242.5 144.6 g 67.9 2.2 336.4 94.8 2-Propanethiol lq 105.0 233.5 145.3 g 76.2 2.6 324.3 96.0 1,2,3-Propanetriol tris(acetate) lq 1330.8 458.3 384.7 Propanoic acid lq 510.7 383.5 191.0 152.8 Propanoic anhydride lq 679.1 475.6 235.0 1-Propanol lq 302.6 170.6 193.6 143.7 g 255.1 161.8 322.7 85.6 2-Propanol lq 318.1 180.3 181.1 155.0 g 272.6 173.4 309.2 89.3 2-Propenal g 85.8 64.6 Propene g 20.0 62.8 266.6 64.3 trans-1-Propene-1,2-dicarboxylic acid c 824.4 2-Propenenitrile lq 147.1 108.8 g 180.6 195.4 274.1 63.8 cis-1,2,3-Propenetri-carboxylic acid c 1224.7 trans-1,2,3-Propenetri-carboxylic acid c 1233.0 2-Propenoic acid lq 383.8 145.7 g 336.5 286.3 315.2 77.8 2-Propen-1-ol lq 171.8 138.9 g 124.5 71.3 307.6 76.0 2-Propenyl acetate lq 386.2 184.1 cis-1-Propenylbenzene g 121.3 216.9 383.7 145.2 trans-1-Propenylbenzene g 117.2 213.7 380.3 146.0 2-Propenylbenzene lq 88.0 Propyl acetate lq 196.2 Propylamine lq 101.5 162.5 g 70.2 39.8 325.1 91.2 Propylbenzene lq 38.3 287.8 214.7 g 7.9 137.2 400.7 152.3 Propylcarbamate c 552.6 Propylchloroacetate lq 515.6 Propylchlorocarbonate g 492.7 Propylcyclohexane lq 237.4 311.9 242.0 g 192.5 47.3 419.5 184.2 Propylcyclopentane lq 188.8 310.8 216.8 g 147.1 52.6 417.3 154.6 Propylene carbonate lq 613.2 218.6 Propylene oxide lq 123.0 196.5 120.4 g 94.7 25.8 286.9 72.6 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.43 Propyl formate lq 500.3 171.4 Propyl nitrate g 173.9 27.3 385.4 121.3 S-Propyl thioacetate lq 294.1 Propyl trichloroacetate lq 513.0 Propyl vinyl ether lq 190.9 2-Propynyl-1-amine lq 205.7 Propyne g 184.9 194.4 248.1 60.7 2-Propynoic acid lq 193.2 1H-Purine c 169.4 Pyrazine c 139.8 1H-Pyrazole c 116.0 lq 105.4 Pyrene c 125.5 224.9 229.7 Pyridazine lq 224.8 Pyridine lq 100.2 181.3 177.9 132.7 g 140.4 190.2 282.8 78.1 3-Pyridinecarbonitrile c 193.4 3-Pyridinecarboxylic acid c 344.9 Pyrimidine lq 145.9 1H-Pyrrole lq 63.1 156.4 127.7 Pyrrole-2-carboxaldehyde c 106.4 Pyrrole-2-carboldoxime c 12.1 Pyrrolidine lq 41.0 204.1 156.6 g 3.6 114.7 309.5 81.1 ()-2-Pyrrolidinecarboxylic acid c 524.2 2-Pyrrolidone c 286.2 164.4 Quinhydrone c 82.8 323.0 325.9 277.0 Quinidine c 160.3 Quinine c 155.2 Quinoline lq 141.2 275.7 217.2 194.9 Raffinose c 3184 L-()-Rhamnose c 1073.2 D-()-Ribose c 1047.2 Salicylaldehyde lq 279.9 22218 Salicylaldoxime c 183.7 Salicylic acid c 589.5 418.1 178.2 Semicarbazide std. state aq 166.9 40.6 297.9 ()-Serine c 732.7 ()-Serine c 739.0 L-()-Sorbose c 1271.5 908.4 220.9 5,5-Spirobis(1,3-dioxane) c 702.1 Spiro[2.2]pentane lq 157.5 193.7 134.5 g 185.2 265.3 282.2 88.1 cis-Stilbene lq 183.3 trans-Stilbene c 136.9 317.6 251.0 ()-Strychnine c 171.5 Styrene lq 103.8 202.4 237.6 182.0 g 147.9 213.8 345.1 122.1 Succinic acid c 940.5 747.4 167.3 153.1 Succinic acid monoamide c 581.2 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.44 SECTION 6 Succinic anhydride c 608.6 Succinimide c 459.0 Succinonitrile lq 139.7 191.6 145.6 ()-Sucrose c 2226.1 1544.7 360.2 ()-Tartaric acid c 1290.8 ()-Tartaric acid c 1282.4 meso-Tartaric acid c 1279.9 -Terpinene g 20.5 1,1,2,2,-Tetrabromoethane lq 165.7 Tetrabromoethylene g 387.1 102.7 Tetrabromomethane c 29.4 47.7 212.5 144.3 g 83.9 67.0 358.1 91.2 Tetrabutyltin lq 304.6 Tetracene c 158.8 Tetrachloro-1,4-benzo-quinone c 288.7 1,1,2,2,-Tetrachloro-1,2-difluoroethane lq 178.6 g 489.9 407.1 382.8 123.4 1,1,1,2-Tetrachloroethane lq 153.8 g 149.4 80.3 355.9 102.7 1,1,2,2,-Tetrachloroethane lq 195.0 95.0 246.9 162.3 g 149.2 85.6 362.7 100.8 Tetrachloroethylene lq 50.6 143.4 g 10.9 3.0 266.9 Tetrachloromethane lq 128.2 62.6 216.2 130.7 g 95.7 53.6 309.9 83.4 1,1,1,3-Tetrachloropropane lq 207.8 1,2,2,3-Tetrachloropropane lq 251.8 1,1,2,2-Tetracyanocyclo-propane c 590 Tetracyanoethylene c 623.8 Tetracyanomethane c 611.6 Tetradecane g 332.1 66.9 700.4 326.1 Tetradecanoic acid c 833.5 432.0 1-Tetradecanol c 629.6 388.0 1-Tetradecene g 206.5 154.8 696.2 315.3 Tetraethylene glycol lq 981.6 428.8 Tetraethylgermanium lq 210.5 Tetraethyllead lq 52.7 336.4 464.6 307.4 Tetraethylsilane lq 298.1 Tetraethyltin lq 95.8 1,1,1,2-Tetrafluoroethane g 895.8 826.2 316.2 86.3 Tetrafluoroethylene g 658.9 623.7 300.0 80.5 Tetrafluoromethane g 933.6 888.3 261.6 61.0 2,2,3,3-Tetrafluoro-1-propanol g 1061.3 Tetrahydrofuran lq 216.2 204.3 124.0 g 184.2 302.4 76.3 Tetrahydro-2-furanmethanol lq 435.6 181.2 1,2,3,4-Tetrahydronaphthalene lq 29.2 217 5,6,7,8-Tetrahydro-1-naphthol c 285.3 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.45 Tetrahydro-2H-pyran lq 258.3 156.5 Tetrahydro-2H-pyran-2-one lq 436.7 1,2,3,6-Tetrahydropyridine lq 33.5 Tetrahydrothiophene lq 72.9 g 34.1 45.8 309.6 92.5 Tetrahydrothiophene-1,1-dioxide lq 18020 Tetraiodoethylene c 305.0 Tetraiodomethane g 474.0 217.1 391.9 95.9 Tetramethylammonium bromide c 251.0 Tetramethylammonium chloride c 276.4 Tetramethylammonium iodide c 203.4 1,2,3,4-Tetramethylbenzene lq 90.2 106.7 290.6 1,2,3,5-Tetramethylbenzene lq 96.4 98.7 416.5 240.7 1,2,4,5-Tetramethylbenzene c 119.9 101.3 245.6 215.1 2,3,5,6-Tetramethylbenzoic acid c 506.1 2,2,3,3-Tetramethylbutane c 269.0 273.7 239.2 g 225.6 22.0 389.4 192.5 1,1,2,2-Tetramethylcyclo-propane lq 119.7 Tetramethyllead lq 97.9 262.8 320.1 g 135.9 270.7 420.5 144.0 2,2,3,3-Tetramethylpentane lq 278.3 271.5 2,2,3,4-Tetramethylpentane lq 277.7 2,2,4,4-Tetramethylpentane lq 280.0 266.3 2,3,3,4-Tetramethylpentane lq 277.9 Tetramethylsilane lq 264.0 204.1 g 239.1 100.0 359.1 143.9 Tetramethylsuccinic acid c 1012.5 Tetramethylthiacyclopropane c 83.0 Tetramethyltin g 18.8 Tetranitromethane lq 38.4 1,1,1,2-Tetraphenylethane c 223.0 1,1,2,2-Tetraphenylethane c 216.0 Tetraphenylethylene c 311.5 Tetraphenylhydrazine c 457.9 Tetraphenylmethane c 247.1 574.0 Tetraphenyltin c 412.1 Tetrapropylgermanium g 229.7 Tetrapropyltin lq 211.3 1,2,3,4-(1H)-Tetrazole c 237.0 Theobromine c 361.5 2-Thiaadamantane c 143.5 Thiacyclobutane g 60.6 107.1 285.0 68.3 Thiacycloheptane g 61.3 84.1 361.9 124.6 Thiacyclohexane lq 106.3 218.2 163.3 g 63.5 53.1 323.0 109.7 Thiacyclopentane g 33.8 46.0 309.4 90.9 Thiacyclopropane g 82.2 96.9 255.3 53.7 Thianthrene c 182.5 Thiirane g 82.0 96.8 255.2 53.3 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.46 SECTION 6 Thiirene g 300.0 275.8 255.3 54.7 Thioacetamide c 71.7 Thioacetic acid lq 216.9 g 175.1 154.0 313.2 80.9 1,2-Thiocresol lq 44.2 Thiohydantoic acid c 554.8 Thiohydantoin c 249.0 2-Thiolactic acid lq 468.4 Thiophene lq 80.2 121.2 181.2 123.8 g 115.0 126.8 278.9 72.9 Thiophenol lq 64.1 134.0 222.8 173.2 g 111.6 147.6 336.9 104.9 Thiosemicarbazide c 25.1 Thiourea c 89.1 21.8 115.9 g 22.9 ()-Threonine c 807.2 ()-Threonine c 758.8 Thymine c 462.8 150.8 Thymol c 309.7 Toluene lq 12.4 113.8 221.0 157.0 g 50.4 122.0 320.7 103.6 1H-1,2,4-Triazol-3-amine c 76.8 2,4,6-Triamino-1,3,5-triazine c 72.4 184.5 149.1 2-Triazoethanol lq 94.6 Tribenzylamine c 140.6 Tribromoacetaldehyde lq 130.3 Tribromochloromethane g 12.6 9.1 357.8 89.4 Tribromofluoromethane g 190.0 193.1 345.9 84.4 Tribromomethane lq 28.5 8.0 220.9 130.7 g 23.8 5.0 330.9 71.2 Tributoxyborane lq 1199.6 Tributylamine lq 281.6 Tributyl phosphate lq 1456 Tributylphosphine oxide c 460 Trichloroacetaldehyde lq 234.5 151.0 2,2,2-Trichloroacetamide c 358.2 Trichloroacetic acid c 503.3 ionized aq 517.6 Trichloroacetonitrile g 336.6 96.1 Trichloroacetyl chloride lq 280.8 Trichlorobenzoquinone c 269.9 1,1,1-Trichloroethane lq 177.4 227.4 144.3 g 144.6 76.2 323.1 93.3 1,1,2-Trichloroethane lq 191.5 232.6 150.9 g 151.2 77.5 337.1 89.0 Trichloroethylene lq 43.6 124.4 g 9.0 19.9 324.8 80.3 Trichlorofluoromethane lq 301.3 236.8 255.4 121.6 g 268.3 249.3 309.7 78.0 Trichloromethane lq 134.5 73.7 201.7 114.2 g 102.7 76.0 295.7 65.7 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.47 1,2,2-Trichloropropane g 185.8 97.8 382.9 112.2 1,2,3-Trichloropropane lq 230.6 183.6 g 182.9 1,2,3-Trichloropropene lq 101.8 1,1,2-Trichlorotrifluoroethane lq 805.8 170.1 1,1,1-Tricyanoethane c 351.0 Tricyanoethylene c 439.3 Tridecane g 311.5 58.5 661.5 303.2 Tridecanoic acid c 806.6 1-Tridecene g 186.0 146.3 657.3 292.4 Triethanolamine c 664.2 389.0 Triethoxyborane lq 1047.4 Triethoxymethane lq 687.3 Triethylaluminum lq 236.8 Triethylamine lq 127.7 219.9 g 92.8 110.3 405.4 160.9 Triethylaminoborane lq 198.6 Triethyl arsenite lq 706.7 Triethylarsine lq 13.0 Triethylbismuthine lq 169.9 Triethylborane lq 194.6 9.4 336.7 241.2 g 157.7 16.1 437.8 Triethylenediamine c 14.2 239.7 157.6 Triethylene glycol lq 804.2 Triethyl phosphate lq 1243 Triethylphosphine lq 89.1 Triethyl phosphite lq 861.5 Triethylstibine lq 5.0 Triethylsuccinic acid c 1066.5 Triethyl thiophosphate lq 972.8 Trifluoroacetic acid lq 1069.9 Trifluoroacetonitrile g 497.9 461.9 298.1 77.9 1,1,1-Trifluoroethane g 744.6 678.3 279.9 78.2 1,1,2-Trifluoroethane g 730.7 2,2,2-Trifluoroethanol lq 932.4 Trifluoroethylene g 490.4 469.5 292.6 69.2 Trifluoroiodoethane g 644.5 Trifluoroiodomethane g 587.8 572.0 307.5 70.9 Trifluoromethane g 695.4 658.9 259.6 51.1 (Trifluoromethyl)benzene g 599.1 511.3 372.6 130.4 1,1,1-Trifluoro-2,4-pentane-dione lq 1040.2 3,3,3-Trifluoropropene g 614.2 Trihexylamine lq 433.0 ()-Trihydroxyglutaric acid c 1490 2,4,6-Trihydroxypryimidine c 634.7 Triiodomethane g 251.0 178.0 356.2 75.1 Triisopropyl phosphite lq 980.3 Trimethoxyborane g 899.1 Trimethoxyethane lq 612.0 Trimethoxymethane lq 570.0 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.48 SECTION 6 Trimethylacetic acid lq 564.4 Trimethylacetic anhydride lq 779.9 2,4,5-Trimethylacetophenone lq 252.3 2,4,6-Trimethylaceto-phenone lq 267.4 Trimethylaluminum lq 136.4 9.9 209.4 155.6 Trimethylamine lq 45.7 208.5 137.9 g 23.7 98.9 287.1 91.8 std. state aq 76.0 93.0 133.5 Trimethylamine-aluminum chloride adduct c 879.1 Trimethylamine-borane c 142.5 70.7 187.0 Trimethylammonium ion, std. state aq 112.9 37.2 196.7 Trimethyl arsenite lq 590.8 Trimethylarsine g 11.7 1,2,3-Trimethylbenzene lq 58.5 107.5 267.8 216.4 1,2,4-Trimethylbenzene lq 61.8 102.3 284.2 215.0 1,3,5-Trimethylbenzene lq 63.4 103.9 273.6 209.3 2,3,4-Trimethylbenzoic acid c 486.6 2,3,5-Trimethylbenzoic acid c 488.7 2,3,6-Trimethylbenzoic acid c 475.7 2,4,5-Trimethylbenzoic acid c 495.7 2,4,6-Trimethylbenzoic acid c 477.9 3,4,5-Trimethylbenzoic acid c 500.9 2,6,6-Trimethylbicyclo-[3.1.1]-2-heptene lq 16.4 Trimethylbismuthine g 192.9 Trimethylborane g 124.3 35.9 314.7 88.5 2,2,3-Trimethylbutane g 204.5 4.3 383.3 164.6 2,2,3-Trimethylbutane lq 236.5 292.2 213.5 2,3,3-Trimethyl-1-butene lq 117.7 Trimethylchlorosilane lq 382.8 246.4 278.2 g 352.8 243.5 369.1 cis,cis-1,3,5-Trimethyl-cyclohexane g 215.4 33.9 390.4 179.6 1,1,2-Trimethylcyclopropane lq 96.2 Trimethylene oxide (Oxetane) lq 110.8 g 80.5 9.8 273.9 Trimethylgallium g 46.9 2,3,5-Trimethylhexane lq 284.0 Trimethylindium g 170.7 2,2,3-Trimethylpentane lq 256.9 9.3 327.6 188.9 g 220.0 17.1 425.2 2,2,4-Trimethylpentane lq 259.2 6.9 328.0 239.1 g 224.0 13.7 423.2 2,3,3-Trimethylpentane lq 253.5 10.6 334.4 245.6 g 216.3 18.9 431.5 2,3,4-Trimethylpentane lq 255.0 10.7 329.3 247.3 2,2,4-Trimethyl-3-pentanone lq 381.6 2,4,4-Trimethyl-1-pentene lq 145.9 86.4 306.3 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.49 2,4,4-Trimethyl-2-pentene lq 142.4 88.0 311.7 Trimethylphosphine lq 122.2 Trimethylphosphine oxide c 477.8 Trimethyl phosphite lq 741.0 Trimethylsilane g 331.0 117.9 Trimethylsilanol lq 545.0 Trimethylstibine g 32.2 Trimethylsuccinic acid c 1000.8 Trimethylsuccinic anhydride c 688.3 Trimethylthiacyclopropane lq 60.5 Trimethyltin bromide lq 185.4 Trimethyltin chloride lq 213.0 Trimethylurea c 330.5 Trinitroacetonitrile lq 183.7 2,4,6-Trinitroanisole c 157.3 1,3,5-Trinitrobenzene c 37.2 1,1,1-Trinitroethane lq 96.9 Trinitroglycerol lq 370.9 Trinitromethane lq 32.8 g 0.2 2,4,6-Trinitrophenetole c 204.6 2,4,6-Trinitrophenol c 214.3 2,4,6-Trinitrophenylhydrazine c 36.8 2,4,6-Trinitrotoluene c 65.5 2,4,6-Trinitro-1,3-xylene c 102.5 Trioctylamine lq 584.9 1,3,6-Trioxacyclooctane lq 515.9 1,3,5-Trioxane c 522.5 133.0 114.4 Triphenylamine c 234.7 504.2 Triphenylarsine c 310.0 Triphenylbismuthine c 469.0 Triphenylborane c 48.5 Triphenylene c 151.8 329.2 254.7 1,1,1-Triphenylethane c 157.2 1,1,2-Triphenylethane c 130.2 Triphenylethylene c 233.5 514.6 2,4,6-Triphenylimidazole c 272 Triphenylmethane c 171.2 412.5 312.1 295.0 Triphenylmethanol c 3.4 272.8 329.3 Triphenyl phosphate c 757 Triphenylphosphine c 232.2 Triphenylphosphine oxide c 60.3 Triphenylstibine c 329.3 Tripropoxyborane lq 1127.2 Tripropylamine lq 207.2 Tripropynylamine lq 814.2 Tris(acetylacetonato)-chromium c 1533.0 Tris(diethylamino)phosphine lq 289.5 1,1,1-Tris(hydroxymethyl)-ethane c 744.6 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 6.50 SECTION 6 Tris(hydroxymethyl)nitro-methane c 735.6 Tris(isopropoxy)borane lq 293.3 Tris(trimethylsilyl)amine c 725.1 ()-Tryptophane c 415.3 119.4 251.0 238.2 ()-Tyrosine c 685.1 385.7 214.0 216.4 Undecane lq 327.2 22.8 458.1 344.9 Undecanoic acid c 735.9 1-Undecanol lq 504.8 1-Undecene g 144.8 129.5 579.4 246.7 10-Undecenoic acid c 577 Uracil c 429.4 120.5 Urea c 333.1 196.8 104.6 93.1 g 245.8 Urea nitrate c 564.0 Urea oxalate c 1528.4 5-Ureidohydantoin c 718.0 434.0 195.1 Uric acid c 618.8 358.8 173.2 166.1 ()-Valine c 628.9 359.0 178.9 168.8 Valylphenylalanine c 767.8 Vinyl acetate g 314.4 Vinylbenzene lq 103.8 Vinylcyclohexane lq 88.7 4-Vinylcyclohexene lq 26.8 Vinylcyclopentane lq 34.8 Vinylcyclopropane lq 122.5 2-Vinylpyridine lq 157.1 Xanthine c 379.6 165.9 161.1 151.3 Xanthone c 191.5 1,2-Xylene lq 24.4 110.3 246.5 186.1 g 19.1 122.1 352.8 133.3 1,3-Xylene lq 25.4 107.7 252.2 183.3 g 17.3 118.9 357.7 127.6 1,4-Xylene lq 24.4 110.1 247.4 181.5 g 18.0 121.1 352.4 126.9 Xylitol c 1118.5 D-()-Xylose c 1057.8 TABLE 6.1 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic Compounds (Continued) Physical fH fG S Cp Substance State kJ·mol1 kJ·mol1 J·deg1·mol1 J·deg1·mol1 THERMODYNAMIC PROPERTIES 6.51 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds Abbreviations Used in the Table Hm, enthalpy of melting (at the melting point) in kJ · mol1 Hv, enthalpy of vaporization (at the boiling point) in kJ · mol1 Hs, enthalpy of sublimation (or vaporization at 298 K) in kJ · mol1 Cp, specific heat (at temperature specified on the Kelvin scale) for the physical state in existence (or specified: c, lq, g) at that temperature in J · K1 · mol1 Ht, enthalpy of transition (at temperature specified, superscript, measured in degrees Celsius) in kJ · mol1 Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K Acenaphthene 21.54 54.73 86.2 Acenaphthylene 73.0 Acetaldehyde 3.24 25.8 25.5 66.3(g) 85.9 101.3 112.5 Acetamide 15.71 56.1 78.7 Acetanilide 64.7 80.8 Acetic acid 11.54 23.7 23.4 79.7 106.2 125.5 139.3 Acetic anhydride 10.5 38.2 48.3 129.1 174.1 204.6 226.4 Acetone 5.69 29.1 31.0 92.1 122.8 144.9 162.0 Acetonitrile, Ht 0.2256 8.17 29.8 32.9 61.2 76.8 89.0 98.3 Acetophenone 38.8 55.9 Acetyl bromide 33.1 Acetyl chloride 30.1 78.9 97.0 110.0 119.7 Acetylene 3.8 17.0 21.3 50.1 58.1 63.5 68.0 Acetylene-d2 54.8 61.9 67.4 71.8 Acetylenedicarbonitrile 28.8 94.8 106.2 114.1 119.8 Acetyl fluoride 25.1 Acetyl iodide 38.5 Acrylic acid 11.16 44.1 54.3 96.0 123.4 142.0 155.3 Acrylonitrile 6.23 32.6 33.5 76.8 96.7 110.6 120.8 Adamantane 59.7 Adenine 108.8 -Alanine 138.1 Allyl tert-butyl sulfide 44.4 Allyl ethyl sulfone 83.7 Allyl ethyl sulfoxide 71.6 Allyl methyl sulfone 79.5 Allyl trichloroacetate 52.3 3-Aminoacetophenone 12.1 4-Aminoacetophenone 15.9 2-Aminobenzoic acid 20.5 104.9 3-Aminobenzoic acid 21.8 128.0 4-Aminobenzoic acid 20.9 116.1 2-Aminoethanol 20.5 50.9 Aniline 10.56 42.4 55.8 143.0 192.8 225.1 230.9 Anthracene 28.83 56.5 101.5 9,10-Anthraquinone 88.5 112.1 cis-Azobenzene 22.04 92.9 trans-Azobenzene 22.6 93.8 Azobutane 49.3 Azomethane 93.9 123.1 145.7 162.6 Azomethane-d6 110.7 142.8 165.2 180.6 6.52 SECTION 6 Azoisopropane 36.0 Azopropane 39.9 trans-Azoxybenzene 17.93 Azulene 12.1 55.5 76.8 176.4 248.2 295.4 327.4 Benzaldehyde 9.32 42.5 49.8 Benzamide 18.49 1,2-Benzanthracene 123.0 2,3-Benzanthracene 126 1,2-Benzanthracene-9,10-dione 82.8 Benzene 9.95 30.7 33.8 113.5(g) 160.1 190.5 211.4 Benzeneacetic acid 14.49 1,3-Benzenedicarboxylic acid 106.7 1,4-Benzenedicarboxylic acid 98.3 Benzenethiol 11.48 39.9 47.6 Benzil 23.54 Benzoic acid 18.06 50.6 91.1 138.4 196.7 234.9 260.7 Benzoic anhydride 17.2 96.4 Benzonitrile 10.88 45.9 52.5 140.8 187.4 217.9 238.8 Benzo[def]phenanthrene 17.1 100.2 Benzophenone 18.19 94.1 1,4-Benzoquinone 18.53 62.8 Benzo[f]quinoline 83.1 Benzo[h]quinoline 80.8 Benzo[b]thiophene, Ht 3.011.6 11.8 Benzotrifluoride 37.6 Benzoyl bromide 58.6 Benzoyl chloride 54.8 Benzoyl iodide 61.9 4-Benzphenanthrene 106.3 Benzyl acetate 49.4 Benzyl alcohol 8.97 50.5 60.3 Benzylamine 60.2 Benzyl benzoate 53.6 77.8 Benzyl bromide 47.3 Benzyl chloride 51.5 Benzyl ethyl sulfide 56.9 Benzyl iodide 47.3 Benzyl mercaptan 56.6 Benzyl methyl ketone 49.0 Benzyl methyl sulfide 53.6 Bicyclo[1.1.0]butane 23.4 Bicyclo[2.2.1]hepta-2,5-dione 32.9 Bicyclo[2.2.1]heptane 40.2 Bicyclo[4.1.0]heptane 38.0 Bicyclo[2.2.1]-2-heptene 38.8 Bicyclo[3.1.0]hexane 32.8 Bicyclohexyl 58.0 Bicyclo[2.2.2]octane 48.0 Bicyclo[4.2.0]octane 42.0 Bicyclo[5.1.0]octane 43.5 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.53 Bicyclo[2.2.2]-2-octene 43.8 Bicyclopropyl 33.5 Biphenyl 18.6 45.6 81.8 221.0 307.7 363.7 401.7 Biphenylene 84.3 Bis(2-butoxyethyl) ether 55.9 Bis(2-chloroethyl) ether 8.66 45.2 Bis(2-ethoxyethyl) ether 49.0 Bis(2-ethoxymethyl) ether 36.2 44.7 Bis(2-hydroxyethyl) ether 52.3 57.3 Bis(2-methoxyethyl) ether 43.1 Bromobenzene 10.62 37.9 44.5 127.4 171.5 199.9 219.2 4-Bromobenzoic acid 87.9 1-Bromobutane 6.69 32.5 36.7 136.6 180.0 211.2 234.4 ()-2-Bromobutane 6.89 30.8 34.4 138.1 214.7 238.2 1-Bromo-2-chloroethane 33.7 38.2 Bromochloromethane 30.0 32.8 1-Bromo-3-chloropropane 37.6 44.1 1-Bromo-2-chloro-1,1,2-trifluoroethane 28.3 30.1 Bromochloro-2,2,2-trifluoroethane 28.1 29.8 1-Bromododecane 74.8 Bromoethane 5.86 27.0 28.0 79.2 102.8 119.6 132.2 Bromoethylene 5.12 23.4 18.2 66.6 83.0 94.1 102.3 1-Bromoheptane 50.6 74.8 1-Bromohexadecane 94.4 1-Bromohexane 45.9 Bromomethane, Ht 0.4799.4 5.98 23.9 22.8 50.0 62.7 72.2 79.5 1-Bromo-2-methylpropane 31.3 34.8 2-Bromo-2-methylpropane 1.97 29.2 31.8 146.1 190.7 220.3 241.6 Ht 5.764.5 Ht 1.041.6 1-Bromonaphthalene 15.16 39.3 52.5 1-Bromooctane 55.8 1-Bromopentane 11.46 35.0 41.3 165.6 219.0 257.5 286.0 1-Bromopropane 6.53 29.8 32.0 107.5 140.8 164.9 182.8 2-Bromopropane 28.3 30.2 110.2 144.0 167.7 185.2 3-Bromopropene 30.2 32.7 Bromotrichloromethane 2.54 Bromotrifluoromethane 79.3 91.3 97.5 100.9 Bromotrimethylsilane 32.6 1,2-Butadiene 7.0 24.0 23.2 98.4 128.5 150.7 167.4 1,3-Butadiene 7.98 22.5 20.9 101.2 154.1 169.5 1,3-Butadiyne 84.4 96.8 105.1 111.3 Butanal 11.09 31.5 34.5 126.4 165.7 195.0 216.3 Butanamide 17.6 85.9 Butane, Ht 2.1165.6 4.66 22.4 21.0 123.9 168.6 201.8 226.9 1,2-Butanediamine 46.3 Butanedinitrile 3.7 48.5 70.0 1,3-Butanediol 58.5 67.8 1,4-Butanediol 76.6 2,3-Butanediol 59.2 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K 6.54 SECTION 6 2,3-Butanedione 38.7 1,4-Butanedithiol 55.1 Butanenitrile 5.02 33.7 39.3 118.8 155.1 181.9 201.8 meso-1,2,3,4-Butanetetrol 135.1 1,4-Butanedithiol 49.7 1-Butanethiol 10.46 32.2 36.6 146.2 194.7 233.0 263.4 2-Butanethiol 6.5 30.6 34.0 148.0 194.2 227.2 251.1 1,2,4-Butanetriol 58.6 Butanoic acid 11.08 41.8 40.5 Butanoic anhydride 50.0 1-Butanol 9.28 43.3 52.3 137.2 183.7 218.0 243.8 2-Butanol 40.8 49.7 141.0 187.1 220.4 245.3 2-Butanone 8.44 31.3 34.8 124.7 163.6 192.8 214.8 trans-2-Butenal 34.5 1-Butene 3.9 22.1 20.2 109.0 147.1 174.9 195.9 cis-2-Butene 7.58 23.3 22.2 101.8 141.4 171.0 193.1 trans-2-Butene 9.8 22.7 21.4 108.9 145.6 184.9 194.9 cis-2-Butenedinitrile 72.0 cis-2-Butenedioic acid 110.0 trans-2-Butenedioic acid 136.3 cis-2-Butene-1,4-diol 66.1 trans-2-Butene-1,4-diol 69.0 cis-2-Butenenitrile 38.9 trans-2-Butenenitrile 40.0 3-Butenenitrile 40.0 cis-2-Butenoic acid 12.57 trans-2-Butenoic acid 12.98 cis-2-Buten-1-ol 46.4 1-Buten-3-yne 89.0 111.6 127.2 138.7 2-Butoxyethanol 56.6 1-tert-Butoxy-2-ethoxyethane 50.9 2-(2-Butoxyethoxy)ethanol 28.0 2-Butoxyethyl acetate 59.5 1-tert-Butoxy-2-methoxyethane 38.5 47.8 N-Butylacetamide 76.1 Butyl acetate 36.3 43.9 tert-Butyl acetate 33.1 38.0 Butylamine 31.8 35.7 148.3 197.9 234.4 261.7 sec-Butylamine 29.9 32.8 148.1 199.0 236.1 261.7 tert-Butylamine 0.88 28.3 29.6 152.6 204.5 240.5 266.9 Butylbenzene 11.22 38.9 51.4 229.1 314.6 373.9 416.3 sec-Butylbenzene 9.83 38.0 48.0 tert-Butylbenzene 8.39 37.6 47.7 sec-Butyl butanoate 47.3 Butyl chloroacetate 51.0 Butyl 2-chlorobutanoate 52.7 Butyl 3-chlorobutanoate 53.1 Butyl 4-chlorobutanoate 54.4 Butyl 2-chloropropanoate 54.4 Butyl 3-chlorobutanoate 55.4 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.55 Butyl crotonate 51.9 sec-Butyl crotonate 49.4 Butylcyclohexane 14.16 38.5 49.4 276.1 289.5 469.9 525.9 Butylcyclopentane 11.3 36.2 45.9 241.7 336.3 407.3 480.3 N-Butyldiacetimide 64.4 Butyl dichloroacetate 52.3 Butylethylamine 34.0 40.2 Butyl ethyl ether 31.6 36.3 Butyl ethyl sulfide 12.4 37.0 44.5 202.4 271.8 325.3 367.2 tert-Butyl ethyl sulfide 7.1 33.5 39.3 Butyl formate 36.6 41.1 tert-Butyl hydroperoxide 47.7 Butylisopropylamine 34.5 42.1 Butyllithium 107.1 Butyl methyl ether 29.6 32.4 sec-Butyl methyl ether 28.1 30.2 tert-Butyl methyl ether 27.9 29.8 Butyl methyl sulfide 12.5 34.5 40.5 174.6 233.0 278.4 314.1 tert-Butyl methyl sulfide 8.4 31.5 35.8 Butyl methyl sulfone 76.2 tert-Butyl methyl sulfone 82.4 Butyl octadecanoate 56.90 tert-Butyl peroxide 31.8 Butyl propyl ether 33.7 40.2 Butyl thiolacetate 48.1 Butyl trichloroacetate 53.6 Butyl vinyl ether 31.6 36.2 1-Butyne 6.0 24.5 23.3 99.9 129.0 150.4 166.7 2-Butyne 9.23 26.5 26.6 94.6 124.2 147.0 164.4 2-Butynedinitrile 28.8 4-Butyrolactone 9.57 52.2 Butyrophenone 60.7 ()-Camphor 6.84 59.5 9H-Carbazole 26.9 84.5 Chloroacetic acid 12.28 75.3 Chloroacetyl chloride 38.9 2-Chloroaniline 11.88 44.4 56.8 2-Chlorobenzaldehyde 53.1 Chlorobenzene 9.61 35.2 41.0 128.1 172.2 200.4 219.6 2-Chlorobenzoic acid 25.73 79.5 3-Chlorobenzoic acid 82.0 4-Chlorobenzoic acid 87.9 Chloro-1,4-benzoquinone 69.0 1-Chlorobutane 30.4 33.5 135.1 179.0 210.5 234.0 2-Chlorobutane 29.2 31.5 136.1 180.7 212.7 236.8 Chlorocyclohexane 43.5 1-Chloro-1,1-difluoroethane 2.69 22.4 Chlorodifluoromethane 4.12 20.2 65.4 78.9 87.2 92.4 2-Chloro-1,4-dihydroxybenzene 69.0 Chlorodimethylsilane 26.2 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K 6.56 SECTION 6 Chlorodiphenylsilane 69.5 1-Chloro-2,3-epoxypropane 33.1 40.6 Chloroethane 4.45 24.7 77.6 101.6 118.8 131.7 2-Chloroethanol 41.4 1-Chloro-2-ethylbenzene 47.3 1-Chloro-4-ethylbenzene 48.1 Chloroethylene 4.75 20.8 65.0 82.1 93.5 101.9 2-Chloroethyl vinyl ether 38.2 Chloroethyne 60.2 66.8 71.0 74.3 1-Chloroheptane 47.7 1-Chlorohexane 35.7 42.8 Chlorohydroquinone 69.0 Chloromethane 6.43 21.4 18.9 48.2 61.3 71.3 78.9 1-Chloro-2-methylbenzene 8.37 37.5 1-Chloro-3-methylbenzene 10.46 1-Chloro-4-methylbenzene 38.7 1-Chloro-3-methylbutane 32.0 36.2 1-Chloro-2-methylpropane 29.2 31.7 136.1 180.7 212.7 236.8 2-Chloro-2-methylpropane 2.09 27.6 29.0 142.3 184.9 215.5 238.5 Ht 1.790.1 Ht 5.853.6 1-Chloronaphthalene 12.90 52.1 65.3 2-Chloronaphthalene 82.0 1-Chloro-3-nitrobenzene 19.37 1-Chloro-4-nitrobenzene 20.77 1-Chlorooctane 52.4 Chloropentafluoroacetone 25.3 Chloropentafluorobenzene 34.8 41.1 Chloropentafluoroethane 1.88 19.4 1-Chloropentane 33.2 38.2 164.2 218.0 256.8 285.6 2-Chloropentane 31.8 36.0 2-Chlorophenol 12.52 3-Chlorophenol 14.91 53.1 4-Chlorophenol 14.07 51.9 1-Chloropropane 5.54 27.2 28.4 106.1 139.9 164.2 182.4 2-Chloropropane 7.39 26.3 26.9 108.7 143.1 167.1 184.8 3-Chloro-1-propene 29.0 28.2 92.6 111.0 137.8 151.9 Chlorotrifluoroethylene 5.6 20.8 Chlorotrifluoromethane 15.8 77.5 90.3 96.9 100.5 Chlorotrimethylsilane 27.6 30.1 Chlorotrinitromethane 45.4 Chrysene 26.15 124.5 Coronene 19.2 1,2-Cresol 13.94 45.2 76.0 166.3 220.8 257.5 287.9 1,3-Cresol 9.41 47.4 61.7 162.1 218.7 256.4 286.6 1,4-Cresol 11.89 47.5 73.9 161.7 218.0 255.7 286.5 Cubane 80.3 Cyanamide 8.76 68.6 Cyanogen 8.1 23.3 19.7 61.9(g) 68.2 72.9 76.4 Cyclobutane, Ht 5.8126.8 1.1 24.2 23.5 100.0 145.4 177.5 200.7 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.57 Cyclobutanecarbonitrile 36.9 44.3 Cyclobutanenitrile 40.0 Cyclobutene 90.3 126.8 151.7 169.6 Cyclobutylamine 35.6 Cyclododecane 76.4 Cycloheptane 1.88 33.2 38.5 175.0 261.2 322.3 365.7 Ht 5.0138.4 Ht 0.375.0 Ht 0.560.8 Cycloheptanone 51.9 1,3,5-Cycloheptatriene 1.2 38.7 155.4 209.5 245.1 270.2 Ht 2.4119.2 Cyclohexane 2.63 30.0 33.0 149.9 225.2 279.3 317.2 Ht 6.787 Cyclohexanecarbonitrile 51.9 Cyclohexanethiol 37.1 44.6 Cyclohexanol 1.76 45.5 62.0 172.1 248.1 302.0 339.5 Ht 8.29.7 Cyclohexanone 40.3 45.1 150.6 221.3 272.0 305.4 Cyclohexene 3.29 30.5 33.5 144.9 206.9 248.9 278.7 Ht 4.3134.4 1-Cyclohexenecarbonitrile 53.5 Cyclohexylamine 36.1 43.7 Cyclohexylbenzene 15.30 59.9 Cyclohexylcyclohexane 51.9 58.0 cis, cis-1,5-Cyclooctadiene 43.4 Cyclooctane 2.41 35.9 43.3 200.1 297.1 365.3 414.3 Ht 6.3106.7 Ht 0.589.4 Cyclooctanone 54.4 1,3,5,7-Cyclooctatetraene 11.3 36.4 43.1 160.9 220.8 260.4 288.2 Cyclooctene 47.0 Cyclopentadiene 28.4 Cyclopentane 0.61 27.3 28.5 118.7 178.1 220.1 250.4 Ht 4.8150.8 Ht 0.3135.1 Cyclopentanecarbonitrile 43.4 1-Cyclopentenecarbonitrile 45.0 Cyclopentanethiol 7.8 35.3 41.4 144.5 203.6 245.2 275.5 Cyclopentanol 57.6 Cyclopentanone 36.4 42.7 Cyclopentene 3.36 28.1 104.9 155.6 191.5 217.3 Ht 0.5186.1 Cyclopentylamine 8.31 40.2 Cyclopropane 5.44 20.1 16.9 76.6 109.4 140.5 148.1 Cyclopropanecarbonitrile 35.6 41.9 Cyclopropylamine 13.18 31.3 Cyclopropylbenzene 50.2 Cyclopropyl methyl ketone 34.1 38.4 Decafluorobutane 22.9 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K 6.58 SECTION 6 cis-Decahydronaphthalene 9.49 41.0 50.2 237.0 352.0 432.5 489.5 Ht 2.157.1 trans-Decahydronaphthalene 14.41 40.2 43.5 237.6 352.3 432.6 489.2 Decanal 300.4 400.4 472.8 525.9 Decane 28.78 38.8 51.4 298.1 403.2 480.8 536.4 Decanedioic acid 40.8 160.7 Decanenitrile 66.8 1-Decanethiol 31.0 46.4 65.5 320.6 429.4 510.9 573.1 Decanoic acid 28.02 118.8 1-Decanol 37.7 49.8 81.5 187.2 418.2 495.9 553.3 1-Decene 21.10 38.7 50.4 283.6 381.9 453.0 505.9 Ht 8.074.8 1-Decyne 274.6 363.8 428.5 476.6 Deoxybenzoin 93.3 Dibenz[de,kl]anthracene 125.5 Dibenzoyl peroxide 31.4 102.5 Dibenzyl ether 20.2 Dibenzyl sulfide 93.3 Dibenzyl sulfone 125.5 1,2-Dibromobutane 50.3 153.9 195.4 224.3 244.8 1,4-Dibromobutane 53.1 2,3-Dibromobutane 37.7 1,2-Dibromo-1-chloro-1,1,2-trifluoroethane 31.2 35.0 1,2-Dibromocycloheptane 52.0 1,2-Dibromocyclohexane 50.5 1,2-Dibromocyclooctane 54.6 1,2-Dibromoethane 10.84 34.8 41.7 99.7 122.3 137.8 149.8 1,2-Dibromoheptane 54.4 Dibromomethane 32.9 37.0 63.0 74.8 82.5 88.0 1,2-Dibromopropane 8.94 35.6 41.7 124.4 157.4 179.5 195.6 1,3-Dibromopropane 13.6 47.5 1,2-Dibromotetrafluoroethane 7.04 27.0 28.4 1,2-Dibutoxyethane 47.8 58.8 Dibutoxymethane 48.1 Dibutylamine 38.4 49.5 N,N-Dibutyl-1-butanamine 46.9 Dibutyl decanedioate 92.9 Dibutyl disulfide 46.9 64.5 286.1 376.5 442.8 493.1 Di-tert-butyl disulfide 54.3 Dibutyl ether 36.5 45.0 254.3 340.1 403.8 451.3 Di-sec-butyl ether 34.1 40.8 Di-tert-butyl ether 32.2 37.6 Dibutylmercury 63.5 Di-tert-butyl peroxide 31.8 Dibutyl 1,2-phthalate 79.2 91.6 Dibutyl sulfate 75.9 Dibutyl sulfide 19.4 41.3 53.0 259.8 348.6 420.8 475.8 Di-tert-butyl sulfide 33.3 43.8 Dibutyl sulfite 67.8 Dibutyl sulfone 100.4 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.59 Dichloroacetyl chloride 39.3 1,2-Dichlorobenzene 12.93 39.7 50.2 142.8 184.4 210.4 227.7 1,3-Dichlorobenzene 12.64 38.6 48.6 143.0 184.5 210.4 227.7 1,4-Dichlorobenzene 17.15 38.8 49.0 143.3 184.8 210.7 227.9 2,6-Dichlorobenzoquinone 69.9 2,2-Dichlorobiphenyl 96.2 4,4-Dichlorobiphenyl 103.8 1,2-Dichlorobutane 33.9 39.6 1,4-Dichlorobutane 46.4 Dichlorodifluoromethane 4.14 20.1 82.4 93.6 99.1 100.0 Dichlorodimethylsilane 34.3 Dichlorodiphenylsilane 69.5 1,1-Dichloroethane 8.84 28.9 30.6 91.4 113.7 128.8 139.8 1,2-Dichloroethane 8.83 32.0 35.2 92.1 112.6 127.2 138.1 1,1-Dichloroethylene 6.51 26.1 26.5 78.7 93.9 103.4 110.0 cis-1,2-Dichloroethylene 7.20 30.2 31.0 77.0 93.0 102.9 109.8 trans-1,2-Dichloroethylene 11.98 28.9 29.3 77.7 93.2 102.9 109.8 2,2-Dichloroethyl ether 38.4 Dichlorofluoromethane 25.2 70.2 82.4 89.6 94.2 1,2-Dichlorohexafluoropropane 26.3 26.9 1,2-Dichlorohexane 48.2 Dichloromethane 6.00 28.1 28.8 59.6 72.4 80.8 86.8 1,2-Dichloro-4-methylbenzene 10.68 1,2-Dichloropentane 36.5 43.9 1,5-Dichloropentane 50.7 ()-1,2-Dichloropropane 6.40 31.8 36.0 119.7 152.6 175.6 192.8 1,3-Dichloropropane 35.2 40.8 120.0 151.5 173.9 190.4 2,2-Dichloropropane 29.3 32.6 127.9 159.2 179.9 194.8 1,3-Dichloro-2-propanol 66.9 1,2-Dichlorotetrafluoroethane 6.32 23.3 Dicyanoacetylene 28.8 Dicyclopentadienyliron 73.6 Dicyclopropyl ketone 53.7 Diethanolamine 25.10 65.2 1,1-Diethoxyethane 36.3 43.2 1,2-Diethoxyethane 36.3 43.2 Diethoxymethane 31.3 35.7 1,3-Diethoxypropane 37.2 45.9 2,2-Diethoxypropane 31.8 Diethylamine 29.1 31.3 143.9 197.2 235.0 263.2 1,2-Diethylbenzene 16.8 39.4 52.8 234.4 316.6 374.6 416.3 1,3-Diethylbenzene 11.0 39.4 52.5 230.2 314.6 379.7 415.8 1,4-Diethylbenzene 10.6 39.4 52.5 228.8 313.1 372.5 414.9 Diethyl carbonate 36.2 43.6 Diethyl disulfide 9.4 37.6 45.2 171.1 218.6 251.8 276.0 Diethylene glycol diethyl ether 13.60 49.0 58.4 Diethylene glycol dimethyl ether 36.2 44.7 Diethylene glycol monoethyl ether 47.5 Diethylene glycol monomethyl ether 46.6 Diethyl ether 7.27 26.5 27.1 138.1 183.8 218.7 244.8 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K 6.60 SECTION 6 Diethyl malonate 54.8 Diethyl oxalate 42.0 63.5 Diethyl peroxide 30.5 3,3-Diethylpentane 10.09 34.6 42.0 Diethyl 1,2-phthalate 88.3 Diethyl sulfide 11.90 31.8 35.8 145.0 192.9 229.7 258.5 Diethyl sulfite 48.5 Diethyl sulfone 86.2 Diethyl sulfoxide 62.3 Diethylzinc 40.2 1,2-Difluorobenzene 11.1 32.2 36.2 137.1 181.3 209.7 229.0 1,3-Difluorobenzene 8.58 31.1 34.6 137.0 180.5 207.8 225.6 1,4-Difluorobenzene 31.8 35.5 137.4 180.1 207.8 225.7 2,2-Difluorobiphenyl 95.0 4,4-Difluorobiphenyl 91.2 1,1-Difluoroethane 21.6 19.1 83.4 107.5 124.3 136.3 1,1-Difluoroethylene 71.8 89.2 100.2 107.7 Difluoromethane 51.1 65.8 76.2 83.7 9,10-Dihydroanthracene 93.3 Dihydro-2H-pyran 32.2 5,12-Dihydrotetracene 115.9 2,3-Dihydrothiophene 33.2 37.7 2,5-Dihydrothiophene 34.8 40.0 2,4-Dihydrothiophene-1,1-dioxide 62.8 1,4-Dihydroxybenzene 27.11 99.2 1,2-Diiodobenzene 64.9 1,2-Diiodoethane 65.7 96.0 116.8 131.3 141.6 Diiodomethane 44.80 42.5 51.0 65.9 76.9 83.9 89.1 Diisobutylamine 39.3 Diisobutyl ether 34.0 40.9 Diisobutyl sulfide 48.7 Diisopropylamine 30.4 34.6 Diisopropyl ether 11.03 29.1 32.1 196.2 262.0 311.3 348.0 Diisopropylmercury 53.6 Diisopropyl sulfide 10.4 33.8 39.6 211.9 277.1 322.7 356.6 Diketene 36.8 42.9 1,2-Dimethoxybenzene 16.04 48.2 66.9 1,1-Dimethoxyethane 30.5 1,2-Dimethoxyethane 12.60 32.4 36.4 Dimethoxymethane 8.33 35.1 2,2-Dimethoxypropane 29.4 N,N-Dimethylacetamide 10.42 43.4 50.2 Dimethylamine 5.94 26.4 25.0 87.4 118.9 142.0 159.8 Dimethylaminomethanol 50.2 N,N-Dimethylaminotrimethylsilane 31.8 N,N-Dimethylaniline 52.8 1,4-Dimethylbicyclo[2.2.1]heptane 33.3 38.9 2,3-Dimethylbicyclo[2.2.1]-2-heptene 34.9 42.2 2,2-Dimethylbutane 0.58 26.3 27.7 182.8 251.0 298.7 333.5 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.61 Ht 5.4147.3 Ht 0.3132.3 2,3-Dimethylbutane 0.80 27.4 29.1 181.2 247.7 314.6 331.0 Ht 6.5137.1 2,2-Dimethyl-1-butanol 42.6 56.1 2,3-Dimethyl-1-butanol 47.3 3,3-Dimethyl-1-butanol 46.4 2,3-Dimethyl-2-butanol 40.4 51.0 ()-3,3-Dimethyl-2-butanol 43.9 3,3-Dimethyl-2-butanone 33.4 37.9 2,3-Dimethyl-1-butene 27.4 29.2 178.2 231.8 272.0 302.1 3.3-Dimethyl-1-butene 1.1 25.7 27.1 162.8 223.4 266.1 297.1 Ht 4.3148.3 2,3-Dimethyl-2-butene 5.46 29.6 32.5 156.8 216.7 262.7 297.7 Ht 3.576.3 Di(3-methylbutyl) ether 35.2 Dimethylcadmium 38.0 1,1-Dimethylcyclohexane 2.06 32.5 37.9 212.1 310.0 379.5 427.6 Ht 6.0120.0 cis-1,2-Dimethylcyclohexane 1.64 33.5 39.7 213.8 309.6 377.0 424.3 Ht 8.3100.6 trans-1,2-Dimethylcyclohexane 10.49 33.0 38.4 217.2 312.1 378.7 425.5 cis-1,3-Dimethylcyclohexane 10.82 32.9 38.3 214.2 310.5 378.7 426.8 trans-1,3-Dimethylcyclohexane 9.86 33.4 39.2 213.8 308.8 375.7 423.0 cis-1,4-Dimethylcyclohexane 9.31 33.3 39.0 213.8 308.8 375.7 423.0 trans-1,4-Dimethylcyclohexane 12.33 32.6 37.9 215.9 312.1 378.9 425.7 1,1-Dimethylcyclopentane 1.1 30.3 33.8 182.2 262.6 318.7 359.1 Ht 6.5126.4 cis-1,2-Dimethylcyclopentane 1.7 31.7 35.7 182.7 262.4 317.9 358.0 Ht 6.7131.7 trans-1,2-Dimethylcyclopentane 7.2 30.9 34.6 182.9 262.2 317.3 357.4 cis-1,3-Dimethylcyclopentane 7.4 30.4 34.2 182.9 262.2 317.3 357.4 trans-1,3-Dimethylcyclopentane 7.3 30.8 34.5 182.9 262.2 317.3 357.4 cis-2,4-Dimethyl-1,3-dioxane 39.9 4,5-Dimethyl-1,3-dioxane 42.5 5,5-Dimethyl-1,3-dioxane 41.3 Dimethyl disulfide 9.19 33.8 37.9 110.3 137.4 157.6 172.8 Dimethyl ether 4.94 21.5 18.5 79.6 105.3 125.7 141.4 N,N-Dimethylformamide 16.15 38.4 46.9 Dimethylglyoxime 97.1 2,2-Dimethylheptane 8.90 2,6-Dimethyl-4-heptanone 39.9 50.9 2,2-Dimethylhexane 6.78 32.1 37.3 2,3-Dimethylhexane 33.2 38.8 2,4-Dimethylhexane 32.5 37.8 2,5-Dimethylhexane 12.95 32.5 37.9 3,3-Dimethylhexane 6.98 32.3 37.5 3,4-Dimethylhexane 33.2 39.0 cis-2,2-Dimethyl-3-hexene 37.2 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K 6.62 SECTION 6 trans-2,2-Dimethyl-3-hexene 37.3 1,1-Dimethylhydrazine 10.1 32.6 35.0 1,2-Dimethylhydrazine 35.2 39.3 3,5-Dimethylisoxazole 45.2 Dimethyl maleate 14.7 44.3 Dimethylmercury 34.6 6,6-Dimethyl-2-methylene-bicyclo[3.1.1]heptane 40.2 46.4 2,4-Dimethyloctane 36.5 47.1 Dimethyl oxalate 21.07 47.4 3,3-Dimethyloxetane 30.9 33.9 2,2-Dimethylpentane 5.86 29.2 32.4 211.0 285.9 340.7 381.6 2,3-Dimethylpentane 30.5 34.3 211.0 285.9 340.7 381.6 2,4-Dimethylpentane 6.69 29.6 32.9 211.0 285.9 340.7 381.6 3,3-Dimethylpentane 7.07 29.6 33.0 211.0 285.9 340.7 381.6 2,2-Dimethyl-3-pentanone 36.1 42.3 2,4-Dimethyl-3-pentanone 11.18 34.6 41.5 2,4-Dimethyl-1-pentene 33.2 4,4-Dimethyl-1-pentene 29.0 2,4-Dimethyl-2-pentene 34.4 cis-4,4-Dimethyl-2-pentene 32.7 trans-4,4-Dimethyl-2-pentene 32.7 2,7-Dimethylphenanthrene 106.7 4,5-Dimethylphenanthrene 104.6 9,10-Dimethylphenanthrene 119.5 2,3-Dimethylphenol 21.02 84.0 2,4-Dimethylphenol 47.1 65.0 2,5-Dimethylphenol 23.38 46.9 85.0 2,6-Dimethylphenol 18.90 44.5 75.3 3,4-Dimethylphenol 18.13 49.7 85.0 3,5-Dimethylphenol 18.00 49.3 82.0 Dimethyl 1,2-phthalate 162.7 2,2-Dimethylpropane 3.10 22.7 21.8 157.1 218.5 254.3 283.7 Ht 2.6133.1 2,2-Dimethylpropanenitrile 32.4 37.3 2,2-Dimethyl-1-propanol 9.6 2,3-Dimethylpyridine 39.1 47.7 2,4-Dimethylpyridine 38.5 47.5 2,5-Dimethylpyridine 47.8 2,6-Dimethylpyridine 10.04 37.5 45.4 3,4-Dimethylpyridine 40.0 50.5 3,5-Dimethylpyridine 39.5 49.5 Dimethyl sulfate 48.5 Dimethyl sulfide 7.99 27.0 27.7 88.4 113.0 132.2 147.2 Dimethyl sulfite 40.2 Dimethyl sulfone 77.0 Dimethyl sulfoxide 14.37 43.1 52.9 2,2-Dimethylthiacyclopropane 35.8 Dimethylzinc 29.5 Dinitromethane 46.0 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.63 2,4-Dinitrophenol 104.6 2,6-Dinitrophenol 112.1 1,1-Dinitropropane 62.5 1,3-Dioxane 34.4 39.1 1,4-Dioxane 12.85 34.2 38.6 126.5 181.8 218.2 243.3 Ht 2.40.3 1,3-Dioxolane 27.48 35.6 Diphenylamine 17.86 89.1 Diphenyl carbonate 23.4 90.0 Diphenyl disulfide 95.0 Diphenyl disulfone 161.9 Diphenylenimine 84.5 1,2-Diphenylethane 51.5 91.4 1,1-Diphenylethylene 73.2 Diphenyl ether 17.22 48.2 67.0 6,6-Diphenylfulvene 104.6 Diphenylmercury 112.8 Diphenylmethane 18.2 67.5 1,3-Diphenyl-2-propanone 89.1 Diphenyl sulfide 67.8 Diphenyl sulfone 106.3 Diphenyl sulfoxide 97.1 1,2-Dipropoxyethane 50.6 Dipropylamine 33.5 40.0 Dipropyl disulfide 13.8 41.9 54.1 186.2 298.3 350.2 390.0 Dipropyl ether 8.83 31.3 35.7 196.2 262.0 311.3 348.0 Dipropylmercury 55.2 Dipropyl sulfate 66.9 Dipropyl sulfide 12.1 36.6 44.2 201.7 272.5 328.2 372.6 Dipropyl sulfite 58.6 Dipropyl sulfone 79.9 Dipropyl sulfoxide 74.5 Divinyl ether 26.2 Divinyl sulfone 56.5 Dodecane 36.55 44.5 61.5 356.2 481.3 572.2 656.5 Dodecanedioic acid 153.1 Dodecanenitrile 76.1 Dodecanoic acid 36.64 132.6 Dodecanol 31.4 63.5 92.0 1-Dodecene 17.42 44.0 60.8 341.8 460.0 545.6 608.8 Ht 4.660.2 1,2-Epoxybutane 30.3 1,2-Epoxypropane 21.6 Ergosterol 118.4 Ethane 2.86 14.7 5.2 65.5 89.3 108.0 122.6 Ethane-d6 81.7 108.5 127.4 140.5 1,2-Ethanediamine 22.58 38.0 45.0 1,2-Ethanediol 11.23 50.5 67.8 113.2 136.9 166.9 1,2-Ethanediol diacetate 45.5 61.4 1,2-Ethanedithiol 37.9 44.7 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K 6.64 SECTION 6 Ethanethiol 4.98 26.8 27.3 88.2 113.9 133.2 148.0 Ethanol 5.02 38.6 42.3 81.2 107.7 127.2 141.9 Ethanolamine 20.50 49.8 Ethoxybenzene 40.7 51.0 2-Ethoxyethanol 39.2 48.2 2-(2-Ethoxyethoxy)ethanol 47.5 2-(2-Ethoxyethoxy)ethyl acetate 91.2 2-Ethoxyethyl acetate 52.7 1-Ethoxy-2-methoxyethane 34.3 39.8 N-Ethylacetamide 64.9 Ethyl acetate 10.48 31.9 35.6 137.4 182.6 213.4 234.5 Ethyl acrylate 34.7 Ethylamine 28.0 26.6 90.6 119.6 141.8 158.5 N-Ethylaniline 52.3 Ethylbenzene 9.18 35.6 42.2 170.5 236.1 281.0 312.8 2-Ethylbenzoic acid 100.7 3-Ethylbenzoic acid 99.1 4-Ethylbenzoic acid 97.5 2-Ethyl-1-butanol 43.2 63.2 Ethyl butanoate 35.5 42.7 2-Ethylbutanoic acid 51.2 2-Ethyl-1-butene 28.8 31.1 170.3 228.0 269.5 300.8 Ethyl trans-2-butenoate 44.4 Ethyl chloroacetate 40.4 49.5 Ethyl 4-chlorobutanoate 52.7 Ethyl chloroformate 42.3 Ethyl trans-cinnamate 58.6 Ethyl crotonate 44.3 Ethyl cyanoacetate 64.4 Ethylcyclobutane 28.7 31.2 Ethylcyclohexane 8.33 34.0 40.6 215.9 310.0 377.0 423.8 1-Ethylcyclohexene 43.3 Ethylcyclopentane 6.9 32.0 36.4 183.6 258.2 314.7 356.3 1-Ethylcyclopentene 38.5 Ethyl dichloroacetate 50.6 Ethyl 2,2-dimethylpropanoate 34.5 41.2 Ethylene 3.35 13.5 53.1 70.7 83.8 93.9 Ethylene-d4 63.9 82.3 95.6 104.9 Ethylene carbonate 13.19 50.1 73.2 2,2-(Ethylenedioxy)bis(ethanol) 71.4 79.1 Ethylene glycol (see 1,2-Ethanediol) Ethylene glycol diacetate 61.4 Ethylene oxide 5.2 25.5 24.8 62.6 86.3 102.9 114.9 Ethylenimine 30.3 34.6 70.4 98.6 117.7 131.6 N-Ethylformamide 58.4 Ethyl formate 9.20 29.9 32.0 2-Ethylhexanal 49.0 2-Ethylhexane 33.6 39.6 Ethyl hexanoate 51.7 2-Ethylhexanoic acid 56.0 75.6 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.65 2-Ethyl-1-hexanol 45.2 2-Ethylhexyl acetate 43.5 48.1 2-Ethyl hydroperoxide 43.1 Ethylidenecyclohexane 42.0 Ethylidenecyclopentane 18.1 Ethyl isocyanide 33.5 Ethyl isopentanoate 8.7 43.9 Ethyl isopentyl ether 33.0 39.0 Ethylisopropylamine 29.9 33.1 Ethyl isopropyl ether 28.2 30.1 Ethyl isopropyl sulfide 8.7 32.7 37.8 Ethyl lactate 46.4 49.4 Ethyllithium 116.7 Ethylmercury bromide 76.6 Ethylmercury chloride 76.1 Ethylmercury iodide 79.5 1-Ethyl-2-methylbenzene 10.0 38.9 47.7 202.9 275.3 326.8 363.6 1-Ethyl-3-methylbenzene 7.6 38.5 46.9 198.7 273.6 325.5 363.2 1-Ethyl-4-methylbenzene 13.4 38.4 46.6 197.5 272.0 324.7 362.2 Ethyl 2-methylbutanoate 44.4 Ethyl 3-methylbutanoate 37.0 43.9 2-Ethyl-3-methyl-1-butene 34.5 1-Ethyl-1-methylcyclopentane 33.2 38.9 Ethyl methyl ether 26.7 109.1 144.7 172.3 193.2 3-Ethyl-2-methylpentane 11.34 32.9 38.5 3-Ethyl-3-methylpentane 10.84 32.8 38.0 3-Ethyl-2-methyl-1-pentene 37.5 Ethyl 2-methylpropanoate 33.7 39.8 Ethyl methyl sulfide 9.8 29.5 31.9 116.4 152.3 179.6 200.6 Ethyl nitrate 8.5 33.1 36.3 120.2 155.1 178.7 195.4 1-Ethyl-2-nitrobenzene 59.8 1-Ethyl-4-nitrobenzene 62.8 3-Ethylpentane 9.55 31.1 35.2 211.0 285.9 340.7 381.6 Ethyl pentanoate 37.0 47.0 Ethyl pentyl ether 34.4 41.0 2-Ethylphenol 63.6 3-Ethylphenol 68.2 4-Ethylphenol 80.3 Ethylphosphonic acid 50.6 Ethylphosphonic dichloride 42.7 Ethyl propanoate 33.9 39.2 Ethyl propyl ether 28.9 31.4 Ethyl propyl sulfide 10.6 34.2 40.0 173.3 232.7 279.0 315.6 Ethyl trichloroacetate 51.0 S-Ethyl thiolacetate 34.4 40.0 Ethyl 2-vinylacrylate 48.5 Ethyl vinyl ether 26.2 26.6 Fluoranthrene 18.87 99.2 9H-Fluorene 19.58 Fluorobenzene 11.31 31.2 34.6 125.5 171.0 200.1 220.0 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K 6.66 SECTION 6 4-Fluorobenzoic acid 91.2 Fluoroethane 74.1 98.6 116.4 129.7 Fluoromethane 16.7 44.2 57.9 68.8 77.2 1-Fluorooctane 40.4 49.7 1-Fluoropropane 102.7 137.3 162.7 181.5 2-Fluoropropane 103.5 138.7 163.8 182.2 2-Fluorotoluene 35.4 4-Fluorotoluene 9.4 34.1 39.4 152.4 207.9 245.2 271.3 Fluorotrichloromethane 25.0 Fluorotrinitromethane 34.7 Formaldehyde 23.3 39.2(g) 48.2 55.9 62.0 Formamide 6.69 60.2 Formic acid 12.7 22.7 20.1 53.8 67.0 76.8 83.5 Formyl fluoride 21.7 46.4 56.2 63.1 67.9 Fumaric acid 136.0 Fumaronitrile 72.0 Furan, Ht 2.1123.2 3.80 27.1 27.5 88.7 122.6 164.9 158.5 2-Furancarboxaldehyde 14.35 43.2 50.6 2-Furancarboxylic acid 108.5 Furanmethanol 13.13 53.6 64.4 Glutaric acid 20.9 Glycerol 18.28 61.0 85.8 Glyceryl triacetate 85.7 Glyceryl tributanoate 107.1 Glyceryl trinitrate 21.87 100.0 Heptadecane, Ht 11.011.1 40.5 52.9 86.0 501.4 676.8 803.7 897.9 Heptadecanoic acid 58.8 1-Heptadecene 31.4 51.8 85.0 486.9 655.5 777.1 866.9 1-Heptanal 23.6 47.7 213.4 283.3 333.9 371.1 Heptane 14.16 31.8 36.6 211.0 285.9 340.7 381.6 1-Heptanenitrile 51.9 1-Heptanethiol 25.4 39.8 50.6 233.5 312.1 372.0 418.4 Heptanoic acid 74.0 1-Heptanol 13.2 48.1 66.8 224.4 300.9 357.0 392.5 2-Heptanol 49.8 3-Heptanol 42.5 2-Heptanone 38.3 47.2 4-Heptanone 36.2 1-Heptene, Ht 0.3136 12.66 31.1 35.5 196.5 264.6 314.1 351.0 trans-2-Heptene 11.72 Heptylamine 50.0 Heptyl methyl ether 46.9 Hexachlorobenzene 23.85 92.6 201.2 233.4 250.9 260.8 Hexachloroethane, Ht 8.071.3 9.8 45.9 59.0 151.5 166.6 173.6 177.3 Hexadecafluoroethylcyclohexane 38.5 Hexadecafluoroheptane 36.4 Hexadecane 51.8 51.2 81.4 472.3 687.7 757.4 846.0 Hexadecanoic acid 42.04 154.4 1-Hexadecanol, Ht 16.634 34.29 169.5 485.7 652.7 773.6 863.2 1-Hexadecene 30.2 50.4 80.3 457.9 616.4 731.82 815.0 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.67 Hexadienoic acid 13.6 Hexafluoroacetone 19.8 21.3 Hexafluoroacetylacetone 27.1 30.6 Hexafluorobenzene 11.58 31.7 35.7 183.6 219.9 241.1 253.7 Hexafluoroethane, Ht 3.7169.2 2.7 16.2 125.6 149.0 160.7 166.8 cis-Hexahydroindane 57.5 trans-Hexahydroindane 56.1 Hexamethylbenzene 20.6 48.2 74.7 310.4 406.4 474.9 525.3 Ht 1.1156.7 Ht 1.8110.7 1,1,1,3,3,3-Hexamethyldisilazane 41.4 Hexamethyldisiloxane 37.2 Hexamethylphosphoric triamide 14.28 Hexanal 184.2 243.9 287.4 319.7 Hexanamide 25.1 98.7 Hexane 13.08 28.9 31.6 181.9 246.8 294.4 330.1 1,6-Hexanedioic acid 34.85 129.3 1,6-Hexanediol 25.5 83.3 Hexanenitrile 38.0 47.9 1-Hexanethiol 18.0(1) 37.2 45.8 204.5 273.1 325.1 366.7 Hexanoic acid 15.40 71.1 72.2 1-Hexanol 15.40 44.5 61.6 195.3 261.8 310.7 346.9 2-Hexanol 41.0 58.5 3-Hexanol 44.3 46.0 2-Hexanone 14.90 36.4 43.1 3-Hexanone 13.49 35.4 42.5 1-Hexene 9.35 28.3 30.6 167.5 225.5 267.9 299.3 cis-2-Hexene 8.86 29.1 32.2 161.5 221.8 165.3 297.9 trans-2-Hexene 8.26 28.9 31.6 166.1 223.4 266.1 297.9 cis-3-Hexene 8.25 28.7 31.4 161.1 222.6 265.7 297.9 trans-3-Hexene 11.08 28.9 31.7 168.2 225.5 267.4 298.7 Hexylamine 36.5 45.1 Hexyl methyl ether 34.9 42.1 1-Hexyne 158.5 207.5 243.3 270.1 Hydrazine 12.7 45.3 2-Hydroxybenzaldehyde 38.2 2-Hydroxybenzoic acid 95.1 2-Hydroxy-2,4,6-cycloheptatrienone 83.7 2-Hydroxy-1-isopropyl-4-methylbenzene 91.2 4-Hydroxy-4-methyl-2-pentanone 28.5 47.7 3-Hydroxypropanonitrile 56.1 2-Hydroxypyridine 86.6 3-Hydroxypyridine 88.3 4-Hydroxypyridine 103.8 8-Hydroxyquinoline 108.8 Icosane 69.88 57.5 100.8 588.5 794.0 942.6 1052.7 Icosanoic acid 72.0 199.6 1-Icosene 34.3 55.9 99.8 574.0 772.7 916.0 1021.7 Indane 39.6 48.8 Indene 52.9 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K 6.68 SECTION 6 Indole 69.9 Iodobenzene 9.76 39.5 47.7 130.1 173.3 201.1 220.1 Iodobenzoic acid 87.9 1-Iodobutane 34.7 40.6 2-Iodobutane 33.3 38.5 Iodocyclohexane 47.3 Iodoethane 29.4 31.9 80.3 103.1 119.9 132.4 1-Iodohexane 49.8 Iodomethane 27.3 28.0 51.6 63.9 73.1 80.2 1-Iodo-2-methylpropane 33.5 38.8 2-Iodo-2-methylpropane 14.5 31.4 35.4 148.8 191.7 221.1 242.3 1-Iodonaphthalene 72.4 2-Iodonaphthalene 90.8 1-Iodopentane 45.3 1-Iodopropane 32.1 36.2 109.9 142.7 166.5 184.2 2-Iodopropane 30.7 34.1 111.2 144.7 168.2 185.5 3-Iodo-1-propene 38.1 2-Iodotoluene (also 3-, 4-) 54.4 Isobutanonitrile 32.4 37.2 119.5 156.4 183.0 202.5 Isobutyl acetate 35.9 Isobutylamine 30.6 33.9 Isobutylbenzene 12.51 37.8 47.9 Isobutylcyclohexane 47.6 Isobutyl dichloroacetate 52.3 Isobutyl formate 33.6 Isobutyl isobutanoate 38.2 46.4 Isobutyl isopropyl ether 31.6 36.6 Isobutyl methyl ether 28.0 30.1 Isobutyl propyl ether 28.3 30.3 Isobutyl trichloroacetate 53.1 Isobutyl vinyl ether 30.7 34.6 2-Isopropoxyethanol 40.4 50.1 Isopropyl acetate 32.9 37.2 Isopropylamine 7.33 27.8 28.4 Isopropylbenzene 7.79 37.5 45.1 200.8 277.0 328.9 365.3 Isopropylcyclohexane 44.0 Isopropylcyclopentane 33.6 39.4 Isopropylmethylamine 28.7 30.9 1-Isopropyl-2-methylbenzene 10.0 38.4 50.6 1-Isopropyl-3-methylbenzene 13.7 38.1 50.0 1-Isopropyl-4-methylbenzene 9.7 38.2 50.2 Isopropyl methyl ether 26.1 26.4 138.0 184.8 220.4 247.2 2-Isopropyl-5-methylphenol 91.2 Isopropyl methyl sulfide 9.4 30.7 34.2 145.1 192.5 229.9 260.6 Isopropyl nitrate 34.9 38.8 150.5 195.9 226.5 247.9 Isopropylpropylamine 32.1 37.2 Isopropyl propyl sulfide 35.1 41.8 Isopropyl trichloroacetate 51.9 Isoquinoline 7.45 49.0 60.3 Ketene 20.4 59.5 70.7 78.7 86.4 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.69 ()-Leucine 150.6 ()-Limonene 48.1 Maleic acid 110.0 Maleic anhydride 71.5 Malononitrile 79.1 D-Mannitol 22.6 Methacrylonitrile 31.8 Methane 0.94 8.2 40.5 52.2 62.9 71.8 Methane-d4 48.6 63.4 74.8 83.0 Methanethiol, Ht 0.22135.6 5.91 24.6 23.8 58.7 73.5 85.0 94.1 Methanol, Ht 0.6115.8 3.18 35.2 37.4 51.4 67.0 79.7 89.5 4-Methoxybenzaldehyde 56.8 64.5 Methoxybenzene 39.0 46.9 2-Methoxybenzoic acid 104.7 3-Methoxybenzoic acid 107.4 4-Methoxybenzoic acid 109.8 3-Methoxy-1-butanol 50.8 2-Methoxyethanol 37.5 45.2 2-(2-Methoxyethoxy)ethanol 46.6 2-Methoxyethyl acetate 43.9 50.3 2-Methoxy-1-propoxyethane 36.3 43.7 2-Methoxytetrahydropyran 42.7 1-Methoxy-2,4,6-trinitrobenzene 133.1 N-Methylacetamide 9.72 59.4 Methyl acetate 30.3 32.3 Methyl acetoacetate 36.0 Methyl acrylate 33.1 29.2 Methylamine 6.13 25.6 24.4 60.2 78.9 93.9 105.7 4-Methylaniline 18.22 Methyl benzoate 9.74 43.2 55.6 2-Methylbenzoic acid 20.17 3-Methylbenzoic acid 15.72 4-Methylbenzoic acid 22.73 1-Methylbicyclo[4.1.0]heptane 39.2 1-Methylbicyclo[3.1.0]hexane 31.1 34.8 2-Methyl-1,3-butadiene 4.79 25.9 26.8 133.1 173.2 200.8 221.3 3-Methyl-1,3-butadiene 27.2 28.0 129.7 168.6 197.5 219.2 2-Methylbutane 5.15 24.7 24.9 152.7 208.7 249.8 280.8 3-Methylbutanenitrile 35.1 41.7 2-Methylbutanethiol 33.8 39.5 3-Methyl-1-butanethiol 7.5 39.4 2-Methyl-2-butanethiol 0.6 31.4 35.7 179.0 236.7 279.4 308.8 Ht 8.0114.0 Methyl butanoate 33.8 39.3 2-Methylbutanoic acid 46.9 3-Methylbutanoic acid 7.32 43.2 57.5 2-Methyl-1-butanol 45.2 55.2 3-Methyl-1-butanol 44.1 55.6 2-Methyl-2-butanol, Ht 2.0127.2 4.45 39.0 50.1 3-Methyl-2-butanol 41.8 53.0 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K 6.70 SECTION 6 3-Methyl-2-butanone 32.4 36.8 2-Methyl-1-butene 7.9 25.5 25.9 138.9 187.1 222.4 248.7 3-Methyl-1-butene 5.4 24.1 23.8 147.5 192.1 225.3 250.3 2-Methyl-2-butene 7.6 26.3 27.1 133.6 181.7 217.8 245.0 Methyl 2-butenoate 41.0 3-Methyl-1-butyne 26.2 25.8 130.1 169.9 198.3 219.2 2-Methylbutyl acetate 37.5 Methyl chloroacetate 39.2 46.7 Methyl cyanoacetate 48.2 61.7 Methyl cyclobutanecarboxylate 37.1 44.7 Methylcyclohexane 6.75 31.3 35.4 185.6 269.7 329.5 371.5 1-Methylcyclohexanol 79.0 80 cis-2-Methylcyclohexanol 48.5 63.2 trans-2-Methylcyclohexanol 53.0 63.2 cis-3-Methylcyclohexanol 65.3 trans-3-Methylcyclohexanol 65.3 cis-4-Methylcyclohexanol 65.7 trans-4-Methylcyclohexanol 66.1 1-Methylcyclohexene 37.9 Methylcyclopentane 6.93 29.1 31.6 151.1 219.4 267.8 303.1 1-Methyl-1-cyclopentene 32.6 136.0 195.8 238.5 269.0 3-Methyl-1-cyclopentene 31.0 136.4 197.1 239.3 269.9 4-Methyl-1-cyclopentene 32.2 136.4 196.7 238.4 269.5 Methyl cyclopropanecarboxylate 35.3 41.3 2-Methyldecane 40.3 54.3 4-Methyldecane 40.7 53.8 Methyl decanoate 66.7 Methyl dichloroacetate 39.3 47.7 Methyldichlorosilane 28.0 Methyl 2,2-dimethylpropanoate 33.4 38.8 2-Methyl-1,3-dioxane 38.6 4-Methyl-1,3-dioxane 39.2 4-Methyl-1,3-dioxolan-2-one 9.62 Methyl dodecanoate 77.2 N-Methylethanediamine 37.6 45.2 1-Methylethyl acetate 32.9 37.3 1-Methylethyl thiolacetate 35.7 42.3 N-Methylformamide 56.2 Methyl formate 7.45 27.9 28.4 81.6 105.4 121.8 133.9 Methyl 2-furancarboxylate 45.2 Methylglyoxal 38.1 2-Methylheptane 11.88 33.3 39.7 3-Methylheptane 11.38 33.7 39.8 4-Methylheptane 10.84 33.4 39.7 Methyl heptanoate 51.6 2-Methylhexane 8.87 30.6 34.9 211.0 285.9 340.7 381.6 3-Methylhexane 30.9 35.1 212.0 285.9 340.7 381.6 Methyl hexanoate 38.6 48.0 5-Methyl-1-hexene 34.3 cis-3-Methyl-3-hexene 36.5 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.71 trans-3-Methyl-3-hexene 35.9 Methylhydrazine 10.4 36.1 40.4 Methyl isobutanoate 32.6 37.3 Methyl isocyanide 30.8 1-Methyl-4-isopropylbenzene 9.60 38.2 3-Methylisoxazole 41.0 5-Methylisoxazole 41.0 Methylmercury bromide 67.8 Methylmercury chloride 64.4 Methylmercury iodide 65.3 Methyl methacrylate 36.0 60.7 Methyl 2-methylbutanoate 41.8 Methyl-3-methylbutanoate 41.0 1-Methylnaphthalene 6.94 45.5 212.3 292.0 345.1 381.6 Ht 5.032.4 2-Methylnaphthalene 11.97 46.0 61.7 211.2 290.0 343.2 381.2 Ht 5.615.4 Methyl nitrate 8.2 31.6 32.1 91.5 115.2 131.7 143.1 Methyl nitrite 20.9 22.6 76.3 97.7 112.8 123.5 1-Methyl-4-nitrobenzene 79.1 2-Methylnonane 38.2 49.6 3-Methylnonane 38.3 49.7 5-Methylnonane 38.1 49.3 2-Methyloctane 18.00 Methyl octanoate 56.4 Methyl oxirane 27.4 27.9 2-Methylpentane 6.27 27.8 29.9 184.1 211.7 296.2 331.4 3-Methylpentane 5.30 28.1 30.3 181.9 246.9 294.6 330.1 2-Methyl-2,4-pentanediol 57.3 3-Methylpentanenitrile 35.1 41.6 Methyl pentanoate 35.4 43.1 2-Methylpentanoic acid 52.1 57.5 2-Methyl-1-pentanol 50.2 55.7 2-Methyl-2-pentanol 39.6 54.8 2-Methyl-3-pentanol 41.8 54.4 3-Methyl-1-pentanol 46.3 62.3 3-Methyl-2-pentanol 43.4 56.9 4-Methyl-1-pentanol 44.5 60.5 4-Methyl-2-pentanol 44.2 50.6 3-Methyl-3-pentanol 41.8 2-Methyl-3-pentanone 33.8 39.8 3-Methyl-2-pentanone 34.2 40.5 4-Methyl-2-pentanone 34.5 40.6 2-Methyl-1-pentene 28.1 30.5 170.7 227.6 269.5 300.4 3-Methyl-1-pentene 26.9 28.7 177.8 232.6 272.8 302.5 4-Methyl-1-pentene 27.1 28.7 162.8 221.3 264.0 296.2 2-Methyl-2-pentene 29.0 31.6 163.2 222.6 245.2 297.5 cis-3-Methyl-2-pentene 28.8 31.2 163.2 222.6 265.3 297.5 trans-3-Methyl-2-pentene 29.3 31.5 163.2 222.6 265.3 297.5 cis-4-Methyl-2-pentene 27.6 29.5 167.6 226.4 267.8 299.2 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K 6.72 SECTION 6 trans-4-Methyl-2-pentene 28.0 30.0 171.1 229.3 269.9 300.4 4-Methyl-3-penten-2-one 36.1 214.0 Methyl pentyl ether 32.0 36.9 Methyl pentyl sulfide 37.4 45.2 203.6 272.2 324.6 366.0 3-Methyl-1-phenyl-1-butanone 59.5 2-Methyl-1-phenylpropane 12.5 37.8 49.5 Methyl phenyl sulfide 54.3 Methyl phenyl sulfone 92.0 Methylphosphonic acid 48.1 2-Methylpiperidine 40.5 2-Methylpropanal 31.5 2-Methylpropane 4.66 21.3 19.3 124.6 169.5 202.9 227.6 2-Methylpropanenitrile 32.4 37.1 2-Methyl-1-propanethiol 5.0 31.0 34.6 147.7 193.6 225.0 247.6 2-Methyl-2-propanethiol 2.5 28.5 30.8 151.2 199.2 232.3 256.2 Ht 4.1121.6 Ht 0.7116.2 Ht 1.073.8 Methyl propanoate 32.2 35.9 2-Methylpropanoic acid 5.02 35.3 2-Methyl-1-propanol 6.32 41.8 50.8 2-Methyl-2-propanol 6.79 39.1 46.7 142.9 189.8 222.9 247.5 Ht 0.813 2-Methylpropene 5.93 22.1 20.6 111.2 147.7 175.1 196.0 Methyl propyl ether 26.8 27.6 138.1 183.8 218.7 244.8 Methyl propyl sulfide 9.9 32.1 36.2 144.9 191.9 227.8 255.8 2-Methylpyridine 9.72 36.2 42.5 133.6 186.4 222.6 243.3 3-Methylpyridine 14.18 37.4 44.4 133.1 186.1 222.3 247.8 4-Methylpyridine 11.57 37.5 44.6 1-Methyl-1H-pyrrole 40.8 Methyl salicylate 46.7 -Methylstyrene 187.4 254.0 300.4 333.9 cis--Methylstyrene 187.4 254.0 300.4 333.9 trans--Methylstyrene 189.1 256.1 301.3 334.7 Methyl tetradecanoate 37.0 2-Methylthiacyclopentane 36.4 41.8 4-Methylthiazole 37.6 43.8 2-Methylthiophene 9.20 33.9 38.9 123.1 165.6 194.3 214.6 3-Methylthiophene 10.53 34.2 39.4 122.9 164.6 192.3 211.7 Methyl trichloroacetate 48.3 Methyl tridecanoate 82.7 Methyl undecanoate 71.4 5-Methyluracil 134.1 Morpholine 37.1 44.0 Naphthalene 18.98 43.2 72.6 180.1(g) 251.5 297.3 329.2 1-Naphthalenecarboxylic acid 110.4 2-Naphthalenecarboxylic acid 113.6 1-Naphthol 23.33 91.2 2-Naphthol 17.51 94.2 1,4-Naphthoquinone 72.4 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.73 1-Naphthylamine 90.0 2-Naphthylamine 88.3 2-Nitroaniline 16.11 90.0 3-Nitroaniline 23.68 96.7 4-Nitroaniline 21.1 109 Nitrobenzene 11.59 40.8 55.0 1-Nitrobutane 38.9 48.6 157.5 210.1 247.0 273.6 2-Nitrobutane 36.8 43.8 157.4 211.1 248.7 276.0 Nitroethane 9.85 38.0 41.6 99.0 131.6 154.0 170.2 Nitromethane 9.70 34.0 38.3 70.3 91.7 106.9 117.9 (Nitromethyl)benzene 53.6 2-Nitrophenol 17.44 3-Nitrophenol 19.2 4-Nitrophenol 18.25 1-Nitronaphthalene 107.1 1-Nitropropane 38.5 43.4 128.5 171.0 200.7 222.0 2-Nitropropane 36.8 41.3 129.2 172.3 201.8 222.8 2-Nitroso-1-naphthol 56.5 4-Nitroso-1-naphthol 87.4 1-Nitroso-2-naphthol 86.6 2-Nitrotoluene 16.5 47.2 3-Nitrotoluene 15.0 49.9 4-Nitrotoluene 16.81 15.5 50.2 Nonadecane, Ht 13.822.8 45.82 56.0 95.8 559.4 754.9 896.3 1000.8 1-Nonadecene 33.5 54.6 94.9 545.0 733.7 869.7 969.9 1-Nonal 72.3 271.1 361.5 426.4 474.5 Nonane, Ht 6.356.0 15.47 36.9 46.4 269.0 364.1 433.3 484.9 1-Nonanethiol 33.5 44.4 291.6 390.3 464.6 521.5 Nonanoic acid 20.28 82.4 1-Nonanol 54.4 76.9 282.4 379.1 449.6 501.7 2-Nonanone 56.4 5-Nonanone 24.93 53.3 1-Nonene 18.08 36.3 45.5 254.6 342.8 406.8 454.0 cis-Octadecafluorodecahydronaphthalene 35.6 45.2 trans-Octadecafluorodecahydronaphthalene 35.8 45.4 Octadecafluoropropylcyclohexane 24.5 43.1 Octadecafluorooctane 33.4 41.1 Octadecane 61.39 54.5 152.8 530.4 715.8 850.0 949.4 Octadecanedioic acid 56.6 Octadecanoic acid 56.59 166.5 Octadecanol 113.4 1-Octadecene 32.6 53.3 90.0 516.0 694.5 823.4 918.4 cis-9-Octadecenoic acid 64.7 Octafluorocyclobutane 2.77 23.2 186.1 225.3 245.4 257.3 Octafluorotoluene 11.58 Octamethylcyclotetrasiloxane 45.6 Octanal 242.3 322.2 380.3 422.6 Octanamide 110.5 Octane 20.65 34.4 41.5 240.0 325.0 387.0 433.5 1,8-Octanedioic acid 143.1 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K 6.74 SECTION 6 Octanenitrile 41.3 56.8 1-Octanethiol 24.3 42.3 262.6 351.3 418.3 469.9 Octanoic acid 21.36 58.5 81.7 1-Octanol 42.30 46.9 71.0 253.4 340.0 403.3 450.1 ()-2-Octanol 44.4 ()-3-Octanol 36.5 4-Octanol 40.5 2-Octanone 24.42 1-Octene 15.57 34.1 40.4 225.6 303.7 360.5 402.5 1-Octyne 35.8 42.3 216.5 285.7 336.0 410.9 2-Octyne 37.3 44.5 3-Octyne 36.9 43.9 4-Octyne 36.0 42.7 Oxalic acid 98.0 Oxaloyl chloride 31.8 Oxamide 113.0 Oxetane 28.7 29.9 2-Oxetanone 47.0 2-Oxohexamethyleneimine 16.2 54.8 83.3 4-Oxopentanoic acid 9.22 1,1-Oxybis(2-ethoxy)ethane 58.4 2,2-Oxybis(ethanol) 52.3 57.3 Paraldehyde 41.4 Pentachloroethane 11.34 36.9 45.6 133.7 152.1 162.0 168.1 Pentachlorofluoroethane 1.9 Pentachlorophenol 67.4 Pentacyclo-[4.2.0.02,5.03,8.04,7]octane 80.3 Pentadecane, Ht 9.22.25 34.8 49.5 76.1 443.3 598.6 711.1 794.5 Pentadecanoic acid 50.2 162.7 1-Pentadecene 28.9 48.7 75.1 428.9 577.3 684.5 763.6 1,2-Pentadiene 27.6 28.7 131.4 170.7 199.6 220.9 cis-1,3-Pentadiene 27.6 28.3 123.4 166.9 196.7 218.4 trans-1,3-Pentadiene 27.0 27.8 130.5 171.1 199.6 220.1 1,4-Pentadiene 6.14 25.2 25.7 131.0 170.2 220.5 2,3-Pentadiene 28.2 29.5 125.1 164.9 195.0 217.6 Pentaerythritol 92 143.9 Pentaerythritol tetranitrate 151.9 Pentafluorobenzene 10.85 32.2 36.3 Pentafluorobenzoic acid 91.6 Pentafluoroethane 113.8 137.8 151.1 158.9 Pentafluorophenol 12.85 67.4 2,3,4,5,6-Pentafluorotoluene 12.99 34.8 41.1 Pentamethylbenzene 12.3 45.1 60.8 272.0 360.2 423.8 470.0 Ht 2.023.7 2,2,4,6,6-Pentamethylheptane 49.0 Pentanal 38.8 155.2 205.0 241.4 267.8 Pentanamide 89.3 Pentane 8.42 25.8 26.4 152.8 207.7 248.1 278.5 1,5-Pentanediol 60.7 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.75 1,5-Pentanedithiol 59.3 2,4-Pentanedione 34.3 41.8 Pentanenitrile 4.73 36.1 43.6 1-Pentanethiol 17.5 34.9 41.2 175.4 234.0 279.4 315.1 Pentanoic acid 14.16 44.1 62.4 1-Pentanol 9.83 44.4 57.0 166.3 222.8 264.4 295.4 2-Pentanol 41.4 54.2 3-Pentanol 43.5 54.0 2-Pentanone 10.63 33.4 38.4 152.4 202.2 239.0 266.1 3-Pentanone 11.59 33.5 38.5 1-Pentene 5.81 25.2 25.5 138.5 186.4 221.5 247.7 cis-2-Pentene 7.12 26.1 26.9 132.1 182.5 218.8 245.9 trans-2-Pentene 8.36 26.1 26.8 136.7 184.2 219.5 246.1 cis-2-Pentenenitrile 36.4 43.2 trans-2-Pentenenitrile 37.8 44.9 trans-3-Pentenenitrile 37.1 44.8 Pentyl acetate 41.0 Pentylamine 34.0 40.1 Pentylcyclohexane 53.9 Pentyl propyl ether 35.0 42.8 1-Pentyne 27.7 28.4 130.1 169.0 197.1 218.4 2-Pentyne 29.3 30.8 122.2 161.9 192.1 215.1 Perylene 31.75 -Phellandrene 50.6 Phenanthrene 16.46 55.7 75.5 9,10-Phenanthrenedione 91.6 Phenazine 99.9 Phenol 11.29 45.7 57.8 135.8 182.2 211.8 232.2 Phenyl acetate 54.8 Phenylacetonitrile 52.9 Phenylacetylene 41.8 150.4 200.9 233.4 255.9 ()-3-Phenyl-1-alanine 155.2 -Phenylbenzeneacetic acid 31.27 Phenyl benzoate 99.0 Phenylboron dichloride 33.9 Phenylcyclopropane 50.2 N-Phenyldiacetimide 90.0 Phenyl formate 52.9 Phenylhydrazine 16.43 61.7 1-Phenyl-1-propanone 58.5 1-Phenyl-2-propanone 49.0 Phenyl salicylate 92.1 Phenyl vinyl ether 49.9 Phthalamide 57.3 1,3-Phthalic acid 106.7 1,4-Phthalic acid 98.3 Phthalic anhydride 88.7 Phthalonitrile 86.9 Piperidine 14.85 31.7 39.3 Propadiene 18.6 72.0 92.1 106.4 117.2 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K 6.76 SECTION 6 Propanal 28.3 29.6 96.6 126.4 148.3 164.0 Propanamide 17.6 85.9 Propane 3.53 19.0 14.8 94.0 128.7 154.8 174.6 1,2-Propanediamine 44.2 1,3-Propanediamine 40.9 50.2 Propanedinitrile 79.1 1,2-Propanediol 54.1 58.0 1,3-Propanediol 57.9 37.1 1,2-Propanedione 38.1 1,2-Propanedithiol 49.7 Propanenitrile, Ht 1.796.2 5.05 31.8 36.0 88.6 114.7 134.5 149.4 1-Propanethiol, Ht 4.0131.1 5.5 29.5 31.9 116.6 153.6 182.4 205.1 2-Propanethiol 5.7 27.9 29.5 118.6 154.9 181.0 200.5 1,2,3-Propanetriol triacetate 57.8 85.7 1,2,3-Propanetriol trinitrate 21.9 Propanoic acid 10.66 32.3 32.1 Propanoic anhydride 41.7 52.6 1-Propanol 5.20 41.4 47.4 108.2 144.6 171.7 192.2 2-Propanol 5.37 39.9 45.4 112.0 149.6 176.3 195.9 Propanolactone 47.0 2-Propenal 28.3 31.3 Propene 3.00 18.4 14.2 80.5 108.0 128.7 144.4 2-Propenenitrile 6.23 Propenoic acid 11.16 2-Propen-1-ol 40.0 47.3 95.4 126.0 147.6 163.4 cis-1-Propenylbenzene 187.4 254.0 300.4 333.9 2-Propoxyethanol 41.4 52.1 Propyl acetate 33.9 39.7 1-Propylamine 10.97 29.6 31.3 119.3 159.0 188.0 210.1 Propylbenzene 9.27 38.2 46.2 200.1 275.6 327.6 364.7 Propyl benzoate 49.8 51.9 Propyl carbamate 81.2 Propyl chloroacetate 48.5 Propylcyclohexane 10.37 36.1 45.1 247.3 350.6 423.4 474.5 Propylcyclopentane 10.0 34.7 41.1 212.7 297.2 361.0 407.9 Propylene oxide 6.5 27.4 28.3 92.7 125.8 149.3 166.5 Propyl formate 33.6 37.5 Propyl nitrate 35.9 40.6 149.8 194.5 225.4 247.2 Propyl propanoate 35.5 43.5 Propyl trichloroacetate 53.1 Propyl vinyl ether 29.3 Propyne 22.1 72.5 91.2 105.2 115.9 2-Propyn-1-ol 42.1 Pyrazine 56.3 Pyrene 17.11 Pyridazine 53.5 Pyridine 8.28 35.1 40.2 106.4 149.5 177.8 197.4 Pyrimidine 49.8 50.0 1H-Pyrrole 7.91 38.8 45.1 Pyrrolidine, Ht 0.566 8.58 33.0 37.6 114.4 168.7 206.5 233.6 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.77 Quinoline 10.66 49.7 53.9 Salicylic acid 95.1 5,5-Spirobis(1,3-dioxane) 72.8 Spiro[2.2]pentane 5.8 26.8 27.5 119.5 167.8 200.5 223.9 cis-Stilbene 69.0 trans-Stilbene 27.4 99.2 Styrene 11.0 38.7 43.9 160.3 218.2 256.9 284.2 Succinic acid 32.95 117.5 Succinic anhydride 20.41 Succinonitrile 3.92 p-Terphenyl 35.5 1,1,2,2-Tetrabromoethane 48.7 70.0 Tetrabromomethane 45.1 110 97.1 102.6 106.7 105.9 Tetrabutyltin 19.8 Tetracene 125.5 Tetrachloro-1,4-benzoquinone 98.7 1,1,2,2-Tetrachloro-1,2-difluoroethane 3.70 35.0 1,1,1,2-Tetrachloro-2,2-fluorooctane 3.99 1,1,1,2-Tetrachloroethane 118.7 139.2 151.6 159.7 1,1,2,2-Tetrachloroethane 37.6 45.7 116.7 137.7 150.0 158.0 Tetrachloroethylene 10.56 34.7 39.7 105.0 116.6 122.6 125.8 Tetrachloromethane 3.28 29.8 32.4 91.7 99.7 103.1 104.8 Ht 4.647.9 Tetracyanoethylene 81.2 Tetracyanomethane 61.1 Tetradecane 45.6 47.6 71.3 414.3 559.5 664.8 743.1 Tetradecanenitrile 85.3 Tetradecanoic acid 45.38 139.8 1-Tetradecanol 49.0 102.2 1-Tetradecene 27.6 46.9 70.2 399.8 538.2 638.2 712.1 Tetraethylene glycol 62.6 98.7 Tetraethylgermanium 44.8 Tetraethyllead 56.9 Tetraethylsilane 13.01 Tetraethyltin 51.0 1,1,1,2-Tetrafluoroethane 104.2 128.7 143.1 152.1 Tetrafluoroethylene 7.7 16.8 91.9 106.8 115.5 120.8 Tetrafluoromethane 0.7 12.6 72.4 86.8 94.5 98.8 Ht 1.5196.9 Tetrahydrofuran 8.54 29.8 32.0 Tetrahydrofuran-2,5-dimethanol 63.6 Tetrahydrofuran-2-methanol 45.2 51.6 1,2,3,4-Tetrahydronaphthalene 12.45 43.9 55.2 Tetrahydropyran 31.2 34.6 Tetrahydropyran-2-methanol 44.4 Tetrahydrothiophene 34.7 39.4 Tetrahydrothiophene-1,1-dioxide 1.43 Tetraiodomethane 100.4 104.4 105.9 106.7 Tetramethoxysilane 194.6 1,2,3,4-Tetramethylbenzene 11.2 45.0 57.2 237.7 316.7 374.1 416.2 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K 6.78 SECTION 6 1,2,3,5-Tetramethylbenzene 10.7 43.8 53.7 233.3 313.0 371.5 414.3 1,2,4,5-Tetramethylbenzene 21.0 45.5 53.4 232.2 311.2 369.9 413.0 2,2,3,3-Tetramethylbutane 7.54 31.4 42.9 Ht 2.0120.7 Tetramethylene sulfone 1.4 61.5 Tetramethyllead 38.1 2,2,3,3-Tetramethylpentane 2.33 2,2,3,4-Tetramethylpentane 0.50 2,2,4,4-Tetramethylpentane 9.75 32.5 38.5 2,3,3,4-Tetramethylpentane 9.00 Tetramethylsilane 6.88 Tetramethyltin 33.1 1,1,3,3-Tetramethylurea 14.10 45.6 Tetranitromethane 40.7 49.9 Tetraphenylmethane 150.6 Tetraphenyltin 66.3 Tetrapropylgermanium 61.5 Tetrapropyltin 66.9 1,2,3,4-(1H)-Tetrazole 97.5 Thiacyclobutane 32.3 36.0 Thiacycloheptane 47.3 175.7 272.0 330.5 368.2 Thiacyclohexane 2.5 36.0 42.6 149.4 219.1 267.8 302.7 Ht 1.171.8 Ht 7.833.1 Thiacyclopentane 7.4 34.7 39.5 121.1 167.5 199.4 222.3 Thiacyclopropane 29.2 30.3 69.2 92.0 107.2 118.0 Thioacetamide 83.3 Thioacetic acid 37.2 93.1 111.8 127.2 136.5 1,2-Thiocresol 51.5 2,2-Thiodiethanol 66.8 Thiophene, Ht 0.6101.6 5.09 31.5 34.7 96.3 129.5 150.7 165.4 Thiophenol 11.5 39.9 47.6 137.1 184.6 215.9 237.6 Thymol 17.27 Toluene 6.85 33.2 38.0 140.1 197.5 236.9 264.9 o-Toluidine 44.6 56.7 m-Toluidine 3.89 44.9 57.3 p-Toluidine 18.22 44.3 Triacetamide 60.4 2,4,6-Triamino-1,3,5-triazine 124.3 Tribromomethane 39.7 46.1 78.7 88.0 93.3 96.7 Tributoxyborane 56.1 52.3 Tributyl phosphate 61.4 72.0 Trichloroacetic acid 5.88 Trichloroacetonitrile 34.1 Trichloroacetyl chloride 41.0 1,3,5-Trichlorobenzene 18.2 Trichlorobenzoquinone 88.7 1,1,1-Trichloroethane 2.73 29.9 32.5 107.6 128.4 141.1 149.8 Ht 7.549.0 1,1,2-Trichloroethane 11.54 34.8 40.2 104.7 126.1 139.2 148.2 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.79 Trichloroethylene 31.4 34.5 91.2 104.9 112.7 117.8 Trichloromethane 8.8 29.2 31.3 74.3 85.3 91.5 95.5 Trichloromethylsilane 8.94 1,2,3-Trichloropropane 8.9 37.1 31.7 38.9 43.8 47.3 1,1,1-Trichlorotrifluoroethane 26.9 28.1 1,1,2-Trichlorotrifluoroethane 2.47 27.0 28.4 1,1,1-Trichloro-3,3,3-trifluoropropane 32.2 36.8 Tricyanoethylene 81.2 Tridecane, Ht 7.718.2 28.50 45.7 66.4 385.2 520.4 618.5 691.2 Tridecanenitrile 85.3 Tridecanoic acid 43.1 146.4 1-Tridecene 22.83 45.0 65.3 370.8 499.1 592.0 660.2 Triethanolamine 27.2 67.5 Triethoxyborane 43.9 Triethoxymethane 46.0 Triethylaluminum 73.2 Triethylamine 31.0 34.8 203.8 276.6 328.7 367.4 Triethylaminoborane 60.7 Triethylarsine 43.1 Triethyl arsenite 50.6 Triethylbismuthine 46.0 Triethylborane 36.8 Triethylenediamine 6.1 61.9 Ht 9.679.8 Triethylene glycol 71.4 79.1 Triethylphosphine 39.8 Triethyl phosphate 57.3 Triethyl phosphite 41.8 Triethylstibine 43.5 Trifluoroacetic acid 33.3 38.5 H(dimer dissoc) 58.8100 Trifluoroacetonitrile 5.0 1,1,1-Trifluoro-2-bromo-2-chloroethane 28.1 29.6 1,1,1-Trifluoroethane 6.19 19.2 95.2 118.7 133.8 144.1 2,2,2-Trifluoroethanol 40.0 Trifluoroethylene 81.1 97.5 107.5 113.9 Trifluoromethane 4.1 16.7 61.1 76.0 85.1 91.0 (Trifluoromethyl)benzene 13.46 32.6 37.6 169.8 226.8 262.6 286.4 Triiodomethane 16.3 69.9 82.0 90.0 94.7 97.8 Triisopropylborane 41.8 Triisopropyl phosphite 46.0 Trimethoxyborane 34.7 1,1,1-Trimethoxyethane 39.2 Trimethoxymethane 38.1 2,4,5-Trimethylacetophenone 63.2 2,4,6-Trimethylacetophenone 62.3 Trimethylaluminum 63.2 Trimethylamine 6.55 22.9 21.7 117.5 160.4 190.9 213.3 Trimethyl arsenite 42.3 Trimethylarsine 28.9 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K 6.80 SECTION 6 1,2,3-Trimethylbenzene 8.37 40.0 49.1 196.2 267.8 320.9 359.4 Ht 0.754.5 Ht 1.342.9 1,2,4-Trimethylbenzene 39.3 47.9 196.5 269.0 321.9 360.2 1,3,5-Trimethylbenzene 9.51 39.0 47.5 194.2 268.1 321.5 360.1 2,6,6-Trimethylbicyclo[3.1.1]-2-heptene 44.8 Trimethylbismuthine 34.7 Trimethylborane 20.2 2,2,3-Trimethylbutane 2.20 28.9 32.0 212.7 291.3 346.1 386.3 Ht 2.5151.8 2,3,3-Trimethyl-1-butene 32.2 cis,cis-1,3,5-Trimethylcyclohexane 242.9 351.2 427.6 482.0 Trimethylene oxide 28.7 29.9 Trimethylene sulfide 8.3 32.3 36.0 91.6 127.4 152.3 170.2 Ht 0.796.5 Trimethylgallium 38.1 2,2,5-Trimethylhexane 6.2 33.7 40.2 2,3,5-Trimethylhexane 10.00 34.4 41.4 Trimethylindium 48.5 2,4,7-Trimethyloctane 38.2 49.9 2,2,3-Trimethylpentane 8.62 31.9 36.9 2,2,4-Trimethylpentane 9.04 30.8 35.1 2,3,3-Trimethylpentane 0.86 32.1 37.3 Ht 7.7109.0 2,3,4-Trimethylpentane 9.27 32.4 37.7 2,2,4-Trimethyl-1,3-pentanediol 8.6 55.7 2,2,4-Trimethyl-3-pentanone 35.6 43.3 2,4,4-Trimethyl-1-pentene 31.4 35.8 2,4,4-Trimethyl-2-pentene 32.6 37.5 Trimethylphosphine 28.0 Trimethylphosphine oxide 50.2 Trimethyl phosphate 36.8 2,3,6-Trimethylpyridine 40.0 50.6 2,4,6-Trimethylpyridine 9.53 39.9 50.3 Trimethylsilanol 45.6 Trimethylstibine 31.4 Trimethylsuccinic anhydride 74.1 Trimethylthiacyclopropane 39.3 Trimethyltin bromide 47.3 2,4,6-Trinitroanisole 133.1 1,3,5-Trinitrobenzene 16.7 99.6 Trinitromethane 32.6 46.7 2,4,6-Trinitrophenetole 120.5 2,4,6-Trinitrotoluene 104.7 1,3,6-Trioxacycloactane 48.8 1,3,5-Trioxane 15.11 56.6 Triphenylarsine 99.3 Triphenylbismuthine 110.9 Triphenylborane 81.6 Triphenylene 118.0 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.81 Triphenylmethane 100.0 Triphenylphosphine 96 Triphenylstibine 106.3 Tripropoxyborane 49.4 Tris(diethylamino)phosphine 60.7 Tris(trimethylsilyl)amine 54.4 Tropolone 83.7 Undecane 22.32 41.5 56.4 327.1 442.7 525.9 588.3 Ht 6.936.6 Undecanenitrile 71.1 Undecanoic acid 25.9 121.3 1-Undecene, Ht 9.255.8 16.99 40.9 55.4 312.7 421.1 499.3 557.3 Uracil 126.5 Urea 15.1 87.9 ()-Valine 162.8 Vinyl acetate 34.4 34.8 Vinyl benzene 39.6 Vinylcyclohexane 39.7 4-Vinyl-1-cyclohexene 33.5 38.3 1,2-Xylene 13.61 36.2 43.4 171.7 234.2 278.8 311.1 1,3-Xylene 11.55 35.7 42.7 167.5 232.2 277.9 310.6 1,4-Xylene 16.81 35.7 42.4 166.1 230.8 276.7 309.7 TABLE 6.2 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of Organic Compounds (Continued) Cp Substance Hm Hv Hs 400 K 600 K 800 K 1000 K TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 Actinium Ac c 0 0 56.5 27.2 Aluminum Al c 0 0 28.30(10) 24.4 g 330.0(40) 289.4 164.554(4) 21.4 Al3 std. state aq 538.4(15) 485.3 325.(10) Al6BeO10 c 5624 5317 175.6 265.19 Al(BH4)3 lq 16.3 145.0 289.1 194.6 AlBr3 c 527.2 488.5 180.2 100.58 std. state aq 895 799 74.5 Al4C3 c 216 203 89 Al(CH3)3 lq 136.4 10.0 209.4 155.6 Al(OAc)3 c 1892.4 AlCl3 c 704.2 628.8 109.29 91.13 std. state aq 1033 878 152.3 AlCl3 · 6H2O c 2692 2269 377 AlF3 c 1510.4(13) 1431.1 66.5(5) 75.13 std. state aq 1531.0 1322 363.2 6.82 SECTION 6 AlF3 · H2O c 2297 2052 209 AlH3 c 46.0 30.0 40.2 AlI3 c 313.8 300.8 159.0 98.7 std. state aq 699 640 12.1 AlK(SO4)2 · 12H2O c 6061.8 5141.7 687.4 651.0 AlN c 318.1 287.0 20.14 30.10 Al(NO3)3 std. state aq 1155 820 117.6 Al(NO3)3 · 6H2O c 2850.5 2203.9 467.8 433.0 Al(NO3)3 · 9H2O c 3757.1 2929.6 569 AlO std. state 2 aq 930.9 830.9 36.8 Al2O3 corundum c 1675.7(13) 1582.3 50.92(10) 79.15 Al(OH)3 c 1284 1306 71 93.1 Al(OH) std. state 4 aq 1502.5 1305.3 102.9 AlP c 166.5 AlPO4 berlinite c 1733.8 1618.0 90.79 93.18 Al2S3 c 724.0 640 116.85 105.06 Al2Se3 c 565 Al2SiO5 andalusite c 2592.0 2444.8 93.2 122.76 Al2(SO4)3 c 3435 3507 239.3 259.4 std. state aq 3790 3205 583.3 Al2Te3 c 326 Americium Am c 0 0 62.7 Am3 aq 682.8 671.5 159.0 Am4 aq 511.7 461.1 372 Am2O3 c 1757 1678 154.7 AmO2 c 1005.0 950.2 96.2 Ammonium NH3 g 45.94(35) 16.4 192.776(5) 35.65 undissoc; std. state aq 80.29 26.57 111.3 ND3 g 58.6 26.0 203.9 38.23 NH std. state 4 aq 133.26(25) 79.37 111.17(40) 79.9 NH4OH undissoc; std. state aq 361.2 254.0 165.5 ionized; std. state aq 362.50 236.65 102.5 68.6 NH4OAc c 616.14 std. state aq 618.52 448.78 200.0 73.6 NH4Al(SO4)2 c 2352.2 2038.4 216.3 226.44 std. state aq 2481 2054 168.2 NH4AsO2 std. state aq 561.54 429.41 154.8 NH4H2AsO3 std. state c 847.30 666.60 223.8 NH4H2AsO4 c 1059.8 833.0 172.05 151.17 std. state aq 1042.07 832.66 230.5 (NH4)2HAsO4 std. state aq 1171.1 873.20 225.1 (NH4)3AsO4 std. state aq 1286.7 886.63 177.4 NH4Br c 271.8 175.2 113.0 96.0 std. state aq 254.05 183.34 194.97 61.9 NH4BrO3 aq 199.58 60.84 275.10 NH4 carbamate c 657.60 448.07 133.5 NH4Cl c 314.5 202.9 94.6 84.1 std. state aq 299.66 210.62 169.9 56.5 NH4ClO3 std. state aq 236.48 87.40 275.7 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.83 NH4ClO4 c 295.3 88.8 186.2 128.1 std. state aq 261.84 87.99 295.4 NH4CN c 0.4 134.0 std. state aq 18.0 92.9 207.5 NH4CNO cyanate std. state aq 278.7 177.0 220.1 (NH4)2CO3 std. state aq 942.15 686.64 169.9 (NH4)2C2O4 oxalate c 1123.0 226.0 (NH4)2CrO4 c 1167.3 std. state aq 1144.3 886.59 277.0 (NH4)2Cr2O7 aq 1755.2 1459.5 488.7 NH4 dithiocarbonate c 126.8 NH4F c 463.96 348.78 71.97 65.27 std. state aq 465.14 358.19 99.6 26.8 NH4 formate std. state aq 558.06 430.5 205.0 7.9 NH4HCO3 c 849.4 665.9 120.9 aq 824.5 666.1 204.6 NH4I c 201.4 112.5 117.0 81.8 std. state aq 187.69 130.96 224.7 62.3 NH4IO3 c 385.8 std. state aq 354.0 207.5 231.8 NH4N3 azide c 115.5 274.1 112.6 aq 142.7 268.6 221.3 NH4NO2 aq 237.2 111.6 236.4 17.6 NH4NO3 c 365.56 184.01 151.08 139.3 std. state aq 339.87 190.71 259.8 6.7 NH4H2PO4 c 1145.07 1210.56 151.96 142.26 std. state aq 1428.79 1209.76 203.8 (NH4)2HPO4 c 1556.91 188.0 std. state aq 1557.16 1248.00 193.3 NH4H3P2O7 aq 2409.1 2102.6 326.0 NH4HS c 156.9 50.6 97.5 aq 150.2 67.2 176.1 NH4HSO3 aq 758.7 607.0 253.1 NH4HSO4 c 1026.96 std. state aq 1019.85 835.38 245.2 3.8 (NH4)3PO4 c 1671.9 std. state aq 1674.9 1256.9 117 (NH4)4P2O7 std. state aq 2801.2 2236.8 335 (NH4)2PtCl6 c 803.3 237.7 NH4ReO4 c 945.6 774.9 232.6 (NH4)2S aq 231.8 72.8 212.1 NH4SCN aq 56.1 13.4 257.7 39.7 NH4HSeO4 std. state aq 714.2 531.6 262.8 (NH4)2SeO4 aq 864.0 599.8 280.7 (NH4)2SiF6 c 2681.69 2365.3 280.24 228.11 (NH4)2SO3 aq 900.4 645.0 197.5 (NH4)2SO4 c 1180.9 901.70 220.1 187.49 std. state aq 1174.28 903.37 246.9 133.1 (NH4)2S2O8 c 1648.08 std. state aq 1610.0 1273.6 471.1 NH4VO3 c 1053.1 888.3 140.6 129.33 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.84 SECTION 6 Antimony Sb c 0 0 45.7 25.2 g 262.3 222.1 180.3 20.8 SbBr3 c 259.4 239.3 207.1 g 194.6 223.9 372.9 80.2 SbCl3 c 382.0 323.7 184.1 107.9 SbCl5 lq 440.16 350.2 301 SbF3 c 915.5 SbH3 g 145.11 147.74 232.8 41.05 SbI3 c 100.4 215.5 97.57 Sb2O3 c 708.8 123.01 101.25 Sb2O5 c 971.9 829.2 125.1 117.61 Sb2S3 c 174.9 182.0 117.74 Sb2Te3 c 56.5 55.2 234 Argon Ar g 0 0 154.846(3) 20.79 Arsenic As gray c 0 0 35.1 24.64 AsBr3 g 130.0 159.0 363.9 79.16 AsCl3 lq 305.0 259.4 216.3 133.5 g 261.5 248.9 327.06 75.73 AsF3 lq 821.3 774.2 181.2 126.2 g 785.8 770.8 289.1 65.6 AsH3 g 66.44 68.91 222.8 38.07 AsI3 c 58.2 59.4 213.05 105.77 AsO2 aq 429.0 350.0 40.6 3 AsO4 aq 888.1 648.4 162.8 As2O5 c 924.87 782.3 105.4 116.5 As4O6 octahedral c 1313.94 1152.52 214.2 191.29 As2S3 c 169.0 168.6 163.6 116.3 Astatine At c 0 0 121.3 Barium Ba c 0 0 62.48 28.10 Ba2 std. state aq 537.64 560.74 9.6 Ba(OAc)2 acetate c 1484.5 std. state aq 1509.67 1299.55 182.8 BaBr2 c 757.3 736.8 146.0 77.0 std. state aq 780.73 768.68 174.5 BaBr2 · 2H2O c 1366.1 1230.5 226 Ba(BrO3)2 c 752.66 577.4 243 BaC2O4 oxalate c 1368.6 BaCl2 c 855.0 806.7 123.67 75.14 BaCl2 · 2H2O c 1456.9 1293.2 202.9 161.96 Ba(ClO3)2 c 762.7 Ba(ClO3)2 · H2O c 1691.6 1270.7 393 BaCO3 witherite c 1213.0 1134.4 112.1 86.0 BaCrO4 c 1446.0 1345.3 158.6 BaF2 c 1207.1 1156.8 96.4 71.20 std. state aq 1202.90 1118.38 17.0 Ba(HCO3)2 std. state aq 1921.63 1734.4 192.1 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.85 Ba(H2PO2)2 c 1762.3 BaI2 c 602.1 601.4 165.1 77.49 std. state aq 648.02 663.92 232.2 Ba(IO3)2 c 1027.2 864.8 249.4 187.4 std. state aq 980.3 816.7 246.4 BaMnO4 c 1548 1439.7 138 140.6 BaMoO4 c 1507.5 1439.7 144.3 114.7 Ba(NO2)2 c 768.2 Ba(NO3)2 c 988.0 792.6 213.8 151.38 std. state aq 952.36 783.41 302.5 BaO c 548.0 520.4 72.07 47.28 BaO2 c 634.3 Ba(OH)2 c 944.7 859.5 107 101.6 Ba(OH)2 · H2O c 3342.2 2793.2 427 BaS c 460.0 456.0 78.2 49.37 BaSe c 372 BaSeO3 c 1040.6 968.2 167 BaSiF6 c 1952.2 2794.1 163 BaSO3 c 1179.5 BaSO4 c 1473.19 1362.2 132.2 101.75 BaTiO3 c 1659.8 1572.4 108.0 102.47 Beryllium Be c 0 0 9.50(8) 16.38 g 324.(5) 136.275(3) Be2 std. state aq 382.8 379.7 129.7 BeAl2O4 chrysoberyl c 2301.0 2178.5 66.29 105.38 BeBr2 c 353.5 337 108.0 69.4 Be2C c 91 88 16.3 43.2 BeCl2 form c 490.4 445.6 75.81 62.43 BeCO3 c 1025.0 52.0 65.0 BeF2 form c 1026.8 979.4 53.35 51.82 BeI2 c 192.5 187 121.0 71.1 Be3N2 cubic c 588.3 532.9 34.13 64.36 BeO form c 609.4(25) 580.1 13.77(4) 25.56 BeO 2 2 aq 790.8 640.1 159.0 3BeO · B2O3 c 3105 2939 100 139.7 Be(OH)2 form c 902.5 815.0 45.5 62.1 BeS c 234.3 233.0 34.0 34.0 BeSeO4 c 1205.2 1093.8 77.9 85.7 std. state aq 982.0 820.9 75.7 Be2SiO4 c 2117 2003 64.19 95.6 BeSO4 c 1200.8 1089.4 77.97 85.70 std. state aq 1290.0 1124.3 109.6 BeSO4 · H2O c 2423.75 2080.66 232.97 216.61 BeWO4 c 1513 1405 88.4 97.3 Bismuth Bi c 0 0 56.7 25.5 g 207.1 168.2 187.0 20.8 BiBr3 c 264 234 226 109 BiCl3 c 379.1 315.1 177.0 105.0 BiH3 g 277.8 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.86 SECTION 6 BiI3 c 100.4 175.3 Bi2O3 c 574.0 493.7 151.5 113.5 BiOCl c 366.9 322.2 120.5 Bi2S3 c 143.1 140.6 200.4 122.2 Bi2(SO4)3 c 2544.3 Bi2Te3 c 78.24 260.91 152.21 Boron B c 0 0 5.90(8) 11.1 g 565.(5) 153.436(15) BBr3 lq 239.7 238.5 229.7 128.03 B4C c 62.7 62.1 27.18 53.76 BCl3 g 403.8 388.7 290.1 62.7 BF3 g 1136.0(8) 1119.4 254.42(20) 50.45 BF std. state 4 aq 1574.9 1487.0 179.9 BH3 g 100.0 111 187.9 36.22 BH std. state 4 aq 48.16 114.27 110.5 B2H6 diborane(6) g 35.6 86.7 232.1 56.9 B5H9 pentaborane(9) lq 42.7 171.8 184.2 151.13 B10H14 decaborane(14) c 29.83 212.9 234.9 221.2 BN c 254.4 228.4 14.80 19.72 B3N3H6 borazine lq 541.0 392.7 199.6 g 510 389 288.61 96.94 BO std. state 2 aq 772.37 678.94 37.24 B2O3 c 1273.5(14) 1194.3 53.97(30) 62.8 B(OH) std. state 4 aq 1344.03 1153.32 102.5 B3O3H3 boroxin c 1262 11.56 167 98.3 B2S3 c 240.6 100.0 111.7 Bromine Br atomic g 111.87(12) 82.4 175.018(4) 20.8 Br std. state aq 121.41(15) 103.97 82.55(20) 141.8 Br2 lq 0 0 152.21(30) 75.67 g 30.91(11) 245.468(5) Br std. state 3 aq 130.42 107.07 215.5 BrCl g 14.6 0.96 239.91 34.98 BrF g 93.8 109.2 229.0 32.97 BrF3 lq 300.8 240.5 178.2 124.6 g 255.6 229.4 292.5 66.6 BrF5 lq 458.6 351.9 225.1 g 428.9 351.6 323.2 99.6 BrO std. state aq 94.1 33.5 42.0 BrO std. state 3 aq 67.07 18.6 161.71 BrO4 aq 13.0 118.1 199.6 Cadmium Cd c 0 0 51.80(15) 25.9 g 111.80(20) 167.749(4) 20.8 Cd2 aq 75.92(60) 72.8(15) CdBr2 c 316.18 296.31 137.2 76.7 std. state aq 318.99 285.52 91.6 CdCl2 c 391.6 343.9 115.3 74.7 std. state aq 410.20 340.12 39.8 CdCl2 · 5/2H2O c 1131.94 944.08 227.2 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.87 Cd(CN)2 c 162.3 std. state aq 225.5 267.4 115.1 CdCO3 c 750.6 669.4 92.5 Cd(OAc)2 std. state aq 1047.9 816.4 100 CdF2 c 700.4 647.7 77.4 std. state aq 741.15 635.21 100.8 CdI2 c 203.3 201.4 161.1 80.0 std. state aq 186.3 180.8 149.4 CdI std. state 4 aq 341.8 315.9 326 2 Cd(NH ) std. state 3 4 aq 450.2 226.4 336.4 Cd(NO3)2 c 456.3 std. state aq 490.6 300.2 219.7 CdO c 258.35(40) 228.7 54.8(15) 43.4 Cd(OH)2 c 560.7 473.6 96.0 CdS c 161.9 156.5 64.9 55.5 CdSO4 c 933.4 822.7 123.0 99.6 std. state aq 985.2 822.2 53.1 CdSO4 · 8/3H2O c 1729.30(80) 1465.3 229.65(40) 213.3 CdSeO4 c 633.0 531.8 164.4 std. state aq 674.9 518.8 19.3 CdTe c 92.5 92.0 100.0 Calcium Ca c 0 0 41.59(40) 25.9 g 177.8(8) 154.887(4) Ca2 std. state aq 543.0(10) 553.54 56.2(10) Ca(OAc)2 c 1479.5 std. state aq 1514.73 1292.35 120.1 Ca3(AsO4)2 c 3298.7 3063.1 226 Ca(BO2)2 c 2030.9 1924.1 104.85 103.98 CaB4O7 c 3360.3 3167.1 134.7 157.9 CaBr2 c 682.8 663.6 130.0 75.04 std. state aq 785.9 761.5 111.7 CaC2 c 59.8 64.9 69.96 62.72 CaCl2 c 795.4 748.8 108.4 72.9 std. state aq 877.13 816.05 59.8 CaCl2 · 2H2O c 1402.9 738 CaCN2 cyanamide c 350.6 Ca(CN)2 c 184.5 CaCO3 calcite c 1207.6 1129.1 91.7 83.5 aragonite c 1207.8 1128.2 88.0 82.3 aq 1220.0 1081.4 110.0 CaC2O4 c 1360.6 CaC2O4 · H2O c 1674.9 1514.0 156.5 152.8 CaCrO4 c 1379.1 1277.4 134 CaF2 c 1228.0 1175.6 68.6 67.0 aq 1208.1 1111.2 80.8 Ca(formate)2 c 1386.6 CaH2 c 181.5 142.5 41.4 41.0 CaHPO4 · 2H2O c 2403.58 2154.75 189.45 197.07 Ca(H2PO2)2 hypophosphite c 1752.7 Ca(H2PO4)2 std. state aq 3135.41 2814.33 127.6 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.88 SECTION 6 Ca(H2PO4)2· H2O c 3409.67 3058.42 259.8 258.82 CaI2 c 533.5 528.9 142.0 77.16 std. state aq 653.2 656.7 169.5 Ca(IO3)2 c 1002.5 839.3 230 Ca[Mg(CO3)2] dolomite c 2326.3 2163.6 155.18 157.53 CaMoO4 c 1541.4 1434.7 122.6 114.3 Ca3N2 c 439.3 105.0 113.0 Ca(NO2)2 c 741.4 Ca(NO3)2 c 938.2 742.8 193.3 149.37 std. state aq 957.55 776.22 239.7 CaO c 634.92(90) 603.3 38.1(4) 42.0 Ca(OH)2 c 985.2 897.5 83.4 87.5 Ca3P2 c 506 Ca3(PO4)2 c 4120.8 3884.8 236.0 227.8 Ca2P2O7 c 3338.8 3132.1 189.24 187.8 Ca10(PO4)6F2 c 13,744 12,983 775.7 751.9 fluoroapatite CaS c 482.4 477.4 56.5 47.4 CaSe c 368.2 363.2 67 CaSiO3 c 1634.9 1549.7 81.92 85.27 Ca2SiO4 c 2307.5 2192.8 127.7 128.8 3CaO · SiO2 c 2929.2 2784.0 168.6 171.9 CaSO3 · 2H2O c 1752.7 1555.2 184 178.7 CaSO4 c 1425.2 1309.1 108.4 99.0 aq 1451.1 1298.1 33.1 CaSO4 · H2O 1⁄2 c 1576.7 1436.8 130.5 119.4 CaSO4 · 2H2O c 2022.6 1797.5 194.1 186.0 Ca(VO3)2 c 2329.3 2169.7 179.1 166.8 CaWO4 c 1645.15 1538.50 126.40 114.14 Carbon C graphite c 0 0 5.74(10) 8.517 g 716.68(45) 158.100(3) diamond c 1.897 2.900 2.377 6.116 CN aq 150.6 172.4 94.1 (CN)2 cyanogen g 306.7 297.2 241.9 56.9 CNBr g 186.2 165.3 248.36 46.9 CNCl g 137.95 131.02 236.2 45.0 CNF g 224.7 41.8 CNI c 166.2 185.0 96.2 g 225.5 196.6 256.8 48.3 CNN3 cyanogen azide c 387.4 OCN aq 146.0 97.4 106.7 CO g 110.53(17) 137.16 197.660(4) 29.14 CO2 g 393.51(13) 394.39 213.785(10) 37.13 undissoc; std. state aq 413.26(20) 386.0 119.36(60) 2 CO3 aq 675.23(25) 527.9 50.0(10) C3O2 suboxide g 93.7 109.8 276.4 67.0 COBr2 g 96.2 110.9 309.1 61.8 COCl2 phosgene g 219.1 204.9 283.50 57.70 COClF g 276.7 52.4 COF2 g 639.8 623.33 258.89 46.8 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.89 COS carbonyl sulfide g 142.0 166.9 231.56 41.50 CS2 lq 89.0 74.6 g 117.7 67.1 237.8 45.4 CTe2 lq 164.8 Cerium Ce , fcc c 0 0 72.0 26.9 Ce3 std. state aq 696.2 672.0 205.0 Ce4 std. state aq 537.2 503.8 301.0 CeCl3 c 1060.5 984.8 151.0 87.4 std. state aq 1197.5 1065.7 38.0 CeF3 c 1635.9 1556 115.1 99.3 CeI3 c 669.3 674 209 Ce(NO3)3 c 1225.9 CeO2 c 1088.7 1024.7 62.30 61.63 Ce2O3 c 1796.2 1706.2 150.6 114.6 CeS c 459.4 451.5 78.2 50.0 Ce2(SO4)3 c 3954.3 std. state aq 4176.9 3652.6 318 Ce2(SO4)3 · 8H2O c 5522.9 5607.4 Cesium Cs c 0 0 85.23(40) 32.20 lq 2.087 0.025 92.1 32.4 g 76.5(10) 175.601(3) Cs std. state aq 258.00(50) 292.0 132.1(5) 10.5 Cs acetate aq 744.3 661.3 219.7 CsBO2 c 972.0 915.0 104.4 80.6 CsBr c 405.8 391.4 113.05 52.93 std. state aq 379.8 396.0 215.5 CsCl c 442.8 414.4 101.18 52.44 std. state aq 425.4 423.3 189.4 146.9 CsClO4 c 443.1 314.3 175.1 108.3 Cs2CO3 c 1139.7 1054.4 204.5 123.9 std. state aq 1193.7 1111.9 209.2 CsF c 553.5 525.5 92.8 51.1 std. state aq 590.9 570.8 119.2 Cs formate aq 683.8 643.0 226.0 CsHCO3 c 966.1 CsHF c 923.8 858.9 135.2 87.3 CsHSO4 c 1158.1 aq 1145.6 1047.9 264.8 CsI c 346.6 340.6 123.1 52.8 std. state aq 313.5 343.6 244.4 152.7 CsIO3 c 525.9 433.9 167 CsNO3 c 506.0 406.6 155.2 std. state aq 465.6 403.3 279.5 99.2 Cs2O c 345.8 308.2 146.9 76.0 CsOH c 417.2 370.7 98.7 67.9 std. state aq 488.3 449.3 122.3 Cs2PtCl6 std. state aq 1184.9 1066.9 485.8 Cs2S aq 483.7 498.3 251.0 Cs2Se aq 454.8 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.90 SECTION 6 Cs2SO4 c 1443.0 1323.6 211.9 134.9 std. state aq 1425.8 1328.6 286.2 Chlorine Cl atomic g 121.301(8) 165.190(4) Cl std. state aq 167.08(10) 131.3 56.60(20) 136.4 Cl2 g 0 0 233.08(10) 33.95 ClF g 50.3 51.84 217.9 32.08 ClF3 g 163.2 123.0 281.6 63.85 ClF5 g 239 147 310.74 97.17 ClO g 101.8 98.1 226.6 31.5 ClO std. state aq 107.1 36.8 41.8 ClO2 g 102.5 120.5 256.8 42.00 std. state ClO2 aq 66.5 17.2 101.3 std. state ClO3 aq 104.0 8.0 162.3 ClO3F perchloryl fluoride g 23.8 48.2 279.0 64.9 std. state ClO4 aq 128.10(40) 8.62 184.0(15) Cl2O g 80.3 97.9 266.2 45.4 Cl2O7 lq 238.1 g 1138 Chromium Cr c 0 0 23.8 23.43 Cr2 std. state aq 143.5 CrBr2 c 302.1 CrCl2 c 395.4 356.0 115.3 71.2 CrCl3 c 556.5 486.1 123.0 91.8 Cr(CO)6 hexacarbonyl c 1077.8 293.01 226.23 CrF2 c 778.0 CrF3 c 1159 1088 93.9 78.7 Cr2FeO4 c 1444.7 1343.8 146.0 133.6 CrI2 c 156.9 CrI3 c 205.0 CrN c 117 93 38 52.7 CrO2 c 598.0 Cr2O3 c 1140 1058.1 81.2 118.7 Cr3O4 c 1131.0 CrO2Cl2 g 538.1 501.6 329.8 84.5 std. state 2 CrO4 aq 881.15 727.85 50.21 std. state HCrO4 aq 878.22 764.84 184.1 std. state 2 Cr O 2 7 aq 1490.3 1301.2 261.9 Cr2(SO4)3 c 609.6 269.9 302.6 Cobalt Co c 0 0 30.0 24.8 Co2 std. state aq 58.2 54.4 113 Co3 std. state aq 92 134 305 CoBr2 c 220.9 79.5 std. state aq 301.3 262.3 50 CoCl2 c 312.5 269.8 109.2 78.49 std. state aq 392.5 316.7 0 CoCO3 c 713.0 CoF2 c 692 647 82.4 68.9 CoF3 c 790 719 95 92 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.91 CoI2 c 88.7 aq 168.6 157.7 109.0 std. state 2 Co(NH ) 3 6 aq 584.9 157.3 146 std. state 3 Co(NH ) 3 6 aq 189.5 Co(NO3)2 c 420.5 std. state aq 472.8 277.0 180 CoO c 237.7 214.0 53.0 55.3 Co3O4 c 891 774 102.5 123.4 Co(OH)2 c 539.7 454.4 79.0 CoS c 82.8 Co2S3 c 147.3 CoSO4 c 888.3 782.4 118.0 103 std. state aq 967.3 799.1 92.0 CoSO4 · 7H2O c 2979.93 2473.83 406.06 390.49 Copper Cu c 0 0 33.15(8) 24.44 g 337.4(12) 166.398(4) Cu std. state aq 71.67 50.00 40.6 Cu2 std. state aq 64.9(10) 65.52 98.(4) Cu(OAc)2 acetate c 893.3 std. state aq 907.25 673.29 73.6 Cu3(AsO4)2 std. state aq 1581.97 1100.48 804.2 CuBr c 104.6 100.8 96.2 54.7 CuBr2 c 141.84 CuCl c 137.2 119.9 86.2 48.5 CuCl2 c 220.1 175.7 108.09 71.88 Cu(ClO4)2 std. state aq 193.89 48.28 264.4 CuCN c 95.0 108.4 90.00 61.04 CuCNS std. state aq 138.11 142.67 184.93 Cu(CNS)2 std. state aq 217.65 250.87 189.1 CuF c 280 260 64.9 51.9 CuF2 c 542.7 492 77.45 65.55 Cu(formate)2 aq 786.34 636.4 84 CuI c 67.8 69.5 96.7 54.1 std. state 2 Cu(NH ) 3 4 aq 348.5 111.3 273.6 Cu(NO3)2 c 302.9 std. state aq 349.95 157.15 193.3 CuO c 157.3 129.7 42.6 42.2 Cu2O c 168.6 149.0 93.1 63.6 Cu(OH)2 c 450 373 108.4 95.19 CuS c 53.1 53.7 66.5 47.8 Cu2S c 79.5 86.2 120.9 76.3 CuSe c 39.5 Cu2Se c 59.4 157.3 88.70 CuSO4 c 771.4(12) 662.2 109.2(4) 98.87 std. state aq 844.50 679.11 79.5 CuSO4 · 5H2O c 2279.65 1880.04 300.4 280 CuWO4 c 1105.0 Dysprosium Dy c 0 0 75.6 27.7 Dy3 std. state aq 699.0 665.0 231.0 21.0 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.92 SECTION 6 DyCl3 c 1000 100.0 aq 1197.0 1059.0 61.9 389.0 DyF3 c 1711.0 Dy2O3 c 1863.1 1771.5 149.8 116.27 Erbium Er c 0 0 73.18 28.12 Er3 std. state aq 705.4 669.1 244.3 21.0 ErCl3 c 998.7 100.0 aq 1207.1 1062.7 75.3 389.0 Er2O3 c 1897.9 1808.7 155.6 108.49 Europium Eu c 0 0 77.78 27.66 Eu2 std. state aq 527.0 540.2 8.0 Eu3 aq 605.0 574.0 222.0 8.0 EuCl2 aq 862.0 EuCl3 c 936.0 856 144.1 aq 1106.2 967.7 54.0 402.0 EuF3 c 1571 Eu2O3 monoclinic c 1651.4 1556.9 146 122.2 Eu3O4 c 2272.0 2142.0 205.0 Eu(OH)3 c 1332 1195 119.9 Fluorine F atomic g 79.38(30) 62.3 158.751(4) 22.7 F aq 335.35(65) 278.8 13.8(8) 106.7 F2 g 0 0 202.791(5) 31.30 FNO3 g 10.5 73.7 292.9 65.22 FO g 109.0 105.0 216.8 30.5 F2O g 24.7 41.9 247.4 43.3 F2O2 g 18.0 Francium Fr c 0 0 95.40 31.80 FrCl c 439 113.0 53.56 Fr2O c 338 299.2 156.9 Gadolinium Gd c 0 0 68.07 37.03 Gd3 std. state aq 686.0 661.0 205.9 GdCl3 c 1008.0 933 151.4 88.0 std. state aq 1188.0 1059.0 36.8 410.0 GdF3 lq 1297 Gd2O3 monoclinic c 1819.6 1730 150.6 106.7 Gallium Ga c 0 0 40.8 26.06 lq 5.6 g 272.0 233.7 169.0 25.3 Ga3 aq 211.7 159.0 331.0 GaAs c 71.0 67.8 64.2 46.2 GaBr3 c 386.6 359.8 180.0 GaCl3 c 524.7 454.8 142.0 GaF3 c 1163.0 1085.3 84 GaI3 c 238.9 205.0 100 Ga2O3 rhombic c 1089.1 998.3 84.98 92.1 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.93 Ga(OH)3 c 964.4 831.3 100.0 GaSb c 41.8 38.9 76.07 48.53 Germanium Ge c 0 0 31.09(15) 23.3 g 372.0(30) 331.2 167.904(5) 30.7 GeBr4 lq 347.7 331.4 280.8 g 300.0 318.0 396.2 101.8 GeCl4 lq 531.8 462.8 245.6 g 495.8 457.3 347.7 96.1 GeF4 g 1190.20(50) 1150.0 301.9(10) 81.84 GeH4 g 90.8 113.4 217.02 45.02 GeI4 c 141.8 144.4 271.1 g 56.9 106.3 428.9 104.1 GeO2 tetragonal c 580.0(10) 521.4 39.71(15) 52.1 GeP c 21.0 17.0 63.0 GeS c 69.0 71.6 71 Gold Au c 0 0 47.4 25.36 AuBr c 14.0 AuBr3 c 53.3 AuCl c 34.7 92.9 48.74 AuCl3 c 117.6 148.1 94.81 AuCl std. state 4 aq 322.2 237.32 266.9 Au(CN) std. state 2 aq 242.3 285.8 172 AuF3 c 363.6 114.2 91.29 AuSb2 c 19.46 119.2 77.40 AuSn c 30.5 93.7 49.41 Hafnium Hf hexagonal c 0 0 43.56 25.69 HfC c 230.1 41.21 34.43 HfCl4 c 990.4 901.3 190.8 120.46 HfF4 monoclinic c 1930.5 1830.5 113 HfO2 c 1144.7 1088.2 59.3 60.25 Helium He g 0 0 126.153(2) 20.786 Holmium Ho c 0 0 75.3 27.15 Ho3 std. state aq 705.0 673.7 226.8 17.0 HoCl3 c 1005.4 88 std. state aq 1206.7 1067.3 57.7 393.0 HoF3 c 1707.0 Ho2O3 c 1880.7 1791.2 158.2 115.0 Hydrogen H atomic g 217.998(6) 203.3 114.717(2) 20.8 H std. state aq 0 0 0 0 H2 g 0 0 130.680(3) 28.84 H2H g 0.321 1.463 143.80 29.20 2H2 (D2) deuterium g 0 0 144.96 29.19 HAsO undissoc; 2 std. state aq 456.5 402.71 125.9 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.94 SECTION 6 H2AsO undissoc; std.
3 state aq 714.79 587.22 110.5 H3AsO3 undissoc; std.
state aq 742.2 639.90 195.0 HAsO undissoc; std. state 2 4 aq 906.34 714.70 1.7 H2AsO undissoc; std.
4 state aq 909.56 753.29 117 H3AsO3 c 906.30 undissoc; std. state aq 902.5 766.1 184 HBO2 c 794.3 723.4 38 54.4 H3BO3 c 1094.8(8) 968.9 89.95(60) 86.1 undissoc aq 1072.8(8) 162.4(6) HBr g 36.29(16) 53.4 198.700(4) 29.1 std. state aq 121.55 103.97 82.4 141.8 HBrO undissoc; std. state aq 113.0 82.4 142 HBrO3 std. state aq 67.07 18.54 161.71 HCl g 92.31(10) 95.30 186.902(5) 29.12 std. state aq 167.15 131.25 56.5 136.4 2HCl deuterium chloride g 93.35 95.94 192.63 29.17 HClO g 78.7 66.1 236.7 37.15 undissoc; std. state aq 120.9 79.9 142 HClO2 undissoc; std. state aq 51.9 5.9 188.3 HClO3 std. state aq 103.97 8.03 162.3 HClO4 lq 40.58 std. state aq 129.33 8.62 182.0 HClO4 · H2O c 302.21 HClO4 · 2H2O lq 677.98 HCN lq 108.87 124.93 112.84 70.63 g 135.1 124.7 201.81 35.86 ionized; std. state aq 150.6 172.4 94.1 undissoc; std. state aq 107.11 119.66 124.7 HCNO ionized; std. state aq 146.0 97.5 106.7 undissoc; std. state aq 154.39 117.2 144.8 HCNS ionized; std. state aq 76.44 92.68 144.4 40.2 HCOO formate aq 425.6 351.0 92.0 87.9 CH3COO acetate aq 486.0 369.3 86.6 6.3 HCO std. state 3 aq 689.93(20) 586.85 98.4(5) H2CO3 std. state aq 699.65 623.16 187.4 HC2O 4 aq 818.4 698.3 149.4 H2C2O4 c 821.7 723.7 109.8 91.0 2 C O 2 4 aq 825.1 673.9 45.6 H2CS3 trithiocarbonic lq 25.1 27.82 233.0 149.8 acid HF g 273.30(70) 275.4 173.779(3) 29.14 lq 299.78 75.40 51.67 undissoc; std. state aq 320.08 296.86 88.7 F aq 332.63 278.8 13.8 106.7 2HF g 275.5 277.27 179.70 29.14 HF std. state 2 aq 649.94 578.15 92.5 H2F2 dimer g 572.66 544.51 238 44.89 H2Fe(CN) std. state 2 6 aq 455.6 658.44 218 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.95 HFO g 98 86 226.8 35.93 HI g 26.50(10) 1.7 206.590(4) 29.16 std. state aq 55.19 51.59 111.3 142.3 HIO undissoc; std. state aq 138.1 99.2 95.4 HIO3 c 230.1 H2MoO4 c 1046.0 HN g 351.5 345.6 181.2 29.2 HN3 lq 264.0 327.2 140.6 g 294.1 328.1 239.0 43.7 H2N g 184.9 194.6 195.0 33.9 2H2N2 cis-diazine g 207 241 224.09 39.02 HNCO isocyanic acid g 116.73 107.36 238.11 44.85 HNCS isothiocyanic acid g 127.61 112.88 248.03 46.40 HNO2 g 79.5 46.0 254.1 45.5 HNO3 lq 174.1 80.7 155.60 109.9 g 133.9 73.54 266.9 54.1 std. state aq 207.36 111.34 146.4 86.6 H2N2O2 hyponitrous acid aq 57.3 36.0 218 HO hydroxyl g 39.0 34.2 183.64 30.00 HO aq 230.015 157.28 10.90 148.5 HO2 g 10.5 22.6 229.0 34.9 std. state HO2 aq 160.33 67.4 23.9 H2O c 292.72 37.11 lq 285.830(40) 237.14 69.95(3) 75.35 g 241.826(40) 228.61 188.835(10) 33.60 1H2HO g 245.37 233.18 199.51 33.79 2H2O deuterium oxide g 249.20 234.54 198.33 34.25 H2O2 hydrogen peroxide lq 187.78 120.42 109.6 89.1 g 136.3 105.6 232.7 43.14 undissoc; std. state aq 191.17 134.10 143.9 HOCN undissoc; std. state aq 154.39 117.2 144.8 OCN cyanate std. state aq 146.02 97.5 106.7 HPO3 c 948.51 std. state 2 HPO4 aq 1299.0(15) 1089.26 33.5(15) std. state H PO 2 4 aq 1302.6(15) 1130.39 92.5(15) HPH2O2 hypophosphorous acid c 604.6 H3PO3 c 964.4 H3PO4 c 1284.4 1124.3 110.5 106.1 lq 1271.7 1123.6 150.8 145.06 ionized; std. state aq 1277.4 1018.8 222 undissoc; std. state aq 1288.34 1142.65 158.2 3 HP O 2 7 aq 2274.8 1972.2 46.0 2 H P 2 27 aq 2278.6 2010.2 163.0 H4P2O7 c 2241.0 undissoc; std. state aq 2268.6 2032.2 268 HReO4 c 762.3 656.4 158.2 HS g 142.7 113.3 195.7 32.3 HS std. state aq 16.3(15) 12.05 67.(5) H2S g 20.6(5) 33.4 205.81(5) 34.19 undissoc; std. state aq 38.6(15) 27.87 126.(5) TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.96 SECTION 6 2H2S g 23.9 35.3 215.3 35.76 H2S2 g 15.5 51.5 HSbO2 undissoc; std. state aq 487.9 407.5 46.6 HSCN undissoc; std. state aq 76.4 97.7 144.3 40.2 SCN std. state aq 76.44 92.68 144.5 40.2 HSe std. state aq 15.9 43.9 79.0 H2Se g 29.7 15.9 219.0 34.7 std. state HSeO3 aq 514.55 411.54 135.1 H2SeO3 c 524.46 undissoc; std. state aq 507.48 426.22 207.9 std. state HSeO4 aq 581.6 452.3 149.4 H2SeO4 c 530.1 H2SiO3 c 1188.67 1092.4 134.0 undissoc; std. state aq 1182.8 1079.5 109 H4SiO4 c 1481.1 1333.0 192 undissoc; std. state aq 1468.6 1316.7 180 HSO std. state 3 aq 626.22 527.8 139.8 HSO 4 aq 886.9(10) 755.9 131.7(30) 84.0 HSO3Cl lq 601.2 HSO3F lq 795.0 g 753 691 297 75.24 H2SO3 undissoc; std. state aq 608.81 537.90 232.2 H2SO4 lq 814.0 689.9 156.90 138.9 std. state aq 909.27 744.63 20.1 293 H2SO4 · H2O lq 1127.6 950.3 211.5 214.3 H2SO4 · 2H2O lq 1427.1 1199.6 276.4 261.5 H2SO4 · 3H2O lq 1720.4 1443.9 345.4 319.1 H2SO4 · 4H2O lq 2011.2 1685.8 414.5 386.4 H2S2O7 c 1273.6 H2Te g 99.6 228.9 35.56 H2WO4 c 1131.8 1003.9 145 113 Indium In c 0 0 57.8 26.7 In3 aq 105.0 98.0 151.0 InAs c 58.6 53.6 75.7 47.78 InBr3 c 428.9 InCl3 c 537.2 InF g 203.4 InH g 215.5 190.3 207.53 29.58 InI c 116.3 120.5 130.0 InI3 c 238.0 InOH2 aq 370.3 313.0 88.0 In(OH)2 aq 619.0 525.0 25.0 In2O3 c 925.27 830.73 104.2 92 InP c 88.7 77.0 59.8 45.44 InS c 138.1 131.8 67 In2S3 c 427 412.5 163.6 118.0 In2Se3 c 343 InSb c 30.5 25.5 86.2 49.5 Iodine I atomic g 106.76(4) 70.2 180.787(4) 20.8 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.97 I std. state aq 56.78(5) 51.59 106.45(30) 142.3 I2 c 0 0 116.14(30) 54.44 g 62.42(8) 19.37 260.687(5) 36.86 std. state aq 22.6 16.40 137.2 std. state I3 aq 51.5 51.5 239.3 IBr c 10.5 g 40.8 3.7 258.8 36.4 ICl c 35.4 14.05 97.93 55.23 lq 23.93 13.6 135.1 g 17.8 5.5 247.6 35.6 ICl3 c 89.5 22.34 167.4 IF g 95.7 118.5 236.3 33.4 IF5 lq 864.8 g 822.5 751.5 327.7 99.2 IF7 g 961.1 835.8 347.7 134.5 IO g 175.1 149.8 245.5 32.9 IO std. state aq 107.5 38.5 5.4 std. state IO3 aq 221.3 128.0 118.4 std. state IO4 aq 151.5 58.6 222 I2O5 c 158.07 Iridium Ir c 0 0 35.48 25.06 IrCl3 c 245.6 180 113 IrF6 c 579.65 461.66 247.7 IrO2 c 274.1 57.3 57.32 IrS2 c 138.0 Iron Fe alpha c 0 0 27.32 25.09 Fe2 std. state aq 89.1 78.87 137.7 Fe3 std. state aq 48.5 4.7 315.9 FeBr2 c 249.8 238.1 140.7 80.2 std. state aq 332.2 286.81 27.2 FeBr3 c 286.2 aq 413.4 316.7 68.6 Fe3C -cementite c 25.1 20.1 104.6 105.9 FeCl2 c 341.8 302.3 118.0 76.7 aq 423.4 341.3 24.7 FeCl3 c 399.4 333.9 142.34 96.65 std. state aq 550.2 398.3 146.4 std. state 3 Fe(CN)6 aq 561.9 729.3 270.3 std. state 4 Fe(CN)6 aq 455.6 694.9 95.0 FeCNS2 std. state aq 23.4 71.1 130 FeCO3 c 740.6 666.7 92.9 82.1 Fe(CO)5 lq 774.0 705.3 338.1 240.6 FeCr2O4 c 1446.0 1343.9 146.2 133.8 FeF2 c 711.3 668.6 86.99 68.12 std. state aq 754.4 636.5 165.3 FeF3 c 1042 972 98 91.0 aq 1046.4 840.9 357.3 FeI2 c 113.0 111.7 167.4 83.7 std. state aq 199.6 182.1 84.9 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.98 SECTION 6 FeI3 aq 214.2 159.4 18.0 FeMoO4 c 1075.0 975.0 129.3 118.5 Fe2N c 3.8 101.3 70.0 Fe(NO3)3 std. state aq 670.7 338.5 123.4 FeO c 272.0 251.4 60.75 49.91 Fe2O3 hematite c 824.2 742.2 87.40 103.9 Fe3O4 magnetite c 1118.4 1015.4 145.27 143.4 FeOH std. state aq 324.7 277.4 29 Fe(OH)2 std. state aq 290.8 229.4 142 Fe(OH)2 c 574.0 490.0 87.9 97.1 Fe(OH)3 c 833 705 104.6 101.7 FeS c 100.0 100.4 60.32 50.52 FeS2 marcasite c 167.4 156.1 53.87 62.39 FeS2 pyrite c 178.2 166.9 52.92 62.12 FeSiO3 c 1155 87.5 89.4 Fe2SiO4 c 1479.9 1379.0 145.18 132.9 FeSO4 c 928.4 820.8 107.5 100.6 std. state aq 998.3 823.4 117.6 Fe2(SO4)3 c 2583.0 2262.7 307.5 264.8 std. state aq 2825.0 2243.0 571.5 FeTiO3 c 1246.4 105.9 99.5 FeWO4 c 1155.0 1054.0 131.8 114.4 Krypton Kr g 0 0 164.085(3) 20.786 Lanthanum La c 0 0 56.9 27.11 La3 aq 707.1 683.7 217.6 13.0 LaCl3 c 1072.2 144.4 108.8 std. state aq 1208.8 1077.4 50.0 423.0 LaCl3 · 7H2O c 3178.6 2713.3 462.8 431.0 LaI3 c 668.9 La(NO3)3 c 1254.4 std. state aq 1329.3 La2O3 c 1793.7 1705.8 127.32 108.78 La2(SO4)3 c 3941.3 280 La2Te3 c 724 714.6 231.63 132.13 Lead Pb c 0 0 64.80(30) 26.84 g 195.2(8) 162.2 175.375(5) 20.8 Pb2 aq 0.92(25) 24.4 18.5(10) Pb(OAc)2 c 964.4 Pb(BO2)2 c 1556 1450 131 107.1 PbB4O7 c 2858 2667 167 168 PbBr2 c 278.7 261.9 161.5 80.1 aq 244.8 232.3 175.3 Pb(CH3)4 lq 97.9 Pb(C2H5)4 lq 52.7 464.6 307.4 PbCl2 c 359.4 314.1 136 77.1 aq 336.0 286.9 123.4 PbCl4 lq 329.3 PbClF c 534.7 488.3 121.8 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.99 PbCO3 c 699.2 625.5 131.0 87.40 PbC2O4 c 851.4 750.2 146.0 105.4 PbCrO4 c 930.9 PbF2 c 664 617.1 110.5 72.3 aq 666.9 582.0 17.2 PbF4 c 941.8 PbI2 c 175.5 173.58 174.9 77.4 aq 112.1 127.6 233.0 PbMoO4 c 1051.9 951.4 166.1 119.70 Pb(N3)2 monoclinic c 478.2 624.7 148.1 Pb(NO3)2 c 451.9 aq 416.3 246.9 303.3 PbO litharge c 219.0 188.9 66.5 45.8 PbO2 c 277.4 217.3 68.60 64.6 Pb3O4 c 718.4 601.2 211.3 146.9 Pb3(PO4)2 c 2595.3 2432.6 353.1 256.3 PbS c 100.4 98.7 91.3 49.4 PbSe c 102.9 101.7 102.5 50.2 PbSeO4 c 609.2 505.0 167.8 PbSiO3 c 1145.7 1062.1 109.6 90.04 PbSiO4 c 2023.8 1909.6 84.01 98.66 Pb2SiO4 c 1363.1 1252.6 186.6 137.2 PbSO3 c 669.9 PbSO4 c 919.97(40) 813.0 148.50(60) 103.2 PbSO4 · PbO c 1182.0 225.06 150.16 PbTe c 70.7 69.5 110.0 50.5 Lithium Li c 0 0 29.12(20) 24.8 g 159.3(10) 138.782(10) Li std. state aq 278.47(8) 293.30 12.24(15) 68.6 Li3AlF6 cryolite c 3317 3152 238.5 215.7 LiAlH4 c 116.3 44.7 78.7 83.2 LiAlO2 c 1188.7 1126.3 53.3 67.78 LiBeF3 c 1651.8 1576.3 89.2 91.8 LiBH4 c 190.8 125.0 75.9 82.6 LiBH4 · tetrahydrofuran c 415.5 220.5 289 Li2BeF4 c 2274 2171 130.6 135.3 LiBO2 c 1032.2 976.1 51.5 59.8 Li2B4O7 c 3362 3170 156 183.0 LiBr c 351.2 342.00 74.27 48.91 std. state aq 400.03 397.27 95.81 73.2 LiBrO3 c 346.98 std. state aq 345.56 274.89 174.9 LiCl c 408.6 384.4 59.3 48.03 aq 445.6 424.6 69.9 67.8 LiClO4 c 381.0 254 126 105 std. state aq 407.81 302.1 195.4 7.5 Li2CO3 c 1215.9 1132.12 90.4 99.1 aq 1234.1 1114.6 29.7 LiF c 616.0 587.7 35.66 41.6 std. state aq 611.12 571.9 0.4 38.1 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.100 SECTION 6 LiH c 90.5 68.45 20.04 27.96 LiI c 270.4 270.3 86.8 51.0 std. state aq 333.67 344.8 124.7 73.6 LiIO3 c 503.38 std. state aq 499.82 421.33 131.4 55.2 Li3N c 164.6 128.6 62.59 75.27 LiNO2 c 372.4 302.0 96.0 LiNO3 c 483.1 381.1 90.0 std. state aq 485.9 404.5 160.2 18.0 Li2O c 597.9 561.2 37.6 Li2O2 c 634.3 578.9 56.5 70.6 LiOH c 484.9 439 42.82 49.7 std. state aq 508.40 451.9 7.1 Li3PO4 c 2095.8 Li2SiO3 c 1648.1 1557.2 79.8 99.1 Li2Si2O5 c 2561 2417 125.5 138.1 Li2SO4 c 1436.4 1321.7 115.1 117.6 std. state aq 1466.2 1331.2 7.3 155.6 Li2TiO3 c 1670.7 1579.8 91.8 109.9 Lutetium Lu c 0 0 50.96 26.86 Lu3 aq 665.0 628.0 264.0 25.0 LuCl3 c 945.6 std. state aq 1167.0 1021.0 96.0 385.0 LuI3 c 548.0 Lu2O3 c 1878.2 1789.1 109.96 101.75 Magnesium Mg c 0 0 32.67(10) 24.87 g 147.1(8) 148.648(3) Mg2 std. state aq 467.0(6) 454.8 137.(4) MgAl2O4 c 2299 2177 89.0 116.20 MgBr2 c 524.3 503.8 117.2 73.16 std. state aq 709.94 662.8 26.8 MgBr2 · 6H2O c 2410.0 2056.0 397 MgCl2 c 641.3 591.8 89.63 71.38 std. state aq 801.15 717.1 25.1 MgCl2 · 6H2O c 2499.0 2115.0 315.1 Mg(ClO4)2 c 568.90 std. state aq 725.51 472.0 225.4 Mg(ClO4)2 · 6H2O c 2445.6 1863.1 520.1 MgCO3 c 1095.8 1012.1 65.7 75.51 MgC2O4 c 1269.0 std. state aq 1292.0 1128.8 92.5 MgF2 c 1124.2(12) 1071.1 57.2(5) 61.5 Mg2Ge c 108.8 105.9 86.48 69.54 MgH2 c 75.3 35.9 31.1 35.4 MgI2 c 364.0 358.2 129.7 74.8 std. state aq 577.22 558.1 84.5 Mg3N2 c 461.1 400.9 87.9 104.5 MgNH4PO4 · 6H2O c 3681.9 Mg(NO3)2 c 790.65 589.5 164.0 141.9 std. state aq 881.6 677.4 154.8 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.101 Mg(NO3)2 · 6H2O c 2613.3 2080.7 452 MgO microcrystal c 601.6(3) 569.3 26.95(15) 37.2 Mg(OH)2 c 924.7 833.7 63.24 77.25 std. state aq 926.8 769.4 149.0 Mg3(PO4)2 c 3780.7 3538.8 189.20 213.47 MgS c 346.0 341.8 50.3 45.6 MgSeO4 c 968.51 std. state aq 1066.1 896.2 84.1 Mg2Si c 77.8 77.1 81.6 67.9 MgSiO3 clinoenstatite c 1548.9 1462.0 67.8 81.9 Mg2SiO4 forsterite c 2174.0 2055.1 95.1 118.5 Mg3Si4O10(OH)2 talc c 5922.5 5543.0 260.7 321.8 MgSO3 · 3H2O c 1931.8 MgSO3 · 6H2O c 2817.5 MgSO4 c 1284.9 1170.6 91.6 96.5 std. state aq 1376.1 1199.5 118.01 MgSO4 · H2O kieserite c 1602.1 1428.8 126.4 MgSO4 · 7H2O epsomite c 3388.71 2871.9 372 MgTiO3 c 1497.6 1420.1 111.08 91.88 Mg2TiO4 c 2164.0 2048 115.0 129 MgTi2O5 c 2509 2369 135.6 146.9 Mg2V2O7 triclinic c 2835.9 2645.29 200.4 203.47 MgWO4 c 1516 1404 101.2 109.1 Manganese Mn c 0 0 32.01 26.30 Mn2 std. state aq 220.75 228.1 73.6 50 MnBr2 c 384.9 372 138.1 75.31 std. state aq 464.0 409.2 Mn3C c 4.6 5.4 98.7 93.51 MnCl2 c 481.3 440.5 118.20 72.9 std. state aq 555.05 490.8 38.9 222 MnCO3 c 894.1 816.7 85.8 81.5 Mn2(CO)10 c 1677.4 MnF2 c 795.0 749 92.26 67.99 MnI2 c 242.7 150.6 75.35 aq 331.0 Mn(NO3)2 c 576.26 std. state aq 635.6 451.0 218.0 121.0 MnO c 385.2 362.9 59.8 45.4 MnO2 c 520.1 465.2 53.1 54.1 Mn2O3 c 959.0 881.2 110.5 107.7 MnO 4 aq 541.4 447.3 191.2 82.0 MnO2 4 aq 653.0 500.8 59 Mn3O4 c 1387.8 1283.2 155.6 139.7 Mn3(PO4)2 c 3116.7 MnS c 214.2 218.4 78.2 50.0 MnSe c 106.7 111.7 90.8 51.0 MnSiO3 c 1320.9 1240.6 89.1 86.4 MnSiO4 c 1730.5 1632.1 163.2 129.9 MnSO4 c 1065.3 957.42 112.1 100.4 std. state aq 1130.1 972.8 53.6 243 MnTiO3 c 1355.6 105.9 99.8 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.102 SECTION 6 Mercury Hg lq 0 0 75.90(12) 28.00 g 61.38(4) 31.8 174.971(5) 20.8 Hg2 aq 170.21(20) 36.19(80) Hg aq 166.87(50) 65.74(80) HgBr2 c 170.7 153.1 172.0 75.3 Hg2Br2 c 206.9 181.1 218.0 104.6 Hg(CH3)2 lq 59.8 140.2 209 Hg(C2H5)2 lq 30.1 HgCl2 c 224.3 178.6 146.0 73.9 Hg2Cl2 c 265.37(40) 210.7 191.6(8) 102.0 Hg(CN)2 c 263.6 Hg2CO3 c 553.5 468.1 180.0 HgC2O4 c 678.2 HgF2 c 405 362 134.3 74.86 Hg2F2 c 485 469 161 100.4 HgI2 c 105.4 101.7 180.0 77.75 Hg2I2 c 121.3 111.1 233.5 105.9 Hg2(N3)2 c 594.1 746.4 205 HgO c 90.79(12) 58.49 70.25(30) 44.06 HgS c 58.2 50.6 82.4 48.4 HgSO4 c 707.5 594 Hg2SO4 c 743.09(40) 625.8 200.70(20) 131.96 HgTe c 42.0 Molybdenum Mo c 0 0 28.71 24.13 MoBr3 c 284 259 175 105.4 MoCl4 c 477 402 224 128 MoCl5 c 527 423 238 155.6 MoCl6 c 523 391 255 175 Mo(CO)6 c 982.8 877.8 325.9 242.3 MoF6 lq 1585.66 1473.17 259.69 169.8 MoO2 c 588.9 533.0 46.3 56.0 MoO3 c 745.2 668.1 77.8 75.0 std. state 2 MoO4 aq 997.9 836.4 27.2 MoS2 c 235.1 225.9 62.57 63.56 Mo2S3 c 270.3 278.6 181.2 109.3 Neodymium Nd c 0 0 71.6 27.5 Nd3 std. state aq 696.2 671.5 206.7 21 NdCl3 c 1041.0 113 std. state aq 1197.9 1065.7 37.7 431 NdF3 c 1657.0 Nd(NO3)3 c 1230.9 Nd2O3 c 1807.9 1720.9 158.6 111.3 Neon Ne g 0 0 146.328(3) 20.786 Neptunium Np c 0 0 29.46 NpF6 c 1937 NpO2 c 1029 979 80.3 66.1 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.103 Nickel Ni c 0 0 29.87 26.1 Ni2 std. state aq 54.0 45.6 128.9 Ni(OAc)2 std. state aq 1025.9 784.5 44.4 NiBr2 c 212.1 aq 297.1 253.6 36.0 NiCl2 c 305.3 259.0 97.7 71.66 std. state aq 388.3 307.9 15.1 Ni(CN) std. state 2 4 aq 367.8 472.0 218 Ni(CO)4 lq 633.0 588.2 313 404.6 g 602.9 587.2 410.6 145.2 NiC2O4 c 856.9 NiF2 c 651.5 604.2 73.6 64.1 aq 719.2 603.3 156.5 NiI2 c 78.8 aq 164.4 149.0 93.7 Ni(NO3)2 c 415.1 std. state aq 468.6 268.6 164.0 NiO c 240.6 211.7 38.00 44.31 Ni2O3 c 489.5 NiOH aq 287.9 227.6 71.0 Ni(OH)2 c 529.7 447.3 88.0 NiS c 82.0 79.5 53.0 47.1 Ni3S2 c 216.0 210 133.9 117.7 NiS2 c 131.4 124.7 72 70.6 NiSO4 c 872.9 759.8 92.0 138.0 std. state aq 963.2 790.3 108.8 327.9 NiSO4 · 7H2O c 2976.3 2462.2 378.94 364.59 NiWO4 c 1128.4 118.0 136.0 Niobium Nb c 0 0 36.4 24.67 NbBr5 c 556 508 258.8 147.9 NbC c 138.9 136.8 34.98 36.23 NbCl5 c 797.5 683.3 210.5 148.1 NbF5 c 1813.8 1699.0 160.3 134.7 NbI5 c 268.6 343 155.6 NbN c 236.4 205.9 34.5 39.0 NbO c 405.8 392.6 48.1 41.3 NbO2 c 796.2 740.5 54.5 57.45 Nb2O5 c 1899.5 1765.8 137.3 132.0 NbOCl3 c 879.5 782 159 120.0 Nitrogen N atomic g 472.68(40) 153.301(3) N2 g 0 0 191.609(4) 29.124 N 3 aq 275.1 348.2 107.9 NCl3 lq 230.0 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 NF2 g 43.1 57.8 249.9 41.0 NF3 g 132.1 90.6 260.8 53.37 H2NOH c 114.2 N2F2 cis g 69.5 109 259.8 49.96 trans g 82.0 120.5 262.6 53.47 6.104 SECTION 6 N2F4 g 8.4 79.9 301.2 79.2 N2H4 hydrazine lq 50.6 149.3 121.2 98.84 hydrazine-d4 2 N H 2 4 g 81.6 150.9 248.86 55.52 std. state N H 2 5 aq 7.5 82.4 151 70.3 N2H5Br c 155.6 std. state aq 128.9 21.8 233.1 71.6 N2H5Cl c 197.1 std. state aq 174.9 49.0 207.1 66.1 N2H5Cl · HCl c 367.4 N2H5OH lq 242.7 undissoc; std. state aq 251.50 109.2 207.9 73.2 N2H5NO3 c 251.58 std. state aq 215.10 28.91 297 (N2H5)2SO4 c 959.0 std. state aq 924.7 579.9 322 151 NO g 91.29 87.60 210.76 29.85 NOBr g 82.23 82.42 273.7 45.48 NOCl g 51.71 66.10 261.68 44.7 NOF g 66.5 51.0 248.02 41.3 NOF3 g 163 96 278.40 67.86 NO2 g 33.1 51.3 240.1 37.2 NO2 aq 104.6 32.2 123.0 97.5 NO2Cl g 12.6 54.4 272.19 53.19 NO2F g 109 66 260.2 49.8 NO3 g 69.41 114.35 252.5 46.9 NO3 aq 206.85(40) 111.3 146.70(40) 86.6 N2O g 81.6 103.7 220.0 38.62 N2O2 g 170.37 202.88 287.52 63.51 hyponitrite 2 N O 2 2 aq 17.2 138.9 27.6 N2O3 g 86.6 142.4 314.7 72.72 N2O4 lq 19.5 97.5 209.20 142.71 g 11.1 99.8 304.38 79.2 N2O5 g 11.3 117.1 355.7 95.30 NSF g 259.8 44.1 Osmium Os c 0 0 32.6 24.7 OsCl3 c 190.4 121 130 OsCl4 c 254.8 159 155 OsF6 g 358.1 120.8 OsO4 c 394.1 305.0 143.9 g 337.2 292.8 293.8 74.1 Oxygen O atomic g 249.18(10) 231.7 161.059(3) 21.9 O2 g 0 0 205.152(5) 29.4 O3 g 142.7 163.2 238.92 OF2 g 24.5 41.8 247.5 57.11 O2F2 g 18.0 61.42 268.11 54.06 OH aq 230.015(40) 157.28 10.90(20) 148.5 Palladium Pd c 0 0 37.61 25.94 Pd2 std. state aq 149.0 176.6 184.0 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.105 PdBr2 c 104.2 std. state 2 PdBr4 aq 384.9 318.0 247 PdCl2 c 171.5 125.1 105 std. state 2 PdCl4 aq 550.2 416.7 167 Pd2H c 19.7 5.0 91.6 PdO c 85.4 56.1 31.5 PdS c 75 67 46 PdS2 c 81.2 74.5 80 Phosphorus P white c 0 0 41.09(25) 23.83 g 316.5(10) 280.1 163.1199(3) 20.8 red, V c 17.46 12.46 22.85 21.19 P2 g 144.0(20) 218.123(4) P4 g 58.9(3) 24.4 280.01(50) 67.16 PBr3 lq 184.5 175.5 240.2 g 139.3 162.8 348.15 76.02 PBr5 c 269.9 PCl3 lq 319.7 272.4 217.2 g 227.1 267.8 311.8 71.8 PCl5 c 443.5 g 374.9 305.0 364.6 112.8 PF3 g 958 937 273.1 58.69 PF5 g 1594.4 1520.7 300.8 84.8 PH3 g 5.4 13.4 210.24 37.10 std. state aq 9.50 25.31 120.1 PH4Br c 127.6 47.7 110.0 PH4Cl c 145.2 PH4I c 69.9 0.8 123.0 109.6 PH4OH undissoc; std. state aq 295.35 211.88 190.0 PI3 c 45.6 PO2 g 279.9 281.6 252.1 39.5 PO3 aq 977.0 std. state 3 PO4 aq 1277.4 1018.8 220.5 std. state 4 P O 2 7 aq 2271.1 1919.2 117.0 (P2O3)2 dimer c 1640.1 P4O10 c 3009.9 2723.3 228.78 211.71 POBr3 c 458.6 g 389.11 390.91 359.84 89.87 POCl3 lq 597.1 520.9 222.46 138.82 g 558.5 512.9 325.5 84.94 POClF2 g 970.7 924.1 301.68 68.83 POCl2F g 765.7 721.6 320.38 79.32 POF3 g 1254.0 1206 285.4 68.82 PSCl3 g 363.2 347.7 337.23 89.83 PSF3 g 1009 985 298.1 74.55 P4S3 c 155 159 201 146 Platinum Pt c 0 41.63 25.87 PtBr2 c 82.0 PtBr3 c 120.9 PtBr4 c 156.5 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.106 SECTION 6 PtCl2 c 123.4 117 PtCl3 c 182.0 134 151 PtCl4 c 3218 2 PtCl4 c 231.8 172 176 std. state 2 PtCl4 aq 499.2 361.5 155 std. state 2 PtCl6 aq 668.2 482.8 220.1 PtF6 g 348.3 122.8 PtI4 c 72.8 PtS c 81.6 76.2 55.06 43.39 PtS2 c 108.8 99.6 74.68 65.90 Plutonium Pu c 0 0 51.5 35.5 Pu3 aq 579.9 587.9 163 Pu4 aq 579.9 1490 PuBr3 c 831.8 804.6 192.88 107.86 PuCl3 c 961.5 892.7 159.00 102.84 PuCl4 c 1381 PuF3 c 1552 1478.8 112.97 96.82 PuF4 c 1732 1644.7 161.9 120.8 PuF6 c 25.48 27.2 222.59 167.36 PuH2 c 139.3 101.7 59.8 39.0 PuH3 c 138 82.4 64.9 43.2 PuI3 c 648.5 643.9 214.2 111.8 PuO c 565 538.9 70.7 51.3 PuO2 c 1058.1 1005.8 82.4 68.6 Pu2O3 beta c 1715.4 1632.3 152.3 131.0 Pu(SO4)2 c 2200.8 1969.5 163.18 181.96 PuS c 439.3 436.7 78.24 53.97 Pu2S3 c 989.5 985.5 192.46 129.66 Polonium Po c 0 0 62.8 26.4 PoO2 c 251 197 71 61.5 Potassium K c 0 0 64.68(20) 29.60 lq 2.284 0.264 71.46 32.72 g 89.0(8) 160.341(3) K std. state aq 252.14(8) 283.26 101.20(20) 21.8 KOAc acetate c 723.0 aq 738.39 652.66 189.1 15.5 KAg(CN)2 aq 18.0 22.2 297 KAgCl2 aq 497.4 498.7 333.9 K2AgI3 aq 686.6 720.5 458.1 KAlCl4 c 97 1094 197 156.4 K3AlCl6 c 2092.0 1938 377 248.9 K3AlF6 c 3358.1 284.5 221.1 KAl(SO4)2 c 2470.2 2240.1 204.47 192.92 K3AsO4 std. state aq 1645.27 1498.29 144.8 KBF4 c 1887 1785 133.9 114.48 std. state aq 1827.2 1770.3 285 KBH4 c 227.4 160.2 106.31 96.57 std. state aq 204.22 168.99 212.97 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.107 KBO2 c 981.6 923.4 79.98 66.7 std. state aq 1024.75 962.19 65.3 K2B4O7 c 3334.2 3136.8 208 170.5 KBr c 393.8 380.7 95.9 52.3 std. state aq 373.92 387.23 184.9 120.1 KBrO3 c 360.2 271.2 149.2 105.2 aq 319.45 264.72 264.22 KBrO4 c 287.86 174.47 170.01 120.2 KCl c 436.5 408.5 82.55 51.29 std. state aq 419.53 414.51 159.0 114.6 KClO std. state aq 359.4 320.1 146 KClO2 std. state aq 318.8 266.1 203.8 KClO3 c 397.73 296.31 143.1 100.3 std. state aq 356.35 291.29 264.9 KClO4 c 432.8 303.1 151.0 112.41 std. state aq 381.71 291.88 284.5 KCN c 113.1 101.9 128.52 66.3 std. state aq 101.7 110.9 196.7 K2CO3 c 1151.0 1063.5 155.5 114.44 std. state aq 1181.90 1094.41 148.1 K2C2O4 c 1346.0 aq 1329.72 K2CrO4 c 1403.7 1295.8 200.12 145.98 std. state aq 1385.91 1294.36 255.2 K2Cr2O7 c 2061.5 1882.0 291.2 219.2 K2CuCl4 · 2H2O c 1707.1 1492.9 355.43 253.22 KF c 567.2 537.8 66.5 48.98 std. state aq 585.01 562.08 88.7 84.9 K3Fe(CN)6 c 249.8 129.7 426.06 std. state aq 139.4 120.5 577.8 K4Fe(CN)6 c 594.1 453.1 418.8 322.2 std. state aq 554.0 438.11 505.0 K formate c 679.73 std. state aq 677.93 634.3 192 66.1 K glycinate aq 722.16 598.23 221.8 KH c 57.72 53.01 50.21 37.91 K2HAsO4 std. state aq 1411.10 1281.22 203.3 KH2AsO4 c 1180.7 1036.0 155.02 126.73 std. state aq 1161.94 1036.54 218 KHCrO4 std. state aq 1130.5 1048.1 286.6 KHCO3 c 963.2 863.6 115.5 std. state aq 944.33 870.10 193.7 KHC2O4 std. state aq 1070.7 981.7 251.9 KHF2 c 927.7 859.7 104.3 76.94 aq 902.32 861.40 195.0 KHgBr3 c 550.20 std. state aq 545.6 542.7 360 K2HgBr4 c 963.6 std. state aq 935.5 937.6 515 KHgCl3 c 671.1 std. state aq 641.0 592.5 314 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.108 SECTION 6 K2Hg(CN)4 c 32.2 std. state aq 21.8 51.9 510 K2HgI4 c 775.0 std. state aq 739.7 778.2 565 KH2PO4 c 1568.33 1415.95 134.85 116.57 std. state aq 1548.67 1622.85 192.9 K2HPO4 std. state aq 1796.90 1655.78 171.5 K2H2P2O7 c 2815.8 aq 2783.2 2576.9 368 K3HP2O7 aq 3032.1 2822.1 351 KHS c 265.10 75.3 std. state aq 269.9 271.21 165.3 KHSO3 aq 878.60 811.07 242.3 KHSO4 c 1160.6 1131.4 138.1 std. state aq 1139.72 1039.26 234.3 63.0 KI c 327.9 324.9 106.3 52.9 aq 307.57 334.85 213.8 120.5 KIO3 c 510.43 418.4 151.46 106.48 aq 473.6 411.3 220.9 KIO4 c 467.23 361.41 175.7 aq 403.8 341.8 322 KMnO4 c 837.2 737.6 171.71 117.6 K2MoO4 c 1498.71 std. state aq 1502.5 1402.9 232.2 KNH2 amide c 128.9 KNO2 c 369.82 306.60 152.09 107.40 std. state aq 356.9 315.5 225.5 KNO3 c 494.63 394.93 133.05 96.4 std. state aq 459.74 394.59 249.0 64.9 K2Ni(CN)4 std. state aq 136.8 94.6 423 K2O c 361.5 322.1 94.1 83.7 KO2 c 284.9 239.4 122.5 77.53 K2O2 c 494.1 425.1 102.0 110 KOCN cyanate c 418.65 std. state aq 398.3 380.7 209.2 KOH c 424.7 378.7 78.9 64.9 std. state aq 482.37 440.53 91.6 126.8 K2PdBr4 c 938.1 std. state aq 889.5 884.5 452 K3PO4 c 1950.2 std. state aq 2034.7 1868.6 87.9 K4P2O7 aq 3280.7 3052.2 293 K2PtBr4 c 915.0 std. state aq 872.8 828.4 326.4 K2PtBr6 c 1021.3 std. state aq 975.3 898.7 368 K2PtCl4 c 1054.4 180.2 std. state aq 1003.7 928.0 360 K2PtCl6 c 1229.3 1078.6 333.9 205.60 std. state aq 1171.8 1049.4 424.7 K2ReCl6 c 1310.4 1172.8 371.71 214.68 std. state aq 1266.92 1156.0 460 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.109 KReO4 c 1097.0 994.5 167.82 122.55 std. state aq 1039.7 977.8 303.8 8.4 K2S c 380.7 364.0 105.0 74.7 std. state aq 471.5 480.7 190.4 K2S2 c 432.2 aq 474.5 487.0 233.5 KSCN c 200.16 178.32 124.26 88.53 std. state aq 175.94 190.58 246.9 18.4 K2SeO3 c 979.5 std. state aq 1013.8 936.4 218.0 K2SeO4 c 1110.02 1002.9 222 std. state aq 1103.7 1007.9 259.0 K2SiF6 c 2956.0 2798.7 225.9 std. state aq 2893.7 2766.0 327.2 K2SiO3 c 1548.1 1455.7 146.1 118.4 K2SnBr6 c 1218.0 1160.2 443.1 246.0 K2SnCl6 c 1477.0 1333.0 366.5 246.0 K2SO3 c 1125.5 std. state aq 1140.1 1053.1 176 K2SO4 c 1437.8 1321.4 175.6 131.5 aq 1414.0 1311.1 225.1 251.0 K2SO6 c 1437.7 1319.6 175.5 131.3 std. state aq 1414.02 1311.14 225.1 251 K2S2O3 c 1173.6 std. state aq 1156.9 1089.1 272 K2S2O4 aq 1258.1 1166.9 297 K2S2O7 c 1986.6 1791.6 255 K2S2O8 c 1916.10 1697.41 278.7 213.2 std. state aq 1849.3 1681.6 449.4 K2S4O6 c 1780.7 1613.43 309.66 230.79 std. state aq 1728.8 1607.1 462.3 24.3 KSO3F c 1159.0 K2UO4 c 1921.3 KVO4 c 1154.8 std. state aq 1140.6 1066.9 155 K2Zn(CN)4 c 100.0 std. state aq 162.3 119.7 431 Praseodymium Pr c 0 0 73.2 27.20 Pr3 std. state aq 704.6 679.1 209.0 29.0 Pr(OAc)3 std. state aq 2147.52 1805.56 164.9 PrCl3 c 1056.9 100.0 std. state aq 1206.3 1072.8 42.0 439.0 Pr(NO3)3 c 1229.3 Pr2O3 c 1809.6 117.40 Promethium PmCl3 c 1054.0 Protactinium Pa c 0 0 51.8 Pa4 aq 619.2 PaBr4 c 824.0 787.9 234.0 PaBr5 c 862 820 289 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.110 SECTION 6 PaCl4 c 1043.1 953.0 192.0 PaCl5 c 1144.7 1034.3 238.0 Radium Ra c 0 0 71 Ra2 aq 527.6 561.5 54.0 RaCl2 std. state aq 861.9 823.8 167.0 Ra(NO3)2 c 992 796.2 222 std. state aq 942.2 784.1 347.0 RaSO4 c 1471.1 1365.7 138 std. state aq 1436.8 1306.2 75.0 Radon Rn g 0 0 176.235 20.79 Rhenium Re c 0 0 36.9 25.5 g 769.9 724.6 188.9 20.8 Re std. state aq 46.0 10.1 230.0 ReBr3 c 167.0 ReCl3 c 264 188 123.9 92.4 std. state 2 ReCl6 aq 761 590 251 ReO2 c 423 368 172 ReO3 c 605.0 531 257.3 Re2O7 c 1240.1 1066.1 207.1 166.1 g 1100.0 994.0 452.0 Rhodium Rh c 0 0 31.51 24.98 RhCl3 c 299.2 Rh2O3 c 343.0 110.9 104.0 Rubidium Rb c 0 0 76.78(30) 31.06 g 80.9(8) 53.1 170.094(3) 20.8 Rb std. state aq 251.12(10) 283.97 121.75(25) Rb acetate aq 737.2 653.3 207.9 RbBO2 c 971.0 913.0 94.3 74.1 RbBr c 394.59 381.79 109.96 52.84 std. state aq 372.71 387.94 203.93 RbBrO3 c 367.27 278.11 161.1 Rb2CO3 c 1136.0 1051.0 181.33 117.61 std. state aq 1179.5 1095.8 186.2 RbCl c 435.35 407.81 95.90 52.41 std. state aq 418.32 415.22 178.0 RbClO3 c 402.9 300.4 151.9 103.2 std. state aq 355.14 291.9 283.68 RbClO4 c 437.19 306.9 161.1 std. state aq 380.49 292.59 303.3 RbF c 557.7 75.3 50.5 std. state aq 583.79 562.79 107.53 Rb formate aq 676.7 635.1 213.0 RbHCO3 c 963.2 863.6 121.3 std. state aq 943.16 870.82 212.71 RbHF2 c 922.6 855.6 120.08 79.37 std. state aq 901.11 862.11 213.8 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.111 RbHSO4 c 1159.0 std. state aq 1138.51 1039.98 253.1 RbI c 333.8 328.9 118.4 53.18 std. state aq 306.35 335.56 232.6 RbNO2 c 367.4 306.2 172.0 RbNO3 c 495.05 395.85 147.3 102.1 std. state aq 458.52 395.30 267.8 Rb2O c 339 Rb2O2 c 472.0 RbOH c 418.19 std. state aq 481.16 441.24 110.75 Rb2PtCl6 c 1245.6 1109.6 406 std. state aq 1170.7 1056.6 464 RbReO4 c 1102.9 996.2 167 std. state aq 1038.5 978.6 322.6 Rb2S aq 469.4 482.0 228.4 Rb2SeO4 c 1114.2 std. state aq 1101.7 1009.2 297.1 Rb2SO4 c 1435.61 1316.96 197.44 134.06 std. state aq 1411.60 1312.56 263.2 Ruthenium Ru c 0 0 28.53 24.1 RuBr3 c 138.0 RuCl3 c 205.0 RuI3 c 65.7 RuO2 c 305.0 RuO4 c 239.3 152.3 146.4 lq 228.5 152.3 183.3 Samarium Sm c 0 0 69.58 29.54 Sm3 std. state aq 691.6 666.5 211.7 21 SmCl2 c 815.5 SmCl3 c 1025.9 std. state aq 1193.3 1060.2 42.7 431 SmF3 c 1778.0 1 SmF · ⁄2H O 3 2 c 1825.1 SmI3 c 620.1 Sm(IO3)3 c 1381 Sm(NO3)2 c 1212.1 Sm2O3 c 1823.0 1734.7 151.0 114.5 Sm2(SO4)3 c 3899.1 Scandium Sc c 0 0 34.64 25.52 Sc3 std. state aq 614.2 586.6 255.0 ScBr3 c 743.1 ScCl3 c 925.1 121.3 93.64 ScF3 c 1629.2 1555.6 92 ScOH2 aq 861.5 801.2 134.0 Sc2O3 c 1908.8 1819.41 76.99 94.2 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.112 SECTION 6 Selenium Se c 0 0 41.97 24.98 g 227.1 187.0 174.8 22.1 SeBr2 g 21.0 SeCl4 c 188.3 SeF6 g 1117.0 1017.0 313.8 110.5 SeO g 53.4 26.8 234.0 31.3 SeO2 c 225.4 SeO3 c 166.9 SeO std. state 2 3 aq 509.2 369.9 13 SeO 2 4 aq 599.2 441.4 54.0 Silicon Si c 0 0 18.81(8) 20.00 g 450.(8) 167.981(4) SiBr4 lq 457.3 433.9 277.5 146.4 g 415.5 431.8 377.9 97.1 SiBrCl3 g 350.1 90.9 SiC alpha c 62.8 60.2 16.49 26.76 beta c 65.3 62.8 16.61 26.9 SiCl4 lq 686.93 620.0 239.7 145.3 g 657.0 617.0 330.7 90.26 SiClBr3 g 377.1 95.3 SiClF3 g 1318 1280 309 79.4 SiF4 g 1615.0(8) 1572.7 282.76(50) 73.62 SiH4 g 34.3 56.8 204.65 42.83 SiHBr3 g 317.6 328.5 348.6 80.8 SiHCl3 lq 539.3 482.5 227.6 g 513.0 482.0 313.7 75.8 SiHF3 g 271.9 60.5 SiH2Cl2 g 320.5 295.0 285.7 60.5 SiH3Cl g 142 119 250.8 51.10 SiH3F g 377 353 238.4 47.20 Si2H6 g 80.3 127.2 272.7 80.79 SiI4 c 189.5 191.6 258.1 108.0 lq 174.60 187.49 294.30 159.79 Si3N4 c 743.5 642.1 101.3 99.5 SiO g 99.6 126.4 211.6 29.9 SiO2 quartz c 910.7(10) 856.4 41.46(20) 44.4 high cristobalite c 905.5 853.6 50.05 26.58 SiOF2 g 967 951 271.3 53.69 SiS2 c 213.4 212.6 80.3 77.5 Silver Ag c 0 0 42.55(20) 25.4 g 284.9(8) 172.997(4) Ag std. state aq 105.79(8) 77.12 73.45(40) 21.8 Ag2 in 4M HClO4 aq 268.6 269.0 88 AgAt c 45.2 133.1 55.7 AgBr c 100.37 96.90 107.11 52.38 AgBrO3 c 10.5 71.3 151.9 AgCl c 127.01(5) 109.8 96.25(20) 50.79 AgClO2 c 8.79 75.7 134.56 87.32 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.113 AgClO3 c 30.3 64.5 142.0 AgClO4 c 31.13 162.3 std. state aq 23.77 68.49 254.8 AgCN c 146.0 156.9 107.19 66.73 std. state Ag(CN)2 aq 270.3 305.4 192 Ag2CrO4 c 731.74 641.83 217.6 142.26 Ag2CO3 c 505.9 436.8 167.4 112.26 Ag2C2O4 c 673.2 584.1 209 AgF c 204.6 83.7 51.92 AgF2 c 360.0 AgI c 61.84 66.19 115.5 56.82 AgIO3 c 171.1 93.7 149.4 102.93 AgN3 c 308.8 376.1 104.2 std. state Ag(NH ) 3 2 aq 111.29 17.24 245.2 AgNO3 c 124.4 33.47 140.92 93.05 std. state aq 101.80 34.23 219.2 64.9 AgO c 12.15 13.83 58.5 44.0 Ag2O c 31.1 11.21 121.3 65.86 Ag2O3 c 33.9 121.4 100.0 Ag2S argentite c 32.59 40.67 143.9 76.53 Ag3Sb c 23.0 171.5 101.7 AgSCN c 87.9 101.38 131.0 63 Ag2Se c 38 44.4 150.71 81.76 Ag2SO4 c 715.9 618.4 200.4 131.4 std. state aq 698.10 590.36 165.7 251 Ag2Te c 37.2 43.1 154.8 87.5 Sodium Na c 0 0 51.30(20) 28.15 g 107.5(7) 153.718(3) Na std. state aq 240.34(6) 261.88 58.45(15) 46.4 NaAg(CN)2 std. state aq 30.12 43.5 251 NaOAc c 708.81 607.27 123.0 79.9 std. state aq 726.13 631.28 145.6 40.2 NaAlCl4 c 1142.0 996.4 188.3 154.98 Na3AlCl6 c 1979.0 1829 347.0 244.1 NaAlF4 g 1869.0 1827.5 345.7 105.9 Na3AlF6 c 3361.2 3136.7 239.5 215.89 NaAlH4 c 115.5 NaAlO2 c 1137.3 1069.2 70.40 73.64 NaAl(SO4)2 std. state aq 2590 2238 222.6 NaAlSiO4 c 2092.8 1978.2 124.3 NaAsO2 c 660.53 std. state aq 669.15 611.91 99.6 Na3AsO4 c 1540 std. state aq 1608.50 1434.19 14.2 NaAu(CN)2 aq 2.1 23.9 230 NaBF4 c 1844.7 1750.1 145.31 120.3 std. state aq 1812.1 1748.9 243 NaBH4 c 188.6 123.9 101.3 86.8 std. state aq 199.60 147.61 169.5 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.114 SECTION 6 NaBO2 c 977.0 920.7 73.54 65.94 std. state aq 1012.49 940.81 21.8 NaBO3 · 4H2O c 2114.2 Na2B4O7 c 3291.1 3096.0 189.0 186.8 std. state aq 3271.1 3076.9 192.9 Na2B4O7 · 10H2O c 6298.6 5516.6 586 614.5 NaBr c 361.08 349.00 86.82 51.38 std. state aq 361.66 365.85 141.4 95.4 NaBr3 std. state aq 370.54 368.95 274.5 NaBrO std. state aq 384.3 295.4 100 NaBrO3 c 334.09 242.6 128.9 std. state aq 307.19 243.34 220.9 NaBrO4 std. state aq 227.19 143.93 258.57 Na2[Cd(CN)4] aq 52.3 16.3 439 NaCl c 411.2 384.1 72.1 50.51 std. state aq 407.27 393.17 115.5 90.0 NaClO std. state aq 347.3 298.7 100 NaClO2 c 307.02 115.9 std. state aq 306.7 244.8 160.3 NaClO3 c 365.77 262.34 123.4 std. state aq 344.09 269.91 221.3 NaClO4 c 383.3 254.9 142.3 111.3 std. state aq 369.45 270.50 241.0 NaCN c 87.5 76.4 115.6 70.4 std. state aq 89.5 89.5 153.1 Na3[Co(NO2)6] c 1423.0 Na2CO3 c 1130.7 1044.4 135.0 112.3 aq 1157.4 1051.6 61.6 Na2CO3 · H2O c 1431.26 1285.41 168.11 145.60 Na2CO3 · 10H2O c 4081.32 3428.20 564.0 550.32 Na2C2O4 c 1318.0 142 std. state aq 1305.4 1197.9 163.6 Na2CrO4 c 1342.2 1235.0 176.61 142.13 std. state aq 1361.39 1251.64 168.2 Na2Cr2O7 c 1978.6 std. state aq 1970.7 1825.1 379.9 Na ethoxide c 413.80 NaF c 576.6 546.3 51.11 46.85 std. state aq 572.75 540.70 45.2 60.3 Na3[Fe(CN)6] std. state aq 158.6 56.5 447.3 Na4[Fe(CN)6] std. state aq 505.0 352.63 231.0 Na formate c 666.5 600.00 103.76 82.68 std. state aq 666.67 613.0 151 41.4 NaH c 56.34 33.55 40.02 36.39 Na2HAsO4 std. state aq 1386.58 1238.51 116.3 NaH2AsO4 std. state aq 1149.68 1015.16 176 NaHCO3 c 950.81 851.0 101.7 87.61 std. state aq 932.11 848.72 150.2 NaHCrO4 std. state aq 1118.4 1026.8 243.1 NaHF2 c 920.27 852.20 90.92 75.02 std. state aq 890.06 840.02 151.5 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.115 Na2H2[Fe(CN)6] aq 24.7 134.64 335 NaH2PO4 c 1536.8 1386.2 127.49 116.86 std. state aq 1536.4 1392.27 149.4 Na2HPO4 c 1748.1 1608.3 150.50 135.31 std. state aq 1772.38 1613.06 84.5 Na2H2P2O7 c 2764.8 2522.5 220.20 198.15 NaHS c 237.23 std. state aq 257.73 249.83 121.8 NaHSeO3 c 759.23 std. state aq 754.67 673.41 194.1 NaHSeO4 c 821.40 std. state aq 821.74 714.2 208.4 NaHSO4 c 1125.5 992.9 113.0 std. state aq 1127.46 1017.88 190.8 38 NaI c 287.9 286.1 98.50 52.1 std. state aq 295.31 313.47 170.3 95.8 NaI3 aq 291.6 313.4 298.3 NaIO3 c 481.79 135.1 92.1 std. state aq 461.50 389.95 177.4 NaIO4 c 429.28 323.09 163.0 std. state aq 391.62 320.49 280 Na methoxide c 367.8 294.80 110.58 69.45 std. state aq 433.59 332.46 17.6 NaMnO4 std. state aq 781.6 709.2 250.2 Na2MnO4 c 1156.0 std. state aq 1134 1024.7 176 Na2MoO4 c 1468.12 1354.30 159.70 141.71 std. state aq 1478.2 1360.2 145.2 Na2Mo2O7 c 2245.05 2058.19 250.6 217.15 NaN3 c 21.71 93.76 96.86 76.61 std. state aq 35.02 86.2 166.9 NaNH2 c 123.9 64.0 76.90 66.15 NaNbO3 c 1315.9 1233.0 117 std. state aq 1265.7 1194.1 155 NaNO2 c 358.65 284.60 103.8 std. state aq 344.8 294.1 182.0 51.0 NaNO3 c 467.85 367.06 116.52 92.88 std. state aq 447.48 373.21 205.4 40.2 Na2[Ni(CN)4] aq 112.6 51.9 335 NaO2 c 260.2 218.4 115.9 72.14 Na2O c 414.2 375.5 75.04 69.10 Na2O2 c 510.9 449.6 94.8 89.3 NaOCN cyanate c 405.39 358.2 96.7 86.6 std. state aq 386.2 359.4 165.7 NaOH c 425.6 379.4 64.4 59.5 std. state aq 469.15 419.20 48.1 102.1 Na3PO4 c 1917.40 1788.87 173.80 153.47 std. state aq 1997.9 1804.6 46 Na4P2O7 c 3188 2969.4 270.29 241.12 std. state aq 3231.7 2966.9 117 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.116 SECTION 6 NaReO4 c 1057.09 953.74 151.5 133.89 std. state aq 1027.6 956.5 260.2 Na2S c 364.8 349.8 83.7 82.8 std. state aq 443.3 438.1 103.3 Na2S2 c 397.0 392 151 std. state aq 450.2 444.3 146.4 NaSCN c 170.50 std. state aq 163.68 169.20 203.84 6.3 Na2Se c 341.4 Na2SeO3 c 958.6 std. state aq 989.5 893.7 130 Na2SeO4 c 1069.0 Na2SiF6 c 2909.6 2754.2 207.1 187.1 Na2SiO3 c 1554.9 1462.8 113.8 111.9 Na2Si2O5 c 2470.1 2324.1 164.1 157.0 NaSnBr3 aq 615.1 608.8 310 NaSnCl3 aq 727.2 692.0 318 Na2SO3 c 1100.8 1012.5 145.94 120.25 std. state aq 1115.87 1010.44 87.9 Na2SO4 c 1387.1 1270.2 149.6 128.2 std. state aq 1389.51 1268.40 138.1 201 Na2SO4 · 10H2O c 4327.26 3647.40 592.0 Na2S2O3 c 1123.0 1028.0 155 std. state aq 1132.40 1046.0 184.1 Na2S2O3 · 5H2O c 2607.93 2230.1 Na2S2O4 dithionate c 1232.2 std. state aq 1233.9 1124.2 209.2 Na2S2O7 c 1925.1 1722.1 202.1 Na2S2O8 aq 1825.1 1638.9 362.3 Na2Te c 349.4 Na2TeO4 c 1270.7 Na2TiO3 c 1591.2 1496.2 121.67 125.65 Na2UO4 beta c 1893.3 1777.78 166.02 146.65 Na3UO4 c 2025.1 1901.2 198.20 173.01 NaVO3 c 1145.79 1064.12 113.68 97.57 std. state aq 1128.4 1045.6 109 Na3VO4 c 1757.87 1637.83 190.0 164.85 Na2V2O7 c 2918.84 2712.52 318.4 269.74 Na2WO4 c 1544.7 1429.8 160.3 139.8 Na2[Zn(CN)4] aq 138.1 77.0 343 Strontium Sr c 0 0 55.0 26.79 Sr2 std. state aq 545.8 559.44 32.6 Sr(OAc)2 c 1487.4 Sr3(AsO4)2 c 3317.1 3080.3 255 SrBr2 c 717.6 697.1 135.1 75.3 aq 788.89 767.39 132.2 SrCl2 c 828.9 781.1 114.9 75.59 std. state aq 880.10 821.95 80.3 Sr(ClO4)2 c 762.69 std. state aq 804.46 576.68 331.4 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.117 SrCO3 c 1220.1 1140.1 97.1 81.42 aq 1222.9 1087.3 89.5 SrC2O4 c 1370.7 SrF2 c 1216.3 1164 82.1 70.0 Sr formate c 1393.3 SrHPO4 c 1821.7 1688.7 121 Sr(H2PO4)2 c 3134.7 SrI2 c 558.1 557.7 159.1 77.95 std. state aq 656.18 662.62 190.0 Sr(IO3)2 c 1019.2 855.2 234 SrMoO4 c 1561.1 128.9 117.07 Sr(NO2)2 c 762.3 Sr(NO3)2 c 978.22 780.0 194.56 149.87 std. state aq 960.52 782.12 260.2 SrO c 592.0 561.9 54.4 45.0 SrO2 c 654.4 54 79.45 Sr(OH)2 c 959 881 97 74.9 Sr3(PO4)2 c 4122.9 SrS c 472.4 467 68.2 48.7 SrSe c 385.8 SrSeO3 c 1047.7 SrSeO4 c 1142.7 SrSiO3 c 1633.9 1549.8 96.7 88.53 Sr2SiO4 c 2304.6 2191.2 153.1 134.26 SrSO3 c 1177.0 SrSO4 c 1453.1 1341.0 117.0 107.78 aq 1455.1 1304.0 12.6 Sr2TiO4 c 2287.4 2178.6 159.0 143.68 Sulfur S rhombic c 0 0 32.054(50) 22.60 monoclinic c 0.360 0.070 33.03 23.23 g 277.17(15) 167.829(6) 2 S2 aq 33.1 85.8 14.6 S2 g 128.60(30) 228.167(10) S8 g 101.25 49.16 430.20 156.06 S2Br2 lq 13.0 SCl2 lq 50.0 28.5 184 91.0 SClF5 lq 1065.7 S2Cl2 lq 59.4 39 224 124.3 SCN aq 76.4 92.7 144.3 40.2 SF4 g 763.2 722.0 299.6 77.60 SF6 g 1220.5 1116.5 291.5 96.96 S2F10 g 2064 1861 397 176.7 SO g 6.3 19.9 222.0 30.2 SO2 g 296.81(20) 300.13 248.223(50) 39.88 SO3 g 395.7 371.02 256.77 50.66 SOCl2 g 212.50 198.3 309.8 66.5 SOF2 g 544 502 278.7 56.81 SO2Cl2 g 364.0 320.0 311.9 77.01 SO2ClF g 556 513 303 71.6 SO2F2 g 759 712 284.0 66.0 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.118 SECTION 6 2 SO3 aq 635.5 486.5 29.0 2 SO4 aq 909.34(40) 744.5 18.50(40) 293.0 2 S O 2 3 aq 652.3 522.5 67.0 2 S O 2 4 aq 753.5 600.3 92.0 2 S O 2 8 aq 1344.7 1114.9 244.3 Tantalum Ta c 0 0 41.47 25.40 TaB2 c 209.2 44.4 48.12 TaBr5 c 598.3 305.4 155.73 TaC c 144.1 142.7 42.37 36.79 Ta2C c 197.5 83.7 60.96 TaCl5 c 859.0 746 222 148 TaF5 c 1903.6 195.0 130.46 Ta2H c 32.6 69.0 79.1 90.8 TaI5 c 490 343 155.6 TaN c 251 50.6 42.1 TaO2 g 201 209 280 44.0 Ta2O5 c 2046 1911.0 143.1 135.0 TaOCl3 g 780.7 361.5 98.53 Technetium Tc c 0 0 33.47 24.27 Tc2O7 c 1113 Tellurium Te c 0 0 49.70 25.70 TeBr4 c 190.4 TeCl4 c 326.4 209 138.5 TeF6 g 1318.0 335.77 116.90 TeO2 c 322.6 270.3 79.5 63.89 Te(OH) 3 aq 322.6 496.1 111.7 Terbium Tb c 0 0 73.22 28.91 Tb3 std. state aq 682.8 651.9 226.0 17.0 TbCl3 c 997.1 std. state aq 1184.1 1045.6 59.0 393.0 TbO2 c 971.5 Tb2O3 c 1865.2 115.9 Tb2(SO4)3 std. state aq 4131.7 3597.4 Thallium Tl c 0 0 64.18 26.32 Tl std. state aq 5.36 32.38 125.5 Tl3 std. state aq 196.6 214.6 192.0 TlBr c 173.2 167.36 120.5 50.50 std. state aq 116.19 136.36 207.9 TlBr3 aq 168.2 97.1 54.0 TlBrO3 c 136.4 53.14 168.6 std. state aq 78.2 30.5 288.7 TlCl c 204.10 184.93 111.30 50.92 std. state aq 161.80 163.64 182.00 TlCl3 c 315.1 std. state aq 305.0 179.1 23.0 TlClO3 aq 93.7 35.6 287.9 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.119 Tl2CO3 c 700 614.6 155.2 TlF c 324.6 83.3 54.77 std. state aq 327.27 311.21 111.7 TlI c 123.9 125.39 127.6 52.51 std. state aq 49.83 83.97 236.8 TlNO3 c 243.93 152.46 160.7 99.50 aq 202.0 143.7 272.0 Tl2O c 178.7 147.3 126 TlOH c 238.9 195.8 88 std. state aq 224.64 189.66 114.6 Tl2S c 97.1 93.7 151.0 Tl2Se c 59.0 59.0 172.0 Tl2SO4 c 931.8 830.48 230.5 std. state aq 898.56 809.40 271.1 Thorium Th c 0 0 51.8(5) 27.32 g 602.(6) 190.17(5) Th4 std. state aq 769.0 705.1 422.6 ThBr4 c 965.3 927.2 230 ThC1.94 c 146 147.7 68.49 56.69 ThCl4 c 1186.2 1094.1 190.4 120.3 ThF3 g 1166.1 1160.6 339.2 73.3 ThF4 c 2097.8 2003.4 142.05 110.7 undissoc; std. state aq 2115.0 1947.2 105 ThH2 c 139.8 100.0 50.71 36.69 ThI4 c 664.8 655.2 255 ThN c 391.2 363.6 56.07 45.2 Th3N4 c 1315.0 1212.9 201 155.90 Th(NO3)4 c 1441.4 ThO2 c 1226.4(35) 1169.20 65.23(20) 61.76 ThOCl2 c 1232.2 1156.0 123.4 91.25 ThOF2 c 1665.2 1589.5 105 Th(OH)3 aq 1030.1 920.5 343.0 2 Th(OH)2 aq 1282.4 1140.9 218.0 Th3P4 c 1140.2 1112.9 221.8 ThS2 c 626.3 620.1 96.2 Th2S3 c 1083.7 1077.0 180 Th(SO4)2 c 2542.6 2310.4 159.0 173.47 Thullium Tm c 0 0 74.01 27.03 Tm3 std. state aq 697.9 661.9 243.0 25.0 TmCl3 c 986.6 std. state aq 1199.1 1055.6 75.0 385.0 Tm2O3 c 1888.7 1794.5 139.8 116.7 Tin Sn white c 0 0 51.08(8) 26.99 aq 301.2(15) 168.492(4) gray c 2.09 0.13 44.14 25.77 Sn2 in aqueous HCl aq 8.9(10) 27.2 16.7(40) Sn4 in aqueous HCl aq 30.5 2.5 117 SnBr2 c 243.5 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.120 SECTION 6 SnBr4 c 377.4 350.2 264.4 136.44 g 314.6 331.4 411.9 103.4 SnCl2 c 325.1 130 79.33 std. state aq 329.7 299.6 172 SnCl4 lq 511.3 440.2 258.6 165.3 g 471.5 432.2 365.8 98.3 SnH4 g 162.8 188.3 227.7 48.95 SnI2 c 143.5 SnI4 g 446.1 105.4 SnO tetragonal c 280.71(20) 251.9 57.17(30) 44.31 SnO2 tetragonal c 577.63(20) 515.8 49.04(10) 52.59 Sn(OH) aq 286.2 254.8 50.0 Sn(OH)2 c 561.1 491.6 155.0 SnS c 100 98.3 77.0 49.25 SnS2 c 167.4 87.4 70.12 Titanium Ti c 0 0 30.72(10) 25.0 g 473.(3) 180.298(10) TiB c 160 160 35 29.7 TiB2 c 280 275 28.5 44.3 TiBr2 c 402 383 108 78.7 TiBr3 c 548.5 523.8 176.6 101.7 TiBr4 c 616.7 589.5 243.5 131.5 TiC c 184 180 24.2 33.81 TiCl2 c 513.8 464.4 87.4 69.8 TiCl3 c 720.9 653.5 139.7 97.2 TiCl4 lq 804.2 737.2 252.3 145.2 g 763.2(30) 726.3 353.2(40) 95.4 TiF3 c 1435 1362 88 92 TiF4 c 1649 1559 133.96 114.27 TiH2 c 144 105.1 29.71 30.09 TiI4 c 375 371.5 249.4 125.6 TiN c 265.8 243.8 52.73 37.08 TiO c 519.7 495.0 50.0 39.9 TiO2 c 944.0(8) 888.8 50.62(30) 55.0 Ti2O3 c 1520.9 1434.2 78.8 97.4 Ti3O5 c 2459.4 2317.4 129.3 154.8 Tungsten W c 0 0 32.6 24.3 WBr5 c 312 270 272 155 WBr6 c 348.5 290.8 314 181.4 W(CO)6 c 953.5 331.8 242.5 WCl4 c 443 360 198.3 129.7 WCl5 c 515 402 217.6 155.6 WCl6 c 602.5 456 238.5 175.4 WF6 lq 1747.7 1631.4 251.5 g 1721.7 1631.4 341.1 119.0 WO2 c 589.9 533.86 50.5 56.1 WO3 c 842.9 764.1 75.9 73.8 WO2 4 aq 1075.7 WOCl4 c 671 549 173 146 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.121 WOF4 c 1407 1298 176.0 133.6 WO2Cl2 c 780 703 200.8 104.4 Uranium U c 0 0 50.20(20) 27.66 g 533.(8) 199.79(10) U3 aq 489.1 476.2 188.0 U4 aq 591.2 531.9 410.0 UB2 c 161.6 159.4 55.52 55.77 UBr3 c 699.2 673.6 192 108.8 UBr4 c 802.5 767.8 238.0 128.0 UBr5 c 810.9 769.9 293 160.7 UC c 98.3 99.2 59.20 50.12 UCl3 c 866.5 799.1 159.0 102.5 UCl4 c 1019.2 930.1 197.1 122.0 aq 1259.8 1056.8 184.0 UCl5 c 1058 950 242.7 144.6 UCl6 c 1092 962 285.8 175.7 UF3 c 1502.1 1433.4 123.43 95.10 UF4 c 1921.2 1823.3 151.67 116.02 UF5 c 2075.3 1958.6 199.6 132.3 UF6 c 2197.0 2068.6 227.6 166.8 UH3 c 127.2 72.8 63.68 49.29 UI3 c 460.7 459.8 222 112.1 UI4 c 512.1 506.7 264 134.3 UN c 290.8 265.7 62.43 47.57 UO2 c 1085.0(10) 1031.8 77.03(20) 63.60 std. state 2 UO2 aq 1019.0(15) 953.5 98.2(30) UO3 gamma c 1223.8(12) 1145.7 96.11(40) 81.67 U3O7 c 3427.1 3242.9 250.5 215.5 U3O8 c 3574.8(25) 3369.8 282.55(50) 238.36 U4O9 c 4510.4 4275.1 334.1 293.3 UOBr2 c 973.6 929.7 158.00 98.00 UOCl2 c 1066.9 996.2 138.32 95.06 UOF2 c 1499.1 1428.8 119.2 UO2(OAc)2 c 1963.55 UO2Br2 c 1137.6 1066.5 169.5 UO2Cl2 c 1243.9 1146.4 150.5 107.86 std. state aq 1353.9 1215.9 15.5 UO2CO3 c 1691.2 1562.7 138 std. state aq 1696.6 1481.6 154.4 UO2C2O4 c 1796.94 UO2F2 c 1653.5 1557.4 135.56 103.22 std. state aq 1684.0 1551.3 125.1 UO2(NO3)2 c 1349.3 1105.0 243 std. state aq 1434.3 1176.1 195.4 UO2(OH)2 std. state aq 1479.5 1267.8 118.8 UO2SO4 c 1845.1 1683.6 154.8 145.2 std. state aq 1928.8 1698.3 77.4 US2 c 527 526.4 110.42 74.64 US3 c 549.4 547.3 138.49 95.60 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.122 SECTION 6 Vanadium V c 0 0 28.94 24.90 VBr4 g 336.8 VCl2 c 452 406 97.1 72.22 VCl3 c 580.7 511.3 131.0 93.18 VCl4 lq 569.4 503.8 255.0 161.7 VF5 lq 1480.3 1373.2 175.7 g 1433.9 1369.8 320.9 98.58 VN c 217.15 191.08 37.28 38.00 VO c 431.8 404.2 39.0 45.5 VO2 c 717.6 51.5 62.59 std. state VO2 aq 649.8 587.0 42.3 std. state 2 VO2 aq 486.6 446.4 133.9 std. state VO3 aq 888.3 783.7 50.2 V2O3 c 1218.8 1139.3 98.3 103.2 V2O4 c 1427 1318.4 103 115.4 V2O5 c 1550 1419.3 130 130.6 V3O5 c 1933 1803 163 VOCl3 lq 734.7 668.6 244.4 150.62 g 695.6 659.3 344.4 89.9 VOSO4 c 1309.2 1169.9 108.8 Xenon Xe g 0 0 169.685(3) 20.786 XeF2 c 164.0 XeF4 c 261.5 123.0 XeF6 c 360 g 297 XeO3 c 402 XeOF4 lq 146 Ytterbium Yb c 0 0 59.87 26.74 Yb2 std. state aq 527.0 Yb3 std. state aq 674.5 643.9 238.0 25.0 Yb(OAc)3 undissoc; std.
state aq 2105.0 1772.84 183.3 YbCl2 c 799.6 YbCl3 c 959.8 std. state aq 1176.1 1037.6 71.0 385.0 Yb(NO3)3 std. state aq 1296.6 Yb2O3 c 1814.6 1726.7 133.1 115.35 Yttrium Y c 0 0 44.4 26.51 Y3 std. state aq 723.4 693.7 251.0 YCl3 c 1000 136.8 75.0 YF3 c 1718.8 1644.7 100 Y2O3 c 1905.31 1816.65 99.08 102.51 Y(OH)3 c 1435 1291 99.2 Zinc Zn c 0 0 41.63(15) 25.40 g 130.40(40) 160.990(4) Zn2 std. state aq 153.39(20) 147.1 109.8(5) 46.0 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 THERMODYNAMIC PROPERTIES 6.123 ZnBr2 c 328.65 312.13 138.5 65.7 std. state aq 396.98 354.97 52.72 238.0 ZnCl2 c 415.05 369.45 111.46 71.34 std. state aq 488.19 409.53 0.84 226.0 std. state 2 Zn(CN)4 aq 342.3 446.9 226 ZnCO3 c 812.78 731.57 82.4 79.71 ZnF2 c 764.4 713.3 73.68 65.7 std. state aq 819.14 704.67 139.8 167.0 ZnI2 c 208.03 208.95 161.1 65.69 aq 264.3 250.2 110.5 238.0 Zn(NO3)2 c 483.7 aq 568.6 369.6 180.7 126.0 ZnO c 350.46(27) 320.52 43.65(40) 40.25 Zn(OH)2 c 641.91 553.59 81.2 std. state aq 613.88 461.62 133.5 251 ZnS sphalerite c 205.98 201.29 57.7 46.02 wurtzite c 192.6 ZnSe c 163 163 84.0 ZnSO4 c 982.84 871.5 110.5 99.2 aq 1063.2 891.6 92.0 247.0 Zn2SiO4 c 1636.7 1523.2 131.42 123.3 Zirconium Zr c 0 0 39.0 25.40 ZrB c 322 318.2 35.94 48.24 ZrBr2 c 405 382 116 86.7 ZrBr4 c 760.7 725.3 224 124.8 ZrC c 197 193 33.32 37.90 ZrCl2 c 502.0 386 110 72.6 ZrCl3 c 714 646 146 96 ZrCl4 c 981 890 181.4 119.8 ZrF2 c 962 913 75 66 ZrF4 c 1911.3 1810.0 104.7 103.6 ZnH2 c 169.0 128.8 35.0 31.0 ZrI2 c 259 258 150.2 94.1 ZrI3 c 397.5 394.9 204.6 103.8 ZrI4 c 488 485.4 260 127.8 ZrN c 365 336.7 38.86 40.44 ZrO2 c 1100.6 1042.8 50.36 56.19 ZrSiO4 c 2033.4 1919.1 84.1 98.7 ZrSO4 c 2217.1 172.0 TABLE 6.3 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds (Continued) Physical fH fG S C p Substance State kJ · mol1 kJ · mol1 J · deg1 · mol1 J · deg1 · mol1 6.124 SECTION 6 TABLE 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds Abbreviations Used in the Table Hm, enthalpy of melting (at the melting point) in kJ · mol1 Hv, enthalpy of vaporization (at the boiling point) in kJ · mol1 Hs, enthalpy of sublimation (or vaporization at 298 K) in kJ · mol1 Cp, specific heat (at temperature specified on the Kelvin scale) for the physical state in existence (or specified: c, lq, g) at that temperature in J · K1 · mol1 Ht, enthalpy of transition (at temperature specified, superscript, measured in degrees Celsius) in kJ · mol1 Substance Hm Hv Hs Cp 400 K 600 K 800 K 1000 K Aluminum Al 10.7l 294.0 326.4 25.8 27.9 30.6 34.9(lq) Al(BH4)3 30 Al6BeO10 402 324.3 380.6 407.8 425.2 AlBr3 11.25 23.5 125.0 125.0 125.0 125.0 Al4C3 138.5 159.2 169.7 176.1 AlCl3 35.4 116 100.1 117.7 135.2 152.8 AlF3, Ht 0.56455 98 86.3 97.3 98.5 100.8 AlI3 15.9 32.2 112 108.5 121.3 AlN 36.7 43.5 46.8 48.5 Al2O3 corundum 111.4 96.1 112.5 120.1 124.8 AlOCl 64.3 72.6 76.9 79.3 Al2SiO5 andalusite 149.6 174.5 186.1 194.0 kyanite 148.3 176.2 188.3 196.2 sillimanite 147.5 173.0 185.0 193.5 Al6Si2O13 mullite 390.7 459.8 494.1 513.4 Al2S3 55 115.0 124.1 129.7 134.0 Al2TiO5 162.0 182.8 192.9 200.0 Americium Am 14.39 Ammonium NH3 5.66 23.35 19.86 38.7 45.3 51.1 56.2 ND3 ammonia-d3 42.9 51.5 58.6 64.3 NH4Br, Ht 3.22138 NH4Cl, Ht 1.04630.6 103 Ht 3.950184.6 NH4ClO4 148.7 NH4I, Ht 2.9313 20.9 168.5525 89.0 103.3 117.7 NH4NO3 6.40 Antimony Sb 19.87 193.43 25.9 27.7 29.5 31.4 SbBr3 14.6 59 125.5(lq) 81.6(g) 82.2 82.5 SbCl3 12.7 45.2 123.4(lq) 81.6(g) 82.2 82.5 SbCl5 10.0 48.4 SbH3 21.3 SbI3 22.8 68.6 106.6(lq) 143.5(lq) 82.2(g) 82.5(g) Sb2O3, Ht 7.1573 54.4 74.6 108.5 122.8 137.1 150.6 Sb2S3 123.3 134.4 145.4 Argon Ar 1.12 6.43 20.8 20.8 20.8 20.8 THERMODYNAMIC PROPERTIES 6.125 Arsenic As 24.44 25.6 27.5 29.3 AsBr3 11.7 41.8 AsCl3 10.1 35.0 133.5(lq) 88.3(g) 88.3 AsF3 10.4 29.7 AsF5 20.8 AsH3 16.7 45.4 53.2 58.8 63.9 AsI3 59.3 As2O3 18.4 116.4 Barium Ba 7.12 140.3 33.2 33.9(c) 39.1(lq) BaBr2 32.2 79.2 83.5 87.9 92.2 BaCl2, Ht 16.9925 15.85 246.4 77.3 80.4 84.3 89.5 BaCO3, Ht 18.8806 40 99.0 113.0 124.2 134.6 BaF2, Ht 2.671207 17.8 285.4 405.1 75.9 80.3 84.9 94.6 BaH2 25 BaI2 26.5 43.9 302.5 79.5 83.5 87.5(c) 113.0(lq) BaMoO4 129.5 143.5 152.2 159.3 BaO 46 330.6 424.3 49.9 53.2 55.4 57.1 Ba(OH)2 16 112.6 122.7(c) 141.0(lq) BaS 63 BaSO4 40 119.4 131.6 135.9 137.9 BaTiO3, Ht 0.06775 111.5 121.8 126.1 128.7 Beryllium Be 7.895 297 291 20.0 23.3 25.5 27.3 BeAl2O4, chrysoberyl 170.0 130.3 155.0 166.8 174.2 BeBr2 18 100.0 515 70.6 77.6(c) 113.0(lq) 113.0 Be2C 75.3 47.6 51.9 64.7 73.2 BeCl2, Ht 6.8403 8.66 105 136.0 68.7 75.8(c) 121.4(lq) 121.4 BeF2, Ht 0.92227 4.77 199.4 62.5 67.5 74.1(c) 85.6(lq) BeI2 18 70.5 125 76.9 84.2 Be3N2 129.3 84.4 106.5 117.6 123.6 BeO, Ht 6.72100 86 33.8 42.4 46.7 49.3 BeS 120.8 149.2 166.0 174.1 Be2SiO4 103.9 126.8 149.8 174.4 BeSO4, Ht 1.113590 6 103.9 126.8 149.8 174.4 Ht 19.55635 BeWO4 113.0 131.3 142.9 153.0 Bismuth Bi 11.30 151 27.0(c) 31.8(lq) 31.8 31.8 BiBr3 21.7 75.4 BiCl3 10.9 72.6 BiI3 20.9 Bi2O3, Ht 116.7717 28.5 116.9 123.6 130.3 137.0 Bi2S3 131.1 136.2 141.3 146.4 Bi2Te3 120.5 164.3 179.7 192.3 Boron B 50.2 480 552 15.7 20.8 23.4 25.0 BBr3 30.5 72.6(g) 77.6 79.8 81.1 B4C 105 76.4 98.4 107.7 114.3 TABLE 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (Continued) Substance Hm Hv Hs Cp 400 K 600 K 800 K 1000 K 6.126 SECTION 6 BCl3 2.10 23.8 23.1 68.4(g) 75.0 78.2 79.8 BF3 4.20 19.3 57.5 67.1 72.6 75.8 F2B-BF2 28 BH3 38.9 45.4 52.3 58.4 B2H6 4.44 14.3 74.3 101.3 121.7 136.4 B4H9 6.13 28.4 130.2(g) 187.6 227.4 254.4 B4H10 27.1 B5H11 31.8 B10H14 32.5 48.5 76.7 250.0(lq) 351.6(g) 417.2 460.4 BI3 40.5 BN 81 728 26.3 35.2 40.5 44.3 B3N3H6 borazine 32.1 126.9 169.4 197.2 216.6 B2O3 24.56 390.4 77.9 98.1(c) 129.7(lq) 129.7 B3O3H3 boroxin 44.8 120.1 162.8 194.6 214.2 Bromine Br2 10.57 29.96 30.9 36.7(g) 37.3 37.6 37.8 BrCl 10.4 34.7 BrF 25.1 BrF3 12.05 47.6 72.6 78.0 80.1 81.2 BrF5 5.67 30.6 113.0 123.2 127.3 129.3 Cadmium Cd 6.19 99.9 27.1(c) 29.7(lq) 29.7 29.7 CdBr2 20.9 115 CdCl2 48.58 124.3 79.8 86.3 92.7 104.6 CdF2 22.6 214 CdI2 15.3 115 Cd(NO3)2 · 4H2O 32.6 CdO 225.1 43.8 45.6 47.3 49.1 CdS 209.6 55.5 56.2 57.0 57.7 CdSO4 108.3 123.8 139.2 154.7 Calcium Ca, Ht 0.934 8.54 154.7 26.9 30.0 33.8 39.7 Ca(BO2)2 74.1 125.0 144.9 157.2 176.2 CaB4O7 113.4 202.0 243.0 267.7 287.8 CaBr2 29.1 200 298.3 78.0 80.5 83.5 88.6 CaC2 carbide 32 CaCl2 28.05 235 75.6 78.2 80.9 85.8 CaCN2 cyanamide 0.432 CaCO3 36 CaF2, Ht 4.81151 29.3 308.9 441 73.9 78.5 83.9 90.1 CaH2 6.7 CaI2 41.8 179.4 243 79.2 83.1 87.1 91.0 Ca[Mg(CO3)2] dolomite 143.3 163.3 176.8 188.3 CaMoO4 131.3 144.9 153.5 150.6 Ca3N2 122.2 140.8 159.2 Ca(NO3)2 21.4 173.7 210.5 243.4 CaO 79.5 46.6 50.5 52.4 53.7 Ca(OH)2, Hdec 99.2 98.4 107.4 Ca3(PO4)2, Ht 15.51100 255.1 295.6 331.3 365.7 CaS 70 49.2 51.5 53.0 54.1 TABLE 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (Continued) Substance Hm Hv Hs Cp 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.127 CaSiO3, Ht 7.11190 56.1 100.4 113.0 119.2 123.8 Ca2SiO4, Ht 4.44675 146.4 162.8 179.2 184.0 Ht 3.261420 3CaO · SiO2 196.4 218.4 230.8 240.4 CaSO4 28.0 109.7 129.5 149.2 169.0 1 CaSO · ⁄2H O 4 2 147.4 167.2 186.9 206.7 CaSO4 · 2H2O 260.7 280.3 300.0 319.8 CaTiO3, Ht 2.301257 112.3 123.1 127.7 130.4 Ca(VO2)2 182.9 206.7 230.5 254.4 CaWO4 127.6 140.2 147.3 152.8 Carbon C graphite 117 12.0 16.6 19.7 21.7 (CN)2 cyanogen 8.1 23.3 19.7 61.9(g) 68.2 72.9 76.4 CNBr 45.4 50.19(g) 53.7 56.2 58.1 CNCl 11.4 48.7 52.8 55.7 57.7 CNI 59.4 50.8 53.7 55.8 57.4 CO, Ht 0.632211.6 0.837 6.04 29.3 30.4 31.9 33.2 CO2 9.02 15.8 25.2 41.3 47.3 51.4 54.3 C2O3 5.40 26.943.5 75.0 85.5 92.7 97.7 COCl2 5.74 24.4 63.9 71.1 75.0 77.4 COF2 16.1 54.8 64.9 70.8 74.4 COS 7.73 18.6 45.9 51.3 54.7 57.0 CS2 4.40 26.7 27.5 49.7 54.6 57.4 59.3 Cerium Ce, Ht 3.01730 5.46 398 419 30.6 30.8 32.1 33.8 CeCl3 54.4 170.1 326 CeI3 51.9 CeO2 66.9 69.0 71.1 73.2 Cesium Cs 2.09 63.9 76.6 31.5 31.0 30.9(lq) 20.8(g) CsBr 23.6 151 52.9 55.0 57.2(c) 77.4(lq) CsCl, Ht 3.77470 15.9 115.1 54.7 59.1 63.7(c) 77.4(lq) CsF 21.7 115.5 53.8 57.4 60.9(c) 74.1(lq) CsI 23.9 150.2 51.9 57.8(c) 65.5(lq) 67.8 CsIO3 13.0 CsOH, Ht 1.30137 4.56 120 74.4(c) 81.6(lq) 81.6 81.6 Ht 6.1220 Cs2SO4, Ht 4.3667 35.7 76.5 112.1 132.2 163.2 194.2 Chlorine Cl2 6.406 20.41 17.65 35.3 36.6 37.1 37.4 ClF 24 33.8 35.6 36.5 37.0 ClF3 7.61 27.5 70.6(g) 76.8 79.4 80.7 ClF5 22.9 110.0 121.6 126.3 128.6 ClO 33.2 35.3 36.3 36.9 ClO2 30 46.1 51.4 54.2 55.8 ClO3F 3.83 19.33 75.9 89.2 96.1 100.0 Cl2O 25.9 51.4 54.7 56.2 56.9 Cl2O7 34.69 Chromium Cr, Ht 0.000838.5 21.0 339.5 397 25.2 27.7 29.4 31.9 TABLE 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (Continued) Substance Hm Hv Hs Cp 400 K 600 K 800 K 1000 K 6.128 SECTION 6 CrCl2 32.2 196.7 72.6 77.0 81.5 85.9 CrCl3 237.7 93.1 99.0 104.9 110.7 Cr(CO)6 72.0 233.9 CrN, Hdec 112 49.1 50.4 51.7 53.0 CrO2Cl2 35.1 CrO2F2 23.4 34.3 CrO3 15.77 63.9 72.5 76.7 78.8 Cr2O3 129.7 112.7 120.5 124.3 127.0 Cr2(SO4)3 316.9 345.2 373.5 401.8 Cobalt Co, Ht 0.452427 16.2 377 424 26.5 29.7 32.4 37.0 CoCl2 45 146 219 81.7 84.6 86.8 88.2 CoF2 59 202 315 75.7 80.8 82.9 84.2 CoF3 97 100 102 104 CoO 52.9 54.3 54.8 56.0 Co3O4 143 163 185 210 CoSO4, Ht 2.1691 119 141 152 158 Copper Cu 13.26 300.4 337.7 25.3 26.5 27.4 28.7 CuBr, Ht 5.86380 9.6 56.5 59.8(c) 66.9(lq) 66.9 Ht 2.9465 CuCl 10.2 54 241.8 56.9 61.5(c) 66.9(lq) 66.9 CuCl2, Ht 0.700402 20.4 76.3 80.2(c) 82.4(lq) 100.0 Ht 15.001598 CuCN 12 66.7 73.1 78.0 CuF 268 55.5 59.6 CuF2 55 156 261 72.4 81.9 87.0 90.4 CuI 10.9 55.4 57.8 60.2 66.9 CuO 11.8 46.8 50.8 53.2 55.0 Cu2O 64.8 67.6 73.3 77.6 81.5 CuS 48.8 51.0 53.2 55.4 Cu2S, Ht 3.85103 10.9 97.3 97.3 85.0 85.0 Ht 0.84350 Cu2Se, Ht 4.85110 90.9 91.7 92.5 93.4 CuSO4 114.9 136.3 147.7 153.8 Dysprosium Dy 11.06 280 290.4 Erbium Er 19.90 280 317.2 Europium Eu 9.21 176 178 Fluorine F2, Ht 0.728227.6 0.510 6.62 33.0 35.2 36.3 37.1 FNO3 75.1 87.8 94.8 98.9 Gadolinium Gd 10.05 301.3 36.6 35.5 34.5 33.5 Gd2O3 113.4 120.1 124.4 127.9 Gallium Ga 5.59 254 27.1(lq) 26.7 26.6 26.6 GaBr3 12.1 38.9 TABLE 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (Continued) Substance Hm Hv Hs Cp 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.129 GaCl3 11.13 23.9 GaI3 12.9 56.5 Ga2O3 100 91.4 112.5 133.5 GaSb 25.1 Germanium Ge, Ht 37.03938.3 36.94 334 24.3 25.4 26.2 26.9 GeBr4 41.4 GeCl4 27.9 100.7 104.6 106.1 106.8 GeH4 14.1 Ge2H6 25.1 Ge3H8 32.2 GeO2 43.9 61.39 69.1 72.4 75.0 Gold Au 12.55 324 25.8 26.8 27.8 28.8 AuSn 25.6 54.1 63.3(c) 60.6(lq) Hafnium Hf, Ht 5.91750 27.2 571 618.4 26.7 28.6 30.3 31.9 HfCl4 75 99.6 125.4 105.8 106.7 107.1 HfO2, Ht 10.51700 104.6 67.7 73.9 77.3 79.9 Helium He 0.0138 0.0829 20.79 20.79 20.79 20.79 Holmium Ho 16.8 71 280 317 Hydrogen H2 0.117 0.904 29.2 29.3 29.6 30.2 1H2H 29.2 29.4 29.9 30.7 2H2 29.2 29.6 30.5 31.6 HBO2 14.3 242.1 61.5(c) H3BO3 22.3 HBr 2.406 17.61 12.7 29.2 29.8 31.1 32.3 HCl, Ht 1.188174.77 1.992 16.14 9.1 19.2 29.2 29.6 31.6 2HCl 29.4 30.6 32.1 33.5 HClO 40.0 44.0 46.6 48.5 HCN 8.406 25.22 39.4 44.2 47.9 51.0 HF 4.58 29.1 29.2 29.5 30.2 2HF 29.2 29.5 30.5 31.6 H2F2 dimer 49.7 56.5 61.0 64.4 HFO 38.6 42.8 45.7 47.9 HI 2.87 19.77 17.4 29.3 30.3 31.8 33.1 HNCO isocyanic acid 50.6 58.3 63.5 67.5 HNCS isothiocyanic acid 53.2 61.0 65.9 69.3 HNO2 cis 51.4 59.9 65.4 69.2 trans 52.1 60.3 65.6 69.3 HNO3 10.47 39.46 39.1 63.1 76.8 85.0 90.4 HN3 30.5 H2O 6.009 40.66 44.0 34.3(g) 36.4 38.8 41.4 1H2HO 34.8 37.5 40.4 43.3 2H2O 35.6 38.8 42.2 45.4 H2O2 12.50 51.63 48.5 55.7 59.8 66.7 2H2O2 12.68 52.4 TABLE 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (Continued) Substance Hm Hv Hs Cp 400 K 600 K 800 K 1000 K 6.130 SECTION 6 HPH2O2 9.67 H3PO3 12.84 H3PO4 13.4 175.7 236.0 296.2 365.5 H2S, Ht 1.531169.61 23.8 18.67 14.1 38.9 42.5 45.8 H2S2 33.8 H2Se 19.7 HSO3F 87.5 102.6 111.0 116.3 H2SO4 10.71 50.2 158.2 197.0(lq) 125.9(g) 132.7 H2SO4 · H2O 19.46 228.5 H2SO4 · 2H2O 18.24 294.6 H2SO4 · 3H2O 24.0 347.8 H2SO4 · 4H2O 30.64 410.3 H2Te 19.2 Indium In 3.28 231.8 243.1 28.5(c) 30.1(lq) 30.1 30.1 InBr 15 92 InBr3 26 InCl 21.3 InCl3 27 InF3 64 InI 17.3 90.8 InI3 18.5 In2O3 105 InSb 25.5 Iodine I2 150.66 41.6 62.4 79.6(lq) 37.6(g) 37.9 38.1 ICl 11.60 52.9 98.3(lq) 90.0 81.6 73.2 IF 35.1 36.6 37.3 37.7 IF5 41.3 476.1(g) 516.7 533.0 541.4 IF7 152.0(g) 167.6 173.9 177.0 Iridium Ir 41.12 231.8 243.1 28.5(c) 30.1(lq) 30.1 30.1 IrF6 8.40 36 IrO2 63.8 76.5 89.2 102.0 Iron Fe, Ht 0.90911 13.81 340 415.5 27.4 32.1 38.0 54.4 Ht 0.8371392 FeBr2 50.2 FeBr3, Ht 0.418377 50.2 207.5 83.0 87.0 91.4 95.9 Fe2C, Ht 0.75190 51.5 115.7 114.7 117.2 119.8 FeCl2 43.01 26.3 79.7 83.1 85.5 101.2 FeCl3 43.1 43.76 106.7(c) 133.9(lq) 82.3(g) 81.5 FeCO3 93.5 115.9 138.3 Fe(CO)5 13.23 33.72 189.0 209.8 223.1 232.2 FeCr2O4 152.0 167.7 175.9 182.2 FeF2 51.9 224.4 316 72.0 77.1 80.3 82.1 FeF3 274 96.4 96.8 99.3 101.8 FeI2, Ht 0.8377 45 104.6 192 83.9 84.4 110.9 113.0(lq) Fe3N 72.6 77.7 82.8 87.9 FeO 24.06 51.8 54.9 57.3 59.4 TABLE 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (Continued) Substance Hm Hv Hs Cp 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.131 Fe2O3, Ht 0.67677 120.1 141.2 158.2 150.6 Fe3O4 138.1 171.1 212.5 252.9 Fe(OH)2 243.5 102.1 111.3 118.9 123.4 Fe(OH)3 118.0 140.6 154.8 164.9 FeS, Ht 0.40138 31.5 89.2 62.0 58.6 59.0 Ht 0.095325 FeS2 marcasite 69.2 74.6 78.7 82.8 pyrite 68.9 74.3 78.3 82.5 FeSiO3 100.8 114.3 124.5 133.9 Fe2SiO4 92 150.9 168.5 179.7 189.1 FeSO4 116.7 138.0 149.4 Fe2(SO4)3 307.0 363.3 393.3 409.2 FeTiO3 ilminite 90.8 111.4 122.0 128.1 132.8 Krypton Kr 1.37 9.08 Lanthanum La, Ht 2.85868 6.20 402.1 28.5 29.8 31.2 32.5 LaCl3 43.1 192.1 105.8 110.1 114.3 118.7 La2O3 117.3 124.7 128.9 132.3 Lead Pb 4.77 179.5 195.2 27.7 29.4 30.0 29.4 Pb(BO2)2 129.7 162.3 PbB4O7 207 265 305 330 PbBr2 16.44 133 173 81.3 88.8 112.1(lq) 112.1 Pb(CH3)4 10.86 Pb(C2H5)4 8.80 PbCl2 21.9 127 185.3 80.1 85.9 111.5(lq) 111.5 PbCO3 99.7 123.6 147.6 PbF2, Ht 1.46310 14.7 157 76.1 82.5 89.1 95.6 PbI2 23.4 104 172 78.9 83.7(c) 108.6(lq) 108.6 PbMoO4 135.3 148.9 159.0 168.2 PbO, Ht 0.17488 25.5 207 50.4 55.4 55.0 57.8 PbO2 67.6 Pb3O4 173.1 190.8 199.2 PbS 18.8 230 50.5 52.4 54.3 56.2 PbSiO3 26.0 101.5 113.5 125.6 138.4 Pb2SiO4 51.0 152.0 173.3 184.2 189.1 PbSO4, Ht 17.2866 40.2 108.7 128.6 152.4 177.3 PbSO4 · PbO 157.3 182.5 211.7 242.0 Lithium Li 3.00 147.1 159.3 27.6(c) 29.5(lq) 28.9 28.8 Li2AlF6, Ht 9.5562 110.5 236.4 262.8 290.8 318.6 LiAlO2 87 81.5 92.7 98.2 102.0 LiBH4 91.0 LiBeF3 27.2 104.6 129.7(c) 159.0(lq) 159.0 Li2BeF4 44.0 150.5 180.2(c) 232.1(lq) 232.1 LiBO2 33.8 265 81.1 85.1 96.9 108.3 Li2B4O7 121 197.6 241.1 274.4 300.2 LiBr 17.6 107.1 51.3 56.1 64.5(c) 65.3(lq) LiCl 19.9 51.0 55.6 65.8 TABLE 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (Continued) Substance Hm Hv Hs Cp 400 K 600 K 800 K 1000 K 6.132 SECTION 6 LiClO4 29 130.0(c) 161.0(lq) 161 161 Li2CO3, Ht 0.561350 41 112.2 149.4 159.0 Ht 2.238410 LiF 27.09 146.8 276.1 46.5 51.6 55.7 59.6 LiH 22.6 231.3 34.8 46.4 57.3 LiI 14.6 LiIO3, Ht 2.22260 Li3N 87.1 106.4 124.4 141.0 LiNO3 24.9 Li2O 58.6 64.0 73.8 80.6 86.2 Li2O2 82.7(c) 80.2(g) 81.4 82.1 LiOH 20.88 187.9 250.6 58.0 68.2(c) 87.1(lq) 87.1 Li2SiO3 28.0 118.8 134.3 144.4 152.3 Li2Si2O5, Ht 0.941936 53.8 174.9 205.7 222.6 235.4 Li2SO4, Ht 28.5575 7.50 139.2 168.5 196.1 223.4 Li2TiO3, Ht 11.511212 110.7 127.4 141.5 149.0 153.9 Lutetium Lu (22) 414 Magnesium Mg 8.48 128 147 26.1 28.2 30.5 MgAl2O4 192 138.0 157.9 169.5 178.7 MgBr2 39.3 149 222 77.3 81.4 84.5 MgCl2 43.1 156.2 249.2 75.7 79.9 82.5 MgCO3 59 89.9 109.0 122.3 131.8 MgF2 58.5 274.1 399.5 68.5 75.3 78.6 80.5 MgH2 14 MgI2 26 206 78.4 83.0 96.3(c) 100.4(lq) Mg3N2, Ht 0.46550 107.6 113.8 119.9 123.8 Ht 0.92788 Mg(NO3)2 168.5 225.5 MgO 77 42.6 47.4 49.7 51.2 Mg(OH)2 91.7 Mg3(PO4)2 121 240.2 282.2 320.6 351.5 MgS 63 Mg2Si 85.8 73.8 79.8 83.9 87.4 MgSiO3, Ht 0.67630 71 94.2 107.0 115.8 120.3 Ht 1.63985 Mg2SiO4 137.6 156.4 167.1 174.6 MgSO4 14.6 110.0 127.6 140.5 151.7 MgTiO3 105.2 118.5 125.4 129.9 Mg2TiO4 146 164 175 184 MgWO4 123.4 137.0 146.1 154.8 Manganese Mn, Ht 2.23727 12.9 221 28.5 31.9 34.9 37.5 Ht 2.121101 Ht 1.881137 MnBr2 33 113 77.8 82.8 87.7 Mn3C, Ht 14.941037 104.4 115.0 121.7 127.4 MnCl2 30.7 149.0 77.2 81.8 85.1 96.2(lq) Mn2(CO)10 62.8 TABLE 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (Continued) Substance Hm Hv Hs Cp 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.133 MnF2 23.0 70.6 75.7 80.7 85.9 MnI2 42 78.1 83.6 89.0 108.8 MnO 54.4 47.5 50.3 52.4 54.2 MnO2 63.4 71.1 75.1 Mn2O3 109.0 120.8 129.4 137.2 Mn3O4, Ht 20.791172 157.3 169.5 179.7 189.3 MnS 26.4 50.7 52.2 53.7 55.2 MnSiO3 66.9 100.9 113.1 119.5 124.2 MnSO4 119.0 136.7 147.7 MnTiO3 111.7 121.2 125.7 128.8 Mercury Hg 2.29 59.1 61.4 27.4 27.1(lq) 20.8(g) 20.8 HgBr2 17.9 58.9 78.3 102.1(lq) 102.1 102.1 Hg2Br2 109.6 115.6 HgCl2 19.41 58.9 77.0(c) 102.9(lq) Hg2Cl2 106.0 112.1 HgF2 23.0 92 77.0 81.2 85.4(c) 102.9(lq) Hg2F2 104.7 111.7 116.9 HgI2, Ht 2.52129 18.9 59.2 82.0(c) 84.1(lq) 62.2(g) 62.2 Hg2I2 27.8 110.4(c) 136.4(lq) HgO 48.3 54.1 HgS, Ht 4.2386 48.0 51.0 54.1 Molybdenum Mo 37.48 617 664 25.1 26.5 27.4 28.4 MoBr3 106.9 109.8 112.7 MoCl4 17 61.5 135.0(c) 146.4(lq) MoCl5 18.8 62.8 167.4(c) 175.7(lq) 175.7 175.7 Mo(CO)6 72.5 69.9 MoF6, Ht 8.179.65 4.33 27.2 28.0 133.1 145.3 150.4 153.0 MoO2 63.5 71.2 76.5 81.4 MoO3 48 138 83.1 91.8 100.0 109.0 MoS2 68.9 73.6 76.2 78.2 Mo2S3 130 117.5 127.4 135.2 142.3 Neodymium Nd, Ht 2.98862 7.14 289 28.2 32.1 36.9 42.0 Nd2O3 120.3 130.0 137.7 144.4 Neon Ne 0.335 1.71 Neptunium Np, Ht 8.37280 3.20 336 34.8 Nickel Ni 17.48 377.5 28.5 30.0 31.0 32.2 NiCl2 71.2 231.0 76.3 79.9 80.9 Ni(CO)4 13.8 29.3 160.4(g) 173.2 182.1 188.6 NiF2 76.4 78.5 82.6 NiO 52.2 51.8 53.6 55.2 NiS, Ht 6.4379 30.1 12.1 13.2 13.7 15.1 Ni3S2, Ht 56.2556 19.7 127.1 139.9 150.7 188.6 NiS2 65.7 72.8 70.0 81.0 85.2 NiSO4 142.6 150.8 159.2 167.4 TABLE 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (Continued) Substance Hm Hv Hs Cp 400 K 600 K 800 K 1000 K 6.134 SECTION 6 NiWO4 138.9 144.6 150.3 155.9 Niobium Nb 30 689.9 726 25.4 26.3 27.2 28.0 NbBr5 24.0 50.2 112.5 147.9(c) 147.9(lq) NbCl5 38.3 52.7 170.7(c) 127.9(g) 129.8 130.7 NbF5 12.2 52.3 43.5(lq) NbI5 37.7 58.6 182.0(c) NbN, Ht 4.21370 46.0 45.4 49.9 51.6 53.2 NbO 85 618 44.0 47.2 49.5 51.5 NbO2, Ht 3.42817 92 598.0 63.5 71.7 70.5 87.5 Nb2O5 104.3 145.0 160.7 170.0 175.5 Nitrogen N2, Ht 0.230237.53 0.720 5.577 29.2 30.1 31.4 32.7 NF3 11.6 61.9 71.4 76.0 78.4 N2F2 cis 15.4 91.6 58.2 68.3 73.6 76.6 trans 14.2 87.9 60.2 68.9 73.8 76.7 N2F4 13.3 NH3 (see Ammonium) N2H4 12.66 41.8 44.7 61.7(g) 77.6 88.2 96.4 NO 2.30 13.83 29.9 31.2 32.8 34.0 NOCl 25.8 47.1 50.7 53.2 54.9 NOF 19.3 44.6 48.9 51.7 53.5 NOF3 78.7 90.9 97.0 100.5 NO2 40.5 46.4 50.4 53.0 NO2Cl 25.7 59.6 68.1 73.1 76.1 NO2F 18.0 57.0 66.4 71.9 75.3 NO3 55.9 67.4 73.3 76.5 N2O 6.54 16.53 42.7 48.4 52.2 54.9 N2O4 14.65 38.12 88.5 104.0 113.4 119.2 N2O5 62.3 110.9 128.4 137.0 141.4 NSF 22.2 Osmium Os 57.85 738 25.1 25.9 26.7 27.4 OsF6 28.62 OsO4 9.8 39.54 Oxygen O2, Ht 0.092249.49 0.444 6.820 8.204 30.11 32.09 33.74 34.88 Ht 0.745229.38 O3 10.84 43.74 49.86 53.15 55.02 OF2 11.09 64.3 72.4 76.4 78.6 O2F2 19.1 Palladium Pd 16.74 362 26.5 27.7 28.8 30.0 PdCl2 40.1 PdO 37.6 49.5 61.3 Phosphorus P 0.66 12.4 14.2 P4, Ht 0.52177.8 0.659 56.5 58.9 73.3(g) 78.4 80.4 81.4 PBr3 38.8 78.9 81.2 82.0 82.4 PClF2 17.6 TABLE 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (Continued) Substance Hm Hv Hs Cp 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.135 PClF3 17.6 PCl2F 24.9 PCl3 7.10 30.5 32.1 76.0(g) 79.7 81.2 81.9 PCl5 64.9 120.1(g) 126.8 129.5 130.7 PF3 16.5 66.3(g) 74.0 77.6 79.5 PF5 17.2 99.2(g) 114.7 121.9 125.6 PH3 1.130 14.60 41.8 50.9 58.5 64.3 P2H4 28.8 PI3 43.9 P4O6 14.06 43.43 172.1 200.8 213.5 220.0 P4O10 27.2 106.0 260.3 336.0(c) POBr3 38 POCl3 13.1 34.3 38.6 92.0(g) 99.1 102.5 108.5 POClF2 25.4 79.3 91.6 97.7 101.1 POCl2F 30.96 87.7 96.6 100.9 103.2 POF3 15.06 23.22 21.1 79.1 91.2 97.4 100.9 PSCl3 96.5 102.4 104.8 105.9 PSF3 19.58 84.5 95.3 100.3 102.9 P4S3 9.2 59.8 184.1 184.1(lq) 155.0(g) 155.0 Platinum Pt 22.17 469 545 26.4 27.5 28.5 29.6 PtS 51.4 53.8 56.2 58.6 PtS2 69.9 75.9 8l.9 87.9 Plutonium Pu, Ht 13.4122 2.82 333.5 39.5 46.9 40.6 40.6 Ht 2.9206 Ht 3.3319 Ht 66.9480 PuBr3 55.2 236.4 292.5 PuCl3 63.6 241.0 304.6 PuF3 59.8 374.9 PuF4 65.3 299.6 PuF6 17.6 29.9 48.5 PuI3 50.2 PuO2 559.8 Polonium Po 102.91 Potassium K 2.321 76.90 88.8 31.5(lq) 30.1 29.8 30.7 KAlCl4 165.5 183.2 196.6 202.1 K3AlCl6 259.2 279.5 295.8 K3AlF6 244.5 269.4 286.8 302.0 KBF4, Ht 14.06283 17.7 130.8 142.1 150.9 167.2 KBH4 100.9 106.0 118.4 KBO2 31 238.9 76.7 89.8 98.5 K2B4O7 104 206.3 250.5 271.1 283.3 KBr 25.5 149.2 53.8 56.4 60.4 68.0 KCl 26.53 124.3 53.0 55.9 59.2 64.0 KClO4, Ht 13.77299.6 138.5 165.3 KCN, Ht 1.167104.9 14.6 157.1 66.3 66.4 66.5(c) 66.5(lq) TABLE 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (Continued) Substance Hm Hv Hs Cp 400 K 600 K 800 K 1000 K 6.136 SECTION 6 K2CO3 27.6 128.1 150.7 170.0 189.0 K2CrO4 29.0 K2Cr2O7 36.7 KF 27.2 141.8 231.8 51.0 54.3 57.4 61.2 KH 44.1 51.9 KHF2, Ht 11.22196.7 6.62 86.1(c) 104.6(lq) KI 24.0 190.9 202.4 53.9 57.3 62.6(c) 72.4(lq) KNO3, Ht 5.10128 10.1 108.4 120.5 K2O, Ht 6.20372 79.1 100.0 100.0 100.0 KO2, Ht 0.30279.7 83.9 90.2 Ht 0.15742.3 K2O2 107 121 KOH, Ht 6.4243 8.60 142.7 192 72.5 79.0(c) 83.0(lq) 83.0 KPO3 8.8 K3PO4 37.2 K2P2O7 58.6 KReO4 85.4 K2S 16.15 77.3 82.5 87.7 K2SiO3 50 135.6 157.7 170.7 179.1 K2SO4, Ht 8.45584 34.39 147.6 172.5 199.6 226.1 K2WO4 19.5 K2ZrCl6 23.0 Praseodymium Pr 6.89 331 356 Promethium Pm 7.13 289 328 Protactinium Pa 12.34 481 PaCl3 92.9 61.3 Radium Ra 8.5 113 Radon Rn 3.247 18.10 Rhenium Re 60.43 704 779 26.0 26.9 28.0 29.1 ReF5 58.1 ReF6 4.6 28.7 ReF7 7.5 38.3 ReO2 274.6 ReO3 21.8 208.4 Re2O7 64.2 74.1 ReOCl4 45.6 ReOF4 13.5 61.0 ReOF5 32.0 37.4 Rhodium Rh 26.59 494 556 26.0 28.0 30.0 32.0 Rh2O3 109.9 121.4 133.0 144.5 Rubidium Rb 2.19 75.77 31.7 30.9 30.7 RbBr 15.5 154.8 52.8 54.9 57.1(c) 66.9(lq) TABLE 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (Continued) Substance Hm Hv Hs Cp 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.137 RbCl 18.4 165.7 52.3 54.3 56.4(c) 64.0(lq) RbClO4, Ht 12.59284 RbF 17.3 177.8 51.9 57.9 64.9 72.3 RbI 12.5 150.6 55.1 57.3(c) 66.9(lq) RbNO3 5.61 RbOH 6.78 Ruthenium Run, Ht 0.131035 38.59 591.6 24.5 25.7 27.0 28.2 Ht 0.961500 Samarium Sm, Ht 3.11917 8.62 165 207 33.3 39.1 44.3 49.3 Sm2O3, Ht 1.05922 125.2 135.3 141.4 146.3 Scandium Sc 14.1 332.7 376 ScCl3 96.7 102.7 108.7 114.6 Sc2O3 106.4 111.1 115.8 120.5 Selenium Se, Ht 0.75150 6.69 95.48 28.1(c) 35.2(lq) 35.1 SeF4 47.2 SeF6 8.4 26.8 127.9 141.3 147.1 150.7 SeO2 94.5 SeOCl2 4.23 42.7 Silicon Si 50.21 359 450 22.3 24.5 25.7 26.5 SiBr4 37.9 146.4(lq) 104.9(g) 106.2 106.2 SiC beta 34.1 41.8 45.9 48.4 SiCl4 7.60 28.7 29.7 96.9(g) 102.6 104.8 106.0 SiClF3 18.7 88.3 97.5 101.7 103.8 SiCl2F2 21.2 SiF4 25.7 83.1 94.1 99.4 102.3 SiH4 0.67 12.1 51.5 65.9 76.7 84.5 Si2H6 21.2 Si3H8 28.5 SiH3Br 24.4 SiH2Br2 31 SiHBr3 34.8 SiH3Cl 21 60.7 74.0 83.1 89.4 SiH2Cl2 25.2 24.2 71.5 82.9 90.0 94.6 SiHCl3 26.6 25.7 83.7 92.5 97.2 100.2 SiH3F 18.8 57.2 71.8 81.7 88.3 SiH2F2 16.3 SiHF3 16.2 SiI4 19.7 56.9 79 164.0(lq) 106.0(g) 106.9 107.3 Si3N4 110.7 129.7 145.8 158.2 SiO2 cristobalite 8.51 SiO2 quartz 7.7 600 53.5 64.4 76.2 68.94 Ht 0.73574 Ht 2.0806 SiOF2 61.3 70.4 75.0 77.6 SiS2 20.9 78.6 81.7 83.4 85.4 TABLE 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (Continued) Substance Hm Hv Hs Cp 400 K 600 K 800 K 1000 K 6.138 SECTION 6 Silver Ag 11.95 258 25.7 26.8 28.4 30.0 AgBr 9.12 198 59.0 71.8(c) 62.3(lq) 62.3 AgCl 13.2 199 56.9 54.4 54.4 54.4 Ag2CO3 122.6 AgF 16.7 179.1 54.1(c) 58.4 AgI, Ht 6.15147 9.41 143.9 64.7 56.5 56.5 58.6(lq) AgNO3, Ht 2.5160 11.5 112.5 128.0 Ag2O 73.0 Ag2S, Ht 5.86176 14.1 86.6 90.5 90.5 90.5 Ht 5.86586 Sodium Na 2.60 97.42 107.5 31.5(lq) 29.3 29.9 29.0 NaAlCl4 164.8(c) Na3AlCl6 254.4 273.0 Na3AlF6, Ht 8.37565 107.28 234.6 261.8 196.8 282.8 Ht 0.42880 NaAlO2, Ht 1.297467 83.4 94.3 98.7 102.3 NaBH4, Ht 0.99983.3 94.6 108.6 NaBO2 36.2 239.7 322.2 75.4 88.6 97.2 103.2 Na2B4O7 76.9 221.7 268.6 444.9(lq) NaBr 26.11 160.7 217.5 53.5 56.1 58.6 61.1 NaBrO3 28.11 NaCl 28.16 52.3 55.5 59.3 72.5 NaClO3 22.1 NaClO4, Ht 13.98308 136.0(c) NaCN 8.79 148.1 172.8 68.7 68.8 69.0 Na2CO3, Ht 0.690450 29.64 125.1 163.3 153.3 179.8 NaF 33.35 176.1 284.9 49.6 52.7 55.7 59.5 NaH 42.5 50.7 NaI 23.60 53.8 56.2 58.5(c) 64.9(lq) NaIO3, Ht 35.1422 NaNO3 15 NaO2, Ht 1.46476.7 76.3 84.5 92.6 Ht 1.54849.9 Na2O, Ht 1.76750.1 47.7 75.8 85.7 91.3 94.9 Ht 11.92970.1 Na2O2, Ht 5.73512 97.7 108.4 113.6 NaOH, Ht 72299.6 6.60 175.3 228.2 64.9(c) 86.1(lq) 84.9 83.7 Na2S 19.3 20.1 20.9 21.5 22.0 Na2S2 104.3 115.4(c) 124.7(lq) 124.7 Na2SiO3 51.8 127.8 147.1 159.7 169.4 Na2Si2O5, Ht 0.42678 35.6 183.4 217.6 235.2 292.9 Na2SO4, Ht 10.91241 23.6 145.1 175.3 187.3 200.3 Na2TiO3 70.3 Na2WO4, Ht 30.85587.7 23.80 155.3 178.2 198.7 Ht 4.113588.9 Strontium Sr, Ht 0.84547 7.43 136.9 164.0 27.8 29.8 31.9 34.1 SrBr2, Ht 12.2645 10.1 194.1 310 79.0 82.7 87.6(c) 116.4(lq) TABLE 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (Continued) Substance Hm Hv Hs Cp 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.139 SrCl2, Ht 6.0727 17.5 248.1 356 78.9 83.7 90.8 105.8 SrCO3, Ht 19.7924 40 95.1 107.1 116.1 124.0 SrF2, Ht 0.041148 28.5 320 451.0 74.7 79.8 81.0 85.8 Ht 0.041211 SrI2 19.67 189.7 286.6 80.7 86.3 91.8(c) 110.0(lq) SrH2 23 SrMoO4 131.5 145.4 154.0 161.2 SrO 81 48.5 52.0 54.3 56.1 SrO2 81.3 85.0 Sr(OH)2 23 88.5 115.0(c) 157.8(lq) 157.8 SrS 63 50.2 53.2 54.9 56.2 SrSO4 36 113.5 124.6 135.7 146.9 Sulfur S monoclinic 1.727 45 62.2 23.2 23.3(lq) 21.8(g) 21.5 Ht 0.40095.2 S8 167.1 177.9 186.7 193.6 SCl2 32.4 53.6 56.0 56.9 57.4 S2Cl2 36.0 124.3(lq) 80.8(g) 82.6 83.5 SF4 26.4 87.5 97.3 101.7 103.8 SF6 5.02 17.1 9.0 116.4 136.1 144.8 149.3 S2F10 211.4 246.4 261.8 269.2 SO2 7.40 24.94 22.92 43.43 48.9 52.3 54.3 SO3 8.60 40.7 43.14 57.7 67.3 72.8 76.0 SOCl2 31.7 31 71.3 76.4 78.9 80.3 SOF2 21.8 64.3 72.4 76.4 78.6 SO2Cl2 31.38 30.1 85.2 94.5 99.4 102.1 SO2ClF 81.1 92.1 97.9 101.1 SO2F2 20.0 76.5 89.3 96.1 99.9 Tantalum Ta 36.57 732.8 778 25.8 26.8 27.5 27.9 TaB2 83.7 57.6 66.6 72.2 83.3 TaBr5 45.6 62.3 168.2 TaC 105 41.7 46.5 49.1 51.1 Ta2C 66.7 72.4 76.2 79.5 TaCl5 41.6 54.8 94.1 148.(c) 129.(g) 131 132 TaF5 18.8 56.9 182.0(lq) TaI5 41.8 64.9 164.6 182.0(c) 120.0(g) 120.6 TaN 67 45.4 51.9 58.5 65.0 TaO2 47.7 52.3 54.6 55.7 Ta2O5 120 147.5 164.4 175.2 182.8 Technetium Tc 33.29 585.2 25.1 26.8 28.5 30.1 TcF6 4.72 31.1 TcO3F 22.5 39.5 Tellurium Te 17.49 114.1 28.0 32.3(c) 37.7(lq) 37.7 TeCl4 18.8 77 138.9(c) 222.6(lq) 108.8(g) 108.8 TeF4 34.3 TeF6 28.2 132.2 143.8 148.7 151.7 Te2F10 39.5 TABLE 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (Continued) Substance Hm Hv Hs Cp 400 K 600 K 800 K 1000 K 6.140 SECTION 6 TeH2 23.9 TeO2 29.1 67.9 72.5 76.1 79.2 Terbium Tb 10.15 293 389 Thallium Tl, Ht 0.38234 4.14 165 181 27.5(c) 30.1(lq) 30.1 30.1 TlBr 16.4 99.6 53.5 59.5(c) 75.5(lq) 67.8 TlCl 15.56 102.2 53.6 55.2(c) 59.4(lq) 59.4 Tl2CO3 18.4 TlF 13.87 115.9 66.8(lq) 67.3 TlI 14.73 104.7 53.9 60.6(c) 72.0(lq) 72.0 TlNO3 9.56 Tl2O 30.3 Tl2O3 53 Tl2S 12 154 Tl2SO4 23.0 Thorium Th, Ht 2.731360 13.81 514 28.4 30.5 32.7 34.4 ThBr4 66.9 ThCl4, Ht 5.0406 40.2 146.4 126.7 132.7 136.4 139.6 ThF4 44.0 258 ThI4 61.4 56.9 Th3N4 169.5 196.5 222.7 ThO2 1218.0 67.4 72.4 75.3 77.7 ThOCl2 97.0 102.5 105.9 108.6 Th(SO4)2 197.0 243.2 289.4 Thullium Tm 16.84 247 232.2 Tin Sn white, Ht 2.0913 7.03 296.1 28.9 28.9(c) 28.7(lq) 28.7 SnBr2 7.2 102 SnBr4 11.9 43.5 158.0(lq) 106.8(g) 107.3 107.5 SnCl2 12.8 86.8 83.3(c) 92.1(lq) 92.1 92.1 SnCl4 9.20 34.9 SnH4 19.1 SnI2 105 SnO 45.8 48.7 51.7 54.6 SnO2, Ht 1.88410 64.4 73.9 78.5 81.8 Ht 1.26540 SnS, Ht 0.67602 50.5 55.5 61.3 SnS2 71.9 75.4 79.0 82.5 Titanium Ti, Ht 4.2893 14.15 425 469 26.9 28.6 29.5 32.1 TiB 40.3 48.6 50.9 51.9 TiB2 100.4 54.9 66.2 72.1 76.9 TiBr2 206.2 79.9 82.1 84.4 86.7 TiBr3 138.8 105.8 125.5 147.3 156.7 TiBr4 12.9 44.4 151.9(lq) 106.1(g) 106.9 107.3 TiC 71 40.7 47.7 49.9 51.2 TiCl2 232 212 73.4 78.4 82.2 85.9 TABLE 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (Continued) Substance Hm Hv Hs Cp 400 K 600 K 800 K 1000 K THERMODYNAMIC PROPERTIES 6.141 TiCl3 124 166.3 98.6 102.0 104.4 106.7 TiCl4 9.97 36.2 146.2(lq) 104.4(g) 106.0 106.7 TiF3 222 93 98 103 109 TiF4 97.9 126.7(c) 100.2(g) 103.3 104.9 TiH2 39.3 53.8 63.1 68.5 TiI2 217 87.0 88.4 89.9 91.3 TiI3 117.5 119.0 120.4(c) 20.6(g) TiI4, Ht 9.9106 19.8 58.4 148.1(c) 156.6(lq) 25.7(g) 27.8 TiN 66.9 43.8 48.7 50.6 52.1 TiO, Ht 4.2992 41.8 45.0 50.8 55.2 59.1 TiO2 rutile 58.0 673 63.6 70.9 73.9 75.3 Ti2O3, Ht 1.138197 105 117.5 136.4 143.0 146.4 Tungsten W 52.31 806.7 851 24.9 25.9 26.7 27.6 WBr5 17.1 81.5 166.(c) 182.(lq) 132.2(g) 132.5 WBr6 192.5(c) 156.3(g) 157.0 157.4 WCl4 135.3 146.2(c) 106.7(g) 107.2 WCl5 20.5 68.1 100 167.4(c) 129.5(g) 131.0 131.8 WCl6, Ht 4.1177 6.60 52.7 79.2 192.5(c) 200.8(lq) 155.8(g) 156.6 W(CO)6 72.0 WF6, Ht 2.0678.5 4.10 27.05 26.65 132.4(g) 145.0 150.3 153.0 WO2 666.3 63.4 71.3 75.5 78.2 WO3, Ht 1.49777 73.4 76.6 550.2 82.2 93.1 98.2 101.7 WOCl4 45 67.8 157.(c) 123.2(g) 127.0 129.1 WOF4 5.0 56 107.8 119.8 125.0 127.8 WO2Cl2 115.1 135.6(c) Uranium U, Ht 2.93672 9.14 417.1 525 29.0 34.8 41.6 41.8 Ht 4.791772 UBr3 43.9 UBr4 55.2 119.2 131.4 140.1(c) 163.2(lq) 163.2 UC 64.6 58.3 60.3 62.2 UCl3 46.4 193.0 102.8 107.7 113.6 119.9 UCl4 44.8 141.4 126.1 134.4 142.0 162.5 UCl5 35.6 75.3 150.9 159.8(c) 186.7(lq) 134.5(g) UCl6 20.9 50.2 182.8 214.0 158.8 168.0 UF3 99.0 104.9 111.0 117.2 UF4 42.7 221.8 119.1 125.0 130.9 136.8 UF5 33.5 136.4 143.1(c) 166.6(lq) UF6 19.19 28.90 48.20 140.5(g) 148.7 152.2 154.4 UH3 50.9 57.4 66.1 UI4 70.7 130.6 140.6 149.5(c) 165.7(lq) 165.7 UN 52.2 56.3 58.3 59.8 UO2 72.7 79.8 83.2 85.5 UO3 88.9 95.3 99.0 U3O8 266.0 290.7 304.2 UOCl2 101.9 109.6 115.1 UO2Cl2 118.1 126.2 130.0 UO2F2 113.9 122.5 126.7 129.5 TABLE 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (Continued) Substance Hm Hv Hs Cp 400 K 600 K 800 K 1000 K 6.142 SECTION 6 Vanadium V 21.5 459 516 26.2 27.5 28.7 30.1 VCl4 2.30 41.4 42.5 161.7(lq) 100.1(g) 102.6 104.7 VF5 50.0 44.5 VN, Hdec 227.62346 741 43.3 48.2 51.2 53.7 VO 63 49.6 53.5 57.1 60.5 VO2, Ht 4.2172 56.9 67.2 74.3 77.8 80.2 V2O3, Ht 1.623104.3 117.2 117.5 127.3 132.6 138.0 V2O4, Ht 9.067 112.1 135.3 148.4 155.5 160.7 V2O5 64.5 263.6 151.0 168.3 177.3 183.7 VOCl3 36.8 Xenon Xe 1.81 12.64 20.79(g) 20.79 20.79 20.79 Ytterbium Yb 7.66 159 Yttrium Y, Ht 4.971485 11.42 365 425 27.3 28.5 29.9 31.5 Y2O3, Ht 1.301057 105 113.3 121.3 124.7 126.9 Zinc Zn 7.32 123.6 26.3 28.6(c) 31.4(lq) 31.4 ZnBr2 16.7 118 70.1(c) 78.8(lq) 113.8 61.5(g) ZnCl2 10.25 126 69.9(c) 100.8(lq) 100.8 100.8 ZnF2 190.1 66.9 69.1 71.4 73.7 ZnO, Ht 13.41020 52.3 49.4 52.4 54.1 55.5 Zn2SiO4 129.4 141.4 153.4 165.4 ZnSO4, Ht 20.3740 116.0 137.4 139.7 142.0 Zirconium Zr, Ht 4.02862 21.00 573 610.0 25.9 27.3 29.0 31.1 ZrB2 104.6 57.5 65.8 69.7 72.1 ZrBr2 63 131.5 230 87.9 90.2 92.5 94.8 ZrBr4 129.3 133.3(c) 107.2(g) 107.6 ZrC 79.5 43.6 49.4 52.3 53.4 ZrCl2 27 45.0 76.0 80.0 83.1 85.9 ZrCl3 190 101 106 109 112 ZrCl4 50 110.5 125.4 131.1(c) 106.5(g) 107.1 ZrF2 33 289 404 70 76 81 84 ZrF4 64.2 237.7 113.5 124.0 129.4 134.1 ZrI2 25.1 113 95.0 96.6 106.1 123.6 ZrI3 176 105.9 106.7 107.1(c) 82.9(g) ZrI4 126.4 131.0 134.6(c) 107.6(g) 107.6 ZrN 67.4 44.8 48.7 50.9 52.7 ZrO2, Ht 5.021205 87.0 624 63.9 70.2 73.5 75.7 ZrSiO4 114.6 133.7 142.7 147.3 TABLE 6.4 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds (Continued) Substance Hm Hv Hs Cp 400 K 600 K 800 K 1000 K 6.2 CRITICAL PHENOMENA The critical temperature, Tc, of a gas is the temperature above which the gas cannot be liquefied no matter how high the pressure.
THERMODYNAMIC PROPERTIES 6.143 The critical pressure, Pc, is the lowest pressure which will liquefy the gas at its critical temper-ature.
The critical volume, Vc, is the volume of 1 mol at the critical temperature and the critical pressure.
It can be computed from the critical density, c, as follows: 1 Molecular weight (in g · mol ) 3 1 V (in cm · mol ) c 3 (in g · cm ) c The critical pressure, critical molar volume, and critical temperature are the values of the pressure, molar volume, and thermodynamic temperature at which the densities of coexisting liquid and gas-eous phases just become identical. At this critical point, the critical compressibility factor, Zc, is: P V c c Z c RTc TABLE 6.5 Critical Properties Substance Tc, C Pc, atm Pc, MPa Vc, cm3 · mol1 c, g · cm3 Acetaldehyde 193 55 5.57 154 0.286 Acetic acid 319.56 57.1 5.786 171.3 0.351 Acetic anhydride 333 39.5 4.0 290 0.352 Acetone 235.0 46.4 4.700 209 0.278 Acetonitrile 272.4 47.7 4.85 173 0.237 Acetophenone 436.4 38 3.85 386 0.311 Acetyl chloride 235 58 5.88 204 0.325 Acetylene 35.2 60.6 6.14 113 0.231 Acrylic acid 342 56 5.67 210 0.343 Acrylonitrile 263 45 4.56 210 0.253 Air 140.6 37.2 3.77 92.7 0.313 Allene 120 54.0 5.47 162 0.247 Allyl alcohol 272.0 56.4 5.71 203 0.286 Aluminum tribromide 490 28.5 2.89 310 0.860 Aluminum trichloride 356 26 2.63 261 0.510 2-Aminoethanol 341 44 4.46 196 0.312 Ammonia 132.4 111.3 11.28 72.5 0.235 Aniline 426 49.5 4.89 287 0.324 Anthracene 610 28.6 2.90 554 0.322 Antimony tribromide 631.4 56 5.67 Antimony trichloride 521 270 0.84 Argon 122.3 48.1 4.87 74.6 0.536 Arsenic 1400 Arsenic trichloride 318 58.4 5.91 252 0.720 Arsine 99.9 63.3 6.41 133 0.588 Arsine-d3 98.9 Benzaldehyde 422 45.9 4.65 324 0.327 Benzene 288.90 48.31 4.895 255 0.306 Benzoic acid 479 41.55 4.21 341 0.358 Benzonitrile 426.3 41.55 4.21 339 0.304 Benzyl alcohol 422 42.4 4.3 334 0.324 Biphenyl 516 38.0 3.85 502 0.307 Bismuth tribromide 946 301 1.49 Bismuth trichloride 906 118 11.96 261 1.21 Boron pentafluoride 205 Boron tribromide 308 48.1 4.87 272 0.921 Boron trichloride 178.8 38.2 3.87 266 0.441 6.144 SECTION 6 Boron trifluoride 12.3 49.2 4.98 124 0.549 Bromine 315 102 10.3 135 1.184 Bromobenzene 397 44.6 4.52 324 0.485 Bromochlorodifluoromethane 158.8 41.98 4.254 246 0.672 Bromoethane 230.8 61.5 6.23 215 0.507 Bromomethane 173.4 85 8.61 156 0.609 Bromopentafluorobenzene 397 44.6 4.52 1-Bromopropane 1.8 0.462 2-Bromopropane 14.2 0.462 Bromotrifluoromethane 67.1 39.2 3.97 200 0.76 1,2-Butadiene 170.6 44.4 4.50 219 0.247 1,3-Butadiene 152 42.7 4.33 221 0.245 Butanal 264.1 42.6 4.32 258 0.279 Butane 151.97 37.34 3.784 255 0.228 Butanenitrile 312.3 38.3 3.88 285 0.242 Butanoic acid 351 39.8 4.03 290 0.304 1-Butanol 289.9 43.56 4.414 275 0.270 2-Butanol 263.1 41.47 4.202 269 0.276 2-Butanone 263.63 41.52 4.207 267 0.270 1-Butene 146.5 39.7 4.02 240 0.234 cis-2-Butene 147.5 40.5 4.10 238 0.240 trans-2-Butene 147.5 40.5 4.10 238 0.236 3-Butenenitrile 312.3 38.3 3.88 265 0.253 1-Buten-3-yne 182 49 4.96 202 0.258 Butyl acetate 306.7 31 3.14 400 0.290 1-Butylamine 258.8 41.9 4.25 277 0.264 sec-Butylamine 241.2 41.4 4.20 278 0.263 tert-Butylamine 210.8 37.9 3.84 292 0.250 Butylbenzene 387.4 28.5 2.89 497 0.270 sec-Butylbenzene 391 29.1 2.94 510 0.263 tert-Butylbenzene 387 29.3 2.97 490 0.273 Butyl benzoate 450 26 2.63 561 0.318 Butyl butanoate 338 0.292 Butylcyclohexane 394 31.1 3.15 534 0.63 sec-Butylcyclohexane 396 26.4 2.67 tert-Butylcyclohexane 385.9 26.3 2.66 Butylcyclopentane 357.9 Butyl ethyl ether 257.9 30 3.04 390 0.262 2-Butylhexadecafluoro-tetrahydrofuran 227.1 15.86 1.607 588 0.707 Butylisopropylamine 290.5 tert-Butyl methyl sulfide 296.7 1-Butyne 190.6 46.5 4.71 220 0.246 2-Butyne 215.5 50.2 5.09 221 0.246 4-Butyrolactone 436 Carbon dioxide 31.1 72.8 7.38 94.0 0.468 Carbon disulfide 279 78.0 7.90 173 0.41 Carbon monoxide 140.2 34.5 3.50 93.1 0.301 Carbon tetrachloride 283.3 45.0 4.56 276 0.558 Carbon tetrafluoride 45.7 36.9 3.74 140 0.629 Carbonyl chloride 182 56 5.67 190 0.52 Carbonyl sulfide 102 58 5.88 140 0.44 Cesium 1806 300 0.44 TABLE 6.5 Critical Properties (Continued) Substance Tc, C Pc, atm Pc, MPa Vc, cm3 · mol1 c, g · cm3 THERMODYNAMIC PROPERTIES 6.145 Chlorine 143.8 76.1 7.71 124 0.573 Chlorine pentafluoride 142.6 51.9 5.26 230.9 0.565 Chlorine trifluoride 153.5 Chlorobenzene 359.3 44.6 4.52 308 0.365 1-Chlorobutane 268.9 36.4 3.69 312 0.297 2-Chlorobutane 247.5 39 3.95 305 0.303 1-Chloro-1,1-difluoroethane 137.1 40.7 4.12 231 0.435 2-Chloro-1,1-difluoroethylene 127.5 44.0 4.46 197 0.499 Chlorodifluoromethane 96.1 49.1 4.98 165 0.525 1-Chloro-2,3-epoxypropane 351 Chloroethane 187.3 52.0 5.27 199 0.324 Chloroform 263.3 54.0 5.47 239 0.504 1-Chlorohexane 321.5 Chloromethane 143.1 65.9 6.679 139 0.353 2-Chloro-2-methylpropane 234 39 3.95 295 0.314 Chloropentafluoroacetone 137.6 28.4 2.88 Chloropentafluorobenzene 297.9 31.8 3.22 Chloropentafluoroethane 80.1 31.9 3.229 252 0.613 1-Chloropentane 295.4 1-Chloropropane 230 45.2 4.58 254 0.309 2-Chloropropane 212 46.6 4.72 230 0.341 3-Chloropropene 241 47 4.76 234 0.336 Chlorotrifluoromethane 29 38.98 3.946 180 0.579 Chlorotrifluorosilane 35.4 34.2 3.47 Chlorotrimethylsilane 224.7 31.6 3.20 1,2-Cresol 424.5 49.4 5.01 282 0.384 1,3-Cresol 432.7 45.0 4.56 309 0.346 1,4-Cresol 431.5 50.8 5.15 277 0.391 Cyanogen 126.7 62.2 6.30 145 0.360 Cyclobutane 186.8 49.2 4.99 210 0.267 Cycloheptane 316 36.7 3.72 390 0.252 Cyclohexane 280.4 40.2 4.07 308 0.273 trans-Cyclohexanedimethanol 451 34.85 3.531 Cyclohexanethiol 390.9 Cyclohexanol 376.9 42.0 4.26 327 0.306 Cyclohexanone 379.9 39.5 4.0 312 0.315 Cyclohexene 287.33 42.9 4.35 292 0.281 Cyclohexylamine 341.5 Cyclopentane 238.6 44.49 4.508 260 0.27 Cyclopentanethiol 360.4 Cyclopentanone 353 53 5.37 268 0.314 Cyclopentene 232.9 1-Cyclopentylheptane 406 19.2 1.94 649 0.260 1-Cyclopentylpentadecane 506.9 10.1 1.02 1096 0.256 Cyclopropane 124.7 54.2 5.49 170 0.248 p-Cymene 379 2.80 2.84 492 0.273 Decafluorobutane 113.3 22.93 2.323 378 0.629 cis-Decahydronaphthalene 429.2 31.6 3.20 480 0.288 trans-Decahydronaphthalene 414.0 31 3.14 480 0.288 Decane 344.6 20.8 2.11 624 0.228 Decanenitrile 348.8 32.1 3.25 1-Decanol 413.9 22 2.23 600 0.264 1-Decene 343.3 21.89 2.218 585 0.240 TABLE 6.5 Critical Properties (Continued) Substance Tc, C Pc, atm Pc, MPa Vc, cm3 · mol1 c, g · cm3 6.146 SECTION 6 Decylcyclohexane 477 13.4 1.36 Decylcyclopentane 450 15.0 1.52 Deuterium (equilibrium) 234.8 16.28 1.650 60.4 0.0668 Deuterium (normal) 234.7 16.43 1.665 60.3 0.0669 Deuterium bromide 88.8 Deuterium chloride 50.3 Deuterium hydride (DH) 237.3 14.64 1.483 62.8 0.0481 Deuterium iodide 148.6 Deuterium oxide 370.9 213.8 21.66 55.6 0.360 Diallyl sulfide 380 Diborane 166 39.5 4.00 1,2-Dibromo-2-chlorotrifluoro-ethane 287.6 Dibromodifluoromethane 198.3 40.8 4.13 249 0.843 1,2-Dibromoethane 309.9 71.1 7.2 242 0.776 Dibromomethane 310 71 7.19 1,2-Dibromotetrafluoroethane 214.7 33.49 3.393 329 0.790 Dibutylamine 334.4 30.7 3.11 517 0.250 Dibutyl ether 311.0 29.7 3.01 500 0.260 Dibutyl sulfide 377 24.7 2.50 537 0.272 1,2-Dichlorobenzene 424.2 40.5 4.10 360 0.408 1,3-Dichlorobenzene 411 38 3.85 359 0.408 1,4-Dichlorobenzene 412 39 3.95 372 0.395 Dichlorodifluoromethane 111.80 40.82 4.136 217 0.558 1,1-Dichloroethane 250 50.0 5.07 236 0.419 Dichlorodifluorosilane 95.8 34.5 3.50 1,2-Dichloroethane 288 53 5.4 225 0.440 1,1-Dichloroethylene 222 51.3 5.20 218 0.445 cis-1,2-Dichloroethylene 271.1 224 0.433 trans-1,2-Dichloroethylene 234.4 54.4 5.51 224 0.433 Dichlorofluoromethane 178.43 51.1 5.18 196 0.522 1,2-Dichlorohexafluoropropane 172.9 Dichloromethane 237 60.2 6.10 193 0.440 1,2-Dichloropropane 304 44 4.49 226 0.500 Dichlorosilane 176 46.1 4.67 1,1-Dichlorotetrafluoroethane 145.5 32.6 3.30 294 0.582 1,2-Dichlorotetrafluoroethane 145.63 32.1 3.252 297 0.582 Dideuterium oxide (D2O) 371.0 215.7 21.86 0.363 Diethanolamine 442.0 32.3 3.27 349 0.301 1,1-Diethoxyethane (Acetal) 254 Diethylamine 226.84 37.3 3.758 301 0.243 1,4-Diethylbenzene 384.8 27.7 2.81 480 0.280 Diethyl disulfide 368.9 Diethylene glycol 408 46 4.66 316 0.336 Diethyl ether 193.59 35.9 3.638 280 0.265 3,3-Diethylhexane 354.7 23.8 2.41 510 0.279 3,4-Diethylhexane 345.7 23.0 2.33 519 0.274 3,3-Diethyl-2-methylpentane 366.8 25.0 2.53 501 0.284 3,3-Diethylpentane 337 26.4 2.67 Diethyl sulfide 284 39.1 3.96 318 0.284 Difluoroamine (HNF2) 130 93 9.42 1,2-Difluorobenzene 284.2 300 0.381 cis-Difluorodiazine 1 70 7.09 TABLE 6.5 Critical Properties (Continued) Substance Tc, C Pc, atm Pc, MPa Vc, cm3 · mol1 c, g · cm3 THERMODYNAMIC PROPERTIES 6.147 trans-Difluorodiazine 13 55 5.57 1,1-Difluoroethane 113.6 44.4 4.50 181 0.365 1,1-Difluoroethylene 29.8 44.0 4.46 154 0.417 Dihexyl ether 384 18 1.82 720 0.259 Dihydrogen disulfide 299 58.3 5.91 Dihydrogen heptasulfide 742 33 3.34 Dihydrogen hexasulfide 707 36 3.65 Dihydrogen octasulfide 767 32 3.24 Dihydrogen pentasulfide 657 38.4 3.89 Dihydrogen tetrasulfide 582 43.1 4.37 Dihydrogen trisulfide 465 50.6 5.13 Diisopentyl sulfide 391 Diisopropyl ether 227.17 27.9 2.832 386 0.265 1,2-Dimethoxyethane 263 38.2 3.87 271 0.333 Dimethoxymethane 242.1 44.2 4.48 N,N-Dimethylacetamide 364 38.7 3.92 Dimethylamine 164.07 52.7 5.340 187 0.241 N,N-Dimethylaniline 414 35.8 3.63 2,2-Dimethylbutane 215.7 30.49 3.090 359 0.240 2,3-Dimethylbutane 499.9 30.90 3.131 358 0.241 3,3-Dimethyl-2-butanone 289.8 2,3-Dimethyl-1-butene 228 32.0 3.24 343 0.245 3,3-Dimethyl-1-butene 217 32.1 3.25 340 0.248 2,3-Dimethyl-2-butene 250.9 33.2 3.36 351 0.240 1,1-Dimethylcyclohexane 318 29.3 2.97 416 0.378 cis-1,2-Dimethylcyclohexane 333.0 29.0 2.94 460 0.244 trans-1,2-Dimethylcyclohexane 323.0 29.3 2.97 460 0.244 cis-1,3-Dimethylcyclohexane 317.9 29.3 2.97 450 0.249 trans-1,3-Dimethylcyclohexane 325 29.3 2.97 460 0.244 cis-1,4-Dimethylcyclohexane 325.0 29.0 2.94 460 0.244 trans-1,4-Dimethylcyclohexane 317.0 29.0 2.94 459 0.249 1,1-Dimethylcyclopentane 274 34.0 3.44 360 0.273 cis-1,2-Dimethylcyclopentane 291.7 34.0 3.44 368 0.267 trans-1,2-Dimethylcyclopentane 277.2 34.0 3.44 362 0.271 cis-1,3-Dimethylcyclopentane 318.9 Dimethyl disulfide 59.5 Dimethyl ether 126.9 53.0 5.37 190 0.242 N,N-Dimethylformamide 376.5 51.5 5.22 262 0.279 2,2-Dimethylheptane 303.7 23.19 2.350 519 0.247 2,2-Dimethylhexane 276.8 25.0 2.529 478 0.239 2,3-Dimethylhexane 290.4 25.94 2.628 468 0.244 2,4-Dimethylhexane 280.5 25.22 2.556 472 0.242 2,5-Dimethylhexane 277.0 24.54 2.487 482 0.237 3,3-Dimethylhexane 289.0 26.19 2.654 443 0.258 3,4-Dimethylhexane 295.8 26.57 2.692 466 0.245 1,1-Dimethylhydrazine 250 53.6 5.43 230 0.261 2,4-Dimethyl-3-iso-pentane 341.3 23.1 2.34 521 0.273 2,3-Dimethyloctane 340.1 21.6 2.19 567 0.251 2,4-Dimethyloctane 326.3 21.1 2.14 566 0.251 2,5-Dimethyloctane 330 21.2 2.15 569 0.250 2,6-Dimethyloctane 330 21.1 2.15 576 0.247 2,7-Dimethyloctane 329.8 20.7 2.10 590 0.241 TABLE 6.5 Critical Properties (Continued) Substance Tc, C Pc, atm Pc, MPa Vc, cm3 · mol1 c, g · cm3 6.148 SECTION 6 3,3-Dimethyloctane 339 21.9 2.22 557 0.255 3,4-Dimethyloctane 341 22.1 2.24 551 0.258 3,5-Dimethyloctane 333.2 21.6 2.19 555 0.256 3,6-Dimethyloctane 335.2 21.6 2.19 562 0.253 4,5-Dimethyloctane 333.8 21.8 2.21 548 0.260 4,5-Dimethyloctane 339.1 22.1 2.24 546 0.261 Dimethyl oxalate 355 39.2 3.97 2,2-Dimethylpentane 247.4 27.4 2.773 416 0.241 2,3-Dimethylpentane 264.3 28.70 2.908 393 0.255 2,4-Dimethylpentane 246.7 27.01 2.737 418 0.240 3,3-Dimethylpentane 263.3 29.07 2.946 414 0.242 2,3-Dimethylphenol 449.7 48 4.86 470 0.26 2,4-Dimethylphenol 434.5 43 4.36 509 0.24 2,5-Dimethylphenol 433.8 48 4.86 470 0.26 2,6-Dimethylphenol 427.9 42 4.26 509 0.24 3,4-Dimethylphenol 456.7 49 4.96 552 0.27 3,5-Dimethylphenol 442.5 36 3.65 611 0.25 2,2-Dimethylpropane 160.7 31.55 3.197 307 0.238 2,2-Dimethyl-1-propanol 276 39 3.95 319 2,3-Dimethylpyridine 382.3 2,4-Dimethylpyridine 373.9 2,5-Dimethylpyridine 371 2,6-Dimethylpyridine 350.7 316 0.339 3,4-Dimethylpyridine 410.7 3,5-Dimethylpyridine 394.1 Dimethyl sulfide 229.9 54.6 5.53 201 0.309 N,N-Dimethyl-1,2-toluidine 395 30.8 3.12 1,4-Dioxane 314 51.5 5.21 238 0.370 Diphenyl ether 493.7 31 3.14 Diphenylmethane 494 29.4 2.98 Dipropylamine 282.7 35.8 3.63 407 0.249 Dipropyl ether 257.5 29.91 3.028 Docosafluorodecane 269 14.3 1.45 Dodecafluorocyclohexane 184.1 24 2.43 Dodecafluorocyclohexene 188.7 Dodecafluoro-1-hexene 181.3 Dodecafluoropentane 149 20.1 2.03 Dodecane 385 18.0 1.82 754 0.226 1-Dodecanol 405.9 19 1.92 718 0.260 1-Dodecene 384.5 18.3 1.85 Dodecylbenzene 501 15.6 1.58 1000 0.246 Dodecylcyclopentane 477 12.8 1.30 Ethane 32.3 48.2 4.90 148 0.203 1,2-Ethanediamine 319.8 62.1 6.29 206 0.292 1,2-Ethanediol 445 76 7.7 186 0.334 Ethanethiol 225.5 54.2 5.49 207 0.300 Ethanol 240.9 60.57 6.137 167 0.276 Ethoxybenzene 374.0 33.8 3.42 Ethyl acetate 250.2 38.31 3.882 286 0.308 Ethyl acetoacetate 400 Ethyl acrylate 279 37.0 3.75 320 0.313 Ethylamine 183 55.5 5.62 182 0.248 Ethylbenzene 344.00 35.61 3.609 374 0.284 TABLE 6.5 Critical Properties (Continued) Substance Tc, C Pc, atm Pc, MPa Vc, cm3 · mol1 c, g · cm3 THERMODYNAMIC PROPERTIES 6.149 Ethyl benzoate 424 32 3.24 451 0.111 Ethylbutanoate 293 30.2 3.06 421 0.28 2-Ethyl-1-butanol 145.7 Ethyl crotonate 326 Ethylcyclohexane 336 29.9 3.03 450 0.249 Ethylcyclopentane 296.4 33.5 3.39 375 0.262 3-Ethyl-2,2-dimethylhexane 338.6 22.8 2.31 526 0.271 4-Ethyl-2,2-dimethylhexane 321.5 21.9 2.22 539 0.264 3-Ethyl-2,3-dimethylhexane 353.7 23.9 2.42 516 0.276 4-Ethyl-2,3-dimethylhexane 344.2 23.1 2.34 524 0.271 3-Ethyl-2,4-dimethylhexane 343.0 23.1 2.34 522 0.273 4-Ethyl-2,4-dimethylhexane 347.8 24.4 2.47 524 0.271 3-Ethyl-2,5-dimethylhexane 330.4 22.1 2.24 537 0.265 3-Ethyl-3,4-dimethylhexane 351.4 23.9 2.42 511 0.278 Ethylene 9.3 49.7 5.036 129 0.218 Ethylene glycol dimethyl ether 263 38.2 3.87 271 0.333 Ethylene glycol ethyl ether acetate 334.2 31.25 3.166 443 0.298 Ethylene glycol monobutyl ether 360.8 424 0.279 Ethylene oxide 196 71.0 7.275 140 0.314 Ethyl formate 235.4 46.8 4.74 229 0.323 3-Ethylhexane 292.4 25.74 2.608 455 0.251 2-Ethyl-1-hexanol 367.5 27.2 2.76 494 0.264 Ethyl isopentanoate 315 Ethyl isopropyl ether 217.2 2-Ethyl-1-methylbenzene 378 30.0 3.04 460 0.26 3-Ethyl-1-methylbenzene 364 28.0 2.84 490 0.24 4-Ethyl-1-methylbenzene 367 29.0 2.94 470 0.26 Ethyl 3-methylbutanoate 314.9 1-Ethyl-1-methylcyclopentane 319 29.5 2.99 Ethyl methyl ether 164.8 43.4 4.40 221 0.272 3-Ethyl-2-methylheptane 337.8 22.0 2.23 544 0.262 4-Ethyl-2-methylheptane 328.7 21.6 2.19 545 0.261 5-Ethyl-2-methylheptane 333.6 21.6 2.19 555 0.256 3-Ethyl-3-methylheptane 347.0 22.8 2.31 532 0.267 4-Ethyl-3-methylheptane 341.2 22.5 2.28 530 0.269 5-Ethyl-3-methylheptane 333.5 22.0 2.23 541 0.263 3-Ethyl-4-methylheptane 342.4 22.5 2.28 533 0.267 4-Ethyl-4-methylheptane 342.4 22.8 2.31 525 0.271 Ethyl methyl ketone 262.4 41.0 4.154 267 0.270 3-Ethyl-2-methylpentane 294.0 26.65 2.700 443 0.258 3-Ethyl-3-methylpentane 303.5 27.71 2.808 455 0.351 Ethyl 2-methylpropanoate 280 30 3.04 410 0.28 Ethyl methyl sulfide 260 42 4.26 2-Ethylnaphthalene 502 31.0 3.14 521 0.300 Ethyl nonanoate 401 3-Ethyloctane 340 21.6 2.19 561 0.241 4-Ethyloctane 337 21.5 2.18 552 0.258 Ethyl octanoate 386 3-Ethylpentane 267.6 28.53 2.891 416 0.241 1,2-Ethylphenol 429.9 1,3-Ethylphenol 443.3 TABLE 6.5 Critical Properties (Continued) Substance Tc, C Pc, atm Pc, MPa Vc, cm3 · mol1 c, g · cm3 6.150 SECTION 6 1,4-Ethylphenol 443.3 Ethyl propanoate 272.9 33.18 3.362 345 0.296 Ethyl propyl ether 227.1 32.1 3.25 244 0.361 m-Ethyltoluene 364.0 28.1 2.837 490 0.245 o-Ethyltoluene 378.0 30.1 3.04 460 0.261 p-Ethyltoluene 367 29.0 2.94 479 0.256 3-Ethyl-2,2,3-trimethyl-pentane 372.9 25.4 2.57 503 0.283 3-Ethyl-2,2,4-trimethyl-pentane 342.2 23.4 2.37 518 0.275 3-Ethyl-2,3,4-trimethyl-pentane 369.2 25.1 2.54 506 0.281 Ethyl vinyl ether 202 40.17 4.07 260 0.277 Fluorine 129.0 51.47 5.215 66.2 0.574 Fluorobenzene 286.94 44.91 4.551 357 0.269 Fluoroethane 102.2 49.6 5.03 169 0.284 Fluoromethane 44.7 58.0 5.88 124 0.274 4-Fluorotoluene 316.4 Formaldehyde 135 65 6.6 105 0.286 Formic acid 315 2-Furaldehyde 397 58.1 5.89 Furan 217.1 54.3 5.50 218 0.312 Germanium tetrachloride 276.9 38 3.85 330 0.650 Glycerol 453 66 6.69 255 0.361 Hafnium tetrabromide 473 415 1.20 Hafnium tetrachloride 450 57.0 5.86 304 1.05 Hafnium tetraiodide 643 528 1.30 Helium (equilibrium) 267.96 2.261 0.2289 0.06930 Helium-3 269.85 1.13 0.1182 72.5 0.0414 Helium-4 267.96 2.24 0.227 57.3 0.0698 Heptadecane 460 13.0 1.32 1006 0.140 1-Heptadecanol 736 14.0 1.42 960 0.267 Heptane 267.1 27.0 2.74 428 0.232 1-Heptanol 359.5 30.18 3.058 435 0.267 2-Heptanol 335.2 29.81 3.021 432 0.269 3-Heptanol 332.3 2-Heptanone 338.4 33.91 3.436 421 0.271 1-Heptene 264.2 28.83 2.921 402 0.246 Heptylcyclopentane 406 19.2 1.945 Hexadecafluoroheptane 201.7 16.0 1.62 664 0.584 Hexadecane 444 14 1.42 930 0.243 1-Hexadecene 444 13.2 1.34 933 0.241 Hexadecylcyclopentane 518 9.6 0.97 1,5-Hexadiene 234 34 3.44 328 0.250 Hexafluoroacetone 84.1 29.0 2.94 329 0.505 Hexafluorobenzene 243.6 32.30 3.273 335 0.505 Hexafluoroethane 19.7 224 0.617 Hexamethylbenzene 494 600 0.271 Hexane 234.5 29.85 3.025 368 0.233 Hexanenitrile 360.7 32.57 3.30 Hexanoic acid 389 31.6 3.20 1-Hexanol 337.2 33.72 3.417 381 0.268 2-Hexanol 312.8 32.67 3.310 TABLE 6.5 Critical Properties (Continued) Substance Tc, C Pc, atm Pc, MPa Vc, cm3 · mol1 c, g · cm3 THERMODYNAMIC PROPERTIES 6.151 3-Hexanol 309.3 33.2 3.36 2-Hexanone 313.9 32.8 3.32 3-Hexanone 309.7 32.76 3.320 1-Hexene 231.0 31.64 3.206 348 0.242 cis-2-Hexene 245 32.4 3.28 351 0.240 trans-2-Hexene 243 32.3 3.27 351 0.240 cis-3-Hexene 244 32.4 3.28 350 0.240 trans-3-Hexene 246.8 32.1 3.25 350 0.240 Hexylcyclopentane 387.0 21.1 2.14 Hydrazine 380 14.5 1.47 96.1 0.333 Hydrogen (equilibrium) 240.17 12.77 1.294 65.4 0.0308 Hydrogen (normal) 239.91 12.8 1.297 65.0 0.0310 Hydrogen bromide 89.8 84.4 8.55 100.0 0.809 Hydrogen chloride 51.40 82.0 8.31 81.0 0.45 Hydrogen cyanide 183.5 53.2 5.39 139 0.195 Hydrogen deuteride 237.25 14.64 1.483 62.8 0.048 Hydrogen fluoride 188 64 6.5 69 0.29 Hydrogen iodide 150.7 82.0 8.31 131 0.976 Hydrogen selenide 137 88 8.9 Hydrogen sulfide 100.4 88.2 8.94 98.5 0.31 Icosafluorononane 251 15.4 1.56 Icosane 494 10.3 1.04 1190 0.237 1-Icosanol 497 12.0 1.22 Indane 411.8 39.0 3.95 381 0.310 Iodine 546 115 11.7 155 0.164 Iodobenzene 448 44.6 4.52 351 0.581 Iodoethane 281.0 Iodomethane 255 65 6.59 190 0.75 1-Iodopropane 323 Isobutyl acetate 288 31.2 3.16 414 0.281 Isobutylamine 246 40.2 4.07 284 0.258 Isobutylbenzene 377 30.1 3.05 480 0.280 Isobutyl bromide 294.1 Isobutyl butanoate 338 Isobutylcyclohexane 386 30.8 3.12 Isobutyl formate 278 38.3 3.88 350 0.29 Isobutyl isobutanoate 329 Isobutyl 3-methylbutanoate 348 Isobutyl propanoate 319 Isopentyl acetate 326 Isopentyl butanoate 346 Isopentyl propanoate 338 Isopropyl acetate 258 Isopropylamine 198.7 44.8 4.54 221 0.267 Isopropylbenzene 357.9 31.67 3.209 429 0.281 Isopropylcycloheptane 334.5 Isopropylcyclohexane 367 28 2.84 Isopropylcyclopentane 328 29.6 3.00 4-Isopropylheptane 334.5 22.0 2.23 537 0.265 Isopropylmethylamine 217.6 2-Isopropyl-1-methylbenzene 397 28.6 2.90 3-Isopropyl-1-methylbenzene 393 29.0 2.94 4-Isopropyl-1-methylbenzene 380 27.9 2.83 TABLE 6.5 Critical Properties (Continued) Substance Tc, C Pc, atm Pc, MPa Vc, cm3 · mol1 c, g · cm3 6.152 SECTION 6 3-Isopropyl-2-methylhexane 359.3 22.6 2.29 529 0.269 Isopropyl methyl sulfide 276.4 Isoquinoline 530 50.3 5.10 374 0.345 Isoxazole 278.9 Ketene 380 64 6.5 145 0.290 Krypton 63.75 54.3 5.50 91.2 0.9085 Mercury 1477 1587 160.8 Mercury(II) bromide 789 Mercury(II) chloride 700 Mercury(II) iodide 799 Methane 82.60 45.44 4.604 99.0 0.162 Methanethiol 196.8 71.4 7.23 145 0.332 Methanol 239.4 79.78 8.084 118 0.272 Methoxybenzene 372.5 41.9 4.25 0.321 Methyl acetamide 417 Methyl acetate 233.40 46.9 4.75 228 0.325 Methyl acrylate 263 42 4.26 265 0.325 Methylamine 157.6 75.14 7.614 140 0.222 N-Methylaniline 428 51.3 5.20 373 0.287 Methyl benzoate 438 36 3.65 396 0.344 2-Methyl-1,3-butadiene 211 38.0 3.85 276 0.247 3-Methyl-1,3-butadiene 223 40.6 4.11 267 0.255 2-Methylbutane 187.3 33.4 3.38 306 0.236 2-Methyl-1-butanethiol 318.8 2-Methyl-2-butanethiol 297.0 Methyl butanoate 281.3 34.3 3.475 340 0.300 3-Methylbutanoic acid 356 33.6 3.40 2-Methyl-1-butanol 302.3 38.9 3.94 322 0.274 3-Methyl-1-butanol 304.1 38.8 3.93 329 0.268 2-Methyl-2-butanol 270.6 36.6 3.71 319 0.276 3-Methyl-2-butanol 283.0 38.2 3.87 3-Methyl-2-butanone 280.3 38.0 3.85 310 0.278 2-Methyl-1-butene 196.9 34.0 3.445 294 0.239 3-Methyl-1-butene 191.6 34.7 3.52 300 0.234 2-Methyl-2-butene 207.9 34.0 3.445 318 0.221 Methylcyclohexane 299.1 34.26 3.471 368 0.267 Methylcyclopentane 259.58 37.35 3.784 319 0.264 Methyl dodecanoate 439 758 0.283 N-Methylethylamine 223.5 36.6 3.71 243 0.243 Methyl formate 214.1 59.20 5.998 172 0.349 2-Methylfuran 254 46.6 4.72 247 0.333 2-Methylheptane 286.6 24.52 2.484 488 0.234 3-Methylheptane 290.6 25.13 2.546 464 0.246 4-Methylheptane 288.7 25.09 2.542 476 0.240 2-Methylhexane 257.3 26.98 2.734 421 0.238 3-Methylhexane 262.2 27.77 2.814 404 0.248 Methylhydrazine 294 79.3 8.035 271 0.170 Methyl 2-hydroxybenzoate 436 Methyl isobutanoate 267.7 33.9 3.43 339 0.301 Methyl isocyanate 218 55 5.57 1-Methylnaphthalene 499 35.5 3.60 445 0.320 2-Methylnaphthalene 488 34.6 3.51 462 0.308 2-Methyloctane 313.9 22.80 2.310 TABLE 6.5 Critical Properties (Continued) Substance Tc, C Pc, atm Pc, MPa Vc, cm3 · mol1 c, g · cm3 THERMODYNAMIC PROPERTIES 6.153 2-Methylpentane 224.6 29.91 3.031 367 0.235 3-Methylpentane 231.4 30.85 3.126 367 0.235 2-Methyl-2,4-pentanediol 405 33.9 3.43 Methyl pentanoate 294 2-Methyl-2-pentanol 286.4 2-Methyl-3-pentanol 302.9 34.1 3.46 3-Methyl-3-pentanol 302.5 34.7 3.52 4-Methyl-1-pentanol 330.4 4-Methyl-2-pentanol 301.3 42.4 4.30 380 0.269 3-Methyl-2-pentanone 298.8 4-Methyl-2-pentanone 298 32.3 3.27 371 0.270 2-Methyl-2-pentene 245 32.4 3.28 351 0.240 cis-3-Methyl-2-pentene 245 32.4 3.28 351 0.240 trans-3-Methyl-2-pentene 248 32.3 3.27 350 0.240 cis-4-Methyl-2-pentene 217 30 3.04 360 0.234 trans-4-Methyl-2-pentene 220 30 3.04 360 0.234 2-Methylpropanal 240 41 4.15 274 0.263 2-Methyl-1-propanamine 246 40.2 4.07 278 0.263 N-Methylpropanamide 412 2-Methylpropane 134.70 35.83 3.630 263 0.221 2-Methyl-1-propanethiol 286.4 2-Methyl-2-propanethiol 257.0 Methyl propanoate 257.5 39.5 4.00 282 0.312 2-Methylpropanoic acid 332 36.5 3.7 292 0.302 2-Methyl-1-propanol 274.6 42.39 4.295 273 0.272 2-Methyl-2-propanol 233.1 39.20 3.972 275 0.270 2-Methylpropene 144.73 39.48 4.000 239 0.235 2-Methylpropyl acetate 288 31.2 3.16 414 0.281 Methyl propyl ether 203.2 Methyl propyl sulfide 301.0 2-Methylpyridine 347.9 45.4 4.60 292 0.319 3-Methylpyridine 371.9 44.2 4.48 288 0.323 4-Methylpyridine 373 46.4 4.70 292 0.319 1-Methyl-2-pyrrolidinone 448.7 311 0.319 1-Methylstyrene 381 33.6 3.40 397 0.298 2-Methyltetrahydrofuran 264 37.1 3.76 267 0.322 2-Methylthiophene 333.1 47.9 4.85 275 0.356 3-Methylthiophene 337.7 48.9 4.95 275 0.356 Methyl vinyl ether 163 47 4.76 205 0.283 Morpholine 345 54 54.7 253 0.344 Naphthalene 475.3 39.98 4.051 407 0.31 Neon 228.71 27.2 2.77 41.7 0.4835 Niobium pentabromide 737 469 1.05 Niobium pentachloride 534 400 0.68 Niobium pentafluoride 464 62 6.28 155 1.21 Nitric oxide 92.9 64.6 6.55 58 0.52 Nitrobenzene 459 Nitroethane 284 37 3.75 Nitrogen-14 146.94 33.5 3.39 89.5 0.313 Nitrogen-15 146.8 33.5 3.39 90.4 0.332 Nitrogen chloride difluoride 64.3 50.8 5.15 Nitrogen dioxide (equilibrium) 158.2 100 10.1 170 0.557 Nitrogen trideuteride (ND3) 132.4 TABLE 6.5 Critical Properties (Continued) Substance Tc, C Pc, atm Pc, MPa Vc, cm3 · mol1 c, g · cm3 6.154 SECTION 6 Nitrogen trifluoride 39.3 44.7 4.53 Nitromethane 315 57.9 5.87 173 0.352 1-Nitropropane 402.0 2-Nitropropane 344.8 Nitrous oxide 36.434 71.596 7.2545 97.4 0.4525 Nitrosyl chloride 167 90 9.12 139 0.471 Nitryl fluoride 76.3 Nonadecane 483 11.0 1.12 1130 0.238 Nonane 321.5 22.6 2.29 555 0.231 Nonanoic acid 438 23.7 2.40 1-Nonanol 404 546 0.264 1-Nonene 319 23.1 2.34 580 0.218 Nonylbenzene 468 18.7 1.89 790 0.259 Nonylcyclopentane 437.4 16.3 1.65 Octadecafluorooctane 229 16.4 1.66 Octadecane 472.3 12.73 1.29 1070 0.238 1-Octadecanol 474 14 1.42 1-Octadecene 466 11.2 1.13 Octafluorocyclobutane 115.31 27.48 2.784 325 0.616 Octafluoronaphthalene 399.9 Octafluoropropane 72.7 26.5 2.69 299 0.628 Octamethylcyclotetrasiloxane 313 13.2 1.33 970 0.306 Octane 295.6 24.6 2.49 492 0.232 Octanenitrile 401.3 28.1 2.85 Octanoic acid 422 26.1 2.64 1-Octanol 379.4 27.41 2.777 490 0.266 2-Octanol 356.5 27.18 2.754 494 0.278 1-Octene 293.6 26.40 2.675 464 0.242 cis-2-Octene 307 27.3 2.77 Octylcyclopentane 421 17.7 1.79 Osmium tetroxide 132 170 17.2 Oxygen 118.56 49.77 5.043 73.4 0.436 Oxygen difluoride 58.0 48.9 4.95 97.7 0.553 Ozone 12.10 53.8 5.45 88.9 0.540 Pentachloroethane 373.0 Pentadecane 433.9 15 1.52 880 0.241 1-Pentadecene 431 14.4 1.46 Pentadecylcyclopentane 507 10.1 1.02 1,2-Pentadiene 230 40.2 4.07 276 0.248 cis-1,3-Pentadiene 223 39.4 3.99 275 0.248 1,4-Pentadiene 205 37.4 3.79 276 0.248 Pentafluorobenzene 258.9 34.7 3.52 2,3,4,5,6-Pentafluorotoluene 275.5 2,2,3,3,4-Pentamethyl-pentane 370.7 25.5 2.58 508 0.280 2,2,3,4,4-Pentamethyl-pentane 354.2 23.7 2.40 521 0.273 Pentanal 281 35 3.55 333 0.259 Pentane 196.6 33.26 3.370 311 0.237 Pentanenitrile 337.2 35.3 3.58 Pentanethiol 324.6 Pentanoic acid 370 35.3 3.58 340 0.300 1-Pentanol 315.0 38.38 3.889 326 0.270 2-Pentanol 287.3 36.27 3.675 TABLE 6.5 Critical Properties (Continued) Substance Tc, C Pc, atm Pc, MPa Vc, cm3 · mol1 c, g · cm3 THERMODYNAMIC PROPERTIES 6.155 3-Pentanol 286.5 2-Pentanone 287.93 36.46 3.694 301 0.286 3-Pentanone 288.31 36.9 3.729 336 0.256 1-Pentene 191.63 34.81 3.527 293 0.239 cis-2-Pentene 202 36.4 3.69 trans-2-Pentene 198 34.7 3.52 304 0.231 Pentyl acetate 332 Pentylbenzene 406.8 25.7 2.60 550 0.269 Pentyl formate 303 1-Pentyne 220.3 40 4.05 278 0.245 Perchloryl fluoride 95.3 53.0 5.37 161 0.637 Phenanthrene 596 554 0.322 Phenol 421.1 60.5 6.13 229 0.41 1-Phenylhexadecane 535 12.7 1.29 1200 0.252 1-Phenylpentadecane 526.9 13.3 1.35 1140 0.253 1-Phenyltetradecane 519 14.0 1.42 1110 0.247 Phosgene 182 56 5.67 190 0.52 Phosphine 51.3 64.5 6.54 Phosphine-d3 50.4 Phosphonium chloride 49.1 72.7 7.37 Phosphorus 721 Phosphorus bromide difluoride 113 Phosphorus chloride difluoride 89.2 44.6 4.52 Phosphorus dibromide fluoride 254 Phosphorus dichloride fluoride 189.9 49.3 5.00 Phosphorus pentachloride 372 Phosphorus trichloride 290 260 0.528 Phosphorus trifluoride 1.9 42.7 4.33 Phosphoryl chloride difluoride 150.7 43.4 4.40 Phosphoryl trichloride 329 Phosphoryl trifluoride 73.4 41.8 4.24 Phthalic anhydride 537 47 4.76 368 0.402 Piperidine 321.0 48.8 4.94 288 0.296 Propadiene 120 54.0 5.47 162 0.247 Propanal 231.3 52.0 5.27 204 0.285 Propane 96.68 41.92 4.248 200 0.217 1,2-Propanediol 352 60 6.08 237 0.321 1,3-Propanediol 385 59 5.98 241 0.316 Propanenitrile 288.2 42.0 4.26 230 0.240 1-Propanethiol 262.5 2-Propanethiol 244.2 Propanoic acid 331 44.7 4.53 222 0.32 1-Propanol 263.7 51.01 5.169 218.5 0.275 2-Propanol 235.2 47.02 4.764 220 0.273 2-Propenal 233 51 5.17 197 0.285 Propene 91.9 45.6 4.62 181 0.233 2-Propen-1-ol 272.0 208 0.279 Propyl acetate 276.6 33.2 3.36 345 0.296 Propylamine 223.9 46.6 4.72 233 0.254 Propylbenzene 365.20 31.58 3.200 440 0.273 Propyl butanoate 327 Propylcyclopentane 358.7 29.6 3.00 425 0.264 Propylcyclohexane 336.7 27.7 2.81 Propylene oxide 209.1 48.6 4.92 186 0.312 TABLE 6.5 Critical Properties (Continued) Substance Tc, C Pc, atm Pc, MPa Vc, cm3 · mol1 c, g · cm3 6.156 SECTION 6 Propyl formate 264.9 40.1 4.06 285 0.309 Propyl 2-methylpropanoate 316 Propyl 3-methylpropanoate 336 Propyl propanoate 305 Propyne 129.3 55.5 5.62 164 0.245 Pyridine 346.9 55.96 5.67 243 0.325 Pyrrole 366.6 62.6 6.34 200 0.335 Pyrrolidine 295.1 55.2 5.59 238 0.300 Quinoline 509 48.0 4.86 437 0.300 Radon 104 62 6.28 139 1.6 Rhenium(VII) oxide 669 334 Rhenium(VI) oxide tetrachloride 508 161 0.95 Rubidium 1832 250 0.34 Selenium 1493 Silane 3.5 47.8 4.84 Silicon chloride trifluoride 34.5 34.2 3.47 Silicon tetrabromide 390 Silicon tetrachloride 234 37 3.75 326 0.521 Silicon tetrafluoride 14.0 36.7 3.72 Silicon trichloride fluoride 165.4 35.3 3.57 Spiro[2.2]pentane 233.3 Styrene 363.8 36.3 3.68 347 0.300 Sulfur 1041 116 11.7 Sulfur dioxide 157.7 77.8 7.88 122 0.5240 Sulfur hexafluoride 45.6 37.1 3.76 198 0.734 Sulfur tetrafluoride 91.7 Sulfur trioxide 217.9 81 8.2 130 0.633 Tantalum pentabromide 701 461 1.26 Tantalum pentachloride 494 400 0.89 1,2-Terphenyl 617.9 38.5 3.90 755 0.305 1,3-Terphenyl 651.7 34.6 3.51 768 0.300 1,4-Terphenyl 652.9 32.8 3.32 762 0.302 1,1,2,2-Tetrachlorodifluoro-ethane 278 34 3.44 371 0.549 1,1,2,2-Tetrachloroethane 388.00 Tetrachloroethylene 347.1 44.3 4.49 290 0.572 Tetrachloromethane 283.5 44.57 4.516 276 0.557 Tetradecafluoro-1-heptene 205.1 Tetradecafluorohexane 174.5 18.8 1.90 Tetradecafluoromethylcyclohexane 213.7 23 2.33 Tetradecane 420.9 16 1.62 830 0.239 1-Tetradecene 416 15.4 1.56 Tetradecylcyclopentane 499 11.1 1.12 Tetraethylsilane 330.6 25.68 2.602 Tetrafluoroethylene 33.4 38.9 3.91 175 0.58 Tetrafluorohydrazine 33.3 37 3.75 Tetrafluoromethane 45.5 36.9 3.74 140 0.629 Tetrahydrofuran 267.0 51.22 5.19 224 0.322 1,2,3,4-Tetrahydronaphthalene 447 36.0 3.65 408 0.324 Tetrahydropyran 299.1 47.1 4.77 263 0.328 Tetrahydrothiophene 358.9 1,2,4,5-Tetramethylbenzene 402 29 2.94 480 0.280 2,2,3,3-Tetramethylbutane 294.7 28.3 2.87 461 0.248 2,2,3,3-Tetramethylhexane 350.0 24.8 2.51 573 0.248 TABLE 6.5 Critical Properties (Continued) Substance Tc, C Pc, atm Pc, MPa Vc, cm3 · mol1 c, g · cm3 THERMODYNAMIC PROPERTIES 6.157 2,2,3,4-Tetramethylhexane 347.3 23.4 2.37 525 0.271 2,2,3,5-Tetramethylhexane 328.2 22.4 2.27 540 0.263 2,2,4,4-Tetramethylhexane 337.1 22.2 2.25 535 0.266 2,2,4,5-Tetramethylhexane 325.4 21.9 2.22 544 0.262 2,2,5,5-Tetramethylhexane 308.4 21.6 2.19 573 0.248 2,3,3,4-Tetramethylhexane 360.0 24.5 2.48 514 0.277 2,3,3,5-Tetramethylhexane 337.0 22.9 2.32 531 0.268 2,3,4,4-Tetramethylhexane 353.5 23.9 2.42 518 0.275 2,3,4,5-Tetramethylhexane 340.1 23.1 2.34 530 0.269 3,3,4,4-Tetramethylhexane 373.6 25.4 2.57 506 0.281 2,2,3,3-Tetramethylpentane 334.6 27.05 2.741 2,2,3,4-Tetramethylpentane 319.6 25.68 2.602 2,2,4,4-Tetramethylpentane 301.6 24.52 2.485 2,3,3,4-Tetramethylpentane 334.6 26.80 2.716 Tetramethylsilane 175.49 27.84 2.821 362 0.244 Thiacyclopentane 358.8 2-Thiapropane 230.0 54.6 5.53 201 0.309 Thiophene 306.3 56.16 5.69 219 0.385 Thiophenol 416.4 Thymol 425 Tin(IV) chloride 318.7 37.0 3.75 351 0.742 Titanium tetrachloride 365 46 4.66 340 0.558 Toluene 318.60 40.54 4.108 316 0.292 1,2-Toluidine 434 43.1 4.37 343 0.312 1,3-Toluidine 434 42.2 4.28 343 0.312 1,4-Toluidine 433 45.2 4.58 Toluonitrile 450 Tributoxyborane 472 19.6 1.99 863 0.267 Tributylamine 365.3 18 1.82 1,1,1-Trichloroethane 272 42.4 4.30 1,1,2-Trichloroethane 329 41 4.15 294 0.454 Trichloroethylene 271.1 49.5 5.02 256 0.513 Trichlorofluoromethane 198.1 43.5 4.41 248 0.554 Trichlorofluorosilane 165.4 35.3 3.57 Trichloromethane 263.3 54.0 5.47 239 0.500 Trichloromethylsilane 244 32.4 3.28 348 0.430 1,2,3-Trichloropropane 378 39 3.95 348 0.424 1,2,2-Trichlorotrifluoroethane 214.2 33.7 3.42 325 0.576 Tridecane 402 16.6 1.68 780 0.236 1-Tridecene 401 16.8 1.70 Tridecylcyclopentane 488 11.9 1.21 Triethanolamine 514.3 24.2 2.45 Triethylamine 262.5 29.92 3.032 389 0.26 Trifluoroacetic acid 218.2 32.15 3.258 204 0.559 Trifluoroamine oxide (NOF3) 29.5 169 0.593 1,1,1-Trifluoroethane 73.2 37.1 3.76 194 0.434 Trifluoromethane 25.8 47.7 4.83 133 0.525 (Trifluoromethyl)benzene 286.8 Trimethylamine 159.64 40.34 4.087 254 0.233 1,2,3-Trimethylbenzene 391.4 34.09 3.454 430 0.280 1,2,4-Trimethylbenzene 376.0 31.90 3.232 430 0.280 1,3,5-Trimethylbenzene 364.2 30.86 3.127 433 0.278 2,2,3-Trimethylbutane 258.1 29.15 2.954 398 0.252 2,2,3-Trimethyl-1-butene 260 28.6 2.90 400 0.245 TABLE 6.5 Critical Properties (Continued) Substance Tc, C Pc, atm Pc, MPa Vc, cm3 · mol1 c, g · cm3 6.158 SECTION 6 1,1,2-Trimethylcyclopentane 306.4 29.0 2.94 1,1,3-Trimethylcyclopentane 296.4 27.9 2.83 cis,trans,cis-1,2,4-Trimethyl-cyclopentane 298 27.7 2.81 cis,cis,trans-1,2,4-Trimethyl-cyclopentane 306 28.4 2.88 2,2,3-Trimethylheptane 338.6 22.4 2.27 546 0.261 2,2,4-Trimethylheptane 321.4 21.4 2.17 552 0.258 2,2,5-Trimethylheptane 325.0 21.4 2.17 559 0.256 2,2,6-Trimethylheptane 320.3 21.0 2.13 573 0.248 2,3,3-Trimethylheptane 344.4 22.9 2.32 538 0.265 2,3,4-Trimethylheptane 340.6 22.6 2.29 538 0.265 2,3,5-Trimethylheptane 339.7 22.1 2.24 547 0.260 2,3,6-Trimethylheptane 331.0 21.6 2.19 560 0.254 2,4,4-Trimethylheptane 327.2 21.9 2.22 541 0.263 2,4,5-Trimethylheptane 333.8 22.1 2.24 544 0.262 2,4,6-Trimethylheptane 317.2 21.2 2.15 560 0.254 2,5,5-Trimethylheptane 329.8 21.9 2.22 550 0.259 3,3,4-Trimethylheptane 349.4 23.4 2.37 526 0.271 3,3,5-Trimethylheptane 336.5 22.9 2.32 579 0.246 3,4,4-Trimethylheptane 347.8 23.4 2.37 524 0.271 3,4,5-Trimethylheptane 339.7 22.1 2.24 547 0.261 2,2,3-Trimethylhexane 315 24.6 2.49 2,2,4-Trimethylhexane 300.6 23.4 2.37 2,2,5-Trimethylhexane 295 23.0 2.33 519 0.247 2,4,7-Trimethyloctane 335.7 2,2,3-Trimethylpentane 290.4 26.94 2.730 436 0.262 2,2,4-Trimethylpentane 270.9 25.34 2.568 468 0.244 2,3,3-Trimethylpentane 300.5 27.83 2.820 455 0.251 2,3,4-Trimethylpentane 293.4 26.94 2.730 461 0.248 2,2,4-Trimethyl-1,3-pentanediol 398 25.6 2.59 364.6 0.4010 2,3,6-Trimethylpyridine 381.4 2,4,6-Trimethylpyridine 379.9 2,4,6-Trimethyl-1,3,5-trioxane 290 Tungsten(VI) oxide tetra-chloride 509 338 1.01 1H-Undecafluoropentane 170.8 Undecane 365.7 19.4 1.97 657 0.238 1-Undecene 364 19.7 2.00 0.240 Uranium hexafluoride 232.7 45.5 4.61 250 1.41 Vinyl acetate 228.4 22.4 2.27 265 0.325 Vinyl chloride 156.6 55.3 5.60 169 0.370 Vinyl fluoride 54.7 51.7 5.24 114 0.320 Vinyl formate 202 57 5.78 210 0.343 Water 374.2 217.6 22.04 56.0 0.325 Xenon 16.583 57.64 5.84 118 1.105 1,2-Xylene 357.2 36.83 3.732 370 0.288 1,3-Xylene 343.9 34.95 3.541 375 0.282 1,4-Xylene 343.1 34.65 3.511 379 0.280 Zirconium tetrabromide 532 415 0.99 Zirconium tetrachloride 505 56.9 5.77 319 0.730 Zirconium tetraiodide 687 528 1.13 TABLE 6.5 Critical Properties (Continued) Substance Tc, C Pc, atm Pc, MPa Vc, cm3 · mol1 c, g · cm3 SECTION 7 SPECTROSCOPY 7.1 X-RAY METHODS 7.2 Table 7.1 Wavelengths of X-Ray Emission Spectra in Angstroms 7.3 Table 7.2 Wavelengths of Absorption Edges in Angstroms 7.5 Table 7.3 Critical X-Ray Absorption Energies in keV 7.8 Table 7.4 X-Ray Emission Energies in keV 7.10 Table 7.5 Filters for Common Target Elements 7.14 Table 7.6 Interplanar Spacings for K1 Radiation, d versus 2 7.14 Table 7.7 Analyzing Crystals for X-Ray Spectroscopy 7.15 Table 7.8 Mass Absorption Coefficients for K1 Lines and W L1 Line 7.16 7.2 ULTRAVIOLET-VISIBLE SPECTROSCOPY 7.18 Table 7.9 Electronic Absorption Bands for Representative Chromophores 7.19 Table 7.10 Ultraviolet Cutoffs of Spectrograde Solvents 7.20 Table 7.11 Absorption Wavelength of Dienes 7.21 Table 7.12 Absorption Wavelength of Enones and Dienones 7.22 Table 7.13 Solvent Correction for Ultraviolet-Visible Spectroscopy 7.23 Table 7.14 Primary Bands of Substituted Benzene and Heteroaromatics 7.23 Table 7.15 Wavelength Calculation of the Principal Band of Substituted Benzene Derivatives 7.24 7.3 FLUORESCENCE 7.25 Table 7.16 Fluorescence Spectroscopy of Some Organic Compounds 7.25 Table 7.17 Fluorescence Quantum Yield Values 7.28 7.4 FLAME ATOMIC EMISSION, FLAME ATOMIC ABSORPTION, ELECTROTHERMAL (FURNACE) ATOMIC ABSORPTION, ARGON INDUCTION COUPLED PLASMA, AND PLASMA ATOMIC FLUORESCENCE 7.28 Table 7.18 Detection Limits in ng/mL 7.29 Table 7.19 Sensitive Lines of the Elements 7.34 7.4.1 Some Common Spectroscopic Relationships 7.38 7.5 INFRARED SPECTROSCOPY 7.41 Table 7.20 Absorption Frequencies of Single Bonds to Hydrogen 7.41 Table 7.21 Absorption Frequencies of Triple Bonds 7.47 Table 7.22 Absorption Frequencies of Cumulated Double Bonds 7.49 Table 7.23 Absorption Frequencies of Carbonyl Bands 7.50 7.5.1 Intensities of Carbonyl Bands 7.53 7.5.2 Position of Carbonyl Absorption 7.53 Table 7.24 Absorption Frequencies of Other Double Bonds 7.54 Table 7.25 Absorption Frequencies of Aromatic Bands 7.57 Table 7.26 Absorption Frequencies of Miscellaneous Bands 7.58 Table 7.27 Absorption Frequencies in the Near Infrared 7.64 Table 7.28 Infrared Transmitting Materials 7.67 Table 7.29 Infrared Transmission Characteristics of Selected Solvents 7.68 7.6 RAMAN SPECTROSCOPY 7.71 Table 7.30 Raman Frequencies of Single Bonds to Hydrogen and Carbon 7.71 Table 7.31 Raman Frequencies of Triple Bonds 7.76 Table 7.32 Raman Frequencies of Cumulated Double Bonds 7.77 Table 7.33 Raman Frequencies of Carbonyl Bands 7.78 Table 7.34 Raman Frequencies of Other Double Bonds 7.79 Table 7.35 Raman Frequencies of Aromatic Compounds 7.82 Table 7.36 Raman Frequencies of Sulfur Compounds 7.84 Table 7.37 Raman Frequencies of Ethers 7.85 7.1 7.2 SECTION 7 Table 7.38 Raman Frequencies of Halogen Compounds 7.86 Table 7.39 Raman Frequencies of Miscellaneous Compounds 7,87 Table 7.40 Principal Argon-Ion Laser Plasma Lines 7.88 7.7 NUCLEAR MAGNETIC RESONANCE 7.89 Table 7.41 Nuclear Properties of the Elements 7.89 Table 7.42 Proton Chemical Shifts 7.92 Table 7.43 Estimation of Chemical Shift for Protons of 9CH29 and Methine Groups 7.94 Table 7.44 Estimation of Chemical Shift of Proton Attached to a Double Bond 7.95 Table 7.45 Chemical Shifts in Monosubstituted Benzene 7.96 Table 7.46 Proton Spin Coupling Constants 7.97 Table 7.47 Proton Chemical Shifts of Reference Compounds 7.98 Table 7.48 Solvent Positions of Residual Protons in Incompletely Deuterated Solvents 7.98 Table 7.49 Carbon-13 Chemical Shifts 7.99 Table 7.50 Estimation of Chemical Shifts of Alkane Carbons 7.102 Table 7.51 Effect of Substituent Groups on Alkyl Chemical Shifts 7.102 Table 7.52 Estimation of Chemical Shifts of Carbon Attached to a Double Bond 7.103 Table 7.53 Carbon-13 Chemical Shifts in Substituted Benzenes 7.104 Table 7.54 Carbon-13 Chemical Shifts in Substituted Pyridines 7.105 Table 7.55 Carbon-13 Chemical Shifts of Carbonyl Group 7.106 Table 7.56 One-Bond Carbon-Hydrogen Spin Coupling Constants 7.107 Table 7.57 Two-Bond Carbon-Hydrogen Spin Coupling Constants 7.108 Table 7.58 Carbon-Carbon Spin Coupling Constants 7.108 Table 7.59 Carbon-Fluorine Spin Coupling Constants 7.109 Table 7.60 Carbon-13 Chemical Shifts of Deuterated Solvents 7.110 Table 7.61 Carbon-13 Coupling Constants with Various Nuclei 7.110 Table 7.62 Boron-11 Chemical Shifts 7,111 Table 7.63 Nitrogen-15 (or Nitrogen-14) Chemical Shifts 7.112 Table 7.64 Nitrogen-15 Chemical Shifts in Monosubstituted Pyridine 7.115 Table 7.65 Nitrogen-15 Chemical Shifts for Standards 7.115 Table 7.66 Nitrogen-15 to Hydrogen-1 Spin Coupling Constants 7.115 Table 7.67 Nitrogen-15 to Carbon-13 Spin Coupling Constants 7.116 Table 7.68 Nitrogen-15 to Fluorine-19 Spin Coupling Constants 7.116 Table 7.69 Fluorine-19 Chemical Shifts 7.117 Table 7.70 Fluorine-19 Chemical Shifts for Standards 7.118 Table 7.71 Fluorine-19 to Fluorine-19 Spin Coupling Constants 7.118 Table 7.72 Silicon-29 Chemical Shifts 7.118 Table 7.73 Phosphorus-31 Chemical Shifts 7.119 Table 7.74 Phosphorus-31 Spin Coupling Constants 7.122 7.8 MASS SPECTROMETRY 7.123 7.8.1 Correlation of Mass Spectra with Molecular Structure 7.123 Table 7.75 Isotopic Abundances and Masses of Selected Elements 7.124 7.8.2 Mass Spectra and Structure 7.126 Table 7.76 Condensed Table of Mass Spectra 7.128 7.1 X-RAY METHODS An X-ray tube operating at a voltage V (in keV) emits a continuous X-ray spectrum, the minimum wavelength of which is given by min 12.398/V with the wavelength expressed in angstroms. For expressing the wavelength in kX units, divide by the factor 1.00202. Tables 7.1 and 7.2 are based SPECTROSCOPY 7.3 TABLE 7.1 Wavelengths of X-Ray Emission Spectra in Angstroms Atomic No.
Element K2 K1 K1 L1 L1 3 Li 240 4 Be 113 5 B 67 6 C 44 7 N 31.60 8 O 23.71 9 F 18.31 10 Ne 14.464 14.616 11 Na 11.617 407.6 11.909 12 Mg 9.558 251.0 9.889 13 Al 8.3392 8.3367 7.981 169.8 14 Si 7.1277 7.1253 6.7681 123 6.1549 15 P 5.8038 16 S 5.3747 5.3720 5.0317 17 Cl 4.7305 4.7276 4.4031 18 Ar 4.1946 4.1916 3.8848 19 K 3.7446 3.7412 3.4538 42.7 20 Ca 3.3616 3.3583 3.0896 36.32 35.95 21 Sc 3.0345 3.0311 2.7795 31.33 31.01 22 Ti 2.75207 2.7484 2.5138 27.39 27.02 23 V 2.5073 2.5035 2.2843 24.26 23.85 24 Cr 2.29351 2.28962 2.08480 21.67 21.28 25 Mn 2.1057 2.1018 1.9102 19.45 19.12 26 Fe 1.93991 1.93597 1.75653 17.567 17.255 27 Co 1.79278 1.78892 1.62075 15.968 15.667 28 Ni 1.66169 1.65784 1.50010 14.566 14.279 29 Cu 1.54433 1.54051 1.39217 13.330 13.053 30 Zn 1.4389 1.4351 1.2952 12.257 11.985 31 Ga 1.3439 1.3400 1.20784 11.290 11.023 32 Ge 1.2580 1.2540 1.1289 10.435 10.174 33 As 1.1798 1.1758 1.0573 9.671 9.414 34 Se 1.1088 1.1047 0.9921 8.990 8.736 35 Br 1.0438 1.0397 0.9327 8.375 8.125 36 Kr 0.9841 0.9801 0.8785 7.822 7.574 37 Rb 0.9296 0.9255 0.8286 7.3181 7.076 38 Sr 0.8794 0.8752 0.7829 6.8625 6.6237 39 Y 0.8330 0.8279 0.7407 6.4485 6.2117 40 Zr 0.7901 0.7859 0.7017 6.0702 5.8358 41 Nb 0.7504 0.7462 0.6657 5.7240 5.4921 42 Mo 0.713543 0.70926 0.632253 5.4063 5.1768 43 Tc 0.6793 0.6749 0.6014 5.1126 4.8782 44 Ru 0.6474 0.6430 0.5725 4.8455 4.6204 45 Rh 0.6176 0.6132 0.5456 4.5973 4.3739 7.4 SECTION 7 46 Pd 0.5898 0.5854 0.5205 4.3676 4.1460 47 Ag 0.563775 0.559363 0.49701 4.1541 3.9344 48 Cd 0.5394 0.5350 0.4751 3.9563 3.7381 49 In 0.5165 0.5121 0.4545 3.7719 3.5552 50 Sn 0.4950 0.4906 0.4352 3.5999 3.3848 51 Sb 0.4748 0.4703 0.4171 3.4392 3.2256 52 Te 0.4558 0.4513 0.4000 3.2891 3.0767 53 I 0.4378 0.4333 0.3839 3.1485 2.9373 54 Xe 0.4204 0.4160 0.3685 3.016 2.807 55 Cs 0.4048 0.4003 0.3543 2.9016 2.8920 56 Ba 0.3896 0.3851 0.3408 2.7752 2.5674 57 La 0.3753 0.3707 0.3280 2.6651 2.4583 58 Ce 0.3617 0.3571 0.3158 2.5612 2.3558 59 Pr 0.3487 0.3441 0.3042 2.4627 2.2584 60 Nd 0.3565 0.3318 0.2933 2.3701 2.1666 61 Pm 0.3249 0.3207 0.2821 2.282 2.0796 62 Sm 0.3137 0.3190 0.2731 2.1994 1.9976 63 Eu 0.3133 0.2985 0.2636 2.1206 1.9202 64 Gd 0.2932 0.2884 0.2544 2.0460 1.8462 65 Tb 0.2834 0.2788 0.2460 1.9755 1.7763 66 Dy 0.2743 0.2696 0.2376 1.9088 1.7100 67 Ho 0.2655 0.2608 0.2302 1.8447 1.6468 68 Er 0.2572 0.2525 0.2226 1.7843 1.5873 69 Tm 0.2491 0.2444 0.2153 1.7263 1.5299 70 Yb 0.2415 0.2368 0.2088 1.6719 1.4756 71 Lu 0.2341 0.2293 0.2021 1.6194 1.4235 72 Hf 0.2270 0.2222 0.1955 1.5696 1.3740 73 Ta 0.2203 0.2155 0.1901 1.5219 1.3270 74 W 0.213813 0.208992 0.184363 1.4764 1.2818 75 Re 0.2076 0.2028 0.1789 1.4329 1.2385 76 Os 0.2016 0.1968 0.1736 1.3911 1.1972 77 Ir 0.1959 0.1910 0.1685 1.3513 1.1578 78 Pt 0.1904 0.1855 0.1637 1.3130 1.1198 79 Au 0.1851 0.1802 0.1590 1.2764 1.0836 80 Hg 0.1799 0.1750 0.1544 1.2411 1.0486 81 Tl 0.1750 0.1701 0.1501 1.2074 1.0152 82 Pb 0.1703 0.1654 0.1460 1.1750 0.9822 83 Bi 0.1657 0.1608 0.1419 1.1439 0.9520 84 Po 0.1608 0.1559 0.1382 1.1138 0.9222 85 At 0.1570 0.1521 0.1343 1.0850 0.8936 86 Rn 0.1529 0.1479 0.1307 1.0572 0.8659 87 Fr 0.1489 0.1440 0.1272 1.030 0.840 88 Ra 0.1450 0.1401 0.1237 1.0047 0.8137 89 Ac 0.1414 0.1364 0.1205 0.9799 0.7890 90 Th 0.1378 0.1328 0.1174 0.9560 0.7652 TABLE 7.1 Wavelengths of X-Ray Emission Spectra in Angstroms (Continued) Atomic No.
Element K2 K1 K1 L1 L1 SPECTROSCOPY 7.5 91 Pa 0.1344 0.1294 0.1143 0.9328 0.7422 92 U 0.1310 0.1259 0.1114 0.9105 0.7200 93 Np 0.1278 0.1226 0.1085 0.8893 0.6984 94 Pu 0.1246 0.1195 0.1058 0.8682 0.6777 95 Am 0.1215 0.1165 0.1031 0.8481 0.6576 96 Cm 0.1186 0.1135 0.1005 0.8287 0.6388 97 Bk 0.1157 0.1107 0.0980 0.8098 0.6203 98 Cf 0.1130 0.1079 0.0956 0.7917 0.6023 99 Es 0.1103 0.1052 0.0933 0.7740 0.5850 100 Fm 0.1077 0.1026 0.0910 0.7570 0.5682 TABLE 7.1 Wavelengths of X-Ray Emission Spectra in Angstroms (Continued) Atomic No.
Element K2 K1 K1 L1 L1 TABLE 7.2 Wavelengths of Absorption Edges in Angstroms Atomic No.
Element K LI LII LIII 3 Li 226.5 4 Be 110.68 5 B 66.289 6 C 43.68 7 N 30.99 8 O 23.32 9 F 17.913 10 Ne 14.183 11 Na 11.478 400 12 Mg 9.512 197.4 247.92 13 Al 7.951 142.5 170 14 Si 6.745 105.1 126.48 15 P 5.787 81.0 96.84 16 S 5.018 64.23 76.05 17 Cl 4.397 52.08 61.37 62.93 18 Ar 3.871 43.19 50.39 50.60 19 K 3.436 36.35 42.02 42.17 20 Ca 3.070 31.07 35.20 35.49 21 Sc 2.757 26.83 30.16 30.53 22 Ti 2.497 23.39 26.83 27.37 23 V 2.269 20.52 23.70 24.26 24 Cr 2.07012 16.7 17.9 20.7 25 Mn 1.896 16.27 18.90 19.40 26 Fe 1.74334 14.60 17.17 17.53 27 Co 1.60811 13.34 15.53 15.93 28 Ni 1.48802 12.27 14.13 14.58 29 Cu 1.38043 11.27 13.01 13.29 30 Zn 1.283 10.33 11.86 12.13 7.6 SECTION 7 31 Ga 1.195 9.54 10.61 11.15 32 Ge 1.116 8.73 9.97 10.23 33 As 1.044 8.108 9.124 9.367 34 Se 0.9800 7.505 8.417 8.646 35 Br 0.9199 6.925 7.752 7.989 36 Kr 0.8655 6.456 7.165 7.395 37 Rb 0.8155 5.997 6.643 6.863 38 Sr 0.7697 5.582 6.172 6.387 39 Y 0.7276 5.233 5.756 5.962 40 Zr 0.6888 4.867 5.378 5.583 41 Nb 0.6529 4.581 5.025 5.223 42 Mo 0.61977 4.299 4.719 4.912 43 Tc 0.5888 4.064 4.427 4.629 44 Ru 0.5605 3.841 4.179 4.369 45 Rh 0.5338 3.626 3.942 4.130 46 Pd 0.5092 3.428 3.724 3.908 47 Ag 0.48582 3.254 3.514 3.698 48 Cd 0.4641 3.084 3.326 3.504 49 In 0.4439 2.926 3.147 3.324 50 Sn 0.4247 2.778 2.982 3.156 51 Sb 0.4066 2.639 2.830 3.000 52 Te 0.3897 2.510 2.687 2.855 53 I 0.3738 2.390 2.553 2.719 54 Xe 0.3585 2.274 2.429 2.592 55 Cs 0.3447 2.167 2.314 2.474 56 Ba 0.3314 2.068 2.204 2.363 57 La 0.3184 1.973 2.103 2.258 58 Ce 0.3065 1.891 2.009 2.164 59 Pr 0.2952 1.811 1.924 2.077 60 Nd 0.2845 1.735 1.843 1.995 61 Pm 0.2743 1.668 1.766 1.918 62 Sm 0.2646 1.598 1.702 1.845 63 Eu 0.2555 1.536 1.626 1.775 64 Gd 0.2468 1.477 1.561 1.709 65 Tb 0.2384 1.421 1.501 1.649 66 Dy 0.2305 1.365 1.438 1.579 67 Ho 0.2229 1.319 1.390 1.535 68 Er 0.2157 1.269 1.339 1.483 69 Tm 0.2089 1.222 1.288 1.433 70 Yb 0.2022 1.181 1.243 1.386 71 Lu 0.1958 1.140 1.198 1.341 72 Hf 0.1898 1.099 1.154 1.297 73 Ta 0.1839 1.061 1.113 1.255 TABLE 7.2 Wavelengths of Absorption Edges in Angstroms (Continued) Atomic No.
Element K LI LII LIII SPECTROSCOPY 7.7 74 W 0.17837 1.025 1.074 1.215 75 Re 0.1731 0.9901 1.036 1.177 76 Os 0.1678 0.9557 1.001 1.140 77 Ir 0.1629 0.9243 0.9670 1.106 78 Pt 0.1582 0.8914 0.9348 1.072 79 Au 0.1534 0.8638 0.9028 1.040 80 Hg 0.1492 0.8353 0.8779 1.009 81 Tl 0.1447 0.8079 0.8436 0.9793 82 Pb 0.1408 0.7815 0.8155 0.9503 83 Bi 0.1371 0.7565 0.7891 0.9234 84 Po 0.1332 0.7322 0.7638 0.8970 85 At 0.1295 0.7092 0.7387 0.8720 86 Rn 0.1260 0.6868 0.7153 0.8479 87 Fr 0.1225 0.6654 0.6929 0.8248 88 Ra 0.1192 0.6446 0.6711 0.8027 89 Ac 0.1161 0.6248 0.6500 0.7813 90 Th 0.1129 0.6061 0.6301 0.7606 91 Pa 0.1101 0.5875 0.6106 0.7411 92 U 0.1068 0.5697 0.5919 0.7233 93 Np 0.1045 0.5531 0.5742 0.7042 94 Pu 0.1018 0.5366 0.5571 0.6867 95 Am 0.0992 0.5208 0.5404 0.6700 96 Cm 0.0967 0.5060 0.5246 0.6532 97 Bk 0.0943 0.4913 0.5093 0.6375 98 Cf 0.0920 0.4771 0.4945 0.6223 99 Es 0.0897 0.4636 0.4801 0.6076 100 Fm 0.0875 0.4506 0.4665 0.5935 TABLE 7.2 Wavelengths of Absorption Edges in Angstroms (Continued) Atomic No.
Element K LI LII LIII on the K and L wavelength values as published by Y. Cauchois and H. Hulubei (Tables de Constantes et Donne ´es Nume ´riques, I. Longueurs d’Onde des E ´missions X et des Discontinuite ´s d’Absorption X, Hermann, Paris, 1947) and by the International Union of Crystallography (International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, England, 1962). Wavelength accuracy is only to about 1 in 25 000 except for the lines employed in X-ray diffraction work.
Use of energy-proportional detectors for X-rays creates a need for energy values of K and L absorption edges (Table 7.3) and emission series (Table 7.4). These values were obtained by a conversion to keV of tabulated experimental wavelength values and smoothed by a fit to Moseley’s law. Although values are listed to 1 eV, chemical form may shift absorption edges and emission lines as much as 10 to 20 eV. S. Fine and C. F. Hendee [Nucelonics, 13(3):36 (1955)] also give values for K2, L1, and L2 lines.
The relative intensities of X-ray emission lines from targets varies for different elements. How-ever, one can assume a ratio of K1/K2 2 for the commonly used targets. The ratio of K2/K1 from these targets varies from 6 to 3.5. The intensities of K2 radiations amount to about 1 percent 7.8 SECTION 7 TABLE 7.3 Critical X-Ray Absorption Energies in keV Atomic No.
Element K LI LII LIII 1 H 0.0136 2 He 0.0246 3 Li 0.0547 4 Be 0.112 5 B 0.187 6 C 0.284 7 N 0.400 8 O 0.532 9 F 0.692 10 Ne 0.874 0.048 0.022 11 Na 1.08 0.055 0.034 12 Mg 1.30 0.0628 0.0502 13 Al 1.559 0.0870 0.0720 14 Si 1.838 0.118 0.0977 15 P 2.142 0.153 0.128 16 S 2.469 0.193 0.163 0.162 17 Cl 2.822 0.238 0.202 0.201 18 Ar 3.200 0.287 0.246 0.244 19 K 3.606 0.341 0.295 0.292 20 Ca 4.038 0.399 0.350 0.346 21 Sc 4.496 0.462 0.411 0.407 22 Ti 4.966 0.530 0.462 0.456 23 V 5.467 0.604 0.523 0.515 24 Cr 5.988 0.679 0.584 0.574 25 Mn 6.542 0.762 0.656 0.644 26 Fe 7.113 0.849 0.722 0.709 27 Co 7.713 0.929 0.798 0.783 28 Ni 8.337 1.02 0.877 0.858 29 Cu 8.982 1.10 0.954 0.935 30 Zn 9.662 1.20 1.05 1.02 31 Ga 10.39 1.30 1.17 1.14 32 Ge 11.10 1.42 1.24 1.21 33 As 11.87 1.529 1.358 1.32 34 Se 12.65 1.66 1.472 1.431 35 Br 13.48 1.791 1.599 1.552 36 Kr 14.32 1.92 1.729 1.674 37 Rb 15.197 2.064 1.863 1.803 38 Sr 16.101 2.212 2.004 1.937 39 Y 17.053 2.387 2.171 2.096 40 Zr 17.998 2.533 2.308 2.224 41 Nb 18.986 2.700 2.467 2.372 42 Mo 20.003 2.869 2.630 2.525 43 Tc 21.050 3.045 2.796 2.680 SPECTROSCOPY 7.9 TABLE 7.3 Critical X-Ray Absorption Energies in keV (Continued) Atomic No.
Element K LI LII LIII 44 Ru 22.117 3.227 2.968 2.839 45 Rh 23.210 3.404 3.139 2.995 46 Pd 24.356 3.614 3.338 3.181 47 Ag 25.535 3.828 3.547 3.375 48 Cd 26.712 4.019 3.731 3.541 49 In 27.929 4.226 3.929 3.732 50 Sn 29.182 4.445 4.139 3.911 51 Sb 30.497 4.708 4.391 4.137 52 Te 31.817 4.953 4.621 4.347 53 I 33.164 5.187 4.855 4.559 54 Xe 34.551 5.448 5.103 4.783 55 Cs 35.974 5.706 5.360 5.014 56 Ba 37.432 5.995 5.629 5.250 57 La 38.923 6.264 5.902 5.490 58 Ce 40.43 6.556 6.169 5.728 59 Pr 41.99 6.837 6.446 5.968 60 Nd 43.57 7.134 6.728 6.215 61 Pm 45.19 7.431 7.022 6.462 62 Sm 46.85 7.742 7.316 6.720 63 Eu 48.51 8.059 7.624 6.984 64 Gd 50.23 8.383 7.942 7.251 65 Tb 52.00 8.713 8.258 7.520 66 Dy 53.77 9.053 8.587 7.795 67 Ho 55.61 9.395 8.918 8.074 68 Er 57.47 9.754 9.270 8.362 69 Tm 59.38 10.12 9.622 8.656 70 Yb 61.31 10.49 9.985 8.949 71 Lu 63.32 10.87 10.35 9.248 72 Hf 65.37 11.28 10.75 9.567 73 Ta 67.46 11.68 11.14 9.883 74 W 69.51 12.09 11.54 10.20 75 Re 71.67 12.52 11.96 10.53 76 Os 73.87 12.97 12.38 10.86 77 Ir 76.11 13.41 12.82 11.21 78 Pt 78.35 13.865 13.26 11.55 79 Au 80.67 14.351 13.731 11.92 80 Hg 83.08 14.838 14.205 12.278 81 Tl 85.52 15.344 14.695 12.65 82 Pb 87.95 15.861 15.200 13.03 83 Bi 90.54 16.386 15.709 13.42 84 Po 93.16 16.925 16.233 13.81 85 At 95.73 17.481 16.777 14.21 7.10 SECTION 7 TABLE 7.3 Critical X-Ray Absorption Energies in keV (Continued) Atomic No.
Element K LI LII LIII 86 Rn 98.45 18.054 17.331 14.61 87 Fa 101.1 18.628 17.893 15.02 88 Ra 103.9 19.228 18.473 15.44 89 Ac 107.7 19.829 19.071 15.86 90 Th 109.8 20.452 19.673 16.278 91 Pa 112.4 21.096 20.295 16.720 92 U 115.0 21.757 20.944 17.163 93 Np 118.2 22.411 21.585 17.606 94 Pu 121.2 23.117 22.250 18.062 95 Am 124.3 23.795 22.935 18.524 96 Cm 127.2 24.502 23.629 18.992 97 Bk 131.3 25.231 24.344 19.466 98 Cf 133.6 26.010 25.070 19.954 99 Es 138.1 26.729 25.824 20.422 100 Fm 141.5 27.503 26.584 20.912 TABLE 7.4 X-Ray Emission Energies in keV Atomic No.
Element K1 K1 L1 L1 3 Li 0.052 4 Be 0.110 5 B 0.185 6 C 0.282 7 N 0.392 8 O 0.523 9 F 0.677 10 Ne 0.851 11 Na 1.067 1.041 12 Mg 1.297 1.254 13 Al 1.553 1.487 14 Si 1.832 1.740 15 P 2.136 2.015 16 S 2.464 2.308 17 Cl 2.815 2.622 18 Ar 3.192 2.957 19 K 3.589 3.313 20 Ca 4.012 3.691 0.344 0.341 21 Sc 4.460 4.090 0.399 0.395 22 Ti 4.931 4.510 0.458 0.452 23 V 5.427 4.952 0.519 0.512 SPECTROSCOPY 7.11 TABLE 7.4 X-Ray Emission Energies in keV (Continued) Atomic No.
Element K1 K1 L1 L1 24 Cr 5.946 5.414 0.581 0.571 25 Mn 6.490 5.898 0.647 0.636 26 Fe 7.057 6.403 0.717 0.704 27 Co 7.649 6.930 0.790 0.775 28 Ni 8.264 7.477 0.866 0.849 29 Cu 8.904 8.047 0.948 0.928 30 Zn 9.571 8.638 1.032 1.009 31 Ga 10.263 9.251 1.122 1.096 32 Ge 10.981 9.885 1.216 1.186 33 As 11.725 10.543 1.317 1.282 34 Se 12.495 11.221 1.419 1.379 35 Br 13.290 11.923 1.526 1.480 36 Kr 14.112 12.649 1.638 1.587 37 Rb 14.960 13.394 1.752 1.694 38 Sr 15.834 14.164 1.872 1.806 39 Y 16.736 14.957 1.996 1.922 40 Zr 17.666 15.774 2.124 2.042 41 Nb 18.621 16.614 2.257 2.166 42 Mo 19.607 17.478 2.395 2.293 43 Tc 20.612 18.370 2.538 2.424 44 Ru 21.655 19.278 2.683 2.558 45 Rh 22.721 20.214 2.834 2.696 46 Pd 23.816 21.175 2.990 2.838 47 Ag 24.942 22.162 3.151 2.984 48 Cd 26.093 23.172 3.316 3.133 49 In 27.274 24.207 3.487 3.287 50 Sn 28.483 25.270 3.662 3.444 51 Sb 29.723 26.357 3.843 3.605 52 Te 30.993 27.471 4.029 3.769 53 I 32.292 28.610 4.220 3.937 54 Xe 33.644 29.779 4.422 4.111 55 Cs 34.984 30.970 4.620 4.286 56 Ba 36.376 32.191 4.828 4.467 57 La 37.799 33.440 5.043 4.651 58 Ce 39.255 34.717 5.262 4.840 59 Pr 40.746 36.023 5.489 5.034 60 Nd 42.269 37.359 5.722 5.230 61 Pm 43.811 38.726 5.956 5.431 62 Sm 45.400 40.124 6.206 5.636 63 Eu 47.027 41.529 6.456 5.846 64 Gd 48.718 42.983 6.714 6.059 65 Tb 50.391 44.470 6.979 6.275 7.12 SECTION 7 TABLE 7.4 X-Ray Emission Energies in keV (Continued) Atomic No.
Element K1 K1 L1 L1 66 Dy 52.178 45.985 7.249 6.495 67 Ho 53.934 47.528 7.528 6.720 68 Er 55.690 49.099 7.810 6.948 69 Tm 57.487 50.730 8.103 7.181 70 Yb 59.352 52.360 8.401 7.414 71 Lu 61.282 54.063 8.708 7.654 72 Hf 63.209 55.757 9.021 7.898 73 Ta 65.210 57.524 9.341 8.145 74 W 67.233 59.310 9.670 8.396 75 Re 69.298 61.131 10.008 8.651 76 Os 71.404 62.991 10.354 8.910 77 Ir 73.549 64.886 10.706 9.173 78 Pt 75.736 66.820 11.069 9.441 79 Au 77.968 68.794 11.439 9.711 80 Hg 80.258 70.821 11.823 9.987 81 Tl 82.558 72.860 12.210 10.266 82 Pb 84.922 74.957 12.611 10.549 83 Bi 87.335 77.097 13.021 10.836 84 Po 89.809 79.296 13.441 11.128 85 At 92.319 81.525 13.873 11.424 86 Rn 94.877 83.800 14.316 11.724 87 Fr 97.483 86.119 14.770 12.029 88 Ra 100.136 88.485 15.233 12.338 89 Ac 102.846 90.894 15.712 12.650 90 Th 105.592 93.334 16.200 12.966 91 Pa 108.408 95.851 16.700 13.291 92 U 111.289 98.428 17.218 13.613 93 Np 114.181 101.005 17.740 13.945 94 Pu 117.146 103.653 18.278 14.279 95 Am 120.163 106.351 18.829 14.618 96 Cm 123.235 109.098 19.393 14.961 97 Bk 126.362 111.896 19.971 15.309 98 Cf 129.544 114.745 20.562 15.661 99 Es 132.781 117.646 21.166 16.018 100 Fm 136.075 120.598 21.785 16.379 of that of the corresponding K1 radiation. In practical applications these ratios have to be corrected for differential absorption in the window of the tube and air path, the ratio of scattering factors for and differential absorption in the crystal, and for sensitivity characteristics of the detector. Gener-alizing, the intensities of radiations from the K and L series are as follows: SPECTROSCOPY 7.13 Emission line K1 K2 K1 K2 L1 L2 L1 L2 L1 Relative intensity 500 250 80–150 5 100 10 30 60 40 For angles at which the K1, K2 doublet is not resolved, a mean wavelength [K ¯ (2K1 K2)/3] can be used.
Filters.
The K spectra of the light metals, often used as target material in the production of X-rays for diffraction studies, contain three strong lines, 1, 2 and 1, of which the lines form a doublet with a narrow wavelength separation. The K radiation can be eliminated by using a thin foil filter, usually of the element of next lower atomic number to that of the target element: the K lines are transmitted with a relatively small loss of intensity. Table 7.5, restricted to the K wave-lengths of target elements in common use, lists the calculated thicknesses of filters required to reduce the K1/K1 integrated intensity ratio to .
1⁄100 Interplanar Spacings.
Diffractometer alignment procedures require the use of a well-prepared polycrystalline specimen. Two standard samples found to be suitable are silicon and -quartz (in-cluding Novaculite). The 2 values of several of the most intense reflections for these materials are listed in Table 7.6 (Tables of Interplanar Spacings d vs. Diffraction Angle 2 for Selected Targets, Picker Nuclear, White Plains, N.Y., 1966). To convert to d for K ¯ or to d for K2, multiply the tabulated d value (Table 7.6) for K1 by the factor given below: Element K ¯ K2 W 1.007 69 1.023 07 Ag 1.002 63 1.007 89 Mo 1.002 02 1.006 04 Cu 1.000 82 1.002 48 Ni 1.000 77 1.002 32 Co 1.000 72 1.002 16 Fe 1.000 67 1.002 04 Cr 1.000 57 1.001 70 Analyzing Crystals.
The range of wavelengths usable with various analyzing crystals are gov-erned by the d spacings of the crystal planes and by the geometric limits to which the goniometer can be rotated. The d value should be small enough to make the angle 2 greater than approximately 10 or 15 deg, even at the shortest wavelength used: otherwise excessively long analyzing crystals would be needed to prevent the direct fluorescent beam from entering the detector. A small d value is also favorable for producing a large dispersion of the spectrum to give good separation of adjacent lines. On the other hand, a small d value imposes an upper limit to the range of wavelengths that can be analyzed. Actually the goniometer is limited mechanically to about 150 deg for a 2 value.
A final requirement is the reflection efficiency and minimization of higher-order reflections. Table 7.7 gives a list of crystals commonly used for X-ray spectroscopy.
7.14 SECTION 7 TABLE 7.6 Interplanar Spacings for K1 Radiation, d versus 2 -quartz (Including Novaculite) hkl d(A ˚ ) 100 4.260 101 3.343 110 2.458 102 2.282 200 2.128 112 1.817 202 1.672 211 1.541 203 1.375 301 1.372 W K1: 2 2.81 3.58 4.87 5.25 5.63 6.59 7.17 7.78 8.72 8.74 Ag K1: 2 7.53 9.60 13.07 14.08 15.10 17.71 19.26 20.91 23.47 23.52 Mo K1: 2 9.55 12.18 16.59 17.88 19.19 22.51 24.49 26.61 29.89 29.96 Cu K1: 2 20.83 26.64 36.52 39.45 42.44 50.16 54.86 59.98 68.14 68.31 Ni K1: 2 22.44 28.71 39.42 42.60 45.85 54.28 59.44 65.08 74.15 74.34 Co K1: 2 24.24 31.04 42.68 46.15 49.71 58.98 64.68 70.96 81.16 81.38 Fe K1: 2 26.27 33.66 46.38 50.20 54.11 64.38 70.75 77.83 89.50 89.74 Cr K1: 2 31.18 40.05 55.52 60.22 65.09 78.11 86.42 95.96 112.73 113.11 Silicon hkl d(A ˚ ) 111 3.1353 220 1.91997 311 1.63736 400 1.357630 331 1.24584 422 1.1085 511,333 1.0451 440 0.959986 531 0.917922 620 0.858637 W K1: 2 3.82 6.24 7.32 8.83 9.62 10.82 11.48 12.50 13.07 13.98 Ag K1: 2 10.24 16.75 19.67 23.78 25.95 29.23 31.04 33.88 35.48 38.02 Mo K1: 2 12.99 21.29 25.02 30.28 33.08 37.32 39.67 43.36 45.45 48.79 Cu K1: 2 28.44 47.30 56.12 69.13 76.38 88.03 94.96 106.71 114.10 127.55 Ni K1: 2 30.66 51.16 60.83 75.26 83.42 96.80 104.96 119.42 129.12 149.76 Co K1: 2 33.15 55.53 66.22 82.42 91.77 107.59 117.71 137.42 154.04 Fe K1: 2 35.97 60.55 72.48 90.96 101.97 121.67 135.70 Cr K1: 2 42.83 73.21 88.72 114.97 133.53 TABLE 7.5 Filters for Common Target Elements Target Element K ¯, A ˚ Excitation Voltage, keV K1 1 K ⁄100 1 Absorber Thickness, mm g/cm2 % Loss K1 Ag 0.560834 25.52 Pd 0.062 0.074 60 Mo 0.71069 20.00 Zr 0.081 0.053 57 Cu 1.54178 8.981 Ni 0.015 0.013 45 Ni 1.65912 8.331 Co 0.013 0.011 42 Co 1.79021 7.709 Fe 0.012 0.009 39 Fe 1.93728 7.111 Mn MnO2 0.011 0.026 0.008 0.013 38 45 Cr 2.29092 5.989 V V2O5 0.011 0.036 0.007 0.012 37 48 L1 L1 1 L ⁄100 1 % Loss L1 W 1.4763 10.200 Cu 0.035 77 SPECTROSCOPY 7.15 TABLE 7.7 Analyzing Crystals for X-Ray Spectroscopy Crystal Reflecting Plane 2d Spacing, A ˚ Reflectivity Quartz 5052 1.624 Low Aluminum 111 2.338 High Topaz 303 2.712 Medium Quartz 2023 2.750 Low Lithium fluoride 220 2.848 High Silicon 111 3.135 High Quartz 112 3.636 Medium Lithium fluoride 200 4.028 High Sodium chloride 200 5.639 High Calcium fluoride 111 6.32 High Quartz 1011 6.686 High Quartz 1010 8.50 Medium Pentaerythritol (PET) 002 8.742 High Ethylenediamine tartrate (EDT) 020 8.808 Medium Ammonium dihydrogen phosphate (ADP) 110 10.648 Low Gypsum 020 15.185 Medium Mica 002 19.92 Low Potassium hydrogen phthalate (KAP) 1011 26.4 Medium Lead palmitate 45.6 Strontium behenate 61.3 Lead stearate 100.4 Medium The long-wavelength analyzers are prepared by dipping an optical flat into the film of the metal fatty acid about 50 times to produce a layer 180 molecules in thickness.
Lithium fluoride is the optimum crystal for all wavelengths less than 3 A ˚ . Pentaerythritol (PET) and potassium hydrogen phthalate (KAP) are usually the crystals of choice for wavelengths from 3 to 20 A ˚ . Two crystals suppress even-ordered reflections: silicon (111) and calcium fluoride (111).
Mass Absorption Coefficients.
Radiation traversing a layer of substance is diminished in inten-sity by a constant fraction per centimeter thickness x of material. The emergent radiant power P, in terms of incident radiant power P0, is given by P P exp (x) 0 which defines the total linear absorption coefficient . Since the reduction of intensity is determined by the quantity of matter traversed by the primary beam, the absorber thickness is best expressed on a mass basis, in g/cm2. The mass absorption coefficient /, expressed in units cm2/g, where is the density of the material, is approximately independent of the physical state of the material and, to a good approximation, is additive with respect to the elements composing a substance.
Table 7.8 contains values of / for the common target elements employed in X-ray work. A more extensive set of mass absorption coefficients for K, L, and M emission lines within the wave-length range from 0.7 to 12 A ˚ is contained in Heinrich’s paper in T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry (eds.), The Electron Microprobe, Wiley, New York, 1966, pp. 351–377. This article should be consulted to ascertain the probable accuracy of the values and for a compilation of coefficients and exponents employed in the computations.
7.16 SECTION 7 TABLE 7.8 Mass Absorption Coefficients for K1 Lines and W L1 Line Emitter wavelength, A ˚ Ag K1 0.559 Mo K1 0.709 Cu K1 1.541 Ni K1 1.658 Co K1 1.789 Fe K1 1.936 Cr K1 2.290 W L1 1.476 Absorber 1 H 0.37 0.38 0.43 0.4 0.4 0.5 0.5 0.4 2 He 0.16 0.18 0.37 0.4 0.4 0.5 0.7 0.3 3 Li 0.18 0.22 0.50 0.6 0.7 0.9 1.5 0.4 4 Be 0.22 0.30 1.2 1.5 1.9 2.3 3.7 1.1 5 B 0.30 0.45 2.5 3.1 3.9 4.9 7.9 2.2 6 C 0.42 0.50 4.6 5.7 7.1 8.8 14.2 4.1 7 N 0.60 0.83 7.5 9.3 11.5 14.4 23.1 6.7 8 O 0.80 1.45 12.9 15.8 19.5 24.5 39.4 11.4 9 F 1.00 1.9 16.5 20.3 25.2 31.4 50.3 14.6 10 Ne 1.41 2.6 22.8 27.9 34.6 43.1 69.0 20.1 11 Na 1.75 3.5 30.3 37.2 45.9 57.2 91.4 26.8 12 Mg 2.27 4.6 39.5 48.4 59.8 74.6 119.1 34.9 13 Al 2.74 5.8 49.6 60.7 75.0 93.4 149.0 43.9 14 Si 3.44 7.3 61.4 75.2 92.8 115.5 183.8 54.4 15 P 4.20 8.8 74.7 91.4 112.9 140.5 223.6 66.2 16 S 5.15 10.6 89.2 109.2 134.7 167.4 266.1 79.1 17 Cl 5.86 12.4 104.8 128.2 158.1 196.6 312.4 92.8 18 Ar 6.40 14.5 121.4 148.5 183.0 227.3 360.7 107.6 19 K 8.0 16.7 139.8 171 211 262 415 124 20 Ca 9.7 18.9 158.6 194 239 296 469 141 21 Sc 10.5 21.8 180.5 221 272 337 534 160 22 Ti 11.8 25.3 203 247 304 378 597 180 23 V 13.3 27.7 228 278 342 424 77 202 24 Cr 15.7 31.0 254 311 382 474 88 226 25 Mn 17.4 34.5 282 344 423 63.5 101 250 26 Fe 19.9 38.1 311 380 57.6 71.4 113 276 27 Co 21.8 42.1 341 52.8 64.9 80.6 127 303 K 28 Ni 25.0 46.4 48.3 58.9 72.5 90.0 142 333 K 29 Cu 26.4 50.7 53.7 65.5 80.6 100.0 158 47.6 30 Zn 28.2 55.4 59.5 72.7 89.4 110.9 175 52.8 31 Ga 30.8 60.1 65.9 80.5 99.0 122.8 194 58.5 32 Ge 33.5 65.2 72.3 88.2 108.6 134.7 213 64.1 33 As 36.5 70.5 79.1 96.6 118.9 147 233 70.2 34 Se 38.5 76.0 86.1 105.1 129.4 161 254 76.4 35 Br 42.3 82.5 93.9 114.7 141.2 175 277 83.4 36 Kr 45.0 88.3 101.9 124.5 153.2 190 300 90.5 37 Rb 48 95 84 103 127 158 252 98 38 Sr 52 102 90 110 137 170 271 106 SPECTROSCOPY 7.17 TABLE 7.8 Mass Absorption Coefficients for K1 Lines and W L1 Line (Continued) Emitter wavelength, A ˚ Ag K1 0.559 Mo K1 0.709 Cu K1 1.541 Ni K1 1.658 Co K1 1.789 Fe K1 1.936 Cr K1 2.290 W L1 1.476 Absorber 39 Y 56 109 97 119 147 183 292 114 40 Zr 61 17 104 128 158 197 314 122 41 Nb 66 18 112 138 170 212 338 132 42 Mo 71 19 119 146 180 225 358 140 43 Tc 76 20 128 157 194 241 384 150 K 44 Ru 12 22 137 168 207 258 410 160 45 Rh 13 23 146 179 221 275 438 171 46 Pd 14 24 155 190 235 292 466 182 47 Ag 15 26 165 202 249 310 493 193 48 Cd 15 28 174 213 263 327 520 204 49 In 16 30 185 227 280 347 553 217 50 Sn 17 32 195 239 295 367 583 229 51 Sb 19 34 206 252 310 386 612 241 52 Te 19 36 216 265 326 405 644 253 53 I 21 37 230 281 346 431 684 269 54 Xe 22 39 239 293 361 448 710 280 55 Cs 24 42 332 404 495 612 822 295 56 Ba 25 44 349 425 522 645 622 311 57 La 26 46 365 444 545 673 647 325 58 Ce 28 48 383 466 571 603 216 341 59 Pr 29 51 401 487 597 453 229 356 60 Nd 31 54 420 510 534 473 241 373 61 Pm 32 56 440 535 164 254 392 62 Sm 33 59 456 473 417 173 268 406 LI 63 Eu 35 61 405 354 148 182 282 423 64 Gd 36 64 424 370 156 191 296 LI LII 65 Tb 38 67 316 135 164 201 311 393 LII 66 Dy 39 70 329 141 172 211 327 293 LIII 67 Ho 41 72 123 148 181 222 343 304 68 Er 43 75 129 156 189 233 360 316 LIII 69 Tm 45 79 135 163 199 244 377 120 70 Yb 46 82 141 171 208 256 395 126 71 Lu 48 84 148 179 218 267 414 132 72 Hf 51 88 155 187 228 280 433 138 73 Ta 52 91 162 196 238 293 453 144 74 W 55 95 169 204 249 306 473 151 75 Re 57 98 176 213 260 319 494 157 76 Os 59 102 184 223 271 333 515 164 77 Ir 61 106 192 232 283 347 538 171 78 Pt 64 109 200 242 295 362 560 179 7.18 SECTION 7 TABLE 7.8 Mass Absorption Coefficients for K1 Lines and W L1 Line (Continued) Emitter wavelength, A ˚ Ag K1 0.559 Mo K1 0.709 Cu K1 1.541 Ni K1 1.658 Co K1 1.789 Fe K1 1.936 Cr K1 2.290 W L1 1.476 Absorber 79 Au 67 113 209 252 307 377 584 186 80 Hg 69 117 218 263 321 394 609 194 81 Tl 72 121 227 275 334 411 635 203 82 Pb 74 125 236 286 348 428 662 211 83 Bi 78 129 247 298 363 446 690 220 84 Po 131 258 311 380 466 721 230 85 At 269 325 397 487 753 240 86 Rn 85 281 340 414 509 787 251 87 Fr 89 294 356 433 532 823 262 88 Ra 91 307 372 453 556 861 274 89 Ac 322 389 474 582 900 287 90 Th 97 337 408 497 610 944 301 91 Pa 353 427 520 639 988 315 92 U 104 372 450 548 673 898 332 93 Np 392 474 578 709 945 350 94 Pu 54 418 505 615 755 835 373 7.2 ULTRAVIOLET-VISIBLE SPECTROSCOPY Molecules with two or more isolated chromophores (absorbing groups) absorb light of nearly the same wavelength as does a molecule containing only a single chromophore of a particular type. The intensity of the absorption is proportional to the number of that type of chromophore present in the molecule. Representative chromophores are given in Table 7.9.
The solvent chosen must dissolve the sample, yet be relatively transparent in the spectral region of interest. In order to avoid poor resolution and difficulties in spectrum interpretation, a solvent should not be employed for measurements that are near the wavelength of or are shorter than the wavelength of its ultraviolet cutoff, that is, the wavelength at which absorbance for the solvent alone approaches one absorbance unit. Ultraviolet cutoffs for solvents commonly used are given in Table 7.10.
Appreciable interaction between chromophores does not occur unless they are linked directly to each other, or forced into close proximity as a result of molecular stereochemical configuration.
Interposition of a single methylene group, or meta orientation about an aromatic ring, is sufficient to insulate chromophores almost completely from each other. Certain combinations of functional groups afford chromophoric systems which give rise to characteristic absorption bands.
Sets of empirical rules, often referred to as Woodward’s rules or the Woodward-Fieser rules, enable the absorption maxima of dienes (Table 7.11) and enones and dienones (Table 7.12) to be predicted. To the respective base values (absorption wavelength of parent compound) are added the increments for the structural features or substituent groups present. When necessary, a solvent cor-rection is also applied (Table 7.13).
SPECTROSCOPY 7.19 TABLE 7.9 Electronic Absorption Bands for Representative Chromophores Chromophore System max max Acetylide 9C#C9 175–180 6 000 Aldehyde 9CHO 210 280–300 strong 11–18 Amine 9NH2 195 2 800 Azido C"N9 190 5 000 Azo 9N"N9 285–400 3–25 Bromide 9Br 208 300 Carbonyl C"O 195 270–285 1 000 18–30 Carboxyl 9COOH 200–210 50–70 Disulfide 9S9S9 194 255 5 500 400 Ester 9COOR 205 50 Ether 9O9 185 1 000 Ethylene 9C"C9 190 8 000 Iodide 9I 260 400 Nitrate 9ONO2 270 (shoulder) 12 Nitrile 9C#N 160 Nitrite 9ONO 220–230 300–400 1 000–2 000 10 Nitro 9NO2 210 strong Nitroso 9NO 302 100 Oxime 9NOH 190 5 000 Sulfone 9SO29 180 Sulfoxide S"O 210 1 500 Thiocarbonyl C"S 205 strong Thioether 9S9 194 215 4 600 1 600 Thiol 9SH 195 1 400 9(C"C)29 (acyclic) 210–230 21 000 9(C"C)39 260 35 000 9(C"C)49 300 52 000 9(C"C)59 330 118 000 9(C"C)29 (alicyclic) 230–260 3 000–8 000 C"C9C#C 219 6 500 C"C9C"N 220 23 000 C"C9C"O 210–250 300–350 10 000–20 000 weak C"C9NO2 229 9 500 Benzene 184 204 255 46 700 6 900 170 Diphenyl 246 20 000 Naphthalene 222 275 312 112 000 5 600 175 Anthracene 252 375 199 000 7 900 Phenanthrene 251 292 66 000 14 000 Naphthacene 272 473 180 000 12 500 7.20 SECTION 7 TABLE 7.9 Electronic Absorption Bands for Representative Chromophores (Continued) Chromophore System max max Pentacene 310 585 300 000 12 000 Pyridine 174 195 257 80 000 6 000 1 700 Quinoline 227 270 314 37 000 3 600 2 750 Isoquinoline 218 266 317 80 000 4 000 3 500 TABLE 7.10 Ultraviolet Cutoffs of Spectrograde Solvents Absorbance of 1.00 in a 10.0 mm cell vs. distilled water.
Solvent Wavelength, nm Solvent Wavelength, nm Acetic acid 260 Acetone 330 Acetonitrile 190 Benzene 280 1-Butanol 210 2-Butanol 260 Butyl acetate 254 Carbon disulfide 380 Carbon tetrachloride 265 1-Chlorobutane 220 Chloroform (stabilized with ethanol) 245 Cyclohexane 210 1,2-Dichloroethane 226 Diethyl ether 218 1,2-Dimethoxyethane 240 N,N-Dimethylacetamide 268 N,N-Dimethylformamide 270 Dimethylsulfoxide 265 1,4-Dioxane 215 Ethanol 210 2-Ethoxyethanol 210 Ethyl acetate 255 Ethylene chloride 228 Glycerol 207 Heptane 197 Hexadecane 200 Hexane 210 Isobutyl alcohol 230 Methanol 210 2-Methoxyethanol 210 Methylcyclohexane 210 Methylene chloride 235 Methyl ethyl ketone 330 Methyl isobutyl ketone 335 2-Methyl-1-propanol 230 N-Methylpyrrolidone 285 Nitromethane 380 Pentane 210 Pentyl acetate 212 1-Propanol 210 2-Propanol 210 Pyridine 330 Tetrachloroethylene (stabilized with thymol) 290 Tetrahydrofuran 220 Toluene 286 1,1,2-Trichloro-1,2,2-trifluoroethane 231 2,2,4-Trimethylpentane 215 o-Xylene 290 Water 191 SPECTROSCOPY 7.21 TABLE 7.11 Absorption Wavelength of Dienes Heteroannular and acyclic dienes usually display molar absorptivities in the 8000 to 20 000 range, whereas homoannular dienes are in the 5000 to 8000 range.
Poor correlations are obtained for cross-conjugated polyene systems such as The correlations presented here are sometimes referred to as Woodward’s rules or the Woodward-Fieser rules.
Base value for heteroannular or open chain diene, nm 214 Base value for homoannular diene, nm 253 Increment (in nm) for double bond extending conjugation 30 Alkyl substituent or ring residue 5 Exocyclic double bond 5 Polar groupings: -O-acyl 0 -O-alkyl 6 -S-alkyl 30 -Cl, -Br 5 -N (alkyl)2 60 Solvent correction (see Table 7.13) Calculated wavelength total Ring substitution on the benzene ring affords shifts to longer wavelengths (Table 7.14) and intensification of the spectrum. With electron-withdrawing substituents, practically no change in the maximum position is observed. The spectra of heteroaromatics are related to their isocyclic analogs, but only in the crudest way. As with benzene, the magnitude of substituent shifts can be estimated, but tautomeric possibilities may invalidate the empirical method.
When electronically complementary groups are situated para to each other in disubstituted ben-zenes, there is a more pronounced shift to a longer wavelength than would be expected from the additive effect due to the extension of the chromophore from the electron-donating group through the ring to the electron-withdrawing group. When the para groups are not complementary, or when the groups are situated ortho or meta to each other, disubstituted benzenes show a more or less additive effect of the two substituents on the wavelength maximum. Calculation of the principal band of selected substituted benzenes is illustrated in Table 7.15.
7.22 SECTION 7 TABLE 7.12 Absorption Wavelength of Enones and Dienones Base values, nm Acyclic ,-unsaturated ketones 215 Acyclic ,-unsaturated aldehyde 210 Six-membered cyclic ,-unsaturated ketones 215 Five-membered cyclic ,-unsaturated ketones 214 ,-Unsaturated carboxylic acids and esters 195 Increments (in nm) for Double bond extending conjugation: Heteroannular 30 Homoannular 69 Alkyl group or ring residue: 10 12 , 18 Polar groups: 9OH 35 30 50 9O9CO9CH3 and 9O9CO9C6H5: , , , 6 9OCH3 35 30 17 31 9S9alkyl, 85 9Cl 15 12 9Br 25 30 9N(alkyl)2, 95 Exocyclic double bond 5 Solvent correction (see Table 7.13) Calculated wavelength total SPECTROSCOPY 7.23 TABLE 7.13 Solvent Correction for Ultraviolet-Visible Spectroscopy Solvent Correction, nm Chloroform 1 Cyclohexane Diethyl ether 11 1,4-Dioxane 5 Ethanol 0 Hexane 11 Methanol 0 Water 8 TABLE 7.14 Primary Bands of Substituted Benzene and Heteroaromatics In methanol.
Base value: 203.5 nm.
Substituent Wavelength shift, nm Substituent Wavelength shift, nm 9CH3 3.0 9COOH 25.5 9CH"CH2 44.5 9COO 20.5 9C#CH 44 9CN 20.5 9C6H5 48 9NH2 26.5 9F 0 9NH3 0.5 9Cl 6.0 9N(CH3)2 47.0 9Br 6.5 9NH9CO9CH3 38.5 9I 3.5 9NO2 57 9OH 7.0 9SH 32 9O 31.5 9SO9C6H5 28 9OCH3 13.5 9SO2CH3 13 9OC6H5 51.5 9SO2NH2 14.0 9CHO 46.0 9CH"CH9C6H5 9CO9CH3 42.0 cis 79 9CO9C6H5 48 trans 9CH"CH9COOH, trans 92.0 69.5 Heteroaromatic Base value, nm Heteroaromatic Base value, nm Furan 200 Pyridine 257 Pyrazine 257 Pyrimidine ca 235 Pyrazole 214 Pyrrole 209 Pyridazine ca 240 Thiophene 231 7.24 SECTION 7 TABLE 7.15 Wavelength Calculation of the Principal Band of Substituted Benzene Derivatives In ethanol.
Base value of parent chromophore, nm C6H5COOH or C6H5COO9alkyl 230 C6H59CO9alkyl (or aryl) 246 C6H5CHO 250 Increment (in nm) for each substituent on phenyl ring 9Alkyl or ring residue o-, m-3 p-10 9OH and 9O9 alkyl o-, m-7 p-25 9O o-11 m-20 p-78 9Cl o-, m-0 p-10 9Br o-, m-2 p-15 9NH2 o-, m-13 p-58 9NHCO9CH3 o-, m-20 p-45 9NHCH3 p-73 9N(CH3)2 o-, m-20 p-85 Value may be decreased markedly by steric hindrance to coplanarity.
SPECTROSCOPY 7.25 7.3 FLUORESCENCE TABLE 7.16 Fluorescence Spectroscopy of Some Organic Compounds Compound Solvent pH Excitation wavelength, nm Emission wavelength, nm Acenaphthene Pentane 291 341 Acridine CF3COOH 358 475 Adenine Water 1 280 375 Adenosine Water 1 285 395 Adenosine triphosphate Water 1 285 395 Adrenalin 295 335 p-Aminobenzoic acid Water 8 295 345 Aminopterin Water 7 280, 370 460 1-Aminopyrene CF3COOH 330, 342 415 p-Aminosalicyclic acid Water 11 300 405 Amobarbital Water 14 265 410 Anilines Water 7 280, 291 344, 361 Anthracene Pentane 420 430 Anthranilic acid Water 7 300 405 Azaindoles Water 10 290, 299 310, 347 Benz[c]acridine CF3COOH 295, 380 480 Benz[a]anthracene Pentane 284 382 1,2-Benzanthracene 280, 340 390, 410 Benzanthrone CF3COOH 370, 420 550 Benzo[b]chrysene Pentane 283 398 11-H-Benzo[a]fluorene Pentane 317 340 Benzoic acid 70% H2SO4 285 385 3,4-Benzopyrene Benzene 365 390, 480 Benzo[e]pyrene Pentane 329 389 Benzoquinoline CF3COOH 280 425 Benzoxanthane Pentane 363 418 Bromolysergic acid diethyl amide Water 1 315 460 Brucine Water 7 305 500 Carbazole N,N-Dimethyl formamide 291 359 Chlortetracycline 355 445 Chrysene Pentane 250, 300, 260, 380 310 Cinchonine Water 1 320 420 Coumarin Ethanol 280 352 Dibenzo[a,c]anthracene Pentane 280 381 Dibenzo[b,k]chrysene Pentane 308 428 Dibenzo[a,e]pyrene Pentane 370 401 3,4,8,9-Dibenzopyrene 370, 335, 480, 510 390, 410 5,12-Dihydronaphthacene Pentane 282 340 1,4-Diphenylbutadiene Pentane 328 370 Epinephrine Water 7 295 335 Ethacridine Water 2 370, 425 515 Fluoranthrene Pentane 354 464 Fluorene Pentane 300 321 Fluorescein Water 7–11 490 515 7.26 SECTION 7 TABLE 7.16 Fluorescence Spectroscopy of Some Organic Compounds (Continued) Compound Solvent pH Excitation wavelength, nm Emission wavelength, nm Folic acid Water 7 365 450 Gentisic acid Water 7 315 440 Griseofulvin Water 7 295, 335 450 Guanine Water 1 285 365 Harmine Water 1 300, 365 400 Hippuric acid 70% H2SO4 270 370 Homovanillic acid Water 7 270 315 m-Hydroxybenzoic acid Water 12 314 430 p-Hydroxycinnamic acid Water 7 350 440 7-Hydroxycoumarin Ethanol 325 441 5-Hydroxyindole Water 1 290 355 5-Hydroxyindoleacetic acid Water 7 300 355 3-Hydroxykynurenine Water 11 365 460 p-Hydroxymandelic acid Water 7 300 380 p-Hydroxyphenylacetic acid Water 7 280 310 p-Hydroxyphenylpyruvic acid Water 7 290 345 p-Hydroxyphenylserine Water 1 290 320 5-Hydroxytryptophan Water 7 295 340 Imipramine Water 14 295 415 Indoleacetic acid Water 8 285 360 Indoles Water 7 269, 315 355 Indomethacin Water 13 300 410 Kynurenic acid Water 7 325 405 11 325 440 Lysergic acid diethylamide Water 1 325 445 Menadione Ethanol 335 480 9-Methylanthracene Pentane 382 410 3-Methylcholanthrene Pentane 297 392 7-Methyldibenzopyrene Pentane 460 467 2-Methylphenanthrene Pentane 257 357 3-Methylphenanthrene Pentane 292 368 1-Methylpyrene Pentane 336 394 4-Methylpyrene Pentane 338 386 Naphthacene 290, 310 480, 515 1-Naphthol 0.1 M NaOH 20% ethanol 365 480 2-Naphthol 0.1 M NaOH 20% ethanol 365 426 Oxytetracycline 390 520 Phenanthrene Pentane 252 362 Phenylalanine Water 215, 260 282 o-Phenylenepyrene Pentane 360 506 Phenylephrine 270 305 Picene Pentane 281 398 Procaine Water 11 275 345 Pyrene Pentane 330 382 Pyridoxal Water 12 310 365 Quinacrine Water 11 285 420 Quinidine Water 1 350 450 Quinine Water 1 250, 350 450 Reserpine Water 1 300 375 SPECTROSCOPY 7.27 TABLE 7.16 Fluorescence Spectroscopy of Some Organic Compounds (Continued) Compound Solvent pH Excitation wavelength, nm Emission wavelength, nm Resorcinol Water 265 315 Riboflavin Water 7 270, 370, 520 445 Rutin Water 1 430 520 Salicyclic acid Water 11 310 435 Scoparone Water 10 350, 365 430 Scopoletin Water 10 365, 390 460 Serotonin 3M HCl 295 550 Skatole Water 290 370 Streptomycin Water 13 366 445 p-Terphenyl Pentane 284 338 Thiopental 315 530 Thymol Water 7 265 300 Tocopherol Hexane-ethanol 295 340 Tribenzo[a,e,i]pyrene Pentane 384 448 Triphenylene Pentane 288 357 Tryptamine Water 7 290 360 Tryptophan Water 11 285 365 Tyramine Water 1 275 310 Tyrosine Water 7 275 310 Uric acid Water 1 325 370 Vitamin A 1-Butanol 340 490 Vitamin B12 Water 7 275 305 Warfarin Methanol 290, 342 385 Xanthine Water 1 315 435 2,6-Xylenol 275 305 3,4-Xylenol 280 310 Yohimbine Water 1 270 360 Zoxazolamine Water 11 280 320 7.28 SECTION 7 TABLE 7.17 Fluorescence Quantum Yield Values Compound Solvent QF value vs. QF standard QF standard 9-Aminoacridine Water 0.99 Anthracene Ethanol 0.30 POPOP Toluene 0.85 Quinine sulfate dihydrate 1N H2SO4 0.55 Secondary standards Acridine orange hydrochloride Ethanol 0.54 Quinine sulfate 0.58 Anthracene 1,8-ANS† (free acid) Ethanol 0.38 Anthracene 0.39 POPOP 1,8-ANS (magnesium salt) Ethanol 0.29 Anthracene 0.31 POPOP Fluorescein 0.1N NaOH 0.91 Quinine sulfate 0.94 POPOP Fluorescein, ethyl ester 0.1N NaOH 0.99 Quinine sulfate 0.99 POPOP Rhodamine B Ethanol 0.69 Quinine sulfate 0.70 Anthracene 2,6-TNS‡ (potassium salt) Ethanol 0.48 Anthracene 0.51 POPOP p-bis[2-(5-phenyloxazoyl)]benzene.
POPOP anilino-8-naphthalene sulfonic acid.
† ANS, 2-p-toluidinylnaphthalene-6-sulfonate.
‡ TNS, 7.4 FLAME ATOMIC EMISSION, FLAME ATOMIC ABSORPTION, ELECTROTHERMAL (FURNACE) ATOMIC ABSORPTION, ARGON INDUCTION COUPLED PLASMA, AND PLASMA ATOMIC FLUORESCENCE The tables of atomic emission and atomic absorption lines are presented in two parts. In Table 7.18 the data are arranged in alphabetic order by name of the element, whereas in Table 7.19 the sensitive lines of the elements are arranged in order of decreasing wavelengths. For additional lines and their relative intensities consult W. F. Meggers, C. H. Corliss, and B. F. Scribner, Tables of Spectral-Line Intensities, Part I, National Bureau of Standards Monograph 32, U.S. Government Printing Office, Washington, D.C., 1961.
The detection limits in the table correspond generally to the concentration of an element required to give a net signal equal to three times the standard deviation of the noise (background) in accord-ance with IUPAC recommendations. Detection limits can be confusing when steady-state techniques such as flame atomic emission or absorption, and plasma atomic emission or fluorescence, which SPECTROSCOPY 7.29 TABLE 7.18 Detection Limits in ng/mL The detection limits in the table correspond generally to the concentration of analyte required to give a net signal equal to three times the standard deviation of the background in accordance with IUPAC recommendations.
Element Wavelength, nm Flame emission Flame atomic absorption Electrothermal atomic absorption Argon ICP Plasma atomic fluorescence Aluminum 308.22 40 10 309.28 20 0.05 11 4 394.40 3.6 45 36 396.15 7.5 30 0.01 20 5 Antimony 206.83 50 217.58 30 50 231.15 70 30 10 259.81 200 0.08 0.1 Arsenic 189.04 160 35 193.76 120 1 50 197.20 240 228.81 455 234.90 250 10 Barium 455.36 3 0.9 493.41 4 1 553.55 1.5 9 0.04 2 Beryllium 234.86 1 0.05 0.4 313.04 2 0.003 1 313.11 100 1 0.2 Bismuth 223.06 18 0.35 30 227.66 2 306.77 60 0.5 30 2 Boron 182.59 8 249.77 700 15 3 60 (as BO2) 518.0 50 (as BO2) 547.6 50 Bromine 154.07 50 Cadmium 214.44 1.0 226.50 0.6 228.80 6 1 0.008 228 326.11 3 0.5 0.014 0.001 Calcium 315.89 20 393.37 0.6 396.85 1.2 422.67 1.5 1 0.3 0.08 Carbon 193.09 44 247.86 1000 Cerium 413.38 30 418.66 30 569.92 150 Cesium 852.11 0.02 8 0.04 894.35 0.04 130 Chlorine 134.72 50 Chromium 267.72 3 283.58 20 284.98 30 357.87 6 2 0.05 0.4 359.35 7 7.30 SECTION 7 TABLE 7.18 Detection Limits in ng/mL (Continued) Element Wavelength, nm Flame emission Flame atomic absorption Electrothermal atomic absorption Argon ICP Plasma atomic fluorescence Chromium 360.53 13 (cont.) 425.44 3 6 66 427.48 4 428.97 5 Cobalt 228.62 3 238.89 28 240.73 5 8 0.01 7 0.4 345.35 30 Copper 324.75 1.5 1 0.01 2 0.2 327.40 3 2 0.02 4 Dysprosium 353.17 3 340.78 6 404.60 30 50 300 418.68 60 421.17 60 Erbium 323.06 15 349.81 10 400.80 30 40 0.3 500 408.77 40 Europium 381.97 2 412.97 3 459.40 0.45 20 0.5 20 Gadolinium 335.05 10 368.41 4000 440.19 72 1000 8 800 Gallium 287.42 70 294.36 20 30 404.30 5 50 417.21 3 30 1 40 0.9 Germanium 209.43 50 219.87 100 265.12 400 40 7.5 50 Gold 242.80 10 0.5 5 267.60 500 8 0.5 10 0.3 Hafnium 263.87 10 277.34 10 307.29 2000 Holmium 339.90 3 345.60 8 405.39 15 40 0.7 100 410.38 30 Indium 230.61 40 303.94 100 7 0.01 325.61 22 8 410.18 14 20 451.13 0.7 22 2 0.2 Iodine 178.38 20 183.0 3 Iridium 208.88 400 500 0.5 212.68 20 224.27 20 SPECTROSCOPY 7.31 TABLE 7.18 Detection Limits in ng/mL (Continued) Element Wavelength, nm Flame emission Flame atomic absorption Electrothermal atomic absorption Argon ICP Plasma atomic fluorescence Iron 238.20 4 248.33 3 0.01 259.94 3 302.06 18 5 371.99 15 10 0.3 385.99 12 21 Lanthanum 379.48 15 392.76 8000 408.67 2 550.13 20 579.13 5 2000 0.5 (as LaO) 441.82 100 (as LaO) 560.25 300 Lead 217.10 20 0.4 220.35 20 283.31 60 10 1 5 368.35 30 405.78 20 Lithium 460.29 0.06 30 50 610.36 0.001 670.78 0.003 0.3 1.5 5 0.4 Lutetium 261.54 1 307.76 6 Magnesium 279.08 30 279.55 1.5 285.21 4.5 0.1 0.018 3.6 0.4 Manganese 256.37 2.7 257.61 0.5 259.37 60 3 260.57 6 279.48 1 1 0.05 0.4 293.30 24 294.92 24 403.08 1.5 30 Mercury 194.23 30 253.65 150 0.001 6 50 5 Molybdenum 202.03 5 203.84 8 281.62 1.2 313.26 220 30 0.06 12 390.30 75 50 Neodymium 292.45 200 401.23 10 430.36 30 492.45 150 600 2000 Nickel 231.60 6 232.00 8 4 0.5 10 341.48 15 2 352.45 8 2 2 Niobium 316.34 20 405.89 250 1000 1000 7.32 SECTION 7 TABLE 7.18 Detection Limits in ng/mL (Continued) Element Wavelength, nm Flame emission Flame atomic absorption Electrothermal atomic absorption Argon ICP Plasma atomic fluorescence Osmium 225.58 20 228.23 40 263.71 2000 80 290.91 110 Palladium 244.8 20 20 0.5 40 340.46 25 80 40 363.47 50 60 Phosphorus 178.28 50 213.62 50 (as HPO) 524.9 100 Platinum 214.42 20 265.95 2000 100 0.2 40 300 Potassium 404.41 1.3 100 404.72 2.6 766.49 0.15 1 0.004 200 0.6 769.90 0.3 2 Praseodymium 390.84 20 414.31 30 493.97 300 1000 Rhenium 197.31 8 345.19 690 346.05 200 200 10 346.47 275 Rhodium 343.49 10 2 0.1 20 100 369.24 20 30 Rubidium 780.02 0.0065 0.3 500 3 794.76 0.013 Ruthenium 240.27 50 349.89 80 70 10 150 500 Samarium 442.43 10 476.03 30 500 100 Scandium 255.24 21 357.24 1 361.38 1.5 391.18 21 20 6 120 10 402.04 30 402.34 30 Selenium 196.03 90 2.5 6 10 Silicon 251.61 80 0.5 10 50 283.16 15 Silver 328.07 2 0.9 0.001 4.5 0.1 338.29 4 3 Sodium 330.23 125 0.7 15 330.30 250 589.00 0.01 0.2 0.004 20 0.2 589.59 0.02 Strontium 407.78 1 421.55 0.5 460.73 0.1 2 0.01 0.3 Sulfur 180.73 10 70 (as S2) 394.0 1600 SPECTROSCOPY 7.33 TABLE 7.18 Detection Limits in ng/mL (Continued) Element Wavelength, nm Flame emission Flame atomic absorption Electrothermal atomic absorption Argon ICP Plasma atomic fluorescence Tantalum 240.06 20 271.47 800 Tellurium 214.27 150 15 0.5 2 238.58 60 Terbium 350.92 10 384.87 40 431.89 150 600 500 Thallium 190.86 50 276.78 9 0.15 351.92 150 377.57 3 0.5 4 535.0 1.5 Thorium 283.73 30 401.91 30 Thulium 313.13 3 371.79 4 10 100 384.80 7 Tin 189.99 15 224.60 110 1 30 284.00 100 200 10 286.33 160 1.5 Titanium 334.19 400 334.94 6 337.28 8 364.27 210 60 2.5 30 365.35 180 399.86 150 Tungsten 207.91 30 209.48 50 400.87 450 1000 2000 Uranium 358.49 100 30 385.96 70 409.01 140 Vanadium 292.40 7.8 310.23 10 318.34 18 318.54 25 50 1 30 437.92 15 Ytterbium 328.94 1 369.42 2 398.80 0.45 5 0.1 10 Yttrium 360.07 3 362.09 40 50 10 50 371.03 1 410.24 30 50 Zinc 202.55 4 213.86 1000 0.8 0.005 2 0.0003 Zirconium 339.20 5 343.82 7 349.62 45 360.12 1000 350 7.34 SECTION 7 TABLE 7.19 Sensitive Lines of the Elements In this table the sensitive lines of the elements are arranged in order of decreasing wavelengths. A Roman numeral II following an element designation indicates a line classified as being emitted by the singly ionized atom. In the column headed Sensitivity, the most sensitive line of the non-ionized atom is indicated by U1, and other lines by U2, U3, and so on, in order of decreasing sensitivity. For the singly ionized atom the corresponding designations are V1, V2, V3, and so on.
Wavelength, nm Element Sensitivity Wavelength, nm Element Sensitivity 894.35 Cs U2 852.11 Cs U1 819.48 Na U4 818.33 Na U3 811.53 Ar U2 794.76 Rb U2 780.02 Rb U1 769.90 K U2 766.49 K U1 750.04 Ar U4 706.72 Ar U3 696.53 Ar U3 690.24 F U3 685.60 F U2 670.78 Li U1 656.28 H U2 649.69 Ba II V4 624.99 La U3 614.17 Ba II V3 610.36 Li U2 593.06 La U4 589.59 Na U2 589.00 Na U1 587.76 He U3 587.09 Kr U2 579.13 La U1 569.92 Ce U1 567.96 N II V2 567.60 N II V4 566.66 N II V3 557.02 Kr U3 553.55 Ba U1 550.13 La U2 546.55 Ag U4 546.07 Hg U2 545.52 La U3 535.84 Hg U3 535.05 Tl U1 521.82 Cu U3 520.91 Ag U3 520.84 Cr U8 520.60 Cr U7 515.32 Cu U4 498.18 Ti U1 496.23 Sr U2 493.97 Pr U1 493.41 Ba II V2 492.45 Nd U1 488.91 Re U4 487.25 Sr U3 483.21 Sr U2 482.59 Ra U1 481.95 Cl II V4 481.67 Br II V3 481.05 Zn U3 481.01 Cl II V3 479.45 Cl II V2 478.55 Br II V2 476.03 Sm U1 470.09 Br II V1 467.12 Xe U2 462.43 Xe U3 460.73 Sr U1 460.29 Li U4 459.40 Eu U1 459.32 Cs U4 455.54 Cs U3 455.40 Ba II V1 451.13 In U1 450.10 Xe U4 445.48 Ca U2 442.43 Sm II V4 440.85 V U4 440.19 Gd U1 439.00 V U3 437.49 Y II V4 437.92 V U1 435.84 Hg U3 431.89 Tb U1 430.36 Nd II V2 430.21 W U1 429.67 Sm U1 428.97 Cr U3 427.48 Cr U2 425.43 Cr U1 422.67 Ca U1 421.56 Rb U4 421.55 Sr II V1 421.17 Dy U2 420.19 Rb U3 418.68 Dy U2 418.66 Ce II V1 417.21 Ga U1 414.31 Pr II V2 SPECTROSCOPY 7.35 414.29 Y U4 413.38 Ce II V1 413.07 Ba II V5 412.97 Eu II V2 412.83 Y U3 412.38 Nb U4 412.32 La II V4 411.00 N U2 410.38 Ho U1 410.24 Y U1 410.18 In U2 410.09 Nb U3 409.99 N U3 409.01 U II V2 408.77 Er U1 408.67 La II V1 407.97 Nb U2 407.77 Sr II V2 407.74 Y U2 407.74 La II V2 407.43 W U2 405.89 Nb U1 405.78 Pb U1 405.39 Ho U2 404.72 K U4 404.66 Hg U5 404.60 Dy U1 404.41 K U3 403.45 Mn U3 403.31 Mn U2 403.30 Ga U2 403.08 Mn U1 402.37 Sc U3 402.04 Sc U3 401.91 Th II V1 401.23 Nd II V1 400.87 W U1 400.80 Er U1 399.86 Cr U1 399.86 Ti U1 398.80 Yb U1 396.85 Ca II V2 396.15 Al U1 394.91 La II V2 394.40 Al U2 393.37 Ca II V1 391.18 Sc U1 390.84 Pr II V1 390.75 Sc U2 390.30 Mo U1 389.18 Ba V4 388.86 He U2 388.63 Fe U5 386.41 Mo U2 385.99 Fe U2 385.96 U II V1 384.87 Tb II V2 384.80 Tm II V2 383.83 Mg U2 383.82 Mo U2 382.23 Mg U3 382.94 Mg U4 381.97 Eu II V1 379.94 Ru U3 379.63 Mo U1 379.48 La II V2 379.08 La II V3 377.57 Tl U3 377.43 Y II V3 374.83 Fe U4 373.49 Fe U2 372.80 Ru U1 371.99 Fe U1 371.79 Tm U1 371.03 Y II V1 369.42 Yb II V2 369.24 Rh U2 368.41 Gd U2 368.35 Pb U2 365.48 Hg U4 365.35 Ti U2 365.01 Hg U3 364.28 Sc II V3 364.27 Sn U3 363.47 Pd U2 363.07 Sc II V2 362.09 Y U2 361.38 Sc II V1 360.96 Pd U2 360.12 Zr U1 360.07 Y II V2 360.05 Cr U6 359.62 Ru U3 359.34 Cr U5 359.26 Sm II V1 358.49 U V1 357.87 Cr U4 357.25 Zr II V4 357.24 Sc II V1 356.83 Sn II V1 355.31 Pd U3 354.77 Zr U3 353.17 Dy II V1 352.98 Co U3 352.94 Tl U4 352.69 Co U4 TABLE 7.19 Sensitive Lines of the Elements (Continued) Wavelength, nm Element Sensitivity Wavelength, nm Element Sensitivity 7.36 SECTION 7 352.45 Ni U2 351.96 Zr U3 351.92 Tl U2 351.69 Pd U3 351.36 Ir U2 350.92 Tb II V1 350.63 Co U3 350.23 Co U2 349.89 Ru U2 349.62 Zr II V3 349.41 Er II V1 348.11 Pd U5 347.40 Ni U3 346.47 Re U2 346.05 Re U1 345.60 Ho II V2 345.58 Co U5 345.19 Re U3 345.14 B II V2 344.36 Co U2 344.06 Fe U2 343.82 Zr II V2 343.67 Ru U2 343.49 Rh U1 342.83 Ru U4 342.12 Pd U3 341.48 Ni U3 341.23 Co U4 340.78 Dy II V2 340.51 Co U2 340.46 Pd U2 339.90 Ho II V1 339.20 Zr II V1 338.29 Ag U2 337.28 Ti II V3 336.12 Ti II V2 335.05 Gd II V1 334.94 Ti II V1 334.50 Zn U2 334.19 Ti U4 332.11 Be U3 331.12 Ta U3 330.03 Na U6 330.26 Zn U3 330.23 Na U5 328.94 Yb II V1 328.23 Zn U5 328.07 Ag U1 327.40 Cu U2 326.95 Ge U3 326.23 Sn U3 326.11 Cd U1 325.61 In U3 324.75 Cu U1 324.27 Pd U4 323.45 Cr V3 323.26 Li U3 323.06 Er II V2 322.08 Ir U1 318.54 V U3 318.40 V U2 317.93 Ca II V3 316.34 Nb II V1 315.89 Ca II V4 313.26 Mo U2 313.13 Tm II V1 313.11 Be U1 313.04 Be U2 311.84 V II V4 311.07 V II V3 310.23 V II V2 309.42 Nb II V1 309.31 V II V1 309.27 Al U3 308.22 Al U4 307.76 Lu II V2 307.29 Hf U1 306.77 Bi U3 306.47 Pt U1 303.94 In U4 303.90 Ge U2 303.41 Sn U3 302.06 Fe U3 300.91 Sn U4 294.91 Mn II V4 294.44 W U5 294.36 Ga U3 294.02 Ta U3 293.30 Mn II V4 292.98 Pt U3 292.45 Nd U2 292.40 V II V1 290.91 Os U2 289.80 Bi U2 289.10 Mo II V4 288.16 Si U1 287.42 Ga U4 287.15 Mo II V3 286.33 Sn U2 286.04 As U2 285.21 Mg U1 284.82 Mo II V2 284.00 Sn U1 283.73 Th II V1 283.58 Cr II V2 283.31 Pb U3 TABLE 7.19 Sensitive Lines of the Elements (Continued) Wavelength, nm Element Sensitivity Wavelength, nm Element Sensitivity SPECTROSCOPY 7.37 283.16 Si II V1 283.03 Pt U3 281.62 Al II V2 281.61 Mo II V1 280.27 Mg II V2 280.20 Pb U4 279.83 Mn U3 279.55 Mg II V1 279.48 Mn U3 279.08 Mg II V2 278.02 As U1 277.34 Hf II V1 276.78 Tl U4 272.44 W U4 271.90 Fe U5 271.47 Ta U1 270.65 Sn U4 267.72 Cr II V1 267.60 Au U2 266.92 Al II V1 265.95 Pt U1 265.12 Ge U1 265.05 Ba U2 264.75 Ta U2 263.87 Hf II V1 263.71 Os U1 260.57 Mn II V3 259.94 Fe II V1 259.81 Sb U2 259.37 Mn U2 257.61 Mn II V1 256.37 Mn II V2 255.33 P U3 255.24 Sc II V3 253.65 Hg U1 253.57 P U1 252.85 Si U2 252.29 Fe U3 251.61 Si U3 250.69 Si U4 250.20 Zn II V4 249.77 B U1 249.68 B U2 248.33 Fe U3 247.86 C U2 245.65 As U4 243.78 Ag II V2 242.80 Au U1 241.05 Fe II V4 240.73 Co U1 240.49 Fe V3 240.27 Ru V1 240.06 Ta II V1 239.56 Fe II V2 238.89 Co II V2 238.58 Te U2 238.32 Te U3 238.20 Fe II V1 234.90 As U4 234.86 Be U1 232.00 Ni U2 231.60 Ni II V1 231.15 Sb U1 230.61 In II V1 228.81 As U5 228.80 Cd U2 228.71 Ni II V1 228.62 Co II V1 228.23 Os II V2 227.66 Bi U3 227.02 Ni II V2 226.50 Cd II V2 226.45 Ni II V3 225.58 Os II V1 225.39 Ni II V4 224.70 Cu II V3 224.64 Ag II V3 224.60 Sn U1 224.27 Ir II V1 223.06 Bi U1 220.35 Pb II V1 219.87 Ge II V2 219.23 Cu II V2 217.58 Sb U2 217.00 Pb II V1 214.44 Cd II V1 214.42 Pt II V1 214.27 Te U1 213.86 Zn U1 213.62 P U1 213.60 Cu II V1 212.68 Ir II V1 209.48 W II V2 209.43 Ge II V1 208.88 Ir U1 207.91 W II V1 207.48 Se U4 206.83 Sb U1 206.28 Se U3 206.19 Zn II V2 203.99 Se U1 203.84 Mo II V3 202.55 Zn II V1 202.03 Mo II V2 197.31 Re II V1 197.20 As U3 TABLE 7.19 Sensitive Lines of the Elements (Continued) Wavelength, nm Element Sensitivity Wavelength, nm Element Sensitivity 7.38 SECTION 7 196.03 Se U2 194.23 Hg II V1 193.76 As U1 193.09 C U1 190.86 Tl II V1 189.99 Sn II V1 189.04 As U2 183.00 I U2 182.59 B II V2 180.73 S U1 178.38 I U1 178.28 P U1 154.07 Br II V4 134.72 Cl II V1 TABLE 7.19 Sensitive Lines of the Elements (Continued) Wavelength, nm Element Sensitivity Wavelength, nm Element Sensitivity are steady-state techniques, are compared with the electrothermal or furnace technique which uses the entire sample and detects an absolute amount of the analyte element. To compare the several methods on the basis of concentration, the furnace detection limits assume a 20-L sample.
Data for the several flame methods assume an acetylene–nitrous oxide flame residing on a 5- or 10-cm slot burner. The sample is nebulized into a spray chamber placed immediately ahead of the burner. Detection limits are quite dependent on instrument and operating variables, particularly the detector, the fuel and oxidant gases, the slit width, and the method used for background correction and data smoothing.
7.4.1 Some Common Spectroscopic Relationships 7.4.1.1 Electromagnetic Radiation.
Electromagnetic radiation travels in straight lines in a uni-form medium, has a velocity of 299 792 500 m · s1 in a vacuum, and possesses properties of both a wave motion and a particle (photon). Wavelength is the distance from crest to crest; frequency v is the number of waves passing a fixed point in a unit length of time. Wavelength and frequency are related by the relation c v where c is the velocity of light (in a vacuum). In any material medium the speed of propagation is smaller than this and is given by the product nc, where n is the refractive index of the medium.
Radiation is absorbed or emitted only in discrete packets called photons and quanta: E hv where E is the energy of the quantum and h is Planck’s constant.
The relation between energy and mass is given by the Einstein equation: 2 E mc where E is the energy release and m is the loss of mass. Strictly, the mass of a particle depends on its velocity, but here the masses are equated to their rest masses (at zero velocity).
The Wien displacement law states that the wavelength of maximum emission, m, of a blackbody varies inversely with absolute temperature; the product mT remains constant. When m is expressed in micrometers, the law becomes T 2898 m SPECTROSCOPY 7.39 In terms of m, the wavenumber of maximum emission: 3.48T m Another useful version is where k is the Boltzmann constant.
hv 5kT, m Stefan’s law states that the total energy J radiated by a blackbody per unit time and area (power per unit area) varies as the fourth power of the absolute temperature: 4 J aT where a is a constant whose value is 8 2 4 5.67 10 W · m · K .
The relationship between the voltage of an X-ray tube (or other energy source), in volts, and the wavelength is given by the Duane-Hunt equation: hc 12 398 eV V where the wavelength is expressed in angstrom units.
7.4.1.2 Laws of Photometry.
The time rate at which energy is transported in a beam of radiant energy is denoted by the symbol P0 for the incident beam, and by P for the quantity remaining unabsorbed after passage through a sample or container. The ratio of radiant power transmitted by the sample to the radiant power incident on the sample is the transmittance T: P T P0 The logarithm (base 10) of the reciprocal of the transmittance is the absorbance A: 1 A log T log T When a beam of monochromatic light, previously rendered plane parallel, enters an absorbing medium at right angles to the plane-parallel surfaces of the medium, the rate of decrease in radiant power with the length of light path (cuvette interior) b, or with the concentration of absorbing material C (in grams per liter) will follow the exponential progression, often referred to as Beer’s law: abC T 10 or A abC where a is the absorptivity of the component of interest in the solution. When C is expressed in moles per liter, bC T 10 or A bC where is the molar absorptivity.
The total fluorescence (or phosphorescence) intensity is proportional to the quanta of light ab-sorbed, and to the efficiency , which is the ratio of quanta absorbed to quanta emitted: P P, 0 bC F (P P) P (1 e ) 0 0 When the terms bC is not greater than 0.05 (or 0.01 in phosphorescence), F kP bC 0 7.40 SECTION 7 where the term k has been introduced to handle instrumental artifacts and the geometry factor because fluorescence (and phosphorescence) is emitted in all directions but is viewed only through a limited aperture.
The thickness of a transparent film or the path length of infrared absorption cells b, in centimeters, is given by 1 n b 2n v ¯ v ¯ D 1 2 where n is the number of fringes (peaks or troughs) between two wavenumbers and and nD is v ¯ v ¯ , 1 2 the refractive index of the sample material (unity for the air path of an empty cuvette). If measure-ments are made in wavelength, as micrometers, the expression is 1 n 1 2 b 2n D 2 1 7.4.1.3 Grating Equation.
The light incident on each groove is diffracted or spread out over a range of angles, and in certain directions reinforcement or constructive interference occurs, as stated in the grating formula: m b(sin i sin r) where b is the distance between adjacent grooves, i is the angle of incidence, r is the angle of reflection (both angles relative to the grating normal), and m is the order number. A positive sign applies where incoming and emergent beams are on the same side of the grating normal.
The blaze wavelength is that wavelength for which the angle of reflectance from the groove face and the angle of reflection (usually the angle of incidence) from the grating are identical.
The Bragg equation m 2d sin states the condition for reinforcement of reflection from a crystal lattice, where d is the distance between each set of atomic planes and is the angle of reflection.
7.4.1.4 Ionization of Metals in a Plasma.
A loss in spectrochemical sensitivity results when a free metal atom is split into a positive ion and an electron: M M e The degree of ionization, i, is defined as [M ] i [M ] [M] At equilibrium, when the ionization and recombination rates are balanced, the ionization constant Ki (in atm) is given by 2 [M ][e ] i K p i M 2 [M] 1 i where p M (in atm) is the total atom concentration of metal in all forms in the plasma.
SPECTROSCOPY 7.41 The ionization constant can be calculated from the Saha equation: E 5 g g i M e log K 5040 log T 6.49 log i T 2 gM where Ei is the ionization potential of the metal in eV (Table 4.2), T is the absolute temperature of the plasma (in kelvins), and the g terms are the statistical weights of the ionized atom, the electron, and the neutral atom. For the alkali metals the final term is zero; for the alkaline earth metals, it is 0.6.
To suppress the ionization of a metal, another easily ionized metal (denoted a deionizer or radiation buffer) is added to the sample. To ensure that ionization is suppressed for the test element, the product (Ki)MpM of the deionizer must exceed the similar product for the test element one hun-dred-fold (for 1 percent residual ionization of the test element).
7.5 INFRARED SPECTROSCOPY TABLE 7.20 Absorption Frequencies of Single Bonds to Hydrogen Abbreviations Used in the Table m, moderately strong var, of variable strength m–s, moderate to strong w, weak s, strong w–m, weak to moderately strong Group Band, cm1 Remarks Saturated C9H H H 9C9H 2975–2950 (s) 2885–2865 (w) Two or three bands usually; asymmetrical and symmetrical CH stretching, respec-tively. In presence of double bond adja-cent to CH3 group symmetrical band splits into two.
1450–1260 (m) Sensitive to adjacent negative substituents H H 9C9 acyclic ca 2930 (s) 2870–2840 (w) Frequency increased in strained systems.
Symmetrical band splits into two bands when double bond adjacent.
1480–1440 (m) ca 720 (w) Scissoring mode Rocking mode Alkane residues attached to carbon Cyclopropane ca 3050 (w) 540–500 470–460 (s) CH stretching Aliphatic cyclopropanes Cyclobutanes Cyclopentanes 580–490 (s) 595–490 (s) Alkyl derivatives: 550–530 cm1 Alkyl derivatives: 585–530 cm1 7.42 SECTION 7 TABLE 7.20 Absorption Frequencies of Single Bonds to Hydrogen (Continued) Group Band, cm1 Remarks Alkane residues attached to carbon (continued) C(CH3)2 ca 1380 (m) 1175–1165 (m) 1150–1130 (m) A roughly symmetrical doublet If no H on central carbon, then one band at ca 1190 cm1 9C(CH3)3 1395–1385 (m) 1365 (s) Split into two bands Aryl-CH3 Aryl-C2H5 Aryl-C3H7 (or C4H9) 390–260 (m) 565–540 (m–s) 585–565 (m) Two bands 9(CH2)n9 n 1 n 2 n 3 n 4 785–770 (w–m) 745–735 (w–m) 735–725 (w–m) 725–720 (w–m) Rocking vibrations Alkane residues attached to miscellaneous atoms Epoxide C9H C CH2 NH ca 3050 (m–s) ca 3050 (m–s) 9CH29halogen ca 3050 (m–s) 1435–1385 (m) 1300–1240 (s) Halogens except fluorine 9CHO 2900–2800 (w) 2775–2700 (w) 1420–1370 (m) 9CO9CH3 3100–2900 (w) 1450–1400 (s) 1360–1355 (s) 9O9CH3 ethers 2835–2810 (s) 1470–1430 (m–s) ca 1030 (w–m) Two bands 9O9C(CH3)3 1200–1155 (s) 9O9CH29O9 2790–2770 (m) 9O9CH29 esters 1475–1460 (m–s) 1470–1435 (m–s) Acyclic esters. Frequency increased ca 30 cm1 for cyclic and small ring systems.
SPECTROSCOPY 7.43 TABLE 7.20 Absorption Frequencies of Single Bonds to Hydrogen (Continued) Group Band, cm1 Remarks Alkane residues attached to miscellaneous atoms (continued) 9O9CO9CH3 1450–1400 (s) 1385–1365 (s) 1360–1355 (s) Acetate esters The high intensity of these bands often dominates this region of the spectrum.
9CH29C"C 1445–1430 (m) 9CH29SO29 ca 1250 (m) P9CH3 Se9CH3 B9CH3 Si9CH3 Sn9CH3 Pb9CH3 As9CH3 Ge9CH3 Sb9CH3 Bi9CH3 9CH29(Cd, Hg, Zn, Sn) 1320–1280 (s) ca 1280 (m) 1460–1405 (m) 1320–1280 (m) 1265–1250 (m–s) 1200–1180 (m) 1170–1155 (m) 1265–1240 (m) 1240–1230 (m) 1215–1195 (m) 1165–1145 (m) 1430–1415 (m) N9CH3 and N9CH29 2820–2780 (s) 1440–1390 (m) Ethylenediamine complexes N9CH29CH29N 1480–1450 (s) Ethylenediamine complexes N9CH3 Amine · HCl Amino acid · HCl Amides 1475–1395 (m) 1490–1480 (m) 1420–1405 (s) N9CH29 amides ca 1440 (m) S9CH3 2990–2955 (m–s) 2900–2865 (m–s) 1440–1415 (m) 1325–1290 (m) 1030–960 (m) 710–685 (w–m) S9CH29 2950–2930 (m) 2880–2845 (m) 1440–1415 (m) 1270–1220 (s) 9C#CH ca 3300 (s) 700–600 Sharp Bending C"C H 3040–3010 (m) 7.44 SECTION 7 TABLE 7.20 Absorption Frequencies of Single Bonds to Hydrogen (Continued) Group Band, cm1 Remarks Alkane residues attached to miscellaneous atoms (continued) C"C H H 3095–3075 (m) 2985–2970 (m) CH stretching sometimes obscured by much stronger bands of saturated CH groups C"C R H H H 995–980 (s) 940–900 (s) ca 635 (s) 485–445 (m–s) C"C R R H H 895–885 (s) 560–530 (s) 470–435 (m) C"C R H H R 980–955 (s) 455–370 (m–s) C"C H R H R 730–655 (m) 670–455 (s) C"C R R H R 850–790 (m) 570–515 (s) 525–470 (s) 9O9CH"CH2 965–960 (s) 945–940 (m) 820–810 (s) 9S9CH"CH2 ca 965 (s) ca 860 (s) 9CO9CH"CH2 9CO9OCH"CH2 9CO9C"CH2 9CO9OC"CH2 9O9CH"CH9 trans 9CO9CH"CH9 trans 995–980 (s) 965–955 (m) 950–935 (s) 870–850 (s) ca 930 (s) 880–865 940–920 (s) ca 990 (s) Hydroxyl group O9H compounds Primary aliphatic alcohols 3640–3630 (s) 1350–1260 (s) 1085–1030 (s) Only in very dilute solutions in nonpolar solvents OH bending Also broad band at 700–600 cm1 SPECTROSCOPY 7.45 TABLE 7.20 Absorption Frequencies of Single Bonds to Hydrogen (Continued) Group Band, cm1 Remarks Hydroxyl group O9H compounds (continued) Secondary aliphatic alcohols 3625–3620 (s) 1350–1260 (s) 1125–1085 (s) See comments under primary aliphatic alcohols Also for -unsaturated and cyclic tertiary aliphatic alcohols Tertiary aliphatic alcohols 3620–3610 (s) 1410–1310 (s) 1205–1125 (s) See comments under primary aliphatic alcohols Aryl9OH ca 3610 (s) 1410–1310 (s) 1260–1180 (s) 1085–1030 (s) See comments under primary aliphatic alcohols Also for unsaturated secondary aliphatic alcohols Carboxylic acids 3300–2500 (w–m) 995–915 (s) Broad Broad diffuse band Enol form of -diketones 2700–2500 (var) Broad Free oximes 3600–3570 (w–m) Shoulder Free hydroperoxides 3560–3530 (m) Peroxy acids ca 3280 (m) Phosphorus acids 2700–2560 (m) Broad Water in solution 3710 When solution is damp Intermolecular H bond Dimeric 3600–3500 Rather sharp. Absorptions arising from H bond with polar solvents also appear in this region.
Polymeric 3400–3200 (s) Broad Intramolecular H bond Polyvalent alcohols Chelation 3600–3500 (s) 3200–2500 Sharper than dimeric band above Broad and occasionally weak; the lower the frequency, the stronger the intramo-lecular bond Water of crystallation (solid state spectra) 3600–3100 (w) Usually a weak band at 1640–1615 cm1 also. Water in trace amounts in KBr disks shows a broad band at 3450 cm1.
7.46 SECTION 7 TABLE 7.20 Absorption Frequencies of Single Bonds to Hydrogen (Continued) Group Band, cm1 Remarks Amine, imine, ammonium, and amide N9H Primary amines Aliphatic 3550–3300 (m) 1650–1560 (m) 1090–1020 (w–m) 850–810 (w–m) 495–445 (m–s) ca 290 (s) Two bands in this range With -carbon branching at 795 cm1 and strong Broad Broad Aromatic 1350–1260 (s) 445–345 Also for secondary aryl amines Amino acids 3100–3030 (m) Values for solid states; broad bands also (but not always) near 2500 and 200 cm1 2800–2400 (m) Number of sharp bands; dilute solution 1625–1560 (m) 1550–1550 (m) Amino salts 3550–3100 (m) ca 3380 ca 3280 Values for solid state Dilute solutions Secondary amines 3550–3400 (w) 1580–1490 (w) 1190–1170 (m) 1145–1130 (m) 455–405 (w–m) Only one band, whereas primary amines show two bands Often too weak to be noticed Salts ca 2500 ca 2400 1620–1560 (m–s) Sharp; broad values for solid state Sharp; broad values for solid state Tertiary amines R1R2R3NH 2700–2250 Group of relatively sharp bands; broad bands in solid state Ammonium ion 3300–3030 (s) 1430–1390 (s) Group of bands Imines "N"H 3350–3310 (w) 3490 (s) 3490 (s) Aliphatic Aryl Pyrroles, indoles; band sharp Imine salts 2700–2330 (m–s) 2200–1800 (m) Dilute solutions One or more bands; useful to distinguish from protonated tertiary amines Primary amide 9CONH2 ca 3500 (m) ca 3400 (m) Lowered ca 150 cm1 in the solid state and on H bonding; often several bands 3200–3050 cm1 Secondary amide 9CONH9 3460–3400 (m) Two bands; lowered on H bonding and in solid state. Only one band with lactams 3100–3070 (w) Extra band with bonded and solid-state samples SPECTROSCOPY 7.47 TABLE 7.20 Absorption Frequencies of Single Bonds to Hydrogen (Continued) Group Band, cm1 Remarks Miscellaneous R9H 9S9H 2600–2550 (w) Weaker than OH and less affected by H bonding P9H 2440–2350 (m) Sharp P O OH 2700–2560 (m) Associated OH R9D 100/137 times the corresponding RH frequency Useful when assigning RH bands; deutera-tion leads to a known shift to lower fre-quency TABLE 7.21 Absorption Frequencies of Triple Bonds Abbreviations Used in the Table m, moderately strong m–s, moderate to strong s, strong var, of variable strength w–m, weak to moderately strong Group Band, cm1 Remarks Alkynes Terminal 3300 (s) CH stretching 2140–2100 (w–m) C#C stretching 1375–1225 (w–m) 695–575 (m–s) Two bands if molecule has axial symmetry ca 630 (s) Alkyl monosubstituted Nonterminal 2260–2150 (var) Symmetrical or nearly symmetrical sub-stitution makes the C#C stretching frequency inactive. When more than one C#C linkage is present, and sometimes when there is only one, there are frequently more absorption bands in this region than there are triple bonds to account for them.
R19C#C9R2 540–465 (m) The longer the chain, the lower the fre-quency Aryl9C#C9 ca 550 (m) ca 350 (var) 9C#C9halogen (Cl, Br, I) 185–160 (var) Conjugation with olefinic or acetylenic groups lowers the frequency and raises the intensity. Conjugation with carbonyl groups usually has little effect on the position of absorption.
7.48 SECTION 7 TABLE 7.21 Absorption Frequencies of Triple Bonds (Continued) Group Band, cm1 Remarks Nitriles 9C#N 2260–2200 (var) Stronger and toward the lower end of the range when conjugated; occasionally very weak or absent Aliphatic 580–555 (m–s) 560–525 (m–s) 390–350 (s) Aromatic 580–540 (s) 430–380 (m) Isonitriles R9 # N C 2175–2150 (s) Very sensitive to changes in substituents or R9N"C: 2150–2115 (s) 1595 Not found for nitriles Cyanamides N9C#N L N9C"N 2225–2210 (s) Thiocyanates R9S9C#N 2175–2140 (s) Aryl thiocyanates at the upper end of the range, alkyl at the lower end 404–400 (s) Aliphatic derivatives ca 600 (m–s) Nitrile N-oxides 9C#N:O 2305–2285 (s) 1395–1365 (s) Aryl derivatives Diazonium salts R9 #N N 2300–2230 (m–s) Selenocyanates R9Se9C#N ca 2160 (m–s) 545–520 ca 390 ca 350 SPECTROSCOPY 7.49 TABLE 7.22 Absorption Frequencies of Cumulated Double Bonds Abbreviations Used in the Table m–s, moderate to strong s, strong vs, very strong w, weak Group Band, cm1 Remarks Carbon dioxide O"C"O 2349 (s) Appears in many spectra as a result of inequalities in path length Isocyanates 9N"C"O 2275–2250 (vs) Position unaffected by conjugation Isoselenocyanates 9N"C"Se 2200–2000 (s) 675–605 Broad; usually two bands Azides 9N3 or 9N" " N N 2140–2030 (s) 1340–1180 (w) Not observed for ionic azides 9N"C"N9 2155–2130 (s) Split into unsymmetrical doublet by conjugation with aryl groups: 2145–2125 (vs) and 2115–2105 (vs) Isothiocyanates 9N"C"S 2140–1990 (vs) Broad; usually a doublet 649–600 (m–s) 565–510 (m–s) 470–440 (m–s) Ketenes C"C"O ca 2150 (s) Ketenimines C"C"N9 2050–2000 (s) Allenes C"C"C 2000–1915 (m–s) Two bands when terminal allene or when bonded to electron-attracting groups Thionylamines 9N"S"O 1300–1230 (s) 1180–1110 (s) Diazoalkanes R2C" " N N 2030–2000 (s) 9CH" " N N 2050–2035 (s) Diazoketones 9CO9CH" " N N 2100–2080 Monosubstituted 2075–2050 Disubstituted 7.50 SECTION 7 TABLE 7.23 Absorption Frequencies of Carbonyl Bands All bands quoted are strong.
Groups Band, cm1 Remarks Acid anhydrides 9CO9O9CO9 Saturated 1850–1800 1790–1740 Two bands usually separated by about 60 cm1. The higher-frequency band is more intense in acyclic anhydrides, and the lower-frequency band is more intense in cyclic anhydrides.
Aryl and ,-unsaturated 1830–1780 1790–1710 Saturated five-ring 1870–1820 1800–1750 All classes 1300–1050 One or two strong bands due to CO stretching Acid chlorides 9COCl Saturated 1815–1790 Acid fluorides higher, bromides and iodides lower Aryl and ,-unsaturated 1790–1750 Acid peroxide CO9O9O9CO9 Saturated 1820–1810 1800–1780 Aryl and ,-unsaturated 1805–1780 1785–1755 Esters and lactones 9CO9O9 Saturated 1750–1735 Aryl and ,-unsaturated 1730–1715 Aryl and vinyl esters C"C9O9CO9alkyl 1800–1750 The C"C stretching band also shifts to higher frequency.
Esters with electronegative substituents; e.g., CCl9CO9O9 1770–1745 -Keto esters 1755–1740 Six-ring and larger lactones Similar values to the corresponding open-chain esters Five-ring lactone 1780–1760 ,-Unsaturated five-ring lactone 1770–1740 When -CH is present, there are two bands, the relative intensity depending on the sol-vent.
,-Unsaturated five-ring lactone, vinyl ester type ca 1800 Four-ring lactone ca 1820 -Keto ester in H bonding enol form ca 1650 Keto from normal; chelate-type H bond causes shift to lower frequency than the normal ester. The C"C band is strong and is usually near 1630 cm1.
All classes 1300–1050 Usually two strong bands due to CO stretch-ing SPECTROSCOPY 7.51 TABLE 7.23 Absorption Frequencies of Carbonyl Bands (Continued) Groups Band, cm1 Remarks Aldehydes 9CHO (See also Table 7.49 for C9H.) All values given below are lowered in liq-uid-film or solid-state spectra by about 10–20 cm1. Vapor-phase spec-tra have values raised about 20 cm1.
Saturated 1740–1720 Aryl 1715–1695 o-Hydroxy or amino groups shift this value to 1655–1625 cm1 because of intramolecular H bonding.
,-Unsaturated 1705–1680 ,,,-Unsaturated 1680–1660 -Ketoaldehyde in enol form 1670–1645 Lowering caused by chelate-type H bonding Ketones C O All values given below are lowered in liquid-film or solid-state spectra by about 10–20 cm1. Va-por-phase spectra have values raised about 20 cm1.
Saturated 1725–1705 Aryl 1700–1680 ,-Unsaturated 1685–1665 ,,,-Unsaturated and diaryl 1670–1660 Cyclopropyl 1705–1685 Six-ring ketones and larger Similar values to the corresponding open-chain ke-tones Five-ring ketones 1750–1740 , Unsaturation, ,,, unsaturation, etc., have a similar effect on these values as on those of open-chain ketones.
Four-ring ketones ca 1780 -Halo ketones 1745–1725 Affected by conformation; highest values are obtained when both halogens are in the same plane as the C"O.
,-Dihalo ketones 1765–1745 1,2-Diketones, syn-trans-open chains 1730–1710 Antisymmetrical stretching frequency of both C"O’s. The symmetrical stretching is in-active in the infrared but active in the Raman.
syn-cis-1,2-Diketones, six-ring 1760 and 1730 syn-cis-1,2-Diketones, five ring 1775 and 1760 7.52 SECTION 7 TABLE 7.23 Absorption Frequencies of Carbonyl Bands (Continued) Groups Band, cm1 Remarks Ketones C O (continued) o-Amino-aryl or o-hydroxy-aryl ketones 1655–1635 Low because of intramolecular H bonding.
Other substituents and steric hindrance af-fect the position of the band.
Quinones 1690–1660 C"C band is strong and is usually near 1600 cm1.
Extended quinones 1655–1635 Tropone 1650 Near 1600 cm1 when lowered by H bonding as in tropolones Carboxylic acids 9CO2H All types 3000–2500 OH stretching; a characteristic group of small bands due to combination bands Saturated 1725–1700 The monomer is near 1760 cm1, but is rarely observed. Occasionally both bands, the free monomer, and the H-bonded dimer can be seen in solution spectra. Ether solvents give one band near 1730 cm1.
,-Unsaturated 1715–1690 Aryl 1700–1680 -Halo-1740–1720 Carboxylate ions 9 CO2 Most types 1610–1550 1420–1300 Antisymmetrical and symmetrical stretching, respectively Amides N CO (See also Table 7.49 for NH stretching and bend-ing.) Primary 9CONH2 In solution ca 1690 Amide I; C"O stretching Solid state ca 1650 In solution ca 1600 Amide II: mostly NH bending Solid state ca 1640 Amide I is generally more intense than amide II. (In the solid state, amides I and II may overlap.) Secondary 9CONH9 In solution 1700–1670 Amide I Solid state 1680–1630 In solution 1550–1510 Amide II; found in open-chain amides only Solid state 1570–1515 Amide I is generally more intense than amide II.
Tertiary 1670–1630 Since H bonding is absent, solid and solution spectra are much the same.
Lactams Six-ring and larger rings ca 1670 Five-ring Four-ring ca 1700 ca 1745 Shifted to higher frequency when the N atom is in a bridged system R9CO9N9C"C Shifted 15 cm1 by the additional double bond C"C9CO9N Shifted by up to 15 cm1 by the additional double bond. This is an unusual effect by , unsaturation. It is said to be due to the inductive effect of the C"C on the well-conjugated CO9N system, the usual con-jugation effect being less important in such a system.
SPECTROSCOPY 7.53 TABLE 7.23 Absorption Frequencies of Carbonyl Bands (Continued) Groups Band, cm1 Remarks Imides 9CO9N9CO9 Cyclic six-ring ca 1710 and ca 1700 Shift of 15 cm1 with , unsaturation Cyclic five-ring ca 1770 and ca 1700 Ureas N9CO9N RNHCONHR ca 1660 Six-ring ca 1640 Five-ring ca 1720 Urethanes R9O9CO9N 1740–1690 Also shows amide II band when nonsubsti-tuted on N Thioesters and Acids RCO9S9R RCOSH ca 1720 ,-Unsaturated or aryl acid or ester shifted about 25 cm1 RCOS9alkyl ca 1690 RCOS9aryl ca 1710 7.5.1 Intensities of Carbonyl Bands Acids generally absorb more strongly than esters, and esters more strongly than ketones or aldehydes.
Amide absorption is usually similar in intensity to that of ketones but is subject to much greater variations.
7.5.2 Position of Carbonyl Absorption The general trends of structural variation on the position of C"O stretching frequencies may be summarized as follows: 1. The more electronegative the group X in the system R9CO9X9, the higher is the frequency.
2. , Unsaturation causes a lowering of frequency of 15 to 40 cm1, except in amides, where little shift is observed and that usually to higher frequency.
3. Further conjugation has relatively little effect.
4. Ring strain in cyclic compounds causes a relatively large shift to higher frequency. This phenom-enon provides a remarkably reliable test of ring size, distinguishing clearly between four-, five-, and larger-membered-ring ketones, lactones, and lactams. Six-ring and larger ketones, lactones, and lactams show the normal frequency found for the open-chain compounds.
5. Hydrogen bonding to a carbonyl group causes a shift to lower frequency of 40 to 60 cm1. Acids, amides, enolized -keto carbonyl systems, and o-hydroxyphenol and o-aminophenyl carbonyl compounds show this effect. All carbonyl compounds tend to give slightly lower values for the carbonyl stretching frequency in the solid state compared with the value for dilute solutions.
6. Where more than one of the structural influences on a particular carbonyl group is operating, the net effect is usually close to additive.
7.54 SECTION 7 TABLE 7.24 Absorption Frequencies of Other Double Bonds Abbreviations Used in the Table m, moderately strong m–s, moderate to strong var, of variable strength vs, very strong w, weak Group Band, cm1 Remarks Alkenes C"C Nonconjugated 1680–1620 (w–m) May be very weak if symmetrically substituted Conjugated with aromatic ring 1640–1610 (m) More intense than with unconju-gated double bonds Internal (ring) 3060–2995 (m) Highest frequencies for smallest ring Carbons: n 3 n 4 n 5 n 6 ca 1665 (w–m) ca 1565 (w–m) ca 1610 (w–m) 1370–1340 (s) 1650–1645 (w–m) Characteristic Exocyclic C"C(CH ) n 2 2 n n 3 n 4 1780–1730 (m) ca 1680 (m) 1655–1650 (m) Fulvene 1645–1630 (m) 1370–1340 (s) 790–765 (s) Dienes, trienes, etc.
1650 (s) and 1600 (s) Lower-frequency band usually more intense and may hide or overlap the higher-frequency band ,-Unsaturated carbonyl compounds 1640–1590 (m) Usually much weaker than the C"O band Enol esters, enol ethers, and enamines 1700–1650 (s) Imines, oximes, and amidines C"N9 Imines and oximes Aliphatic 1690–1640 (w) ,-Unsaturated and aromatic 1650–1620 (m) Conjugated cyclic systems 1660–1480 (var) 960–930 (s) NO stretching of oximes Imino ethers 9O9C"N9 1690–1640 (var) Usually a strong doublet SPECTROSCOPY 7.55 TABLE 7.24 Absorption Frequencies of Other Double Bonds (Continued) Group Band, cm1 Remarks Imines, oximes, and amidines C"N9 (continued) Imino thioethers 9S9C"N" 1640–1605 (var) Imine oxides C"N9O 1620–1550 (s) Amidines N9C"N9 1685–1580 (var) Benzamidines Aryl9C"N9N 1630–1590 Guanidine N N9C"N9 1725–1625 (s) Azines C"N9N"C 1670–1600 Hydrazoketones 9CO9C"N9N 1600–1530 (vs) Azo compounds 9N"N9 Azo 9N"N9 Aliphatic ca 1575 (var) Very weak or inactive Aromatic cis ca 1510 (w) trans 1440–1410 (w) O 9N"N9 Azoxy Aliphatic 1590–1495 (m–s) 1345–1285 (m–s) Aromatic 1480–1450 (m–s) 1340–1315 (m–s) Azothio 9N" 9 9 N S 1465–1445 (w) 1070–1055 (w) Nitro compounds N"O Nitro C9NO2 Aliphatic ca 1560 (s) 1385–1350 (s) The two bands are due to asymmet-rical and symmetrical stretching of the N"O bond. Electron-withdrawing substituents adjacent to nitro group increase the fre-quency of the asymmetrical band and decrease that of the symmet-rical frequency.
7.56 SECTION 7 TABLE 7.24 Absorption Frequencies of Other Double Bonds (Continued) Group Band, cm1 Remarks Nitro compounds N"O (continued) Nitro C9NO2 (continued) Aromatic 1570–1485 (s) 1380–1320 (s) See above remark; also bulky orthosubstituents shift band to higher frequencies. Strong H bonding shifts frequency to lower end of range.
865–835 (s) Strong and sometimes at ca 750 cm1 580–520 (var) ,-Unsaturated 1530–1510 (s) Nitroalkenes 1360–1335 (s) Nitrates 9O9NO2 1650–1625 (vs) 1285–1275 (vs) 870–855 (vs) 760–755 (w–m) 710–695 (w–m) N9NO2 Nitramines 1630–1550 (s) 1300–1250 (s) Nitrates 9O9N"O 1680–1610 (vs) Two bands 815–750 (s) Trans form 850–810 (s) Cis form 690–615 (s) Thionitrites 9S9N"O 730–685 (m–s) C9N"O Nitroso 1600–1500 (s) N9 " N O Aliphatic 1530–1495 (m–s) Aromatic 1480–1450 (m–s) 1335–1315 (m–s) Nitrogen oxides N:O Pyridine 1320–1230 (m–s) 1190–1150 (m–s) Pyrazine 1380–1280 (m–s) Affected by ring substituents 1040–990 (m–s) ca 850 (m) SPECTROSCOPY 7.57 TABLE 7.25 Absorption Frequencies of Aromatic Bands Abbreviations Used in the Table m, moderately strong m–s, moderate to strong s, strong var, of variable strength w–m, weak to moderately strong Group Band, cm1 Remarks Aromatic rings ca 1600 (m) ca 1580 (m) Stronger when ring is further conjugated ca 1470 (m) When substituent on ring is electron acceptor ca 1510 (m) When substituent on ring is electron donor Five adjacent H 900–860 (w–m) 770–730 (s) 720–680 (s) 625–605 (w–m) ca 550 (w–m) Substituents: C"C, C#C, C#N 1,2-Substitution 770–735 (s) 555–495 (w–m) 470–415 (m–s) 1,3-Substitution 810–750 (s) 560–505 (m) 460–415 (m–s) 490–460 cm1 when substituents are elec-tron-accepting groups 1,4-Substitution 860–800 (s) 650–615 (w–m) 520–440 (m–s) 520–490 cm1 when substituents are elec-tron-donating groups 1,2,3-Trisubstitution 800–760 (s) 720–685 (s) 570–535 (s) ca 485 1,2,4-Trisubstitution 900–885 (m) 780–760 (s) 475–425 (m–s) 1,3,5-Trisubstitution 950–925 (var) 865–810 (s) 730–680 (m–s) 535–495 (s) 470–450 (w–m) Pentasubstitution 900–860 (m–s) 580–535 (s) Hexasubstitution 415–385 (m–s) 7.58 SECTION 7 TABLE 7.26 Absorption Frequencies of Miscellaneous Bands Abbreviations Used in the Table m, moderately strong m–s, moderate to strong s, strong var, of variable strength vs, very strong w, weak w–m, weak to moderately strong Group Band, cm1 Remarks Ethers Saturated aliphatic C9O9C 1150–1060 (vs) Two peaks may be observed for branched chain, usually 1140–1110 cm1.
1140–900 (s) Usually 930–900 cm1; may be absent for symmetric ethers Alkyl–aryl "C9O9C 1270–1230 (vs) 1120–1020 (s) "CO stretching CO stretching Vinyl 1225–1200 (s) Usually about 1205 cm1 Diaryl "C9O9C" 1200–1120 (s) 1100–1050 (s) Cyclic 1270–1030 (s) Epoxides C C O 1260–1240 (m–s) 880–805 (m) 950–860 (var) 865–785 (m) 770–750 (m) Monosubstituted Trans form Cis form Trisubstituted Ketals and acetals 1190–1140 (s) 1195–1125 (s) 1100–1000 (s) 1060–1035 (s) Strongest band Sometimes obscured Phthalanes 915–895 (s) Aromatic methylenedioxy 1265–1235 (s) Peroxides 9O9O9 900–830 (w) 1150–1030 (m–s) ca 1000 (m) Alkyl Aryl SPECTROSCOPY 7.59 TABLE 7.26 Absorption Frequencies of Miscellaneous Bands (Continued) Group Band, cm1 Remarks Sulfur compounds Thiols 9S9H 9CO9SH 9CS9SH 2600–2450 (w) 840–830 (m) ca 860 (s) Broad Thiocarbonyl C"S N9C"S 9S9C"S 1200–1050 (s) 1570–1395 1420–1260 1140–940 ca 580 (s) Behaves generally in manner similar to carbonyl band Sulfoxides S"O 1075–1040 (vs) Halogen or oxygen atom bonded to sul-fur increases the frequency.
730–690 (var) 395–360 (var) Sulfones SO2 1360–1290 (vs) Halogen or oxygen atom bonded to sul-fur increases the frequency.
1170–1120 (vs) 610–545 (m–s) 525–495 (m–s) Sulfonamides 9SO29N 1380–1330 (vs) 1170–1140 (vs) 950–860 (m) 715–700 (w–m) Sulfonates 9SO29O9 1420–1330 (s) 1200–1145 (s) May appear as doublet Thiosulfonates 9SO29S9 ca 1340 (vs) Sulfates 9O9SO29O9 1415–1380 (s) 1200–1185 (s) Electronegative substituents increase frequencies.
Primary alkyl salts 1315–1220 (s) 1140–1075 (m) Strongly influenced by metal ion Secondary alkyl salts 1270–1210 (vs) 1075–1050 (s) Doublet; both bands strongly influenced by metal ion 7.60 SECTION 7 TABLE 7.26 Absorption Frequencies of Miscellaneous Bands (Continued) Group Band, cm1 Remarks Sulfur compounds (continued) Stretching frequencies of C9S and S9S bonds 9S9CH3 9S9CH29 710–685 (w–m) 660–630 (w–m) 9S9CH 630–600 (w–m) 9S9C 600–570 (w–m) 9S9aryl 1110–1070 (m) 710–685 (w–m) R9S9S9R 705–570 (w) 520–500 (w) Aryl9S9S9aryl 500–430 (w–m) Polysulfides 500–470 (w–m) CH29S9CH29 695–655 (w–m) CSC stretching (R9S)2C"O 880–825 (s) 570–560 (var) 9CO9S9 1035–935 (s) 9CS9S ca 580 (s) "C S9 S9 1050–900 (m–s) 980–850 (m–s) 900–800 (m–s) Monoionic Ionic 1,1-dithiolates Phosphorus compounds P9H 2455–2265 (m) Sharp. Phosphines lie in the region 2285–2265 cm1.
1150–965 (w–m) 9PH2 1100–1085 (m) 1065–1040 (w–m) 940–910 (m) P9alkyl 795–650 (m–s) P9aryl 1130–1090 (s) 750–680 (s) P9O9alkyl 1050–970 (s) Broad P9O9aryl 1240–1190 (s) P9O9P 970–910 Broad P"O 1350–1150 (s) May appear as doublet P O OH 2725–2520 (w–m) 2350–2080 (w–m) H-bonded; broad Broad; may be doublet for aryl acids 1740–1600 (w–m) 1335 (s) P"O stretching 1090–910 (s) 540–450 (w–m) SPECTROSCOPY 7.61 TABLE 7.26 Absorption Frequencies of Miscellaneous Bands (Continued) Group Band, cm1 Remarks Phosphorus compounds (continued) P"S 865–655 (m–s) 595–530 (var) P S OH 3100–3000 (w) 2360–2200 (w) 935–910 (s) 810–750 (m–s) 655585 (var) PO stretching P"S stretching P"S stretching Silicon compounds Si9H 2250–2100 (s) 985–800 SiH3 has two bands.
Si9C 860–760 Accompanied by CH2 rocking Si9C 1280–1250 (s) Sharp Si9C2H5 1250–1220 (m) 1020–1000 (m) 970–945 (m) Si9Aryl 1125–1090 (vs) Splits into two bands when two aryl groups are attached to one silicon atom, but has only one band when three aryl groups attached Si9OH 870–820 OH deformation band Si9O9Si 1100–1000 Si9N9Si 940–870 (s) Si9Cl 550–470 (s) 250–150 SiCl2 595–535 (s) 540–460 (m) 9SiCl3 625–570 (s) 535–450 (m) Boron compounds Boranes BH or 9BH2 2640–2450 (m–s) 2640–2570 (m–s) 2535–2485 (m–s) 2380–2315 (s) Free H in BH Free H in BH2 plus second band In complexes; second band for BH2 2285–2265 (s) 2140–2080 (w–m) 2580–2450 (m) Bridged H Borazoles and borazines 7.62 SECTION 7 TABLE 7.26 Absorption Frequencies of Miscellaneous Bands (Continued) Group Band, cm1 Remarks Boron compounds (continued) BH 4 2310–2195 (s) Two bands B9N 1550–1330 750–635 Borazines and borazoles B9O 1390–1310 (s) 1280–1200 BO stretching Metal orthoborates B9Cl B9Br 1090–890 (s) Plus other bands at lower frequencies for BX2 and BX3 B9F 1500–840 (var) Isotope splitting present XBF2 1500–1410 (s) 1300–1200 (s) X2BF 1360–1300 (s) BF3 complexes 1260–1125 (s) 1030–800 (s) Band splitting may be added to isotopic splittings.
BF 4 ca 1030 (vs) Halogen compounds C9F Aliphatic, mono-F 1110–1000 (vs) 780–680 (s) Aliphatic, di-F 1250–1050 (vs) Two bands Aliphatic, poly-F 1360–1090 (vs) Number of bands Aromatic 1270–1100 (m) 680–520 (m–s) 420–375 (var) 340–240 (s) 9CF3 Aliphatic 1350–1120 (vs) 780–680 (s) 680–590 (s) 600–540 (s) 555–505 (s) Aromatic 1330–1310 (m–s) 600–580 (s) C9Cl Primary alkanes 730–720 (s) 685–680 (s) 660–650 (s) SPECTROSCOPY 7.63 TABLE 7.26 Absorption Frequencies of Miscellaneous Bands (Continued) Group Band, cm1 Remarks Halogen compounds (continued) C9Cl (continued) Secondary alkanes ca 760 (m) 675–655 (m–s) 615–605 (s) Tertiary alkanes 635–610 (m–s) 580–560 (m–s) Poly-Cl 800–700 (vs) Aryl: 1,2-1,3-1,4-1060–1035 (m) 1080–1075 (m) 1100–1090 (m) Chloroformates ca 690 (s) 485–470 (s) Axial Cl Equatorial Cl 730–580 (s) 780–740 (s) C9Br Primary alkanes 645–635 (s) 565–555 (s) 440–430 (var) Secondary alkanes 620–605 (s) 590–575 (m–w) 540–530 (s) Tertiary alkanes 600–595 (m–s) 525–505 (s) Axial 690–550 (s) Equatorial 750–685 (s) Aryl: 1,2-1,3-; 1,4-Other bands 1045–1025 (m) 1075–1065 (m) 400–260 (s) 325–175 (m–s) 290–225 (m–s) C9I Primary alkanes 600–585 (s) 515–500 (s) Secondary alkanes ca 575 (s) 550–520 (s) 490–480 (s) Tertiary alkanes 580–560 (s) 510–485 (m) 485–465 (s) Aromatic 1060–1055 (m–s) 310–160 (s) 265–185 Axial ca 640 (s) Equatorial ca 655 (s) 7.64 SECTION 7 TABLE 7.26 Absorption Frequencies of Miscellaneous Bands (Continued) Group Band, cm1 Remarks Inorganic ions Ammonium 3300–3030 Several bands, all strong Cyanate 2220–2130 (s) Cyanide 2200–2000 Carbonate 1450–1410 Hydrogen sulfate 1190–1160 (s) 1180–1000 (s) 880–840 (m) Nitrate 1410–1350 (vs) 860–800 (m) Nitrite 1275–1230 (s) 835–800 (m) Shoulder Phosphate 1100–1000 Sulfate 1130–1080 (s) Thiocyanate ca 2050 (s) TABLE 7.27 Absorption Frequencies in the Near Infrared Values in parentheses are molar absorptivity.
Class Band, cm1 Remarks Acetylenes 9800–9430 6580–6400 (1.0) Overtone of #CH stretching Alcohols (nonhydrogen-bonded) 7140–7010 (2.0) Overtone of OH stretching Aldehydes Aliphatic 4640–4520 (0.5) Combination of C"O and CH stretchings Aromatic ca 8000 ca 4525 ca 4445 Formate 4775–4630 (1.0) SPECTROSCOPY 7.65 TABLE 7.27 Absorption Frequencies in the Near Infrared (Continued) Class Band, cm1 Remarks Alkanes 9CH3 9000–8350 (0.02) 5850–5660 (0.1) 4510–4280 (0.3) 9CH29 9170–8475 (0.02) 5830–6640 (0.1) 4420–4070 (0.25) CH 8550–8130 All bands very weak 7000–6800 5650–5560 Cyclopropane 6160–6060 4500–4400 Alkenes C"C H 6850–6370 (1.0) C"CH2 and 9CH"CH2 7580–7300 (0.02) 6140–5980 (0.2) 4760–4700 (1.2) C"C H H 4760–4660 (0.15) Trans isomers have no unique bands.
9O9CH"CH2 9CO9CH"CH2 6250–6040 (0.3) 7580–7410 (0.02) 6190–5990 (0.3) 4820–4750 (0.2–0.5) Amides Primary 7400–6540 (0.7) Two bands; overtone of NH stretch 5160–5060 (3.0) 5040–4990 (0.5) 4960–4880 (0.5) Second overtone of C"O stretch; second overtone of NH deforma-tion; combination of C"O and NH Secondary 7330–7140 (0.5) 5050–4960 (0.4) Overtone of NH stretch Combination of NH stretch and NH bending Amines, aliphatic Primary 9710–9350 Second overtone of NH stretch 6670–6450 (0.5) Two bands; overtone of NH stretch 5075–4900 (0.7) Two bands; combination of NH stretch and NH bending Secondary 9800–9350 6580–6410 (0.5) Second overtone of NH stretch Overtone of NH stretch Amines, aromatic Primary 9950–9520 (0.4) 7040–6850 (0.2) 6760–6580 (1.4) 5140–5040 (1.5) Secondary 10 000–9710 6800–6580 (0.5) 7.66 SECTION 7 TABLE 7.27 Absorption Frequencies in the Near Infrared (Continued) Class Band, cm1 Remarks Aryl-H 7660–7330 (0.1) 6170–5880 (0.1) Overtone of CH stretch Carbonyl 5200–5100 Carboxylic acids 7000–6800 Epoxide (terminal) 6135–5960 (0.2) 4665–4520 (1.2) Cyclopropane bands in same region Glycols 7140–7040 Hydroperoxides Aliphatic 6940–6750 (2.0) 4960–4880 (0.8) Aromatic 7040–6760 (1.0) 4950–4850 (1.3) Two bands Imides 9900–9620 6540–6370 Nitriles 5350–5200 (0.1) Oximes 7140–7050 Phosphines 5350–5260 (0.2) Phenols Nonbonded 7140–6800 (3.0) 5000–4950 Intramolecularly bonded 7000–6700 Thiols 5100–4950 (0.05) SPECTROSCOPY 7.67 TABLE 7.28 Infrared Transmitting Materials Material Wavelength range, m Wavenumber range, cm1 Refractive index at 2 m NaCl, rock salt 0.25–17 40 000–590 1.52 KBr, potassium bromide 0.25–25 40 000–400 1.53 KCl, potassium chloride 0.30–20 33 000–500 1.5 AgCl, silver chloride 0.40–23 25 000–435 2.0 AgBr, silver bromide 0.50–35 20 000–286 2.2 CaF2, calcium fluoride (Irtran-3) 0.15–9 66 700–1 110 1.40 BaF2, barium fluoride 0.20–11.5 50 000–870 1.46 MgO, magnesium oxide (Irtran-5) 0.39–9.4 25 600–1 060 1.71 CsBr, cesium bromide 1–37 10 000–270 1.67 CsI, cesium iodide 1–50 10 000–200 1.74 TlBr-TlI, thallium bromide-iodide (KRS-5) 0.50–35 20 000–286 2.37 ZnS, zinc sulfide (Irtran-2) 0.57–14.7 17 500–680 2.26 ZnSe, zinc selenide (vacuum deposited) (Irtran-4) 1–18 10 000–556 2.45 CdTe, cadmium telluride (Irtran-6) 2–28 5 000–360 2.67 Al2O3, sapphire 0.20–6.5 50 000–1538 1.76 SiO2, fused quartz 0.16–3.7 62 500–2 700 Ge, germanium 0.50–16.7 20 000–600 4.0 Si, silicon 0.20–6.2 50 000–1 613 3.5 Polyethylene 16–300 625–33 1.54 Useful for internal reflection work.
TABLE 7.29 Infrared Transmission Characteristics of Selected Solvents Transmission below 80%, obtained with a 0.10-mm cell path, is shown as shaded area.
7.68 7.69 7.70 TABLE 7.29 Infrared Transmission Characteristics of Selected Solvents (Continued) SPECTROSCOPY 7.71 7.6 RAMAN SPECTROSCOPY TABLE 7.30 Raman Frequencies of Single Bonds to Hydrogen and Carbon Abbreviations Used in the Table m, moderately strong m–s, moderate to strong m–vs, moderate to very strong s, strong vs, very strong vw, very weak w, weak w–m, weak to moderately strong w–vs, weak to very strong Group Band, cm1 Remarks Saturated C9H and C9C 9CH3 2969–2967 (s) 2884–2883 (s) ca 1205 (s) 1150–1135 1060–1056 975–835 (s) 280–220 In aryl compounds In unbranched alkyls In unbranched alkyls Terminal rocking of methyl group CH29CH3 torsion 9CH29 2949–2912 (s) 2861–2849 (s) 1473–1443 (m–vs) 1305–1295 (s) 1140–1070 (m) 888–837 (w) 425–150 500–490 Intensity proportional to number of CH2 groups Often two bands; see above Substituent on aromatic ring 9CH(CH3)2 1350–1330 (m) 835–750 (s) If attached to C"C bond, 870– 800 cm1. If attached to aryl ring, 740 cm1 9C(CH3)3 1265–1240 (m) 1220–1200 (m) 760–685 (vs) Not seen in tert-butyl bromide Not seen in tert-butyl bromide If attached to C"C or aromatic ring, 760–720 cm1 Internal tertiary carbon atom 855–805 (w) 455–410 Internal quaternary carbon atom 710–680 (vs) 490–470 7.72 SECTION 7 TABLE 7.30 Raman Frequencies of Single Bonds to Hydrogen and Carbon (Continued) Group Band, cm1 Remarks Saturated C9H and C9C (continued) Two adjacent tertiary carbon atoms 730–920 770–725 Often a band at 530–524 cm1 indicates presence of adjacent tertiary and quaternary carbon atoms.
Dialkyl substitution at -carbon atom 800–700 (m–s) 680–650 (vs) 605–550 Cyclopropane 3101–3090 3038–3019 1210–1180 (s) Shifts to 1200 cm1 for mono-alkyl or 1,2-dialkyl substitution and to 1320 cm1 for gem-1,1-dialkyl substitution Cyclobutane 1001–960 (vs) Shifts to 933 cm1 for monoalkyl, to 887 cm1 for cis-1,3-dialkyl, and to 891 cm1 plus 855 cm1 (doublet) for trans-1,3,-dialkyl substitution Cyclopentane 900–800 (s) Cyclohexane 825–815 (vs) 810–795 (vs) Boat configuration Chair configuration Cycloheptane ca 733 Cyclooctane ca 703 "C CH3 CH3 1392–1377 450–400 (vw) 270–250 (m) C"C H H CH3 CH3 1380–1379 492–455 (vw) 220–200 (m) C"C H H CH3 CH3 1372–1368 970–952 (m) 592–545 (vw) 420–400 (m) 310–290 (m) SPECTROSCOPY 7.73 TABLE 7.30 Raman Frequencies of Single Bonds to Hydrogen and Carbon (Continued) Group Band, cm1 Remarks Saturated C9H and C9C (continued) C"C CH3 CH3 CH3 H 1385–1375 522–488 (w) C"C CH3 CH3 CH3 CH3 1392–1386 690–678 (m–s) 510–485 (m) 424–388 (w) C9C9C O 1170–1100 (w–m) 600–580 (m–s) C9C9 O 1120–1090 (m–vs) Tertiary or quaternary carbon ad-jacent to carbonyl group low-ers the frequency 300 cm1.
600–510 (w–m) 9CH29CO9 1420–1410 (s) 9CHO 2850–2810 (m) 2720–2695 (vs) Often appears as a shoulder Unsaturated C9H 9C#C9H 3340–3270 (w–m) Alkyl substituents at higher fre-quencies; unsaturated or aryl substituents at lower frequen-cies C"C H 3040–2995 (m) H C"C H 3095–3050 (m) 2990–2983 (s) Asymmetric "CH2 stretch Symmetric "CH2 stretch C"C H H R H 1419–1415 (m) 1309–1288 (m) Plus "CH and "CH stretching bands C"C H H R1 R2 1413–1399 (m) 909–885 (m) 711–684 (w) Plus "CH2 stretching bands 7.74 SECTION 7 TABLE 7.30 Raman Frequencies of Single Bonds to Hydrogen and Carbon (Continued) Group Band, cm1 Remarks Unsaturated C9H (continued) C"C H R2 R1 H 1270–1251 (m) Plus "CH stretching band C"C H H R1 R2 1314–1290 (m) Plus "CH stretching band C"C H R1 R2 R3 1360–1322 (w) 830–800 (vw) Plus "CH stretching band Hydroxy O9H Free 9OH Intermolecularly bonded Aromatic 9OH 3650–3250 (w) 3400–3300 (w) ca 3160 (s) 9OH 1460–1320 (w) 1276–1205 (w–m) 1260 (w–m) Common to all OH substituents Primary Secondary C9C9OH primary 1070–1050 (m–s) 1030–960 (m–s) 480–430 (w–m) CCO stretching CCO deformation C9C9OH Secondary 1135–1120 (m–s) 825–815 (vs) 500–490 (w–m) Tertiary 1210–1200 (m–s) 755–730 (vs) 360–350 (w–m) 9CO9O9H 1305–1270 CO stretching N9H and C9N bonds Amine N9H Associated Nonbonded Salts 3400–3250 (s) 3550–3250 (s) 2986–2974 Primary amines show two bands.
Often obscured by intense CH stretching bands 9NH2 1650–1590 (w–vs) Bending SPECTROSCOPY 7.75 TABLE 7.30 Raman Frequencies of Single Bonds to Hydrogen and Carbon (Continued) Group Band, cm1 Remarks N9H and C9N Bonds (continued) Amides Primary 3540–3500 (w) 3400–3380 (w) 1310–1250 (s) Both bands lowered ca 150 cm1 in solid state and H bonding Interaction of NH bending and CN stretching; lowered 50 cm1 in nonbonded state 1150–1095 (m) Rocking of NH2 Secondary 3491–3404 (m–s) Two bands; lowered in frequency on H bonding and in solid state 1190–1130 (m) 931–865 (m–s) 430–395 (w–m) 9CO9N 607–555 (m) O"CN bending C9N9C 9 C 1070–1045 (m) Stretching C9N Primary carbon Secondary carbon 1090–1060 (m) 1140–1035 (m) CN stretching Two bands but often obscured.
Strong band at 800 cm1 Tertiary carbon 1240–1020 (m) Two bands. Strong band also at 745 cm1 7.76 SECTION 7 TABLE 7.31 Raman Frequencies of Triple Bonds Abbreviations Used in the Table m, moderately strong s–vs, strong to very strong m–s, moderate to strong vs, very strong s, strong Group Band, 1 cm Remarks R9C#CH 2160–2100 (vs) Monoalkyl substituted; C#C stretch 650–600 (m) C#CH deformation 356–335 (s) C#C9C bending of monoalkyls R19C#C9R2 2300–2190 (vs) C#C stretching of disubstituted alkyls; sometimes two bands 9C#C9C#C9 2264–2251 (vs) 9C#N 2260–2240 (vs) Unsaturated nonaryl substituents lower the frequency and en-hance the intensity.
2234–2200 (vs) Lowered ca with aryl and conjugated aliphatics 1 30 cm 840–800 (s–vs) 385–350 (m–s) CCCN symmetrical stretching 200–160 (vs) Aliphatic nitriles H9C#N 2094 (vs) Azides 9N 9N #N 2170–2080 (s) Asymmetric NNN stretching 1258–1206 (s) Symmetric NNN stretching; HN3 at 1 1300 cm Diazonium salts R9N #N 2300–2240 (s) Isonitriles 9N #C 2146–2134 Stretching of aliphatics 2124–2109 Stretching of aromatics Thiocyanates 9S9C#N 2260–2240 (vs) Stretching of C#N 650–600 (s) Stretching of SC SPECTROSCOPY 7.77 TABLE 7.32 Raman Frequencies of Cumulated Double Bonds Abbreviations Used in the Table s, strong vw, very weak vs, very strong w, weak Group Band, 1 cm Remarks Allenes C"C"C 2000–1960 (s) Pseudo-asymmetric stretching 1080–1060 (vs) Symmetric stretching 356 C"C"C bending Carbodiimides (cyanamides) 9N"C"N9 2140–2125 (s) Asymmetric stretching of aliphatics 2150–2100 (vs) Asymmetric stretching of aromatics; two bands 1460 Symmetrical stretching of aliphatics 1150–1140 (vs) Symmetric stretching of aryls Cumulenes (trienes) C"C"C"C 2080–2030 (vs) 878 Isocyanates 9N"C"O 2300–2250 (vw) Asymmetric stretching 1450–1400 (s) Symmetric stretching Isothiocyanates 9N"C"S 2220–2100 Two bands 690–650 Alkyl derivatives Ketenes C"C"O 2060–2040 (vs) Pseudo-asymmetric stretching 1130 (s) Pseudo-symmetric stretching 1374 (s) Alkyl derivatives 1120 (s) Aryl derivatives Sulfinylamines R9N"S"O 1306–1214 (w) Asymmetric stretching 1155–989 (s) Symmetric stretching 7.78 SECTION 7 TABLE 7.33 Raman Frequencies of Carbonyl Bands Abbreviations Used in the Table m, moderately strong s–vs, strong to very strong m–s, moderate to strong vs, very strong s, strong w, weak Group Band, 1 cm Remarks Acid anhydrides 9CO9O9CO9 Saturated 1850–1780 (m) 1771–1770 (m) Conjugated, noncyclic 1775 1720 Acid fluorides 9CO9F Alkyl 1840–1835 Aryl 1812–1800 Acid chlorides 9CO9Cl Alkyl 1810–1770 (s) Aryl 1774 1731 Acid bromides 9CO9Br Alkyl 1812–1788 Aryl 1775–1754 Acid iodides 9CO9I Alkyl ca 1806 Aryl ca 1752 Lactones 1850–1730 (s) Esters Saturated 1741–1725 Alkyl branching on carbon adjacent to C"O lowers frequency by 5–15 1 cm .
Aryl and ,-unsaturated 1727–1714 Diesters Oxalates 1763–1761 Phthalates 1738–1728 C#C9CO9O9 1716–1708 Carbamates 1694–1688 Aldehydes 1740–1720 (s–vs) Ketones Saturated 1725–1700 (vs) Aryl 1700–1650 (m) Alicyclic n 4 1782 (m) n 5 1744 (m) n 6 1725–1699 (m) SPECTROSCOPY 7.79 TABLE 7.33 Raman Frequencies of Carbonyl Bands (Continued) Group Band, cm1 Remarks Carboxylic acids Mono-1686–1625 (s) These -substituents increase the frequency: F, Cl, Br, OH.
Poly-1782–1645 Solid state; often two bands 1750–1710 In solution; very broad band Amino acids 1743–1729 Carboxylate ions 1690–1550 (w) 1440–1340 (vs) Amino acid anion 1743–1729 1600–1570 (w) Often masked by water deformation band near 1 1630 cm Amides (see also Table 7.30) Primary Associated 1686–1576 (m–s) 1650–1620 (m) Nonbonded 1715–1675 (m) 1620–1585 (m) Secondary Associated 1680–1630 (w) Both cis and trans forms 1570–1510 (w) Trans form 1490–1440 Cis form Nonbonded 1700–1650 Both cis and trans forms 1550–1500 Trans form (no cis band) Tertiary 1670–1630 (m) Lactams 1750–1700 (m) TABLE 7.34 Raman Frequencies of Other Double Bonds Abbreviations Used in the Table m, moderately strong vs, very strong m–s, moderate to strong w, weak s, strong s–vs, strong to very strong w–m, weak to moderately strong Group Band, 1 cm Remarks C"C Alkenes C"C 1680–1576 (m–s) General range C"C H H R1 H 1648–1638 (vs) C"C stretching C"C H H R1 R2 ca 1650 (vs) 270–252 (w) C"C stretching C"C9C skeletal deformation 7.80 SECTION 7 C"C H R2 R1 H ca 1660 (vs) 970–952 (w) C"C stretching Asymmetric CC stretching C"C H R1 R2 H 1676–1665 (s) C9C stretching C"C R1 R2 H R3 1678–1664 (vs) 522–488 (w) C"C stretching C"C9C skeletal deformation C"C R1 R2 R4 R3 1680–1665 (s) 690–678 (m–s) 510–485 (m) 424–388 (w) C"C stretching Symmetrical CC stretching Skeletal deformation Skeletal deformation Haloalkene X fluorine X chlorine X bromine X-iodine C"C stretch of haloalkanes H2C"CHX 1654 1603–1601 1596–1593 1581 HXC"CHX cis 1712 1590–1587 1587–1583 1543 trans 1694 1578–1576 1582–1581 1537 H2C"CX2 1728 1616–1611 1593 X2C"CHX 1792 1589–1582 1552 X2C"CX2 1872 1577–1571 1547 1465 (solid) Group Band, 1 cm Remarks C"N9 bonds Aldimines (azomethines) C"N9R2 H R1 1673–1639 1405–1400 (s) Dialkyl substituents at higher frequency; diaryl substituents at lower end of range Aldoximines and Ketoximes C"N9OH 1680–1617 (vs) 1335–1330 (w) Azines C"N9N"C 1625–1608 (s) TABLE 7.34 Raman Frequencies of Other Double Bonds (Continued) Group Band, 1 cm Remarks C"C Alkenes (continued) SPECTROSCOPY 7.81 TABLE 7.34 Raman Frequencies of Other Double Bonds (Continued) Group Band, 1 cm Remarks C"N9 bonds (continued) Hydrazones C"N9N H H R1 R2 1660–1610 (s–vs) Imido ethers C"NH O 1658–1648 NH stretching at 3360–3327 1 cm Semicarbazones and thio-semicarbazones NH2 C"N9N H C O (or S) 1665–1642 (vs) 1620–1610 (vs) Aliphatic. Thiosemicarbazones fall in lower end of range.
Aromatic derivatives Azo compounds 9N"N9 9N"N9 1580–1570 (vs) Nonconjugated 1442–1380 (vs) Conjugated to aromatic ring 1060–1030 (vs) CN stretching in aryl com-pounds Nitro compounds N"O Alkyl nitrites 1660–1620 (s) N"O stretching Alkyl nitrates 1635–1622 (w–m) Asymmetric NO2 stretching 1285–1260 (vs) Symmetric NO2 stretching 610–562 (m) NO2 deformation Nitroalkanes Primary 1560–1548 (m–s) 1395–1370 (s) Sensitive to substituents attached to CNO2 group 915–898 (m–s) 894–873 (m–s) 618–609 (w) 640–615 (w) Shoulder 494–472 (w–m) Broad; useful to distinguish from secondary nitroalkanes Secondary 1553–1547 (m) 1375–1360 (s) 908–868 (m) 863–847 (s) 625–613 (m) 560–516 (s) Sharp band 7.82 SECTION 7 TABLE 7.34 Raman Frequencies of Other Double Bonds (Continued) Group Band, 1 cm Remarks Nitro compounds N"O (continued) Nitroalkanes (continued) Tertiary 1543–1533 (m) 1355–1345 (s) Nitrogen oxides N:O 1612–1602 (s) 1252 (m) 1049–1017 (s) 835 (s) 541 (w) 469 (w) TABLE 7.35 Raman Frequencies of Aromatic Compounds Abbreviations Used in the Table m, moderately strong var, of variable strength m–s, moderate to strong vs, very strong m–vs, moderate to very strong w, weak s, strong w–m, weak to moderately strong s–vs, strong to very strong Group Band, 1 cm Remarks Common features Aromatic compounds 3070–3020 (s) CH stretching 1630–1570 (m–s) C9C stretching Substitution patterns of the benzene ring Monosubstituted 1180–1170 (w–m) 1035–1015 (s) 1010–990 (vs) Characteristic feature; found also with 1,3- and 1,3,5-substitutions 630–605 (w) 1,2-Disubstituted 1230–1215 (m) 1060–1020 (s) Characteristic feature 740–715 (m) Lowered for halogen substituents 1 60 cm SPECTROSCOPY 7.83 TABLE 7.35 Raman Frequencies of Aromatic Compounds (Continued) Group Band, 1 cm Remarks Substitution patterns of the benzene ring (continued) 1,3-Disubstituted 1010–990 (vs) 750–640 (s) Characteristic feature 1,4-Disubstituted 1230–1200 (s–vs) 1180–1150 (m) 830–750 (vs) Lower frequency with Cl substituents 650–630 (m–w) Isolated hydrogen 1379 (s–vs) 1290–1200 (s) 745–670 (m–vs) 580–480 (s) Characteristic feature 1,2,3-Trisubstituted 1100–1050 (m) 670–500 (vs) The lighter the mass of the substituent, the higher the frequency.
490–430 (w) 1,2,4-Trisubstituted 750–650 (vs) 580–540 (var) 500–450 (var) Lighter mass at higher frequencies 1,3,5-Trisubstituted 1010–990 (vs) Completely substituted 1296 (s) 550 (vs) 450 (m) 361 (m) Other aromatic compounds Naphthalenes 1390–1370 Ring breathing 1026–1012 or substituents 767–762 substituents 535–512 substituents 519–512 substituents Disubstituted naphalenes 773–737 (s) 1,2-; 1,3-; 2,3-; 2,6-; 2,7-726–705 (s) 1,3-; 1,4-(two bands); 1,6-; 1,7-(two bands) 690–634 (s) 1,2-; 1,4-(two bands); 1,5-; 1,8-(two bands) 608 1,3-575–569 1,2-; 1,3-; 1,6-544–537 1,2-; 1,7-; 1,8-Anthracenes 1415–1385 Ring breathing 7.84 SECTION 7 TABLE 7.36 Raman Frequencies of Sulfur Compounds Abbreviations Used in the Table m, moderately strong s–vs, strong to very strong m–s, moderate to strong vs, very strong s, strong w–m, weak to moderately strong Group Band, 1 cm Remarks 9S9H 2590–2560 (s) SH stretching for both aliphatic and aromatic C"S 1065–1050 (m) 735–690 (vs) Solid state S"O In (RO2)2SO 1209–1198 One or two bands In (R2N)2SO 1108 In R2SO 1070–1010 (w–m) Broad SOF2 1308 SOCl2 1233 SOBr2 1121 9SO29 1330–1260 (m–s) Asymmetric SO2 stretching 1155–1110 (s) Symmetric SO2 stretching 610–540 (m) Scissoring mode of aryls 512–485 (m) Scissoring mode of alkyls 9SO29N ca 1322 (m) Asymmetric SO2 stretching 1163–1138 (s) Symmetric SO2 stretching 524–510 (s) Scissoring mode 9SO29O 1363–1338 (w–m) SO2 stretching. Aryl substituents occur at higher range.
1192–1165 (vs) 589–517 (w–m) Scissoring (two bands). Aryl substituents occur at higher range of frequencies.
9SO29S9 1334–1305 (m–s) 1128–1126 (s) 559–553 (m–s) X9SO29X 1412–1361 (w–m) (F) (Cl) 1263–1168 (s) (F) (Cl) 596–531 (s) 9O9SO29O9 1388–1372 (s) 1196–1188 (vs) S 9O9C9S9 670–620 (vs) 480–450 (vs) C"S stretching CS stretching C9SH 920 (m) 850–820 (m) C9SH deformation of aryls SPECTROSCOPY 7.85 TABLE 7.36 Raman Frequencies of Sulfur Compounds (Continued) Group Band, 1 cm Remarks C9S9 752 (vs), 731 (vs) With vinyl group attached 742–722 (m–s) With CH3 attached 698 (w), 678 (s) With allyl group attached 693–639 (s) Ethyl or longer alkyl chain 651–610 (s–vs) Isopropyl group attached 589–585 (vs) tert-Butyl group attached (CH2)n S n 2 1112 n 4 688 n 5 659 C9(S9S)n9C 715–620 (vs) Two bands; CS stretching 525–510 (vs) Two bands; SS stretching Didi-n-alkyl disulfides 576 (s) CS stretching Di-tert-butyl disulfide 543 (m) SS stretching Trisulfides 510–480 (s) SS stretching TABLE 7.37 Raman Frequencies of Ethers Abbreviations Used in the Table m, moderately strong var, of variable strength s, strong vs, very strong Group Band, 1 cm Remarks C9O9C Aliphatic 1200–1070 (m) Asymmetrical COC stretching. Symmetrical substitution gives higher frequencies 930–830 (s) Symmetrical COC stretching 800–700 (s) Braching at carbon gives higher frequencies.
550–400 Aromatic 1310–1210 (m) 1050–1010 (m) C9O9C9O9C 1145–1129 (m) 900–800 (vs) 537–370 (s) 396–295 C C O 1280–1240 (s) Ring breathing 9O9O9 800–770 (var) 7.86 SECTION 7 TABLE 7.37 Raman Frequencies of Ethers (Continued) Group Band, 1 cm Remarks (CH2)n O n 3 1040–1010 (s) n 4 920–900 (s) n 5 820–800 (s) TABLE 7.38 Raman Frequencies of Halogen Compounds Abbreviations Used in the Table m–s, moderate to strong var, of variable strength s, strong vs, very strong Group Band, 1 cm Remarks C9F 1400–870 Correlations of limited applicability because of vibrational coupling with stretching C9Cl 350–290 (s) CCCl bending; general Primary 660–650 (vs) Secondary 760–605 (s) May be one to four bands Tertiary 620–540 (var) May be one to three bands "C9Cl 844–564 438–396 381–170 "CCl2 601–441 300–235 C9Br 690–490 (s) Often several bands; primary at higher range of frequencies.
Tertiary has very strong band at ca 1 520 cm .
305–258 (m–s) "C9Br 745–565 356–318 240–115 "CBr2 467–265 185–145 C9I 663–595 309 154–85 "C9I ca 180 Solid state "CI2 ca 265 Solid state ca 105 Solid state SPECTROSCOPY 7.87 TABLE 7.39 Raman Frequencies of Miscellaneous Compounds Abbreviations Used in the Table m, moderately strong vs, very strong s, strong vvs, very very strong Group Band, 1 cm Remarks C9As 570–550 (vs) CAs stretching 240–220 (vs) CAsC deformation C9Pb 480–420 (s) CPb stretching C9Hg 570–510 (vvs) CHg stretching C9Si 1300–1200 (s) CSi stretching C9Sn 600–450 (s) CSn stretching P9H 2350–2240 (m) PH stretching Heterocyclic rings Trimethylene oxide 1029 Trimethylene imine 1026 Tetrahydrofuran 914 Pyrrolidine 899 1,3-Dioxolane 939 1,4-Dioxane 834 Piperidine 815 Tetrahydropyran 818 Morpholine 832 Piperazine 836 Furan 1515–1460 1140 2-Substituted Pyrazole 1040–990 Pyrrole 1420–1360 (vs) 1144 Thiophene 1410 (s) 1365 (s) 1085 (vs) 1035 (s) 832 (vs) 610 (s) Pyridine 1030 (vs) 990 (vs) 7.88 SECTION 7 TABLE 7.40 Principal Argon-Ion Laser Plasma Lines Wavelength, nm Wavenumber, 1 cm Relative intensity Shift relative to 488.0 nm, 1 cm Shift relative to 514.5 nm, 1 cm 487.9860 20 486.67 5000 0 488.9033 20 448.23 200 38.4 490.4753 20 382.70 130 104.0 493.3206 20 265.13 970 221.5 496.5073 20 135.07 960 351.6 497.2157 20 106.39 330 380.3 500.9334 19 957.16 1500 529.5 501.7160 19 926.03 620 560.6 506.2036 19 749.39 1400 737.3 514.1790 19 443.06 360 1043.6 514.5319 19 429.73 1000 1056.9 0 516.5774 19 352.79 38 1133.9 76.9 517.6233 19 313.69 41 1173.0 116.0 521.6816 19 163.44 20 1323.2 266.3 528.6895 18 909.43 150 1577.2 520.3 539.7522 18 521.87 18 1964.8 907.9 545.4307 18 329.04 19 2157.6 1100.7 555.8703 17 984.81 30 2501.9 1444.9 560.6734 17 830.75 48 2655.9 1599.0 565.0705 17 692.00 29 2794.7 1737.7 565.4450 17 680.28 27 2806.4 1749.4 569.1650 17 564.73 27 2921.9 1865.0 577.2326 17 319.24 69 3167.4 2110.5 581.2746 17 198.80 49 3287.9 2230.9 598.5920 16 701.24 23 3785.4 2728.5 610.3546 16 379.38 91 4107.3 3050.4 611.4929 16 348.90 1750 4137.8 3080.8 612.3368 16 326.36 100 4160.3 3103.4 613.8660 16 285.69 97 4201.0 3144.0 617.2290 16 196.96 1400 4289.7 3232.8 624.3125 16 013.19 590 4473.5 3416.5 639.9215 15 622.60 160 4864.1 3807.1 641.6308 15 580.98 50 4905.7 3848.8 SPECTROSCOPY 7.89 7.7 NUCLEAR MAGNETIC RESONANCE TABLE 7.41 Nuclear Properties of the Elements In the following table the magnetic moment is in multiples of the nuclear magneton N(eh/4Mc) with diamagnetic correction. The spin I is in multiples of h/2, and the electric quadrupole moment Q is in multiples of 1028 square meters. Nuclei with spin have no quadrupole moment. Sensitivity is for equal numbers of 1⁄2 nuclei at constant field. NMR frequency at any magnetic field is the entry for column 5 multiplied by the value of the magnetic field in kilogauss. For example, in a magnetic field of 23.490 kG, protons will process at 4.2576 23.490 kG 100.0 MHz. Radionuclides are denoted with an asterisk.
The data were extracted from M. Lederer and V. S. Shirley, Table of Isotopes, 7th ed., Wiley-Interscience, New York, 1978; A. H. Wapstra and G. Audi, “The 1983 Atomic Mass Evaluation,” Nucl. Phys. A432:1–54 (1985); V. S. Shirley, ed., Table of Radioactive Isotopes, 8th ed., Wiley-Interscience, New York, 1986; and P. Raghavan, “Table of Nuclear Moments,” At. Data Nucl. Data Tables, 42:189 (1989).
Nuclide Natural abundance, % Spin I Sensitivity at constant field relative to 1H NMR frequency for a 1-kG field, MHz Magnetic moment /N, J · T1 Electric quadrupole moment Q, 1028 m2 1n 1⁄2 0.321 39 2.916 39 1.913 043 1H 99.985 1⁄2 1.000 00 4.257 64 2.792 847 2H 0.015 1 0.009 65 0.653 57 0.857 438 0.002 860 3H 1⁄2 1.213 54 4.541 37 2.978 963 3He 0.0001 1⁄2 0.442 12 3.243 52 2.127 624 6Li 7.5 1 0.008 50 0.626 60 0.822 047 0.000 82 7Li 92.5 3⁄2 0.293 55 1.654 78 3.256 427 0.040 1 9Be 100 3⁄2 0.013 89 0.598 6 1.177 9 0.052 88 10B 19.9 3 0.019 85 0.457 51 1.800 645 0.084 59 11B 80.1 3⁄2 0.165 22 1.366 26 2.688 649 0.040 59 13C 1.10 1⁄2 0.015 91 1.070 81 0.702 412 14N 99.634 1 0.001 01 0.307 76 0.403 761 0.020 2 15N 0.366 1⁄2 0.001 04 0.431 72 0.283 189 17O 0.038 5⁄2 0.029 10 0.577 41 1.893 80 0.025 58 19F 100 1⁄2 0.834 00 4.007 65 2.628 867 21Ne 0.27 3⁄2 0.002 46 0.336 30 0.661 797 0.101 55 22Na 3 0.018 1 0.443 4 1.745 23Na 100 3⁄2 0.092 70 1.126 86 2.217 522 0.108 9 25Mg 10.00 5⁄2 0.002 68 0.260 82 0.855 46 0.199 4 27Al 100 5⁄2 0.206 89 1.110 28 3.641 504 0.140 3 29Si 4.67 1⁄2 0.007 86 0.846 53 0.555 29 31P 100 1⁄2 0.066 52 1.725 10 1.131 60 33S 0.75 3⁄2 0.002 27 0.327 16 0.643 821 0.067 8 35S 3⁄2 0.008 50 0.508 1.00 0.045 35Cl 75.77 3⁄2 0.004 72 0.417 64 0.821 874 0.081 65 36Cl 2 0.012 1 0.489 3 1.283 8 0.016 8 37Cl 24.23 3⁄2 0.002 72 0.347 64 0.684 124 0.064 35 37Ar 3⁄2 0.012 76 0.581 8 1.145 39K 93.258 3⁄2 0.000 51 0.198 93 0.391 466 0.060 1 40K 0.0117 4 0.005 23 0.247 37 1.298 099 0.074 9 41K 6.730 3⁄2 0.000 084 0.109 19 0.214 870 0.073 3 43Ca 0.135 7⁄2 0.006 42 0.286 88 1.317 26 0.0408 45Sc 100 7⁄2 0.302 44 1.035 88 4.756 483 0.22 47Ti 7.3 5⁄2 0.002 10 0.240 40 0.788 48 0.29 49Ti 5.5 7⁄2 0.003 78 0.240 47 1.104 17 0.24 50V 0.250 6 0.055 71 0.425 04 3.345 689 0.21 7.90 SECTION 7 TABLE 7.41 Nuclear Properties of the Elements (Continued) Nuclide Natural abundance, % Spin I Sensitivity at constant field relative to 1H NMR frequency for a 1-kG field, MHz Magnetic moment /N, J · T1 Electric quadrupole moment Q, 1028 m2 51V 99.750 7⁄2 0.383 60 1.121 30 5.148 706 0.052 53Cr 9.501 3⁄2 0.000 91 0.241 14 0.474 54 0.15 55Mn 100 5⁄2 0.178 81 1.057 60 3.468 72 0.33 57Fe 2.1 1⁄2 0.000 03 0.138 15 0.090 623 59Co 100 7⁄2 0.278 41 1.007 7 4.627 0.42 61Ni 1.140 3⁄2 0.003 59 0.381 13 0.750 02 0.162 63Cu 69.17 3⁄2 0.093 42 1.129 79 2.223 29 0.220 65Cu 30.83 3⁄2 0.114 84 1.210 27 2.381 67 0.204 67Zn 4.1 5⁄2 0.002 87 0.266 93 0.875 479 0.150 69Ga 60.108 3⁄2 0.069 71 1.024 75 2.016 59 0.170 71Ga 39.892 3⁄2 0.143 00 1.302 04 2.562 27 0.100 73Ge 7.73 9⁄2 0.001 41 0.148 97 0.879 468 0.173 75As 100 3⁄2 0.025 36 0.731 48 1.439 475 0.314 77Se 7.63 1⁄2 0.007 03 0.815 66 0.535 042 79Br 50.69 3⁄2 0.079 45 1.070 39 2.106 399 0.331 81Br 49.31 3⁄2 0.099 51 1.153 81 2.270 562 0.276 83Kr 11.5 9⁄2 0.001 90 0.164 42 0.970 669 0.253 85Rb 72.165 5⁄2 0.010 61 0.412 53 1.353 03 0.274 87Rb 27.835 3⁄2 0.177 03 1.398 07 2.751 24 0.132 87Sr 7.00 9⁄2 0.002 72 0.185 24 1.093 603 0.335 89Y 100 1⁄2 0.000 12 0.209 49 0.137 415 91Zr 11.22 5⁄2 0.009 49 0.397 47 1.303 62 0.206 93Nb 100 9⁄2 0.488 21 1.045 20 6.170 5 0.32 95Mo 15.92 5⁄2 0.003 27 0.278 74 0.914 2 0.022 97Mo 9.55 5⁄2 0.003 49 0.284 62 0.933 5 0.255 99Tc 9⁄2 0.381 74 0.963 5.684 7 0.129 99Ru 12.7 5⁄2 0.001 13 0.195 53 0.641 3 0.079 101Ru 17.0 5⁄2 0.001 59 0.219 2 0.718 8 0.457 103Rh 100 1⁄2 0.000 03 0.134 76 0.088 40 105Pd 22.33 5⁄2 0.001 13 0.195 7 0.642 0.660 107Ag 51.839 1⁄2 0.000 066 9 0.173 30 0.113 680 109Ag 48.161 1⁄2 0.000 101 0.199 24 0.130 691 111Cd 12.80 1⁄2 0.009 66 0.906 89 0.594 886 113Cd 12.22 1⁄2 0.011 06 0.948 68 0.622 301 113In 4.3 9⁄2 0.351 21 0.936 52 5.528 9 0.799 115In 95.7 9⁄2 0.353 48 0.938 54 5.540 8 0.81 115Sn 0.34 1⁄2 0.035 61 1.400 74 9.18 84 117Sn 7.68 1⁄2 0.046 05 1.526 06 1.001 05 119Sn 8.59 1⁄2 0.052 73 1.596 56 1.047 28 121Sb 57.36 5⁄2 0.163 02 1.025 49 3.363 4 0.36 123Sb 42.64 7⁄2 0.046 59 0.555 30 2.549 8 0.49 123Te 0.908 1⁄2 0.018 37 1.123 46 0.736 948 125Te 7.139 1⁄2 0.032 20 1.354 51 0.888 505 127I 100 5⁄2 0.095 40 0.857 76 2.813 327 0.789 129Xe 26.4 1⁄2 0.021 62 1.186 01 0.777 976 131Xe 21.2 3⁄2 0.002 82 0.351 58 0.691 862 0.12 133Cs 100 7⁄2 0.048 38 0.562 32 2.582 025 0.003 7 135Ba 6.592 3⁄2 0.005 00 0.425 81 0.837 943 0.160 137Ba 11.23 3⁄2 0.006 97 0.476 33 0.937 365 0.245 138La 0.0902 5 0.094 04 0.566 14 3.713 646 0.45 SPECTROSCOPY 7.91 TABLE 7.41 Nuclear Properties of the Elements (Continued) Nuclide Natural abundance, % Spin I Sensitivity at constant field relative to 1H NMR frequency for a 1-kG field, MHz Magnetic moment /N, J · T1 Electric quadrupole moment Q, 1028 m2 139La 99.9098 7⁄2 0.060 58 0.606 10 2.783 045 0.20 137Ce 3⁄2 0.006 41 0.462 0.91 139Ce 3⁄2 0.006 41 0.462 0.91 141Ce 7⁄2 0.003 64 0.237 1.09 141Pr 100 5⁄2 0.334 83 1.303 55 4.275 4 0.059 143Nd 12.18 7⁄2 0.003 39 0.231 9 1.065 0.63 145Nd 8.30 7⁄2 0.000 79 0.142 9 0.656 0.33 143Pm 5⁄2 0.235 10 1.16 3.8 147Pm 7⁄2 0.049 40 0.57 2.6 0.70 147Sm 15.0 7⁄2 0.001 52 0.177 47 0.814 9 0.26 149Sm 13.8 7⁄2 0.000 85 0.146 31 0.671 8 0.094 151Eu 47.8 5⁄2 0.179 29 1.058 54 3.471 8 0.903 153Eu 52.2 5⁄2 0.015 44 0.467 44 1.533 1 2.41 155Gd 14.80 3⁄2 0.000 15 0.131 7 0.259 1 1.27 157Gd 15.65 3⁄2 0.000 33 0.1727 0.339 9 1.35 159Tb 100 3⁄2 0.069 45 1.023 2.014 1.432 161Dy 18.9 5⁄2 0.000 48 1.465 3 0.480 6 2.47 163Dy 24.9 5⁄2 0.001 30 0.205 07 0.672 6 2.65 165Ho 100 7⁄2 0.204 23 0.908 81 4.173 3.58 167Er 22.95 7⁄2 0.000 507 0.122 81 0.563 9 3.57 169Tm 100 1⁄2 0.000 566 3.531 0.231 6 171Yb 14.3 1⁄2 0.005 52 0.752 59 0.493 67 173Yb 16.12 5⁄2 0.001 35 0.207 301 0.679 89 2.80 175Lu 97.41 7⁄2 0.031 28 0.486 24 2.232 7 3.49 176Lu 2.59 7 0.039 75 0.345 1 3.169 4.97 177Hf 18.606 7⁄2 0.001 40 0.172 81 0.793 5 3.36 179Hf 13.629 9⁄2 0.000 55 0.108 56 0.640 9 3.79 180Ta 0.012 9 0.102 51 0.404 4.77 181Ta 99.988 7⁄2 0.037 44 0.516 25 2.3705 3.17 183W 14.3 1⁄2 0.000 08 0.179 56 0.117 785 185Re 37.40 5⁄2 0.138 70 0.971 7 3.1871 2.18 187Re 62.60 5⁄2 0.143 00 0.981 7 3.219 7 2.07 187Os 1.6 1⁄2 0.000 01 0.098 56 0.064 652 189Os 16.1 3⁄2 0.002 44 0.335 35 0.659 933 0.856 191Ir 37.3 3⁄2 0.000 03 0.076 6 0.150 7 0.816 193Ir 62.7 3⁄2 0.000 04 0.0832 0.163 7 0.751 195Pt 33.8 1⁄2 0.010 39 0.929 20 0.609 52 197Au 100 3⁄2 0.000 03 0.074 06 0.145 746 0.547 199Hg 16.87 1⁄2 0.005 94 0.771 21 0.505 885 201Hg 13.18 3⁄2 0.001 49 0.284 68 0.560 226 0.386 203Tl 29.524 1⁄2 0.195 981 2.473 10 1.622 258 205Tl 70.476 1⁄2 0.201 82 2.497 42 1.638 215 207Pb 22.1 1⁄2 0.009 55 0.903 38 0.592 58 209Bi 100 9⁄2 0.144 33 0.696 28 4.110 6 0.50 229Th 5⁄2 0.000 42 0.140 0.46 4.30 231Pa 3⁄2 0.069 03 1.02 2.01 1.72 235U 0.7200 7⁄2 0.000 15 0.083 0.38 4.936 237Np 5⁄2 0.132 64 0.957 3.14 3.886 239Pu 1⁄2 0.000 38 0.309 0.203 243Am 5⁄2 0.017 88 0.491 1.61 4.21 7.92 SECTION 7 TABLE 7.42 Proton Chemical Shifts Values are given on the officially approved scale; 10.00 .
Abbreviations Used in the Table R, alkyl group Ar, aryl group Substituent group Methyl protons Methylene protons Methine proton HC9C9CH2 0.95 1.20 1.55 HC9C9NR2 1.05 1.45 1.70 HC9C9C"C 1.00 1.35 1.70 HC9C9C"O 1.05 1.55 1.95 HC9C9NRAr 1.10 1.50 1.80 HC9C9H(C"O)R 1.10 1.50 1.90 HC9C9(C"O)NR2 1.10 1.50 1.80 HC9C9(C"O)Ar 1.15 1.55 1.90 HC9C9(C"O)OR 1.15 1.70 1.90 HC9C9Ar 1.15 1.55 1.80 HC9C9OH 1.20 1.50 1.75 HC9C9OR 1.20 1.50 1.75 HC9C9C#CR 1.20 1.50 1.80 HC9C9C#N 1.25 1.65 2.00 HC9C9SR 1.25 1.60 1.90 HC9C9OAr 1.30 1.55 2.00 HC9C9O(C"O)R 1.30 1.60 1.80 HC9C9SH 1.30 1.60 1.65 HC9C9(S"O)R and HC9C9SO2R 1.35 1.70 HC9C9NR3 1.40 1.75 2.05 HC9C9O9N"O 1.40 HC9C9O(C"O)CF3 1.40 1.65 HC9C9CL 1.55 1.80 1.95 HC9C9F 1.55 1.85 2.15 HC9C9NO2 1.60 2.05 2.50 HC9C9O(C"O)Ar 1.65 1.75 1.85 HC9C9I 1.75 1.80 2.10 HC9C9Br 1.80 1.85 1.90 HC9CH2 0.90 1.30 1.50 HC9C"C 1.60 2.05 HC9C#C 1.70 2.20 2.80 HC9(C"O)OR 2.00 2.25 2.50 HC9(C"O)NR2 2.00 2.25 2.40 HC9SR 2.05 2.55 3.00 HC9O9O 2.10 2.30 2.55 HC9(C"O)R 2.10 2.35 2.65 HC9C#N 2.15 2.45 2.90 HC9I 2.15 3.15 4.25 HC9CHO 2.20 2.40 HC9Ar 2.25 2.45 2.85 HC9NR2 2.25 2.40 2.80 HC9SSR 2.35 2.70 HC9(C"O)Ar 2.40 2.70 3.40 HC9SAr 2.40 HC9NRAr 2.60 3.10 3.60 HC9SO2R and HC9(SO)R 2.60 3.05 HC9Br 2.70 3.40 4.10 HC9NR3 2.95 3.10 3.60 SPECTROSCOPY 7.93 TABLE 7.42 Proton Chemical Shifts (Continued) Substituent group Methyl protons Methylene protons Methine proton HC9NH(C"O)R 2.95 3.35 3.85 HC9SO3R 2.95 HC9Cl 3.05 3.45 4.05 HC9OH and HC9OR 3.20 3.40 3.60 HC9PAr3 3.20 3.40 HC9NH2 3.50 3.75 4.05 HC9O(C"O)R 3.65 4.10 4.95 HC9OAr 3.80 4.00 4.60 HC9O(C"O)Ar 3.80 4.20 5.05 HC9O(C"O)CF1 3.95 4.30 HC9F 4.25 4.50 4.80 HC9NO2 4.30 4.35 4.60 Cyclopropane 0.20 0.40 Cyclobutane 2.45 Cyclopentane 1.65 Cyclohexane 1.50 1.80 Cycloheptane 1.25 Substituent group Proton shift Substituent group Proton shift HC#CH 2.35 HO9C"O 10–12 HC#CAr 2.90 HO9SO2 11–12 HC#C9C"C 2.75 HO9Ar 4.5–6.5 HAr 7.20 HO9R 0.5–4.5 HCO9O 8.1 HS9Ar 2.8–3.6 HCO9R 9.4–10.0 HS9R 1–2 HCO9Ar 9.7–10.5 HN9Ar 3–6 HO9N"C (oxime) 9–12 HN9R 0.5–5 Saturated heterocyclic ring systems 7.94 SECTION 7 TABLE 7.42 Proton Chemical Shifts (Continued) Unsaturated cyclic systems TABLE 7.43 Estimation of Chemical Shift for Protons of 9CH29 and Methine Groups 0.23 C C 0.23 C C C CH 1 2 CH 1 2 3 2 X C X C X C 9CH3 0.5 9SR 1.6 9OR 2.4 9CF3 1.1 9C#C9Ar 1.7 9Cl 2.5 C"C 1.3 9CN 1.7 9OH 2.6 9C#C9R 1.4 9CO9R 1.7 9N"C"S 2.9 9COOR 1.5 9I 1.8 9OCOR 3.1 9NR2 1.6 9Ph 1.8 9OPh 3.2 9CONR2 1.6 9Br 2.3 R, alkyl group; Ar, aryl group; Ph, phenyl group.
SPECTROSCOPY 7.95 TABLE 7.44 Estimation of Chemical Shift for Proton Attached to a Double Bond Positive Z values indicate a downfield shift, and an arrow indicates the point of attachment of the substituent group to the double bond.
dC"C 5.25 Zgem Zcis Ztrans C"C Rcis Rtrans H Tgem H R Z , ppm gem Z , ppm cis Z , ppm trans :H 0 0 0 :alkyl 0.45 0.22 0.28 :alkyl9ring (5- or 6-member) 0.69 0.25 0.28 :CH2O9 0.64 0.01 0.02 :CH2S9 0.71 0.13 0.22 :CH2X (X: F, Cl, Br) 0.70 0.11 0.04 CH2N 0.58 0.10 0.08 C"C (isolated) 1.00 0.09 0.23 C"C (conjugated) 1.24 0.02 0.05 :C#N 0.27 0.75 0.55 :C#C9 0.47 0.38 0.12 C"O (isolated) 1.10 1.12 0.87 C"O (conjugated) 1.06 0.91 0.74 :COOH (isolated) 0.97 1.41 0.71 :COOH (conjugated) 0.80 0.98 0.32 :COOR (isolated) 0.80 1.18 0.55 :COOR (conjugated) 0.78 1.01 0.46 H C"O 1.02 0.95 1.17 N C"O 1.37 0.98 0.46 Cl C"O 1.11 1.46 1.01 :OR (R: aliphatic) 1.22 1.07 1.21 :OR (R: conjugated) 1.21 0.60 1.00 :OCOR 2.11 0.35 0.64 CH29C"O; CH29C#N 0.69 0.08 0.06 :CH29aromatic ring 1.05 0.29 0.32 :F 1.54 0.40 1.02 :Cl 1.08 0.18 0.13 :Br 1.07 0.45 0.55 :I 1.14 0.81 0.88 :N9R (R: aliphatic) 0.80 1.26 1.21 N9R (R: conjugated) 1.17 0.53 0.99 7.96 SECTION 7 TABLE 7.44 Estimation of Chemical Shift for Proton Attached to a Double Bond (Continued) R Z , ppm gem Z , ppm cis Z , ppm trans N9C"O 2.08 0.57 0.72 :aromatic 1.38 0.36 0.07 :CF3 0.66 0.61 0.32 :aromatic (o-substituted) 1.65 0.19 0.09 :SR 1.11 0.29 0.13 :SO2 1.55 1.16 0.93 TABLE 7.45 Chemical Shifts in Monosubstituted Benzene 7.27 i Substituent ortho meta para NO2 0.94 0.18 0.39 CHO 0.58 0.20 0.26 COOH 0.80 0.16 0.25 COOCH3 0.71 0.08 0.20 COCl 0.82 0.21 0.35 CCl3 0.8 0.2 0.2 COCH3 0.62 0.10 0.25 CN 0.26 0.18 0.30 CONH2 0.65 0.20 0.22 N H3 0.4 0.2 0.2 CH2X 0.0–0.1 0.0–0.1 0.0–0.1 CH3 0.16 0.09 0.17 CH2CH3 0.15 0.06 0.18 CH(CH3)2 0.14 0.09 0.18 C(CH3)2 0.09 0.05 0.23 F 0.30 0.02 0.23 Cl 0.01 0.06 0.08 Br 0.19 0.12 0.05 I 0.39 0.25 0.02 NH2 0.76 0.25 0.63 OCH3 0.46 0.10 0.41 OH 0.49 0.13 0.2 OCOR 0.2 0.1 0.2 NHCH3 0.8 0.3 0.6 N(CH3)2 0.60 0.10 0.62 X Cl, alkyl, OH, or NH .
2 SPECTROSCOPY 7.97 TABLE 7.46 Proton Spin Coupling Constants Structure J, Hz Structure J, Hz C H H 12–15 CH9CH (free rotation) 6–8 CH9OH (no exchange) 5 CH9NH 4–8 CH9SH 6–8 H CH9C"O 1–3 9N"C H H 8–16 C"C Ht Hc Hg H gem cis trans 0–3 6–14 11–18 C"C Hc Ht CH Hg cis trans gem 0.5–3 0.5–3 4–10 C"CH9CH"C 10–13 H "CH9C"O 6 9CH29C#C9CH 0–3 CH9C#CH 0–3 C"C H H (ring) 3-member 4-member 5-member 6-member 7-member 0–2 2–4 5–7 6–9 10–13 O S cis trans gem cis trans gem 4–5 3 5–6 0 7 6 H N cis trans gem 2 6 4 2 3 5 4 O 2–3 3–4 2–4 2–5 1.8 3.5 0–1 1–2 2 3 5 4 S 2–3 3–4 2–4 2–5 5–6 3.5–5.0 1.5 3.4 F H o m p 6–12 4–8 1.5–2.5 CH3 F o m p 2.5 1.5 0 H H H H a–a a–e e–e 8–10 2–3 2–3 Cyclopentane cis trans 4–6 4–6 Cyclobutane cis trans 8 8 Cyclopropane cis trans gem 9–11 6–8 4–6 H H o m p 6–10 1–3 0–1 1 2 3 1–2 2–3 8–9 6 3 2 5 4 6 N 2–3 3–4 2–4 3–5 2–5 2–6 5–6 7–9 1–2 1–2 0–1 0–1 2 3 5 4 N H 1–2 1–3 2–3 3–4 2–4 2–5 2–3 2–3 2–3 3–4 1–2 1–3 C H F 45–52 CH9CF gauche trans 0–12 10–45 C"C Ht Hc Hg F gem cis trans 72–90 3 to 20 12–40 7.98 SECTION 7 TABLE 7.46 Proton Spin Coupling Constants (Continued) Structure J, Hz Structure J, Hz C"C F CH3 2–4 C"C H CF 0–6 HC#CF 21 Fa Fe He Ha a–a a–e e–e e–e 34 12 5–8 TABLE 7.47 Proton Chemical Shifts of Reference Compounds Relative to tetramethylsilane.
Compound , ppm Solvent(s) Sodium acetate 1.90 D2O 1,2-Dibromoethane 3.63 CDCl3 1,1,2,2-Tetrachloroethane 5.95 CDCl3; CCl4 1,4-Benzoquinone 6.78 CDCl3; CCl4 1,4-Dichlorobenzene 7.23 CCl4 1,3,5-Trinitrobenzene 9.21 DMSO-d6 9.55 CHCl3 DMSO, dimethyl sulfoxide.
TABLE 7.48 Solvent Positions of Residual Protons in Incompletely Deuterated Solvents Relative to tetramethylsilane.
Solvent Group , ppm Acetic-d3 acid-d1 Methyl Hydroxyl 2.05 11.5 Acetone-d6 Methyl 2.057 Acetonitrile-d3 Methyl 1.95 Benzene-d6 Methine 6.78 tert-Butanol-d1 (CH3)3COD Methyl 1.28 Chloroform-d1 Methine 7.25 Cyclohexane-d12 Methylene 1.40 Deuterium oxide Hydroxyl 4.7 Dimethyl-d6-formamide-d1 Methyl Formyl 2.75; 2.95 8.05 Dimethyl-d6 sulfoxide Methyl Absorbed water 2.51 3.3 1,4-Dioxane-d8 Methylene 3.55 Hexamethyl-d18-phosphoramide Methyl 2.60 Methanol-d4 Methyl Hydroxyl 3.35 4.8 Dichloromethane-d2 Methylene 5.35 These values may vary greatly, depending upon the solute and its concentration.
SPECTROSCOPY 7.99 TABLE 7.48 Solvent Positions of Residual Protons in Incompletely Deuterated Solvents (Continued) Solvent Group , ppm Pyridine-d5 C-2 Methine C-3 Methine C-4 Methine 8.5 7.0 7.35 Toluene-d8 Methyl Methine 2.3 7.2 Trifluoroacetic acid-d1 Hydroxyl 11.3 These values may vary greatly, depending upon the solute and its concentration.
TABLE 7.49 Carbon-13 Chemical Shifts Values given in ppm on the scale, relative to tetramethylsilane.
Substituent group Primary carbon Secondary carbon Tertiary carbon Quaternary carbon Alkanes C9C C9O C9N C9S C9halide (I to Cl) 5–30 45–60 13–45 10–30 3–25 25–45 42–71 44–58 22–42 3–40 23–58 62–78 50–70 55–67 34–58 28–50 73–86 60–75 53–62 35–75 Substituent group , ppm Substituent group , ppm Cyclopropane 5–5 Cycloalkane C4–C10 5–25 Mercaptanes 5–70 Amines: R2N9C Aryl9N 20–70 128–138 Sulfoxides, sulfones 35–55 Alcohols R9OH 45–87 Ethers R9O9R 57–87 Nitro R9NO2 60–78 Alkynes: HC#CR RC#CR 63–73 72–95 Acetals, ketals 88–112 Thiocyanates R9SCN 96–118 Alkenes: H2C" R2C" 100–122 110–150 Heteroaromatics: C"N C 100–152 142–160 Cyanates R9OCN 105–120 Isocyanates R9NCO 115–135 Isothiocyanates R9NCS 115–142 Nitriles, cyanides 117–124 Aromatics: Aryl-C Aryl-P Aryl-N Aryl-O 125–145 119–128 128–138 133–152 Azomethines 145–162 Carbonates 159–162 Ureas 150–170 Anhydrides 150–175 Amides 154–178 Oximes 155–165 Esters: Saturated , -Unsaturated 158–165 165–176 Isocyanides R9NC 162–175 Carboxylic acids: Nonconjugated Conjugated Salts (anion) 162–165 165–184 175–195 Ketones: -Halo Nonconjugated , -Unsaturated 160–200 192–202 202–220 Imides 165–180 Acyl chlorides R9CO9Cl 165–183 7.100 SECTION 7 Thioureas 165–185 Aldehydes: -Halo Nonconjugated Conjugated 170–190 182–192 192–208 Thioketones R9CS9R 190–202 Carbonyl M(CO)n 190–218 Allenes "C" 197–205 Saturated heterocyclic ring systems Unsaturated cyclic systems TABLE 7.49 Carbon-13 Chemical Shifts (Continued) Substituent group , ppm Substituent group , ppm SPECTROSCOPY 7.101 Saturated alicyclic ring systems TABLE 7.49 Carbon-13 Chemical Shifts (Continued) Unsaturated cyclic systems (continued) 7.102 SECTION 7 TABLE 7.50 Estimation of Chemical Shifts of Alkane Carbons Relative to tetramethylsilane.
Positive terms indicate a downfield shift.
2.6 9.1n 9.4n 2.5n 0.3n 0.1n (plus any correction factors) C where is the number of carbons bonded directly to the ith carbon atom and and are the number n n , n , n , n of carbon atoms two, three, four, and five bonds removed. The constant is the chemical shift for methane.
Chain branching Correction factor Chain branching Correction factor 1(3) 1(4) 2(3) 3(2) 1.1 3.4 2.5 3.7 4(1) 2(4) 3(3) 4(2) 1.5 7.2 9.5 8.4 1 signifies a CH39 group; 2, a 9CH29 group; 3, a CH9 group; and 4, a C group. 1 (3) signifies a methyl group bound to a CH9 group, and so on.
Examples: For 3-methylpentane, CH39CH29CH(CH3)9CH29CH3, 2.6 9.1(2) 9.4(2) 2.5 1(1)[2(3)] 29.4 C2 2.6 9.1(3) 9.4(2) (2)[3(2)] 36.2 C3 TABLE 7.51 Effect of Substituent Groups on Alkyl Chemical Shifts These increments are added to the shift value of the appropriate carbon atom as calculated from Table 7.50.
Straight: Y9CH29CH29CH3 Branched: 9CH29CH29CH9CH29CH29 Y a b g g b b a carbon carbon Substituent group Y Straight Branched Straight Branched carbon 9CO9OH 20.9 16 2.5 2 2.2 9COO (anion) 24.4 20 4.1 3 1.6 9CO9OR 20.5 17 2.5 2 2 9CO9Cl 33 28 2 9CO9NH2 22 2.5 0.5 9CHO 31 0 2 9CO9R 30 24 1 1 2 9OH 48.3 40.8 10.2 7.7 5.8 9OR 58 51 8 5 4 9O9CO9NH2 51 8 9O9CO9R 51 45 6 5 3 9C9CO9Ar 53 9F 68 63 9 6 4 9Cl 31.2 32 10.5 10 4.6 9Br 20.0 25 10.6 10 3.1 R, alkyl group; Ar, aryl group.
SPECTROSCOPY 7.103 9I 8 4 11.3 12 1.0 9NH2 29.3 24 11.3 10 4.6 9NH3 26 24 8 6 5 9NHR 36.9 31 8.3 6 3.5 9NR2 42 6 3 9NR3 31 5 7 9NO2 63 57 4 4 9CN 4 1 3 3 3 9SH 11 11 12 11 6 9SR 20 7 3 9CH"CH2 20 6 0.5 9C6H5 23 17 9 7 2 9C#CH 4.5 5.5 3.5 R, alkyl group; Ar, aryl group.
TABLE 7.51 Effect of Substituent Groups on Alkyl Chemical Shifts (Continued) carbon carbon Substituent group Y Straight Branched Straight Branched carbon TABLE 7.52 Estimation of Chemical Shifts of Carbon Attached to a Double Bond The olefinic carbon chemical shift is calculated from the equation 123.3 10.6n 7.2n 7.9n 1.8n (plus any steric correction terms) C where n is the number of carbon atoms at the particular position, namely, C9C"C9C Substituents on both sides of the double bond are considered separately. Additional vinyl carbons are treated as if they were alkyl carbons. The method is applicable to alicyclic alkenes; in small rings carbons are counted twice, i.e., from both sides of the double bond where applicable. The constant in the equation is the chemical shift for ethylene. The effect of other substituent groups is tabulated below.
Substituent group 9OR 2 29 39 1 9OH 6 1 9O9CO9CH3 3 18 27 4 9CO9CH3 15 6 9CHO 13.6 13.2 9CO9OH 5.2 9.1 9CO9OR 6 7 9CN 15.4 14.3 9F 24.9 34.3 9Cl 1 3.3 5.4 2 9Br 0 7.2 0.7 2 9I 37.4 7.7 9C6H5 12 11 7.104 SECTION 7 Substituent pair Steric correction term , trans 0 , cis 1.1 , gem 4.8 , 2.5 , 2.3 TABLE 7.52 Estimation of Chemical Shifts of Carbon Attached to a Double Bond (Continued) TABLE 7.53 Carbon-13 Chemical Shifts in Substituted Benzenes 128.5 C Substituent group C1 ortho meta para 9CH3 9.3 0.8 0.1 2.9 9CH2CH3 15.6 0.4 0 2.6 9CH(CH3)2 20.2 2.5 0.1 2.4 9C(CH3)3 22.4 3.1 0.1 2.9 9CH2O9CO9CH3 7.7 0 0 0 9C6H5 13.1 1.1 0.4 1.2 9CH"CH2 9.5 2.0 0.2 0.5 9C#CH 6.1 3.8 0.4 0.2 9CH2OH 12.3 1.4 1.4 1.4 9CO9OH 2.1 1.5 0 5.1 9COO (anion) 8 1 0 3 9CO9OCH3 2.1 1.1 0.1 4.5 9CO9CH3 9.1 0.1 0 4.2 9CHO 8.6 1.3 0.6 5.5 9CO9Cl 4.6 2.4 1 6.2 9CO9CF3 5.6 1.8 0.7 6.7 9CO9C6H5 9.4 1.7 0.2 3.6 9CN 15.4 3.6 0.6 3.9 9OH 26.9 12.7 1.4 7.3 9OCH3 31.4 14.0 1.0 7.7 9OC6H5 29.2 9.4 1.6 5.1 9O9CO9CH3 23.0 6.4 1.3 2.3 9NH2 18.0 13.3 0.9 9.8 9N(CH3)2 22.4 15.7 0.8 11.5 9N(C6H5)2 19 4 1 6 9NHC6H5 14.6 10.7 0.7 7.7 9NH9CO9CH3 11.1 9.9 0.2 5.6 9NO2 20.0 4.8 0.9 5.8 9F 34.8 12.9 1.4 4.5 9Cl 6.2 0.4 1.3 1.9 9Br 5.5 3.4 1.7 1.6 9I 32.2 9.9 2.6 1.4 9CF3 9.0 2.2 0.3 3.2 9NCO 5.7 3.6 1.2 2.8 9SH 2.3 1.1 1.1 3.1 9SCH3 10.2 1.8 0.4 3.6 9SO29NH2 15.3 2.9 0.4 3.3 9Si(CH3)3 13.4 4.4 1.1 1.1 SPECTROSCOPY 7.105 TABLE 7.54 Carbon-13 Chemical Shifts in Substituted Pyridines (k) C C k i Substituent group C C 149.6 2 6 or C2 C6 23 24 25 26 9CH3 9CH2CH3 9CO9CH3 9CHO 9OH 9OCH3 9NH2 9NO2 9CN 9F 9Cl 9Br 9.1 14.0 4.3 3.5 14.9 15.3 11.3 8.0 15.8 14.4 2.3 6.7 1.0 2.1 2.8 2.6 17.2 13.1 14.7 5.1 5.0 14.7 0.7 4.8 0.1 0.1 0.7 1.3 0.4 2.1 2.3 5.5 1.7 5.1 3.3 3.3 3.4 3.1 3.0 4.1 3.1 7.5 10.6 6.6 3.6 2.7 1.2 0.5 0.1 0.2 0.2 0.7 6.8 2.2 0.9 0.4 1.9 1.7 0.6 1.4 Substituent group 32 C C 124.2 3 5 or C3 C5 34 35 9CH3 9CH2CH3 9CO9CH3 9CHO 9OH 9NH2 9CN 9Cl 9Br 9I 1.3 0.3 0.5 2.4 10.7 11.9 3.6 0.3 2.1 7.1 9.0 15.0 0.3 7.9 31.4 21.5 13.7 8.2 2.6 28.4 0.2 1.5 3.7 0 12.2 14.2 4.4 0.2 2.9 9.1 0.8 0.3 2.7 0.6 1.3 0.9 0.6 0.7 1.2 2.4 2.3 1.8 4.2 5.4 8.6 10.8 4.2 1.4 0.9 0.3 Substituent group 42 46 43 45 C 136.2 4 C4 9CH3 9CH2CH3 9CH"CH2 9CO9CH3 9CHO 9NH2 9CN 9Br 0.5 0 0.3 1.6 1.7 0.9 2.1 3.0 0.8 0.3 2.9 2.6 0.6 13.8 2.2 3.4 10.8 15.9 8.6 6.8 5.5 19.6 15.7 3.0 May be used for disubstituted, polyheterocyclic, and polynuclear systems if deviations due to steric and mesomeric effects are allowed for.
7.106 SECTION 7 TABLE 7.55 Carbon-13 Chemical Shifts of Carbonyl Group X Y C X Y C H9 9CH3 199.7 CH39 9CH"CH2 196.9 H9 9CCl3 175.3 CH39 9C6H5 197.6 H9 9NH2 165.5 CH39 9CH29CO9CH3 201.9 (keto) H9 9N(CH3)2 162.4 191.4 (enol) H9 2-Furyl 153.3 CH39 9CH2CHO 167.7 H9 2-Pyrrolyl 134.0 CH39 9C6H59CH3 196 (m, p) H9 2-Thienyl 143.3 199 (o) (CH3)2CH9 9OH 184.8 CH39 92,6-(CH3)2C6H5 206 C6H59 9OH 172.6 CH39 9OH 178 CF39 9OH 163.0 CH39 9O (anion) 181.5 CCl39 9OH 168.0 CH39 9OCH3 170.7 CH3CH(NH2)9 9OH 176.5 CH39 9O9CH"CH2 167.7 CF39 9OCH2CH3 158.1 CH39 9O9CH(CH3)2 170.3 H2N9 9OCH2CH3 157.8 CH39 9O9CO9CH3 167.3 2-Furyl 9OCH3 159.1 CH39 9NH2 172.7 (CH3)2N9 9C6H5 170.8 CH39 9NHCH3 172 CH2"CHCH2O9CO9 9OCH2CH"CH2 157.6 CH39 9N(CH3)2 169.5 CH3CH29 9CH2CH3 211.4 CH39 9Cl 169.6 CH39CH29 9O9CO9CH2CH3 170.3 CH39 9Br 165.6 CH39 9CH3 205.8 CH39 9I 158.9 CH39 9CH2CH3 207 n C 3 4 5 6 7 207.9 218.2 211.3 211.4 216.0 SPECTROSCOPY 7.107 TABLE 7.56 One-Bond Carbon-Hydrogen Spin Coupling Constants Structure J , Hz CH Structure J , Hz CH H9CH3 125.0 H9CH2CH3 124.9 CH39CH29CH3 119.2 H9C(CH3)2 114.2 H9CH2CH2OH 126.9 H9CH2CH"CH2 122.4 H9CH2C6H5 129.4 H9CH2C#CH 132.0 H9CH2CN 136.1 H9CH(CN)2 145.2 H9CH29halogen 149–152 H9CHF2 184.5 H9CHCl2 178.0 H9CH2NH2 133.0 H9CH2NH3 145.0 H9CH2OH (or H9CH2OR) 140–141 H9CH(OR)2 161–162 H9C(OR)3 186 H9C(OH)R2 143 H9CH2NO2 146.0 H9CH(NO2)2 169.4 H9CH2COOH 130.0 H9CH(COOH)2 132.0 H9CH"CH2 156.2 H9C(CH3)"C(CH3)2 148.4 H9CH"C(tert-C4H9)2 152 H9C(tert-C4H9)" C(tert-C4H9)2 143 Methylenecycloalkane C4–C7 153–155 H9CH"C"CH2 168 H9C(C6H5)"CH(C6H5) cis 155 trans 151 Cyclopropene 220 C"C Ht Hc Hg F gem cis trans 200 159 162 C"C Ht Hc Hg Cl gem cis trans 195 163 161 C"C Ht Hc Hg CHO gem cis trans 162 157 162 C"C Ht Hc Hg CN gem cis trans 177 163 165 C"N H CH3 OH cis trans 163 177 H9CH"O; CH39CH"O 172 H2N9CH"O 188.3 (CH3)2N9CH"O 191 H9COOH 222 H9COO (anion) 195 H9CO9OCH3 226 H9CO9F 267 CH3CH29O9CHO 225.6 Cl39CHO 207 H9C#CH 249 H9C#CCH3 248 H9C#CC6H5 251 H9C#CCH2OH 241 H9CN 269 Cyclopropane 161 Cyclobutane 136 Cyclopentane 131 Cyclohexane 123 Tetrahydrofuran 2,5 3,4 149 133 1,4-Dioxane 145 Benzene 159 Fluorobenzene 2,6 3,5 4 155 163 161 Bromobenzene 2,6 3,5 4 171 164 161 Benzonitrile 2,6 3,6 4 173 166 163 Nitrobenzene 2,6 3,5 4 171 167 163 Mesitylene N 2,6 3,5 4 154 170 163 152 2,4,6-Trimethylpyridine 158 N H 2,5 3,4 183 170 O 2,5 3,4 201 175 S 2,5 3,4 185 167 N H N 3,5 4 190 178 7.108 SECTION 7 N H N 2 4 208 199 N H N N 205 N H N N N 216 TABLE 7.56 One-Bond Carbon-Hydrogen Spin Coupling Constants (Continued) Structure J , Hz CH Structure J , Hz CH TABLE 7.57 Two-Bond Carbon-Hydrogen Spin Coupling Constants Structure Hz 2J , CH Structure Hz 2J , CH CH39CH29H 4.5 CCl39CH29H 5.9 ClCH29CH2Cl 3.4 Cl2CH9CHCl2 1.2 CH39CHO 26.7 CH2"CH2 2.4 (CH3)2C"O 5.5 CH2"CH9CH"O 26.9 (C2H5)CH9CHO 26.9 H2NCH"CH9CHO 6.0 H2NCH9CH9CHO 20.0 C6H6 1.0 (CH2)n C"CH2 n 4 n 5 n 6 4.2 5.2 5.5 C"C H Cl H Cl cis trans 16.0 0.8 HC#CH 49.3 C6H5O9C#CH 61.0 HC#C9CHO 33.2 ClCH29CHO 32.5 Cl2CH9CHO 35.3 Cl3C9CHO 46.3 C6H59C#C#CH3 10.8 TABLE 7.58 Carbon-Carbon Spin Coupling Constants Structure J , Hz CC Structure J , Hz CC H3C9CH3 35 H3C9CHR2 37 H3C9CH2Ar 34 H3C9CH2CN 33 H3C9CH29CH2OH C-1, C-2 C-2, C-3 38 34 H3C9CH2NH2 37 C9C"O 38–40 C9C9C"O 36 C9C9Ar 43 C9CO9O (anion) 52 C9CO9N 52 C9CO9OH 57 C9CO9OR 59 C9CN 52–57 C9C#C 2J 11.8 CC 67 H2C"CH2 68 C"C9CO9OH 70–71 C"C9CN 71 C"C9Ar 67–70 C6H6 57 C3H5NO2 1-2 2-3, 3-4 3J2-5 55 56 7.6 R, alkyl group; Ar, aryl group.
SPECTROSCOPY 7.109 C6H5I 1-2 2-3 3-4 3J2-5 60 53 58 8.6 C6H59OCH3 2-3 3-4 58 56 C6H5NH2 1-2 2-3 3-4 3J2-5 61 58 57 7.9 C6H5CH3 44 Pyridine 2-3 3-4 3J2-5 54 56 14 Furan 69 Pyrrole 69 Thiophene 64 H2C"C"C(CH3)2 100 9C#C9 170–176 Structure 2J , Hz CC CH39CO"CH3 16 CH39C#CH 11.8 CH3CH29CN 33 R, alkyl group; Ar, aryl group.
TABLE 7.58 Carbon-Carbon Spin Coupling Constants (Continued) Structure J , Hz CC Structure J , Hz CC TABLE 7.59 Carbon-Fluorine Spin Coupling Constants Structure J , Hz CF Structure J , Hz CF C F H H H 158 C F F H H 235 C F F F H 274 C F F F F 259 C F F F CH3 271 C F H H Ar 165 F9CH2CH29 or F9CR3 167 p-F9C6H49OR 237 p-F9C6H49R 241 p-F9C6H49CF3 252 p-F9C6H49CO9CH3 253 p-F9C6H49NO2 257 F9C6H5 2J 21.0 CF 3J 7.7 CF 4J 3.4 CF 244 C"CH2 F F 287 C"O F F 308 C"O F R 353 C"O F H 369 C F F H CH2OH 241 Ar, aryl group; R, alkyl group.
7.110 SECTION 7 C F F F CH2OH 278 C F F F OCF3 265 C F F F CO9CH3 289 Ar, aryl group; R, alkyl group.
TABLE 7.59 Carbon-Fluorine Spin Coupling Constants (Continued) Structure J , Hz CF Structure J , Hz CF TABLE 7.60 Carbon-13 Chemical Shifts of Deuterated Solvents Relative to tetramethylsilane.
Solvent Group , ppm Acetic-d3 acid-d1 Methyl 20.0 Carbonyl 205.8 Acetone-d6 Methyl Carbonyl 28.1 178.4 Acetonitrile-d3 Methyl Carbonyl 1.3 117.7 Benzene-d6 128.5 Carbon disulfide 193 Carbon tetrachloride 97 Chloroform-d1 77 Cyclohexane-d12 25.2 Dimethyl sulfoxide-d6 39.5 1,4-Dioxane-d6 67 Formic-d1 acid-d1 Carbonyl 165.5 Methanol-d4 47–49 Methylene chloride-d2 53.8 Nitromethane-d3 57.3 Pyridine-d5 C3, C5 123.5 C4 135.5 C2, C6 149.9 TABLE 7.61 Carbon-13 Spin Coupling Constants with Various Nuclei Nuclei Structure 1J, Hz 2J, Hz 3J, Hz 4J, Hz 2H CDCl3 32 CD39CO9CD3 20 (CD3)2SO 22 C6D6 26 SPECTROSCOPY 7.111 7Li CH3Li 15 11B (C6H5)4B 49 3 14N (CH3)4N 10 CH3NC 8 29Si (CH3)4Si 52 31P (CH3)3P 14 (C4H9)3P 11 12 5 (C6H5)3P 12 20 7 0 (CH3)4P 56 (C4H9)4P 48 4 15 (C6H5)4P 88 11 13 3 R(RO)2P"O 142 5–7 (C4H9O)3P"O 6 7 77Se (CH3)2Se 62 (CH3)3Se 50 113Cd (CH3)2Cd 513, 537 119Sn (CH3)4Sn 340 (CH3)3SnC6H5 474 37 47 11 125Te (CH3)2Te 162 199Hg (CH3)2Hg 687 (C6H5)2Hg 1186 88 102 18 207Pb (CH3)2Pb 250 (C6H5)4Pb 481 68 81 20 TABLE 7.61 Carbon-13 Spin Coupling Constants with Various Nuclei (Continued) Nuclei Structure 1J, Hz 2J, Hz 3J, Hz 4J, Hz TABLE 7.62 Boron-11 Chemical Shifts Values given in ppm on the scale, relative to B(OCH3)3.
Structure , ppm Structure , ppm R3B 67 to 68 Ar3B 43 BF3 24 BCl3 12 BBr3 6 BI3 41 B(OH)3 36 B(OR)3 0–1 B(NR2)3 13 C6H5BCl2 36 C6H5B(OH)2 14 C6H5B(OR)2 10 M(BH4) 55–61 B(BF4) 19–20 HB NH NH9BH NH9BH 12 B H H H B H N R2 H H 37 B H H B NR2 NR2 H H 15 (CH3)2N9B(CH3)2 62 7.112 SECTION 7 Addition complexes R2O·BH3 18–19 R3N·BH3 25 R2NH·BH3 33 N BH3 31 R2O(or ROH)·BF3 17–19 R2O(or ROH)·BCl3 7 to 8 R2O(or ROH)·BBr3 23–24 R2O(or ROH)·BI3 74–82 N BBr3 24 Boranes B2H6 1 B4H10 (BH2) 25 (BH) 60 Base Apex B5H9 31 70 B5H11 16 50 B10H14 7 54 TABLE 7.62 Boron-11 Chemical Shifts (Continued) Structure , ppm Structure , ppm TABLE 7.63 Nitrogen-15 (or Nitrogen-14) Chemical Shifts Values given in ppm on the scale, relative to NH3 liquid.
Substituent group , ppm Substituent group , ppm Aliphatic amines Primary 1–59 Secondary 7–81 Tertiary 14–44 Cyclo, primary 29–44 Aryl amines 40–100 Aryl hydrazines 40–100 Piperidines, decahydroquino-lines 30–82 Amine cations Primary 19–59 Secondary 40–74 Tertiary 30–67 Quaternary 43–70 Enamines, tertiary type Alkyl 29–82 Cycloalkyl 55–104 Aminophosphines 59–100 Amine N-oxides 95–122 Ureas Aliphatic 63–84 Aryl 105–108 Sulfonamides 79–164 Amides HCO9NHR R primary 100–115 R secondary 104–148 R tertiary 96–133 Amides (continued) HCO9NH9Aryl 138–141 RCO9NHR or RCO9NR2 103–130 RCO9NH9Aryl 131–136 Aryl9CO9H9Aryl ca 126 Guanidines Amino 30–60 Imino 166–207 Thioureas 85–111 Thioamides 135–154 Cyanamides R2N9 12 to 38 9CN 175–200 Carbodiimides 95–120 Isocyanates Alkyl, primary 14–32 Alkyl, secondary and tertiary 54–57 Aryl ca 46 Isothiocyanates 90–107 Azides 52–80 108–122 240–260 Lactams 113–122 Hydrazones Amino 141–167 Imino 319–327 Cyanates 155–182 Nitrile N-oxides, fulminates 195–225 SPECTROSCOPY 7.113 Isonitriles Alkyl, primary 162–178 Alkyl, secondary 191–199 Aryl ca 180 Nitriles Alkyl 235–241 Aryl 258–268 Thiocyanates 265–280 Diazonium Internal 222–230 Terminal 315–322 Diazo Internal 226–303 Terminal 315–440 Nitrilium ions 123–150 Azinium ions 185–220 Azine N-oxides 230–300 Nitrones 270–285 Imides 170–178 Imines 310–359 Oximes 340–380 Nitramines Amine 252–280 9NO2 328–355 Nitrates 310–353 gem-Polynitroalkanes 310–353 Nitro Aryl 350–382 Alkyl 372–410 Hetero, unsaturated 354–367 Azoxy 330–356 Azo 504–570 Nitrosamines 222–250 525–550 Nitrites 555–582 Thionitrites 720–790 Nitroso Aliphatic amines, NO 535–560 Aryl 804–913 Saturated cyclic systems n 2 8.5 n 3 25.3 n 4 36.7 n 5 37.7 32.1 35.5 7.5 (in C6H6) 18.0 (in H2O) cis trans 42.4 52.9 Unsaturated cyclic systems TABLE 7.63 Nitrogen-15 (or Nitrogen-14) Chemical Shifts (Continued) Substituent group , ppm Substituent group , ppm 7.114 SECTION 7 X , ppm O S Se 517 331 373 TABLE 7.63 Nitrogen-15 (or Nitrogen-14) Chemical Shifts (Continued) Unsaturated cyclic systems (continued) SPECTROSCOPY 7.115 TABLE 7.64 Nitrogen-15 Chemical Shifts in Monosubstituted Pyridine 317.3 i Substituent C-2 C-3 C-4 9CH3 0.4 0.3 8.0 9CH2CH3 1.8 6.6 9CH(CH3)2 5.1 5.9 9C(CH3)3 2.5 5.8 9CN 0.9 0.8 10.6 9CHO 10 11 29 9CO9CH3 9 15 11 9CO9OCH2CH3 11.8 5 9OCH3 49 0 23 9OH 126 2 118 9NO2 23 1 22 9NH2 45 10 46 9F 42 18 9Cl 4 4 6 9Br 2 8 7 TABLE 7.65 Nitrogen-15 Chemical Shifts for Standards Values given in ppm, relative to NH3 liquid at 23C.
Substance , ppm Conditions Nitromethane (neat) 380.2 For organic solvents and acidic aqueous solutions Potassium (or sodium) nitrate (saturated aqueous solution) 376.5 For neutral and basic aqueous solutions C(NO2)4 331 For nitro compounds (CH3)29CHO (neat) 103.8 For organic solvents and aqueous solutions (C2H5)4NCl 64.4 Saturated aqueous solution (CH3)4NCl 43.5 Saturated aqueous solution NH4Cl 27.3 Saturated aqueous solution NH4NO3 20.7 Saturated aqueous solution NH3 0.0 Liquid, 25C 15.9 Vapor, 5 atm TABLE 7.66 Nitrogen-15 to Hydrogen-1 Spin Coupling Constants Structure J, Hz Structure J, Hz R9NH2 and R2NH 61–67 Aryl9NH2 78 p-CH3O9aryl9NH2 79 p-O2N9aryl9NH2 90–93 Amine salts (alkyl and aryl) 73–76 Aryl9NHOH 79 Aryl9NHCH3 87 Aryl9NHCH2F 90 Aryl9NHNH2 90 p-O2N9aryl9NHNH2 99 Aryl9SO29NH2 81 Aryl9SO29NHR 86 C9N O H Hsyn (to 9CO9) Hanti 88 92–93 7.116 SECTION 7 TABLE 7.67 Nitrogen-15 to Carbon-13 Spin Coupling Constants Structure J, Hz Structure J, Hz Alkyl amines 4–4.5 Alkyl9NO2 11 Cyclic alkyl amines 2–2.5 R9CN 18 Alkyl amines protonated Aryl amines 4–5 10–14 CH 9N#C 3 H3C9N 10 Aryl amines protonated 9 9N#C 9 CH3CO9NH2 14–15 Diaryl azoxy H2N9CO9NH2 20 anti 18 Aryl9NO2 15 syn 13 TABLE 7.68 Nitrogen-15 to Fluorine-19 Spin Coupling Constants Structure J, Hz Structure J, Hz NF3 155 F4N2 164 FNO2 158 F3NO 190 F3C9O9NF2 164–176 FCO9NF2 221 (NF4)SbF6 323 (NF4)AsF6 328 (N2F)AsF6 459 F3C9NO2 215 N"N F F (2J 10) 190 N"N F F (2J 52) 203 Pyridine 2-F 52 3-F 4 2,6-di-F 37 Pyridinium ion 2-F 23 3-F 3 Quinoline, 8-F 3 Aniline 2-F 0 3-F 0 4-F 1.5 Anilinium ion 2-F 1.4 3-F 0.2 4-F 0 C9N O R H R 88–92 Pyrrole 97 HC#NH 133–136 P9NH2 82–90 (R3Si)2NH 67 CF39S9NH2 81 (CF39S)2NH 99 Pyridinium ion 90 Quinolinium ion 96 TABLE 7.66 Nitrogen-15 to Hydrogen-1 Spin Coupling Constants (Continued) Structure J, Hz Structure J, Hz SPECTROSCOPY 7.117 TABLE 7.69 Fluorine-19 Chemical Shifts Values given in ppm on the scale, relative to CCl3F.
Substituent group , ppm Substituent group , ppm 9SO29F 67 to 42 (aryl)(alkyl) 9CO9F 29 to 20 N9CO9F 5 Aryl9CF2Cl 49 9CF2I 56 9CF2Br 63 R9CF2Cl 61–71 C9CF3 and aryl9CF3 56–73 9CS9CF3 70 CF9CF3 71–73 9S9CF3 41 9S9CF29S9 39 P9CF3 46–66 N9CF3 40–58 N9CF29C 85–127 9O9CF29R 70–91 9O9CF29CF3 70–91 9CH29CF3 76–77 HO9CO9CF3 77 9CHF9CF3 81 9CF29CF3 78–88 9CS9F 81 CF39C9N 84–96 9CO9CF29CF3 83 9CF29 86–126 9CF2Br 91 9C9CF29S9 91–98 9CF" 180–192 9CF29CF3 111 9CO9CF29 116–131 9C(halide)9CF29 119–128 9CF29CF3 121–125 9CF29CF29 121–129 9CF29CH29 122–133 9CF29CHF2 128–132 9CF2H 136–143 F2 151–156 F2 147 F2 96–133 F 159 Cyclohexane-F 210 (axial) to 240 (equatorial) Perfluorocycloalkane 131–138 CF9CF3 163–198 CF(CF3)2 180–191 9CFH9 198–231 9CFH2 235–244 F2C"CF2 133 C"C Fc Ft CF29CF2H Fg cis 108 trans 92 gem 192 C"C H H F1 C"C F2 F3 H F-1 126 F-2 155 F-3 162 ClFC"CH9CF3 61 Cycloalkenes "CF9CF29 C(CF3 or H)9 101–113 9CF29CF29 C(CF3 or CH3)" 110–114 9CF29CF29CH" 113–116 9CF29CF29CF" 119–122 Aryl9F 113 C10H79F F-1 127 F-2 114 C6H59C6H49F F-2 117 F-3 113 F-4 109 C6F6 163 7.118 SECTION 7 TABLE 7.70 Fluorine-19 Chemical Shifts for Standards Substance Formula , ppm Trichlorofluoromethane CFCl3 0.0 ,,-Trifluorotoluene C6H5CF3 63.8 Trifluoroacetic acid CF3COOH 76.5 Carbon tetrafluoride CF4 76.7 Fluorobenzene C6H5F 113.1 Perfluorocyclobutane C4F8 138.0 TABLE 7.71 Fluorine-19 to Fluorine-19 Spin Coupling Constants Structure JFF, Hz F2C cycloalkane gem 212–260 Unsaturated compounds C"C gem 30–90 trans 115–130 cis 9–58 Aromatic compounds, monocyclic ortho 18–22 meta 0–7 para 12–15 Alkanes CFCl29CF29CFCl2 6 CFCl29CF29CCl3 5 CF2Cl9CF29CF2Cl 1 CF39CF29CF2Cl (or 9CF3) 1 CF39CF29CF2Cl 2 CF39CF29CF2Cl 9 CF39CF29CF3 7 TABLE 7.72 Silicon-29 Chemical Shifts Values given in ppm on the scale relative to tetramethylsilane.
Substituent group X in (CH3)4–nSiXn n 1 2 3 4 9F 35 9 52 109 9Cl 30 32 13 19 9Br 26 20 18 94 9I 9 34 18 346 9H 19 42 65 93 9C2H5 2 5 7 8 9C6H5 5 9 12 9CH"CH2 7 14 21 23 9Oalkyl 14–17 3 to 6 41 to 45 79 to 83 9Oaryl 17 6 54 101 9O9CO9alkyl 22 4 43 75 9N(CH3)2 6 2 18 28 SPECTROSCOPY 7.119 Structure , ppm Structure , ppm Hydrides H3Si9 39 to 60 9H2Si9 5 to 37 HSi 2 to 39 Silicates Orthosilicate anions 69 to 72 Silicon in end position 77 to 81 Silicon in middle 85 to 89 Branching silicons 93 to 97 Cross-linked silicons 107 to 120 Methyl siloxanes (CH3)2Si9O9 (end position) 6–8 (CH3)2Si O9 O9 (middle) 18 to 23 CH3Si(H) O9 O9 (middle) 35 to 36 O9 O9 CH3Si9O9 (branching) 65 to 66 O9 O9 9O9Si9O9 (cross-linked) 105 to 110 Polysilanes F3Si9SiF3 74 Cl3Si9SiCl3 8 (CH3O)3Si9Si(OCH3)3 53 (CH3)3Si9Si(CH3)3 20 (CH3)2Si[Si(CH3)3]2 48 HSi[Si(CH3)3]3 117 Si[Si(CH3)3]4 135 TABLE 7.72 Silicon-29 Chemical Shifts (Continued) TABLE 7.73 Phosphorus-31 Chemical Shifts Values given in ppm on the scale, relative to 85% H3PO4.
Structure Identical atoms attached directly to phosphorus Non-identically substituted phosphorus R CH3 R C2H5 R C6H5 P4 461 PR3 62 20 6 PHR2 99 56 41 PH2R 164 128 122 PH3 241 PF3 97 PRF2 168 207 PCl3 220 PRCl2 192 196 162 PR2Cl 94 119 81 PBr3 227 PRBr2 184 194 152 PR2Br 91 116 71 PI3 178 P(CN)3 136 P(SiR3)3 251 P(OR)3 141 139 127 P(OR)2Cl 169 165 157 P(OR)Cl2 114 177 173 P(SR)3 125 115 132 P(SR)2Cl 188 186 183 P(SR)Cl2 206 211 204 P(SR)2Br 184 7.120 SECTION 7 P(SR)Br2 204 P(NR2)3 123 118 P(NR2)Cl2 166 162 151 PR(NR2)2 86 100 100 PR2(NR2) 39 62 F2P9PF2 226 Cl2P9PCl2 155 I2P9PI2 170 PH2 K 255 P(CF3)3 3 P4O6 113 Structure Identical atoms attached directly to phosphorus Non-identically substituted phosphorus X F X Cl X Br P(NCO)3 97 P(NCO)2X 128 128 127 P(NCO)X2 131 166 P(NCS)3 86 P(NCS)2X 114 112 P(NCS)X2 155 153 Structure Identical atoms attached directly to phosphorus Non-identically substituted phosphorus R CH3 R C2H5 R C6H5 O"PR3 36 48 25 O"PHR2 63 23 O"PF3 36 O"PRF2 27 29 11 O"PCl3 2 O"PRCl2 45 53 34 O"PR2Cl 65 77 43 O"P(OR)3 1 1 18 O"P(OR)2Cl 6 3 6 O"P(OR)Cl2 6 6 2 O"PH(OR)2 19 15 O"PR2(OC2H5) 50 52 31 O"PR(OC2H5)2 30 33 17 O"P(NR2)3 23 24 2 O"PR2(NR2) 44 26 O"P(OR)2NH2 15 12 3 O"P(OR)2(NCS) 19 29 O"P(SR)3 66 61 55 O"PBr3 103 O"P(NCO)3 41 O"P(NCS)3 62 O"P(NH2)3 22 TABLE 7.73 Phosphorus-31 Chemical Shifts (Continued) Structure Identical atoms attached directly to phosphorus Non-identically substituted phosphorus R CH3 R C2H5 R C6H5 SPECTROSCOPY 7.121 Structure Identical atoms attached directly to phosphorus Structure Identical atoms attached directly to phosphorus PF5 35 PF6 H 144 PBr5 101 P(OC2H5)5 71 PO4 3 6 O"P[OSi(CH3)3]3 33 H4P2O7 11 Phosphonates 24 to 2 Phosphonium cations Alkyl 43 to 32 Aryl 35 to 18 (O3P9PO3)4 9 Polyphosphates O"P9O9 (OR)2 (end group) ca 6 9O9P9O9 OR O (middle group) ca 18 9O9P9O9 O P (etc.) O (branch group) ca 30 Structure Identical atoms attached directly to phosphorus Non-identically substituted phosphorus R CH3 R C2H5 R C6H5 S"PR3 59 55 43 S"PCl3 29 S"PRCl2 80 94 75 S"PR2Cl 87 109 80 S"PBr3 112 S"PRBr2 21 42 20 S"PR2Br 64 98 S"P(OR)3 73 68 53 S"P(OR)Cl2 59 56 54 S"P(OR)2Cl 73 68 59 S"PH(OR)2 74 69 59 S"P(SR)3 98 92 92 S"P(NH2)3 60 S"P(NR2)3 82 78 Se"P(OR)3 78 71 58 Se"P(SR)3 82 76 P(OR)5 71 86 PRF4 30 30 42 PR2F3 9 6 TABLE 7.73 Phosphorus-31 Chemical Shifts (Continued) 7.122 SECTION 7 TABLE 7.74 Phosphorus-31 Spin Coupling Constants Substituent group JPH, Hz Substituent group JPP, Hz PH 180–225 9PH2 134 RPH2 160–210 P9CH3 1–6 P9CH29 14 C"C Ha P Hb Hg 12–22 30–40 14–20 (Halogen)2P9CH 16–20 P9NH 10–28 P9O9CH3 11–15 P9O9CH29R 6–10 P9O9CHR2 3–7 P9SCH 5–20 P9N9CH 8–25 P9C9CH 0–4 P ortho 7–10 meta 2–4 O"PHR2 210–500 O9PH(S)R 490–540 O2PHR 500–575 O2PH(N) 560–630 O2PH(S or Se) 630–655 O3PH 630–760 S(or Se)"P9H 490–650 S(or Se)"PHR2 420–454 O"P9CH3 7–15 O"P9CH"C 15–30 O"P9CH9Aryl(or C"O) 15–30 (Halogen)2P9N9CH 9–18 S"P9CH 11–15 P9CH3 12–17 P9H 490–600 P9F 1320–1420 (1F) (3F) RPF2 1140–1290 R2PF 1020–1110 RP(N)F 920–985 (alkyl) (aryl) PF 9O 9O 1225–1305 (OCN)PF 1310 N9P F 1100–1200 P9CF 60–90 P F ortho 0–60 meta 1–7 para 0–3 Substituent group JPF, Hz F 9P axial equatorial 600–860 800–1000 O"P9CF 110–113 O"P9F 980–1190 P9O9P9F 2 Substituent group JPB, Hz H3B9P9N 80 Substituent group JPP, Hz P9P 220–400 O"P9P"O 330–500 S"P9P"S 15–500 SPECTROSCOPY 7.123 P9C9P ca 70 P9O9P 20–40 P9S9P 86–90 O"P9O9P"O 15–25 O"P9N9P"O H 8–30 N P P9N P9N 5–66 P"N9P"N9 5–65 TABLE 7.74 Phosphorus-31 Spin Coupling Constants (Continued) Substituent group JPP, Hz Substituent group JPP, Hz 7.8 MASS SPECTROMETRY 7.8.1 Correlation of Mass Spectra with Molecular Structure 7.8.1.1 Molecular Identification.
In the identification of a compound, the most important infor-mation is the molecular weight. The mass spectrometer is able to provide this information, often to four decimal places. One assumes that no ions heavier than the molecular ion form when using electron-impact ionization. The chemical ionization spectrum will often show a cluster around the nominal molecular weight.
Several relationships aid in deducing the empirical formula of the parent ion (and also molecular fragments). From the empirical formula hypothetical molecular structures can be proposed, using the entries in the formula indices of Beilstein and Chemical Abstracts.
7.8.1.2 Natural Isotopic Abundances.
The relative abundances of natural isotopes produce peaks one or more mass units larger than the parent ion (Table 7.75a). For a compound CwHxOzNy, a formula allows one to calculate the percent of the heavy isotope contributions from a monoisotopic peak, PM, to the PM1 peak: PM1 100 0.015x 1.11w 0.37y 0.037z PM Tables of abundance factors have been calculated for all combinations of C, H, N, and O up to mass 500 (J. H. Beynon and A. E. Williams, Mass and Abundance Tables for Use in Mass Spectrometry, Elsevier, Amsterdam, 1963).
Compounds that contain chlorine, bromine, sulfur, or silicon are usually apparent from prominent peaks at masses 2, 4, 6, and so on, units larger than the nominal mass of the parent or fragment ion.
For example, when one chlorine atom is present, the P 2 mass peak will be about one-third the intensity of the parent peak. When one bromine atom is present, the P 2 mass peak will be about the same intensity as the parent peak. The abundance of heavy isotopes is treated in terms of the binomial expansion (a b)m, where a is the relative abundance of the light isotope, b is the relative abundance of the heavy isotope, and m is the number of atoms of the particular element present in the molecule. If two bromine atoms are present, the binomial expansion is 2 2 2 (a b) a 2ab b 7.124 SECTION 7 TABLE 7.75 Isotopic Abundances and Masses of Selected Elements (a) Abundances of some polyisotopic elements, % Element Abundance Element Abundance Element Abundance 1H 99.985 16O 99.76 33S 0.76 2H 0.015 17O 0.037 34S 4.22 12C 98.892 18O 0.204 35Cl 75.53 13C 1.108 28Si 92.18 37Cl 24.47 14N 99.63 29Si 4.71 79Br 50.52 15N 0.37 30Si 3.12 81Br 49.48 (b) Selected isotope masses Element Mass Element Mass 1H 1.0078 31P 30.9738 12C 12.0000 32S 31.9721 14N 14.0031 35Cl 34.9689 16O 15.9949 56Fe 55.9349 19F 18.9984 79Br 78.9184 28Si 27.9769 127I 126.9047 Now substituting the percent abundance of each isotope (79Br and 81Br) into the expansion, 2 2 (0.505) 2(0.505)(0.495) (0.495) 0.255 0.500 0.250 gives which are the proportions of P:(P 2):(P 4), a triplet that is slightly distorted from a 1:2:1 pattern. When two elements with heavy isotopes are present, the binomial expansion (a b)m(c d)n is used.
Sulfur-34 enhances the P 2 peak by 4.2%; silicon-29 enhances the P 1 peak by 4.7% and the P 2 peak by 3.1%.
7.8.1.3 Exact Mass Differences.
If the exact mass of the parent or fragment ions are ascertained with a high-resolution mass spectrometer, this relationship is often useful for combinations of C, H, N, and O (Table 7.75b): Exact mass difference from nearest integral mass 0.0051z 0.0031y number of hydrogens 0.0078 One substitutes integral numbers (guesses) for z (oxygen) and y (nitrogen) until the divisor becomes an integral multiple of the numerator within 0.0002 mass unit.
For example, if the exact mass is 177.0426 for a compound containing only C, H, O, and N (note the odd mass which indicates an odd number of nitrogen atoms), then 0.0426 0.0051z 0.0031y 7 hydrogen atoms 0.0078 SPECTROSCOPY 7.125 when z 3 and y 1. The empirical formula is C9H7NO3 since 177 7(1) 1(14) 3(16) 9 carbon atoms 12 7.8.1.4 Number of Rings and Double Bonds.
The total number of rings and double bonds can be determined from the empirical formula (CwHxOzNy) by the relationship 1 2(2w x y z) when covalent bonds comprise the molecular structure. Remember the total number for a benzene ring is four (one ring and three double bonds); a triple bond has two.
7.8.1.5 General Rules 1. If the nominal molecular weight of a compound containing only C, H, O, and N is even, so is the number of hydrogen atoms it contains.
2. If the nominal molecular weight is divisible by four, the number of hydrogen atoms is also divisible by four.
3. When the nominal molecular weight of a compound containing only C, H, O, and N is odd, the number of nitrogen atoms must be odd.
7.8.1.6 Metastable Peaks.
If the mass spectrometer has a field-free region between the exit of the ion source and the entrance to the mass analyzer, metastable peaks m may appear as a weak, diffuse (often humped-shape) peak, usually at a nonintegral mass. The one-step decomposition pro-cess takes the general form: Original ion : daughter ion neutral fragment The relationship between the original ion and daughter ion is given by 2 (mass of daughter ion) m mass of original ion For example, a metastable peak appeared at 147.9 mass units in a mass spectrum with prominent peaks at 65, 91, 92, 107, 108, 155, 172, and 200 mass units. Try all possible combinations in the above expression. The fit is given by 2 (172) 147.9 200 which provides this information: 200 : 172 28 The probable neutral fragment lost is either CH2"CH2 or CO.
7.126 SECTION 7 7.8.2 Mass Spectra and Structure The mass spectrum is a fingerprint for each compound because no two molecules are fragmented and ionized in exactly the same manner on electron-impact ionization. In reporting mass spectra the data are normalized by assigning the most intense peak (denoted as base peak) a value of 100. Other peaks are reported as percentages of the base peak.
A very good general survey for interpreting mass spectral data is given by R. M. Silverstein, G.
C. Bassler, and T. C. Morrill, Spectrometric Identification of Organic Compounds, 4th ed., Wiley, New York, 1981.
7.8.2.1 Initial Steps in Elucidation of a Mass Spectrum 1. Tabulate the prominent ion peaks, starting with the highest mass.
2. Usually only one bond is cleaved. In succeeding fragmentations a new bond is formed for each additional bond that is broken.
3. When fragmentation is accompanied by the formation of a new bond as well as by the breaking of an existing bond, a rearrangement process is involved. These will be even mass peaks when only C, H, and O are involved. The migrating atom is almost exclusively hydrogen; six-membered cyclic transition states are most important.
4. Tabulate the probable groups that (a) give rise to the prominent charged ion peaks and (b) list the neutral fragments.
7.8.2.2 General Rules for Fragmentation Patterns 1. Bond cleavage is more probable at branched carbon atoms: tertiary secondary primary. The positive charge tends to remain with the branched carbon.
2. Double bonds favor cleavage beta to the carbon (but see rule 6).
3. A strong parent peak often indicates a ring.
4. Saturated ring systems lose side chains at the alpha carbon. Upon fragmentation, two ring atoms are usually lost.
5. A heteroatom induces cleavage at the bond beta to it.
6. Compounds that contain a carbonyl group tend to break at this group; the positive charge remains with the carbonyl portion.
7. For linear alkanes, the initial fragment lost is an ethyl group (never a methyl group), followed by propyl, butyl, and so on. An intense peak at mass 43 suggests a chain longer than butane.
8. The presence of Cl, Br, S, and Si can be deduced from the unusual isotopic abundance patterns of these elements. These elements can be traced through the positively charged fragments until the pattern disappears or changes due to the loss of one of these atoms to a neutral fragment.
9. When unusual mass differences occur between some fragments ions, the presence of F (mass difference 19), I (mass difference 127), or P (mass difference 31) should be suspected.
7.8.2.3 Characteristic Low-Mass Fragment Ions Mass 30 Primary amines Masses 31, 45, 59 Alcohol or ether SPECTROSCOPY 7.127 Masses 19 and 31 Alcohol Mass 66 Monobasic carboxylic acid Masses 77 and 91 Benzene ring 7.8.2.4 Characteristic Low-Mass Neutral Fragments from the Molecular Ion Mass 18 (H2O) From alcohols, aldehydes, ketones Mass 19 (F) and 20 (HF) Fluorides Mass 27 (HCN) Aromatic nitriles or nitrogen heterocycles Mass 29 Indicates either CHO or C2H5 Mass 30 Indicates either CH2O or NO Mass 33 (HS) and 34 (H2S) Thiols Mass 42 CH2CO via rearrangement from a methyl ketone or an aromatic acetate or an aryl-NHCOCH3 group Mass 43 C3H7 or CH3CO Mass 45 COOH or OC2H5 Table 7.76 is condensed, with permission, from the Catalog of Mass Spectral Data of the Amer-ican Petroleum Institute Research Project 44. These, and other tables, should be consulted for further and more detailed information.
Included in the table are all compounds for which information was available through the C7 compounds. The mass number for the five most important peaks for each compound are listed, followed in each case by the relative intensity in parentheses. The intensities in all cases are nor-malized to the n-butane 43 peak taken as 100. Another method for expressing relative intensities is to assign the base peak a value of 100 and express the relative intensities of the other peaks as a ratio to the base peak. Taking ethyl nitrate as an example, the tabulated values would be Ethyl nitrate 91(0.01)(P) 46(100) 29(44.2) 30(30.5) 76(24.2) The compounds are arranged in the table according to their molecular formulas. Each formula is arranged alphabetically, except that C is first if carbon occurs in the molecules, followed by H if it occurs. The formulas are then arranged alphabetically and according to increasing number of atoms of each kind, all C4 compounds being listed before any C5 compounds, and so on.
Nearly all these spectra have been recorded using 70-V electrons to bombard the sample mole-cules.
7.128 SECTION 7 TABLE 7.76 Condensed Table of Mass Spectra Molecular formula Name Mass numbers (and intensities) of: Parent peak Base peak Three next most intense peaks B2H6 Diborane 28(0.13) 26(54) 27(52) 24(48) 25(30) B3H6N3 Triborine triamine 81(21) 80(58) 79(37) 53(29) 52(22) B5H9 Pentaborane 64(15) 59(30) 60(30) 62(24) 61(21) CBrClF2 Difluorochlorobromomethane 164(0.23) 85(86) 87(27) 129(17) 131(16) CBr2F2 Difluorodibromomethane 208(1.7) 129(70) 131(68) 79(18) 31(18) CCl2F2 Difluorodichloromethane 120(0.07) 85(33) 87(11) 50(3.9) 101(2.8) CCl3F Fluorotrichloromethane 136(0.04) 101(54) 103(35) 66(7.0) 35(5.8) CCl4 Tetrachloromethane 152(0.0) 117(39) 119(37) 35(16) 47(16) CF3I Trifluoroiodomethane 196(51) 196(51) 127(49) 69(40) 177(16) CF4 Tetrafluoromethane 88(0.0) 69(57) 50(6.8) 19(3.9) 31(2.8) CHBrClF Fluorochlorobromomethane 148(5.5) 67(120) 69(38) 31(13) 111(11) CHBrF2 Difluorobromomethane 130(13) 51(83) 31(18) 132(13) 79(13) CHCl3 Trichloromethane 118(1.3) 83(69) 85(44) 47(24) 35(13) CHF3 Trifluoromethane 70(0.25) 69(20) 51(18) 31(9.9) 50(2.9) CHN Hydrogen cyanide 27(92) 27(92) 26(15) 12(3.8) 28(1.6) CH2ClF Fluorochloromethane 68(48) 68(48) 33(25) 70(15) 49(11) CH2Cl2 Dichloromethane 84(41) 49(71) 86(26) 51(21) 47(13) CH2F2 Difluoromethane 52(2.7) 33(26) 51(25) 31(7.3) 32(2.9) CH2O Methanal (formaldehyde) 30(19) 29(21) 28(6.6) 14(0.94) 13(0.92) CH2O2 Methanoic acid (formic) 46(72) 29(118) 45(56) 28(20) 17(20) CH3Cl Chloromethane 50(66) 50(66) 15(54) 52(21) 49(6.6) CH3F Monofluoromethane 34(29) 15(31) 33(28) 14(5.3) 31(3.2) CH3I Indomethane 142(78) 142(78) 127(29) 141(11) 15(10) CH3NO2 Nitromethane 61(35) 30(65) 15(34) 46(23) 29(5.3) CH4 Methane 16(67) 16(67) 15(58) 14(11) 13(5.5) CH4O Methanol 32(26) 31(38) 29(25) 28(2.4) 18(0.7) CH4S Methanethiol 48(49) 47(65) 45(40) 46(9.5) 15(8.9) CH5N Aminomethane (methylamine) 31(30) 30(53) 28(47) 29(8.7) 27(8.6) CO Carbon monoxide 28(78) 28(78) 12(3.7) 16(1.3) 29(0.9) COS Carbonyl sulfide 60(83) 60(83) 32(48) 28(6.9) 12(5.0) CO2 Carbon dioxide 44(76) 44(76) 28(5.0) 16(4.7) 12(1.9) CS2 Carbon disulfide 76(184) 76(184) 32(40) 44(33) 78(16) C2F4 Tetrafluoroethene 100(20) 31(47) 81(34) 50(14) 12(3.6) C2F6 Hexafluoroethane 138(0.14) 69(95) 119(39) 31(17) 50(9.6) C2F6Hg Hexafluorodimethylmercury 340(0.83) 69(111) 202(26) 271(22) 200(21) C2H2 Ethyne 26(102) 26(102) 25(20) 24(5.7) 13(5.7) C2H2ClN Chloroethanenitrile 75(51) 75(51) 48(46) 40(23) 77(16) C2H2Cl2 cis-1,2-Dichloroethene 96(53) 61(72) 98(34) 63(23) 26(22) C2H2Cl2 trans-1,2,-Dichloroethene 96(49) 61(73) 98(32) 26(25) 63(23) C2H2Cl4 1,1,2,2-Tetrachloroethane 166(5.9) 83(95) 85(60) 95(11) 87(9.7) C2H2F2 1,1-Difluoroethene 64(32) 64(32) 45(21) 31(16) 33(13) C2H3Cl3 1,1,1-Trichloroethane 132(0.0) 97(37) 99(24) 61(19) 117(7.1) C2H3Cl3 1,1,2-Trichloroethane 132(3.9) 97(43) 83(41) 99(27) 85(26) C2H3F3 1,1,1-Trifluoroethane 84(0.94) 69(81) 65(31) 15(13) 45(10) C2H3N Ethanenitrile 41(89) 41(89) 40(46) 39(17) 38(10) C2H4 Ethene (ethylene) 28(66) 28(66) 27(43) 26(41) 25(7.8) C2H4BrCl 1-Chloro-2-bromoethane 142(7.9) 63(93) 27(82) 65(30) 26(24) C2H4Br2 1,2-Dibromoethane 186(1.6) 27(93) 107(72) 109(67) 26(23) C2H4Cl2 1,1-Dichloroethane 98(5.7) 63(89) 27(64) 65(28) 26(21) SPECTROSCOPY 7.129 TABLE 7.76 Condensed Table of Mass Spectra (Continued) Molecular formula Name Mass numbers (and intensities) of: Parent peak Base peak Three next most intense peaks C2H4Cl2 1,2-Dichloroethane 98(1.7) 62(12) 27(11) 49(4.9) 64(3.9) C2H4N2 Diazoethane 56(16) 28(27) 27(25) 26(21) 41(5.2) C2H4O Ethanal (acetaldehyde) 44(30) 29(66) 43(18) 42(6.1) 26(6.1) C2H4O Ethylene oxide 44(30) 29(46) 15(30) 14(12) 43(7.1) C2H4O2 Ethanoic acid (acetic) 60(19) 43(37) 45(33) 15(21) 14(8.0) C2H4O2 Methyl formate 60(27) 31(96) 29(60) 32(33) 28(6.8) C2H5Br Bromoethane 108(35) 29(54) 27(48) 110(33) 26(16) C2H5Cl Chloroethane 64(36) 64(36) 28(32) 29(30) 27(27) C2H5F Fluoroethane 48(2.4) 47(24) 27(8.9) 33(8.2) 26(3.0) C2H5N Ethylenimine 43(31) 42(56) 28(44) 15(20) 41(11) C2H5NO2 Nitroethane 75(0.0) 29(85) 27(74) 30(19) 26(11) C2H5NO3 Ethyl nitrate 91(0.01) 46(95) 29(42) 30(29) 76(23) C2H6 Ethane 30(26) 28(99) 27(33) 26(23) 29(21) C2H6O Ethanol 46(9.7) 31(63) 45(22) 29(14) 27(14) C2H6O Dimethyl ether 46(32) 45(71) 29(56) 15(41) 14(8.9) C2H6O2 Dimethyl peroxide 62(28) 29(47) 31(45) 15(16) 30(12) C2H6S 2-Thiapropane 62(56) 47(69) 45(42) 46(29) 35(24) C2H6S Ethanethiol 62(44) 62(44) 29(43) 47(36) 27(35) C2H6S2 2,3-Dithiabutane 94(95) 94(95) 45(59) 79(56) 46(34) C2H6S3 2,3,4-Trithiapentane 126(54) 126(54) 45(32) 79(27) 47(19) C2H7N Aminoethane (ethylamine) 45(18) 30(96) 28(28) 44(19) 27(13) C2H7N N-Methylaminomethane 45(36) 44(71) 28(48) 15(14) 42(13) C2H8N2 1,2-Diaminoethane 60(2.7) 30(111) 18(14) 42(6.9) 43(5.9) C3F6 Hexafluoropropene 150(16) 31(56) 69(44) 131(41) 100(20) C3F8 Octafluoropropane 188(0.0) 69(171) 31(49) 169(42) 50(16) C3H3N Propenenitrile 53(55) 26(55) 52(41) 51(18) 27(10) C3H4 Propadiene 40(72) 40(72) 39(69) 38(29) 37(23) C3H4 Propyne (methylacetylene) 40(79) 40(79) 39(73) 38(29) 37(22) C3H4ClN 3-Chloropropanenitrile 89(12) 49(68) 54(54) 51(29) 26(20) C3H4O Propenal (acrolein) 56(16) 27(25) 26(15) 28(13) 55(11) C3H5Cl 1-Chloro-1-propene 76(30) 41(70) 39(43) 40(10) 78(9.6) C3H5ClO 3-Chloro-1,2-epoxypropane 92(0.19) 57(55) 27(53) 29(40) 31(21) C3H5ClO2 Methyl chloroacetate 109(0.23) 59(56) 49(44) 15(43) 29(37) C3H5Cl3 1,2,3-Trichloropropane 146(0.71) 75(61) 110(22) 77(19) 61(18) C3H5N Propanenitrile 55(8.3) 28(83) 54(51) 26(17) 27(15) C3H6 Cyclopropane 42(64) 42(64) 41(58) 39(44) 27(23) C3H6 Propene 42(39) 41(58) 39(41) 27(22) 40(17) C3H6Cl2 1,1-Dichloropropane 112(0.0) 63(27) 41(25) 77(22) 62(19) C3H6Cl2 1,2-Dichloropropane 112(2.6) 63(51) 62(36) 27(29) 41(25) C3H6O 1-Propen-3-ol (allyl alc.) 58(12) 57(43) 29(34) 31(26) 27(19) C3H6O Propanal 58(25) 29(66) 28(46) 27(38) 26(14) C3H6O Propanone (acetone) 58(24) 43(85) 15(26) 27(5.9) 42(5.9) C3H6O 1,2-Epoxypropane 58(19) 28(44) 29(30) 27(28) 26(18) C3H6O2 1,3-Dioxolane 74(3.1) 73(52) 43(36) 44(30) 29(30) C3H6O2 Propanoic acid 74(27) 28(34) 29(28) 27(21) 45(19) C3H6O2 Ethyl formate 74(5.8) 31(82) 28(60) 29(54) 27(36) C3H6O2 Methyl acetate 74(22) 43(148) 29(16) 42(15) 59(8.4) C3H6O3 Methyl carbonate 90(3.3) 15(93) 45(54) 29(43) 31(34) C3H7Br 1-Bromopropane 122(14) 43(94) 27(55) 41(47) 39(22) 7.130 SECTION 7 TABLE 7.76 Condensed Table of Mass Spectra (Continued) Molecular formula Name Mass numbers (and intensities) of: Parent peak Base peak Three next most intense peaks C3H7Br 2-Bromopropane 122(11) 43(100) 27(50) 41(47) 39(24) C3H7Cl 1-Chloropropane 78(3.6) 42(60) 29(27) 27(22) 41(14) C3H7Cl 2-Chloropropane 78(14) 43(58) 27(20) 63(15) 41(13) C3H7F 2-Fluoropropane 62(1.0) 47(84) 46(24) 61(12) 27(7.6) C3H7N 2-Methylethylenimine 57(22) 28(76) 56(34) 30(24) 29(19) C3H7N N-Methylethylenimine 57(31) 42(94) 15(46) 28(25) 27(17) C3H7NO N,N-Dimethylformamide 73(54) 44(63) 42(29) 28(25) 15(24) C3H7NO2 1-Nitropropane 89(0.0) 43(68) 27(67) 41(58) 39(24) C3H7NO2 2-Nitropropane 89(0.0) 43(75) 41(55) 27(53) 39(23) C3H8 Propane 44(25) 29(85) 28(50) 27(33) 43(19) C3H8O 1-Propanol 60(7.2) 31(115) 27(18) 29(17) 59(10) C3H8O 2-Propanol 60(0.45) 45(112) 43(19) 27(18) 29(11) C3H8O Methyl ethyl ether 60(24) 45(94) 29(46) 15(23) 27(19) C3H8O2 Dimethoxymethane 76(1.6) 45(117) 29(51) 75(51) 15(48) C3H8O2 2-Methoxy-1-ethanol 76(7.3) 45(122) 29(44) 15(38) 31(32) C3H8S 2-Thiabutane 76(47) 61(73) 48(40) 47(30) 27(27) C3H8S 1-Propanethiol 76(30) 47(43) 43(34) 27(34) 41(32) C3H8S 2-Propanethiol 76(41) 43(65) 41(44) 27(41) 61(26) C3H9N 1-Aminopropane 59(1.5) 30(20) 28(2.5) 27(1.3) 41(1.0) C3H9N Trimethylamine 59(37) 58(95) 42(44) 15(32) 30(17) C3H12B3N3 B,B,B-Trimethylborazole 123(30) 108(102) 107(77) 67(38) 66(34) C4F6 Hexafluorocyclobutene 162(21) 93(80) 31(51) 143(15) 74(6.9) C4F6 Hexafluoro-1,3-butadiene 162(27) 93(90) 31(45) 74(10) 112(10) C4F6 Hexafluoro-2-butyne 162(18) 93(47) 143(38) 31(25) 69(20) C4F8 Octafluorocyclobutane 200(0.12) 100(97) 131(84) 31(53) 69(24) C4F8 Octafluoromethylpropene 200(14) 69(74) 181(54) 31(44) 93(22) C4F8 Octafluoro-1-butene 200(11) 131(122) 31(86) 69(44) 93(16) C4F10 Decafluorobutane 238(0.0) 69(178) 119(33) 31(22) 100(15) C4HF7O2 Heptafluorobutanoic acid 214(0.0) 45(26) 69(24) 119(17) 100(14) C4H2 1,3-Butadiyne 50(133) 50(133) 49(57) 48(14) 25(12) C4H4 1-Buten-3-yne 52(55) 52(55) 51(28) 50(23) 49(7.2) C4H4O Furan 68(36) 39(58) 38(9.7) 29(9.3) 40(6.7) C4H4S Thiophene 84(93) 84(93) 58(56) 45(49) 39(24) C4H4S2 2-Thiophenethiol 116(68) 116(68) 71(64) 45(31) 39(11) C4H5N 3-Butenenitrile 67(27) 41(80) 39(36) 27(30) 40(20) C4H5N Pyrrole 67(67) 67(67) 39(46) 41(42) 40(36) C4H6 1,2-Butadiene 54(65) 54(65) 27(35) 53(29) 39(28) C4H6 1,3-Butadiene 54(46) 39(53) 27(36) 53(31) 28(24) C4H6 1-Butyne 54(64) 54(64) 39(49) 53(27) 27(26) C4H6 2-Butyne 54(93) 54(93) 27(42) 53(41) 39(24) C4H6Cl2O2 Ethyl dichloroacetate 156(0.12) 29(192) 27(58) 83(23) 28(19) C4H6O2 2,3-Butanedione 86(13) 43(118) 15(40) 14(12) 42(8.6) C4H6O2 Methyl 2-propenoate 86(2.0) 55(98) 27(66) 15(27) 26(22) C4H7BrO2 2-Bromoethyl acetate 166(0.03) 43(158) 27(35) 106(31) 108(30) C4H7Cl 2-Chloro-2-butene 90(27) 55(68) 27(21) 39(21) 29(18) C4H7ClO2 2-Chloroethyl acetate 122(0.0) 43(162) 73(43) 15(36) 27(29) C4H7ClO2 Ethyl chloroacetate 122(0.96) 29(130) 27(41) 77(37) 49(29) C4H7N 2-Methylpropanenitrile 69(1.7) 42(79) 68(38) 28(26) 54(19) C4H7N n-Butanenitrile 69(0.15) 41(112) 29(70) 27(38) 28(11) SPECTROSCOPY 7.131 TABLE 7.76 Condensed Table of Mass Spectra (Continued) Molecular formula Name Mass numbers (and intensities) of: Parent peak Base peak Three next most intense peaks C4H8 Cyclobutane 56(41) 28(65) 41(58) 27(27) 26(15) C4H8 2-Methylpropene 56(36) 41(85) 39(37) 28(18) 27(17) C4H8 1-Butene 56(32) 41(87) 39(30) 27(26) 28(26) C4H8 cis-2-Butene 56(36) 41(76) 39(27) 27(25) 28(24) C4H8 trans-2-Butene 56(37) 41(80) 27(27) 39(26) 28(26) C4H8Cl2 1,2-Dichlorobutane 126(0.30) 41(39) 77(35) 27(20) 76(16) C4H8Cl2 1,4-Dichlorobutane 126(0.03) 55(87) 41(29) 27(24) 90(23) C4H8Cl2 dl-2,3-Dichlorobutane 126(0.95) 63(63) 62(58) 27(57) 55(29) C4H8Cl2 meso-2,3-Dichlorobutane 126(0.95) 63(64) 27(57) 62(54) 55(31) C4H8N2 Acetaldazine 84(23) 42(92) 15(47) 28(46) 69(38) C4H8O Butanal 72(19) 27(41) 29(38) 44(34) 43(32) C4H8O 2-Butanone 72(17) 43(97) 29(24) 27(15) 57(6.0) C4H8O Ethyl ethenyl ether 72(27) 44(64) 43(56) 29(49) 27(43) C4H8O cis-2,3-Epoxybutane 72(3.6) 43(67) 44(39) 27(35) 29(33) C4H8O trans-2,3-Epoxybutane 72(3.5) 43(69) 44(35) 29(32) 27(31) C4H8O Tetrahydrofuran 72(22) 42(76) 41(39) 27(25) 71(20) C4H8O2 2-Methyl-1,3-dioxacyclopentane 88(0.33) 73(67) 43(48) 45(44) 29(34) C4H8O2 1,4-Dioxane 88(42) 28(138) 29(51) 58(33) 31(24) C4H8O2 2-Methylpropanoic acid 88(8.1) 43(77) 41(33) 27(26) 73(19) C4H8O2 n-Butanoic acid 88(1.0) 60(40) 73(12) 27(9.6) 41(9.1) C4H8O2 n-Propyl formate 88(0.41) 31(123) 42(89) 29(38) 27(36) C4H8O2 Ethyl acetate 88(7.1) 43(181) 29(46) 45(24) 27(24) C4H8O2 Methyl propanoate 88(23) 29(110) 57(83) 27(40) 59(27) C4H8S 3-Methylthiacyclobutane 88(42) 46(101) 45(31) 39(24) 47(21) C4H8S Thiacyclopentane 88(44) 60(82) 45(29) 46(29) 47(22) C4H9Br 1-Bromobutane 136(7.0) 57(86) 41(63) 29(50) 27(46) C4H9Br 2-Bromobutane 136(0.72) 57(108) 41(65) 29(61) 27(36) C4H9N Pyrrolidine 71(24) 43(102) 28(38) 70(33) 42(20) C4H9NO2 n-Butyl nitrite 103(0.0) 27(55) 43(54) 41(50) 30(47) C4H10 2-Methylpropane 58(3.2) 43(117) 41(45) 42(39) 27(33) C4H10 n-Butane 58(12) 43(100) 29(44) 27(37) 28(33) C4H10Hg Diethylmercury 260(12) 29(188) 27(54) 28(21) 231(15) C4H10O 2-Methyl-1-propanol 74(7.5) 43(84) 31(56) 42(48) 41(47) C4H10O 2-Methyl-2-propanol 74(0.0) 59(92) 31(31) 41(19) 43(14) C4H10O 1-Butanol 74(0.37) 31(52) 56(44) 41(31) 43(30) C4H10O 2-Butanol 74(0.30) 45(116) 31(23) 59(22) 27(20) C4H10O Diethyl ether 74(22) 31(73) 59(34) 29(29) 45(28) C4H10O Methyl isopropyl ether 74(8.3) 59(126) 29(42) 43(37) 15(32) C4H10O2 1,1-Dimethoxyethane 90(0.06) 59(93) 29(52) 15(37) 31(37) C4H10O2 1,2-Dimethoxyethane 90(12) 45(177) 29(53) 15(50) 60(16) C4H10O2 2-Ethoxyethanol 90(0.49) 31(112) 29(57) 59(56) 27(31) C4H10O2 Diethyl peroxide 90(20) 29(116) 15(42) 45(34) 62(30) C4H10S 3-Methyl-2-thiabutane 90(41) 41(49) 75(47) 43(41) 48(38) C4H10S 2-Thiapentane 90(58) 61(126) 48(50) 41(43) 27(43) C4H10S 3-Thiapentane 90(41) 75(59) 47(51) 27(39) 61(33) C4H10S 2-Methyl-1-propanethiol 90(35) 41(60) 43(46) 56(34) 47(29) C4H10S 2-Methyl-2-propanethiol 90(34) 41(68) 57(61) 29(44) 39(21) C4H10S 1-Butanethiol 90(40) 56(74) 41(65) 27(42) 47(31) C4H10S 2-Butanethiol 90(34) 41(56) 57(50) 61(46) 29(46) 7.132 SECTION 7 TABLE 7.76 Condensed Table of Mass Spectra (Continued) Molecular formula Name Mass numbers (and intensities) of: Parent peak Base peak Three next most intense peaks C4H10S2 2,3-Dithiahexane 122(37) 80(53) 43(36) 41(27) 27(25) C4H10S2 3,4-Dithiahexane 122(73) 29(82) 66(81) 27(57) 94(53) C4H10SO3 Ethyl sulfite 138(3.3) 29(131) 31(59) 45(42) 27(39) C4H11N N-Ethylaminoethane 73(17) 58(83) 30(81) 28(30) 27(24) C4H11N 1-Amino-2-methylpropane 73(1.0) 30(22) 28(2.0) 41(1.2) 27(1.1) C4H11N 2-Amino-2-methylpropane 73(0.25) 58(127) 41(26) 42(20) 15(18) C4H11N 1-Aminobutane 73(12) 30(200) 28(23) 27(16) 18(12) C4H11N 2-Aminobutane 73(1.2) 44(170) 18(25) 41(18) 58(18) C4H12Pb Tetramethyllead 268(0.14) 253(69) 223(59) 208(46) 251(36) C5F10 Decafluorocyclopentane 250(0.62) 131(173) 100(41) 31(40) 69(28) C5F12 Dodecafluoro-2-methylbutane 288(0.0) 69(277) 119(45) 131(23) 31(18) C5F12 Dodecafluoropentane 288(0.08) 69(259) 119(76) 169(25) 31(24) C5HF9 Nonafluorocyclopentane 232(0.07) 131(61) 113(49) 69(34) 31(19) C5H5N Pyridine 79(135) 79(135) 52(95) 51(48) 50(35) C5H6 Cyclopentadiene 66(95) 66(95) 65(40) 39(35) 40(30) C5H6 trans-2-Penten-4-yne 66(77) 66(77) 39(54) 65(38) 40(35) C5H6N2 2-Methylpyrazine 94(81) 94(81) 67(48) 26(33) 39(30) C5H6O2 Furfuryl alcohol 98(3.4) 98(3.4) 41(3.3) 39(3.3) 42(2.6) C5H6S 2-Methylthiophene 98(68) 97(125) 45(26) 39(17) 53(11) C5H6S 3-Methylthiophene 98(74) 97(138) 45(35) 39(14) 27(11) C5H8 Methylenecyclobutane 68(38) 40(67) 67(48) 39(47) 53(21) C5H8 Spiropentane 68(8.9) 67(58) 40(56) 39(52) 53(23) C5H8 Cyclopentene 68(41) 67(99) 39(36) 53(23) 41(19) C5H8 3-Methyl-1,2-butadiene 68(53) 68(53) 53(40) 39(28) 41(26) C5H8 2-Methyl-1,3-butadiene 68(40) 67(48) 53(41) 39(34) 27(23) C5H8 1,2-Pentadiene 68(39) 68(39) 53(38) 39(37) 27(31) C5H8 cis-1,3-Pentadiene 68(40) 67(53) 39(43) 53(38) 41(25) C5H8 trans-1,3-Pentadiene 68(41) 67(52) 39(43) 53(39) 41(26) C5H8 1,4-Pentadiene 68(40) 39(47) 67(35) 53(33) 41(30) C5H8 2,3-Pentadiene 68(62) 68(62) 53(42) 39(36) 41(31) C5H8 3-Methyl-1-butyne 68(8.5) 53(74) 67(45) 27(35) 39(21) C5H8 1-Pentyne 68(8.7) 67(50) 40(44) 39(42) 27(34) C5H8 2-Pentyne 68(67) 68(67) 53(61) 39(32) 27(27) C5H8N2 3,5-Dimethylpyrazole 96(47) 96(47) 95(37) 39(16) 54(12) C5H8O2 2,4-Pentanedione 100(22) 43(120) 85(33) 15(23) 27(11) C5H8O2 2-Propenyl acetate 100(0.16) 43(177) 41(30) 39(29) 15(28) C5H8O2 Methyl methacrylate 100(26) 41(78) 69(52) 39(31) 15(16) C5H9ClO2 Ethyl 3-chloropropanoate 136(0.70) 27(65) 29(62) 91(42) 63(37) C5H10 cis-1,2-Dimethylcyclopropane 70(39) 55(77) 42(35) 39(32) 41(32) C5H10 trans-1,2-Dimethylcyclopropane 70(42) 55(79) 42(34) 41(33) 39(30) C5H10 Ethylcyclopropane 70(26) 42(93) 55(47) 41(39) 39(35) C5H10 Cyclopentane 70(44) 42(148) 55(43) 41(43) 39(31) C5H10 2-Methyl-1-butene 70(30) 55(97) 42(36) 39(34) 41(28) C5H10 3-Methyl-1-butene 70(26) 55(102) 27(31) 42(28) 29(27) C5H10 2-Methyl-2-butene 70(31) 55(88) 41(31) 39(28) 42(27) C5H10 1-Pentene 70(27) 42(89) 55(53) 41(39) 39(31) C5H10 cis-2-Pentene 70(30) 55(89) 42(41) 39(30) 29(26) C5H10 trans-2-Pentene 70(31) 55(93) 42(41) 39(30) 41(28) C5H10O 3-Methyl-1-butanal 86(3.0) 41(30) 43(26) 58(20) 29(20) SPECTROSCOPY 7.133 TABLE 7.76 Condensed Table of Mass Spectra (Continued) Molecular formula Name Mass numbers (and intensities) of: Parent peak Base peak Three next most intense peaks C5H10O 2-Pentanone 86(16) 43(106) 29(23) 27(23) 57(20) C5H10O 3-Pentanone 86(15) 57(87) 29(87) 27(32) 28(9.4) C5H10O Ethyl-2-propenyl ether 86(6.2) 41(52) 29(48) 58(44) 57(42) C5H10O Ethyl isopropyl ether 86(21) 43(87) 44(69) 41(46) 27(45) C5H10O 2-Methyltetrahydrofuran 86(8.9) 71(57) 43(55) 41(40) 27(27) C5H10O2 Tetrahydrofurfuryl alcohol 102(0.02) 71(8.9) 43(6.8) 41(4.8) 27(3.8) C5H10O2 2-Methoxyethyl ethenyl ether 102(3.0) 29(69) 45(58) 15(48) 58(45) C5H10O2 2,2-Dimethylpropanoic acid 102(2.0) 57(83) 41(38) 29(27) 39(12) C5H10O2 2-Methylbutanoic acid 102(0.32) 74(54) 57(34) 29(33) 41(28) C5H10O2 n-Butyl formate 102(0.27) 56(80) 41(48) 31(47) 29(42) C5H10O2 Isobutyl formate 102(0.27) 43(58) 56(48) 41(46) 31(38) C5H10O2 sec-Butyl formate 102(0.17) 45(99) 29(49) 27(32) 41(31) C5H10O2 n-Propyl acetate 102(0.07) 43(176) 61(34) 31(31) 27(26) C5H10O2 Isopropyl acetate 102(0.17) 43(155) 45(50) 27(22) 61(18) C5H10O2 Ethyl propanoate 102(10) 29(151) 57(97) 27(52) 28(24) C5H10O2 Methyl 2-methylpropanoate 102(8.9) 43(69) 71(23) 41(19) 59(17) C5H10O2 Methyl butanoate 102(1.0) 43(53) 74(37) 71(29) 27(23) C5H10O3 Ethyl carbonate 118(0.30) 29(114) 45(80) 31(60) 27(46) C5H10S 2-Methylthiacyclopentane 102(37) 87(88) 41(30) 45(29) 59(18) C5H10S 3-Methylthiacyclopentane 102(40) 60(45) 41(31) 45(25) 74(23) C5H10S Thiacyclohexane 102(43) 87(44) 68(33) 61(32) 41(28) C5H10S Cyclopentanethiol 102(19) 41(48) 69(47) 39(26) 67(18) C5H11N Piperidine 85(22) 84(43) 57(22) 56(22) 44(17) C5H11NO N-Methylmorpholine 101(4.4) 43(18) 42(8.6) 15(3.4) 71(2.9) C5H11NO2 3-Methylbutyl nitrite 117(0.0) 29(75) 41(68) 57(43) 30(42) C5H12 2,2-Dimethylpropane 72(0.01) 57(126) 41(52) 29(49) 27(20) C5H12 2-Methylbutane 72(4.7) 43(74) 42(64) 41(49) 57(40) C5H12 n-Pentane 72(10) 43(114) 42(66) 41(45) 27(39) C5H12O 2-Methyl-1-butanol 88(0.18) 57(57) 29(55) 41(53) 56(50) C5H12O 3-Methyl-1-butanol 88(0.02) 55(47) 42(42) 43(39) 41(38) C5H12O 2-Methyl-2-butanol 88(0.0) 59(43) 55(37) 45(25) 73(22) C5H12O 1-Pentanol 88(0.0) 42(41) 55(30) 41(25) 70(23) C5H12O Methyl n-butyl ether 88(3.1) 45(211) 56(36) 29(36) 27(28) C5H12O Methyl isobutyl ether 88(12) 45(186) 41(30) 29(30) 15(27) C5H12O Methyl sec-butyl ether 88(2.0) 52(142) 29(50) 27(27) 41(25) C5H12O Methyl tert-butyl ether 88(0.02) 73(119) 41(33) 43(32) 57(32) C5H12O Ethyl isopropyl ether 88(2.6) 45(143) 43(46) 73(40) 27(24) C5H12O2 Diethoxymethane 104(2.1) 31(104) 59(99) 29(62) 103(39) C5H12O2 1,1-Dimethoxypropane 104(0.05) 75(84) 73(62) 29(43) 45(37) C5H12S 3,3-Dimethyl-2-thiabutane 104(30) 57(83) 41(62) 29(42) 39(16) C5H12S 4-Methyl-2-thiapentane 104(37) 41(46) 56(38) 27(29) 39(23) C5H12S 2-Methyl-3-thiapentane 104(82) 89(119) 62(79) 43(63) 61(58) C5H12S 2-Thiahexane 104(38) 61(77) 56(50) 41(39) 27(33) C5H12S 3-Thiahexane 104(30) 75(72) 27(53) 47(50) 62(33) C5H12S 2,2-Dimethyl-1-propanethiol 104(31) 57(100) 41(55) 55(48) 29(42) C5H12S 2-Methyl-1-butanethiol 104(28) 41(65) 29(44) 57(40) 70(40) C5H12S 2-Methyl-2-butanethiol 104(18) 43(88) 71(54) 41(46) 55(34) C5H12S 3-Methyl-2-butanethiol 104(23) 61(73) 43(55) 27(33) 55(28) C5H12S 1-Pentanethiol 104(35) 42(91) 55(44) 41(39) 70(39) 7.134 SECTION 7 TABLE 7.76 Condensed Table of Mass Spectra (Continued) Molecular formula Name Mass numbers (and intensities) of: Parent peak Base peak Three next most intense peaks C5H12S 2-Pentanethiol 104(28) 43(72) 61(52) 27(39) 55(38) C5H12S 3-Pentanethiol 104(23) 43(56) 41(48) 75(29) 47(23) C5H12S2 4,4-Dimethyl-2,3-dithiapentane 136(12) 57(74) 41(38) 29(36) 80(13) C5H12S2 2-Methyl-3,4-dithiahexane 136(20) 94(49) 27(46) 43(39) 66(37) C5H14Pb Trimethylethyllead 282(0.64) 223(61) 253(52) 208(51) 221(33) C6F6 Hexafluorobenzene 186(95) 186(95) 117(59) 31(58) 93(23) C6F12 Dodecafluorocyclohexane 300(0.96) 131(138) 69(97) 100(40) 31(30) C6F14 Tetradecafluoro-2-methylpentane 338(0.0) 69(317) 131(41) 119(36) 169(29) C6F14 Tetradecafluorohexane 338(0.13) 69(268) 119(74) 169(51) 131(37) C6H5Br Bromobenzene 156(75) 77(98) 158(74) 51(41) 50(36) C6H5Cl Chlorobenzene 112(102) 112(102) 77(49) 114(33) 51(17) C6H5NO2 Nitrobenzene 123(39) 77(93) 51(55) 50(23) 30(15) C6H6 Benzene 78(113) 78(113) 52(22) 77(20) 51(18) C6H6 1,5-Hexadiyne 78(58) 39(65) 52(38) 51(32) 50(26) C6H6 2,4-Hexadiyne 78(108) 78(108) 51(55) 52(38) 50(31) C6H6S Benzenethiol 110(68) 110(68) 66(26) 109(17) 51(15) C6H7N Aminobenzene (aniline) 93(19) 93(19) 66(6.5) 65(3.6) 39(3.5) C6H7N 2-Methylpyridine 93(86) 93(86) 66(36) 39(28) 51(16) C6H7NO 1-Methyl-2-pyridone 109(71) 109(71) 81(49) 39(34) 80(29) C6H8 Methylcyclopentadiene 80(53) 79(87) 77(29) 39(19) 51(11) C6H8 1,3-Cyclohexadiene 80(53) 79(92) 77(35) 39(21) 27(18) C6H8O 2.5-Dimethylfuran 96(57) 43(65) 95(48) 53(37) 81(24) C6H8S 2,3-Dimethylthiophene 112(44) 97(53) 111(44) 45(16) 27(9.4) C6H8S 2,4-Dimethylthiophene 112(27) 111(36) 97(18) 45(9.4) 39(7.0) C6H8S 2,5-Dimethylthiophene 112(67) 111(95) 97(59) 59(23) 45(19) C6H8S 2-Ethylthiophene 112(27) 97(68) 45(16) 39(8.9) 27(5.4) C6H8S 3-Ethylthiophene 112(54) 97(147) 45(38) 39(20) 27(12) C6H9N 2,5-Dimethylpyrrole 95(73) 94(127) 26(52) 80(22) 42(19) C6H10 Isopropenylcyclopropane 82(20) 67(92) 41(47) 39(46) 27(22) C6H10 1-Methylcyclopentene 82(26) 67(98) 39(21) 81(16) 41(16) C6H10 Cyclohexene 82(33) 67(83) 54(64) 41(31) 39(30) C6H10 2,3-Dimethyl-1,3-butadiene 82(41) 67(60) 39(55) 41(44) 54(22) C6H10 2-Methyl-1,3-pentadiene 82(23) 67(48) 39(30) 41(26) 27(13) C6H10 1,5-Hexadiene 82(1.3) 41(98) 67(80) 39(60) 54(52) C6H10 3,3-Dimethyl-1-butyne 82(0.57) 67(101) 41(57) 39(31) 27(11) C6H10 4-Methyl-1-pentyne 82(2.3) 67(82) 41(74) 43(64) 39(55) C6H10 1-Hexyne 82(1.0) 67(131) 41(88) 27(85) 43(67) C6H10 2-Hexyne 82(56) 67(58) 53(50) 27(39) 41(36) C6H10 3-Hexyne 82(55) 67(59) 41(55) 39(37) 53(20) C6H10O Cyclohexanone 98(32) 55(102) 42(86) 41(35) 27(34) C6H10O 4-Methyl-3-penten-2-one 98(40) 55(82) 83(82) 43(64) 29(38) C6H10O2 2,5-Hexanedione 114(4.0) 43(148) 15(25) 99(22) 14(14) C6H10O3 Propanoic anhydride 130(0.0) 57(190) 29(119) 27(62) 28(26) C6H10O3 Ethyl acetoacetate 130(8.3) 43(150) 29(52) 27(32) 15(27) C6H11N 4-Methylpentanenitrile 97(0.13) 55(98) 41(51) 43(45) 27(39) C6H11N Hexanenitrile 97(0.54) 41(73) 54(49) 27(43) 55(40) C6H12 1,1,2-Trimethylcyclopropane 84(38) 41(132) 69(81) 39(34) 27(24) C6H12 1-Methyl-1-ethylcyclopropane 84(25) 41(78) 55(58) 69(53) 27(33) C6H12 Isopropylcyclopropane 84(2.0) 56(114) 41(84) 39(30) 43(28) SPECTROSCOPY 7.135 TABLE 7.76 Condensed Table of Mass Spectra (Continued) Molecular formula Name Mass numbers (and intensities) of: Parent peak Base peak Three next most intense peaks C6H12 Ethylcyclobutane 84(3.8) 56(138) 41(89) 27(35) 55(34) C6H12 Methylcyclopentane 84(18) 56(116) 41(74) 69(37) 42(33) C6H12 Cyclohexane 84(58) 56(75) 41(44) 55(25) 42(21) C6H12 2,3-Dimethyl-1-butene 84(27) 41(117) 69(96) 39(36) 27(24) C6H12 3,3-Dimethyl-1-butene 84(23) 41(112) 69(107) 39(28) 27(26) C6H12 2-Ethyl-1-butene 84(30) 41(74) 69(66) 55(56) 27(38) C6H12 2,3-Dimethyl-2-butene 84(32) 41(108) 69(88) 39(35) 27(20) C6H12 2-Methyl-1-pentene 84(29) 56(91) 41(73) 55(39) 39(36) C6H12 3-Methyl-1-pentene 84(25) 55(85) 41(67) 69(60) 27(43) C6H12 4-Methyl-1-pentene 84(12) 43(110) 41(80) 56(47) 27(37) C6H12 2-Methyl-2-pentene 84(36) 41(120) 69(111) 39(35) 27(28) C6H12 3-Methyl-cis-2-pentene 84(37) 41(104) 69(82) 55(46) 27(36) C6H12 3-Methyl-trans-2-pentene 84(38) 41(102) 69(81) 55(47) 27(35) C6H12 4-Methyl-cis-2-pentene 84(35) 41(122) 69(114) 39(35) 27(26) C6H12 4-Methyl-trans-2-pentene 84(34) 41(123) 69(112) 39(34) 27(26) C6H12 1-Hexene 84(20) 41(70) 56(60) 42(52) 27(48) C6H12 cis-2-Hexene 84(27) 55(91) 42(51) 41(45) 27(45) C6H12 trans-2-Hexene 84(32) 55(112) 42(54) 41(46) 27(41) C6H12 cis-3-Hexene 84(28) 55(81) 41(62) 42(54) 27(32) C6H12 trans-3-Hexene 84(32) 55(89) 41(72) 42(62) 27(35) C6H12N2 Acetone azine (ketazine) 112(31) 56(99) 15(31) 97(31) 39(26) C6H12O Cyclopentylmethanol 100(0.02) 41(35) 68(32) 69(31) 67(24) C6H12O 4-Methyl-2-pentanone 100(12) 43(115) 58(37) 41(22) 57(22) C6H12O Ethenyl n-butyl ether 100(5.7) 29(80) 41(59) 56(45) 57(35) C6H12O Ethenyl isobutyl ether 100(5.8) 29(73) 41(65) 57(58) 56(40) C6H12O2 4-Hydroxy-4-methyl-2-pentanone 116(0.0) 43(149) 15(45) 58(32) 27(14) C6H12O2 n-Butyl acetate 116(0.03) 43(172) 56(58) 41(30) 27(27) C6H12O2 n-Propyl propanoate 116(0.03) 57(147) 29(84) 27(57) 75(47) C6H12O2 Isopropyl proponoate 116(0.26) 57(116) 43(88) 29(54) 27(46) C6H12O2 Methyl 2,2-dimethylpropanoate 116(3.2) 57(85) 41(32) 29(24) 56(21) C6H12O2 Ethyl butanoate 116(2.2) 43(50) 71(45) 29(43) 27(31) C6H12O3 2,4,6-Trimethyl-1,3,5-trioxacyclo-hexane 132(0.12) 45(196) 43(107) 29(35) 89(23) C6H12S 1-Cyclopentyl-1-thiaethane 116(31) 68(72) 41(64) 39(37) 67(37) C6H12S cis-2,5-Dimethylthiacyclopentane 116(32) 101(85) 59(34) 41(26) 74(24) C6H12S trans-2.5-Dimethylthiacyclopentane 116(32) 101(85) 59(34) 74(25) 41(25) C6H12S 2-Methylthiacyclohexane 116(42) 101(81) 41(37) 27(32) 67(30) C6H12S 3-Methylthiacyclohexane 116(41) 101(55) 41(47) 39(33) 45(28) C6H12S 4-Methylthiacyclohexane 116(46) 116(46) 101(44) 41(40) 27(39) C6H12S Thiacycloheptane 116(60) 87(75) 41(66) 67(48) 47(46) C6H12S 1-Methylcyclopentanethiol 116(20) 83(76) 55(58) 41(39) 67(33) C6H12S cis-2-Methylcyclopentanethiol 116(32) 55(55) 83(54) 60(48) 41(47) C6H12S trans-2-Methylcyclopentanethiol 116(28) 67(48) 55(46) 41(42) 83(40) C6H12S Cyclohexanethiol 116(21) 55(56) 41(45) 67(35) 83(32) C6H13N Cyclohexylamine 99(8.9) 56(92) 43(25) 28(13) 30(13) C6H13N 3-Methylpiperidine 99(23) 44(49) 30(34) 28(27) 57(26) C6H13NO N-Ethylmorpholine 115(2.0) 42(9.8) 57(7.0) 100(5.2) 28(4.3) C6H14 2,2-Dimethylbutane 86(0.04) 43(85) 57(82) 71(61) 41(51) C6H14 2,3-Dimethylbutane 86(5.3) 43(157) 42(136) 41(49) 27(40) 7.136 SECTION 7 TABLE 7.76 Condensed Table of Mass Spectra (Continued) Molecular formula Name Mass numbers (and intensities) of: Parent peak Base peak Three next most intense peaks C6H14 2-Methylpentane 86(4.4) 43(147) 42(78) 41(47) 27(40) C6H14 3-Methylpentane 86(3.2) 57(105) 56(80) 41(67) 29(64) C6H14 n-Hexane 86(12) 57(87) 43(71) 41(64) 29(55) C6H14N2 cis-2,5-Dimethylpiperazine 114(0.38) 58(10) 28(7.7) 30(4.7) 44(4.2) C6H14O 2-Ethyl-1-butanol 102(0.0) 43(114) 70(40) 29(39) 27(38) C6H14O 2-Methyl-1-pentanol 102(0.0) 42(110) 41(40) 29(34) 27(33) C6H14O 3-Methyl-1-pentanol 102(0.0) 56(26) 41(20) 29(19) 55(18) C6H14O 4-Methyl-2-pentanol 102(0.08) 45(111) 43(34) 41(17) 27(14) C6H14O 1-Hexanol 102(0.0) 56(63) 43(52) 41(37) 55(36) C6H14O Ethyl n-butyl ether 102(3.8) 59(108) 31(87) 29(61) 27(42) C6H14O Ethyl sec-butyl ether 102(1.5) 45(150) 73(76) 29(51) 27(39) C6H14O Ethyl isobutyl ether 102(8.7) 59(124) 31(95) 29(53) 27(38) C6H14O Diisopropyl ether 102(1.4) 45(125) 43(66) 87(23) 27(19) C6H14O2 1,1-Diethoxyethane 118(0.0) 45(132) 73(69) 29(36) 27(27) C6H14O2 1,2-Diethoxyethane 118(1.2) 31(124) 59(88) 29(72) 45(53) C6H14O3 bis-(2-Methoxyethyl) ether 134(0.0) 59(140) 29(74) 58(57) 15(56) C6H14S 2,2-Dimethyl-3-thiapentane 118(33) 57(147) 41(70) 29(54) 27(40) C6H14S 2,4-Dimethyl-3-thiapentne 118(33) 43(94) 61(85) 41(48) 103(44) C6H14S 2-Methyl-3-thiahexane 118(206) 43(540) 41(317) 42(301) 27(287) C6H14S 4-Methyl-3-thiahexane 118(195) 89(585) 29(343) 27(296) 41(279) C6H14S 5-Methyl-3-thiahexane 118(171) 75(520) 41(230) 47(224) 56(217) C6H14S 3-Thiaheptane 118(35) 75(55) 29(33) 27(33) 62(28) C6H14S 4-Thiaheptane 118(47) 43(86) 89(74) 41(57) 27(55) C6H14S 2-Methyl-1-pentanethiol 118((19) 43(96) 41(51) 56(32) 27(31) C6H14S 4-Methyl-1-pentanethiol 118(30) 56(142) 41(57) 43(57) 27(32) C6H14S 4-Methyl-2-pentanethiol 118(6.3) 43(68) 69(61) 41(56) 84(42) C6H14S 2-Methyl-3-pentanethiol 118(20) 41(64) 43(63) 75(50) 27(28) C6H14S 1-Hexanethiol 118(16) 56(66) 41(41) 27(40) 43(38) C6H14S2 2,5-Dimethyl-3,4-dithiahexane 150(31) 43(152) 108(41) 41(36) 27(30) C6H14S2 5-Methyl-3,4-dithiaheptane 150(14) 29(86) 94(66) 66(57) 27(41) C6H14S2 6-Methyl-3,4-dithiaheptane 150(4.9) 29(42) 66(40) 122(30) 94(29) C6H14S2 4,5-Dithiaoctane 150(44) 43(167) 27(65) 41(64) 108(35) C6H15N Triethylamine 101(21) 86(134) 30(46) 27(36) 58(35) C6H15N Di-n-propylamine 101(7.1) 30(89) 72(70) 44(36) 43(28) C6H15N Diisopropylamine 101(5.0) 44(171) 86(52) 58(24) 42(22) C6H16Pb Dimethyldiethyllead 296(0.98) 267(89) 223(83) 208(79) 221(44) C7F14 Tetradecafluoromethylcyclohexane 350(0.0) 69(244) 131(107) 181(48) 100(38) C7F16 Hexadecafluoroheptane 388(0.0) 69(330) 119(89) 169(68) 131(44) C7H5N Benzonitrile 103(246) 103(246) 76(80) 50(42) 51(24) C7H7Br 1-Methyl-2-bromobenzene 170(48) 91(97) 172(46) 39(21) 63(20) C7H7Br 1-Methyl-4-bromobenzene 170(46) 91(97) 172(45) 39(20) 65(19) C7H7Cl 1-Methyl-2-chlorobenzene 126(44) 91(121) 63(20) 39(19) 89(18) C7H7Cl 1-Methyl-3-chlorobenzene 126(51) 91(120) 63(19) 39(18) 128(16) C7H7Cl 1-Methyl-4-chlorobenzene 126(44) 91(120) 125(19) 63(18) 39(17) C7H7F 1-Methyl-3-fluorobenzene 110(79) 109(129) 83(17) 57(12) 39(12) C7H7F 1-Methyl-4-fluorobenzene 110(73) 109(122) 83(16) 57(12) 39(9.3) C7H8 Methylbenzene (toluene) 92(82) 91(108) 39(20) 65(14) 51(10) C7H8S 1-Phenyl-1-thiaethane 124(76) 124(76) 109(34) 78(25) 91(19) C7H9N 2,4-Dimethylpyridine 107(76) 107(76) 106(29) 79(16) 92(13) SPECTROSCOPY 7.137 TABLE 7.76 Condensed Table of Mass Spectra (Continued) Molecular formula Name Mass numbers (and intensities) of: Parent peak Base peak Three next most intense peaks C7H10S 2,3,4-Trimethylthiophene 126(50) 111(81) 125(47) 45(22) 39(18) C7H12 Ethenylcyclopentane 96(13) 67(118) 39(44) 68(38) 54(35) C7H12 Ethylidenecyclopentane 96(40) 67(180) 39(44) 41(30) 27(30) C7H12 Bicyclo[2.2.1]heptane 96(12) 67(64) 68(50) 81(44) 54(30) C7H12 3-Ethylcyclopentene 96(29) 67(193) 39(36) 41(35) 27(26) C7H12 1-Methylcyclohexene 96(32) 81(83) 68(38) 67(37) 39(33) C7H12 4-Methylcyclohexene 96(28) 81(84) 54(50) 39(44) 55(34) C7H12 4-Methyl-2-hexyne 96(13) 81(71) 67(52) 41(48) 39(35) C7H12 5-Methyl-2-hexyne 96(42) 43(49) 81(43) 27(39) 39(38) C7H12 1-Heptyne 96(0.44) 41(75) 81(70) 29(65) 27(47) C7H14 1,1,2,2,-Tetramethylcyclopropane 98(21) 55(92) 83(90) 41(69) 39(41) C7H14 cis-1,2-Dimethylcyclopentane 98(19) 56(85) 70(77) 41(65) 55(65) C7H14 trans-1,2-Dimethylcyclopentane 98(25) 56(93) 41(63) 55(61) 70(54) C7H14 cis-1,3-Dimethylcyclopentane 98(12) 56(81) 70(78) 41(64) 55(59) C7H14 trans-1,3-Dimethylcyclopentane 98(13) 56(81) 70(68) 41(63) 55(58) C7H14 1,1-Dimethylcyclopentane 98(6.7) 56(81) 55(63) 69(56) 41(55) C7H14 Ethylcyclopentane 98(14) 69(83) 41(78) 68(60) 55(46) C7H14 Methylcyclohexane 98(41) 83(94) 55(78) 41(55) 42(34) C7H14 Cycloheptane 98(37) 41(57) 55(54) 56(50) 42(49) C7H14 2,3,3-Trimethyl-1-butene 98(20) 83(101) 55(83) 41(61) 39(33) C7H14 3-Methyl-2-ethyl-1-butene 98(22) 41(71) 69(71) 55(62) 27(38) C7H14 2,3-Dimethyl-1-pentene 98(13) 41(92) 69(86) 55(40) 39(35) C7H14 2,4-Dimethyl-1-pentene 98(9.1) 56(117) 43(68) 41(61) 39(39) C7H14 3,3-Dimethyl-1-pentene 98(9.4) 69(104) 41(85) 55(42) 27(36) C7H14 3,4-Dimethyl-1-pentene 98(0.61) 56(75) 55(62) 43(55) 41(54) C7H14 4,4-Dimethyl-1-pentene 98(2.6) 57(161) 41(86) 29(52) 55(49) C7H14 3-Ethyl-1-pentene 98(19) 41(116) 69(91) 27(43) 39(37) C7H14 2,3-Dimethyl-2-pentene 98(31) 83(80) 55(75) 41(63) 39(34) C7H14 2,4-Dimethyl-2-pentene 98(26) 83(97) 55(71) 41(52) 39(34) C7H14 3,4-Dimethyl-cis-2-pentene 98(30) 83(87) 55(82) 41(52) 27(32) C7H14 3,4-Dimethyl-trans-2-pentene 98(31) 83(89) 55(83) 41(52) 27(34) C7H14 4,4-Dimethyl-cis-2-pentene 98(27) 83(96) 55(92) 41(62) 39(35) C7H14 4,4-Dimethyl-trans-2-pentene 98(28) 83(105) 55(89) 41(58) 39(31) C7H14 3-Ethyl-2-pentene 98(33) 41(86) 69(80) 55(74) 27(33) C7H14 2-Methyl-1-hexene 98(4.6) 56(105) 41(54) 27(30) 39(27) C7H14 3-Methyl-1-hexene 98(7.7) 55(76) 41(60) 69(57) 56(48) C7H14 4-Methyl-1-hexene 98(4.9) 41(98) 57(94) 56(80) 29(70) C7H14 5-Methyl-1-hexene 98(1.6) 56(91) 41(75) 55(47) 27(42) C7H14 2-Methyl-2-hexene 98(28) 69(113) 41(99) 27(36) 39(33) C7H14 3-Methyl-cis-2-hexene 98(30) 41(95) 69(90) 55(42) 27(36) C7H14 4-Methyl-trans-2-hexene 98(23) 69(118) 41(106) 55(40) 39(35) C7H14 5-Methyl-2-hexene 98(13) 56(90) 55(74) 43(71) 41(57) C7H14 2-Methyl-trans-3-hexene 98(24) 69(86) 41(74) 55(62) 56(37) C7H14 3-Methyl-cis-3-hexene 98(28) 69(98) 41(82) 39(33) 27(33) C7H14 3-Methyl-trans-3-hexene 98(28) 69(97) 41(86) 55(63) 39(35) C7H14 1-Heptene 98(15) 41(91) 56(79) 29(64) 55(54) C7H14 trans-2-Heptene 98(27) 55(64) 56(59) 41(50) 27(35) C7H14 trans-3-Heptene 98(27) 41(98) 56(65) 69(55) 55(47) C7H14O 2,4-Dimethyl-3-pentanone 114(13) 43(226) 71(62) 27(49) 41(42) 7.138 SECTION 7 TABLE 7.76 Condensed Table of Mass Spectra (Continued) Molecular formula Name Mass numbers (and intensities) of: Parent peak Base peak Three next most intense peaks C7H14O2 n-Butyl propanoate 130(0.03) 57(152) 29(98) 56(54) 27(52) C7H14O2 Isobutyl propanoate 130(0.07) 57(187) 29(87) 56(27) 27(47) C7H14O2 n-Propyl n-butanoate 130(0.05) 43(96) 71(90) 27(54) 89(48) C7H14O3 n-Propyl carbonate 146(0.02) 43(171) 27(61) 63(55) 41(49) C7H14S cis-2-Methylcyclohexanethiol 130(28) 55(138) 97(70) 81(44) 41(44) C7H15N 2,6-Dimethylpiperidine 113(5.3) 98(73) 44(43) 42(34) 28(26) C7H16 2,2,3-Trimethylbutane 100(0.03) 57(110) 43(84) 56(67) 41(64) C7H16 2,2-Dimethylpentane 100(0.06) 57(130) 43(95) 41(59) 56(52) C7H16 2,3-Dimethylpentane 100(2.1) 43(94) 56(93) 57(67) 41(64) C7H16 2,4-Dimethylpentane 100(1.6) 43(139) 57(93) 41(59) 56(50) C7H16 3,3-Dimethylpentane 100(0.03) 43(166) 71(103) 27(38) 41(36) C7H16 3-Ethylpentane 100(3.1) 43(175) 70(77) 70(77) 29(45) C7H16 2-Methylhexane 100(5.9) 43(154) 42(59) 41(57) 85(49) C7H16 3-Methylhexane 100(4.0) 43(110) 57(52) 71(52) 41(50) C7H16 n-Heptane 100(17) 43(126) 41(65) 57(60) 29(58) C7H16O 2-Heptanol 116(0.01) 45(131) 43(29) 27(25) 29(23) C7H16O 3-Heptanol 116(0.01) 59(61) 69(41) 41(29) 31(25) C7H16O 4-Heptanol 116(0.02) 55(102) 73(72) 43(45) 27(32) C7H16O n-Propyl n-butyl ether 116(3.7) 43(120) 57(102) 41(51) 29(49) C7H16O2 Di-n-propoxymethane 132(0.58) 43(194) 73(114) 27(45) 41(34) C7H16O2 Diisopropoxymethane 132(0.16) 43(133) 45(84) 73(71) 27(28) C7H16O2 1,1-Diethoxypropane 132(0.0) 59(138) 47(88) 87(84) 29(74) C7H16S 2,2,4-Trimethyl-3-thiapentane 132(30) 57(149) 41(74) 29(35) 43(32) C7H16S 2,4-Dimethyl-3-thiahexane 132(30) 61(94) 103(60) 41(51) 43(46) C7H16S 2-Thiaoctane 132(34) 61(73) 56(53) 27(46) 41(44) C7H16S 1-Heptanethiol 132(14) 41(48) 27(40) 56(39) 70(38) C7H18Pb Methyltriethyllead 310(0.84) 281(86) 208(76) 223(66) 237(60) C7H18Pb n-Butyltrimethyllead 310(0.14) 253(76) 223(75) 208(68) 295(52) C7H18Pb sec-Butyltrimethyllead 310(1.8) 253(94) 223(85) 208(74) 251(45) C7H18Pb tert-Butyltrimethyllead 310(0.09) 252(95) 223(82) 208(65) 250(46) C8H10 1,2-Dimethylbenzene 106(52) 91(91) 105(22) 39(15) 51(14) C8H10 1,3-Dimethylbenzene 106(58) 91(93) 105(26) 39(17) 51(14) C8H10 1,4-Dimethylbenzene 106(52) 91(85) 105(25) 51(13) 39(13) C8H10 Ethylbenzene 106(45) 91(146) 51(19) 39(14) 65(12) F3N Nitrogen trifluoride 71(10) 52(33) 33(13) 14(3.0) 19(2.7) HCl Hydrogen chloride 36(54) 36(54) 38(17) 35(9.2) 37(2.9) H2S Hydrogen sulfide 34(75) 34(75) 32(33) 33(32) 1(4.1) H3P Ammonia 17(32) 17(32) 16(26) 15(2.4) 14(0.7) H3N Phosphine 34(59) 34(59) 33(20) 31(19) 32(7.5) H4N2 Hydrazine 32(48) 32(48) 31(23) 29(19) 30(15) NO Nitric oxide 30(76) 30(76) 14(5.7) 15(1.8) 16(1.1) NO2 Nitrogen dioxide 46(6.6) 30(18) 16(4.0) 14(1.7) 47(0.02) N2 Nitrogen 28(65) 28(65) 14(3.3) 29(0.47) . . .
N2O Nitrous oxide 44(60) 44(60) 30(19) 14(7.8) 28(6.5) O2 Oxygen 32(54) 32(54) 16(2.7) 28(1.7) 34(0.22) O2S Sulfur dioxide 64(47) 64(47) 48(23) 32(4.9) 16(2.4) Source: L. Meites, ed., Handbook of Analytical Chemistry, McGraw-Hill, New York, 1963. J. A. Dean, ed., Analytical Chemistry Handbook, McGraw-Hill, New York, 1995.
SECTION 8 ELECTROLYTES, ELECTROMOTIVE FORCE, AND CHEMICAL EQUILIBRIUM 8.1 ACTIVITY COEFFICIENTS 8.2 Table 8.1 Individual Activity Coefficients of Ions in Water at 25C 8.3 Table 8.2 Approximate Effective Ionic Radii in Aqueous Solutions at 25C 8.4 Table 8.3 Constants of the Debye-Hu ¨ ckel Equation from 0 to 100C 8.5 Table 8.4 Individual Ionic Activity Coefficients at Higher Ionic Strengths at 25C 8.5 8.2 EQUILIBRIUM CONSTANTS 8.6 Table 8.5 Ionic Product Constant of Water 8.6 Table 8.6 Solubility Product Constants 8.6 8.2.1 Proton-Transfer Reactions 8.17 Table 8.7 Proton Transfer Reactions of Inorganic Materials in Water at 25C 8.18 Table 8.8 Values of Organic Materials in Water at 25C pKa 8.24 Table 8.9 Selected Equilibrium Constants in Aqueous Solution at Various Temperatures 8.73 Table 8.10 Properties of Common Acid-Base Solvents 8.80 Table 8.11 Values for Proton-Transfer Reactions in Nonaqueous Solvents pKa 8.81 8.2.2 Formation Constants of Metal Complexes 8.82 Table 8.12 Cumulative Formation Constants for Metal Complexes with Inorganic Ligands 8.83 Table 8.13 Cumulative Formation Constants for Metal Complexes with Organic Ligands 8.88 8.3 BUFFER SOLUTIONS 8.104 8.3.1 Standard Reference pH Buffer Solutions 8.104 Table 8.14 National Bureau of Standards (U.S.) Reference pH Buffer Solutions 8.105 Table 8.15 Compositions of Standard pH Buffer Solutions [National Bureau of Standards (U.S.)] 8.106 8.3.2 Standards for pH Measurement of Blood and Biological Media 8.106 Table 8.16 Composition and pH Values of Buffer Solutions 8.107 Table 8.17 Standard Reference Values for the Measurement of Acidity in pH s 50 Weight Percent Methanol-Water 8.109 Table 8.18 pH Values for Buffer Solutions in Alcohol-Water Solvents at 25C 8.109 8.3.3 Buffer Solutions Other Than Standards 8.110 Table 8.19 pH Values of Biological and Other Buffers for Control Purposes 8.110 8.4 REFERENCE ELECTRODES 8.113 Table 8.20 Potentials of Reference Electrodes in Volts as a Function of Temperature 8.113 Table 8.21 Potentials of Reference Electrodes (in Volts) at 25C for Water– Organic Solvent Mixtures 8.114 8.4.1 Electrometric Measurement of pH 8.115 Table 8.22 Values of 2.3026RT/F at Several Temperatures 8.115 8.5 INDICATORS 8.116 Table 8.23 Indicators for Aqueous Acid-Base Titrations 8.116 Table 8.24 Mixed Indicators 8.118 8.1 8.2 SECTION 8 Table 8.25 Fluorescent Indicators 8.120 Table 8.26 Selected List of Oxidation-Reduction Indicators 8.122 8.6 ELECTRODE POTENTIALS 8.124 Table 8.27 Potentials of the Elements and Their Compounds at 25C 8.124 Table 8.28 Potentials of Selected Half-Reactions at 25C 8.137 Table 8.29 Overpotentials for Common Electrode Reactions at 25C 8.140 Table 8.30 Half-Wave Potentials of Inorganic Materials 8.141 Table 8.31 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25C 8.146 8.7 CONDUCTANCE 8.157 Table 8.32 Limiting Equivalent Ionic Conductances in Aqueous Solutions 8.157 Table 8.33 Standard Solutions for Calibrating Conductivity Vessels 8.160 Table 8.34 Electrical Conductivity of Various Pure Liquids 8.161 Table 8.35 Equivalent Conductivities of Electrolytes in Aqueous Solutions at 18C 8.163 Table 8.36 Conductivity of Very Pure Water at Various Temperatures and the Equivalent Conductances of Hydrogen and Hydroxyl Ions 8.168 8.7.1 Common Conductance Relations 8.168 8.1 ACTIVITY COEFFICIENTS Although it is not possible to measure an individual ionic activity coefficient, fi, it may be estimated from the following equation of the Debye-Hu ¨ckel theory: 2 Az I i p log f i 1 Ba ˚ I p where I is the ionic strength of the medium, and a ˚ is the ion-size parameter—the effective ionic radius (Table 8.2). The values of A and B vary with the temperature and dielectric constant of the solvent; values from 0 to 100C for aqueous medium (a ˚ in angstrom units) are listed in Table 8.3.
Corresponding values of A and B for unit weight of solvent (when employing molality) can be obtained by multiplying the corresponding values for unit volume (molarity units) by the square root of the density of water at the appropriate temperature.
The ionic strength can be estimated from the summation of the product molarity times ionic charge squared for all the ionic species present in the solution, i.e., 2 I 0.5(c z 1 1 2 2 c z · · · c z ).
2 2 i i Values for the activity coefficients of ions in water at 25C are given in Table 8.1 in terms of their effective ionic radii.
At moderate ionic strengths a considerable improvement is effected by subtracting a term bI from the Debye-Hu ¨ckel expression; b is an adjustable parameter which is 0.2 for water at 25C. Table 8.4 gives the values of the ionic activity coefficients (for zi from 1 to 6) with a ˚ taken to be 4.6A ˚ .
In general, the mean ionic activity coefficient is given by (xy) x y f f f p ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.3 TABLE 8.1 Individual Activity Coefficients of Ions in Water at 25C Effective Ionic Radii a ˚ (in A ˚ ) ƒi at Ionic Strength of 0.001 0.005 0.01 0.05 0.1 Univalent Ions 9 0.967 0.933 0.914 0.86 0.83 8 0.966 0.931 0.912 0.85 0.82 7 0.965 0.930 0.909 0.845 0.81 6 0.965 0.929 0.907 0.835 0.80 5 0.964 0.928 0.904 0.83 0.79 4 0.964 0.928 0.902 0.82 0.775 3.5 0.964 0.926 0.900 0.81 0.76 3 0.964 0.925 0.899 0.805 0.755 2.5 0.964 0.924 0.898 0.80 0.75 Divalent Ions 8 0.872 0.755 0.69 0.52 0.45 7 0.872 0.755 0.685 0.50 0.425 6 0.870 0.749 0.675 0.485 0.405 5 0.868 0.744 0.67 0.465 0.38 4.5 0.868 0.741 0.663 0.45 0.36 4 0.867 0.740 0.660 0.445 0.355 Trivalent Ions 6 0.731 0.52 0.415 0.195 0.13 5 0.728 0.51 0.405 0.18 0.115 4 0.725 0.505 0.395 0.16 0.095 Tetravalent Ions 11 0.588 0.35 0.255 0.10 0.065 5 0.57 0.31 0.20 0.048 0.021 Pentavalent Ions 9 0.43 0.18 0.105 0.020 0.009 where are the individual ionic activity coefficients, and x,y are the charge numbers of f , f (z , z ) the respective ions. In binary electrolyte solution.
f f f p In ternary electrolytes, e.g., BaCl2 or K2SO4, 3 3 2 2 f f f or f f f p p In quaternary electrolytes, e.g., LaCl3 or K3[Fe(CN)6], 4 4 3 3 f f f or f f f p p TABLE 8.2 Approximate Effective Ionic Radii in Aqueous Solutions at 25C a ˚ (in A ˚ ) Inorganic Ions a ˚ (in A ˚ ) Organic Ions 2.5................... Rb, Cs, Tl, Ag NH , 4 3..................... K, Cl, Br, I, CN, NO , NO 2 3 3.5................... OH, F, SCN, OCN, HS, ClO , ClO , BrO , IO , MnO 3 4 3 4 4 4..................... Na, CdCl, 2 Hg , ClO , IO , HCO , H PO , HSO , 2 2 3 3 2 4 3 2 2 2 2 2 2 2 H AsO , SO , S O , S O , SeO , CrO , HPO , S O , 2 4 4 2 3 2 8 4 4 4 2 6 Cr(NH3) Co(NH3)5H2O3 3 3 3 3 PO , Fe(CN) , , Co(NH ) , 4 6 6 36 4.5................... Pb2, Co(NH3)5Cl2, Fe(CN)5NO2 2 2 2 CO , SO , MoO , 3 3 4 5..................... Sr2, Ba2, Ra2, Cd2, Hg2, S2, 2 2 4 S O , WO , Fe(CN) 2 4 4 6 6..................... Li, Ca2, Cu2, Zn2, Sn2, Mn2, Fe2, Ni2, Co2, 3 Co(en) , 3 4 Co(S O )(CN) 2 3 5 8..................... Mg2, Be2 9..................... H, Al3, Fe3, Cr3, Sc3, Y3, La3, In3, Ce3, Pr3, Nd3, Sm3, 5 Co(SO ) (CN) 3 2 4 11 ................... Th4, Zr4, Ce4, Sn4 3.5................... HCOO, H2Cit, CH NH , (CH ) NH 3 3 3 2 2 4..................... H3NCH2COOH, (CH3)3NH, C H NH 2 5 3 4.5................... CH3COO, ClCH2COO, (CH3)4N, (C H ) NH , 2 5 2 2 H2NCH2COO, oxalate2, HCit2 5..................... Cl2CHCOO, Cl3COO, (C2H5)3NH, Cit3, succi- C H NH , 3 7 3 nate2, malonate2, tartrate2 6..................... benzoate, hydroxybenzoate, chlorobenzoate, phenylace-tate, vinylacetate, (CH3)2C"CHCOO, (C2H5)4N, (C3H7)2NH phthalate2, glutarate2, adipate2 , 2 7..................... trinitrophenolate, (C3H7)3NH, methoxybenzoate, pime-late2, suberate2, Congo red anion2 8..................... (C6H5)2CHCOO, (C3H7)4N 8.4 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.5 TABLE 8.3 Constants of the Debye-Hu ¨ckel Equation from 0 to 100C 2 Az I i p log ƒ i 1 Ba ˚ I p Temp., C Unit Volume of Solvent A B Temp., C Unit Volume of Solvent A B 0 0.4918 0.3248 5 0.4952 0.3256 10 0.4989 0.3264 15 0.5028 0.3273 20 0.5070 0.3282 25 0.5115 0.3291 30 0.5161 0.3301 35 0.5211 0.3312 40 0.5262 0.3323 45 0.5317 0.3334 50 0.5373 0.3346 55 0.5432 0.3358 60 0.5494 0.3371 65 0.5558 0.3384 70 0.5625 0.3397 75 0.5695 0.3411 80 0.5767 0.3426 85 0.5842 0.3440 90 0.5920 0.3456 95 0.6001 0.3471 100 0.6086 0.3488 The values for unit weight of solvent (molality scale) can be obtained by multiplying the corresponding values for unit volume by the square root of the density of water at the appropriate temperature.
TABLE 8.4 Individual Ionic Activity Coefficients at Higher Ionic Strengths at 25C The values were calculated from the modified Debye-Hu ¨ckel equation utilizing the modifications proposed by Robinson and by Guggenheim and Bates: log ƒ 0.511I i 0.2I 2 z 1 1.5I i where I is the ionic strength and a ˚ is assumed to be 4.6 A ˚ .
I log ƒ 10 i 2 zi ƒi for zi 1 2 3 4 5 6 0.05 0.0756 0.840 0.498 0.209 0.0617 0.0129 0.00190 0.1 0.0896 0.814 0.438 0.156 0.0369 0.00576 0.000595 0.2 0.0968 0.800 0.410 0.138 0.0283 0.00380 0.000328 0.3 0.0936 0.806 0.422 0.144 0.0318 0.00457 0.000427 0.4 0.0858 0.821 0.454 0.169 0.0424 0.00716 0.000815 0.5 0.0753 0.841 0.500 0.210 0.0624 0.0131 0.00195 0.6 0.0631 0.865 0.559 0.2705 0.0978 0.0265 0.00535 0.7 0.0496 0.892 0.633 0.358 0.161 0.05755 0.0164 0.8 0.0352 0.922 0.723 0.482 0.273 0.132 0.0541 0.9 0.0201 0.955 0.831 0.659 0.477 0.314 0.189 1.0 0.0044 0.900 0.960 0.913 0.850 0.776 0.694 8.6 SECTION 8 8.2 EQUILIBRIUM CONSTANTS TABLE 8.5 Ionic Product Constant of Water This table gives values of pKw on a molal scale, where Kw is the ionic activity product constant of water. Values are from W. L. Marshall and E. U. Franck, J. Phys. Chem. Ref. Data, 10:295 (1981).
Temp., C pKw Temp., C pKw Temp., C pKw 0 14.938 45 13.405 95 12.345 5 14.727 50 13.275 100 12.264 10 14.528 55 13.152 125 11.911 15 14.340 60 13.034 150 11.637 18 14.233 65 12.921 175 11.431 20 14.163 70 12.814 200 11.288 25 13.995 75 12.711 225 11.207 30 13.836 80 12.613 250 11.192 35 13.685 85 12.520 275 11.251 40 13.542 90 12.431 300 11.406 TABLE 8.6 Solubility Product Constants The data refer to various temperatures between 18 and 25C, and were compiled from values cited by Bjerrum, Schwarzenbach, and Sillen, Stability Constants of Metal Complexes, part II, Chemical Society, London, 1958, and values taken from publications of the IUPAC Solubility Data Project: Solubility Data Series, International Union of Pure and Applied Chemistry, Pergamon Press, Oxford, 1979–1992; H. L. Clever, and F. J. Johnston, J. Phys. Chem. Ref. Data, 9:751 (1980); Y. Marcus, Ibid. 9:1307 (1980); H. L. Clever, S. A. Johnson, and M. E. Derrick, Ibid. 14:631 (1985), and 21:941 (1992).
In the table, “L” is the abbreviation of the organic ligand.
Compound Formula pKsp Ksp Actinium hydroxide Ac(OH)3 15 1 1015 Aluminum arsonate AlAsO4 15.80 1.6 1016 cupferrate AlL3 18.64 2.3 1019 hydroxide Al(OH)3 32.89 1.3 1033 phosphate AlPO4 20.01 9.84 1021 8-quinolinolate AlL3 29.00 1.00 1029 selenide Al2Se3 24.4 4 1025 sulfide Al2S3 6.7 2 107 Americium (III) hydroxide Am(OH)3 19.57 2.7 1020 (IV) hydroxide Am(OH)4 56 1 1056 Ammonium uranyl arsenate NH4UO2AsO4 23.77 1.7 1024 Arsenic (III) sulfide As2S3 21.68 2.1 1022 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.7 TABLE 8.6 Solubility Product Constants (Continued) Compound Formula pKsp Ksp Barium arsenate Ba3(AsO4)2 50.11 8.0 1051 bromate Ba(BrO3)2 5.50 2.43 104 carbonate BaCO3 8.59 2.58 109 chromate BaCrO4 9.93 1.17 1010 ferricyanide 6-hydrate Ba2[Fe(CN)6]·6H2O 7.49 3.2 108 fluoride BaF2 6.74 1.84 107 hexafluorosilicate BaSiF6 6 1 106 hydrogen phosphate BaHPO4 6.49 3.2 107 hydroxide 8-hydrate Ba(OH)2·8H2O 3.59 2.55 104 iodate hydrate Ba(IO3)2·H2O 8.40 4.01 109 molybdate BaMoO4 7.45 3.54 108 niobate Ba(NbO3)2 16.50 3.2 1017 nitrate Ba(NO3)2 2.33 4.64 103 oxalate BaC2O4 6.79 1.6 107 oxalate hydrate BaC2O4·H2O 7.64 2.3 108 permanganate Ba(MnO4)2 9.61 2.5 1010 perrhenate Ba(ReO4)2 1.28 5.2 102 phosphate Ba3(PO4)2 22.47 3.4 1023 pyrophosphate Ba2P2O7 10.50 3.2 1011 8-quinolinolate BaL2 8.30 5.0 109 selenate BaSeO4 7.47 3.40 108 sulfate BaSO4 9.97 1.08 1010 sulfite BaSO3 9.30 5.0 1010 thiosulfate BaS2O3 4.79 1.6 105 Beryllium carbonate 4-hydrate BeCO3·4H2O 3 1 103 hydroxide (amorphous) Be(OH)2 21.16 6.92 1022 molybdate BeMoO4 1.49 3.2 102 niobate Be(NbO3)2 15.92 1.2 1016 Bismuth arsenate BiAsO4 9.35 4.43 1010 cupferrate BiL3 27.22 6.0 1028 hydroxide Bi(OH)3 30.4 6.0 1031 iodide BiI3 18.11 7.71 1019 oxide bromide BiOBr 6.52 3.0 107 oxide chloride BiOCl 30.75 1.8 1031 oxide hydroxide BiO(OH) 9.4 4 1010 oxide nitrate BiO(NO3) 2.55 2.82 103 oxide nitrite BiO(NO2) 6.31 4.9 107 oxide thiocyanate BiO(SCN) 6.80 1.6 107 phosphate BiPO4 22.89 1.3 1023 sulfide Bi2S3 97 1 1097 Cadmium anthranilate CdL2 8.27 5.4 109 arsenate Cd3(AsO4)2 32.66 2.2 1033 benzoate 2-hydrate CdL2·2H2O 2.7 2 103 borate, meta Cd(BO2)2 8.64 2.3 109 carbonate CdCO3 12.0 1.0 1012 cyanide Cd(CN)2 8.0 1.0 108 ferrocyanide Cd2[Fe(CN)6] 16.49 3.2 1017 fluoride CdF2 2.19 6.44 103 8.8 SECTION 8 TABLE 8.6 Solubility Product Constants (Continued) Compound Formula pKsp Ksp hydroxide Cd(OH)2 fresh 14.14 7.2 1015 iodate Cd(IO3)2 7.60 2.5 108 oxalate 3-water CdC2O4·3H2O 7.85 1.42 108 phosphate Cd3(PO4)2 32.60 2.53 1033 quinaldate CdL2 12.30 5.0 1013 sulfide CdS 26.10 8.0 1027 tungstate CdWO4 5.7 2 106 Calcium acetate 3-water Ca(OAc)2·3H2O 2.4 4 103 arsenate Ca3(AsO4)2 18.17 6.8 1019 benzoate 3-water CaL2·3H2O 2.4 4 103 carbonate CaCO3 8.54 2.8 109 carbonate (calcite) CaCO3 8.47 3.36 109 carbonate (aragonite) CaCO3 8.22 6.0 109 carbonatomagnesium Ca[Mg(CO3)2] dolomite 11 1 1011 chromate CaCrO4 3.15 7.1 104 fluoride CaF2 8.28 5.3 109 hexafluorosilicate Ca[SiF6] 3.09 8.1 104 hydrogen phosphate CaHPO4 7.0 1.0 107 hydroxide Ca(OH)2 5.26 5.5 106 iodate 6-water Ca(IO3)2·6H2O 6.15 7.10 107 molybdate CaMoO4 7.84 1.46 108 niobate Ca(NbO3)2 17.06 8.7 1018 oxalate hydrate CaC2O4·H2O 8.63 2.32 109 phosphate Ca3(PO4)2 28.68 2.07 1029 8-quinolinolate CaL2 11.12 7.6 1012 selenate CaSeO4 3.09 8.1 104 selenite CaSeO3 5.53 8.0 106 silicate, meta CaSiO3 7.60 2.5 108 sulfate CaSO4 4.31 4.93 105 sulfate dihydrate CaSO4·2H2O 4.50 3.14 105 sulfite CaSO3 7.17 6.8 108 sulfite 0.5-water CaSO3·0.5H2O 6.51 3.1 107 tartrate dihydrate CaL·2H2O 6.11 7.7 107 tungstate CaWO4 8.06 8.7 109 Cerium (III) fluoride CeF3 15.1 8 1016 (III) hydroxide Ce(OH)3 19.80 1.6 1020 (IV) hydroxide Ce(OH)4 47.7 2 1048 (III) iodate Ce(IO3)3 9.50 3.2 1010 (IV) iodate Ce(IO3)4 16.3 5 1017 (III) oxalate 9-water Ce2(C2O4)3·9H2O 25.50 3.2 1026 (III) phosphate CePO4 23 1 1023 (III) selenite Ce2(SeO3)3 24.43 3.7 1025 (III) sulfide Ce2S3 10.22 6.0 1011 (III) tartrate Ce2L3 19.0 1.0 1019 Cesium bromate CsBrO3 1.7 5 102 chlorate CsClO3 1.4 4 102 cobaltihexanitrite Cs3[Co(NO2)6] 15.24 5.7 1016 hexachloroplatinate(IV) Cs2[PtCl6] 7.50 3.2 108 hexafluoroplatinate(IV) Cs2[PtF6] 5.62 2.4 106 hexafluorosilicate Cs2[SiF6] 4.90 1.3 105 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.9 TABLE 8.6 Solubility Product Constants (Continued) Compound Formula pKsp Ksp perchlorate CsClO4 2.40 3.95 103 periodate CsIO4 5.29 5.16 106 permanganate CsMnO4 4.08 8.2 105 perrhanate CsReO4 3.40 4.0 104 tetrafluoroborate Cs[BF4] 4.7 5 105 Chromium(II) hydroxide Cr(OH)2 15.7 2 1016 Chromium(III) arsenate CrAsO4 20.11 7.7 1021 fluoride CrF3 10.18 6.6 1011 hydroxide Cr(OH)3 30.20 6.3 1031 phosphate 4-water CrPO4·4H2O green 22.62 2.4 1023 violet 17.00 1.0 1017 Cobalt anthranilate CoL2 9.68 2.1 1010 arsenate Co3(AsO4)2 28.17 6.80 1029 carbonate CoCO3 12.84 1.4 1013 ferrocyanide Co2[Fe(CN)6] 14.74 1.8 1015 hydrogen phosphate CoHPO4 6.7 2 107 (II) hydroxide Co(OH)2 fresh 14.23 5.92 1015 (III) hydroxide Co(OH)3 43.80 1.6 1044 iodate Co(IO3)2 4.0 1.0 104 phosphate Co3(PO4)2 34.69 2.05 1035 selenite CoSeO3 6.80 1.6 107 quinaldate CoL2 10.80 1.6 1011 8-quinolinolate CoL2 24.80 1.6 1025 sulfide -CoS 20.40 4.0 1021 -CoS 24.70 2.0 1025 Copper(I) azide CuN3 8.31 4.9 109 bromide CuBr 8.20 6.27 109 chloride CuCl 6.76 1.72 107 cyanide CuCN 19.46 3.47 1020 hydroxide CuOH 14 1 1014 iodide CuI 11.90 1.27 1012 sulfide Cu2S 47.60 2.5 1048 tetraphenylborate CuL 8.0 1.0 108 thiocyanate CuSCN 12.75 1.77 1013 Copper(II) anthranilate CuL2 13.22 6.0 1014 arsenate Cu3(AsO4)2 35.10 7.95 1036 azide Cu(N3)2 9.20 6.3 1010 carbonate CuCO3 9.86 1.4 1010 chromate CuCrO4 5.44 3.6 106 dithiooxamide CuL 15.12 7.67 1016 ferrocyanide Cu2[Fe(CN)6] 15.89 1.3 1016 hydroxide Cu(OH)2 19.66 2.2 1020 iodate Cu(IO3)2 7.16 6.94 108 oxalate CuC2O4 9.35 4.43 1010 phosphate Cu3(PO4)2 36.85 1.40 1037 pyrophosphate Cu2P2O7 15.08 8.3 1016 quinaldate CuL2 16.80 1.6 1017 8-quinolinolate CuL2 29.70 2.0 1030 8.10 SECTION 8 TABLE 8.6 Solubility Product Constants (Continued) Compound Formula pKsp Ksp selenite CuSeO3 7.68 2.1 108 sulfide CuS 35.20 6.3 1036 Dysprosium chromate 10-water Dy2(CrO4)3·10H2O 8 1 108 hydroxide Dy(OH)3 21.85 1.4 1022 Erbium hydroxide Er(OH)3 23.39 4.1 1024 Europium hydroxide Eu(OH)3 23.03 9.38 1024 Gadolinium hydrogen carbonate Gd(HCO3)3 1.7 2 102 hydroxide Gd(OH)3 22.74 1.8 1023 Gallium ferrocyanide Ga4[Fe(CN)6]3 33.82 1.5 1034 hydroxide Ga(OH)3 35.14 7.28 1036 8-quinolinolate GaL3 40.80 1.6 1041 Germanium oxide GeO2 57.0 1.0 1057 Gold(I) chloride AuCl 12.70 2.0 1013 iodide AuI 22.80 1.6 1023 Gold(III) chloride AuCl3 24.50 3.2 1025 hydroxide Au(OH)3 45.26 5.5 1046 iodide AuI3 46 1 1046 oxalate Au2(C2O4)3 10 1 1010 Hafnium hydroxide Hf(OH)3 25.40 4.0 1026 Holmium hydroxide Ho(OH)3 22.3 5.0 1023 Indium ferrocyanide In4[Fe(CN)6]3 43.72 1.9 1044 hydroxide In(OH)3 33.2 6.3 1034 quinolinolate InL3 31.34 4.6 1032 selenite In2(SeO3)3 32.60 4.0 1033 sulfide In2S3 73.24 5.7 1074 Iron(II) carbonate FeCO3 10.50 3.13 1011 fluoride FeF2 5.63 2.36 106 hydroxide Fe(OH)2 16.31 4.87 1017 oxalate dihydrate FeC2O4·2H2O 6.50 3.2 107 sulfide FeS 17.20 6.3 1018 Iron(III) arsenate FeAsO4 20.24 5.7 1021 ferrocyanide Fe4[Fe(CN)6]3 40.52 3.3 1041 hydroxide Fe(OH)3 38.55 2.79 1039 phosphate dihydrate FePO4·2H2O 15.00 9.91 1016 quinaldate FeL3 16.89 1.3 1017 selenite Fe2(SeO3)3 30.70 2.0 1031 Lanthanum bromate 9-water La(BrO3)3·9H2O 2.50 3.2 103 fluoride LaF3 16.2 7 1017 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.11 TABLE 8.6 Solubility Product Constants (Continued) Compound Formula pKsp Ksp hydroxide La(OH)3 18.70 2.0 1019 iodate La(IO3)3 11.12 7.50 1012 molybdate La2(MoO4)3 20.4 4 1021 oxalate 9-water La2(C2O4)3 26.60 2.5 1027 phosphate LaPO4 22.43 3.7 1023 sulfide La2S3 12.70 2.0 1013 tungstate trihydrate La2(WO4)3·3H2O 3.90 1.3 104 Lead acetate Pb(OAc)2 2.75 1.8 103 anthranilate PbL2 9.81 1.6 1010 arsenate Pb3(AsO4)3 35.39 4.0 1036 azide Pb(N3)2 8.59 2.5 109 borate, meta Pb(BO2)3 10.78 1.6 1011 bromate Pb(BrO3)2 1.70 2.0 102 bromide PbBr2 6.82 6.60 106 carbonate PbCO3 13.13 7.4 1014 chloride PbCl2 4.77 1.70 105 chloride fluoride PbClF 8.62 2.4 109 chlorite Pb(ClO2)2 8.4 4 109 chromate PbCrO4 12.55 2.8 1013 ferrocyanide Pb2[Fe(CN)6] 14.46 3.5 1015 fluoride PbF2 7.48 3.3 108 fluoride iodide PbFI 8.07 8.5 109 hydrogen phosphate PbHPO4 9.90 1.3 1010 hydrogen phosphite PbHPO3 6.24 5.8 107 hydroxide Pb(OH)2 14.84 1.43 1015 hydroxide bromide PbOHBr 14.70 2.0 1015 hydroxide chloride PbOHCl 13.7 2 1014 hydroxide nitrate PbOHNO3 3.55 2.8 104 iodate Pb(IO3)2 12.43 3.69 1013 iodide PbI2 8.01 9.8 109 molybdate PbMoO4 13.00 1.0 1013 niobate Pb(NbO3)2 16.62 2.4 1017 oxalate PbC2O4 9.32 4.8 1010 phosphate Pb3(PO4)2 42.10 8.0 1043 quinaldate PbL2 10.60 2.5 1011 selenate PbSeO4 6.84 1.37 107 selenite PbSeO3 11.50 3.2 1012 sulfate PbSO4 7.60 2.53 108 sulfide PbS 27.10 8.0 1028 thiocyanate Pb(SCN)2 4.70 2.0 105 thiosulfate PbS2O3 6.40 4.0 107 tungstate PbWO4 6.35 4.5 107 Lead(IV) hydroxide Pb(OH)4 65.50 3.2 1066 Lithium carbonate Li2CO3 1.60 2.5 102 fluoride LiF 2.74 1.84 103 phosphate Li3PO4 10.63 2.37 1011 uranylarsenate LiUO2AsO4 18.82 1.5 1019 Lutetium hydroxide Lu(OH)3 23.72 1.9 1024 8.12 SECTION 8 TABLE 8.6 Solubility Product Constants (Continued) Compound Formula pKsp Ksp Magnesium ammonium phosphate MgNH4PO4 12.60 2.5 1013 arsenate Mg3(AsO4)2 19.68 2.1 1020 carbonate MgCO3 5.17 6.82 106 carbonate trihydrate MgCO3·3H2O 5.62 2.38 106 fluoride MgF2 10.29 5.16 1011 hydroxide Mg(OH)2 11.25 5.61 1012 iodate 4-water Mg(IO3)2·4H2O 2.50 3.2 103 niobate Mg(NbO3)2 16.64 2.3 1017 oxalate dihydrate MgC2O4·2H2O 5.32 4.83 106 phosphate Mg3(PO4)2 23.98 1.04 1024 8-quinolinolate MgL2 15.40 4.0 1016 selenite MgSeO3 4.89 1.3 105 sulfite MgSO3 2.50 3.2 103 Manganese anthranilate MnL2 6.75 1.8 103 arsenate Mn3(AsO4)2 28.72 1.9 1029 carbonate MnCO3 10.63 2.34 1011 ferrocyanide Mn2[Fe(CN)6] 12.10 8.0 1013 iodate Mn(IO3)2 6.36 4.37 107 hydroxide Mn(OH)2 12.72 1.9 1013 oxalate dihydrate MnC2O4·2H2O 6.77 1.70 107 8-quinolinolate MnL2 21.70 2.0 1022 selenite MnSeO3 6.90 1.3 107 sulfide MnS amorphous 9.60 2.5 1010 MnS crystalline 12.60 2.5 1013 Mercury(I) azide Hg2(N3)2 9.15 7.1 1010 bromide Hg2Br2 22.19 6.40 1023 carbonate Hg2CO3 16.44 3.6 1017 chloride Hg2Cl2 17.84 1.43 1018 cyanide Hg2(CN)2 39.3 5 1040 chromate Hg2CrO4 8.70 2.0 109 ferricyanide (Hg2)3[Fe(CN)6]2 20.07 8.5 1021 fluoride Hg2F2 5.51 3.10 106 hydrogen phosphate Hg2HPO4 12.40 4.0 1013 hydroxide Hg2(OH)2 23.70 2.0 1024 iodate Hg2(IO3)2 13.71 2.0 1014 iodide Hg2I2 28.72 5.2 1029 oxalate Hg2C2O4 12.76 1.75 1013 quinaldate Hg2L2 17.90 1.3 1018 selenite Hg2SeO3 14.20 8.4 1015 sulfate Hg2SO4 6.19 6.5 107 sulfite Hg2SO3 27.0 1.0 1027 sulfide Hg2S 47.0 1.0 1047 thiocyanate Hg2(SCN)2 19.49 3.2 1020 tungstate Hg2WO4 16.96 1.1 1017 Mercury(II) bromide HgBr2 19.21 6.2 1020 hydroxide Hg(OH)2 25.52 3.2 1026 iodate Hg(IO3)2 12.49 3.2 1013 iodide HgI2 28.54 2.9 1029 1,10-phenanthroline HgL2 24.70 2.0 1025 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.13 TABLE 8.6 Solubility Product Constants (Continued) Compound Formula pKsp Ksp quinaldate HgL2 16.80 1.6 1017 selenite HgSeO3 13.82 1.5 1014 sulfide HgS red 52.4 4 1053 HgS black 51.80 1.6 1052 Neodymium carbonate Nd2(CO3)3 32.97 1.08 1033 hydroxide Nd(OH)3 21.49 3.2 1022 Neptunyl(VI) hydroxide NpO2(OH)2 21.60 2.5 1022 Nickel ammine perrhenate [Ni(NH3)6][ReO4]2 3.29 5.1 104 anthranilate NiL2 9.09 8.1 1010 arsenate Ni3(AsO4)2 25.51 3.1 1026 carbonate NiCO3 6.85 1.42 107 ferrocyanide Ni2[Fe(CN)6] 14.89 1.3 1015 hydrazine sulfate [Ni(N2H4)3]SO4 13.15 7.1 1015 hydroxide Ni(OH)2 fresh 15.26 5.48 1016 iodate Ni(IO3)2 4.33 4.71 105 oxalate NiC2O4 9.4 4 1010 phosphate Ni3(PO4)2 31.32 4.74 1032 pyrophosphate Ni2P2O7 12.77 1.7 1013 quinaldate NiL2 10.1 8 1011 8-quinolinolate NiL2 26.1 8 1027 selenite NiSeO3 5.0 1.0 105 -sulfide -NiS 18.50 3.2 1019 -sulfide -NiS 24.0 1.0 1024 -sulfide -NiS 25.70 2.0 1026 Palladium (II) hydroxide Pd(OH)2 31.0 1.0 1031 (IV) hydroxide Pd(OH)4 70.20 6.3 1071 quinaldate PdL2 12.90 1.3 1013 thiocyanate Pd(SCN)2 22.36 4.39 1023 Platinum (IV) bromide PtBr4 40.50 3.2 1041 (II) hydroxide Pt(OH)2 35 1 1035 Plutonium (III) fluoride PuF3 15.60 2.5 1016 (IV) fluoride PuF4 19.20 6.3 1020 (IV) hydrogen phosphate Pu(HPO4)2·xH2O 27.7 2 1028 (III) hydroxide Pu(OH)3 19.70 2.0 1020 (IV) hydroxide Pu(OH)4 55 1 1055 (IV) iodate Pu(IO3)4 12.3 5 1013 (VI) carbonate PuO2CO3 12.77 1.7 1013 (V) hydroxide PuO2(OH) 9.3 5 1010 (VI) hydroxide PuO2(OH)2 24.7 2 1025 Polonium sulfide PoS 28.26 5.6 1029 Potassium hexabromoplatinate K2[PtBr6] 4.20 6.3 105 hexachloropalladinate K2[PdCl6] 5.22 6.0 106 hexachloroplatinate K2[PtCl6] 5.13 7.48 106 hexafluoroplatinate K2[PtF6] 4.54 2.9 105 8.14 SECTION 8 TABLE 8.6 Solubility Product Constants (Continued) Compound Formula pKsp Ksp hexafluorosilicate K2[SiF6] 6.06 8.7 107 hexafluorozirconate K2[ZrF6] 3.3 5 104 iodate KIO4 3.43 3.74 104 perchlorate KClO4 1.98 1.05 102 sodium cobaltinitrite hydrate K2Na[Co(NO2)6]·H2O 10.66 2.2 1011 tetraphenylborate K[B(C6H5)4] 7.66 2.2 108 uranyl arsenate K[UO2AsO4] 22.60 2.5 1023 uranyl carbonate K4[UO2(CO3)3] 4.20 6.3 105 Praseodymium hydroxide Pr(OH)3 23.45 3.39 1024 Promethium hydroxide Pm(OH)3 21 1 1021 Radium iodate Ra(IO3)2 8.94 1.16 109 sulfate RaSO4 10.44 3.66 1011 Rhodium hydroxide Rh(OH)3 23 1 1023 Rubidium cobaltinitrite Rb3[Co(NO2)6] 14.83 1.5 1015 hexachloroplatinate Rb2[PtCl6] 7.20 6.3 108 hexafluoroplatinate Rb2[PtF6] 6.12 7.7 107 hexafluorosilicate Rb2[SiF6] 6.30 5.0 107 perchlorate RbClO4 2.52 3.0 103 periodate RbIO4 3.26 5.5 104 Ruthenium hydroxide Ru(OH)3 36 1 1036 Samarium hydroxide Sm(OH)3 22.08 8.3 1023 Scandium fluoride ScF3 23.24 5.81 1024 hydroxide Sc(OH)3 30.65 2.22 1031 Silver acetate AgOAc 2.71 1.94 103 arsenate Ag3AsO4 21.99 1.03 1022 azide AgN3 8.54 2.8 109 bromate AgBrO3 4.27 5.38 105 bromide AgBr 12.27 5.35 1013 carbonate Ag2CO3 11.07 8.46 1012 chloride AgCl 9.75 1.77 1010 chlorite AgClO2 3.70 2.0 104 chromate Ag2CrO4 11.95 1.12 1012 cobaltinitrite Ag3[Co(NO2)6] 20.07 8.5 1021 cyanamide Ag2CN2 10.14 7.2 1011 cyanate AgOCN 6.64 2.3 107 cyanide AgCN 16.22 5.97 1017 dichromate Ag2Cr2O7 6.70 2.0 107 dicyanimide AgN(CN)2 8.85 1.4 109 ferrocyanide Ag4[Fe(CN)6] 40.81 1.6 1041 hydroxide AgOH 7.71 2.0 108 hyponitrite Ag2N2O2 18.89 1.3 1019 iodate AgIO3 7.50 3.17 108 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.15 TABLE 8.6 Solubility Product Constants (Continued) Compound Formula pKsp Ksp iodide AgI 16.07 8.52 1017 molybdate Ag2MoO4 11.55 2.8 1012 nitrite AgNO2 3.22 6.0 104 oxalate Ag2C2O4 11.27 5.40 1012 phosphate Ag3PO4 16.05 8.89 1017 quinaldate AgL 16.89 1.3 1017 perrhenate AgReO4 4.10 8.0 105 selenate Ag2SeO4 7.25 5.7 108 selenite Ag2SeO3 15.00 1.0 1015 selenocyanate AgSeCN 15.40 4.0 1016 sulfate Ag2SO4 4.92 1.20 105 sulfite Ag2SO3 13.82 1.50 1014 sulfide Ag2S 49.20 6.3 1050 thiocyanate AgSCN 11.99 1.03 1012 vanadate AgVO3 6.3 5 107 tungstate Ag2WO4 11.26 5.5 1012 Sodium ammonium cobaltinitrite Na(NH4)2[Co(NO2)6] 10.66 2.2 1011 antimonate Na[Sb(OH)6] 7.4 4 108 hexafluoroaluminate Na2[AlF6] 9.39 4.0 1010 uranyl arsenate NaUO2AsO4 21.87 1.3 1022 Strontium arsenate Sr3(AsO4)2 18.37 4.29 1019 carbonate SrCO3 9.25 5.60 1010 chromate SrCrO4 4.65 2.2 105 fluoride SrF2 8.36 4.33 109 iodate Sr(IO3)2 6.94 1.14 107 iodate hydrate Sr(IO3)2·H2O 6.42 3.77 107 molybdate SrMoO4 6.7 2 107 niobate Sr(NbO3)2 17.38 4.2 1018 oxalate hydrate SrC2O4·H2O 6.80 1.6 107 phosphate Sr3(PO4)2 27.39 4.0 1028 8-quinolinolate SrL2 9.3 5 1010 selenate SrSeO4 3.09 8.1 104 selenite SrSeO3 5.74 1.8 106 sulfate SrSO4 6.46 3.44 107 sulfite SrSO3 7.4 4 108 tungstate SrWO4 9.77 1.7 1010 Terbium hydroxide Tb(OH)3 21.70 2.0 1022 Tellurium hydroxide Te(OH)4 53.52 3.0 1054 Thallium(I) azide TlN3 3.66 2.2 104 bromate TlBrO3 4.96 1.10 105 bromide TlBr 5.43 3.71 106 chloride TlCl 3.73 1.86 104 chromate Tl2CrO4 12.06 8.67 1013 ferrocyanide dihydrate Tl4[Fe(CN)6]·2H2O 9.3 5 1010 hexachloroplatinate Tl2[PtCl6] 11.40 4.0 1012 iodate TlIO3 5.51 3.12 106 iodide TlI 7.26 5.54 108 8.16 SECTION 8 TABLE 8.6 Solubility Product Constants (Continued) Compound Formula pKsp Ksp oxalate Tl2C2O4 3.7 2 104 selenate Tl2SeO4 4.00 1.0 104 selenite Tl2SeO3 38.7 2 1039 sulfide Tl2S 20.30 5.0 1021 thiocyanate TlSCN 3.80 1.57 104 Thallium(III) hydroxide Tl(OH)3 43.77 1.68 1044 8-quinolinolate TlL3 32.40 4.0 1033 Thorium hydrogen phosphate Th(HPO4)2 20 1 1020 hydroxide Th(OH)4 44.40 4.0 1045 iodate Th(IO3)4 14.60 2.5 1015 oxalate Th(C2O4)2 22 1 1022 phosphate Th3(PO4)4 78.60 2.5 1079 Thullium hydroxide Tm(OH)3 23.48 3.3 1024 Tin (II) hydroxide Sn(OH)2 27.26 5.45 1028 (IV) hydroxide Sn(OH)4 56 1 1056 (II) sulfide SnS 25.00 1.0 1025 Titanium (III) hydroxide Ti(OH)3 40 1 1040 (IV) oxide hydroxide TiO(OH)2 29 1 1029 Uranium(IV) fluoride 2.5-water UF4·2.5H2O 21.24 5.7 1022 Uranyl(VI)(2) carbonate UO2CO3 11.73 1.8 1012 ferrocyanide UO2[Fe(CN)6] 13.15 7.1 1014 hydrogen arsenate UO2HAsO4 10.50 3.2 1011 hydrogen phosphate UO2HPO4 10.67 2.1 1011 hydroxide UO2(OH)2 21.95 1.1 1022 iodate hydrate UO2(IO3)2·H2O 7.50 3.2 108 oxalate trihydrate UO2C2O4·3H2O 3.7 2 104 phosphate (UO2)3(PO4)2 46.7 2 1047 sulfite UO2SO3 8.58 2.6 109 thiocyanate (UO2)(SCN)2 3.4 4 104 Vanadium (IV) hydroxide VO(OH)2 22.13 5.9 1023 (III) phosphate (VO2)3PO4 24.1 8 1025 Ytterbium hydroxide Yt(OH)3 23.60 2.5 1024 Yttrium carbonate Y2(CO3)3 2.99 1.03 103 fluoride YF3 20.06 8.62 1021 hydroxide Y(OH)3 22.00 1.00 1022 iodate Y(IO3)3 9.95 1.12 1010 oxalate Y2(C2O4)3 28.28 5.3 1029 Zinc anthranilate ZnL2 9.23 5.9 1010 arsenate Zn3(AsO4)2 27.55 2.8 1028 borate hydrate Zn(BO2)2·H2O 10.18 6.6 1011 carbonate ZnCO3 9.94 1.46 1010 ferrocyanide Zn2[Fe(CN)6] 15.40 4.0 1015 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.17 TABLE 8.6 Solubility Product Constants (Continued) Compound Formula pKsp Ksp fluoride ZnF2 1.52 3.04 102 hydroxide Zn(OH)2 16.5 3 1017 iodate dihydrate Zn(IO3)2·2H2O 5.37 4.1 106 oxalate dihydrate ZnC2O4·2H2O 8.86 1.38 109 phosphate Zn3(PO4)2 32.04 9.0 1033 quinaldate ZnL2 13.80 1.6 1014 8-quinolinolate ZnL2 24.30 5.0 1025 selenide ZnSe 25.44 3.6 1026 selenite hydrate ZnSeO3·H2O 6.80 1.57 107 sulfide -ZnS 23.80 1.6 1024 -ZnS 21.60 2.5 1022 Zirconium oxide hydroxide ZrO(OH)2 48.20 6.3 1049 phosphate Zr3(PO4)4 132 1 10132 8.2.1 Proton-Transfer Reactions The pKa values listed in Tables 8.7 and 8.8 are the negative (decadic) logarithms of the acidic dissociation constant, i.e., log10 For the general proton-transfer reaction K pK .
a a HB H B the acidic dissociation constant is formulated as follows: [H ][B] K a [HB] The most common charge types for the acid HB and its conjugate base B are CH COOH H CH COO (acetic acid, acetate ion) 3 3 2 HSO H SO (hydrogen sulfate ion, sulfate ion) 4 4 NH H NH (ammonium ion, ammonia) 4 3 Acids which have more than one acidic hydrogen ionize in steps, as shown for phosphoric acid: 3 H PO H H PO pK 2.148 K 7.11 10 3 4 2 4 1 1 2 8 H PO H HPO pK 7.198 K 6.34 10 2 4 4 2 2 2 3 12 HPO H PO pK 11.90 K 1.26 10 4 4 3 3 If the basic dissociation constant Kb for the equilibrium such as NH H O NH OH 3 2 4 is required, pKb may be calculated from the relationship pK pK pK b w a TABLE 8.7 Proton Transfer Reactions of Inorganic Materials in Water at 25C Substance Formula or remarks pK1 pK2 Aluminic acid H3AlO3 11.2 Aluminum ion (aquo) Al3 (aquo) 4.98(4) Americium(III) ion Am3 (aquo) 0.1 5.92 Ammonium ion NH4 9.246(2) Ammonium-d3 ND3H 9.757 Antimonic acid HSb(OH) Sb(OH) H 0.5 6 6 2.55 Antimony(III) ion SbO H O Sb(OH) H 1.0 2 3 1.42 Barium ion pKb of Ba(OH) 0.1 0.64 Berkelium(III) ion pK for hydrolysis of Bk3 0.1 5.66 Beryllium(II) ion Be2 ( aquo) BeOH H 1.0 6.5 Bismuth(III) ion 3 2 Bi BiOH H 3.0 1.58 Boric acid, tetra-H2B4O7 4 9 Bromine Br H O HBrO H Br 2 2 7.92 Cadmium ion Cd2 (aquo) hydrolysis 9.2(1) Calcium ion Ca2 (aquo) hydrolysis 12.67(3) Californium(III) ion Cf 3 (aquo) hydrolysis 0.1 5.62 Carbon dioxide CO2 (aquo) CO2 in D2O 6.
6.
352(1) 77 10.
10.
329 93 Cerium(III) ion Ce3 (aquo) hydrolysis ca. 9.3 Cerium(IV) ion Hydrolysis to Ce(OH)3 and 2 Ce(OH)2 1.15 0.82 Chromium(III) ion Cr3 (aquo) hydrolysis 3.95 Cobalt(II) ion Co2 (aquo) hydrolysis 8.9 Cobalt(III) ion Co3 (aquo) hydrolysis m 1 1.75 Copper(II) ion Cu2 (aquo) hydrolysis 7.34 Curium(III) ion Cm3 (aquo) hydrolysis m 0.1 6.00(5) Deuterium oxide D2O (molal scale) 14.956(1) Dysprosium(III) ion Dy3 (aquo) hydrolysis 8.10 Erbium(III) ion Er3 (aquo) hydrolysis 3 9.0 Europium(III) ion Eu3 (aquo) hydrolysis 8.03 Fermium(III) ion Fm3 hydrolysis 0.1 3.8 Gadolinium(III) ion Gd3 hydrolysis 8.27 Gallium(III) ion Ga3 (successive values for hydrolysis) 2.92 3.77 pK3 4.75 Gold(III) hydroxide H3AuO3 11.7 13.36 Hafnium(IV) ion Hf 4 hydrolysis 1 0.12 0.23 Hexaminotriphosphazene N3P3(NH2)6 3.2 7.68(3) Holmium(III) ion Ho3 hydrolysis 0.3 8.04 8.18 Hydrazinium(2) ion H N9NH 3 3 0.27 7.94(3) Hydrogen amidodisulfonate HNSO(OH)2 pK3 8.50 Hydrogen amidophosphate H2NPO(OH)2 (26C) 2.739 8.102 Hydrogen arsenate H3AsO4 2.223 6.760 Hydrogen-d3 arsenate D3AsO4 2.596 Hydrogen arsenite HAsO2 9.28(10) Hydrogen azide HN3 4.62 Hydrogen-d azide DN3 (in D2O) 5.115 Hydrogen borate (3) H3BO3 9.236 Hydrogen bromate HBrO3 (in formamide) 1.02 Hydrogen bromide HBr 8.72(15) Hydrogen chlorate HClO3 (theoretical prediction) 2.7 Hydrogen chloride HCl 6.2(1) Hydrogen-d chloride DCl (in dimethylformamide) 3.58 Hydrogen chlorite HClO2 1.94 Hydrogen chromate H2CrO4 0.74 6.488 Hydrogen cyanate HOCN 3.46 Hydrogen cyanide HCN 9.21 Hydrogen-d cyanide DCN (in D2O) 0.11 8.97 Hydrogen diamidophosphate (NH2)PO(OH) (30C) 1.279(1) 4.889 Hydrogen diamidothiophosphate (NH2)PO(SH) (20C) 2.0(1) 4.3 Hydrogen diimidotriphosphate (HO)2PO(NH)PO(OH)(NH)PO(OH)2 0.1 1 pK3 3.
pK5 9.
03 84 2 pK4 6.61 Hydrogen diphosphate H4P2O7 0.
pK3 6.
91 70 2.
pK4 9.
10 35 Hydrogen disulfate H2S2O7 (theoretical prediction) 12 8 Hydrogen dithionate H2S2O6 3.4 0.2 Hydrogen dithionite H2S2O4 0.35 2.45 Hydrogen fluoride H2F2 3.20(4) Hydrogen germanate H2GeO4 9.01 12.30 Hydrogen hexafluorosilicate H2SiF6 1.92 Hydrogen hydrosulfite H2S2O4 0.35 2.50 Hydrogen hypobromite HBrO 8.55 Hydrogen hypochlorite HClO 7.537 Hydrogen hypoiodite HIO 10.5(5) Hydrogen hyponitrite H2N2O2 7.21 11.45(10) Hydrogen iodate HIO3 0.804 Source: J. J. Christensen, L. D. Hansen, and R. M. Izatt, Handbook of Proton Ionization Heats and Related Thermodynamic Quantities, Wiley-Interscience, New York, 1976; D. D. Perrin, Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution, 2d ed., Pergamon Press, 1982.
8.19 TABLE 8.7 Proton Transfer Reactions of Inorganic Materials in Water at 25C (Continued) Substance Formula or remarks pK1 pK2 Hydrogen-d iodate DIO3 (in D2O) 1.15 Hydrogen iodide HI 8.56 Hydrogen manganate(VI) H2MnO4 (35C) 0.1 10.15 Hydrogen nitrate HNO3 1.37(7) Hydrogen nitrite HNO2 3.14(1) Hydrogen perchlorate HClO4 1.6 Hydrogen periodate HIO4 1.64 Hydrogen peroxide H2O2 11.64(2) Hydrogen peroxophosphate H3PO5 0.2 1.
pK3 12.
1 8 5.5 Hydrogen peroxosulfate H2SO5 1.0 9.86 Hydrogen perrhenate HReO4 1.25 Hydrogen pertechnetate HTcO4 0.3 Hydrogen perthiocarbonate H2CS4 3.54 7.24 Hydrogen perxenate H4XeO6 pK3 10.5 Hydrogen phosphate(3) H3PO4 2.
pK3 12.
148(20) 32(6) 7.198(10) Hydrogen-d2 phosphate D2PO4 (in D2O) 7.780 Hydrogen phosphinate H2PHO2 1.23 Hydrogen phosphonate H2PHO3 1.43 6.68(14) Hydrogen selenate H2SeO4 1.66 Hydrogen selenide H2Se 0.03 3.89 11.0 Hydrogen selenite H2SeO3 2.62 8.30(15) Hydrogen silicate(4) H4SiO4 9.60(10) 11.8(1) Hydrogen sulfamate H2NSO3H 0.99 Hydrogen sulfate H2SO4 1.99(1) Hydrogen sulfide H2S 6.97 12.90 Hydrogen sulfite SO H O HSO H 2 2 3 1.89 7.205 Hydrogen tellurate H6TeO6 7.65(5) 11.00(5) Hydrogen telluride H2Te (18C) 2.64 11–12 Hydrogen tellurite H2TeO3 (20C) 6.27 8.43 Hydrogen tetrafluoroborate HBF4 0.5 Hydrogen tetracyanonickelate H2Ni(CN)4 4.69 6.59 Hydrogen tetraperoxochromate H3CrO8 (30C) 3 7.16 Hydrogen tetrapolyphosphate H4P4O13 0.034 1.
pK3 6.
99 62 2.
pK4 8.
64 2 8.20 TABLE 8.7 Proton Transfer Reactions of Inorganic Materials in Water at 25C (Continued) Substance Formula or remarks pK1 pK2 Hydrogen tetrathiophosphate H3PS4 1.
pK3 6.
5 6 3.5 Hydrogen thiocyanate HSCN 3 1.8 Hydrogen thiophosphate H3PO3S 1.
pK3 10.
788 08 5.427 Hydrogen thiosulfate H2S2O3 0.6 1.74 Hydrogen tripolyphosphate H3P3O9 1 1.7 pK3 2.
pK4 5.
pK5 8.
00(10) 83(7) 51(6) Hydrogen triselenocarbonate H2CSe3 1.16 7.70 Hydrogen trithiocarbonate H2CS3 (20C) 2.68 8.18 Hydrogen tungstate H2WO4 2.20 3.70 Hydrogen vanadate(1) HVO3 3.80 Hydrogen vanadate(3) H3VO4 3.78 7.78(4) Hydroxylamine-N,N-disulfonic acid HON(SO3H)2 1.6 pK3 11.85 Hydroxylamine O-sulfonate H NOSO 1 3 3 1.48 Imidodiphosphoric acid (HO)2PO(NH)PO(OH)2 0.2 2 pK3 7.08 2.
pK4 9.
85 72 Indium(III) ion In3 hydrolysis 3.54 4.28 Iridium(III) ion Ir3 hydrolysis 1 4.37 5.20 Iron(II) ion Fe2 hydrolysis 1 6.8 Iron(III) ion Fe3 hydrolysis 2.19 Lanthanum(III) ion La3 hydrolysis 9.06 Lead(II) ion Pb2 hydrolysis 0.3 7.8 Lead(IV) ion Pb4 hydrolysis 1.8 3.2 Lithium(I) ion Li 13.8 Lutetium(III) ion Lu3 hydrolysis 7.94 Magnesium(II) ion Mg2 hydrolysis 11.41 Manganese(II) ion Mn2 hydrolysis 10.59 Manganese(III) ion Mn3 hydrolysis 0.4 Mercury(I) ion 2 Hg hydrolysis 0.5 2 5.0 Mercury(II) ion Hg2 hydrolysis 0.5 3.70 2.65 Neodymium(III) ion Nd3 hydrolysis 3 9.0(5) Neptunium(III) ion Np3 hydrolysis 0.3 7.43 Neptunium(IV) ion Np4 hydrolysis 2 2.30 Neptunium(V) ion hydrolysis NpO2 8.90(2) Nickel(II) ion Ni2 hydrolysis 9.86 Osmium tetroxide OsO4 hydrolysis 1 12.1 Palladium(II) ion Pd2 (stepwise pKb values) 13.0 12.8 Pentacyanoaquoferrate(II) ion Fe(CN)5(H2O)3 0.1 2.63 8.21 TABLE 8.7 Proton Transfer Reactions of Inorganic Materials in Water at 25C (Continued) Substance Formula or remarks pK1 pK2 Plutonium(III) ion Pu3 hydrolysis 0.07 7.2(2) Plutonium(IV) ion Pu4 hydrolysis 2 1.26 Plutonium(V) ion hydrolysis PuO 0.003 2 9.7 Plutonium(VI) ion hydrolysis 2 PuO2 3.33 4.05 Polonium(IV) ion Po4 hydrolysis 0.
pK3 5.
48 58 2.74 Praseodymium(III) ion Pr3 hydrolysis 0.3 8.55 Protoactinium(IV) ion Pa4 hydrolysis 3 0.14 0.38 Protoactinium(V) ion Pa5 hydrolysis 3 1.05 Scandium(III) ion Sc3 hydrolysis 0.05 4.58(3) Silver(I) ion Ag hydrolysis 11.1 Sodium ion Na (aquo) 14.67(10) Strontium ion Sr2 (aquo) 13.18 Terbium(III) ion Tb3 hydrolysis 0.3 8.16 Thallium(I) ion Tl 13.36(15) Thallium(III) ion Tl3 hydrolysis 3 1.14 Thorium(IV) ion Th4 hydrolysis 0.5 3.89 4.20 Tin(II) ion Sn2 hydrolysis 3 3.81(10) Titanium(III) Ti3 hydrolysis 3 2.55 Titanium(IV) 2 TiO H O TiO(OH) H 2 1.3 Tritium oxide pKw for T O T OH 2 15.21 Uranium(IV) ion U4 hydrolysis 0.68 Uranyl(VI) ion 2 UO 0.035 2 5.82 Vanadium(II) ion V2 hydrolysis 6.85 Vanadium(III) ion V3 hydrolysis 2.92 3.5 Vanadyl(IV) ion VO2 hydrolysis 6.86(10) Vanadyl(V) ion (20C) VO 0.1 2 1.83 Xenon trioxide XeO H O HXeO H 3 2 4 10.5 Ytterbium(III) ion Yb3 hydrolysis 7.99(6) Yttrium(III) ion Y3 hydrolysis 0.3 8.34 Zinc ion Zn2 hydrolysis 8.96 Zirconium(IV) ion Zr4 hydrolysis 1 0.
pK3 0.
32 35 0.06 8.22 TABLE 8.7 Proton Transfer Reactions of Inorganic Materials in Water at 25C (Continued) Substance Formula or remarks pK1 pK2 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.23 If a desired organic acid is not entered in Table 8.8, a useful estimate of its pKa value can sometimes be obtained by making a comparison with recognizably similar compounds for which pKa values are known: (1) alkyl chains, alicyclic rings, or saturated carbocyclic rings fused to aromatic or heterocyclic rings can be replaced by methyl or ethyl groups; (2) acid-strengthening inductive and mesomeric effects of a nitro group attached to an aromatic ring are very similar to those of a nitrogen atom located at the same position in a heteroaromatic ring (e.g., 3-hydroxypyr-idine and 3-nitrophenol).
Hammett and Taft substituent constants and, in particular, Tables 9.1 through 9.4 may also prove useful for estimating pKa values.
8.2.1.1 Calculation of the Approximate pH Value of Solutions Strong acid: pH log [acid] Strong base: pH 14.00 log [base] 1 1 Weak acid: pH ⁄2pK ⁄2 log [acid] a 1 1 Weak base: pH 14.00 ⁄2pK ⁄2 log [base] b Salt formed by a weak acid and a strong base: 1 1 pH 7.00 ⁄2pK ⁄2 log [salt] a Acid salts of a dibasic acid: 1 1 1 1 pH ⁄2pK ⁄2pK ⁄2 log [salt] ⁄2 log (K [salt]) 1 2 1 Buffer solution consisting of a mixture of a weak acid and its salt: [salt] [H O ] [OH ] 3 pH pK log a [acid] [H O ] [OH ] 3 8.2.1.2 Calculation of Concentrations of Species Present at a Given pH n [H ] [H A] n 0 n n1 n2 [H ] K [H ] K K [H ] · · · K K · · · K C 1 1 2 1 2 n acid n1 K [H ] [H A ] 1 n1 1 n n1 n2 [H ] K [H ] K K [H ] · · · K K · · · K C 1 1 2 1 2 n acid n2 2 K K [H ] [H A ] 1 2 n2 2 n n1 n2 [H ] K [H ] K K [H ] · · · K K · · · K C 1 1 2 1 2 n acid n K K · · · K [A ] 1 2 n n n n1 n2 [H ] K [H ] K K [H ] · · · K K · · · K C 1 1 2 1 2 n acid 8.24 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C Ionic strength is zero unless otherwise indicated. Protonated cations are designated by (1), ( 2), etc., after the pKa value; neutral species by (0), if not obvious; and negatively charged acids by (1), (2), etc.
Substance pK1 pK2 pK3 pK4 Abietic acid 7.62 Acetamide 0.37(1) Acetamidine 1.60(1) N-(2-Acetamido)-2-aminoethane-sulfonic acid (20C) 6.88 2-Acetamidobenzoic acid 3.63 3-Acetamidobenzoic acid 4.07 4-Acetamidobenzoic acid 4.28 2-(Acetamido)butanoic acid 3.716 N-(2-Acetamido)iminodiacetic acid (20C) 6.62 3-Acetamidopyridine 4.37(1) Acetanilide 0.4(1) 40C 13.39(0) Acetic acid 4.756 Acetic acid-d (in D2O) 5.32 Acetoacetic acid (18C) 3.58 Acetohydrazine 3.24(1) Acetone oxime 12.2 2-Acetoxybenzoic acid (acetylsali-cyclic acid) 3.48 3-Acetoxybenzoic acid 4.00 4-Acetoxybenzoic acid 4.38 Acetylacetic acid (18C) 3.58 N-Acetyl--alanine 3.715 N-Acetyl--alanine 4.455 2-Acetylaminobutanoic acid 3.72 3-Acetylaminopropionic acid 4.445 2-Acetylbenzoic acid 4.13 3-Acetylbenzoic acid 3.83 4-Acetylbenzoic acid 3.70 2-Acetylcyclohexanone 14.1 N-Acetylcysteine (30C) 9.52 Acetylenedicarboxylic acid 1.75 4.40 N-Acetylglycine 3.670 N-Acetylguanidine 8.23(1) N--Acetyl-L-histidine 7.08 Acetylhydroxamic acid (20C) 9.40 N-Acetyl-2-mercaptoethylamine 9.92(SH) 4-Acetyl--mercaptoisoleucine (30C) 10.30 2-Acetyl-1-naphthol (30C) 13.40 N-Acetylpenicillamine (30C) 9.90 2-Acetylphenol 9.19 4-Acetylphenol 8.05 2-Acetylpyridine 2.643(1) 3-Acetylpyridine 3.256(1) 4-Acetylpyridine 3.505(1) Aconitine 8.11(1) Acridine 5.60(1) Acrylic acid 4.26 Adenine 4.17(1) 9.75(0) ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.25 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 Adeninedeoxyriboside-5-phos-phoric acid — 4.4 6.4 Adenine-N-oxide 2.69(1) 8.49(0) Adenosine 3.5(1) 12.34(0) Adenosine-5-diphosphoric acid — 4.2(1) 7.20(2) Adenosine-2-phosphoric acid 3.81(1) 6.17(0) Adenosine-3-phosphoric acid 3.65(0) 5.88(1) Adenosine-5-phosphoric acid 3.74(0) 6.05(1) 13.06(2) Adenosine-5-triphosphoric acid — 4.00(1) 6.48(2) Adipamic acid (adipic acid monoamide) 4.629 Adipic acid 4.418 5.412 -Alanine 2.34(1) 9.69(0) -Alanine 3.55(1) 10.238(0) -Alanine, methyl ester ( 0.10) 7.743(1) -Alanine, methyl ester ( 0.10) 9.170(1) N-D-Alanyl--D-alanine ( 0.1) 3.32(1) 8.13(0) N-L-Alanyl--L-alanine ( 0.1) 3.32(1) 8.13(0) N-L-Alanyl--D-alanine 3.12(1) 8.30(0) N--Alanylglycine 3.11(1) 8.11(0) Alanylglycylglycine 3.190(1) 8.15(0) -Alanylhistidine 2.64 6.86 9.40 Albumin (bovine serum ( 0.15) 10–10.3 2-Aldoxime pyridine 3.42(1) 10.22(0) Alizarin Black SN 5.79 12.8 Alizarin-3-sulfonic acid 5.54 11.01 Allantoin 8.96 Allothreonine 2.108(1) 9.096(0) Alloxanic acid 6.64 Allylacetic acid 4.68 Allylamine 9.69(1) 5-Allylbarbituric acid 4.78(1) 5-Allyl-5-(-methylbutyl)barbituric acid 8.08 2-Allylphenol 10.28 1-Allylpiperidine 9.65(1) 2-Allylpropionic acid 4.72 3-Amidotetrazoline 3.95(1) 2-Aminoacetamide 7.95(1) Aminoacetonitrile 5.34(1) 9-Aminoacridine (20C) 9.95(1) 4-Aminoantipyrine 4.94(1) 2-Aminobenzenesulfonic acid 2.459(0) 3-Aminobenzenesulfonic acid 3.738(0) 4-Aminobenzenesulfonic acid 3.227(0) 2-Aminobenzoic acid 2.09(1) 4.79(0) 3-Aminobenzoic acid 3.07(1) 4.79(0) 4-Aminobenzoic acid 2.41(1) 4.85(0) 2-Aminobenzoic acid, methyl ester 2.36(1) 3-Aminobenzoic acid, methyl ester 3.58(1) 4-Aminobenzoic acid, methyl ester 2.45(1) 3-Aminobenzonitrile 2.75(1) 4-Aminobenzonitrile 1.74(1) 8.26 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 4-Aminobenzophenone 2.15(1) 2-Aminobenzothiazole (20C) 4.48(1) 2-Aminobenzoylhydrazide 1.85 3.47 12.80 2-Aminobiphenyl 3.78(1) 3-Aminobiphenyl 4.18(1) 4-Aminobiphenyl 4.27(1) 4-Amino-3-bromomethylpyridine 7.47(1) 4-Amino-3-bromopyridine (20C) 7.04(1) 2-Aminobutanoic acid 2.286(1) 9.830(0) 3-Aminobutanoic acid — 10.14(0) 4-Aminobutanoic acid 4.031(1) 10.556(0) 2-Aminobutanoic acid, methyl ester ( 0.1) 7.640(1) 4-Aminobutanoic acid, methyl ester ( 0.1) 9.838(1) D-()-2-Amino-1-butanol 9.52(1) 3-Amino-N-butyl-3-methyl-2-butanone oxime 9.09(1) 4-Aminobutylphosphonic acid 2.55 7.55 10.9 2-Amino-N-carbamoylbutanoic acid 3.886(1) 4-Amino-N-carbamoylbutanoic acid 4.683(1) 2-Amino-N-carbamoyl-2-methyl-propanoic acid 4.463 1-Amino-1-cycloheptanecarboxylic acid 2.59(1) 10.46(0) 1-Amino-1-cyclohexanecarboxylic acid 2.65(1) 10.03(0) 2-Amino-1-cyclohexanecarboxylic acid 3.56(1) 10.21(0) 1-Aminocyclopentane 10.65(1) 1-Aminocyclopropane 9.10(1) 10-Aminodecylphosphonic acid — 8.0 11.25 10-Aminodecylsulfonic acid 2.65(1) 1-Amino-2-di(aminomethyl)butane 3.58(3) 8.59(2) 9.66(1) 2-Amino-N,N-dihydroxyethyl-2-hydroxyl-1,3-propanediol 6.484(1) 2-Amino-N,N-dimethylbenzoic acid 1.63(1) 8.42(0) 4-Amino-2,5-dimethylphenol 5.28(1) 10.40(0) 4-Amino-3,5-dimethylpyridine (20C) 9.54(1) 12-Aminododecanoic acid 4.648(1) 2-Aminoethane-1-phosphoric acid 5.838 10.64 1-Aminoethanesulfonic acid 0.33 9.06 2-Aminoethanesulfonic acid 1.5 9.061 2-Aminoethanethiol (cysteamine) ( 0.01) 8.23(1) 2-Aminoethanol (ethanolamine) 9.50(1) 2-[2-(2-Aminoethyl)amino-ethyl]pyridine 3.50 6.59 9.51 2-Amino-2-ethyl-1-butanol 9.82(1) 3-(2-Aminoethyl)indole — 10.2 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.27 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 3-Amino-N-ethyl-3-methyl-2-buta-none oxime 9.23(1) N-(2-Aminoethyl)morpholine 4.06(2) 9.15(1) p-(2-Aminoethyl)phenol 9.3 10.9 2-Aminoethylphosphonic acid 2.45(1) 7.0(0) 10.8(1) N-(2-Aminoethyl)piperidine (30C) 6.38 9.89 2-(2-Aminoethyl)pyridine ( 0.5) 4.24(2) 9.78(1) 4-Amino-3-ethylpyridine (20C) 9.51(1) N-(2-Aminoethyl)pyrrolidine (30C) 6.56(2) 9.74(1) 2-Aminofluorine 10.34(1) 2-Amino-D--glucose ( 0.05) 2.20(1) 9.08(0) 2-Amino-N-glycylbutanoic acid 3.155(1) 8.331(0) 7-Aminoheptanoic acid 4.502 2-Aminohexanoic acid 2.335(1) 9.834(0) 6-Aminohexanoic acid 4.373(1) 10.804(0) C-Amino-C-hydrazinocarbonyl-methane 2.38(2) 7.69(1) 2-Amino-3-hydroxybenzoic acid 2.5(1) 5.192(0) 10.118(OH) L-2-Amino-3-hydroxybutanoic acid (threonine) 2.088(1) 9.100(0) DL-2-Amino-4-hydroxybutanoic acid ( 0.1) 2.265(1) 9.257(0) DL-4-Amino-3-hydroxybutanoic acid ( 0.1) 3.834(1) 9.487(0) 2-Amino-2-hydroxydiethyl sulfide 9.27(1) 4-Amino-2-hydroxypyrimidine (cy-tosine) 4.58(1) 12.15(0) 3-Amino-N-isopropyl-3-methyl-2-butanone oxime 9.09(1) 4-Amino-3-isopropylpyridine (20C) 9.54(1) 1-Aminoisoquinoline (20C, 0.01) 7.62(1) 3-Aminoisoquinoline (20C, 0.005) 5.05(1) 4-Aminoisoxazolidine-3-one 7.4(1) Aminomalonic acid 3.32(1) 9.83(0) DL-2-Amino-4-mercaptobutanoic acid 2.22(1) 8.87(0) 10.86(SH) 2-Amino-3-mercapto-3-Methylbutanoic acid 1.8(1) 7.9(0) 10.5(SH) 2-Amino-6-methoxybenzothiazole 4.50(1) 3-Amino-4-methylbenzenesulfonic acid 3.633 4-Amino-3-methylbenzenesulfonic acid 3.125 2-Amino-4-methylbenzothiazole 4.7(1) 1-Amino-3-methylbutane 10.64(1) 3-Amino-3-methyl-2-butanone ox-ime 9.09(1) 3-Amino-N-methyl-3-methyl-2-bu-tanone oxime 9.23(1) 8.28 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 2-Amino-3-methylpentanoic acid 2.320(1) 9.758(0) 3-Aminomethyl-6-methylpyridine (30C) 8.70(1) Aminomethylphosphonic acid 2.35 5.9 10.8 2-Amino-2-methyl-1,3-propanediol 8.801 2-Amino-2-methyl-1-propanol 9.694(1) 2-Amino-2-methylpropanoic acid 2.357(1) 10.205(0) (2-Aminomethyl(pyridine ( 0.5) 2.31(2) 8.79(1) 2-Amino-3-methylpyridine 7.24(1) 4-Amino-3-methylpyridine 9.43(1) 2-Amino-4-methylpyridine 7.48(1) 2-Amino-5-methylpyridine 7.22(1) 2-Amino-6-methylpyridine 7.41(1) 2-Amino-4-methylpyrimidine (20C) 4.11(1) Aminomethylsulfonic acid 5.57(1) N-Aminomorpholine 4.19(1) 4-Amino-1-naphthalenesulfonic acid 2.81 1-Amino-2-naphthalenesulfonic acid 1.71 1-Amino-3-naphthalenesulfonic acid 3.20 1-Amino-5-naphthalenesulfonic acid 3.69 1-Amino-6-naphthalenesulfonic acid 3.80 1-Amino-7-naphthalenesulfonic acid 3.66 1-Amino-8-naphthalenesulfonic acid 5.03 2-Amino-1-naphthalenesulfonic acid 2.35 2-Amino-4-naphthalenesulfonic acid 3.79 2-Amino-6-naphthalenesulfonic acid 3.79 8.94 2-Amino-8-naphthalenesulfonic acid 3.89 3-Amino-1-naphthoic acid 2.61 4.39 4-Amino-2-naphthoic acid 2.89 4.46 8-Amino-2-naphthol 4.20(1) DL-2-Aminopentanoic acid (DL-norvaline) 2.318(1) 9.808 3-Aminopentanoic acid 4.02(1) 10.399(0) 4-Aminopentanoic acid 3.97(1) 10.46(0) 5-Aminopentanoic acid 4.20(1) 9.758(0) 5-Aminopentanoic acid, ethyl ester 10.151 2-Aminophenol 9.28 9.72 3-Aminophenol 9.83 9.87 4-Aminophenol 8.50 10.30 4-Aminophenylacetic acid (20C) 3.60 5.26 2-Aminophenylarsonic acid ca 2 3.77 8.66 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.29 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 3-Aminophenylarsonic acid ca 2 4.02 8.92 4-Aminophenylarsonic acid ca 2 4.02 8.62 3-Aminophenylboric acid 4.46 8.81 4-Aminophenylboric acid 3.71 9.17 4-Aminophenyl (4-chlorophenyl) sulfone 1.38 2-Aminophenylphosphonic acid — 4.10 7.29 3-Aminophenylphosphonic acid — — 7.16 4-Aminophenylphosphonic acid — — 7.53 1-Amino-1,2,3-propanetricarbox-ylic acid ( 2.2) 2.10(1) 3.60(0) 4.60(1) 9.82(2) 3-Aminopropanoic acid 3.551(1) 10.235(0) 1-Amino-1-propanol 9.96(1) DL-2-Amino-1-propanol 9.469(1) 3-Amino-1-propanol 9.96(1) 3-Aminopropene 9.691(1) 3-Amino-N-propyl-3-methyl-2-bu-tanone oxime 9.09(1) 2-Aminopropylsulfonic acid — 9.15 2-Aminopyridine 6.71(1) 3-Aminopyridine 6.03(1) 4-Aminopyridine 9.114(1) 2-Aminopyridine-1-oxide 2.58(1) 3-Aminopyridine-1-oxide 1.47(1) 4-Aminopyridine-1-oxide 3.54(1) 8-Aminoquinaldine 4.86(1) 2-Aminoquinoline (20C, 0.01) 7.34(1) 3-Aminoquinoline (20C, 0.01) 4.95(1) 4-Aminoquinoline (20C, 0.01) 9.17(1) 5-Aminoquinoline (20C, 0.01) 5.46(1) 6-Aminoquinoline (20C, 0.01) 5.63(1) 8-Aminoquinoline (20C, 0.01) 3.99(1) 4-Aminosalicyclic acid 1.991(1) 3.917(0) 13.74 5-Aminosalicyclic acid 2.74(1) 5.84(0) 2-Amino-3-sulfopropanoic acid 1.89(1) 8.70(0) 4-Amino-2,3,5,6-tetramethylpyri-dine (20C) 10.58(1) 5-Amino-1,2,3,4-tetrazole (20C) 1.76 6.07 2-Aminothiazole (20C) 5.36(1) 1-Amino-3-thiobutane (30C) 9.18(1) 5-Amino-3-thio-1-pentanol (30C) 9.12(1) 2-Aminothiophenol 2(1) 7.90(0) 2-Amino-4,4,4-trifluorobutanoic acid 8.171(0) 3-Amino-4,4,4-trifluorobutanoic acid 5.831(0) 3-Amino-2,4,6-trinitroluene 9.5(1) Angiotensin II 10.37 8.30 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 Anhydroplatynecine 9.40 Aniline 4.60(1) 2-Anilinoethylsulfonic acid 3.80(1) 3-Anilinoethylsulfonic acid 4.85(1) Anthracene-1-carboxylic acid 3.68 Anthracene-2-carboxylic acid 4.18 Anthracene-9-carboxylic acid 3.65 Anthraquinone-1-carboxylic acid (20C) 3.37 Anthraquinone-2-carboxylic acid (20C) 3.42 9,10-Anthraquinone monoxime 9.78 9,10-Anthraquinone-1-sulfonic acid 0.27 9,10-Anthraquinone-2-sulfonic acid 0.38 Antipyrine 1.45(1) Apomorphine (15C) 8.92 D-()-Arabinose 12.34 L-()-Arginine 2.17 9.04(1) 12.47(1) Arsenazo III [pK5 10.5(4); pK6 12.0(5)] 1.2 2.7 7.9(3) Arsenoacetic acid 4.67 7.68 Arsenoacrylic acid 4.23 8.60 Arsenobutanoic acid 4.92 7.64 2-Arsenocrotonic acid 4.61 8.75 3-Arsenocrotonic acid 4.03 8.81 Arsenopentanoic acid 4.89 7.75 L-()-Ascorbic acid (vitamin C) 4.17 11.57 L-()-Asparagine 2.01(0) 8.80(1) L-Asparaginylglycine 4.53 9.07 D-Aspartic acid 1.89(0) 3.65 9.60 Aspartic diamide ( 0.2) 7.00 Aspartylaspartic acid 3.40 4.70 8.26 -Aspartylhistidine (38C, 0.1) 3.02 6.82 7.98 -Aspartylhistidine (38C, 0.1) 2.95 6.93 8.72 N-Aspartyl-p-tyrosine ( 0.01) 3.57 8.92 10.23(OH) Aspidospermine 7.65 Atropine (17C) 4.35(1) 1-Azacycloheptane 11.11(1) 1-Azacyclooctane 11.1(1) Azetidine 11.29(1) Aziridine 8.04(1) Barbituric acid 8.372(0) m-Benzbetaine 3.217(1) p-Benzbetaine 3.245(1) Benzenearsonic acid (22C) 8.48(1) Benzene-1-arsonic acid-4-carbox-ylic acid 4.22 (COOH) 5.59 Benzeneboronic acid 13.7 Benzene-1-carboxylic acid-2-phos-phoric acid 3.78 9.17 Benzene-1-carboxylic acid-3-phos-phoric acid 4.03 7.03 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.31 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 Benzene-1-carboxylic acid-4-phos-phoric acid 1.50 3.95 6.89 Benzenediazine 11.08(1) 1,3-Benzenedicarboxylic acid (iso-phthalic acid) 3.62(0) 4.60(1) 1,4-Benzenedicarboxylic acid (tere-phthalic acid) 3.54(0) 4.46(1) 1,3-Benzenedicarboxylic acid mon-onitrile 3.60(0) 1,4-Benzenedicarboxylic acid mon-onitrile 3.55(0) Benzenehexacarboxylic acid (pK5 6.32; pK6 7.49) 0.68 2.21 3.52 5.09 Benzenepentacarboxylic acid (pK5 6.46) 1.80 2.73 3.96 5.25 Benzenesulfinic acid 1.50 Benzenesulfonic acid 2.554 1,2,3,4-Benzenetetracarboxylic acid 2.05 3.25 4.73 6.21 1,2,3,5-Benzenetetracarboxylic acid 2.38 3.51 4.44 5.81 1,2,4,5-Benzenetetracarboxylic acid 1.92 2.87 4.49 5.63 1,2,3-Benzenetricarboxylic acid 2.88 4.75 7.13 1,2,4-Benzenetricarboxylic acid 2.52 3.84 5.20 1,3,5-Benzenetricarboxylic acid 2.12 4.10 5.18 Benzil--dioxime 12.0 Benzilic acid 3.09 Benzimidazole 5.53(1) 12.3(0) Benzohydroxamic acid (20C) 8.89(0) Benzoic acid 4.204 5,6-Benzoquinoline (20C) 5.00(1) 7,8-Benzoquinoline (20C) 4.15(1) 1,4-Benzoquinone monoxime 6.20 Benzosulfonic acid 0.70 1,2,3-Benzotriazole 8.38(1) 1-Benzoylacetone 8.23 Benzoylamine 9.34(1) 2-Benzoylbenzoic acid 3.54 Benzoylglutamic acid 3.49 4.99 N-Benzoyglycine (hippuric acid) 3.65 Benzoylhydrazine 3.03(2) 12.45(1) Benzoylpyruvic acid 6.40 12.10 3-Benzoyl-1,1,1-trifluoroacetone 6.35 Benzylamine 9.35(1) Benzylamine-4-carboxylic acid 3.59 9.64 2-Benzyl-2-phenylsuccinic acid (20C) 3.69 6.47 2-Benzylpyridine 5.13(1) 4-Benzylpyridine-1-oxide 1.018(1) 1-Benzylpyrrolidine 9.51(1) 2-Benzylpyrrolidine 10.31(1) Benzylsuccinic acid (20C) 4.11 5.65 3-(Benzylthio)propanoic acid 4.463 Berberine (18C) 11.73(1) Betaine 1.832(1) 8.32 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 Biguanide 2.96(2) 11.51(1) 2,2-Biimidazolyl ( 0.3) 5.01(1) 2-Biphenylcarboxylic acid 3.46 (1,1-Biphenyl)-4,4-diamine 3.63(2) 4.70(1) Bis(2-aminoethyl) ether (30C) 8.62(2) 9.59(1) N,N-Bis(2-aminoethyl)-ethylenedi-amine (20C) 3.32(4) 6.67(3) 9.20(2) 9.92(1) N,N-Bis(2-hydroxyethyl)-2-ami-noethane sulfonic acid (BES) (20C) 7.15 N,N-Bis(2-hydroxyethyl)glycine (bicine) (20C) 8.35 Bis(2-hydroxyethyl)iminotris (hy-droxymethyl)methane (bis-tris) 6.46(1) 1,3-Bis[tris(hydroxymethyl)methy-lamino]propane (20C) 6.80(1) Bromoacetic acid 2.902 2-Bromoaniline 2.53(1) 3-Bromoaniline 3.53(1) 4-Bromoaniline 3.88(1) 2-Bromobenzoic acid 2.85 3-Bromobenzoic acid 3.810 4-Bromobenzoic acid 3.99 2-Bromobutanoic acid (35C) 2.939 erythro-2-Bromo-3-chlorosuccinic acid (19C, 0.1) 1.4 2.6 threo-2-Bromo-chlorosuccinic acid (19C, 0.1) 1.5 2.8 trans-2-Bromocinnamic acid 4.41 3-Bromo-4-(dimethylam-ino)pyridine (20C) 6.52(1) 2-Bromo-4,6-dinitroaniline 6.94(1) 3-Bromo-2-hydroxymethylbenzoic acid (20C) 3.28 6-Bromo-2-hydroxymethylbenzoic acid (20C) 2.25 7-Bromo-8-hydroxyquinoline-5-sulfonic acid 2.51 6.70 3-Bromomandelic acid 3.13 3-Bromo-4-methylaminopyridine (20C) 7.49(1) (2-Bromomethyl)butanoic acid 3.92 Bromomethylphosphonic acid 1.14 6.52 2-Bromo-6-nitrobenzoic acid 1.37 2-Bromophenol 8.452 3-Bromophenol 9.031 4-Bromophenol 9.34 2-(2-Bromophenoxy)acetic acid 3.12 2-(3-Bromophenoxy)acetic acid 3.09 2-(4-Bromophenoxy)acetic acid 3.13 2-Bromo-2-phenylacetic acid 2.21 2-(Bromophenyl) acetic acid 4.054 4-(Bromophenyl)acetic acid 4.188 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.33 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 4-Bromophenylarsonic acid 3.25 8.19 4-Bromophenylphosphinic acid (17C) 2.1 2-Bromophenylphosphonic acid 1.64 7.00 3-Bromophenylphosphonic acid 1.45 6.69 4-Bromophenylphosphonic acid 1.60 6.83 3-Bromophenylselenic acid 4.43 4-Bromophenylselenic acid 4.50 2-Bromopropanoic acid 2.971 3-Bromopropanoic acid 3.992 Bromopropynoic acid 1.855 2-Bromopyridine 0.71(1) 3-Bromopyridine 2.85(1) 4-Bromopyridine 3.71(1) 3-Bromoquinoline 2.69(1) Bromosuccinic acid 2.55 4.41 2-Bromo-p-tolylphosphonic acid 1.81 7.15 Brucine (15C) 2.50(2) 8.16(1) 2-Butanamine (sec-butylamine) 10.56(1) 1,2-Butanediamine 6.399(2) 9.388(1) 1,4-Butanediamine 9.35(2) 10.82(1) 2,3-Butanediamine 6.91(2) 10.00(1) 1,2,3,4-Butanetetracarboxylic acid 3.43 4.58 5.85 7.16 cis-2-Butenoic acid (isocrotonic acid) 4.44 trans-2-Butenoic acid (trans-cro-tonic acid) (35C) 4.676 3-Butenoic acid (vinylacetic acid) 4.68 3-Butoxybenzoic acid (20C) 4.25 Butylamine 10.64(1) tert-Butylamine 10.685(1) 4-tert-Butylaniline 3.78(1) N-tert-Butylaniline 7.10(1) Butylarsonic acid (18C) 4.23 8.91 2-tert-Butylbenzoic acid 3.57 3-tert-Butylbenzoic acid 4.199 4-tert-Butylbenzoic acid 4.389 N-Butylethylenediamine 7.53(2) 10.30(1) N-Butylglycine 2.35(1) 10.25(0) tert-Butylhydroperoxide 12.80 1-(tert-Butyl)-2-hydroxybenzene 10.62 1-(tert-Butyl)-3-hydroxybenzene 10.119 1-(tert-Butyl)-4-hydroxybenzene 10.23 Butylmethylamine 10.90(1) 2-Butyl-1-methyl-2-pyrroline 11.84(1) 4-tert-Butylphenylactic acid 4.417 Butylphosphinic acid 3.41 tert-Butylphosphinic acid 4.24 tert-Butylphosphonic acid 2.79 8.88 1-Butylpiperidine ( 0.02) 10.43(1) 2-tert-Butylpyridine 5.76(1) 3-tert-Butylpyridine 5.82(1) 4-tert-Butylpyridine 5.99(1) 8.34 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 2-tert-Butylthiazole ( 0.1) 3.00(1) 4-tert-Butylthiazole ( 0.1) 3.04(1) 2-Butyn-1,4-dioic acid 1.75 4.40 2-Butynoic acid (tetrolic acid) 2.620 Butyric acid 4.817 4-Butyrobetaine (20C) 3.94(1) Caffeine (40C) 10.4 Calcein (pK5 12) 4 5.4 9.0 10.5 Calmagite 8.14 12.35 D-Camphoric acid 4.57 5.10 Canaline 2.40 3.70 9.20 Canavanine 2.50(2) 6.60(1) 9.25(0) N-Carbamoylacetic acid 3.64 N-Carbamoyl--D-alanine 3.89(1) N-Carbamoyl--alanine 4.99(1) DL-N-Carbamoylalanine 3.892(1) N-Carbamoylglycine 3.876 2-Carbamoylpyridine (20C) 2.10(1) 3-Carbamoylpyridine 3.328(1) 4-Carbamoylpyridine (20C) 3.61(1) -Carboxymethylaminopropanoic acid 3.61(1) 9.46(0) Chloroacetic acid 2.867 N-(2-Chloroacetyl)glycine 3.38(0) cis-3-Chloroacrylic acid (18C, 0.1) 3.32 trans-3-chloroacrylic acid (18C, 0.1) 3.65 2-Chloroaniline 2.64(1) 3-Chloroaniline 3.52(1) 4-Chloroaniline 3.99(1) 2-Chlorobenzoic acid 2.877 3-Chlorobenzoic acid 3.83 4-Chlorobenzoic acid 3.986 2-Chlorobutanoic acid 2.86 3-Chlorobutanoic acid 4.05 4-Chlorobutanoic acid 4.50 2-Chloro-3-butenoic acid 2.54 3-Chlorobutylarsonic acid (18C) 3.95 8.85 trans-2-Chlorocinnamic acid 4.234 trans-3-Chlorocinnamic acid 4.294 trans-4-Chlorocinnamic acid 4.413 2-Chlorocrotonic acid 3.14 3-Chlorocrotonic acid 3.84 Chlorodifluoroacetic acid 0.46 1-Chloro-1,2-dihydroxybenzene 8.522 1-Chloro-2,6-dimethyl-4-hydroxy-benzene 9.549 4-Chloro-2,6-dinitrophenol 2.97 2-Chloroethylarsonic acid 3.68 8.37 3-Chlorohexyl-1-arsonic acid (18C) 3.51 8.31 2-Chloro-3-hydroxybutanoic acid 2.59 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.35 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 3-Chloro-2-(hydroxy-methyl)benzoic acid (20C) 3.27 6-Chloro-2-(hydroxy-methyl)benzoic acid (20C) 2.26 7-Chloro-8-hydroxyquinoline-5-sulfonic acid 2.92 6.80 2-Chloroisocrotonic acid 2.80 3-Chloroisocrotonic acid 4.02 3-Chlorolactic acid 3.12 3-Chloromandelic acid 3.237 3-Chloro-4-methoxyphenyl-phos-phonic acid 2.25 6.7 3-Chloro-4-methylaniline 4.05(1) 4-Chloro-N-methylaniline 3.9(1) 4-Chloro-3-methylphenol 9.549 Chloromethylphosphonic acid 1.40 6.30 2-Chloro-2-methylpropanoic acid 2.975 2-Chloro-6-nitroaniline 2.41(1) 4-Chloro-2-nitroaniline 1.10(1) 2-Chloro-3-nitrobenzoic acid 2.02 2-Chloro-4-nitrobenzoic acid 1.96 2-Chloro-5-nitrobenzoic acid 2.17 2-Chloro-6-nitrobenzoic acid 1.342 4-Chloro-2-nitrophenol 6.48 2-Chlorophenol 8.55 3-Chlorophenol 9.10 4-Chlorophenol 9.43 (4-Chloro-3-nitrophenoxy)acetic acid 2.959 2-Chloro-4-nitrophenylphosphonic acid 1.12 6.14 3-Chloropentyl-1-arsonic acid (18C) 3.71 8.77 2-Chlorophenoxyacetic acid 3.05 3-Chlorophenoxyacetic acid 3.07 4-Chlorophenoxyacetic acid 3.10 4-Chlorophenoxy-2-methylacetic acid 3.26 2-Chlorophenylacetic acid 4.066 3-Chlorophenylacetic acid 4.140 4-Chlorophenylacetic acid 4.190 2-Chlorophenylalanine 2.23(1) 8.94(0) 3-Chlorophenylalanine 2.17(1) 8.91(0) DL-4-Chlorophenylalanine 2.08(1) 8.96(0) 4-Chlorophenylarsonic acid 3.33 8.25 2-Chlorophenylphosphonic acid 1.63 6.98 3-Chlorophenylphosphonic acid 1.55 6.65 4-Chlorophenylphosphonic acid 1.66 6.75 3-(2-Chlorophenyl)propanoic acid 4.577 3-(3-Chlorophenyl)propanoic acid 4.585 3-(4-Chlorophenyl)propanoic acid 4.607 3-Chlorophenylselenic acid 4.47 4-Chlorophenylselenic acid 4.48 4-Chloro-1,2-phthalic acid 1.60 8.36 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 2-Chloropropanoic acid 2.84 3-Chloropropanoic acid 3.992 2-Chloropropylarsonic acid (18C) 3.76 8.39 3-Chloropropylarsonic acid (18C) 3.63 8.53 Chloropropynoic acid 1.854 2-Chloropyridine 0.49(1) 3-Chloropyridine 2.84(1) 4-Chloropyridine 3.83(1) 7-Chlorotetracycline 3.30(1) 7.44 9.27 4-Chloro-2-(2-thiazolylazo)phenol 7.09 4-Chlorothiophenol 5.9 N-Chloro-p-toluenesulfonamide 4.54(1) 3-Chloro-o-toluidine 2.49(1) 4-Chloro-o-toluidine 3.385(1) 5-Chloro-o-toluidine 3.85(1) 6-Chloro-o-toludine 3.62(1) Chrome Azurol S 2.45 4.86 11.47 Chrome Dark Blue 7.56 9.3 12.4 Cinchonine 5.85(2) 9.92(1) cis-Cinnamic acid 3.879 trans-Cinnamic acid 4.438 Citraconic acid 2.29(0) 6.15(1) Citric acid 3.128 4.761 6.396 L-()-Citrulline 2.43(1) 9.41(0) Cocaine 8.41(1) Codeine 7.95(1) Colchicine 1.65(1) Coniine ( 0.5) 11.24(1) Creatine (40C) 3.28(1) Creatinine 3.57(1) o-Cresol 10.26 m-Cresol 10.00 p-Cresol 10.26 Cumene hydroperoxide 12.60 Cupreine 7.63(1) Cyanamide 10.27 Cyanoacetic acid 2.460 Cyanoacetohydrazide 2.34(2) 11.17(1) 2-Cyanobenzoic acid 3.14 3-Cyanobenzoic acid 3.60 4-Cyanobenzoic acid 3.55 4-Cyanobutanoic acid 4.44 trans-1-Cyanocyclohexane-2-car-boxylic acid 3.865 4-Cyano-2,6-dimethylphenol 8.27 4-Cyano-3,5-dimethylphenol 8.21 2-Cyanoethylamine 7.7(1) N-(2-Cyano)ethylnorcodeine 5.68(1) Cyanomethylamine 5.34(1) 2-Cyano-2-methyl-2-phenylacetic acid 2.290 1-Cyanomethylpiperidine 4.55(1) 2-Cyano-2-methylpropanoic acid 2.422 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.37 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 3-Cyanophenol 8.61 o-Cyanophenoxyacetic acid 2.98 m-Cyanophenoxyacetic acid 3.03 p-Cyanophenoxyacetic acid 2.93 2-Cyanopropanoic acid 2.37 3-Cyanopropanoic acid 3.99 2-Cyanopyridine 0.26(1) 3-Cyanopyridine 1.45(1) 4-Cyanopyridine 1.90(1) Cyanuric acid 6.78 Cyclobutanecarboxylic acid 4.785 1,1-Cyclobutanedicarboxylic acid 3.13 5.88 cis-1,2-Cyclobutanedicarboxylic acid 3.90 5.89 trans-1,2-Cyclobutanedicarboxylic acid 3.79 5.61 cis-1,3-Cyclobutanedicarboxylic acid 4.04 5.31 trans-1,3-Cyclobutanedicarboxylic acid 3.81 5.28 Cyclohexanecarboxylic acid 4.90 1,1-Cyclohexanediacetic acid 3.49 6.96 cis-1,2-Cyclohexanediacetic acid (20C) 4.42 5.45 trans-1,2-Cyclohexanediacetic acid (20C) 4.38 5.42 cis-1,2-Cyclohexanediamine 6.43(2) 9.93(1) trans-1,2-Cyclohexanediamine 6.34(2) 9.74(1) 1,1-Cyclohexanedicarboxylic acid 3.45 4.11 cis-1,2-Cyclohexanedicarboxylic acid (20C) 4.34 6.76 trans-1,2-Cyclohexanedicarboxylic acid (20C) 4.18 5.93 cis-1,3-Cyclohexanedicarboxylic acid (16C) 4.10 5.46 trans-1,3-Cyclohexanedicarboxylic acid (19C) 4.31 5.73 trans-1,4-Cyclohexanedicarboxylic acid (16C) 4.18 5.42 1,3-Cyclohexanedione 5.26 cis,cis-1,3,5-Cyclohexanetriamine 6.9(3) 8.7(2) 10.4(1) Cyclohexanonimine 9.15 cis-4-Cyclohexene-1,2-dicarboxylic acid (20C) 3.89 6.79 trans-4-Cyclohexene-1,2-dicarbox-ylic acid (20C) 3.95 5.81 Cyclohexylacetic acid 4.51 Cyclohexylamine 10.64(1) 2-(Cyclohexylamino)ethanesulfonic acid (CHES) (20C) 9.55 3-Cyclohexylamino-1-propanesul-fonic acid (CAPS) (20C) 10.40 4-Cyclohexylbutanoic acid 4.95 8.38 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 Cyclohexylcyanoacetic acid 2.367 1,2-Cyclohexylenedinitriloacetic acid ( 0.1) 2.4 3.5 6.16 12.35 3-Cyclohexylpropanoic acid 4.91 2-Cyclohexylpyrrolidine 10.76(1) 2-Cyclohexyl-2-pyrroline 7.91(1) Cyclohexylthioacetic acid 3.488 Cyclopentanecarboxylic acid 4.905 cis-Cyclopentane-1-carboxylic acid-2-acetic acid 4.40 5.79 trans-Cyclopentane-1-carboxylic acid-2-acetic acid 4.39 5.67 Cyclopentane-1,2-diamine-N,N,N-tetraacetic acid ( 0.1) — — — 10.20 Cyclopentane-1,1-dicarboxylic acid 3.23 4.08 cis-Cyclopentane-1,2-dicarboxylic acid 4.43 6.67 trans-Cyclopentane-1,2-dicarbox-ylic acid 3.96 5.85 cis-Cyclopentane-1,3-dicarboxylic acid 4.26 5.51 trans-Cyclopentane-1,3-dicarbox-ylic acid 4.32 5.42 Cyclopentylamine 10.65(1) 1,1-Cyclopentyldiacetic acid 3.80 6.77 cis-Cyclopentyl-1,2-diacetic acid 4.42 5.42 trans-Cyclopentyl-1,2-diacetic acid 4.43 5.43 Cyclopropanecarboxylic acid 4.827 Cyclopropane-1,1-dicarboxylic acid 1.82 5.43 cis-Cyclopropane-1,2-dicarboxylic acid 3.33 6.47 trans-Cyclopropane-1,2-dicarbox-ylic acid 3.65 5.13 Cyclopropylamine 9.10(1) 5-Cyclopropyl-1,2,3,4-tetrazole 4.90(1) L-Cysteic acid (3-sulfo-L-alanine) 1.89(1) 8.7(0) L-()-Cysteine 1.96 8.18 10.29(SH) L-()-Cysteine, ethyl ester 6.69 (NH3 ) 9.17(SH) L-()-Cysteine, methyl ester 6.56 (NH3 ) 8.99(SH) L-Cysteinyl-L-asparagine 2.97 7.09 8.47 L-Cystine (35C) 1.6(2) 2.1(1) 8.02(0) 8.71(1) Cystinylglycylglycine (35C) 3.12 3.21 6.01 6.87 Cytidine 4.08(1) 12.24(0) Cytidine-2-phosphoric acid 0.8(1) 4.36(0) 6.17(1) Cytidine-3-phosphoric acid 0.80(1) 4.31(0) 6.04(1) 13.2(sugar) Cytidine-5-phosphoric acid — 4.39(0) 6.62(1) Cytosine 4.58(1) 12.15(0) Decanedioic acid (sebacic acid) 4.59 5.59 Dehydroascorbic acid (20C) 3.21 7.92 10.3 2-Deoxyadenosine ( 0.1) 3.8(1) ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.39 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 Deoxycholic acid 6.58 2-Deoxyglucose 12.52 2-Deoxyguanosine ( 0.1) 2.5(1) 5-Desoxypyridoxal ( 0) 4.17(1) 8.14(OH) 1,1-Diacetic acid semicarbazide (30C, 0.1) 2.96 4.04 Diacetylacetone 7.42 Diallylamine ( 0.02) 9.29(1) 5,5-Diallybarbituric acid 7.78(0) 1,3-Diamino-2-aminomethylpro-pane 6.44(3) 8.56(2) 10.38(1) 3,5-Diaminobenzoic acid 5.30 1,3-Diamino-N,N-bis-(2-amino-ethyl)propane ( 0.5) 6.01(4) 7.26(3) 9.49(2) 10.23(1) 2,4-Diaminobutanoic acid (20C) 1.85(2) 8.24(1) 10.40(0) 2,2-Diaminodiethyl sulfide (30C) 8.84(2) 9.64(1) 1,8-Diamino-3,6-dithiooctane (30C) 8.43(2) 9.31(1) 2,7-Diaminooctanedioic acid (20C, 0.1) 1.84(2) 2.64(1) 9.23(0) 9.89(1) 1,8-Diamino-3,6-octanedione (30C) 8.60(2) 9.57(1) 1,8-Diamino-3-oxa-6-thiooctane 8.54(2) 9.46(1) 2,3-Diaminopropanoic acid ( 0.1) 1.33(2) 6.674(1) 9.623(0) 2,3-Diaminopropanoic acid, methyl ester ( 0.1) 4.412(1) 8.250(0) 1,3-Diamino-2-propanol (20C) 7.93(2) 9.69(1) 2,5-Diaminopyridine (20C) 2.13(2) 6.48(1) 1,4-Diazabicyclo[2.2.2]octane 2.90(2) 8.60(1) Dibenzylamine 8.52(1) Dibenzylsuccinic acid (20C) 3.96 6.66 Dibromoacetic acid 1.39 3,5-Dibromoaniline 2.35(1) 3,5-Dibromophenol 8.056 2,2-Dibromopropanoic acid 1.48 2,3-Dibromopropanoic acid 2.33 rac-2,3-Dibromosuccinic acid (20C) 1.43 2.24 meso-2,3-Dibromosuccinic acid (20C) 1.51 2.71 3,5-Dibromo-p-L-tyrosine 2.17(1) 6.45(0) 7.60(1) Dibutylamine 11.25(1) Di-sec-butylamine 10.91(1) 2,6-Di-tert-butylpyridine 3.58(1) rac-2,3-Di-tert-butylsuccinic acid ( 0.1) 3.58 10.2 1,12-Dicarboxydodecaborane 9.07 10.23 Dichloroacetic acid 1.26 Dichloroacetylacetic acid 2.11 3,5-Dichloroaniline 2.37(1) 1,3-Dichloro-2,5-dihydroxybenzene ( 0.65) 7.30 9.99 8.40 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 2,5-Dichloro-3,6-dihydroxy-p-ben-zoquinone 1.09 2.42 Dichloromethylphosphonic acid 1.14 5.61 2,4-Dichloro-6-nitroaniline 3.00(1) 2,5-Dichloro-4-nitroaniline 1.74(1) 2,6-Dichloro-4-nitroaniline 3.31(1) 2,3-Dichlorophenol 7.44 2,4-Dichlorophenol 7.85 2,6-Dichlorophenol 6.78 3,4-Dichlorophenol 8.630 3,5-Dichlorophenol 8.179 2,4-Dichlorophenoxyacetic acid (2,4-D) 2.64 4,6-Dichlorophenoxy-2-methyl-acetic acid 3.13 3,6-Dichlorophthalic acid 1.46 2,2-Dichloropropanoic acid 2.06 2,3-Dichloropropanoic acid 2.85 rac-2,3-Dichlorosuccinic acid (20C) 1.43 2.81 meso-2,3-Dichlorosuccinic acid 1.49 2.97 3,5-Dichloro-p-tyrosine 2.12 6.47 7.62 2-Dicyanoethylamine 5.14(1) 2,2-Dicyanopropanoic acid 2.8 Dicyclohexylamine 11.25(1) Dicyclopentylamine 10.93(1) Didodecylamine 10.99(1) Diethanolamine 8.88(1) Di(ethoxyethyl)amine 8.47(1) 3,5-Diethoxyphenol 9.370 3-(Diethoxyphosphinyl)benzoic acid 3.65 4-(Diethoxyphosphinyl)benzoic acid 3.60 3-(Diethoxyphosphinyl)phenol 8.66 4-(Diethoxyphosphinyl)phenol 8.28 Diethylamine 10.8(1) 2-(Diethylamino)ethyl-4-aminoben-zoate 8.85(1) -(Diethylamino)toluene 9.44(1) N,N-Diethylaniline 6.56(1) 5,5-Diethylbarbituric acid (veronal) 8.020(0) N,N-Diethylbenzylamine 9.48(1) Diethylbiguanide (30C) 2.53(1) 11.68(0) Diethylenetriamine 4.42(3) 9.21(2) 10.02(1) Diethylenetriaminepentaacetic acid (pK5, 10.58) 1.80(0) 2.55(1) 4.33(2) 8.60(3) N,N-Diethylethylenediamine 7.70(2) 10.46(1) 2,2-Diethylglutaric acid 3.62 7.12 N,N-Diethylglycine 2.04(1) 10.47(0) Diethylglycolic acid (18C) 3.804 Diethylmalonic acid 2.151 7.417 Diethylmethylamine 10.43(1) rac-2,3-Diethylsuccinic acid 3.63 6.46 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.41 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 meso-2,3-Diethylsuccinic acid 3.54 6.59 N,N-Diethyl-o-toluidine 7.18(1) Difluoroacetic acid 1.33 3,3-Difluoroacrylic acid 3.17 Diglycolic acid 2.96 Diguanidine 12.8 Dihexylamine 11.0(1) Dihydroarecaidine 9.70 Dihydroarecaidine, methyl ester 8.39 Dihydrocodeine 8.75(1) Dihydroergonovine 7.38(1) -Dihydrolysergic acid 3.57 8.45 -Dihydrolysergic acid 3.60 8.71 -Dihydrolysergol 8.30 -Dihydrolysergol 8.23 Dihydromorphine 9.35 3,4-Dihydroxyalanine 2.32(1) 8.68(0) 9.87(1) 1,2-Dihydroxyanthraquinone-3-sul-fonic acid (alizarin-3-sulfonic acid) — 5.54(1) 11.01(2) 3,4-Dihydroxybenzaldehyde 7.55 1,2-Dihydroxybenzene (pyrocate-chol) ( 0.1) 9.356(0) 12.98(1) 1,3-Dihydroxybenzene (resorcinol) 9.44(0) 12.32(1) 1,4-Dihydroxybenzene (hydroqui-none) 9.91(0) 12.04(1) 4,5-Dihydroxybenzene-1,3-disul-fonic acid — — 7.66(2) 12.6(3) 2,3-Dihydroxybenzoic acid (30C) 2.98 10.14 2,4-Dihydroxybenzoic acid (-re-sorcyclic acid) 3.29 8.98 2,5-Dihydroxybenzoic acid 2.97 10.50 2,6-Dihydroxybenzoic acid 1.30 3,4-Dihydroxybenzoic acid 4.48 8.67 11.74 3,5-Dihydroxybenzoic acid 4.04 2,5-Dihydroxy-p-benzoquinone 2.71 5.18 3,4-Dihydroxy-3-cyclobutene-1,2-dione 0.541 3.480 2,3-Dihydroxy-2-cyclopenten-1-one (20C) 4.72 1,4-Dihydroxy-2,6-dinitrobenzene 4.42 9.14 Di(2,2-hydroxyethyl)amine 8.8(1) N,N-Di(2-hydroxyethyl)glycine 8.333 Dihydroxymaleic acid 1.10 Dihydroxymalic acid 1.92 1,3-Dihydroxy-2-methylbenzene ( 0.65) 10.05 11.64 2,2-Di(hydroxymethyl)-3-hydroxy-propanoic acid 4.460 2,4-Dihydroxy-5-methylpyrimidine 9.90 2,4-Dihydroxy-6-methylpyrimidine 9.52 1,4-Dihydroxynaphthalene (26C, 0.65) 9.37 10.93 1,2-Dihydroxy-3-nitrobenzene 6.68 8.42 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 1,2-Dihydroxy-4-nitrobenzene ( 0.1) 6.701 2,4-Dihydroxy-1-phenylazobenzene ( 0.1) 11.98 2,4-Dihydroxyoxazolidine 6.11(1) 2,4-Dihydroxypteridine 1.3 7.92 2,6-Dihydroxypurine 7.53(0) 11.84(1) 2,4-Dihydroxypyridine (20C) 1.37(1) 6.45(0) 13(1) Dihydroxytartaric acid 1.95 4.00 1,4-Dihydroxy-2,3,5,6-tetramethyl-benzene ( 0.65) 11.25 12.70 3,5-Diiodoaniline 2.37(1) 2,5-Diiodohistamine 2.31(2) 8.20(1) 10.11(0) 2,5-Diiodohistidine ( 0.1) 2.72 8.18 9.76 3,5-Diiodophenol 8.103 3,5-Diiodotyrosine 2.117(1) 6.479(0) 7.821(1) Diisopropylmalonic acid 2.124 8.848 Dilactic acid 2.955 threo-1,4-Dimercapto-2,3-butane-diol 8.9 meso-2,3-Dimercaptosuccinic acid 2.71 3.48 8.89(SH) 10.79(SH) 3,5-Dimethoxyaniline 3.86(1) 2,6-Dimethoxybenzoic acid 3.44 1,10-Dimethoxy-3,8-dimethyl-4,7-phenanthroline 7.21 Di(2-methoxyethyl)amine 9.51(1) 3,5-Dimethoxyphenol 9.345 (3,4-Dimethoxy)phenylacetic acid 4.333 Dimethylamine 10.77(1) 4-Dimethylaminobenzaldehyde 1.647(1) N,N-Dimethylaminocyclohexane 10.72(1) 4-Dimethylamino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one 4.18(1) 4-Dimethylamino-3,5-dimethylpyr-idine (20C) 8.15(1) 2-(Dimethylamino)ethanol 9.26(1) 2-[2-(Dimethyl-amino)ethyl]pyridine 3.46(2) 8.75(1) 3-(Dimethylaminoethyl)pyridine 4.30(2) 8.86(1) 4-(Dimethylaminoethyl)pyridine 4.66(2) 8.70(1) 4-(Dimethylamino)-3-ethylpyridine (20C) 8.66(1) 4-(Dimethylamino)-3-isopropylpyr-idine (20C) 8.27(1) 2-(Dimethylaminomethyl)pyridine 2.58(2) 8.12(1) 3-(Dimethylaminomethyl)pyridine 3.17(2) 8.00(1) 4-(Dimethylaminomethyl)pyridine 3.39(2) 7.66(1) 4-(Dimethylamino)-3-methylpyri-dine (20C) 8.68(1) 4-(Dimethylamino-phenyl)phosphonic acid 2.0(1) 4.2 7.35 3-(Dimethylamino)propanoic acid 9.85(1) 4-(Dimethylamino)pyridine (20C) 6.09(1) ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.43 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 N,N-Dimethylaniline 5.15(1) 2,3-Dimethylaniline 4.70(1) 2,4-Dimethylaniline 4.89(1) 2,5-Dimethylaniline 4.53(1) 2,6-Dimethylaniline 3.95(1) 3,4-Dimethylaniline 5.17(1) 3,5-Dimethylaniline 4.765(1) N,N-Dimethylaniline-4-phosphonic acid (17C) 2.0(1) 4.2 7.39 Dimethylarsinic acid (cacodylic acid) 1.67 6.273 1,3-Dimethylbarbituric acid 4.68(1) 2,3-Dimethylbenzoic acid 3.771 2,4-Dimethylbenzoic acid 4.217 2,5-Dimethylbenzoic acid 3.990 2,6-Dimethylbenzoic acid 3.362 3,4-Dimethylbenzoic 4.41 3,5-Dimethylbenzoic acid 4.302 N,N-Dimethylbenzylamine 9.02(1) Dimethylbiguanide 2.77(1) 11.52 2,2-Dimethylbutanoic acid (18C) 5.03 Dimethylchlorotetracycline ( 0.01) 3.30(1) 2,6-Dimethyl-4-cyanophenol 8.27 3,5-Dimethyl-4-cyanophenol 8.21 5,5-Dimethyl-1,3-cyclohexanedione 5.15 cis-3,3-Dimethyl-1,2-cyclopropane-dicarboxylic acid 2.34 8.31 trans-3,3-Dimethyl-1,2-cyclopro-panedicarboxylic acid 3.92 5.32 3,5-Dimethyl-4-(dimethylamino)-pyridine (20C) 8.12(1) 2,2-Dimethyl-1,3-dioxane-4,6-dione 5.1 1,1-Dimethylethanethiol ( 0.1) 11.22 N,N-Dimethylethylenediamine-N,N-diacetic acid 6.63 9.53 N,N-Dimethylethylenediamine-N,N-diacetic acid 7.40 10.16 N,N-Dimethylethylenediamine-N,N-diacetic acid 5.99 9.97 N,N-Dimethylglycine 2.146(1) 9.940(0) Dimethylglycolic acid (18C) 4.04 N,N-Dimethylglycylglycine 3.11(1) 8.09(0) Dimethylglyoxime 10.60 5,5-Dimethyl-2,4-hexanedione 10.01 5,5-Dimethylhydantoin 9.19 2,4-Dimethyl-8-hydroxyquinoline 6.20(1) 10.60(0) 3,4-Dimethyl-8-hydroxyquinoline 5.80(1) 10.05(0) 2,4-Dimethyl-8-hydroxyquinoline-7-sulfonic acid 3.20 (NH) 10.14(OH) Dimethylhydroxytetracycline 7.5 9.4 2,4-Dimethylimidazole 8.38(1) 8.44 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 Dimethylmalic acid 3.17 6.06 2,2-Dimethylmalonic acid 3.17 6.06 3,5-Dimethyl-4-(methylamino) pyr-idine (20C) 9.96(1) 2,3-Dimethylnaphthalene-1-carbox-ylic acid 3.33 2,6-Dimethyl-4-nitrophenol 7.190 3,5-Dimethyl-4-nitrophenol 8.245 ,-Dimethyloxaloacetic acid 1.77 4.62 3,3-Dimethylpentanedioic acid 3.70 6.34 2,2-Dimethylpentanoic acid 4.969 4,4-Dimethylpentanoic acid (18C) 4.79 2,3-Dimethylphenol 10.50 2,4-Dimethylphenol 10.58 2,5-Dimethylphenol 10.22 2,6-Dimethylphenol 10.59 3,4-Dimethylphenol 10.32 3,5-Dimethylphenol 10.15 2,6-Dimethylphenoxyacetic acid 3.356 Dimethylphenylsilylacetic acid 5.27 N,N-Dimethylpiperazine 4.630(2) 8.539(1) 1,2-Dimethylpiperidine 10.22 cis-2,6-Dimethylpiperidine 11.07(1) 2,2-Dimethylpropanoic acid (pi-valic acid) 5.031 2,2-Dimethylpropylphosphonic acid 2.84 8.65 2,4-Dimethylpyridine (2,4-lutidine) 6.74(1) 2,5-Dimethylpyridine (2,5-lutidine) 6.43(1) 2,6-Dimethylpyridine (2,6-lutidine) 6.71(1) 3,4-Dimethylpyridine (3,4-lutidine) 6.47(1) 3,5-Dimethylpyridine (3,5-lutidine) 6.09(1) 2,4-Dimethylpyridine-1-oxide 1.627(1) 2,5-Dimethylpyridine-1-oxide 1.208(1) 2,6-Dimethylpyridine-1-oxide 1.366(1) 3,4-Dimethylpyridine-1-oxide 1.493(1) 3,5-Dimethylpyridine-1-oxide 1.181(1) 2,3-Dimethylquinoline 4.94(1) 2,6-Dimethylquinoline 5.46(1) meso-2,2-Dimethylsuccinic acid 3.77 5.936 rac-2,2-Dimethylsuccinic acid 3.93 6.20 D-2,3-Dimethylsuccinic acid 3.82 5.93 meso-2,3-Dimethylsuccinic acid 3.67 5.30 rac-2,3-Dimethylsuccinic acid 3.94 6.20 2,4-Dimethylthiazole ( 0.1) 3.98 2,5-Dimethylthiazole ( 0.1) 3.91 4,5-Dimethylthiazole ( 0.1) 3.73 N,N-Dimethyl-o-toluidine 5.86(1) N,N-Dimethyl-p-toluidine 7.24(1) 2,4-Dinitroaniline 4.25(1) 2,6-Dinitroaniline 5.23(1) 3,5-Dinitroaniline 0.229(1) 2,3-Dinitrobenzoic acid 1.85 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.45 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 2,4-Dinitrobenzoic acid 1.43 2,5-Dinitrobenzoic acid 1.62 2,6-Dinitrobenzoic acid 1.14 3,4-Dinitrobenzoic acid 2.82 3,5-Dinitrobenzoic acid 2.85 1,1-Dinitrobutane (20C) 5.90 1,1-Dinitrodecane 3.60 1,1-Dinitroethane (20C) 5.21 Dinitromethane (20C) 3.60 1,1-Dinitropentane 5.337 2,4-Dinitrophenol 4.08 2,5-Dinitrophenol 5.216 2,6-Dinitrophenol 3.713 3,4-Dinitrophenol 5.424 3,5-Dinitrophenol 6.732 2,4-Dinitrophenylacetic acid 3.50 1,1-Dinitropropane (20C) 5.5 2,6-Dioxo-1,2,3,6-tetrahydro-4-pyr-imidinecarboxylic acid (orotic acid) 1.8(1) 9.55(0) Diphenylacetic acid 3.939 Diphenylamine 0.9(1) 2,2-Diphenylglutaric acid (20C) 3.91 5.38 1,3-Diphenylguanidine 10.12 2,2-Diphenylheptanedioic acid (20C) 4.28 5.39 2,2-Diphenylhexanedioic acid (20C) 4.17 5.40 3,3-Diphenylhexanedioic acid 4.22 5.19 Diphenylhydroxyacetic acid (35C) 3.05 Diphenylketimine 6.82 2,2-Diphenylnonanedioic acid (20C) 4.33 5.38 meso-2,2-Diphenylsuccinic acid 3.48 rac-2,2-Diphenylsuccinic acid 3.58 2,2-Diphenylsuccinic acid, 1-methyl ester (20C) 4.47 2,2-Diphenylsuccinic acid, 4-methyl ester (20C) 3.900 Diphenylthiocarbazone 4.50 15 Dipropylamine 10.91(1) Dipropylenetriamine 7.72(3) 9.56(2) 10.65(1) 2,2-Dipropylglutaric acid 3.688 7.31 Dipropylmalonic acid 2.04 7.51 2,2-Dipyridyl 0.52(2) 4.352(1) 2,3-Dipyridyl (20C) 1.52(2) 4.42(1) 2,4-Dipyridyl (20C) 1.19(2) 4.77(1) 3,3-Dipyridyl (20C, 0.2) 3.0(2) 4.60(1) 3.4-Dipyridyl (20C, 0.2) 3.0(2) 4.85(1) 4,4-Dipyridyl 3.17(2) 4.82(1) Dithiodiacetic acid (18C) 3.075 4.201 1,4-Dithioerythritol 9.5 8.46 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 Dithiooxamide (rubeanic acid) 10.89 Dulcitol 13.46 Ecgonine 10.91 Emetine 7.36(1) 8.23(0) Epinephrine enantiomorph 9.39(1) Epinephrine, pseudo 9.53(1) Ergometrinine 7.32(1) Ergonovine 6.73(1) Eriochrome Black T 6.3 11.55 1,2-Ethanediamine 6.85(2) 9.92(1) Ethane-1,2-diamino-N,N-dimethyl-N,N-diacetic acid (20C) 6.047(0) 10.068(1) 1,2-Ethanedithiol 8.96 10.54 Ethanethiol ( 0.015) 10.61 Ethoxyacetic acid (18C) 3.65 2-Ethoxyaniline (o-phenetidine) 4.47(1) 3-Ethoxyaniline 4.17(1) 4-Ethoxyaniline 5.25(1) 2-Ethoxybenzoic acid (20C) 4.21 3-Ethoxybenzoic acid (20C) 4.17 4-Ethoxybenzoic acid (20C) 4.80 Ethoxycarbonylethylamine 9.13(1) 2-Ethoxyethanethiol 9.38 2-Ethoxyethylamine 6.26(1) 2-Ethoxyphenol 10.109 3-Ethoxyphenol 9.655 (4-Ethoxyphenyl)phosphonic acid 2.06 7.28 4-Ethoxypyridine 6.67(1) Ethyl acetoacetate 10.68 3-Ethylacrylic acid 4.695 N-Ethylalanine 2.22(1) 10.22(0) Ethylamine 10.63(1) (3-Ethylamino)phenylphosphonic acid 1.1(1) 4.90(0) 7.24(1) N-Ethylaniline 5.11(1) 2-Ethylaniline 4.42(1) 3-Ethylaniline 4.70(1) 4-Ethylaniline 5.00(1) Ethylarsonic acid (18C) 3.89 8.35 Ethylbarbituric acid 3.69(1) 2-Ethylbenzimidazole ( 0.16) 6.27(1) 2-Ethylbenzoic acid 3.79 4-Ethylbenzoic acid 4.35 Ethylbiguanide 2.09(1) 11.47(0) 2-Ethylbutanoic acid (20C) 4.710 S-Ethyl-L-cysteine ( 0.1) 2.03(1) 8.60(0) Ethylenebiguanide (30C) 1.74 2.88 11.34 11.76 Ethylenebis(thioacetic acid) (18C) 3.382(0) 4.352(1) Ethylenediamine-N,N-diacetic acid 6.42 9.46 Ethylenediamine-N,N-dimethyl-N,N-diacetic acid 6.047 10.068 Ethylenediamine-N,N-dipropanoic acid (30C) 6.87 9.60 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.47 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 Ethylenediamine-N,N,N,N-tetra-acetic acid ( 0.1) 1.99 2.67 6.16 10.26 Ethylenediamine-N,N,N,N-tetra-propanoic acid (30C) 3.00 3.43 6.77 9.60 Ethylene glycol 14.22 Ethyleneimine 8.04(1) cis-Ethylene oxide dicarboxylic acid 1.93 3.92 trans-Ethylene oxide dicarboxylic acid 1.93 3.25 N-Ethylethylenediamine 7.63(2) 10.56(1) N-Ethylglycine ( 0.1) 2.34(1) 10.23(0) 3-Ethylglutaric acid 4.28 5.33 Ethyl hydroperoxide 11.80 Ethyl hydrogen malonate 3.55 3-Ethyl-2-hydroxypyridine 5.00(1) Ethylmalonic acid 2.90(0) 5.55(1) N-Ethyl mercaptoacetamide 8.14(SH) Ethyl 2-mercaptoacetate 7.95(SH) Ethyl 3-mercaptopropanoate 9.48(SH) 3-Ethyl-4-(methylamino)pyridine (20C) 9.90(1) 5-Ethyl-5-(1-methylbutyl)barbituric acid 8.11(0) Ethyl methyl ketoxime 12.45 Ethylmethylmalonic acid 2.86(0) 6.41(1) 1-Ethyl-2-methylpiperidine 10.66(1) 3-Ethyl-6-methylpyridine (20C) 6.51(1) 3-Ethyl-4-methylpyridine-1-oxide 1.534(1) 5-Ethyl-2-methylpyridine-1-oxide 1.288(1) 1-Ethyl-2-methyl-2-pyrroline 11.84(1) Ethylmorphine (15C) 8.08 Ethyl nitroacetate 5.85 3-Ethylpentane-2,4-dione 11.34 2-Ethylpentanoic acid (18C) 4.71 5-Ethyl-5-pentylbarbituric acid 7.960 2-Ethylphenol 10.2 3-Ethylphenol 10.07 4-Ethylphenol 10.0 4-Ethylphenylacetic acid 4.373 5-Ethyl-5-phenylbarbituric acid 7.445 Ethylphosphinic acid 3.29 Ethylphosphonic acid 2.43 8.05 1-Ethylpiperidine ( 0.01) 10.45(1) 2,2-Ethylpropylglutaric acid 3.511 Ethylpropylmalonic acid 3.14 7.43 2-Ethylpyridine 5.89(1) 3-Ethylpyridine (20C) 5.80(1) 4-Ethylpyridine 5.87(1) Ethyl 3-pyridinecarboxylate 3.35(1) Ethyl 4-pyridinecarboxylate 3.45(1) 2-Ethylpyridine-1-oxide 1.19(1) 3-Ethylpyridine-1-oxide 0.965(1) Ethylpyrrolidine 10.43(1) 8.48 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 2-Ethyl-2-pyrroline 7.87(1) Ethylsuccinic acid 4.08(0) S-Ethylthioacetic acid 5.06 N-Ethyl-o-toluidine 4.92(1) N-Ethylveratramine 7.40(1) -Eucaine 9.35(1) Fluoroacetic acid 2.586 2-Fluoroacrylic acid 2.55 2-Fluoroaniline 3.20(1) 3-Fluoroaniline 3.58(1) 4-Fluoroaniline 4.65(1) 2-Fluorobenzoic acid 3.27 3-Fluorobenzoic acid 3.865 4-Fluorobenzoic acid 4.14 Fluoromandelic acid 4.244 2-Fluorophenol 8.73 3-Fluorophenol 9.29 4-Fluorophenol 9.89 2-Fluorophenoxyacetic acid 3.08 3-Fluorophenoxyacetic acid 3.08 4-Fluorophenoxyacetic acid 3.13 4-Fluorophenylacetic acid 4.25 2-Fluorophenylalanine 2.14(1) 9.01(0) 3-Fluorophenylalanine 2.10(1) 8.98(0) 4-Fluorophenylalanine 2.13(1) 9.05(0) 2-Fluorophenylphosphonic acid 1.64 6.80 3-Fluorophenylselenic acid 4.34 4-Fluorophenylselenic acid 4.50 2-Fluoropyridine 0.44(1) 3-Fluoropyridine 2.97(1) 5-Fluorouracil 8.00(0) ca 13(1) Folic acid (pteroylglutamic acid) 8.26 Formic acid 3.751 N-Formylglycine 3.43 2-Formyl-3-hydroxypyridine (20C) 3.40(1) 6.95(OH) 4-Formyl-3-hydroxypyridine 4.05(1) 6.77(OH) 2-Formyl-3-methoxypyridine (20C) 3.89(1) 12.95 Formyl-3-methoxypyridine (20C) 4.45(1) 11.7 D-()-Fructose 12.03 Fumaric acid 3.10 4.60 2-Furancarboxylic acid (2-furoic acid) 3.164 D-()-Galactose 12.35 Galactose-1-phosphoric acid 1.00 6.17 Glucoascorbic acid 4.26 11.58 D-Gluconic acid 3.86 -D-()-Glucose 12.28 -D-Glucose-1-phosphate 1.11(0) 6.504(1) trans-Glutaconic acid 3.77 5.08 D-()-Glutamic acid 2.162(1) 4.272(0) 9.358(1) L-Glutamic acid 2.19(1) 4.25(0) 9.67(1) ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.49 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 Glutamic acid, 1-ethyl ester 3.85(1) 7.84(0) Glutamic acid, 5-ethyl ester 2.15(1) 9.19(0) L-Glutamine ( 0.2) 2.17(1) 9.13(0) Glutaric acid 3.77 6.08 Glutaric acid monoamide 4.600(0) Glutarimide 11.43 Glutathione 2.12(1) 3.53(0) 8.66 9.12 DL-Glyceric acid 3.64 Glycerol 14.15 Glyceryl-1-phosphoric acid — 6.656(1) Glyceryl-2-phosphoric acid 1.335(0) 6.650(1) Glycine 2.341(1) 9.60(0) Glycine amide 8.03(1) Glycine, ethyl ester 7.66(1) Glycine hydroxamic acid 7.10 9.10 Glycine, methyl ester 7.59(1) Glycine-O-phenylphosphorylserine 2.96 8.07 Glycolic acid 3.831 N-Glycl--alanine 3.15(1) 8.33(0) Glycylalanylalanine 3.38(1) 8.10(0) N-Glycylasparagine 2.942 Glycyclaspartic acid 2.81(1) 4.45(0) 8.60(1) Glycyl-DL-glutamine (18C) 2.88(1) 8.33(0) N-Glycylglycine 3.126(1) 8.252(0) Glycylglycylcysteine (35C) 2.71 2.71 7.94 7.94 Glycylglycylglycine 3.225(1) 8.090(0) Glycyl-L-histidine ( 0.16) 6.79 8.20 Glycylisoleucine 8.00 N-Glycyl-L-leucine 3.180(1) 8.327(0) Glycyl-O-phosphorylserine 2.90 6.02 8.43 L-Glycylproline ( 0.1) 2.81(1) 8.65(0) N-Glycylsarcosine ( 0.1) 2.98(1) 8.55(0) N-Glycylserine 2.98(+1) 8.38(0) Glycylserylglycine 3.32 7.99 Glycyltyrosine 2.93 8.45 10.49 Glycylvaline 3.15 8.18 Glyoxaline 7.03(1) Glyoxylic acid 3.30(0) Guanidineacetic acid 2.82(1) Guanine 3.3(1) 9.2 12.3 Guanine deoxyriboside-3-phos-phoric acid — 2.9 6.4 9.7 Guanosine 1.9(1) 9.25(0) 12.33(OH) Guanosine-5-diphosphoric acid ( 0.1; pK5 9.6) — — 2.9 6.3 Guanosine-3-phosphoric acid 0.7 2.3 5.92 9.38 Guanosine-5-phosphoric acid ( 0.1) — 2.4 6.1 9.4 Guanosine-5-triphosphoric acid pK5 7.10(3); pK6 [ 0.1; 9.3(4)] — — — 3.0(2) Guanylurea 1.80 8.20 Harmine (20C) 7.61(1) Heptafluorobutanoic acid 0.17 8.50 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 4,4,5,5,6,6,6-Heptafluorohexanoic acid 4.18 4,4,5,5,6,6,6-Heptafluoro-2-hexen-oic acid 3.23 Heptanedioic acid (pimelic acid) 4.484 5.424 2,4-Heptanedione 8.43(keto); 9.15(enol) Heptanoic acid 4.893 Heroin 7.6(1) 2,4-Hexadienoic acid (sorbic acid) 4.77 1,1,1,3,3,3-Hexafluoro-2,2-pro-panediol 8.801 1,1,1,3,3,3-Hexafluoro-2-propanol 9.42 Hexahydroazepine 11.07 Hexamethyldisilazine 7.55 1,2,3,8,9,10-Hexamethyl-4,7-phen-anthroline (20C) 7.26 1,6-Hexanediamine 9.830(2) 10.930(1) 1,6-Hexanedioic acid 4.418 5.412 2,4-Hexanedione 8.49 (enol); 9.32 (keto) 2,2,4,4,6,6-Hexanitrodipheny-lamine 5.42(1) Hexanoic acid (20C) 4.849 trans-2-Hexenoic acid 4.74 trans-3-Hexenoic acid 4.72 3-Hexen-4-oic acid 4.58 4-Hexen-5-oic acid 4.74 Hexylamine 10.64(1) Hexylarsonic acid 4.16 9.19 Hexylphosphonic acid 2.6 7.9 DL-Histidine 1.82(2) 6.00(1) 9.16(0) Histidine amide ( 0.2) 5.78(2) 7.64(1) Histidine, methyl ester ( 0.1) 5.01(2) 7.23(1) Histidylglycine 2.40(2) 5.80(1) 7.82(0) Histidylhistidine ( 0.16) 5.40(2) 6.80(1) 7.95(0) DI-Homatropine 9.7(1) DI-Homocysteine 2.222(1) 8.87 10.86 Homocysteine ( 0.1) 1.593(2) 2.523(1) 8.676(0) 9.413(1) Hydantoin 9.12 Hydrastine 6.23(1) Hydrazine-N,N-diacetic acid 0.1 2.8 3.8 Hydrazine-N-N-diacetic acid 2.40 3.12 7.32 4-Hydrazinocarbonylpyridine (20C) 1.82 3.52 10.79 N-Hydroxyacetamide 9.40 2-Hydroxyacetophenone 9.90 3-Hydroxyacetophenone 9.19 4-Hydroxyacetophenone 8.05 1-Hydroxyacridine (15C) 5.72 2-Hydroxyacridine (15C) 5.62 3-Hydroxyacridine (15C) 5.30 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.51 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 -Hydroxyasparagine 2.28(1) 7.20(0) -Hydroxyasparagine 2.09(1) 8.29(0) Hydroxyaspartic acid 1.91(1) 3.51(0) 9.11(1) 2-Hydroxybenzaldehyde (salicyl-aldehyde) 8.34 3-Hydroxybenzaldehyde 9.00 4-Hydroxybenzaldehyde 7.620 2-Hydroxybenzaldehyde oxime 1.37(1) 9.18 12.11 2-Hydroxybenzamide 8.36 2-Hydroxybenzenemethanol (2-hy-droxybenzyl alcohol) 9.92 3-Hydroxybenzenemethanol 9.83 4-Hydroxybenzenemethanol 9.82 4-Hydroxybenzenesulfonic acid — 9.055(1) 2-Hydroxybenzohydroxamic acid 5.19 2-Hydroxybenzoic acid (salicyclic acid) 2.98 12.38 3-Hydroxybenzoic acid 4.076 9.85 4-Hydroxybenzoic acid 4.582 9.23 4-Hydroxybenzonitrile 7.95 2-Hydroxy-5-bromobenzoic acid 2.61 2-Hydroxybutanoic acid (30C) 3.65 L-3-Hydroxybutanoic acid (30C) 4.41 4-Hydroxybutanoic acid (30C) 4.71 2-Hydroxy-5-chlorobenzoic acid 2.63 trans-2-Hydroxycinnamic acid 4.614 trans-3-Hydroxycinnamic acid 4.40 10-Hydroxycodeine 7.12 cis-2-Hydroxycyclohexane-1-car-boxylic acid 4.796 trans-2-Hydroxycyclohexane-1-carboxylic acid 4.682 cis-3-Hydroxycyclohexane-1-car-boxylic acid 4.602 trans-3-Hydroxycyclohexane-1-carboxylic acid 4.815 cis-4-Hydroxycyclohexane-1-car-boxylic acid 4.836 trans-4-Hydroxycyclohexane-1-carboxylic acid 4.687 1-Hydroxy-2,4-dihydroxymethyl-benzene 9.79 N-(Hydroxyethyl)biguanide 2.8(2) 11.53(1) N-(2-Hydroxy-ethyl)ethylenediamine 7.21(2) 10.12(1) N-(2-Hydroxyethyl)ethylenediam-ine-N,N,N-triacetic acid 2.39 5.37 9.93 N-(2-Hydroxyethyl)iminodiacetic acid ( 0.1) 2.2 8.65 N-(2-Hydroxyethyl)piperazine-N-ethansulfonic acid (20C) 7.55 4-(2-Hydroxyethyl)-1-piperazine-propanesulfonic acid (20C) 8.00 8.52 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 2-Hydroxyethyltrimethylamine 8.94(1) L--Hydroxyglutamic acid 2.09 4.18 9.20 1-Hydroxy-4-hydroxymethylben-zene 9.84 5-Hydroxy-2-(hydroxymethyl)-4H-pyran-4-one 7.90 8.03 3-Hydroxy-2-hydroxymethylpyri-dine (20C, 0.2) 5.00(1) 9.07(OH) 3-Hydroxy-4-hydroxymethylpyri-dine (20C, 0.2) 5.00(1) 8.95(OH) 8-Hydroxy-7-iodoquinoline-5-sul-fonic acid 2.51(0) 7.417(1) Hydroxylysine (38C, 0.1) 2.13(2) 8.62(1) 9.67(0) 2-Hydroxy-3-methoxybenzalde-hyde 7.912 3-Hydroxy-4-methoxybenzalde-hyde (isovanillin) 8.889 4-Hydroxy-3-methoxybenzalde-hyde (vanillin) 7.396 4-Hydroxy-3-methoxybenzoic acid 4.355 1-Hydroxy-2-methoxybenzylamine 8.70(1) 10.52(0) 2-Hydroxy-1-methoxybenzylamine 8.89(1) 10.52(0) 3-Hydroxy-2-methoxybenzylamine 8.94(1) 10.42(0) 2-Hydroxymethyl-2-benzeneacetic acid 4.12 (2-Hydroxy-5-methylbenzene)-methanol 10.15 2-Hydroxy-3-methylbenzoic acid 2.99 2-Hydroxy-4-methylbenzoic acid 3.17 2-Hydroxy-5-methylbenzoic acid 4.08 2-Hydroxy-6-methylbenzoic acid 3.32 2-Hydroxy-2-methylbutanoic acid (18C) 3.991 3-Hydroxy-2-methylbutanoic acid (18C) 4.648 4-Hydroxy-4-methylpentanoic acid (18C) 4.873 1-Hydroxymethylphenol 9.95 Hydroxymethylphosphoric acid 1.91 7.15 2-Hydroxy-2-methylpropanoic acid ( 0.1) 3.717 2-Hydroxy-4-methylpyridine 4.529(1) 8-Hydroxy-2-methylquinoline 5.55(1) 10.31(0) 8-Hydroxy-4-methylquinoline 5.56(1) 10.00(0) 8-Hydroxy-2-methylquinoline-5-sulfonic acid 4.80(0) 9.30(1) 8-Hydroxy-4-methylquinoline-7-sulfonic acid 4.78(0) 10.01(1) 8-Hydroxy-6-methylquinoline-5-sulfonic acid 4.20(0) 8.7(1) 2-Hydroxy-1-naphthoic acid (20C) 3.29 9.68 2-Hydroxy-2-nitrobenzoic acid 2.23 2-Hydroxy-3-nitrobenzoic acid 1.87 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.53 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 2-Hydroxy-5-nitrobenzoic acid 2.12 2-Hydroxy-6-nitrobenzoic acid 2.24 2-Hydroxy-4-nitrophenylphos-phonic acid 1.22 5.39 8-Hydroxy-7-nitroquinoline-5-sul-fonic acid 1.94(0) 5.750(1) 3-Hydroxy-4-nitrotoluene ( 0.1) 7.41 4-Hydroxypentanoic acid (18C) 4.686 4-Hydroxy-3-pentenoic acid 4.30 3-Hydroxyphenazine (15C) 2.67 4-Hydroxyphenylarsonic acid 3.89 8.37 (phenol) 10.05 3-Hydroxyphenylboric acid 8.55 10.84 2-Hydroxy-2-phenylpropanoic acid 3.532 2-(2-Hydroxyphenyl)pyridine (20C) 4.19(1) 10.64 trans-4-Hydroxyproline 1.818(1) 9.662(0) Hydroxypropanedioic acid (tar-tronic acid) 2.37 4.74 2-Hydroxypropanoic acid 3.858 1-Hydroxy-2-propylbenzene 10.50 4-Hydroxypteridine 1.3(1) 7.89(0) 2-Hydroxypyridine 1.25(1) 11.62(0) 3-Hydroxypyridine 4.80(1) 8.72(0) 4-Hydroxypyridine 3.23(1) 11.09(0) 2-Hydroxypyridine-N-oxide 0.62(1) 5.97(0) 2-Hydroxypyrimidine 2.24(1) 9.17(0) 4-Hydroxypyrimidine 1.85(1) 8.59(0) 8-Hydroxyquinazoline 3.41(1) 8.65(0) 2-Hydroxyquinoline (20C) 0.31(1) 11.74 3-Hydroxyquinoline (20C) 4.30(1) 8.06(0) 4-Hydroxyquinoline (20C) 2.27(1) 11.25(0) 5-Hydroxyquinoline (20C) 5.20(1) 8.54(0) 6-Hydroxyquinoline (20C) 5.17(1) 8.88(0) 7-Hydroxyquinoline (20C) 5.48(1) 8.85(0) 8-Hydroxyquinoline (20C) 4.91(1) 9.81(0) 8-Hydroxyquinoline-5-sulfonic acid 4.092(1) 8.776(0) DL-Hydroxysuccinic acid (malic acid) 3.458 5.097 L-Hydroxysuccinic acid 3.40 5.05 Hydroxytetracycline 3.27(1) 7.32(0) 9.11(1) 5-Hydroxy-1,2,3,4-tetrazole 3.32 4-Hydroxy-3-(2-thiazoly-azo)toluene 8.36 2-Hydroxytoluene 10.33 3-Hydroxytoluene 10.10 4-Hydroxytoluene 10.276 4-Hydroxy-,,-trifluorotoluene 8.675 1-Hydroxy-2,4,6-trihydroxymethyl-benzene 9.56 Hydroxyuracil 8.64 8.54 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 Hydroxyvaline 2.55(1) 9.77(0) Hyoscyamine 9.68(1) Hypoxanthene 1.79(1) 8.91(0) 12.07(1) Hypoxanthine 5.3 Imidazole 6.993(1) 10.58(0) Imidazolidinetrione (parabanic acid) 6.10 4-(4-Imidazolyl)butanoic acid ( 0.1) 4.26(1) 7.26(0) 2-(4-Imidazolyl)ethylamine 5.784(2) 9.756(1) 3-(4-Imidazolyl)propanoic acid ( 0.16) 3.96(1) 7.57(0) 3,3-Iminobispropanoic acid 4.11(0) 9.61(1) 3,3-Iminobispropylamine (30C) 8.02(2) 9.70(1) 10.70(0) 2,2-Iminodiacetic acid (diglycine) (30C, 0.1) 2.54(0) 9.12(1) 4-Indanol 10.32 Indole-3-acetic acid 4.75 Inosine ca 1.5(1) 8.96(0) 12.36 Inosine-5-phosphoric acid 1.54(0) 6.66(1) Inosine-5-triphosphoric acid [pK5 7.68(4)] — — 2.2(2) 6.92(3) Iodoacetic acid 3.175 2-Iodoaniline 2.54(1) 3-Iodoaniline 3.58(1) 4-Iodoaniline 3.82(1) 2-Iodobenzoic acid 2.86 3-Iodobenzoic acid 3.86 4-Iodobenzoic acid 4.00 5-Iodohistamine 4.06(1) (imidazole) 9.20(1) (NH ) 3 11.88(0) (imino) 7-Iodo-8-hydroxyquinoline-5-sul-fonic acid 2.514 7.417 Iodomandelic acid 3.264 Iodomethylphosphoric acid 1.30 6.72 2-Iodophenol 8.464 3-Iodophenol 8.879 4-Iodophenol 9.200 2-Iodophenoxyacetic acid 3.17 3-Iodophenoxyacetic acid 3.13 4-Iodophenoxyacetic acid 3.16 2-Iodophenylacetic acid 4.038 3-Iodophenylacetic acid 4.159 4-Iodophenylacetic acid 4.178 2-Iodophenylphosphoric acid 1.74 7.06 2-Iodopropanoic acid 3.11 3-Iodopropanoic acid 4.08 2-Iodopyridine 1.82(1) 3-Iodopyridine 3.25(1) 4-Iodopyridine (20C) 4.02(1) Isoasparagine 2.97(1) 8.02(0) ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.55 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 Isobutylacetic acid (18C) 4.79 Isobutylamine 10.41(1) Isochlorotetracycline 3.1(1) 6.7(0) 8.3(1) Isocreatine 2.84(1) Isogluatamine 3.81(1) 7.88(0) Isohistamine ( 0.1) 6.036(2) 9.274(1) L-Isoleucine 2.35(1) 9.68(0) Isolysergic acid 3.33(0) 8.46(NH) Isopilocarpine (15C) 7.18(1) 2-(Isopropoxy)benzoic acid (20C) 4.24 3-(Isopropoxy)benzoic acid (20C) 4.15 4-(Isopropoxy)benzoic acid (20C) 4.68 Isopropylamine 10.64(1) N-Isopropylaniline 5.50(1) 5-Isopropylbarbituric acid 4.907(1) 2-Isopropylbenzene acid 3.64 4-Isopropylbenzene acid 4.36 N-Isopropylglycine ( 0.1) 2.36(1) 10.06(0) Isopropylmalonic acid 2.94 5.88 Isopropylmalonic acid mononitrile 2.401 3-Isopropyl-4-(methylam-ino)pyridine (20C) 9.96(1) 3-Isopropylpentanedioic acid 4.30 5.51 4-Isopropylphenylacetic acid 4.391 Isopropylphosphinic acid 3.56 Isopropylphosphonic acid 2.66 8.44 2-Isopropylpyridine 5.83(1) 3-Isopropylpyridine (20C) 5.72(1) 4-Isopropylpyridine 6.02(1) DL-Isoproterenol 8.64(1) Isoquinoline 5.40(1) Isoretronecanol 10.83 L-Isoserine ( 0.16) 2.72(1) 9.25(0) Isothiocyanatoacetic acid 6.62 L-()-Lactic acid 3.858 L-Leucine 2.33(1) 9.60(0) Leucine amide 7.80(1) Leucine, ethyl ester ( 0.1) 7.57(1) L-Leucyl-L-asparagine 3.00(1) 8.12(0) L-Leucyl-L-glutamine 2.99(1) 8.11(0) DL-Leucylglycine 3.25(1) 8.28(0) Leucylisoserine (20C) 3.188(1) 8.207(0) D-Leucyl-L-tyrosine 3.12(1) 8.38(0) 10.35(1) L-Leucyl-L-tyrosine 3.46(1) 7.84(0) 10.09(1) Lysergic acid 3.44(1) 7.68(0) L-()-Lysine 2.18(2) 8.94(1) 10.53(0) Lysine, methyl ester ( 0.1) 6.965(1) 10.251(0) L-Lysyl-L-alanine 3.22(1) 7.62(0) 10.70(1) L-Lysyl-D-alanine 3.00(1) 7.74(0) 10.63(1) Lysylglutamic acid 2.93(2) 4.47(1) 7.75(0) 10.50(1) L-Lysyl-L-lysine ( 0.1) 3.01(2) 7.53(1) 10.05(0) 10.01(1) 8.56 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 L-Lysyl-D-lysine ( 0.1) 2.85(2) 7.53(1) 9.92(0) 10.89(1) L-Lysyl-L-lysyl-L-lysine ( 0.1) 3.08(2) 7.34(1) 9.80(0) 10.54(1) L-Lysyl-D-lysyl-L-lysine ( 0.1) 2.91(2) 7.29(1) 9.79(0) 10.54(1) L-Lysyl-D-lysyl-lysine ( 0.1) 2.94(2) 7.15(1) 9.60(0) 10.38(1) -D-Lyxose 12.11 Maleic acid 1.910 6.33 Malonamic acid 3.641(0) Malonic acid 2.826 5.696 Malonitrile (cyanoacetic acid) 2.460 Mandelic acid 3.411 D-()-Mannose 12.08 Mercaptoacetic acid (thioglycolic acid) 3.60(0) 10.56(SH) 2-Mercaptobenzoic acid (20C) 4.05(0) 2-Mercaptobutanoic acid 3.53(0) Mercaptodiacetic acid 3.32 4.29 2-Mercaptoethanesulfonic acid (20C) 9.5(1) 2-Mercaptoethanol 9.88 2-Mercaptoethylamine 8.27(1) 10.53(0) 2-Mercaptohistidine 1.84(1) 8.47(0) 11.4(SH) Mercapto-S-phenylacetic acid ( 0.1) 3.9 2-Mercaptopropane ( 0.1) 10.86 3-Mercapto-1,2-propanediol ( 0.5) 9.43 2-Mercaptopropanoic acid 4.32(0) 10.20(SH) 3-Mercaptopropanoic acid — 10.84(SH) 2-Mercaptopyridine (20C) 1.07(1) 10.00(0) 3-Mercaptopyridine (20C) 2.26(1) 7.03(0) 4-Mercaptopyridine (20C) 1.43(1) 8.86(0) 2-Mercaptoquinoline (20C) 1.44(1) 10.21(0) 3-Mercaptoquinoline (20C) 2.33(1) 6.13(0) 4-Mercaptoquinoline (20C) 0.77(1) 8.83(0) Mercaptosuccinic acid 3.30(0) 4.94(1) 10.94(SH) Mesitylenic acid 4.32 Mesoxaldialdehyde 3.60 Methacrylic acid 4.66 Methanethiol 10.70 DL-Methionine 2.28(1) 9.21(0) 2-(N-Methoxyacetamido)pyridine 2.01(1) 3-(N-Methoxyacetamido)pyridine 3.52(1) 4-(N-Methoxyacetamido)pyridine 4.62(1) Methoxyacetic acid 3.570 3-Methoxy-D--alanine 2.037(1) 9.176(0) 2-Methoxyaniline 4.53(1) 3-Methoxyaniline 4.20(1) 4-Methoxyaniline 5.36(1) 2-Methoxybenzoic acid 4.09 3-Methoxybenzoic acid 4.08 4-Methoxybenzoic acid 4.49 N,N-Methoxybenzylamine 9.68(1) ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.57 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 2-Methoxycarbonylaniline 2.23(1) 3-Methoxycarbonylaniline 3.64(1) 4-Methoxycarbonylaniline 2.38(1) Methoxycarbonylmethylamine 7.66(1) 2-Methoxycarbonylpyridine 2.21(1) 3-Methoxycarbonylpyridine 3.13(1) 4-Methoxycarbonylpyridine 3.26(1) trans-2-Methoxycinnamic acid 4.462 trans-3-Methoxycinnamic acid 4.376 trans-4-Methoxycinnamic acid 4.539 2-Methoxyethylamine 9.45(+1) 2-Methoxy-4-nitrophenylphos-phonic acid 1.53 6.96 2-Methoxyphenol 9.99 3-Methoxyphenol 9.652 4-Methoxyphenol 10.20 (2-Methoxy)phenoxyacetic acid 3.231 (3-Methoxy)phenoxyacetic acid 3.141 (4-Methoxy)phenoxyacetic acid 3.213 4-Methoxyphenylacetic acid 4.358 (4-Methoxyphenyl)phosphinic acid (17C) 2.35 (2-Methoxyphenyl)phosphonic acid 2.16 7.77 (4-Methoxyphenyl)phosphonic acid (17C) 2.4 7.15 3-(2-Methoxyphenyl)propanoic acid 4.804 3-(3-Methoxyphenyl)propanoic acid 4.654 3-(4-Methoxyphenyl)propanoic acid 4.689 3-Methoxyphenylselenic acid 4.65 4-Methoxyphenylselenic acid 5.05 2-Methoxy-4-(2-propenyl)phenol 10.0 2-Methoxypyridine 3.06(1) 3-Methoxypyridine 4.91(1) 4-Methoxypyridine 6.47(1) 4-Methoxy-2-(2-thiazoy-lazo)phenol 7.83 2-Methylacrylic acid (18C) 4.66 N-Methylalanine 2.22(1) 10.19(0) O-Methylallothreonine ( 0.1) 1.92(+1) 8.90(0) Methylamine 10.62(1) 2-(N-Methylamino)benzoic acid 1.93(1) 5.34(0) 3-(N-Methylamino)benzoic acid — 5.10(0) 4-(N-Methylamino)benzoic acid — 5.05 Methylaminodiacetic acid (20C) 2.146 10.088 2-(Methylamino)ethanol 9.88(1) 2-(2-Methylaminoethyl)pyridine (30C) 3.58(2) 9.65(1) 2-(Methylaminomethyl)6-methyl-pyridine ( 0.5) 3.03(2) 9.15(1) 2-(Methylaminomethyl)pyridine (30C) 2.92(2) 8.82(1) 8.58 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 4-Methylamino-3-methylpyridine (20C) 9.83(1) (3-Methylamino)phenylphosphonic acid 1.1(1) 4.72(1) 7.30(1) (4-Methylamino)phenylphosphonic acid — — 7.85(1) 3-(Methylamino)pyridine (30C) 8.70(1) 4-(Methylamino)pyridine (20C) 9.65(1) 4-(Methylamino)-2,3,5,6-tetra-methylpyridine (20C) 10.06(1) N-Methylaniline 4.85(1) Methylarsonic acid (18C) 3.41 8.18 1-Methylbarbituric acid 4.35(1) 5-Methylbarbituric acid 3.386(1) 2-(N-Methylbenzamido)pyridine 1.44(1) 3-(N-Methylbenzamido)pyridine 3.66(1) 4-(N-Methylbenzamido)pyridine 4.68(1) 2-Methylbenzimidazole ( 0.16) 6.29(1) 2-Methylbenzoic acid (o-toluic acid) 3.90 3-Methylbenzoic acid 4.269 4-Methylbenzoic acid 4.362 N-Methyl-1-benzoylecgonine 8.65 Methylbiguanidine 3.00(2) 11.44(1) 2-Methyl-2-butanethiol 11.35 2-Methylbutanoic acid 4.761 3-Methylbutanoic acid (20C) 4.767 (E)-2-Methyl-2-butendioic acid (mesaconic acid) 3.09 4.75 3-Methyl-2-butenoic acid 5.12 (E)-2-Methyl-2-butenoic acid (tiglic acid) 4.96 (Z)-2-Methyl-2-butenoic acid (an-gelic acid) 4.30 4-Methylcarboxylphenol 8.47 (E)-2-Methylcinnamic acid 4.500 (E)-3-Methylcinnamic acid 4.442 (E)-4-Methylcinnamic acid 4.564 1-Methylcyclohexane-1-carboxylic acid 5.13 cis-2-Methylcyclohexane-1-carbox-ylic acid 5.03 trans-2-Methylcyclohexane-1-car-boxylic acid 5.73 cis-3-Methylcyclohexane-1-carbox-ylic acid 4.88 trans-3-Methylcyclohexane-1-car-boxylic acid 5.02 cis-4-Methylcyclohexane-1-carbox-ylic acid 5.04 trans-4-Methylcyclohexane-1-car-boxylic acid 4.89 2-Methylcyclohexyl-1,1-diacetic acid 3.53 6.89 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.59 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 3-Methylcyclohexyl-1,1-diacetic acid 3.49 6.08 4-Methylcyclohexyl-1,1,1-diacetic acid 3.49 6.10 3-Methylcyclopentyl-1,1-diacetic acid 3.79 6.74 S-Methyl-L-cysteine 8.97 N-Methylcytidine 3.88 5-Methylcytidine 4.21 N-Methyl-2-deoxycytidine 3.97 5-Methyl-2-deoxycytidine 4.33 2-Methyl-3,5-dinitrobenzoic acid 2.97 5-Methyldipropylenetriamine (30C) 6.32(3) 9.19(2) 10.33(1) 2,2-Methylenebis(4-chlorophenol) 7.6 11.5 2,2-Methylenebis(4,6-dichloro-phenol) 5.6 10.56 Methylenebis(thioacetic acid (18C) 3.310 4.345 3,3-(Methylenedithio)dialanine 2.200(1) 8.16(0) Methylenesuccinic acid 3.85 5.45 N-Methylethylamine 4.23(1) N-Methylethylenediamine 6.86(1) 10.15(1) -Methylglucoside 13.71 3-Methylglutaric acid 4.24 5.41 N-Methylglycine (sarcosine) 2.12(1) 10.20(0) 5-Methyl-2,4-heptanedione 8.52(enol); 9.10(keto) 5-Methyl-2,4-hexanedione 8.66(enol); 9.31(keto) 5-Methyl-4-hexenoic acid 4.80 3-Methylhistamine 5.80(1) 9.90(0) 1-Methylhistidine 1.69 6.48 8.85 2-Methylhistidine (18C) 1.7 7.2 9.5 2-Methyl-8-hydroxyquinoline ( 0.005) 4.58(1) 11.71(0) 4-Methyl-8-hydroxyquinoline 4.67(1) 11.62(0) 1-Methylimidazole 7.06(1) 4-Methylimidazole 7.55(1) N-Methyliminodiacetic acid 2.15 10.09 S-Methylisothiourea 9.83(1) O-Methylisourea 9.72(1) Methylmalonic acid 3.07 5.87 2-(N-Methylmethanesulfonam-ido)pyridine 1.73(1) 3-(N-Methylmethanesulfonam-ido)pyridine 3.94(1) 4-(N-Methylmethanesulfonam-ido)pyridine 5.14(1) 2-Methyl-6-methylaminopyridine (20C) 3.17(1) 8.84(0) 3-Methyl-4-methylaminopyridine (20C) — 9.84(0) 8.60 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 4-Methyl-2,2-(4-methylpyri-dyl)pyridine 5.32(1) N-Methylmorpholine 7.13(1) 2-Methyl-1-naphthoic acid 3.11 N-Methyl-1-naphthylamine 3.70(1) 2-Methyl-4-nitrobenzoic acid 1.86 2-Methyl-6-nitrobenzoic acid 1.87 1-Methyl-2-nitroterephthalic acid 3.11 4-Methyl-2-nitroterephthalic acid 1.82 3-Methylpentanedioic acid 4.25 5.41 3-Methylpentane-2,4-dione 10.87 2-Methylpentanoic acid 4.782 3-Methylpentanoic acid 4.766 4-Methylpentanoic acid 4.845 cis-3-Methyl-2-pentenoic acid 5.15 trans-3-Methyl-2-pentenoic acid 5.13 4-Methyl-2-pentenoic acid 4.70 4-Methyl-3-pentenoic acid 4.60 6-Methyl-1,10-phenanthroline 5.11(1) (2-Methylphenoxy)acetic acid 3.227 (3-Methylphenoxy)acetic acid 3.203 (4-Methylphenoxy)acetic acid 3.215 (2-Methylphenyl)acetic acid (18C) 4.35 (4-Methylphenyl)acetic acid 4.370 5-Methyl-5-phenylbarbituric acid 8.011(0) 3-(2-Methylphenyl)propanoic acid 4.66 3-(3-Methylphenyl)propanoic acid 4.677 3-(4-Methylphenyl)propanoic acid 4.684 1-Methyl-2-phenylpyrrolidine 8.80 5-Methyl-1-phenyl-1,2,3-triazole-4-carboxylic acid 3.73 Methylphosphinic acid 3.08 Methylphosphonic acid 2.38 7.74 3-Methyl-o-phthalic acid 3.18 4-Methyl-o-phthalic acid 3.89 N-Methylpiperazine ( 0.1) 4.94(2) 9.09(1) 2-Methylpiperazine 5.62(2) 9.60(1) N-Methylpiperidine 10.19(1) 2-Methylpiperidine 10.95(1) 3-Methylpiperidine 11.07(1) 4-Methylpiperidine ( 0.5) 11.23(1) 2-Methyl-1,2-propanediamine 6.178(2) 9.420(1) 2-Methyl-2-propanethiol 11.2 2-Methylpropanoic acid 4.853 2-Methyl-2-propylamine 10.682(1) 2-Methyl-2-propylglutaric acid 3.626 2-Methylpyridine 5.96(1) 3-Methylpyridine 5.68(1) 4-Methylpyridine 6.00(1) Methyl 4-pyridinecarboxylate 3.26(1) 6-Methylpyridine-2-carboxylic acid 5.83 2-Methylpyridine-1-oxide 1.029(1) 3-Methylpyridine-1-oxide 10.921(1) ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.61 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 4-Methylpyridine-1-oxide 1.258(1) O-Methylpyridoxal ( 0.16) 4.74 Methyl-2-pyridyl ketoxime 9.97 1-Methyl-2-(3-pyridyl)pyrrolidine 3.41 7.94 1-Methylpyrrolidine 10.46(1) 1-Methyl-3-pyrroline 9.88(1) 5-Methylquinoline 4.62(1) Methylsuccinic acid 4.13 5.64 Methylsulfonylacetic acid 2.36 3-Methylsulfonylaniline 2.68(1) 4-Methylsulfonylaniline 1.48(1) 3-Methylsulfonylbenzoic acid 3.52 4-Methylsulfonylbenzoic acid 3.64 4-Methylsulfonyl-3,5-dimethyl-phenol 8.13 3-Methylsulfonylphenol 9.33 4-Methylsulfonylphenol 7.83 1-Methyl-1,2,3,4-tetrahydro-3-pyri-dinecarboxylic acid (arecaidine; isoguvacine) 9.07 5-Methyl-1,2,3,4-tetrazole 3.32 2-Methylthiazole ( 0.1) 3.40(1) 4-Methylthiazole ( 0.1) 3.16(1) 5-Methylthiazole ( 0.1) 3.03(1) Methylthioacetic acid 3.72 4-Methylthioaniline 4.40(1) 2-Methylthioethylamine (30C) 9.18(1) Methylthioglycolic acid 7.68 3-(S-Methylthio)phenol 9.53 4-(S-Methylthio)phenol 9.53 2-Methylthiopyridine (20C) 3.59(1) 3-Methylthiopyridine (20C) 4.42(1) 4-Methylthiopyridine (20C) 5.94(1) 5-Methylthio-1,2,3,4-tetrazole 4.00(1) O-Methylthreonine 2.02(1) 9.00(0) O-Methyltyrosine 2.21(1) 9.35(0) 1-Methylxanthine 7.70 12.0 3-Methylxanthine 8.10 11.3 7-Methylxanthine 8.33 ca 13 9-Methylxanthine 6.25 Morphine (20C) 7.87(1) 9.85(0) Morpholine 8.492(1) 2-(N-Morpholino)ethanesulfonic acid (MES) (20C) 6.15 3-(N-Morpholino)-2-hydroxypro-panesulfonic acid (37C) 6.75 3-(N-Morpholino)propanesulfonic acid (20C) 7.20 Murexide 0.0 9.20 10.50 Myosmine 5.26 1-Naphthalenecarboxylic acid (1-naphthoic acid) 3.695 8.62 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 2-Naphthalenecarboxylic acid 4.161 1-Naphthol (20C) 9.30 2-Naphthol (20C) 9.57 Naphthoquinone monoxime 8.01 1-Naphthylacetic acid 4.236 2-Naphthylacetic acid 4.256 1-Naphthylamine 3.92(1) 2-Naphthylamine 4.11(1) 1-Naphthylarsonic acid 3.66 8.66 1-Naphthysulfonic acid 0.57 Narceine (15C) 3.5(1) 9.3 Narcotine 6.18(1) Nicotine 3.15(1) 7.87(0) Nicotyrine 4.76(1) Nitrilotriacetic acid (NTA) (20C) 1.65 2.94 10.33 Nitroacetic acid 1.68 2-Nitroaniline 0.28(1) 3-Nitroaniline 2.46(1) 4-Nitroaniline 1.01(1) 2-Nitrobenzene-1,4-dicarboxylic acid 1.73 3-Nitrobenzene-1,2-dicarboxylic acid 1.88 4-Nitrobenzene-1,2-dicarboxylic acid 2.11 2-Nitrobenzoic acid 2.18 3-Nitrobenzoic acid 3.46 4-Nitrobenzoic acid 3.441 trans-2-Nitrocinnamic acid 4.15 trans-3-Nitrocinnamic acid 4.12 trans-4-Nitrocinnamic acid 4.05 Nitroethane 8.57 2-Nitrohydroquinone 7.63 10.06 N-Nitroiminodiacetic acid 2.21 3.33 3-Nitromesitol 8.984 Nitromethane 10.12 1-Nitro-6,7-phenanthroline ( 0.2) 3.23(1) 5-Nitro-1,10-phenanthroline 3.232(1) 6-Nitro-1,10-phenanthroline 3.23(1) 2-Nitrophenol 7.222 3-Nitrophenol 8.360 4-Nitrophenol 7.150 (2-Nitrophenoxy)acetic acid 2.896 (3-Nitrophenoxy)acetic acid 2.951 (4-Nitrophenoxy)acetic acid 2.893 2-Nitrophenylacetic acid 4.00 3-Nitrophenylacetic acid 3.97 4-Nitrophenylacetic acid 3.85 2-Nitrophenylarsonic acid 3.37 8.54 3-Nitrophenylarsonic acid 3.41 7.80 4-Nitrophenylarsonic acid 2.90 7.80 7-(4-Nitrophenylazo)-8-hydroxy-5-quinolinesulfonic acid 3.14(0) 7.495(1) ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.63 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 3-Nitrophenylphosphonic acid 1.30 6.27 4-Nitrophenylphosphonic acid 1.24 6.23 3-(2-Nitrophenyl)propanoic acid 4.504 3-(4-Nitrophenyl)propanoic acid 4.473 3-Nitrophenylselenic acid 4.07 4-Nitrophenylselenic acid 4.00 1-Nitropropane 8.98 2-Nitropropane 7.675 2-Nitropropanoic acid 3.79 2-Nitropyridine ) ( 0.02 2.06(1) 3-Nitropyridine ) ( 0.02 0.79(1) 4-Nitropyridine ) ( 0.02 1.23(1) N-Nitrosoiminodiacetic acid 2.28 3.38 4-Nitrosophenol 6.48 Nitrourea 4.15(1) 1,9-Nonanedioic acid (azelaic acid) 4.53 5.40 Nonanoic acid (pelargonic acid) 4.95 DL-Norleucine 2.335(1) 9.834(0) Novocaine 8.85(1) 2,2,3,3,4,4,5,5-Octafluoropentanoic acid 2.65 1,8-Octanedioic acid (suberic acid) 4.512 5.404 Octanoic acid (caprylic acid) 4.895 Octopine-DD 1.35 2.30 8.68 11.25 Octopine-LD 1.40 2.30 8.72 11.34 Octylamine 10.65(1) L-()-Ornithine 1.94(2) 8.65(1) 10.76(0) Oxalic acid 1.271 4.272 3,6-Oxaoctanedioic acid ( 1.0) 3.055 3.676 Oxoacetic acid 3.46 2-Oxabutanedioic acid (oxaloacetic acid) 2.56 4.37 2-Oxobutanoic acid 2.50 5-Oxohexanoic acid (5-ketohexan-oic acid) (18C) 4.662 3-Oxo-1,5-pentanedioic acid 3.10 4-Oxopentanoic acid (levulinic acid) 4.59 2-Oxopropanoic acid (pyruvic acid) 2.49 Oxytetracycline 3.10(1) 7.26 9.11 Papaverine 5.90(1) Pentamethylenebis(thioacetic acid) (18C) 3.485 4.413 3,3-Pentamethylenepentanedioic acid 3.49 6.96 1,5-Pentanediamine 10.05(2) 10.916(1) 2,4-Pentanedione 8.24(enol); 8.95(keto) 1-Pentanoic acid (valeric acid) 4.842 2-Pentenoic acid 4.70 3-Pentenoic acid 4.52 8.64 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 4-Pentenoic acid 4.677 Pentylarsonic acid 4.14 9.07 N-Pentylveratramine 7.28(1) Perhydrodiphenic acid (20C) 4.96 6.68 Perlolidine (18C) 4.01 11.39 Peroxyacetic acid 8.20 1,7-Phenanthroline 4.30(1) 1,10-Phenanthroline 4.857(1) 6,7-Phenanthroline 4.857(1) Phenazine 1.2(1) Phenethylthioacetic acid 3.795 Phenol 9.99 Phenol-3-phosphoric acid 1.78 7.03 10.2 Phenol-4-phosphoric acid 1.99 7.25 9.9 Phenolphthalein 9.4 3-Phenolsulfonic acid — 9.05(1) Phenosulsulfonephthalein 7.9 Phenoxyactic acid 3.171 2-Phenoxybenzoic acid 3.53 3-Phenoxybenzoic acid 3.95 4-Phenoxybenzoic acid 4.52 5-Phenoxy-1,2,3,4-tetrazole 3.49(1) Phenylacetic acid 4.312 L-3-Phenyl--alanine 1.83(1) 9.12(0) 3-Phenyl--alanine, methyl ester 7.05(1) Phenylalanylarginine ( 0.01) 2.66(1) 7.57(0) 12.40(1) Phenylalanylglycine ( 0.01) 3.10(1) 7.71(0) 7-Phenylazo-8-hydroxy-5-quino-linesulfonic acid 3.41(0) 7.850(1) 5-Phenylbarbituric acid 2.544(1) 2-Phenyl-2-benzylsuccinic acid 3.69 6.47 1-Phenylbiguanide 2.13(2) 10.76(1) 4-Phenylbutanoic acid 4.757 Phenylbutazone 4.5(1) 2-Phenylenediamine 2(2) 4.47(1) 3-Phenylenediamine 2.65(2) 4.88(1) 4-Phenylenediamine 3.29(2) 6.08(1) 2-Phenylethylamine 9.83(1) -Phenylethylboronic acid 10.0 DL--Phenylglycine 1.83(1) 4.39(0) Phenylguanidine 10.77(1) Phenylhydrazine 5.20(1) 2-Phenyl-3-hydroxypropanoic acid 3.53 3-Phenyl-3-hydroxypropanoic acid 4.40 Phenyliminodiacetic acid (20C) 2.40 4.98 Phenylmalonic acid 2.58 5.03 Phenylmethanethiol 10.70 2-Phenyl-2-phenethylsuccinic acid (20C) 3.74 6.52 2-Phenylphenol 9.55 3-Phenylphenol 9.63 4-Phenylphenol 9.55 Phenylphosphinic acid (17C) 2.1 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.65 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 Phenylphosphonic acid 1.83 7.07 O-Phenylphosphorylserine 2.13(1) 8.79 O-Phenylphosphorylserylglycine 3.18(1) 6.95(0) O-Phenylphosphoryl-L-seryl-L-leu-cine 3.16(1) 7.12(0) N-Phenylpiperazine ( 0.1) 8.71(1) 2-Phenylpropanoic acid 4.38 3-Phenylpropanoic acid (35C) 4.664 3-Phenyl-1-propylamine 10.39(1) Phenylpropynoic acid (35C) 2.269 Phenylselenic acid 4.79 Phenylselenoacetic acid ( 0.1) 3.75 -Phenylserine ( 0.16) 8.79(0) Phenylsuccinic acid (20C) 3.78 5.55 Phenylsulfenylacetic acid 2.66 Phenylsulfonylacetic acid 2.44 5-Phenyl-1,2,3,4-tetrazole 4.38(1) 1-Phenyl-1,2,3-triazole-4-carbox-ylic acid 2.88 1-Phenyl-1,2,3-triazole-4,5-dicar-boxylic acid 2.13 4.93 Phosphoramidic acid 3.08 8.63 O-Phosphorylethanolamine 5.838(1) 10.638(0) O-Phosphorylserylglycine 3.13 5.41 8.01 O-Phosphoryl-L-seryl-L-leucine 3.11 5.47 8.26 Phosphoserine 2.08 5.65 9.74 Phthalamide 3.79(0) Phthalazine 3.47(1) o-Phthalic acid 2.950 5.408 Phthalimide 9.90(0) Physostigmine 1.76(1) 7.88(0) Picric acid (2,4,6-trinitrophenol) (18C) 0.419 Pilocarpine 1.3(1) 6.85(0) Piperazine 5.333(2) 9.781(1) 1,4-Piperazinebis(ethanesulfonic acid) (20C) 6.80 Piperazine-2-carboxylic acid 1.5 5.41 9.53 Piperdine 11.123(1) 2-Piperidinecarboxylic acid 2.12(1) 10.75(0) 3-Piperidinecarboxylic acid 3.35(1) 10.64(0) 4-Piperidinecarboxylic acid 3.73(1) 10.72(0) 1-(2-Piperidinyl)-2-propanone (15C) 9.45 Piperine (15C) 1.98(1) Proline 1.99(1) 10.96(0) 1,2-Propanediamine 6.607(2) 9.702(1) 1,3-Propanediamine 8.49(2) 10.47(1) 1-Propanethiol 10.86 1,2,3-Propanetriamine 3.72(3) 7.95(2) 9.59(1) 1,2,3-Propanetricarboxylic acid 3.67 4.87 6.38 Propanoic acid 4.874 Propenoic acid 4.247 8.66 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 N-Propionyglycine 3.718(0) 2-Propoxybenzoic acid (20C) 4.24 3-Propoxybenzoic acid (20C) 4.20 4-Propoxybenzoic acid (20C) 4.78 N-Propylalanine 2.21(1) 10.19(0) Propylamine 10.568(1) Propylarsonic acid (18C) 4.21 9.09 Propylenimine 8.18(1) N-Propylglycine ( 0.1) 2.38(1) 10.03(0) L-Propylglycine 3.19(1) 8.97(0) Propylmalonic acid 2.97 5.84 Propylphosphinic acid 3.46 Propylphosphonic acid 2.49 8.18 2-Propylpyridine 6.30(1) N-Propylveratramine 7.20(1) 2-Propynoic acid 1.887 Pseudoecgonine 9.70 Pseudoisocyanine ( 0.2) 4.59(2) Pseudotropine 9.86(1) Pteroylglutamic acid 8.26 Purine 2.52(1) 8.92(0) Pyrazine 0.6(1) Pyrazinecarboxamide 0.5(1) Pyrazole 2.61(1) Pyridazine 2.33(1) Pyridine 5.17(1) Pyridine-d5 5.83(1) 2-Pyridinealdoxime 3.56(1) 10.17(0) 3-Pyridinealdoxime 4.07(1) 10.39(0) 4-Pyridinealdoxime 4.73(1) 10.03(0) 2-Pyridinecarbaldehyde 3.84(1) 3-Pyridinecarbaldehyde 3.80(1) 4-Pyridinecarbaldehyde 4.74(1) 3-Pyridinecarbamide (nicotin-amide) 3.33(1) 3-Pyridinecarbonitrile 1.35(1) Pyridine-2-carboxylic acid (picol-inic acid) 1.01(1) 5.29(0) Pyridine-3-carboxylic acid (nico-tinic acid) 2.07(1) 4.75(0) Pyridine-4-carboxylic acid (isoni-cotinic acid) 1.84(1) 4.86(0) Pyridine-2,3-dicarboxylic acid 2.36(1) 7.08(0) Pyridine-2,4-dicarboxylic acid 2.23(1) 7.02(0) Pyridine-2,6-dicarboxylic acid 2.16(1) 6.92(0) Pyridine-1-oxide 0.688(1) Pyridoxal 4.20(1) 8.66(ring OH) Pyridoxal-5-phosphate ( 0.15) 2.5 4.14 6.20 8.69 Pyridoxamine ( 0.1) 3.37(2) 8.01(1) 10.13(ring OH) Pyridoxamine-5-phosphate ( pK5 10.92) 0.15; 2.5 3.69 5.76 8.61 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.67 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 Pyridoxine (vitamin B6) (18C) 5.00(1) 8.96(ring OH) 3-(2-Pyridyl)alanine 1.37(2) 4.02(1) 9.22(0) 3-(3-Pyridyl)alanine 1.77(2) 4.64(1) 9.10(0) 2-(2-Pyridyl)benzimidazole ( 0.16) 5.58(1) 2-(2-Pyridyl)imidazole ( 0.005) 8.98(1) 4-(2-Pyridyl)imidazole ( 0.1) 5.49(1) Pyrimidine 1.30(1) 2,4(1H,3H)-Pyrimidinedione (ura-cil) 0.6(1) 9.46(0) 2,4,5,6(1H,3H)-Pyrimidinetetrone-5-oxime 4.57(0) Pyrocatecholsulfonephthaleine 7.82 9.76 11.73 Pyroxilidine 11.11(1) Pyrrole-1-carboxylic acid 4.45 Pyrrole-2-carboxylic acid 4.45 Pyrrole-3-carboxylic acid 4.453 Pyrrolidine 11.305(1) Pyrrolidine-2-carboxylic acid (pro-line) 1.952(1) 10.640(0) 2-[2-(N-Pyrrolidinyl)ethyl]pyridine 3.60(2) 9.39(1) 3-[2-(N-Pyrrolidinyl)ethyl]pyridine 4.28(2) 9.28(1) 4-[2-(N-Pyrrolidinyl)ethyl]pyridine 4.65(2) 9.27(1) 2-(1-Pyrrolidinylmethyl)pyridine 2.54(1) 8.56(1) 3-(1-Pyrrolidinylmethyl)pyridine 3.14(2) 8.36(1) 4-(1-Pyrrolidinylmethyl)pyridine 3.38(2) 8.16(1) 3-Pyrroline 0.27(1) Quinidine 4.0(1) 8.54(0) Quinine 4.11(1) 8.52(0) Quinoline 4.80(1) Quinoxaline 0.72(1) D-Raffinose 12.74 Riboflavin (vitamin B2) ( 0.01) ca 0.2 9.69 -D-Ribofuranose 12.11 D-Ribose-5-phosphonic acid — 6.70(1) 13.05(2) D-Saccharic acid 5.00(0) Saccharin (o-benzoic sulfimide) 2.32 Sarcosine 2.12(1) 10.20(0) Sarcosine amide 8.35(1) Sarcosine dimethylamide 8.86(1) Sarcosine methylamide 8.28(1) Sarcosylglycine ( 0.16) 3.15(1) 8.56(0) Sarcosylleucine 3.15(1) 8.67(0) Sarcosylsarcosine 2.92(1) 9.15(0) Sarcosylserine 3.17(1) 8.63(0) 3-Selenosemicarbazide ( 0.1) 0.8(1) Semicarbazide ( 0.1) 3.53(1) L-Serine 2.21(1) 9.15(0) 13.6 8.68 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 Serine, methyl ester ( 0.1) 7.03(1) Serylglycine ( 0.15) 2.10(1) 7.33(0) L-Seryl-L-leucine 3.08(1) 7.45(0) Solanine 7.34(1) D-Sorbitol (17.5C) 13.60 L-()-Sorbose (18C) 11.55 Sparteine 4.49(1) 11.76(0) Spinaceamine ( 0.1) 4.895(2) 8.90(1) Spinacine 1.649(2) 4.936(1) 8.663(0) L-Strychnine (15C) 2.50 8.20 Succinamic acid (succinic acid monoamide) 4.39(0) Succinic acid 4.207 5.635 DL-Succinimide 9.623 -(4-Sulfaminophenyl)alanine 1.99(1) 8.64(0) 10.26(1) 3-Sulfamylbenzoic acid 3.54 4-Sulfamylbenzoic acid 3.47 4-Sulfamylphenylphosphoric acid 1.42 6.38 10.0 Sulfanilamide 10.43(1) Sulfoacetic acid — 4.0 3-Sulfobenzoic acid — 3.78 4-Sulfobenzoic acid — 3.72 3-Sulfophenol 0.39 9.07 4-Sulfophenol 0.58 8.70 2-Sulfopropanoic acid 1.99 5-Sulfosalicyclic acid 2.49 12.00 Sylvic acid 7.62 D-Tartaric acid 3.036 4.366 meso-Tartaric acid 3.22 4.81 Tetracycline ( 0.005) 3.30(1) 7.68 9.69 Tetradehydroyohimbine 10.59(1) Tetraethylenepentamine [ 0.1; pK5 9.67(1)] 2.98(5) 4.72(4) 8.08(3) 9.10(2) 1,4,5,6-Tetrahydro-1,2-dimethyl-pyridine 11.38(1) 1,4,5,6-Tetrahydro-2-methylpyri-dine 9.53(1) cis-Tetrahydronaphthalene-2,3-di-carboxylic acid (20C) 3.98 6.47 trans-Tetrahydronaphthalene-2,3-dicarboxylic acid (20C) 4.00 5.70 5,6,7,8-Tetrahydro-1-naphthol 10.28 5,6,7,8-Tetrahydro-2-naphthol 10.48 Tetrahydroserpentine 10.55(1) 2,3,5,6-Tetramethylbenzoic acid 3.415 Tetramethylenebis(thioacetic acid) (18C) 3.463 4.423 Tetramethylenediamine 9.22(2) 10.75(1) N,N,N ,N-Tetramethylethylenedi-amine 2.20(2) 6.35(1) 2,3,5,6-Tetramethyl-4-methylami-nopyridine 0.07(1) ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.69 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 2,2,6,6-Tetramethylpiperidine ( 0.5) 1.24(1) 2,3,5,6-Tetramethylpyridine (20C) 7.90(1) Tetramethylsuccinic acid 3.50 7.28 1,2,3,4-Tetrazole 4.90 Thebaine 7.95(1) 2-Thenoyltriflluoroacetone 5.70(0) Theobromine 0.68(1) 7.89 Theophylline 1(1) 8.80 Thiazoline 2.53(1) Thioacetic acid 3.33 o-Thiocresol 6.64 m-Thiocresol 6.58 p-Thiocresol 6.52 Thiocyanatoacetic acid 2.58 2,2-Thiodiacetic acid 3.32 4.29 4,4-Thiodibutanoic acid (18C) 4.351 5.275 3,3-Thiodipropanoic acid (18C) 4.085 5.075 3-Thio-S-methylcarbazide ( 0.1) 7.563(1) 1-Thionylcarboxylic acid 3.53 2-Thionylcarboxylic acid 4.10 2-Thiophenecarboxylic acid (30C) 3.529 3-Thiophenecarboxylic acid (3-thenoic acid) 4.10 Thiophenol 6.50 3-Thiosemicarbazide ( 0.1) 1.5(1) 3-Thiosemicarbazide-1,1-diacetic acid (30C) 2.94 4.07 Thiourea 2.03(1) Thorin 3.7 8.3 11.8 Thymidine 9.79 12.85 p-Toluenesulfinic acid 1.7 Toluhydroquinone 10.03 11.62 o-Toluidine 4.45(1) m-Toluidine 4.71(1) p-Toluidine 5.08(1) o-Tolylacetic acid (18C) 4.36 p-Tolylacetic acid (18C) 4.36 o-Tolylarsonic acid 3.82 8.85 m-Tolylarsonic acid 3.82 8.60 p-Tolylarsonic acid 3.70 8.68 o-Tolylphosphonic acid 2.10 7.68 m-Tolylphosphonic acid 1.88 7.44 p-Tolylphosphonic acid 1.84 7.33 3-Tolylselenic acid 4.80 4-Tolylselenic acid 4.88 Triacetylmethane 5.81 Triallylamine 8.31(1) 1,3,5-Triazine-2,4,6-triol 7.20 11.10 1H-1,2,3-Triazole — 9.26 1H-1,2,4-Triazole 2.386(1) 9.972 1,2,3-Triazole-4-carboxylic acid 3.22 8.73 8.70 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 1,2,3-Triazole-4,5-dicarboxylic acid 1.86 5.90 9.30 1,2,4-Triazolidine-3,5-dione (ura-zole) 5.80 Tribomoacetic acid 0.147 2,4,6-Tribromobenzoic acid 1.41 Trichloroacetic acid 0.52 Trichloroacrylic acid 1.15 3,3,3-Trichlorolactic acid 2.34 Trichloromethylphosphonic acid 1.63 4.81 2,4,5-Trichlorophenol 7.37 3,4,5-Trichlorophenol 7.839 Tricine (20C) 8.15 Triethanolamine 7.76(1) Triethylamine 10.72(1) Triethylenediamine 4.18(2) 8.19(1) Triethylenetetramine (20C) 3.32(4) 6.67(3) 9.20(2) 9.92(1) Triethylsuccinic acid 2.74 Trifluoroacetic acid 0.50 Trifluoroacrylic acid 1.79 4,4,4-Trifluoro-2-aminobutanoic acid 1.600(1) 8.169(0) 4,4,4-Trifluoro-3-aminobutanoic acid 2.756(1) 5.822(0) 4,4,4-Trifluorobutanoic acid 4.16 ,,-Trifluoro-m-cresol 8.950 4,4,4-Trifluorocrotonic acid 3.15 5,5,5-Trifluoroleucine 2.045(1) 8.942(0) 3-(Trifluoromethyl)aniline 3.5(1) 4-(Trifluoromethyl)aniline 2.6(1) 3-Trifluoromethylphenol 8.950 5-Trifluoromethyl-1,2,3,4-tetrazole 1.70 6,6,6-Trifluoronorleucine 2.164(1) 9.463(0) 5,5,5-Trifluoronorvaline 2.042(1) 8.916(0) 5,5,5-Trifluoropentanoic acid 4.50 3,3,3-Trifluoropropanoic acid 3.06 4,4,4-Trifluorothreonine 1.554(1) 7.822(0) 4,4,4-Trifluorovaline 1.537(1) 8.098(0) 1,2,3-Trihydroxybenzene (pyrogal-lol) 9.03(0) 11.63(1) 1,3,5-Trihydroxybenzene (phloro-glucinol) 8.45(0) 8.88(1) 2,4,6-Trihydroxybenzoic acid 1.68(0) 3,4,5-Trihydroxybenzoic acid 4.19(0) 8.85(1) 3,4,5-Trihydroxycyclohex-1-ene-1-carboxylic acid [D-()-shikimic acid] 4.15 2,4,6-Tri(hydroxymethyl)phenol 9.56 Triisobutylamine 10.42(1) Trimethylamine 9.80(1) 3-(Trimethylamino)phenol 8.06 4-(Trimethylamino)phenol 8.35 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.71 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 2,4,6-Trimethylaniline 4.38(1) 2,4,6-Trimethylbenzoic acid 3.448 Trimethylenebis(thioacetic acid) (18C) 3.435 5.383 2,3,4-Trimethylphenol 10.59 2,4,5-Trimethylphenol 10.57 2,4,6-Trimethylphenol 10.88 3,4,5-Trimethylphenol 10.25 2,3,6-Trimethylpyridine ( 0.5) 7.60(1) 2,4,6-Trimethylpyridine 7.43(1) 2,4,6-Trimethylpyridine-1-oxide 1.990(1) 3-(Trimethylsilyl)benzoic acid 4.089 4-(Trimethylsilyl)benzoic acid 4.192 2,4,5-Trimethylthiazole ( 0.1) 4.55 2,4,6-Trinitroaniline (picramide) 10.23(1) 2,4,6-Trinitrobenzene acid 0.654 2,2,2-Trinitroethanol 2.36 Trinitromethane (20C) 0.17 Triphenylacetic acid 3.96 Tripropylamine 10.66(1) Tris(2-hydroxyethyl)amine 7.762(1) Tri(hydroxymethyl)aminomethane (TRIS) 8.08(1) 2-[Tris(hydroxymethyl)methyl amino]-1-ethanesulfonic acid (TES) 7.50 3-[Tris(hydroxymethyl)methyl amino]-1-propanesulfonic acid (TAPS) (20C) 8.4 N-[Tris(hydroxymethyl)methyl]-glycine (tricine) 2.023(1) 8.135 Tris(trimethylsilyl)amine 4.70(1) Trithiocarbonic acid (20C) 2.64 Tropacocaine (15C) 9.88(1) 3-Tropanol (tropine) 10.33(1) Trypsin ( 0.1) 6.25 L-Tryptophan 2.38(1) 9.39(0) DL-Tyrosine 2.18(1) 9.11(0) 10.6(OH) Tyrosine amide 7.48 9.89 Tyrosine, ethyl ester 7.33 9.80 Tyrosylarginine ( 0.01) 2.65(1) 7.39(0) 9.36(1) 11.62(2) Tyrosyltyrosine 3.52(1) 7.68(0) 9.80(1) 10.26(2) -Ureidobutanoic acid 3.886(0) -Ureidobutanoic acid 4.683(0) -Ureidopropanoic acid 4.487(0) Uric acid 5.40 5.53 Uridine 9.30 Uridine-5-diphosphoric acid 7.16 Uridine-5-phosphoric acid (5-uri-dylic acid) 6.63 Uridine-5-triphosphoric acid 7.58 8.72 SECTION 8 TABLE 8.8 pKa Values of Organic Materials in Water at 25C (Continued) Substance pK1 pK2 pK3 pK4 DL-Valine 2.32(1) 9.61(0) L-Valine 2.296(1) 9.79(0) Valine amide ( 0.2) 8.00 L-Valine, methyl ester 7.49(1) L-Valylglycine 3.23(1) 8.00(0) Vetramine 7.49(1) Veratrine 8.85(1) Vinylmethylamine 9.69(1) 2-Vinylpyridine 4.98(1) 4-Vinylpyridine 5.62(1) Vitamin B12 7.64(1) Xanthine (40C) 0.68(1) Xanthosine 2.5(1) 5.67(0) 12.00(1) Xylenol Orange [pK5 10.46(4); pK6 12.28(5)] — 2.58(1) 3.23(2) 6.37(3) D-()-Xylose 12.15(0) Zincon — 4 7.85 15 TABLE 8.9 Selected Equilibrium Constants in Aqueous Solution at Various Temperatures Abbreviations Used in the Table (1), protonated cation (0), neutral molecule (1), singly ionized anion (2), doubly ionized anion pKauto, negative logarithm (base 10) of autoprotolysis constant pKsp, negative logarithm (base 10) of solubility product Temperature, C Substance 0 5 10 15 20 25 30 35 40 50 Acetic acid (0) 4.780 4.770 4.762 4.758 4.757 4.756 4.757 4.762 4.769 4.787 DL-N-Acetylalanine (1) 3.699 3.699 3.703 3.708 3.715 3.725 3.733 3.745 3.774 -Acetylaminopropionic (1) 4.479 4.465 4.465 4.449 4.445 4.444 4.443 4.445 4.457 N-Acetylglycine (1) 3.682 3.676 3.673 3.667 3.670 3.673 3.678 3.685 3.706 -Alanine (1) 2.42 2.39 2.35 2.34 2.33 2.33 2.33 2.33 (0) 10.59 10.29 10.01 9.87 9.74 9.62 9.49 9.26 2-Aminobenzenesulfonic acid (0), pK2 2.633 2.591 2.556 2.521 2.448 2.459 2.431 2.404 2.380 2.338 3-Aminobenzenesulfonic acid (0), pK2 4.075 4.002 3.932 3.865 3.799 3.738 3.679 3.622 3.567 3.464 4-Aminobenzenesulfonic acid (0), pK2 3.521 3.457 3.398 3.338 3.283 3.227 3.176 3.126 3.079 2.989 3-Aminobenzoic acid (0) 4.90 4.79 4.75 4.68 4.60 4-Aminobenzoic acid (0) 4.95 4.85 4.90 4.95 5.10 2-Aminobutyric acid (1) 2.334 2.286 2.28937.5C 2.297 (0) 10.530 9.380 9.51837.5C 9.234 4-Aminobutyric acid (1) 4.057 4.046 4.038 4.031 4.027 4.025 4.027 4.032 (0) 11.026 10.867 10.706 10.556 10.409 10.269 10.114 9.874 2-Aminoethylsulfonic acid (0) 9.452 9.316 9.186 9.061 8.940 8.824 8.712 9.499 8.73 TABLE 8.9 Selected Equilibrium Constants in Aqueous Solution at Various Temperatures (Continued) Temperature, C Substance 0 5 10 15 20 25 30 35 40 50 2-Amino-3-methylpentanoic acid (1) 2.3651C 2.33812.5C 2.320 2.31737.5C 2.332 (0) 10.4601C 10.10012.5C 9.758 9.43937.5C 9.157 2-Amino-2-methyl-1,3-propanediol 9.612 9.433 9.266 9.104 8.951 8.801 8.659 8.519 8.385 8.132 2-Amino-2-methylpropionic acid (1) 2.4191C 2.38012.5C 2.357 2.35137.5C 2.356 (0) 10.9601C 10.58012.5C 10.205 9.87237.5C 9.561 2-Aminopentanoic acid (1) 2.3761C 2.347 2.318 2.309 2.313 (0) 10.5081C 10.15412.5C 9.808 9.49037.5C 9.198 3-Aminopropionic acid (1) 3.656 3.627 3.583 3.551 3.524 3.517 (0) 11.000 10.830 10.526 10.235 9.963 9.842 4-Aminopyridine (1) 9.873 9.704 9.549 9.398 9.252 9.114 8.978 8.846 8.717 8.477 Ammonium ion (1) 10.081 9.904 9.731 9.564 9.400 9.245 9.093 8.947 8.805 8.539 Arginine (1) 1.914 1.885 1.870 1.849 1.837 1.823 1.814 1.801 1.800 1.787 (0) 9.718 9.563 9.407 9.270 9.123 8.994 8.859 8.739 8.614 8.385 Barbituric acid (1) 3.969 3.980 4.02 4.00 4.008 4.017 4.032 (0) 8.493 8.435 8.372 8.302 8.227 8.147 7.974 Benzoic acid (0) 4.231 4.220 4.215 4.206 4.204 4.203 4.207 4.219 4.223 Boric acid (0) 9.508 9.439 9.380 9.327 9.280 9.236 9.197 9.161 9.132 9.080 Bromoacetic acid (0) 2.875 2.887 2.902 2.918 2.936 3-Bromobenzoic acid (0) 3.818 3.813 3.810 3.808 3.810 3.813 4-Bromobenzoic acid (0) 4.011 4.005 3.99 4.001 4.001 4.003 Bromopropynoic acid (0) 1.786 1.814 1.839 1.855 1.879 1.900 1.919 8.74 3-tert-Butylbenzoic acid (0) 4.266 4.231 4.199 4.170 4.143 4.119 4-tert-Butylbenzoic acid (0) 4.463 4.425 4.389 4.354 4.320 4.287 2-Butynoic acid (0) 2.618 2.626 2.611 2.620 2.618 2.621 2.631 Butyric acid (0) 4.806 4.804 4.803 4.805 4.810 4.817 4.827 4.840 4.854 4.885 DL-N-Carbamoylalanine (1) 3.898 3.894 3.891 3.890 3.892 3.896 3.902 3.908 3.931 N-Carbamoylglycine (1) 3.911 3.900 3.889 3.879 3.876 3.874 3.873 3.875 3.888 Carbon dioxide water (0) 6.577 6.517 6.465 6.429 6.382 6.352 6.327 6.309 6.296 6.285 (1) 10.627 10.558 10.499 10.431 10.377 10.329 10.290 10.250 10.220 10.172 Chloroacetic acid (0) 2.845 2.856 2.867 2.883 2.900 3-Chlorobenzoic acid (0) 3.838 3.831 3.83 3.825 3.826 3.829 4-Chlorobenzoic acid (0) 4.000 3.991 3.986 3.981 3.980 3.981 Chloropropynoic acid (0) 1.766 1.796 1.820 1.845 1.864 1.879 1.893 Citric acid (0) 3.220 3.200 3.176 3.160 3.142 3.128 3.116 3.109 3.099 3.095 (1) 4.837 4.813 4.797 4.782 4.769 4.761 4.755 4.751 4.750 4.757 (2) 6.393 6.386 6.383 6.384 6.388 6.396 6.406 6.423 6.439 6.484 Cyanoacetic acid (0) 2.445 2.447 2.452 2.460 2.460 2.482 2.496 2.511 2-Cyano-2-methylpropionic acid (0) 2.342 2.360 2.379 2.400 2.422 2.446 2.471 2.498 5,5-Diethylbarbituric acid (0) 8.40 8.30 8.22 8.169 8.094 8.020 7.948 7.877 7.808 7.673 Diethylmalonic acid (0) 2.129 2.136 2.144 2.151 2.160 2.172 2.187 (1) 7.400 7.401 7.408 7.417 7.428 7.441 7.457 2,3-Dimethylbenzoic acid (0) 3.663 3.687 3.771 3.726 3.762 3.788 2,4-Dimethylbenzoic acid (0) 4.154 4.187 4.217 4.244 4.268 4.290 2,5-Dimethylbenzoic acid (0) 3.911 3.954 3.990 4.020 4.045 4.065 2,6-Dimethylbenzoic acid (0) 3.234 3.304 3.362 3.409 3.445 3.472 3,5-Dimethylbenzoic acid (0) 4.292 4.299 4.302 4.304 4.306 4.306 N,N-Dimethylethyleneamine-N,N-diacetic acid (0) 6.294 6.169 6.047 5.926 5.803 (1) 10.446 10.268 10.068 9.882 9.684 N,N-Dimethylglycine (0) 10.34 10.14 9.94 9.76 3,5-Dinitrobenzoic acid (0) 2.60 2.73 2.85 2.96 3.07 8.75 TABLE 8.9 Selected Equilibrium Constants in Aqueous Solution at Various Temperatures (Continued) Temperature, C Substance 0 5 10 15 20 25 30 35 40 50 2-Ethylbutyric acid (0) 4.623 4.664 4.710 4.751 4.758 4.812 4.869 5-Ethyl-5-phenylbarbituric acid (0) 7.592 7.517 7.445 7.377 7.311 7.248 7.130 Fluoroacetic acid (0) 2.555 2.571 2.586 2.604 2.624 Formic acid (0) 3.786 3.772 3.762 3.757 3.753 3.751 3.752 3.758 3.766 3.782 2-Furancarboxylic acid (0) 3.164 3.200 3.216 3.239 Glucose-1-phosphate (0) 6.506 6.500 6.499 6.500 6.504 6.510 6.519 6.531 6.561 Glycerol-1-phosphoric acid (1) 6.642 6.641 6.643 6.648 6.656 6.666 6.679 6.695 6.733 Glycerol-2-phosphoric acid (0) 1.223 1.245 1.271 1.301 1.335 1.372 1.413 1.457 1.554 (1) 6.657 6.650 6.646 6.646 6.650 6.657 6.666 6.679 6.712 Glycine (1) 2.397 2.380 2.36 2.351 2.34 2.33 2.327 2.32 (0) 10.34 10.193 10.044 9.91 9.780 9.65 9.53 9.412 9.19 Glycolic acid (0) 3.875 3.84412.5C 3.831 3.83337.5C 3.849 Glycylasparagine (1) 2.968 2.958 2.952 2.943 2.942 2.942 2.944 2.947 2.959 N-Glycylglycine (1) 3.201 3.126 3.159 8.59412.5C 8.252 7.94837.5C 7.668 Hexanoic acid (0) 4.840 4.839 4.849 4.865 4.890 4.920 Hydrogen cyanide (0) 9.63 9.49 9.36 9.21 9.11 8.99 8.88 Hydrogen peroxide (0) 12.23 11.86 11.75 11.65 11.55 11.45 11.21 Hydrogen sulfide (0) 7.33 7.24 7.13 7.05 6.97 6.90 6.82 6.79 6.69 (1) 13.5 13.2 12.90 12.75 12.6 4-Hydroxybenzoic acid (0) 4.596 4.586 4.582 4.577 4.576 4.578 Hydroxylamine (0) 6.186 6.063 5.948 5.730 2-Hydroxy-1-naphthoic acid (0) 3.29 3.24 3.19 3.26 (1) 9.68 9.65 9.61 9.58 8.76 4-Hydroxyproline (1) 1.9001C 1.85012.5C 1.818 1.79837.5C 1.796 (0) 10.2741C 9.95812.5C 9.662 9.39437.5C 9.138 2-Hydroxypropionic acid (0) 3.880 3.873 3.868 3.861 3.857 3.858 3.861 3.867 3.873 3.895 DL-2-Hydroxysuccinic acid (0) 3.537 3.520 3.494 3.482 3.472 3.458 3.452 3.446 3.444 3.445 (1) 5.119 5.108 5.098 5.096 5.096 5.097 5.099 5.104 5.117 5.149 Hypobromous acid (0) 8.83 8.60 8.47 8.3745C Hypochlorous acid (0) 7.82 7.75 7.69 7.63 7.58 7.54 7.50 7.46 7.05 Imidazole (1) 7.581 7.467 7.334 7.216 7.103 6.993 6.887 6.784 6.685 6.497 Iodoacetic acid (0) 3.143 3.158 3.175 3.193 3.213 DL-Isoleucine (1) 2.365 2.33812.5C 2.318 2.31737.5C 2.332 (0) 10.460 10.10012.5C 9.758 9.43937.5C 9.157 Isopropylmalonic acid, mononitrile (0) 2.299 2.320 2.343 2.365 2.401 2.427 2.452 2.481 Lactic acid (0) 3.880 3.873 3.868 3.862 3.857 3.858 3.861 3.867 3.873 3.895 Lead sulfate, pKsp 8.01 7.87 7.80 7.73 7.63 DL-Leucine (1) 2.3831C 2.34812.5C 2.328 2.32737.5C 2.333 (0) 10.4581C 10.0951.5C 9.744 9.43437.5C 9.142 Malonic acid (1) 5.670 5.665 5.667 5.673 5.683 5.696 5.710 5.730 5.753 5.803 Mannose (0) 12.45 12.08 11.81 Mercury(I) chloride, pKsp 18.65 18.48 18.27 17.88 16.79 Methanol (solvent), pKauto 17.12 16.84 16.71 16.65 16.53 Methylamine (1) 11.496 11.130 10.787 10.62 10.466 10.161 9.876 Methylaminodiacetic acid (0) 2.138 2.142 2.146 2.150 2.154 (1) 10.474 10.287 10.088 9.920 9.763 3-Methylbenzoic acid (0) 4.303 4.285 4.269 4.256 4.244 4.235 4-Methylbenzoic acid (0) 4.390 4.376 4.362 4.349 4.336 4.322 3-Methylbutyric acid (0) 4.726 4.742 4.767 4.794 4.831 4.871 4-Methylpentanoic acid (0) 4.827 4.827 4.837 4.853 4.879 4.908 8.77 TABLE 8.9 Selected Equilibrium Constants in Aqueous Solution at Various Temperatures (Continued) Temperature, C Substance 0 5 10 15 20 25 30 35 40 50 5-Methyl-5-phenylbarbituric acid (0) 8.104 8.057 8.011 7.966 7.922 7.879 7.797 2-Methylpropionic acid (0) 4.825 4.827 4.840 4.853 4.886 4.918 4.955 2-Methyl-2-propylamine (1) 11.439 11.240 11.048 10.862 10.682 10.511 10.341 Nitric acid (0) 1.65 1.38 1.20 Nitrilotriacetic acid (0) 1.69 1.65 1.65 1.66 1.67 (1) 2.95 2.95 2.94 2.96 2.98 (2) 10.59 10.45 10.33 10.23 4-Nitrobenzoic acid (0) 3.448 3.444 3.441 3.441 3.442 3.445 Nitrous acid (0) 3.244 3.177 3.138 3.100 DL-Norleucine (1) 2.394 2.35612.5C 2.335 2.32437.5C 2.328 (0) 10.564 10.19012.5C 9.834 9.51337.5C 9.224 Oxalic acid (1) 4.210 4.216 4.227 4.240 4.254 4.272 4.295 4.318 4.349 4.409 2,4-Pentanedione (0) 9.07 8.95 8.90 Pentanoic acid (0) 4.823 4.763 4.835 4.842 4.851 4.861 4.906 Phenylalanine (0) 9.75 9.31 8.96 Phosphoric acid (0) 2.056 2.073 2.088 2.107 2.127 2.148 2.171 2.196 2.224 2.277 (1) 7.313 7.282 7.254 7.231 7.213 7.198 7.189 7.185 7.181 7.183 o-Phthalic acid (0) 2.925 2.927 2.931 2.937 2.943 2.950 2.958 2.967 2.978 3.001 (1) 5.432 5.418 5.410 5.405 5.405 5.408 5.416 5.427 5.442 5.485 Piperidine (1) 11.963 11.786 11.613 11.443 11.280 11.123 10.974 10.818 10.670 10.384 Proline (1) 2.011 1.96412.5C 1.952 1.95037.5C 1.958 (0) 11.296 10.97212.5C 10.640 10.34237.5C 10.064 Propenoic acid (0) 4.267 4.250 4.247 4.249 4.267 4.301 8.78 N-Propionylglycine (1) 3.728 3.723 3.718 3.716 3.718 3.721 3.725 3.731 3.750 Propynoic acid (0) 1.791 1.829 1.867 1.887 1.940 1.932 1.963 Pyrrolidine (1) 12.17 11.98 11.81 11.63 11.43 11.30 11.15 10.99 10.84 11.56 Serine (1) 2.2961C 2.23212.5C 2.186 2.15437.5C 2.132 (0) 9.8801C 9.54212.5C 9.208 8.90437.5C 8.628 Silver bromide, pKsp 13.33 12.83 12.57 12.30 12.07 11.83 11.61 11.19 Silver chloride, pKsp 10.595 10.152 9.749 9.381 9.21 8.88 Succinic acid (0) 4.285 4.263 4.245 4.232 4.218 4.207 4.198 4.191 4.188 4.186 (1) 5.674 5.660 5.649 5.642 5.639 5.635 6.541 5.647 5.654 5.680 Sulfuric acid (1) 1.778 1.8124.3C 1.894 1.987 2.05 2.095 2.17 2.246 Sulfurous acid (0) 1.63 1.74 1.89 1.98 2.12 D-Tartaric acid (0) 3.118 3.095 3.075 3.057 3.044 3.036 3.025 3.019 3.018 3.021 (1) 4.426 4.407 4.391 4.381 4.372 4.366 4.365 4.367 4.372 4.391 2,3,5,6-Tetramethylbenzoic acid (0) 3.310 3.367 3.415 3.453 3.483 3.505 Threonine (1) 2.2001C 2.13212.5C 2.088 2.07037.5C 2.055 (0) 9.7481C 9.42012.5C 9.100 8.81237.5C 8.548 o-Toluidine (0) 4.58 4.495 4.45 4.345 4.28 4.20 1,2,4-Triazole (1) 2.451 2.418 2.386 2.327 (0) 10.205 10.083 9.972 9.768 3,4,5-Trihydroxybenzoic acid (0) 4.19 4.30 4.38 4.53 Tris(2-hydroxyethyl)amine (1) 8.290 8.173 8.067 7.963 7.861 7.762 7.666 7.570 7.477 7.299 2,4,6-Trimethylbenzoic (0) 3.325 3.391 3.448 3.498 3.541 3.577 3-Trimethylsilylbenzoic acid (0) 4.142 4.116 4.089 4.060 4.029 3.996 4-Trimethylsilylbenzoic acid (0) 4.270 4.230 4.192 4.155 4.119 4.084 -Ureidopropionic acid (0) 4.514 4.505 4.497 4.490 4.487 4.486 4.486 4.488 4.500 DL-Valine (1) 2.320 2.29712.5C 2.296 2.29237.5C 2.310 (0) 10.413 10.06412.5C 9.719 9.40537.5C 9.124 8.79 8.80 SECTION 8 FIGURE 8.1 Approximate potential ranges in nonaqueous solvents.
TABLE 8.10 Properties of Common Acid-Base Solvents Solvent Potential Span, mV log Ks Dielectric Constant, 25C Acetic acid 400 14.5 6.1(20) Acetic anhydride 800 14.5 20.7(20) Acetone 1600 20.7 Acetonitrile 1600 26.5 37.5(20) Ammonia (at 50C) 33 22(33) n-Butanol 900 17.1 n-Butylamine 500 4.88(20) Chlorobenzene 1500 5.62 N,N-Dimethylformamide 1300 18.0 36.71 Dimethylsulfoxide 17.3 46.6 Ethanol 800 19.1 24.55 Ethanolamine 5.1 37.7 Ethyl acetate 1500 6.02 Ethylenediamine 500 15.3 14.2(20) Formic acid 200 6.2 58.5 Methanol 800 16.7 32.7 4-Methyl-2-pentanone (methyl isobutyl ketone) 1600 25.0 13.1(20) Nitromethane 1000 35.8(30) 2-Propanol 900 19.92 Pyridine 1000 12.3 Sulfuric acid 3.85 101 Water 800 14.0 78.3 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.81 TABLE 8.11 pKa Values for Proton-Transfer Reactions in Nonaqueous Solvents Acid Methanol Ethanol Other Solvents Acetic acid 9.52 10.32 11.4a, 9.75d p-Aminobenzoic acid 10.25 Ammonium ion 10.7 6.40b Anilinium ion 6.0 5.70 Benzoic acid 10.72 10.0a Bromocresol purple 11.3 11.5 Bromocresol green 9.8 10.65 Bromophenol blue 8.9 9.5 Bromothymol blue 12.4 13.2 Di-n-butylammonium ion 10.3a o-Chloroanilinium ion 3.4 Cyanoacetic acid 7.49 2,5-Dichloroanilinium ion 9.48b Dimethylaminoazobenzene 5.2 6.32b N,N-Dimethylanilinium ion 4.37 Formic acid 9.15 Hydrobromic acid 5.5c Hydrochloric acid 8.55b, 8.9c Methyl orange 3.8 3.4 Methyl red (acid range) 4.1 3.55 (alkaline range) 9.2 10.45 Methyl yellow 3.4 3.55 Neutral red 8.2 8.2 o-Nitrobenzoic acid 7.6 m-Nitrobenzoic acid 8.3 p-Nitrobenzoic acid 8.4 Perchloric acid 4.87b Phenol 14.0 Phenol red 12.8 13.4 Phthalic acid, pK2 11.65 11.5d, 6.10d(pK1) Picric acid 3.8 3.8 8.9c Pyridinium ion 6.1b Salicylic acid 8.7 7.9 Stearic acid 10.0 Succinic acid, pK2 11.4 Sulfuric acid, pK1 7.24b,c Tartaric acid, pK2 9.9 Thymol blue (alkaline range) 14.0 15.2 (acid range) 4.7 5.35 Thymolbenzein (acid range) 3.5 (alkaline range) 13.1 p-Toluenesulfonic acid 8.44b p-Toluidinium ion 6.24 Tribenzylammonium ion 5.40b Tropeoline 00 2.2 Urea (protonated cation) 6.96b Veronal 12.6 a Dimethylsulfoxide.
b Glacial acetic acid.
cAcetonitrile. dAcetone 10% water.
8.82 SECTION 8 8.2.2 Formation Constants of Metal Complexes Each value listed in Tables 8.12 and 8.13 is the logarithm of the overall formation constant for the cumulative binding of a ligand L to the central metal cation M, viz.: Cumulative formation constant Stepwise stability constants M L ML K1 k1 M 2L ML2 K2 k1k2 .................
M nL MLn Kn k1k2 · · · kn As an example, the entries in Table 8.12 for the zinc ammine complexes represent these equilibria: 2 [Zn(NH ) ] 3 2 2 Zn NH Zn(NH ) K 3 3 1 2 [Zn ][NH ] 3 2 [Zn(NH ) ] 3 2 2 2 Zn 2NH Zn(NH ) K 3 3 2 2 2 2 [Zn ][NH ] 3 2 [Zn(NH ) ] 3 3 2 2 Zn 3NH Zn(NH ) K 3 3 3 3 2 3 [Zn ][NH ] 3 2 [Zn(NH ) ] 3 4 2 2 Zn 4NH Zn(NH ) K 3 3 4 4 2 4 [Zn ][NH ] 3 If the stepwise stability or formation constants of the reactions are desired, for the first step log For the second and succeeding steps the equilibria and corresponding constants K log k 2.37.
1 1 are as follows: 2 2 Zn(NH ) NH Zn(NH ) log k log K log K 2.44 3 3 3 2 2 2 1 2 2 Zn(NH ) NH Zn(NH ) log k log K log K 3.50 3 2 3 3 3 3 3 2 2 2 Zn(NH ) NH Zn(NH ) log k log K log K 2.15 3 3 3 3 4 4 4 3 The reverse of the association or formation reactions would represent the dissociation or insta-bility constant for the systems, i.e., log K log K .
f instab The data in the tables generally refer to temperatures of about 20 to 25C. Most of the values in Table 8.12 refer to zero ionic strength, but those in Table 8.13 often refer to a finite ionic strength.
ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.83 TABLE 8.12 Cumulative Formation Constants for Metal Complexes with Inorganic Ligands log K1 log K2 log K3 log K4 log K5 log K6 Ammonia Cadmium 2.65 4.75 6.19 7.12 6.80 5.14 Cobalt(II) 2.11 3.74 4.79 5.55 5.73 5.11 Cobalt(III) 6.7 14.0 20.1 25.7 30.8 35.2 Copper(I) 5.93 10.86 Copper(II) 4.31 7.98 11.02 13.32 12.86 Iron(II) 1.4 2.2 Manganese(II) 0.8 1.3 Mercury(II) 8.8 17.5 18.5 19.28 Nickel 2.80 5.04 6.77 7.96 8.71 8.74 Platinum(II) 35.3 Silver(I) 3.24 7.05 Zinc 2.37 4.81 7.31 9.46 Bromide Astatine 2.51 [AtBr] Bismuth(III) 4.30 5.55 5.89 7.82 9.70 Bromine 1.24 [Br ] 3 Cadmium 1.75 2.34 3.32 3.70 Cerium(III) 0.42 Copper(I) 5.89 Copper(II) 0.30 Gold(I) 12.46 Indium 1.30 1.88 2.48 Iodine 2.64 [IBr] Iron(III) 0.30 0.50 Lead 1.2 1.9 1.1 Mercury(II) 9.05 17.32 19.74 21.00 Palladium(II) 13.1 Platinum(II) 20.5 Rhodium(III) 14.3 16.3 17.6 18.4 17.2 Scandium 2.08 3.08 Silver(I) 4.38 7.33 8.00 8.73 Thallium(I) 0.93 Thallium(III) 9.7 16.6 21.2 23.9 29.2 31.6 Tin(II) 1.11 1.81 1.46 Uranium(IV) 0.18 Yttrium 1.32 Chloride Americium(III) 1.17 Antimony(III) 2.26 3.49 4.18 4.72 Bismuth(III) 2.44 4.7 5.0 5.6 Cadmium 1.95 2.50 2.60 2.80 Cerium(III) 0.48 Copper(I) 5.5 5.7 Copper(II) 0.1 0.6 Curium(III) 1.17 Gold(III) 9.8 Indium 1.42 2.23 3.23 Iron(II) 0.36 Iron(III) 1.48 2.13 1.99 0.01 Lead 1.62 2.44 1.70 1.60 Manganese(II) 0.96 Mercury(II) 6.74 13.22 14.07 15.07 8.84 SECTION 8 TABLE 8.12 Cumulative Formation Constants for Metal Complexes with Inorganic Ligands (Continued) log K1 log K2 log K3 log K4 log K5 log K6 Palladium(II) 6.1 10.7 13.1 15.7 Platinum(II) 11.5 14.5 16.0 Plutonium(III) 1.17 Silver(I) 3.04 5.04 5.30 Thallium(I) 0.52 Thallium(III) 8.14 13.60 15.78 18.00 Thorium 1.38 0.38 Tin(II) 1.51 2.24 2.03 1.48 Tin(IV) 4 Uranium(IV) 0.8 Uranium(VI) 0.22 Zinc 0.43 0.61 0.53 0.20 Zirconium 0.9 1.3 1.5 1.2 Cyanide Cadmium 5.48 10.60 15.23 18.78 Copper(I) 24.0 28.59 30.30 Gold(I) 38.3 Iron(II) 35 Iron(III) 42 Mercury(II) 41.4 Nickel 31.3 Silver(I) 21.1 21.7 20.6 Zinc 16.7 Fluoride Aluminum 6.10 11.15 15.00 17.75 19.37 19.84 Beryllium 5.1 8.8 12.6 Cerium(III) 3.20 Chromium(III) 4.41 7.81 10.29 Gadolinium 3.46 Gallium 5.08 Indium 3.70 6.25 8.60 9.70 Iron(III) 5.28 9.30 12.06 Lanthanum 2.77 Magnesium 1.30 Manganese(II) 5.48 Plutonium(III) 6.77 Scandium 17.3 Thallium(I) 0.1 Thallium(III) [TlO] 6.44 Thorium 7.65 13.46 17.97 Titanium(IV) [TiO2] 5.4 9.8 13.7 18.0 Uranium(VI) 4.59 7.93 10.47 11.84 Yttrium 4.81 8.54 12.14 Zirconium 8.80 16.12 21.94 Hydroxide Aluminum 9.27 33.03 Antimony(III) 24.3 36.7 38.3 Arsenic [as AsO] 14.33 18.73 20.60 21.20 Beryllium 9.7 14.0 15.2 Bismuth(III) 12.7 15.8 35.2 Cadmium 4.17 8.33 9.02 8.62 Cerium(III) 14.6 Cerium(IV) 13.28 26.46 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.85 TABLE 8.12 Cumulative Formation Constants for Metal Complexes with Inorganic Ligands (Continued) log K1 log K2 log K3 log K4 log K5 log K6 Chromium(III) 10.1 17.8 29.9 Copper(II) 7.0 13.68 17.00 18.5 Dysprosium 5.2 Erbium(III) 5.4 Gadolinium 4.6 Gallium 11.0 21.7 34.3 38.0 40.3 Indium 9.9 19.8 28.7 Iodine 9.49 11.24 Iron(II) 5.56 9.77 9.67 8.58 Iron(III) 11.87 21.17 29.67 Lanthanum 3.3 Lead(II) 7.82 10.85 14.58 61.0 Lutetium 6.6 Magnesium 2.58 Manganese(II) 3.90 8.3 Neodymium 5.5 Nickel 4.97 8.55 11.33 Praseodymium 4.30 Plutonium(III) 7.0 Plutonium(IV) 12.39 Plutonium [as 2 PuO ] 2 8.3 16.6 20.9 Samarium(III) 4.8 Scandium 8.9 Tellurium(IV) 41.6 53.0 64.8 72.0 Thallium(III) 12.86 25.37 Titanium(III) 12.71 Uranium(IV) 13.3 41.2 Uranium(VI) [as 2 UO ] 2 9.5 22.80 32.4 Vanadium(III) 11.1 21.6 Vanadium(IV) [as 2 VO ] 8.6 [25.8 for V2O4(OH)] Vanadium(V) 3 [as VO ] 25.2 46.2 58.5 Yttrium 5.0 Zinc 4.40 11.30 14.14 17.66 Zirconium 14.3 28.3 41.9 55.3 Iodide Bismuth 3.63 14.95 16.80 18.80 Cadmium 2.10 3.43 4.49 5.41 Copper(I) 8.85 Indium 1.00 2.26 Iodine 2.89 5.79 Iron(III) 1.88 Lead 2.00 3.15 3.92 4.47 Mercury(II) 12.87 23.82 27.60 29.83 Silver 6.58 11.74 13.68 Thallium(I) 0.72 0.90 1.08 Thallium(III) 11.41 20.88 27.60 31.82 Iodate Barium 1.05 Calcium 0.89 Magnesium 0.72 Strontium 1.00 Thorium 2.88 4.79 7.15 8.86 SECTION 8 TABLE 8.12 Cumulative Formation Constants for Metal Complexes with Inorganic Ligands (Continued) log K1 log K2 log K3 log K4 log K5 log K6 Nitrate Barium 0.92 Beryllium 1.62 Bismuth(III) 1.26 Cadmium 0.40 Calcium 0.28 Cerium(III) 1.04 2.55 Curium(III) 0.57 Hafnium 0.92 2.43 4.32 6.40 8.48 10.29 Iron(III) 1.0 Lanthanum 0.26 0.69 1.27 Lead 1.18 Mercury(II) 0.35 Neodymium 0.52 1.18 Neptunium(IV) 0.38 Plutonium(III) 0.77 1.93 3.09 Plutonium(IV) 0.54 Strontium 0.82 Thallium(I) 0.33 Thallium(III) 0.92 Thorium 0.78 1.89 2.89 3.63 Uranium(IV) 0.20 0.37 Uranium(VI) 0.34 0.45 Ytterbium 0.45 1.30 2.42 Zirconium [as ZrO2] 1.91 3.54 Pyrophosphate Barium 4.6 Calcium 4.6 Cadmium 5.6 Copper(II) 6.7 9.0 Lead 5.3 Magnesium 5.7 Nickel 5.8 7.4 Strontium 4.7 Yttrium 9.7 Zirconium 6.5 Sulfate Cerium(III) 3.40 Erbium 3.58 Gadolinium 3.66 Holmium 3.58 Indium 1.78 1.88 2.36 Iron(III) 2.03 2.98 Lanthanum 3.64 Neodymium 3.64 Nickel 2.4 Plutonium(IV) 3.66 Praseodymium 3.62 Samarium 3.66 Thorium 3.32 5.50 Uranium(IV) 3.24 5.42 Uranium(VI) 1.70 2.45 3.30 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.87 TABLE 8.12 Cumulative Formation Constants for Metal Complexes with Inorganic Ligands (Continued) log K1 log K2 log K3 log K4 log K5 log K6 Yttrium 3.47 Ytterbium 3.58 Zirconium 3.79 6.64 7.77 Sulfite Copper(I) 7.5 8.5 9.2 Mercury(II) 22.66 Silver 5.30 7.35 Thiocyanate Bismuth 1.15 2.26 3.41 4.23 Cadmium 1.39 1.98 2.58 3.6 Chromium(III) 1.87 2.98 Cobalt(II) 0.04 0.70 0 3.00 Copper(I) 12.11 5.18 Gold(I) 23 42 Indium 2.58 3.00 4.63 Iron(III) 2.95 3.36 Mercury(II) 17.47 21.23 Nickel 1.18 1.64 1.81 Ruthenium(III) 1.78 Silver 7.57 9.08 10.08 Thallium(I) 0.80 Uranium(IV) 1.49 2.11 Uranium(VI) 0.76 0.74 1.18 Vanadium(III) 2.0 Vanadium(IV) 0.92 Zinc 1.62 Thiosulfate Cadmium 3.92 6.44 Copper(I) 10.27 12.22 13.84 Iron(III) 2.10 Lead 5.13 6.35 Mercury(II) 29.44 31.90 33.24 Silver 8.82 13.46 8.88 SECTION 8 TABLE 8.13 Cumulative Formation Constants for Metal Complexes with Organic Ligands Temperature is 25C and ionic strengths are approaching zero unless indicated otherwise: (a) At 20C, (b) at 30C, (c) 0.1 M uni-univalent salt, (d) 1.0 M uni-univalent salt, (e) 2.0 M uni-univalent salt present.
log K1 log K2 log K3 log K4 Acetate Ag(I) 0.73 0.64 Ba(II) 0.41 Ca(II) 0.6 Cd(II) 1.5 2.3 2.4 Ce(III) 1.68 2.69 3.13 3.18 Co(II) 1.5 1.9 Cr(III) 1.80 4.72 Cu(II) a 2.16 3.20 Fe(II) c 3.2 6.1 8.3 Fe(III) a,d 3.2 In(III) 3.50 5.95 7.90 9.08 Hg(II) 8.43 La(III) a,e 1.56 2.48 2.98 2.95 Mg(II) 0.8 Mn(II) 9.84 2.06 Ni(II) 1.12 1.81 Pb(II) 2.52 4.0 6.4 8.5 Rare earths a,e 1.6–1.9 2.8–3.0 3.3–3.7 Sr(II) 0.44 Tl(III) 15.4 UO2(II) a,e 2.38 4.36 6.34 Y(III) a,e 1.53 2.65 3.38 Zn(II) 1.5 Acetylacetone Al(III) b 8.6 15.5 Be(II) 7.8 14.5 Cd(II) 3.84 6.66 Ce(III) 5.30 9.27 12.65 Cr(II) 5.9 11.7 Co(II) 5.40 9.54 Cu(II) 8.27 16.34 Dy(III) b 6.03 10.70 14.04 Er(III) b 5.99 10.67 14.09 Eu(III) b 5.87 10.35 13.64 Fe(II) 5.07 8.67 Fe(III) 11.4 22.1 26.7 Ga(III) 9.5 17.9 23.6 Gd(III) b 5.90 10.38 13.79 Hf(IV) 8.7 15.4 21.8 28.1 Ho(III) 6.05 10.73 14.13 In(III) 8.0 15.1 La(III) b 5.1 8.90 11.90 Lu(III) b 6.23 11.00 13.63 Mg(II) 3.65 6.27 Mn(II) 4.24 7.35 Mn(III) 3.86 Nd(III) 5.6 9.9 13.1 Ni(II) a 6.06 10.77 13.09 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.89 TABLE 8.13 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued) log K1 log K2 log K3 log K4 Pd(II) b 16.2 27.1 Pr(III) b 5.4 9.5 12.5 Pu(IV) c 10.5 19.7 28.1 34.1 Sc(III) b 8.0 15.2 Sm(III) b 5.9 10.4 Tb(III) b 6.02 10.63 14.04 Th(IV) 8.8 16.2 22.5 26.7 Tm(IV) b 6.09 10.85 14.33 U(IV) a,c 8.6 17.0 23.4 29.5 UO2(II) b 7.74 14.19 VO(II) 8.68 15.79 V(II) 5.4 10.2 14.7 Y(III) b 6.4 11.1 13.9 Yb(III) b 6.18 11.04 13.64 Zn(II) b 4.98 8.81 Zr(IV) 8.4 16.0 23.2 30.1 Alizarin red Cr(VI) 4.7 Cu(II) 4.1 Hf(IV) 10.4 Mo(VI) 9.6 Pb(II) 6.0 Th(IV) 8.24 UO2(II) 4.22 V(V) 8.6 W(VI) 7.8 Arsenazo Hf(IV) 10.07 Zr(IV) 12.95 Aurintricarboxylic acid Be(II) 4.54 Cu(II) 4.1 8.81 Fe(III) 4.68 Th(IV) 5.04 UO2(II) 4.77 Benzoylacetone (75% dioxane) Ba(II) 9.4 Be(II) 12.59 24.01 Cd(II) 7.79 14.36 Ce(III) 10.09 19.42 27.04 Co(II) 9.42 17.83 Cu(II) 12.05 23.01 La(III) 6.33 11.66 16.78 Mg(II) 7.69 14.09 Mn(II) 8.66 15.78 Ni(II) 9.58 18.00 Pb(II) 8.84 16.35 Pr(III) 7.02 13.62 18.74 UO2(II) 12.15 23.27 Y(III) 8.24 14.98 20.57 Zn(II) 9.62 17.90 8.90 SECTION 8 TABLE 8.13 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued) log K1 log K2 log K3 log K4 Calmagite Ca 6.05 Mg 8.05 Complex of HL2 Anion Complex of L3 Anion Complex of H2L log K1 log K2 log K1 log K2 log K3 Citric acid Ag 7.1 Al 7.0 20.0 Ba 2.98 Be 4.52 Ca 4.68 Cd 3.98 11.3 Ce(III) 6.18 9.65 3.2 Co(II) 4.8 12.5 Cu(II) 4.35 14.2 Eu(III) 6.46 9.80 Fe(II) 3.08 15.5 Fe(III) 12.5 25.0 La 6.97 9.45 6.22 Mg 3.29 Mn(II) 3.67 Nd(III) 6.32 9.70 Ni 5.11 14.3 Pb 6.50 Pr 3.4 Ra 2.36 Sr 2.8 Tl(I) 1.04 UO2 8.5 10.8 Y 3.6 Yb 8 Zn 4.71 11.4 log K1 log K2 log K3 1,2-Diaminocyclohexane-N,N,N,N-tetraacetic acid Al c 17.63 Ba c 8.64 Ca c 12.3 Cd c 19.88 Ce(III) c 16.76 Co(II) c 19.57 Cu(II) c 21.95 Dy(III) c 19.69 Er(III) c 20.20 Eu(III) c 18.77 Fe(III) c 27.48 Ga c 22.91 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.91 TABLE 8.13 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued) log K1 log K2 log K3 log K4 Gd c 18.80 Hg(II) c 24.4 Ho c 19.89 La c 16.35 Lu c 21.51 Mg c 10.41 Mn(II) c 17.43 Nd c 17.69 Ni c 19.4 Pb c 20.33 Pr c 17.23 Sm(III) c 18.63 Sr c 8.92 Tb c 19.30 Tm c 20.46 VO(II) c 19.40 Y c 19.41 Yb c 20.80 Zn c 18.6 Dibenzoylmethane (75% dioxane) Ba 6.10 11.50 Be 13.62 26.03 Ca 7.17 13.55 Cd 8.67 16.63 Ce(III) 10.99 21.53 30.38 Co(II) 10.35 20.05 Cu(II) 12.98 24.98 Cs 3.42 Fe(II) 11.15 21.50 K 3.67 Li 5.95 Mg 8.54 16.21 Mn(II) 9.32 17.79 Na 4.18 Ni 10.83 20.72 Pb 9.75 18.79 Rb 3.52 Sr 6.40 12.10 Zn 10.23 19.65 log K1 log K2 log K3 log Kf [MHL] 4,5-Dihydroxybenzene-1,3-disulfonic acid (Tiron) Al 19.02 31.10 33.5 Ba 4.10 14.6 Ca 5.80 14.8 Cd d 7.69 13.29 Ce(III) 3.75 Co(II) d 8.19 14.41 15.7 Cu(II) d 12.76 23.73 18.1 8.92 SECTION 8 TABLE 8.13 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued) log K1 log K2 log K3 log Kf [MHL] Fe(III) a,c 20.7 35.9 46.9 22.6 La 12.9 18.6 [La(OH)L] Mg a,c 6.86 14.6 Mn(II) c 8.6 Ni a,c 8.56 14.90 15.6 Pb d 11.95 18.28 Sr c 4.55 UO2(II) c 15.90 VO(II) 15.88 Zn d 9.00 16.91 15.9 log K1 log K2 log Kf [M2L3] 2,3-Dimercaptopropan-1-of (BAL) Fe(II) 15.8 Fe(III) 30.6 [Fe(OH)L] 28 Mn(II) 5.23 10.43 Ni 22.78 Zn 13.48 23.3 40.6 log K1 log K2 log K3 log K4 Dimethylglyoxime (50% dioxane) Cd 5.7 10.7 Co(II) 9.80 18.94 Cu(II) 12.00 33.44 Fe(II) 7.25 La 6.6 12.5 Ni 11.16 Pb 7.3 Zn 7.7 13.9 2,2-Dipyridyl Ag 3.65 7.15 Cd 4.26 7.81 10.47 Co(II) 5.73 11.57 17.59 Cr(II) 4.5 10.5 14.0 Cu(I) 14.2 Cu(II) 8.0 13.60 17.08 Fe(II) 4.36 8.0 17.45 Hg(II) 9.64 16.74 19.54 Mg 0.5 Mn(II) d 4.06 7.84 11.47 Ni 6.80 13.26 18.46 Pb 3.0 Ti(III) 25.28 V(II) 4.9 9.6 13.1 Zn 5.30 9.83 13.63 Eriochrome Black T Ca 5.4 Mg 7.0 Zn 13.5 20.6 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.93 TABLE 8.13 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued) log K1 log K2 log K3 log K4 Ethanolamine Ag 3.29 6.92 Cu(II) 6.68 16.48 Hg(II) 8.51 17.32 Ethylenediamine Ag 4.70 7.70 Cd a 5.47 10.09 12.09 Co(II) 5.91 10.64 13.94 Co(III) 18.7 34.9 48.69 Cr(II) 5.15 9.19 Cu(I) 10.8 Cu(II) 10.67 20.00 21.0 Fe(II) 4.34 7.65 9.70 Hg(II) 14.3 23.3 Mg 0.37 Mn(II) 2.73 4.79 5.67 Ni 7.52 13.84 18.33 Pd(II) 26.90 V(II) 4.6 7.5 8.8 Zn 5.77 10.83 14.11 Ethylenediamine-N, N, N, N-tetraacetic acid Ag 7.32 Al 16.11 Am(III) 18.18 Ba 7.78 Be 9.3 Bi 22.8 Ca 11.0 Cd 16.4 Ce(III) 16.80 Cf(III) 19.09 Cm(III) 18.45 Co(II) 16.31 Co(III) 36 Cr(II) 13.6 Cr(III) 23 Cu(II) 18.7 Dy 18.0 Er 18.15 Eu(III) 17.99 Fe(II) 14.33 Fe(III) 24.23 Ga 20.25 Gd 17.2 Hg(II) 21.80 Ho 18.1 In 24.95 La 16.34 Li 2.79 Lu 19.83 Mg 8.64 Mn(II) 13.8 Mo(V) 6.36 8.94 SECTION 8 TABLE 8.13 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued) log K1 log K2 log K3 log K4 Na 1.66 Nd 16.6 Ni 18.56 Pb 18.3 Pd(II) 18.5 Pm(III) 17.45 Pr 16.55 Pu(III) 18.12 Pu(IV) 17.66 Pu(VI) 17.66 Ra 7.4 Sc 23.1 Sm 16.43 Sn(II) 22.1 Sr 8.80 Tb 17.6 Th 23.2 Ti(III) 21.3 TiO(II) 17.3 Tl(III) 22.5 Tm 19.49 U(IV) 17.50 V(II) 12.70 V(III) 25.9 VO(II) 18.0 V(V) 18.05 Y 18.32 Yb 18.70 Zn 16.4 Zr 19.40 Glycine Ag 3.41 6.89 Ba 0.77 Be 4.95 Ca 1.38 Cd 4.74 8.60 Co(II) 5.23 9.25 10.76 Cu(II) 8.60 15.54 16.27 Dy 12.2 Er 12.7 Fe(II) a 4.3 7.8 Fe(III) a,d 10.0 Gd 11.9 Hg(II) 10.3 19.2 La 11.2 Mg 3.44 6.46 Mn(II) 3.6 6.6 Ni 6.18 11.14 15 Pb 5.47 8.92 Pd(II) 9.12 17.55 Pr 11.5 Sm 11.7 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.95 TABLE 8.13 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued) log K1 log K2 log K3 log K4 Sr 0.91 Y 12.5 Yb 13.0 Zn 5.52 9.96 N-(2-Hydroxyethyl)ethylenediamine-N,N,N-triacetic acid Ba c 5.54 Ca c 8.43 Cd c 13.0 Ce(III) c 14.11 Co(II) c 14.4 Cu(II) c 17.40 Dy c 15.30 Er c 15.42 Eu(III) c 15.35 Fe(II) c 11.6 Fe(III) c 19.8 Gd c 15.22 Hg(II) c 20.1 Ho c 15.32 La c 13.46 Lu c 15.88 Mg c 5.78 Mn(II) c 10.7 Nd c 14.86 Ni c 17.0 Pb c 15.5 Pr c 14.61 Sm c 15.28 Sr c 6.92 Tb c 15.32 Th c 18.5 Tm c 15.59 Y c 14.65 Yb c 15.88 Zn c 14.5 8-Hydroxy-2-methylquinoline (50% dioxane) Cd 9.00 9.00 16.60 Ce(III) 7.71 Co(II) 9.63 18.50 Cu(II) 12.48 24.00 Fe(II) 8.75 17.10 Mg 5.24 9.64 Mn(II) 7.44 13.99 Ni 9.41 17.76 Pb 10.30 18.50 UO2(II) 9.4 17 Zn 9.82 18.72 8-Hydroxyquinoline-5-sulfonic acid Ba 2.31 Ca 3.52 Cd 7.70 14.20 Ce(III) 6.05 11.05 14.95 8.96 SECTION 8 TABLE 8.13 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued) log K1 log K2 log K3 log K4 Co(II) 8.11 15.05 20.41 Cu(II) 11.92 21.87 Er 7.16 13.34 18.56 Fe(II) 8.4 15.7 21.75 Fe(III) 11.6 22.8 35.65 Gd 6.64 12.37 17.27 La 5.63 10.13 13.83 Mg 4.79 8.19 Mn(II) 5.67 10.72 Nd 6.3 11.6 16.0 Ni 9.57 18.27 22.9 Pb 8.53 16.13 Pr 6.17 11.37 15.67 Sm 6.58 12.28 17.04 Sr 2.75 Th 9.56 18.29 25.92 32.04 UO2(II) 8.52 15.67 Zn 8.65 16.15 Lactic acid Ba 0.64 Ca 1.42 Cd 1.70 Ce(III) a,c 2.76 4.73 5.96 Co(II) 1.90 Cu(II) 3.02 4.85 Er 2.77 5.11 6.70 Eu(III) 2.53 4.60 5.88 Fe(III) 7.1 Gd 2.53 4.63 5.91 Ho 2.71 4.97 6.55 La a,c 2.60 4.34 5.64 Li 0.20 Mg 1.37 Mn(II) 1.43 Nd 2.47 4.37 5.60 Ni 2.22 Pb 2.40 3.80 Pr a,c 2.85 4.90 6.10 Rare earths a,c 2.8–3.0 4.9–5.4 6.1–7.8 Sm 2.56 4.58 5.90 Sr 0.98 Tb 2.61 4.73 6.01 Y 2.53 4.70 6.12 Yb 2.85 5.27 7.96 Zn 2.20 3.75 Nitrilotriacetic acid Al 10 Ba a 5.88 Ca 7.60 11.61 Cd c 9.80 15.2 Ce(III) c 10.83 18.67 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.97 TABLE 8.13 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued) log K1 log K2 log K3 log K4 Co(II) c 10.38 14.5 Cr(III) 10 Cu(II) c 13.10 Dy c 11.74 21.15 Er c 12.03 21.29 Eu(III) c 11.52 20.70 Fe(II) c 8.84 Fe(III) c 15.87 24.32 Gd c 11.54 20.80 Hg(II) 12.7 Ho c 11.90 21.25 In 15 La c 10.36 17.60 Li a 3.28 Lu c 12.49 21.91 Mg c 5.36 10.2 Mn(II) 8.60 11.1 Na 2.15 Nd c 11.26 19.73 Ni 11.26 16.0 Pb a,c 11.8 Pr c 11.07 19.25 Sm(III) c 11.53 20.53 Sr 6.73 Tb c 11.59 20.97 Tl(I) 3.44 Th c 12.4 Tm c 12.22 21.45 Y c 11.48 20.43 Yb c 12.40 21.69 Zn c 10.45 13.45 Zr c 20.8 1-Nitroso-2-naphthol (75% dioxane) Ag 7.74 Cd 6.18 11.38 Co(II) 10.67 22.81 Cu(II) 12.52 23.37 Mg 6.2 10.60 Nd 9.5 17.7 25.6 Ni 10.75 21.29 28.09 Pb 9.73 17.31 Pr 9.04 17.06 23.85 Th c 8.50 16.13 24.03 30.29 Y 9.02 17.74 25.04 Zn 9.32 17.02 Zr 3.6 Oxalate Ag 2.41 Al 7.26 13.0 16.3 Am(III) 9.8 [Am(HL) 11.0] 4 Ba 2.31 8.98 SECTION 8 TABLE 8.13 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued) log K1 log K2 log K3 log K4 Be 4.90 Ca 3.0 Cd 3.52 5.77 Ce(III) 6.52 10.5 11.3 Co(II) 4.79 6.7 9.7 Co(III) 20 Cu(II) 6.16 8.5 Er 4.82 8.21 10.03 Fe(II) 2.9 4.52 5.22 Fe(III) 9.4 16.2 20.2 Gd 7.04 Hg(II) 6.98 Mg 3.43 4.38 Mn(II) 3.97 5.80 Mn(III) e 9.98 16.57 19.42 Mo(III) 3.38 Mo(VI) [MoO3(L)2 13.0] Nd 7.21 11.5 14 Ni 5.3 7.64 8.5 NpO2(II) 3.30 7.07 Pb 6.54 Pu(III) 9.31 18.70 28 Pu(IV) 8.74 16.91 23.39 27.50 PuO2(II) 11.4 Sr 2.54 Th 24.48 TiO(II) 2.67 Tl(I) 2.03 UO2(II) 10.57 VO(II) 9.80 V(II) 2.7 Y 6.52 10.10 11.47 Yb 7.30 11.7 14 Zn 4.89 7.60 8.15 Zr 9.80 17.14 20.86 21.15 1,10-Phenanthroline Ag 5.02 12.07 Ca 0.7 Cd 5.93 10.53 14.31 Co(II) 7.25 13.95 19.90 Cu(II) 9.08 15.76 20.94 Fe(II) 5.85 11.45 21.3 Fe(III) 6.5 11.4 23.5 Hg(II) 19.65 23.35 Mg 1.2 Mn(II) 3.88 7.04 10.11 Ni 8.80 17.10 24.80 Pb 4.65 7.5 9 VO(II) 5.47 9.69 Zn 6.55 12.35 17.55 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.99 TABLE 8.13 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued) log K1 log K2 log K3 log K4 Phthalic acid Ba 2.33 Ca 2.43 Cd 2.5 Co(II) 1.81 4.51 Cu(II) 3.46 4.83 La 7.74 Ni 2.14 Pb d 3.4 UO2(II) 4.38 Zn 2.2 Piperidine Ag 3.30 6.48 Hg(II) 8.70 17.44 Pt(II) log K5 5.7 log K6 8.2 Propylene-1,2-diamine Cd b,c 9.97 12.12 Co(II) d 5.42 11.47 14.72 Cu(II) c 6.41 20.06 Hg(II) c 10.78 23.53 23.25 Ni d 7.43 13.62 17.89 Zn b,c 5.89 10.87 12.57 Pyridine Ag 1.97 4.35 Cd 1.40 1.95 2.27 2.50 Co(II) 1.14 1.54 Cu(I) 3.34 4.51 5.44 log K6 6.89 Cu(II) 2.59 4.33 5.93 6.54 log K5 7.00 log K6 10.2 Fe(II) 0.71 Hg(II) 5.1 10.0 10.4 Mn(II) 1.92 2.77 3.37 3.50 VO(II) 1.70 Zn 1.41 1.11 1.61 1.93 Pyridine-2,6-dicarboxylic acid Ba a,d 3.46 Ca a,d 4.6 7.2 Cd a,d 5.7 10.0 Ce(III) a,d 8.34 14.42 18.80 Co(II) a,d 7.0 12.5 Cu(II) a,d 9.14 16.52 Dy a,d 8.69 16.19 22.14 Er a,d 8.77 16.39 22.14 Eu(III) a,d 8.84 15.98 21.00 Fe(II) a,d 5.71 10.36 Fe(III) a,d 10.91 17.13 Gd a,d 8.74 16.06 21.83 Ho a,d 8.72 16.23 22.08 La a,d 7.98 13.79 18.06 Lu a,d 9.03 16.80 21.48 8.100 SECTION 8 TABLE 8.13 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued) log K1 log K2 log K3 log K4 Hg(II) a,d 20.28 Mg a,d 2.7 Mn(II) a,d 5.01 8.49 Nd a,d 8.78 15.60 20.66 Ni a,d 6.95 13.50 Pb a,d 8.70 10.60 Pr a,d 8.63 15.10 19.94 Sm a,d 8.86 15.88 21.23 Sr a,d 3.89 Tb a,d 8.68 16.11 22.03 Tm a,d 8.83 16.54 22.04 Y a,d 8.46 15.73 21.34 Yb a,d 8.85 16.61 21.83 Zn a,d 6.35 11.88 1-(2-Pyridylazo)-2-naphthol (PAN) Co(II) 12 Cu(II) 16 Mn(II) 8.5 16.4 Ni 12.7 25.3 Tl(III) 2.29 Zn 11.2 21.7 log Kf [ML] log Kf [MHL] log Kf [M(HL)2] 4-(2-Pyridylazo)resorcinal (PAR) Co(II) 12 Cu(II) 10.3 Mn(II) 9.7 18.9 Ni 13.2 26.0 Sc 4.8 Tl(III) 4.23 Zn 12.4 23.5 log Kf [ML] log Kf [M2L] log Kf [MHL] Pyrocatechol-3,5-disulfonate (Pyrocatechol Violet) Al 19.13 4.95 Bi 27.07 5.25 Cd 8.13 5.86 Co(II) 9.01 6.53 Cu(II) 16.47 11.18 Ga 22.18 4.65 In 18.10 4.81 Mg 4.42 4.6 3.66 Mn(II) 7.13 5.36 Ni 9.35 4.38 6.85 Pb 13.25 10.19 Th 23.36 4.42 Zn 10.41 6.21 7.21 Zr 27.40 4.18 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.101 TABLE 8.13 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued) log K1 log K2 log K3 log K4 8-Quinolinol Ba 2.07 Be 3.36 Ca (75% dioxane) 7.3 13.2 Cd 7.2 13.4 Ce(III) (50% dioxane) 9.15 17.13 Co(II) 9.1 17.2 Cu(II) 12.2 23.4 Fe(II) 8.58 16.93 22.23 Fe(III) 12.3 23.6 33.9 La 5.85 16.95 Mg (50% dioxane) 6.38 11.81 Mn(II) (50% dioxane) 8.28 15.45 Ni (50% dioxane) 11.44 21.38 Pb (50% dioxane) 10.61 18.70 Sm 6.84 19.50 Sr 2.89 6.08 Th 10.45 20.40 29.85 38.80 UO2(II) (50% dioxane) 11.25 20.89 V(II) 12.8 23.6 VO(II) 10.97 20.19 Y 8.15 14.90 20.25 Zn (50% dioxane) 9.96 18.86 log Kf [MHL] log Kf [M(HL)2] Salicylaldoxime Ba 0.53 3.72 Be 7 Ca 0.92 3.72 Cd 4.4 Co(II) 8.13 Cu(II) 8.13 Mg 0.64 4.10 Ni 3.77 Sr 3.77 Zn 5.2 log K1 log K2 log K3 log K4 Salicylic acid Al 14.11 Be 17.4 Cd 5.55 Ce(III) 2.66 Co(II) 6.72 11.42 Cr(II) 8.4 15.3 Cu(II) 10.60 18.45 Fe(II) 6.55 11.25 Fe(III) a,c 16.48 28.12 36.80 La 2.64 8.102 SECTION 8 TABLE 8.13 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued) log K1 log K2 log K3 log K4 Mg (75% dioxane) 4.7 Mn(II) 5.90 9.80 Nd 2.70 Ni 6.95 11.75 Pr 2.68 Th 4.25 7.60 10.05 11.60 TiO(II) 6.09 UO2(II) 13.4 V(II) 6.3 Zn 6.85 Succinic acid Ba 2.08 Be 3.08 Ca 2.0 Cd 2.2 Co(II) 2.22 Cu(II) 3.33 Fe(III) 7.49 Hg(II) 7.28 La 3.96 Mg 1.20 Mn(II) 2.26 Nd 8.1 Ni 2.36 Pb 2.8 Ra 1.0 Sr 1.06 Zn 1.6 5-Sulfosalicylic acid Al c 13.20 22.83 28.89 Be c 11.71 20.81 Cd c 16.68 29.08 Co(II) c 6.13 9.82 Cr(II) c 7.1 12.9 Cr(III) c 9.56 Cu(II) c 9.52 16.45 Fe(II) c 5.90 Fe(III) c 14.64 25.18 32.12 La c 9.11 Mn(II) c 5.24 8.24 NbO(III) c 4.0 7.7 Ni c 6.42 10.24 UO2(II) c 11.14 19.20 Zn c 6.05 10.65 Tartaric acid Ba 1.62 Bi 8.30 Ca 2.98 9.01 Cd 2.8 Co(II) 2.1 Cu(II) 3.2 5.11 4.78 6.51 log Kf 19.14 [Cu(OH)2L2] ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.103 TABLE 8.13 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued) log K1 log K2 log K3 log K4 Eu(III) 4.98 8.11 Fe(III) 7.49 La 3.06 Mg 1.36 Nd 9.0 Pb 3.78 4.7 log Kf 14.1 [Pb(OH)2L2] Ra 1.24 Sr 1.60 Zn 2.68 8.32 Thioglycolic acid Ce(III) a,c 1.99 3.03 Co(II) 5.84 12.15 Fe(II) 10.92 Hg(II) 43.82 La a,c 1.98 2.98 Mn(II) 4.38 7.56 Pb 8.5 Ni 6.98 13.53 Rare earths a,c 1.9–2.1 3.0–3.3 Y a,c 1.91 3.19 Zn 7.86 15.04 Thiourea Ag 7.4 13.1 Bi log K6 11.9 Cd 0.6 1.6 2.6 4.6 Cu(I) 13 15.4 Hg(II) 22.1 24.7 26.8 Pb 1.4 3.1 4.7 8.3 Ru(III) 1.21 0.72 Thoron Th 10.15 Triethanolamine Ag 2.30 3.64 Co(II) 1.73 Cu(II) 4.30 Hg(II) 6.90 13.08 Ni 2.7 Zn 2.00 Triethylenetetramine (Trien) Ag 7.7 Cd 10.75 13.9 Co(II) 11.0 Cu(II) 20.4 Fe(II) 7.8 Fe(III) 21.9 Hg(II) 25.26 Mn(II) 4.9 Ni 14.0 Pb 10.4 Zn 11.9 8.104 SECTION 8 TABLE 8.13 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued) log K1 log K2 log K3 log K4 1,1,1-Trifluoro-3-2-Thenoylacetone (TTA) Ba 10.6 Cu(II) 6.55 13.0 Fe(III) 6.9 Ni 10.0 Pr 9.53 Pu(III) 9.53 Pu(IV) 8.0 Th 8.1 U(IV) 7.2 Zr 3.03 [as ZrL3] Xylenol orange Bi 5.52 Fe(III) 5.70 Hf 6.50 Tl(III) 4.90 Zn 6.15 Zr 7.60 Zincon Zn 13.1 8.3 BUFFER SOLUTIONS 8.3.1 Standard Reference pH Buffer Solutions The assigned values of pHs, according to the Bates-Guggenheim convention [Pure Applied Chem.
1:163 (1960)], for the primary standard solutions prepared from salts issued by the National Institute for Science and Technology (NIST, US) (U.S.) are given in Table 8.14. These are smoothed values.
The ionic strength of these reference solutions is 0.1 or less. Strictly speaking the NIST scale uses a molality concentration system; however, values are given in molarity units for convenience.
As a result of a variable liquid-junction potential, the measured pH may be expected to differ seriously from the paH determined from cells without a liquid junction in solutions of high acidity or high alkalinity. Merely to affirm the proper functioning of the glass electrode at the extreme ends of the pH scale, two secondary standards are included in Table 8.14. In addition, values for a 0.1 m solution of HCl are given to extend the pH scale up to 275C [see R. S. Greeley, Anal. Chem.
32:1717 (1960)]: t, C: 25 60 90 125 150 175 200 225–275 pH: 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.2 Uncertainties in the values are 0.03 pH unit from 25 to 90C, 0.05 pH unit from 125 to 200C, and 0.1 pH unit from 225 to 275C.
TABLE 8.14 National Bureau of Standards (U.S.) Reference pH Buffer Solutions Temperature C Secondary standard 0.05 M K tetraoxalate KH tartrate (saturated at 25C) 0.05 M KH2 citrate 0.05 M KH phthalate 0.025 M KH2PO4, 0.025 M Na2HPO4 0.0087 M KH2PO4, 0.0302 M Na2HPO4 0.01 M Na2B4O7 0.025 M NaHCO3, 0.025 M Na2CO3 Secondary standard Ca(OH)2 (saturated at 25C) 0 1.666 3.860 4.003 6.984 7.534 9.464 10.317 13.423 5 1.668 3.840 3.999 6.951 7.500 9.395 10.245 13.207 10 1.638 3.820 3.997 6.923 7.472 9.332 10.179 13.003 15 1.642 3.802 3.998 6.900 7.448 9.276 10.118 12.810 20 1.644 3.788 4.002 6.881 7.429 9.225 10.062 12.627 25 1.646 3.557 3.776 4.005 6.865 7.413 9.180 10.012 12.454 30 1.648 3.552 3.766 4.011 6.853 7.400 9.139 9.966 12.289 35 3.549 3.759 4.018 6.844 7.389 9.102 9.925 12.133 38 1.649 3.548 3.756 4.030 6.840 7.384 9.088 9.910 12.043 40 1.650 3.547 3.753 4.035 6.838 7.380 9.068 9.889 11.984 45 3.547 4.047 6.834 7.373 9.038 11.841 50 1.653 3.549 3.749 4.050 6.833 7.367 9.011 9.828 11.705 55 3.554 4.075 6.834 8.985 11.574 60 1.660 3.560 4.081 6.836 8.962 11.449 70 1.671 3.580 4.116 6.845 8.921 80 1.689 3.609 4.164 6.859 8.885 90 1.72 3.650 4.205 6.877 8.850 95 1.73 3.674 4.227 6.886 8.833 Dilution value pH1/2 0.186 0.049 0.024 0.052 0.080 0.070 0.01 0.079 0.28 Source: R. G. Bates, J. Res. Natl. Bur. Stand. (U.S.), 66A:179 (1962) and B. R. Staples and R. G. Bates, J. Res. Natl. Bur.
Stand. (U.S.), 73A:37 (1969).
Note: The uncertainty is 0.003 in pH in the range 0–50C, rising to 0.02 above 70C.
8.105 8.106 SECTION 8 TABLE 8.15 Compositions of Standard pH Buffer Solutions [National Bureau of Standards (U.S.)] Air weight of material per liter of buffer solution.
Standard Weight, g KH3(C2O4)2 · 2H2O, 0.05M 12.61 Potassium hydrogen tartrate, about 0.034M Saturated at 25C Potassium hydrogen phthalate, 0.05M 10.12 Phosphate: KH2PO4, 0.025M 3.39 Na2HPO4, 0.025M 3.53 Phosphate: KH2PO4, 0.008665M 1.179 Na2HPO4, 0.03032M 4.30 Na2B4O7 · 10H2O, 0.01M 3.80 Carbonate: NaHCO3, 0.025M 2.10 Na2CO3, 0.025M 2.65 Ca(OH)2, about 0.0203M Saturated at 25C The buffer values for the NBS reference pH buffer solutions are given below: Buffer solution KH tartrate 0.05 M KH2 citrate 0.05 M KH phthalate 0.025 M KH2PO4, 0.25 M Na2HPO4 0.0087 M KH2PO4, 0.0302 M Na2HPO4 0.01 M Na2B4O7 0.025 M NaHCO3, 0.025 M Na2CO3 Buffer value 0.027 0.034 0.016 0.029 0.016 0.020 0.029 For the secondary pH reference standards, the buffer value is 0.070 for potassium tetroxalate and 0.09 for calcium hydroxide.
To prepare the standard pH buffer solutions recommended by the National Bureau of Standards (U.S.), the indicated weights of the pure materials in Table 8.15 should be dissolved in water of specific conductivity not greater than 5 micromhos. The tartrate, phthalate, and phosphates can be dried for 2 h at 100C before use. Potassium tetroxalate and calcium hydroxide need not be dried.
Fresh-looking crystals of borax should be used. Before use, excess solid potassium hydrogen tartrate and calcium hydroxide must be removed. Buffer solutions pH 6 or above should be stored in plastic containers and should be protected from carbon doxide with soda-lime traps. The solutions should be replaced within 2 to 3 weeks, or sooner if formation of mold is noticed. A crystal of thymol may be added as a preservative.
8.3.2 Standards for pH Measurement of Blood and Biological Media Blood is a well-buffered medium. In addition to the NBS phosphate standard of 0.025 M (pHs 6.480 at 38C), another reference solution containing the same salts, but in the molal ratio 1:4, has an ionic strength of 0.13. It is prepared by dissolving 1.360 g of KH2PO4 and 5.677 g of Na2HPO4 (air weights) in carbon dioxide-free water to make 1 liter of solution. The pHs is 7.416 0.004 at 37.5 and 38C.
The compositions and pHs values of tris(hydroxymethyl)aminomethane, covering the pH range 7.0 to 8.9, are listed in Table 8.16.
ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.107 TABLE 8.16 Composition and pH Values of Buffer Solutions Values based on the conventional activity pH scale as defined by the National Bureau of Standards (U.S.) and pertain to a temperature of 25C [Ref: Bower and Bates, J. Research Natl. Bur. Standards (U.S.), 55:197 (1955) and Bates and Bower, Anal. Chem., 28:1322 (1956)]. Buffer value is denoted by column headed .
25 ml 0.2M KCl x ml 0.2M HCl, Diluted to 100 ml 50 ml 0.1M KH Phthalate x ml 0.1M HCl, Diluted to 100 ml 50 ml 0.1M KH Phthalate x ml 0.1M NaOH, Diluted to 100 ml pH x pH x pH x 1.00 67.0 0.31 2.20 49.5 4.20 3.0 0.017 1.20 42.5 0.34 2.40 42.2 0.036 4.40 6.6 0.020 1.40 26.6 0.19 2.60 35.4 0.033 4.60 11.1 0.025 1.60 16.2 0.077 2.80 28.9 0.032 4.80 16.5 0.029 1.80 10.2 0.049 3.00 22.3 0.030 5.00 22.6 0.031 2.00 6.5 0.030 3.20 15.7 0.026 5.20 28.8 0.030 2.20 3.9 0.022 3.40 3.60 3.80 10.4 6.3 2.9 0.023 0.018 0.015 5.40 5.60 5.80 34.1 38.8 42.3 0.025 0.020 0.015 50 ml 0.1M KH2PO4 x ml 0.1M NaOH, Diluted to 100 ml 50 ml 0.1M Tris(hydroxy-methyl)aminomethane x ml 0.1M HCl, Diluted to 100 ml pH/t 0.028 I 0.001x 50 ml of a Mixture 0.1M with Respect to Both KCl and H3BO3 x ml 0.1M NaOH, Diluted to 100 ml pH x pH x pH x 5.80 3.6 7.00 46.6 8.00 3.9 6.00 5.6 0.010 7.20 44.7 0.012 8.20 6.0 0.011 6.20 8.1 0.015 7.40 42.0 0.015 8.40 8.6 0.015 6.40 11.6 0.021 7.60 38.5 0.018 8.60 11.8 0.018 6.60 16.4 0.027 7.80 34.5 0.023 8.80 15.8 0.022 6.80 22.4 0.033 8.00 29.2 0.029 9.00 20.8 0.027 7.00 29.1 0.031 8.20 22.9 0.031 9.20 26.4 0.029 7.20 34.7 0.025 8.40 17.2 0.026 9.40 32.1 0.027 7.40 39.1 0.020 8.60 12.4 0.022 9.60 36.9 0.022 7.60 42.4 0.013 8.80 8.5 0.016 9.80 40.6 0.016 7.80 44.5 0.009 9.00 5.7 10.00 43.7 0.014 8.00 46.1 10.20 46.2 50 ml 0.025M Borax x ml 0.1M HCl, Diluted to 100 ml pH/t 0.008 I 0.025 50 ml 0.025M Borax x ml 0.1M NaOH, Diluted to 100 ml pH/t 0.008 I 0.001(25 x) 50 ml 0.05M NaHCO3 x ml 0.1M NaOH, Diluted to 100 ml pH/t 0.009 I 0.001(25 2x) pH x pH x pH x 8.00 20.5 9.20 0.9 9.60 5.0 8.20 19.7 0.010 9.40 3.6 0.026 9.80 6.2 0.014 8.40 16.6 0.012 9.60 11.1 0.022 10.00 10.7 0.016 8.60 13.5 0.018 9.80 15.0 0.018 10.20 13.8 0.015 8.80 9.4 0.023 10.00 18.3 0.014 10.40 16.5 0.013 8.108 SECTION 8 TABLE 8.16 Composition and pH Values of Buffer Solutions (Continued) 50 ml 0.025M Borax x ml 0.1M HCl, Diluted to 100 ml pH/t 0.008 I 0.025 50 ml 0.025M Borax x ml 0.1M NaOH, Diluted to 100 ml pH/t 0.008 I 0.001(25 x) 50 ml 0.05M NaHCO3 x ml 0.1M NaOH, Diluted to 100 ml pH/t 0.009 I 0.001(25 2x) pH x pH x pH x 9.00 4.6 0.026 10.20 20.5 0.009 10.60 19.1 0.012 9.10 2.0 10.40 10.60 22.1 23.3 0.007 0.005 10.80 11.00 21.2 22.7 0.009 50 ml 0.05M Na2HPO4 x ml 0.1M NaOH, Diluted to 100 ml pH/t 0.025 I 0.001(77 2x) 25 ml 0.2M KCl x ml 0.2M NaOH, Diluted to 100 ml pH/t 0.033 I 0.001(50 2x) pH x pH x 11.00 4.1 0.009 12.00 6.0 0.028 11.20 6.3 0.012 12.20 10.2 0.048 11.40 9.1 0.017 12.40 16.2 0.076 11.60 13.5 0.026 12.60 25.6 0.12 11.80 19.4 0.034 12.80 41.2 0.21 11.90 23.0 0.037 13.00 66.0 0.30 The phosphate-succinate system gives the values of pHs shown below: Molality Molality KH PO Na HC H O 2 4 2 6 5 7 pHs (pHs/t) 0.005 6.251 0.000 86 deg1 0.010 6.197 0.000 71 0.015 6.162 0.020 6.131 0.025 6.109 0.000 4 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.109 TABLE 8.17 Standard Reference Values for the Measurement of pH s Acidity in 50 Weight Percent Methanol-Water Temperature, C 0.02m HOAc, 0.02m NaOAc, 0.02m NaCl 0.02m NaHSuc, 0.02m NaCl 0.02m KH2PO4, 0.02m Na2HPO4, 0.02m NaCl 10 5.560 5.806 7.937 15 5.549 5.786 7.916 20 5.543 5.770 7.898 25 5.540 5.757 7.884 30 5.540 5.748 7.872 35 5.543 5.743 7.863 40 5.550 5.741 7.858 OAc acetate Suc succinate Reference: R. G. Bates, Anal Chem., 40(6):35A (1968).
TABLE 8.18 pH Values for Buffer Solutions in Alcohol-Water Solvents at 25C Liquid-junction potential not included.
Solvent Composition (weight per cent alcohol) 0.01M H2C2O4, 0.01M NH4HC2O4 0.01M H2Suc, 0.01M LiHSuc 0.01M HSal, 0.01M NaSal Methanol-Water Solvents 0 2.15 4.12 10 2.19 4.30 20 2.25 4.48 30 2.30 4.67 40 2.38 4.87 50 2.47 5.07 60 2.58 5.30 70 2.76 5.57 80 3.13 6.01 90 3.73 6.73 92 3.90 6.92 94 4.10 7.13 96 4.39 7.43 98 4.84 7.89 99 5.20 8.23 100 5.79 8.75 7.53 Ethanol-Water Solvents 0 2.15 4.12 30 2.32 4.70 50 2.51 5.07 71.9 2.98 5.71 100 8.32 Suc succinate Sal salicylate 8.110 SECTION 8 8.3.3 Buffer Solutions Other Than Standards The range of the buffering effect of a single weak acid group is approximately one pH unit on either side of the pKa. The ranges of some useful buffer systems are collected in Table 8.19. After all the components have been brought together, the pH of the resulting solution should be determined at the temperature to be employed with reference to standard reference solutions. Buffer components should be compatible with other components in the system under study; this is particularly significant for buffers employed in biological studies. Check tables of formation constants to ascertain whether metal-binding character exists.
TABLE 8.19 pH Values of Biological and Other Buffers for Control Purposes Materials Acronym pKa pH range p-Toluenesulfonate and p-toluenesulfonic acid 1.7 1.1–3.3 Glycine and HCl 2.35 1.0–3.7 Citrate and HCl 3.13 1.3–4.7 Formate and HCl 3.71 2.8–4.6 Succinate and borax 4.21, 5.64 3.0–5.8 Phenyl acetate and HCl 4.31 3.5–5.0 Acetate and acetic acid 4.76 3.7–5.6 Succinate and succinic acid 4.21, 5.64 4.8–6.3 2-(N-Morpholino)ethanesulfonic acid MES 6.1 5.5–6.7 Bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane BIS-TRIS 6.5 5.8–7.2 KH2PO4 and borax 2.2, 7.2; 9 5.8–9.2 N-(2-Acetamido)-2-iminodiacetic acid ADA 6.6 6.0–7.2 2-[(2-Amino-2-oxoethyl)amino]ethanesulfonic acid ACES 6.8 6.1–7.5 Piperazine-N,N-bis(2-ethanesulfonic acid) PIPES 6.8 6.1–7.5 3-(N-Morpholino)-2-hydroxypropanesulfonic acid MOPSO 6.9 6.2–7.6 1,3-Bis[tris(hydroxymethyl)methylamino]propane BIS-TRIS PROPANE 6.8, 9.0 6.3–9.5 KH2PO4 and Na2HPO4 7.2 6.1–7.5 N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid BES 7.1 6.4–7.8 3-(N-Morpholino)propanesulfonic acid MOPS 7.2 6.5–7.9 N-(2-Hydroxyethyl)piperazine-N-(2-ethanesulfonic acid) HEPES 7.5 6.8–8.2 N-Tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid TES 7.5 6.8–8.2 3-[N,N-Bis(2-hydroxyethyl)amino]-2-hydroxypropanesulfonic acid DIPSO 7.6 7.0–8.2 3-[N-tris(hydroxymethyl)methylamino]-2-hydroxypropanesulfonic acid TAPSO 7.6 7.0–8.2 5,5-Diethylbarbiturate (veronal) and HCl 8.0 7.0–8.5 Tris(hydroxymethyl)aminoethane TRIZMA 8.1 7.0–9.1 N-(2-hydroxyethyl)piperazine-N-(2-hydroxypropanesulfonic acid) HEPPSO 7.8 7.1–8.5 Piperazine-N,N-bis(2-hydroxypropanesulfonic acid) POPSO 7.8 7.2–8.5 Triethanolamine TEA 7.8 6.9–8.5 N-Tris(hydroxymethyl)methylglycine TRICINE 8.1 7.4–8.8 Borax and HCl 7.6–8.9 N,N-Bis(2-hydroxyethyl)glycine BICINE 8.3 7.6–9.0 N-Tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid TAPS 8.4 7.7–9.1 3-[(1,1-Dimethyl-2-hydroxyethyl)-2-hydroxypropanesulfonic acid AMPSO 9.0 8.3–9.7 Ammonia (aqueous) and NH4Cl 9.2 8.3–9.2 2-(N-Cyclohexylamino)-2-hydroxy-1-propanesulfonic acid CHES 9.3 8.6–10.0 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.111 TABLE 8.19 pH Values of Biological and Other Buffers for Control Purposes (Continued) Materials Acronym pKa pH range Glycine and NaOH 9.7 8.2–10.1 Ethanolamine (2-aminoethanol) and HCl 9.5 8.6–10.4 3-(Cyclohexylamino)-2-hydroxy-1-propanesulfonic acid CAPSO 9.6 8.9–10.3 2-Amino-2-methyl-1-propanol AMP 9.7 9.0–10.5 Carbonate and hydrogen carbonate 10.3 9.2–11.0 Borax and NaOH 9.4–11.1 3-(Cyclohexylamino)-1-propanesulfonic acid CAPS 10.4 9.7–11.1 Na2HPO4 and NaOH 11.9 11.0–12.0 x mL of 0.2M Sodium Acetate (27.199 g NaOAc · 3H2O per liter) plus y mL of 0.2M Acetic Acid x mL of 0.1M KH2PO4 ) plus 1 (13.617 g · L y mL of 0.05M Borax Solution (19.404 g Na2B4O7 · 10H2O per Liter) pH NaOAc, mL Acetic Acid, mL pH KH2PO4, mL Borax, mL pH KH2PO4, mL Borax, mL 3.60 7.5 92.5 5.80 92.1 7.9 7.60 51.7 48.3 3.80 12.0 88.0 6.00 87.7 12.3 7.80 49.2 50.8 4.00 18.0 82.0 6.200 83.0 17.0 8.00 46.5 53.5 4.20 26.5 73.5 6.40 77.8 22.2 8.20 43.0 57.0 4.40 37.0 63.0 6.60 72.2 27.8 8.40 38.7 61.3 4.60 49.0 51.0 6.80 66.7 33.3 8.60 34.0 66.0 4.80 60.0 40.0 7.00 62.3 37.7 8.80 27.6 72.4 5.00 70.5 29.5 7.20 58.1 41.9 9.00 17.5 82.5 5.20 79.0 21.0 7.40 55.0 45.0 9.20 5.0 95.0 5.40 85.5 14.5 5.60 90.5 9.5 x mL of Veronal (20.6 g Na Diethylbarbiturate per Liter) plus y mL of 0.1M HCl x mL of 0.2M Aqueous NH3 Solution plus y mL of 0.2M NH4Cl 1 (10.699 g · L ) x mL of 0.1M Citrate (21.0 g Citric Acid Monohydrate 200 mL 1M NaOH per Liter) plus y mL of 0.1M NaOH pH Veronal, mL HCl, mL pH Aq NH3, mL NH4Cl, mL pH Citrate, mL NaOH, mL 7.00 53.6 46.4 8.00 5.5 94.5 5.10 90.0 10.0 7.20 55.4 44.6 8.20 8.5 91.5 5.30 80.0 20.0 7.40 58.1 41.9 8.40 12.5 87.5 5.50 71.0 29.0 7.60 61.5 38.5 8.60 18.5 81.5 5.70 67.0 33.0 7.80 66.2 33.8 8.80 26.0 74.0 5.90 62.0 38.0 8.00 71.6 28.4 9.00 36.0 64.0 8.20 76.9 23.1 9.25 50.0 50.0 8.40 82.3 17.7 9.40 58.5 41.5 8.60 87.1 12.9 9.60 69.0 31.0 8.80 90.8 9.2 9.80 78.0 22.0 9.00 93.6 6.4 10.00 85.0 15.0 8.112 SECTION 8 TABLE 8.19 pH Values of Biological and Other Buffers for Control Purposes (Continued) x mL of 0.2M NaOH Added to 100 mL of Stock Solution (0.04M Acetic Acid, 0.04M H3PO4, and 0.04M Boric Acid) pH NaOH, mL pH NaOH, mL pH NaOH, mL pH NaOH, mL 1.81 0.0 4.10 25.0 6.80 50.0 9.62 75.0 1.89 2.5 4.35 27.5 7.00 52.5 9.91 77.5 1.98 5.0 4.56 30.0 7.24 55.0 10.38 80.0 2.09 7.5 4.78 32.5 7.54 57.5 10.88 82.5 2.21 10.0 5.02 35.0 7.96 60.0 11.20 85.0 2.36 12.5 5.33 37.5 8.36 62.5 11.40 87.5 2.56 15.0 5.72 40.0 8.69 65.0 11.58 90.0 2.87 17.5 6.09 42.5 8.95 67.5 11.70 92.5 3.29 20.0 6.37 45.0 9.15 70.0 11.82 95.0 3.78 22.5 6.59 47.5 9.37 72.5 11.92 97.5 x mL of 0.1M HCl plus y mL of 0.1M Glycine (7.505 g Glycine 5.85 g NaCl per Liter) x mL of 0.1M HCl plus y mL of 0.1M Citrate (21.008 g Citric Acid Monohydrate 200 ml 1M NaOH per Liter) x mL of 0.05M Succinic Acid plus y mL of 1 (5.90 g · L ) Borax Solution (19.404 g Na2B4O7 · 10H2O per Liter) pH HCl, mL Glycine, mL pH HCl, mL Citrate, mL pH Succinic Acid, mL Borax, mL 1.20 84.0 16.0 3.50 52.8 47.2 3.60 90.5 9.5 1.40 71.0 29.0 3.60 51.3 48.7 3.80 86.3 13.7 1.60 61.8 38.2 3.80 48.6 51.4 4.00 82.2 17.8 1.80 55.2 44.8 4.00 43.8 56.2 4.20 77.8 22.2 2.00 49.1 50.9 4.20 38.6 61.4 4.40 73.8 26.2 2.20 42.7 57.3 4.40 34.6 65.4 4.60 70.0 30.0 2.40 36.5 63.5 4.60 24.3 75.7 4.80 66.5 33.5 2.60 30.3 69.7 4.80 11.0 89.0 5.00 63.2 36.8 2.80 24.0 76.0 5.20 60.5 39.5 3.00 17.8 82.2 5.40 57.9 42.1 3.30 10.8 89.2 5.60 55.7 44.3 3.60 6.0 94.0 5.80 54.0 46.0 x mL of 0.2M Na2HPO4 · 2H2O plus 1 (35.599 g · L ) y mL of 0.1M Citric Acid 1 (19.213 g · L ) pH Na2HPO4, mL Citric Acid, mL pH Na2HPO4, mL Citric Acid, mL pH Na2HPO4, mL Citric Acid, mL 2.20 2.00 98.00 4.20 41.40 58.60 6.20 66.10 33.90 2.40 6.20 93.80 4.40 44.10 55.90 6.40 69.25 30.75 2.60 10.90 89.10 4.60 46.75 53.25 6.60 72.75 27.25 2.80 15.85 84.15 4.80 49.30 50.70 6.80 77.25 22.75 3.00 20.55 79.45 5.00 51.50 48.50 7.00 82.35 17.65 3.20 24.70 75.30 5.20 53.60 46.40 7.20 86.95 13.05 3.40 28.50 71.50 5.40 55.75 44.25 7.40 90.85 9.15 3.60 32.20 67.80 5.60 58.00 42.00 7.60 93.65 6.35 3.80 35.50 64.50 5.80 60.45 39.55 7.80 95.75 4.25 4.00 38.55 61.45 6.00 63.15 36.85 8.00 97.25 2.75 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.113 When there are two or more acid groups per molecule, or a mixture is composed of several overlapping acids, the useful range is larger. Universal buffer solutions consist of a mixture of acid groups which overlap such that successive pKa values differ by 2 pH units or less. The Prideaux-Ward mixture comprises phosphate, phenyl acetate, and borate plus HCl and covers the range from 2 to 12 pH units. The McIlvaine buffer is a mixture of citric acid and Na2HPO4 that covers the range from pH 2.2 to 8.0. The Britton-Robinson system consists of acetic acid, phosphoric acid, and boric acid plus NaOH and covers the range from pH 4.0 to 11.5. A mixture composed of Na2CO3, NaH2PO4, citric acid, and 2-amino-2-methyl-1,3-propanediol covers the range from pH 2.2 to 11.0.
General directions for the preparation of buffer solutions of varying pH but fixed ionic strength are given by Bates. Preparation of McIlvaine buffered solutions at ionic strengths of 0.5 and 1.0 and Britton-Robinson solutions of constant ionic strength have been described by Elving et al.† and Frugoni,‡ respectively.
Bates, Determination of pH, Theory and Practice, Wiley, New York, 1964, pp. 121–122.
† Elving, Markowitz, and Rosenthal, Anal. Chem., 28:1179 (1956).
‡ Frugoni, Gazz. Chim. Ital., 87:L403 (1957).
8.4 REFERENCE ELECTRODES TABLE 8.20 Potentials of Reference Electrodes in Volts as a Function of Temperature Liquid-junction potential included.
Temp., C 0.1M KCl Calomel 1.0M KCl Calomel 3.5M KCl Calomel Satd. KCl Calomel 1.0M KCl Ag/AgCl† 1.0M KBr Ag/AgBr‡ 1.0M KI Ag/AgI§ 0 0.3367 0.2883 0.25918 0.23655 0.08128 0.14637 5 0.23413 0.07961 0.14719 10 0.3362 0.2868 0.2556 0.25387 0.23142 0.07773 0.14822 15 0.3361 0.2511 0.22857 0.07572 0.14942 20 0.3358 0.2844 0.2520 0.24775 0.22557 0.07349 0.15081 25 0.3356 0.2830 0.2501 0.24453 0.22234 0.07106 0.15244 30 0.3354 0.2815 0.2481 0.24118 0.21904 0.06856 0.15405 35 0.3351 0.2376 0.21565 0.06585 0.15590 38 0.3350 0.2448 0.2355 40 0.3345 0.2782 0.2439 0.23449 0.21208 0.06310 0.15788 45 0.20835 0.06012 0.15998 50 0.3315 0.2745 0.22737 0.20449 0.05704 0.16219 55 0.20056 60 0.3248 0.2702 0.2235 0.19649 70 0.18782 80 0.2083 0.1787 90 0.1695 0.0251 Bates et al., J. Research Natl. Bur. Standards, 45, 418 (1950).
† Bates and Bower, J. Research Natl. Bur. Standards, 53, 283 (1954).
‡ Hetzer, Robinson and Bates, J. Phys. Chem., 66, 1423 (1962).
§ Hetzer, Robinson and Bates, J. Phys. Chem., 68, 1929 (1964).
8.114 SECTION 8 TABLE 8.20 Potentials of Reference Electrodes in Volts as a Function of Temperature (Continued) Temp., C 125 150 175 200 225 250 275 1.0M KCl Ag/AgCl 0.1330 0.1032 0.0708 0.0348 0.0051 0.054 0.090 1.0M KBr Ag/AgBr† 0.0048 0.0312 0.0612 0.0951 Greeley et al., J. Phys. Chem., 64, 652 (1960).
† Towns et al., J. Phys. Chem., 64, 1861 (1960).
The values of several additional reference electrodes at 25C are listed: Ag/AgCl, satd. KCl 0.198 Ag/AgCl, 01M KCl 0.288 Hg/HgO, 1.0M NaOH 0.140 Hg/HgO, 0.1M NaOH 0.165 Hg/Hg2SO4, satd. K2SO4 (22C) 0.658 Hg/Hg2SO4, satd. KCl 0.655 TABLE 8.21 Potentials of Reference Electrodes (in Volts) at 25C for Water–Organic Solvent Mixtures Electrolyte solution of 1M HCl.
Solvent, wt % Methanol, Ag/AgCl Ethanol, Ag/AgCl 2-Propanol, Ag/AgCl Acetone, Ag/AgCl Dioxane, Ag/AgCl Ethylene glycol, Ag/AgCl Methanol, calomel Dioxane, calomel 5 0.2180 0.2190 0.2190 10 0.2153 0.2146 0.2138 0.2156 0.2160 20 0.2090 0.2075 0.2063 0.2079 0.2031 0.2101 0.255 0.2501 30 0.2003 0.2036 40 0.1968 0.1945 0.1859 0.1972 0.243 45 0.1635 0.2104 50 0.1859 0.158 60 0.1818 0.173 0.1807 70 0.158 0.0659 0.216 0.1126 80 0.1492 0.136 82 0.0614 0.0014 90 0.1135 0.096 0.034 94.2 0.0841 98 0.0215 99 0.103 100 0.0099 0.0081 0.53 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.115 8.4.1 Electrometric Measurement of pH The pH value is defined for an aqueous solution in an operational (arbitrary but reproducible) manner according to the Bates-Guggenheim convention: E E x s pH pH x s 2.3026RT/F where R is the gas constant per mole, T is the temperature on the absolute scale, and F is the faraday.
The pHx of the unknown medium is calculated from that of an accepted standard (pHs) and the measured difference in the emf (E) of the electrode combination when the standard solution is removed from the cell and replaced by the unknown. The double vertical line marks a liquid junction.
Electrodes as fabricated exhibit variations in the reproducibility of the reference electrode, in the liquid-junction potential, and, with glass electrodes, in the asymmetry potential. These differences are all eliminated in the standardizing procedure with standard reference pH buffers. (See R. G.
Bates, Determination of pH, Theory and Practice, Wiley, New York, 1964.) Electrode reversible Standard reference Salt bridge Reference to hydrogen ions buffer or unknown (KCl. 3.5M electrode solution or saturated) An electrometric pH-measurement system consists of (1) pH-responsive electrode, (2) reference electrode, and (3) potential-measuring device—some form of high-impedance electronic voltmeter for glass-electrode combinations and this or a potentiometer arrangement for other pH-responsive electrodes. Electronic pH meters are simply voltmeters with scale divisions in pH units which are equivalent to the values of 2.3026RT/F (in mV) per pH unit. Values of this function at several temperatures are given in Table 8.22. There is no compensation incorporated in the meter for the changes in pH of the test solution as a function of temperature. Reliability of an indicator–reference electrode combination must be ascertained by standardization of the pH meter with one standard buffer and checking the pH response by immersing the combination in a second and different ref-erence buffer.
The temperature compensator on a pH meter varies the instrument definition of a pH unit from 54.20 mV at 0C to perhaps 66.10 mV at 60C. This permits one to measure the pH of the sample (and reference buffer standard) at its actual temperature and thus avoid error due to dissociation equilibria and to junction potentials which have significant temperature coefficients.
TABLE 8.22 Values of 2.3026RT/F at Several Temperatures In millivolts.
t C Value t C Value t C Value t C Value 0 54.197 25 59.157 50 64.118 80 70.070 5 55.189 30 60.149 55 65.110 85 71.062 10 56.181 35 61.141 60 66.102 90 72.054 15 57.173 38 61.737 65 67.094 95 73.046 18 57.767 40 62.133 70 68.086 100 74.038 20 58.165 45 63.126 75 69.078 Report of the National Academy of Sciences: National Research Council Committee of Fundamental Constants, 1963.
8.116 SECTION 8 8.5 INDICATORS TABLE 8.23 Indicators for Aqueous Acid-Base Titrations This table lists some selected indicators. The pH range or transition interval given in the third column may vary appreciably from one observer to another, and, in addition, it is affected by ionic strength, temperature, and illumination; consequently only approximate values can be given. They should be considered to refer to solutions having low ionic strengths and a temperature of about 25C. In the fourth column the pKa (log Ka) of the indicator as determined spectrophotometrically is listed. In the fifth column the wavelength of maximum ab-sorption is given first for the acidic and then for the basic form of the indicator, and the same order is followed in giving the colors in the sixth column. The abbreviations used to describe the colors of the two forms of the indicator are as follows: B, blue G, green V, violet P, purple Y, yellow R, red O, orange O-Br, orange-brown C, colorless Indicator Chemical name pH range pKa max, nm Color change Cresol red (acid range) o-Cresolsulfonephthalein 0.2–1.8 R-Y Cresol purple (acid range) m-Cresolsulfonephthalein 1.2–2.8 1.51 533, — R-Y Thymol blue (acid range) Thymolsulfonephthalein 1.2–2.8 1.65 544, 430 R-Y Tropeolin OO Diphenylamino-p-benzene sodium sulfonate 1.3–3.2 2.0 527, — R-Y 2,6-Dinitrophenol 2,6-Dinitrophenol 2.4–4.0 3.69 C-Y 2,4-Dinitrophenol 2,4-Dinitrophenol 2.5–4.3 3.90 C-Y Methyl yellow Dimethylaminoazobenzene 2.9–4.0 3.3 508, — R-Y Methyl orange Dimethylaminoazobenzene sodium sulfonate 3.1–4.4 3.40 522, 464 R-O Bromophenol blue Tetrabromophenolsulfone-phthalein 3.0–4.6 3.85 436, 592 Y-BV Bromocresol green Tetrabromo-m-cresol-sulfonephthalein 4.0–5.6 4.68 444, 617 Y-B Methyl red o-Carboxybenzeneazo-dimethylaniline 4.4–6.2 4.95 530, 427 R-Y Chlorophenol red Dichlorophenolsulfone-phthalein 5.4–6.8 6.0 —, 573 Y-R Bromocresol purple Dibromo-o-cresolsulfone-phthalein 5.2–6.8 6.3 433, 591 Y-P Bromophenol red Dibromophenolsulfone-phthalein 5.2–6.8 —, 574 Y-R p-Nitrophenol p-Nitrophenol 5.3–7.6 7.15 320, 405 C-Y Bromothymol blue Dibromothymolsulfone-phthalein 6.2–7.6 7.1 433, 617 Y-B Neutral red Aminodimethylaminotolu-phenazonium chloride 6.8–8.0 7.4 R-Y Phenol red Phenolsulfonephthalein 6.4–8.0 7.9 433, 558 Y-R m-Nitrophenol m-Nitrophenol 6.4–8.8 8.3 —, 570 C-Y ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.117 TABLE 8.23 Indicators for Aqueous Acid-Base Titrations (Continued) Indicator Chemical name pH range pKa max, nm Color change Cresol red o-Cresolsulfonephthalein 7.2–8.8 8.2 434, 572 Y-R m-Cresol purple m-Cresolsulfonephthalein 7.6–9.2 8.32 —, 580 Y-P Thymol blue Thymolsulfonephthalein 8.0–9.6 8.9 430, 596 Y-B Phenolphthalein Phenolphthalein 8.0–10.0 9.4 —, 553 C-R -Naphtholbenzein -Naphtholbenzein 9.0–11.0 Y-B Thymolphthalein Thymolphthalein 9.4–10.6 10.0 —, 598 C-B Alizarin Yellow R 5-(p-Nitrophenylazo)-salicyclic acid, Na salt 10.0–12.0 11.16 Y-V Tropeolin O p-Sulfobenzenazo-resorcinol 11.0–13.0 Y-O-Br Nitramine 2,4,6-Trinitrophenyl-methylnitroamine 10.8–13.0 C-O-Br TABLE 8.24 Mixed Indicators Mixed indicators give sharp color changes and are especially useful in titrating to a given titration exponent (pI).
The information given in this table is from the two-volume work Volumetric Analysis by Kolthoff and Stenger, published by Interscience Publishers, Inc., New York, 1942 and 1947, and reproduced with their permission.
Color Composition of Indicator Solution pI Acid Alkaline Notes 1 part 0.1% methyl yellow in alc.
1 part 0.1% methylene blue in alc.
3.25 Blue-violet Green Still green at pH 3.4, blue-violet at 3.2† 1 part 0.14% xylene cyanol FF in alc.
1 part 0.1% methyl orange in aq.
3.8 Violet Green Color is gray at pH 3.8 1 part 0.1% methyl orange in aq.
1 part 0.25% indigo carmine in aq.
4.1 Violet Green Good indicator, especially in artificial light 1 part 0.1% methyl orange in aq.
1 part 0.1% aniline blue in aq.
4.3 Violet Green 1 part 0.1% bromcresol green sodium salt in aq.
1 part 0.02% methyl orange in aq.
4.3 Orange Blue-green Yellow at pH 3.5, greenish yellow at 4.0, weakly green at 4.3 3 parts 0.1% bromcresol green in alc.
1 part 0.2% methyl red in alc.
5.1 Wine-red Green Very sharp color change† 1 part 0.2% methyl red in alc.
1 part 0.1% methylene blue in alc.
5.4 Red-violet Green Color is red-violet at pH 5.2, a dirty blue at 5.4, and a dirty green at 5.6 1 part 0.1% chlorphenol red sodium salt in aq.
1 part 0.1% aniline blue in water 5.8 Green Violet Pale violet at pH 5.8 1 part 0.1% bromcresol green sodium salt in aq.
1 part 0.1% chlorphenol red sodium salt in aq.
6.1 Yellow-green Blue-violet Blue-green at pH 5.4, blue at 5.8, blue with a touch of violet at 6.0, blue-violet at 6.2 1 part 0.1% bromcresol purple sodium salt in aq.
1 part 0.1% bromthymol blue sodium salt in aq.
6.7 Yellow Violet-blue Yellow-violet at pH 6.2, violet at 6.6, blue-violet at 6.8 2 parts 0.1% bromthymol blue sodium salt in aq.
1 part 0.1% azolitmin in aq.
6.9 Violet Blue 8.118 1 part 0.1% neutral red in alc.
1 part 0.1% methylene blue in alc.
7.0 Violet-blue Green Violet blue at pH 7.0† 1 part 0.1% neutral red in alc.
1 part 0.1% bromthymol blue in alc.
7.2 Rose Green Dirty green at pH 7.4, pale rose at 7.2, clear rose at 7.0 2 parts 0.1% cyanine in 50% alc.
1 part 0.1% phenol red in 50% alc.
7.3 Yellow Violet Orange at pH 7.2, beautiful violet at 7.4, color fades on standing 1 part 0.1% bromthymol blue sodium salt in aq.
1 part 0.1% phenol red sodium salt in aq.
7.5 Yellow Violet Dirty green at pH 7.2, pale violet at 7.4, strong violet at 7.6† 1 part 0.1% cresol red sodium salt in aq.
3 parts 0.1% thymol blue sodium salt in aq.
8.3 Yellow Violet Rose at pH 8.2, distinctly violet at 8.4† 2 parts 0.1% -naphtholphthalein in alc.
1 part 0.1% cresol red in alc.
8.3 Pale rose Violet Pale violet at pH 8.2, strong violet at 8.4 1 part 0.1% -naphtholphthalein in alc.
3 parts 0.1% phenolphthalein in alc.
8.9 Pale rose Violet Pale green at pH 8.6, violet at 9.0 1 part 0.1% phenolphthalein in alc.
2 parts 0.1% methyl green in alc.
8.9 Green Violet Pale blue at pH 8.8, violet at 9.0 1 part 0.1% thymol blue in 50% alc.
3 parts 0.1% phenolphthalein in 50% alc.
9.0 Yellow Violet From yellow thru green to violet† 1 part 0.1% phenolphthalein in alc.
1 part 0.1% thymolphthalein in alc.
9.9 Colorless Violet Rose at pH 9.6, violet at 10; sharp color change 1 part 0.1% phenolphthalein in alc.
2 parts 0.2% Nile blue in alc.
10.0 Blue Red Violet at pH 10† 2 parts 0.1% thymolphthalein in alc.
1 part 0.1% alizarin yellow in alc.
10.2 Yellow Violet Sharp color change 2 parts 0.2% Nile blue in aq.
1 part 0.1% alizarin yellow in alc.
10.8 Green Red-brown Keep in a dark bottle.
† Excellent indicator.
8.119 8.120 SECTION 8 TABLE 8.25 Fluorescent Indicators Name pH Range Color Change Acid to Base Indicator Solution Benzoflavine 0.3 to 1.7 Yellow to green 1 3,6-Dihydroxyphthalimide 0 to 2.4 Blue to green 1 6.0 to 8.0 Green to yellow/green Eosin (tetrabromofluorescein) 0 to 3.0 Non-flto green 4, 1% 4-Ethoxyacridone 1.2 to 3.2 Green to blue 1 3,6-Tetramethyldiaminoxanthone 1.2 to 3.4 Green to blue 1 Esculin 1.5 to 2.0 Weak blue to strong blue Anthranilic acid 1.5 to 3.0 Non-flto light blue 2 (50% ethanol) 4.5 to 6.0 Light blue to dark blue 12.5 to 14 Dark blue to non-fl 3-Amino-1-naphthoic acid 1.5 to 3.0 Non-flto green 2 (as sulfate 4.0 to 6.0 Green to blue in 50% ethanol) 11.6 to 13.0 Blue to non-fl 1-Naphthylamino-6-sulfonamide 1.9 to 3.9 Non-flto green 3 (also the 1-, 7-) 9.6 to 13.0 Green to non-fl 2-Naphthylamino-6-sulfonamide 1.9 to 3.9 Non-flto dark blue 3 (also the 2-, 8-) 9.6 to 13.0 Dark blue to non-fl 1-Naphthylamino-5-sulfonamide 2.0 to 4.0 Non-flto yellow/orange 3 9.5 to 13.0 Yellow/orange to non-fl 1-Naphthoic acid 2.5 to 3.5 Non-flto blue 4 Salicylic acid 2.5 to 4.0 Non-flto dark blue 4 (0.5%) Phloxin BA extra (tetrachlorotetrabromofluorescein) 2.5 to 4.0 Non-flto dark blue 2 Erythrosin B (tetraiodofluorescein) 2.5 to 4.0 Non-flto light green 4 (0.2%) 2-Naphthylamine 2.8 to 4.4 Non-flto violet 1 Magdala red 3.0 to 4.0 Non-flto purple p-Aminophenylbenzenesulfonamide 3.0 to 4.0 Non-flto light blue 3 2-Hydroxy-3-naphthoic acid 3.0 to 6.8 Blue to green 4 (0.1%) Chromotropic acid 3.1 to 4.4 Non-flto light blue 4 (5%) 1-Naphthionic acid 3 to 4 Non-flto blue 4 10 to 12 Blue to yellow-green 1-Naphthylamine 3.4 to 4.8 Non-flto blue 1 5-Aminosalicylic acid 3.1 to 4.4 Non-flto light green 1 (0.2% fresh) Quinine 3.0 to 5.0 Blue to weak violet 1 (0.1%) 9.5 to 10.0 Weak violet to non-fl o-Methoxybenzaldehyde 3.1 to 4.4 Non-flto green 4 (0.2%) o-Phenylenediamine 3.1 to 4.4 Green to non-fl 5 p-Phenylenediamine 3.1 to 4.4 Non-flto orange/yellow 5 Morin (2,4,3,5,7-pentahydroxyflavone) 3.1 to 4.4 Non-flto green 6 (0.2%) 8 to 9.8 Green to yellow/green Thioflavine S 3.1 to 4.4 Dark blue to light blue 6 (0.2%) Fluorescein 4.0 to 4.5 Pink/green to green 4 (1%) Dichlorofluorescein 4.0 to 6.6 Blue green to green 1 -Methylesculetin 4.0 to 6.2 Non-flto blue 1 9.0 to 10.0 Blue to light green Quininic acid 4.0 to 5.0 Yellow to blue 6 (satd) -Naphthoquinoline 4.4 to 6.3 Blue to non-fl 3 Resorufin (7-oxyphenoxazone) 4.4 to 6.4 Yellow to orange Indicator solutions: 1, 1% solution in ethanol; 2, 0.1% solution in ethanol; 3, 0.05% solution in 90% ethanol; 4, sodium or potassium salt in distilled water; 5, 0.2% solution in 70% ethanol; 6, distilled water.
Reference: G.F. Kirkbright, “Fluorescent Indicators,” Chap. 9 in Indicators, E. Bishop (ed.), Pergamon Press, Oxford, 1972.
ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.121 TABLE 8.25 Fluorescent Indicators (Continued) Name pH Range Color Change Acid to Base Indicator Solution Acridine 5.2 to 6.6 Green to violet 2 3,6-Dihydroxyxanthone 5.4 to 7.6 Non-flto blue/violet 1 5,7-Dihydroxy-4-methylcoumarin 5.5 to 5.8 Light blue to dark blue 3,6-Dihydroxyphthalic acid dinitrile 5.8 to 8.2 Blue to green 1 1,4-Dihydroxybenzenedisulfonic acid 6 to 7 Non-flto light blue 4 (0.1%) Luminol 6 to 7 Non-flto blue 2-Naphthol-6-sulfonic acid 5–7 to 8–9 Non-flto blue 4 Quinoline 6.2 to 7.2 Blue to non-fl 6 (satd) 1-Naphthol-5-sulfonic acid 6.5 to 7.5 Non-flto green 6 (satd) Umbelliferone 6.5 to 8.0 Non-flto blue Magnesium-8-hydroxyquinolinate 6.5 to 7.5 Non-flto yellow 6 (0.1% in 0.01 M HCl) Orcinaurine 6.5 to 8.0 Non-flto green 6 (0.03%) Diazo brilliant yellow 6.5 to 7.5 Non-flto blue Coumaric acid 7.2 to 9.0 Non-flto green 1 -Methylumbelliferone 7.0 Non-flto blue 2 (0.3%) Harmine 7.2 to 8.9 Blue to yellow 2-Naphthol-6,8-disulfonic acid 7.5 to 9.1 Blue to light blue 4 Salicylaldehyde semicarbazone 7.6 to 8.0 Yellow to blue 2 1-Naphthol-2-sulfonic acid 8.0 to 9.0 Dark blue to light blue 4 Salicylaldehyde acetylhydrazone 8.3 Non-flto green/blue 2 Salicylaldehyde thiosemicarbazone 8.4 Non-flto blue/green 2 1-Naphthol-4-sulfonic acid 8.2 Dark blue to light blue 4 Naphthol AS 8.2 to 10.3 Non-flto yellow/green 4 2-Naphthol 8.5 to 9.5 Non-flto blue 2 Acridine orange 8.4 to 10.4 Non-flto yellow/green 1 Orcinsulfonephthalein 8.6 to 10.0 Non-flto yellow 2-Naphthol-3,6-disulfonic acid 9.0 to 9.5 Dark blue to light blue 4 Ethoxyphenylnaphthostilbazonium chloride 9 to 11 Green to non-fl 1 o-Hydroxyphenylbenzothiazole 9.3 Non-flto blue green 2 o-Hydroxyphenylbenzoxazole 9.3 Non-flto blue/violet 2 o-Hydroxyphenylbenzimidazole 9.9 Non-flto blue/violet 2 Coumarin 9.5 to 10.5 Non-flto light green 6,7-Dimethoxyisoquinoline-1-carboxylic acid 9.5 to 11.0 Yellow to blue 0.1% in glycerine/ ethanol/water in 2: 2: 18 ratio 1-Naphthylamino-4-sulfonamide 9.5 to 13.0 Dark blue to white/blue 3 TABLE 8.26 Selected List of Oxidation-Reduction Indicators Name Reduction Potential (30C) in Volts at pH 0 pH 7 Suitable pH Range Color Change Upon Oxidation Bis(5-bromo-1,10-phenanthroline) ruthenium(II) dinitrate 1.41 Red to faint blue Tris(5-nitro-1,10-phenanthroline) iron(II) sulfate 1.25 Red to faint blue Iron(II)-2,2,2-tripyridine sulfate 1.25 Pink to faint blue Tris(4,7-diphenyl-1,10-phenanthroline) iron(II) disulfate 1.13 (4.6 M H2SO4) 0.87 (1.0 M H2SO4) Red to faint blue o,m-Diphenylaminedicarboxylic acid 1.12 Colorless to blue-violet Setopaline 1.06 (trans)† Yellow to orange p-Nitrodiphenylamine 1.06 Colorless to violet Tris(1,10-phenanthroline)-iron(II) sulfate 1.06 (1.00 M H2SO4) 1.00 (3.0 M H2SO4) 0.89 (6.0 M H2SO4) Red to faint blue Setoglaucine O 1.01 (trans)† Yellow-green to yellow-red Xylene cyanole FF 1.00 (trans)† Yellow-green to pink Erioglaucine A 1.00 (trans)† Green-yellow to bluish red Eriogreen 0.99 (trans)† Green-yellow to orange Tris(2,2-bipyridine)-iron(II) hydrochloride 0.97 Red to faint blue 2-Carboxydiphenylamine [N-phenyl-anthranilic acid] 0.94 Colorless to pink Benzidine dihydrochloride 0.92 Colorless to blue o-Toluidine 0.87 Colorless to blue Bis(1,10-phenanthroline)-osmium(II) perchlorate 0.859 (0.1 M H2SO4) Green to pink Diphenylamine-4-sulfonate (Na salt) 0.85 Colorless to violet 8.122 3,3-Dimethoxybenzidine dihydrochloride [o-dianisidine] 0.85 Colorless to red Ferrocyphen 0.81 Yellow to violet 4-Ethoxy-2,4-diaminoazobenzene 0.76 Red to pale yellow N,N-Diphenylbenzidine 0.76 Colorless to violet Diphenylamine 0.76 Colorless to violet N,N-Dimethyl-p-phenylenediamine 0.76 Colorless to red Variamine blue B hydrochloride 0.712‡ 0.310 1.5–6.3 Colorless to blue N-Phenyl-1,2,4-benzenetriamine 0.70 Colorless to red Bindschedler’s green 0.680‡ 0.224 2–9.5 2,6-Dichloroindophenol (Na salt) 0.668‡ 0.217 6.3–11.4 Colorless to blue 2,6-Dibromophenolindophenol 0.668‡ 0.216 7.0–12.3 Colorless to blue Brilliant cresyl blue [3-amino-9-dimethyl-amino-10-methylphenoxyazine chloride] 0.583 0.047 0–11 Colorless to blue Iron(II)-tetrapyridine chloride 0.59 Red to faint blue Thionine [Lauth’s violet] 0.563‡ 0.064 1–13 Colorless to violet Starch (soluble potato, I present) 3 0.54 Colorless to blue Gallocyanine (25C) 0.021 Colorless to violet-blue Methylene blue 0.532‡ 0.011 1–13 Colorless to blue Nile blue A [aminonaphthodiethylamino-phenoxazine sulfate] 0.406‡ 0.119 1.4–12.3 Colorless to blue Indigo-5,5,7,7-tetrasulfonic acid (Na salt) 0.365‡ 0.046 9 Colorless to blue Indigo-5,5,7-trisulfonic acid (Na salt) 0.332‡ 0.081 9 Colorless to blue Indigo-5,5-disulfonic acid (Na salt) 0.291‡ 0.125 9 Colorless to blue Phenosafranine 0.280‡ 0.252 1–11 Colorless to violet-blue Indigo-5-monosulfonic acid (Na salt) 0.262‡ 0.157 9 Colorless to blue Safranine T 0.24‡ 0.289 1–12 Colorless to violet-blue Bis(dimethylglyoximato)-iron(II) chloride 0.155 6–10 Red to colorless Induline scarlet 0.047‡ 0.299 3–8.6 Colorless to red Neutral red 0.323 2–11 Colorless to red-violet Transition point is at higher potential than the tabulated formal potential because the molar absorptivity of the reduced form is very much greater than that of the oxidized form.
† Trans first noticeable color transition; often 60 mV less than E ‡ Values of E are obtained by extrapolation from measurements in weakly acid or weakly alkaline systems.
8.123 8.124 SECTION 8 8.6 ELECTRODE POTENTIALS TABLE 8.27 Potentials of the Elements and Their Compounds at 25C Standard potentials are tabulated except when a solution composition is stated; the latter are formal potentials and the concentrations are in mol/liter.
Half-reaction Standard or formal potential Solution composition Actinium Ac3 3e Ac 2.13 Aluminum Al3 3e Al 1.676 3 AlF 3e Al 6F 6 2.07 Al(OH) 3e Al 4OH 4 2.310 Americium 2 4 AmO 4H 2e Am 2H O 2 2 1.20 2 AmO e AmO 2 2 1.59 4 AmO 4H e Am 2H O 2 2 0.82 3 AmO 4H 2e Am 2H O 2 2 1.72 Am4 e Am3 2.62 Am4 4e Am 0.90 Am3 3e Am 2.07 Antimony Sb(OH) 2e SbO 2OH 2H O 4 2 2 0.465 1 NaOH SbO 2H O 3e Sb 4OH 2 2 0.639 1 NaOH Sb 3H2O 3e SbH3 3OH 1.338 1 NaOH Sb2O5 6H 4e 2SbO 3H2O 0.605 Sb2O5 4H 4e Sb2O3 2H2O 0.699 Sb2O5 2H 2e Sb2O4 H2O 1.055 Sb2O4 2H 2e Sb2O3 H2 0.342 SbO 2H 3e Sb H2O 0.204 Sb 3H 3e SbH3 0.510 Arsenic H3AsO4 2H 2e HAsO2 2H2O 0.560 HAsO2 3H 3e As 2H2O 0.240 As 3H 3e AsH3 0.225 3 AsO 2H 2e AsO 4OH 4 2 0.67 AsO 2H O 3e As 4OH 2 2 0.68 As 3H2O 3e AsH3 3OH 1.37 Astatine HAtO3 4H 4e HAtO 2H2 ca. 1.4 2HAtO 2H 2e At2 2H2O ca. 0.7 At2 2e 2At 0.20 Barium BaO2 4H 2e Ba2 2H2O 2.365 Ba2 2e Ba 2.92 Source: A. J. Bard, R. Parsons, and J. Jordan (eds.), Standard Potentials in Aqueous Solution (prepared under the auspices of the International Union of Pure and Applied Chemistry), Marcel Dekker, New York, 1985; G. Charlot et al., Selected Constants: Oxidation-Reduction Potentials of Inorganic Substances in Aqueous Solution, Butterworths, London, 1971.
ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.125 TABLE 8.27 Potentials of the Elements and Their Compounds at 25C (Continued) Half-reaction Standard or formal potential Solution composition Berkelium Bk4 4e Bk 1.05 Bk4 e Bk3 1.67 Bk3 3e Bk 2.01 Beryllium Be2 2e Be 1.99 Bismuth Bi2O4 (bismuthate) 4H 2e 2BiO 2H2O 1.59 Bi3 3e Bi 0.317 Bi 3H 3e BiH3 0.97 BiCl 3e Bi 4Cl 4 0.199 BiBr 3e Bi 4Br 4 0.168 BiOCl 2H 3e Bi H2O Cl 0.170 Boron B(OH)3 3H 3e B 3H2O 0.890 BO 6H2O 8e BH 8OH 2 3 1.241 B(OH) 3e B 4OH 4 1.811 Bromine BrO 2H 2e BrO H2O 4 3 1.853 BrO 6H 6e Br 3H2O 3 1.478 BrO 5H 4e HBrO 2H2O 3 1.444 2BrO 12H 10e Br2 6H2O 3 1.5 2HBrO 2H 2e Br2 2H2O 1.604 HBrO H 2e Br H2O 1.341 BrO H2O 2e Br 2OH 0.76 1 NaOH Br 2e 3Br 3 1.050 Br2(aq) 2e 2Br 1.087 Cadmium Cd2 2e Cd 0.403 Cd2 Hg 2e Cd(Hg) 0.352 CdCl 2e Cd 4Cl 2 4 0.453 Cd(CN) 2e Cd 4CN 2 4 0.943 Cd(NH3) 2e Cd 4NH3 2 4 0.622 Cd(OH) 2e Cd 4OH 2 4 0.670 Calcium CaO2 4H 2e Ca2 H2O 2.224 Ca2 2e Ca 2.84 Ca 2H 2e CaH2 0.776 Californium Cf 3 3e Cf 1.93 Cf 3 e Cf 2 1.6 Cf 2 2e Cf 2.1 Carbon CO2 2H 2e CO H2O 0.106 CO2 2H 2e HCOOH 0.20 2CO2 2H 2e H2C2O4 0.481 C2O 2H 2e 2HCOO 2 4 0.145 HCOOH 2H 2e HCHO H2O 0.034 8.126 SECTION 8 TABLE 8.27 Potentials of the Elements and Their Compounds at 25C (Continued) Half-reaction Standard or formal potential Solution composition C2N2 2H 2e 2HCN 0.373 HCNO 2H 2e CO H2O 0.330 HCHO 2H 2e CH3OH 0.2323 CNO H2O 2e CN 2OH 0.97 Cerium Ce(IV) e Ce(III) 1.70 1.61 1.44 1.28 1 HClO4 1 HNO3 0.5 H2SO4 1 HCl Ce3 3e Ce 2.34 Cesium Cs e Cs 2.923 Cs Hg e Cs(Hg) 1.78 Chlorine ClO 2H 2e ClO H2O 4 3 1.201 2ClO 16H 14e Cl2 8H2O 4 1.392 ClO 8H 8e Cl 4H2O 4 1.388 ClO 2H e ClO2(g) H2O 3 1.175 ClO 3H 2e HClO2 H2O 3 1.181 2ClO 12H 10e Cl2 6H2O 3 1.468 ClO 6H 6e Cl 3H2O 3 1.45 ClO2(g) H e HClO2 1.188 HClO2 2H 2e HClO H2O 1.64 HClO2 3H 4e Cl 2H2O 1.584 2HClO2 6H 6e Cl2(g) 4H2O 1.659 2ClO 2H2O 2e Cl2(g) 4OH 0.421 1 NaOH ClO H2O 2e Cl 2OH 0.890 1 NaOH Cl 2e 3Cl 3 1.415 Cl2(aq) 2e 2Cl 1.396 Chromium Cr2O 14H 6e 2Cr3 7H2O 2 7 1.36 1.15 1.03 0.1 H2SO4 1 HClO4 CrO 4H2O 3e Cr(OH) 4OH 2 4 4 0.13 1 NaOH Cr3 e Cr2 0.424 Cr3 3e Cr 0.74 Cr2 2e Cr 0.90 Cobalt CoO2 4H e Co3 2H2O 1.416 Co(H2O) e Co(H2O) 3 2 6 6 1.92 Co(NH3) e Co(NH3) 3 2 6 6 0.058 7 NH3 Co(OH)3 e Co(OH)2 OH 0.17 Co(en) e Co(en) [en ethylenediamine] 3 2 3 3 0.2 0.1 en Co(CN) e Co(CN) CN 3 2 6 5 0.8 0.8 KOH Co2 2e Co 0.277 Co(NH3) 2e Co 6NH3 2 6 0.422 [Co(CO)4]2 2e 2Co(CO) 4 0.40 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.127 TABLE 8.27 Potentials of the Elements and Their Compounds at 25C (Continued) Half-reaction Standard or formal potential Solution composition Copper Cu2 2e Cu 0.340 Cu2 e Cu 0.159 Cu e Cu 0.520 Cu2 Cl e CuCl 0.559 Cu2 2Br e CuBr 2 0.52 1 KBr Cu2 I e CuI 0.86 Cu2 2CN e Cu(CN) 2 1.12 Cu(NH3) e Cu(NH3) 2NH3 2 4 2 0.10 1 NH3 Cu(en) e Cu(en) en 2 2 0.35 Cu(CN) e Cu 2CN 2 0.44 CuCl e Cu 3Cl 2 3 0.178 1 HCl Cu(NH3) e Cu 2NH3 2 0.100 Curium Cm4 e Cm3 3.2 1 HClO4 Cm3 3e Cm 2.06 Dysprosium Dy3 3e Dy 2.29 Dy3 e Dy2 2.5 Dy2 2e Dy 2.2 Einsteinium Es3 3e Es 2.0 Es3 e Es2 1.5 Es2 2e Es 2.2 Erbium Er3 3e Er 2.32 Europium Eu3 3e Eu 1.99 Eu3 e Eu2 0.35 Eu2 2e Eu 2.80 Fermium Fm3 3e Fm 1.96 Fm3 e Fm2 1.15 Fm2 2e Fm 2.37 Fluorine F2 2H 2e 2HF 3.053 F2 H 2e HF 2 2.979 F2 2e 2F 2.87 OF2 3H 4e HF H2O 2 2.209 Francium Fr e Fr ca. 2.9 Gadolinium Gd3 3e Gd 2.28 Gallium Ga3 3e Ga 0.529 Ga3 e Ga2 0.65 Ga2 2e Ga 0.45 8.128 SECTION 8 TABLE 8.27 Potentials of the Elements and Their Compounds at 25C (Continued) Half-reaction Standard or formal potential Solution composition Germanium GeO2(tetr) 2H 2e GeO(yellow) H2O 0.255 GeO2(tetr) 4H 2e Ge2 2H2O 0.210 GeO2(hex) 4H 2e Ge2 2H2O 0.132 H2GeO3 4H 4e Ge 3H2O 0.012 Ge4 2e Ge2 0.0 Ge2 2e Ge 0.247 GeO 2H 2e Ge H2O 0.255 Ge 4H 4e GeH4 0.29 Gold Au3 3e Au 1.52 Au3 2e Au 1.36 Au e Au 1.83 AuCl 2e AuCl 2Cl 4 2 0.926 AuBr 2e AuBr 2Br 4 2 0.802 Au(SCN) 2e Au(SCN) 2SCN 4 2 0.623 AuBr 3e Au 4Br 4 0.854 AuCl 3e Au 4Cl 4 1.002 Au(SCN) 3e Au 4SCN 4 0.662 Au(OH)3 3H 3e Au 3H2O 1.45 AuBr e Au 2Br 2 0.960 AuCl e Au 2Cl 2 1.15 AuI e Au 2I 2 0.576 Au(CN) e Au 2CN 2 0.596 Au(SCN)2 e Au 2SCN 0.69 Hafnium Hf 4 4e Hf 1.70 HfO2 4H 4e Hf 2H2O 1.57 Holmium Ho3 3e Ho 2.23 Hydrogen 2H 2e H2 0.0000 2D 2e D2 0.029 2H2O 2e H2 2OH 0.828 Indium In3 3e In 0.338 In3 2e In 0.444 In e In 0.126 Iodine H5IO6 H 2e IO 3H2O 3 1.603 IO 5H 4e HIO 2H2O 3 1.14 HIO3 5H 2Cl 4e ICl 3H2O 2 1.214 2IO 12H 10e I2(c) 3H2O 3 1.195 IO 3H2O 6e I 6OH 3 0.257 2IBr 2e I2Br 3Br 2 0.821 2IBr 2e I2(c) 4Br 2 0.874 2IBr 2e I2Br Br 0.973 2IBr 2e I2 2Br 1.02 2ICl 2e I2(c) 2Cl 1.20 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.129 TABLE 8.27 Potentials of the Elements and Their Compounds at 25C (Continued) Half-reaction Standard or formal potential Solution composition 2ICl 2e I2(c) 4Cl 2 1.07 2ICN 2H 2e I2(c) 2HCN 0.695 2ICN 2H 2e I2(aq) 2HCN 0.609 2HIO 2H 2e I2 2H2O 1.45 HIO H 2e I H2O 0.985 I 2e 3I 3 0.536 I2(aq) 2e 2I 0.621 I2(c) 2e 2I 0.5355 Iridium IrBr e IrBr 2 3 6 6 0.805 IrCl e IrCl 2 3 6 6 0.867 IrI e IrI 2 3 6 6 0.49 IrO2 4H e Ir3 2H2O 0.223 IrO2 4H 4e Ir 2H2O 0.935 1 H2SO4 Ir3 3e Ir 1.156 IrCl 4e Ir 6Cl 2 6 0.835 IrCl 3e Ir 6Cl 3 6 0.77 Iron FeO 8H 3e Fe3 4H2O 2 4 2.2 FeO 2H2O 3e FeO 4OH 2 4 2 0.55 10 NaOH Fe3 e Fe2 0.771 0.70 0.67 0.44 1 HCl 0.5 H2SO4 0.3 H3PO4 Fe(CN) e Fe(CN) 3 4 6 6 0.361 0.71 1 HCl Fe(EDTA) e Fe(EDTA)2 0.12 0.1 EDTA, pH 4–6 Fe(OH) e Fe(OH) 2 4 4 0.73 1 NaOH Fe2 2e Fe 0.44 [Fe(CO)4]3 6e 3Fe(CO)2 4 0.70 Lanthanum La3 3e La 2.38 Lawrencium Lr3 3e Lr 2.0 Lead Pb4 2e Pb2 1.65 PbO2(alpha) SO 4H 2e PbSO4 2H2O 2 4 1.690 PbO2 4H 2e Pb2 2H2O 1.46 PbO2 2H 2e PbO H2O 0.28 PbO2 H2O 2e HPbO 3OH 2 0.3 2 NaOH Pb2 2e Pb 0.126 HPbO H2O 2e Pb 3OH 2 0.54 PbHPO4 2e Pb HPO2 4 0.465 PbSO4 2e Pb SO2 4 0.356 PbF2 2e Pb 2F 0.344 PbCl2 2e Pb 2Cl 0.268 PbBr2 2e Pb 2Br 0.280 PbI2 2e Pb 2I 0.365 Pb 2H 2e PbH2 1.507 8.130 SECTION 8 TABLE 8.27 Potentials of the Elements and Their Compounds at 25C (Continued) Half-reaction Standard or formal potential Solution composition Lithium Li e Li 3.040 Li Hg e Li(Hg) 2.00 Lutetium Lu3 3e Lu 2.30 Magnesium Mg2 2e Mg 2.356 Mg(OH)2 2e Mg 2OH 2.687 Manganese MnO e MnO 2 4 4 0.56 MnO 4H 3e MnO2(beta) 2H2O 4 1.70 MnO 2H2O 3e MnO2 4OH 4 0.60 MnO 8H 5e Mn2 4H2O 4 1.51 MnO e MnO 2 3 4 4 0.27 MnO 2H2O 2e MnO2 4OH 2 4 0.62 MnO 2H2O e MnO2 4OH 3 4 0.96 MnO2 4H e Mn3 2H2O 0.95 MnO2(beta) 4H 2e Mn2 2H2O 1.23 Mn3 e Mn2 1.5 Mn(H2P2O7) 2H e Mn(H2P2O7) H4P2O7 3 2 3 2 1.15 0.4 H2P2O2 7 Mn(CN) e Mn(CN) 3 4 6 6 0.24 1.5 NaCN Mn2 2e Mn 1.17 Mendelevium Md3 3e Md 1.7 Md3 e Md2 0.15 Md2 2e Md 2.4 Mercury 2Hg2 2e Hg2 2 0.911 2HgCl2 2e Hg2Cl2 2Cl 0.63 Hg2 2e Hg(lq) 0.8535 HgO(c,red) 2H 2e Hg H2O 0.926 Hg 2e 2Hg 2 2 0.7960 Hg2F2 2e 2Hg 2F 0.656 Hg2Cl2 2e 2Hg 2Cl 0.2682 Hg2Br2 2e 2Hg 2Br 0.1392 Hg2I2 2e 2Hg 2I 0.0405 Hg2SO4 2e 2Hg SO2 4 0.614 Molybdenum MoO 4H2O 6e Mo 8OH 2 4 0.913 H2MoO4 6H 6e Mo 4H2O 0.114 H2MoO4 2H 2e MoO2 2H2O 0.646 MoO2 4H 4e Mo 2H2O 0.152 H2MoO4 6H 3e Mo3 4H2O 0.428 Mo(CN) e Mo(CN) 3 4 8 8 0.725 Mo3 3e Mo 0.2 Neodynium Nd3 3e Nd 2.32 Nd3 e Nd2 2.6 Nd2 2e Nd 2.2 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.131 TABLE 8.27 Potentials of the Elements and Their Compounds at 25C (Continued) Half-reaction Standard or formal potential Solution composition Neptunium NpO 2H e NpO H2O 2 3 2 2.04 NpO e NpO 2 2 2 1.34 NpO 4H 2e Np4 2H2O 2 2 0.95 Np4 e Np3 0.18 Np4 4e Np 1.30 Np3 3e Np 1.79 Nickel NiO 4H 2e NiO2 2H2O 2 4 1.8 NiO2 4H 2e Ni2 2H2O 1.593 NiO2 2H2O 2e Ni(OH)2 2OH 0.490 Ni(CN) e Ni(CN) CN 2 2 4 3 0.401 Ni2 2e Ni 0.257 Ni(OH)2 2e Ni 2OH 0.72 Ni(NH3) 2e Ni 6NH3 2 6 0.49 Niobium Nb2O5 10H 4e 2Nb3 5H2O 0.1 Nb2O5 10H 10e 2Nb 5H2O 0.65 Nb3 3e Nb 1.1 Nitrogen 2NO 4H 2e N2O4 2H2O 3 0.803 NO 3H 2e HNO2 H2O 3 0.94 N2O4 2H 2e 2HNO2 1.07 HNO2 H e NO H2O 0.996 2HNO2 4H 4e N2O(g) 3H2O 1.297 2HNO2 4H 4e H2N2O2 2H2O 0.86 2NO 2H 2e H2N2O2 0.71 2NO 2H 2e N2O H2O 1.59 H2N2O2 6H 4e 2HONH 3 0.496 N2O 2H 2e N2 H2O 1.77 N2O 6H H2O 4e 2HONH 3 0.05 N2 2H2O 4H 2e 2HONH 3 1.87 N2 5H 4e N2H 5 0.23 HONH 2H 2e NH H2O 3 4 1.35 2HONH H 2e N2H 2H2O 3 5 1.41 N2H 3H 2e 2NH 5 4 1.275 3N2 2H 2e 2HN3 3.40 Nobelium No3 3e No 1.2 No3 e No2 1.4 No2 2e No 2.5 Osmium OsO4(aq) 4H 4e OsO2 · 2H2O 2H2O 0.964 OsO4(c, yellow) 8H 8e Os 4H2O 0.85 OsO2 4H 4e Os 2H2O 0.687 OsCl e OsCl 2 3 6 6 0.45 OsBr e OsBr 2 3 6 6 0.35 Oxygen O3 2H 2e O2 H2O 2.075 O3 H2O 2e O2 2OH 1.240 1 NaOH 8.132 SECTION 8 TABLE 8.27 Potentials of the Elements and Their Compounds at 25C (Continued) Half-reaction Standard or formal potential Solution composition O2 4H 4e 2H2O 1.229 O2 2H 2e H2O 0.695 O2 H2O 2e HO OH 2 0.076 H2O2 2H 2e 2H2O 1.763 HO H2O 2e 3OH 2 0.867 1 NaOH O2 2H2O 4e 4OH 0.401 Palladium PdO3 2H 2e PdO2 H2O 2.030 PdCl 2e PdCl 2Cl 2 2 6 4 1.470 PdBr 2e PdBr 2Br 2 2 6 4 0.99 PdI 2e PdI 2I 2 2 6 4 0.48 Pd2 2e Pd 0.915 PdCl 2e Pd 4Cl 2 4 0.62 1 HCl PdBr 2e Pd 4Br 2 4 0.49 Pd(NH3) 2e Pd 4NH3 2 4 0.0 1 NH3 Pd(CN) 2e Pd 4CN 2 4 1.35 1 KCN Phosphorus H3PO4 2H 2e H3PO3 H2O 0.276 2H3PO4 2H 2e H4P2O6 2H2O 0.933 H4P2O6 2H 2e 2H3PO3 0.380 H3PO3 2H 2e HPH2O2 H2O 0.499 HPH2O2 H e P 2H2O 0.365 H3PO3 3H 3e P 3H2O 0.502 2P(white) 4H 4e P2H4 0.100 P2H4 2H 2e 2PH3 0.006 P(white) 3H 3e PH3 0.063 Platinum PtO3 2H 2e PtO2 H2O 2.0 PtO2 2H 2e PtO H2O 1.045 PtCl 2e PtCl 2Cl 2 2 6 4 0.726 PtBr 2e PtBr 2Br 2 2 6 4 0.613 1 KBr PtI 2e PtI 2I 2 2 6 4 0.321 1 KI Pt2 2e Pt 1.188 PtCl 2e Pt 4Cl 2 4 0.758 PtBr 2e Pt 4Br 2 4 0.698 Plutonium PuO e PuO 2 2 2 1.02 PuO 4H 2e Pu4 2H2O 2 2 1.04 Pu4 e Pu3 1.01 0.80 1 H3PO4 0.50 1 HF Pu4 4e Pu 1.25 Pu3 3e Pu 2.00 Polonium PoO2 4H 2e Po2 2H2O 1.1 Po4 4e Po 0.73 Po2 2e Po 0.37 Po 2H 2e H2Po ca. 1.0 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.133 TABLE 8.27 Potentials of the Elements and Their Compounds at 25C (Continued) Half-reaction Standard or formal potential Solution composition Potassium K e K 2.924 K Hg e K(Hg) ca. 1.9 Praseodymium Pr4 e Pr3 3.2 Pr3 e Pr 2.35 Promethium Pm3 3e Pm 2.42 Protoactinium PaOOH2 3H e Pa4 2H2O 0.10 PaOOH2 3H 5e Pa 2H2O 1.19 Pa4 4e Pa 1.46 Radium Ra2 2e Ra 2.916 Rhenium ReO 2H e ReO3 H2O 4 0.768 ReO 4H 3e ReO2 2H2O 4 0.51 ReO 2H2O 3e ReO2 4OH 4 0.594 ReO 6Cl 8H 3e ReCl 4H2O 2 4 6 0.12 2ReO 10H 8e Re2O3 5H2O 4 0.808 ReO3 2H 2e ReO2 H2O 0.63 ReO2 4H 4e Re 2H2O 0.22 ReCl 4e Re 6Cl 2 6 0.51 Re e Re 0.10 Rhodium RhO2 4H e Rh3 2H2O 1.881 Rh3 3e Rh 0.76 RhCl 3e Rh 6Cl 3 6 0.5 Rubidium Rb e Rb 2.924 Rb Hg e Rb(Hg) 1.81 Ruthenium RuO4 e RuO 4 0.89 RuO4 4H 4e RuO2 2H2O 1.4 RuO4 8H 8e Ru 4H2O 1.04 RuO e RuO 2 4 4 0.593 RuO 4H 2e RuO2 2H2O 2 4 2.0 RuO2 4H 4e Ru 2H2O 0.68 Ru(H2O) e Ru(H2O) 3 2 6 6 0.249 Ru(NH3) e Ru(NH3) 3 2 6 6 0.10 Ru(CN) e Ru(CN) 3 4 6 6 0.86 Ru3 e Ru2 0.249 Samarium Sm3 3e Sm 2.30 Sm3 e Sm2 1.55 Sm2 2e Sm 2.67 Scandium Sc3 3e Sc 2.03 8.134 SECTION 8 TABLE 8.27 Potentials of the Elements and Their Compounds at 25C (Continued) Half-reaction Standard or formal potential Solution composition Selenium SeO 4H 2e H2SeO3 H2O 2 4 1.151 H2SeO3 4H 4e Se 3H2O 0.74 Se(c) 2H 2e H2Se(aq) 0.115 Se H 2e HSe 0.227 Se 2e Se2 0.670 1 NaOH Silicon SiO2(quartz) 4H 4e Si 2H2O 0.909 SiO2 2H 2e SiO H2O 0.967 SiO2 8H 8e SiH4 2H2O 0.516 SiF 4e Si 6F 2 6 1.37 SiO 2H 2e Si H2O 0.808 Si 4H 4e SiH4(g) 0.143 Silver AgO 2H e Ag2 H2O 1.360 Ag2O3 2H 2e 2AgO H2O 1.569 Ag2O3 H2O 2e 2AgO 2OH 0.739 1 NaOH Ag2O3 6H 4e 2Ag 3H2O 1.670 Ag2 e Ag 1.980 AgO 2H e Ag H2O 1.772 Ag e Ag 0.7991 Ag2SO4 2e 2Ag SO2 4 0.653 Ag2C2O4 2e 2Ag C2O2 4 0.47 Ag2CrO4 2e 2Ag CrO2 4 0.447 Ag(NH3) e Ag 2NH3 2 0.373 AgCl e Ag Cl 0.2223 AgBr e Ag Br 0.071 AgCN e Ag CN 0.017 AgI e Ag I 0.152 Ag(CN) e Ag 2CN 0.31 AgSCN e Ag SCN 0.09 Ag2S 2e 2Ag S2 0.71 Sodium Na e Na 2.713 Na Hg e Na(Hg) 1.84 Strontium SrO2 4H 2e Sr2 2.33 Sr2 2e Sr 2.89 Sulfur S2O 2e 2SO 2 2 8 4 1.96 S2O 2H 2e 2HSO 2 8 4 2.08 2SO 4H 2e S2O 2H2O 2 2 4 6 0.25 SO 4H 2e SO2(aq) H2O 2 4 0.158 SO H2O 2e SO 2OH 2 2 4 3 0.936 S2O 4H 2e 2H2SO3 2 6 0.569 S2O 2e 2SO 2 2 6 3 0.037 2HSO 2H 2e S2O 2H2O 2 3 4 0.099 2SO 2H2O 2e S2O 4OH 2 2 3 4 1.13 4H2SO3 4H 6e S4O 6H2O 2 6 0.507 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.135 TABLE 8.27 Potentials of the Elements and Their Compounds at 25C (Continued) Half-reaction Standard or formal potential Solution composition 4HSO 8H 6e S4O 6H2O 2 3 6 0.577 2SO2(aq) 2H 4e S2O H2O 2 3 0.400 2SO 3H2O 4e S2O 6OH 2 2 3 3 0.576 1 NaOH SO 3H2O 4e S 6OH 2 3 0.59 1 NaOH S4O 2e 2S2O 2 2 6 3 0.080 S2O 6H 4e 2S 3H2O 2 3 0.5 SF4(g) 4e S 4F 0.97 S2Cl2(g) 2e 2S 2Cl 1.19 S H 2e HS 0.287 S 2H 2e H2S(aq) 0.144 S 2H 2e H2S(g) 0.174 S 2e S2 0.407 Tantalum Ta2O5 10H 10e 2Ta 5H2O 0.81 TaF 5e Ta 7F 2 7 0.45 Technetium TcO 4H 3e TcO2 2H2O 4 0.738 TcO 2H e TcO3 H2O 4 0.700 TcO e TcO 2 4 4 0.569 TcO 8H 7e Tc 4H2O 4 0.472 TcO 4H 2e TcO2 2H2O 2 4 1.39 TcO2 4H 4e Tc 2H2O 0.272 Tc e Tc ca. 0.5 Tellurium H2TeO4 6H 2e Te4 4H2O 0.929 H2TeO4 2H 2e TeO2(c) 2H2O 1.02 2H 2e H2O 2 2 TeO TeO 4 3 0.897 TeOOH 3H 4e Te 2H2O 0.559 H2TeO3 4H 4e Te 3H2O 0.589 6H 4e Te 3H2O 2 TeO3 0.827 3H2O 4e Te 6OH 2 TeO3 0.415 TeO2(c) 4H 4e Te 2H2O 0.521 Te 2H 2e H2Te(aq) 0.740 Te H 2e HTe 0.817 Te2 2H 2e 2HTe 0.794 Terbium Tb3 3e Tb 2.31 Thallium Tl3 2e Tl 1.25 1 HClO4 0.77 1 HCl Tl3 3e Tl 0.72 Tl e Tl 0.336 TlCl e Tl Cl 0.557 TlBr e Tl Br 0.658 TlI e Tl I 0.752 Thorium Th4 4e Th 1.83 8.136 SECTION 8 TABLE 8.27 Potentials of the Elements and Their Compounds at 25C (Continued) Half-reaction Standard or formal potential Solution composition Thullium Tm3 3e Tm 2.32 Tin Sn4 2e Sn2 0.154 2e 2Cl 2 2 SnCl SnCl 6 4 0.14 6H 2e Sn2 3H2O 2 SnO3 0.849 4e Sn 6F 2 SnF6 0.200 Sn2 2e Sn 0.1375 2e Sn 4Cl 2 SnCl4 0.19 1 HCl H2O 2e Sn 3OH HSnO2 0.91 Sn 4H 4e SnH4 1.07 Titanium TiO2 2H e Ti3 H2O 0.10 TiO2 2H 4e Ti H2O 0.86 Ti3 e Ti2 0.37 Ti3 3e Ti 1.21 Ti2 2e Ti 1.63 Tungsten 2WO3 2H 2e W2O5 H2O 0.029 WO3 6H 6e W 3H2O 0.090 4H2O 6e W 8OH 2 WO4 1.074 2H2O 2e WO2 4OH 2 WO4 1.259 W2O5 2H 2e 2WO2 H2O 0.031 e 3 4 W(CN) W(CN) 8 8 0.457 WO2 4H 4e W 2H2O 0.119 WO2 2H2O 4e W 4OH 0.982 Uranium e 2 UO UO 2 2 0.16 4H 2e U4 2H2O 2 UO2 0.27 4H e U4 2H2O UO2 0.38 U4 e U3 0.52 U4 4e U 1.38 U3 3e U 1.66 Vanadium 2H e VO2 H2O VO2 1.000 4H 2e V3 2H2O VO2 0.668 4H 3e V2 2H2O VO2 0.361 4H 5e V 4H2O VO2 0.236 VO2 2H e V3 H2O 0.337 V3 e V2 0.255 V2 2e V 1.13 Xenon H4XeO6 2H 2e XeO3 3H2O 2.42 2H2O e HXeO4 4OH 3 HXeO6 0.9 XeO3 6H 2F 4e XeF2 3H2O 1.6 XeO3 6H 6e Xe(g) 3H2O 2.10 XeF2 e XeF F 0.9 XeF2 2H 2e Xe(g) 2HF 2.64 XeF e Xe(g) F 3.4 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.137 TABLE 8.27 Potentials of the Elements and Their Compounds at 25C (Continued) Half-reaction Standard or formal potential Solution composition Ytterbium Yb3 e Yb2 1.05 Yb2 2e Yb 2.8 Yb3 3e Yb 2.22 Yttrium Y3 3e Y 2.37 Zinc Zn2 2e Zn 0.7626 2e Zn 4NH3 2 Zn(NH ) 3 4 1.04 2e Zn 4CN 2 Zn(CN)4 1.34 2e Zn 4(tartrate)2 6 Zn(tartrate)4 1.15 2e Zn 4OH 2 Zn(OH)4 1.285 Zirconium Zr4 4e Zr 1.55 ZrO2 4H 4e Zr 2H2O 1.45 TABLE 8.28 Potentials of Selected Half-Reactions at 25C A summary of oxidation-reduction half-reactions arranged in order of decreasing oxidation strength and useful for selecting reagent systems.
Half-reaction E, volts F2(g) 2H 2e 2HF 3.053 O3 H2O 2e O2 2OH 1.246 O3 2H 2e O2 H2O 2.075 Ag2 e Ag 1.980 2 2 S O 2e 2SO 2 8 4 1.96 HN3 3H 2e NH N 4 2 1.96 H2O2 2H 2e 2H2O 1.763 Ce4 e Ce3 1.72 4H 3e MnO2(c) 2H2O MnO4 1.70 2HClO 2H 2e Cl2 H2O 1.630 2HBrO 2H 2e Br2 H2O 1.604 H IO H 2e IO 3H O 5 6 3 2 1.603 NiO2 4H 2e Ni2 2H2O 1.593 Bi2O4(bismuthate) 4H 2e 2BiO 2H2O 1.59 2 MnO 8H 5e Mn 4H O 4 2 1.51 2BrO 12H 10e Br 6H O 3 2 2 1.478 PbO2 4H 2e Pb2 2H2O 1.468 14H 6e 2Cr3 7H2O 2 Cr O 2 7 1.36 Cl2 2e 2Cl 1.3583 2HNO2 4H 4e N2O 3H2O 1.297 N H 3H 2e 2NH 2 5 4 1.275 MnO2 4H 2e Mn2 2H2O 1.23 O2 4H 4e 2H2O 1.229 ClO 2H 2e ClO H O 4 3 2 1.201 8.138 SECTION 8 TABLE 8.28 Potentials of Selected Half-Reactions at 25C (Continued) Half-reaction E, volts 2IO 12H 10e I 3H O 3 2 2 1.195 N2O4 2H 2e 2HNO3 1.07 2e 4Cl I2 2ICl2 1.07 Br2(1q) 2e 2Br 1.065 N2O4 4H 4e 2NO 2H2O 1.039 HNO2 H e NO H2O 0.996 4H 3e NO 2H2O NO3 0.957 3H 2e HNO2 H2O NO3 0.94 2 2 2Hg 2e Hg2 0.911 Cu2 I e CuI 0.861 OsO4(c) 8H 8e Os 4H2O 0.84 Ag e Ag 0.7991 2e 2Hg 2 Hg2 0.7960 Fe3 e Fe2 0.771 H2SeO3 4H 4e Se 3H2O 0.739 HN 11H 8e 2NH 3 4 0.695 O2 2H 2e H2O2 0.695 2 Ag SO 2e 2Ag SO 2 4 4 0.654 Cu2 Br e CuBr(c) 0.654 3e Au 4SCN Au(SCN)4 0.636 2HgCl2 2e Hg2Cl2(c) 2Cl 0.63 Sb2O5 6H 4e 2SbO 3H2O 0.605 H3AsO4 2H 2e HAsO2 2H2O 0.560 TeOOH 3H 4e Te 2H2O 0.559 Cu2 Cl e CuCl(c) 0.559 I 2e 3I 3 0.536 I2 2e 2I 0.536 Cu e Cu 0.53 4H2SO3 4H 6e 6H2O 2 S O 4 6 0.507 Ag2CrO4 2e 2Ag 2 CrO4 0.449 2H2SO3 2H 4e S2 3H2O 2 O3 0.400 4H e U4 2H2O UO2 0.38 3 4 Fe(CN) e Fe(CN) 6 6 0.361 Cu2 2e Cu 0.340 VO2 2H e V3 H2O 0.337 BiO 2H 3e Bi H2O 0.32 2 4 UO 4H 2e U 2H O 2 2 0.27 Hg2Cl2(c) 2e 2Hg 2Cl 0.2676 AgCl e Ag Cl 0.2223 SbO 2H 3e Sb H2O 0.212 2 CuCl e Cu 3Cl 3 0.178 2 SO 4H 2e H SO H O 4 2 3 2 0.158 Sn4 2e Sn2 0.15 S 2H 2e H2S 0.144 Hg2Br2(c) 2e 2Hg 2Br 0.1392 CuCl e Cu Cl 0.121 TiO2 2H e Ti3 H2O 0.100 2 2 S O 2e 2S O 4 6 2 3 0.08 AgBr e Ag Br 0.0711 HCOOH 2H 2e HCHO H2O 0.056 CuBr e Cu Br 0.033 2H 2e H2 0.0000 Hg2I2 2e 2Hg 2I 0.0405 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.139 TABLE 8.28 Potentials of Selected Half-Reactions at 25C (Continued) Half-reaction E, volts Pb2 2e Pb 0.125 Sn2 2e Sn 0.136 AgI e Ag I 0.1522 N2 5H 4e N2 H5 0.225 V3 e V2 0.255 Ni2 2e Ni 0.257 Co2 2e Co 0.277 Ag(CN) e Ag 2CN 2 0.31 PbSO4 2e Pb 2 SO4 0.3505 Cd2 2e Cd 0.4025 Cr3 e Cr2 0.424 Fe2 2e Fe 0.44 H3PO3 2H 2e HPH2O2 H2O 0.499 2CO2 2H 2e H2C2O4 0.49 U4 e U3 0.52 Zn2 2e Zn 0.7626 Mn2 2e Mn 1.18 Al3 3e Al 1.67 Mg2 2e Mg 2.356 Na e Na 2.714 K e K 2.925 Li e Li 3.045 3N2 2H 2e 2HN3 3.10 8.140 SECTION 8 TABLE 8.29 Overpotentials for Common Electrode Reactions at 25C The overpotential is defined as the difference between the actual potential of an electrode at a given current density and the reversible electrode potential for the reaction.
Electrode Current Density, A/cm2 0.001 0.01 0.1 0.5 1.0 5.0 Overpotential, volts Liberation of H2 from 1M H2SO4 Ag 0.097 0.13 0.3 0.48 0.69 Al 0.3 0.83 1.00 1.29 Au 0.017 0.1 0.24 0.33 Bi 0.39 0.4 0.78 0.98 Cd 1.13 1.22 1.25 Co 0.2 Cr 0.4 Cu 0.35 0.48 0.55 Fe 0.56 0.82 1.29 Graphite 0.002 0.32 0.60 0.73 Hg 0.8 0.93 1.03 1.07 Ir 0.0026 0.2 Ni 0.14 0.3 0.56 0.71 Pb 0.40 0.4 0.52 1.06 Pd 0 0.04 Pt (smooth) 0.0000 0.16 0.29 0.68 Pt (platinized) 0.0000 0.030 0.041 0.048 0.051 Sb 0.4 Sn 0.5 1.2 Ta 0.39 0.4 Zn 0.48 0.75 1.06 1.23 Liberation of O2 from 1M KOH Ag 0.58 0.73 0.98 1.13 Au 0.67 0.96 1.24 1.63 Cu 0.42 0.58 0.66 0.79 Graphite 0.53 0.90 1.09 1.24 Ni 0.35 0.52 0.73 0.85 Pt (smooth) 0.72 0.85 1.28 1.49 Pt (platinized) 0.40 0.52 0.64 0.77 Liberation of Cl2 from saturated NaCl solution Graphite 0.25 0.42 0.53 Platinized Pt 0.006 0.026 0.05 Smooth Pt 0.008 0.03 0.054 0.161 0.236 Liberation of Br2 from saturated NaBr solution Graphite 0.002 0.027 0.16 0.33 Platinized Pt 0.002 0.012 0.069 0.21 Smooth Pt 0.002 0.006 0.26 0.38† Liberation of I2 from saturated Nal solution Graphite 0.002 0.014 0.097 Platinized Pt 0.006 0.032 0.196 Smooth Pt 0.003 0.03 0.12 0.22 At 0.23 A/cm2.
† At 0.72 A/cm2.
The overpotential required for the evolution of O2 from dilute solutions of HClO4, HNO3, H3PO4 or H2SO4 onto smooth platinum electrodes is approximately 0.5 V.
ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.141 TABLE 8.30 Half-Wave Potentials of Inorganic Materials All values are in volts vs. the saturated calomel electrode.
Element E1/2, volts Solvent system Aluminum 3 0.5 0.2M acetate, pH 4.5–4.7, plus 0.07% azo dye Pontochrome Violet SW; reduction wave of complexed dye is 0.2 V more negative than that of the free dye.
Antimony 3 to 0 0.15 1M HCl 0.31(1) 1M HNO3 (or 0.5M H2SO4) 0.8 0.5M tartrate, pH 4.5 1.0; 1.2 0.5M tartrate, pH 9 (waves not distinct) 1.26 1M NaOH; also anodic wave (3 to 5) at 0.45 1.32 0.5M tartrate plus 0.1M NaOH 5 0.0; 0.257 6M HCl. First wave (5 to 3) starts at the oxidation po-tential of Hg; second wave is 3 to 0.
5 to 0 0.35 1M HCl plus 4M KBr Arsenic 3 to 5 0.26 0.5M KOH (anodic wave); only suitable wave 3 0.8; 1.0 0.1M HCl; ill-defined waves 0.7; 1.0 0.5M H2SO4 (or 1M HNO3) Barium 2 to 0 1.94 0.1M (C2H5)4NI Bismuth 3 to 0 0.025(15) 1M HNO3 (or 0.5M H2SO4) 0.09 1M HCl 0.29 0.5M tartrate, pH 4.5 0.7 0.5M tartrate (pH 9), wave not well-developed 1.0 0.5M tartrate plus 0.1M NaOH, poor wave Bromine 5 to 1 1.75 0.1M alkali chlorides (or 0.1M NaOH) 0.13 0.05M H2SO4 0 to 1 0.0 Wave (anodic) starts at zero; Hg2Br2 forms Br 0.1 Oxidation of Hg to form mercury(I) bromide Cadmium 2 to 0 0.60 0.1M KCl, or 0.5M H2SO4, or 1M HNO3 0.64 0.5M tartrate at pH 4.5 or 9 0.81 1M NH4Cl plus 1M NH3 Calcium 2 to 0 2.22 0.1M (C2H5)4NCl 2.13 0.1M (C2H5)4NCl in 80% ethanol Cerium 3 to 0 1.97 0.02M alkali sulfate Cesium 1 to 0 2.05 0.1M (C2H5)4NOH in 50% ethanol Chlorine Cl 0.25 Oxidation of Hg to form Hg2Cl2 Chromium 6 to 3 0.85 in 0.1 to 1M NaOH 2 CrO to CrO 4 2 3 to 0 0.35; 1.70 1M NH4Cl9NH3 buffer (pH 8–9); 3 to 2 to 0 3 to 2 0.95 0.1M pyridine–0.1M pyridinium chloride 8.142 SECTION 8 TABLE 8.30 Half-Wave Potentials of Inorganic Materials (Continued) Element E1/2, volts Solvent system 2 to 0 1.54 1M KCl 2 to 3 0.40 1M KCl (anodic wave) Cobalt 3 to 0 0.5; 1.3 1M NH4Cl plus 1M NH3; 3 to 2 to 0 2 to 0 1.07 0.1M pyridine plus pyridinium chloride 1.03 Neutral 1M potassium thiocyanate 1.4 in noncomplexing systems 2 Co(H O) 2 6 3 to 2 0.0 1M sodium oxalate in acetate buffer (pH 5); diffusion cur-rent measured between 0 and 0.1 V Copper 2 to 0 0.04 0.1M KNO3, 0.1M NH4ClO4, or 1M Na2SO4 0.085 0.1M Na4P2O7 plus 0.2M Na acetate, pH 4.5 0.09 0.5M Na tartrate, pH 4.5 0.20 0.1M potassium oxalate, pH 5.7 to 10 0.22 0.5M potassium citrate, pH 7.5 0.4 0.5M Na tartrate plus 0.1M NaOH (pH 12) 0.568 0.1M KNO3 plus 1M ethylenediamine 2 0.04; 0.22 1M KCl; consecutive waves: 2 to 1 to 0 0.02; 0.39 0.1M KSCN; consecutive waves: 2 to 1 to 0 0.05; 0.25 0.1M pyridine plus 0.1M pyridinium chloride; consecutive waves: 2 to 1 to 0 0.24; 0.50 1M NH4Cl plus 1M NH3; consecutive waves Gallium 3 to 0 1.1 Not more than 0.001M HCl or wave masked by hydrogen wave which immediately follows Germanium 2 to 0 0.45 6M HCl; prior reduction with HPH2O2 to 2 Gold 3 to 1 0 1M KCN; wave starts at 0 V 1 to 0 1.4 wave best for analytical purposes Au(CN)2 Indium 3 to 0 0.60 1M KCl In Na acetate, pH 3.9 to 4.2 Iodine IO4 0.36 First wave at pH 0 (shifts to 0.08 at pH 12); second wave corresponds to iodate reduction IO3 0.075 0.2M KNO3 (shifts 0.13 V/pH unit increase) 0.305 0.1M hydrogen phthalate, pH 3.2 0.500 0.1M acetate plus 0.1M KCl, pH 4.9 0.650 0.1M citrate, pH 5.95 1.050 0.2M phosphate, pH 7.10 1.20 0.05M borax 0.1M KCl, pH 9.2; or NaOH plus 0.1M KCl, pH 13.0 0 to 1 0.0 Wave starts from zero in acid media; Hg2I2 formed 1 0.1 Oxidation of Hg to form Hg2I2 Iron 3 0.44; 1.52 1M (NH4)2CO3; two waves; 3 to 2 to 0 0.17; 1.50 0.5M Na tartrate, pH 5.8; two waves; 3 to 2 to 0 0.9; 1.5 0.1 to 5M KOH plus 8% mannitol; 3 to 2 to 0 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.143 TABLE 8.30 Half-Wave Potentials of Inorganic Materials (Continued) Element E1/2, volts Solvent system 3 to 2 0.13 0.1M EDTA plus 2M Na acetate, pH 6–7 0.27 0.2M Na oxalate, pH 7.9 or less 0.28 0.5M Na citrate, pH 6.5 1.46(2) 1M NH4ClO4 1.36 0.1M KHF2, pH 4 or less 2 to 3 0.28 0.5M Na citrate, pH 6.5 0.27 0.2M Na oxalate, pH 7.9 or less 0.17 0.5M Na tartrate, pH 5.8 1.36 0.1M KHF2, pH 4 or less Lead 2 to 0 0.405 1M HNO3 0.435 1M KCl (or HCl) 0.49(1) 0.5M Na tartrate, pH 4.5 or 9 0.72 1M KCN 0.75 1M KOH or 0.5M Na tartrate plus 0.1M NaOH Lithium 1 to 0 2.31 0.1M (C2H5)4 NOH in 50% ethanol Magnesium 2 to 0 2.2 0.1M (C2H5)4NCl (poorly defined wave) Manganese 2 to 0 1.65 1M NH4Cl plus 1M NH3 1.55 1M KCNS 1.33 1.5M KCN Molybdenum 6 0.26; 0.63 0.3M HCl, two waves: 6 to 5 to 3 Nickel 2 to 0 0.70 1M KSCN 0.78 1M KCl plus 0.5M pyridine 1.09 1M NH4Cl plus 1M NH3 1.1 in NH4ClO4 or KNO3 2 Ni(H O) 2 6 1.36 in 1M KCN (alkaline media) 2 Ni(CN)4 Niobium 5 to 3 0.80(4) 1M HNO3 Nitrogen Nitrate 1.45 0.017M LaCl3 (reduced to hydroxylamine) HNO2 0.77 0.1M HCl C2N2 1.2; 1.55 0.1M Na acetate, two waves Oxamic acid 1.55 0.1M Na acetate Cyanide 0.45 0.1M NaOH; anodic wave starts at 0.45 Thiocyanate 0.18 Anodic wave; neutral or weakly alkaline medium Osmium OsO4 0.0; 0.41; 1.16 Sat’d Ca(OH)2. Three waves: first starts at 0; second wave is to Os(V); and third wave is Os(V) to Os(III) 2 OsO4 Oxygen O2 0.05; 0.9 Buffer solutions of pH 1 to 10. Two waves: O2 to H2O2, and H2O2 to H2O. Second wave extends from 0.5 to 1.3 H2O2 0.9 Very extended wave (see above); sharper in presence of Aerosol OT 8.144 SECTION 8 TABLE 8.30 Half-Wave Potentials of Inorganic Materials (Continued) Element E1/2, volts Solvent system Palladium 2 to 0 0.31 1M pyridine plus 1M KCl 0.64 0.1M ethylenediamine plus 1M KCl 0.72 1M NH4Cl plus 1M NH3 Potassium 1 to 0 2.10 0.1M (C2H5)4NOH in 50% ethanol Rhenium 7 to 4 0.44 2M HCl or (better) 4M HClO4 4 to 3 0.51 ion in 1M HCl 2 ReCl6 Rhodium 3 to 2 0.41 1M pyridine plus 1M KCl Rubidium 1 to 0 1.99 0.1M (C2H5)4NOH in 50% ethanol Scandium 3 to 0 1.80 0.1M LiCl, KCl, or BaCl2 Selenium 4 to 2 1.44 1M NH4Cl plus NH3, pH 8.0 1.54 Same system adjusted to pH 9.5 2 0.49 Anodic wave at pH 0 due to HgSe 0.94 Anodic wave at pH 12 (0.01M NaOH) Silver 1 to 0 Wave starts at oxidation potential of Hg 1 to 0 0.3 0.0014M KAg(CN)2 without excess cyanide Sodium 1 to 0 2.07 0.1M (C2H5)4NOH in 50% ethanol Strontium 2 to 0 2.11 0.1M (C2H5)4NI, water or 80% ethanol Sulfur SO2 0.38 1M HNO3 (or other strong acid); 4 to 2 2 S O 2 4 0.43 0.5M (NH4)2HPO4 plus 1M NH3 (anodic wave) 2 S O 2 3 0.15 1M strong acid; anodic mercury wave 0 to 2 0.50 90% methanol, 9.5% pyridine, 0.5% HCl (pH 6) HS 0.76 0.1M NaOH (anodic mercury wave) Tellurium 4 to 0 0.4 Citrate buffer, pH 1.6 (second of two waves) 0.63 Ammoniacal buffer, pH 9.4 4 to 2 1.22 0.1M NaOH 2 to 0 0.72 1M HCl (true anodic reversible wave) 0.08 1M NaOH (same as above; intermediate values at pH 1 to 13) Thallium 3 to 0 0.48 1M KCl, KNO3, K2SO4, KOH, or NH3 Tin 4 to 2 0.25; 0.52 4M NH4Cl 1M HCl; two waves: 4 to 2 to 0 2 to 0 0.59 0.5M tartrate, pH 4.3 1.22 1M NaOH (stannite ion to tin) 2 to 4 0.28 0.5M Na tartrate, pH 4.3 (anodic wave) 0.73 1M NaOH (stannite ion to stannate ion) ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.145 TABLE 8.30 Half-Wave Potentials of Inorganic Materials (Continued) Element E1/2, volts Solvent system Titanium 4 to 3 0.173 0.1M K2C2O4 plus 1M H2SO4 1.22 0.4M tartrate, pH 6.5 Tungsten 6 0.0; 0.64 6M HCl; two waves: first wave starts at zero and is W(VI) to W(V), the second wave is W(V) to W(III) Uranium 6 0.180; 0.92 to , then U3 in 0.02M HCL 2 UO UO 2 2 Vanadium 5 to 4 to 2 0.97; 1.26 1M NH4Cl plus 1M NH3 and 0.08M Na2SO3 4 to 2 0.98 0.05M H2SO4 3 to 2 0.55 0.5M H2SO4 4 to 5 0.32 1M NH4Cl, 1M NH3, and 0.08M Na2SO3 4 to 5 0.76 0.05M H2SO4; anodic wave starting from zero 2 to 3 0.55 0.5M H2SO4; anodic wave Zinc 2 to 0 0.995 0.1M KCl 1.01 0.1M KSCN 1.15 0.5M tartrate, pH 9 1.23 0.5M tartrate, pH 4.5 1.33 1M NH4Cl plus 1M NH3 1.53 1M NaOH 8.146 SECTION 8 TABLE 8.31 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25C The solvent systems in this table are listed below: A, acetonitrile and a perchlorate salt such as LiClO4 or a tetraalkyl ammonium salt B, acetic acid and an alkali acetate, often plus a tetraalkyl ammonium iodide C, 0.05 to 0.175M tetraalkyl ammonium halide and 75% 1,4-dioxane D, buffer plus 50% ethanol (EtOH) Abbreviations Used in the Table Bu, butyl Me, methyl Et, ethyl MeOH, methanol EtOH, ethanol PrOH, propanol M, molar Compound Solvent system E1/2 Unsaturated aliphatic hydrocarbons Acrylonitrile C but 30% EtOH 1.94 Allene C 2.29 1,3-Butadiene A 2.03 C 2.59 1,3-Butadiyne C 1.89 1-Buten-2-yne C 2.40 1,4-Cyclohexadiene A 1.6 Cyclohexene A 1.89 1,3,5,7-Cyclooctatetraene B 1.42 C 1.51 Diethyl fumarate B, pH 4.0 0.84 Diethyl maleate B, pH 4.0 0.95 2,3-Dimethyl-1,3-butadiene A 1.83 Dimethylfulvene C 1.89 Diphenylacetylene C 2.20 1,1-Diphenylethylene B 1.52 C 2.19 Ethyl methacrylate 0.1 N LiCl25% EtOH 1.9 2-Methyl-1,3-butadiene A 1.84 2-Methyl-1-butene A 1.97 1-Piperidino-4-cyano-4-phenyl-1,3-butadiene LiClO4 in dimethylformamide 0.16 trans-Stilbene B 1.51 Tetrakis(dimethylamino)ethylene A 0.75 Aromatic hydrocarbons Acenaphthene A 0.95 B 1.36 C 2.58 Anthracene A 0.84 B 1.20 C 1.94 Azulene A 0.71 C 1.66, 2.26, 2.56 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.147 TABLE 8.31 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25C (Continued) Compound Solvent system E1/2 Aromatic hydrocarbons (continued) 1,2-Benzanthracene C 2.03, 2.54 2,3-Benzanthracene A 0.54, 1.20 Benzene A 2.08 1,2-Benzo[a]pyrene A 0.76 Biphenyl A 1.48 B 1.91 C 2.70 Chrysene A 1.22 1,2,5,6-Dibenzanthracene A 1.00, 1.26 1,2-Dihydronaphthalene C 2.57 9,10-Dimethylanthracene A 0.65 2,3-Dimethylnaphthalene A 1.08, 1.34 9,10-Diphenylanthracene A 0.92 Fluorene A 1.25 B 1.65 C 2.65 Hexamethylbenzene A 1.16 B 1.52 Indan A 1.59, 2.02 Indene A 1.23 C 2.81 1-Methylnaphthalene A 1.24 B 1.53 C 2.46 2-Methylnaphthalene A 1.22 B 1.55 C 2.46 Naphthalene A 1.34 B 1.72 Pentamethylbenzene A 1.28 B 1.62 Phenanthrene A 1.23 B 1.68 C 2.46, 2.71 Phenylacetylene C 2.37 Pyrene A 1.06, 1.24 trans-Stilbene B 1.51 C 2.26 Styrene C 2.35 1,2,3,5-Tetramethylbenzene A 1.50, 1.99 1,2,4,5-Tetramethylbenzene A 1.29 Tetraphenylethylene C 2.05 1,4,5,8-Tetraphenylnaphthalene A 1.39 Toluene A 1.98 1,2,3-Trimethylbenzene A 1.58 1,2,4-Trimethylbenzene A 1.41 8.148 SECTION 8 TABLE 8.31 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25C (Continued) Compound Solvent system E1/2 Aromatic hydrocarbons (continued) 1,3,5-Trimethylbenzene A 1.50 B 1.90 Triphenylene A 1.46, 1.55 Triphenylmethane C 1.01, 1.68, 1.96 o-Xylene A 1.58, 2.04 m-Xylene A 1.58 p-Xylene A 1.56 Aldehydes Acetaldehyde B, pH 6.8–13 1.89 Benzaldehyde McIlvaine buffer, pH 2.2 0.96, 1.32 Bromoacetaldehyde pH 8.5 0.40 pH 9.8 1.58, 1.82 Chloroacetaldehyde Ammonia buffer, pH 8.4 1.06, 1.66 Cinnamaldehyde Buffer EtOH, pH 6.0 0.9, 1.5, 1.7 Crotonaldehyde B, pH 1.3–2.0 0.92 Ammonia buffer, pH 8.0 1.30 Dichloroacetaldehyde Ammonia buffer, pH 8.4 1.03, 1.67 3,7-Dimethyl-2,6-octadienal 0.1 M Et4NI 1.56, 2.22 Formaldehyde 0.05 M KOH0.1 M KCl, pH 12.7 1.59 2-Furaldehyde pH 1–8 0.86–0.07 pH pH 10 1.43 Glucose Phosphate buffer, pH 7 1.55 Glyceraldehyde Britton-Robinson buffer, pH 5.0 1.47 Britton-Robinson buffer, pH 8.0 1.55 Glycolaldehyde 0.1 M KOH, pH 13 1.70 Glyoxal B, pH 3.4 1.41 4-Hydroxybenzaldehyde Britton-Robinson buffer, pH 1.8 1.16 Britton-Robinson buffer, pH 6.8 1.45 4-Hydroxy-2-methoxybenzaldehyde McIlvaine buffer, pH 2.2 1.05 McIlvaine buffer, pH 5.0 1.16, 1.36 McIlvaine buffer, pH 8.0 1.47 o-Methoxybenzaldehyde Britton-Robinson buffer, pH 1.8 1.02 Britton-Robinson buffer, pH 6.8 1.49 p-Methoxybenzaldehyde Britton-Robinson buffer, pH 1.8 1.17 Britton-Robinson buffer, pH 6.8 1.48 Methyl glyoxal A, pH 4.5 0.83 m-Nitrobenzaldehyde Buffer10% EtOH, pH 2.0 0.28, 1.20 Phthalaldehyde Buffer, pH 3.1 0.64, 1.07 Buffer, pH 7.3 0.89, 1.29 2-Propenal (acrolein) pH 4.5 1.36 pH 9.0 1.1 Propionaldehyde 0.1 M LiOH, pH 13 1.93 Pyrrole-2-carbaldehyde 0.1 M HCl50% EtOH 1.25 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.149 TABLE 8.31 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25C (Continued) Compound Solvent system E1/2 Aldehydes (continued) Salicylaldehyde McIlvaine buffer, pH 2.2 0.99, 1.23 McIlvaine buffer, pH 5.0 1.20, 1.30 McIlvaine buffer, pH 8.0 1.32 Trichloroacetaldehyde Ammonia buffer, pH 8.4 1.35, 1.66 0.1 M KCl50% EtOH 1.55 Ketones Acetone B, pH 9.3 1.52 C 2.46 Acetophenone DMcIlvaine buffer, pH 4.9 1.33 DMcIlvaine buffer, pH 7.2 1.58 DMcIlvaine buffer, pH 1.3 1.08 7H-Benz[de]anthracen-7-one 0.1 N H2SO475% MeOH 0.96 Benzil DMcIlvaine buffer, pH 1.3 0.27 DMcIlvaine buffer, pH 4.9 0.50 Benzoin DMcIlvaine buffer, pH 1.3 0.90 DMcIlvaine buffer, pH 8.6 1.49 Benzophenone DMcIlvaine buffer, pH 1.3 0.94 DMcIlvaine buffer, pH 8.6 1.36 Benzoylacetone Buffer, pH 2.6 1.60 Buffer, pH 5.3 and pH 7.6 1.68 Buffer, pH 9.7 1.72 Bromoacetone 0.1 M LiCl 0.29 2,3-Butanedione 0.1 M HCl 0.84 3-Buten-2-one 0.1 M KCl 1.42 Butyrophenone 0.1 M NH4Cl50% EtOH 1.55 D-Carvone 0.1 M Et4NI80% EtOH 1.71 Chloroacetone 0.1 M LiCl 1.18 Coumarin McIlvaine buffer, pH 2.0 0.95 McIlvaine buffer, pH 5.0 1.11, 1.44 Cyclohexanone C 2.45 cis-Dibenzoylethylene D, pH 1 D, pH 11 0.30 0.62, 1.65 trans-Dibenzoylethylene D, pH 1 D, pH 11 0.12 0.57, 1.52 Dibenzoylmethane D, pH 1.3 D, pH 11.3 0.59 1.30, 1.62 9,10-Dihydro-9-oxoanthracene D, pH 2.0 0.93 1,5-Diphenyl-1,5-pentanedione A 2.10 1,5-Diphenylthiocarbazone D, pH 7.0 0.6 Flavanone Acetate bufferMe4NOH50% 2-PrOH, pH 6.1 1.30 Acetate bufferMe4NOH50% 2-PrOH, pH 9.6 1.51 Fluorescein Acetate buffer, pH 2.0 0.50 Phthalate buffer, pH 5.0 0.65 Borate buffer, pH 10.1 1.18, 1.44 Fructose 0.02 M LiCl 1.76 8.150 SECTION 8 TABLE 8.31 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25C (Continued) Compound Solvent system E1/2 Ketones (continued) Girard derivatives of aliphatic ketones pH 8.2 1.52 o-Hydroxyacetophenone D, pH 5 1.36 p-Hydroxyacetophenone D, pH 5 1.46 1,2,3-Indantrione (ninhydrin) Britton-Robinson buffer, pH 2.5 0.67, 0.83 Britton-Robinson buffer, pH 4.5 0.73, 1.01 Britton-Robinson buffer, pH 6.8 0.10, 0.90, 1.20 Britton-Robinson buffer, pH 9.2 1.35 -Ionone C 1.59, 2.08 Isatin Phosphate buffercitrate buffer, pH 2.9 0.3, 0.5 Phosphate buffercitrate buffer, pH 4.3 0.3, 0.5, 0.8 Phosphate buffercitrate buffer, pH 5.4 0.8 4-Methyl-3,5-heptadien-2-one A 0.64 4-Methyl-2,6-heptanedione A 1.28 4-Methyl-3-penten-2-one DMcIlvaine buffer, pH 1.3 1.01 DMcIlvaine buffer, pH 11.3 1.60 4-Phenyl-3-buten-2-one D, pH 1.3 0.72 D, pH 8.6 1.27 Phthalide 0.1 M Bu4NI50% dioxane 0.20 Phthalimide pH 4.2 pH 9.7 1.1, 1.5 1.2, 1.4 Pulegone C 1.74 Quinalizarin Phosphate buffer1% EtOH, pH 8.0 0.56 Testosterone DBritton-Robinson buffer, pH 2.6 1.20 DBritton-Robinson buffer, pH 5.8 1.40 DBritton-Robinson buffer, pH 8.8 1.53, 1.79 Quinones Anthraquinone Acetate buffer40% dioxane, pH 5.6 0.51 Phosphate buffer40% dioxane, pH 7.9 0.71 o-Benzoquinone Britton-Robinson buffer, pH 7.0 0.20 Britton-Robinson buffer, pH 9.0 0.08 2,3-Dimethylnaphthoquinone D, pH 5.4 0.22 1,2-Naphthoquinone Phosphate buffer, pH 5.0 0.03 Phosphate buffer, pH 7.0 0.13 1,4-Naphthoquinone Britton-Robinson buffer, pH 7.0 0.07 Britton-Robinson buffer, pH 9.0 0.19 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.151 TABLE 8.31 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25C (Continued) Compound Solvent system E1/2 Acids Acetic acid A 2.3 Acrylic acid pH 5.6 0.85 Adenosine-5-phosphoric acid HClO4KClO4, pH 2.2 1.13 4-Aminobenzenesulfonic acid 0.05 M Me4NI 1.58 3-Aminobenzoic acid pH 5.6 0.67 Anthranilic acid pH 5.6 0.67 Ascorbic acid Britton-Robinson buffer, pH 3.4 0.17 Britton-Robinson buffer, pH 7.0 0.06 Barbituric acid Borate buffer, pH 9.3 0.04 Benzoic acid A 2.1 Benzoylformic acid Britton-Robinson buffer, pH 2.2 0.48 Britton-Robinson buffer, pH 5.5 0.85, 1.26 Britton-Robinson buffer, pH 7.2 0.98, 1.25 Britton-Robinson buffer, pH 9.2 1.25 Bromoacetic acid pH 1.1 0.54 2-Bromopropionic acid pH 2.0 0.39 Crotonic acid C 1.94 Dibromoacetic acid pH 1.1 0.03, 0.59 Dichloroacetic acid pH 8.2 1.57 5,5-Diethylbarbituric acid Borate buffer, pH 9.3 0.00 Flavanol D, pH 5.6 1.25 D, pH 7.7 1.40 Folic acid Britton-Robinson buffer, pH 4.6 0.73 Formic acid 0.1 M KCl 1.66 Fumaric acid HClKCl, pH 2.6 0.83 Acetate buffer, pH 4.0 0.93 Acetate buffer, pH 5.9 1.20 2,4-Hexadienedioic acid Acetate buffer, pH 4.5 0.97 Iodoacetic acid pH 1 0.16 Maleic acid Britton-Robinson buffer, pH 2.0 0.70 Britton-Robinson buffer, pH 4.0 0.97 Britton-Robinson buffer, pH 6.0 1.11, 1.30 Britton-Robinson buffer, pH 10.0 1.51 Mercaptoacetic acid B, pH 6.8 0.38 Methacrylic acid D0.1 M LiCl 1.69 Nitrobenzoic acids Buffer10% EtOH, pH 2.0 0.2, 0.7 Oxalic acid B, pH 5.4–6.1 1.80 2-Oxo-1,5-pentanedioic acid HClKCl, pH 1.8 0.59 Ammonia buffer, pH 8.2 1.30 2-Oxopropionic acid Britton-Robinson buffer, pH 5.6 1.17 Britton-Robinson buffer, pH 6.8 1.22, 1.53 Britton-Robinson buffer, pH 9.7 1.51 Phenolphthalein Phthalate buffer, pH 2.5 0.67 Phthalate buffer, pH 4.7 0.80 D, pH 9.6 0.98, 1.35 Picric acid pH 4.2 0.34 pH 11.7 0.36, 0.56, 0.96 8.152 SECTION 8 TABLE 8.31 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25C (Continued) Compound Solvent system E1/2 Acids (continued) 1,2,3-Propenetricarboxylic acid pH 7.0 2.1 Trichloroacetic acid Ammonia buffer, pH 8.2 0.84, 1.57 Phosphate buffer, pH 10.4 0.9, 1.6 3,4,5-Trihydroxybenzoic acid Phosphate buffer, pH 2.9 0.50 Phosphate buffer, pH 8.8 0.1 p-Aminophenol Britton-Robinson buffer, pH 6.3 0.14 Britton-Robinson buffer, pH 8.6 0.04 Britton-Robinson buffer, pH 12.0 0.16 o-Chlorophenol pH 5.6 0.63 m-Chlorophenol pH 5.6 0.73 p-Chlorophenol pH 5.6 0.65 o-Cresol pH 5.6 0.56 m-Cresol pH 5.6 0.61 p-Cresol pH 5.6 0.54 1,2-Dihydroxybenzene pH 5.6 0.35 1,3-Dihydroxybenzene pH 5.6 0.61 1,4-Dihydroxybenzene pH 5.6 0.23 o-Methoxyphenol pH 5.6 0.46 m-Methoxyphenol pH 5.6 0.62 p-Methoxyphenol pH 5.6 0.41 1-Naphthol A 0.74 2-Naphthol A 0.82 1,2,3-Trihydroxybenzene Britton-Robinson buffer, pH 3.1 0.35 Britton-Robinson buffer, pH 6.5 0.10 Britton-Robinson buffer, pH 9.5 0.10 Halogen compounds Bromobenzene A 1.98 C 2.32 1-Bromobutane C 2.27 Bromoethane C 2.08 Bromomethane C 1.63 1-Bromonaphthalene (also 2-bromonaphthal-ene) A 1.55, 1.60 3-Bromo-1-propene C 1.29 p-Bromotoluene A 1.72 Carbon tetrachloride C 0.78, 1.71 Chlorobenzene A 2.07 Chloroform C 1.63 Chloromethane C 2.23 3-Chloro-1-propene C 1.91 -Chlorotoluene C 1.81 p-Chlorotoluene A 1.76 N-Chloro-p-toluenesulfonamide 0.5 M K2SO4 0.13 9,10-Dibromoanthracene A 1.15, 1.47 p-Dibromobenzene C 2.10 1,2-Dibromobutane D1% Na2SO3 1.45 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.153 TABLE 8.31 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25C (Continued) Compound Solvent system E1/2 Halogen compounds (continued) Dibromoethane C 1.48 meso-2,3-Dibromosuccinic acid Acetate buffer, pH 4.0 0.23, 0.89 Dichlorobenzenes C 2.5 Dichloromethane C 1.60 Diiodomethane C 1.12, 1.53 Hexabromobenzene C 0.8, 1.5 Hexachlorobenzene C 1.4, 1.7 Iodobenzene A 1.72 Iodoethane C 1.67 Iodomethane A 2.12 C 1.63 Tetrabromomethane C 0.3, 0.75, 1.49 Tetraidomethane C 0.45, 1.05, 1.46 Tribromomethane C 0.64, 1.47 ,,-Trichlorotoluene C 0.68, 1.65, 2.00 Nitro and nitroso compounds 1,2-Dinitrobenzene Phthalate buffer, pH 2.5 0.12, 0.32, 1.26 Borate buffer, pH 9.2 0.38, 0.74 1,3-Dinitrobenzene Phthalate buffer, pH 2.5 0.17, 0.29 Borate buffer, pH 9.2 0.46, 0.68 1,4-Dinitrobenzene Phthalate buffer, pH 2.5 0.12, 0.33 Borate buffer, pH 9.2 0.35, 0.80 Methyl nitrobenzoates Buffer10% EtOH, pH 2.0 0.20 to 0.25 0.68 to 0.74 p-Nitroacetophenone Britton-Robinson buffer, pH 2.2 0.16, 0.61, 1.09 Britton-Robinson buffer, pH 10.0 0.51, 1.40, 1.73 o-Nitroaniline 0.03 M LiCl0.02 M benzoic acid in EtOH 0.88 m-Nitroaniline Britton-Robinson buffer, pH 4.3 0.3, 0.8 Britton-Robinson buffer, pH 7.2 0.5 Britton-Robinson buffer, pH 9.2 0.7 p-Nitroaniline pH 2.0 0.36 Acetate buffer, pH 4.6 0.5 o-Nitroanisole Buffer10% EtOH, pH 2.0 0.29, 0.58 p-Nitroanisole Buffer10% EtOH, pH 2.0 0.35, 0.64 1-Nitroanthraquinone Britton-Robinson buffer, pH 7.0 0.16 Nitrobenzene HClKCl8% EtOH, pH 0.5 0.16, 0.76 Phthalate buffer, pH 2.5 0.30 Borate buffer, pH 9.2 0.70 Nitrocresols Britton-Robinson buffer, pH 2.2 0.2 to 0.3 Britton-Robinson buffer, pH 4.5 0.4 to 0.5 Britton-Robinson buffer, pH 8.0 0.6 Nitroethane Britton-Robinson buffer30% MeOH, pH 1.8 0.7 Britton-Robinson buffer30% MeOH, pH 4.6 0.8 8.154 SECTION 8 TABLE 8.31 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25C (Continued) Compound Solvent system E1/2 Nitro and nitroso compounds (continued) 2-Nitrohydroquinone Phosphate buffercitrate buffer, pH 2.1 0.2 Phosphate buffercitrate buffer, pH 5.2 0.4 Phosphate buffercitrate buffer, pH 8.0 0.5 Nitromethane Britton-Robinson buffer30% MeOH, pH 1.8 0.8 Britton-Robinson buffer30% MeOH, pH 4.6 0.85 o-Nitrophenol Britton-Robinson buffer10% EtOH, pH 2.0 0.23 Britton-Robinson buffer10% EtOH, pH 4.0 0.4 Britton-Robinson buffer10% EtOH, pH 8.0 0.65 Britton-Robinson buffer10% EtOH, pH 10.0 0.80 m-Nitrophenol Britton-Robinson buffer10% EtOH, pH 2.0 0.37 Britton-Robinson buffer10% EtOH, pH 4.0 0.40 Britton-Robinson buffer10% EtOH, pH 8.0 0.64 Britton-Robinson buffer10% EtOH, pH 10.0 0.76 p-Nitrophenol Britton-Robinson buffer10% EtOH, pH 2.0 0.35 Britton-Robinson buffer10% EtOH, pH 4.0 0.50 Britton-Robinson buffer10% EtOH, pH 8.0 0.82 1-Nitropropane Britton-Robinson buffer30% MeOH, pH 1.8 0.73 Britton-Robinson buffer30% MeOH, pH 8.6 0.88 Britton-Robinson buffer30% MeOH, pH 8.0 0.95 2-Nitropropane McIlvaine buffer, pH 2.1 0.53 McIlvaine buffer, pH 5.1 0.81 Nitrosobenzene McIlvaine buffer, pH 6.0 0.03 McIlvaine buffer, pH 8.0 0.14 1-Nitroso-2-naphthol Dbuffer, pH 4.0 0.02 Dbuffer, pH 7.0 0.20 Dbuffer, pH 9.0 0.31 N-Nitrosophenylhydroxylamine pH 2.0 0.84 o-Nitrotoluene Phthalate buffer, pH 2.5 0.35, 0.66 Phthalate buffer, pH 7.4 0.60, 1.06 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.155 TABLE 8.31 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25C (Continued) Compound Solvent system E1/2 Nitro and nitroso compounds (continued) m-Nitrotoluene (also p-nitrotoluene) Phthalate buffer, pH 2.5 0.30, 0.53 Phthalate buffer, pH 7.4 0.58, 1.06 Tetranitromethane pH 12.0 0.41 1,3,5-Trinitrobenzene Phthalate buffer, pH 4.1 0.20, 0.29, 0.34 Borate buffer, pH 9.2 0.34, 0.48, 0.65 Heterocyclic compounds containing nitrogen Acridine D, pH 8.3 0.80, 1.45 Cinchonine B, pH 3 0.90 2-Furanmethanol Britton-Robinson buffer, pH 2.0 0.96 Britton-Robinson buffer, pH 5.8 1.38, 1.70 2-Hydroxyphenazine Britton-Robinson buffer, pH 4.0 0.24 8-Hydroxyquinoline B, pH 5.0 1.12 Phosphate buffer, pH 8.0 1.18, 1.71 3-Methylpyridine D0.1 M LiCl 1.76 4-Methylpyridine D0.1 M LiCl 1.87 Phenazine Phosphate buffercitrate buffer, pH 7.0 0.36 Pyridine Phosphate buffercitrate buffer, pH 7.0 1.75 Pyridine-2-carboxylic acid B, pH 4.1 1.10 B, pH 9.3 1.48, 1.94 Pyridine-3-carboxylic acid 0.1 M HCl 1.08 Pyridine-4-carboxylic acid Britton-Robinson buffer, pH 6.1 1.14 pH 9.0 1.39, 1.68 Pyrimidine Citrate buffer, pH 3.6 0.92, 1.24 Ammonia buffer, pH 9.2 1.54 Quinoline-8-carboxylic acid pH 9 1.11 Quinoxaline Phosphate buffercitrate buffer, pH 7.0 0.66, 1.52 Azo, hydrazine, hydroxylamine, and oxime compounds Azobenzene D, pH 4.0 0.20 D, pH 7.0 0.50 Azoxybenzene Buffer20% EtOH, pH 6.3 0.30 Benzoin 1-oxime Buffer, pH 2.0 0.88 Buffer, pH 5.6 1.08 Buffer, pH 8.2 1.67 Benzoylhydrazine 0.13 M NaOH, pH 13.0 0.30 Dimethylglyoxime Ammonia buffer, pH 9.6 1.63 Hydrazine Britton-Robinson buffer, pH 9.3 0.09 Hydroxylamine Britton-Robinson buffer, pH 4.6 1.42 Britton-Robinson buffer, pH 9.2 1.65 8.156 SECTION 8 TABLE 8.31 Half-Wave Potentials (vs. Saturated Calomel Electrode) of Organic Compounds at 25C (Continued) Compound Solvent system E1/2 Azo, hydrazine, hydroxylamine, and oxime compounds (continued) Oxamide Acetate buffer 1.55 Phenylhydrazine McIlvaine buffer, pH 2 0.19 0.13 M NaOH, pH 13.0 0.36 Phenylhydroxylamine McIlvaine buffer10% EtOH, pH 2 0.68 McIlvaine buffer10 EtOH, pH 4–10 0.33 0.061 pH Salicylaldoxime Phosphate buffer, pH 5.4 1.02 Thiosemicarbazide Borate buffer, pH 9.3 0.26 Thiourea 0.1 M sulfuric acid 0.02 Indicators and dyestuffs Brilliant Green HClKCl, pH 2.0 0.2, 0.5 Indigo carmine pH 2.5 0.24 Indigo disulfonate pH 7.0 0.37 Malachite Green G HClKCl, pH 2.0 0.2, 0.5 Metanil yellow Phosphate buffer1% EtOH, pH 7.0 0.51 Methylene blue Britton-Robinson buffer, pH 4.9 0.15 Britton-Robinson buffer, pH 9.2 0.30 Methylene green Phosphate buffer1% EtOH, pH 7.0 0.12 Methyl orange Phosphate buffer1% EtOH, pH 7.0 0.51 Morin D, pH 7.6 1.7 Neutral red Britton-Robinson buffer, pH 2.0 0.21 Britton-Robinson buffer, pH 7.0 0.57 Peroxide Ethyl peroxide 0.02 M HCl 0.2 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.157 8.7 CONDUCTANCE TABLE 8.32 Limiting Equivalent Ionic Conductances in Aqueous Solutions In 104 m2 · S · equiv1 or mho · cm2 · equiv1.
Ion Temperature, C 0 18 25 Inorganic cations Ag 33 54.5 61.9 Al3 29 61 Ba2 33.6 54.3 63.9 Be2 45 Ca2 30.8 51 59.5 Cd2 28 45.1 54 Ce3 70 Co2 28 45 53 3 Co(NH ) 3 6 100 3 Co(ethylenediamine)3 74.7 Cr3 67 Cs 44 68 77.3 Cu2 28 45.3 56.6 D (deuterium) 213.7 Dy3 65.7 Er3 66.0 Eu3 67.9 Fe2 28 45.3 53.5 Fe3 69 Gd3 67.4 H 224.1 315.8 350.1 2 Hg2 68.7 Hg2 63.6 Ho3 66.3 K 40.3 64.6 73.5 La3 35.0 59.2 69.6 Li 19.1 33.4 38.69 Mg2 28.5 46 53.06 Mn2 27 44.5 53.5 NH4 40.3 64 73.7 (hydrazinium 1) N H 2 5 59 Na 25.85 43.5 50.11 Nd3 69.6 Ni2 28 45 50 Pb2 37.5 60.5 71 Pr3 69.6 Ra2 33 56.6 66.8 Rb 43.5 67.5 77.8 Sc3 64.7 Sm3 68.5 Sr2 31 51 59.46 Tl 43.3 66 74.9 Tm3 65.5 2 UO2 32 Y3 62 Yb3 65.2 Zn2 28 45.0 52.8 8.158 SECTION 8 TABLE 8.32 Limiting Equivalent Ionic Conductances in Aqueous Solutions (Continued) Ion Temperature, C 0 18 25 Inorganic anions Au(CN)2 50 Au(CN)4 36 B(C H ) 6 5 4 21 Br 43.1 67.6 78.1 Br3 43 BrO3 31.0 49.0 55.7 Cl 41.4 65.5 76.31 ClO2 52 ClO3 36 55.0 64.6 ClO4 37.3 59.1 67.3 CN 78 2 CO3 36 60.5 69.3 3 Co(CN)6 98.9 2 CrO4 42 72 85 F 46.6 55.4 4 Fe(CN)6 110.4 3 Fe(CN)6 100.9 H AsO 2 4 34 HCO3 44.5 HF2 75 2 HPO4 33 H PO 2 4 28 33 HS 40 57 65 HSO3 27 50 HSO4 50 H SbO 2 4 31 I 42.0 66.5 76.9 IO3 21.0 33.9 40.5 IO4 49 54.5 MnO4 36 53 61.3 2 MoO4 74.5 N3 69.5 N(CN)2 54.5 NO2 44 59 71.8 NO3 40.2 61.7 71.42 (sulfamate) NH SO 2 3 48.6 OCN (cyanate) 54.8 64.6 OH 117.8 175.8 198 PF6 56.9 PO3F2 63.3 3 PO4 69.0 4 P O 2 7 96 3 P O 3 9 83.6 5 P O 3 10 109 ReO4 46.5 54.9 SCN (thiocyanate) 41.7 56.6 66.5 SeCN 64.7 2 SeO4 65 75.7 2 SO3 79.9 ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.159 TABLE 8.32 Limiting Equivalent Ionic Conductances in Aqueous Solutions (Continued) Ion Temperature, C 0 18 25 2 SO4 41 68.3 80.0 2 S O 2 3 85.0 2 S O 2 4 34 66.5 2 S O 2 6 93 2 S O 2 8 86 2 WO4 35 59 69.4 Organic cations Decylpyridinium 29.5 Diethylammonium 42.0 Dimethylammonium 51.5 Dipropylammonium 30.1 Dodecylammonium 23.8 Ethylammonium 47.2 Ethyltrimethylammonium 40.5 Isobutylammonium 38.0 Methylammonium 58.3 Piperidinium 37.2 Propylammonium 40.8 Tetrabutylammonium 19.5 Tetraethylammonium 32.6 Tetramethylammonium 44.9 Tetrapropylammonium 23.5 Triethylsulfonium 36.1 Trimethylammonium 47.2 Trimethylsulfonium 51.4 Tripropylammonium 26.1 Organic anions Acetate 20 34 41 Benzoate 32.4 Bromoacetate 39.2 Bromobenzoate 30 Butanoate 32.6 Chloroacetate 42.2 m-Chlorobenzoate 31 o-Chlorobenzoate 30.5 Citrate(3) 70.2 Crotonate 33.2 Cyanoacetate 43.4 Cyclohexanecarboxylate 28.7 Cyclopropane-1,3-dicarboxylate2 53.4 Decylsulfonate 26 Dichloroacetate 38.3 Diethylbarbiturate(2) 26.3 Dihydrogencitrate 30 Dimethylmalonate(2) 49.4 3,5-Dinitrobenzoate 28.3 Dodecylsulfonate 24 Ethylmalonate 49.3 Ethylsulfonate 39.6 8.160 SECTION 8 TABLE 8.32 Limiting Equivalent Ionic Conductances in Aqueous Solutions (Continued) Ion Temperature, C 0 18 25 Fluoroacetate 44.4 Fluorobenzoate 33 Formate 47 54.6 Fumarate(2) 61.8 Glutarate(2) 52.6 Hydrogenoxalate (1) 40.2 Iodoacetate 40.6 Lactate(1) 38.8 Malate(2) 58.8 Malonate(1) 63.5 3-Methylbutanoate 32.7 Methylsulfonate 48.8 Naphthylacetate 28.4 1,8-Octanedioate(2) 36 Octylsulfonate 29 Oxalate(2) 74.11 Phenylacetate 30.6 m-Phthalate(2) 54.7 o-Phthalate(2) 52.3 Picrate 30.37 Propanoate 35.8 Propylsulfonate 37.1 Salicylate 36 Succinate(2) 58.8 Tartrate(2) 55 59.6 Trichloroacetate 36.6 Trimethylacetate 31.9 TABLE 8.33 Standard Solutions for Calibrating Conductivity Vessels The values of conductivity are corrected for the conductivity of the water used. The cell constant of a conductivity cell can be obtained from the equation RRsolv R R solv where R is the resistance measured when the cell is filled with a solution of the composition stated in the table below, and Rsolv is the resistance when the cell is filled with solvent at the same temperature.
Grams KCl per Kilogram Solution (in vacuo) Conductivity in ohm1 · cm1 at 0C 18C 25C 71.135 2 0.065 144 0.097 790 0.111 287 7.419 13 0.007 1344 0.011 1612 0.012 8497 0.745 263 0.000 773 26 0.001 219 92 0.001 408 08 Virtually 0.0100 M.
From the data of Jones and Bradshaw, J. Am. Chem. Soc., 55, 1780 (1933). The original data have been converted from (int.
ohm)1 cm1.
ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.161 TABLE 8.34 Electrical Conductivity of Various Pure Liquids Liquid Temp.
C mhos/cm or ohm1 · cm1 Liquid Temp.
C mhos/cm or ohm1 · cm1 Acetaldehyde 15 1.7 106 Acetamide 100 4.3 105 Acetic acid 0 5 109 25 1.12 108 Acetic anhydride 0 1 106 25 4.8 107 Acetone 18 2 108 25 6 108 Acetonitrile 20 7 106 Acetophenone 25 6 109 Acetyl bromide 25 2.4 106 Acetyl chloride 25 4 107 Alizarin 233 1.45 106(?) Allyl alcohol 25 7 106 Ammonia 79 1.3 107 Aniline 25 2.4 108 Anthracene 230 3 1010 Arsenic tribromide 35 1.5 106 Arsenic trichloride 25 1.2 106 Benzaldehyde 25 1.5 107 Benzene · · · 7.6 108 Benzoic acid 125 3 109 Benzonitrile 25 5 108 Benzyl alcohol 25 1.8 106 Benzylamine 25 1.7 108 Benzyl benzoate 25 1 109 Bromine 17.2 1.3 1013 Bromobenzene 25 2 1011 Bromoform 25 2 108 iso-Butyl alcohol 25 8 108 Capronitrile 25 3.7 106 Carbon disulfide 1 7.8 1018 Carbon tetrachloride 18 4 1018 Chlorine 70 1 1016 Chloroacetic acid 60 1.4 106 m-Chloroaniline 25 5 108 Chloroform 25 2 108 Chlorohydrin 25 5 107 m-Cresol 25 1.7 108 Cyanogen · · · 7 109 Cymene 25 2 108 Dichloroacetic acid 25 7 108 Dichlorohydrin 25 1.2 105 Diethylamine 33.5 2.2 109 Diethyl carbonate 25 1.7 108 Diethyl oxalate 25 7.6 107 Diethyl sulfate 25 2.6 107 Dimethyl sulfate 0 1.6 107 Epichlorohydrin 25 3.4 108 Ethyl acetate 25 1 109 Ethyl acetoacetate 25 4 108 Ethyl alcohol 25 1.35 109 Ethylamine 0 4 107 Ethyl benzoate 25 1 109 Ethyl bromide 25 2 108 Ethylene bromide 19 2 1010 Ethylene chloride 25 3 108 Ethyl ether 25 4 1013 Ethylidene chloride 25 1.7 108 Ethyl iodide 25 2 108 Ethyl isothiocyanate 25 1.26 107 Ethyl nitrate 25 5.3 107 Ethyl thiocyanate 25 1.2 106 Eugenol 25 1.7 108 Formamide 25 4 106 Formic acid 18 5.6 105 25 6.4 105 Furfural 25 1.5 106 Gallium 30 36,800 Glycerol 25 6.4 108 Glycol 25 3 107 Guaiacol 25 2.8 107 Heptane · · · 1 1013 Hexane 18 1 1018 Hydrogen bromide 80 8 109 Hydrogen chloride 96 1 108 Hydrogen cyanide 0 3.3 106 Hydrogen iodide B.P.
2 107 Hydrogen sulfide B.P.
1 1011 Iodine 110 1.3 1010 Kerosene 25 1.7 108 Mercury 0 10,629.6 Methyl acetate 25 3.4 106 Methyl alcohol 18 4.4 107 Methyl ethyl ketone 25 1 107 Methyl iodide 25 2 108 Methyl nitrate 25 4.5 106 Methyl thiocyanate 25 1.5 106 Naphthalene 82 4 1010 Nitrobenzene 0 5 109 Nitromethane 18 6 107 o- or m-Nitrotoluene 25 2 107 Nonane 25 1.7 108 8.162 SECTION 8 TABLE 8.34 Electrical Conductivity of Various Pure Liquids (Continued) Liquid Temp.
C mhos/cm or ohm1 · cm1 Liquid Temp.
C mhos/cm or ohm1 · cm1 Oleic acid 15 2 1010 Pentane 19.5 2 1010 Petroleum · · · 3 1013 Phenetole 25 1.7 108 Phenol 25 1.7 108 Phenyl isothiocyanate 25 1.4 106 Phosgene 25 7 109 Phosphorus 25 4 107 Phosphorus oxychloride 25 2.2 106 Pinene 23 2 1010 Piperidine 25 2 107 Propionaldehyde 25 8.5 107 Propionic acid 25 1 109 Propionitrile 25 1 107 n-Propyl alcohol 18 5 108 25 2 108 iso-Propyl alcohol 25 3.5 106 n-Propyl bromide 25 2 108 Pyridine 18 5.3 108 Quinoline 25 2.2 108 Salicylaldehyde 25 1.6 107 Stearic acid 80 4 1013 Sulfonyl chloride, SOCl2 25 2 106 Sulfur 115 1 1012 130 5 1012 440 1.2 107 Sulfur dioxide 35 1.5 108 Sulfuric acid 25 1 102 Sulfuryl chloride, SO2Cl2 25 3 108 Toluene · · · 1 1014 o-Toluidine 25 2 106 p-Toluidine 100 6.2 108 Trichloroacetic acid 25 3 109 Trimethylamine 33.5 2.2 1010 Turpentine · · · 2 1013 iso-Valeric acid 80 4 1013 Water 18 4 108 Xylene · · · 1 1015 TABLE 8.35 Equivalent Conductivities of Electrolytes in Aqueous Solutions at 18C The unit of in the table is 1 · cm2 · equiv1. The entities to which the equivalent relates are given in the first column.
Electrolyte Concentration, N 0.001 0.005 0.01 0.05 0.1 0.5 1.0 2.0 3.0 4.0 5.0 Acetic acid 41 20.0 14.3 6.48 4.60 2.01 1.32 0.54 0.29 AgNO3 113.2 110.0 107.8 99.5 94.3 77.8 67.8 56.0 48.2 42.1 37.2 1⁄2Ag SO 2 4 116.3 108.4 102.9 1⁄3AlBr (25) 3 132 124 119 103 97 1⁄3AlCl3 121.1 105.0 93.8 65.0 56.2 44.2 34.7 27.2 (25) 1⁄3AlI3 131 124 119 108 (25) 1⁄3Al(NO ) 3 3 123 115 110 94 88 (25) 1⁄6Al (SO ) 2 4 3 107.2 76.8 60.6 1⁄2Ba(OAc)2 85.0 80.4 77.1 65.7 60.2 43.8 34.3 (25) 1⁄2Ba(BrO ) 3 2 113.6 106.8 102.7 1⁄2BaCl2 115.6 112.3 106.7 96.0 90.8 77.3 70.1 60.3 52.3 1⁄2Ba(NO ) 3 2 111.7 105.3 101.0 86.8 78.9 56.6 48.4 29.8 23.4 1⁄2Ba(OH)2 216 213 207 191 180 Butyric acid 1.66 0.98 0.46 0.26 0.18 0.11 1⁄2Ca(OAc)2 79.6 75.0 71.9 60.3 54.0 36.3 26.3 1⁄2CaCl2 112.0 106.7 103.4 93.3 88.2 74.9 67.5 58.3 49.7 42.4 35.6 1⁄2Ca(NO ) 3 2 108.5 103.0 99.5 88.4 82.5 65.7 55.9 43.5 35.5 26.0 21.5 1⁄2Ca(OH)2 233 226 1⁄2CaSO4 104.3 86.3 77.4 1⁄2CdBr2 86.5 76.3 53.2 44.6 25.3 18.3 12.5 9.1 6.8 5.3 1⁄2CdCl2 91 83 59 50 30.8 22.4 14.4 9.9 7.1 5.4 1⁄2CdI2 76.7 65.6 40.1 31.0 18.3 15.4 12.3 9.7 8.0 Cd(NO3)2 1⁄2 100 96 86.4 80.8 63.9 54.5 41.0 31.4 23.7 17.6 CdSO4 1⁄2 97.7 79.7 70.3 49.6 42.2 28.7 23.6 17.7 14.0 11.0 8.35 (25) 1⁄3CeCl3 137.4 122.1 99.0 (25) 1⁄6Ce (C O ) 2 2 4 3 85.5 54 45.8 29 Chloroacetic acid (25) 42.9 20.2 13.6 8.1 5.6 4.2 3.3 Citric acid 88.4 54 42.5 22.0 16.1 7.3 5.4 1⁄2CoCl2 99.3 95.6 82.3 75.0 51.5 45.3 40.3 35.4 30.5 26.4 1⁄3CrCl3 68.6 56.8 44.8 35.2 8.163 TABLE 8.35 Equivalent Conductivities of Electrolytes in Aqueous Solutions at 18C (Continued) Electrolyte Concentration, N 0.001 0.005 0.01 0.05 0.1 0.5 1.0 2.0 3.0 4.0 5.0 (25) 1⁄2CrO (H CrO ) 3 2 4 201 195 193 191 186 CsCl 130.7 127.5 125.2 113.5 104.3 100.3 95.7 85.1 (25) 1⁄2Cu(OAc)2 55.7 50.6 47.2 34.9 28.4 1⁄2CuCl2 41.2 31.5 24.5 19.1 (15) 1⁄2Cu(NO ) 3 2 107.9 97.1 93.7 83.7 78.2 67.5 56.8 45.4 35.3 27.8 21.4 1⁄2CuSO4 98.5 81.0 71.7 53.6 43.8 30.5 25.6 19.7 16.5 Dichloroacetic acid (25) 207.5 119 82 44.6 26.5 16.3 9.6 (25) 1⁄2FeCl2 131 125 120 103 93 1⁄3FeCl3 66.5 52.9 37.6 28.1 20.5 15.9 1⁄2FeSO4 82 75 70 54 44.5 30.8 25.8 19.5 15.37 Formic acid 125.6 5.18 3.68 2.93 2.39 1.92 H3AsO4 (1 M) (25) 308.2 230.0 187.0 103.4 80.4 H3BO3 13.5 HBr 356 306 282 243 214 179 HBrO3 (25) 401 387 373 272 156 HCl 377 373 370 360 351 327 301 215 152.2 HClO3 343 317 292 247 207 HClO4 (25) 413 406 402 392 386 358 HF 90 60 35.9 31.3 27.0 25.7 24.2 24.0 HI 347 322 297 255 215 179 HIO3 343.3 332.8 323.9 253 175 141 106 87 71 HNO3 375 371 368 357 350 324 310 220 156 H3PO4 (1 M) 318 279 255 66 53.1 51.3 HSCN (25) 399 394 390 377 370 1⁄2H SO 2 4 361 330 308 253 225 205 198 166.8 135.0 1⁄2HgCl2 1.85 1.23 1⁄3InBr3 53.9 37.0 28.7 19.8 14.4 10.1 KOAc 98.3 95.7 94.0 87.7 83.8 71.6 63.4 50.0 40.7 31.4 24.5 KBr 129.4 126.4 124.4 117.8 114.2 105.4 102.5 98.0 93.3 87.9 KBrO3 109.9 106.9 104.7 97.3 93.0 1⁄3K citrate 3 109.9 103 87.8 80.8 8.164 KCl 127.3 124.4 122.4 115.8 112.0 102.4 98.3 92.0 88.9 KClO3 116.9 113.6 111.6 103.7 99.2 85.3 KClO4 (25) 137.9 134.2 131.5 121.6 115.2 KCN (15) 104.2 99.7 1⁄2K CO 2 3 133.0 121.6 115.5 100.7 94.1 77.8 70.7 65.0 55.6 49.2 42.9 1⁄2K C O 2 2 4 122.4 116.7 112.5 100.8 94.9 80.4 73.7 1⁄2K CrO 2 4 100.5 86.4 79.5 72.0 59.9 1⁄2K Cr O 2 2 7 98.2 85.4 KF 108.9 106.2 104.3 97.7 94.0 82.6 76.0 63.4 56.5 51.7 46.5 1⁄3K [Fe(CN) ] 3 6 163.1 150.7 1⁄4K [Fe(CN) ] 4 6 167.2 146.1 134.8 107.7 97.9 KHCO3 (25) 115.3 112.2 110.1 86.5 78.9 KH phthalate 119.3 103.7 99.9 89.3 83.8 KHS 92.5 91.7 86.4 80.7 69.3 KHSO4 21.0 18.4 15.2 KH2PO4 (1 M) (25) 107.1 100.8 98.0 90.7 85.6 60.018 45.818 KI 128.2 125.3 123.4 117.3 114.0 106.2 103.6 101.3 96.4 89.0 81.2 KIO3 96.0 93.2 91.2 84.1 79.7 KIO4 (25) 124.9 121.2 118.5 106.7 98.1 KMnO4 (25) 133.3 126.5 113 KNO3 123.6 120.5 118.2 109.9 104.8 89.2 80.5 69.4 61.3 KOH 234 230 228 219 213 197 184 140.6 105.8 KReO4 (25) 125.1 121.3 118.5 106.4 97.4 1⁄2K S 2 135.6 119.7 108.3 97.2 86.1 KSCN 118.6 115.8 113.9 107.7 104.3 95.7 91.6 86.8 74.6 K2SO4 1⁄2 126.9 120.3 115.8 101.9 94.9 78.5 71.6 (25) 1⁄2LaCl3 137.0 127.5 121.8 106.2 99.1 1⁄3La(NO ) 3 3 86.1 72.1 65.4 54.0 39.1 28.5 19.9 1⁄6La (SO ) 2 4 3 25.7 21.5 Lactic acid 108.9 53.5 39 18.1 13.2 LiOAc 51.3 37.7 28.9 18.2 11.9 7.2 LiBr 87.9 84.4 73.9 67.2 57.7 44.2 LiCl 96.5 93.9 92.1 86.1 82.4 70.7 63.4 53.1 45.3 33.3 LiClO4 (25) 103.4 100.6 98.6 92.2 88.6 1⁄2Li CO 2 3 64.2 59.1 LiI 75.3 69.2 61.0 LiIO3 65.3 62.9 61.2 55.3 51.5 39.0 31.2 21.4 14.6 8.165 TABLE 8.35 Equivalent Conductivities of Electrolytes in Aqueous Solutions at 18C (Continued) Electrolyte Concentration, N 0.001 0.005 0.01 0.05 0.1 0.5 1.0 2.0 3.0 4.0 5.0 LiNO3 92.9 90.3 88.6 82.7 79.2 68.0 60.8 50.3 34.9 27.3 LiOH 149.0 134.5 113.5 95.7 1⁄2Li SO 2 4 96.4 86.9 74.7 68.2 50.5 41.3 30.7 23.3 18.1 13.9 1⁄2MgCl2 106.4 101.3 98.1 88.5 83.4 69.6 61.5 52.3 43.3 35.0 28.0 1⁄2Mg(NO ) 3 2 102.6 97.7 94.7 85.3 80.5 67.0 59.0 47.0 39.8 1⁄2MgSO4 99.8 84.5 76.2 56.9 49.7 35.4 28.9 23.0 17.3 12.9 9.3 1⁄2MnCl2 86.0 68.5 61.0 48.5 38.8 30.2 23.0 1⁄2MnSO4 27.6 24.4 18.3 14.0 10.5 7.3 NH3(aq) 28.0 13.2 9.6 4.6 3.3 1.35 0.89 0.36 0.20 NH4OAc 92.9 91.4 84.9 60.5 54.7 42.9 34.0 26.5 NH4Cl 127.3 124.3 122.1 115.2 110.7 101.4 97.0 92.1 88.2 85.0 80.7 NH4F 90.1 74.5 65.7 55.3 47.9 42.2 NH4I 118.0 115.0 106.0 103.1 100.0 91.4 84.5 NH4NO3 124.5 118.0 110.0 106.6 94.5 88.8 85.1 71.9 47.6 NH4SCN 104.3 94.0 89.9 84.7 79.2 74.0 1⁄2(NH ) SO 4 2 4 120.0 116.5 89.0 79.5 73.0 65.0 55.2 NaOAc 75.2 72.4 70.2 64.2 61.1 49.4 41.2 29.8 21.5 15.3 10.5 NaBr 99.1 96.0 84.6 78.1 69.1 53.0 NaBrO3 61.8 54.5 44.1 Na n-butyrate (25) 80.3 77.6 75.8 69.3 65.3 NaCl 106.5 103.8 102.0 95.7 92.0 80.9 74.3 64.8 56.5 49.4 42.7 NaClO4 114.925 111.725 109.625 102.425 98.425 71.7 65.0 55.1 46.0 38.8 1⁄2Na CO 2 3 112 102.5 96.2 80.3 72.9 54.5 45.5 34.5 27.2 1⁄2Na CrO 2 4 82.5 66.4 57.7 46.6 38.3 31.1 (25) 1⁄2Na Cr O 2 2 7 103 98.3 94.9 NaF 87.8 85.2 83.5 77.0 73.1 60.0 51.9 (25) 1⁄4Na [Fe(CN) ] 4 6 129.6 120.0 97.0 88.2 Na formate 88.6 61.4 53.7 43.1 34.8 28.2 NaHCO3 (25) 93.5 90.5 88.4 80.6 76.0 1⁄3Na HPO 2 4 58.4 54.0 44.0 33.5 28.0 NaH2PO4 67.9 65.8 64.4 57.8 54.1 1⁄4Na H P O 2 2 2 7 41.1 39.4 38.2 34.6 32.5 25.4 NaI 124.2 121.2 119.2 112.8 108.8 97.5 89.9 78.6 69.9 62.2 8.166 NaIO3 75.2 72.6 70.9 64.4 60.5 1⁄2Na MoO 2 4 120.8 113 110 NaN3 (25) 117.1 113.8 110.5 101.3 95.7 68.0 NaNO2 (25) 75.9 63.1 53.6 39.7 NaNO3 102.9 100.1 98.2 91.4 87.2 74.1 65.9 54.5 46.0 39.0 NaOH 208 203 200 190 183 172 160 108.0 69.0 Na picrate (25) 78.6 75.7 73.7 66.3 61.8 1⁄3Na PO 3 4 125 122 119 91 Na propionate (25) 83.5 80.9 79.1 1⁄2Na S 2 117.0 104.3 85.0 71.0 59.0 47.2 NaSCN 74.3 68.9 59.8 50.9 43.7 1⁄2Na SiO 2 3 144 139 136 124 116 88 72 51 38 27 19 1⁄2Na SO 2 4 106.7 100.8 96.8 83.9 78.4 59.7 50.8 40.0 33.5 (mono) Na tartrate 120 81.5 74.8 64.3 60.4 (25) 1⁄2Na WO 2 4 116.1 109.2 104.8 92.2 85.8 1⁄2NiSO4 96.3 79.5 70.8 51.0 43.8 30.4 25.1 19.3 15.1 1⁄2Oxalic acid 180.7 158.2 132.9 116.9 75.9 59.4 1⁄2Pb(NO ) 3 2 116.1 108.6 103.5 86.3 77.3 53.2 42.0 31.0 Propionic acid 1.57 1.00 0.54 0.20 RbCl 130.3 127.4 125.3 117.8 113.9 101.9 97.1 92.7 87.2 RbOH 220.6 204.8 192.0 170.0 148.3 1⁄4SnCl4 216.8 121.7 66.9 47.9 32.7 1⁄2SrCl2 114.5 108.9 105.4 94.4 90.2 75.7 68.5 58.7 49.9 42.2 1⁄2Sr(NO ) 3 2 108.3 102.7 99.0 87.3 80.9 62.7 52.1 38.0 29.3 29.3 16.4 Tartaric acid (15) 7.03 4.58 3.32 2.48 1.83 1⁄4ThCl4 61.0 54.0 44.3 36.3 29.8 TlCl 128.2 123.7 120.2 TlF 113.3 108.2 105.4 97.4 92.6 78.8 71.5 62.7 TlNO3 124.7 121.1 118.4 107.9 101.2 1⁄2Tl SO 2 4 127.4 118.4 112.3 92.7 83.1 Trichloroacetic acid (25) 273 207 127 79 44 19 (25) 1⁄2UO F 2 2 26.10 12.31 9.17 5.43 4.74 3.75 3.22 (25) 1⁄2UO SO 2 4 106.5 63.2 49.2 27.6 22.2 14.4 11.6 2.7 (25) 1⁄3YCl3 129 122 118 109 (25) 1⁄2Zn(OAc)2 83 77 73 58 49 1⁄2ZnCl2 107 101 98 87 82 65 55 39.6 29.6 23.2 18.5 1⁄2Zn(NO ) 3 2 120 114 111 100 1⁄2ZnSO4 98.4 82.1 73.2 53.0 45.6 32.3 26.6 20.0 15.9 12.0 9.0 8.167 8.168 SECTION 8 TABLE 8.36 Conductivity of Very Pure Water at Various Temperatures and the Equivalent Conductances of Hydrogen and Hydroxyl Ions Temp., C Conductivity, S · cm1 Resistivity, M · cm Equivalent conductance, cm2 · ohm1 · equivalent1 0, H 0, OH 0 0.011 61 86.14 224.1 117.8 5 0.016 61 60.21 250.0 133.6 10 0.023 15 43.21 275.6 149.6 15 0.031 53 31.71 300.9 165.9 18 0.037 54 26.64 315.8 491.6 20 0.042 05 23.78 325.7 182.5 25 0.055 08 18.15 350.1 199.2 30 0.070 96 14.09 374.0 216.1 35 0.090 05 11.10 397.4 233.0 40 0.112 7 8.88 420.0 267.2 45 0.139 3 7.18 442.0 267.2 50 0.170 2 5.88 463.3 284.3 55 0.205 5 4.86 483.8 301.4 60 0.245 7 4.06 503.4 318.5 65 0.291 2 3.43 522.0 335.4 70 0.341 6 2.93 539.7 352.2 75 0.397 8 2.51 556.4 368.8 80 0.459 3 2.18 572.0 385.2 85 0.525 8 1.90 586.4 401.4 90 0.597 7 1.67 599.6 417.3 95 0.675 3 1.48 611.6 432.8 100 0.756 9 1.32 622.2 448.1 150 1.84 0.543 200 2.99 0.334 824 701 250 3.31 0.302 300 2.42 0.413 894 821 Source: Data from T. S. Light and S. L. Licht, Anal. Chem., 59:2327–2330 (1987).
8.7.1 Common Conductance Relations Conductivity.
The standard unit of conductance is electrolytic conductivity (formerly called specific conductance) , which is defined as the reciprocal of the resistance [1] of a 1-m cube of liquid at a specified temperature [1 · m1]. See Table 8.33 and the definition of the cell constant.
In accurate work at low concentrations it is necessary to subtract the conductivity of the pure solvent (Table 8.34) from that of the solution to obtain the conductivity due to the electrolyte.
Resistivity (Specific Resistance) 1 [ · m] SI units are in brackets.
ELECTROLYTES, EMF, AND CHEMICAL EQUILIBRIUM 8.169 Conductance of an Electrolyte Solution 1 S 1 [ ] R d where S is the surface area of the electrode, or the mean cross-sectional area of the solution [m2], and d is the mean distance between the electrodes [m].
Equivalent Conductivity 1 2 1 [ · m · equiv ] C In the older literature, C is the concentration in equivalents per liter. The volume of the solution in cubic centimeters per equivalent is equal to 1000/C, and 1000 /C, the units employed in Table 8.32 [1 · cm2 · equiv1]. The formula unit used in expressing the concentration must be specified; for example, NaCl, 1 1 ⁄2K SO , ⁄3LaCl .
2 4 3 The equivalent conductivity of an electrolyte is the sum of contributions of the individual ions.
At infinite dilution: where and are the ionic conductances of cations and anions, , c a c a respectively, at infinite dilution (Table 8.35).
Ionic Mobility and Ionic Equivalent Conductivity 1 2 1 Fu and Fu [ · m · equiv ] c c a a where F is the Faraday constant, and uc, ua are the ionic mobilities [m2 · s1 · V1].
F(u u ) ( ) c a c a where is the degree of electrolytic dissociation, /. The electric mobility u of a species is the magnitude of the velocity in an electric field [m · s1] divided by the magnitude of the strength of the electric field E[V · m1].
Ostwald Dilution Law 2 C K d 1 where Kd is the dissociation constant of the weak electrolyte. In general for an electrolyte which yields n ions: (n1) n C K d (n1) ( ) Transference Numbers or Hittorf Transport Numbers c a T T T T 1 c a c a c a c a T u c c c T u a a a T T c c a a SECTION 9 PHYSICOCHEMICAL RELATIONSHIPS 9.1 LINEAR FREE ENERGY RELATIONSHIPS 9.2 Table 9.1 Hammett and Taft Substituent Constants 9.2 Table 9.2 and Rho Values for Hammett Equation pK a 9.6 Table 9.3 and Rho Values for Taft Equation pK a 9.7 Table 9.4 Special Hammett Sigma Constants 9.8 9.1 9.2 SECTION 9 9.1 LINEAR FREE ENERGY RELATIONSHIPS Many equilibrium and rate processes can be systematized when the influence of each substituent on the reactivity of substrates is assigned a characteristic constant and the reaction parameter is known or can be calculated. The Hammett equation K log K describes the behavior of many meta- and para-substituted aromatic species. In this equation K is the acid dissociation constant of the reference in aqueous solution at 25C and K is the corresponding constant for the substituted acid. Separate sigma values are defined by this reaction for meta and para substituents and provide a measure of the total electronic influence (polar, inductive, and resonance effects) in the absence of conjugation effects. Sigma constants are not valid of substituents ortho to the reaction center because of anomalous (mainly steric) effects. The inductive effect is transmitted about equally to the meta and para positions. Consequently, m is an approximate mea-sure of the size of the inductive effect of a given substituent and p m is an approximate measure of a substituent’s resonance effect. Values of Hammett sigma constants are listed in Table 9.1.
Taft sigma values perform a similar function with respect to aliphatic and alicyclic systems.
Values of are listed in Table 9.1.
The reaction parameter depends upon the reaction series but not upon the substituents employed.
Values of the reaction parameter for some aromatic and aliphatic systems are given in Tables 9.2 and 9.3.
Since substituent effects in aliphatic systems and in meta positions in aromatic systems are essentially inductive in character, and m values are often related by the expression m 0.217 0.106. Substituent effects fall off with increasing distance from the reaction center; generally a factor of 0.36 corresponds to the interposition of a 9CH29 group, which enables values to be estimated for R9CH29 groups not otherwise available.
TABLE 9.1 Hammett and Taft Substituent Constants Substituent Hammett constants m p Taft constant 9AsO H 3 0.09 0.02 0.06 9B(OH)2 0.01 0.45 9Br 0.39 0.23 2.84 9CH2Br 1.00 m-BrC6H49 0.09 p-BrC6H49 0.08 9CH3 0.07 0.17 0.0 9CH2CH3 0.07 0.15 0.10 9CH2CH2CH3 0.05 0.15 0.12 9CH(CH3)2 0.07 0.15 0.19 9CH2CH2CH2CH3 0.07 0.16 0.13 9CH2CH(CH3)2 0.07 0.12 0.13 9CH(CH3)CH2CH3 0.12 0.19 9C(CH3)3 0.10 0.20 0.30 9CH2CH2CH2CH2CH3 0.25 9CH2CH2CH(CH3)2 0.17 PHYSICOCHEMICAL RELATIONSHIPS 9.3 TABLE 9.1 Hammett and Taft Substituent Constants (Continued) Substituent Hammett constants m p Taft constant 9CH2C(CH3)3 0.23 0.12 9CH2CH2CH2CH2CH2CH2CH3 0.37 Cyclopropyl9 0.07 0.21 Cyclohexyl9 0.15 93,4-(CH2)2 (fused) 0.26 93,4-(CH2)39 (fused ring) 0.48 93,4-(CH)49 (fused ring) 0.06 0.04 9CH"CH2 0.02 0.56 9CH"C(CH3)2 0.19 9CH"CHCH3, trans 0.36 9CH29CH"CH2 0.0 9CH"CHC6H5 0.14 0.05 0.41 9C#CH 0.21 0.23 2.18 9C#CC6H5 0.14 0.16 1.35 9CH29C#CH 0.81 9C6H5 0.06 0.01 0.60 p-CH3C6H49 0.5 Naphthyl9 (both 1- and 2-) 0.75 9CH2C6H5 0.46 0.22 9CH2CH29C6H5 0.06 9CH(CH3)C6H5 0.37 9CH(C6H5)2 0.41 9CH29C10H7 0.44 2-Furoyl9 0.25 3-Indolyl9 0.06 2-Thienyl9 1.31 2-Thienylmethylene9 0.31 9CHO 0.36 0.22 9COCH3 0.38 0.50 1.65 9COCH2CH2 0.48 9COCH(CH3)2 0.47 9COC(CH3)3 0.32 9COCF3 0.65 3.7 9COC6H5 0.34 0.46 2.2 9CONH2 0.28 0.36 1.68 9CONHC6H5 1.56 9CH2COCH3 0.60 9CH2CONH2 0.31 9CH2CH2CONH2 0.19 9CH2CH2CH2CONH2 0.12 9CH2CONHC6H5 0.0 9COO 0.1 0.0 1.06 9COOH 0.36 0.43 2.08 9CO9OCH3 0.32 0.39 2.00 9CO9OCH2CH3 0.37 0.45 2.12 9CH2CO9OCH3 1.06 9CH2CO9OCH2CH3 0.82 9CH2COO 0.06 9CH2CH2COOH 0.03 0.07 9Cl 0.37 0.23 2.96 9CCl3 0.47 2.65 9CHCl2 1.94 9.4 SECTION 9 TABLE 9.1 Hammett and Taft Substituent Constants (Continued) Substituent Hammett constants m p Taft constant 9CH2Cl 0.12 0.18 1.05 9CH2CH2Cl 0.38 9CH2CCl3 0.75 9CH2CH2CCl3 0.25 9CH"CCl2 1.00 9CH2CH"CCl2 0.19 p-ClC6H49 0.08 9F 0.34 0.06 3.21 9CF3 0.43 0.54 2.61 9CHF2 2.05 9CH2F 1.10 9CH2CF3 0.90 9CH2CF2CF2CF3 0.87 9C6F5 0.12 0.03 9Ge(CH3)3 0.0 9Ge(CH2CH3)3 0.0 9H 0.00 0.00 0.49 9I 0.35 0.28 2.46 9CH2I 0.85 9IO2 0.70 0.76 9N2 1.76 1.91 9N3 (azide) 0.33 0.08 2.62 9NH2 0.16 0.66 0.62 9NH3 1.13 1.70 3.76 9CH29NH2 0.50 9CH 9NH 2 3 2.24 9NH9CH3 0.30 0.84 9NH9C2H5 0.24 0.61 9NH9C4H9 0.34 0.51 9NH(CH ) 3 2 4.36 9NH 9CH 2 3 0.96 3.74 9NH 9C H 2 2 5 0.96 3.74 9N(CH ) 3 3 0.88 0.82 4.55 9N(CH3)2 0.2 0.83 0.32 9CH 9N(CH ) 2 3 3 1.90 9N(CF3)2 0.45 0.53 p-H2N9C6H59 0.30 9NH9CO9CH3 0.21 0.00 1.40 9NH9CO9C2H5 1.56 9NH9CO9C6H5 0.22 0.08 1.68 9NH9CHO 0.25 1.62 9NH9CO9NH2 0.18 1.31 9NH9OH 0.04 0.34 9NH9CO9OC2H5 0.33 1.99 9CH29NH9CO9CH3 0.43 9NH9SO29C6H5 1.99 9NH9NH2 0.02 0.55 9CN 0.56 0.66 3.30 9CH29CN 0.17 0.01 1.30 9NO 0.12 9NO2 0.71 0.78 4.0 9CH29NO2 1.40 PHYSICOCHEMICAL RELATIONSHIPS 9.5 TABLE 9.1 Hammett and Taft Substituent Constants (Continued) Substituent Hammett constants m p Taft constant 9CH29CH29NO2 0.50 9CH"CHNO2 0.33 0.26 m-O2N9C6H4 0.18 p-O2N9C6H4 0.24 (NO2)3C6H29 (picryl) 0.43 0.41 9N(CO9CH3)(CO9C6H5) 1.37 9N(CO9CH3)(naphthyl) 1.65 9O 0.71 0.52 9OH 0.12 0.37 1.34 9O9CH3 0.12 0.27 1.81 9O9C2H5 0.10 0.24 1.68 9O9C3H7 0.00 0.25 1.68 9O9CH(CH3)2 0.05 0.45 1.62 9O9C4H9 0.05 0.32 1.68 9O9cyclopentyl 1.62 9O9cyclohexyl 0.29 1.81 9O9CH29cyclohexyl 0.18 1.31 9O9C6H5 0.25 0.32 2.43 9O9CH29C6H5 0.42 9OCF3 0.40 0.35 3,4-O9CH29O9 0.27 3,4-O9(CH29)2O9 0.12 9O9CO9CH3 0.39 0.31 9ONO2 3.86 9O9N"C(CH3)2 1.81 9ONH3 2.92 9CH29O 0.27 9CH29OH 0.08 0.08 0.31 9CH29O9CH3 0.52 9CH(OH)9CH3 0.12 9CH(OH)9C6H5 0.50 p-HO9C6H49 0.24 p-CH3O9C6H49 0.10 9CH29CH(OH)9CH3 0.06 9CH29C(OH)(CH3)2 0.25 9P(CH3)2 0.1 0.05 9P(CH ) 3 3 0.8 0.9 9P(CF3)2 0.6 0.7 9PO3H 0.2 0.26 9PO(OC2H5)2 0.55 0.60 9SH 0.25 0.15 1.68 9SCH3 0.15 0.00 1.56 9S(CH ) 3 2 1.0 0.9 9SCH2CH3 0.23 0.03 1.56 9SCH2CH2CH3 1.49 9SCH2CH2CH2CH3 1.44 9S9cyclohexyl 1.93 9SC6H5 0.30 1.87 9SC(C6H5)3 0.69 9SCH2C6H5 1.56 9SCH2CH2C6H5 1.44 9CH2SH 0.03 0.62 9.6 SECTION 9 TABLE 9.1 Hammett and Taft Substituent Constants (Continued) Substituent Hammett constants m p Taft constant 9CH2SCH2C6H5 0.37 9SCF3 0.40 0.50 9SCN 0.63 0.52 3.43 9S9CO9CH3 0.39 0.44 9S9CONH2 0.34 2.07 9SO9CH3 0.52 0.49 9SO9C6H5 3.24 9CH29SO9CH3 1.33 9SO29CH3 0.60 0.68 3.68 9SO29CH2CH3 3.74 9SO29CH2CH2CH3 3.68 9SO29C6H5 0.67 3.55 9SO29CF3 0.79 0.93 9SO29NH2 0.46 0.57 9CH29SO29CH3 1.38 9SO3 0.05 0.09 0.81 9SO3H 0.50 9SeCH3 0.1 0.0 9Se9cyclohexyl 2.37 9SeCN 0.67 0.66 3.61 9Si(CH3)3 0.04 0.07 0.81 9Si(CH2CH3)3 0.0 9Si(CH3)2C6H5 0.87 9Si(CH3)29O9Si(CH3)3 0.81 9CH2Si(CH3)3 0.16 0.22 0.25 9CH2CH2Si(CH3)3 0.25 9Sn(CH3)3 0.0 9Sn(CH2CH3)3 0.0 TABLE 9.2 and Rho Values for Hammett Equation pK a Acid pK a Arenearsonic acids pK1 3.54 1.05 pK2 8.49 0.87 Areneboronic acids (in aqueous 25% ethanol) 9.70 2.15 Arenephosphonic acids pK1 1.84 0.76 pK2 6.97 0.95 -Aryladoximes 10.70 0.86 Benzeneseleninic acids 4.78 1.03 Benzenesulfonamides (20C) 10.00 1.06 Benzenesulfonanilides (20C) X9C6H49SO29NH9C6H5 8.31 1.16 C6H59SO29NH9C6H49X 8.31 1.74 Benzoic acids 4.21 1.00 Cinnamic acids 4.45 0.47 Phenols 9.92 2.23 PHYSICOCHEMICAL RELATIONSHIPS 9.7 TABLE 9.2 and Rho Values for Hammett Equation (Continued) pK a Acid pK a Phenylacetic acids 4.30 0.49 Phenylpropiolic acids (in aqueous 35% dioxane) 3.24 0.81 Phenylpropionic acids 4.45 0.21 Phenyltrifluoromethylcarbinols 11.90 1.01 Pyridine-1-oxides 0.94 2.09 2-Pyridones 11.65 4.28 4-Pyridones 11.12 4.28 Pyrroles 17.00 4.28 5-Substituted pyrrole-2-carboxylic acids 2.82 1.40 Thiobenzoic acids 2.61 1.0 Thiophenols 6.50 2.2 Trifluoroacetophenone hydrates 10.00 1.11 5-Substituted topolones 6.42 3.10 Protonated cations of Acetophenones 6.0 2.6 Anilines 4.60 2.90 C-Aryl-N-dibutylamidines (in aqueous 50% ethanol) 11.14 1.41 N,N-Dimethylanilines 5.07 3.46 Isoquinolines 5.32 5.90 1-Naphthylamines 3.85 2.81 2-Naphthylamines 4.29 2.81 Pyridines 5.18 5.90 Quinolines 4.88 5.90 TABLE 9.3 and Rho Values for Taft Equation pK a Acid pK a RCOOH 4.66 1.62 RCH2COOH 4.76 0.67 RC#C9COOH 2.39 1.89 H2C"C(R)9COOH 4.39 0.64 (CH3)2C"C(R)9COOH 4.65 0.47 cis-C6H59CH"C(R)9COOH 3.77 0.63 trans-C6H59CH"C(R)9COOH 4.61 0.47 R9CO9CH29COOH 4.12 0.43 HON"C(R)9COOH 4.84 0.34 RCH2OH 15.9 1.42 RCH(OH)2 14.4 1.42 R1CO9NHR2 22.0 3.1 CH3CO9C(R)"C(OH)CH3 9.25 1.78 CH3CO9CH(R)9CO9OC2H5 12.59 3.44 R9CO9NHOH 9.48 0.98 R1R2C"NOH (R1, R2 not acyl groups) 12.35 1.18 (R)(CH3CO)C"NOH 9.00 0.94 RC(NO2)2H 5.24 3.60 RSH 10.22 3.50 RCH2SH 10.54 1.47 R9CO9SH 3.52 1.62 9.8 SECTION 9 TABLE 9.3 and Rho Values for Taft Equation (Continued) pK a Acid pK a Protonated cations of RNH2 10.15 3.14 R1R2NH 10.59 3.23 R1R2R3N 9.61 3.30 R1R2PH 3.59 2.61 R1R2R3P 7.85 2.67 for R1CO and R2.
Two modified sigma constants have been formulated for situations in which the substituent enters into resonance with the reaction center in an electron-demanding transition state () or for an electron-rich transition state (). constants give better correlations in reactions involving phe-nols, anilines, and pyridines and in nucleophilic substitutions. Values of some modified sigma con-stants are given in Table 9.4.
TABLE 9.4 Special Hammett Sigma Constants Substituent m p p 9CH3 0.07 0.31 0.17 9C(CH3)3 0.06 0.26 9C6H5 0.11 0.18 9CF3 0.52 0.61 0.74 9F 0.35 0.07 0.02 9Cl 0.40 0.11 0.23 9Br 0.41 0.15 0.26 9I 0.36 0.14 9CN 0.56 0.66 0.88 9CHO 1.13 9CONH2 0.63 9COCH3 0.85 9COOH 0.32 0.42 0.73 9CO9OCH3 0.37 0.49 0.66 9CO9OCH2CH3 0.37 0.48 0.68 9N2 3.2 9NH2 0.16 1.3 0.66 9N(CH3)2 1.7 9N(CH3)3 0.36 0.41 9NH9CO9CH3 0.60 9NO2 0.67 0.79 1.25 9OH 0.92 9O 0.81 9OCH3 0.05 0.78 0.27 9SF5 0.70 9SCF3 0.57 9SO2CH3 1.05 9SO2CF3 1.36 SECTION 10 POLYMERS, RUBBERS, FATS, OILS, AND WAXES 10.1 POLYMERS 10.2 10.2 ADDITIVES TO POLYMERS 10.4 10.2.1 Antioxidants 10.4 10.2.2 Antistatic Agents 10.4 10.2.3 Chain-Transfer Agents 10.4 10.2.4 Coupling Agents 10.4 10.2.5 Flame Retardants 10.5 10.2.6 Foaming Agents (Chemical Blowing Agents) 10.5 10.2.7 Inhibitors 10.6 10.2.8 Lubricants 10.6 Table 10.1 Plastic Families 10.6 10.2.9 Plasticizers 10.7 10.2.10 Ultraviolet Stabilizers 10.7 10.2.11 Vulcanization and Curing 10.7 10.3 FORMULAS AND KEY PROPERTIES OF PLASTIC MATERIALS 10.8 10.3.1 Acetals 10.8 10.3.2 Acrylics 10.8 10.3.3 Alkyds 10.9 10.3.4 Alloys 10.10 10.3.5 Allyls 10.10 10.3.6 Cellulosics 10.10 10.3.7 Epoxy 10.11 10.3.8 Fluorocarbon 10.12 10.3.9 Nitrile Resins 10.13 10.3.10 Melamine Formaldehyde 10.13 10.3.11 Phenolics 10.14 10.3.12 Polyamides 10.14 10.3.13 Poly(amide-imide) 10.15 10.3.14 Polycarbonate 10.15 10.3.15 Polyester 10.15 10.3.16 Poly(methylpentene) 10.16 10.3.17 Polyolefins 10.16 10.3.18 Poly(phenylene Sulfide) 10.17 10.3.19 Polyurethane 10.18 10.3.20 Silicones 10.18 10.3.21 Styrenics 10.19 10.3.22 Sulfones 10.20 10.3.23 Thermoplastic Elastomers 10.20 10.3.24 Vinyl 10.20 10.3.25 Urea Formaldehyde 10.21 Table 10.2 Properties of Commercial Plastics 10.22 10.4 FORMULAS AND ADVANTAGES OF RUBBERS 10.58 10.4.1 Gutta Percha 10.58 10.4.2 Natural Rubber 10.58 10.4.3 Chlorosulfonated Polyethylene 10.58 10.4.4 Epichlorohydrin 10.59 10.4.5 Nitrile Rubber (NBR, GRN, Buna N) 10.59 10.1 10.2 SECTION 10 10.4.6 Polyacrylate 10.59 10.4.7 cis-Polybutadiene Rubber (BR) 10.59 10.4.8 Polychloroprene (Neoprene) 10.60 10.4.9 Ethylene-Propylene-Diene Rubber (EPDM) 10.60 10.4.10 Polyisobutylene (Butyl Rubber) 10.60 10.4.11 (Z)-Polyisoprene (Synthetic Natural Rubber) 10.60 10.4.12 Polysulfide Rubbers 10.61 10.4.13 Poly(vinyl Chloride) (PVC) 10.61 10.4.14 Silicone Rubbers 10.61 10.4.15 Styrene-Butadiene Rubber (GRS, SBR, Buna S) 10.61 10.4.16 Urethane 10.62 Table 10.3 Properties of Natural and Synthetic Rubbers 10.63 10.5 CHEMICAL RESISTANCE 10.64 Table 10.4 Resistance of Selected Polymers and Rubbers to Various Chemicals at 20C 10.64 10.6 GAS PERMEABILITY 10.66 Table 10.5 Gas Permeability Constants (1010 P) at 25C for Polymers and Rubbers 10.66 Table 10.6 Vapor Permeability Constants (1010 P) at 35C for Polymers 10.69 10.7 FATS, OILS, AND WAXES 10.69 Table 10.7 Constants of Fats and Oils 10.69 Table 10.8 Constants of Waxes 10.72 10.1 POLYMERS Polymers are mixtures of macromolecules with similar structures and molecular weights that exhibit some average characteristic properties. In some polymers long segments of linear polymer chains are oriented in a regular manner with respect to one another. Such polymers have many of the physical characteristics of crystals and are said to be crystalline. Polymers that have polar functional groups show a considerable tendency to be crystalline. Orientation is aided by alignment of dipoles on different chains. Van der Waals’ interactions between long hydrocarbon chains may provide sufficient total attractive energy to account for a high degree of regularity within the polymers.
Irregularities such as branch points, comonomer units, and cross-links lead to amorphous poly-mers. They do not have true melting points but instead have glass transition temperatures at which the rigid and glasslike material becomes a viscous liquid as the temperature is raised.
Elastomers.
Elastomers is a generic name for polymers that exhibit rubberlike elasticity. Elas-tomers are soft yet sufficiently elastic that they can be stretched several hundred percent under tension. When the stretching force is removed, they retract rapidly and recover their original di-mensions.
Polymers that soften or melt and then solidify and regain their original properties on cooling are called thermoplastic. A thermoplastic polymer is usually a single strand of linear polymer with few if any cross-links.
Thermosetting Polymers.
Polymers that soften or melt on warming and then become infusible solids are called thermosetting. The term implies that thermal decomposition has not taken place.
Thermosetting plastics contain a cross-linked polymer network that extends through the finished article, making it stable to heat and insoluble in organic solvents. Many molded plastics are shaped while molten and are then heated further to become rigid solids of desired shapes.
POLYMERS, RUBBERS, FATS, OILS, AND WAXES 10.3 Synthetic Rubbers.
Synthetic rubbers are polymers with rubberlike characteristics that are pre-pared from dienes or olefins. Rubbers with special properties can also be prepared from other poly-mers, such as polyacrylates, fluorinated hydrocarbons, and polyurethanes.
Structural Differences.
Polymers exhibit structural differences. A linear polymer consists of long segments of single strands that are oriented in a regular manner with respect to one another.
Branched polymers have substituents attached to the repeating units that extend the polymer laterally.
When these units participate in chain propagation and link together chains, a cross-linked polymer is formed. A ladder polymer results when repeating units have a tetravalent structure such that a polymer consists of two backbone chains regularly cross-linked at short intervals.
Generally polymers involve bonding of the most substituted carbon of one monomeric unit to the least substituted carbon atom of the adjacent unit in a head-to-tail arrangement. Substituents appear on alternate carbon atoms. Tacticity refers to the configuration of substituents relative to the backbone axis. In an isotactic arrangement, substituents are on the same plane of the backbone axis; that is, the configuration at each chiral center is identical.
In a syndiotactic arrangement, the substituents are in an ordered alternating sequence, appearing alternately on one side and then on the other side of the chain, thus In an atactic arrangement, substituents are in an unordered sequence along the polymer chains.
Copolymerization.
Copolymerization occurs when a mixture of two or more monomer types polymerizes so that each kind of monomer enters the polymer chain. The fundamental structure resulting from copolymerization depends on the nature of the monomers and the relative rates of monomer reactions with the growing polymer chain. A tendency toward alternation of monomer units is common.
9X9Y9X9Y9X9Y9 Random copolymerization is rather unusual. Sometimes a monomer which does not easily form a homopolymer will readily add to a reactive group at the end of a growing polymer chain. In turn, that monomer tends to make the other monomer much more reactive.
In graft copolymers the chain backbone is composed of one kind of monomer and the branches are made up of another kind of monomer.
The structure of a block copolymer consists of a homopolymer attached to chains of another homo-polymer.
9XXXX9YYY9XXXX9YYY9 Configurations around any double bond give rise to cis and trans stereoisomerism.
10.4 SECTION 10 10.2 ADDITIVES TO POLYMERS 10.2.1 Antioxidants Antioxidants markedly retard the rate of autoxidation throughout the useful life of the polymer.
Chain-terminating antioxidants have a reactive 9NH or 9OH functional group and include com-pounds such as secondary aryl amines or hindered phenols. They function by transfer of hydrogen to free radicals, principally to peroxy radicals. Butylated hydroxytoluene is a widely used example.
Peroxide-decomposing antioxidants destroy hydroperoxides, the sources of free radicals in poly-mers. Phosphites and thioesters such as tris(nonylphenyl) phosphite, distearyl pentaerythritol di-phosphite, and dialkyl thiodipropionates are examples of peroxide-decomposing antioxidants.
10.2.2 Antistatic Agents External antistatic agents are usually quaternary ammonium salts of fatty acids and ethoxylated glycerol esters of fatty acids that are applied to the plastic surface. Internal antistatic agents are compounded into plastics during processing. Carbon blacks provide a conductive path through the bulk of the plastic. Other types of internal agents must bloom to the surface after compounding in order to be active. These latter materials are ethoxylated fatty amines and ethoxylated glycerol esters of fatty acids, which often must be individually selected to match chemically each plastic type.
Antistatic agents require ambient moisture to function. Consequently their effectiveness is de-pendent on the relative humidity. They provide a broad range of protection at 50% relative humidity.
Much below 20% relative humidity, only materials which provide a conductive path through the bulk of the plastic to ground (such as carbon black) will reduce electrostatic charging.
10.2.3 Chain-Transfer Agents Chain-transfer agents are used to regulate the molecular weight of polymers. These agents react with the developing polymer and interrupt the growth of a particular chain. The products, however, are free radicals that are capable of adding to monomers and initiating the formation of new chains. The overall effect is to reduce the average molecular weight of the polymer without reducing the rate of polymerization. Branching may occur as a result of chain transfer between a growing but rather short chain with another and longer polymer chain. Branching may also occur if the radical end of a growing chain abstracts a hydrogen from a carbon atom four or five carbons removed from the end.
Thiols are commonly used as chain-transfer agents.
10.2.4 Coupling Agents Coupling agents are molecular bridges between the interface of an inorganic surface (or filler) and an organic polymer matrix. Titanium-derived coupling agents interact with the free protons at the inorganic interface to form organic monomolecular layers on the inorganic surface. The titanate-coupling-agent molecule has six functions: POLYMERS, RUBBERS, FATS, OILS, AND WAXES 10.5 where Type m n Monoalkoxy 1 3 Coordinate 4 2 Chelate 1 2 Function 1 is the attachment of the hydrolyzable portion of the molecule to the surface of the inorganic (or proton-bearing) species.
Function 2 is the ability of the titanate molecule to transesterify.
Function 3 affects performance as determined by the chemistry of alkylate, carboxyl, sulfonyl, phenolic, phosphate, pyrophosphate, and phosphite groups.
Function 4 provides van der Waals’ entanglement via long carbon chains.
Function 5 provides thermoset reactivity via functional groups such as methacrylates and amines.
Function 6 permits the presence of two or three pendent organic groups. This allows all func-tionality to be controlled to the first-, second-, or third-degree levels.
Silane coupling agents are represented by the formula Z9R9SiY3 where Y represents a hydrolyzable group (typically alkoxy); Z is a functional organic group, such as amino, methacryloxy, epoxy; and R typically is a small aliphatic linkage that serves to attach the functional organic group to silicon in a stable fashion. Bonding to surface hydroxy groups of inor-ganic compounds is accomplished by the 9SiY3 portion, either by direct bonding of this group or more commonly via its hydrolysis product 9Si(OH)3. Subsequent reaction of the functional organic group with the organic matrix completes the coupling reaction and establishes a covalent chemical bond from the organic phase through the silane coupling agent to the inorganic phase.
10.2.5 Flame Retardants Flame retardants are thought to function via several mechanisms, dependent upon the class of flame retardant used. Halogenated flame retardants are thought to function principally in the vapor phase either as a diluent and heat sink or as a free-radical trap that stops or slows flame propagation.
Phosphorus compounds are thought to function in the solid phase by forming a glaze or coating over the substrate that prevents the heat and mass transfer necessary for sustained combustion. With some additives, as the temperature is increased, the flame retardant acts as a solvent for the polymer, causing it to melt at lower temperatures and flow away from the ignition source.
Mineral hydrates, such as alumina trihydrate and magnesium sulfate heptahydrate, are used in highly filled thermoset resins.
10.2.6 Foaming Agents (Chemical Blowing Agents) Foaming agents are added to polymers during processing to form minute gas cells throughout the product. Physical foaming agents include liquids and gases. Compressed nitrogen is often used in 10.6 SECTION 10 injection molding. Common liquid foaming agents are short-chain aliphatic hydrocarbons in the C5 to C7 range and their chlorinated or fluorinated analogs.
The chemical foaming agent used varies with the temperature employed during processing. At relatively low temperatures (15 to 200C), the foaming agent is often 4,4-oxybis-(benzenesulfonylhydrazide) or p-toluenesulfonylhydrazide. In the midrange (160 to 232C), either sodium hydrogen carbonate or 1,1azobisformamide is used. For the high range (200 to 285C), there are p-toluenesulfonyl semicarbazide, 5-phenyltetrazole and analogs, and trihydrazinotriazine.
10.2.7 Inhibitors Inhibitors slow or stop polymerization by reacting with the initiator or the growing polymer chain.
The free radical formed from an inhibitor must be sufficiently unreactive that it does not function as a chain-transfer agent and begin another growing chain. Benzoquinone is a typical free-radical chain inhibitor. The resonance-stabilized free radical usually dimerizes or disproportionates to pro-duce inert products and end the chain process.
10.2.8 Lubricants Materials such as fatty acids are added to reduce the surface tension and improve the handling qualities of plastic films.
TABLE 10.1 Plastic Families Acetals Acrylics Poly(methyl methacrylate) (PMMA) Poly(acrylonitrile) Alkyds Alloys Acrylic-poly(vinyl chloride) alloy Acrylonitrile-butadiene-styrene-poly(vinyl chlo-ride) alloy (ABS-PVC) Acrylonitrile-butadiene-styrene-polycarbonate al-loy (ABS-PC) Allyls Allyl-diglycol-carbonate polymer Diallyl phthalate (DAP) polymer Cellulosics Cellulose acetate resin Cellulose-acetate-propionate resin Cellulose-acetate-butyrate resin Cellulose nitrate resin Ethyl cellulose resin Rayon Chlorinated polyether Epoxy Fluorocarbons Poly(tetrafluoroethylene) (PTFE) Poly(chlorotrifluoroethylene) (PCTFE) Perfluoroalkoxy (PFA) resin Fluorinated ethylene-propylene (FEP) resin Fluorocarbons (continued) Poly(vinylidene fluoride) (PVDF) Ethylene-chlorotrifluoroethylene copolymer Ethylene-tetrafluoroethylene copolymer Poly(vinyl fluoride) (PVF) Melamine formaldehyde Melamine phenolic Nitrile resins Phenolics Polyamides Nylon 6 Nylon 6/6 Nylon 6/9 Nylon 6/12 Nylon 11 Nylon 12 Aromatic nylons Poly(amide-imide) Poly(aryl ether) Polycarbonate (PC) Polyesters Poly(butylene terephthalate) (PBT) [also called polytetramethylene terephthalate (PTMT)] Poly(ethylene terephthalate) (PET) Unsaturated polyesters (SMC, BMC) Butadiene-maleic acid copolymer (BMC) Styrene-maleic acid copolymer (SMC) Polyimide POLYMERS, RUBBERS, FATS, OILS, AND WAXES 10.7 TABLE 10.1 Plastic Families (Continued) Poly(methylpentene) Polyolefins (PO) Low-density polyethylene (LDPE) High-density polyethylene (HDPE) Ultrahigh-molecular-weight polyethylene (UHMWPE) Polypropylene (PP) Polybutylene (PB) Polyallomers Poly(phenylene oxide) Poly(phenylene sulfide) (PPS) Polyurethanes Silicones Styrenics Polystyrene (PS) Acrylonitrile-butadiene-styrene (ABS) copolymer Styrene-acrylonitrile (SAN) copolymer Styrene-butadiene copolymer Sulfones Polysulfone (PSF) Sulfones (continued) Poly(ether sulfone) Poly(phenyl sulfone) Thermoplastic elastomers Polyolefin Polyester Block copolymers Styrene-butadiene block copolymer Styrene-isoprene block copolymer Styrene-ethylene block copolymer Styrene-butylene block copolymer Urea formaldehyde Vinyls Poly(vinyl chloride) (PVC) Poly(vinyl acetate) (PVAC) Poly(vinylidene chloride) Poly(vinyl butyrate) (PVB) Poly(vinyl formal) Poly(vinyl alcohol) (PVAL) 10.2.9 Plasticizers Plasticizers are relatively nonvolatile liquids which are blended with polymers to alter their properties by intrusion between polymer chains. Diisooctyl phthalate is a common plasticizer. A plasticizer must be compatible with the polymer to avoid bleeding out over long periods of time. Products containing plasticizers tend to be more flexible and workable.
10.2.10 Ultraviolet Stabilizers 2-Hydroxybenzophenones represent the largest and most versatile class of ultraviolet stabilizers that are used to protect materials from the degradative effects of ultraviolet radiation. They function by absorbing ultraviolet radiation and by quenching electronically excited states.
Hindered amines, such as 4-(2,2,6,6-tetramethylpiperidinyl) decanedioate, serve as radical scav-engers and will protect thin films under conditions in which ultraviolet absorbers are ineffective.
Metal salts of nickel, such as dibutyldithiocarbamate, are used in polyolefins to quench singlet oxygen or electronically excited states of other species in the polymer. Zinc salts function as peroxide decomposers.
10.2.11 Vulcanization and Curing Originally, vulcanization implied heating natural rubber with sulfur, but the term is now also em-ployed for curing polymers. When sulfur is employed, sulfide and disulfide cross-links form between polymer chains. This provides sufficient rigidity to prevent plastic flow. Plastic flow is a process in which coiled polymers slip past each other under an external deforming force; when the force is released, the polymer chains do not completely return to their original positions.
Organic peroxides are used extensively for the curing of unsaturated polyester resins and the polymerization of monomers having vinyl unsaturation. The 9O9O9 bond is split into free radicals which can initiate polymerization or cross-linking of various monomers or polymers.
10.8 SECTION 10 10.3 FORMULAS AND KEY PROPERTIES OF PLASTIC MATERIALS 10.3.1 Acetals 10.3.1.1 Homopolymer.
Acetal homopolymers are prepared from formaldehyde and consist of high-molecular-weight linear polymers of formaldehyde.
The good mechanical properties of this homopolymer result from the ability of the oxymethylene chains to pack together into a highly ordered crystalline configuration as the polymers change from the molten to the solid state.
Key properties include high melt point, strength and rigidity, good frictional properties, and resistance to fatigue. Higher molecular weight increases toughness but reduces melt flow.
10.3.1.2 Copolymer.
Acetal copolymers are prepared by copolymerization of 1,3,5-trioxane with small amounts of a comonomer. Carbon-carbon bonds are distributed randomly in the polymer chain.
These carbon-carbon bonds help to stabilize the polymer against thermal, oxidative, and acidic attack.
10.3.2 Acrylics 10.3.2.1 Poly(methyl Methacrylate).
The monomer used for poly(methyl methacrylate), 2-hy-droxy-2-methylpropanenitrile, is prepared by the following reaction: 2-Hydroxy-2-methylpropanenitrile is then reacted with methanol (or other alcohol) to yield meth-acrylate ester. Free-radical polymerization is initiated by peroxide or azo catalysts and produce poly(methyl methacrylate) resins having the following formula: Key properties are improved resistance to heat, light, and weathering. This polymer is unaffected by most detergents, cleaning agents, and solutions of inorganic acids, alkalies, and aliphatic hydro-carbons. Poly(methyl methacrylate) has light transmittance of 92% with a haze of 1 to 3% and its clarity is equal to glass.
POLYMERS, RUBBERS, FATS, OILS, AND WAXES 10.9 10.3.2.2 Poly(methyl Acrylate).
The monomer used for preparing poly(methyl acrylate) is pro-duced by the oxidation of propylene. The resin is made by free-radical polymerization initiated by peroxide or azo catalysts and has the following formula: Resins vary from soft, elastic, film-forming materials to hard plastics.
10.3.2.3 Poly(acrylic Acid) and Poly(methacrylic Acid).
Glacial acrylic acid and glacial meth-acrylic acid can be polymerized to produce water-soluble polymers having the following structures: These monomers provide a means for introducing carboxyl groups into copolymers. In copolymers these acids can improve adhesion properties, improve freeze-thaw and mechanical stability of poly-mer dispersions, provide stability in alkalies (including ammonia), increase resistance to attack by oils, and provide reactive centers for cross-linking by divalent metal ions, diamines, or epoxides.
10.3.2.4 Functional Group Methacrylate Monomers.
Hydroxyethyl methacrylate and dimeth-ylaminoethyl methacrylate produce polymers having the following formulas: The use of hydroxyethyl (also hydroxypropyl) methacrylate as a monomer permits the introduction of reactive hydroxyl groups into the copolymers. This offers the possibility for subsequent cross-linking with an HO-reactive difunctional agent (diisocyanate, diepoxide, or melamine-formaldehyde resin). Hydroxyl groups promote adhesion to polar substrates.
Use of dimethylaminoethyl (also tert-butylaminoethyl) methacrylate as a monomer permits the introduction of pendent amino groups which can serve as sites for secondary cross-linking, provide a way to make the copolymer acid-soluble, and provide anchoring sites for dyes and pigments.
10.3.2.5 Poly(acrylonitrile).
Poly(acrylonitrile) polymers have the following formula: 10.3.3 Alkyds Alkyds are formulated from polyester resins, cross-linking monomers, and fillers of mineral or glass.
The unsaturated polyester resins used for thermosetting alkyds are the reaction products of poly-functional organic alcohols (glycols) and dibasic organic acids.
10.10 SECTION 10 Key properties of alkyds are dimensional stability, colorability, and arc track resistance. Chemical resistance is generally poor.
10.3.4 Alloys Polymer alloys are physical mixtures of structurally different homopolymers or copolymers. The mixture is held together by secondary intermolecular forces such as dipole interaction, hydrogen bonding, or van der Waals’ forces.
Homogeneous alloys have a single glass transition temperature which is determined by the ratio of the components. The physical properties of these alloys are averages based on the composition of the alloy.
Heterogeneous alloys can be formed when graft or block copolymers are combined with a com-patible polymer. Alloys of incompatible polymers can be formed if an interfacial agent can be found.
10.3.5 Allyls 10.3.5.1 Diallyl Phthalate (and Diallyl 1,3-Phthalate).
These allyl polymers are prepared from These resulting polymers are solid, linear, internally cyclized, thermoplastic structures containing unreacted allylic groups spaced at regular intervals along the polymer chain.
Molding compounds with mineral, glass, or synthetic fiber filling exhibit good electrical prop-erties under high humidity and high temperature conditions, stable low-loss factors, high surface and volume resistivity, and high arc and track resistance.
10.3.6 Cellulosics 10.3.6.1 Cellulose Triacetate.
Cellulose triacetate is prepared according to the following reac-tion: Because cellulose triacetate has a high softening temperature, it must be processed in solution. A mixture of dichloromethane and methanol is a common solvent.
Cellulose triacetate sheeting and film have good gauge uniformity and good optical clarity. Cel-lulose triacetate products have good dimensional stability and resistance to water and have good folding endurance and burst strength. It is highly resistant to solvents such as acetone. Cellulose triacetate products have good heat resistance and a high dielectric constant.
10.3.6.2 Cellulose Acetate, Propionate, and Butyrate.
Cellulose acetate is prepared by hydro-lyzing the triester to remove some of the acetyl groups; the plastic-grade resin contains 38 to 40% POLYMERS, RUBBERS, FATS, OILS, AND WAXES 10.11 acetyl. The propionate and butyrate esters are made by substituting propionic acid and its anhydride (or butyric acid and its anhydride) for some of the acetic acid and acetic anhydride. Plastic grades of cellulose-acetate-propionate resin contain 39 to 47% propionyl and 2 to 9% acetyl; cellulose-acetate-butyrate resins contain 26 to 39% butyryl and 12 to 15% acetyl.
These cellulose esters form tough, strong, stiff, hard plastics with almost unlimited color possi-bilities. Articles made from these plastics have a high gloss and are suitable for use in contact with food.
10.3.6.3 Cellulose Nitrate.
Cellulose nitrate is prepared according to the following reaction: C6H10O5 HNO3 : [9C6H7O2(OH)(ONO2)29]n The nitrogen content for plastics is usually about 11%, for lacquers and cement base it is 12%, and for explosives it is 13%. The standard plasticizer added is camphor.
Key properties of cellulose nitrate are good dimensional stability, low water absorption, and toughness. Its disadvantages are its flammability and lack of stability to heat and sunlight.
10.3.6.4 Ethyl Cellulose.
Ethyl cellulose is prepared by reacting cellulose with caustic to form caustic cellulose, which is then reacted with chloroethane to form ethyl cellulose. Plastic-grade material contains 44 to 48% ethoxyl.
Although not as resistant as cellulose esters to acids, it is much more resistant to bases. An outstanding feature is its toughness at low temperatures.
10.3.6.5 Rayon.
Viscose rayon is obtained by reacting the hydroxy groups of cellulose with carbon disulfide in the presence of alkali to give xanthates. When this solution is poured (spun) into an acid medium, the reaction is reversed and the cellulose is regenerated (coagulated).
10.3.7 Epoxy Epoxy resin is prepared by the following condensation reaction: The condensation leaves epoxy end groups that are then reacted in a separate step with nucleophilic compounds (alcohols, acids, or amines). For use as an adhesive, the epoxy resin and the curing resin (usually an aliphatic polyamine) are packaged separately and mixed together immediately before use.
Epoxy novolac resins are produced by glycidation of the low-molecular-weight reaction products of phenol (or cresol) with formaldehyde. Highly cross-linked systems are formed that have superior performance at elevated temperatures.
10.12 SECTION 10 10.3.8 Fluorocarbon 10.3.8.1 Poly(tetrafluoroethylene).
Poly(tetrafluoroethylene) is prepared from tetrafluoroethy-lene and consists of repeating units in a predominantly linear chain: F2C"CF2 : [9CF29CF29]n Tetrafluoroethylene polymer has the lowest coefficient of friction of any solid. It has remarkable chemical resistance and a very low brittleness temperature (100C). Its dielectric constant and loss factor are low and stable across a broad temperature and frequency range. Its impact strength is high.
10.3.8.2 Fluorinated Ethylene-Propylene Resin.
Polymer molecules of fluorinated ethylene-propylene consist of predominantly linear chains with this structure: Key properties are its flexibility, translucency, and resistance to all known chemicals except molten alkali metals, elemental fluorine and fluorine precursors at elevated temperatures, and con-centrated perchloric acid. It withstands temperatures from 270 to 250C and may be sterilized repeatedly by all known chemical and thermal methods.
10.3.8.3 Perfluoroalkoxy Resin.
Perfluoroalkoxy resin has the following formula: It resembles polytetrafluoroethylene and fluorinated ethylene propylene in its chemical resistance, electrical properties, and coefficient of friction. Its strength, hardness, and wear resistance are about equal to the former plastic and superior to that of the latter at temperatures above 150C.
10.3.8.4 Poly(vinylidene Fluoride).
Poly(vinylidene fluoride) consists of linear chains in which the predominant repeating unit is [9CH29CF29]n It has good weathering resistance and does not support combustion. It is resistant to most chem-icals and solvents and has greater strength, wear resistance, and creep resistance than the preceding three fluorocarbon resins.
10.3.8.5 Poly(1-Chloro-1,2,2-Trifluoroethylene).
Poly(1-chloro-1,2,2-trifluoroethylene consists of linear chains in which the predominant repeating unit is It possesses outstanding barrier properties to gases, especially water vapor. It is surpassed only by the fully fluorinated polymers in chemical resistance. A few solvents dissolve it at temperatures POLYMERS, RUBBERS, FATS, OILS, AND WAXES 10.13 above 100C, and it is swollen by a number of solvents, especially chlorinated solvents. It is harder and stronger than perfluorinated polymers, and its impact strength is lower.
10.3.8.6 Ethylene-Chlorotrifluoroethylene Copolymer.
Ethylene-chlorotrifluoroethylene co-polymer consists of linear chains in which the predominant 1:1 alternating copolymer is This copolymer has useful properties from cryogenic temperatures to 180C. Its dielectric constant is low and stable over a broad temperature and frequency range.
10.3.8.7 Ethylene-Tetrafluoroethylene Copolymer.
Ethylene-tetrafluoroethylene copolymer con-sists of linear chains in which the repeating unit is [9CH29CH29CF29CF29]n Its properties resemble those of ethylene-chlorotrifluoroethylene copolymer.
10.3.8.8 Poly(vinyl Fluoride).
Poly(vinyl fluoride) consists of linear chains in which the repeat-ing unit is [9CH29CHF9]n It is used only as a film, and it has good resistance to abrasion and resists staining. It also has outstanding weathering resistance and maintains useful properties from 100 to 150C.
10.3.9 Nitrile Resins The principal monomer of nitrile resins is acrylonitrile (see “Polyacrylonitrile”), which constitutes about 70% by weight of the polymer and provides the polymer with good gas barrier and chemical resistance properties. The remainder of the polymer is 20 to 30% methylacrylate (or styrene), with 0 to 10% butadiene to serve as an impact-modifying termonomer.
10.3.10 Melamine Formaldehyde The monomer used for preparing melamine formaldehyde is formed as follows: Hexamethylolmelamine can further condense in the presence of an acid catalyst; ether linkages can also form (see “Urea Formaldehyde”). A wide variety of resins can be obtained by careful selection of pH, reaction temperature, reactant ratio, amino monomer, and extent of condensation. Liquid coating resins are prepared by reacting methanol or butanol with the initial methylolated products.
These can be used to produce hard, solvent-resistant coatings by heating with a variety of hydroxy, carboxyl, and amide functional polymers to produce a cross-linked film.
10.14 SECTION 10 10.3.11 Phenolics 10.3.11.1 Phenol-Formaldehyde Resin.
Phenol-formaldehyde resin is prepared as follows: C6H5OH H2C"O : [9C6H2(OH)CH29]n One-Stage Resins.
The ratio of formaldehyde to phenol is high enough to allow the thermoset-ting process to take place without the addition of other sources of cross-links.
Two-Stage Resins.
The ratio of formaldehyde to phenol is low enough to prevent the thermo-setting reaction from occurring during manufacture of the resin. At this point the resin is termed novolac resin. Subsequently, hexamethylenetetramine is incorporated into the material to act as a source of chemical cross-links during the molding operation (and conversion to the thermoset or cured state).
10.3.12 Polyamides 10.3.12.1 Nylon 6, 11, and 12.
This class of polymers is polymerized by addition reactions of ring compounds that contain both acid and amine groups on the monomer.
Nylon 6 is polymerized from 2-oxohexamethyleneimine (6 carbons); nylon 11 and 12 are made this way from 11- and 12-carbon rings, respectively.
10.3.12.2 Nylon 6/6, 6/9, and 6/12.
As illustrated below, nylon 6/6 is polymerized from 1,6-hexanedioic acid (six carbons) and 1,6-hexanediamine (six carbons).
Other nylons are made this way from direct combinations of monomers to produce types 6/9, 6/10, and 6/12.
Nylon 6 and 6/6 possess the maximum stiffness, strength, and heat resistance of all the types of nylon. Type 6/6 has a higher melt temperature, whereas type 6 has a higher impact resistance and better processibility. At a sacrifice in stiffness and heat resistance, the higher analogs of nylon are useful primarily for improved chemical resistance in certain environments (acids, bases, and zinc chloride solutions) and for lower moisture absorption.
Aromatic nylons, [9NH9C6H49CO9]n (also called aramids), have specialty uses because of their improved clarity.
POLYMERS, RUBBERS, FATS, OILS, AND WAXES 10.15 10.3.13 Poly(amide-imide) Poly(amide-imide) is the condensation polymer of 1,2,4-benzenetricarboxylic anhydride and various aromatic diamines and has the general structure: It is characterized by high strength and good impact resistance, and retains its physical properties at temperatures up to 260C. Its radiation (gamma) resistance is good.
10.3.14 Polycarbonate Polycarbonate is a polyester in which dihydric (or polyhydric) phenols are joined through carbonate linkages. The general-purpose type of polycarbonate is based on 2,2-bis(4-hydroxybenzene)propane (bisphenol A) and has the general structure: Polycarbonates are the toughest of all thermoplastics. They are window-clear, amazingly strong and rigid, autoclavable, and nontoxic. They have a brittleness temperature of 135C.
10.3.15 Polyester 10.3.15.1 Poly(butylene Terephthalate).
Poly(butylene terephthalate) is prepared in a conden-sation reaction between dimethyl terephthalate and 1,4-butanediol and its repeating unit has the general structure This thermoplastic shows good tensile strength, toughness, low water absorption, and good frictional properties, plus good chemical resistance and electrical properties.
10.3.15.2 Poly(ethylene Terephthalate).
Poly(ethylene terephthalate) is prepared by the reaction of either terephthalic acid or dimethyl terephthalate with ethylene glycol, and its repeating unit has the general structure.
10.16 SECTION 10 The resin has the ability to be oriented by a drawing process and crystallized to yield a high-strength product.
10.3.15.3 Unsaturated Polyesters.
Unsaturated polyesters are produced by reaction between two types of dibasic acids, one of which is unsaturated, and an alcohol to produce an ester. Double bonds in the body of the unsaturated dibasic acid are obtained by using maleic anhydride or fumaric acid.
10.3.15.4 PCTA Copolyester.
Poly(1,4-cyclohexanedimethylene terephthalic acid) (PCTA) co-polyester is a polymer of cyclohexanedimethanol and terephthalic acid, with another acid substituted for a portion of the terephthalic acid otherwise required. It has the following formula: 10.3.15.5 Polyimides.
Polyimides have the following formula: They are used as high-temperature structural adhesives since they become rubbery rather than melt at about 300C.
10.3.16 Poly(methylpentene) Poly(methylpentene) is obtained by a Ziegler-type catalytic polymerization of 4-methyl-1-pentene.
Its key properties are its excellent transparency, rigidity, and chemical resistance, plus its resist-ance to impact and to high temperatures. It withstands repeated autoclaving, even at 150C.
10.3.17 Polyolefins 10.3.17.1 Polyethylene.
Polymerization of ethylene results in an essentially straight-chain high-molecular-weight hydrocarbon.
CH2"CH2 : [9CH29CH29]n Branching occurs to some extent and can be controlled. Minimum branching results in a “high-density” polyethylene because of its closely packed molecular chains. More branching gives a less compact solid known as “low-density” polyethylene.
POLYMERS, RUBBERS, FATS, OILS, AND WAXES 10.17 A key property is its chemical inertness. Strong oxidizing agents eventually cause some oxidation, and some solvents cause softening or swelling, but there is no known solvent for polyethylene at room temperature. The brittleness temperature is 100C for both types. Polyethylene has good low-temperature toughness, low water absorption, and good flexibility at subzero temperatures.
10.3.17.2 Polypropylene.
The polymerization of propylene results in a polymer with the follow-ing structure: The desired form in homopolymers is the isotactic arrangement (at least 93% is required to give the desired properties). Copolymers have a random arrangement. In block copolymers a secondary reactor is used where active polymer chains can further polymerize to produce segments that use ethylene monomer.
Polypropylene is translucent and autoclavable and has no known solvent at room temperature. It is slightly more susceptible to strong oxidizing agents than polyethylene.
10.3.17.3 Polybutylene.
Polybutylene is composed of linear chains having an isotactic arrange-ment of ethyl side groups along the chain backbone.
It has a helical conformation in the stable crystalline form.
Polybutylene exhibits high tear, impact, and puncture resistance. It also has low creep, excellent chemical resistance, and abrasion resistance with coilability.
10.3.17.4 Ionomer.
Ionomer is the generic name for polymers based on sodium or zinc salts of ethylene-methacrylic acid copolymers in which interchain ionic bonding, occurring randomly be-tween the long-chain polymer molecules, produces solid-state properties.
The abrasion resistance of ionomers is outstanding, and ionomer films exhibit optical clarity. In composite structures ionomers serve as a heat-seal layer.
10.3.18 Poly(phenylene Sulfide) Poly(phenylene sulfide) has the following formula: The recurring para-substituted benzene rings and sulfur atoms form a symmetrical rigid backbone.
The high degree of crystallization and the thermal stability of the bond between the benzene ring and sulfur are the two properties responsible for the polymer’s high melting point, thermal stability, inherent flame retardance, and good chemical resistance. There are no known solvents of poly(phenylene sulfide) that can function below 205C.
10.18 SECTION 10 10.3.19 Polyurethane 10.3.19.1 Foams.
Polyurethane foams are prepared by the polymerization of polyols with iso-cyanates.
Commonly used isocyanates are toluene diisocyanate, methylene diphenyl isocyanate, and polymeric isocyanates. Polyols used are macroglycols based on either polyester or polyether. The former [poly(ethylene phthalate) or poly(ethylene 1,6-hexanedioate)] have hydroxyl groups that are free to react with the isocyanate. Most flexible foam is made from 80/20 toluene diisocyanate (which refers to the ratio of 2,4-toluene diisocyanate to 2,6-toluene diisocyanate). High-resilience foam contains about 80% 80/20 toluene diisocyanate and 20% poly(methylene diphenyl isocyanate), while semi-flexible foam is almost always 100% poly(methylene diphenyl isocyanate). Much of the latter reacts by trimerization to form isocyanurate rings.
Flexible foams are used in mattresses, cushions, and safety applications. Rigid and semiflexible foams are used in structural applications and to encapsulate sensitive components to protect them against shock, vibration, and moisture. Foam coatings are tough, hard, flexible, and chemically resistant.
10.3.19.2 Elastomeric Fiber.
Elastomeric fibers are prepared by the polymerization of polymeric polyols with diisocyanates.
The structure of elastomeric fibers is similar to that illustrated for polyurethane foams.
10.3.20 Silicones Silicones are formed in the following multistage reaction: POLYMERS, RUBBERS, FATS, OILS, AND WAXES 10.19 The silanols formed above are unstable and under dehydration. On polycondensation, they give polysiloxanes (or silicones) which are characterized by their three-dimensional branched-chainstruc-ture. Various organic groups introduced within the polysiloxane chain impart certain characteristics and properties to these resins.
Methyl groups impart water repellency, surface hardness, and noncombustibility.
Phenyl groups impart resistance to temperature variations, flexibility under heat, resistance to abrasion, and compatibility with organic products.
Vinyl groups strengthen the rigidity of the molecular structure by creating easier cross-linkage of molecules.
Methoxy and alkoxy groups facilitate cross-linking at low temperatures.
Oils and gums are nonhighly branched- or straight-chain polymers whose viscosity increases with the degree of polycondensation.
10.3.21 Styrenics 10.3.21.1 Polystyrene.
Polystyrene has the following formula: Polystyrene is rigid with excellent dimensional stability, has good chemical resistance to aqueous solutions, and is an extremely clear material.
Impact polystyrene contains polybutadiene added to reduce brittleness. The polybutadiene is usually dispersed as a discrete phase in a continuous polystyrene matrix. Polystyrene can be grafted onto rubber particles, which assures good adhesion between the phases.
10.3.21.2 Acrylonitrile-Butadiene-Styrene (ABS) Copolymers.
This basic three-monomer sys-tem can be tailored to yield resins with a variety of properties. Acrylonitrile contributes heat resist-ance, high strength, and chemical resistance. Butadiene contributes impact strength, toughness, and retention of low-temperature properties. Styrene contributes gloss, processibility, and rigidity. ABS polymers are composed of discrete polybutadiene particles grafted with the styrene-acrylonitrile copolymer; these are dispersed in the continuous matrix of the copolymer.
10.3.21.3 Styrene-Acrylonitrile (SAN) Copolymers.
SAN resins are random, amorphous copoly-mers whose properties vary with molecular weight and copolymer composition. An increase in molecular weight or in acrylonitrile content generally enhances the physical properties of the co-polymer but at some loss in ease of processing and with a slight increase in polymer color.
SAN resins are rigid, hard, transparent thermoplastics which process easily and have good di-mensional stability—a combination of properties unique in transparent polymers.
10.20 SECTION 10 10.3.22 Sulfones Below are the fomulas for three polysulfones.
The isopropylidene linkage imparts chemical resistance, the ether linkage imparts temperature resistance, and the sulfone linkage imparts impact strength. The brittleness temperature of polysul-fones is 100C. Polysulfones are clear, strong, nontoxic, and virtually unbreakable. They do not hydrolyze during autoclaving and are resistant to acids, bases, aqueous solutions, aliphatic hydro-carbons, and alcohols.
10.3.23 Thermoplastic Elastomers 10.3.23.1 Polyolefins.
In these thermoplastic elastomers the hard component is a crystalline poly-olefin, such as polyethylene or polypropylene, and the soft portion is composed of ethylene-propyl-ene rubber. Attractive forces between the rubber and resin phases serve as labile cross-links. Some contain a chemically cross-linked rubber phase that imparts a higher degree of elasticity.
10.3.23.2 Styrene-Butadiene-Styrene Block Copolymers.
Styrene blocks associate into domains that form hard regions. The midblock, which is normally butadiene, ethylene-butene, or isoprene blocks, forms the soft domains. Polystyrene domains serve as cross-links.
10.3.23.3 Polyurethanes.
The hard portion of polyurethane consists of a chain extender and polyisocyanate. The soft component is composed of polyol segments.
10.3.23.4 Polyesters.
The hard portion consists of copolyester, and the soft portion is composed of polyol segments.
10.3.24 Vinyl 10.3.24.1 Poly(vinyl Chloride) (PVC).
Polymerization of vinyl chloride results in the formation of a polymer with the following formula: When blended with phthalate ester plasticizers, PVC becomes soft and pliable.
Its key properties are good resistance to oils and a very low permeability to most gases.
POLYMERS, RUBBERS, FATS, OILS, AND WAXES 10.21 10.3.24.2 Poly(vinyl Acetate).
Poly(vinyl acetate) has the following formula: Poly(vinyl acetate) is used in latex water paints because of its weathering, quick-drying, recoat-ability, and self-priming properties. It is also used in hot-melt and solution adhesives.
10.3.24.3 Poly(vinyl Alcohol).
Poly(vinyl alcohol) has the following formula: It is used in adhesives, paper coating and sizing, and textile warp size and finishing applications.
10.3.24.4 Poly(vinyl Butyral).
Poly(vinyl butyral) is prepared according to the following reac-tion: Its key characteristics are its excellent optical and adhesive properties. It is used as the interlayer film for safety glass.
10.3.24.5 Poly(vinylidene Chloride).
Poly(vinylidene chloride) is prepared according to the fol-lowing reaction: CH2"CCl2 CH2"CHCl : [9CH29CCl29CH29CHCl9]n Random copolymer 10.3.25 Urea Formaldehyde The reaction of urea with formaldehyde yields the following products, which are used as monomers in the preparation of urea formaldehyde resin.
H N9CO9NH H CO : H N9CO9NH9CH OH 2 2 2 2 2 HOCH 9NH9CO9NH9CH OH 2 2 The reaction conditions can be varied so that only one of those monomers is formed. 1-Hydroxy-methylurea and 1,3-bis(hydroxymethyl)urea condense in the presence of an acid catalyst to produce urea formaldehyde resins. A wide variety of resins can be obtained by careful selection of the pH, reaction temperature, reactant ratio, amino monomer, and degree of polymerization. If the reaction is carried far enough, an infusible polymer network is produced.
Liquid coating resins are prepared by reacting methanol or butanol with the initial hydroxyme-thylureas. Ether exchange reactions between the amino resin and the reactive sites on the polymer produce a cross-linked film.
TABLE 10.2 Properties of Commercial Plastics Acetal Properties Homopolymer Copolymer 20% glass-reinforced homopolymer 25% glass-reinforced copolymer 21% poly(tetrafluoroethylene)-filled homopolymer Physical Melting temperature, C Crystalline 175 175 181 175 181 Amorphous Specific gravity 1.42 1.41 1.56 1.61 1.54 Water absorption (24 h), % 0.25–0.40 0.22 0.25 0.29 0.20 Dielectric strength, KV · mm1 19.7 19.7 19.3 22.8 15.7 Electrical Volume (dc) resistivity, ohm-cm 1015 1015 5 1014 3 1016 Dielectric constant (60 Hz) 3.7 3.7 3.9 3.1 Dielectric constant (106 Hz) 3.7 3.7 3.9 3.1 Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) 0.005 0.005 0.005 0.005 Mechanical Compressive modulus, 103 lb · in2 670 450 10.22 Compressive strength, rupture or 1% yield, 103 lb · in2 5.29 16 (10% yield) 18 (10% yield) 17 (10% yield) 13 (10% yield) Elongation at break, % 25–75 40–75 7 3 15–22 Flexural modulus at 23C, 103 lb · in2 380–430 375 730 1100 340–350 Flexural strength, rupture or yield, 103 lb · in2 14 13 15 28 Hardness, Rockwell (or Shore) M94 M78 M90 M79 M78 Impact strength (Izod) at 23C, J · m1 69–123 53–80 43 96 37–64 Tensile modulus, 103 lb · in2 520 410 1000 1250 Tensile strength at break, 103 lb · in2 10 10 8.5 18.5 7.6 Tensile yield strength, 103 lb · in2 9.5–12 8.5 6.9–7.6 Thermal Burning rate, mm · min1 27.9 Coefficient of linear thermal ex-pansion, 106C 100 85 36–81 75 Deflection temperature under flex-ural load (264 lb · in2), C 124 110 157 163 100 Maximum recommended service temperature, C 84 Specific heat, cal · g1 0.35 Thermal conductivity, W · m1 · K1 0.23 0.23 10.23 TABLE 10.2 Properties of Commercial Plastics Acetal Properties Homopolymer Copolymer 20% glass-reinforced homopolymer 25% glass-reinforced copolymer 21% poly(tetrafluoroethylene)-filled homopolymer (Continued) TABLE 10.2 Properties of Commercial Plastics (Continued) Alloy Properties Acrylic Poly(methyl methacrylate) Cast sheet Impact-modified Heat-resistant Alkyd, molded Acrylic poly(vinyl chloride) alloy Acrylonitrile-butadiene-styrene-poly(vinyl chloride) alloy Physical Melting temperature, C Crystalline 90–105 90–105 80–100 100–125 105 Amorphous Specific gravity 1.17–1.20 1.18–1.20 1.11–1.18 1.16–1.19 2.22–2.24 Water absorption (24 h), % 0.1–0.4 0.2–0.4 0.2–0.8 0.2–0.3 0.06 Dielectric strength, KV · mm1 15.7–19.9 17.7–21.7 15.0–19.9 15.7–19.9 15.7 19.7 Electrical Volume (dc) resistivity, ohm-cm 1014 1014 Dielectric constant (60 Hz) 3.3–4.5 3.5–4.5 3.8–5.0 Dielectric constant (106 Hz) 3.0–3.5 3.6–4.7 Dissipation (power) factor (60 Hz) 0.04–0.06 0.012–0.026 Dissipation factor (106 Hz) 0.02–0.03 0.01–0.016 Mechanical Compressive modulus, 104 lb · in2 370–460 390–475 240–370 350–460 330–400 10.24 Compressive strength, rupture or 1% yield, 103 lb · in2 12–18 11–19 4–14 17 16–20 8.4 Elongation at break, % 2–10 2–7 20–70 3–5 100 Flexural modulus at 23C, 103 lb · in2 420–460 390–475 200–380 460–500 330–400 340 Flexural strength, rupture or yield, 103 lb · in2 13–19 12–17 7–13 12–16 10.7 9.6 Hardness, Rockwell (or Shore) M85–M105 M80–M100 R105–R120 M95–M105 E76 R99–R105 R100 Impact strength (Izod) at 23C, J · m1 16–27 16–21 43–133 16–21 27–240 800 560 Tensile modulus, 103 lb · in2 380–450 350–450 200–400 350–460 330–335 330 Tensile strength at break, 103 lb · in2 7–11 8–11 5–9 10 4.5–6.5 6.5 5.8 Tensile yield strength, 103 lb · in2 10–13 Thermal Burning rate, mm · min1 0.5–2.2 Self-extinguishing Coefficient of linear thermal expansion, 106C 50–90 50–90 50–80 50–60 40–55 46 Deflection temperature under flexural load (264 lb · in2), C 74–99 71–102 74–95 88–104 177–204 71 Maximum recommended service temperature, C 60–71 220 Specific heat, cal · g1 0.36 0.35 Thermal conductivity, W · m1, K1 0.17–0.25 0.17–0.25 0.17–0.21 0.19 10.25 TABLE 10.2 Properties of Commercial Plastics (Continued) Alloy Properties Acrylic Poly(methyl methacrylate) Cast sheet Impact-modified Heat-resistant Alkyd, molded Acrylic poly(vinyl chloride) alloy Acrylonitrile-butadiene-styrene-poly(vinyl chloride) alloy TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Alloy Polycarbonate acrylonitrile-butadiene-styrene alloy Allyl Allyl-diglycol-carbonate polymer Diallyl phthalate molding Glass-filled Mineral-filled Cellulosic Cellulose acetate Sheet Molding Cellulose-acetate-butyrate resin Sheet Physical Melting temperature, C Crystalline Thermoset Thermoset Thermoset 230 230 140 Amorphous 150 Specific gravity 1.12–1.20 1.3–1.4 1.7–2.0 1.65–1.85 1.27–1.34 1.29–1.34 1.15–1.22 Water absorption (24 h), % 0.21–0.24 0.2 0.12–0.35 0.2–0.5 2–7 1.7–6.5 0.9–2.2 Dielectric strength, kV · mm1 17.7 15.0 15.7–17.7 15.7–17.7 11–24 9–24 9–18 Electrical Volume (dc) resistivity, ohm-cm 1010–1013 1010–1013 1010–1012 Dielectric constant (60 Hz) 3.4–7.4 3.5–7.5 3.7–4.3 Dielectric constant (106 Hz) 3.2–7.0 3.2–7.0 3.3–3.8 Dissipation (power) factor (60 Hz) 0.01–0.06 0.01–0.06 0.01–0.04 Dissipation factor (106 Hz) 0.01–0.06 0.01–0.10 0.01–0.04 Mechanical Compressive modulus, 103 lb · in2 300 10.26 Compressive strength, rupture or 1% yield, 103 lb · in2 11 21–23 25–35 20–32 22–33 25–36 Elongation at break, % 10–15 3–5 3–5 17–40 6–40 50–100 Flexural modulus at 23C, 103 lb · in2 300–400 250–330 1200–1500 1000–1400 740–1300 Flexural strength, rupture or yield, 103 lb · in2 13.0–13.7 6–13 9–20 8.5–11 6–10 2–16 4–9 Hardness, Rockwell (or Shore) R117 M95–M100 E80–E87 E61 R85–R120 R100–R123 R50–R95 Impact strength (Izod) at 23C, J · m1 560 11–21 21–800 16–43 107–454 53–214 133–288 Tensile modulus, 103 lb · in2 370–380 300 1400–2200 1200–2200 200–250 Tensile strength at break, 103 lb · in2 7.0–7.3 5–6 6–11 5–8 4.5–8.0 1.9–9.0 2.6–6.9 Tensile yield strength, 103 lb · in2 8.5 2.2–7.4 4.1–7.6 Thermal Burning rate, mm · min1 1.3–3.8 1.3–3.8 Coefficient of linear thermal expansion, 106C 63–67 5.4–9.6 0.68–2.4 2.8 100–150 80–180 110–170 Deflection temperature under flexural load (264 lb · in2), C 104–116 60–88 165–288 160–288 44–91 51–98 49–58 Maximum recommended service temperature, C Specific heat, cal · g1 0.3–0.4 0.3–0.42 0.3–0.4 Thermal conductivity, W · m1 · K1 0.25–0.38 0.20–0.21 0.21–0.63 0.30–1.04 0.17–0.34 0.17–0.34 0.17–0.34 10.27 TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Alloy Polycarbonate acrylonitrile-butadiene-styrene alloy Allyl Allyl-diglycol-carbonate polymer Diallyl phthalate molding Glass-filled Mineral-filled Cellulosic Cellulose acetate Sheet Molding Cellulose-acetate-butyrate resin Sheet TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Cellulosic Cellulose-acetate butyrate resin, molding Cellulose-acetate propionate resin, molding Ethyl cellulose Cellulose nitrate Chlorinated polyether Epoxy Bisphenol Glass-fiber-reinforced Mineral-filled Physical Melting temperature, C Crystalline 140 190 135 125 Thermoset Thermoset Amorphous Specific gravity 1.15–1.22 1.17–1.24 1.09–1.17 1.35–1.40 1.4 1.6–2.0 1.6–2.1 Water absorption (24 h), % 0.9–2.2 1.2–2.8 0.8–1.8 0.04–0.20 0.03–0.20 Dielectric strength, kV · mm1 9–13 12–17.7 13.8–19.7 9.8–15.7 9.8–15.7 Electrical Volume (dc) resistivity, ohm-cm 1010–1012 1010 Dielectric constant (60 Hz) 3.5–6.4 7.0–7.5 Dielectric constant (106 Hz) 3.2–6.2 3.01 6.6 Dissipation (power) factor (60 Hz) 0.01–0.04 Dissipation factor (106 Hz) 0.01–0.04 Mechanical Compressive modulus, 103 lb · in2 3000 10.28 Compressive strength, rupture or 1% yield, 103 lb · in2 2.1–7.5 2.4–7.0 2.1–8.0 18,000–40,000 18,000–40,000 Elongation at break, % 40–88 29–100 5–40 40–45 600–800 4 Flexural modulus at 23C, 103 lb · in2 90–300 120–350 2–4.5 Flexural strength, rupture or yield, 103 lb · in2 1.8–9.3 2.9–11.4 4–12 9–11 5 8–30 6–18 Hardness, Rockwell (or Shore) R31–R116 R10–R122 R50–R115 R95–R115 R100 M100–M112 M100–M112 Impact strength (Izod) at 23C, J · m1 53–582 27 to no break 21 267–374 21 16–533 16–22 Tensile modulus, 103 lb · in2 50–200 60–215 190–220 3 Tensile strength at break, 103 lb · in2 2.6–6.9 2.0–7.8 2–8 7–8 1.5–1.8 5–20 4–10 Tensile yield strength, 103 lb · in2 Thermal Burning rate, mm · min1 1.3–3.8 Self-extinguishing Coefficient of linear thermal expansion, 106C 110–170 110–170 100–200 80–120 6.6 11–50 20–60 Deflection temperature under flexural load (264 lb · in2), C 44–94 44–109 45–88 60–71 185 107–260 107–260 Maximum recommended service temperature, C 255 Specific heat, cal · g1 0.3–0.4 0.31–0.41 Thermal conductivity, W · m1 · K1 0.17–0.30 0.17–0.30 0.16–0.30 0.23 0.17–0.42 0.17–1.48 10.29 TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Cellulosic Cellulose-acetate butyrate resin, molding Cellulose-acetate propionate resin, molding Ethyl cellulose Cellulose nitrate Chlorinated polyether Epoxy Bisphenol Glass-fiber-reinforced Mineral-filled TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Epoxy Casting resin Unfilled Flexible Novolac resin Mineral-filled Fluorocarbon Poly(tetrafluoroethylene) Granular Glass-fiber-reinforced Poly(chloro-trifluoro-ethylene) Perfluoroalkoxy Physical Melting temperature, C Crystalline Thermoset Thermoset Thermoset 327 327 220 310 Amorphous Specific gravity 1.11–1.40 1.05–1.35 1.7–2.1 2.14–2.20 2.2–2.3 2.1–2.2 2.12–2.17 Water absorption (24 h), % 0.08–0.15 0.27–0.50 0.05–0.2 0.01 0.03 Dielectric strength, kV · mm1 11.8–19.7 9.3–15.8 11.8–13.8 18.9 12.6 19.7–23 19.7 Electrical Volume (dc) resistivity, ohm-cm 1012–1017 1018 1018 Dielectric constant (60 Hz) 3.5–5.0 2.1 2.3–2.7 Dielectric constant (106 Hz) 3.5–5.0 2.1 2.3–2.5 Dissipation (power) factor (60 Hz) 0.0002 0.001 Dissipation factor (106 Hz) 0.0002 0.005 Mechanical Compressive modulus, 103 lb · in2 60 10.30 Compressive strength, rupture or 1% yield, 103 lb · in2 15–25 1–14 30 1.7 4.6–7.4 Elongation at break, % 3–6 20–70 2–4 200–400 200–300 80–250 300 Flexural modulus at 23C, 103 lb · in2 2000 80 235 120 Flexural strength, rupture or yield, 103 lb · in2 13–21 1–13 16–20 2 7.4–9.3 Hardness, Rockwell (or Shore) M80–M110 (D50–D55) (D60–D70) R75–R95 (D64) Impact strength (Izod) at 23C, J · m1 10.7–53 187–267 21 160 144 133–160 No break Tensile modulus, 103 lb · in2 350 1–350 58–80 150–300 Tensile strength at break, 103 lb · in2 4–13 2–10 6–12 2–5 2–2.7 4.5–6 4–4.3 Tensile yield strength, 103 lb · in2 30 Thermal Burning rate, mm · min1 Self-extinguishing Self-extinguishing Self-extinguishing Coefficient of linear thermal expansion, 106C 45–65 20–100 22–30 100 77–100 70 Deflection temperature under flexural load (264 lb · in2), C 46–288 23–121 149–260 121 (66 lb · in2) 126 (66 lb · in2) 74 (66 lb · in2) Maximum recommended service temperature, C 260 200 Specific heat, cal · g1 0.25 0.22 Thermal conductivity, W · m1 · K1 0.17–0.21 0.25 0.34–0.40 0.19–0.22 0.25 10.31 TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Epoxy Casting resin Unfilled Flexible Novolac resin Mineral-filled Fluorocarbon Poly(tetrafluoroethylene) Granular Glass-fiber-reinforced Poly(chloro-trifluoro-ethylene) Perfluoroalkoxy TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Fluorocarbon Fluorinated ethylene-propylene resin Poly(vinylidene fluoride) Ethylene-tetrafluoroethylene copolymer Unfilled Glass-fiber-reinforced Ethylene-chlorotrifluoro-ethylene copolymer Melamine formaldehyde Cellulose-filled Glass-fiber-reinforced Physical Melting temperature, C Crystalline 275 156 270 270 245 Thermoset Thermoset Amorphous Specific gravity 2.14–2.17 1.75–1.78 1.7 1.8 1.68 1.47–1.52 1.5–2.0 Water absorption (24 h), % 0.01 0.04–0.06 0.03 0.02 0.01 0.1–0.8 0.09–1.3 Dielectric strength, kV · mm1 20–24 10 16 17 19 11–16 5–15 Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) 2.1 8–9 2.6 2.6 Dielectric constant (106 Hz) 2.1 8–9 2.6 2.6 Dissipation (power) factor (60 Hz) High Dissipation factor (106 Hz) High Mechanical Compressive modulus, 103 lb · in2 120 120 1200 240 10.32 Compressive strength, rupture or 1% yield, 103 lb · in2 2.2 8.7–10 7.1 10 33–45 20–35 Elongation at break, % 250–330 25–500 100–400 8 200–300 0.6–1.0 0.6 Flexural modulus at 23C, 103 lb · in2 80–95 200 200 950 240 1100 Flexural strength, rupture or yield, 103 lb · in2 8.6–11 5.5 10.7 7 9–16 14–23 Hardness, Rockwell (or Shore) (D60–D65) (D80) R50 (D75) R74 R95 M115–M125 M115 Impact strength (Izod) at 23C, J · m1 No break 192–214 No break 480 No break 11–21 32–961 Tensile modulus, 103 lb · in2 50 120 120 1200 240 1.1–1.4 1.6–2.4 Tensile strength at break, 103 lb · in2 2.7–3.1 5.5–7.4 6.5 12 7 5–13 5–10.5 Tensile yield strength, 103 lb · in2 Thermal Burning rate, mm · min1 Not combustible Not combustible Not combustible Not combustible Not combustible Self-extinguishing Self-extinguishing Coefficient of linear thermal expansion, 106C 83–105 85 59 10–32 80 40–45 15–28 Deflection temperature under flexural load (264 lb · in2), C 70 (66 lb · in2) 80–90 71 210 77 177–199 190–204 Maximum recommended service temperature, C 205 150 210 Specific heat, cal · g1 0.28 Thermal conductivity, W · m1 · K1 0.25 0.19–0.24 0.24 0.16 0.27–0.41 0.41–0.49 10.33 TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Fluorocarbon Fluorinated ethylene-propylene resin Poly(vinylidene fluoride) Ethylene-tetrafluoroethylene copolymer Unfilled Glass-fiber-reinforced Ethylene-chlorotrifluoro-ethylene copolymer Melamine formaldehyde Cellulose-filled Glass-fiber-reinforced TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Melamine phenolic, woodflour- and cellulose-filled Nitrile Phenolic Unfilled Woodflour-filled Glass-fiber-reinforced Cellulose-filled Mineral-filled Physical Melting temperature, C Crystalline Thermoset Thermoset Thermoset Thermoset Thermoset Thermoset Amorphous 95 Specific gravity 1.5–1.7 1.15 1.24–1.32 1.37–1.46 1.69–2.0 1.38–1.42 1.42–1.84 Water absorption (24 h), % 0.3–0.65 0.28 0.1–0.36 0.3–1.2 0.03–1.2 0.5–0.9 0.1–0.3 Dielectric strength, kV · mm1 8.7–12.8 8.7–9.5 9.8–15.8 10.2–15.8 5.5–15.8 11.8–15 7.9–13.8 Electrical Volume (dc) resistivity, ohm-cm 1.9 1015 1 1012 to 7 1012 Dielectric constant (60 Hz) 6.5–7.5 Dielectric constant (106 Hz) 4.0–5.5 Dissipation (power) factor (60 Hz) 0.10–0.15 Dissipation factor (106 Hz) 0.04–0.05 Mechanical Compressive modulus, 103 lb · in2 10.34 Compressive strength, rupture or 1% yield, 103 lb · in2 26–30 12 18–32 25–31 26–70 22–31 22.5–34.6 Elongation at break, % 0.4–0.8 3–4 1.5–2.0 0.4–0.8 0.2 1–2 0.1–0.5 Flexural modulus at 23C, 103 lb · in2 1000–2000 500–590 700–1500 1000–1200 2000–33,000 900–1300 1000–2000 Flexural strength, rupture or yield, 103 lb · in2 8–10 14 11–17 7–14 15–60 5.5–11 11–14 Hardness, Rockwell (or Shore) E95–E100 M72–M76 M93–M120 M100–M115 E54–E101 M95–115 E88 Impact strength (Izod) at 23C, J · m1 11–21 80–256 13–21 11–32 27–960 21–59 14–19 Tensile modulus, 103 lb · in2 800–1700 510–580 700–1500 800–1700 1900–3300 2400 Tensile strength at break, 103 lb · in2 6–8 9 6–9 5–9 7–18 3.5–6.5 6–9.7 Tensile yield strength, 103 lb · in2 12–15 Thermal Burning rate, mm · min1 Self-extinguishing Coefficient of linear thermal expansion, 106C 10–40 66 68 30–45 8–21 20–31 19–26 Deflection temperature under flexural load (264 lb · in2), C 140–154 73 74–80 149–188 177–316 149–177 320–246 Maximum recommended service temperature, C Specific heat, cal · g1 Thermal conductivity, W · m1 · K1 0.17–0.30 0.26 0.15 0.17–0.34 0.34–0.59 0.25–0.38 0.42–0.57 10.35 TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Melamine phenolic, woodflour- and cellulose-filled Nitrile Phenolic Unfilled Woodflour-filled Glass-fiber-reinforced Cellulose-filled Mineral-filled TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Polyamide Nylon 6 Molding and extrusion 30–35% glass-fiber-reinforced High-impact copolymer Molding Nylon 6/6 33% glass-fiber-reinforced Molybdenum disulfide-filled Nylon 6/6-nylon 6 copolymer Physical Melting temperature, C Crystalline 216 216 216 265 265 265 240 Amorphous Specific gravity 1.12–1.14 1.35–1.42 1.08–1.17 1.13–1.15 1.38 1.15–1.17 1.08–1.14 Water absorption (24 h), % 2.9 1.2 1.3–1.5 1.0–1.3 1.0 0.8–1.1 1.5–2.0 Dielectric strength, kV · mm1 15.8 15.8 22 24 14 15.8 Electrical Volume (dc) resistivity, ohm-cm 1012 1012–1015 1010 Dielectric constant (60 Hz) 9.8 4.0 16 Dielectric constant (106 Hz) 3.7 3.6 4 Dissipation (power) factor (60 Hz) 0.14 0.01–0.02 0.4 Dissipation factor (106 Hz) 0.12 0.02–0.03 0.1 Mechanical Compressive modulus, 103 lb · in2 250 10.36 Compressive strength, rupture or 1% yield, 103 lb · in2 13–16 19 15 (yield) 24.9 12.5 Elongation at break, % 30–100 3–6 150–270 60 3 15 40 Flexural modulus at 23C, 103 lb · in2 390 1500 110–320 420 1300 450 150–410 Flexural strength, rupture or yield, 103 lb · in2 14 33 5–12 17 41 17 Hardness, Rockwell (or Shore) R119 M101 R81–R110 R120 M100 R119 R119 Impact strength (Izod) at 23C, J · m1 32–53 160 96 to no break 43–53 117 240 37 Tensile modulus, 103 lb · in2 380 1450 550 150–410 Tensile strength at break, 103 lb · in2 11.8 25 7.5–11 12 28 13.7 7.4–12.4 Tensile yield strength, 103 lb · in2 8 8 Thermal Burning rate, mm · min1 Self-extinguishing Self-extinguishing Self-extinguishing Self-extinguishing Self-extinguishing Self-extinguishing Self-extinguishing Coefficient of linear thermal expansion, 106C 80–90 20–30 30–40 80 15–20 54 Deflection temperature under flexural load (264 lb · in2), C 68–85 210 45–54 75 249 127 77 Maximum recommended service temperature, C 107 135 Specific heat, cal · g1 0.4 0.4 Thermal conductivity, W · m1 · K1 0.24 0.24 0.24 0.22 10.37 TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Polyamide Nylon 6 Molding and extrusion 30–35% glass-fiber-reinforced High-impact copolymer Molding Nylon 6/6 33% glass-fiber-reinforced Molybdenum disulfide-filled Nylon 6/6-nylon 6 copolymer 10.38 TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Polyamide Nylon 6/9, molding and extrusion Nylon 6/12 Molding 30–35% glass-fiber-reinforced Nylon 11, molding and extrusion Nylon 12, molding and extrusion Aromatic nylon (aramid), molded and unfilled Poly(amide-imide), unfilled Physical Melting temperature, C Crystalline 205 217 217 194 179 275 Amorphous 275 Specific gravity 1.08–1.10 1.06–1.08 1.31–1.38 1.03–1.05 1.01–1.02 1.30 1.40 Water absorption (24 h), % 0.5 0.4 0.2 0.3 0.25 0.6 0.28 Dielectric strength, kV · mm1 24 16 21 17 18 31 24 Electrical Volume (dc) resistivity, ohm-cm 1015 1014 Dielectric constant (60 Hz) 4.0 3.8 Dielectric constant (106 Hz) 3.5 3.0 Dissipation (power) factor (60 Hz) 0.02 0.07 Dissipation factor (106 Hz) 0.02 0.04 Mechanical Compressive modulus, 103 lb · in2 180 290 413 Compressive strength, rupture or 1% yield, 103 lb · in2 2.4 7.5 30 40 Elongation at break, % 1125 150 4 300 300 5 12–18 Flexural modulus at 23C, 103 lb · in2 290 290 1120 150 165 640 664 Flexural strength, rupture or yield, 103 lb · in2 1.5 25.8 30 Hardness, Rockwell (or Shore) R111 R114 E40–E50 R108 R106–R109 E90 E78 Impact strength (Izod) at 23C, J · m1 59 53 139 96 107–300 75 133 Tensile modulus, 103 lb · in2 275 290 1200 185 180 730 Tensile strength at break, 103 lb · in2 8.5 8.8 24 8 8–9 17.5 26.9 Tensile yield strength, 103 lb · in2 8.8 Thermal Burning rate, mm · min1 Self-extinguishing Coefficient of linear thermal expansion, 106C 90 55–100 67–100 40 36 Deflection temperature under flexural load (264 lb · in2), C 57–60 82 93–218 54 54 260 274 Maximum recommended service temperature, C 100–120 260 Specific heat, cal · g1 0.4 0.58 Thermal conductivity, W · m1 · K1 0.22 0.34 0.22 0.22 0.25 10.39 TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Polyamide Nylon 6/9, molding and extrusion Nylon 6/12 Molding 30–35% glass-fiber-reinforced Nylon 11, molding and extrusion Nylon 12, molding and extrusion Aromatic nylon (aramid), molded and unfilled Poly(amide-imide), unfilled TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Poly(aryl ether), unfilled Polycarbonate Low viscosity 30% glass-fiber reinforced Thermoplastic polyester Poly(butylene terephthalate) Unfilled 30% glass-fiber-reinforced Poly(ethylene terephthalate) Unfilled 30% glass-fiber-reinforced Physical Melting temperature, C Crystalline 232–267 232–267 245 245 Amorphous 160 140 150 Specific gravity 1.14 1.2 1.4 1.31–1.38 1.52 1.34–1.39 1.27 Water absorption (24 h), % 0.25 0.15 0.14 0.08–0.09 0.06–0.08 0.1–0.2 0.05 Dielectric strength, kV · mm1 17 15 19 16–22 18–22 22 Electrical Volume (dc) resistivity, ohm-cm 2 1016 1016 1016 1016 Dielectric constant (60 Hz) 3.17 3.35 Dielectric constant (106 Hz) 2.96 3.31 3.25 Dissipation (power) factor (60 Hz) 0.0009 0.011 Dissipation factor (106 Hz) 0.010 0.007 Mechanical Compressive modulus, 103 lb · in2 350 1300 10.40 Compressive strength, rupture or 1% yield, 103 lb · in2 12.5 18 8.6–14.5 18–23.5 11–15 25 Elongation at break, % 80 110 3–5 50–300 2–4 50–300 3 Flexural modulus at 23C, 103 lb · in2 300 340 1100 330–400 1100–1200 35–450 1440 Flexural strength, rupture or yield, 103 lb · in2 11 13.5 23 12–16.7 26–29 14–18 33.5 Hardness, Rockwell (or Shore) R117 M70 M92 M68–M78 M90 M94–M101 M100 Impact strength (Izod) at 23C, J · m1 427 14 107 43–53 69–85 13–32 101 Tensile modulus, 103 lb · in2 320 345 1250 280 1300 400–600 1440 Tensile strength at break, 103 lb · in2 7.5 9.5 19 8.2 17–19 8.5–10.5 23 Tensile yield strength, 103 lb · in2 9.0 Thermal Burning rate, mm · min1 Self-extinguishing Self-extinguishing Coefficient of linear thermal expansion, 106C 65 68 22 60–95 25 65 29 Deflection temperature under flexural load (264 lb · in2), C 149 138–145 146 50–85 220 38–41 224 Maximum recommended service temperature, C 143 Specific heat, cal · g1 0.3 0.27 Thermal conductivity, W · m1 · K1 0.30 0.20 0.22 0.18–0.30 0.30 0.15 10.41 TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Poly(aryl ether), unfilled Polycarbonate Low viscosity 30% glass-fiber reinforced Thermoplastic polyester Poly(butylene terephthalate) Unfilled 30% glass-fiber-reinforced Poly(ethylene terephthalate) Unfilled 30% glass-fiber-reinforced TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Thermoplastic polyester Aromatic polyester Extrusion-transparent Injection molding Thermosetting and alkyd polyester Unsaturated polyester Styrene-maleic acid copolymer, low-shrink Butadiene-maleic acid copolymer Alkyd molding compounds Putty, mineral-filled Glass-fiber-reinforced Polyimide, unfilled Physical Melting temperature, C Crystalline Thermoset Thermoset Thermoset Thermoset Amorphous 81 310–365 Specific gravity 1.39 1.36–1.43 Water absorption (24 h), % 0.01 0.24 Dielectric strength, kV · mm1 14 22 Electrical Volume (dc) resistivity, ohm-cm 1016 Dielectric constant (60 Hz) Dielectric constant (106 Hz) 3–4 Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2 2000–3000 10.42 Compressive strength, rupture or 1% yield, 103 lb · in2 10 15–30 14–30 12–38 15–36 30–40 Elongation at break, % 225 7–10 3–5 8–10 Flexural modulus at 23C, 103 lb · in2 290 700 1000–2500 2000 2000 450–500 Flexural strength, rupture or yield, 103 lb · in2 10.6 12 9–35 16–24 6–17 8.5–26 19–28.8 Hardness, Rockwell (or Shore) R105 40–70 (Barcol) 50–60 (Barcol) E98 E95 E52–E99 Impact strength (Izod) at 23C, J · m1 101 133–800 214–694 16–27 27–854 80 Tensile modulus, 103 lb · in2 300 1000–2500 1500–2500 500–3000 300 Tensile strength at break, 103 lb · in2 6 11 4.5–20 5–10 3–9 4–9.5 10.5–17.1 Tensile yield strength, 103 lb · in2 7 12.5 Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106C 29 6–30 20–50 15–33 45–56 Deflection temperature under flexural load (264 lb · in2), C 63 282 190–260 160–177 177–260 204–260 277–360 Maximum recommended service temperature, C Specific heat, cal · g1 0.27 Thermal conductivity, W · m1 · K1 0.29 0.76–0.93 0.51–0.89 0.6–0.89 0.10–0.11 10.43 TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Thermoplastic polyester Aromatic polyester Extrusion-transparent Injection molding Thermosetting and alkyd polyester Unsaturated polyester Styrene-maleic acid copolymer, low-shrink Butadiene-maleic acid copolymer Alkyd molding compounds Putty, mineral-filled Glass-fiber-reinforced Polyimide, unfilled TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Poly(methyl pentene), unfilled Polyolefin Polyethylene Low-density Medium-density High-density Ultra high-molecular-weight Glass-fiber-reinforced, high-density Ethylene-vinyl acetate copolymer Physical Melting temperature, C Crystalline 230–240 65–90 Amorphous 95–130 120–140 120–140 125–135 120–140 Specific gravity 0.84 0.910–0.925 0.926–0.94 0.941–0.965 0.94 1.28 0.92–0.95 Water absorption (24 h), % 0.01 0.01 0.01 0.01 0.01 0.02 0.05–0.13 Dielectric strength, kV · mm1 18–39 18–39 18–39 28 20 24–30 Electrical Volume (dc) resistivity, ohm-cm 1015 1015 1015 Dielectric constant (60 Hz) 2.3 2.3 2.3 Dielectric constant (106 Hz) 2.3 2.3 2.3 Dissipation (power) factor (60 Hz) 0.0005 0.0005 0.0005 Dissipation factor (106 Hz) 0.0005 0.0005 0.0005 Mechanical Compressive modulus, 103 lb · in2 114–171 10.44 Compressive strength, rupture or 1% yield, 103 lb · in2 5–6.6 2.7–3.6 7 Elongation at break, % 10–50 90–800 50–600 20–130 450–525 1.5 550–900 Flexural modulus at 23C, 103 lb · in2 110–260 8–60 60–115 100–260 130–140 800 1–20 Flexural strength, rupture or yield, 103 lb · in2 4–6.5 11 Hardness, Rockwell (or Shore) L67–L74 (D40–D51) (D50–D60) R30–R50 R50 R75 Impact strength (Izod) at 23C, J · m1 16–64 No break 27–854 27–1068 No break 59 No break Tensile modulus, 103 lb · in2 160–280 14–38 25–55 60–180 20–120 Tensile strength at break, 103 lb · in2 3.5–4 0.6–2.3 1.2–3.5 3.1–5.5 5.6 9 1.4–2.8 Tensile yield, strength, 103 lb · in2 0.8–1.2 1.0–2.2 3–4 3.1–4.0 Thermal Burning rate, mm · min1 1.0 1.0 1.0 Coefficient of linear thermal expansion, 106C 117 100–200 140–160 110–130 130 48 160–200 Deflection temperature under flexural load (264 lb · in2), C 41 32–41 41–49 43–54 43–49 121 34 Maximum recommended service temperature, C 175 70 93 200 Specific heat, cal · g1 0.55 0.55 0.46–0.55 Thermal conductivity, W · m1 · K1 0.17 0.34 0.34–0.42 0.46–0.51 0.46 10.45 TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Poly(methyl pentene), unfilled Polyolefin Polyethylene Low-density Medium-density High-density Ultra high-molecular-weight Glass-fiber-reinforced, high-density Ethylene-vinyl acetate copolymer TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Polyolefin Polybutylene extrusion Polypropylene Homopolymer Copolymer Impact copolymer Polyallomer Poly(phenylene sulfide) Injection molding 40% glass-fiber-reinforced Physical Melting temperature, C Crystalline 126 168 160–168 120–135 290 290 Amorphous Specific gravity 0.91–0.925 0.90–0.91 0.89–0.905 0.90 0.90 1.3 1.6 Water absorption (24 h),% 0.01–0.02 0.01–0.03 0.03 0.03 0.01 0.02 0.05 Dielectric strength, kV · mm1 18 24 24 24 31 15 18 Electrical Volume (dc) resistivity, ohm-cm 1017 1017 1017 Dielectric constant (60 Hz) 2.2–2.6 2.3 Dielectric constant (106 Hz) 2.2–2.6 2.3 2.3 Dissipation (power) factor (60 Hz) 0.0005 0.0001–0.0005 Dissipation factor (106 Hz) 0.0005–0.002 0.0001–0.0002 0.0003 Mechanical Compressive modulus, 103 lb · in2 31 150–300 10.46 Compressive strength, rupture or 1% yield, 103 lb · in2 5.5–8.0 3.5–8.0 16 21 Elongation at break, % 300–380 100–600 200–700 8–20 400–500 1–2 1 Flexural modulus at 23C, 103 lb · in2 45–50 170–250 130–200 130–190 70–110 550 1700 Flexural strength, rupture or yield, 103 lb · in2 2–2.3 6–8 5–7 14 29 Hardness, Rockwell (or Shore) R80–R102 R50–R96 R40–R90 R50–R85 R123 R123 Impact strength (Izod) at 23C, J · m1 No break 21–53 53–1068 80–900 91–203 27 75 Tensile modulus, 103 lb · in2 30–40 165–225 100–170 480 1100 Tensile strength at break, 103 lb · in2 3.8–4.4 4.5–6 4–5.5 3–3.8 9.5 19.5 Tensile yield strength, 103 lb · in2 1.7–2.5 4.5–5.4 3.5–4.3 2.5–3.1 3–3.4 Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106C 128–150 81–100 68–95 60–90 83–100 49 22 Deflection temperature under flexural load (264 lb · in2), C 54–60 48–57 45–57 90–105 (66 lb · in2) 51–56 135 249 Maximum recommended service temperature, C 160 240 140–160 Specific heat, cal · g1 0.44–0.46 0.45–0.50 0.45–0.50 Thermal conductivity, W · m1 · K1 0.22 0.12 0.15–0.17 0.12–0.17 0.09–0.17 0.29 0.29 10.47 TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Polyolefin Polybutylene extrusion Polypropylene Homopolymer Copolymer Impact copolymer Polyallomer Poly(phenylene sulfide) Injection molding 40% glass-fiber-reinforced TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Polyurethane Casting resin Liquid Unsaturated Thermoplastic elastomer Silicone Cast resin, flexible Mineral-and/or glass-filled Epoxy molding and encapsulating compound Styrenic Polystyrene Crystal Physical Melting temperature, C Crystalline Thermoset Thermoset Thermoset Thermoset Thermoset Amorphous 120–160 85–105 Specific gravity 1.1–1.5 1.05 1.05–1.25 0.99–1.5 1.8–1.94 1.84 1.04–1.05 Water absorption (24 h), % 0.02–1.5 0.1–0.2 0.7–0.9 0.03–0.10 Dielectric strength, kV · mm1 12–20 13–25 22 8–15 10 24 Electrical Volume (dc) resistivity, ohm-cm 1011–1015 1011–1013 1014–1015 1016 Dielectric constant (60 Hz) 4.0–7.5 5.4–7.6 2.7–4.2 Dielectric constant (106 Hz) 2.5 Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2 10–100 4–9 10.48 Compressive strength, rupture or 1% yield, 103 lb · in2 20 20 10–16 28 11.5–16 Elongation at break, % 100–1000 3–6 100–1100 100–700 1–2 Flexural modulus at 23C, 103 lb · in2 10–100 610 10–350 1000–2500 380–450 Flexural strength, rupture or yield, 103 lb · in2 0.7–4.5 19 0.7–9 9–14 17 8–14 Hardness, Rockwell (or Shore) (A65–D80) (A15–A65) M80–M90 M60–M75 Impact strength (Izod) at 23C, J · m1 1334 to flex-ible 21 No break 13–427 16 13–21 Tensile modulus, 103 lb · in2 10–100 10–350 350–485 Tensile strength at break, 103 lb · in2 0.175–10 10–11 1.5–8.4 0.35–1.0 4–6.5 6–8 5.3–7.9 Tensile yield strength, 103 lb · in2 Thermal Burning rate, mm · min1 0–78 Coefficient of linear thermal expansion, 106C 100–200 100–200 300–800 20–50 30 70–80 Deflection temperature under flexural load (264 lb · in2), C Varies over wide range 87–93 Varies over wide range 260 74–100 Maximum recommended service temperature, C 371 93 Specific heat, cal · g1 0.43 0.43 0.3 Thermal conductivity, W · m1 · K1 0.21 0.07–0.31 0.15–0.31 0.30 0.68 0.09–0.13 10.49 TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Polyurethane Casting resin Liquid Unsaturated Thermoplastic elastomer Silicone Cast resin, flexible Mineral-and/or glass-filled Epoxy molding and encapsulating compound Styrenic Polystyrene Crystal TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Styrenic Polystyrene Heat-resistant Acrylonitrile-butadiene-styrene copolymer Extrusion Molding Heat-resistant High-impact Flame-retarded Platable 20% glass-reinforced Physical Melting temperature, C Crystalline Amorphous 110–125 88–120 110–125 100–110 110–125 100–110 Specific gravity 1.05–1.09 1.02–1.06 1.05–1.08 1.01–1.04 1.16–1.21 1.06–1.07 1.22 Water absorption (24 h), % 0.03–0.12 0.20–0.45 0.20–0.45 0.20–0.45 0.2–0.6 Dielectric strength, kV · mm1 20 14–20 14–20 14–20 14–20 16–22 18 Electrical Volume (dc) resistivity, ohm-cm Dielectric constant (60 Hz) 2.4–5.0 Dielectric constant (106 Hz) 2.4–3.8 Dissipation (power) factor (60 Hz) 0.003–0.008 Dissipation factor (106 Hz) 0.007–0.015 Mechanical Compressive modulus, 103 lb · in2 150–390 190–440 140–300 130–310 10.50 Compressive strength, rupture or 1% yield, 103 lb · in2 11.5–16 5.2–10 7.2–10 4.5–8 6.5–7.5 14 Elongation at break, % 2–60 20–100 3–20 5–70 5–25 Flexural modulus at 23C, 103 lb · in2 340–470 130–420 300–400 250–350 300–400 340–390 710 Flexural strength, rupture or yield, 103 lb · in2 8.9–14 4–14 10–13 8–11 9–14 10.5–11.5 15.5 Hardness, Rockwell (or Shore) L80–L108 R75–R115 R100–R115 R85–R105 R100–R120 R103–R109 M85 Impact strength (Izod) at 23C, J · m1 21–181 133–640 107–347 347–400 160–640 267–283 64 Tensile modulus, 103 lb · in2 320–460 130–380 300–350 230–330 320–400 330–380 740 Tensile strength at break, 103 lb · in2 5–7.8 2.5–8.0 6–7.5 4.8–6.3 5–8 6–6.4 11 Tensile yield strength, 103 lb · in2 5.5–7 4–5.5 4–6 Thermal Burning rate, mm · min1 1.3 1.3 Coefficient of linear thermal expansion, 106C 60–70 60–130 60–93 95–110 65–95 47–53 21 Deflection temperature under flexural load (264 lb · in2), C 93–120 77–104 annealed 104–116 annealed 96–102 annealed 90–107 annealed 96–102 annealed 99 Maximum recommended service temperature, C 110 Specific heat, cal g1 0.3–0.4 Thermal conductivity, W · m1 · K1 0.19–0.34 10.51 TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Styrenic Polystyrene Heat-resistant Acrylonitrile-butadiene-styrene copolymer Extrusion Molding Heat-resistant High-impact Flame-retarded Platable 20% glass-reinforced TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Styrenic Styrene-acrylonitrile copolymer Unfilled 20% glass-fiber-reinforced Styrene-butadiene copolymer, high-impact Sulfone Polysulfone Unfilled 20% glass-fiber-reinforced Poly(ether sulfone) Poly(phenyl sulfone) Physical Melting temperature, C Crystalline Amorphous 115–125 115–125 90–110 200 200 230 220 Specific gravity 1.07–1.08 1.22 1.03–1.06 1.24 1.46 1.37 1.29 Water absorption (24 h), % 0.2–0.3 0.15–0.20 0.05–0.10 0.22 0.23 0.43 1.1–1.3 (saturated) Dielectric strength, kV · mm1 16–20 20 18 17 17 17 16 Electrical Volume (dc) resistivity, ohm-cm 1015 Dielectric constant (60 Hz) 3.14 3.7 Dielectric constant (106 Hz) 3.26 3.7 Dissipation (power) factor (60 Hz) 0.004 0.002 Dissipation factor (106 Hz) 0.008 0.009 Mechanical Compressive modulus, 103 lb · in2 530 370 10.52 Compressive strength, rupture of 1% yield, 103 lb · in2 14–17 19 4–9 13.9 22 Elongation at break, % 1–4 1–2 13–50 50–100 2 30–80 60 Flexural modulus at 23C, 103 lb · in2 550 100–1100 280–450 390 1000 375 330 Flexural strength, rupture or yield, 103 lb · in2 14–17 20 5.3–9.4 15.4 23 18.7 12.4 Hardness, Rockwell (or Shore) M80–M90 R122 M10–M68 M69, R120 M123 M88 Impact strength (Izod) at 23C, J · m1 19–27 53 32–192 64 59 85 640 Tensile modulus, 103 lb · in2 400–560 1150–1200 280–465 360 1200 350 310 Tensile strength at break, 103 lb · in2 9–12 15.8–18 3.2–4.9 17 Tensile yield strength, 103 lb · in2 2.9–4.9 10.2 12.2 10.4 Thermal Burning rate, mm · min1 Coefficient of linear thermal expansion, 106C 36–38 38–40 70–101 52–56 25 55 31 Deflection temperature under flexural load (264 lb · in2), C 88–104 99 74–93 174 182 203 204 Maximum recommended service temperature, C 149 Specific heat, cal · g1 Thermal conductivity, W · m1 · K1 0.12 0.26–0.28 0.12–0.21 0.12 0.38 0.14–0.19 10.53 TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Styrenic Styrene-acrylonitrile copolymer Unfilled 20% glass-fiber-reinforced Styrene-butadiene copolymer, high-impact Sulfone Polysulfone Unfilled 20% glass-fiber-reinforced Poly(ether sulfone) Poly(phenyl sulfone) TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Thermoplastic elastomers Polyolefin Polyester Block copolymers of styrene and butadiene or styrene and isoprene Block copolymers of styrene and ethylene or styrene and butylene Urea formaldehyde, alpha-cellulose filled Vinyl Poly(vinyl chloride) and poly(vinyl acetate) Rigid Flexible and unfilled Physical Melting temperature, C Crystalline 168–206 Thermoset Amorphous 75–105 75–105 Specific gravity 0.88–0.90 1.17–1.25 0.9–1.2 0.9–1.2 1.47–1.52 1.30–1.58 1.16–1.35 Water absorption (24 h), % 0.01 0.19–0.39 0.4–0.8 0.04–0.4 0.15–0.75 Dielectric strength, kV · mm1 24–26 16–21 12–16 14–20 12–16 Electrical Volume (dc) resistivity, ohm-cm 0.5–5.0 1012–1015 1011–1014 Dielectric constant (60 Hz) 7.7–9.5 3.2–4.0 5.0–9.0 Dielectric constant (106 Hz) 6.7–8.0 3.0–4.0 3.0–4.0 Dissipation (power) factor (60 Hz) 0.036–0.043 0.01–0.02 0.03–0.05 Dissipation factor (106 Hz) 0.025–0.035 0.006–0.02 0.06–0.1 Mechanical Compressive modulus, 103 lb · in2 3.6–120 10.54 Compressive strength, rupture or 1% yield, 103 lb · in2 25–45 8–13 0.9–1.7 Elongation at break, % 150–300 350–450 500–1350 600–800 1 40–80 200–450 Flexural modulus at 23C, 103 lb · in2 1.5–2.0 7–75 4–150 4–100 1300–1600 300–500 Flexural strength, rupture or yield, 103 lb · in2 10–18 10–16 Hardness, Rockwell (or Shore) (A65–A92) (D40–D72) (A40–A90) (A50–A90) M110–M120 (D65–D95) (A50–A100) Impact strength (Izod) at 23C, J · m1 No break 208 to no break No break No break 13–21 21–1068 Varies over wide range Tensile modulus, 103 lb · in2 1.1–2.5 0.8–50 1000–1500 350–600 Tensile strength at break, 103 lb · in2 0.65–2.0 3.7–5.7 0.6–3.0 1–3 5.5–13 6–75 1.5–3.5 Tensile yield strength, 103 lb · in2 Thermal Burning rate, mm · min1 Self-extinguishing Self-extinguishing Slow to self-extinguishing Coefficient of linear thermal expansion, 106C 130–170 130–137 22–36 50–100 70–250 Deflection temperature under flexural load (264 lb · in2), C 0–49 127–143 60–77 Maximum recommended service temperature, C 77 70–74 80–105 Specific heat, cal · g1 0.6 0.2–0.28 0.36–0.5 Thermal conductivity, W · m1 · K1 0.19–0.21 0.15 0.30–0.42 0.15–0.21 0.13–0.17 10.55 TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Thermoplastic elastomers Polyolefin Polyester Block copolymers of styrene and butadiene or styrene and isoprene Block copolymers of styrene and ethylene or styrene and butylene Urea formaldehyde, alpha-cellulose filled Vinyl Poly(vinyl chloride) and poly(vinyl acetate) Rigid Flexible and unfilled TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Vinyl Poly(vinyl chloride) and poly(vinyl acetate) Flexible and filled Poly(vinyl chloride), 15% glass-fiber-reinforced Poly(vinylidene chloride) Poly(vinyl formal) Chlorinated poly(vinyl chloride) Poly(vinyl butyral), flexible Physical Melting temperature, C Crystalline 210 Amorphous 75–105 75–105 105 110 49 Specific gravity 1.3–1.7 1.54 1.65–1.72 1.2–1.4 1.49–1.56 1.05 Water absorption (24 h),% 0.5–1.0 0.01 0.1 0.5–3.0 0.02–0.15 1.0–2.0 Dielectric strength, kV · mm1 9.8–12 24–31 16–24 19 14 Electrical Volume (dc) resistivity, ohm-cm 1014–1016 Dielectric constant (60 Hz) 4.5–6.0 Dielectric constant (106 Hz) Dissipation (power) factor (60 Hz) Dissipation factor (106 Hz) Mechanical Compressive modulus, 103 lb · in2 335–600 10.56 Compressive strength, rupture or 1% yield, 103 lb · in2 1.0–1.8 9 2–2.7 9–22 Elongation at break, % 200–400 2–3 50–250 5–20 4–65 150–450 Flexural modulus at 23C, 103 lb · in2 750 380–450 Flexural strength, rupture or yield, 103 lb · in2 13.5 4.2–6.2 17–18 14.5–17 Hardness, Rockwell (or Shore) (A50–A100) R118 M50–M65 M85 R117–R122 A10–A100 Impact strength (Izod) at 23C, J · m1 Varies over wide range 53 16–53 43–75 53–299 Varies over wide range Tensile modulus, 103 lb · in2 870 50–80 350–600 360–475 Tensile strength at break, 103 lb · in2 1–3.5 9.5 3–5 10–12 7.5–9 0.5–3.0 Tensile yield strength, 103 lb · in2 Thermal Burning rate, mm · min1 Self-extinguishing Slow Coefficient of linear thermal expansion, 106C 190 64 68–78 Deflection temperature under flexural load (264 lb · in2), C 68 54–71 71–77 94–112 Maximum recommended service temperature, C 100 Specific heat, cal · g1 0.32 Thermal conductivity, W · m1 · K1 0.13–0.17 0.13 0.16 0.14 10.57 TABLE 10.2 Properties of Commercial Plastics (Continued) Properties Vinyl Poly(vinyl chloride) and poly(vinyl acetate) Flexible and filled Poly(vinyl chloride), 15% glass-fiber-reinforced Poly(vinylidene chloride) Poly(vinyl formal) Chlorinated poly(vinyl chloride) Poly(vinyl butyral), flexible 10.58 SECTION 10 10.4 FORMULAS AND ADVANTAGES OF RUBBERS 10.4.1 Gutta Percha Gutta percha is a natural polymer of isoprene (3-methyl-1,3-butadiene) in which the configuration around each double bond is trans. It is hard and horny and has the following formula: 10.4.2 Natural Rubber Natural rubber is a polymer of isoprene in which the configuration around each double bond is cis (or Z): Its principal advantages are high resilience and good abrasion resistance.
10.4.3 Chlorosulfonated Polyethylene Chlorosulfonated polyethylene is prepared as follows: Cross-linking, which can occur as a result of side reactions, causes an appreciable gel content in the final product.
The polymer can be vulcanized to give a rubber with very good chemical (solvent) resistance, excellent resistance to aging and weathering, and good color retention in sunlight.
POLYMERS, RUBBERS, FATS, OILS, AND WAXES 10.59 10.4.4 Epichlorohydrin Epichlorohydrin is a product of covulcanization of epichlorohydrin (epoxy) polymers with rubbers, especially cis-polybutadiene.
Its advantages include impermeability to air, excellent adhesion to metal, and good resistance to oils, weathering, and low temperature.
10.4.5 Nitrile Rubber (NBR, GRN, Buna N) Nitrile rubber can be prepared as follows: Nitrile rubber is also known as nitrile-butadiene rubber (NBR), government rubber nitrile (GRN), and Buna N.
It possesses resistance to oils up to 120C and excellent abrasion resistance and adhesion to metal.
10.4.6 Polyacrylate Polyacrylate has the following formula: It possesses oil and heat resistance to 175C and excellent resistance to ozone.
10.4.7 cis-Polybutadiene Rubber (BR) cis-Polybutadiene is prepared by polymerization of butadiene by mostly 1,4-addition.
CH2"CH9CH"CH2 : [9CH29CH"CH9CH29]n The polybutadiene produced is in the Z (or cis) configuration.
cis-Polybutadiene has good abrasion resistance, is useful at low temperature, and has excellent adhesion to metal.
10.60 SECTION 10 10.4.8 Polychloroprene (Neoprene) Polychloroprene is prepared as follows: It has very good weathering characteristics, is resistant to ozne and to oil, and is heat-resistant to 100C.
10.4.9 Ethylene-Propylene-Diene Rubber (EPDM) Ethylene-propylene-diene rubber is polymerized from 60 parts ethylene, 40 parts propylene, and a small amount of nonconjugated diene. The nonconjugated diene permits sulfur vulcanization of the polymer instead of using peroxide.
It is a very lightweight rubber and has very good weathering and electrical properties, excellent adhesion, and excellent ozone resistance.
10.4.10 Polyisobutylene (Butyl Rubber) Polyisobutylene is prepared as follows: It possesses excellent ozone resistance, very good weathering and electrical properties, and good heat resistance.
10.4.11 (Z)-Polyisoprene (Synthetic Natural Rubber) Polymerization of isoprene by 1,4-addition produces polyisoprene that has a cis (or Z) configuration.
POLYMERS, RUBBERS, FATS, OILS, AND WAXES 10.61 10.4.12 Polysulfide Rubbers Polysulfide rubbers are prepared as follows: Cl9R9Cl Na9S9S9S9S9Na : HS[9R9S9S9S9S9]nR9SH where R can be 9CH2CH29, 9CH2CH29O9CH2CH29, or 9CH2CH29O9CH29O9CH2CH29.
Polysulfide rubbers possess excellent resistance to weathering and oils and have very good elec-trical properties.
10.4.13 Poly(vinyl Chloride) (PVC) Poly(vinyl chloride) as previously discussed in Sec. 10.3, Formulas and Key Properties of Plastic Materials, has the following structures: PVC polymer plus special plasticizers are used to produce flexible tubing which has good chem-ical resistance.
10.4.14 Silicone Rubbers Silicone rubbers are prepared as follows: Other groups may replace the methyl groups.
Silicone rubbers have excellent ozone and weathering resistance, good electrical properties, and good adhesion to metal.
10.4.15 Styrene-Butadiene Rubber (GRS, SBR, Buna S) Styrene-butadiene rubber is prepared from the free-radical copolymerization of one part by weight of styrene and three parts by weight of 1,3-butadiene. The butadiene is incorporated by both 1,4-addition (80%) and 1,2-addition (20%). The configuration around the double bond of the 1,4-adduct is about 80% trans. The product is a random copolymer with these general features: 10.62 SECTION 10 Styrene-butadiene rubber (SBR) is also known as government rubber styrene (GRS) and Buna S.
10.4.16 Urethane See Table 10.3.
10.63 TABLE 10.3 Properties of Natural and Synthetic Rubbers Rubber Specific gravity Durometer hardness (or Shore) Ultimate elongation % (23C) Tensile strength, lb · in2 (23C) Service temperature, C Minimum Maximum Gutta percha (hard rubber) 1.2–1.95 (65–95) 3–8 4000–10,000 104 Natural rubber (NR) 0.93 20–100 750–850 3000–4500 56 82 Chlorosulfonated polyethylene 1.10 50–95 100–500 500–3000 54 121 Epichlorohydrin 1.27 60–90 100–400 1000–2500 46 121 Fluoroelastomers 1.4–1.95 60–90 100–350 2000–3000 40 232 Isobutene-isoprene rubber (IIR) [also known as government rubber I(GR-I)] 0.91 (40–70) 750–950 2300–3000 121 Nitrile rubber (butadiene-acrylonitrile rubber) (also known as Buna N and NBR) 1.00 30–100 100–600 500–4000 54 121 Polyacrylate 1.10 40–100 100–400 1000–2200 18 149 Polybutadiene rubber (BR) 0.93 30–100 100–700 2500–3000 62 79–100 Polychloroprene (neoprene) 1.23 20–90 800–1000 2000–3500 54 121 Poly(ethylene-propylene-diene) (EPDM) 0.85 30–100 100–300 1000–3000 40 149 Polyisobutylene (butyl rubber) 0.92 30–100 100–700 1000–3000 54 100 Polyisoprene 0.94 20–100 100–750 2000–3000 54 79–82 Polysulfide (Thiokol ST) 1.34 20–80 100–400 700–1250 54 82–100 Poly(vinyl chloride) (Koroseal) 1.32 (80–90) 2400–3000 71 Silicone, high-temperature 700–800 316 Silicone 0.98 20–95 50–800 500–1500 84 232 Styrene-butadiene rubber (SBR) (also known as Buna S) 0.94 40–100 400–600 1600–3700 60 107 Urethane 0.85 62–95 100–700 1000–8000 54 100 10.64 10.5 CHEMICAL RESISTANCE TABLE 10.4 Resistance of Selected Polymers and Rubbers to Various Chemicals at 20C The information in this table is intended to be used only as a general guide. The chemical resistance classifications are E excellent (30 days of exposure causes no damage), G good (some damage after 30 days), F fair (exposure may cause crazing, softening, swelling, or loss of strength), N not recommended (immediate damage may occur).
Chemical Acids, dilute or weak Acids, strong and concentrated Alcohols, aliphatic Aldehydes Alkalies, concentrated Esters Ethers Glycols Hydrocarbons, aliphatic Hydrocarbons, aromatic Hydrocarbons, halogenated Ketones Oxidizing agents, strong Polymers Acetals F N F N N N N G N N N N N Acrylics: poly(methyl methacrylate) G N E — N N E E G N N N N Allyls: diallyl phthalate G — — — N — — — E G G N — Cellulosics: cellulose-acetate-butyrate and cellulose-acetate-propionate polymers F N N N N N N G F N N N — Fluorocarbons E E E E E E E E E E E E E Polyamides N N G E E G — G G F F G N Polycarbonates G N G F N N N G N N N N N Polyesters G G N — N N F G G F F N F Poly(methyl pentene) E E G G E G N E F G N F F Low-density polyethylene E E E G E G N E F F N G F High-density polyethylene E E E E E G N E G G N G F Polybutadiene G F E — — — — — — E E E — Polypropylene and polyallomer E E E E E G N E G F N G F Polystyrene N N E — N N — E N N N N N Styrene-acrylonitrile copolymers — — N — N — — F N — — — — Styrene-acrylonitrile-butadiene copolymers — N G — G N — — F N N N — Sulfones: polysulfone G N F F E N F G F N N N G Vinyls: poly(vinyl chloride) E G E G G N F F G N N N G Rubbers Natural rubber — — E — — N N E N N N N — Nitrile rubber — — E — — N G E E N N N — Polychloroprene — — E — — N F E F N N N — Polyisobutylene — — E — — F F E N N N N — Polysulfide rubbers: Thiokol — — E — — E E E E F N N — Styrene-butadiene rubber — — E — — N N E N N N N — 10.65 Chemical Acids, dilute or weak Acids, strong and concentrated Alcohols, aliphatic Aldehydes Alkalies, concentrated Esters Ethers Glycols Hydrocarbons, aliphatic Hydrocarbons, aromatic Hydrocarbons, halogenated Ketones Oxidizing agents, strong Polymers 10.6 GAS PERMEABILITY TABLE 10.5 Gas Permeability Constants (1010 P) at 25C for Polymers and Rubbers The gas permeability constant P is defined as amount of permeant P (area) (time) (driving forced across the film) The gas permeability constant is the amount of gas expressed in cubic centimeters passed in 1 s through a area of film when the pressure across a film thickness of 1 cm is 1 cmHg and the temperature is 25C.
2 1-cm All tabulated values are multiplied by 1010 and are in units of seconds1 (centimeters of Hg)1. Other temperatures are indicated by exponents and are expressed in degrees Celsius.
Polymer or rubber Gas He N2 H2 O2 CO2 H2O Other Cellulose (cellophane) 0.00520 0.003 2 0.006 5 0.002 1 0.004 7 1 900 0.00645 (H2S); 0.001 7 (SO2) Cellulose acetate 13.620 0.2830 3.520 0.7830 22.730 5 500 3.530 (H2S); 170 (ethylene oxide); 6.860 (bromomethane) Cellulose nitrate 6.9 0.12 2.020 1.95 2.12 6 290 57.1 (NH3); 1.76 (SO2) Ethyl cellulose 40030 8.430 8720 26.530 41.030 12 00020 705 (NH3); 204 (SO2); 4200 (ethylene oxide) Gutta percha 2.17 14.4 6.16 35.4 510 Natural rubber 9.43 52.0 23.3 15.3 2 290 15.7 (CO); 30.1 (CH4); 1.68 (C3H8); 98.9 (C2H2); 550 (CH3C#CH); 3.59 (SF6) Nylon 6 0.5320 0.009 530 0.03830 0.1030 177 0.3330 (H2S); 1.220 (NH3); 0.8460 (CH3Br) Nylon 11 1.9530 1.7830 1.0040 0.34430 (Ne); 0.18940 (Ar); 13.650 (propyne) Poly(acrylonitrile) 0.000 2 0.000 8 300 10.66 Acrylonitrile-styrene copolymer (66 : 34) 0.048 0.21 2 000 Poly(1,3-butadiene) 6.42 41.9 19.0 138.0 5 070 Poly (cis-1,4-butadiene) 32.6 19.2 19.2 (Ne); 41.0 (Ar) Butadiene-acrylonitrile copolymer (80 : 20) 12.2 1.06 15.9 3.85 30.8 24.8 (C2H2); 7.7 (propyne) Butadiene-styrene copolymer (80: 20) 13.4 1.71 5.01 (Ne); 4.49 (Ar) Butadiene-styrene copolymer (92: 8) 22.9 5.11 9.70 (Ne); 12.7 (Ar) Polychloroprene 1.2 13.6 4.0 25.8 3.79 (Ar); 3.27 (CH4) Polyethylene, low-density 4.9 0.969 12.030 2.88 12.6 90 2.88 (CH4); 6.81 (C2H6); 9.43 (C3H8); 1.48 CO); 490 (ethylene oxide); 14.4 (propene); 42.2 (propyne); 0.170 (SF6); 47260 (CH3Br) Polyethylene, high-density 1.14 0.143 3.020 0.403 0.36 12.0 0.388 (CH4); 0.590 (C2H6); 0.537 (C3H8); 0.008 3 (SF6); 1.69 (Ar); 4.01 (propene) Poly(ethylene terephthalate) Crystalline 1.32 0.006 5 3.7020 0.035 0.17 130 0.003 2 (CH4); 0.0860 (CH3Br) Amorphous 3.28 0.013 0.059 0.30 0.009 (CH4) Poly(ethyl methacrylate) 6.82 0.220 1.15 5.00 3 200 2.98 (Ne); 0.565 (Ar); 0.370 (Kr); 3.83 (H2S); 0.000 001 65 (SF6) Isobutene-isoprene copolymer (98 : 2) 8.38 0.324 7.20 1.30 5.16 11038 13.650 (C3H8) Isoprene-acrylonitrile copolymer (76 : 24) 7.77 0.181 7.41 0.852 4.32 10.67 Polymer or rubber Gas He N2 H2 O2 CO2 H2O Other TABLE 10.5 Gas Permeability Constants (1010 P) at 25C for Polymers and Rubbers (Continued) TABLE 10.5 Gas Permeability Constants (1010 P) at 25C for Polymers and Rubbers (Continued) Polymer or rubber Gas He N2 H2 O2 CO2 H2O Other Isoprene-methacrylonitrile copolymer (76 : 24) 0.596 13.6 2.34 14.1 Methacrylonitrile-styrene-butadiene copolymer (88:7:5) 0.004 8 0.014 600 Poly(methylpentene) 101 7.83 136 32.0 92.6 Polypropylene 3820 0.4430 4120 2.330 9.230 51 0.3320 (H2S); 9.220 (NH3) Silicone rubber, 10% filler 2330 2270 4640 4890 3 240 43 00035 1910 (Ne); 5500 (Ar); 1 0200 (Kr); 2 5500 (Xe); 19 0000 (butane) Polystyrene 18.7 0.788 23.3 2.63 10.5 1 200 Poly(tetrafluoroethylene) 1.4 9.8 4.2 11.7 15.7 (NO2); 37.5 (N2O4) Poly(trifluoroethylene) 6.820 0.003 0.9420 0.02540 0.04840 0.29 1.20 (ethylene oxide); 4.660 (CH3Br) Poly(vinyl acetate) 12.630 8930 0.5030 2.6430 (Ne); 0.1930 (Ar); 0.07830 (Kr); 0.05030 (CH4) Poly(vinyl alcohol) 0.00130 0.00114 0.009 0.008 9 0.00123 0.007 (H2S); 0.0020 (ethylene oxide) Poly(vinyl chloride) 2.05 0.011 8 1.70 0.045 3 0.157 275 3.92 (Ne); 0.011 5 (Ar); 0.028 6 (CH4) Poly(vinylidene chloride) 0.3134 0.000 9430 0.005 330 0.0330 0.5 0.0330 (H2S); 0.00860 (CH3Br) 10.68 TABLE 10.6 Vapor Permeability Constants (1010 P) at 35C for Polymers All tabulated values are multiplied by 1010 and are in units of seconds1 (centimeters of Hg)1.
Polymer Vapor Benzene Hexane Carbon tetrachloride Ethanol Ethyl acetate Cellulose 1.4 0.912 0.836 85.8 13.4 Cellulose acetate 512 2.80 3.74 2 980 3 595 Poly(acrylonitrile) 2.61 1.59 1.47 0 1.34 Polyethylene, low-density 5 300 2 910 3 810 55.9 513 Polystyrene 10 600 6 820 0 soluble Poly(vinyl alcohol) 3.58 2.34 1.61 32.7 2.53 10.69 10.7 FATS, OILS, AND WAXES TABLE 10.7 Constants of Fats and Oils Fat or oil Solidification point, C Specific gravity (15C/15C) Refractive index Acid value Saponification value Iodine value Animal origin Butterfat 20–23 40C 0.9115C 1.4540C 0.5–35 210–230 26–38 Chicken fat 21–27 0.924 1.2 193–205 66–72 Cod-liver oil 3 0.92–0.93 1.48125C 5.6 171–189 137–166 Deer fat 0.96–0.97 0.8–5.3 195–200 26–36 TABLE 10.7 Constants of Fats and Oils (Continued) Fat or oil Solidification point, C Specific gravity (15C/15C) Refractive index Acid value Saponification value Iodine value Animal origin (continued) Dolphin 3 to 5 0.91–0.93 2–12 203 (body); 290 (jaw) 127 (body); 33 (jaw) Goat butter 38C 0.91–0.9438C 233–236 25–37 Goose fat 22–24 0.92–0.93 0.6 191–193 58–67 Herring oil 0.92–0.94 1.461060C 1.8–44 170–194 102–149 Horse fat 20–45 0.92–0.93 0–2.4 195–200 75–86 Human fat 15 0.903 1.460 193–200 57–73 Lard oil 2 to 4 0.913–0.915 1.462 0.1–2.5 193–198 63–79 Lard oil, fatty tissue 27–30 0.93–0.94 1.462 0.5–0.8 195–203 47–67 Menhaden oil 5 0.92–0.93 1.46560C 3–12 189–193 148–185 Neat’s-foot oil 2 to 10 0.91–0.92 1.46425C 0.1–0.6 193–199 58–75 Porpoise, body oil 16 0.926 1.2 203 127 Rabbit fat 17–23 0.93–0.94 1.4–7.2 199–203 70–100 Sardine oil 20–22 0.92–0.93 1.46660C 4–25 188–196 130–152 Seal 3 0.915–0.926 1.9–40 188–196 130–152 Shark 0.916–0.919 157–164 115–139 Sperm oil 15.5 0.878–0.884 13 120–137 80–84 Tallow, beef 31–38 0.895 0.25 196–200 35–42 Tallow, mutton 32–41 0.937–0.953 1.45740C 2–14 195–196 48–61 Whale oil 2 to 0 0.917–0.924 1.46060C 1.9 160–202 90–146 Plant origin Acorn 10 0.916 199 100 Almond 20 to 15 0.914–0.921 0.5–3.5 183–208 93–103 Babassu oil 22–26 0.89360C 1.44360C 247 16 Beechnut oil 17 0.922 191–196 97–111 10.70 Castor oil 18 to 17 0.960–0.967 1.477 0.1–0.8 175–183 84 Chaulmoogra oil, USP 25 0.95025C 196–213 98–110 Chinese vegetable tallow 24–34 0.918–0.922 2.4 179–206 23–41 Cocoa butter 21.5–23 0.964–0.974 1.45740C 1.1–1.9 193–195 33–42 Coconut oil 14–22 0.926 1.44940C 2.5–10 153–262 6–10 Corn (maize) oil 20 to 10 0.921–0.928 1.47340C 1.4–2.0 187–193 111–128 Cottonseed oil 13 to 12 25C 0.91825C 1.47440C 0.6–0.9 194–196 103–111 Hazelnut oil 18 to 17 0.917 191–197 87 Hemp-seed oil 28 to 15 0.928–0.934 0.45 190–195 145–162 Linseed oil 27 to 19 0.930–0.938 1.47825C 1–3.5 188–195 175–202 Mustard, black, oil 16 0.918–0.921 1.47540C 5.7–7.3 173–175 99–110 Neem oil 3 0.917 1.46240C 195 71 Niger-seed oil 0.925 1.47140C 190 129 Oiticica oil 0.97425C 140–180 Olive oil 6 0.914–0.918 1.46840C 0.3–1.0 185–196 79–88 Palm oil 35–42 0.915 1.45840C 10 200–205 49–59 Palm kernel oil 24 0.918–0.925 1.45740C 0.3–0.6 220–231 26–32 Peanut oil 3 0.917–0.926 1.46940C 0.8 186–194 88–98 Perilla oil 0.930–0.937 1.48125C 188–194 185–206 Pistachio-nut oil 10 to 5 0.913–0.919 191 83–87 Poppy-seed oil 18 to 16 0.924–0.926 1.46940C 2.5 193–195 128–141 Pumpkin-seed oil 15 0.923–0.925 188–193 121–130 Rapeseed oil 10 0.913–0.917 1.47140C 0.36–1.0 168–179 94–105 Safflower oil 18 to 13 0.925–0.928 1.46260C 0.6 188–203 122–141 Sesame oil 6 to 4 25C 0.91925C 1.46540C 9.8 188–193 103–117 Soybean oil 16 to 10 0.924–0.927 1.47340C 0.3–1.8 189–194 122–134 Sunflower-seed oil 17 0.924–0.926 1.46940C 11.2 188–193 129–136 Tung oil 2.5 0.94–0.95 1.51725C 2 190–197 163–171 White-mustard-seed oil 16 to 8 0.912–0.916 5.4 171–174 94–98 Wheat-germ oil 125 10.71 TABLE 10.7 Constants of Fats and Oils (Continued) Fat or oil Solidification point, C Specific gravity (15C/15C) Refractive index Acid value Saponification value Iodine value (continued) Plant origin TABLE 10.8 Constants of Waxes Wax Melting point, C Specific gravity (15C/15C) Refractive index Acid value Saponification value Iodine value Bamboo leaf 79–80 0.96125C 14–15 43–44 7.8 Bayberry (myrtle) 47–49 0.99 1.43680C 3–4 205–212 4–9.5 Beeswax, ordinary 62–66 0.95–0.97 1.44–1.4840C 17–21 88–100 8–11 Beeswax, East Indian 61–67 0.95–0.97 1.4440C 5–10.5 87–117 4–10.5 Beeswax, white, USP 61–69 0.95–0.98 1.45–1.4765C 17–24 90–96 7–11 Candelilla 73–77 0.98–0.99 1.45–1.4685C 19–24 55–64 14–20 Cape berry 40–45 1.01 1.4545C 2.5–4.0 211–215 0.5–2.5 Caranda 80–85 0.99–1.00 5.0–9.5 64–79 8–9 Carnauba, No. 1 yellow 86–88 0.99–1.00 1.5–2.5 75–86 Carnauba, No. 3, crude 86–90 0.99–1.01 3.0–8.5 75–89 Carnauba, No. 3, refined 86–89 0.96–0.97 1.4740C 3.0–5.0 76–85 7–13.5 Castor oil, hydrogenated 83–88 0.98–0.9920C 1.0–5.0 177–181 2.5–8.5 Chinese insect 80–85 0.95–0.97 1.4640C 2–9 78–93 1.0–2.5 Cotton 68–71 0.96 32 71 25 Cranberry 207–218 0.97–0.98 42–59 131–134 44–53 Esparto 75–79 0.985–0.995 22–27 58–73 7–15 Flax 61–70 0.91–0–0.99 17–48 37–102 22–29 Japan 49–56 0.97–1.00 4–15 210–235 4–15 Jojoba 11–12 0.86–0.9025C 1.46525C 0.2–0.6 92–95 82–88 10.72 Microcrystalline, amber 64–91 0.91–0.94 1.42–1.45 80C 0 0 0 Microcrystalline, white 71–89 0.93–0.94 1.44180C 0 0 0 Montan, crude 76–86 1.01–1.0225C 22–31 59–92 14–18 Montan, refined 77–84 1.02–1.04 23–45 72–115 10–14 Ouricury 86–89 0.99–1.01 12–19 88–96 6.9–7.8 Ozokerite 56–82 0.90–1.00 0 0 4–8 Palm 74–86 0.99–1.05 5–11 64–104 9–17 Paraffin, American 49–63 0.896–0.925 1.44–1.4880C 0 0 0 Shellac 79–82 0.97–0.98 12–24 64–83 6–9 Sisal hemp 74–81 1.007–1.010 16–19 56–58 28–29 Spermaceti 41–49 0.905–0.960 0.5–3.0 121–135 2.5–8.5 Sugarcane, refined 76–82 0.96–0.98 1.5125C 8–23 55–70 13–29 Wool 38–40 0.97 1.4840C 6–22 82–130 15–47 10.73 TABLE 10.8 Constants of Waxes Wax Melting point, C Specific gravity (15C/15C) Refractive index Acid value Saponification value Iodine value (Continued) SECTION 11 PRACTICAL LABORATORY INFORMATION 11.1 COOLING 11.3 Table 11.1 Cooling Mixtures 11.3 Table 11.2 Molecular Lowering of the Melting or Freezing Point 11.4 11.2 DRYING AND HUMIDIFICATION 11.5 Table 11.3 Drying Agents 11.5 Table 11.4 Solutions for Maintaining Constant Humidity 11.6 Table 11.5 Concentration of Solutions of H2SO4, NaOH, and CaCl2 Giving Specified Vapor Pressures and Percent Humidities at 25C 11.7 Table 11.6 Relative Humidity from Wet and Dry Bulb Thermometer Readings 11.8 Table 11.7 Relative Humidity from Dew Point Readings 11.9 11.3 BOILING POINTS AND HEATING BATHS 11.10 Table 11.8 Organic Solvents Arranged by Boiling Points 11.10 Table 11.9 Molecular Elevation of the Boiling Point 11.13 Table 11.10 Substances Which Can Be Used for Heating Baths 11.15 11.4 SEPARATION METHODS 11.16 Table 11.11 Solvents of Chromatographic Interest 11.16 Table 11.12 Solvents Having the Same Refractive Index and the Same Density at 25C 11.18 Table 11.13 McReynolds’ Constants for Stationary Phases in Gas Chromatography 11.21 11.4.1 McReynolds’ Constants 11.26 Table 11.14 Characteristics of Selected Supercritical Fluids 11.26 11.4.2 Chromatographic Behavior of Solutes 11.27 Table 11.15 Typical Performances in HPLC for Various Conditions 11.31 11.4.3 Ion-Exchange (Normal Pressure, Columnar) 11.32 Table 11.16 Guide to Ion-Exchange Resins 11.33 Table 11.17 Relative Selectivity of Various Counter Cations 11.37 Table 11.18 Relative Selectivity of Various Counter Anions 11.38 11.5 GRAVIMETRIC ANALYSIS 11.41 Table 11.19 Gravimetric Factors 11.41 Table 11.20 Elements Precipitated by General Analytical Reagents 11.67 Table 11.21 Cleaning Solutions for Fritted Glassware 11.69 Table 11.22 Common Fluxes 11.70 Table 11.23 Membrane Filters 11.70 Table 11.24 Porosities of Fritted Glassware 11.71 Table 11.25 Tolerances for Analytical Weights 11.71 Table 11.26 Heating Temperatures, Composition of Weighing Forms, and Gravimetric Factors 11.72 11.6 VOLUMETRIC ANALYSIS 11.74 11.6.1 Acid-Base Titrations in Aqueous Media 11.74 Table 11.27 Primary Standards for Aqueous Acid-Base Titrations 11.74 Table 11.28 Titrimetric (Volumetric) Factors 11.76 11.6.2 Titrimetric (Volumetric) Factors for Acid-Base Titrations 11.82 11.6.3 Standard Volumetric (Titrimetric) Redox Solutions 11.82 11.6.4 Indicators for Redox Titrations 11.83 Table 11.29 Equations for the Redox Determinations of the Elements with Equivalent Weights 11.84 11.1 11.2 SECTION 11 11.6.5 Precipitation Titrations 11.89 11.6.6 Complexometric Titrations 11.89 11.6.7 Masking Agents 11.92 11.6.8 Demasking 11.93 Table 11.30 Standard Solutions for Precipitation Titrations 11.94 Table 11.31 Indicators for Precipitation Titrations 11.95 Table 11.32 Properties and Applications of Selected Metal Ion Indicators 11.96 Table 11.33 Variation of 4 with pH 11.97 Table 11.34 Formation Constants of EDTA Complexes at 25C, Ionic Strength Approaching Zero 11.97 Table 11.35 Cumulative Formation Constants of Ammine Complexes at 20C, Ionic Strength 0.1 11.97 Table 11.36 Masking Agents for Various Elements 11.98 Table 11.37 Masking Agents for Anions and Neutral Molecules 11.100 Table 11.38 Common Demasking Agents 11.100 Table 11.39 Amino Acids pI and pKa Values 11.102 Table 11.40 Tolerances of Volumetric Flasks 11.102 Table 11.41 Pipet Capacity Tolerances 11.103 Table 11.42 Tolerances of Micropipets (Eppendorf) 11.103 Table 11.43 Buret Accuracy Tolerances 11.103 Table 11.44 Factors for Simplified Computation of Volume 11.104 Table 11.45 Cubical Coefficients of Thermal Expansion 11.105 Table 11.46 General Solubility Rules for Inorganic Compounds 11.105 11.7 LABORATORY SOLUTIONS 11.106 Table 11.47 Concentration of Commonly Used Acids and Bases 11.106 Table 11.48 Standard Stock Solutions 11.107 11.7.1 General Reagents, Indicators, and Special Solutions 11.109 Table 11.49 TLV Concentration Limits for Gases and Vapors 11.121 Table 11.50 Some Common Reactive and Incompatible Chemicals 11.130 Table 11.51 Chemicals Recommended for Refrigerated Storage 11.136 Table 11.52 Chemicals Which Polymerize or Decompose on Extended Refrigeration 11.136 11.8 SIEVES AND SCREENS 11.137 Table 11.53 U.S. Standard Sieve Series 11.137 11.9 THERMOMETRY 11.137 11.9.1 Temperature and Its Measurement 11.137 Table 11.54 Fixed Points in the ITS-90 11.138 11.10 THERMOCOUPLES 11.138 Table 11.55 Thermoelectric Values in Millivolts at Fixed Points for Various Thermocouples 11.140 Table 11.56 Type B Thermocouples: Platinum–30% Rhodium Alloy vs.
Platinum–6% Rhodium Alloy 11.142 Table 11.57 Type E Thermocouples: Nickel-Chromium Alloy vs. Copper-Nickel Alloy 11.143 Table 11.58 Type J Thermocouples: Iron vs. Copper-Nickel Alloy 11.144 Table 11.59 Type K Thermocouples: Nickel-Chromium Alloy vs. Nickel-Aluminum Alloy 11.145 Table 11.60 Type N Thermocouples: Nickel–14.2% Chromium–1.4% Silicon Alloy vs. Nickel–4.4% Silicon–0.1% Magnesium Alloy 11.146 Table 11.61 Type R Thermocouples: Platinum–13% Rhodium Alloy vs. Platinum 11.147 Table 11.62 Type S Thermocouples: Platinum–10% Rhodium Alloy vs. Platinum 11.148 Table 11.63 Type T Thermocouples: Copper vs. Copper-Nickel Alloy 11.149 11.11 CORRECTION FOR EMERGENT STEM OF THERMOMETERS 11.150 Table 11.64 Values of K for Stem Correction of Thermometers 11.150 PRACTICAL LABORATORY INFORMATION 11.3 11.1 COOLING TABLE 11.1 Cooling Mixtures The table below gives the lowest temperature that can be obtained from a mixture of the inorganic salt with finely shaved dry ice. With the organic substances, dry ice (78C) in small lumps can be added to the solvent until a slight excess of dry ice remains or liquid nitrogen (196C) can be poured into the solvent until a slush is formed that consists of the solid-liquid mixture at its melting point.
Substance Quantity of substance, g Quantity of water, mL Temperature, C Ammonium nitrate 100 94 4.0 Sodium nitrate 75 100 5.3 Sodium thiosulfate 5-water 110 100 8.0 Sodium chloride 36 100 10.0 Sodium nitrate 50 100 17.8 Sodium bromide 66 100 28 Magnesium chloride 85 100 34 Calcium chloride 6-water 100 81 40.3 100 70 55 Substance Temperature, C Substance Temperature, C Ethylene glycol 13 Acetone 77 1,2-Dichlorobenzene 17 Ethyl acetate 84 Carbon tetrachloride 22.9 2-Butanone 87 Bromobenzene 31 Hexane 95 Methoxybenzene 37 Methanol 98 Bis(2-ethoxyethyl) ether 44 Carbon disulfide 112 Chlorobenzene 45 Bromoethane 119 N-Methylaniline 57 Pentane 130 p-Cymene 68 2-Methylbutane 160 11.4 SECTION 11 TABLE 11.2 Molecular Lowering of the Melting or Freezing Point Cryoscopic constants.
The cryoscopic constant gives the depression of the melting point T (in degrees Celsius) produced when 1 Kƒ mol of solute is dissolved in 1000 g of a solvent. It is applicable only to dilute solutions for which the number of moles of solute is negligible in comparison with the number of moles of solvent. It is often used for molecular weight determinations.
1000w K 2 ƒ M 2 w T 1 where w1 is the weight of the solvent and w2 is the weight of the solute whose molecular weight is M2.
Compound Kƒ Compound Kƒ Acetamide 4.04 Diphenylamine 8.60 Acetic acid 3.90 Diphenyl ether 7.88 Acetone 2.40 1,2-Ethanediamine 2.43 Ammonia 0.957 Ethoxybenzene 7.15 Aniline 5.87 Formamide 3.85 Antimony(III) chloride 17.95 Formic acid 2.77 Benzene 5.12 Glycerol 3.3 to 3.7 Benzonitrile 5.34 Hexamethylphosphoramide 6.93 Benzophenone 9.8 Bicyclohexane 14.52 N-Methylacetamide 6.65 Biphenyl 8.0 2-Methyl-2-butanol 10.4 Borneol 35.8 Methylcyclohexane 14.13 Bornylamine 40.6 Methyl cis-9-octadecenoate 3.4 Butanedinitrile 18.26 2-Methyl-2-propanol 8.37 Camphene 31.08 Naphthalene 6.94 Camphoquinone 45.7 Nitrobenzene 6.852 D-()-Camphor 39.7 Octadecanoic acid 4.50 Carbon tetrachloride 29.8 2-Oxohexamethyleneimine 7.30 o-Cresol 5.60 Phenol 7.40 p-Cresol 6.96 Pyridine 4.75 Cyclohexane 20.0 Quinoline 1.95 Cyclohexanol 39.3 Succinonitrile 18.26 Cyclohexylcyclohexane 14.52 Sulfuric acid 1.86 Cyclopentadecanone 21.3 1,1,2,2-Tetrabromoethane 21.7 cis-Decahydronaphthalene 19.47 1,1,2,2-Tetrachloro-trans-Decahydronaphthalene 20.81 1,2-difluoroethane 37.7 Dibenz[de,kl]anthracene 25.7 Tetramethylene sulfone 64.1 Dibenzyl ether 6.27 p-Toluidine 5.372 1,2-Dibromoethane 12.5 Tribromomethane 14.4 Diethyl ether 1.79 1,3,3-Trimethyl-2-oxabicyclo-1,2-Dimethoxybenzene 6.38 [2.2.2.]octane 6.7 N,N-Dimethylacetamide 4.46 Triphenylmethane 12.45 2,2-Dimethyl-1-propanol 11.0 Water 1.86 Dimethyl sulfoxide 4.07 p-Xylene 4.3 1,4-Dioxane 4.63 11.2 DRYING AND HUMIDIFICATION 11.5 TABLE 11.3 Drying Agents Drying agent Most useful for Residual water, mg H2O per liter of dry air (25C) Grams water removed per gram of desiccant Regeneration, C Al2O3 Hydrocarbons 0.002–0.005 0.2 175 (24 h) Ba(ClO4)2 a Inert gas streams 0.6–0.8 0.17 140 BaO Basic gases: hydrocarbons, aldehydes, alcohols 0.0007–0.003 0.12 1000 CaC2 b Ethers 0.56 Impossible CaCl2 c Inert organics 0.1–0.2 0.15 (1 H2O) 0.30 (2 H2O) 250 CaH2 d Hydrocarbons, ethers, amines, esters, higher alcohols 1 105 0.85 Impossible CaO Ethers, esters, alcohols, amines 0.01–0.003 0.31 Difficult, 1000 CaSO4 Most organic substances 0.005–0.07 0.07 225 Dow Desiccant 812e Most materials (5–200 ppm) No K2CO3 Most materials except acids and phenols 0.16 158 KOH Amines 0.01–0.9 Impossible LiAlH f 4 Hydrocarbons 1.9 Impossible Mg(ClO4)2 a Gas streams 0.0005–0.002 0.24 250 (high vacuum) MgO All but acidic compounds 0.008 0.45 800 MgSO4 Most organic compounds 1–12 0.15–0.75 Not feasible Molecular sieves: 4X Molecules with effective diameter 4A ˚ 0.001 0.18 250 5X Molecules with effective diameter 5A ˚ 0.001 0.18 250 9.5% Na-Pb alloyd Hydrocarbons, ethers (For solvents only) 0.08 Impossible Na2SO4 Ketones, acids, alkyl and aryl halides 12 1.25 150 P2O5 Gas streams; not suitable for alcohols, amines, ke-tones, or amines 2 105 0.5 Not feasible Silica gel Most organic amines 0.002–0.07 0.2 200–350 Sulfuric acid Air and inert gas streams 0.003–0.008 Indefinite Not feasible a May form explosive mixtures when contacting organic material.
b Explosive C2H2 formed.
c Slow in drying action.
d H2 formed.
e Used as column drying of organic liquids.
f Strong reductant.
11.6 SECTION 11 A saturated aqueous solution in contact with an excess of a definite solid phase at a given temperature will maintain constant humidity in an enclosed space. Table 11.4 gives a number of salts suitable for this purpose. The aqueous tension (vapor pressure, in millimeters of Hg) of a solution at a given temperature is found by multiplying the decimal fraction of the humidity by the aqueous tension at 100 percent humidity for the specific temperature. For example, the aqueous tension of a saturated solution of NaCl at 20C is and at 80C it is 0.757 17.54 13.28 mmHg 0.764 355.1 271.3 mmHg.
TABLE 11.4 Solutions for Maintaining Constant Humidity % Humidity at Specified Temperatures (C) Solid Phase 10 20 25 30 40 60 80 K2Cr2O7 98.0 K2SO4 98 97 97 96 96 96 KNO3 95 93 92.5 91 88 82 KCl 88 85.0 84.3 84 81.7 80.7 79.5 KBr 84 80.7 79.6 79.0 79.3 NaCl 76 75.7 75.3 74.9 74.7 74.9 76.4 NaNO3 73.8 72.8 71.5 67.5 65.5 NaNO2 66 65 63.0 61.5 59.3 58.9 NaBr · 2H2O 57.9 57.7 52.4 49.9 50.0 Na2Cr2O7 · 2H2O 58 55 54 53.6 55.2 56.0 Mg(NO3)2 · 6H2O 57 55 52.9 52 49 43 K2CO3 · 2H2O 47 44 42.8 42 MgCl2 · 6H2O 34 33 33.0 33 32 30 KF · 2H2O 27.4 22.8 21.0 22.8 KC2H3O2 · 1.5H2O 24 23 22.5 22 20 LiCl · H2O 13 12 10.2 12 11 11 KOH 13 9 8 7 6 5 100% Humidity: Aqueous Tension (mm Hg) 9.21 17.54 23.76 31.82 55.32 149.4 355.1 PRACTICAL LABORATORY INFORMATION 11.7 TABLE 11.5 Concentrations of Solutions of H2SO4, NaOH, and CaCl2 Giving Specified Vapor Pressures and Percent Humidities at 25C Percent humidity Aqueous tension, mmHg H2SO4 Molality Weight % NaOH Molality Weight % CaCl2 Molality Weight % 100 23.76 0.00 0.00 0.00 0.00 0.00 0.00 95 22.57 1.263 11.02 1.465 5.54 0.927 9.33 90 21.38 2.224 17.91 2.726 9.83 1.584 14.95 85 20.19 3.025 22.88 3.840 13.32 2.118 19.03 80 19.00 3.730 26.79 4.798 16.10 2.579 22.25 75 17.82 4.398 30.14 5.710 18.60 2.995 24.95 70 16.63 5.042 33.09 6.565 20.80 3.400 27.40 65 15.44 5.686 35.80 7.384 22.80 3.796 29.64 60 14.25 6.341 38.35 8.183 24.66 4.188 31.73 55 13.07 7.013 40.75 8.974 26.42 4.581 33.71 50 11.88 7.722 43.10 9.792 28.15 4.990 35.64 45 10.69 8.482 45.41 10.64 29.86 5.431 37.61 40 9.50 9.304 47.71 11.54 31.58 5.912 39.62 35 8.31 10.21 50.04 12.53 33.38 6.478 41.83 30 7.13 11.25 52.45 13.63 35.29 7.183 44.36 25 5.94 12.47 55.01 14.96 37.45 20 4.75 13.94 57.76 16.67 40.00 15 3.56 15.81 60.80 19.10 43.32 10 2.38 18.48 64.45 23.05 47.97 5 1.19 23.17 69.44 Concentrations are expressed in percentage of anhydrous solute by weight.
Source: Stokes and Robinson, Ind. Eng. Chem. 41:2013 (1949).
11.8 SECTION 11 TABLE 11.6 Relative Humidity from Wet and Dry Bulb Thermometer Readings Dry bulb temperature, C Wet bulb depression, C 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Relative humidity, % 10 83 67 51 35 19 5 88 76 64 52 41 29 18 7 0 91 81 72 64 55 46 38 29 21 13 5 2 91 84 76 68 60 52 44 37 29 22 14 7 4 92 85 78 71 63 57 49 43 36 29 22 16 6 93 86 79 73 66 60 54 48 41 35 29 24 8 93 87 81 75 69 63 57 51 46 40 35 29 10 94 88 82 77 71 66 60 55 50 44 39 34 12 94 89 83 78 73 68 63 58 53 48 43 39 14 95 90 85 79 75 70 65 60 56 51 47 42 16 95 90 85 81 76 71 67 63 58 54 50 46 18 95 91 86 82 77 73 69 65 61 57 53 49 20 96 91 87 83 78 74 70 66 63 59 55 51 22 96 92 87 83 80 76 72 68 64 61 57 54 24 96 92 88 84 80 77 73 69 66 62 59 56 26 96 92 88 85 81 78 74 71 67 64 61 58 28 96 93 89 85 82 78 75 72 69 65 62 59 30 96 93 89 86 83 79 76 73 70 67 64 61 35 97 94 90 87 84 81 78 75 72 69 67 64 40 97 94 91 88 85 82 80 77 74 72 69 67 Dry bulb temperature, C Wet bulb depression, C 6.5 7.0 7.5 8.0 8.5 9.0 10.0 11.0 12.0 13.0 14.0 15.0 Relative humidity, % 4 9 6 17 11 5 8 24 19 14 8 10 29 24 20 15 10 6 12 34 29 25 21 16 12 5 14 38 34 30 26 22 18 10 16 42 38 34 30 26 23 15 8 18 45 41 38 34 30 27 20 14 7 20 48 44 41 37 34 31 24 18 12 6 22 50 47 44 40 37 34 28 22 17 11 6 24 53 49 46 43 40 37 31 26 20 15 10 5 26 54 51 49 46 43 40 34 29 24 19 14 10 28 56 53 51 48 45 42 37 32 27 22 18 13 30 58 55 52 50 47 44 39 35 30 25 21 17 32 60 57 54 51 49 46 41 37 32 28 24 20 34 61 58 56 53 51 48 43 39 35 30 26 23 36 62 59 57 54 52 50 45 41 37 33 29 25 38 63 61 58 56 54 51 47 43 39 35 31 27 40 64 62 59 57 54 53 48 44 40 36 33 29 PRACTICAL LABORATORY INFORMATION 11.9 TABLE 11.7 Relative Humidity from Dew Point Readings Depression of dew point, C Dew point reading, C 10 0 10 20 30 Relative humidity, % 0.5 96 96 96 96 97 1.0 92 93 94 94 94 1.5 89 89 90 91 92 2.0 86 87 88 88 89 3.0 79 81 82 83 84 4.0 73 75 77 78 80 5.0 68 70 72 74 75 6.0 63 66 68 70 71 7.0 59 61 63 66 68 8.0 54 57 60 62 64 9.0 51 53 56 58 61 10.0 47 50 53 55 57 11.0 44 47 49 52 12.0 41 44 47 49 13.0 38 41 44 46 14.0 35 38 41 44 15.0 33 36 39 42 16.0 31 34 37 39 18.0 27 30 33 35 20.0 24 26 29 32 22.0 21 23 26 24.0 18 21 23 26.0 16 18 21 28.0 14 16 19 30.0 12 14 17 11.10 SECTION 11 11.3 BOILING POINTS AND HEATING BATHS TABLE 11.8 Organic Solvents Arranged by Boiling Points Name BP, C Name BP, C Ethylene oxide 10.6 Chloroethane 12.3 Furan 31.4 Methyl formate 31.5 Diethyl ether 34.6 Propylene oxide 34.5 Pentane 36.1 Bromoethane 38.4 Dichloromethane 39.8 Dimethoxymethane 42.3 Carbon disulfide 46.3 1-Isopropoxy-2-propanol 47.9 Ethyl formate 54.2 Acetone 56.2 Methyl acetate 56.3 1,1-Dichloroethane 57.3 Dichloroethylene 60.6 Chloroform 61.2 Methanol 64.7 Tetrahydrofuran 66.0 Diisopropyl ether 68.0 Hexane 68.7 1-Chloro-2-methylpropane 68.9 1,1,1-Trichloroethane 74.0 1,3-Dioxolane 74–75 Carbon tetrachloride 76.7 Ethyl acetate 77.1 1-Chlorobutane 77.9 Ethanol 78.3 2-Butanone 79.6 2-Methyltetrahydrofuran 80.0 Benzene 80.1 Cyclohexane 80.7 Propyl formate 80.9 Acetonitrile 81.6 2-Propanol 82.4 1,1,-Dimethylethanol 82.4 Cyclohexene 83.0 Diisopropylamine 83.5 1,2-Dichloroethane 83.7 Thiophene 84.2 Trichloroethylene 87.2 Isopropyl acetate 88.2 1-Bromo-2-methylpropane 91.5 2,5-Dimethylfuran 93–94 Ethyl chloroformate 94 Allyl alcohol 96.6 1,2-Dichloropropane 96.8 1-Propanol 97.2 Heptane 98.4 1-Chloro-3-methylbutane 99 Ethyl propionate 99.1 2-Butanol 99.6 Formic acid 100.8 Methylcyclohexane 100.9 1,4-Dioxane 101.2 Nitromethane 101.2 Propyl acetate 101.5 2-Pentanone 101.7 3-Pentanone 102.0 2-Methyl-2-butanol 102.0 1,1-Diethoxyethane 102.7 Butyl formate 106.6 2-Methyl-1-propanol 107.9 Toluene 110.6 sec-Butyl acetate 112.3 1,1,2-Trichloroethane 113.5 Nitroethane 114.1 Pyridine 115.2 3-Pentanol 115.6 4-Methyl-2-pentanone 115.7 1-Chloro-2,3-epoxypro-pane 116.1 1-Butanol 117.7 Acetic acid 117.9 Isobutyl acetate 118.0 2-Pentanol 119.3 1-Bromo-3-methylbutane 119.7 1-Methoxy-2-propanol 120.1 2-Nitropropane 120.3 Tetrachloroethylene 121.1 Ethyl butyrate 121.6 3-Hexanone 123 2,4-Dimethyl-3-pentanone 124 2-Methoxyethanol 124.6 Octane 125.7 Butyl acetate 126.1 Diethyl carbonate 126.8 2-Hexanone 127.2 1-Chloro-2-propanol 127.4 2-Chloroethanol 128.6 3-Methyl-1-penten-2-one 129.5 1-Nitropropane 131.2 Chlorobenzene 131.7 1,2-Dibromoethane 131.7 4-Methyl-2-pentanol 131.7 PRACTICAL LABORATORY INFORMATION 11.11 3-Methyl-1-butanol 132.0 Cyclohexylamine 134.8 2-Ethoxyethanol 134.8 Ethylbenzene 136.2 1-Pentanol 138 p-Xylene 138.4 m-Xylene 139.1 Acetic anhydride 140.0 2,4-Pentanedione 140.6 Isopentyl acetate 142 Dibutyl ether 142.4 4-Heptanone 143.7 o-Xylene 144.4 2-Methoxyethyl acetate 144.5 1,1,2,2-Tetrachloroethane 146.3 3-Heptanone 147.8 Tribromomethane 149.6 Nonane 150.8 2-Heptanone 151 Isopropylbenzene 152.4 N,N-Dimethylformamide 153.0 Methoxybenzene 153.8 Ethyl lactate 154.5 Cyclohexanone 155.7 Bromobenzene 156.2 1,2,3-Trichloropropane 156.9 1-Hexanol 157.5 Propylbenzene 159.2 Cyclohexanol 161.1 Bis(2-methoxyethyl)ether 160 Isopentyl propionate 160.2 2-Heptanol 160.4 Pentachloroethane 160.5 2-Furaldehyde 161.8 2,6-Dimethyl-4-heptanone 168.1 4-Hydroxy-4-methyl-169.2 2-pentanone 2-Furanmethanol 170.0 Ethoxybenzene 170 2-Butoxyethanol 170.2 Diisopentyl ether 173.4 Decane 174.2 1,3-Dichloro-2-propanol 174.3 Cyclohexyl acetate 174–175 1-Heptanol 175.8 Furfuryl acetate 175–177 1,3,3-Trimethyl-2-oxabicyclo-[2.2.2]octane 177.4 4-Isopropyl-177.1 1-methylbenzene Isopentyl butyrate 178.6 Bis(2-chloroethyl) ether 178.8 2-Octanol 179 1,2-Dichlorobenzene 180.4 Ethyl acetoacetate 180.8 Phenol 181.8 2-Ethyl-1-hexanol 184.3 Aniline 184.4 Benzyl ethyl ether 185.0 Diethyl oxalate 185.4 1,2-Propanediol 188 Bis(2-ethoxyethyl) ether 188.4 Dimethyl sulfoxide 189.0 1,2-Ethanediol diacetate 190.2 Benzonitrile 191.0 2,5-Hexanedione 191.4 2-(2-Methoxyethoxy)-194.1 ethanol N,N-Dimethylaniline 194.2 1-Octanol 195.2 1,2-Ethanediol 197.3 Diethyl malonate 199.3 Methyl benzoate 199.5 o-Toluidine 200.4 p-Toluidine 200.6 2-(2-Ethoxyethoxy)-ethanol 202 Acetophenone 202.1 1,2-Dibutoxyethane 203.6 1-Phenylethanol 203.9 m-Toluidine 203.4 Benzyl alcohol 205.5 Camphor 207 1,3-Butanediol 207.5 1,2,3,4-Tetrahydro-naphthalene 207.6 -Valerolactone 207–208 o-Chloroaniline 208.8 Nitrobenzene 210.8 Ethyl benzoate 212.4 3,5,5-Trimethylcyclo-215.2 hex-2-en-1-one Naphthalene 217.7 2-(2-Ethoxyethoxy)ethyl 218.5 acetate Acetamide 221.2 Methyl salicylate 223.0 Diethyl maleate 225.3 1,4-Butanediol 230 Propyl benzoate 231.2 1-Decanol 230.2 Phenylacetonitrile 233.5 Quinoline 237 Tributyl borate 238.5 Propylene carbonate 240 TABLE 11.8 Organic Solvents Arranged by Boiling Points (Continued) Name BP, C Name BP, C 11.12 SECTION 11 2-Phenoxyethanol 240 Bis(2-hydroxyethyl) ether 245 Dibutyl oxalate 245.5 Butyl benzoate 250 1,2,3-Propanetriol 258–259 triacetate 1-Chloronaphthalene 259.3 Isopentyl benzoate 262 trans-Ethyl cinnamate 271.0 Bis[2-(methoxyethoxy)-275.3 ethyl]ether 1-Methoxy-2-nitrobenzene 277 Isopentyl salicylate 277–278 1-Bromonaphthalene 281.1 Dimethyl o-phthalate 283.7 2,2-(Ethylenedioxy)-bisethanol 285 Glycerol 290 Diethyl o-phthalate 295 Benzyl benzoate 323.5 Dibutyl o-phthalate 340.0 Dibutyl decanedioate 344–345 TABLE 11.8 Organic Solvents Arranged by Boiling Points (Continued) Name BP, C Name BP, C PRACTICAL LABORATORY INFORMATION 11.13 TABLE 11.9 Molecular Elevation of the Boiling Point Ebullioscopic constants.
Molecular weights can be determined with the relation: 1000 w2 M Eb w T 1 b where Tb is the elevation of the boiling point brought about by the addition of w2 grams of solute to w1 grams of solvent and Eb is the ebullioscopic constant. In the column headed “Barometric correction” is the number of degrees for each millimeter of difference between the barometric reading and 760 mmHg to be subtracted from Eb if the pressure is lower, or added if higher, than 760 mm. In general, the effect is within experimental error if the pressure is within 10 mm of 760 mm.
The ebullioscopic constant, a characteristic property of the solvent, may be calculated from the relation: 2 RT M b E b H vap where R is the molar gas constant, M is the molar mass of the solvent, and vapH the molar enthalpy (heat) of vaporization of the solvent.
Compound Barometric correction Eb, C kg · mol1 Acetic acid 0.0008 3.22 Acetic anhydride 3.79 Acetone 0.0004 1.80 Acetonitrile 1.44 Acetophenone 5.81 Aniline 0.0009 3.82 Benzaldehyde 4.24 Benzene 0.0007 2.64 Benzonitrile 4.02 Bromobenzene 0.0016 6.35 Bromoethane 1.73 1-Butanol 2.17 2-Butanone 2.28 cis-2-Butene-1,4-diol 2.73 D-()-Camphor 0.0015 4.91 Carbon disulfide 0.0006 2.42 Carbon tetrachloride 0.0013 5.26 Chlorobenzene 0.0011 4.36 1-Chlorobutane 3.13 Chloroethane 1.77 Chloroform 0.0009 3.80 Cyclohexane 0.0007 2.92 Cyclohexanol 3.5 Decane 6.10 1,2-Dibromomethane 0.0016 6.01 1,1-Dichloroethane 3.13 1,2-Dichloroethane 3.27 Dichloromethane 2.42 Diethyl ether 0.0005 2.20 Diethyl sulfide 3.14 Dimethoxymethane 2.12 N,N-Dimethylacetamide 3.22 Dimethyl sulfide 1.85 Dimethyl sulfoxide 3.22 11.14 SECTION 11 1,4-Dioxane 3.00 Ethanol 0.0003 1.22 Ethoxybenzene 4.90 Ethyl acetate 0.0007 2.82 Ethylene glycol 2.26 Formic acid 2.36 Glycerol 6.52 Heptane 0.0008 3.62 Hexane 2.90 2-Hydroxybenzaldehyde 5.87 Iodoethane 5.27 Iodomethane 4.31 4-Isopropyl-1-methylbenzene 5.92 Methanol 0.0002 0.86 Methoxybenzene 4.20 Methyl acetate 0.0005 2.21 N-Methylaniline 4.3 2-Methyl-2-butanol 2.64 3-Methyl-1-butanol 2.88 3-Methylbutyl acetate 4.83 N-Methylformamide 2.2 Methyl formate 1.66 2-Methyl-1-propanol 2.14 2-Methyl-2-propanol 1.99 Naphthalene 0.0014 5.94 Nitrobenzene 5.24 Nitroethane 2.46 Nitromethane 2.09 Octane 4.39 1-Octanol 5.06 Pentyl acetate 4.71 Phenol 0.0009 3.54 Piperidine 3.21 Propanoic acid 3.27 1-Propanol 1.66 2-Propanol 1.58 Propionitrile 1.97 Pyridine 2.83 Pyrrole 2.33 Pyrrolidine 2.32 Quinoline 5.62 Tetrachloroethylene 6.18 Tetrachloromethane 5.26 1,2,3,4-Tetrahydronaphthalene 5.58 Toluene 0.0008 3.40 p-Toluidine 4.51 Trichloroethylene 4.52 Trichloromethane 0.0009 3.80 1,1,2-Trichloro-1,2,2-trifluoroethane 5.93 Triethylamine 3.57 Water 0.0001 0.512 o-Xylene 4.25 TABLE 11.9 Molecular Elevation of the Boiling Point (Continued) Compound Barometric correction Eb, C kg · mol1 PRACTICAL LABORATORY INFORMATION 11.15 TABLE 11.10 Substances Which Can Be Used for Heating Baths Medium Melting point, C Boiling point, C Useful range, C Flash point, C Comments Water 0 100 0–100 None Ideal Silicone oil 50 — 30–250 315 Somewhat viscous at low temperature Triethylene glycol 7 285 0–250 165 Noncorrosive Glycerol 18 290 20 to 260 160 Water-soluble, nontoxic Paraffin 50 — 60–300 199 Flammable Dibutyl o-phthalate 35 340 150–320 171 Generally used 11.4 SEPARATION METHODS 11.16 TABLE 11.11 Solvents of Chromatographic Interest Solvent Boiling point, C Solvent strength parameter e (SiO2) e (Al2O3) Viscosity, mN · s · m2 (20C) Refractive index (20C) UV cutoff, nm Fluoroalkanes 0.25 1.25 Pentane 36 0.0 0.0 0.2415C 1.358 210 Hexane 69 0.0 0.0 0.31 1.375 210 2,2,4-Trimethylpentane 99 0.01 0.50 1.392 215 Decane 174 0.04 0.93 1.412 210 Cyclohexane 81 0.05 0.04 0.98 1.426 210 Cyclopentane 49 0.05 0.44 1.407 210 Diisobutylene 101 0.06 1.411 1-Pentene 30 0.08 0.240C 1.371 Carbon disulfide 46 0.14 0.15 0.36 1.626 380 Carbon tetrachloride 77 0.14 0.18 0.97 1.466 265 1-Chlorobutane 78 0.26 0.43 1.402 220 1-Chloropentane 98 0.26 0.58 1.412 225 o-Xylene 144 0.26 0.81 1.505 290 Diisopropyl ether 68 0.28 0.3825C 1.369 220 2-Chloropropane 35 0.29 0.33 1.378 225 Toluene 111 0.29 0.59 1.497 286 1-Chloropropane 47 0.30 0.35 1.389 225 Chlorobenzene 132 0.40 0.80 1.525 Benzene 80 0.25 0.32 0.65 1.501 280 Bromoethane 38 0.37 0.40 1.424 Diethyl ether 35 0.38 0.38 0.25 1.353 218 Diethyl sulfide 92 0.38 0.45 1.443 290 Chloroform 62 0.26 0.40 0.57 1.443 245 Dichloromethane 41 0.42 0.44 1.425 235 4-Methyl-2-pentanone 116 0.43 0.4215C 1.396 335 Tetrahydrofuran 66 0.45 0.55 1.407 220 1,2-Dichloroethane 84 0.49 0.80 1.445 228 2-Butanone 80 0.51 0.4215C 1.379 330 1-Nitropropane 131 0.53 0.8025C 1.402 380 Acetone 56 0.47 0.56 0.32 1.359 330 1,4-Dioxane 101 0.49 0.56 1.4415C 1.420 215 Ethyl acetate 77 0.38 0.58 0.45 1.372 255 Methyl acetate 56 0.60 0.4815C 1.362 260 1-Pentanol 138 0.61 4.1 1.410 210 Dimethyl sulfoxide 189 0.62 2.47 1.478 265 Aniline 184 0.62 4.40 1.586 Diethylamine 56 0.63 0.33 1.386 275 Nitromethane 101 0.64 0.67 1.394 380 Acetonitrile 82 0.50 0.65 0.37 1.344 190 Pyridine 115 0.71 0.97 1.510 330 2-Butoxyethanol 170 0.74 3.1525C 1.420 220 1-Propanol 97 0.82 2.25 1.386 210 2-Propanol 82 0.82 2.50 1.377 210 Ethanol 78 0.88 1.20 1.361 210 Methanol 65 0.95 0.59 1.328 210 Ethylene glycol 198 1.11 21.8 1.432 210 Acetic acid 118 large 1.23 1.372 260 Water 100 large 1.00 1.333 191 11.17 TABLE 11.11 Solvents of Chromatographic Interest Solvent Boiling point, C Solvent strength parameter e (SiO2) e (Al2O3) Viscosity, mN · s · m2 (20C) Refractive index (20C) UV cutoff, nm Continued 11.18 SECTION 11 TABLE 11.12 Solvents Having the Same Refractive Index and the Same Density at 25C Solvent 1 Solvent 2 Refractive index 1 2 Density, g/mL 1 2 Acetone Ethanol 1.357 1.359 0.788 0.786 Ethyl formate Methyl acetate 1.358 1.360 0.916 0.935 Ethanol Propionitrile 1.359 1.363 0.786 0.777 2,2-Dimethylbutane 2-Methylpentane 1.366 1.369 0.644 0.649 2-Methylpentane Hexane 1.369 1.372 0.649 0.655 Isopropyl acetate 2-Chloropropane 1.375 1.376 0.868 0.865 3-Butanone Butyraldehyde 1.377 1.378 0.801 0.799 Butyraldehyde Butyronitrile 1.378 1.382 0.799 0.786 Dipropyl ether Butyl ethyl ether 1.379 1.380 0.753 0.746 Propyl acetate Ethyl propionate 1.382 1.382 0.883 0.888 Propyl acetate 1-Chloropropane 1.382 1.386 0.883 0.890 Butyronitrile 2-Methyl-2-propanol 1.382 1.385 0.786 0.781 Ethyl propionate 1-Chloropropane 1.382 1.386 0.888 0.890 1-Propanol 2-Pentanone 1.383 1.387 0.806 0.804 Isobutyl formate 1-Chloropropane 1.383 1.386 0.881 0.890 1-Chloropropane Butyl formate 1.386 1.387 0.890 0.888 Butyl formate Methyl butyrate 1.387 1.391 0.888 0.875 Methyl butyrate 2-Chlorobutane 1.392 1.395 0.875 0.868 Butyl acetate 2-Chlorobutane 1.392 1.395 0.877 0.868 4-Methyl-2-pentanone Pentanonitrile 1.394 1.395 0.797 0.795 4-Methyl-2-pentanone 1-Butanol 1.394 1.397 0.797 0.812 2-Methyl-1-propanol Pentanonitrile 1.394 1.395 0.798 0.795 2-Methyl-1-propanol 2-Hexanone 1.394 1.395 0.798 0.810 2-Butanol 2,4-Dimethyl-3-pentanone 1.395 1.399 0.803 0.805 2-Hexanone 1-Butanol 1.395 1.397 0.810 0.812 Pentanonitrile 2,4-Dimethyl-3-pentanone 1.395 1.399 0.795 0.805 2-Chlorobutane Isobutyl butyrate 1.395 1.399 0.868 0.860 Butyric acid 2-Methoxyethanol 1.396 1.400 0.955 0.960 1-Butanol 3-Methyl-2-pentanone 1.397 1.398 0.812 0.808 1-Chloro-2-methylpropane Isobutyl butyrate 1.397 1.399 0.872 0.860 1-Chloro-2-methylpropane Pentyl acetate 1.397 1.400 0.872 0.871 Methyl methacrylate 3-Methyl-2-pentanone 1.398 1.398 0.795 0.808 Triethylamine 2,2,3-Trimethylpentane 1.399 1.401 0.723 0.712 Butylamine Dodecane 1.399 1.400 0.736 0.746 Isobutyl butyrate 1-Chlorobutane 1.399 1.401 0.860 0.875 1-Nitropropane Propionic anhydride 1.399 1.400 0.995 1.007 Pentyl acetate 1-Chlorobutane 1.400 1.400 0.871 0.881 Pentyl acetate Tetrahydrofuran 1.400 1.404 0.871 0.885 Dodecane Dipropylamine 1.400 1.400 0.746 0.736 1-Chlorobutane Tetrahydrofuran 1.401 1.404 0.871 0.885 Isopentanoic acid 2-Ethoxyethanol 1.402 1.405 0.923 0.926 Dipropylamine Cyclopentane 1.403 1.404 0.736 0.740 2-Pentanol 4-Heptanone 1.404 1.405 0.804 0.813 3-Methyl-1-butanol Hexanonitrile 1.404 1.405 0.805 0.801 3-Methyl-1-butanol 4-Heptanone 1.404 1.405 0.805 0.813 Hexanonitrile 4-Heptanone 1.405 1.405 0.801 0.813 Hexanonitrile 1-Pentanol 1.405 1.408 0.801 0.810 Hexanonitrile 2-Methyl-1-butanol 1.405 1.409 0.801 0.815 4-Heptanone 1-Pentanol 1.405 1.408 0.813 0.810 PRACTICAL LABORATORY INFORMATION 11.19 2-Ethoxyethanol Pentanoic acid 1.405 1.406 0.926 0.936 2-Heptanone 1-Pentanol 1.406 1.408 0.811 0.810 2-Heptanone 2-Methyl-1-butanol 1.406 1.409 0.811 0.815 2-Heptanone Dipentyl ether 1.406 1.410 0.811 0.799 2-Pentanol 3-Isopropyl-2-pentanone 1.407 1.409 0.804 0.808 1-Pentanol Dipentyl ether 1.408 1.410 0.810 0.799 2-Methyl-1-butanol Dipentyl ether 1.409 1.410 0.815 0.799 Isopentyl isopentanoate Allyl alcohol 1.410 1.411 0.853 0.847 Dipentyl ether 2-Octanone 1.410 1.414 0.799 0.814 2,4-Dimethyldioxane 3-Chloropentene 1.412 1.413 0.935 0.932 2,4-Dimethyldioxane Hexanoic acid 1.412 1.415 0.935 0.923 Diethyl malonate Ethyl cyanoacetate 1.412 1.415 1.051 1.056 3-Chloropentene Octanoic acid 1.413 1.415 0.932 0.923 2-Octanone 1-Hexanol 1.414 1.416 0.814 0.814 2-Octanone Octanonitrile 1.414 1.418 0.814 0.810 3-Octanone 3-Methyl-2-heptanone 1.414 1.416 0.830 0.818 3-Methyl-2-heptanone 1-Hexanol 1.415 1.416 0.818 0.814 3-Methyl-2-heptanone Octanonitrile 1.415 1.418 0.818 0.810 1-Hexanol Octanonitrile 1.416 1.418 0.814 0.810 Dibutylamine Allylamine 1.416 1.419 0.756 0.758 Allylamine Methylcyclohexane 1.419 1.421 0.758 0.765 Butyrolactone 1,3-Propanediol 1.434 1.438 1.051 1.049 Butyrolactone Diethyl maleate 1.434 1.438 1.051 1.064 2-Chloromethyl-2-propanol Diethyl maleate 1.436 1.438 1.059 1.064 N-Methylmorpholine Dibutyl decanedioate 1.436 1.440 0.924 0.932 1,3-Propanediol Diethyl maleate 1.438 1.438 1.049 1.064 Methyl salicylate Diethyl sulfide 1.438 1.442 0.836 0.831 Methyl salicylate 1-Butanethiol 1.438 1.442 0.836 0.837 1-Chlorodecane Mesityl oxide 1.441 1.442 0.862 0.850 Diethylene glycol Formamide 1.445 1.446 1.128 1.129 Diethylene glycol Ethylene glycol diglycidyl ether 1.445 1.447 1.128 1.134 Formamide Ethylene glycol diglycidyl ether 1.446 1.447 1.129 1.134 2-Methylmorpholine Cyclohexanone 1.446 1.448 0.951 0.943 2-Methylmorpholine 1-Amino-2-propanol 1.446 1.448 0.951 0.961 Dipropylene glycol mono-ethyl ether Tetrahydrofurfuryl alcohol 1.446 1.450 1.043 1.050 1-Amino-2-methyl-2-pentanol 2-Butylcyclohexanone 1.449 1.453 0.904 0.901 2-Propylcyclohexanone 4-Methylcyclohexanol 1.452 1.454 0.923 0.908 Carbon tetrachloride 4,5-Dichloro-1,3-dioxolane-2-one 1.459 1.461 1.584 1.591 N-Butyldiethanolamine Cyclohexanol 1.461 1.465 0.965 0.968 D--Pinene trans-Decahydro-naphthalene 1.464 1.468 0.855 0.867 Propylbenzene p-Xylene 1.490 1.493 0.858 0.857 Propylbenzene Toluene 1.490 1.494 0.858 0.860 TABLE 11.12 Solvents Having the Same Refractive Index and the Same Density at 25C (Continued) Solvent 1 Solvent 2 Refractive index 1 2 Density, g/mL 1 2 11.20 SECTION 11 Phenyl 1-hydroxyphenyl ether 1,3-Dimorpholyl-2-propanol 1.491 1.493 1.081 1.094 Phenetole Pyridine 1.505 1.507 0.961 0.978 2-Furanmethanol Thiophene 1.524 1.526 1.057 1.059 m-Cresol Benzaldehyde 1.542 1.544 1.037 1.041 TABLE 11.12 Solvents Having the Same Refractive Index and the Same Density at 25C (Continued) Solvent 1 Solvent 2 Refractive index 1 2 Density, g/mL 1 2 TABLE 11.13 McReynolds’ Constants for Stationary Phases in Gas Chromatography Stationary phase Chemical type Similar stationary phases Temp., C Min Max McReynolds’ constants x’ y’ z’ u’ s’ USP code Boiling-point separation of broad molecular weight range of compounds; nonpolar phases Squalane 2,6,10,15,19,23-Hexa-methyltetracosane 20 150 0 0 0 0 0 0 Paraffin oil 9 5 2 6 11 33 Apiezon L 50 300 32 22 15 32 42 143 SPB-1 Poly(dimethylsiloxane) SA-1, DB-1 60 320 4 58 43 56 38 199 SP-2100 Poly(dimethylsiloxane) DC-200, SE 30, UC W98, DC 200 0 350 17 57 45 67 43 229 G 9 OV-1 Methylsiloxane gum 100 350 16 55 44 65 42 227 G 2 OV-101 Methylsiloxane fluid 20 350 17 57 45 67 43 234 G 1 SPB-5 1% Vinyl, 5% phenyl methyl polysiloxane SA-5, DB-5 60 320 19 74 64 93 62 312 SE-54 1% Vinyl, 5% phenyl methyl polysiloxane PTE-5 50 300 19 74 64 93 62 312 G 36 SE-52 5% Phenyl methyl polysiloxane 50 300 32 72 65 98 67 334 G 27 OV-73 5.5% Phenyl methyl polysiloxane SP-400 0 325 40 86 76 114 85 401 G 27 OV-3 Poly(dimethyldiphenyl-siloxane); 90%:10% 0 350 44 86 81 124 88 423 Dexsil 300 Carborane9methyl silicone 50 450 47 80 103 148 96 474 G 33 Dexsil 400 Carborane9methyl-phenyl silicone 50 400 72 108 118 166 123 587 11.21 OV-7 20% Phenyl methyl polysiloxane DC 550 0 350 69 113 111 171 128 592 SPB-20 20% Phenyl methyl polysiloxane SPB-35, SPB-1701, DB-1301 20 300 67 116 117 174 131 605 Di-(2-ethylhexyl)-sebacate 20 125 72 168 108 180 125 653 G 11 DC 550 25% Phenyl methyl polysiloxane 20 225 81 124 124 189 145 663 G 28 Unsaturated hydrocarbons and other compounds of intermediate polarity Diisodecyl phthalate 20 150 84 173 137 218 155 767 G 24 OV-11 35% Phenyl methyl polysiloxane 0 350 102 142 145 219 178 786 OV-1701 Vinyl methyl poly-siloxane SPB-1701, SA-1701, DB-1701 0 250 67 170 152 228 171 789 Poly-I 110 275 115 194 122 204 202 837 G 37 SP-2250 Poly(phenylmethyl-siloxane); 50% phenyl OV-17, DB-17 0 375 119 158 162 243 202 884 G 3 Dexsil 410 Carborane—methylcyano ethyl silicone 50 400 72 286 174 249 171 952 UCON LB-550-X Polyalkylene glycol 20 200 118 271 158 243 206 996 UCON LB-1880-X Polyalkylene glycol 200 123 275 161 249 212 1020 G 18 Poly-A 103 275 115 331 144 263 214 1072 G 10 11.22 TABLE 11.13 McReynolds’ Constants for Stationary Phases in Gas Chromatography (Continued) Stationary phase Chemical type Similar stationary phases Temp., C Min Max McReynolds’ constants x’ y’ z’ u’ s’ USP code Boiling-point separation of broad molecular weight range of compounds; nonpolar phases (continued) OV-22 Poly(diphenyldimethyl-siloxane); 65%:35% 0 350 160 188 191 283 253 1075 Di(2-ethylhexyl) phthalate 150 135 254 213 320 235 1157 G 22 OV-25 Poly(diphenyldimethyl-siloxane); 75%:25% 0 350 178 204 208 305 280 1175 G 17 Moderately polar compounds DC QF-1 0 250 144 233 355 463 305 1500 OV-210 50% Trifluoropropyl-methylpolysiloxane SP-2401, DB-210 0 275 146 238 358 468 310 1520 G 6 OV-215 Poly(trifluoropropyl-methylsiloxane) 0 275 149 240 363 478 315 1545 UCON-50-HB-2000 Polyalkylene glycol 0 200 202 394 253 392 341 1582 Triton X-100 Octylphenoxy poly-ethoxy ethanol 0 190 203 399 268 402 362 1634 UCON 50-HB-5100 Polyglycol 0 200 214 418 278 421 375 1706 XE-60 Poly(cyanoethylphenyl-methylsiloxane) 0 250 204 381 340 493 367 1785 G 26 OV-225 25% Cyanopropyl 25% phenyl methyl polysiloxane DB-225, DB-23 0 265 228 369 338 492 386 1813 G 19 Ipegal CO-880 Nonylphenoxypoly-(ethyleneoxy)ethanol 100 200 259 461 311 482 426 1939 G 31 Triton X-305 Octylphenoxy poly-ethoxy ethanol 200 250 262 467 314 488 430 1961 11.23 TABLE 11.13 McReynolds’ Constants for Stationary Phases in Gas Chromatography (Continued) Stationary phase Chemical type Similar stationary phases Temp., C Min Max McReynolds’ constants x’ y’ z’ u’ s’ USP code (continued) Unsaturated hydrocarbons and other compounds of intermediate polarity Polar compounds Hi-EFF-3BP Neopentylglycol succinate 50 230 272 469 366 539 474 2120 G 21 Carbowax 20M-TPA Polyethyleneglycol terephthalic acid 60 250 321 367 368 573 520 2149 G 25 Supelcowax 10 Polyethyleneglycol terephthalic acid DB-WAX, SA-WAX 50 280 305 551 360 562 484 2262 SP-1000 Polyethyleneglycol terephthalic acid 60 220 304 552 359 549 498 2262 Carbowax 20M Polyethyleneglycol SP-2300 25 275 322 536 368 572 510 2308 G 16 Nukol SP-1000, FFAP, OV-351 311 572 374 572 520 2349 Carbowax 3350 Formerly Carbowax 4000 60 200 325 551 375 582 520 2353 G 15 OV-351 Polyethyleneglycol nitroterephthalic acid SP-1000 50 270 335 552 382 583 540 2392 SP-2300 36% Cyanopropyl 25 275 316 495 446 637 530 2424 Silar 5 CP 50% Cyanopropyl phenyl silicone SP-2300 0 250 319 495 446 637 531 2428 G 7 11.24 TABLE 11.13 McReynolds’ Constants for Stationary Phases in Gas Chromatography (Continued) Stationary phase Chemical type Similar stationary phases Temp., C Min Max McReynolds’ constants x’ y’ z’ u’ s’ USP code FFAP 50 250 340 580 397 602 627 2546 G 35 Hi-EFF-10BP Phenyldiethanolamine succinate 20 230 386 555 472 674 656 2744 G 21 Carbowax 1450 Formerly 1540 50 175 371 639 453 666 641 2770 G 14 SP-2380 402 629 520 744 623 2918 SP-2310 55% Cyanopropyl Silar 7 CP 25 275 440 637 605 840 670 3192 SP-2330 68% Cyanopropyl SP-2331, SH-60 25 275 490 725 630 913 778 3536 Silar 9 CP 90% Cyanopropyl phenyl 50 250 489 725 631 913 778 3536 G 8 Hi-EFF-1BP Diethyleneglycol succinate 20 200 499 751 593 840 860 3543 G 4 SP-2340 75% Cyanopropyl phenyl OV-275, SH-80 25 275 520 757 659 942 800 3678 Silar 10 CP 100% Cyanopropyl silicone SP-2340 25 275 523 757 659 942 801 3682 G 5 THEED Amino alcohol 0 125 463 942 626 801 893 3725 OV-275 Dicyanoallylsilicone 25 250 629 872 763 110 849 4219 Absolute index values on squalane for reference compounds: 653 590 627 652 699 Note: USP code is the United States Pharmacopeia designation.
11.25 Polar compounds TABLE 11.13 McReynolds’ Constants for Stationary Phases in Gas Chromatography (Continued) Stationary phase Chemical type Similar stationary phases Temp., C Min Max McReynolds’ constants x’ y’ z’ u’ s’ USP code 11.26 SECTION 11 11.4.1 McReynolds’ Constants The Kovats retention indices (R.I.) indicate where compounds will appear on a chromatogram with respect to unbranched alkanes injected with the sample. By definition, the R.I. for pentane is 500, for hexane is 600, for heptane is 700, and so on, regardless of the column used or the operating conditions, although the exact conditions and column must be specified, such as liquid loading, particular support used, and any pretreatment. For example, suppose that on a 20% squalane column at 100C, the retention times for hexane, benzene, and octane are found to be 15, 16, and 25 min, respectively. On a graph of (naperian logarithm of the adjusted retention time) of the alkanes ln t R versus their retention indices, a R.I. of 653 for benzene is read off the graph. The number 653 for benzene (see last line of Table 11.13 in the column headed “1” under “Reference compounds”) means that it elutes halfway between hexane and heptane on a logarithmic time scale. If the exper-iment is repeated with a dinonyl phthalate column, the R.I for benzene is found to be 736 (lying between heptane and octane), which implies that dinonyl phthalate will retard benzene slightly more than squalane will; that is, dinonyl phthalate is slightly more polar than squalane by units I 83 (the entry in Table 11.13 for dinonyl phthalate in the column headed “1” under “Reference com-pounds”). The difference gives a measure of solute-solvent interaction due to all intermolecular forces other than London dispersion forces. The latter are the principal solute-solvent effects with squalane.
TABLE 11.14 Characteristics of Selected Supercritical Fluids Fluid Critical temperature, K (C) Critical pressure, atm (psi) Ammonia 406 (133) 111.3 (1636) Argon 151 (122) 48.1 (707) Benzene 562 (289) 48.3 (710) Butane 425 (125) 37.5 (551) Carbon dioxide 304 (31) 72.8 (1070) Carbon disulfide 552 (279) 78.0 (1147) Chlorotrifluoromethane 379 (106) 40 (588) 2,2-Dimethylpropane 434 (161) 31.6 (464) Ethane 305 (32) 48.2 (706) Fluoromethane 318 (45) 58.0 (853) Heptane 540 (267) 27.0 (397) Hexane 507 (234) 29.3 (431) Hydrogen sulfide 373 (100) 88.2 (1296) Krypton 209 (64) 54.3 (798) Methane 191 (82) 45.4 (667) Methanol 513 (240) 79.9 (1175) 2-Methylpropane 408 (65) 36.0 (529) Nitrogen 126 (147) 33.5 (492) Nitrogen(I) oxide 310 (37) 71.5 (1051) Pentane 470 (197) 33.3 (490) Propane 470 (197) 41.9 (616) Sulfur dioxide 431 (158) 77.8 (1144) Sulfur hexafluoride 319 (46) 37.1 (545) Trichloromethane 536 (263) 54.9 (807) Trifluoromethane 299 (26) 47.7 (701) Water 647 (374) 217.6 (3199) Xenon 290 (17) 57.6 (847) PRACTICAL LABORATORY INFORMATION 11.27 Now the overall effects due to hydrogen bonding, dipole moment, acid-base properties, and molecular configuration can be expressed as I ax by cz du es where for benzene (the column headed “1” in Table 11.13, intermolecular forces typical of x I aromatics and olefins), for 1-butanol (the column headed “2” in Table 11.13, electron y I attraction typical of alcohols, nitriles, acids, and nitro and alkyl monochlorides, dichlorides and trichlorides), for 2-pentanone (the column headed “3” in Table 11.13, electron repulsion z I typical of ketones, ethers, aldehydes, esters, epoxides, and dimethylamino derivatives), for u I 1-nitropropane (the column headed “4” in Table 11.13, typical of nitro and nitrile derivatives), and for pyridine (or dioxane) (the column headed “5” in Table 11.13).
s I 11.4.2 Chromatographic Behavior of Solutes 11.4.2.1 Retention Behavior.
On a chromatogram the distance on the time axis from the point of sample injection to the peak of an eluted component is called the uncorrected retention time tR.
The corresponding retention volume is the product of retention time and flow rate, expressed as volume of mobile phase per unit time: V t F R R c The average linear velocity u of the mobile phase in terms of the column length L and the average linear velocity of eluent tM (which is measured by the transit time of a nonretained solute) is L u tM The adjusted retention time is given by t R t t t R R M When the mobile phase is a gas, a compressibility factor j must be applied to the adjusted retention volume to give the net retention volume: V jV N R The compressibility factor is expressed by 2 3[(P /P ) 1] i o j 3 2[(P /P ) 1] i o where Pi is the carrier gas pressure at the column inlet and Po that at the outlet.
11.28 SECTION 11 11.4.2.2 Partition Ratio.
The partition ratio is the additional time a solute band takes to elute, as compared with an unretained solute (for which divided by the elution time of an unre-k 0), tained band: t t V V R M R M k t V M M Retention time may be expressed as L t t (1 k) (1 k) R M u 11.4.2.3 Relative Retention.
The relative retention of two solutes, where solute 1 elutes before solute 2, is given variously by k V t 2 R,2 R,2 k V t 1 R,1 R,1 The relative retention is dependent on (1) the nature of the stationary and mobile phases and (2) the column operating temperature.
11.4.2.4 Column Efficiency.
Under ideal conditions the profile of a solute band resembles that given by a Gaussian distribution curve (Fig. 11.1). The efficiency of a chromatographic system is expressed by the effective plate number Neff, defined from the chromatogram of a single band, 2 2 L t t R R N 16 5.54 eff H W W b 1/2 where L is the column length, H is the plate height, is the adjusted time for elution of the band t R center, Wb is the width at the base of the peak as determined from the intersections of (W 4) b tangents to the inflection points with the baseline, and W1/2 is the width at half the peak height.
Column efficiency, when expressed as the number of theoretical plates Ntheor uses the uncorrected retention time in the foregoing expression. The two column efficiencies are related by 2 k N N eff theor k 1 11.4.2.5 Band Asymmetry.
The peak asymmetry factor AF is often defined as the ratio of peak half-widths at 10% of peak height, that is, the ratio b/a, as shown in Fig. 11.2. When the asymmetry ratio lies outside the range 0.95–1.15 for a peak of the effective plate number should be k 2, calculated from the expression 41.7(t/W ) R 0.1 N (a/b) 1.25 11.4.2.6 Resolution.
The degree of separation or resolution, Rs, of two adjacent peaks is defined as the distance between band peaks (or centers) divided by the average bandwidth using Wb, as shown in Fig. 11.3.
t t R,2 R,1 Rs 0.5(W W ) 2 1 FIGURE 11.1 Profile of a solute band.
11.29 11.30 SECTION 11 For reasonable quantitative accuracy, peak maxima must be at least 4 apart. If so, then Rs 1.0, which corresponds approximately to a 3% overlap of peak areas. A value of (for 6) Rs 1.5 represents essentially complete resolution with only 0.2% overlap of peak areas. These criteria pertain to roughly equal solute concentrations.
The fundamental resolution equation incorporates the terms involving the thermodynamics and kinetics of the chromatographic system: 1/2 1 1 k L Rs 4 1 k H Three separate factors affect resolution: (1) a column selectivity factor that varies with , (2) a capacity factor that varies with k (taken usually as k2), and (3) an efficiency factor that depends on the theoretical plate number.
FIGURE 11.2 Band asymmetry.
FIGURE 11.3 Definition of resolution.
PRACTICAL LABORATORY INFORMATION 11.31 11.4.2.7 Time of Analysis.
The retention time required to perform a separation is given by 3 2 (1 k) H 2 t 16Rs R 2 1 (k) u Now tR is a minimum when that is, when There is little increase in analysis time k 2, t 3t .
R M when k lies between 1 and 10. A twofold increase in the mobile-phase velocity roughly halves the analysis time (actually it is the ratio H/u which influences the analysis time). The ratio H/u can be obtained from the experimental plate height/velocity graph.
11.4.2.8 High-Performance Liquid Chromatography.
Typical performances for various exper-imental conditions are given in Table 11.15. The data assume these reduced parameters: h 3, The reduced plate height is v 4.5.
H L h d Nd p p The reduced velocity of the eluent is ud Ld p p v D t D M M M In these expressions, dp is the particle diameter of the stationary phase that constitutes one plate height. DM is the diffusion coefficient of the solute in the mobile phase.
TABLE 11.15 Typical Performances in HPLC for Various Conditions Performances N tM, s Column parameters L, cm dp, m P, atm (psi) 2 500 30 2.3 3 18.4 (270) 2 500 30 3.7 5 18.4 (270) 2 500 30 7.5 10 18.4 (270) 5 000 30 4.5 3 74 (1088) 5 000 30 7.5 5 74 (1088) 5 000 30 15.0 10 74 (1088) 10 000 30 9.0 3 300 (4410) 10 000 30 15.0 5 300 (4410) 10 000 30 30.0 10 300 (4410) 10 000 30 9.0 3 300 (4410) 10 000 60 9.0 3 150 (2200) 10 000 90 9.0 3 100 (1470) 15 000 90 2.3 3 223 (3275) 15 000 120 2.3 3 167 (2459) 11 100 30 10.0 3 369 (5420) 11 100 37 10.0 3 300 (4410) 11 100 101 10.0 3 100 (1470) 27 800 231 25.0 3 300 (4410) Assumed reduced parameters: , These are optimum values from a graph of reduced plate height versus reduced h 3 v 4.5.
linear velocity of the mobile phase.
11.32 SECTION 11 11.4.3 Ion-Exchange (Normal Pressure, Columnar) Ion-exchange methods are based essentially on a reversible exchange of ions between an external liquid phase and an ionic solid phase. The solid phase consists of a polymeric matrix, insoluble, but permeable, which contains fixed charge groups and mobile counter ions of opposite charge. These counter ions can be exchanged for other ions in the external liquid phase. Enrichment of one or several of the components is obtained if selective exchange forces are operative. The method is limited to substances at least partially in ionized form.
11.4.3.1 Chemical Structure of Ion-Exchange Resins.
An ion-exchange resin usually consists of polystyrene copolymerized with divinylbenzene to build up an inert three-dimensional, cross-linked matrix of hydrocarbon chains. Protruding from the polymer chains are the ion-exchange sites distributed statistically throughout the entire resin particle. The ionic sites are balanced by an equiv-alent number of mobile counter ions. The type and strength of the exchanger is determined by these active groups. Ion-exchangers are designated anionic or cationic, according to whether they have an affinity for negative or positive counter ions. Each main group is further subdivided into strongly or weakly ionized groups. A selection of commercially available ion-exchange resins is given in Table 11.16.
The cross-linking of a polystyrene resin is expressed as the proportion by weight percent of divinylbenzene in the reaction mixture; for example, “8” for 8 percent cross-linking. As the per-centage is increased, the ionic groups come into effectively closer proximity, resulting in increased selectivity. Intermediate cross-linking, in the range of 4 to 8 percent, is usually used. An increase in cross-linking decreases the diffusion rate in the resin particles; the diffusion rate is the rate-controlling step in column operations. Decreasing the particle size reduces the time required for attaining equilibrium, but at the same time decreases the flow rate until it is prohibitively slow unless pressure is applied.
In most inorganic chromatography, resins of 100 to 200 mesh size are suitable; difficult sepa-rations may require 200 to 400 mesh resins. A flow rate of 1 mL · cm2 · min1 is often satisfactory.
With HPLC columns, the flow rate in long columns of fine adsorbent can be increased by applying pressure.
11.4.3.1.1 Macroreticular Resins.
Macroreticular resins are an agglomerate of randomly packed microspheres which extend through the agglomerate in a continuous non-gel pore structure.
The channels throughout the rigid pore structure render the bead centers accessible even in non-aqueous solvents, in which microreticular resins do not swell sufficiently. Because of their high porosity and large pore diameters, these resins can handle large organic molecules.
11.4.3.1.2 Microreticular Resins.
Microreticular resins, by contrast, are elastic gels that, in the dry state, avidly absorb water and other polar solvents in which they are immersed. While taking up solvent, the gel structure expands until the retractile stresses of the distended polymer network balance the osmotic effect. In nonpolar solvents, little or no swelling occurs and diffusion is impaired.
11.4.3.1.3 Ion-Exchange Membranes.
Ion-exchange membranes are extremely flexible, strong membranes, composed of analytical grade ion-exchange resin beads (90%) permanently enmeshed in a poly(tetrafluoroethylene) membrane (10%). The membranes offer an alternative to column and batch methods, and can be used in many of the same applications as traditional ion exchange resins.
Three ion-exchange resin types have been incorporated into membranes: AG 1-X8, AG 50W-X8, and Chelex 100.
11.4.3.2 Functional Groups Sulfonate exchangers contain the group 9SO , which is strongly acidic and completely disso- 3 ciated whether in the H form or the cation form. These exchangers are used for cation exchange.
TABLE 11.16 Guide to Ion-Exchange Resins Dowex is the trade name of Dow resins; X (followed by a numeral) is percent cross-linked. Mesh size (dry) are available in the range 50 to 100, 100 to 200, 200 to 400, and sometimes minus 400.
S-DVB is the acronym for styrene-divinylbenzene.
MP is the acronym for macroporous resin. Mesh size (dry) is available in the range 20 to 50, 100 to 200, and 200 to 400.
Bio-Rex is the trade name for certain resins sold by Bio-Rad Laboratories.
Amberlite and Duolite are trade names of Rohm & Haas resins.
Resin type and nominal percent cross-linkage Minimum wet capacity, mequiv · mL1 Density (nominal), g · mL1 Comments Anion exchange resins9gel type9strongly basic9quaternary ammonium functionality Dowex 1-X2 0.6 0.65 Strongly basic anion exchanger with S-DVB matrix for separation of small peptides, nucleotides, and large metal complexes.
Molecular weight exclusion is 2700.
Dowex 1-X4 1.0 0.70 Strongly basic anion exchanger with S-DVB matrix for separation of organic acids, nucleotides, phosphoinositides, and other anions. Molecular weight exclusion is 1400.
Dowex 1-X8 1.2 0.75 Strongly basic anion exchanger with S-DVB matrix for separation of inorganic and or-ganic anions with molecular weight ex-clusion 1000. 100–200 mesh is stan-dard for analytical separations.
Dowex 2-X8 1.2 0.75 Strongly basic (but less basic than Dowex 1 type) anion exchanger with S-DVB ma-trix for deionization of carbohydrates and separation of sugars, sugar alcohols, and glycosides.
Amberlite IRA-400 1.4 1.11 8% cross-linkage. Used for systems essen-tially free of organic materials.
Amberlite IRA-402 1.3 1.07 Lower cross-linkage than IRA-400; better diffusion rate with large organic mole-cules.
Amberlite IRA-410 1.4 1.12 Dimethylethanolamine functionality and slightly lower basicity than IRA-400.
Amberlite IRA-458 1.2 1.08 Has an acrylic structure rather than S-DVB; hence more hydrophilic and resistant to organic fouling.
Anion exchange resin–gel type9intermediate basicity Bio-Rex 5 2.8 0.70 Intermediate basic anion exchanger with primarily tertiary amines on a polyalkyle-neamine matrix for separation of organic acids.
PRACTICAL LABORATORY INFORMATION 11.33 Anion exchange resins9gel type9weakly basic9polyamine functionality Dowex 4-X4 1.6 0.70 Weakly basic anion exchanger with tertiary amines on an acrylic matrix for the deionization of carbohydrates. Use at pH 7.
Amberlite IRA-68 1.6 1.06 Acrylic-DVB with unusually high capacity for large organic molecules.
Cation exchange resins9gel type9strongly acidic9sulfonic acid functionality Dowex 50W-X2 0.6 0.70 Strongly acidic cation exchanger with S-DVB matrix for separation of peptides, nucleotides, and cations. Molecular weight exclusion 2700.
Dowex 50W-X4 1.1 0.80 Strongly acidic cation exchanger with S-DVB matrix for separation of amino ac-ids, nucleosides and cations. Molecular weight exclusion is 1400.
Dowex 50W-X8 1.7 0.80 Strongly acidic cation exchanger with S-DVB matrix for separation of amino ac-ids, metal cations, and cations. Molecular weight exclusion is 1000. 100–200 mesh is standard for analytical applica-tions.
Dowex 50W-X12 2.1 0.85 Strongly acidic cation exchanger with S-DVB matrix used primarily for metal separations.
Dowex 50W-X16 2.4 0.85 Strongly acidic cation exchanger with S-DVB matrix and high cross linkage.
Amberlite IR-120 1.9 1.26 8% styrene-DVB type; high physical stabil-ity.
Amberlite IR-122 2.1 1.32 10% styrene-DVB type; high physical sta-bility and high capacity.
Weakly acidic cation exchangers9gel type9carboxylic acid functionality Duolite C-433 4.5 1.19 Acrylic-DVB type; very high capacity.
Used for metals removal and neutraliza-tion of alkaline solutions.
Bio-Rex 70 2.4 0.70 Weakly acidic cation exchanger with car-boxylate groups on a macroreticular acrylic matrix for separation and fraction-ation of proteins, peptides, enzymes, and amines, particularly high molecular weight solutes. Does not denature pro-teins as do styrene-based resins.
TABLE 11.16 Guide to Ion-Exchange Resins (Continued) Resin type and nominal percent cross-linkage Minimum wet capacity, mequiv · mL1 Density (nominal), g · mL1 Comments 11.34 SECTION 11 Selective ion exchange resins Duolite GT-73 1.3 1.30 Removal of Ag, Cd, Cu, Hg, and Pb.
Amberlite IRA-743A 0.6 1.05 Boron specific ion exchange resin.
Amberlite IRC-718 1.0 1.14 Removal of transition metals.
Chelex 100 0.4 0.65 Weakly acidic chelating resin with S-DVB matrix for heavy metal concentration.
Anion exchanger9macroreticular type9strongly basic9quaternary ammonium functionality Amberlite IRA-910 1.1 1.09 Dimethylethanolamine styrene-DVB type which offers slightly less silica removal than Amberlite IRA resin, but offers im-proved regeneration efficiency.
Amberlite IRA-938 0.5 1.20 Pore size distribution between 2500 and 23 000 nm; suitable for removal of high mo-lecular weight organic materials.
Amberlite IRA-958 0.8 Acrylic-DVB; resistant to organic fouling.
AG MP-1 1.0 0.70 Strongly basic macroporous anion ex-changer with S-DVB matrix for separa-tion of some enzymes, radioactive anions, and other applications.
Cation exchange resin9macroreticular type9sulfonic acid functionality Amberlite 200 1.7 1.26 Styrene-DVB with 20% DVB by weight; superior physical stability and greater re-sistance to oxidation by factor of three over comparable gel type resin.
AG MP-50 1.5 0.80 Strongly acidic macroporous cation ex-changer with S-DVB matrix for separa-tion of radioactive cations and other ap-plications.
Weak cation exchanger9macroreticular type9carboxylic acid or phenolic functionality Amberlite DP-1 2.5 1.17 Methacrylic acid-DVB; high resin capacity.
Use pH 5.
Amberlite IRC-50 3.5 1.25 Methacrylic acid-DVB. Selectivity adsorbs organic gases such as antibiotics, alka-loids, peptides, and amino acids. Use pH 5.
Duolite C-464 3.0 1.13 Polyacrylic resin with high capacity and outstanding resistance to osmotic shock.
TABLE 11.16 Guide to Ion-Exchange Resins (Continued) Resin type and nominal percent cross-linkage Minimum wet capacity, mequiv · mL1 Density (nominal), g · mL1 Comments PRACTICAL LABORATORY INFORMATION 11.35 Carboxylate exchangers contain 9COOH groups which have weak acidic properties and will only function as cation exchangers when the pH is sufficiently high (pH 6) to permit complete dissociation of the 9COOH site. Outside this range the ion exchanger can be used only at the cost of reduced capacity.
Quaternary ammonium exchangers contain 9R4N groups which are strongly basic and com-pletely dissociated in the OH form and the anion form.
Tertiary amine exchangers possess 9R3NH2 groups which have exchanging properties only in an acidic medium when a proton is bound to the nitrogen atom.
Aminodiacetate exchangers have the 9N(CH2COOH)2 group which has an unusually high pref-erence for copper, iron, and other heavy metal cations and, to a lesser extent, for alkaline earth Duolite A-7 2.2 1.12 Phenolic type resin. High porosity and hy-drophilic matrix. pH range is 0 to 6.
Duolite A-368 1.7 1.04 Styrene-DVB; pH range is 0 to 9.
Amberlite IRA-35 1.1 Acrylic-DVB; pH range is 0 to 9.
Amberlite IRA-93 1.3 1.04 Styrene-DVB; pH range is 0 to 9. Excellent resistance to oxidation and organic foul-ing.
Liquid amines Amberlite LA-1 A secondary amine containing two highly branched aliphatic chains of M.W. 351 to 393. Solubility is 15 to 20 mg/mL in wa-ter. Used as 5 to 40% solutions in hydro-carbons.
Amberlite LA-2 A secondary amine of M.W. 353 to 395. In-soluble in water.
Microcrystalline exchanger AMP-1 4.0 Microcrystalline ammonium molybdo-phosphate with cation exchange capacity of 1.2 mequiv/g. Selectively adsorbs larger alkali metal ions from smaller al-kali metal ions, particularly cesium.
Ion retardation resin AG 11 A8 0.70 Ion retardation resin containing paired anion (COO) and cation (CH3)3N sites. Selec-tively retards ionic substances.
Source: J. A. Dean, ed., Analytical Chemistry Handbook, McGraw-Hill, New York, 1995.
TABLE 11.16 Guide to Ion-Exchange Resins (Continued) Resin type and nominal percent cross-linkage Minimum wet capacity, mequiv · mL1 Density (nominal), g · mL1 Comments Weak cation exchanger9macroreticular type9carboxylic acid or phenolic functionality (continued) 11.36 SECTION 11 PRACTICAL LABORATORY INFORMATION 11.37 11.4.3.3 Ion-Exchange Equilibrium.
Retention differences among cations with an anion ex-changer, or among anions with a cation exchanger, are governed by the physical properties of the solvated ions. The stationary phase will show these preferences: 1. The ion of higher charge.
2. The ion with the smaller solvated radius. Energy is needed to strip away the solvation shell surrounding ions with large hydrated radii, even though their crystallographic ionic radii may be less than the average pore opening in the resin matrix.
3. The ion that has the greater polarizability (which determines the Van der Waals’ attraction).
To accomplish any separation of two cations (or two anions) of the same net charge, the stationary phase must show a preference for one more than the other. No variation in the eluant concentration will improve the separation. However, if the exchange involves ions of different net charges, the separation factor does depend on the eluant concentration. The more dilute the counterion concen-tration in the eluant, the more selective the exchange becomes for polyvalent ions.
In the case of an ionized resin, initially in the H-form and in contact with a solution containing K ions, an equilibrium exists: resin, H K N resin, K H which is characterized by the selectivity coefficient, kK/H: [K ] [H ] r k K/H [H ] [K ] r where the subscript r refers to the resin phase. Table 11.17 contains selectivity coefficients for cations and Table 11.18 for anions. Relative selectivities are of limited use for the prediction of the columnar cations. The resin selectivity for divalent over monovalent ions is approximately 5000 to 1. The resin functions as a chelating resin at pH 4 and above. At very low pH, the resin acts as an anion exchanger. This exchanger is the column packing often used for ligand exchange.
TABLE 11.17 Relative Selectivity of Various Counter Cations Counterion Relative selectivity for AG 50W-X8 resin Counterion Relative selectivity for AG 50W-X8 resin H 1.0 Zn2 2.7 Li 0.86 Co2 2.8 Na 1.5 Cu2 2.9 NH4 1.95 Cd2 2.95 K 2.5 Ni2 3.0 Rb 2.6 Ca2 3.9 Cs 2.7 Sr2 4.95 Cu 5.3 Hg2 7.2 Ag 7.6 Pb2 7.5 Tl 10.7 Ba2 8.7 Mn2 2.35 Ce3 22 Mg2 2.5 La3 22 Fe2 2.55 11.38 SECTION 11 TABLE 11.18 Relative Selectivity of Various Counter Anions Counterion Relative selectivity for Dowex 1-X8 resin Relative selectivity for Dowex 2-X8 resin OH 1.0 1.0 Benzenesulfonate 500 75 Salicylate 450 65 Citrate 220 23 I 175 17 Phenate 110 27 HSO4 85 15 ClO3 74 12 NO3 65 8 Br 50 6 CN 28 3 HSO3 27 3 BrO3 27 3 NO2 24 3 Cl 22 2.3 ClO4 20 SCN 8.0 HCO3 6.0 1.2 IO3 5.5 0.5 H PO 2 4 5.0 0.5 Formate 4.6 0.5 Acetate 3.2 0.5 Propanoate 2.6 0.3 F 1.6 0.3 exchange behavior of a cation because they do not take account of the influence of the aqueous phase. More specific information about the behavior to be expected from a cation in a column elution experiment is given by the equilibrium distribution coefficient Kd.
The partitioning of the potassium ion between the resin and solution phases is described by the concentration distribution ratio, Dc: [K ]r (D ) c K [K ] Combining the equations for the selectivity coefficient and for Dc: [H ]r (D ) k c K K/H [H ] The foregoing equation reveals that essentially the concentration distribution ratio for trace concen-trations of an exchanging ion is independent of the respective solution of that ion and that the uptake of each trace ion by the resin is directly proportional to its solution concentration. However, the PRACTICAL LABORATORY INFORMATION 11.39 concentration distribution ratios are inversely proportional to the solution concentration of the resin counterion.
To accomplish any separation of two cations (or two anions), one of these ions must be taken up by the resin in distinct preference to the other. This preference is expressed by the separation factor (or relative retention), K/Na, using K and Na as the example: (D ) k c K K/H K K/Na K/Na (D ) k c Na Na/H The more deviates from unity for a given pair of ions, the easier it will be to separate them. If the selectivity coefficient is unfavorable for the separation of two ions of the same charge, no variation in the concentration of H (the eluant) will improve the separation.
The situation is entirely different if the exchange involves ions of different net charges. Now the separation factor does depend on the eluant concentration. For example, the more dilute the coun-terion concentration in the eluant, the more selective the exchange becomes for the ion of higher charge.
In practice, it is more convenient to predict the behavior of an ion, for any chosen set of condi-tions, by employing a much simpler distribution coefficient, Dg, which is defined as the concentration of a solute in the resin phase divided by its concentration in the liquid phase, or: concentration of solute, resin phase D g concentration of solute, liquid phase % solute within exchanger volume of solution D g % solute within solution mass of exchanger Dg remains constant over a wide range of resin to liquid ratios. In a relatively short time, by simple equilibration of small known amounts of resin and solution followed by analysis of the phases, the distribution of solutes may be followed under many different sets of experimental conditions. Var-iables requiring investigation include the capacity and percent cross-linkage of resin, the type of resin itself, the temperature, and the concentration and pH of electrolyte in the equilibrating solution.
By comparing the ratio of the distribution coefficients for a pair of ions, a separation factor (or relative retention) is obtained for a specific experimental condition.
Instead of using Dg, separation data may be expressed in terms of a volume distribution coefficient Dv, which is defined as the amount of solution in the exchanger per cubic centimeter of resin bed divided by the amount per cubic centimeter in the liquid phase. The relation between Dg and Dv is given by: D D v g where is the bed density of a column expressed in the units of mass of dry resin per cubic centimeter of column. The bed density can be determined by adding a known weight of dry resin to a graduated cylinder containing the eluting solution. After the resin has swelled to its maximum, a direct reading of the settled volume of resin is recorded.
Intelligent inspection of the relevant distribution coefficients will show whether a separation is feasible and what the most favorable eluant concentration is likely to be. In the columnar mode, an ion, even if not eluted, may move down the column a considerable distance and with the next eluant may appear in the eluate much earlier than indicated by the coefficient in the first eluant alone. A 11.40 SECTION 11 distribution coefficient value of 12 or lower is required to elute an ion completely from a column containing about 10 g of dry resin using 250 to 300 mL of eluant. A larger volume of eluant is required only when exceptionally strong tailing occurs. Ions may be eluted completely by 300 to 400 mL of eluant from a column of 10 g of dry resin at Dg values of around 20. The first traces of an element will appear in the eluate at around 300 mL when its Dg value is about 50 to 60.
Example Shaking 50 mL of 0.001 M cesium salt solution with 1.0 g of a strong cation exchanger in the H-form (with a capacity of 3.0 mequiv · g1) removes the following amount of cesium. The selectivity coefficient, kCs/H, is 2.56, thus: [Cs ] [H ] r 2.56 [Cs ][H ]r The maximum amount of cesium which can enter the resin is 50 mL 0.001 M 0.050 equiv.
The minimum value of [H]r 3.00 0.05 2.95 mequiv, and the maximum value, assuming complete exchange of cesium ion for hydrogen ion, is 0.001 M. The minimum value of the distri-bution ratio is: [Cs ] (2.56)(2.95) r (D ) 7550 c Cs [Cs ] 0.001 Amount of Cs, resin phase (7550)(1.0 g) 151 Amount of Cs, solution phase 50 mL Thus, at equilibrium the 1.0 g of resin removed is: 100% x 151 x with all but 0.66% of cesium ions from solution. If the amount of resin were increased to 2.0 g, the amount of cesium remaining in solution would decrease to 0.33%, half the former value. However, if the depleted solution were decanted and placed in contact with 1 g of fresh resin, the amount of cesium remaining in solution would decrease to 0.004%. Two batch equilibrations would effectively remove the cesium from the solution.
PRACTICAL LABORATORY INFORMATION 11.41 11.5 GRAVIMETRIC ANALYSIS TABLE 11.19 Gravimetric Factors In the following table the elements are arranged in alphabetical order.
Example: To convert a given weight of Al2O3 to its equivalent of Al, multiply by the factor at the right, 0.52926; similarly to convert Al to Al2O3, multiply by the factor at the left, 1.8894.
Factor Factor ALUMINUM Al 26.9815 0.74971 Al 4 Al4C3 1.3341 0.058728 Al 4 Al(C9H6ON)3 (oxinate) 17.027 0.65829 Al 4 AlN 1.5191 1.8894 Al2O3 4 Al 0.52926 1.4165 Al2O3 4 Al4C3 0.70596 0.38233 Al2O3 4 AlCl3 2.6155 0.41804 Al2O3 4 AlPO4 2.3921 0.29800 Al2O3 4 Al2(SO4)3 3.3557 0.15300 Al2O3 4 Al2(SO4)3·18H2O 6.5361 0.10746 Al2O3 4 K2SO4·Al2(SO4)3·24H2O 9.3055 0.11246 Al2O3 4 (NH4)2SO4·Al2(SO4)3·24H2O 8.8922 4.5197 AlPO4 4 Al 0.22125 1.3946 CaF2 4 AlF3 0.71704 0.58196 P2O5 4 AlPO4 1.7183 AMMONIUM NH4 18.03858 1.1013 Ag 4 NH4Br 0.90802 2.0166 Ag 4 NH4Cl 0.49590 0.74424 Ag 4 NH4I 1.3437 1.9171 AgBr 4 NH4Br 0.52161 2.6792 AgCl 4 NH4Cl 0.37323 1.6198 AgI 4 NH4I 0.61737 1.7663 BaSO4 4 (NH4)2SO4 0.56615 0.81583 Br 4 NH4Br 1.2257 1.9654 Cl 4 NH4 0.50881 0.66277 Cl 4 NH4Cl 1.5088 0.68162 HCl 4 NH4Cl 1.4671 0.87553 I 4 NH4I 1.1422 14.410 MgNH4PO4·6H2O 4 NH3 0.069398 13.604 MgNH4PO4·6H2O 4 NH4 0.073506 9.4249 MgNH4PO4·6H2O 4 (NH4)2O 0.10610 0.82244 N 4 NH3 1.2159 0.77648 N 4 NH4 1.2879 0.26185 N 4 NH4Cl 3.8189 0.17499 N 4 NH4NO3 5.7145 0.53793 N 4 (NH4)2O 1.8590 0.21200 N 4 (NH4)2SO4 4.7169 0.94412 NH3 4 NH4 1.0592 0.35449 NH3 4 (NH4)2CO3 2.8210 0.21543 NH3 4 NH4HCO3 4.6419 0.21277 NH3 4 NH4NO3 4.6998 11.42 SECTION 11 0.65407 NH3 4 (NH4)2O 1.5289 0.48596 NH3 4 NH4OH 2.0578 0.25777 NH3 4 (NH4)2SO4 3.8794 3.1409 NH4Cl 4 NH3 0.31838 2.9654 NH4Cl 4 NH4 0.33723 2.0543 NH4Cl 4 (NH4)2O 0.48677 1.5263 NH4Cl 4 NH4OH 0.65516 2.5020 NH4OH 4 N 0.39967 1.9428 NH4OH 4 NH4 0.51472 13.032 (NH4)2PtCl6 4 NH3 0.076737 12.303 (NH4)2PtCl6 4 NH4 0.081279 4.1490 (NH4)2PtCl6 4 NH4Cl 0.24102 2.7728 (NH4)2PtCl6 4 NH4NO3 0.36065 8.5235 (NH4)2PtCl6 4 (NH4)2O 0.11732 6.3328 (NH4)2PtCl6 4 NH4OH 0.15791 3.3592 (NH4)2PtCl6 4 (NH4)2SO4 0.29769 1.3473 (NH4)2SO4 4 H2SO4 0.74223 3.1710 N2O5 4 NH3 0.31536 0.67470 N2O5 4 NH4NO3 1.4821 2.0740 N2O5 4 (NH4)2O 0.48215 5.7275 Pt 4 NH3 0.17460 5.4074 Pt 4 NH4 0.18493 1.8235 Pt 4 NH4Cl 0.54838 1.2187 Pt 4 NH4NO3 0.82058 3.7462 Pt 4 (NH4)2O 0.26694 2.7833 Pt 4 NH4OH 0.35928 1.4764 Pt 4 (NH4)2SO4 0.67733 2.3505 SO3 4 NH3 0.42545 0.60589 SO3 4 (NH4)2SO4 1.6505 ANTIMONY Sb 121.760 0.36460 Sb 4 1 KSbO·C H O · ⁄2H O 4 4 6 2 2.7428 0.83535 Sb 4 Sb2O4 1.1971 0.75271 Sb 4 Sb2O5 1.3285 0.43646 Sb2O3 4 1 KSbO·C H O · ⁄2H O 4 4 6 2 2.2912 0.90106 Sb2O3 4 Sb2O5 1.1098 0.72184 Sb2O3 4 Sb2S5 1.3853 0.46042 Sb2O4 4 1 KSbO·C H O · ⁄2H O 4 4 6 2 2.1719 1.2628 Sb2O4 4 Sb 0.79188 1.0549 Sb2O4 4 Sb2O3 0.94796 0.95053 Sb2O4 4 Sb2O5 1.0520 0.90523 Sb2O4 4 Sb2S3 1.1047 0.76147 Sb2O4 4 Sb2S5 1.3133 0.80110 Sb2O5 4 Sb2S5 1.2483 0.50862 Sb2S3 4 1 KSbO·C H O · ⁄2H O 4 4 6 2 1.9661 1.3950 Sb2S3 4 Sb 0.71683 1.1653 Sb2S3 4 Sb2O3 0.85812 1.0500 Sb2S3 4 Sb2O5 0.95234 1.6584 Sb2S5 4 Sb 0.60299 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor AMMONIUM (continued) NH4 18.03858 PRACTICAL LABORATORY INFORMATION 11.43 ARSENIC As 74.9216 1.3203 As2O3 4 As 0.75738 0.86079 As2O3 4 As2O5 1.1617 1.5339 As2O5 4 As 0.65195 1.6420 As2S3 4 As 0.60903 1.2436 As2S3 4 As2O3 0.80413 1.0705 As2S3 4 As2O5 0.93418 0.79324 As2S3 4 As2S5 1.2606 2.0699 As2S5 4 As 0.48311 1.5678 As2S5 4 As2O3 0.63787 1.3495 As2S5 4 As2O5 0.74103 4.6729 BaSO4 4 As 0.21400 3.5392 BaSO4 4 As2O3 0.28255 3.0465 BaSO4 4 As2O6 0.32825 2.8482 BaSO4 4 AsO3 0.35110 2.5202 BaSO4 4 AsO4 0.39680 2.0719 Mg2As2O7 4 As 0.48265 1.5692 Mg2As2O7 4 As2O3 0.63726 1.3509 Mg2As2O7 4 As2O5 0.74032 1.2629 Mg2As2O7 4 AsO2 0.79186 1.1174 Mg2As2O7 4 AsO4 0.89493 1.2619 Mg2As2O7 4 As2S3 0.79249 2.5397 1 MgNH AsO · ⁄2H O 4 4 2 4 As 0.39374 1.9235 1 MgNH AsO · ⁄2H O 4 4 2 4 As2O3 0.51988 1.6558 1 MgNH AsO · ⁄2H O 4 4 2 4 As2O5 0.60395 1.5480 1 MgNH AsO · ⁄2H O 4 4 2 4 AsO3 0.64600 1.3697 1 MgNH AsO · ⁄2H O 4 4 2 4 AsO4 0.73008 BARIUM Ba 137.34 1.4369 BaCO3 4 Ba 0.69592 0.94766 BaCO3 4 BaCl2 1.0552 0.76088 BaCO3 4 Ba(HCO3)2 1.3143 1.2871 BaCO3 4 BaO 0.77699 1.8446 BaCrO4 4 Ba 0.54214 1.2165 BaCrO4 4 BaCl2 0.82205 1.2838 BaCrO4 4 BaCO3 0.77902 1.6521 BaCrO4 4 BaO 0.60530 2.0345 BaSiF6 4 Ba 0.49152 1.5936 BaSiF6 4 BaF2 0.62751 1.8222 BaSiF6 4 BaO 0.54878 1.6994 BaSO4 4 Ba 0.58843 1.1208 BaSO4 4 BaCl2 0.89224 0.95546 BaSO4 4 BaCl2·2H2O 1.0466 1.1827 BaSO4 4 BaCO3 0.84554 0.89308 BaSO4 4 Ba(NO3)2 1.1197 1.5221 BaSO4 4 BaO 0.65698 1.3783 BaSO4 4 BaO2 0.72554 1.3778 BaSO4 4 BaS 0.72579 0.28701 CO2 4 BaO 3.4842 0.22300 CO2 4 BaCO3 4.4842 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor 11.44 SECTION 11 BERYLLIUM Be 9.0122 8.8678 BeCl2 4 Be 0.11277 2.7753 BeO 4 Be 0.36033 0.31296 BeO 4 BeCl2 3.1953 0.14119 BeO 4 BeSO4·4H2O 7.0825 BISMUTH Bi 208.980 0.89699 Bi 4 Bi2O3 1.1148 1.6648 BiAsO4 4 Bi 0.60069 1.4933 BiAsO4 4 Bi2O4 0.66968 0.48030 Bi2O3 4 Bi(NO3)3·5H2O 2.0820 0.81183 Bi2O3 4 BiONO3 1.2318 1.2462 BiOCl 4 Bi 0.80244 0.53689 BiOCl 4 Bi(NO3)3·5H2O 1.8626 1.1178 BiOCl 4 Bi2O3 0.89460 0.90748 BiOCl 4 BiONO3 1.1019 1.2301 Bi2S3 4 Bi 0.81291 1.1034 Bi2S3 4 Bi2O3 0.90627 BORON B 10.81 3.2199 B2O3 4 B 0.31057 0.81317 B2O3 4 BO2 1.2298 0.59193 B2O3 4 BO3 1.6894 0.89693 B2O3 4 B4O7 1.1149 0.56298 B2O3 4 H3BO3 1.7763 0.36510 B2O3 4 Na2B4O7·10H2O 2.7389 6.4005 B6C 4 C 0.15624 11.646 KBF4 4 B 0.085863 3.6171 KBF4 4 B2O3 0.27647 2.0363 KBF4 4 H3BO3 0.49108 1.3206 KBF4 4 Na2B4O7·10H2O 0.75723 BROMINE Br 79.90 1.3499 Ag 4 Br 0.74079 0.84333 Ag 4 BrO3 1.1858 1.3331 Ag 4 HBr 0.75013 2.3499 AgBr 4 Br 0.42555 1.4681 AgBr 4 BrO3 0.68117 2.3206 AgBr 4 HBr 0.43091 0.55756 Br 4 AgCl 1.7935 9.9892 Br 4 O 0.10010 1.1858 BrO3 4 Ag 0.84333 CADMIUM Cd 112.40 0.61317 Cd 4 CdCl2 1.6309 0.47545 Cd 4 Cd(NO3)2 2.1033 1.1423 CdO 4 Cd 0.87539 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor PRACTICAL LABORATORY INFORMATION 11.45 0.70045 CdO 4 CdCl2 1.4276 0.54312 CdO 4 Cd(NO3)2 1.8412 1.2852 CdS 4 Cd 0.77807 0.78806 CdS 4 CdCl2 1.2689 0.61106 CdS 4 Cd(NO3)2 1.6365 1.1251 CdS 4 CdO 0.88883 0.69298 CdS 4 CdSO4 1.4430 1.8546 CdSO4 4 Cd 0.53919 1.1372 CdSO4 4 CdCl2 0.87935 0.88177 CdSO4 4 Cd(NO3)2 1.1341 1.6235 CdSO4 4 CdO 0.61595 CALCIUM Ca 40.08 3.2352 BaSO4 4 CaS 0.30910 1.7144 BaSO4 4 CaSO4 0.58329 1.3556 BaSO4 4 CaSO4·2H2O 0.73766 0.36111 Ca 4 CaCl2 2.7692 0.51334 Ca 4 CaF2 1.9480 0.71471 Ca 4 CaO 1.3992 2.4973 CaCO3 4 Ca 0.40044 0.90179 CaCO3 4 CaCl2 1.1089 0.61742 CaCO3 4 Ca(HCO3)2 1.6196 1.7848 CaCO 4 CaO 0.56029 0.73520 CaCO3 4 CaSO4 1.3602 0.58134 CaCO3 4 CaSO4·2H2O 1.7202 1.3726 CaCO3 4 HCl 0.72856 0.50526 CaO 4 CaCl2 1.9792 0.71825 CaO 4 CaF2 1.3923 0.34593 CaO 4 Ca(HCO3)2 2.8907 0.75685 CaO 4 Ca(OH)2 1.3213 0.41192 CaO 4 CaSO4 2.4276 0.32572 CaO 4 CaSO4·2H2O 3.0701 2.5797 Ca3(PO4)2 4 Ca 0.38765 1.8437 Ca3(PO4)2 4 CaO 0.54239 0.75946 Ca3(PO4)2 4 CaSO4 1.3167 3.3967 CaSO4 4 Ca 0.29440 1.2266 CaSO4 4 CaCl2 0.81526 1.3602 CaSO4 4 CaCO3 0.73520 1.7437 CaSO4 4 CaF2 0.57351 2.4276 CaSO4 4 CaO 0.41192 1.7691 Cl 4 Ca 0.56526 0.63885 Cl 4 CaCl2 1.5653 1.2644 Cl 4 CaO 0.79089 0.78479 CO2 4 CaO 1.2742 0.43970 CO2 4 CaCO3 2.2743 0.77989 Mg2As2O7 4 Ca3(AsO4)2 1.2822 0.71883 MgO 4 CaO 1.3912 0.71755 Mg2P2O7 4 Ca3(PO4)2 1.3936 12.098 (NH4)3PO4·12MoO3 4 Ca3(PO4)2 0.082657 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor CADMIUM (continued) Cd 112.40 11.46 SECTION 11 0.65824 N2O5 4 Ca(NO3)2 1.5192 0.45761 P2O3 4 Ca3(PO4)2 2.1853 1.4277 SO3 4 CaO 0.70044 0.58809 SO3 4 CaSO4 1.7004 0.46502 SO3 4 CaSO4·2H2O 2.1505 0.80523 WO3 4 CaWO4 1.2419 CARBON C 12.011 3.9913 Ag 4 HCN 0.25054 1.6565 Ag 4 KCN 0.60369 4.9541 AgCN 4 HCN 0.20185 2.0561 AgCN 4 KCN 0.48637 16.431 BaCO3 4 C 0.060861 4.4842 BaCO3 4 CO2 0.22301 3.2887 BaCO3 4 CO3 0.30407 3.4842 BaO 4 CO2 0.28701 1.7421 BaO 4 CO2, bicarbonate 0.57402 0.19432 CN 4 AgCN 5.1461 0.24120 CN 4 Ag 4.1460 0.35000 SCN 4 AgSCN 2.8572 0.47757 SCN 4 CuSCN 2.0939 0.24885 SCN 4 BaSO4 4.0185 1.2742 CaO 4 CO2 0.78479 0.63712 CaO 4 CO2, bicarbonate 1.5696 0.33936 CO2 4 Ba(HCO3)2 2.9467 3.6641 CO2 4 C 0.27291 0.43970 CO2 4 CaCO3 2.2743 0.54297 CO2 4 Ca(HCO3)2 1.8417 0.73341 CO2 4 CO3 1.3635 0.13507 CO2 4 Cs2CO3 7.4033 0.22695 CO2 4 CsHCO3 4.4063 0.37986 CO2 4 FeCO3 2.6326 0.49483 CO2 4 Fe(HCO3)2 2.0209 0.31843 CO2 4 K2CO3 3.1404 0.43957 CO2 4 KHCO3 2.2749 0.46718 CO2 4 K2O 2.1405 0.59564 CO2 4 Li2CO3 1.6789 0.64762 CO2 4 LiHCO3 1.5441 1.4730 CO2 4 Li2O 0.67887 0.52193 CO2 4 MgCO3 1.9159 0.60143 CO2 4 Mg(HCO3)2 1.6627 1.0918 CO2 4 MgO 0.91595 0.38286 CO2 4 MnCO3 2.6119 0.49737 CO2 4 Mn(HCO3)2 2.0106 0.62041 CO2 4 MnO 1.6118 0.41523 CO2 4 Na2CO3 2.4083 0.52388 CO2 4 NaHCO3 1.9088 0.71008 CO2 4 Na2O 1.4083 0.45802 CO2 4 (NH4)2CO3 2.1833 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor CALCIUM (continued) Ca 40.08 PRACTICAL LABORATORY INFORMATION 11.47 0.55669 CO2 4 NH4HCO3 1.7963 0.16471 CO2 4 PbCO3 6.0713 0.19055 CO2 4 Rb2CO3 5.2477 0.30043 CO2 4 RbHCO3 3.3286 0.23542 CO2 4 Rb2O 4.2477 0.29811 CO2 4 SrCO3 3.3545 0.41984 CO2 4 Sr(HCO3)2 2.3818 0.42474 CO2 4 SrO 2.3545 CERIUM Ce 140.12 0.36100 Ce 4 Ce(NO3)4 2.7701 0.24746 Ce 4 Ce(NO3)4·2NH4NO3·H2O 4.0411 0.81408 Ce 4 CeO2 1.2284 0.85377 Ce 4 Ce2O3 1.1713 0.49302 Ce 4 Ce2(SO4)3 2.0283 1.0527 Ce2(C2O4)3·3H2O 4 Ce2(SO4)3 0.94998 2.1351 Ce2(C2O4)3·3H2O 4 Ce 0.46835 0.44345 CeO2 4 Ce(NO3)4 2.2551 0.30397 CeO2 4 Ce(NO3)4·2NH4NO3·H2O 3.2898 0.42284 Ce2O3 4 Ce(NO3)4 2.3650 0.28984 Ce2O3 4 Ce(NO3)4·2NH4NO3·H2O 3.4502 0.95352 Ce2O3 4 CeO2 1.0487 0.57746 Ce2O3 4 Ce2(SO4)3 1.7317 CESIUM Cs 137.905 0.85127 AgCl 4 CsCl 1.1747 0.26675 Cl 4 Cs 3.7489 0.21058 Cl 4 CsCl 4.7488 0.78944 Cs 4 CsCl 1.2667 0.57200 Cs 4 CsClO4 1.7483 0.81585 Cs 4 Cs2CO3 1.2257 0.94326 Cs 4 Cs2O 1.0602 0.83693 Cs2O 4 CsCl 1.1948 0.77876 Cs2O 4 Cs2SO4 1.2841 2.5341 Cs2PtCl6 4 Cs 0.39461 2.0005 Cs2PtCl6 4 CsCl 0.49987 2.0675 Cs2PtCl6 4 Cs2CO3 0.48369 2.3903 Cs2PtCl6 4 Cs2O 0.41835 1.3613 Cs2SO4 4 Cs 0.73457 1.0747 Cs2SO4 4 CsCl 0.93050 1.1106 Cs2SO4 4 Cs2CO3 0.90038 0.28410 SO3 4 Cs2O 3.5199 CHLORINE Cl 35.453 3.0426 Ag 4 Cl 0.32866 2.9585 Ag 4 HCl 0.33801 4.0425 AgCl 4 Cl 0.24737 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor CARBON (continued) C 12.011 11.48 SECTION 11 3.9308 AgCl 4 HCl 0.25440 3.5728 BaCrO4 4 Cl 0.27990 0.56526 Ca 4 Cl 1.7691 0.97235 Cl 4 HCl 1.0284 0.58227 ClO3 4 AgCl 1.7174 1.1193 ClO3 4 KCl 0.89340 1.4279 ClO3 4 NaCl 0.70033 0.69391 ClO4 4 AgCl 1.4411 1.3339 ClO4 4 KCl 0.74967 1.7017 ClO4 4 NaCl 0.58766 1.1029 K 4 Cl 0.90668 2.1029 KCl 4 Cl 0.47553 0.19572 Li 4 Cl 5.1092 0.34288 Mg 4 Cl 2.9165 1.3429 MgCl2 4 Cl 0.74467 1.2261 MnO2 4 Cl 0.81560 0.64846 Na 4 Cl 1.5421 1.6485 NaCl 4 Cl 0.60663 0.50881 NH4 4 Cl 1.9654 1.4671 NH4Cl 4 HCl 0.68162 1.8121 (NH4)2SO4 4 HCl 0.55185 4.5580 PbCrO4 4 Cl 0.21939 CHROMIUM Cr 51.996 4.8721 BaCrO4 4 Cr 0.20525 3.3335 BaCrO4 4 Cr2O3 0.29998 2.5335 BaCrO4 4 CrO3 0.39472 2.1841 BaCrO4 4 CrO4 0.45786 0.70718 BaCrO4 4 Cr2(SO4)3·18H2O 1.4141 7.4935 Cr3C2 4 C 0.13345 1.9231 CrO3 4 Cr 0.51999 1.4616 Cr2O3 4 Cr 0.68420 0.76000 Cr2O3 4 CrO3 1.3158 0.65519 Cr2O3 4 CrO4 1.5263 3.7349 K2CrO4 4 Cr 0.26774 1.9421 K2CrO4 4 CrO3 0.51490 1.4710 K2Cr2O7 4 CrO3 0.67979 6.2155 PbCrO4 4 Cr 0.16089 4.2527 PbCrO4 4 Cr2O3 0.23515 3.2320 PbCrO4 4 CrO3 0.30941 2.7863 PbCrO4 4 CrO4 0.35890 0.90217 PbCrO4 4 Cr2(SO4)3·18H2O 1.1084 1.6642 PbCrO4 4 K2CrO4 0.60090 2.1971 PbCrO4 4 K2Cr2O7 0.45515 COBALT Co 58.9332 0.20249 Co 4 Co(NO3)2·6H2O 4.9385 0.78648 Co 4 CoO 1.2715 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor CHLORINE (continued) Cl 35.453 PRACTICAL LABORATORY INFORMATION 11.49 0.20965 Co 4 CoSO4·7H2O 4.7698 7.6743 K3[Co(NO2)6] 4 Co 0.13030 6.0357 K3[Co(NO2)6] 4 CoO 0.16568 1.3620 Co3O4 4 Co 0.73422 1.0712 Co3O4 4 CoO 0.93355 2.4758 Co2P2O7 4 Co 0.40391 1.9471 Co2P2O7 4 CoO 0.51357 3.2233 CoNH4PO4·H2O 4 Co 0.31024 2.5351 CoNH4PO4·H2O 4 CoO 0.39447 2.6299 CoSO4 4 Co 0.38024 2.0684 CoSO4 4 CoO 0.48347 3.7514 CoSO4·7H2O 4 CoO 0.26657 7.0656 (CoSO4)2·(K2SO4)3 4 Co 0.14153 5.5569 (CoSO4)2·(K2SO4)3 4 CoO 0.17996 COPPER Cu 63.544 0.25071 Cu 4 Cu2C2H3O2·(AsO2)3 3.9887 0.79885 Cu 4 CuO 1.2518 0.25449 Cu 4 CuSO4·5H2O 3.9295 1.9141 CuSCN 4 Cu 0.52245 1.5291 CuSCN 4 CuO 0.65400 0.31856 CuO 4 CuSO4·5H2O 3.1391 1.1259 Cu2O 4 Cu 0.88817 1.2523 Cu2S 4 Cu 0.79854 1.0004 Cu2S 4 CuO 0.99961 1.1122 Cu2S 4 Cu2O 0.89908 0.31869 Cu2S 4 CuSO4·5H2O 3.1379 0.91872 Mg2As2O7 4 Cu2C2H3O2(AsO2)3 1.0885 ERBIUM Er 167.26 1.1435 Er2O3 4 Er 0.87452 FLUORINE F 18.9984 1.5936 BaSiF6 4 BaF2 0.62751 2.4513 BaSiF6 4 F 0.40795 2.3277 BaSiF6 4 6HF 0.42960 1.9392 BaSiF6 4 H2SiF6 0.51568 2.6847 BaSiF6 4 SiF4 0.37249 1.9666 BaSiF6 4 SiF6 0.50848 1.6256 CaF2 4 H2SiF6 0.61516 1.6486 CaF2 4 SiF6 0.60658 3.5829 CaSO4 4 F 0.27910 2.4024 CaSO4 4 HF 0.29391 0.48666 F 4 CaF2 2.0548 0.51248 HF 4 CaF2 1.9513 1.2641 H2SiF6 4 F 0.79109 3.6011 H2SiF6 4 2HF 0.27769 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor COBALT (continued) Co 58.9332 11.50 SECTION 11 1.2004 H2SiF6 4 6HF 0.83308 1.3844 H2SiF6 4 SiF4 0.72233 1.0141 H2SiF6 4 SiF6 0.98605 2.0556 KF·HF 4 2F 0.48647 1.9520 KF·HF 4 2HF 0.51228 0.67218 KF·HF 4 2KF 1.4877 0.41489 KF·HF 4 2(KF·2H2O) 2.4103 1.9325 K2SiF6 4 F 0.51748 1.8351 K2SiF6 4 6HF 0.54494 1.5288 K2SiF6 4 H2SiF6 0.65412 1.8957 K2SiF6 4 2KF 0.52751 1.5504 K2SiF6 4 SiF6 0.64500 1.9495 NH4F 4 F 0.51295 1.5013 NH4F·HF 4 2F 0.66611 1.4256 NH4F·HF 4 2HF 0.70145 0.49090 NH4F·HF 4 2KF 2.0371 0.30300 NH4F·HF 4 2(KF·2H2O) 3.3003 1.5629 (NH4)2SiF6 4 F 0.63985 1.4841 (NH4)2SiF6 4 6HF 0.67381 1.2364 (NH4)2SiF6 4 H2SiF6 0.80881 2.4050 (NH4)2SiF6 4 2NH4F 0.41580 1.2539 (NH4)2SiF6 4 SiF6 0.79753 2.2101 NaF 4 F 0.45246 1.6498 Na2SiF6 4 F 0.60614 1.5666 Na2SiF6 4 6HF 0.63831 1.3052 Na3SiF6 4 H2SiF6 0.76619 2.2394 Na2SiF6 4 2NaF 0.44654 1.3236 Na2SiF6 4 SiF6 0.75550 GALLIUM Ga 69.72 1.3442 Ga2O3 4 Ga 0.74392 1.6898 Ga2S3 4 Ga 0.59178 GERMANIUM Ge 72.59 1.4408 GeO2 4 Ge 0.69404 3.6476 K2GeF6 4 Ge 0.27415 GOLD Au 196.967 0.64936 Au 4 AuCl3 1.5400 0.47826 Au 4 HAuCl4·4H2O 2.0909 0.54995 Au 4 KAu(CN)4·H2O 1.8183 HYDROGEN H 1.0079 8.9365 H2O 4 H 0.11190 7.9364 O 4 H 0.12600 0.35607 HSCN 4 AgSCN 2.8084 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor FLUORINE (continued) F 18.9984 PRACTICAL LABORATORY INFORMATION 11.51 0.48586 HSCN 4 CuSCN 2.0582 0.25317 HSCN 4 BaSO4 3.9499 INDIUM In 114.82 1.2090 In2O3 4 In 0.82711 1.4189 In2S3 4 In 0.70476 IODINE I 126.904 0.84333 Ag 4 HI 1.1858 0.85004 Ag 4 I 1.1764 1.1294 AgCl 4 I 0.88543 1.8354 AgI 4 HI 0.54483 1.8500 AgI 4 I 0.54053 1.3423 AgI 4 IO3 0.74498 1.2298 AgI 4 IO4 0.81314 1.4066 AgI 4 I2O5 0.71091 1.2836 AgI 4 I2O7 0.77904 0.41592 Pd 4 HI 2.4043 0.41921 Pd 4 I 2.3854 1.4081 PdI2 4 HI 0.71020 1.4192 PdI2 4 I 0.70462 1.0297 PdI2 4 IO3 0.97113 0.94343 PdI2 4 IO4 1.0600 1.0791 PdI2 4 I2O5 0.92671 0.98472 PdI2 4 I2O7 1.0155 2.5899 TlI 4 HI 0.38612 2.6105 TlI 4 I 0.38307 1.8941 TlI 4 IO3 0.52797 1.7353 TlI 4 IO4 0.57627 1.9848 TlI 4 I2O5 0.50383 1.8112 TlI 4 I2O7 0.55211 IRON Fe 55.845 2.2598 Ag 4 Fe7(CN)18 (Prussian blue) 0.44252 0.54503 CN 4 Fe7(CN)18 1.8347 0.61256 CO2 4 FeO 1.6325 0.37986 CO2 4 FeCO3 2.6326 0.49483 CO2 4 Fe(HCO3)2 2.0209 0.31396 Fe 4 Fe(HCO3)2 3.1851 0.44061 Fe 4 FeCl2 2.2696 0.77730 Fe 4 FeO 1.2865 0.69943 Fe 4 Fe2O3 1.4297 0.72359 Fe 4 Fe3O4 1.3820 0.36763 Fe 4 FeSO4 2.7201 0.20087 Fe 4 FeSO4·7H2O 4.9782 0.14242 Fe 4 FeSO4·(NH4)2SO4·6H2O 7.0217 0.62011 FeO 4 FeCO3 1.6126 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor HYDROGEN (continued) H 1.0079 11.52 SECTION 11 0.40390 FeO 4 Fe(HCO3)2 2.4759 0.89982 FeO 4 Fe2O3 1.1113 0.49223 Fe2O3 4 FeCl2 2.0316 0.68915 Fe2O3 4 FeCO3 1.4511 0.44887 Fe2O3 4 Fe(HCO3)2 2.2278 0.33422 Fe2O3 4 Fe(HCO3)3 2.9920 1.1113 Fe2O3 4 FeO 0.89982 1.0345 Fe2O3 4 Fe3O4 0.96662 0.52941 Fe2O3 4 FePO4 1.8889 0.52561 Fe2O3 4 FeSO4 1.9026 0.28719 Fe2O3 4 FeSO4·7H2O 3.4820 0.20361 Fe2O3 4 FeSO4·(NH4)2SO4·6H2O 4.9113 0.39934 Fe2O3 4 Fe2(SO4)3 2.5041 2.7006 FePO4 4 Fe 0.37029 2.0992 FePO4 4 FeO 0.47637 1.5741 FeS 4 Fe 0.63527 1.2236 FeS 4 FeO 0.81726 1.1010 FeS 4 Fe2O3 0.90825 0.79699 Mg2As2O7 4 FeAsO4 1.2547 1.1144 SO3 4 FeO 0.89738 0.52704 SO3 4 FeSO4 1.8974 LANTHANUM La 138.91 1.1728 La2O3 4 La 0.85268 LEAD Pb 207.2 0.77541 Pb 4 PbCO3 1.2896 0.80141 Pb 4 (PbCO3)2·Pb(OH)2 1.2478 0.85901 Pb 4 Pb(OH)2 1.1641 0.92831 Pb 4 PbO 1.0772 1.3422 PbCl2 4 Pb 0.74502 1.2460 PbCl2 4 PbO 0.80255 1.5598 PbCrO4 4 Pb 0.64110 0.85198 PbCrO4 4 Pb(C2H3O2)2·3H2O 1.1737 1.2501 PbCrO4 4 (PbCO3)2·Pb(OH)2 0.79997 1.4480 PbCrO4 4 PbO 0.69061 1.4142 PbCrO4 4 Pb3O4 0.70711 1.0657 PbCrO4 4 PbSO4 0.93833 0.83529 PbO 4 PbCO3 1.1972 0.67388 PbO 4 Pb(NO3)2 1.4839 0.93311 PbO 4 PbO2 1.0717 1.1544 PbO2 4 Pb 0.86622 0.72219 PbO2 4 Pb(NO3)2 1.3847 1.1547 PbS 4 Pb 0.86600 1.0720 PbS 4 PbO 0.93287 0.78895 PbS 4 PbSO4 1.2675 1.2993 PbSO4 4 BaSO4 0.76966 1.4636 PbSO4 4 Pb 0.68323 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor IRON (continued) Fe 55.845 PRACTICAL LABORATORY INFORMATION 11.53 0.79944 PbSO4 4 Pb(C2H3O2)2·3H2O 1.2509 1.1349 PbSO4 4 PbCO3 0.88112 1.1730 PbSO4 4 (PbCO3)2·Pb(OH)2 0.85254 0.91561 PbSO4 4 Pb(NO3)2 1.0922 1.3587 PbSO4 4 PbO 0.73599 1.2678 PbSO4 4 PbO2 0.78875 1.3270 PbSO4 4 Pb3O4 0.75358 LITHIUM Li 6.941 0.59562 CO2 4 Li2CO3 1.6789 0.64759 CO2 4 LiHCO3 1.5442 1.4729 CO2 4 Li2O 0.67894 6.1086 LiCl 4 Li 0.16369 2.8378 LiCl 4 Li2O 0.35239 5.3228 Li2CO3 4 Li 0.18787 0.87147 Li2CO3 4 LiCl 1.1475 0.54364 Li2CO3 4 LiHCO3 1.8395 2.4730 Li2CO3 4 Li2O 0.40436 4.5491 LiHCO3 4 Li2O 0.21983 3.7371 LiF 4 Li 0.26759 2.1525 Li2O 4 Li 0.46457 0.27176 Li2O 4 Li2SO4 3.6798 5.5609 Li2PO4 4 Li 0.17983 0.91047 Li3PO4 4 LiCl 1.0983 1.0447 Li3PO4 4 Li2CO3 0.95717 0.56797 Li3PO4 4 LiHCO3 1.7607 2.5837 Li3PO4 4 Li2O 0.38704 0.70214 Li3PO4 4 Li2SO4 1.4242 0.60331 Li3PO4 4 Li2SO4·H2O 1.6575 7.9153 Li2SO4 4 Li 0.12634 1.2967 Li2SO4 4 LiCl 0.77118 2.6797 SO3 4 Li2O 0.37317 0.72823 SO3 4 Li2SO4 1.3732 MAGNESIUM Mg 24.305 1.9390 BaSO4 4 MgSO4 0.51572 0.94693 BaSO4 4 MgSO4·7H2O 1.0560 6.5755 Br 4 Mg 0.15208 0.86800 Br 4 MgBr2 1.1521 0.54691 Br 4 MgBr2·6H2O 1.8285 2.9173 Cl 4 Mg 0.34278 0.74472 Cl 4 MgCl2 1.3429 0.25533 Mg 4 MgCl2 3.9165 0.28883 Mg 4 MgCO3 3.4683 10.4427 I 4 Mg 0.095761 0.91261 I 4 MgI2 1.09576 0.34876 Cl 4 MgCl2·6H2O 2.8673 0.52193 CO2 4 MgCO3 1.9160 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor LEAD (continued) Pb 207.2 11.54 SECTION 11 1.0918 CO2 4 MgO 0.91595 0.57616 MgCO3 4 Mg(HCO3)2 1.7356 10.094 MgNH4PO4·6H2O 4 Mg 0.099067 6.0879 MgNH4PO4·6H2O 4 MgO 0.16426 1.6581 MgO 4 Mg 0.60311 0.47807 MgO 4 MgCO3 2.0918 0.27544 MgO 4 Mg(HCO3)2 3.6305 0.33489 MgO 4 MgSO4 2.9860 4.5784 Mg2P2O7 4 Mg 0.21841 1.1687 Mg2P2O7 4 MgCl2 0.85562 0.54737 Mg2P2O7 4 MgCl2·6H2O 1.8269 0.40049 Mg2P2O7 4 MgCl2·KCl·6H2O 2.4969 1.3198 Mg2P2O7 4 MgCO3 0.75770 0.76040 Mg2P2O7 4 Mg(HCO3)2 1.3151 2.7607 Mg2P2O7 4 MgO 0.36223 0.92452 Mg2P2O7 4 MgSO4 1.0816 0.45150 Mg2P2O7 4 MgSO4·7H2O 2.2149 4.9523 MgSO4 4 Mg 0.20193 1.9864 SO3 4 MgO 0.50343 0.6651 SO3 4 MgSO4 1.5034 0.38482 SO3 4 MgSO4·7H2O 3.0786 MANGANESE Mn 54.9380 1.5457 BaSO4 4 MnSO4 0.64696 0.38286 CO2 4 MnCO3 2.6119 0.62041 CO2 4 MnO 1.6118 0.47793 Mn 4 MnCO3 2.0924 0.77446 Mn 4 MnO 1.2912 0.63193 Mn 4 MnO2 1.5825 0.69599 Mn 4 Mn2O3 1.4368 0.76126 MnCO3 4 MnSO4 1.3136 1.5395 Mn(HCO3)2 4 MnCO3 0.64955 0.61711 MnO 4 MnCO3 1.6205 0.40084 MnO 4 Mn(HCO3)2 2.4947 0.89868 MnO 4 Mn2O3 1.1127 0.46978 MnO 4 MnSO4 2.1286 1.3883 Mn3O4 4 Mn 0.72031 0.66351 Mn3O4 4 MnCO3 1.5071 0.43098 Mn3O4 4 Mn(HCO3)2 2.3203 1.0752 Mn3O4 4 MnO 0.93008 0.96625 Mn3O4 4 Mn2O3 1.0349 0.87731 Mn3O4 4 MnO2 1.1399 0.50510 Mn3O4 4 MnSO4 1.9798 2.5831 Mn2P2O7 4 Mn 0.38713 1.2345 Mn2P2O7 4 MnCO3 0.81002 2.0005 Mn2P2O7 4 MnO 0.49987 1.6324 Mn2P2O7 4 MnO2 0.61261 0.93980 Mn2P2O7 4 MnSO4 1.0641 1.5836 MnS 4 Mn 0.63146 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor MAGNESIUM (continued) Mg 24.305 PRACTICAL LABORATORY INFORMATION 11.55 0.75687 MnS 4 MnCO3 1.3212 1.2265 MnS 4 MnO 0.81535 0.57617 MnS 4 MnSO4 1.7356 2.7486 MnSO4 4 Mn 0.36383 1.1286 SO3 4 MnO 0.88603 0.53021 SO3 4 MnSO4 1.8860 MERCURY Hg 200.59 0.73882 Hg 4 HgCl2 1.3535 0.92613 Hg 4 HgO 1.0798 0.86220 Hg 4 HgS 1.1598 1.1767 HgCl 4 Hg 0.84981 0.86939 HgCl 4 HgCl2 1.1502 0.89889 HgCl 4 HgNO3 1.1125 1.1316 HgCl 4 Hg2O 0.88371 1.0898 HgCl 4 HgO 0.91760 1.0146 HgCl 4 HgS 0.98564 0.98564 HgS 4 HgCl 1.0146 0.85691 HgS 4 HgCl2 1.1670 0.92091 HgS 4 Hg(CN)2 1.0859 0.88598 HgS 4 HgNO3 1.1287 0.71673 HgS 4 Hg(NO3)2 1.3952 0.67903 HgS 4 Hg(NO3)2·H2O 1.4727 1.1153 HgS 4 Hg2O 0.89658 1.0741 HgS 4 HgO 0.93097 0.78426 HgS 4 HgSO4 1.2751 MOLYBDENUM Mo 95.94 8.9876 MoC 4 C 0.11126 1.5003 MoO3 4 Mo 0.66653 0.73436 MoO3 4 (NH4)2MoO4 1.3617 2.0026 MoS3 4 Mo 0.49935 1.3348 MoS4 4 MoO3 0.74918 0.98021 MoS3 4 (NH4)2MoO4 1.0202 1.0863 (NH4)3PO4·12MoO3 4 MoO3 0.92058 0.79771 (NH4)3PO4·12MoO3 4 (NH4)2MoO4 1.2536 3.8267 PbMoO4 4 Mo 0.26132 2.5506 PbMoO4 4 MoO3 0.39207 1.8730 PbMoO4 4 (NH4)2MoO4 0.53390 NEODYMIUM Nd 144.24 1.1664 Nd2O3 4 Nd 0.85735 NICKEL Ni 58.71 0.20319 Ni 4 Ni dimethylglyoxime 4.9215 0.20188 Ni 4 Ni(NO3)2·6H2O 4.9533 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor MANGANESE (continued) Mn 54.9380 11.56 SECTION 11 0.78585 Ni 4 NiO 1.2725 0.20902 Ni 4 NiSO4·7H2O 4.7842 3.8675 Ni dimethylglyoxime 4 NiO 0.25856 0.25690 NiO 4 Ni(NO3)2·6H2O 3.8926 0.26598 NiO 4 NiSO4·7H2O 3.7597 2.6362 NiSO4 4 Ni 0.37934 0.53220 NiSO4 4 Ni(NO3)2·6H2O 1.8790 2.0716 NiSO4 4 NiO 0.48271 0.55102 NiSO4 4 NiSO4·7H2O 1.8148 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor NICKEL (continued) Ni 58.71 NIOBIUM Nb 92.906 7.7351 Nb 4 C 0.12928 8.7353 NbC 4 C 0.11448 11.065 Nb2O5 4 2C 0.090373 1.4305 Nb2O5 4 Nb 0.69904 NITROGEN N 14.0067 3.2731 AgNO2 4 HNO2 0.30552 4.0488 AgNO2 4 N2O3 0.24698 1.8722 KNO3 4 N2O5 053412 0.22229 N 4 HNO3 4.4987 0.30446 N 4 NO2 3.2845 0.36855 N 4 N2O3 2.7134 0.22590 N 4 NO3 4.4268 0.25936 N 4 N2O5 3.8556 6.0680 NaNO3 4 N 0.16480 1.5738 NaNO3 4 N2O5 0.63539 0.47619 NO 4 HNO3 2.1000 0.65222 NO 4 NO2 1.5332 0.78951 NO 4 N2O3 1.2666 0.48393 NO 4 NO3 2.0664 0.55561 NO 4 N2O5 1.7998 0.27028 NH3 4 HNO3 3.6999 1.2159 NH3 4 N 0.82244 0.31536 NH3 4 N2O5 3.1710 0.27467 NH3 4 NO3 3.6407 0.84890 NH4Cl 4 HNO3 1.1780 0.86270 NH4Cl 4 NO3 1.1591 0.99050 NH4Cl 4 N2O5 1.0096 3.8189 NH4Cl 4 N 0.26185 3.5221 (NH4)2PtCl6 4 HNO3 0.28393 15.845 (NH4)2PtCl6 4 N 0.063112 4.1096 (NH4)2PtCl6 4 N2O6 0.24333 3.5794 (NH4)2PtCl6 4 NO3 0.27938 4.7169 (NH4)2SO4 4 N 0.21200 1.2234 (NH4)2SO4 4 N2O5 0.81739 1.5480 Pt 4 HNO3 0.64599 6.9640 Pt 4 N 0.14360 PRACTICAL LABORATORY INFORMATION 11.57 1.5732 Pt 4 NO3 0.63566 1.8062 Pt 4 N2O5 0.55364 0.63528 SO3 4 HNO3 1.5741 2.8579 SO3 4 N 0.34990 0.74125 SO3 4 N2O5 1.3491 OSMIUM Os 190.2 1.3365 OsO4 4 Os 0.74823 PALLADIUM Pd 106.4 0.49873 Pd 4 PdCl2·2H2O 2.0051 0.46179 Pd 4 Pd(NO3)2 2.1655 3.3854 PdI2 4 Pd 0.29538 3.7342 K2PdCl6 4 Pd 0.26779 1.8624 K2PdCl6 4 PdCl2·2H2O 0.53695 PHOSPHORUS P 30.9738 13.514 Ag3PO4 4 P 0.073998 4.4075 Ag3PO4 4 PO4 0.22689 5.8980 Ag3PO4 4 P2O5 0.16955 9.7730 Ag4P2O7 4 P 0.10232 3.1874 Ag4P2O7 4 PO4 0.31374 4.2653 Ag4P2O7 4 P2O5 0.23445 0.71833 Al2O3 4 P2O5 1.3921 1.2841 AlPO4 4 PO4 0.77877 1.7183 AlPO4 4 P2O5 0.58196 2.1853 Ca3(PO4)2 4 P2O5 0.45761 1.5881 FePO4 4 PO4 0.62970 2.1251 FePO4 4 P2O5 0.47056 0.78392 Mg2P2O7 4 Na2HPO4 1.2756 0.31073 Mg2P2O7 4 Na2HPO4·12H2O 3.2182 0.53229 Mg2P2O7 4 NaNH4HPO4·4H2O 1.8787 3.5929 Mg2P2O7 4 P 0.27833 1.1718 Mg2P2O7 4 PO4 0.85340 1.5681 Mg2P2O7 4 P2O5 0.63773 60.577 (NH4)3PO4·12MoO3 4 P 0.016508 19.757 (NH4)3PO4·12MoO3 4 PO4 0.050616 26.438 (NH4)3PO4·12MoO3 4 P2O5 0.037824 0.63773 P2O5 4 Mg2P2O7 1.5681 0.49993 P2O5 4 Na2HPO4 2.0003 0.19816 P2O5 4 Na2HPO4·12H2O 5.0464 0.33946 P2O5 4 NaNH4HPO4·4H2O 2.9459 2.2913 P2O5 4 P 0.43644 58.057 P2O5·24MoO3 4 P 0.017225 18.935 P2O5·24MoO3 4 PO4 0.052813 25.338 P2O5·24MoO3 4 P2O5 0.039466 11.526 U2P2O11 4 P 0.086762 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor NITROGEN (continued) N 14.0067 11.58 SECTION 11 3.7590 U2P2O11 4 PO4 0.26603 5.0303 U2P2O11 4 P2O5 0.19880 PLATINUM Pt 195.09 0.93839 K2PtCl6 4 H2PtCl6·6H2O 1.0657 2.4912 K2PtCl6 4 Pt 0.40141 1.4426 K2PtCl6 4 PtCl4 0.69320 1.1383 K2PtCl6 4 PtCl4·5H2O 0.87854 2.2753 (NH4)2PtCl6 4 Pt 0.43950 1.3176 (NH4)2PtCl6 4 PtCl4 0.75897 1.0885 (NH4)2PtCl6 4 PtCl6 0.91872 0.37668 Pt 4 H2PtCl6·6H2O 2.6548 0.57907 Pt 4 PtCl4 1.7269 0.45691 Pt 4 PtCl4·5H2O 2.1886 POTASSIUM K 39.098 0.90639 Ag 4 KBr 1.1033 1.4469 Ag 4 KCl 0.69116 0.88021 Ag 4 KClO3 1.1361 0.77856 Ag 4 KClO4 1.2844 1.6565 Ag 4 KCN 0.60369 0.64978 Ag 4 Kl 1.5390 1.5779 AgBr 4 KBr 0.63377 1.1244 AgBr 4 KBrO3 0.88939 1.9223 AgCl 4 KCl 0.52020 1.1695 AgCl 4 KClO3 0.85508 1.0344 AgCl 4 KClO4 0.96672 2.0561 AgCN 4 KCN 0.48637 1.4142 AgI 4 Kl 0.70712 1.0971 AgI 4 KlO3 0.91153 1.3045 BaCrO4 4 K2CrO4 0.76659 1.7222 BaCrO4 4 K2Cr2O7 0.58065 1.7140 BaSO4 4 KHSO4 0.58342 2.1166 BaSO4 4 K2S 0.47245 1.3393 BaSO4 4 K2SO4 0.74666 2.0436 Br 4 K 0.48933 0.67145 Br 4 KBr 1.4893 0.41473 CaF2 4 KF·2H2O 2.4112 0.72315 CaSO4 4 KF·2H2O 1.3828 0.90668 Cl 4 K 1.1029 0.47553 Cl 4 KCl 2.1029 0.28929 Cl 4 KClO3 3.4567 0.25589 Cl 4 KClO4 3.9080 0.75269 Cl 4 K2O 1.3286 0.46718 CO2 4 K2O 2.1405 0.31843 CO2 4 K2CO3 3.1404 0.76441 I 4 Kl 1.3082 0.59299 I 4 KlO3 1.6864 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor PHOSPHORUS (continued) P 30.9738 PRACTICAL LABORATORY INFORMATION 11.59 0.31907 K 4 KClO3 3.1341 0.83016 K 4 K2O 1.2046 0.38673 K 4 KNO3 2.5858 3.0436 KBr 4 K 0.32856 2.5267 KBr 4 K2O 0.39578 1.9067 KCl 4 K 0.52447 1.0789 KCl 4 K2CO3 0.92690 0.50685 KCl 4 K2Cr2O7 1.9730 0.74466 KCl 4 KHCO3 1.3429 0.73737 KCl 4 KNO3 1.3562 1.5829 KCl 4 K2O 0.63177 0.85563 KCl 4 K2SO4 1.1687 1.6437 KClO3 4 KCl 0.60836 3.5433 KClO4 4 K 0.28222 1.8584 KClO4 4 KCl 0.53811 2.9415 KClO4 4 K2O 0.33996 4.2456 Kl 4 K 0.23554 3.5245 Kl 4 K2O 0.28373 0.38435 K2O 4 KClO3 2.6018 0.68159 K2O 4 K2CO3 1.4672 0.32021 K2O 4 K2Cr2O7 3.1229 0.47045 K2O 4 KHCO3 2.1256 0.46584 K2O 4 KNO3 2.1466 0.81194 KOH 4 K2CO3 1.2316 1.1912 KOH 4 K2O 0.83946 6.2146 K2PtCl6 4 K 0.16091 3.5165 K2PtCl6 4 K2CO3 0.28438 3.2594 K2PtCl6 4 KCl 0.30680 2.4271 K2PtCl6 4 KHCO3 0.41201 2.4034 K2PtCl6 4 KNO3 0.41608 5.1592 K2PtCl6 4 K2O 0.19383 2.7888 K2PtCl6 4 K2SO4 0.35857 0.51224 K2PtCl6 4 K2SO4·Al2(SO4)3·24H2O 1.9522 0.48659 K2PtCl6 4 K2SO4·Cr2(SO4)3·24H2O 2.0551 1.2609 K2SO4 4 K2CO3 0.79308 0.87031 K2SO4 4 KHCO3 1.1490 0.63990 K2SO4 4 KHSO4 1.5627 1.0238 K2SO4 4 KNO2 0.97674 0.86179 K2SO4 4 KNO3 1.1604 2.2285 K2SO4 4 K 0.44875 1.8499 K2SO4 4 K2O 0.54056 1.5804 K2SO4 4 K2S 0.63275 0.60582 Mg2As2O7 4 K3AsO4 1.6506 0.71164 Mg2As2O7 4 K2HAsO4 1.4052 0.40040 Mn2O3 4 K2MnO4 2.4975 0.49946 Mn2O3 4 KMnO4 2.0022 0.44132 MnS 4 K2MnO4 2.2659 0.55051 MnS 4 KMnO4 1.8165 0.13853 N 4 KNO3 7.2185 0.16844 NH3 4 KNO3 5.9368 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor POTASSIUM (continued) K 39.098 11.60 SECTION 11 0.29677 NO 4 KNO3 3.3697 0.44656 N2O3 4 KNO2 2.2393 1.1466 N2O5 4 K2O 0.87217 0.53412 N2O5 4 KNO3 1.8722 2.4946 Pt 4 K 0.40086 1.3084 Pt 4 KCl 0.76431 2.0710 Pt 4 K2O 0.48287 0.38943 SiO2 4 K2SiO3 2.5679 0.45941 SO3 4 K2SO4 2.1767 PRASEODYMIUM Pr 140.908 1.1703 Pr2O3 4 Pr 0.85449 RHODIUM Rh 102.905 0.26758 Rh 4 Na3RhCl6 3.7372 0.49178 Rh 4 RhCl3 2.0334 RUBIDIUM Rb 85.468 1.6768 AgCl 4 Rb 0.59636 1.1852 AgCl 4 RbCl 0.84371 0.41480 Cl 4 Rb 2.4108 0.29319 Cl 4 RbCl 3.4107 0.70683 Rb 4 RbCl 1.4148 0.74016 Rb 4 Rb2CO3 1.3511 0.91441 Rb 4 Rb2O 1.0936 0.64023 Rb 4 Rb2SO4 1.5620 1.0472 RbCl 4 Rb2CO3 0.95497 0.90577 RbCl 4 Rb2SO4 1.1040 2.1636 RbClO4 4 Rb 0.46220 0.78828 Rb2CO3 4 RbHCO3 1.2686 0.77299 Rb2O 4 RbCl 1.2937 0.70015 Rb2O 4 Rb2SO4 1.4283 3.3857 Rb2PtCl6 4 Rb 0.29536 2.3931 Rb2PtCl6 4 RbCl 0.41787 2.5060 Rb2PtCl6 4 Rb2CO3 0.39905 1.9754 Rb2PtCl6 4 RbHCO3 0.50623 3.0959 Rb2PtCl6 4 Rb2O 0.32301 1.1561 Rb2SO4 4 Rb2CO3 0.86498 0.91133 Rb2SO4 4 RbHCO3 1.0973 SELENIUM Se 78.96 0.61224 Se 4 H2SeO3 1.6334 0.54466 Se 4 H2SeO4 1.8360 0.71161 Se 4 SeO2 1.4053 0.62193 Se 4 SeO3 1.6079 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor POTASSIUM (continued) K 39.098 PRACTICAL LABORATORY INFORMATION 11.61 SILICON Si 28.086 2.6847 BaSiF6 4 SiF4 0.37249 4.6504 BaSiF6 4 SiO2 0.21503 2.1163 K2SiF6 4 SiF4 0.47249 3.6661 K2SiF6 4 SiO2 0.27277 3.3384 SiC 4 C 0.29954 0.91111 SiC 4 CO2 1.0976 0.76933 SiO2 4 H2SiO3 1.2998 2.1393 SiO2 4 Si 0.46744 0.57730 SiO2 4 SiF4 1.7322 0.78972 SiO2 4 SiO3 1.2663 0.65250 SiO2 4 SiO4 1.5326 1.6651 SiO2 4 Si2O 0.60057 0.62514 SiO2 4 Si(OH)4 1.5997 SILVER Ag 107.868 0.63501 Ag 4 AgNO3 1.5748 0.93096 Ag 4 Ag2O 1.0742 1.7408 AgBr 4 Ag 0.57445 1.3286 AgCl 4 Ag 0.75265 0.84371 AgCl 4 AgNO3 1.1852 1.2369 AgCl 4 Ag2O 0.80847 1.7935 AgCl 4 Br 0.55756 1.2412 AgCN 4 Ag 0.80566 2.1764 Agl 4 Ag 0.45947 1.2935 Ag3PO4 4 Ag 0.77311 1.4031 Ag4P2O7 4 Ag 0.71269 0.74079 Br 4 Ag 1.3499 0.42555 Br 4 AgBr 2.3499 0.32866 Cl 4 Ag 3.0426 0.24737 Cl 4 AgCl 4.0425 1.1764 I 4 Ag 0.85004 0.54053 I 4 Agl 1.8500 SODIUM Na 22.9898 1.0483 Ag 4 NaBr 0.95393 1.8457 Ag 4 NaCl 0.54179 0.71966 Ag 4 Nal 1.3895 1.8249 AgBr 4 NaBr 0.54798 2.4523 AgCl 4 NaCl 0.40778 1.5663 Agl 4 Nal 0.63845 1.9440 BaSO4 4 NaHSO4 0.51440 1.6905 BaSO4 4 NaHSO4·H2O 0.59156 2.9906 BaSO4 4 Na2S 0.33438 1.8518 BaSO4 4 Na2SO3 0.54002 0.92564 BaSO4 4 Na2SO3·7H2O 1.0803 1.6432 BaSO4 4 Na2SO4 0.60857 0.72442 BaSO4 4 Na2SO4·10H2O 1.3804 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor 11.62 SECTION 11 0.69198 B2O3 4 Na2B4O7 1.4451 0.36510 B2O3 4 Na2B4O7·10H2O 2.7389 3.4758 Br 4 Na 0.28770 0.77657 Br 4 NaBr 1.2877 2.5786 Br 4 Na2O 0.38781 0.94956 CaCl2 4 NaCl 1.0531 0.94433 CaCO3 4 Na2CO3 1.0590 0.92975 CaF2 4 NaF 1.0756 0.52910 CaO 4 Na2CO3 1.8900 1.2845 CaSO4 4 Na2CO3 0.77854 1.5421 Cl 4 Na 0.64846 0.60663 Cl 4 NaCl 1.6485 1.1442 Cl 4 Na2O 0.87410 0.41520 CO2 4 Na2CO3 2.4083 0.71008 CO2 4 Na2O 1.4083 1.2292 H3BO3 4 Na2B4O7 0.81357 0.64853 H3BO3 4 Na2B4O7·10H2O 1.5419 5.5198 I 4 Na 0.18117 0.84662 I 4 Nal 1.1812 4.0949 I 4 Na2O 0.24420 2.5029 KBF4 4 Na2B4O7 0.39954 1.3206 KBF4 4 Na2B4O7·10H2O 0.75724 0.91360 Mg2As2O7 4 Na2HAsO3 1.0946 0.83497 Mg2As2O7 4 Na2HAsO4 1.1976 0.81462 MgCl2 4 NaCl 1.2276 0.67882 Mg2P2O7 4 Na3PO4 1.4731 0.78392 Mg2P2O7 4 Na2HPO4 1.2757 0.31073 Mg2P2O7 4 NaHPO4·12H2O 3.2182 0.53229 Mg2P2O7 4 NaNH4·HPO4·4H2O 1.8787 0.49897 Mg2P2O7 4 Na4P2O7·10H2O 2.0041 4.4759 NaBr 4 Na 0.22342 3.3205 NaBr 4 Na2O 0.30116 65.502 NaOAc · Mg(OAc)2·UO2(OAc)2· 4 Na 1 6 ⁄2H O 2 0.015267 14.635 Triple MgOAc 4 NaBr 0.066331 28.416 Triple MgOAc 4 Na2CO3 0.035192 25.768 Triple MgOAc 4 NaCl 0.038809 17.926 Triple MgOAc 4 NaHCO3 0.055785 10.047 Triple MgOAc 4 Nal 0.099535 37.650 Triple MgOAc 4 NaOH 0.026560 48.594 Triple MgOAc 4 Na2O 0.020579 21.204 Triple MgOAc 4 Na2SO4 0.047161 66.894 NaOAc·Zn(OAc)2·UO2(OAc)2·6H2O 4 Na 0.014949 14.946 Triple ZnOAc 4 NaBr 0.066909 29.020 Triple ZnOAc 4 Na2CO3 0.034459 26.315 Triple ZnOAc 4 NaCl 0.038002 18.307 Triple ZnOAc 4 NaHCO3 0.054624 10.260 Triple ZnOAc 4 Nal 0.097464 38.451 Triple ZnOAc 4 NaOH 0.026008 49.626 Triple ZnOAc 4 Na2O 0.020151 21.654 Triple ZnOAc 4 Na2SO4 0.046180 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor SODIUM (continued) Na 22.9898 PRACTICAL LABORATORY INFORMATION 11.63 2.5421 NaCl 4 Na 0.39337 1.1028 NaCl 4 Na2CO3 0.90678 0.69569 NaCl 4 NaHCO3 1.4374 0.82337 NaCl 4 Na2HPO4 1.2145 1.8859 NaCl 4 Na2O 0.53025 0.82291 NaCl 4 Na2SO4 1.2152 0.74267 NaClO3 4 AgCl 1.3465 1.8213 NaClO3 4 NaCl 0.54907 0.85432 NaClO4 4 AgCl 1.1705 2.0950 NaClO4 4 NaCl 0.47732 2.3051 Na2CO3 4 Na 0.43381 0.63084 Na2CO3 4 NaHCO3 1.5852 1.7101 Na2CO3 4 Na2O 0.58476 1.3250 Na2CO3 4 NaOH 0.75473 3.6541 NaHCO3 4 Na 0.27367 2.7108 NaHCO3 4 Na2O 0.36889 6.5198 Nal 4 Na 0.15338 4.8368 Nal 4 Na2O 0.20675 1.3480 Na2O 4 Na 0.74186 0.43659 Na2O 4 Na2HPO4 2.2905 0.36460 Na2O 4 NaNO3 2.7427 0.77480 Na2O 4 NaOH 1.2907 0.93653 Na4P2O7 4 Na2HPO4 1.0678 0.37122 Na4P2O7 4 Na2HPO4·12H2O 2.6938 3.0892 Na2SO4 4 Na 0.32371 1.3401 Na2SO4 4 Na2CO3 0.74620 0.49640 Na2SO4 4 Na2CO3·10H2O 2.0145 2.2917 Na2SO4 4 Na2O 0.43635 0.16480 N 4 NaNO3 6.0680 0.20038 NH3 4 NaNO3 4.9906 0.081461 NH3 4 NaNH4HPO4·4H2O 12.276 0.35303 NO 4 NaNO3 2.8326 0.63539 N2O5 4 NaNO3 1.5738 1.7427 N2O5 4 Na2O 0.57383 0.49993 P2O5 4 Na2HPO4 2.0003 0.19816 P2O5 4 Na2HPO4·12H2O 5.0464 0.33946 P2O5 4 NaNH4HPO4·H2O 2.9459 0.61564 SO2 4 NaHSO3 1.6243 0.50828 SO2 4 Na2SO3 1.9674 0.25407 SO2 4 Na2SO3·7H2O 3.9360 1.2918 SO2 4 Na2O 0.77414 0.56366 SO2 4 Na2SO4 1.7741 STRONTIUM Sr 87.62 0.29811 CO2 4 SrCO8 3.3545 0.77265 SO3 4 SrO 1.2942 0.43588 SO3 4 SrSO4 2.2942 0.41402 Sr 4 Sr(NO3)2 2.4153 1.6849 SrCO3 4 Sr 0.59351 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor SODIUM (continued) Na 22.9898 11.64 SECTION 11 0.93124 SrCO3 4 SrCl2 1.0738 0.70424 SrCO3 4 Sr(HCO3)2 1.4200 0.69759 SrCO3 4 Sr(NO3)2 1.4335 1.1826 SrO 4 Sr 0.84559 0.65363 SrO 4 SrCl2 1.5299 0.70189 SrO 4 SrCO3 1.4247 0.49430 SrO 4 Sr(HCO3)2 2.0231 0.48963 SrO 4 Sr(NO3)2 2.0424 2.0963 SrSO4 4 Sr 0.47703 1.1586 SrSO4 4 SrCl2 0.86308 1.2442 SrSO4 4 SrCO3 0.80373 0.86793 SrSO4 4 Sr(NO3)2 1.1522 1.7726 SrSO4 4 SrO 0.56413 SULFUR S 32.06 2.4064 As2S3 4 H2S 0.41556 2.5577 As2S3 4 S 0.39097 3.8906 BaSO4 4 FeS2 0.25703 6.8486 BaSO4 4 H2S 0.14602 2.8436 BaSO4 4 H2SO3 0.35166 2.3797 BaSO4 4 H2SO4 0.42022 7.2792 BaSO4 4 S 0.13738 3.6433 BaSO4 4 SO2 0.27448 2.9152 BaSO4 4 SO3 0.34302 2.4297 BaSO4 4 SO4 0.41158 4.2388 CdS 4 H2S 0.23591 4.5054 CdS 4 S 0.22196 1.2250 H2SO4 4 SO3 0.81631 1.6505 (NH4)2SO4 4 SO3 0.60589 1.3473 (NH4)2SO4 4 H2SO4 0.74223 2.3492 SO3 4 H2S 0.42567 TANTALUM Ta 180.948 0.81898 Ta 4 Ta2O5 1.2210 0.50515 Ta 4 TaCl5 1.9796 16.065 TaC 4 C 0.062246 1.0664 TaC 4 Ta 0.93776 0.61680 Ta2O5 4 TaCl5 1.6213 1.0376 Ta2O5 4 Ta2O4 0.96379 TELLURIUM Te 127.60 0.65906 Te 4 H2TeO4 1.5173 0.55565 Te 4 H2TeO4·2H2O 1.7997 0.79950 Te 4 TeO2 1.2508 0.72665 Te 4 TeO3 1.3762 1.5645 (TeO2)2SO3 4 Te 0.63918 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor STRONTIUM (continued) Sr 87.62 PRACTICAL LABORATORY INFORMATION 11.65 THALLIUM Tl 204.37 0.87198 Tl 4 Tl2CO3 1.1468 0.85218 Tl 4 TlCl 1.1735 0.61693 Tl 4 Tll 1.6209 0.76724 Tl 4 TlNO3 1.3034 0.96232 Tl 4 Tl2O 1.0391 1.2838 Tl2CrO4 4 Tl 0.77895 1.4750 TlHSO4 4 Tl 0.67798 1.9977 Tl2PtCl6 4 Tl 0.50057 1.7024 Tl2PtCl6 4 TlCl 0.58740 1.7420 Tl2PtCl6 4 Tl2CO3 0.57406 1.2325 Tl2PtCl6 4 TlI 0.81139 1.5327 Tl2PtCl6 4 TlNO3 0.65243 1.9225 Tl2PtCl6 4 Tl2O 0.52017 1.6176 Tl2PtCl6 4 Tl2SO4 0.61821 1.2350 Tl2SO4 4 Tl 0.80971 THORIUM Th 232.038 1.1379 ThO2 4 Th 0.87881 0.70627 ThO2 4 ThCl4 1.4159 0.44893 ThO2 4 Th(NO3)4·6H2O 2.2275 TIN Sn 118.69 0.62600 Sn 4 SnCl2 1.5974 0.52604 Sn 4 SnCl2·2H2O 1.9010 0.45562 Sn 4 SnCl4 2.1948 0.32297 Sn 4 SnCl4·(NH4Cl)2 3.0962 0.88121 Sn 4 SnO 1.1348 0.78764 Sn 4 SnO2 1.2696 0.79478 SnO2 4 SnCl2 1.2582 0.66786 SnO2 4 SnCl2·2H2O 1.4973 0.57846 SnO2 4 SnCl4 1.7287 0.41005 SnO2 4 SnCl4·(NH4Cl)2 2.4387 1.1188 SnO2 4 SnO 0.89382 TITANIUM Ti 47.867 2.1059 K2TiF6 4 F 0.47485 3.0699 K2TiF6 4 K 0.32574 2.0660 K2TiF6 4 2KF 0.48403 1.2752 K2TiF6 4 2(KF·2H2O) 0.78421 5.0150 K2TiF6 4 Ti 0.19940 3.0057 K2TiF6 4 TiO2 0.33270 3.9853 Ti 4 C 0.25092 4.9853 TiC 4 C 0.20059 1.2509 TiC 4 Ti 0.79940 1.6299 TiF4 4 F 0.61354 1.6685 TiO2 4 Ti 0.59934 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor 11.66 SECTION 11 TUNGSTEN W 183.85 3.9348 FeWO4 4 Fe3O4 0.25414 1.3099 FeWO4 4 WO3 0.76344 6.7515 MgWO4 4 MgO 0.14812 1.1739 MgWO4 4 WO3 0.85189 4.2684 MnWO4 4 MnO 0.23428 1.3060 MnWO4 4 WO3 0.76571 2.0387 PbWO4 4 PbO 0.49051 2.4751 PbWO4 4 W 0.40403 1.9626 PbWO4 4 WO3 0.50952 15.307 W 4 C 0.065330 0.96837 W 4 W2C 1.0327 0.93868 W 4 WC 1.0653 31.614 W2C 4 C 0.031632 16.307 WC 4 C 0.061324 1.1741 WO2 4 W 0.85175 4.1515 WO3 4 Fe 0.24088 1.2611 WO3 4 W 0.79297 URANIUM U 238.03 1.1344 UO2 4 U 0.88149 1.1792 U3O8 4 U 0.84800 1.0395 U3O8 4 UO2 0.96200 0.55901 U3O8 4 UO2(NO3)2·6H2O 1.7889 1.4998 U2P2O11 4 U 0.66675 1.3221 U2P2O11 4 UO2 0.75639 VANADIUM V 50.941 5.2413 VC 4 C 0.19079 1.7852 V2O5 4 V 0.56017 0.79120 V2O5 4 VO4 1.2639 YTTERBIUM Yb 173.04 1.1387 Yb2O3 4 Yb 0.87820 ZINC Zn 65.38 2.3955 BaSO4 4 ZnS 0.41745 0.81171 BaSO4 4 ZnSO4·7H2O 1.2320 0.80338 Zn 4 ZnO 1.2447 2.7288 ZnNH4PO4 4 Zn 0.36646 2.1922 ZnNH4PO4 4 ZnO 0.45616 0.59707 ZnO 4 ZnCl2 1.6748 0.64898 ZnO 4 ZnCO3 1.5409 0.28298 ZnO 4 ZnSO4·7H2O 3.5338 2.3304 Zn2P2O7 4 Zn 0.42911 1.8722 Zn2P2O7 4 ZnO 0.53413 1.4905 ZnS 4 Zn 0.67091 1.1974 ZnS 4 ZnO 0.83512 0.33885 ZnS 4 ZnSO4·7H2O 2.9511 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor PRACTICAL LABORATORY INFORMATION 11.67 ZIRCONIUM Zr 91.22 2.4864 K2ZrF6 4 F 0.40219 2.4390 K2ZrF6 4 2KF 0.41001 1.5054 K2ZrF6 4 2(KF·2H2O) 0.66427 3.1069 K2ZrF6 4 Zr 0.32187 2.3000 K2ZrF6 4 ZrO2 0.43478 8.5946 ZrC 4 C 0.11635 2.2004 ZrF4 4 F 0.45447 1.3508 ZrO2 4 Zr 0.74030 0.46470 ZrO2 4 ZrP2O7 2.1519 TABLE 11.19 Gravimetric Factors (Continued) Factor Factor TABLE 11.20 Elements Precipitated by General Analytical Reagents This table includes the more common reagents used in gravimetric determinations. The lists of elements precip-itated are not in all cases exhaustive. The usual solvent for a precipitating agent is indicated in parentheses after its name or formula. When the symbol of an element or radical is italicized, the element may be quantitatively determined by the use of the reagent in question.
Reagent Conditions Substances precipitated Ammonia, NH3 (aqueous) After removal of acid sulfide group.
Al, Au, Be, Co, Cr, Cu, Fe, Ga, In, Ir, La, Nb, Ni, Os, P, Pb, rare earths, Sc, Si, Sn, Ta, Th, Ti, U, V, Y, Zn, Zr Ammonium polysulfide, (NH4)2Sx (aqueous) After removal of acid sulfide and (NH4)2S groups.
Co, Mn, Ni, Si, Tl, V, W, Zn Anthranilic acid, NH2C6H4COOH (aqueous) 1% aqueous solution (pH 6); Cu separated from others at pH 2.9.
Ag, Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb, Zn -Benzoin oxime, C6H5CHOHC("NOH)C6H5 (1–2% alcohol) (a) Strongly acid medium.
(b) Ammoniacal tartrate medium.
(a) Cr(VI), Mo(VI), Nb, Pd(II), Ta(V), V(V), W(VI) (b) Above list Benzidine, H2NC6H4C6H4NH2 (alcohol), 0.1M HCl Cd, Fe(III), 3 2 IO , PO , SO , 3 4 4 W(VI) N-Benzoylphenylhydroxylamine, C6H5CO(C6H5)NOH (aqueous) Similar to cupferron (q.v.). Cu, Fe(III), and Al complexes can be weighed as such; Ti com-pound must be ignited to the oxide.
See Cupferron Cinchonine, C19H21N2OH, 6M HCl Ir, Mo, Pt, W Cupferron, C6H5N(NO)ONH4 (aqueous) Group precipitant for several higher-charged metal ions from strongly acid solution.
Precipitate ignited to metal ox-ide.
Al, Bi, Cu, Fe, Ga, La, Mo, Nb, Pd, rare earths, Sb, Sn, Ta, Th, Ti, Tl, U, V, W, Zr 1,2-Cyclohexanedionedioxime More water soluble than di-methylglyoxime; less subject to coprecipitation with metal chelate.
See Dimethylglyoxime 11.68 SECTION 11 Diammonium hydrogen phos-phate, (NH4)2HPO4 (aqueous) (a) Acid medium.
(b) Ammoniacal medium con-taining citrate or tartrate.
(a) Bi, Co, Hf, In, Ti, Zn, Zr (b) Au, Ba, Be, Ca, Hg, In, La, Mg, Mn, Pb, rare earths, Sr, Th, U, Zr Dimethylglyoxime, [CH3C(NOH)]2 (alcohol) (a) Dilute HCl or H2SO4 me-dium.
(b) Ammoniacal tartrate medium about pH 8. Weighed as such.
(a) Au, Pd, Se (b) Ni (and Co, Fe if present in large amounts) Hydrazine, N2H4 (aqueous) Ag, Au, Cu, Hg, Ir, Os, Pd, Pt, Rh, Ru, Se, Te Hydrogen sulfide, H2S (a) 0.2–0.5M H.
(b) Ammoniacal solution after re-moval of acid sulfide group.
(a) Ag, As, Au, Bi, Cd, Cu, Ge, Hg, In, Ir, Mo, Os, Pb, Pd, Pt, Re, Rh, Ru, Sb, Se, Sn, Te, Tl, V, W, Zn (b) Co, Fe, Ga, In, Mn, Ni, Tl, U, V, Zn 4-Hydroxyphenylarsonic acid, C6H4(OH)AsO(OH)2 (aqueous) Dilute acid solution.
Ce, Fe, Sn, Th, Ti, Zr 8-Hydroxyquinoline (oxine), C9H6NOH, (alcohol) (a) HOAc–OAc buffer.
(b) Ammoniacal solution.
(a) Ag, Al, Bi, Cd, Co, Cr, Cu, Fe, Ga, Hg, In, La, Mn, Mo, Nb, Ni, Pb, Pd, rare earths, Sb, Ta, Th, Ti, V, W, Zn, Zr (b) Same as in (a) except for Ag; in addition, Ba, Be, Ca, Mg, Sn, Sr 2-Mercaptobenzothiazole, C6H4(SCN)SH (acetic acid so-lution) Ammoniacal solution, except for Cu, when a dilute acid solution is used.
Ag, Au, Bi, Cd, Cu, Hg, Ir, Pb, Pt, Rh, Tl Nitron (diphenylenedianilohydro-triazole), C20H16N4, (5% acetic acid) Dilute H2SO4 medium.
B, W ClO , ClO , NO , ReO , 3 4 3 4 1-Nitroso-2-naphthol, C10H6(NO)OH (very dilute al-kali) Selective for Co; acid solution.
Precipitate ignited to Co3O4.
Ag, Au, B, Co, Cr, Cu, Fe, Mo, Pd, Ti, V, W, Zr Oxalic acid, H2C2O4, (aqueous) Dilute acid solution.
Ag, Au, Cu, Hg, La, Ni, Pb, rare earths, Sc, Th, U(IV), W, Zr Phenylarsonic acid, C6H5AsO(OH)2, (aqueous) Selective precipitants for quadri-valent metals in acid solution.
Metals weighed as dioxides.
Bi, Ce(IV), Fe, Hf, Mg, Sn, Ta, Th, Ti, U(IV), W, Zr Phenylthiohydantoic acid, C H N"C(NH )SCH COOH 6 5 2 2 (aqueous or alcohol) Bi, Cd, Co, Cu, Fe, Hg, Ni, Pb, Sb Picrolonic acid, C10H7O5N4H (aqueous) Neutral solution.
Ca, Mg, Pb, Th Propylarsonic acid, C3H9AsO(OH)2 (aqueous) Preferred for W; see Phenylar-sonic acid.
Pyridine plus thiocyanate Dilute acid solution.
Ag, Cd, Cu, Mn, Ni Quinaldic acid, C9B6NCOOH (aqueous) Dilute acid solution.
Ag, Cd, Co, Cu, Fe, Hg, Mo, Ni, Pb, Pd, Pt(II), U, W, Zn Salicylaldoxime, C7H5(OH)NOH (alcohol) Dilute acid solution.
Ag, Bi, Cd, Co, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Pd, V, Zn Silver nitrate, AgNO3 (aqueous) (a) Dilute HNO3 solution.
(b) Acetate buffer, pH 5–7.
(a) Br, Cl, I, SCN (b) As(V), CN, OCN, IO , 3 Mo(VI), N S2, V(V) , 3 TABLE 11.20 Elements Precipitated by General Analytical Reagents (Continued) Reagent Conditions Substances precipitated PRACTICAL LABORATORY INFORMATION 11.69 Sodium tetraphenylborate, NaB(C6H5)4 (aqueous) Specific for K group of alkali metals from dilute HNO3 or HOAc solution (pH 2), or pH 6.5 in presence of EDTA.
Cs, K, Rb NH , 4 Tannic acid (tannin), C14H10O9 (aqueous) Acts as negative colloid that is a flocculent for positively charged hydrous oxide sols.
Noteworthy for W in acid so-lution, and for Ta (from Nb in acidic oxalate medium).
Al, Be, Cr, Ga, Ge, Nb, Sb, Sn, Ta, Th, Ti, U, V, W, Zr Tartaric acid, HOOC(CHOH)2COOH (aque-ous) Ca, K, Mg, Sc, Sr, Ta Tetraphenylarsonium chloride, (C6H5)4AsCl (aqueous) (C6H5)4AsTlCl4 and (C6H5)4AsReO4 weighed as such.
Re, Tl Thioglycolic--aminonaphthal-ide, thionalide, C10H7NHCOCH2SH (alcohol) (a) Acid solution.
(b) Carbonate medium containing tartrate.
(c) Carbonate medium containing tartrate and cyanide.
(d) Strongly alkaline medium containing tartrate and cya-nide.
(a) Ag, As, Au, Bi, Cu, Hg, Os, Pb, Pd, Rh, Ru, Sb, Sn, Tl (b) Au, Cd, Cu, Hg(II), Tl(I) (c) Au, Bi, Pb, Sb, Sn, Tl (d) Tl Source: J. A. Dean, ed., Analytical Chemistry Handbook, McGraw-Hill, New York, 1995.
TABLE 11.20 Elements Precipitated by General Analytical Reagents (Continued) Reagent Conditions Substances precipitated TABLE 11.21 Cleaning Solutions for Fritted Glassware Material Cleaning solution Fatty materials Carbon tetrachloride.
Organic matter Hot concentrated sulfuric acid plus a few drops of sodium or potassium nitrate solution.
Albumen Hot aqueous ammonia or hot hydrochloric acid.
Glucose Hot mixed acid (sulfuric plus nitric acids).
Copper or iron oxides Hot hydrochloric acid plus potassium chlorate.
Mercury residue Not nitric acid.
Silver chloride Aqueous ammonia or sodium thiosulfate.
Aluminous and siliceous residues A 2% hydrofluoric acid solution followed by concentrated sulfuric acid; rinse immediately with distilled water followed by a few milliliters of acetone. Re-peat rinsing until all trace of acid is removed.
11.70 SECTION 11 TABLE 11.22 Common Fluxes Flux Melting point, C Types of crucible used for fusion Type of substances decomposed Na2CO3 851 Pt For silicates, and silica-containing samples; alumina-containing samples; insoluble phosphates and sulfates Na2CO3 plus an oxi-dizing agent such as KNO3, KClO3, or Na2O2 Pt (do not use with Na2O2) or Ni For samples needing an oxidizing agent NaOH or KOH 320–380 Au, Ag, Ni For silicates, silicon carbide, certain minerals Na2O2 Decomposes Fe, Ni For sulfides, acid-insoluble alloys of Fe, Ni, Cr, Mo, W, and Li; Pt alloys; Cr, Sn, Zn minerals K2S2O7 300 Pt or porce-lain Acid flux for insoluble oxides and oxide-containing samples B2O3 577 Pt For silicates and oxides when alkalis are to be determined CaCO3 plus NH4Cl Ni For decomposing silicates in the determi-nation of alkali element TABLE 11.23 Membrane Filters Filter pore size, m Maximum rigid particle to penetrate, m Filter pore size, m Maximum rigid particle to penetrate, m 14 17 0.65 0.68 10 12 0.60 0.65 8 9.4 0.45 0.47 7 9.0 0.30 0.32 5 6.2 0.22 0.24 3 3.9 0.20 0.25 2 2.5 0.10 0.108 1.2 1.5 0.05 0.053 1.0 1.1 0.025 0.028 0.8 0.95 TABLE 11.24 Porosities of Fritted Glassware Porosity Nominal maximum pore size, m Principal uses Extra coarse 170–220 Filtration of very coarse materials. Gas dispersion, gas washing, and extractor beds. Support of other filter materials.
Coarse 40–60 Filtration of coarse materials. Gas dispersion, gas washing, gas ab-sorption. Mercury filtration. For extraction apparatus.
Medium 10–15 Filtration of crystalline precipitates. Removal of “floaters” from distilled water.
Fine 4–5.5 Filtration of fine precipitates. As a mercury valve. In extraction apparatus.
Very fine 2–2.5 General bacteria filtrations.
Ultra fine 0.9–1.4 General bacteria filtrations.
PRACTICAL LABORATORY INFORMATION 11.71 TABLE 11.25 Tolerances for Analytical Weights By Alan D. Westland with Fred E. Beamish.
This table gives the individual and group tolerances established by the National Bureau of Standards (Washing-ton, D.C.) for classes M, S, S-1, and P weights. Individual tolerances are “acceptance tolerances” for new weights.
Group tolerances are defined by the National Bureau of Standards as follows: “The corrections of individual weights shall be such that no combination of weights that is intended to be used in a weighing shall differ from the sum of the nominal values by more than the amount listed under the group tolerances.” For class S-1 weights, two-thirds of the weights in a set must be within one-half of the individual tolerances given below. No group tolerances have been specified for class P weights. See Natl. Bur. Standards Circ. 547, sec. 1 (1954).
Denomination Class M Individual tolerance, mg Group tolerance, mg Class S Individual tolerance, mg Group tolerance, mg Class S-1, individual tolerance, mg Class P, individual tolerance, mg 100 g 0.50 0.25 None 1.0 2.0 50 g 0.25 None 0.12 specified 0.60 1.2 30 g 0.15 specified 0.074 0.45 0.90 20 g 0.10 0.074 0.154 0.35 0.70 10 g 0.050 0.074 0.25 0.50 5 g 0.034 0.054 0.18 0.36 3 g 0.034 0.065 0.054 0.105 0.15 0.14 2 g 0.034 0.054 0.13 0.26 1 g 0.034 0.054 0.10 0.20 500 mg 0.0054 0.025 0.080 0.16 300 mg 0.0054 0.0105 0.025 0.055 0.070 0.14 200 mg 0.0054 0.025 0.060 0.12 100 mg 0.0054 0.025 0.050 0.10 50 mg 0.0054 0.014 0.042 0.085 30 mg 0.0054 0.0105 0.014 0.034 0.038 0.076 20 mg 0.0054 0.014 0.035 0.070 11.72 SECTION 11 10 mg 0.0054 0.014 0.030 0.060 5 mg 0.0054 0.014 0.028 0.055 3 mg 0.0054 0.0105 0.014 0.034 0.026 0.052 2 mg 0.0054 0.014 0.025 0.050 1 mg 0.0054 0.014 0.025 0.050 mg 1⁄2 0.0054 0.014 0.025 ...........
TABLE 11.25 Tolerances for Analytical Weights (Continued) Denomination Class M Individual tolerance, mg Group tolerance, mg Class S Individual tolerance, mg Group tolerance, mg Class S-1, individual tolerance, mg Class P, individual tolerance, mg TABLE 11.26 Heating Temperatures, Composition of Weighing Forms, and Gravimetric Factors The minimum temperature required for heating a pure precipitate to constant weight is frequently lower than that commonly recommended in gravimetric procedures. However, the higher temperature is very often still to be preferred in order to ensure that contaminating substances are expelled. The thermal stability ranges of various precipitates as deduced from thermograms are also tabulated. Where a stronger ignition is advisable, the safe upper limit can be ascertained.
Gravimetric factors are based on the 1993 International Atomic Weights. The factor Ag: 0.7526 given in the first line of the table indicates that the weight of precipitate obtained (AgCl) is to be multiplied by 0.7526 to calculate the corresponding weight of silver.
Element Thermal stability range, C Final heating temperature, C Composition of weighing form Gravimetric factors Ag 70–600 130–150 AgCl Ag: 0.7526 Al 475 1200 Al2O3 Al: 0.5293 743 743 AlPO4 Al: 0.2212; Al2O3: 0.4180 102–220 110 Al(C9H6NO)3 Al: 0.0587; Al2O3: 0.1110 As 200–275 105–110 Al2S3 As: 0.6090; As2O3: 0.8041 850 Mg2As2O7 As: 0.4827; As2O3: 0.6373 vacuum at 25 MgNH4AsO4 · 6H2O As: 0.2589 Au 20–957 1060 Au Ba 780–1100 780 BaSO4 Ba: 0.5884; BaO: 0.6570 60 60 BaCrO4 Ba: 0.5421; BaO: 0.6053 Be 900 1000 BeO Be: 0.3603 Bi 100 BiOCl Bi: 0.8024; Bi2O3: 0.8946 100 Bi(C12H10NOS)3 Bi: 0.2387 379–961 800 BiPO4 Bi: 0.6875; Bi2O3: 0.7665 Br 70–946 130–150 AgBr Br: 0.4256 Ca 478–635 475–525 CaCO3 Ca: 0.4004; CaO: 0.5601 838–1025 950–1000 CaO Ca: 0.7147 air-dried Ca(picrolonate)2 · 8H2O Ca: 0.05642 Cd 320 CdSO4 Cd: 0.5392; CdO: 0.6159 125 Cd(C10H6NO2)2 Cd: 0.2462 218–420 CdS Cd: 0.7781; CdO: 0.8888 Ce 360 500–600 CeO2 Ce: 0.8141 Cl 70–600 130–150 AgCl Cl: 0.2474 Co 285–946 750–850 Co3O4 Co: 0.7342 130 Co(C10H6NO2)3 · 2H2O Co: 0.09639; CoO: 0.1226 450–500 CoSO4 Co: 0.3802 Cr 120 PbCrO4 Cr: 0.1609 Cu 105–120 CuSCN Cu: 0.5225; CuO: 0.6540 115 100–105 Cu(C7H5NO2)2 Cu: 0.1891 105–115 Cu(C13H11NO2) Cu: 0.2201 110–115 Cu(C10H6NO2) · H2O Cu: 0.1494 105 Cu(C12H10NOS)2 · H2O Cu: 0.1237 F 66–538 130–140 PbClF F: 0.07261 Fe 470–946 900 Fe2O3 Fe: 0.6994 Ga 408–946 900 Ga2O3 Ga: 0.7439 Hg 105 Hg(C12H10NOS)2 Hg: 0.3169 I 60–900 130–150 AgI I: 0.5405 In 345–1200 1200 In2O3 In: 0.8271 Ir IrO2 Ir: 0.8573 K 73–653 653 KClO4 K: 0.2822; K2O: 0.3399 270 K2PtCl6 K: 0.1609; K2O: 0.1938 KIO4 K: 0.1700 120 KB(C6H5)4 K: 0.1091 Li 200 Li2SO4 Li: 0.1263; Li2O: 0.2718 Mg 1050–1100 Mg2P2O7 Mg: 0.2184; MgO: 0.3622 88–300 155–160 Mg(C9H6NO)2 Mg: 0.07775; MgO: 0.1289 Mn 946 1000 Mn3O4 Mn: 0.7203 1000 Mn2P2O7 Mn: 0.3871; MnO: 0.4998 Mo 505 PbMoO4 Mo: 0.2613; MoO3: 0.3291 500–525 MoO3 Mo: 0.6666 N (as NO ) 3 20–242 105 Nitron nitrate N: 0.3732; NO3: 0.1652 Na 360–674 125 NaMg(UO2)3(C2H3O2)9 · 6.5 H2O Na: 0.01527; Na 2O: 0.02058 Nb 650–950 900 Nb2O3 Nb: 0.6990 Ni 79–172 110–120 Ni(C4H7N2O2)2 Ni: 0.2032; NiO: 0.2586 Os 800 (in H2) Os metal P 477 Mg2P2O7 P: 0.2783; PO4: 0.8536 160–415 110 (NH4)3[P(Mo3O10)4] P: 0.0165; P2O5: 0.0378 Pb 271–959 500–600 PbSO4 Pb: 0.6832; PbO: 0.7359 600 PbMoO4 Pb: 0.5643; PbO: 0.6078 120 PbCrO4 Pb: 0.6411 271–959 600–800 PbSO4 Pb: 0.6832; PbO: 0.7359 105 Pb(C12H10NOS)2 Pb: 0.3240 Pd 45–171 110 Pd(C4H7N2O2)2 Pd: 0.3162 Rb 70–674 674 Rb2PtCl6 Rb: 0.2954; Rb2O: 0.3230 Re 130 (C6H5)4AsReO4 Re: 0.2939 110 Nitron perrhenate Re: 0.3306 S 780 BaSO4 S: 0.1374; SO3: 0.3430; SO4: 0.4116 Sb 100 Sb(C12H10NOS)3 Sb: 0.1581 SCN 130 AgSCN SCN: 0.3500 110–120 CuSCN SCN: 0.4775 Se 120–130 Se metal SeO2: 1.4052 Si 358–946 358 SiO2 Si: 0.4675 TABLE 11.26 Heating Temperatures, Composition of Weighing Forms, and Gravimetric Factors (Continued) Element Thermal stability range, C Final heating temperature, C Composition of weighing form Gravimetric factors PRACTICAL LABORATORY INFORMATION 11.73 11.74 SECTION 11 Sn 834 900 SnO2 Sn: 0.7877 Sr 130–140 Sr(NO3)2 Sr: 0.4140 100–300 100–300 SrSO4 Sr: 0.4770; SrO: 0.5641 Te 105 Te metal Th 610–946 700–800 ThO2 Th: 0.8788 900 ThP2O7 Th: 0.5863 Ti 350–946 900 TiO2 Ti: 0.5992 Tl(III) 100 Tl(C12H10NOS) Tl: 0.4860 U 1000 U3O8 U: 0.8480; UO2: 0.9620 V 581–946 700–800 V2O5 V: 0.5602 W 674 800–900 WO3 W: 0.7930 Zn 1000 950–1000 ZnO Zn: 0.8034 1000 Zn2P2O7 Zn: 0.4292; ZnO: 0.5342 125 Zn(C10H6NO2)2 · H2O Zn: 0.1529 Zr 850 ZrP2O7 Zr: 0.3440; ZrO2: 0.4647 1200 ZrO2 Zr: 0.7403 Source: J. A. Dean, ed., Analytical Chemistry Handbook, McGraw-Hill, New York, 1995.
TABLE 11.26 Heating Temperatures, Composition of Weighing Forms, and Gravimetric Factors (Continued) Element Thermal stability range, C Final heating temperature, C Composition of weighing form Gravimetric factors 11.6 VOLUMETRIC ANALYSIS 11.6.1 Acid-Base Titrations in Aqueous Media TABLE 11.27 Primary Standards for Aqueous Acid-Base Titrations Standard Formula weight Preparation Basic substances for standardizing acidic solutions (HOCH3)3CNHH2 121.137 Tris(hydroxymethyl)aminomethane is available commercially as a primary standard. Dry at 100–103C (110C). In titrations with a strong acid the equivalence point is at about pH 4.5–5. Equiva-lent weight is the formula weight. [J. H. Fossum, P. C. Markunas, and J. A. Riddick, Anal. Chem., 23:491 (1951).] HgO 216.59 Dissolve 100 g pure HgCl2 in 1 L H2O, and add with stirring to 650 mL 1.5 M NaOH. Filter and wash with H2O until washings are neutral to phenolphthalein. Dry to constant weight at or below 40C, and store in a dark bottle. To 0.4 g HgO ( 40 mL 0.1N acid) add 10–15 g KBr plus 20–25 mL H2O. Stir, excluding CO2, until solution is complete. Titrate with acid to pH 5–8.
Equivalent weight is one-half formula weight.
Na2B4O7 · 10H2O 381.372 Recrystallize reagent-grade salt twice from water at temperatures below 55C. Wash the crystals with H2O, twice with ethanol, and twice with diethyl ether. Let stand in a hygrostat oversaturated NaBr · 2H2O or saturated NaCl-sucrose solution. Use methyl red indicator. Equivalent weight is one-half the formula weight.
PRACTICAL LABORATORY INFORMATION 11.75 Na2CO3 105.989 Heat reagent-grade material for 1 hr at 255–265C. Cool in an effi-cient desiccator. Titrate sample with acid to pH 4–5 (first green tint of bromocresol green), boil the solution to eliminate the car-bon dioxide, cool, and again titrate to pH 4–5. Equivalent weight is one-half the formula weight.
NaCl 58.45 Accurately weigh about 6 g NaCl and dissolve in distilled water.
Pass the solution through a well-rinsed cation exchange column (Dowex 50W) in the hydrogen form. The equivalent amount of HCl is washed from the column (in 10 column volumes) into a volumetric flask and made up to volume. Equivalent weight is the formula weight.
Acidic substances for standardizing basic solutions C6H5COOH 122.125 Pure benzoic acid is available from NIST (National Institute for Sci-ence and Technology). Dissolve 0.5 g in 20 mL of neutral etha-nol (run a blank), excluding CO2, add 20–50 mL, and titrate us-ing phenolphthalein as indicator.
o-C6H4(COOK)(COOH) 204.22 Potassium hydrogen o-phthalate is available commercially as pri-mary standard, also from NIST. Dry at 135C. Dissolve in wa-ter, excluding CO2, and titrate with phenolphthalein as indicator.
For Ba(OH)2 solution, perform the titration at an elevated temper-ature to prevent precipitation of Ba phthalate.
KH(IO3)2 389.915 Potassium hydrogen bis(iodate) is available commercially in a pri-mary standard grade. Dry at 110C. Dissolve a weighed amount of the salt in water, excluding CO2, and titrate to pH 5–8. [I. M.
Kolthoff and L. H. van Berk, J. Am. Chem. Soc., 48:2800 (1926)].
NH2SO3H 97.09 Hydrogen amidosulfate (sulfamic acid) acts as a strong acid. Pri-mary standard grade is available commercially. Since it does un-dergo slow hydrolysis, an acid end point (pH 4 to 6.5) should be chosen unless fresh reagent is available, then the end point can be in the range pH 4 to 9. [W. F. Wagner, J. A. Wuellner, and C. E.
Feiler, Anal. Chem., 24:1491 (1952). M. J. Butler, G. F. Smith, and L. F. Audrieth, Ind. Eng. Chem., Anal. Ed., 10:690 (1938)].
TABLE 11.27 Primary Standards for Aqueous Acid-Base Titrations (Continued) Standard Formula weight Preparation Basic substances for standardizing acidic solutions (continued) 11.76 SECTION 11 TABLE 11.28 Titrimetric (Volumetric) Factors Acids The following factors are the equivalent of 1 mL of normal acid. Where the normality of the solution being used is other than normal, multiply the factors given in the table below by the normality of the solution employed.
The equivalents of the esters are based on the results of saponification.
The indicators methyl orange and phenolphthalein are indicated by the abbreviations MO and pH, respec-tively.
Substance Formula Grams Ammonia NH3 0.017031 Ammonium NH4 0.018039 Ammonium chloride NH4Cl 0.053492 Ammonium hydroxide NH4OH 0.035046 Ammonium oleate C17H33CO2NH4 0.29950 Ammonium oxide (NH4)2O 0.026038 Amyl acetate CH3CO2C5H11 0.13019 Barium carbonate (MO) BaCO3 0.09867 Barium hydroxide Ba(OH)2 0.085677 Barium oxide BaO 0.07667 Bornyl acetate CH3CO2C10H17 0.19629 Calcium carbonate (MO) CaCO3 0.05004 Calcium hydroxide Ca(OH)2 0.037047 Calcium oleate (C17H33CO2)2Ca 0.30150 Calcium oxide CaO 0.02804 Calcium stearate (C17H35CO2)2Ca 0.30352 Casein (N 6.38) ..............................
0.089371 Ethyl acetate CH3CO2C2H5 0.088107 Glue (N 5.60) ..............................
0.078445 Hydrochloric acid HCl 0.036461 Magnesium carbonate (MO) MgCO3 0.04216 Magnesium oxide MgO 0.02016 Menthyl acetate CH3CO2C10H19 0.19831 Methyl acetate CH3CO2CH3 0.074080 Nicotine C10H14N2 0.16224 Nitrogen N 0.014007 Potassium carbonate (MO) K2CO3 0.06911 Potassium carbonate, acid (MO) KHCO3 0.10012 Potassium nitrate KNO3 0.10111 Potassium oleate C17H33CO2K 0.32057 Potassium oxide K2O 0.04710 Potassium stearate C17K35CO2K 0.32258 Protein (N 5.70) ..............................
0.079846 Protein (N 6.25) ..............................
0.087550 Sodium acetate CH3CO2Na 0.082035 Sodium acetate CH3CO2Na·3H2O 0.13608 Sodium borate, tetra- (MO) Na2B4O7 0.10061 Sodium borate, tetra- (MO) Na2B4O7·10H2O 0.19069 Sodium carbonate (MO) Na2CO3 0.052994 Sodium carbonate (MO) Na2CO3·H2O 0.062002 Sodium carbonate (MO) Na2CO3·10H2O 0.14307 Sodium carbonate, acid (MO) NaHCO3 0.084007 Sodium hydroxide NaOH 0.39997 Sodium oleate C17H33CO2Na 0.30445 PRACTICAL LABORATORY INFORMATION 11.77 Sodium oxalate Na2C2O4 0.067000 Sodium oxide Na2O 0.030990 Sodium phosphate (MO) Na2HPO4 0.14196 Sodium phosphate (MO) Na2PHO4·12H2O 0.35814 Sodium phosphate (MO) Na3PO4 0.081970 Sodium phosphate (PH) Na3PO4 0.16394 Sodium silicate Na2Si4O9 0.15111 Sodium stearate C17H35CO2Na 0.30647 Sodium sulfide (MO) Na2S 0.039022 Alkali The following factors are the equivalent of the milliliter of normal alkali. Where the normality of the solution being used is other than normal, multiply the factors given in the table below by the normality of the solution employed.
The equivalents of the esters are based on the results of saponification.
The indicators methyl orange and phenolphthalein are indicated by the abbreviations MO and PH, respec-tively.
Substance Formula Grams Abietic acid (PH) HC20H29O2 0.30246 Acetic acid (PH) CH3CO2H 0.06005 Acetic anhydride (PH) (CH3CO)2O 0.051045 Aluminum sulfate Al2(SO4)3 0.05702 Amyl acetate CH3CO2C5H11 0.13019 Benzoic acid (PH) C6H5CO2H 0.12212 Borate tetra- (PH) B4O7 0.03881 Boric acid (PH) H3BO3 0.061833 Boric anhydride (PH) B2O3 0.03486 Bornyl acetate CH3CO2C10H17 0.19629 Butyric acid (PH) C3H7CO2H 0.088107 Calcium acetate (CH3CO2)2Ca 0.079085 Calcium oleate (C17H33CO2)2Ca 0.30150 Calcium stearate (C17H35CO2)2Ca 0.30352 Carbon dioxide (PH) CO2 0.022005 Chlorine Cl 0.035453 Citric acid (PH) H3C6H5O7·H2O 0.070047 Ethyl acetate CH3CO2C2H5 0.088107 Formaldehyde HCHO 0.030026 Formic acid (PH) HCO2H 0.046026 Glycerol (sap. of acetyl) C3H5(OH)3 0.030698 Hydriodic acid HI 0.12791 Hydrobromic acid HBr 0.080917 Hydrochloric acid HCl 0.036461 Lactic acid (PH) HC3H5O3 0.090079 Lead acetate (CH3CO2)2Pb·3H2O 0.18966 Maleic acid (PH) (CHCO2H)2 0.058037 Malic acid (PH) H2C4H4O5 0.067045 Menthol (sap. of acetyl) C10H19OH 0.15627 TABLE 11.28 Titrimetric (Volumetric) Factors (Continued) Acids (continued) Substance Formula Grams 11.78 SECTION 11 Menthyl acetate CH3CO2C10H19 0.19831 Methyl acetate CH3CO2CH3 0.074080 Nitrate NO3 0.062005 Nitric acid HNO3 0.063013 Nitrogen N 0.014007 Nitrogen pentoxide N2O5 0.054005 Oleic acid (PH) C17H33CO2H 0.28247 Oxalic acid (PH) (CO2H)2 0.045018 Oxalic acid (PH) (CO2H)2·2H2O 0.063033 Phosphoric acid (MO) H3PO4 0.097995 Phosphoric acid (PH) H3PO4 0.048998 Potassium carbonate, acid (MO) KHCO3 0.10012 Potassium oleate C17K33CO2K 0.32056 Potassium oxalate, acid (PH) KHC2O4 0.12813 Potassium phthalate, acid (PH) HC8H4O4K 0.20423 Potassium stearate C17H35CO2K 0.32258 Sodium benzoate C6H5CO2Na 0.14411 Sodium borate, tetra- (PH) Na2B4O7 0.050305 Sodium borate, tetra- (PH) Na2B4O7·10H2O 0.095343 Sodium carbonate, acid (MO) NaHCO3 0.084007 Sodium oleate C17H33CO2Na 0.30445 Sodium salicylate C6H5OCO2Na 0.16011 Stearic acid (PH) C17H35CO2H 0.28449 Succinic acid (PH) (CH2CO2H)2 0.059045 Sulfate SO4 0.048031 Sulfur dioxide (PH) SO2 0.032031 Sulfur trioxide SO3 0.040031 Sulfuric acid H2SO4 0.049039 Sulfurous acid (PH) H2SO3 0.041039 Tartaric acid (PH) H2C4H4O6 0.075044 Tartaric acid (PH) H2C4H4O6·H2O 0.084052 Iodine The following factors are the equivalent of 1 mL of normal iodine. Where the normality of the solution being used is other than normal, multiply the factors given in the table below by the normality of the solution employed.
Substance Formula Grams Acetone (CH3)2CO 0.0096801 Ammonium chromate (NH4)2CrO4 0.050690 Antimony Sb 0.06088 Antimony trioxide Sb2O3 0.07287 Arsenic As 0.037461 Arsenic pentoxide As2O5 0.057460 Arsenic trioxide As2O3 0.049460 Arsenite AsO3 0.061460 Bleaching powder CaOCl2 0.063493 Bromine Br 0.079909 Chlorine Cl 0.035453 Chromic oxide Cr2O3 0.02533 TABLE 11.28 Titrimetric (Volumetric) Factors (Continued) Alkali (continued) Substance Formula Grams PRACTICAL LABORATORY INFORMATION 11.79 Chromium trioxide CrO3 0.033331 Copper Cu 0.06354 Copper oxide CuO 0.07954 Copper sulfate CuSO4 0.15960 Copper sulfate CuSO4·5H2O 0.24968 Ferric iron Fe3 0.05585 Ferric oxide Fe2O3 0.07985 Hydrogen sulfide H2S 0.017040 Iodine I 0.126904 Lead chromate PbCrO4 0.10773 Lead dioxide PbO2 0.11959 Nitrous acid HNO2 0.023507 Oxygen O 0.0079997 Potassium chlorate KClO3 0.020426 Potassium chromate K2CrO4 0.064733 Potassium dichromate K2Cr2O7 0.049032 Potassium nitrite KNO2 0.042554 Potassium permanganate KMnO4 0.031608 Red lead Pb3O4 0.34278 Sodium chromate Na2CrO4 0.053991 Sodium dichromate Na2Cr2O7 0.043661 Sodium dichromate Na2Cr2O7·2H2O 0.049666 Sodium nitrite NaNO2 0.034498 Sodium sulfide Na2S 0.039022 Sodium sulfide Na2S·9H2O 0.12009 Sodium sulfite Na2SO3 0.063021 Sodium sulfite Na2SO3·7H2O 0.12607 Sodium thiosulfate Na2S2O3 0.15811 Sulfur S 0.016032 Sulfur dioxide SO2 0.032031 Sulfurous acid H2SO3 0.041039 Tin Sn 0.059345 Potassium dichromate The following factors are the equivalent of 1 mL of normal potassium dichromate. Where the normality of the solution being used is other than normal, multiply the factors given in the table below by the normality of the solution employed.
Substance Formula Grams Chromic oxide Cr2O3 0.025332 Chromium trioxide CrO3 0.033331 Ferrous iron Fe2 0.055847 Ferrous oxide FeO 0.071846 Ferroso-ferric oxide Fe3O4 0.077180 Ferrous sulfate FeSO4 0.15191 Ferrous sulfate FeSO4·7H2O 0.27802 Glycerol C3H5(OH)3 0.0065782 Lead chromate PbCrO4 0.10773 Zinc Zn 0.032685 TABLE 11.28 Titrimetric (Volumetric) Factors (Continued) Iodine (continued) Substance Formula Grams 11.80 SECTION 11 Potassium permanganate The following factors are the equivalent of 1 mL of normal potassium permanganate. Where the normality of the solution being used is other than normal, multiply the factors given in the table below by the normality of the solution employed.
Substance Formula Grams Ammonium oxalate (NH4)2C2O4 0.062049 Ammonium oxalate (NH4)2C2O4·H2O 0.071056 Ammonium peroxydisulfate (NH4)2S2O8 0.11410 Antimony Sb 0.060875 Barium peroxide BaO2 0.084669 Barium peroxide BaO2·8H2O 0.15673 Calcium carbonate CaCO3 0.050045 Calcium oxide CaO 0.02804 Calcium peroxide CaO2 0.036039 Calcium sulfate CaSO4 0.068071 Calcium sulfate CaSO4·2H2O 0.086086 Ferric oxide Fe2O3 0.079846 Ferroso-ferric oxide Fe3O4 0.077180 Ferrous ammonium sulfate Fe(NH4)2(SO4)2·6H2O 0.39214 Ferrous oxide FeO 0.071846 Ferrous sulfate FeSO4 0.15191 Ferrous sulfate FeSO4·7H2O 0.27802 Formic acid HCO2H 0.023013 Hydrogen peroxide H2O2 0.017007 Iodine I 0.126904 Iron Fe 0.055847 Manganese Mn 0.010988 Manganese dioxide MnO2 0.043468 Manganous oxide (Volhard) MnO 0.035469 Molybdenum trioxide titration from yellow ppt.
after reduction MoO3 0.047979 Oxalic acid (CO2H)2 0.045018 Oxalic acid (CO2H)2·2H2O 0.063033 Phosphorus titration from yellow ppt. after reduc-tion P 0.0008604 Phosphorus pentoxide to titration from yellow ppt.
after reduction P2O5 0.0019715 Potassium dichromate K2Cr2O7 0.049032 Potassium nitrite KNO2 0.042552 Potassium persulfate K2S2O8 0.13516 Sodium nitrite NaNO2 0.034498 Sodium oxalate Na2C2O4 0.067000 Sodium persulfate Na2S2O8 0.11905 Tin Sn 0.059345 TABLE 11.28 Titrimetric (Volumetric) Factors (Continued) PRACTICAL LABORATORY INFORMATION 11.81 Silver nitrate The following factors are the equivalent of 1 mL of normal silver nitrate. Where the normality of the solution being used is other than normal, multiply the factors given in the table below by the normality of the solution employed.
Substance Formula Grams Ammonium bromide NH4Br 0.097948 Ammonium chloride NH4Cl 0.053492 Ammonium iodide NH4I 0.14494 Ammonium thiocyanate NH4SCN 0.076120 Barium chloride BaCl2 0.10412 Barium chloride BaCl2·2H2O 0.12214 Bromine Br 0.079909 Cadmium chloride CdCl2 0.091653 Cadmium iodide CdI2 0.18310 Calcium chloride CaCl2 0.055493 Chlorine Cl 0.035453 Ferric chloride FeCl3 0.054069 Ferrous chloride FeCl2 0.063377 Hydriodic acid HI 0.12791 Hydrobromic acid HBr 0.080917 Hydrochloric acid HCl 0.036461 Iodine I 0.126904 Lithium chloride LiCl 0.042392 Lead chloride PbCl2 0.13905 Magnesium chloride MgCl2 0.047609 Magnesium chloride MgCl2·6H2O 0.10166 Potassium bromide KBr 0.11901 Potassium chloride KCl 0.074555 Potassium iodide KI 0.16601 Potassium oxide K2O 0.047102 Potassium thiocyanate KSCN 0.097184 Silver Ag 0.10787 Silver iodide AgI 0.23477 Silver nitrate AgNO3 0.16987 Sodium bromide NaBr 0.10290 Sodium bromide NaBr·2H2O 0.13893 Sodium chloride NaCl 0.058443 Sodium iodide NaI 0.14989 Sodium iodide NaI·2H2O 0.18592 Sodium oxide Na2O 0.030990 Strontium chloride SrCl2 0.079263 Strontium chloride SrCl2·6H2O 0.13331 Zinc chloride ZnCl2 0.068138 TABLE 11.28 Titrimetric (Volumetric) Factors (Continued) 11.82 SECTION 11 Sodium thiosulfate The following factors are the equivalent of 1 mL of normal sodium thiosulfate. Where the normality of the solution being used is other than normal, multiply the factors given in the table below by the normality of the solution employed.
Substance Formula Grams Acetone (CH3)2CO 0.0096801 Ammonium chromate (NH4)2CrO4 0.050690 Antimony Sb 0.06088 Antimony trioxide Sb2O3 0.07287 Bleaching powder CaOCl2 0.063493 Bromine Br 0.079909 Chlorine Cl 0.035453 Chromic oxide Cr2O3 0.02533 Chromium trioxide CrO3 0.033331 Copper Cu 0.06354 Copper oxide CuO 0.07954 Copper sulfate CuSO4 0.15960 Copper sulfate CuSO4·5H2O 0.24968 Iodine I 0.126904 Lead chromate PbCrO4 0.10773 Lead dioxide PbO2 0.11959 Nitrous acid HNO2 0.023507 Potassium chromate K2CrO4 0.064733 Potassium dichromate K2Cr2O7 0.049032 Red lead Pb3O4 0.34278 Sodium chromate Na2CrO4 0.053991 Sodium dichromate Na2Cr2O7 0.043661 Sodium dichromate Na2Cr2O7·2H2O 0.049666 Sodium nitrite NaNO2 0.034498 Sodium thiosulfate Na2S2O3 0.15811 Sodium thiosulfate Na2S2O3·5H2O 0.24818 Sulfur S 0.016032 Sulfur dioxide SO2 0.032031 Tin Sn 0.059345 TABLE 11.28 Titrimetric (Volumetric) Factors (Continued) 11.6.2 Titrimetric (Volumetric) Factors for Acid-Base Titrations Titrimetric (volumetric) factors for acids and bases are given in Table 11.28. Suitable indicators for acid-base titrations may be found in Tables 8.23 and 8.24.
11.6.3 Standard Volumetric (Titrimetric) Redox Solutions Alkaline arsenite, 0.1N As(III) to As(V). Dissolve of primary standard grade As2O3 4.9460 g in of 30% NaOH solution. Dilute with of water. Acidify the solution with 6N 40 mL 200 mL HCl to the acid color of methyl red indicator. Add to this solution of NaHCO3 and dilute 40 g to 1 L.
Ceric sulfate, 0.1N Ce(IV) to Ce(III). Dissolve of cerium(IV) ammonium sulfate di-63.26 g hydrate in of 2N sulfuric acid. Dilute the solution to and standardize against the 500 mL 1 L PRACTICAL LABORATORY INFORMATION 11.83 alkaline arsenite solution as follows: measure, accurately, 30 to of arsenite solution into 40 mL an Erlenmeyer flask and dilute to Add slowly, to prevent excessive frothing, of 150 mL.
20 mL 4N sulfuric acid, 2 drops of 0.01M osmium tetraoxide solution, and 4 drops of 1,10-phenanthro-line iron(II) complex indicator. Titrate with the ceric sulfate solution to a faint blue endpoint.
Compute the normality of the ceric solution from the normality of the arsenite solution.
Iron(II) ammonium sulfate hexahydrate, 0.1N Fe(II) to Fe(III). Dissolve of 39.2139 g in of 1N sulfuric acid and dilute to If desired, check FeSO · 2(NH ) SO · 6H O 500 mL 1 L.
4 4 2 4 2 against standard dichromate or permanganate solution.
Iodine, 0.1N (0 to 1). Dissolve of resublimed iodine in of a solution containing 12.690 g 25 mL of KI which is free from iodate. After all the solid has dissolved, dilute to If desired, 15 g 1 L.
check against a standard arsenite or standard thiosulfate solution.
Potassium bromate, 0.1N (5 to 1). Weigh out of KBrO3, dissolve in water, and 2.7833 g dilute to 1 L.
Potassium dichromate, 0.1N Cr(VI) to Cr(III). Weigh out of K2Cr2O7 that has been 4.9030 g dried at 120C, dissolve in water, and dilute to 1 L.
Potassium iodate, 0.1N (5 to 1). Weigh out exactly of KIO3 (free from iodide), 3.5667 g dried at 120C, and dissolve in water containing about of KI, and dilute to 15 g 1 L.
Potassium permanganate, 0.1N (7 to 2). Dissolve about in a liter of distilled water.
3.3 g Allow this to stand for 2 or 3 days, then siphon it carefully through clean glass tubes or filter it through a Gooch crucible into the glass container in which it is to be kept, discarding the first and allowing the last inch of liquid to remain in the bottle. In this way any dust or reducing 25 mL substance in the water is oxidized, and the MnO2 formed is removed. Permanganate solutions should never be allowed to come into contact with rubber, filter paper, or any other organic matter, and should be stored away from light. To standardize the KMnO4, weigh accurately samples of about of primary standard grade Na2C2O4 into Erlenmeyer flasks, add 0.3 g 150 mL of distilled water and of concentrated H2SO4, and heat to 70C and maintain at this tem-4 mL perature throughout the titration with the permanganate solution. The end point is a faint, per-manent pink color throughout the solution. Equivalent weight of Na2C2O4/2 is 67.000 g.
Sodium thiosulfate, 0.1N. Weigh of fresh crystals of dissolve in dis-24.818 g Na S O · 5H O, 2 2 3 2 tilled water. Add of Na2CO3 and of chloroform as preservative. Dilute to 0.5 g 0.5 mL 1 L.
Equations for the principal methods for the redox determinations of the elements are given in Table 11.29. Volumetric factors in redox titrations for the common titrants are given in Table 11.28.
11.6.4 Indicators for Redox Titrations A selected list of redox indicators will be found in Table 8.26. A redox indicator should be selected so that its E0 is approximately equal to the electrode potential at the equivalent point, or so that the color change will occur at an appropriate part of the titration curve. If n is the number of electrons involved in the transition from the reduced to the oxidized form of the indicator, the range in which the color change occurs is approximately given by volt (V) for a two-color indicator 0 E 0.06/n whose forms are equally intensely colored. Since hydrogen ions are involved in the redox equilibria of many indicators, it must be recognized that the color change interval of such an indicator will vary with pH.
In Table 8.26, E0 represents the redox potential at which the color change of the indicator would normally be perceived in a solution containing approximately 1M For a one-color indicator this H .
is the potential at which the concentration of the colored form is just large enough to impart a visible color to the solution and depends on the total concentration of indicator added to the solution. If it is the reduced form of the indicator that is colorless, the potential at which the first visible color 11.84 SECTION 11 appears becomes less positive as the total concentration of indicator increases. For a two-color indicator, the potential at which the middle tint appears is independent of the total indicator con-centration, but may differ from the potentiometrically determined formal potential of the indicator in either direction, depending on which of the two forms is more intensely colored. If the reduced form is the more intense color, the middle tint will appear at a potential more positive than the potentiometrically measured formal potential, which is the potential at which the two forms are present at equal concentrations.
In addition to those indicators listed in Table 8.26, there are indicators for bromometric and iodometric titrations: Specific reagents for titrations with bromine or bromate Methyl orange or methyl red Use acid-base indicator solutions. Oxidation causes bleaching of indicator to colorless Bordeaux acid red 17 Dissolve dye in water. The red solution 2 g 1 L is oxidized to pale yellowish green or color-less.
Naphthol blue black Dissolve dye in water. The blue solution 2 g 1 L is oxidized to pale red.
Specific reagents for iodometric titrations Organic solvents such as CCl4, CHCl3 Up to solvent is usually added per titration.
5 mL Near the end point the mixture is shaken vig-orously after each addition of titrant, and the appearance or disappearance of the I2 color in the organic layer is observed.
Starch Suspend of soluble starch in of sat-5 g 50 mL urated NaCl solution, and stir slowly into of boiling saturated NaCl solution.
500 mL Cool and bottle. Free iodine produces a blue-black color.
TABLE 11.29 Equations for the Redox Determinations of the Elements with Equivalent Weights Al Al(C9H6NO)3 3 HCl AlCl3 3 C9H7NO (8-hydroxyquinoline) 3 C9H7NO 6 Br2 3 C9H5Br2NO 6 HBr Al/12 2.2485; Al2O3/24 4.2483 As0 As 5 Ce(IV) 4 H2O H3AsO4 5 Ce(III) 5 H As/5 14.9843 As(III) 5 H3AsO3 2 KMnO4 6 HCl 5 H3AsO4 2 MnCl2 3 H2O H3AsO3 2 Ce(SO4)2 H2O H3AsO4 Ce2(SO4)3 H2SO4 As/2 37.4608; As2O3/4 49.460 3 H3AsO3 KBrO3 ( HCl) 3 H3AsO4 KBr H3AsO3 I2 2 H2O H3AsO4 2 I 2 H As/2 37.4608; As2O3/4 49.460 As(V) H3AsO4 2 KI (excess) 2 HCl H3AsO3 I2 2 KCl H2O I2 2 Na2S2O3 2 NaI Na2S4O6 As/2 37.4608; As2O3/4 49.460 PRACTICAL LABORATORY INFORMATION 11.85 Ba BaCrO4 6 KI (excess) 16 HCl 2 BaCl2 3 I2 6 KCl 2 CrCl3 8 H2O I2 2 Na2S2O3 2 NaI Na2S4O6 Ba/3 45.78 BaCrO4 3 Fe2 (excess) 8 H Ba2 Cr3 3 Fe3 4 H2O Titrate excess Fe2 with permanganate or dichromate; Ba/3 45.78 Br2 Br2 2 KI (excess) 2 KBr I2 I2 2 Na2S2O3 : 2 NaI Na2S4O6 Br2/2 79.904 Br Br 3 HClO 3 Cl 3 H BrO3 Br/6 13.317 BrO3 6 I (excess) 6 H Br 3 I2 3H2O BrO3 I2 2 Na2S2O3 2 NaI Na2S4O6 KBrO3/6 27.835 CO 5 CO I2O5 5 CO2 I2 (at 125C; adsorbed and measured colorimetrically) 5/2 CO 70.02 2 C O 2 4 Titrate as for CaC2O4 2 C O 2 6 Acidify and titrate as for 2 H H2O2 CO2 2 H O ; C O 2 2 2 6 K2C2O6/2 99.11 Ca 5 CaC2O4 2 KMnO4 8 H2SO4 5 CaSO4 10 CO2 K2SO4 2 MnSO4 8 H2O Ca/2 20.039; CaO/2 28.04 Cd Cd(anthranilate)2 4 Br2 2 NH2C6H2Br2COOH 4 Br Titrate with KBrO39KBr until color of indigo changes to yellow.
Add KI and back-titrate iodine liberated with thiosulfate. Cd/8 14.05 Ce Oxidize Ce(III) to Ce(IV) with (NH4)2S2O8 plus Ag; destroy excess by boiling.
2 Ce(SO4)2 2 FeSO4 Ce2(SO4)3 Fe2(SO4)3 Ce/1 140.12; Ce2O3/2 164.12 Cl2 Same as for Br2; Cl2/2 35.453 ClO ClO 2 I 2 H Cl I2 H2O Titrate liberated I2 with thiosulfate; HClO/2 26.230 ClO 2 4 I 4 H Cl 2 I2 2 H2O ClO2 Titrate liberated I2 with thiosulfate; HClO/2 26.230 ClO3 6 I 6 H2O Cl 3 I2 3 H2O ClO3 Titrated liberated I2 with thiosulfate; HClO2/4 17.115 3 H3AsO3 (excess; boil with strong HCl) Cl 3 H3AsO4 ClO3 Titrate excess H3AsO3 with bromate; HClO3/6 14.077 Co [Citrate-NH3 buffer] 2 3 3 4 Co(NH ) Fe(CN) Co(NH ) Fe(CN) 3 6 6 3 6 6 Co/1 58.9332 Precipitate Co anthranilate and treat as for cadmium; Co/8 7.3667 Cr 6 Fe2 14 H 2 Cr3 6 Fe3 7 H2O 2 Cr O 2 7 Cr/3 17.332; Cr2O3/6 25.337 Cu 2 Cu2 2 I 2SCN 2CuSCN I2 Titrate the liberated iodine with thiosulfate; Cu/1 63.546 4 CuSCN 7 IO3 14 H 7 Cl 4 Cu2 7 ICl 4 HCN 5 H2O 2 4 SO4 Precipitate and wash CuSCN. Titrate with standard KIO3 solution with 5 mL CHCl3 until a definite I2 color appears in the organic layer. Back-titrate the excess I2 with standard thiosul-fate solution. Cu/7 9.078; KIO3/4 53.505 Fe(II) 5 Fe2 8 H 5 Fe3 Mn2 4 H2O MnO4 Fe2 Ce(IV) Fe3 Ce(III); use 1,10-phenanthroline iron(II) indicator.
6 Fe2 14 H 6 Fe3 2 Cr3 7 H2O; use diphenylamine sulfonate indica-2 Cr O 2 7 tor.
Fe/1 55.847; Fe2O3/2 79.845 TABLE 11.29 Equations for the Redox Determinations of the Elements with Equivalent Weights (Continued) 11.86 SECTION 11 Fe(III) Fe3 4 SCN ; Ti(III) Fe2 Ti(IV) 4 SCN Fe(SCN) Fe(SCN) 4 4 Fe/1 55.847; Fe2O3/2 79.845 2 Fe3 Zn 2 Fe2 Zn2; then proceed by a method under Fe(II).
Fe3 Ag Cl Fe2 AgCl; then proceed by a method under Fe(II).
2 Fe3 SnCl2(slight excess) 4 Cl 2 Fe2 2 SnCl6 2 HgCl2 SnCl2 2 Cl Hg2Cl2 2 SnCl6 Pour above mixture into an H3PO4 plus MnSO4 solution and titrate with KMnO4 as under Fe(II).
Fe/1 55.847; Fe2O3/2 79.845 2 Fe3 2 I Fe2 I2 Titrate liberated iodine with thiosulfate; Fe/1 55.847; Fe2O3/2 79.845 I2 I2 2 I [titrate solution (pH 7.0) with thiosulfate until color is pale 2 2 2 S O S O 2 3 4 6 yellow. Add KI and starch and continue titration to disappearance of blue color. I2/2 126.9045 I2 H3AsO3 H2O 2 I H3AsO4 2 H; use starch and KI as indicator. I2/2 126.9045 I 2 I Br2(excess) I2 2Br Remove excess Br2 formic acid and titrate I2 with thiosulfate. I2/2 126.9045 IO3 5 I(excess) 6 H 3 I2 3 H2O; titrate I2 with thiosulfate. KIO3/6 35.67 IO3 IO4 7 I(excess) 8 H 4 I2 4 H2O; use a neutral buffered solution. Titrate I2 with IO4 thiosulfate. KIO4/2 115.00 K K2Na[Co(NO2)6]; dissolve in H2SO4 and titrate with either KMnO4 or Ce(IV). ca. K/5.5 but use an empirical factor.
Mg Mg(oxine)2; dissolve precipitate and use procedure for Al(8-hydroxyquinoline)3. Mg/8 3.0381 Mn(II) 2 Mn2 5 14 H 2 5 Bi3 7 H2O BiO MnO 3 4 2 5 6 H 2 Mn2 5 3 H2O; Mn/5 10.9876 3 3 MnO AsO AsO 4 3 4 2 Mn2 5 8 H2O (Ag catalyst) 2 10 16 H 2 2 S O MnO SO 2 8 4 4 Titrate the permanganate formed with iron(II) as under iron(II); Mn/5 10.9876 2 Mn2 5 3 H2O 2 5 6 H IO MnO IO 4 4 3 Slowly precipitate excess KIO4 with Hg(NO3)2. Filter, add excess Fe2 and titrate excess with standard KMnO4 solution; Mn/5 10.9876 4 Mn2 15 [pH range 4 to 7] 5 4 H2O 2 3 MnO H P O Mn(H P O ) 4 2 2 7 2 2 7 3 Use Pt9SCE indicator system; Mn/1 54.9380 Mn(IV) MnO2 2 Fe2(excesss standard) 4 H Mn2 2 Fe3 2 H2O (use CO2 atmosphere) MnO2 H2C2O4(excess standard) 2 H Mn2 2 CO2 2 H2O (use CO2 atmosphere) In either of the above, titrate excess with KMnO4. Mn/2 27.469; MnO2/2 43.47 Mn(VI) 2H2C2O4 4 H Mn2 4 CO2 4 H2O Add excess oxalate and back-titrate 2 MnO4 with permanganate. Mn/4 13.7345 Mn(VII) 2 5H2C2O4 6 H 2 Mn2 10 CO2 3 H2O; Mn/5 10.9876 MnO4 Mo Mo(VI) Zn Mo(III) Zn2; catch eluate in excess Fe2(SO4)3 solution Mo(III) 3 Fe3 4 H2O 3 Fe2 8 H; titrate Fe(II) with KMnO4 2 MoO4 Mo/3 31.98 Mo(VI) Ag Cl Mo(V) AgCl; pass through Ag reductor at 60–80C.
Mo(V) Ce(IV) Mo(VI) Ce(III); Mo/l 95.94 N2H4 3 N2H4 2 (excess) 3 N2 2 Br 6 H2O; add excess KI and titrate I2 with thio- BrO3 sulfate. N2H4/4 8.01 NH2OH NH2OH Br H H2O; proceed as above for N2H4. NH2OH/6 BrO NO 3 3 5.505 TABLE 11.29 Equations for the Redox Determinations of the Elements with Equivalent Weights (Continued) PRACTICAL LABORATORY INFORMATION 11.87 HN3 2 HN3 2 Ce(IV)(excess) 3 N2 2 Ce(III) 2 H; done under inert atmosphere.
Add excess KI and titrate with thiosulfate. HN3/1 43.03 NO2 5 2 (excess) 6 H 5 2 Mn2 3 H2O; determine excess KMnO4 NO MnO NO 2 4 3 standard Na2C2O4 solution. NaNO2/1 69.00 2 Ce(IV)(excess) H2O 2 Ce(III) 2 H; warmed to 50C. Add excess NO NO 2 3 standard Fe(II) solution and back-titrate with standard Ce(IV) using erioglaucine indicator.
NaNO2/1 69.00 NO3 excess Fe2 (Mo catalyst) 4H NO Fe3. Add H3PO4 and back-titrate excess NO3 Fe(II) with K2Cr2O7. NaNO3/3 28.34 Nb(V) Nb(V) Zn Nb(III) Zn2; catch reduced solution under excess Fe(III).
Nb(III) 2 Fe3 Nb(V) 2 Fe2; titrate Fe(II) with MnO4 solution using 1,10-phenanthro-line as indicator. Nb/2 46.453; Nb2O5 66.455 Ni Precipitate Ni(anthranilate)2 and proceed as under Cd. Ni/8 7.336 O2 O2 2 Mn2 2 OH 2 MnO2 2 H; stoppered flask plus KI MnO2 2 I 4 H Mn2 I2 2H2O; titrate I2 released with thiosulfate. O2/4 7.007 O3 O3 2 I H2O O2 I2 2 OH; acidify and titrate with thiosulfate. O3/2 24.00 H2O2 5 H2O2 2 6 H 5 O2 2 Mn2 8 H2O; H2O2/2 17.01 MnO4 H2O2 2 Ce(IV) 2 H 2 Ce(III) 2 H2O; use 1,10-phenanthroline indicator H2O2/1 34.02 H2O2 2 I 2 H I2 2 H2O; titrate I2 with thiosulfate. H2O2/2 17.01 H2O2 2 Ti(III) 2H 2 Ti(IV) 2H2O; end point is disappearance of the yellow color of peroxotitanic acid. H2O2/2 17.01 P The yellow precipitate of (NH4)3[P(Mo3O10)4] is dissolved in NH4OH, then solution is strongly acidified with H2SO4. See molybdenum; 12 moles Mo per P. P/36 0.86038 HPH2O2 HPH2O2 2 I2(excess) 2 H2O H3PO4 4 I 4 H (let stand 10 h) Make solution alkaline with NaHCO3 and titrate excess I2 with standard arsenite solution.
HPH2O2/4 16.499 H3PO3 H3PO3 I2(excess) H2O H3PO4 2 I 2 H (use CO2/NaHCO3 buffer; let stand 40– 60 min in stoppered flask). Titrate excess I2 with standard arsenite solution. H3PO3/2 41.00 Pb Isolate Pb as PbSO4, dissolve it in NaOAc and precipitate with K2Cr2O7. Dissolve K2CrO4 in NaCl9HCl solution, add KI, and titrate I2 with thiosulfate solution.
2 PbCrO4 6 I 16 H 2 Pb2 2 Cr3 3 I2 8 H2O Pb/3 69.1; PbO/3 74.4 S2 H2S I2(excess) S 2 I 2 H Back-titrate excess I2 with standard thiosulfate solution.
S/2 16.03; H2S/2 17.04 H2S 4 Br2 4 H2O 8 Br 10 H Use excess KBr and standard KBrO3 2 SO4 solution. Let stand until clear, add excess KI, and titrate with standard thiosulfate solution.
H2S/8 4.260; SO2/2 32.03; SCN/6 9.681 SO2, 2 SO3 SO2 I2 2 H2O 2 I 4 H (Titrate excess I2 with standard thiosulfate) 2 SO4 SO2/2 32.03 SO2 4 Br2 2 H2O 2 Br 4 H (Titrate with standard KBrO39KBr solu-2 SO4 tion until methyl orange is bleached.) SO2/2 32.03 2 S O 2 3 2 I2 2 I (Use starch indicator) Na2S2O3/1 158.11 2 2 S O S O 2 3 4 6 H2SO5 H3AsO3 H3AsO4 H2SO5/2 57.04 2 2 SO SO 5 4 2 S O 2 8 H3AsO3 H2O 2 H3AsO4 2 H H2S2O8/2 97.07 2 2 S O SO 2 8 4 2 Fe2 2 2 Fe3 H2S2O8/2 97.07 2 2 S O SO 2 8 4 TABLE 11.29 Equations for the Redox Determinations of the Elements with Equivalent Weights (Continued) 11.88 SECTION 11 Sb 5 Sb(III) 2 16 H 5 Sb(V) 2 Mn2 8 H2O MnO4 3 Sb(III) 6 H 3 Sb(V) Br 3 H2O BrO3 Sb(III) I2 [tartrate buffer, pH 7] Sb(V) 2 I Sb(III) 2 Ce(IV) Sb(V) 2 Ce(III) For all four methods: Sb/2 60.88; Sb2O3/4 72.88 2 SeO3 5 H2SeO3 2 6 H 5 H2SeO4 2 Mn2 3 H2O Na2SeO3/2 86.47 MnO4 H2SeO3 4 I 4 H Se 2 I2 3 H2O (titrate I2 with standard thiosulfate solution) Na2SeO3/2 86.47 H2SeO3 4 4 H 3 H2O (add small excess of thiosulfate 2 2 2 S O SeS O S O 2 3 4 6 4 6 and back-titrate with standard iodine solution) Na2SeO3/4 47.23 2 SeO4 2 H 2 Cl Cl2 H2O (absorb Cl2 in KI solution) 2 2 SeO SeO 4 3 Cl2 2 I 2 Cl I2 (titrate I2 with standard thiosulfate) Na2SeO4/2 94.47 Sn(IV) Pb Sn2 Pb2 6 Cl (in CO2 atmosphere boil 40 min) 2 SnCl6 Sn2 I2 6 Cl 2 I (at 0–3C) Sn/2 59.35; SnO2/2 67.35 2 SnCl6 Sn(II) Sn(II) 2 Ce(IV) Sn(IV) 2 Ce(III) Sn/2 59.35 Te(IV) 3 H2TeO3 8 H 3 H2TeO4 2 Cr3 4 H2O Te/2 63.80 2 Cr O 2 7 Te(VI) H2TeO4 2 Cl 2 H H2TeO3 Cl2 H2O (see ) Te/2 63.80 2 SeO4 Ti 2 Ti(IV) Zn(reductor) 2Ti(III) Zn(II) Ti(III) Fe3 Ti(IV) Fe2 (in CO2 atmosphere; use KSCN as indicator) Ti/1 47.88 or Ti(III) Methylene blue Ti(IV) colorless leuco base (in CO2 atmosphere) Ti/1 47.88 Tl 2 Tl 8 H 2 Tl3 Mn2 4 H2O Tl/2 102.19 MnO4 Tl 2 Ce3 Tl3 2 Ce3 (to a yellow color or use 1,10-phenanthroline) Tl/2 102.19 U U(VI) Zn U(III) U(IV) Zn(II) [pass air through solution to oxidize U(III) to U(IV)] 5 U4 2 2 H2O 5 2 Mn2 4 H U/2 119.01; U3O8/6 2 MnO UO 4 2 140.35 V Oxidize V(IV) to V(V) with permanganate. Destroy excess with sodium azide and boiling.
Fe2 2 H VO2 Fe3 H2O (diphenyaminesulfonic acid indicator) VO2 V/1 50.94 Reduce V(V) with SO2 and bubble CO2 through boiling solution to remove excess SO2.
5 VO2 H2O 5 VO2 Mn2 2 H V/1 50.94 MnO4 Reduce V(V) to V(II) with Zn; catch eluate in excess Fe3.
V2 2 Fe3 H2O VO2 2 Fe2 2 H Titrate VO29Fe2 mixture with permanganate to VO2 9Fe3 V/3 16.98; V2O5/6 30.32 Zn Dissolve precipitate of Zn[Hg(SCN)4] in 4M HCl in stoppered flask, add CHCl3.
2 SCN 3 2 H CN 2 3 ICN H2O Zn/24 2.725 2 IO SO 3 4 2 2 I 3 Zn2 2 K2 K2Zn3[Fe(CN)6]2 I2 3 Fe(CN)6 Remove I2 as formed by standard thiosulfate solution.
3Zn/2 98.07 but empirical value of 99.07 is recommended.
Precipitate Zn(anthranilate)2; proceed as with Cd.
Zn/8 8.174 Note: Additional procedural information plus interferences and general remarks will be found in J. A. Dean, ed., Analytical Chemistry Handbook, McGraw-Hill, New York, 1995.
TABLE 11.29 Equations for the Redox Determinations of the Elements with Equivalent Weights (Continued) PRACTICAL LABORATORY INFORMATION 11.89 11.6.5 Precipitation Titrations Many precipitation reactions that are useful as separation techniques for gravimetric analysis fail to meet one or both of two requirements for titrimetry: 1. The reaction rate must be sufficiently rapid, particularly in the titration of dilute solutions and in the immediate vicinity of the end point. To increase the precipitation rate, it is sometimes ben-eficial to change solvents or to raise the temperature. By adding an excess of reagent and back-titrating, it may be possible to take advantage of a more rapid precipitation in the reverse direction.
By choosing an end-point detection method that does not require equilibrium to be reached in the immediate vicinity of the end point, advantage may be taken of a faster reaction rate at points removed from the end point. Examples are: amperometric titrations, conductometric titrations, and photometric titrations.
2. The stoichiometry must be exact. Coprecipitation by solid-solution formation, foreign ion en-trapment, and adsorption are possible sources of error.
Table 11.30 lists standard solutions for precipitation titrations and Table 11.31 lists specific reagents as indicators, adsorption indicators, and protective colloids for precipitation titrations.
11.6.6 Complexometric Titrations A complexometric titration is based on the essentially stoichiometric reaction of a complexing agent (chelon) with another species to form a complex species (chelonate) that is only slightly dissociated and is soluble in the titration medium. In such a titration, either the chelon or the chelonate may serve as the limiting reagent (that is, as the titrant). The end point is detected by measuring or observing some property that reflects the change, in the vicinity of the equivalence point, in the concentration of the chelon or the chelonate. Examples of the application of metal-ion indicators are listed in Table 11.32. For a metal indicator to be useful, a proper sequence of effective stabilities must be met. On the one hand, the metal-indicator complex must be sufficiently stable to maintain itself in extremely dilute solution; otherwise the end-point color change will be spread over a broad interval of the titration, owing to the extended dissociation. On the other hand, the metal-indicator complex must be less stable than the metal chelonate; otherwise a sluggish end point, a late end point, or no end point at all will be obtained. Furthermore, the metal-indicator complex must react rapidly with the chelon. Only a limited number of the numerous chromogenic agents for metals allow this sequence and have useful indicator properties in chelometric titrations.
Among the complexing agents that find use as titrating agents, ethylenediamine-N,N,N,N-tet-raacetic acid (acronym EDTA, and equation abbreviation, H4Y) is by far the more important, and it is used in the vast majority of complexometric titrations. The successive acid pKa values of H4Y are pK1 2.0, pK2 2.67, pK3 6.16, pK4 10.26 at 20C and an ionic strength of 0.1. The fraction 4 present as the tetravalent anion is of particular importance in equilibrium calculations. Its mag-nitude at various pH values is given in Table 11.33.
The formation constants of EDTA complexes are gathered in Table 11.34. Based on their stability, the EDTA complexes of the most common metal ions may be roughly divided into three groups: log K 20 Tri- and tetravalent cations including Bi, Fe(III), Ga, Hg(II), In, Sc, Th, U(IV), V(III), and Zr log K 15 to 18 Divalent transition metals, rare earths, and Al log K 8 to 11 Alkaline earths and Mg 11.90 SECTION 11 The more stable the metal complex, the lower the pH at which it can be quantitatively formed.
Elements in the first group may be titrated with EDTA at pH 1 to 3 without interference from cations of the last two groups, while cations of the second group may be titrated at pH 4 to 5 without interference from the alkaline earths.
In practice, an auxiliary complexing (masking) agent is usually added during EDTA titrations to prevent the precipitation of heavy metals as hydroxides or basic salts. The concentration of auxiliary complexing agents is generally high compared with the metal-ion concentration, and the solution is sufficiently well buffered so that the hydrogen ions produced during complexing of a metal ion by H4Y do not cause an appreciable change in pH. Many EDTA titrations are carried out in ammonia– ammonium chloride buffers, which serve also to provide ammonia as an auxiliary complexing agent.
The cumulative formation constants of ammine complexes are listed in Table 11.35.
11.6.6.1 Types of Chelometric Titrations.
Chelometric titrations may be classified according to their manner of performance: direct titrations, back titrations, substitution titrations, redox titrations, or indirect methods.
11.6.6.1.1 Direct Titrations.
The most convenient and simplest manner is the measured ad-dition of a standard chelon solution to the sample solution (brought to the proper conditions of pH, buffer, etc.) until the metal ion is stoichiometrically chelated. Auxiliary complexing agents such as citrate, tartrate, or triethanolamine are added, if necessary, to prevent the precipitation of metal hydroxides or basic salts at the optimum pH for titration. For example, tartrate is added in the direct titration of lead. If a pH range of 9 to 10 is suitable, a buffer of ammonia and ammonium chloride is often added in relatively concentrated form, both to adjust the pH and to supply ammonia as an auxiliary complexing agent for those metal ions which form ammine complexes. A few metals, notably iron(III), bismuth, and thorium, are titrated in acid solution.
Direct titrations are commonly carried out using disodium dihydrogen ethylenediaminetetraace-tate, Na2H2Y, which is available in pure form. The reaction of the chelon with the indicator must be rapid for a practical, direct titration. Where it is slow, heating of the titration medium is often expedient, or another indicator is employed.
11.6.6.1.2 Back Titrations.
In the performance of a back titration, a known, but excess quantity of EDTA or other chelon is added, the pH is now properly adjusted, and the excess of the chelon is titrated with a suitable standard metal salt solution. Back titration procedures are especially useful when the metal ion to be determined cannot be kept in solution under the titration conditions or where the reaction of the metal ion with the chelon occurs too slowly to permit a direct titration, as in the titration of chromium(III) with EDTA. Back titration procedures sometimes permit a metal ion to be determined by the use of a metal indicator that is blocked by that ion in a direct titration.
For example, nickel, cobalt, or aluminum form such stable complexes with Eriochrome Black T that the direct titration would fail. However, if an excess of EDTA is added before the indicator, no blocking occurs in the back titration with a magnesium or zinc salt solution. These metal ion titrants are chosen because they form EDTA complexes of relatively low stability, thereby avoiding the possible titration of EDTA bound by the sample metal ion.
In a back titration, a slight excess of the metal salt solution must sometimes be added to yield the color of the metal-indicator complex. Where metal ions are easily hydrolyzed, the complexing agent is best added at a suitable, low pH and only when the metal is fully complexed is the pH adjusted upward to the value required for the back titration. In back titrations, solutions of the following metal ions are commonly employed: Cu(II), Mg, Mn(II), Pb(II), Th(IV), and Zn. These solutions are usually prepared in the approximate strength desired from their nitrate salts (or the solution of the metal or its oxide or carbonate in nitric acid), and a minimum amount of acid is added to repress hydrolysis of the metal ion. The solutions are then standardized against an EDTA solution (or other chelon solution) of known strength.
PRACTICAL LABORATORY INFORMATION 11.91 11.6.6.1.3 Substitution Titrations.
Upon the introduction of a substantial or equivalent amount of the chelonate of a metal that is less stable than that of the metal being determined, a substitution occurs, and the metal ion displaced can be titrated by the chelon in the same solution. This is a direct titration with regard to its performance, but in terms of the mechanism it can be considered as a substitution titration (or replacement titration).
In principle any ion can be used if it forms a weaker EDTA complex than the metal ion being determined. Still weaker metal-EDTA complexes would not interfere. Exchange reactions are also possible with other metal complexes to permit application of the chelometric titration to non-titrable cations and anions. The exchange reagent can be added and the titration performed in the sample solution without prior removal of the excess reagent. A most important example is the exchange of silver ion with an excess of the tetracyanonickelate ion according to the equation: 2 2 2 Ag Ni(CN) N 2 Ag(CN) Ni 4 2 The nickel ion freed may then be determined by an EDTA titration. Note that two moles of silver are equivalent to one mole of nickel and thus to one mole of EDTA.
11.6.6.1.4 Redox Titrations.
Redox titrations can be carried out in the presence of excess EDTA. Here EDTA acts to change the oxidation potential by forming a more stable complex with one oxidation state than with the other. Generally the oxidized form of the metal forms a more stable complex than the reduced form, and the couple becomes a stronger reducing agent in the presence of excess EDTA. For example, the Co(III)–Co(II) couple is shifted about 1.2 volts, so that Co(II) can be titrated with Ce(IV). Alternatively, Co(III) can be titrated to Co(II), with Cr(II) as a reducing agent.
Manganese(II) can be titrated directly to Mn(III) using hexacyanoferrate(III) as the oxidant.
Alternatively, Mn(III), prepared by oxidation of the Mn(II)–EDTA complex with lead dioxide, can be determined by titration with standard iron(II) sulfate.
11.6.6.1.5 Indirect Procedures.
Numerous inorganic anions that do not form complexes with a complexing agent are accessible to a chelatometric titration by indirect procedures. Frequently the anion can be precipitated as a compound containing a stoichiometric amount of a titrable cation.
Another indirect approach employing replacement mechanism is the reduction of a species with the liquid amalgam of a metal that can be determined by a chelometric titration after removal of excess amalgam. For example: 2 2 Ag Cd(Hg) Cd 2 Ag(Hg) The equivalent amount of cadmium ion exchanged for the silver ion can readily be determined by EDTA titration procedures.
11.6.6.2 Preparation of Standard Solutions 11.6.6.2.1 Standard EDTA Solutions.
Disodium dihydrogen ethylenediaminetetraacetatedihy-drate is available commercially of analytical reagent purity. After drying at 80C for at least 24 hr, its composition agrees exactly with the dihydrate formula (molecular weight 372.25). It may be weighed directly. If an additional check on the concentration is required, it may be standardized by titration with nearly neutralized zinc chloride or zinc sulfate solution.
11.6.6.2.2 Standard Magnesium Solution.
Dissolve 24.647 g of magnesium sulfate heptahy-drate in water and dilute to 1 L for 0.1M solution.
11.6.6.2.3 Standard Manganese(II) Solution.
Dissolve exactly 16.901 g ACS reagent grade manganese(II) sulfate hydrate in water and dilute to 1 L.
11.6.6.2.4 Standard Zinc Solution.
Dissolve exactly 13.629 g of zinc chloride, ACS reagent grade, or 28.754 g of zinc sulfate heptahydrate, and dilute to 1 L for 0.1000M solution.
11.92 SECTION 11 11.6.6.2.5 Buffer Solution, pH 10.
Add 142 mL of concentrated ammonia solution (sp. grav.
0.88–0.90) to 17.5 g of analytical reagent ammonium chloride, and dilute to 250 mL.
11.6.6.2.6 Water.
Distilled water must be (a) redistilled in an all-Pyrex glass apparatus or (b) purified by passage through a column of cation exchange resin in the sodium form. For storage, polyethylene bottles are most satisfactory, particularly for very dilute (0.001M) EDTA solutions.
11.6.6.2.7 Murexide Indicator.
Suspend 0.5 g of powdered murexide in water, shake thor-oughly, and allow the undissolved solid to settle. Use 5–6 drops of the supernatant liquid for each titration. Decant the old supernatant liquid daily and treat the residue with water to provide a fresh solution of the indicator.
Alternatively, grind 0.1 g of murexide with 10 g of ACS reagent grade sodium chloride; use about 50 mg of the mixture for each titration.
11.6.6.2.8 Pyrocatechol Violet Indicator Solution.
Dissolve 0.1 g of the solid dyestuff in 100 mL of water.
11.6.7 Masking Agents Masking (and demasking) techniques are widely used in analytical chemistry because they frequently provide convenient and elegant methods by which to avoid the effects of unwanted components of a system without having to resort to physical separation. The best molecules or ligands to use as masking agents are those that are chemically stable and nontoxic and react rapidly to form strong, colorless complexes with the ions to be masked, but form only relatively weak complexes with other ions that are present. Tables 11.36 and 11.37 are intended as qualitative guides to the types of masking agents likely to be suitable for particular analytical problems.
Masking must not be identified solely with complex formation. There are numerous complex compounds in which solutions show no masking effects. On the other hand, examples can be cited in which the product of soluble principal valence compounds may lead to masking. This latter category includes the annulment of the base action of NH29 groups in carboxylic acids by the addition of formaldehyde, the masking of the iodometric oxidation of sulfites by formaldehyde, as well as the masking of almost all reactions of molybdenum(VI), tungsten(VI), and vanadium(V) by hydrogen peroxide or fluoride ion. Sometimes the masking agent changes the valence state of the metal ion. Examples include the reduction of Fe(III) to Fe(II) with hydrazine, hydroxylamine hy-drochloride, or tin(II) chloride. Hydroxylamine also reduces Ce(IV) to Ce(III), Cu(II) to Cu(I), and Hg(II) to free Hg. Ascorbic acid reduces Cu(II) to Cu(I) in the presence of the chloride ion.
The reaction of the hydrogen sulfite ion in an alkaline solution with ketones and aldehydes is: H C"O HSO N H C(OH)SO 2 3 2 3 The carbon-oxygen double bond of the carbonyl group is opened, and the hydrogen sulfite radical is added. An increase in temperature reverses the reaction more easily for ketones than for aldehydes.
Certain organic substances have no charge at any pH but form complexes with substances that do have a charge. The sugars and polyalcohols form such complexes in the pH range between 9 and 10 with a number of anions; including borate, molybdate, and arsenite. Elegant ion exchange methods have been devised for the sugars.
Probably the most extensively applied masking agent is cyanide ion. In alkaline solution, cyanide forms strong cyano complexes with the following ions and masks their action toward EDTA: Ag, Cd, Co(II), Cu(II), Fe(II), Hg(II), Ni, Pd(II), Pt(II), Tl(III), and Zn. The alkaline earths, Mn(II), Pb, and the rare earths are virtually unaffected; hence, these latter ions may be titrated with EDTA with the former ions masked by cyanide. Iron(III) is also masked by cyanide. However, as the hexacy-anoferrate(III) ion oxidizes many indicators, ascorbic acid is added to form hexacyanoferrate(II) ion.
Moreover, since the addition of cyanide to an acidic solution results in the formation of deadly PRACTICAL LABORATORY INFORMATION 11.93 hydrogen cyanide, the solution must first be made alkaline, with hydrous oxide formation prevented by the addition of tartrate. Zinc and cadmium may be demasked from their cyanide complexes by the action of formaldehyde.
Masking by oxidation or reduction of a metal ion to a state which does not react with EDTA is occasionally of value. For example, Fe(III) (log KMY 24.23) in acidic media may be reduced to Fe(II) (log KMY 14.33) by ascorbic acid; in this state iron does not interfere in the titration of some trivalent and tetravalent ions in strong acidic medium (pH 0 to 2). Similarly, Hg(II) can be reduced to the metal. In favorable conditions, Cr(III) may be oxidized by alkaline peroxide to chromate which does not complex with EDTA.
In resolving complex metal-ion mixtures, more than one masking or demasking process may be utilized with various aliquots of the sample solution, or applied simultaneously or stepwise with a single aliquot. In favorable cases, even four or five metals can be determined in a mixture by the application of direct and indirect masking processes. Of course, not all components of the mixture need be determined by chelometric titrations. For example, redox titrimetry may be applied to the determination of one or more of the metals present.
11.6.8 Demasking For the major part, masking reactions that occur in solutions and lead to soluble compounds are equilibrium reactions. They usually require the use of an excess of the masking agent and can be reversed again by removal of the masking agent. The freeing of previously masked ionic or molecular species has been called demasking. This merits consideration in regard to its use in analysis. Masking never completely removes certain ionic or molecular species, but only reduces their concentrations.
The extent of this lowering determines which color or precipitation reactions can be prevented. A system masked against a certain reagent is not necessarily masked against another but more aggres-sive reagent. It is therefore easy to see that masked reaction systems can also function as reagents at times (e.g., Fehling’s solution, Nessler’s reagent).
The methods used in demasking are varied. One approach is to change drastically the hydrogen ion concentration of the solution. The conditional stability constants of most metal complexes depend greatly on pH, so that simply raising or lowering the pH is frequently sufficient for selective de-masking. In most cases a strong mineral acid is added, and the ligand is removed from the coordi-nation sphere of the complex through the formation of a slightly ionized acid, as with the polyprotic (citric, tartaric, EDTA, and nitriloacetic) acids.
Another type of demasking involves formation of new complexes or other compounds that are more stable than the masked species. For example, boric acid is used to demask fluoride complexes of tin(IV) and molybdenum(VI). Formaldehyde is often used to remove the masking action of cyanide ions by converting the masking agent to a nonreacting species through the reaction: CN HCHO N OCH CN 2 which forms glycollic nitrile. Pertinent instances are the demasking of ions to Ni2 ions 2 Ni(CN)4 by formaldehyde and the demasking of dimethylglyoxime (dmg) from ions by cyanide.
2 Pd(dmg)2 Selectivity is evident in that is demasked whereas is not.
2 2 Zn(CN) Cu(CN) 4 3 Destruction of the masking ligand by chemical reaction may be possible, as in the oxidation of EDTA in acid solutions by permanganate or another strong oxidizing agent. Hydrogen peroxide and Cu(II) ion destroy the tartrate complex of aluminum.
Demasking methods for a number of masking agents are enumerated in Table 11.38.
11.94 SECTION 11 TABLE 11.30 Standard Solutions for Precipitation Titrations The list given below includes the substances that are most used and most useful for the standardization of solutions for precipitation titrations. Primary standard solutions are denoted by the letter (P) in Column 1.
Standard Formula weight Preparation AgNO3 (P) 169.89 Weigh the desired amount of ACS reagent grade AgNO3, dried at 105C for 2 hr, and dissolve in double distilled water. Store in amber container and away from light. Check against NaCl.
BaCl2 · 2H2O 244.28 Dissolve clear crystals of the salt in distilled water. Standardize against K2SO4 or Na2SO4.
Hg(NO3)2 · H2O 342.62 Dissolve the reagent grade salt in distilled water and dilute to desired volume. Standardize against NaCl.
KBr 119.01 The commercial reagent (ACS) may contain 0.2% chloride. Prepare an aqueous solution of approximately the desired concentration and stan-dardize it against AgNO3.
K4[Fe(CN)]6 · 3H2O 422.41 Dissolve the high-purity commercial salt in distilled water containing 0.2 g/L of Na2CO3. Kept in an amber container and away from direct sunlight, solutions are stable for a month or more. Standardize against zinc metal.
KSCN 97.18 Prepare aqueous solutions having the concentration desired. Standardize against AgNO3 solution. Protect from direct sunlight.
K2SO4 (P) 174.26 Dissolve about 17.43 g, previously dried at 150C and accurately weighed, in distilled water and dilute exactly to 1 L.
NaCl (P) 58.44 Dry at 130–150C and weigh accurately, from a closed container, 5.844 g, dissolve in water, and dilute exactly to 1 L.
NaF (P) 41.99 Dry at 110C and weigh the appropriate amount of ACS reagent. Dis-solve in water and dilute exactly to 1 L.
Na2SO4 (P) 142.04 Weigh accurately 14.204 g, dried at 150C, and dissolve in distilled water. Dilute to exactly 1 L.
Th(NO3)4 · 4H2O 552.12 Weigh the appropriate amount of crystals and dissolve in water. Stan-dardize against NaF.
Meets standards of purity (and impurity) set by the American Chemical Society.
PRACTICAL LABORATORY INFORMATION 11.95 TABLE 11.31 Indicators for Precipitation Titrations Indicator Preparation and use Specific reagents NH4Fe(SO4)2 · 12H2O Use reagent (ACS) grade salt, low in chloride. Dissolve 175 g in 100 mL 6 M HNO3 which has been gently boiled for 10 min to expel nitrogen oxides. Dilute with 500 mL water. Use 2 mL per 100 mL of end-point volume.
K2CrO4 Use reagent (ACS) grade salt, low in chloride. Prepare 0.1M aqueous solution (19.421 g/L). Use 2.5 mL per 100 mL of end-point volume.
Tetrahydroxy-1,4-benzoquinone (THQ) Prepare fresh as required by dissolving 15 mg in 5 mL of water.
Use 10 drops for each titration.
Adsorption indicators Bromophenol blue Dissolve 0.1 g of the acid in 200 mL 95% ethanol.
2,7-Dichlorofluorescein Dissolve 0.1 g of the acid in 100 mL 70% ethanol. Use 1 mL for 100 mL of initial solution.
Eosin, tetrabromofluorescein See Dichlorofluorescein.
Fluorescein Dissolve 0.4 g of the acid in 200 mL 70% ethanol. Use 10 drops.
Potassium rhodizonate, C4O4(OK)2 Prepare fresh as required by dissolving 15 mg in 5 mL of water.
Use 10 drops for each titration.
Rhodamine 6G Dissolve 0.1 g in 200 mL 70% ethanol.
Sodium 3-alizarinsulfonate Prepare a 0.2% aqueous solution. Use 5 drops per 120 mL end-point volume.
Thorin Prepare a 0.025% aqueous solution. Use 5 drops.
Protective colloids Dextrin Use 5 mL of 2% aqueous solution of chloride-free dextrin per 25 mL of 0.1M halide solution.
Polyethylene glycol 400 Prepare a 50% (v/v) aqueous solution of the surfactant. Use 5 drops per 100 mL end-point volume.
Meets standards as set forth in Reagent Chemicals, American Chemical Society, Washington, D.C.; revised periodically.
TABLE 11.32 Properties and Applications of Selected Metal Ion Indicators Indicator Chemical name Dissociation constants and colors of free indicator species Colors of metal-indicator complexes Applications Calmagite 0.05 g/100 mL water; stable 1 year 1-(6-Hydroxy-m-tolylazo)-2-naphthol-4-sulfonic acid H2In (red); pK2 8.1 HIn2 (blue); pK3 12.4 In3 (orange) Wine-red Titrations performed with Eriochrome Black T as indicator may be carried out equally well with Calmagite Eriochrome Black T 0.1 g/100 mL water; prepare fresh daily 1-(2-Hydroxy-1-naphthyl-azo)-6-nitro-2-naphthol-4-sulfonic acid H2In (red); pK2 6.3 HIn2 (blue); pK3 11.5 In3 (yellow-orange) Wine-red Direct titration: Ba, Ca, Cd, In, Mg, Mn, Pb, Sc, Sr, Tl, Zn, and lantha-nides Back titration: Al, Ba, Bi, Ca, Co, Cr, Fe, Ga, Hg, Mn, Ni, Pb, Pd, Sc, Tl, V Substitution titration: Au, Ba, Ca, Cu, Hg, Pb, Pd, Sr Murexide Suspend 0.5 g in water; use fresh supernatent liquid each day 5-[(Hexahydro-2,4,6-trioxo-5-pyrimidinyl)imino]-2,4,6(1H,3H,5H)-pyrimidi-netrione monoammonium salt H4In (red-violet); pK2 9.2 H3In2 (violet); pK3 10.9 H2In3 (blue) Red with Ca2 Yellow with Co2, Ni2, and Cu2 Direct titration: Ca, Co, Cu, Ni Back titration: Ca, Cr, Ga Substitution titration: Ag, Au, Pd PAN 1-(2-Pyridylazo)-2-naphthol HIn (orange-red); pK1 12.3 In (pink) Red Direct titration: Cd, Cu, In, Sc, Tl, Zn Back titration: Cu, Fe, Ga, Ni, Pb, Sc, Sn, Zn Substitution titration: Al, Ca, Co, Fe, Ga, Hg, In, Mg, Mn, Ni, Pb, V, Zn Pyrocatechol Violet 0.1 g/100 mL; stable several weeks Pyrocatecholsulfonephthalein H4In (red); pK1 0.2 H3In (yellow): pK2 7.8 H2In2 (violet); pK3 9.8 HIn3 (red-purple); pK4 11.7 Blue, except red with Th(IV) Direct titration: Al, Bi, Cd, Co, Fe, Ga, Mg, Mn, Ni, Pb, Th, Zn Back titration: Al, Bi, Fe, Ga, In, Ni, Pd, Sn, Th, Ti Salicylic acid 2-Hydroxybenzoic acid H2In; pK1 2.98 HIn; pK2 12.38 FeSCN2 at pH 3 is reddish-brown Typical uses: Fe(III) titrated with EDTA to colorless iron-EDTA complex Xylenol orange 3,3’-Bis[N,N-di(carboxy-ethyl)aminomethyl]-o-cresolsulfonephthalein 9COOH groups: pK3 0.76; pK4 1.15; pK5 2.58; pK6 3.23 Typical uses: Bi, Pb, Th Source: J. A. Dean, ed., Analytical Chemistry Handbook, McGraw-Hill, New York, 1995.
11.96 PRACTICAL LABORATORY INFORMATION 11.97 TABLE 11.33 Variation of 4 with pH pH log 4 pH log 4 2.0 13.44 7.0 3.33 2.5 11.86 8.0 2.29 3.0 10.60 9.0 1.29 4.0 8.48 10.0 0.46 5.0 6.45 11.0 0.07 6.0 4.66 12.0 0.00 TABLE 11.34 Formation Constants of EDTA Complexes at 25C, Ionic Strength Approaching Zero Metal ion log KMY Metal ion log KMY Co(III) 36 V(IV) 18.0 V(III) 25.9 U(IV) 17.5 In 24.95 Ti(IV) 17.3 Fe(III) 24.23 Ce(III) 16.80 Th 23.2 Zn 16.4 Sc 23.1 Cd 16.4 Cr(III) 23 Co(II) 16.31 Bi 22.8 Al 16.13 Tl(III) 22.5 La 16.34 Sn(II) 22.1 Fe(II) 14.33 Ti(III) 21.3 Mn(II) 13.8 Hg(II) 21.80 Cr(II) 13.6 Ga 20.25 V(II) 12.7 Zr 19.40 Ca 11.0 Cu(II) 18.7 Be 9.3 Ni 18.56 Mg 8.64 Pd(II) 18.5 Sr 8.80 Pb(II) 18.3 Ba 7.78 V(V) 18.05 Ag 7.32 TABLE 11.35 Cumulative Formation Constants of Ammine Complexes at 20C, Ionic Strength 0.1 Cation log K1 log K2 log K3 log K4 log K5 log K6 Cadmium 2.65 4.75 6.19 7.12 6.80 5.14 Cobalt(II) 2.11 3.74 4.79 5.55 5.73 5.11 Cobalt(III) 6.7 14.0 20.1 25.7 30.8 35.2 Copper(I) 5.93 10.86 Copper(II) 4.31 7.98 11.02 13.32 12.66 Iron(II) 1.4 2.2 Manganese(II) 0.8 1.3 Mercury(II) 8.8 17.5 18.5 19.28 Nickel 2.80 5.04 6.77 7.96 8.71 8.74 Platinum(II) 35.3 Silver(I) 3.24 7.05 Zinc 2.37 4.81 7.31 9.46 11.98 SECTION 11 TABLE 11.36 Masking Agents for Various Elements Element Masking agent Ag Br, citrate, Cl, CN, I, NH3, SCN, , thiourea, thioglycolic acid, diethyldithiocarba-2 S O 2 3 mate, thiosemicarbazide, bis(2-hydroxyethyl)dithiocarbamate Al Acetate, acetylacetone, , citrate, , EDTA, F, formate, 8-hydroxyquinoline-5-sul- 2 BF C O 4 2 4 fonic acid, mannitol, 2,3-mercaptopropanol, OH, salicylate, sulfosalicylate, tartrate, trieth-anolamine, tiron As Citrate, 2,3-dimercaptopropanol, NH2OH · HCl, OH, , , tartrate 2 2 S S O 2 2 3 Au Br, CN, NH3, SCN, , thiourea 2 S O 2 3 Ba Citrate, cyclohexanediaminetetraacetic acid, N,N-dihydroxyethylglycine, EDTA, F, , tar-2 SO4 trate Be Acetylacetone, citrate, EDTA, F, sulfosalicylate, tartrate Bi Br, citrate, Cl, 2,3-dimercaptopropanol, dithizone, EDTA, I, OH, Na5P3O10, SCN, tar-trate, thiosulfate, thiourea, triethanolamine Ca , citrate, N,N-dihydroxyethylglycine, EDTA, F, polyphosphates, tartrate BF4 Cd Citrate, CN, 2,3-dimercaptopropanol, dimercaptosuccinic acid, dithizone, EDTA, glycine, I, malonate, NH3, 1,10-phenanthroline, SCN, , tartrate 2 S O 2 3 Ce Citrate, N,N-dihydroxyethylglycine, EDTA, F, , reducing agents (ascorbic acid), tartrate, 3 PO4 tiron Co Citrate, CN, diethyldithiocarbamate, 2,3-dimercaptopropanol, dimethylglyoxime, ethylenedi-amine, EDTA, F, glycine, H2O2, NH3, , 1,10-phenanthroline, Na5P3O10, SCN, NO2 , tartrate 2 S O 2 3 Cr Acetate, (reduction with) ascorbic acid KI, citrate, N,N-dihydroxyethylglycine, EDTA, F, formate, NaOH H2O2, oxidation to , Na5P3O10, sulfosalicylate, tartrate, triethylam-2 CrO4 ine, tiron Cu Ascorbic acid KI, citrate, CN, diethyldithiocarbamate, 2,3-dimercaptopropanol, ethyl-enediamine, EDTA, glycine, hexacyanocobalt(III)(3), hydrazine, I, NaH2PO2, , 1,10-phenanthroline, S2, SCN , , sulfosalicylate, 2 2 NH OH · HCl, NH , NO SO S O 2 3 2 3 2 3 tartrate, thioglycolic acid, thiosemicarbazide, thiocarbohydrazide, thiourea Fe Acetylacetone, (reduction with) ascorbic acid, , citrate, CN, 2,3-dimercaptopropanol, 2 C O 2 4 EDTA, F, NH3, NH2OH · HCl, OH, oxine, 1,10-phenanthroline, 2,2’-bipyridyl, , 3 PO4 , S2, SCN, SnCl2, , sulfamic acid, sulfosalicylate, tartrate, thioglycolic acid, 4 2 P O S O 2 7 2 3 thiourea, tiron, triethanolamine, trithiocarbonate Ga Citrate, Cl, EDTA, OH, oxalate, sulfosalicylate, tartrate Ge F, oxalate, tartrate Hf See Zr Hg Acetone, (reduction with) ascorbic acid, citrate, Cl, CN, 2,3-dimercaptopropan-1-ol, EDTA, formate, I, SCN, , tartrate, thiosemicarbazide, thiourea, triethanolamine 2 SO3 In Cl, EDTA, F, SCN, tartrate, thiourea, triethanolamine Ir Citrate, CN, SCN, tartrate, thiourea La Citrate, EDTA, F, oxalate, tartrate, tiron Mg Citrate, , cyclohexane-1,2-diaminetetraacetic acid, N,N-dihydroxyethylglycine, EDTA, 2 C O 2 4 F, glycol, hexametaphosphate, OH, , triethanolamine 4 P O 2 7 Mn Citrate, CN, , 2,3-dimercaptopropanol, EDTA, F, Na5P3O10, oxidation to , 2 C O MnO 2 4 4 , reduction to Mn(II) with NH2OH · HCl or hydrazine, sulfosalicylate, tartrate, trietha-4 P O 2 7 nolamine, triphosphate, tiron Mo Acetylacetone, ascorbic acid, citrate, , EDTA, F, H2O2, hydrazine, mannitol, Na5P3O10, 2 C O 2 4 NH2OH · HCl, oxidation to molybdate, SCN, tartrate, tiron, triphosphate PRACTICAL LABORATORY INFORMATION 11.99 Nb Citrate, , F, H2O2, OH, tartrate 2 C O 2 4 Nd EDTA NH4 HCHO Ni Citrate, CN, N,N-dihydroxyethylglycine, dimethylglyoxime, EDTA, F, glycine, malonate, Na5P3O10, NH3, 1,10-phenanthroline, SCN, sulfosalicylate, thioglycolic acid, triethanol-amine, tartrate Np F Os CN, SCN, thiourea Pa H2O2 Pb Acetate, (C6H5)4AsCl, citrate, 2,3-dimercaptopropanol, EDTA, I, Na5P3O10, , , tar-2 2 SO S O 4 2 3 trate, tiron, tetraphenylarsonium chloride, triethanolamine, thioglycolic acid Pd Acetylacetone, citrate, CN, EDTA, I, NH3, , SCN, , tartrate, triethanol amine 2 NO S O 2 2 3 Pt Citrate, CN, EDTA, I, NH3, , SCN, , tartrate, urea 2 NO S O 2 2 3 Pu Reduction to Pu(IV) with sulfamic acid Rare earths , citrate, EDTA, F, tartrate 2 C O 2 4 Re Oxidation to perrhenate Rh Citrate, tartrate, thiourea Ru CN, thiourea Sb Citrate, 2,3-dimercaptopropanol, EDTA, F, I, OH, oxalate, S2, , , tartrate, trieth-2 2 S S O 2 2 3 anolamine Sc Cyclohexane-1,2-diaminetetraacetic acid, F, tartrate Se Citrate, F, I, reducing agents, S2, , tartrate 2 SO3 Sn Citrate, , 2,3-dimercaptopropanol, EDTA, F, I, OH, oxidation with bromine water, 2 C O 2 3 phosphate(3), tartrate, triethanolamine, thioglycolic acid Sr Citrate, N,N-dihydroxyethylglycine, EDTA, F, , tartrate 2 SO4 Ta Citrate, F, H2O2, OH, oxalate, tartrate Te Citrate, F, I, reducing agents, S2, sulfite, tartrate Th Acetate, acetylacetone, citrate, EDTA, F, , 4-sulfobenzenearsonic acid, sulfosalicylic 2 SO4 acid, tartrate, triethanolamine Ti Ascorbic acid, citrate, F, gluconate, H2O2, mannitol, Na5P3O10, OH, , sulfosalicylic 2 SO4 acid, tartrate, triethanolamine, tiron Tl Citrate, Cl, CN, EDTA, HCHO, hydrazine, NH2OH · HCl, oxalate, tartrate, triethanolamine U Citrate, (NH4)2CO3, , EDTA, F, H2O2, hydrazine triethanolamine, phosphate(3), 2 C O 2 4 tartrate V (Reduction with) ascorbic acid, hydrazine, or NH2OH · HCl, CN, EDTA, F, H2O2, manni-tol, oxidation to vanadate, triethanolamine, tiron W Citrate, F, H2O2, hydrazine, Na5P3O10, NH2OH · HCl, oxalate, SCN, tartrate, tiron, triphos-phate, oxidation to tungstate(VI) Y Cyclohexane-1,2-diaminetetraacetic acid, F Zn Citrate, CN, N,N-dihydroxyethylglycine, 2,3-dimercaptopropanol, dithizone, EDTA, F, glycerol, glycol, hexacyanoferrate(II)(4), Na5P3O10, NH3, OH, SCN, tartrate, triethanol-amine Zr Arsenazo, carbonate, citrate, , cyclohexane-1,2-diaminetetraacetic acid, EDTA, F, 2 C O 2 4 H2O2, , , pyrogallol, quinalizarinesulfonic acid, salicylate, H2O2, sulfos-3 4 2 PO P O SO 4 2 7 4 alicylate, tartrate, triethanolamine TABLE 11.36 Masking Agents for Various Elements (Continued) Element Masking agent 11.100 SECTION 11 TABLE 11.37 Masking Agents for Anions and Neutral Molecules Anion or neutral molecule Masking agent Boric acid F, glycol, mannitol, tartrate, and other hydroxy acids Br Hg(II) Br2 Phenol, sulfosalicylic acid BrO3 Reduction with arsenate(III), hydrazine, sulfite, or thiosulfate Chromate(VI) Reduction with arsenate(III), ascorbic acid, hydrazine, hydroxylamine, sulfite, or thiosul-fate Citrate Ca(II) Cl Hg(II), Sb(III) Cl2 Sulfite ClO3 Thiosulfate ClO4 Hydrazine, sulfite CN HCHO, Hg(II), transition metal ions EDTA Cu(II) F Al(III), Be(II), boric acid, Fe(III), Th(IV), Ti(IV), Zr(IV) 3 Fe(CN)6 Arsenate(III), ascorbic acid, hydrazine, hydroxylamine, thiosulfate Germanic acid Glucose, glycerol, mannitol I Hg(II) I2 Thiosulfate IO3 Hydrazine, sulfite, thiosulfate IO4 Arsenate(III), hydrazine, molybdate(VI), sulfite, thiosulfate MnO4 Reduction with arsenate(III), ascorbic acid, azide, hydrazine, hydroxylamine, oxalic acid, sulfite, or thiosulfate 2 MoO4 Citrate, F, H2O2, oxalate, thiocyanate Sn(II) NO2 Co(II), sulfamic acid, sulfanilic acid, urea Oxalate Molybdate(VI), permanganate Phosphate Fe(III), tartrate S CN, S2, sulfite S2 Permanganate sulfuric acid, sulfur Sulfate Cr(III) heat Sulfite HCHO, Hg(II), permanganate sulfuric acid 2 SO5 Ascorbic acid, hydroxylamine, thiosulfate Se and its anions Diaminobenzidine, sulfide, sulfite Te I Tungstate Citrate, tartrate Vanadate Tartrate TABLE 11.38 Common Demasking Agents Abbreviations: DPC, diphenylcarbazide; HDMG, dimethylglyoxime; PAN, 1-(2-pyridylazo)-2-naphthol.
Complexing agent Ion demasked Demasking agent Application CN Ag H Precipitation of Ag Cd2 H Free Cd2 HCHO OH Detection of Cd (with DPC) in presence of Cu Cu H Precipitation of Cu Cu2 HgO Determination of Cu Fe2 Hg2 Free Fe2 Fe3 HgO Determination of Fe PRACTICAL LABORATORY INFORMATION 11.101 CN (continued) HDMG Pd2 Detection of CN (with Ni2) Hg2 Pd2 Detection of Pd (with DPC) Ni2 HCHO Detection of Ni (with HDMG) H Free Ni2 HgO Determination of Ni Ag Detection and determination of Ni (with HDMG) in presence of Co Ag, Hg2, Pb2 Detection of Ag, Hg, Pb (with HDMG) Pd2 H Precipitation of Pd HgO Determination of Pd Zn2 Cl3CCHO · H2O Titration of Zn with EDTA H Free Zn 2 CO3 Cu2 H Free Cu2 2 C O 2 4 Al3 OH Precipitation of Al(OH)3 Cl (concentrated) Ag H2O Precipitation of AgCl Ethylenediamine Ag SiO2 (amorphous) Differentiation of crystalline and amor-phous SiO2 (with ) 2 CrO4 EDTA Al3 F Titration of Al Ba2 H Precipitation of BaSO4 (with ) 2 SO4 Co2 Ca2 Detection of Co (with diethyldithiocar-bamate) Mg2 F Titration of Mg, Mn Th(IV) 2 SO4 Titration of Th Ti(IV) Mg2 Precipitation of Ti (with NH3) Zn2 CN Titration of Mg, Mn, Zn Many ions KMO4 Free ions F Al(III) Be(II) Precipitation of Al (with 8-hydroxyl-quinoline) OH Precipitation of Al(OH)3 Fe(III) OH Precipitation of Fe(OH)3 Hf(IV) Al(III) or Be(II) Detection of Hg (with xylenol orange) Mo(VI) H3BO3 Free molybdate Sn(IV) H3BO3 Precipitation of Sn (with H2S) U(VI) Al(III) Detection of U (with dibenzoylme-thane) Zr(IV) Al(III) or Be(II) Detection of Zr (with xylenol orange) Ca(II) Detection of Ca (with alizarin S) OH Precipitation of Zr(OH)4 H2O2 Hf(IV), Ti(IV), or Zr Fe(III) Free ions NH3 Ag Br Detection of Br H Detection of Ag I Detection of I and Br SiO2 (amorphous) Differentiation of crystalline and amor-phous SiO2 (with ) 2 CrO4 NO2 Co(III) H Free Co 3 PO4 Fe(III) OH Precipitation of FePO4 2 UO2 Al(III) Detection of U (with dibenzoylme-thane) SCN Fe(III) OH Precipitation of Fe(OH)3 (conc. H2SO4) 2 SO4 Ba2 H2O Precipitation of BaSO4 2 S O 2 3 Ag H Free Ag Cu2 OH Detection of Cu (with PAN) Tartrate Al(III) H2O2 Cu2 Precipitation of Al(OH)3 TABLE 11.38 Common Demasking Agents (Continued) Complexing agent Ion demasked Demasking agent Application 11.102 SECTION 11 TABLE 11.39 Amino Acids pI and pKa Values This table lists the pKa and pI (pH at the isoelectric point) values of -amino acids commonly found in proteins along with their abbreviations. The dissociation constants refer to aqueous solutions at 25C.
Abbreviations pKa values Name 3 Letter 1 Letter 9COOH 9NH3 Other groups pI values Alanine Ala A 2.34 9.69 6.00 Arginine Arg R 2.17 9.04 12.48 10.76 Asparagine Asn N 2.01 8.80 5.41 Aspartic acid Asp D 1.89 9.60 3.65 2.77 Cysteine Cys C 1.96 10.28 8.18 5.07 Glutamine Gln Q 2.17 9.13 5.65 Glutamic acid Glu E 2.19 9.67 4.25 3.22 Glycine Gly G 2.34 9.60 5.97 Histidine His H 1.82 9.17 6.00 7.59 Isoleucine Ile I 2.36 9.60 6.02 Leucine Leu L 2.36 9.60 5.98 Lysine Lys K 2.18 8.98 10.53 9.74 Methionine Met M 2.28 9.21 5.74 Phenylalanine Phe F 1.83 9.13 5.48 Proline Pro P 1.99 10.60 6.30 Serine Ser S 2.21 9.15 5.68 Threonine Thr T 2.09 9.10 5.60 Tryptophan Trp W 2.83 9.39 5.89 Tyrosine Tyr Y 2.20 9.11 10.07 5.66 Valine Val V 2.32 9.62 5.96 Source: E. L. Smith, et al., Principles of Biochemistry, 7th ed., McGraw-Hill, New York, 1983; H. J. Hinz, ed., Ther-modynamic Data for Biochemistry and Biotechnology, Springer-Verlag, Heidelberg, 1986.
TABLE 11.40 Tolerances of Volumetric Flasks Capacity, mL Tolerances, mL Class A Class B Capacity, mL Tolerances, mL Class A Class B 5 0.02 0.04 200 0.10 0.20 10 0.02 0.04 250 0.12 0.24 25 0.03 0.06 500 0.20 0.40 50 0.05 0.10 1000 0.30 0.60 100 0.08 0.16 2000 0.50 1.00 Accuracy tolerances for volumetric flasks at 20C are given by ASTM standard E288.
PRACTICAL LABORATORY INFORMATION 11.103 TABLE 11.41 Pipet Capacity Tolerances Volumetric transfer pipets Measuring and serological pipets Capacity, mL Tolerances, mL Class A Class B Capacity, mL Tolerances,† mL Class B 0.5 0.006 0.012 0.1 0.005 1 0.006 0.012 0.2 0.008 2 0.006 0.012 0.25 0.008 3 0.01 0.02 0.5 0.01 4 0.01 0.02 0.6 0.01 5 0.01 0.02 1 0.02 10 0.02 0.04 2 0.02 15 0.03 0.06 5 0.04 20 0.03 0.06 10 0.06 25 0.03 0.06 25 0.10 50 0.05 0.10 100 0.08 0.16 Accuracy tolerances for volumetric transfer pipets are given by ASTM standard E969 and Federal Specification NNN-P-395.
† Accuracy tolerances for measuring pipets are given by Federal Specification NNN-P-350 and for serological pipets by Federal Specification NNN-P-375.
TABLE 11.42 Tolerances of Micropipets (Eppendorf) Capacity, L Accuracy, % Precision, % Capacity, L Accuracy, % Precision, % 10 1.2 0.4 100 0.5 0.2 40 0.6 0.2 250 0.5 0.15 50 0.5 0.2 500 0.5 0.15 60 0.5 0.2 600 0.5 0.15 70 0.5 0.2 900 0.5 0.15 80 0.5 0.2 1000 0.5 0.15 TABLE 11.43 Buret Accuracy Tolerances Capacity, mL Subdivision, mL Accuracy, mL Class A and precision grade Class B and standard grade 10 0.05 0.02 0.04 25 0.10 0.03 0.06 50 0.10 0.05 0.10 100 0.20 0.10 0.20 Class A conforms to specifications in ASTM E694 for standard taper stopcocks and to ASTM E287 for Teflon or poly-tetrafluoroethylene stopcock plugs. The 10-mL size meets the requirements for ASTM D664.
11.104 SECTION 11 TABLE 11.44 Factors for Simplified Computation of Volume The volume is determined by weighing the water, having a temperature of tC, contained or delivered by the apparatus at the same temperature. The weight of water, w grams, is obtained with brass weights in air having a density of 1.20 mg/mL.
For apparatus made of soft glass, the volume contained or delivered at 20C is given by wƒ mL 20 20 where 20 is the volume at 20 and ƒ20 is the factor (apparent specific volume) obtained from the table below for the temperature t at which the calibration is performed. The volume at any other temperature t may then be obtained from [1 0.00002(t 20)] mL 20 For apparatus made of any other material, the volume contained or delivered at the temperature t is wf mL t t where w is again the weight in air obtained with brass weights (in grams), and ft is the factor given in the third column of the table for the temperature t. The volume at any temperature t may then be obtained from [1 (t t)] mL t t where is the cubical coefficient of thermal expansion of the material from which the apparatus is made.
Approximate values of for some frequently encountered materials are given in Table 11.45.
t, C ƒ20 ƒt t, C ƒ20 ƒt 0 1.001 62 1.001 22 20 1.002 86 1.002 86 1 54 16 21 1.003 05 1.003 07 2 48 12 22 26 30 3 43 09 23 47 53 4 41 09 24 69 77 5 1.001 39 1.001 09 25 1.003 93 1.004 03 6 40 12 26 1.004 17 29 7 42 16 27 42 56 8 45 21 28 68 84 9 50 28 29 95 1.005 13 10 1.001 56 1.001 36 30 1.005 23 1.005 43 11 63 45 31 1.005 52 1.005 74 12 72 56 32 1.005 82 1.006 06 13 82 68 33 1.006 13 1.006 39 14 93 81 34 1.006 44 1.006 72 15 1.002 06 1.001 96 35 1.006 77 1.007 07 16 20 1.002 12 36 1.007 10 1.007 42 17 35 29 37 1.007 44 1.007 78 18 51 47 38 1.007 79 1.008 15 19 68 66 39 1.008 15 1.008 53 40 1.008 52 1.008 91 PRACTICAL LABORATORY INFORMATION 11.105 TABLE 11.45 Cubical Coefficients of Thermal Expansion This table lists values of , the cubical coefficient of thermal expansion, taken from “Essentials of Quantitative Analysis,” by Benedetti-Pichler, and from various other sources. The value of represents the relative increases in volume for a change in temperature of 1C at temperatures in the vicinity of 25C, and is equal to 3, where is the linear coefficient of thermal expansion. Data are given for the types of glass from which volumetic apparatus is most commonly made, and also for some other materials which have been or may be used in the fabrication of apparatus employed in analytical work.
Material Glasses Alkali-resistant, Corning 728 1.90 105 Gerateglas, Schott G20 1.47 Kimble KG-33 (borosilicate) 0.96 N-51A (“Resistant”) 1.47 R-6 (soft) 2.79 Pyrex, Corning 744 0.96 Vitreous silica 0.15 Vycor, Corning 790 0.24 Metals Brass ca. 5.5 Copper 5.0 Gold 4.3 Monel metal 4.0 Platinum 2.7 Silver 5.7 Stainless steel ca. 5.3 Tantalum ca. 2.0 Tungsten 1.3 Plastics and other materials Hard rubber 24 105 Polyethylene 45–90 Polystyrene 18–24 Porcelain ca. 1.2 Teflon (polytetrafluoroethylene) 16.5 TABLE 11.46 General Solubility Rules for Inorganic Compounds Nitrates All nitrates are soluble.
Acetates All acetates are soluble; silver acetate is moderately soluble.
Chlorides All chlorides are soluble except AgCl, PbCl2, and Hg2Cl2. PbCl2 is soluble in hot water, slightly soluble in cold water.
Sulfates All sulfates are soluble except barium and lead. Silver, mercury(I), and cal-cium are only slightly soluble.
Hydrogen sulfates The hydrogen sulfates are more soluble than the sulfates.
Carbonates, phosphates, chromates, silicates All carbonates, phosphates, chromates, and silicates are insoluble, except those of sodium, potassium, and ammonium. An exception is MgCrO4 which is soluble.
Hydroxides All hydroxides (except lithium, sodium, potassium, cesium, rubidium, and am-monia) are insoluble; Ba(OH)2 is moderately soluble; Ca(OH)2 and Sr(OH)2 are slightly soluble.
Sulfides All sulfides (except alkali metals, ammonium, magnesium, calcium, and bar-ium) are insoluble. Aluminum and chromium sulfides are hydrolyzed and precipitate as hydroxides.
Sodium, potassium, ammonium All sodium, potassium, and ammonium salts are soluble. Exceptions: Na4Sb2O7, K2NaCo(NO2)6, K2PtCl6, (NH4)2PtCl6, and (NH4)2NaCo(NO2)6.
Silver All silver salts are insoluble. Exceptions: AgNO3 and AgClO4; AgC2H3O2 and Ag2SO4 are moderately soluble.
11.106 SECTION 11 11.7 LABORATORY SOLUTIONS TABLE 11.47 Concentrations of Commonly Used Acids and Bases Freshly opened bottles of these reagents are generally of the concentrations indicated in the table. This may not be true of bottles long opened and this is especially true of ammonium hydroxide, which rapidly loses its strength.
In preparing volumetric solutions, it is well to be on the safe side and take a little more than the calculated volume of the concentrated reagent, since it is much easier to dilute a concentrated solution than to strengthen one that is too weak.
A concentrated C.P. reagent usually comes to the laboratory in a bottle having a label which states its molecular weight w, its density (or its specific gravity) d, and its percentage assay p. When such a reagent is used to prepare an aqueous solution of desired molarity M, a convenient formula to employ is 100 wM V pd where V is the number of milliliters of concentrated reagent required for 1 liter of the dilute solution.
Example: Sulfuric acid has the molecular weight 98.08. If the concentrated acid assays 95.5% and has the specific gravity 1.84, the volume required for 1 liter of a 0.1 molar solution is 100 98.08 0.1 V 5.58 mL 95.5 1.84 Reagent Formula Weight Density, g · mL1 (20C) Weight % (approx) Molarity V, mL Acetic acid 60.05 1.05 99.8 17.45 57.3 Ammonium hydroxide 35.05 0.90 56.6 14.53 60.0 (as NH3) 17.03 28.0 Ethylenediamine 60.10 0.899 100 15.0 66.7 Formic acid 46.03 1.20 90.5 23.6 42.5 Hydrazine 32.05 1.011 95 30.0 33.3 Hydriodic acid 127.91 1.70 57 7.6 132 Hydrobromic acid 80.92 1.49 48 8.84 113 Hydrochloric acid 36.46 1.19 37.2 12.1 82.5 Hydrofluoric acid 20.0 1.18 49.0 28.9 34.5 Nitric acid 63.01 1.42 70.4 15.9 63.0 Perchloric acid 100.47 1.67 70.5 11.7 85.5 Phosphoric acid 97.10 1.70 85.5 14.8 67.5 Pyridine 79.10 0.982 100 12.4 80.6 Potassium hydroxide (soln) 56.11 1.46 45 11.7 85.5 Sodium hydroxide (soln) 40.00 1.54 50.5 19.4 51.5 Sulfuric acid 98.08 1.84 96.0 18.0 55.8 Triethanolamine 149.19 1.124 100 7.53 132.7 V, mL volume in milliliters needed to prepare 1 liter of 1 molar solution.
PRACTICAL LABORATORY INFORMATION 11.107 TABLE 11.48 Standard Stock Solutions Element Procedure Aluminum Dissolve 1.000 g Al wire in minimum amount of 2 M HCl; dilute to volume.
Antimony Dissolve 1.000 g Sb in (1) 10 ml HNO3 plus 5 ml HCl, and dilute to volume when dissolution is complete; or (2) 18 ml HBr plus 2 ml liquid Br2; when dissolution is complete add 10 ml HClO4, heat in a well-ventilated hood while swirling until white fumes appear and continue for several minutes to expel all HBr, then cool and dilute to volume.
Arsenic Dissolve 1.3203 g of As2O3 in 3 ml 8 M HCl and dilute to volume; or treat the oxide with 2 g NaOH and 20 ml water; after dissolution dilute to 200 ml, neutralize with HCl (pH meter), and dilute to volume.
Barium (1) Dissolve 1.7787 g BaCl2 · 2H2O (fresh crystals) in water and dilute to volume. (2) Dissolve 1.516 g BaCl2 (dried at 250C for 2 hr) in water and dilute to volume. (3) Treat 1.4367 g BaCO3 with 300 ml water, slowly add 10 ml of HCl and, after the CO2 is released by swirling, dilute to volume.
Beryllium (1) Dissolve 19.655 g BeSO4 · 4H2O in water, add 5 ml HCl (or HNO3), and dilute to volume. (2) Dissolve 1.000 g Be in 25 ml 2 M HCl, then dilute to volume.
Bismuth Dissolve 1.000 g Bi in 8 ml of 10 M HNO3, boil gently to expel brown fumes, and dilute to volume.
Boron Dissolve 5.720 g fresh crystals of H3BO3 and dilute to volume.
Bromine Dissolve 1.489 g KBr (or 1.288 g NaBr) in water and dilute to volume.
Cadmium (1) Dissolve 1.000 g Cd in 10 ml of 2 M HCl; dilute to volume. (2) Dissolve 2.282 g 3CdSO4 · 8H2O in water; dilute to volume.
Calcium Place 2.4973 g CaCO3 in volumetric flask with 300 ml water, carefully add 10 ml HCl; after CO2 is released by swirling, dilute to volume.
Cerium (1) Dissolve 4.515 g (NH4)4Ce(SO4)4 · 2H2O in 500 ml water to which 30 ml H2SO4 had been added, cool, and dilute to volume. Advisable to standardize against As2O3.
(2) Dissolve 3.913 g (NH4)2Ce(NO3)6 in 10 ml H2SO4, stir 2 min, cautiously introduce 15 ml water and again stir 2 min. Repeat addition of water and stirring until all the salt has dissolved, then dilute to volume.
Cesium Dissolve 1.267 g CsCl and dilute to volume. Standardize: Pipette 25 ml of final solution to Pt dish, add 1 drop H2SO4, evaporate to dryness, and heat to constant weight at 800C. Cs (in g/ml) (40)(0.734)(wt of residue) Chlorine Dissolve 1.648 g NaCl and dilute to volume.
Chromium (1) Dissolve 2.829 g K2Cr2O7 in water and dilute to volume. (2) Dissolve 1.000 g Cr in 10 ml HCl, and dilute to volume.
Cobalt Dissolve 1.000 g Co in 10 ml of 2 M HCl, and dilute to volume.
Copper (1) Dissolve 3.929 g fresh crystals of CuSO4 · 5H2O, and dilute to volume. (2) Dissolve 1.000 g Cu in 10 ml HCl plus 5 ml water to which HNO3 (or 30%H2O2) is added dropwise until dissolution is complete. Boil to expel oxides of nitrogen and chlorine, then dilute to volume.
Dysprosium Dissolve 1.1477 g Dy2O3 in 50 ml of 2 M HCl; dilute to volume.
Erbium Dissolve 1.1436 g Er2O3 in 50 ml of 2 M HCl; dilute to volume.
Europium Dissolve 1.1579 g Eu2O3 in 50 ml of 2 M HCl; dilute to volume.
Fluorine Dissolve 2.210 g NaF in water and dilute to volume.
Gadolinium Dissolve 1.152 g Gd2O3 in 50 ml of 2 M HCl; dilute to volume.
Gallium Dissolve 1.000 g Ga in 50 ml of 2 M HCl; dilute to volume.
Germanium Dissolve 1.4408 g GeO2 with 50 g oxalic acid in 100 ml of water; dilute to volume.
1000 g/mL as the element in a final volume of 1 liter unless stated otherwise.
From J. A. Dean and T. C. Rains, “Standard Solutions for Flame Spectrometry,” in Flame Emission and Atomic Absorption Spectrometry, J. A. Dean and T. C. Rains (Eds.), Vol. 2, Chap. 13, Marcel Dekker, New York, 1971.
11.108 SECTION 11 Gold Dissolve 1.000 g Au in 10 ml of hot HNO3 by dropwise addition of HCl, boil to expel oxides of nitrogen and chlorine, and dilute to volume. Store in amber container away from light.
Hafnium Transfer 1.000 g Hf to Pt dish, add 10 ml of 9 M H2SO4, and then slowly add HF drop-wise until dissolution is complete. Dilute to volume with 10% H2SO4.
Holmium Dissolve 1.1455 g Ho2O3 in 50 ml of 2 M HCl; dilute to volume.
Indium Dissolve 1.000 g In in 50 ml of 2 M HCl; dilute to volume.
Iodine Dissolve 1.308 g Kl in water and dilute to volume.
Iridium (1) Dissolve 2.465 g Na3IrCl6 in water and dilute to volume. (2) Transfer 1.000 g Ir sponge to a glass tube, add 20 ml of HCl and 1 ml of HClO4. Seal the tube and place in an oven at 300C for 24 hr. Cool, break open the tube, transfer the solution to a volumetric flask, and dilute to volume. Observe all safety precautions in opening the glass tube.
Iron Dissolve 1.000 g Fe wire in 20 ml of 5 M HCl; dilute to volume.
Lanthanum Dissolve 1.1717 g La2O3 (dried at 110C) in 50 ml of 5 M HCl, and dilute to volume.
Lead (1) Dissolve 1.5985 g Pb(NO3)2 in water plus 10 ml HNO3, and dilute to volume. (2) Dissolve 1.000 g Pb in 10 ml HNO3, and dilute to volume.
Lithium Dissolve a slurry of 5.3228 g Li2CO3 in 300 ml of water by addition of 15 ml HCl; after release of CO2 by swirling, dilute to volume.
Lutetium Dissolve 1.6079 g LuCl3 in water and dilute to volume.
Magnesium Dissolve 1.000 g Mg in 50 ml of 1 M HCl and dilute to volume.
Manganese (1) Dissolve 1.000 g Mn in 10 ml HCl plus 1 ml HNO3, and dilute to volume. (2) Dis-solve 3.0764 g MnSO4 · H2O (dried at 105C for 4 hr) in water and dilute to volume.
(3) Dissolve 1.5824 g MnO2 in 10 HCl in a good hood, evaporate to gentle dryness, dissolve residue in water and dilute to volume.
Mercury Dissolve 1.000 g Hg in 10 ml of 5 M HNO3 and dilute to volume.
Molybdenum (1) Dissolve 2.0425 g (NH4)2MoO4 in water and dilute to volume. (2) Dissolve 1.5003 g MoO3 in 100 ml of 2 M ammonia, and dilute to volume.
Neodymium Dissolve 1.7373 g NdCl3 in 100 ml 1 M HCl and dilute to volume.
Nickel Dissolve 1.000 g Ni in 10 ml hot HNO3, cool, and dilute to volume.
Niobium Transfer 1.000 g Nb (or 1.4305 g Nb2O5) to Pt dish, add 20 ml HF, and heat gently to complete dissolution. Cool, add 40 ml H2SO4, and evaporate to fumes of SO3. Cool and dilute to volume with 8 M H2SO4.
Osmium Dissolve 1.3360 g OsO4 in water and dilute to 100 ml. Prepare only as needed as solu-tion loses strength on standing unless Os is reduced by SO2 and water is replaced by 100 ml 0.1 M HCl.
Palladium Dissolve 1.000 g Pd in 10 ml of HNO3 by dropwise addition of HCl to hot solution; dilute to volume.
Phosphorus Dissolve 4.260 g (NH4)2HPO4 in water and dilute to volume.
Platinum Dissolve 1.000 g Pt in 40 ml of hot aqua regia, evaporate to incipient dryness, add 10 ml HCl and again evaporate to moist residue. Add 10 ml HCl and dilute to volume.
Potassium Dissolve 1.9067 g KCl (or 2.8415 g KNO3) in water and dilute to volume.
Praseodymium Dissolve 1.1703 g Pr2O3 in 50 ml of 2 M HCl; dilute to volume.
Rhenium Dissolve 1.000 g Re in 10 ml of 8 M HNO3 in an ice bath until initial reaction subsides, then dilute to volume.
Rhodium Dissolve 1.000 g Rh by the sealed-tube method described under iridium.
Rubidium Dissolve 1.4148 g RbCl in water. Standardize as described under cesium. Rb (in g/ml) (40)(0.320)(wt of residue).
Ruthenium Dissolve 1.317 g RuO2 in 15 ml of HCl; dilute to volume.
Samarium Dissolve 1.1596 g Sm2O3 in 50 ml of 2 M HCl; dilute to volume.
Scandium Dissolve 1.5338 g Sc2O3 in 50 ml of 2 M HCl; dilute to volume.
TABLE 11.48 Standard Stock Solutions (Continued) Element Procedure PRACTICAL LABORATORY INFORMATION 11.109 Selenium Dissolve 1.4050 g SeO2 in water and dilute to volume or dissolve 1.000 g Se in 5 ml of HNO3, then dilute to volume.
Silicon Fuse 2.1393 g SiO2 with 4.60 g Na2CO3, maintaining melt for 15 min in Pt crucible.
Cool, dissolve in warm water, and dilute to volume. Solution contains also 2000 g/ ml sodium.
Silver (1) Dissolve 1.5748 g AgNO3 in water and dilute to volume. (2) Dissolve 1.000 g Ag in 10 ml of HNO3; dilute to volume. Store in amber glass container away from light.
Sodium Dissolve 2.5421 g NaCl in water and dilute to volume.
Strontium Dissolve a slurry of 1.6849 g SrCO3 in 300 ml of water by careful addition of 10 ml of HCl; after release of CO2 by swirling, dilute to volume.
Sulfur Dissolve 4.122 g (NH4)2SO4 in water and dilute to volume.
Tantalum Transfer 1.000 g Ta (or 1.2210 g Ta2O5) to Pt dish, add 20 ml of HF, and heat gently to complete the dissolution. Cool, add 40 ml of H2SO4 and evaporate to heavy fumes of SO3. Cool and dilute to volume with 50% H2SO4.
Tellurium (1) Dissolve 1.2508 g TeO2 in 10 ml of HCl; dilute to volume. (2) Dissolve 1.000 g Te in 10 ml of warm HCl with dropwise addition of HNO3, then dilute to volume.
Terbium Dissolve 1.6692 g of TbCl3 in water, add 1 ml of HCl, and dilute to volume.
Thallium Dissolve 1.3034 g TlNO3 in water and dilute to volume.
Thorium Dissolve 2.3794 g Th(NO3)4 · 4H2O in water, add 5 ml HNO3, and dilute to volume.
Thulium Dissolve 1.142 g Tm2O3 in 50 ml of 2 M HCl; dilute to volume.
Tin Dissolve 1.000 g Sn in 15 ml of warm HCl; dilute to volume.
Titanium Dissolve 1.000 g Ti in 10 ml of H2SO4 with dropwise addition of HNO3; dilute to vol-ume with 5% H2SO4.
Tungsten Dissolve 1.7941 g of Na2WO4 · 2H2O in water and dilute to volume.
Uranium Dissolve 2.1095 g UO2(NO3)2 · 6H2O (or 1.7734 g uranyl acetate dihydrate) in water and dilute to volume.
Vanadium Dissolve 2.2963 g NH4VO3 in 100 ml of water plus 10 ml of HNO3; dilute to volume.
Ytterbium Dissolve 1.6147 g YbCl3 in water and dilute to volume.
Yttrium Dissolve 1.2692 g Y2O3 in 50 ml of 2 M HCl and dilute to volume.
Zinc Dissolve 1.000 g Zn in 10 ml of HCl; dilute to volume.
Zirconium Dissolve 3.533 g ZrOCl2 · 8H2O in 50 ml of 2 M HCl, and dilute to volume. Solution should be standardized.
TABLE 11.48 Standard Stock Solutions (Continued) Element Procedure 11.7.1 General Reagents, Indicators, and Special Solutions Unless otherwise stated, the term g per liter signifies grams of the formula indicated dissolved in water and made up to a liter of solution.
Acetic acid, glacial acetic acid per liter.
HC H O 96N: 350 mL 2 3 2 Alcohol, amyl, C5H11OH: use as purchased.
Alcohol, ethyl, C2H5OH; 95% alcohol, as purchased.
Alizarin, dihydroxyanthraquinone (indicator): dissolve in alcohol; pH range yel-0.1 g 100 mL low 5.5–6.8 red.
Alizarin yellow R, sodium p-nitrobenzeneazosalicylate (indicator): dissolve in 0.1 g 100 mL water; pH range yellow 10.1–violet 12.1.
11.110 SECTION 11 Alizarin yellow GG, salicyl yellow, sodium m-nitrobenzeneazosalicylate (indicator): dissolve in 50% alcohol; pH range yellow 10.0–12.0 lilac.
0.1 g 100 mL Alizarin S, alizarin carmine, sodium alizarin sulfonate (indicator): dissolve in 0.1 g 100 mL water; pH range yellow 3.7–5.2 violet.
Aluminon (qualitative test for aluminum). The reagent consists of 0.1% solution of the ammo-nium salt of aurin tricarboxylic acid. A bright red precipitate, persisting in alkaline solution, indicates aluminum.
Aluminum chloride, per liter.
AlCl 90.5N: 22 g 3 Aluminum nitrate, per liter.
Al(NO ) · 7.5H O90.5N: 58 g 3 3 2 Aluminum sulfate, per liter.
Al (SO ) · 18H O90.5N: 55 g 2 4 3 2 Ammonium acetate, per liter.
NH C H O 93N: 231 g 4 2 3 2 Ammonium carbonate, per liter; for the anhydrous salt: (NH ) CO · H O93N: 171 g 144 g 4 2 3 2 per liter.
Ammonium chloride, per liter.
NH Cl93N: 161 g 4 Ammonium hydroxide, the concentrated solution which contains 28% NH3; NH OH915N: 4 for 6N: per liter.
400 mL Ammonium molybdate, dissolve of solid in (NH ) MoO 9N: 88.3 g (NH ) Mo O · 4H O 4 2 4 4 6 7 24 2 6N NH4OH. Add of solid NH4NO3 and dilute to 1 liter. Another method is to take 100 mL 240 g of MoO3, add of water and of 15N NH4OH; stir mechanically until nearly 72 g 130 mL 75 mL all has dissolved, then add it to a solution of concentrated HNO3 and of water; 240 mL 500 mL stir continuously while solutions are being mixed; allow to stand 3 days, filter, and use the clear filtrate.
Ammonium nitrate, per liter.
NH NO 9N: 80 g 4 3 Ammonium oxalate, per liter.
(NH ) C O · H O90.5N: 40 g 4 2 2 4 2 Ammonium polysulfide (yellow ammonium sulfide), (NH4)2Sx: allow the colorless (NH4)2S to stand, or add sulfur.
Ammonium sulfate, per liter; saturated: dissolve of (NH4)2SO4 (NH ) SO 90.5N: 33 g 780 g 4 2 4 in water and make up to a liter.
Ammonium sulfide (colorless), pass H2S through of concentrated (NH ) S9saturated: 200 mL 4 2 NH4OH in the cold until no more gas is dissolved, add NH4OH and dilute with water 200 mL to a liter; the addition of of sulfur is sufficient to make the polysulfide.
15 g Antimony pentachloride, per liter.
SbCl 90.5N: 39 g 5 Antimony trichloride, per liter.
SbCl 90.5N: 38 g 3 Aqua regia: mix 3 parts of concentrated HCl and 1 part of concentrated HNO3 just before ready to use.
Arsenic acid, per liter.
1 H AsO · 0.5H O90.5N ( ⁄2H AsO 5): 15 g 3 4 2 3 4 Arsenous oxide, per liter for saturation.
As O 90.25N: 8 g 2 3 Aurichloric acid, dissolve in ten parts of water.
HAuCl · 3H O: 4 2 Aurin, see rosolic acid.
Azolitmin solution (indicator); make up a 1% solution of azolitmin by boiling in water for 5 minutes; it may be necessary to add a small amount of NaOH to make the solution neutral; pH range red 4.5–8.3 blue.
PRACTICAL LABORATORY INFORMATION 11.111 Bang’s reagent (for glucose estimation): dissolve of K2CO3, of KCl, and 160 of 100 g 66 g KHCO3 in the order given in about of water at 30C. Add of copper sulfate and 700 mL 4.4 g dilute to 1 liter after the CO2 is evolved. This solution should be shaken only in such a manner as not to allow the entry of air. After 24 hours diluted to a liter with saturated KCl 300 mL solution, shaken gently and used after 24 hours; 50 mL # 10 mg glucose.
Barfoed’s reagent (test for glucose): dissolve of cupric acetate and of glacial acetic 66 g 10 mL acid in water and dilute to 1 liter.
Barium chloride, per liter.
BaCl · 2H O90.5N: 61 g 2 2 Barium hydroxide, per liter for saturation.
Ba(OH) · 8H O90.2N: 32 g 2 2 Barium nitrate, per liter.
Ba(NO ) 90.5N: 65 g 3 2 Baudisch’s reagent: see cupferron.
Benedict’s qualitative reagent (for glucose): dissolve of sodium citrate and of 173 g 100 g anhydrous sodium carbonate in about of water, and dilute to dissolve 600 mL 850 mL; 17.3 g of in of water and dilute to this solution is added to the citrate-CuSO · 5H O 100 mL 150 mL; 4 2 carbonate solution with constant stirring. See also the quantitative reagent below.
Benedict’s quantitative reagent (sugar in urine): This solution contains copper sulfate, 18 g of anhydrous sodium carbonate, of potassium citrate, of potassium thiocyanate, 100 g 200 g 125 g and of potassium ferrocyanide per liter; of this sugar.
0.25 g 1 mL solution # 0.002 g Benzidine hydrochloride solution (for sulfate determination): mix of benzidine 6.7 g [C12H8(NH2)2] or of the hydrochloride into a paste with of 8.0 g [C H (NH ) · 2HCl] 20 mL 12 8 2 2 water; add of HCl (sp. gr. 1.12) and dilute the mixture to 1 liter with water; each mL of 20 mL this solution is equivalent to H2SO4.
0.00357 g Benzopurpurine 4B (indicator): dissolve in water; pH range blue-violet 1.3–4.0 0.1 g 100 mL red.
Benzoyl auramine (indicator): dissolve in methyl alcohol; pH range violet 5.0– 0.25 g 100 mL 5.6 pale yellow. Since this compound is not stable in aqueous solution, hydrolyzing slowly in neutral medium, more rapidly in alkaline, and still more rapidly in acid solution, the indicator should not be added until one is ready to titrate. The acid quinoid form of the compound is dichroic, showing a red-violet in thick layers and blue in thin. At a pH of 5.4 the indicator appears a neutral gray color by daylight or a pale red under tungsten light. The change to yellow is easily recognized in either case. Cf. Scanlan and Reid, Ind. Eng. Chem., Anal. Ed. 7:125 (1935).
Bertrand’s reagents (glucose estimation): (a) of copper sulfate diluted to 1 liter; (b) rochelle 40 g salt NaOH and sufficient water to make 1 liter; (c) ferric sulfate H2SO4 200 g, 150 g, 50 g, and sufficient water to make 1 liter; (d) KMnO4 and sufficient water to make 1 liter.
200 g, 5 g Bial’s reagent (for pentoses): dissolve of orcinol in of 30% HCl to which 30 drops 1 g 500 mL of a 10% ferric chloride solution have been added.
Bismuth chloride, per liter, using HCl in place of water.
BiCl 90.5N: 52 g 1:5 3 Bismuth nitrate, per liter, using in place of water.
Bi(N O ) · 5H O90.25N: 40 g 1:5 HNO 2 3 3 2 3 Bismuth standard solution (quantitative color test for Bi): dissolve of bismuth in a mixture 1 g of of concentrated HNO3 and of H2O and make up to with glycerol. Also 3 mL 2.8 mL 100 mL dissolve of KI in of water and make up to with glycerol. The two solutions 5 g 5 mL 100 mL are used together in the colorimetric estimation of Bi.
Boutron-Boudet solution: see soap solution.
11.112 SECTION 11 Bromchlorophenol blue, dibromodichlorophenol-sulfonphthalein (indicator): dissolve in 0.1 g 0.02 N NaOH and dilute with water to pH range yellow 3.2–4.8 blue.
8.6 mL 250 mL; Bromcresol green, tetrabromo-m-cresol-sulfonphthalein (indicator): dissolve in 0.1 g 7.15 mL 0.02 N NaOH and dilute with water to or, in 20% alcohol; pH range 250 mL; 0.1 g 100 mL yellow 4.0–5.6 blue.
Bromcresol purple, dibromo-o-cresol-sulfonphthalein (indicator): dissolve in 0.02 0.1 g 9.5 mL N NaOH and dilute with water to or, in 20% alcohol; pH range yellow 250 mL; 0.1 g 100 mL 5.2–6.8 purple.
Bromine water, saturated solution: to water add of bromine; use a glass stopper 400 mL 20 mL coated with petrolatum.
Bromphenol blue, tetrabromophenol-sulfonphthalein (indicator): dissolve in 0.02 0.1 g 7.45 mL N NaOH and dilute with water to or, in 20% alcohol; pH range yellow 250 mL; 0.1 g 100 mL 3.6–4.6 violet-blue.
Bromphenol red, dibromophenol-sulfonphthalein (indicator): dissolve in 0.02 N 0.1 g 9.75 mL NaOH and dilute with water to pH range yellow 5.2–7.0 red.
250 mL; Bromthymol blue, dibromothymol-sulfonphthalein (indicator): dissolve in 0.02 N 0.1 g 8.0 mL NaOH and dilute with water to or, in of 20% alcohol; pH range yellow 250 mL; 0.1 g 100 mL 6.0–7.6 blue.
Brucke’s reagent (protein precipitant): dissolve of KI in of water, saturate with 50 g 500 mL HgI2 (about and dilute to 1 liter.
120 g), Cadmium chloride, per liter.
CdCl 90.5N: 46 g 2 Cadmium nitrate, per liter.
Cd(NO ) · 4H O90.5N: 77 g 3 2 2 Cadmium sulfate, per liter.
CdSO · 4H O90.5N: 70 g 4 2 Calcium chloride, per liter.
CaCl · 6H O90.5N: 55 g 2 2 Calcium hydroxide, per liter for saturation.
Ca(OH) 90.04N: 10 g 2 Calcium nitrate, per liter.
Ca(NO ) · 4H O90.5N: 59 g 3 2 2 Calcium sulfate, mechanically stir in a liter of water for 3 hours; CaSO · 2H O90.03N: 10 g 4 2 decant and use the clear liquid.
Carbon disulfide, CS2: commercial grade which is colorless.
Chloride reagent: dissolve of AgNO3 and KNO3 in water, add of concentrated 1.7 g 25 g 17 mL NH4OH and make up to 1 liter with water.
Chlorine water, saturated solution: pass chlorine gas into small amounts of water as needed; solutions deteriorate on standing.
Chloroform, CHCl3: commercial grade.
Chloroplatinic acid, solution: dissolve in of water; keep in a H PtCl · 6H O910% 1 g 9 mL 2 6 2 dropping bottle.
Chlorphenol red, dichlorophenol-sulfonphthalein (indicator): dissolve in 0.02 N 0.1 g 11.8 mL NaOH and dilute with water to or, in 20% alcohol; pH range yellow 5.2– 250 mL; 0.1 g 100 mL 6.6 red.
Chromic chloride, per liter.
CrCl 90.5N: 26 g 3 Chromic nitrate, per liter.
Cr(NO ) 90.5N: 40 g 3 3 Chromic sulfate, per liter.
Cr (SO ) · 18H O90.5N: 60 g 2 4 3 2 Cobaltous nitrate, per liter.
Co(NO ) · 6H O90.5N: 73 g 3 2 2 PRACTICAL LABORATORY INFORMATION 11.113 Cobaltous sulfate, per liter.
CoSO · 7H O90.5N: 70 g 4 2 Cochineal (indicator): triturate with alcohol and water, let stand for two days 1 g 75 mL 75 mL and filter; pH range red 4.8–6.2 violet.
Congo red, sodium tetrazodiphenyl-naphthionate (indicator): dissolve in water; 0.1 g 100 mL pH range blue 3.0–5.2 red.
Corallin (indicator): see rosolic acid.
Cresol red, o-cresol-sulfonphthalein (indicator): dissolve in NaOH and 0.1 g 13.1 mL 0.02N dilute with water to or, in 20% alcohol; pH range yellow 7.2–8.8 red.
250 mL; 0.1 g 100 mL o-Cresolphthalein (indicator): dissolve in alcohol; pH range colorless 8.2–10.4 0.1 g 250 mL red.
Cupferron (iron analysis): dissolve of ammonium nitrosophenyl-hydroxylamine (cupferron) 6 g in water and dilute to This solution is stable for about one week if protected from light.
100 mL.
Cupric chloride, per liter.
CuCl · 2H O90.5N: 43 g 2 2 Cupric nitrate, per liter.
Cu(NO ) · 6H O90.5N: 74 g 3 2 2 Cupric sulfate, per liter.
CuSO · 5H O90.5N: 62 g 4 2 Cuprous chloride, per liter, using in place of water.
CuCl90.5N: 50 g 1:5 HCl Cuprous chloride, acid (for gas analysis, absorption of CO): cover the bottom of a 2-liter bottle with a layer of copper oxide inch deep, and place a bundle of copper wire an inch thick in the 3⁄8 bottle so that it extends from the top to the bottom. Fill the bottle with HCl (sp. gr. 1.10). The bottle is shaken occasionally, and when the solution is colorless or nearly so, it is poured into half-liter bottles containing copper wire. The large bottle may be filled with hydrochloric acid, and by adding the oxide or wire when either is exhausted, a constant supply of the reagent is available.
Cuprous chloride, ammoniacal: this solution is used for the same purpose and is made in the same manner as the acid cuprous chloride above, except that the acid solution is treated with ammonia until a faint odor of ammonia is perceptible. Copper wire should be kept with the solution as in the acid reagent.
Curcumin (indicator): prepare a saturated aqueous solution; pH range yellow 6.0–8.0 brownish red.
Dibromophenol-tetrabromophenol-sulfonphthalein (indicator): dissolve in 0.1 g 1.21 mL 0.1N NaOH and dilute with water to pH range yellow 5.6–7.2 purple.
250 mL; Dimethyl glyoxime, in of 95% alcohol.
(CH CNOH) 90.01N: 6 g 500 mL 3 2 2,4-Dinitrophenol (indicator): dissolve in a few mL alcohol, then dilute with water to 0.1 g pH range colorless 2.6–4.0 yellow.
100 mL; 2,5-Dinitrophenol (indicator): dissolve in alcohol, then dilute with water to 0.1 g 20 mL pH range colorless 4–5.8 yellow.
100 mL; 2,6-Dinitrophenol (indicator): dissolve in a few mL alcohol, then dilute with water to 0.1 g pH range colorless 2.4–4.0 yellow.
100 mL; Esbach’s reagent (estimation of proteins): dissolve of picric acid and of citric acid in 10 g 20 g water and dilute to 1 liter.
Eschka’s mixture (sulfur in coal): mix 2 parts of porous calcined MgO with 1 part of anhydrous Na2CO3; not a solution but a dry mixture.
Ether, commercial grade.
(C H ) O9use 2 5 2 11.114 SECTION 11 p-Ethoxychrysoidine, p-ethoxybenzeneazo-m-phenylenediamine (indicator): dissolve of 0.1 g the base in 90% alcohol; or, of the hydrochloride salt in water; pH range 100 mL 0.1 g 100 mL red 3.5–5.5 yellow.
Ethyl bis-(2,4-dinitrophenyl) acetate (indicator): the stock solution is prepared by saturating a solution containing equal volumes of alcohol and acetone with the indicator; pH range colorless 7.4–9.1 deep blue. This compound is available commercially. The preparation of this compound is described by Fehnel and Amstutz, Ind. Eng. Chem., Anal. Ed. 16:53 (1944), and by von Richter, Ber. 21:2470 (1888), who recommended it for the titration of orange- and red-colored solutions or dark oils in which the endpoint of phenol-phthalein is not easily visible. The indicator is an orange solid which after crystallization from benzene gives pale yellow crystals melting at 150– 153.5C, uncorrected.
Fehling’s solution (sugar detection and estimation): (a) Copper sulfate solution: dissolve of in water and dilute to (b) Alkaline tartrate solution: dissolve 34.639 g CuSO · 5H O 500 mL.
4 2 of rochelle salts and of KOH in water and dilute to 173 g (KNaC O · 4H O) 125 g 500 mL.
4 6 2 Equal volumes of the two solutions are mixed just prior to use. The Methods of the Assoc. of Official Agricultural Chemists give of NaOH in place of the KOH.
50 g 125 g Ferric chloride, per liter.
FeCl 90.5N: 27 g 3 Ferric nitrate, per liter.
Fe(NO ) · 9H O90.5N: 67 g 3 3 2 Ferrous ammonium sulfate, Mohr’s salt, per liter.
FeSO · (NH ) SO · 6H O90.5N: 196 g 4 4 2 4 2 Ferrous sulfate, per liter; add a few drops of H2SO4.
FeSO · 7H O90.5N: 80 g 4 2 Folin’s mixture (for uric acid): dissolve of ammonium sulfate, of uranium acetate, 500 g 5 g and of glacial acetic acid, in of water. The volume is about a liter.
6 mL 650 mL Formal or Formalin: use the commercial 40% solution of formaldehyde.
Froehde’s reagent (gives characteristic colorations with certain alkaloids and glycosides): dis-solve of sodium molybdate in of concentrated H2SO4; use only a freshly prepared 0.01 g 1 mL solution.
Gallein (indicator): dissolve in alcohol; pH range light brown-yellow 3.8–6.6 rose.
0.1 g 100 mL Glyoxylic acid solution (protein detection): cover of magnesium powder with water and 10 g slowly add of a saturated oxalic solution, keeping the mixture cool; filter off the mag-250 mL nesium oxalate, acidify the filtrate with acetic acid and make up to a liter with water.
Guaiacum tincture: dissolve of guaiacum in of alcohol.
1 g 100 mL Gunzberg’s reagent (detection of HCl in gastric juice): dissolve of phloroglucinol and 4 g 2 g of vanillin in of absolute alcohol; use only a freshly prepared solution.
100 mL Hager’s reagent (for alkaloids): this reagent is a saturated solution of picric acid in water.
Hanus solution (for determination of iodine number): dissolve of iodine in a liter of 13.2 g glacial acetic acid that will not reduce chromic acid; add sufficient bromine to double the halogen content determined by titration is about the right amount). The iodine may be dissolved (3 mL with the aid of heat, but the solution must be cold when the bromine is added.
Hematoxylin (indicator): dissolve in alcohol; pH range yellow 5.0–6.0.
0.5 g 100 mL Heptamethoxy red, 2,4,6,2,4,2,4-heptamethoxytriphenyl carbinol (indicator): dissolve in alcohol; pH range red 5.0–7.0 colorless.
0.1 g 100 mL Hydriodic acid, per liter.
HI90.5N: 64 g Hydrobromic acid, per liter.
HBr90.5N: 40 g Hydrochloric acid, per liter; sp. gr. 1.084.
HCl95N: 182 g PRACTICAL LABORATORY INFORMATION 11.115 Hydrofluoric acid, solution: use as purchased, and keep in the special container.
H F 948% 2 2 Hydrogen peroxide, solution: use as purchased.
H O 93% 2 2 Hydrogen sulfide, H2S: prepare a saturated aqueous solution.
Indicator solutions: a number of indicator solutions are listed in this section under the names of the indicators; e.g., alizarin, aurin, azolitmin, et al., which follow alphabetically. See also various index entries.
Indigo carmine, sodium indigodisulfonate (indicator): dissolve in 50% alcohol; 0.25 g 100 mL pH range blue 11.6–14.0 yellow.
Indo-oxine, 5,8-quinolinequinone-8-hydroxy-5-quinoyl-5-imide (indicator): dissolve in 0.05 g alcohol; pH range red 6.0–8.0 blue. Cf. Berg and Becker, Z. Anal. Chem. 119:81 (1940).
100 mL Iodeosin, tetraiodofluorescein (indicator): dissolve in ether saturated with water; 0.1 g 100 mL pH range yellow 0–about 4 rose-red; see also under methyl orange.
Iodic acid, (HIO3/12): per liter.
HIO 90.5N 15 g 3 Iodine: see tincture of iodine.
Lacmoid (indicator): dissolve in alcohol; pH range red 4.4–6.2 blue.
0.5 g 100 mL Lead acetate, per liter.
Pb(C H O ) · 3H O90.5N: 95 g 2 3 2 2 2 Lead chloride, solution is 1/7N.
PbCl 9saturated 2 Lead nitrate, per liter.
Pb(NO ) 90.5N: 83 g 3 2 Lime water: see calcium hydroxide.
Litmus (indicator): powder the litmus and make up a 2% solution in water by boiling for 5 minutes; pH range red 4.5–8.3 blue.
Magnesia mixture: of MgSO4, of NH4Cl, of NH4Cl, of water; 100 g 200 g 400 mL 800 mL each phosphorus (P).
mL # 0.01 g Magnesium chloride, per liter.
MgCl · 6H O90.5N: 50 g 2 2 Magnesium nitrate, per liter.
Mg(NO ) · 6H O90.5N: 64 g 3 2 2 Magnesium sulfate, epsom salts, per liter; saturated solution dis-MgSO · 7H O90.5N: 62 g 4 2 solve of the salt in water and dilute to 1 liter.
600 g Manganous chloride, per liter.
MnCl · 4H O90.5N: 50 g 2 2 Manganous nitrate, per liter.
Mn(NO ) · 6H O90.5N: 72 g 3 2 2 Manganous sulfate, per liter.
MnSO · 7H O90.5N: 69 g 4 2 Marme’s reagent (gives yellowish-white precipitate with salts of alkaloids): saturate a boiling solution of 4 parts of KI in 12 parts of water with CdI2; then add an equal volume of cold saturated KI solution.
Marquis reagent (gives a purple-red coloration, then violet, then blue with morphine, codeine, dionine, and heroine): mix of concentrated H2SO4 with 3 drops of a 35% formaldehyde 3 mL solution.
Mayer’s reagent (gives white precipitate with most alkaloids in a slightly acid solution): dissolve of HgCl2 and of KI in a liter of water.
13.55 g 50 g Mercuric chloride, per liter.
HgCl 90.5N: 68 g 2 Mercuric nitrate, per liter.
Hg(NO ) 90.5N: 81 g 3 2 Mercuric sulfate, per liter.
HgSO 90.5N: 74 g 4 11.116 SECTION 11 Mercurous nitrate, HgNO3: mix 1 part of HgNO3, 20 parts of H2O, and 1 part of HNO3.
Metacresol purple, m-cresol-sulfonphthalein (indicator): dissolve in 0.02N NaOH 0.1 g 13.6 mL and dilute with water to acid pH range red 0.5–2.5 yellow, alkaline pH range yellow 250 mL; 7.4–9.0 purple.
Metanil yellow, diphenylaminoazo-m-benzene sulfonic acid (indicator): dissolve in 0.25 g alcohol; pH range red 1.2–2.3 yellow.
100 mL Methyl green, hexamethylpararosaniline hydroxymethylate (component of mixed indicator): dis-solve in alcohol; when used with equal parts of hexamethoxytriphenyl carbinol 0.1 g 100 mL gives color change from violet to green at a titration exponent (pI) of 4.0.
Methyl orange, orange III, tropeolin D, sodium p-dimethylaminoazobenzenesulfonate (indica-tor): dissolve in water; pH range red 3.0–4.4 orange-yellow. If during a titration 0.1 g 100 mL where methyl yellow is being used a precipitate forms which tends to remove the indicator from the aqueous phase, methyl orange will be found to be a more suitable indicator. This occurs, for example, in titrations of soaps with acids. The fatty acids, liberated by the titration, extract the methyl yellow so that the endpoint cannot be perceived. Likewise methyl orange is more suitable for titrations in the presence of immiscible organic solvents such as carbon tetrachloride or ether used in the extraction of alkaloids for analysis. Iodeosin (q.v.) has also been proposed as an indicator for such cases. Cf. Mylius and Foerster, Ber. 24:1482 (1891); Z. Anal. Chem. 31:240 (1892).
Methyl red, p-dimethylaminoazobenzene-o-carboxylic acid (indicator): dissolve in 0.1 g of NaOH and dilute with water to or, in 60% alcohol; pH range 18.6 mL 0.02N 250 mL; 0.1 g red 4.4–6.2 yellow.
Methyl violet (indicator): dissolve in water, pH range blue 1.5–3.2 violet.
0.25 g 100 mL Methyl yellow, p-dimethylaminoazobenzene, benzeneazodimethylaniline (indicator): dissolve in alcohol; pH range red 2.9–4.0 yellow. The color change from yellow to orange 0.1 g 200 mL can be perceived somewhat more sharply than the change of methyl orange from orange to rose, so that methyl yellow seems to deserve preference in many cases. See also under methyl orange.
Methylene blue, N,N,N,N-tetramethylthionine (component of mixed indicator): dissolve in alcohol; when used with equal part of methyl yellow gives color change from 0.1 g 100 mL blue-violet to green at a titration exponent (pI) of 3.25; when used with equal part of 0.2% methyl red in alcohol gives color change from red-violet to green at a titration exponent (pI) of 5.4; when used with an equal part of neutral red gives color change from violet-blue to green at a titration exponent (pI) of 7.0.
Millon’s reagent (gives a red precipitate with certain proteins and with various phenols): dissolve 1 part of mercury in 1 part of HNO3 (sp. gr. 1.40) with gentle heating, then add 2 parts of water; a few crystals of KNO3 help to maintain the strength of the reagent.
Mohr’s salt: see ferrous ammonium sulfate.
-Naphthol solution: dissolve of -naphthol in enough alcohol to make a liter of solution.
144 g -Naphtholbenzein (indicator): dissolve in 70% alcohol; pH range colorless 9.0– 0.1 g 100 mL 11.0 blue.
-Naphtholphthalein (indicator): dissolve in alcohol and dilute with water to 0.1 g 50 mL pH range pale yellow-red 7.3–8.7 green.
100 mL; Nessler’s reagent (for free ammonia): dissolve of KI in the least possible amount of cold 50 g water; add a saturated solution of HgCl2 until a very slight excess is indicated; add of a 400 mL 50% solution of KOH; allow to settle, make up to a liter with water, and decant.
PRACTICAL LABORATORY INFORMATION 11.117 Neutral red, toluylene red, dimethyldiaminophenazine chloride, aminodimethylaminotoluphen-azine hydrochloride (indicator): dissolve in alcohol and dilute with water to 0.1 g 60 mL pH range red 6.8–8.0 yellow-orange.
100 mL; Nickel chloride, per liter.
NiCl · 6H O90.5N: 59 g 2 2 Nickel nitrate, per liter.
Ni(NO ) · 6H O90.5N: 73 g 3 2 2 Nickel sulfate, per liter.
NiSO · 6H O90.5N: 66 g 4 2 Nitramine, picrylmethylnitramine, 2,4,6-trinitrophenylmethyl nitramine (indicator): dissolve in alcohol and dilute with water to pH range colorless 10.8–13.0 red-0.1 g 60 mL 100 mL; brown; the solution should be kept in the dark as nitramine is unstable; on boiling with alkali it decomposes quickly. Fresh solutions should be prepared every few months.
Nitric acid, per liter; sp. gr. 1.165.
HNO 95N: 315 g 3 Nitrohydrochloric acid: see aqua regia.
p-Nitrophenol (indicator): dissolve in water; pH range colorless at about 5–7 0.2 g 100 mL yellow.
Nitroso--naphthol, solution: saturate of 50% acetic acid with HOC H NO9saturated 100 mL 10 6 the solid.
Nylander’s solution (detection of glucose): dissolve of rochelle salt and of bismuth 40 g 20 g subnitrate in of an 8% NaOH solution.
1000 mL Obermayer’s reagent (detection of indoxyl in urine): dissolve of FeCl3 in a liter of concen-4 g trated HCl.
Orange III (indicator): see under methyl orange.
Oxalic acid, dissolve in ten parts of water.
H C O · 2H O: 2 2 4 2 Pavy’s solution (estimation of glucose): mix of Fehling’s solution and of am-120 mL 300 mL monium hydroxide (sp. gr. 0.88), and dilute to a liter with water.
Perchloric acid, use as purchased.
HClO 960%: 4 Phenol red, phenol-sulfonphthalein (indicator): dissolve in 0.02N NaOH and 0.1 g 14.20 mL dilute with water to or, in 20% alcohol; pH range yellow 6.8–8.0 red.
250 mL; 0.1 g 100 mL Phenol solution: dissolve of phenol (carbolic acid) in a liter of water.
20 g Phenol sulfonic acid (determination of nitrogen as nitrate; water analysis for nitrate): dissolve pure, white phenol in of pure concentrated H2SO4, add of fuming H2SO4 25 g 150 mL 75 mL (15% SO3), stir well and heat for two hours at 100C.
Phenolphthalein (indicator): dissolve in of alcohol and dilute with water to 1 g 60 mL pH range colorless 8.2–10.0 red.
100 mL; Phosphoric acid, ortho, per liter.
H PO 90.5N: 16 g 3 4 Poirrer blue C4B (indicator): dissolve in water; pH range blue 11.0–13.0 red.
0.2 g 100 mL Potassium acid antimonate, boil of the salt with of water for KH SbO 90.1N: 23 g 950 mL 2 4 5 minutes, cool rapidly and add of 6N KOH; allow to stand for one day, filter dilute 35 mL filtrate to a liter.
Potassium arsenate, (K3AsO4/10): per liter.
K AsO 90.5N 26 g 3 4 Potassium arsenite, (KAsO2/6): per liter.
KAsO 90.5N 24 g 2 Potassium bromate, (KBrO3/12): per liter.
KBrO 90.5N 14 g 3 Potassium bromide, per liter.
KBr90.5N: 60 g 11.118 SECTION 11 Potassium carbonate, per liter.
K CO 93N: 207 g 2 3 Potassium chloride, per liter.
KCl90.5N: 37 g Potassium chromate, per liter.
K CrO 90.5N: 49 g 2 4 Potassium cyanide, per liter.
KCN90.5N: 33 g Potassium dichromate, (K2Cr2O7/8): per liter.
K Cr O 90.5N 38 g 2 2 7 Potassium ferricyanide, per liter.
K Fe(CN) 90.5N: 55 g 3 6 Potassium ferrocyanide, K4Fe(CN)6 · 3H2O90.5N: per liter.
53 g Potassium hydroxide, per liter.
KOH95N: 312 g Potassium iodate, (KIO3/12): per liter.
KIO 90.5N 18 g 3 Potassium iodide, per liter.
KI90.5N: 83 g Potassium nitrate, per liter.
KNO 90.5N: 50 g 3 Potassium nitrate, per liter.
KNO 96N: 510 g 2 Potassium permanganate, (KMnO4/10): per liter.
KMnO 90.5N 16 g 4 Potassium pyrogallate (oxygen in gas analysis): weigh out of pyrogallol (pyrogallic acid), 5 g and pour upon it of a KOH solution. If the gas contains less than 28% of oxygen, the 100 mL KOH solution should be KOH in a liter of water; if there is more than 28% of oxygen in 500 g the gas, the KOH solution should be of KOH in of water.
120 g 100 mL Potassium sulfate, per liter.
K SO 90.5N: 44 g 2 4 Potassium thiocyanate, per liter.
KCNS90.5N: 49 g Precipitating reagent (for group II, anions): dissolve of and of 61 g BaCl · 2H O 52 g 2 2 in water and dilute to 1 liter. If the solution becomes turbid, filter and use filtrate.
CaCl · 6H O 2 2 Quinaldine red (indicator): dissolve in alcohol; pH range colorless 1.4–3.2 red.
0.1 g 100 mL Quinoline blue, cyanin (indicator): dissolve in alcohol; pH range colorless 6.6–8.6 1 g 100 mL blue.
Rosolic acid, aurin, corallin, corallinphthalein, 4,4-dihydroxy-fuchsone, 4,4-dihydroxy-3-methyl-fuchsone (indicator): dissolve in alcohol and dilute with water to 0.5 g 50 mL 100 mL.
Salicyl yellow (indicator): see alizarin yellow GG.
Scheibler’s reagent (precipitates alkaloids, albumoses and peptones): dissolve sodium tungstate in boiling water containing half its weight of phosphoric acid (sp. gr. 1.13); on evaporation of this solution, crystals of phosphotungstic acid are obtained. A 10% solution of phosphotungstic acid in water constitutes the reagent.
Schweitzer’s reagent (dissolves cotton, linen, and silk, but not wool); add NH4Cl and NaOH to a solution of copper sulfate. The blue precipitate is filtered off, washed, pressed, and dissolved in ammonia (sp. gr. 0.92).
Silver nitrate, per liter.
AgNO 90.25N: 43 g 3 Silver sulfate, (saturated solution): stir mechanically of the salt in a liter Ag SO 9N/13 10 g 2 4 of water for 3 hours; decant and use the clear liquid.
Soap solution (for hardness in water): (a) Clark’s or A.P.H.A. Stand. Methods—prepare stock solution of of pure powdered castile soap in a liter of 80% ethyl alcohol; allow to stand 100 g over night and decant. Titrate against CaCl2 solution CaCO3 dissolved in a concentrated (0.5 g HCl, neutralized with NH4OH to slight alkalinity using litmus as the indicator, make up to of this solution is equivalent to CaCO3) and dilute with 80% alcohol until 500 mL; 1 mL 1 mg of the resulting solution is equivalent to of the standard CaCl2 making due allowance 1 mL 1 mL PRACTICAL LABORATORY INFORMATION 11.119 for the lather factor (the lather factor is that amount of standard soap solution required to produce a permanent lather in a 50-mL portion of distilled water). One milliliter of this solution after subtracting the lather factor is equivalent to of CaCO3. (b) Boutron-Boudet—dissolve 1 mg of pure castile soap in about of 56% ethyl alcohol and adjust so that will 100 g 2500 mL 2.4 mL give a permanent lather with of a solution containing Ba(NO3)2 per liter of water; 40 mL 0.59 g of this solution is equivalent to 22 French degrees or 220 parts per million of hardness 2.4 mL (as CaCO3) on a 40-mL sample of water.
Sodium acetate, dissolve 1 part of the salt in 10 parts of water.
NaC H O · 3H O: 2 3 2 2 Sodium acetate, acid: dissolve of sodium acetate and of glacial acetic acid in water 100 g 30 mL and dilute to 1 liter.
Sodium bismuthate (oxidation of manganese): heat 20 parts of NaOH nearly to redness in an iron or nickel crucible, and add slowly 10 parts of basic bismuth nitrate which has been previously dried. Add 2 parts of sodium peroxide, and pour the brownish-yellow fused mass on an iron plate to cool. When cold break up in a mortar, extract with water, and collect on an asbestos filter.
Sodium carbonate, per liter; one part Na2CO3, or 2.7 parts of the crystalline Na CO 93N: 159 g 2 3 in 5 parts of water.
Na CO · 10H O 2 3 2 Sodium chloride, per liter.
NaCl90.5N: 29 g Sodium chloroplatinite, Na2PtCl4: dissolve 1 part of the salt in 12 parts of water.
Sodium cobaltinitrite, dissolve of NaNO2 in of water, add Na Co(NO ) 90.3N: 230 g 500 mL 2 2 6 of 6N acetic acid and of Allow to stand one day, filter, and dilute 160 mL 35 g Co(NO ) · 6H O.
3 2 2 the filtrate to a liter.
Sodium hydrogen phosphate, liter.
Na HPO · 12H O90.5N: 60 g 2 4 2 per liter.
Sodium hydroxide, NaOH95N: 220 g Sodium hydroxide, alcoholic: dissolve of NaOH in alcohol and dilute to 1 liter with 20 g alcohol.
Sodium hypobromite: dissolve of NaOH in of water and add of bromine.
100 g 250 mL 25 mL Sodium nitrate, per liter.
NaNO 90.5N: 43 g 3 Sodium nitroprusside (for sulfur detection): dissolve about of sodium nitroprusside in 1 g of water; as the solution deteriorates on standing, only freshly prepared solutions should 10 mL be used. This compound is also called sodium nitroferricyanide and has the formula Na Fe(NO)(CN) · 2H O.
2 5 2 Sodium polysulfide, Na2Sx: dissolve of in of water, add of 480 g Na S · 9H O 500 mL 40 g 2 2 NaOH and of sulfur, stir mechanically and dilute to 1 liter with water.
18 g Sodium sulfate, per liter.
Na SO 90.5N: 35 g 2 4 Sodium sulfide, Na2S: saturate NaOH solution with H2S, then add as much NaOH as was used in the original solution.
Sodium sulfite, per liter.
Na SO · 7H O90.5N: 63 g 2 3 2 Sodium sulfite, acid (saturated): dissolve of NaHSO3 in water and dilute to 1 liter; for the 600 g preparation of addition compounds with aldehydes and ketones: prepare a saturated solution of sodium carbonate in water and saturate with sulfur dioxide.
Sodium tartrate, acid, NaHC4H4O6: dissolve 1 part of the salt in 10 parts of water.
Sodium thiosulfate, one part of the salt in 40 parts of water.
Na S O · 5H O: 2 2 3 2 Sonnenschein’s reagent (alkaloid detection): a nitric acid solution of ammonium molybdate is treated with phosphoric acid. The precipitate so produced is washed and boiled with aqua regia 11.120 SECTION 11 until the ammonium salt is decomposed. The solution is evaporated to dryness and the residue is dissolved in 10% HNO3.
Stannic chloride, per liter.
SnCl 90.5N: 33 g 4 Stannous chloride, per liter. The water should be acid with HCl and SnCl · 2H O90.5N: 56 g 2 2 some metallic tin should be kept in the bottle.
Starch solution (iodine indicator): dissolve of soluble starch in cold water, pour the solution 5 g into 2 liters of water and boil for a few minutes. Keep in a glass-stoppered bottle.
Starch solution (other than soluble): make a thin paste of the starch with cold water, then stir in 200 times its weight of boiling water and boil for a few minutes. A few drops of chloroform added to the solution acts as a preservative.
Stoke’s reagent: dissolve of ferrous sulfate and of tartaric acid in water and dilute to 30 g 20 g 1 liter. When required for use, add strong ammonia until the precipitate first formed is dissolved.
Strontium chloride, per liter.
SrCl · 6H O90.5N: 67 g 2 2 Strontium nitrate, per liter.
Sr(NO ) 90.5N: 53 g 3 2 Strontium sulfate, prepare a saturated solution.
SrSO : 4 Sulfanilic acid (for detection of nitrites): dissolve of sulfanilic acid in 1 liter of acetic acid 8 g (sp. gr. 1.04).
Sulfuric acid, per liter, sp. gr. 1.153.
H SO 95N: 245 g 2 4 Sulfurous acid, H2SO3: saturate water with sulfur dioxide.
Tannic acid: dissolve tannic acid in alcohol and make up to with water.
1 g 1 mL 10 mL Tartaric acid, H2C4H4O6: dissolve one part of the acid in 3 parts of water; for a saturated solution dissolve of tartaric acid in water and dilute to 1 liter.
750 g Tetrabromophenol blue, tetrabromophenol-tetrabromosulfonphthalein (indicator): dissolve in 0.02N NaOH and dilute with water to pH range yellow 3.0–4.6 blue.
0.1 g 5 mL 250 mL; Thymol blue, thymol-sulfonphthalein (indicator): dissolve in 0.02N NaOH and 0.1 g 10.75 mL dilute with water to or dissolve in warm alcohol and dilute with water to 250 mL; 0.1 g 20 mL pH range (acid) red 1.2–2.8 yellow, and (alkaline) yellow 8.0–9.6 blue.
100 mL; Thymolphthalein (indicator): dissolve in alcohol; pH range colorless 9.3–10.5 0.1 g 100 mL blue.
Tincture of iodine (antiseptic): add of iodine and of KI to of water; make up 70 g 50 g 50 mL to 1 liter with alcohol.
o-Tolidine solution (for residual chlorine in water analysis): dissolve of pulverized o-tolidine, 1 g m.p. 129C., in 1 liter of dilute hydrochloric acid conc. HCl diluted to 1 liter).
(100 mL Toluylene red (indicator): see neutral red.
Trichloroacetic acid: dissolve of the acid in water and dilute to 1 liter.
100 g Trinitrobenzene, 1,3,5-trinitrobenzene (indicator): dissolve in alcohol; pH range 0.1 g 100 mL colorless 11.5–14.0 orange.
Trinitrobenzoic acid, 2,4,6-trinitrobenzoic acid (indicator): dissolve in water; pH 0.1 g 100 mL range colorless 12.0–13.4 orange-red.
Tropeolin D (indicator): see methyl orange.
Tropeolin O, sodium 2,4-dihydroxyazobenzene-4-sulfonate (indicator): dissolve in 0.1 g water; pH range yellow 11.0–13.0 orange-brown.
100 mL PRACTICAL LABORATORY INFORMATION 11.121 Tropeolin OO, orange IV, sodium p-diphenylamino-azobenzene sulfonate, sodium 4-anilino-azobenzene-4-sulfonate (indicator): dissolve in water; pH range red 1.3–3.2 0.1 g 100 mL yellow.
Tropeolin OOO, sodium -naphtholazobenzene sulfonate (indicator): dissolve in 0.1 g water; pH range yellow 7.6–8.9 red.
100 mL Turmeric paper (gives a rose-brown coloration with boric acid): wash the ground root of tur-meric with water and discard the washings. Digest with alcohol and filter, using the clear filtrate to impregnate white, unsized paper, which is then dried.
Uffelmann’s reagent (gives a yellow coloration in the presence of lactic acid): add a ferric chloride solution to a 2% phenol solution until the solution becomes violet in color.
Wagner’s solution (phosphate rock analysis): dissolve citric acid and salicylic acid in 25 g 1 g water, and make up to 1 liter. Twenty-five to fifty milliliters of this reagent prevents precipitation of iron and aluminum.
Wijs solution (for iodine number): dissolve resublimed iodine in 1 liter of glacial acetic 13 g acid (99.5%), and pass in washed and dried (over or through H2SO4) chlorine gas until the original thio titration of the solution is not quite doubled. There should be only a slight excess of iodine and no excess of chlorine. Preserve the solution in amber colored bottles sealed with paraffin.
Do not use the solution after it has been prepared for more than 30 days.
Xylene cyanole-methyl orange indicator, Schoepfle modification (for partially color blind op-erators): dissolve xylene cyanole FF (Eastman No. T 1579) and methyl orange in 0.75 g 1.50 g 1 liter of water.
p-Xylenol blue, 1,4-dimethyl-5-hydroxybenzene-sulfonphthalein (indicator): dissolve in 0.1 g alcohol; pH range (acid) red 1.2–2.8 yellow, and (alkaline) yellow 8.0–9.6 blue.
250 mL Zinc chloride, per liter.
ZnCl 90.5N: 34 g 2 Zinc nitrate, per liter.
Zn(NO ) · 6H O90.5N: 74 g 3 2 2 Zinc sulfate, per liter.
ZnSO · 7H O90.5N: 72 g 4 2 TABLE 11.49 TLV Concentration Limits for Gases and Vapors Exposure limits (threshold limit value or TLV) are those set by the Occupational Safety and Health Administra-tion and represent conditions to which most workers can be exposed without adverse effects. The TLV value is expressed as a time weighted average airborne concentration over a normal 8-hour workday and 40-hour work-week.
Maximum allowable exposure Substance ppm mg · m3 Toxicity Acetaldehyde 25 45 carcinogen Acetic acid 10 25 Acetic anhydride 5 21 Acetone 750 1780 Acetonitrile 40 67 Acetophenone 10 49 Acetylene slightly narcotic Acrolein 0.1 0.23 11.122 SECTION 11 Acrylic acid 2 5.9 Acrylonitrile 2 4.3 Acrylonitrile 20 45 Allyl alcohol 2 4.8 Allyl chloride 1 3 Allyl glycidyl ether 5 22 Ammonia 25 18 toxic Aniline 2 7.6 carcinogen Arsine 0.05 0.2 highly toxic Benzene 10 32 carcinogen Benzenethiol 0.5 2.3 p-Benzoquinone 0.1 Benzoyl chloride 0.5 Benzoyl peroxide 5 Benzyl acetate 10 Benzyl chloride 1 carcinogen Biphenyl 0.2 Bis(2-aminoethyl)amine 1 Bis(2-chloroethyl) ether 5 29 Bis(2-chloromethyl) ether 0.001 carcinogen Bis(2-ethylhexyl) phthalate 5 Boron tribromide 1 Boron trichloride toxic Boron trifluoride 1 3 highly toxic Bromine 0.1 0.7 Bromine pentafluoride 0.1 highly toxic Bromine trifluoride highly toxic Bromochloromethane (Halon 1011) 200 1060 Bromoethane 5 22 carcinogen Bromoethylene 5 22 slightly toxic Bromoform 0.5 5 Bromomethane 5 19 highly toxic, carcinogen 1,3-Butadiene 2 slightly anesthetic, carcinogen Butane 800 1900 slightly anesthetic 1-Butanethiol 0.5 1.8 1-Butanol 50 152 2-Butanol 100 303 2-Butanone 200 590 2-Butoxyethanol 25 121 Butyl acetate 150 710 sec-Butyl acetate 200 950 tert-Butyl acetate 200 950 Butyl acrylate 10 tert-Butyl alcohol 100 300 Butylamine 5 15 tert-Butyl chromate (as CrO3) 0.1 Butyl glycidyl ether 50 270 TABLE 11.49 TLV Concentration Limits for Gases and Vapors (Continued) Maximum allowable exposure Substance ppm mg · m3 Toxicity PRACTICAL LABORATORY INFORMATION 11.123 Butyl mercaptan 0.5 1.5 p-tert-Butyltoluene 10 ()-Camphor 2 12 Caprolactam 5 Carbon dioxide 5000 9000 Carbon disulfide 10 31 Carbon monoxide 25 28 toxic Carbon tetrachloride 10 65 Carbonyl chloride 0.1 Carbonyl fluoride 2 toxic Chlordane 0.5 Chlorine 0.5 1.5 highly toxic Chlorine dioxide 0.1 0.3 Chlorine trifluoride 0.1 0.4 highly toxic Chloroacetaldehyde 1 3 -Chloroacetophenone 0.05 0.3 Chloroacetyl chloride 0.05 Chlorobenzene 10 46 2-Chloro-1,3-butadiene 10 carcinogen Chlorodifluoromethane (CFC 22) 1000 3540 Chloroethane 100 264 low toxicity 2-Chloroethanol 1 3.3 Chloroethylene (vinyl chloride) 5 13 toxic, carcinogen Chloroform (trichloromethane) 10 49 Chloromethane 50 103 toxic, carcinogen 1-Chloro-1-nitropropane 20 100 Chloropentafluoroethane (CFC 115) 1000 6320 3-Chloro-1-propene (allyl chloride) 1 3 carcinogen o-Chlorotoluene 50 259 Chlorotrifluoroethylene toxic Chromyl chloride (CrO2Cl2) 0.025 carcinogen o-Cresol (also m-, p-) 5 22 trans-Crotonaldehyde 2 5.7 Cyanogen 10 20 highly toxic Cyanogen chloride 0.3 Cyclohexane 300 1030 Cyclohexanol 50 206 Cyclohexanone 25 100 Cyclohexene 300 1015 Cyclohexylamine 10 41 1,3-Cyclopentadiene 75 Cyclopentane 600 1720 Cyclopropane anesthetic 2,4-D 10 DDT 1 Decaborane 0.05 0.3 Diacetone alcohol 50 238 2,2’-Diaminodiethylamine 1 4.2 Diazomethane 0.2 carcinogen TABLE 11.49 TLV Concentration Limits for Gases and Vapors (Continued) Maximum allowable exposure Substance ppm mg · m3 Toxicity 11.124 SECTION 11 Diborane 0.1 0.1 Dibromodifluoromethane 100 860 1,2-Dibromoethane carcinogen Dibutyl phthalate 5 Dichloroacetylene 0.1 o-Dichlorobenzene 25 150 p-Dichlorobenzene 10 60 carcinogen Dichlorodifluoromethane (Freon 12) 1000 4950 1,1-Dichloroethane 100 405 1,2-Dichloroethane 10 40 carcinogen 1,1-Dichloroethylene 5 20 carcinogen cis-1,2-Dichloroethylene 200 793 trans-1,2-Dichloroethylene 200 793 Dichlorofluoromethane (Freon 21) 10 42 Dichloromethane 50 174 carcinogen 1,1-Dichloro-1-nitroethane 10 60 1,2-Dichloropropane 75 347 carcinogen 1,3-Dichloropropene 1 carcinogen Dichlorosilane highly toxic 1,2-Dichlorotetrafluoroethane (Freon 114) 1000 7000 Dieldrin 0.25 Diethanolamine 0.46 Diethylamine 5 15 Diethyl ether 400 1210 Diglycidyl ether 0.5 2.8 Diisobutyl ketone 25 150 Diisopropylamine 5 20 Diiopropyl ether 250 1040 Dimethoxymethane 1000 3110 N,N-Dimethylacetamide 10 35 Dimethylamine 5 9.2 highly toxic N,N-Dimethylaniline 5 25 Dimethyl 1,2-dibromo-2,2-dichloroethylphosphate 3 Dimethyl ether slightly toxic, anesthetic 1-(1,1-Dimethylethyl)-4-methylbenzene 1 6.1 N,N-Dimethylformamide 10 30 2,6-Dimethyl-4-heptanone 25 1,1-Dimethylhydrazine 0.5 1 carcinogen Dimethyl phthalate 5 2,2-Dimethylpropane probably anesthetic Dimethyl sulfate 0.1 0.5 carcinogen Dinitrobenzene 0.15 1 Dinitro-o-cresol 0.2 Dinitrotoluene 1.5 1,4-Dioxane 25 90 carcinogen Diphenyl 0.2 1 Diphenyl ether 1 7 Dipropylene glycol methyl ether—skin 100 600 TABLE 11.49 TLV Concentration Limits for Gases and Vapors (Continued) Maximum allowable exposure Substance ppm mg · m3 Toxicity PRACTICAL LABORATORY INFORMATION 11.125 Endrin—skin 0.1 Epichlorohydrin 2 7.6 carcinogen 2,3-Epoxy-1-propanol (glycidol) 50 150 1,2-Ethanediamine 10 25 Ethanethiol 0.5 Ethanol 1000 1880 Ethanolamine 3 7.5 2-Ethoxyethanol (Cellosolve) 5 18 2-Ethoxyethyl acetate 5 27 Ethyl acetate 400 1400 Ethyl acrylate 5 20 Ethylamine 5 9.2 highly toxic Ethylbenzene 100 435 Ethylene anesthetic Ethylene glycol 39 Ethylene glycol dinitrate 0.2 Ethyleneimine 0.05 carcinogen Ethylene oxide 1 toxic, carcinogen Ethyl formate 100 300 Ethyl mercaptan 0.1 1 Ethyl silicate 100 850 Fluorine 1 2 highly toxic Fluorotrichloromethane (Freon 11) 1000 5600 Formaldehyde 0.3 carcinogen Formamide 10 18 Formic acid 5 9.4 2-Furancarboxaldehyde (furfural) 2 7.9 2-Furanmethanol 10 40 Glycerol 10 Heptachlor 0.5 Heptane 400 1640 2-Heptanone 50 233 3-Heptanone 50 234 Hexachloro-1,3-butadiene 0.02 carcinogen Hexachlorocyclohexane (lindane) 0.5 Hexachloroethane 1 carcinogen Hexachloronaphthalene 0.2 Hexamethylphosphoric triamide carcinogen Hexane 50 176 2-Hexanone 5 20 sec-Hexyl acetate 50 300 Hexylene glycol 25 Hydrazine 0.01 0.1 carcinogen Hydrogen bromide 3 10 highly toxic Hydrogen chloride 5 7 highly toxic Hydrogen cyanide 4.7 highly toxic Hydrogen fluoride 3 2 highly toxic Hydrogen iodide highly toxic Hydrogen peroxide (90%) 1 1.4 TABLE 11.49 TLV Concentration Limits for Gases and Vapors (Continued) Maximum allowable exposure Substance ppm mg · m3 Toxicity 11.126 SECTION 11 Hydrogen selenide 0.05 0.2 highly toxic Hydrogen sulfide 10 15 highly toxic 4-Hydroxy-4-methyl-2-pentanone 50 238 Indene 10 Iodine 0.1 1 Iodine pentafluoride highly toxic Iodomethane 2 12 Isobutyl acetate 150 700 Isobutyl alcohol 50 150 Isopentyl acetate 100 525 Isopentyl alcohol 100 360 Isophorone 5 28 Isopropyl acetate 250 1040 Isopropylamine 5 12 Isopropylbenzene (cumene) 50 246 Isopropyl glycidyl ether 50 240 Ketene 0.5 0.9 Lindane 0.5 Liquified petroleum gas 1000 1800 Malathion 10 Maleic anhydride 0.25 1 Malononitrile 0.05 0.4 Mesityl oxide 15 60 Methacrylic acid 20 70 Methanethiol 0.5 Methanol 200 262 2-Methoxyaniline (also 4-) 0.1 carcinogen 2-Methoxyethanol 5 16 2-Methoxyethyl acetate 5 24 Methyl acetate 200 610 Methyl acetylene-propadiene (MAPP) 1000 1800 Methyl acrylate 10 35 Methylacrylonitrile 1 Methylamine 5 6.4 highly toxic o-Methylaniline (also p-) 2 carcinogen m-Methylaniline 2 N-Methylaniline 0.5 2.2 3-Methyl-1-butanol 100 361 Methyl tert-butyl ether 40 Methylcyclohexane 400 1600 1-Methylcyclohexanol 50 234 cis-2-Methylcyclohexanol 50 234 trans-2-Methylcyclohexanol 50 234 cis-3-Methylcyclohexanol 50 234 trans-3-Methylcyclohexanol 50 234 cis-4-Methylcyclohexanol 50 234 trans-4-Methylcyclohexanol 50 234 Methyl formate 100 250 5-Methyl-2-hexanone 50 234 TABLE 11.49 TLV Concentration Limits for Gases and Vapors (Continued) Maximum allowable exposure Substance ppm mg · m3 Toxicity PRACTICAL LABORATORY INFORMATION 11.127 Methyl hydrazine 0.01 Methyl isocyanate 0.02 0.05 Methyl mercaptan 0.5 1 highly toxic Methyl methacrylate 100 410 Methyl oxirane 20 carcinogen 4-Methyl-2-pentanol 25 104 4-Methyl-2-pentanone 50 205 2-Methyl-2,4-pentanediol 25 121 2-Methyl-1-propanol 50 152 2-Methyl-2-propanol 100 303 2-Methyl-2-propenenitrile 1 2.7 o-Methylstyrene (also m-, p-) 50 Morpholine 20 70 Naphthalene 10 50 Nickel carbonyl [Ni(CO)4] 0.05 0.35 carcinogen Nicotine 0.5 Nitric acid 2 5 Nitric oxide 25 30 highly toxic Nitrobenzene 1 5 p-Nitrochlorobenzene 1 Nitroethane 100 310 Nitrogen dioxide 3 highly toxic Nitrogen trifluoride 10 Nitrogen trioxide 10 29 highly toxic Nitroglycerine 0.2 2 Nitromethane 100 250 1-Nitropropane 25 90 2-Nitropropane 10 36 Nitrosyl chloride highly toxic o-Nitrotoluene (also m-, p-) 2 Nonane 200 1050 Octachloronaphthalene 0.1 Octane 300 1450 Oxalic acid 1 2-Oxetanone 0.05 carcinogen Oxygen difluoride 0.05 0.1 Ozone 0.1 0.2 Parathion 0.1 Pentaborane 0.005 0.01 Pentachloronaphthalene 0.5 Pentachlorophenol 0.5 Pentanal 50 Pentane 600 1770 2-Pentanone 200 700 3-Pentanone 200 700 Pentyl acetate 100 530 Perchloroethylene 100 670 Perchloromethyl mercaptan 0.1 0.8 Perchloryl fluoride 3 14 TABLE 11.49 TLV Concentration Limits for Gases and Vapors (Continued) Maximum allowable exposure Substance ppm mg · m3 Toxicity 11.128 SECTION 11 Perfluoroacetone 0.1 Phenol 5 19 p-Phenylenediamine 0.1 Phenylhydrazine 0.1 carcinogen Phosgene 0.1 0.4 highly toxic Phosphine 0.3 0.4 highly toxic Phosphoric acid 1 Phosphorus pentachloride 1 Phosphorus pentafluoride highly toxic Phosphorus pentasulfide 1 Phosphorus trichloride 0.5 3 Phosphoryl chloride 0.1 Phthalic anhydride 1 6 Picric acid—skin 0.1 Propane 1000 1800 low toxicity Propanoic acid 10 30 1-Propanol 200 500 2-Propanol 400 980 Propenal 0.1 Propenenitrile 2 carcinogen Propenoic acid 2 Propyl acetate 200 835 Propyleneimine 2 5 carcinogen Propylene oxide 100 240 toxic Propyl nitrate 25 110 Propyne 1000 1650 2-Propyn-1-ol 1 2.3 Pyridine 5 15 Quinone 0.1 0.4 Selenium compounds (as Se) 0.2 Selenium hexafluoride 0.05 0.4 Silane 5 7 highly toxic Silicon tetrafluoride highly toxic Stibine 0.1 Stoddard solvent 100 575 Strychnine 0.15 Styrene 50 213 carcinogen Sulfur dioxide 2 highly toxic Sulfur hexafluoride 1000 6000 low toxicity Sulfuric acid 1 Sulfur monochloride 1 6 Sulfur pentafluoride 0.01 Sulfur tetrafluoride 0.1 0.4 Sulfuryl fluoride 5 20 highly toxic Tellurium hexafluoride 0.02 0.2 Terphenyls 1 9 1,1,2,2-Tetrabromoethane 1 14 TABLE 11.49 TLV Concentration Limits for Gases and Vapors (Continued) Maximum allowable exposure Substance ppm mg · m3 Toxicity PRACTICAL LABORATORY INFORMATION 11.129 Tetrabromomethane 0.1 1,1,1,2-Tetrachloro-2,2-difluoroethane 500 4170 1,1,2,2-Tetrachloro-1,2-difluoroethane 500 4170 1,1,2,2-Tetrachloroethane 1 6.9 carcinogen Tetrachloroethylene 25 170 carcinogen Tetrachloromethane 5 31 carcinogen 1,2,3,4-Tetrachloronaphthalene 2 Tetraethyllead (as Pb) 0.100 Tetrafluoromethane low toxicity Tetrahydrofuran 200 590 Tetramethyllead (as Pb) 0.150 Tetramethylsuccinonitrile 0.5 3 Tetranitromethane 1 8 Thionyl chloride 1 Thiram 5 Toluene 50 188 Toluene-2,4-diisocyanate 0.02 0.14 o-Toluidine (also m-, p-) 2 8.8 Tribromomethane 0.5 5.2 Tributyl phosphate 0.2 2.2 1,2,4-Trichlorobenzene 5 1,1,1-Trichloroethane 350 1910 1,1,2-Trichloroethane 10 55 carcinogen Trichloroethylene 50 270 carcinogen Trichlorofluoromethane 1000 5600 Trichloromethane 10 49 carcinogen 1,2,3-Trichloropropane 10 60 1,1,2-Trichlorotrifluoroethane 1000 Tri-o-cresol phosphate (also m-, p-) 0.1 Triethanolamine 0.5 Triethylamine 1 Trifluorobromomethane (Freon 13B1) 1000 6100 1,1,2-Trifluorotrichloroethane 1000 7600 Triiodomethane 0.6 Trimethylamine 5 12 highly toxic 1,2,3-Trimethylbenzene 25 123 1,2,4-Trimethylbenzene (pseudocumene) 25 123 1,3,5-Trimethylbenzene (mesitylene) 25 123 Trinitrotoluene (TNT) 1.5 Triphenyl phosphate 3 Turpentine 100 560 Vinyl acetate 10 35 carcinogen Vinyl methyl ether probably anesthetic Warfarin 0.1 o-Xylene (also m-, p-) 100 434 2,3-Xylidine (also 2,4-, 2,5-, 2,6-, 3,4-, 3,5-) 0.5 2.5 TABLE 11.49 TLV Concentration Limits for Gases and Vapors (Continued) Maximum allowable exposure Substance ppm mg · m3 Toxicity 11.130 SECTION 11 TABLE 11.50 Some Common Reactive and Incompatible Chemicals Chemical Keep out of contact with Acetic acid Chromium(VI) oxide, chlorosulfonic acid, ethylene glycol, ethyleneimine, hy-droxyl compounds, nitric acid, oleum, perchloric acid, peroxides, permanga-nates, potasssium tert-butoxide, PCl3 Acetylene Bromine, chlorine, brass, copper and copper salts, fluorine, mercury and mer-cury salts, nitric acid, silver and silver salts, alkali hydrides, potassium metal Alkali metals Moisture, acetylene, metal halides, ammonium salts, oxygen and oxidizing agents, halogens, carbon tetrachloride, carbon, carbon dioxide, carbon disul-fide, chloroform, chlorinated hydrocarbons, ethylene oxide, boric acid, sulfur, tellurium Aluminum Chlorinated hydrocarbons, halogens, steam Ammonia, anhydrous Mercury, halogens, hypochlorites, chlorites, chlorine(I) oxide, hydrofluoric acid (anhydrous), hydrogen peroxide, chromium(VI) oxide, nitrogen dioxide, chromyl(VI) chloride, sulfinyl chloride, magnesium perchlorate, peroxodisul-fates, phosphorus pentoxide, acetaldehyde, ethylene oxide, acrolein, gold(III) chloride Ammonium nitrate Acids, metal powders, flammable liquids, chlorates, nitrites, sulfur, finely di-vided organic or combustible materials, perchlorates, urea Ammonium perchlorate Hot copper tubing, sugar, finely divided organic or combustible materials, po-tassium periodate and permanganate, powdered metals, carbon, sulfur Aniline Nitric acid, peroxides, oxidizing materials, acetic anhydride, chlorosulfonic acid, oleum, ozone Benzoyl peroxide Direct sunlight, sparks and open flames, shock and friction, acids, alcohols, amines, ethers, reducing agents, polymerization catalysts, metallic naph-thenates Bromine Ammonia, carbides, dimethylformamide, fluorine, ozone, olefins, reducing ma-terials including many metals, phosphine, silver azide Calcium carbide Moisture, selenium, silver nitrate, sodium peroxide, tin(II) chloride, potassium hydroxide plus chlorine, HCl gas, magnesium Carbon, activated Calcium hypochlorite, all oxidizing agents, unsaturated oils Chlorates Ammonium salts, acids, metal powders, sulfur, finely divided organic or com-bustible materials, cyanides, metal sulfides, manganese dioxide, sulfur diox-ide, organic acids Chlorine Ammonia, acetylene, alcohols, alkanes, benzene, butadiene, carbon disulfide, dibutyl phthalate, ethers, fluorine, glycerol, hydrocarbons, hydrogen, sodium carbide, finely divided metals, metal acetylides and carbides, nitrogen com-pounds, nonmetals, nonmetal hydrides, phosphorus compounds, polychlorobi-phenyl, silicones, steel, sulfides, synthetic rubber, turpentine Chlorine dioxide Ammonia, carbon monoxide, hydrogen, hydrogen sulfide, methane, mercury, nonmetals, phosphine, phosphorus pentachloride Chlorites Ammonia, organic matter, metals Chloroform Aluminum, magnesium, potassium, sodium, aluminum chloride, ethylene, pow-erful oxidants Chlorosulfonic acid Saturated and unsaturated acids, acid anhydrides, nitriles, acrolein, alcohols, ammonia, esters, HCl, HF, ketones, hydrogen peroxide, metal powders, nitric acid, organic materials, water Chromic(VI) acid Acetic acid, acetic anhydride, acetone, alcohols, alkali metals, ammonia, dimeth-ylformamide, camphor, glycerol, hydrogen sulfide, phosphorus, pyridine, se-lenium, sulfur, turpentine, flammable liquids in general Cobalt Acetylene, hydrazinium nitrate, oxidants Copper Acetylene and alkynes, ammonium nitrate, azides, bromates, chlorates, iodates, chlorine, ethylene oxide, fluorine, peroxides, hydrogen sulfide, hydrazinium nitrate PRACTICAL LABORATORY INFORMATION 11.131 Copper(II) sulfate Hydroxylamine, magnesium Cumene hydroperoxide Acids (inorganic or organic) Cyanides Acids, water or steam, fluorine, magnesium, nitric acid and nitrates, nitrites Cyclohexanol Oxidants Cyclohexanone Hydrogen peroxide, nitric acid Decaborane-14 Dimethyl sulfoxide, ethers, halocarbons Diazomethane Alkali metals, calcium sulfate 1,1-Dichloroethylene Air, chlorotrifluoroethylene, ozone, perchloryl fluoride Dimethylformamide Halocarbons, inorganic and organic nitrates, bromine, chromium(VI) oxide, alu-minum trimethyl, phosphorus trioxide 1,1-Dimethylhydrazine Air, hydrogen peroxide, nitric acid, nitrous oxide Dimethylsulfoxide Acyl and aryl halides, boron compounds, bromomethane, nitrogen dioxide, magnesium perchlorate, periodic acid, silver difluoride, sodium hydride, sul-fur trioxide Dinitrobenzenes Nitric acid Dinitrotoluenes Nitric acid 1,4-Dioxane Silver perchlorate Esters Nitrates Ethylamine Cellulose, oxidizers Ethers Oxidizing materials, boron triiodide Ethylene Aluminum trichloride, carbon tetrachloride, chlorine, nitrogen oxides, tetrafluo-roethylene Ethylene oxide Acids and bases, alcohols, air, 1,3-nitroaniline, aluminum chloride, aluminum oxide, ammonia, copper, iron chlorides and oxides, magnesium perchlorate, mercaptans, potassium, tin chlorides, alkane thiols Ethyl ether Liquid air, chlorine, chromium(VI) oxide, lithium aluminum hydride, ozone, perchloric acid, peroxides Ethyl sulfate Oxidizing materials, water Flammable liquids Ammonium nitrate, chromic acid, the halogens, hydrogen peroxide, nitric acid Fluorine Isolate from everything; only lead and nickel resist prolonged attack Formamide Iodine, pyridine, sulfur trioxide Freon 113 Aluminum, barium, lithium, samarium, NaK alloy, titanium Glycerol Acetic anhydride, hypochlorites, chromium(VI) oxide, perchlorates, alkali per-oxides, sodium hydride Hydrazine Alkali metals, ammonia, chlorine, chromates and dichromates, copper salts, flu-orine, hydrogen peroxide, metallic oxides, nickel, nitric acid, liquid oxygen, zinc diethyl Hydrides Powerful oxidizing agents, moisture Hydrocarbons Halogens, chromium(VI) oxide, peroxides Hydrogen Halogens, lithium, oxidants, lead trifluoride Hydrogen bromide Fluorine, iron(III) oxide, ammonia, ozone Hydrogen chloride Acetic anhydride, aluminum, 2-aminoethanol, ammonia, chlorosulfonic acid, ethylenediamine, fluorine, metal acetylides and carbides, oleum, perchloric acid, potassium permanganate, sodium, sulfuric acid Hydrogen fluoride Acetic anhydride, 2-aminoethanol, ammonia, arsenic trioxide, chlorosulfonic acid, ethylenediamine, ethyleneimine, fluorine, HgO, oleum, phosphorus tri-oxide, propylene oxide, sodium, sulfuric acid, vinyl acetate Hydrogen iodide Fluorine, nitric acid, ozone, metals Hydrogen peroxide Copper, chromium, iron, most metals or their salts, alcohols, acetone, organic materials, flammable liquids, combustible materials Hydrogen selenide Hydrogen peroxide, nitric acid Hydrogen sulfide Fuming nitric acid, oxidizing gases, peroxides TABLE 11.50 Some Common Reactive and Incompatible Chemicals (Continued) Chemical Keep out of contact with 11.132 SECTION 11 Hydroquinone Sodium hydroxide Hydroxylamine Barium oxide and peroxide, carbonyls, chlorine, copper(II) sulfate, dichromates, lead dioxide, phosphorus trichloride and pentachloride, permanganates, pyri-dine, sodium, zinc Hypochlorites, salts of Urea, amines, anthracene, carbon, carbon tetrachloride, ethanol, glycerol, mer-captans, organic sulfides, sulfur, thiols Indium Acetonitrile, nitrogen dioxide, mercury(II) bromide, sulfur Iodine Acetaldehyde, acetylene, aluminum, ammonia (aqueous or anhydrous), anti-mony, bromine pentafluoride, carbides, cesium oxide, chlorine, ethanol, fluo-rine, formamide, lithium, magnesium, phosphorus, pyridine, silver azide, sul-fur trioxide Iodine monochloride Aluminum foil, organic matter, metal sulfides, phosphorus, potassium, rubber, sodium Iodoform Acetone, lithium, mercury(II) oxide, mercury(I) chloride, silver nitrate Iodomethane Silver chlorite, sodium Iron disulfide Water, powdered pyrites Isothiourea Acrylaldehyde, hydrogen peroxide, nitric acid Ketones Aldehydes, nitric acid, perchloric acid Lactonitrile Oxidizing materials Lead Ammonium nitrate, chlorine trifluoride, hydrogen peroxide, sodium azide and carbide, zirconium, oxidants Lead(II) azide Calcium stearate, copper, zinc, brass, carbon disulfide Lead chromate Iron hexacyanoferrate(4–) Lead dioxide Aluminum carbide, hydrogen peroxide, hydrogen sulfide, hydroxylamine, ni-troalkanes, nitrogen compounds, nonmetal halides, peroxoformic acid, phos-phorus, phosphorus trichloride, potassium, sulfur, sulfur dioxide, sulfides, tungsten, zirconium Lead(II) oxide Chlorinated rubber, chlorine, ethylene, fluorine, glycerol, metal acetylides, perchloric acid Lead(II,IV) oxide Same as for lead dioxide Lithium hydride Nitrous oxide, oxygen Magnesium Air, beryllium fluoride, ethylene oxide, halogens, halocarbons, HI, metal cya-nides, metal oxides, metal oxosalts, methanol, oxidants, peroxides, sulfur, tel-lurium Maleic anhydride Alkali metals, amines, KOH, NaOH, pyridine Manganese dioxide Aluminum, hydrogen sulfide, oxidants, potassium azide, hydrogen peroxide, peroxosulfuric acid, sodium peroxide Mercaptans Powerful oxidizers Mercury Acetylenic compounds, chlorine, fulminic acid, ammonia, ethylene oxide, met-als, methyl azide, oxidants, tetracarbonylnickel Mercury(II) cyanide Fluorine, hydrogen cyanide, magnesium, sodium nitrite Mercury(I) nitrate Phosphorus Mercury(II) nitrate Acetylene, aromatics, ethanol, hypophosphoric acid, phosphine, unsaturated or-ganic compounds Mercury(II) oxide Chlorine, hydrazine hydrate, hydrogen peroxide, hypophosphorous acid, magne-sium, phosphorus, sulfur, butadiene, hydrocarbons, methanethiol Mesityl oxide 2-Aminoethanol, chlorosulfonic acid, nitric acid, ethylenediamine, sulfuric acid Methanol Beryllium dihydride, chloroform, oxidants, potassium tert-butoxide Methylamine Nitromethane N-Methylformamide Benzenesulfonyl chloride Methyl isobutyl ketone Potassium tert-butoxide TABLE 11.50 Some Common Reactive and Incompatible Chemicals (Continued) Chemical Keep out of contact with PRACTICAL LABORATORY INFORMATION 11.133 Methyl methacrylate Air, benzoyl peroxide 4-Methylnitrobenzene Sulfuric acid, tetranitromethane 2-Methylpyridine Hydrogen peroxide, iron(II) sulfate, sulfuric acid Methylsodium 4-Chloronitrobenzene Molybdenum trioxide Chlorine trifluoride, interhalogens, metals Naphthalene Chromium trioxide, dinitrogen pentaoxide 2-Naphthol Antipyrine, camphor, phenol, iron(III) salts, menthol, oxidizing materials, per-manganates, urethane Neodymium Phosphorus Nickel Aluminum, aluminum(III) chloride, ethylene, 1,4-dioxan, hydrogen, methanol, nonmetals, oxidants, sulfur compounds Nickel carbonyl Air, bromine, oxidizing materials Niobium Bromine trifluoride, chlorine, fluorine Nitrates Aluminum, BP, cyanides, esters, phosphorus, tin(II) chloride, sodium hypophos-phite, thiocyanates Nitric acid, fuming Organic matter, nonmetals, most metals, ammonia, chlorosulfonic acid, chro-mium trioxide, cyanides, dichromates, hydrazines, hydrides, HCN, HI, hydro-gen sulfide, sulfur dioxide, sulfur halides, sulfuric acid, flammable liquids and gases Nitric oxide Aluminum, BaO, boron, carbon disulfide, chromium, many chlorinated hydro-carbons, fluorine, hydrocarbons, ozone, phosphine, phosphorus, hydrazine, acetic anhydride, ammonia, chloroform, Fe, K, Mg, Mn, Na, sulfur Nitrites Organic nitrites in contact with ammonium salts, cyanides Nitrobenzene Nitric acid, nitrous oxide, silver perchlorate Nitroethane Hydroxides, hydrocarbons, metal oxides Nitrogen trichloride Ammonia, As, hydrogen sulfide, nitrogen dioxide, organic matter, ozone, phos-phine, phosphorus, KCN, KOH, Se, dibutyl ether Nitrogen dioxide Cyclohexane, fluorine, formaldehyde, alcohols, nitrobenzene, petroleum, toluene Nitrogen triiodide Acids, bromine, chlorine, hydrogen sulfide, ozone -Nitroguanidine Complex salts of mercury and silver Nitromethane Acids, alkylmetal halides, hydroxides, hydrocarbons, organic amines, formalde-hyde, nitric acid, perchlorates 1-Nitropropane See under Nitromethane; chlorosulfonic acid, oleum Nitrosyl fluoride Haloalkenes, metals, nonmetals Nitrosyl perchlorate Acetones, amines, diethyl ether, metal salts, organic materials Nitrourea Mercury(II) and silver salts Nitrous acid Phosphine, phosphorus trichloride, silver nitrate, semicarbazone Nitryl chloride Ammonia, sulfur trioxide, tin(IV) bromide and iodide Oxalic acid Furfuryl alcohol, silver, mercury, sodium chlorate, sodium chlorite, sodium hy-pochlorite Oxygen Acetaldehyde, acetone, alcohols, alkali metals, alkaline earth metals, Al-Ti al-loys, ether, carbon disulfide, halocarbons, hydrocarbons, metal hydrides, 1,3,5-trioxane Ozone Alkenes, aromatic compounds, bromine, diethyl ether, ethylene, HBr, HI, nitric oxide, nitrogen dioxide, rubber, stibine Palladium Arsenic, carbon, ozonides, sulfur, sodium tetrahydridoborate Paraformaldehyde Liquid oxygen Paraldehyde Alkalies, HCN, iodides, nitric acid, oxidizers Pentaborane-9 Dimethylsulfoxide Pentacarbonyliron Acetic acid, nitric oxide, transition metal halides, water, zinc TABLE 11.50 Some Common Reactive and Incompatible Chemicals (Continued) Chemical Keep out of contact with 11.134 SECTION 11 2-Pentanone Bromine trifluoride 3-Pentanone Hydrogen peroxide, nitric acid Perchlorates Carbonaceous materials, finely divided metals particularly magnesium and alu-minum, sulfur, benzene, olefins, ethanol, sulfur, sulfuric acid Perchloric acid Acetic acid, acetic anhydride, alcohols, antimony compounds, azo pigments, bismuth and its alloys, methanol, carbonaceous materials, carbon tetrachlo-ride, cellulose, dehydrating agents, diethyl ether, glycols and glycolethers, HCl, HI, hypophosphites, ketones, nitric acid, pyridine, steel, sulfoxides, sul-furic acid Permanganates All reducing agents, organic materials Peroxides Reducing agents, organic materials, thiocyanates Peroxoacetic acid Acetic anhydride, olefins, organic matter Peroxobenzoic acid Olefins, reducing materials Peroxoformic acid Metals and nonmetals, organic materials Peroxosulfuric acid Acetone, alcohols, aromatic compounds, catalysts Phenol Butadiene, peroxodisulfuric acid, peroxosulfuric acid, aluminum chloride plus nitrobenzene Phenylhydrazine Lead dioxide, oxidizers Phosgene Aluminum, alkali metals, 2-propanol Phosphine Air, boron trichloride, bromine, chlorine, nitric acid, nitrogen oxides, nitrous acid, oxygen, silver nitrate Phosphorus pentachloride Aluminum, chlorine, chlorine dioxide, chlorine trioxide, fluorine, magnesium oxide, nitrobenzene, diphosphorus trioxide, potassium, sodium, urea, water Phosphorus pentafluoride Water or steam Phosphorus pentasulfide Air, alcohols, water Phosphorus pentoxide Formic acid, HF, inorganic bases, metals, oxidants, water Phosphorus, red Organic materials Phosphorus tribromide Potassium, ruthenium tetroxide, sodium, water Phosphorus trichloride Acetic acid, aluminum, chromyl dichloride, dimethylsulfoxide, hydroxylamine, lead dioxide, nitric acid, nitrous acid, organic matter, potassium, sodium water Phosphorus, white Air, oxidants of all types, halogens, metals Phosphoryl chloride Carbon disulfide, N,N-dimethylformamide, 2,5-dimethylpyrrole, 2,6-dimethyl-pyridine 1-oxide, dimethylsulfoxide, water, zinc Phthalic acid Nitric acid, sodium nitrite Piperazine Oxidizers Platinum Acetone, arsenic, hydrazine, lithium, proxosulfuric acid, phosphorus, selenium, tellurium Potassium See under Alkali metals Potassium tert-butoxide Organic compounds, sulfuric acid Potassium hydride Air, chlorine, acetic acid, acrolein, acrylonitrile, maleic anhydride, nitroparaf-fins, N-nitrosomethylurea, tetrahydrofuran, water Potassium perchlorate Aluminum plus magnesium, carbon, nickel plus titanium, reducing agents, sul-fur, sulfuric acid Potassium permanganate Organic or readily oxidizable materials Potassium sodium alloy Air, carbon dioxide, carbon disulfide, halocarbons, metal oxides 2-Propyn-1-ol Alkali metals, mercury(II) sulfate, oxidizing materials, phosphorus pentoxide, sulfuric acid Pyridine Chlorosulfonic acid, chromium trioxide, formamide, maleic anhydride, nitric acid, oleum, perchromates, silver perchlorate, sulfuric acid Pyrrolidine Oxidizing materials TABLE 11.50 Some Common Reactive and Incompatible Chemicals (Continued) Chemical Keep out of contact with PRACTICAL LABORATORY INFORMATION 11.135 Quinoline Dinitrogen tetroxide, linseed oil, maleic anhydride, thionyl chloride Salicylic acid Iodine, iron salts, lead acetate Silicon Alkali carbonates, calcium, chlorine, cobalt(II) fluoride, manganese trifluoride, oxidants, silver fluoride, sodium-potassium alloy Silver Acetylene, ammonium compounds, ethyleneimine, hydrogen peroxide, oxalic acid, sulfuric acid, tartaric acid Sodium See under Alkali metals Sodium peroxide Glacial acetic acid, acetic anhydride, aniline, benzene, benzaldehyde, carbon di-sulfide, diethyl ether, ethanol or methanol, ethylene glycol, ethyl acetate, fur-fural, glycerol, metals, methyl acetate, organic matter Sulfides Acids, powerful oxidizers, moisture Sulfur Oxidizing materials, halogens Sulfur dioxide Halogens, metal oxides, polymeric tubing, potassium chlorate, sodium hydride Sulfuric acid Chlorates, metals, HCl, organic materials, perchlorates, permanganates, water Sulfuryl dichloride Alkalis, diethyl ether, dimethylsulfoxide, dinitrogen tetroxide, lead dioxide, phosphorus Tellurium Halogens, metals Tetrahydrofuran Tetrahydridoaluminates, KOH, NaOH Tetranitroaniline Reducing materials Tetranitromethane Aluminum, cotton, aromatic nitro compounds, hydrocarbons, cotton, toluene Thiocyanates Chlorates, nitric acid, peroxides Thionyl chloride Ammonia, dimethylsulfoxide, linseed oil, quinoline, sodium Thiophene Nitric acid Thymol Acetanilide, antipyrine, camphor, chlorohydrate, menthol, quinine sulfate, ure-thene Tin(II) chloride Boron trifluoride, ethylene oxide, hydrazine hydrate, nitrates, Na, K, hydrogen peroxide Tin(IV) chloride Alkyl nitrates, ethylene oxide, K, Na turpentine Titanium Aluminum, boron trifluoride, carbon dioxide, CuO, halocarbons, halogens, PbO, nitric acid, potassium chlorate, potassium nitrate, potassium permanganate, steam at high temperatures, water Toluene Sulfuric plus nitric acids, nitrogen dioxide, silver perchlorate, uranium hexa-fluoride Toluidines Nitric acid 2,4,6-Trinitrotoluene Sodium dichromate, sulfuric acid 1,3,5-Trioxane Oxidizing materials, acids Urea Sodium nitrite, phosphorus pentachloride Vinylidene chloride Chlorosulfonic acid, nitric acid, oleum TABLE 11.50 Some Common Reactive and Incompatible Chemicals (Continued) Chemical Keep out of contact with 11.136 SECTION 11 TABLE 11.51 Chemicals Recommended for Refrigerated Storage A. Due to chemical decomposition or polymerization Acetaldehyde Acrolein Adenosinetriphosphoric acid Bromacetaldehyde, diethyl acetal Bromosuccinimide 3-Buten-2-one tert-Butyl hydroperoxide 2-Chlorocyclohexanone Cupferron 1,3-Cyclohexadiene 1,3-Dihydroxy-2-propanone Divinylbenzene Ethyl methacrylate, monomer Glutathione Glycidol Histamine, base Hydrocinnamaldehyde Isoprene Lecithin Mercaptoacetic acid Methyl acrylate 2-Methyl-1-butene Methylenedi-1,4-phenylene diisocyanate 4-Methyl-1-pentene -Methylstyrene 1-Naphthyl isocyanate 1-Pentene Isopentyl acetate Pyruvic acid Styrene, stabilized Tetramethylsilane Thioacetamide Veratraldehyde Vitamin E (and the acetate) B. Due to flammability and high volatility Acetaldehyde Bromoethane tert-Butylamine Carbon disulfide 1-Chloropropane 3-Chloropropane Cyclopentane Diethyl ether 2,2-Dimethylbutane Dimethyl sulfide Furan Iodomethane Isoprene Isopropylamine Methylal 2-Methylbutane 2-Methyl-2-butene Methyl formate Pentane Propylamine Propylene oxide Trichlorosilane TABLE 11.52 Chemicals Which Polymerize or Decompose on Extended Refrigeration Formaldehyde Sodium methoxide Hydrogen peroxide Sodium nitrate Sodium chlorite [sodium chlorate (IV)] Sodium peroxide Sodium chromate(VI) Strontium nitrate Sodium dithionite Urea Sodium ethoxide PRACTICAL LABORATORY INFORMATION 11.137 11.8 SIEVES AND SCREENS TABLE 11.53 U.S. Standard Sieve Series Sieve no.
Sieve opening mm inch Sieve no.
Sieve opening mm inch 125 5.00 10 2.00 0.0787 106 4.24 12 1.70 0.0661 90 3.50 14 1.40 0.0555 75 3.00 16 1.18 0.0469 63 2.50 18 1.00 0.0394 53 2.12 20 0.850 0.0331 45 1.75 25 0.710 0.0278 37.5 1.50 30 0.600 0.0234 31.5 1.25 35 0.500 0.0197 26.5 1.06 40 0.425 0.0165 22.4 0.875 45 0.355 0.0139 19.0 0.75 50 0.300 0.0117 16.0 0.625 60 0.250 0.0098 13.2 0.530 70 0.212 0.0083 11.2 0.438 80 0.180 0.0070 9.5 0.375 100 0.150 0.0059 8.0 0.312 120 0.125 0.0049 6.7 0.265 140 0.106 0.0041 3.5 5.60 0.223 170 0.090 0.0035 4 4.75 0.187 200 0.075 0.0029 5 4.00 0.157 230 0.063 0.0025 6 3.35 0.132 270 0.053 0.0021 7 2.80 0.111 325 0.045 0.0017 8 2.36 0.0937 400 0.038 0.0015 Specifications are from ASTM E.11-81/ISO 565. The sieve numbers are the approximate number of openings per linear inch.
11.9 THERMOMETRY 11.9.1 Temperature and Its Measurement The new international temperature scale, known as ITS-90, was adopted in September 1989. How-ever, neither the definition of thermodynamic temperature nor the definition of the kelvin or the Celsius temperature scales has changed; it is the way in which we are to realize these definitions that has changed. The changes concern the recommended thermometers to be used in different regions of the temperature scale and the list of secondary standard fixed points. The changes in temperature determined using ITS-90 from the previous IPTS-68 are always less than and 0.4 K, almost always less than over the range 0.2 K, 0–1300 K.
The ultimate definition of thermodynamic temperature is in terms of pV in (pressure volume) a gas thermometer extrapolated to low pressure. The kelvin (K), the unit of thermodynamic tem-perature, is defined by specifying the temperature of one fixed point on the triple point scale—the 11.138 SECTION 11 of water which is defined to be The Celsius temperature scale (C) is defined by the 273.16 K.
equation C K 273.15 where the freezing point of water at is 1 atm 273.15 K.
The fixed points in the ITS-90 are given in Table 11.39. Platinum resistance thermometers are recommended for use between and (the freezing point of silver), calibrated against the 14 K 1235 K fixed points. Below either the vapor pressure of helium or a constant-volume gas thermometer 14 K is to be used. Above radiometry is to be used in conjunction with the Planck radiation law, 1235 K 5 c /T 1 2 L c (e 1) 1 where L is the spectral radiance at wavelength . The first radiation constant, c1, is 3.741 83 and the second radiation constant, c2, has a value of 0.014 16 2 10 W · m 388 m · K.
TABLE 11.54 Fixed Points in the ITS-90 Fixed points T, K t, C Triple point of hydrogen 13.8033 259.3467 Boiling point of hydrogen at 33 321.3 Pa 17.035 256.115 Boiling point of hydrogen at 101 292 Pa 20.27 252.88 Triple point of neon 24.5561 248.5939 Triple point of oxygen 54.3584 218.7916 Triple point of argon 83.8058 189.3442 Triple point of mercury 234.3156 38.8344 Triple point of water 273.16 0.01 Melting point of gallium 302.9146 29.7646 Freezing point of indium 429.7458 156.5985 Freezing point of tin 505.078 231.928 Freezing point of zinc 692.677 419.527 Freezing point of aluminum 933.473 660.323 Freezing point of silver 1234.93 961.78 Freezing point of gold 1337.33 1064.18 Freezing point of copper 1357.77 1084.62 Secondary reference points to extend the scale (IPTS-68): Freezing point of platinum 2042 1769 Freezing point of rhodium 2236 1963 Freezing point of iridium 2720 2447 Melting point of tungsten 3660 3387 11.10 THERMOCOUPLES The thermocouple reference data in Tables 11.55 to 11.63 give the thermoelectric voltage in milli-volts with the reference junction at 0C. Note that the temperature for a given entry is obtained by adding the corresponding temperature in the top row to that in the left-hand column, regardless of whether the latter is positive or negative.
PRACTICAL LABORATORY INFORMATION 11.139 The noble metal thermocouples, Types B, R, and S, are all platinum or platinum-rhodium ther-mocouples and hence share many of the same characteristics. Metallic vapor diffusion at high tem-peratures can readily change the platinum wire calibration, hence platinum wires should only be used inside a nonmetallic sheath such as high-purity alumina.
Type B thermocouples (Table 11.56) offer distinct advantages of improved stability, increased mechanical strength, and higher possible operating temperatures. They have the unique advantage that the reference junction potential is almost immaterial, as long as it is between 0C and 40C.
Type B is virtually useless below 50C because it exhibits a double-value ambiguity from 0C to 42C.
Type E thermoelements (Table 11.57) are very useful down to about liquid hydrogen temperatures and may even be used down to liquid helium temperatures. They are the most useful of the com-mercially standardized thermocouple combinations for subzero temperature measurements because of their high Seebeck coefficient (58 V/C), low thermal conductivity, and corrosion resistance.
They also have the largest Seebeck coefficient (voltage response per degree Celsius) above 0C of any of the standardized thermocouples which makes them useful for detecting small temperature changes. They are recommended for use in the temperature range from 250 to 871C in oxidizing or inert atmospheres. They should not be used in sulfurous, reducing, or alternately reducing and oxidizing atmospheres unless suitably protected with tubes. They should not be used in vacuum at high temperatures for extended periods of time.
Type J thermocouples (Table 11.58) are one of the most common types of industrial thermocou-ples because of the relatively high Seebeck coefficient and low cost. They are recommended for use in the temperature range from 0 to 760C (but never above 760C due to an abrupt magnetic trans-formation that can cause decalibration even when returned to lower temperatures). Use is permitted in vacuum and in oxidizing, reducing, or inert atmospheres, with the exception of sulfurous atmos-pheres above 500C. For extended use above 500C, heavy-gauge wires are recommended. They are not recommended for subzero temperatures. These thermocouples are subject to poor conformance characteristics because of impurities in the iron.
The Type K thermocouple (Table 11.59) is more resistant to oxidation at elevated temperatures than the Type E, J, or T thermocouple, and consequently finds wide application at temperatures above 500C. It is recommended for continuous use at temperatures within the range 250 to 1260C in inert or oxidizing atmospheres. It should not be used in sulfurous or reducing atmospheres, or in vacuum at high temperatures for extended times.
The Type N thermocouple (Table 11.60) is similar to Type K but it has been designed to minimize some of the instabilities in the conventional Chromel-Alumel combination. Changes in the alloy content have improved the order/disorder transformations occurring at 500C and a higher silicon content of the positive element improves the oxidation resistance at elevated temperatures.
The Type R thermocouple (Table 11.61) was developed primarily to match a previous platinum– 10% rhodium British wire which was later found to have 0.34% iron impurity in the rhodium.
Comments on Type S also apply to Type R.
The Type S thermocouple (Table 11.62) is so stable that it remains the standard for determining temperatures between the antimony point (630.74C) and the gold point (1064.43C). The other fixed point used is that of silver. The Type S thermocouple can be used from 50C continuously up to about 1400C, and intermittently at temperatures up to the freezing point of platinum (1769C). The thermocouple is most reliable when used in a clean oxidizing atmosphere, but may also be used in inert gaseous atmospheres or in a vacuum for short periods of time. It should not be used in reducing atmospheres, nor in those containing metallic vapor (such as lead or zinc), nonmetallic vapors (such as arsenic, phosphorus, or sulfur), or easily reduced oxides, unless suitably protected with nonme-tallic protecting tubes.
The Type T thermocouple (Table 11.63) is popular for the temperature region below 0C (but see under Type E). It can be used in vacuum, or in oxidizing, reducing, or inert atmospheres.
TABLE 11.55 Thermoelectric Values in Millivolts at Fixed Points for Various Thermocouples Abbreviations Used in the Table FP, freezing point NBP, normal boiling point BP, boiling point TP, triple point Fixed point C Type B Type E Type J Type K Type N Type R Type S Type T Helium NPB 268.934 9.8331 6.4569 4.345 6.2563 Hydrogen TP 259.347 9.7927 6.4393 4.334 6.2292 Hydrogen NBP 252.88 9.7447 6.4167 4.321 6.1977 Neon TP 248.594 9.7046 6.3966 4.271 6.1714 Neon NBP 246.048 9.6776 6.3827 4.300 6.1536 Oxygen TP 218.792 9.2499 6.1446 4.153 5.8730 Nitrogen TP 210.001 9.0629 8.0957 6.0346 4.083 5.7533 Nitrogen NBP 195.802 8.7168 7.7963 5.8257 3.947 5.5356 Oxygen NBP 182.962 8.3608 7.4807 5.6051 3.802 5.3147 Carbon dioxide SP 78.474 4.2275 3.7187 2.8696 1.939 2.7407 Mercury TP 38.834 2.1930 1.4849 0.985 0.1830 0.1895 1.4349 Ice point 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Diphenyl ether TP 26.87 0.0024 1.6091 1.3739 1.076 0.698 0.1517 0.1537 1.0679 Water BP 100.00 0.0332 6.3171 5.2677 4.0953 2.774 0.6472 0.6453 4.2773 11.140 Benzoic acid TP 122.37 0.0561 7.8468 6.4886 5.0160 3.446 0.8186 0.8129 5.3414 Indium FP 156.598 0.1019 10.260 8.3743 6.0404 4.508 1.0956 1.0818 7.0364 Tin FP 231.928 0.2474 15.809 12.552 9.4201 6.980 1.7561 1.7146 11.013 Bismuth FP 271.442 0.3477 18.821 14.743 11.029 8.336 2.1250 2.0640 13.219 Cadmium FP 321.108 0.4971 22.684 17.493 13.085 10.092 2.6072 2.5167 16.095 Lead FP 327.502 0.5182 23.186 17.846 13.351 10.322 2.6706 2.5759 16.473 Mercury BP 356.66 0.6197 25.489 19.456 14.571 2.9630 2.8483 18.218 Zinc FP 419.527 0.8678 30.513 22.926 17.223 3.6113 3.4479 Cu-Al eutectic FP 548.23 1.4951 40.901 30.109 22.696 5.0009 4.7140 Antimony FP 630.74 1.9784 47.561 34.911 26.207 5.9331 5.5521 Aluminum FP 660.37 2.1668 49.941 36.693 27.461 6.2759 5.8591 Silver FP 961.93 4.4908 73.495 55.669 39.779 10.003 9.1482 Gold FP 1064.43 5.4336 61.716 43.755 11.364 10.334 Copper FP 1084.5 5.6263 62.880 44.520 11.635 10.570 Nickel FP 1455 9.5766 16.811 15.034 Cobalt FP 1494 10.025 17.360 15.504 Palladium FP 1554 10.721 18.212 16.224 Platinum FP 1772 13.262 21.103 18.694 Defining fixed points of the International Temperature Scale of 1990 (ITS-90). Except for the triple points, the assigned values of temperature are for equilibrium states at a pressure of one standard atmosphere (101 325 Pa).
11.141 TABLE 11.55 Thermoelectric Values in Millivolts at Fixed Points for Various Thermocouples Abbreviations Used in the Table FP, freezing point NBP, normal boiling point BP, boiling point TP, triple point Fixed point C Type B Type E Type J Type K Type N Type R Type S Type T (Continued) TABLE 11.56 Type B Thermocouples: Platinum–30% Rhodium Alloy vs. Platinum–6% Rhodium Alloy Thermoelectric voltage in millivolts; reference junction at 0C.
C 0 10 20 30 40 50 60 70 80 90 0 0.00 0.0019 0.0026 0.0021 0.0005 0.0023 0.0062 0.0112 0.0174 0.0248 100 0.0332 0.0427 0.0534 0.0652 0.0780 0.0920 0.1071 0.1232 0.1405 0.1588 200 0.1782 0.1987 0.2202 0.2428 0.2665 0.2912 0.3170 0.3438 0.3717 0.4006 300 0.4305 0.4615 0.4935 0.5266 0.5607 0.5958 0.6319 0.6690 0.7071 0.7462 400 0.7864 0.8275 0.8696 0.9127 0.9567 1.0018 1.0478 1.0948 1.1427 1.1916 500 1.2415 1.2923 1.3440 1.3967 1.4503 1.5048 1.5603 1.6166 1.6739 1.7321 600 1.7912 1.8512 1.9120 1.9738 2.0365 2.1000 2.1644 2.2296 2.2957 2.3627 700 2.4305 2.4991 2.5686 2.6390 2.7101 2.7821 2.8548 2.9284 3.0028 3.0780 800 3.1540 3.2308 3.3084 3.3867 3.4658 3.5457 3.6264 3.7078 3.7899 3.8729 900 3.9565 4.0409 4.1260 4.2119 4.2984 4.3857 4.4737 4.5624 4.6518 4.7419 1000 4.8326 4.9241 5.0162 5.1090 5.2025 5.2966 5.3914 5.4868 5.5829 5.6796 1100 5.7769 5.8749 5.9734 6.0726 6.1724 6.2728 6.3737 6.4753 6.5774 6.6801 1200 6.7833 6.8871 6.9914 7.0963 7.2017 7.3076 7.4140 7.5210 7.6284 7.7363 1300 7.8446 7.9534 8.0627 8.1724 8.2826 8.3932 8.5041 8.6155 8.7273 8.8394 1400 8.9519 9.0648 9.1780 9.2915 9.4053 9.5194 9.6338 9.7485 9.8634 9.9786 1500 10.0940 10.2097 10.3255 10.4415 10.5577 10.6740 10.7905 10.9071 11.0237 11.1405 1600 11.2574 11.3743 11.4913 11.6082 11.7252 11.8422 11.9591 12.0761 12.1929 12.3100 1700 12.4263 12.5429 12.6594 12.7757 12.8918 13.0078 13.1236 13.2391 13.3545 13.4696 1800 13.5845 13.6991 13.8135 11.142 TABLE 11.57 Type E Thermocouples: Nickel-Chromium Alloy vs. Copper-Nickel Alloy Thermoelectric voltage in millivolts; reference junction at 0C.
C 0 10 20 30 40 50 60 70 80 90 200 8.824 9.063 9.274 9.455 9.604 9.719 9.797 9.835 100 5.237 5.680 6.107 6.516 6.907 7.279 7.631 7.963 8.273 8.561 0 0.000 0.581 1.151 1.709 2.254 2.787 3.306 3.811 4.301 4.777 0 0.000 0.591 1.192 1.801 2.419 3.047 3.683 4.394 4.983 5.646 100 6.317 6.996 7.683 8.377 9.078 9.787 10.501 11.222 11.949 12.681 200 13.419 14.161 14.909 15.661 16.417 17.178 17.942 18.710 19.481 20.256 300 21.033 21.814 22.597 23.383 24.171 24.961 25.754 26.549 27.345 28.143 400 28.943 29.744 30.546 31.350 32.155 32.960 33.767 34.574 35.382 36.190 500 36.999 37.808 38.617 39.426 40.236 41.045 41.853 42.662 43.470 44.278 600 45.085 45.891 46.697 47.502 48.306 49.109 49.911 50.713 51.513 52.312 700 53.110 53.907 54.703 55.498 56.291 57.083 57.873 58.663 59.451 60.237 800 61.022 61.806 62.588 63.368 64.147 64.924 65.700 66.473 67.245 68.015 900 68.783 69.549 70.313 71.075 71.835 72.593 73.350 74.104 74.857 75.608 1000 76.358 11.143 TABLE 11.58 Type J Thermocouples: Iron vs. Copper-Nickel Alloy Thermoelectric voltage in millivolts; reference junction at 0C.
C 0 10 20 30 40 50 60 70 80 90 200 7.890 8.096 100 4.632 5.036 5.426 5.801 6.159 6.499 6.821 7.122 7.402 7.659 0 0.000 0.501 0.995 1.481 1.960 2.431 2.892 3.344 3.785 4.215 0 0.000 0.507 1.019 1.536 2.058 2.585 3.115 3.649 4.186 4.725 100 5.268 5.812 6.359 6.907 7.457 8.008 8.560 9.113 9.667 10.222 200 10.777 11.332 11.887 12.442 12.998 13.553 14.108 14.663 15.217 15.771 300 16.325 16.879 17.432 17.984 18.537 19.089 19.640 20.192 20.743 21.295 400 21.846 22.397 22.949 23.501 24.054 24.607 25.161 25.716 26.272 26.829 500 27.388 27.949 28.511 29.075 29.642 30.210 30.782 31.356 31.933 32.513 600 33.096 33.683 34.273 34.867 35.464 36.066 36.671 37.280 37.893 38.510 700 39.130 39.754 40.482 41.013 41.647 42.283 42.922 11.144 TABLE 11.59 Type K Thermocouples: Nickel-Chromium Alloy vs. Nickel-Aluminum Alloy Thermoelectric voltage in millivolts; reference junction at 0C.
C 0 10 20 30 40 50 60 70 80 90 200 5.891 6.035 6.158 6.262 6.344 6.404 6.441 6.458 100 3.553 3.852 4.138 4.410 4.669 4.912 5.141 5.354 5.550 5.730 0 0.000 0.392 0.777 1.156 1.517 1.889 2.243 2.586 2.920 3.242 0 0.000 0.397 0.798 1.203 1.611 2.022 2.436 2.850 3.266 3.681 100 4.095 4.508 4.919 5.327 5.733 6.137 6.539 6.939 7.338 7.737 200 8.137 8.537 8.938 9.341 9.745 10.151 10.560 10.969 11.381 11.793 300 12.207 12.623 13.039 13.456 13.874 14.292 14.712 15.132 15.552 15.974 400 16.395 16.818 17.241 17.664 18.088 18.513 18.839 19.363 19.788 20.214 500 20.640 21.066 21.493 21.919 22.346 22.772 23.198 23.624 24.050 24.476 600 24.902 25.327 25.751 26.176 26.599 27.022 27.445 27.867 28.288 28.709 700 29.128 29.547 29.965 30.383 30.799 31.214 31.629 32.042 32.455 32.866 800 33.277 33.686 34.095 34.502 34.909 35.314 35.718 36.121 36.524 36.925 900 37.325 37.724 38.122 38.519 38.915 39.310 39.703 40.096 40.488 40.879 1000 41.269 41.657 42.045 42.432 42.817 43.202 43.585 43.968 44.349 44.729 1100 45.108 45.486 45.863 46.238 46.612 46.985 47.356 47.726 48.095 48.462 1200 48.828 49.129 49.555 49.916 50.276 50.633 50.990 51.344 51.697 52.049 1300 52.398 52.747 53.093 53.439 53.782 54.125 54.466 54.807 11.145 TABLE 11.60 Type N Thermocouples: Nickel–14.2% Chromium–1.4% Silicon Alloy vs. Nickel–4.4% Silicon–0.1% Magnesium Alloy Thermoelectric voltage in millivolts; reference junction at 0C.
C 0 10 20 30 40 50 60 70 80 90 200 3.990 4.083 4.162 4.227 4.277 4.313 4.336 4.345 100 2.407 2.612 2.807 2.994 3.170 3.336 3.491 3.634 3.766 3.884 0 0.000 0.260 0.518 0.772 1.023 1.268 1.509 1.744 1.972 2.193 0 0.000 0.261 0.525 0.793 1.064 1.339 1.619 1.902 2.188 2.479 100 2.774 3.072 3.374 3.679 3.988 4.301 4.617 4.936 5.258 5.584 200 5.912 6.243 6.577 6.914 7.254 7.596 7.940 8.287 8.636 8.987 300 9.340 9.695 10.053 10.412 10.772 11.135 11.499 11.865 12.233 12.602 400 12.972 13.344 13.717 14.091 14.467 14.844 15.222 15.601 15.981 16.362 500 16.744 17.127 17.511 17.896 18.282 18.668 19.055 19.443 19.831 20.220 600 20.609 20.999 21.390 21.781 22.172 22.564 22.956 23.348 23.740 24.133 700 24.526 24.919 25.312 25.705 26.098 26.491 26.885 27.278 27.671 28.063 800 28.456 28.849 29.241 29.633 30.025 30.417 30.808 31.199 31.590 31.980 900 32.370 32.760 33.149 33.538 33.926 34.315 34.702 35.089 35.476 35.862 1000 36.248 36.633 37.018 37.402 37.786 38.169 38.552 38.934 39.315 39.696 1100 40.076 40.456 40.835 41.213 41.590 41.966 42.342 42.717 43.091 43.464 1200 43.836 44.207 44.577 44.947 45.315 45.682 46.048 46.413 46.777 47.140 1300 47.502 11.146 TABLE 11.61 Type R Thermocouples: Platinum–13% Rhodium Alloy vs. Platinum Thermoelectric voltage in millivolts; reference junction at 0C.
C 0 10 20 30 40 50 60 70 80 90 (Below zero) 0.0515 0.100 0.1455 0.1877 0.2264 0 0.0000 0.0543 0.1112 0.1706 0.2324 0.2965 0.3627 0.4310 0.5012 0.5733 100 0.6472 0.7228 0.8000 0.8788 0.9591 1.0407 1.1237 1.2080 1.2936 1.3803 200 1.4681 1.5571 1.6471 1.7381 1.8300 1.9229 2.0167 2.1113 2.2068 2.3030 300 2.4000 2.4978 2.5963 2.6954 2.7953 2.8957 2.9968 3.0985 3.2009 3.3037 400 3.4072 3.5112 3.6157 3.7208 3.8264 3.9325 4.0391 4.1463 4.2539 4.3620 500 4.4706 4.5796 4.6892 4.7992 4.9097 5.0206 5.1320 5.2439 5.3562 5.4690 600 5.5823 5.6960 5.8101 5.9246 6.0398 6.1554 6.2716 6.3883 6.5054 6.6230 700 6.7412 6.8598 6.9789 7.0984 7.2185 7.3390 7.4600 7.5815 7.7035 7.8259 800 7.9488 8.0722 8.1960 8.3203 8.4451 8.5703 8.6960 8.8222 8.9488 9.0758 900 9.2034 9.3313 9.4597 9.5886 9.7179 9.8477 9.9779 10.1086 10.2397 10.3712 1000 10.5032 10.6356 10.7684 10.9017 11.0354 11.1695 11.3041 11.4391 11.5745 11.7102 1100 11.8463 11.9827 12.1194 12.2565 12.3939 12.5315 12.6695 12.8077 12.9462 13.0849 1200 13.2239 13.3631 13.5025 13.6421 13.7818 13.9218 14.0619 14.2022 14.3426 14.4832 1300 14.6239 14.7647 14.9056 15.0465 15.1876 15.3287 15.4699 15.6110 15.7522 15.8935 1400 16.0347 16.1759 16.3172 16.4583 16.5995 16.7405 16.8816 17.0225 17.1634 17.3041 1500 17.4447 17.5852 17.7256 17.8659 18.0059 18.1458 18.2855 18.4251 18.5644 18.7035 1600 18.8424 18.9810 19.1194 19.2575 19.3953 19.5329 19.6702 19.8071 19.9437 20.0797 1700 20.2151 20.3497 20.4834 20.6161 20.7475 20.8777 21.0064 11.147 TABLE 11.62 Type S Thermocouples: Platinum–10% Rhodium Alloy vs. Platinum Thermoelectric voltage in millivolts; reference junction at 0C.
C 0 10 20 30 40 50 60 70 80 90 (Below zero) 0.0527 0.1028 0.1501 0.1944 0.2357 0 0.0000 0.0552 0.1128 0.1727 0.2347 0.2986 0.3646 0.4323 0.5017 0.5728 100 0.6453 0.7194 0.7948 0.8714 0.9495 1.0287 1.1089 1.1902 1.2726 1.3558 200 1.4400 1.5250 1.6109 1.6975 1.7849 1.8729 1.9617 2.0510 2.1410 2.2316 300 2.3227 2.4143 2.5065 2.5991 2.6922 2.7858 2.8798 2.9742 3.0690 3.1642 400 3.2597 3.3557 3.4519 3.5485 3.6455 3.7427 3.8403 3.9382 4.0364 4.1348 500 4.2336 4.3327 4.4320 4.5316 4.6316 4.7318 4.8323 4.9331 5.0342 5.1356 600 5.2373 5.3394 5.4417 5.5445 5.6477 5.7513 5.8553 5.9595 6.0641 6.1690 700 6.2743 6.3799 6.4858 6.5920 6.6986 6.8055 6.9127 7.0202 7.1281 7.2363 800 7.3449 7.4537 7.5629 7.6724 7.7823 7.8925 8.0030 8.1138 8.2250 8.3365 900 8.4483 8.5605 8.6730 8.7858 8.8989 9.0124 9.1262 9.2403 9.3548 9.4696 1000 9.5847 9.7002 9.8159 9.9320 10.0485 10.1652 10.2823 10.3997 10.5174 10.6354 1100 10.7536 10.8720 10.9907 11.1095 11.2286 11.3479 11.4674 11.5871 11.7069 11.8269 1200 11.9471 12.0674 12.1878 12.3084 12.4290 12.5498 12.6707 12.7917 12.9127 13.0338 1300 13.1550 13.2762 13.3975 13.5188 13.6401 13.7614 13.8828 14.0041 14.1254 14.2467 1400 14.3680 14.4892 14.6103 14.7314 14.8524 14.9734 15.9042 15.2150 15.3356 15.4561 1500 15.5765 15.6967 15.8168 15.9368 16.0566 16.1762 16.2956 16.4148 16.5338 16.6526 1600 16.7712 16.8895 17.0076 17.1255 17.2431 17.3604 17.4474 17.5942 17.7105 17.8264 1700 17.9417 18.0562 18.1698 18.2823 18.3937 18.5038 18.6124 11.148 TABLE 11.63 Type T Thermocouples: Copper vs. Copper-Nickel Alloy Thermoelectric voltage in millivolts; reference junction at 0C.
C 0 10 20 30 40 50 60 70 80 90 200 5.603 5.753 5.889 6.007 6.105 6.181 6.232 6.258 100 3.378 3.656 3.923 4.177 4.419 4.648 4.865 5.069 5.261 5.439 0 0.000 0.383 0.757 1.121 1.475 1.819 2.152 2.475 2.788 3.089 0 0.000 0.391 0.789 1.196 1.611 2.035 2.467 2.908 3.357 3.813 100 4.277 4.749 5.227 5.712 6.204 6.702 7.207 7.718 8.235 8.757 200 9.286 9.820 10.360 10.905 11.456 12.011 12.572 13.137 13.707 14.281 300 14.860 15.443 16.030 16.621 17.217 17.816 18.420 19.027 19.638 20.252 400 20.869 11.149 11.150 SECTION 11 11.11 CORRECTION FOR EMERGENT STEM OF THERMOMETERS When a thermometer which has been standardized for total immersion is used with a part of the liquid column at a temperature below that of the bulb, the reading is low and a correction must be applied. The stem correction, in degrees Celsius, is given by KL(t t ) degrees Celsius o m where K constant, characteristic of the particular kind of glass and temperature (see Table 11.49) L length of exposed thermometer, C (that is, the length not in contact with vapor or liquid being measured) to observed temperature on thermometer tm mean temperature of exposed column (obtained by placing an auxiliary thermometer alongside with its bulb midpoint) For thermometers containing organic liquids, it is sufficient to use the approximate value, K In such thermometers the value of K is practically independent of the kind of glass.
0.001.
TABLE 11.64 Values of K for Stem Correction of Thermometers Temperature, C Soft glass Heat-resistant glass 0–150 0.000 158 0.000 165 200 0.000 159 0.000 167 250 0.000 161 0.000 170 300 0.000 164 0.000 174 350 0.000 178 400 0.000 183 450 0.000 188 1 Index Terms Links Abbreviations: of amino acids, 3 letter and 1 letter 11.102 of ligand names 3.11 mathematical 2.23 of SI units 2.3 of states of aggregation 2.6 of words 2.26 ABS copolymers 10.20 properties of 10.50 Absolute configuration 1.49 Absorbance: defined 7.39 to percent absorption, table 2.96 to transmittance, table 2.98 Absorption bands, electronic, for chromophores 7.19 Absorption cross section of nuclides 4.58 Absorption edges, X-ray, wavelengths of 7.8 Absorption indicators 11.95 Absorption energies, X-ray, critical 7.7 Absorption lines, atomic, of elements 7.29 Absorption maxima, wavelengths, of acid-base indicators 8.116 Absorption, percent, conversion to absorbance, table 2.96 Absorptivity, defined 7.38 Abundance, natural: of isotopes 4.81 of nuclides 4.59 7.89 Accuracy 2.118 Acetal copolymers 10.8 10.22 Acetal homopolymers 10.8 10.22 Acetal polymers, properties of 10.22 Acetals: nomenclature of 1.23 as plastic materials, formulas and properties of 10.8 10.22 Acetamide, binary azeotropes with 5.74 Acetate, formation constants with 8.88 Acetic acid: binary azeotropes with 5.63 pKa values of 8.81 ternary azeotropes with 5.80 Acetone, binary azeotropes with 5.74 pKa values in 8.81 Acetonitrile: formation constances with 8.88 pKa values in 8.81 Acetylacetone, formation constants with 8.88 Acetylene, solubility in water at various temperatures 5.3 Acid anhydrides: infrared frequencies of 7.50 nomenclature of 1.23 Raman frequencies of 7.78 2 Index Terms Links Acid-base indicators 8.115 Acid-base titrations: indicators for 8.116 primary standards for 11.74 volumetric (titrimetric) factors for 11.76 Acid chlorides, infrared frequencies of 7.50 Acid dissociation constants: Harnmett and Taft equations for estimation of 9.2 of indicators 8.116 of inorganic materials 8.18 of organic materials 8.24 at various temperatures 8.73 Acid halides: infrared frequencies of 7.50 Raman frequencies of 7.78 Acid halogenides 3.8 Acid peroxides, infrared frequencies of 7.50 Acid titrants, volumetric factors for 11.76 Acid value: of fats and oils 10.69 of waxes 10.72 Acids: concentrations of commonly used 11.106 functional derivatives of inorganic, nomenclature of 3.8 inorganic, nomenclature of 3.8 organic, nomenclature of 1.29 1.38 standardization of basic solutions 11.75 trivial names for inorganic (table) 3.8 Acrylic poly(vinyl chloride) alloy, properties of 10.24 Acrylic polymers: description of 10.8 properties of 10.8 10.24 Acrylonitrile-butadiene-styrene (ABS) copolymers 10.19 AcryIonitrile- butadiene-styrene-poly ( vinyl chloride ) alloy, properties of 10.24 Activity coefficients 8.2 at high ionic strengths 8.5 Acyclic conformation isomers 1.39 Acyl halides, nomenclature of 1.24 Acylals, nomenclature of 1.23 Addition compounds, nomenclature of 3.112 Additives to polymers 10.4 Adjusted retention time 11.27 Adsorption indicators 11.95 Affinities, electron: of atoms 4.24 of molecules 4.25 of radicals 4.27 Affixes, multiplying 1.21 3 Index Terms Links Aggregation, states of, abbreviations for 2.7 Air: autoignition temperatures of combustible mixtures 5.139 buoyancy reduction factor for weighings 2.83 flammable limits of combustible mixtures in 5.139 moist, density of 5.88 refractive index of 5.135 saturated, mass of water vapor in at various temperatures 5.156 solubility in water at various temperatures 5.3 specific gravity at various temperatures 5.88 Alcoholometer 2.66 Alcohols: binary azeotropes with 5.57 5.66 nomenclature of 1.24 retained trivial names of 1.24 ternary azeotropes with 5.81 Aldehydes: binary azeotropes with 5.59 infrared frequencies of 7.51 nomenclature of 1.26 Raman frequencies of 7.78 Alicyclic ring systems, carbon-13 chemical shifts 7.101 Aliphatic hydrocarbons, monocyclic, nomenclature of 1.5 Alizarin red, formation constants with 8.89 Alkali titrants, volumetric factors for 11.77 Alkane carbon-hydrogen and carbon-carbon bonds Raman frequencies of 7.71 Alkane carbons, estimation of carbon-13 chemical shifts 7.102 Alkane residues, infrared frequencies of 7.41 Alkanes: carbon-13 chemical shifts 7.102 nomenclature of 1.1 proton chemical shifts 7.92 Raman frequencies of 7.71 Alkenes: carbon-13 chemical shifts 7.103 infrared frequencies of 7.54 nomenclature of 1.4 proton chemical shifts 7.92 Raman frequencies of 7.79 Alkyd molding polymers, properties of 10.24 10.42 Alkyd polyester thermosetting polymers, properties of 10.42 Alkyd polymers 10.9 Alkyl carbon-13 chemical shifts, effect of substituents upon 7.102 Alkyl groups, effects of substituent groups on carbon-13 chemical shifts 7.102 4 Index Terms Links Alkynes, nomenclature of 1.4 Allotropes 3.5 Alloy polymers: description of 10.10 properties of 10.24 Allyl alcohol: binary azeotropes with 5.71 ternary azeotropes with 5.78 Allyl polymers: description of 10.10 properties of 10.26 Allyl-diglycol-carbonate polymer, properties of 10.26 Alphabet, Greek 2.25 Alternate names of organic compounds 1.74 1.76 Alternative hypothesis 2.126 Altitude-gravity correction in barometry 2.77 Altitude-temperature factor in barometry 2.78 Alumina, solvent strength parameters 11.16 Aluminum: bond dissociation energies 4.41 gravimetric factors 11.41 Amides: infrared frequencies of 7.52 inorganic 3.9 nomenclature of 1.27 Amidines, infrared frequencies of 7.54 Amines: binary azeotropes with 5.59 infrared frequencies of 7.41 nomenclature of 1.27 Amino acids, pI and pKa values 11.102 Ammonia: formation constants with 8.83 liquid, vapor pressure of 5.27 solubility in water at various temperatures 5.3 Ammoniameter 2.66 Ammonium compounds: gravimetric factors 11.41 nomenclature of 1.28 Ammonium ion, infrared frequencies of 7.46 Amorphous polymers 10.2 Amount of substance 2.3 Ampere, definition of 2.3 Analytical reagents for gravimetry 11.67 Analytical weights, tolerances for 11.71 Analyzing crystals, for X-ray spectroscopy 7.13 Angle, trigonometric functions of 2.113 2.115 Angles in unit cells 4.58 Anhydrides, of inorganic acids 3.9 Aniline, binary azeotropes with 5.75 Animal fats and oils, properties of 10.69 Anion-exchange resins, guide to (table) 11.33 5 Index Terms Links Anions, inorganic: nomenclature of 3.6 3.10 selectivity coefficients in ion exchange 11.38 Anomalous electron moment correction 2.4 Antifreeze solutions, aqueous 5.83 Antimony: bond dissociation energies 4.41 gravimetric factors 11.42 Antioxidants for polymers 10.4 Antistatic agents for polymers 10.4 Antoine equation 5.29 Aqueous tension of solutions 11.6 Aramid polymer, properties of 10.38 Areas: between abscissa values of normal distribution curve 2.122 by approximation 2.111 of surfaces 2.109 Argon, solubility in water at various temperatures 5.8 Argon ICP, detection limits of elements (table) 7.29 Argon-ion laser plasma lines 7.88 Arithmetic means of set of numbers 2.118 Arithmetic mean 2.118 Aromatic bands, infrared frequencies of 7.57 Aromatic compounds: carbon-13 chemical shifts 7.104 7.105 monocyclic, nomenclature of 1.5 proton chemical shifts 7.96 Raman frequencies of 7.82 Aromatic nylon polymer, properties of 10.38 Aromatic polyester polymers, properties of 10.42 Arsenazo, formation constants with 8.89 Arsenic: bond dissociation energies 4.41 gravimetric factors 11.43 Astatine bond dissociation energy 4.41 Atmospheres, conversion to other pressure units 2.87 Atom radius of an element 4.29 Atomic absorption: electrothermal, detection limits of elements to 7.29 flame, detection limits of elements 7.29 Atomic and group refractions (table) 5.136 Atomic fluorescence, plasma, detection limits of elements 7.29 Atomic mass constant 2.4 Atomic number of elements 4.2 Atomic quantities, symbols, SI units and definitions 2.6 Atomic refractions 5.135 Atoms, electron affinities of 4.24 6 Index Terms Links Aurintricarboxylic acid, formation constants with 8.89 Autoignition temperature of combustible mixtures in air 5.139 Average linear velocity of mobile phase 11.27 Avogadro number constant 2.4 5.169 Axes in unit cells 4.58 Azeotropic mixtures: binary 5.58 ternary 5.77 Azo compounds: infrared frequencies of 7.55 nomenclature of 1.28 Raman frequencies of 7.81 Azoxy compounds: infrared frequencies of 7.55 nomenclature of 1.28 Balling hydrometer 2.68 Band asymmetry 11.28 Barium: bond dissociation energies 4.41 gravimetric factors 11.43 Barkometer (barktrometer) 2.66 Barometric corrections: for capillarity 2.71 2.75 for latitude-gravity 2.75 reduction to sea level 2.78 for temperature 2.72 Barometry 2.7 Base width of chromatographic peak 11.29 Bases: concentration of commonly used 11.106 primary standards for aqueous acidic solutions 11.74 Bates brewers' saccharometer 2.68 Bates-Guggenheirn convention for pH 8.115 Baume degrees, conversion to density 2.85 Baume hydrometers 2.67 Beck's hydrometer 2.67 Beer's law 7.39 Beilstein's Handbuch references for organic compounds 1.74 1.76 Benzene: absorption bands (ultraviolet) of 7.23 binary azeotropes with 5.76 carbon-13 chemical shifts in substituted 7.104 proton chemical shifts in monosubstituted 7.96 Raman frequencies of substitution patterns 7.82 vapor permeability of polymers 10.69 Benzene ring, substitution patterns, Raman frequencies 7.83 7 Index Terms Links Benzoylacetone, formation constants with 8.89 Benzyl alcohol, binary azeotropic mixtures 5.71 Berthelot's equation of state 5.170 Beryllium: bond dissociation energies 4.41 gravimetric factors 11.44 Best-fit line 2.133 errors in slope and intercept 2.135 Binary azeotropes 5.58 containing alcohols 5.66 containing ketones 5.74 containing organic acids 5.62 containing water 5.58 Binary compounds between nonmetals 3.2 Biological buffers, pH range 8.110 Biological materials, pH measurement of 8.106 Bis(2-hydroxyethyl) ether, binary azeotropes with 5.76 Bismuth: bond dissociation energies 4.42 gravimetric factors 11.44 Bisphenol epoxy resin, properties of 10.28 Bivalent sulfur, nomenclature of 1.37 Blackbody radiation 7.38 7.39 Blaze wavelength 7.40 Block copolymers 10.3 of styrene, properties of 10.54 Blood, pH measurement of 8.106 Body-centered cubic structure 4.57 Bohr magneton 2.4 Bohr radius 2.4 Boiling point: of chromatographic solvents 11.16 of inorganic compounds 3.14 molecular elevation of 11.13 of organic compounds 1.76 organic solvents arranged by 11.10 of water at various pressures 5.56 Boiling point temperature, calculation of 5.30 Boltzmann constant 2.4 Bond dipole moments 4.53 Bond dissociation energies 4.41 Bond lengths and strengths 4.29 (See also entries for specific elements) Bonds, spatial orientation of 4.56 Borate, reference pH buffer solution at various temperatures 8.105 Boron: bond dissociation energies 4.42 bond lengths with other elements 4.39 gravimetric factors 11.44 Boron compounds: infrared frequencies of 7.61 nomenclature of 1.29 8 Index Terms Links Boron-11 chemical shifts 7.111 Boyle's law 5.169 Branched polymers 10.3 BR rubber 10.59 Bragg equation 7.40 Bridged hydrocarbons, nomenclature of 1.10 Briggsian system of logarithms 2.102 Brix hydrometer 2.67 2.68 Bromide, formation constants with 8.84 Bromine: bond dissociation energies 4.42 gravimetric factors 11.44 overpotential of 8.140 solubility in water at various temperatures 5.3 Buffer solutions: for control purposes 8.110 standard reference 8.104 Buna N rubber 10.59 Buna S rubber 10.61 Buoyancy effect when weighing in air 2.83 Burets, tolerances for 11.103 Burning rate of polymers 10.22 Butadiene-maleic acid copolymer, properties of 10.42 1-Butanol: binary azeotropes with 5.69 ternary azeotropes with 5.78 2-Butanol, ternary azeotropes with 5.78 2-Butanone, binary azeotropes with 5.74 2-Butoxyethanol, binary azeotropes with 5.72 Butyl rubber 10.60 Butyric acid, binary azeotropes with 5.64 Cadmium: bond dissociation energies 4.42 gravimetric factors 11.44 Calcium: bond dissociation energies 4.42 gravimetric factors 11.45 Calcium chloride solutions, percent humidity of 11.7 Calcium hydroxide reference pH buffer solution at various temperatures 8.105 Calibration of conductivity vessels 8.160 Calmagite, formation constants with 8.90 Calomel reference electrodes, EMF as function of temperature 8.113 Candela, definition of 2.3 Capacity factor (see Partition ratio) Capillarity correction for barometer 2.75 Carbon: attached to double bond, estimation of chemical shifts of 7.103 bond dissociation energies 4.42 gravimetric factors 11.46 9 Index Terms Links Carbon-carbon: bond lengths 4.36 single bonds, Raman frequencies of 7.75 spin coupling constants 7.108 Carbon dioxide: gas permeability of polymers and rubbers 10.66 solubility in water at various temperatures 5.4 Carbon-fluorine spin coupling constants 7.109 Carbon-halogen bond lengths 4.36 Carbon-hydrogen: bond lengths 4.37 infrared absorption frequencies 7.41 Raman frequencies 7.71 spin coupling constants 7.107 Carbon-metals bond lengths 4.38 Carbon monoxide solubility in water at various temperatures 5.4 Carbon-nitrogen, bond lengths 4.37 Carbon-nitrogen bonds, Raman frequencies of 7.74 Carbon-nitrogen double bonds, Raman frequencies of 7.77 7.80 Carbon-nitrogen spin coupling constants 7.116 Carbon-oxygen bond lengths 4.37 Carbon-selenium bond lengths 4.38 Carbon-silicon bond lengths 4.38 Carbon-sulfur bond lengths 4.38 Carbon tetrachloride vapor permeability for polymers 10.69 Carbon-13: alkanes, estimation of chemical shifts of 7.102 attached to double bond, estimation of chemical shifts 7.103 chemical shifts 7.99 of carbonyl groups 7.106 in substituted benzenes 7.104 in substituted pyridines 7.105 Carbon-13 spin coupling constants 7.107 Carbonate reference pH buffer solution at various temperatures 8.105 Carbonyl groups: carbon-13 chemical shifts 7.106 infrared frequencies of 7.5 Raman frequencies of 7.78 Carboxylate ions, Raman frequencies of 7.79 Carboxylic acids: infrared frequencies of 7.52 nomenclature of 1.29 Raman frequencies of 7.79 Carter's hydrometer 2.67 Cations exchange resins for (guide) 11.34 inorganic, nomenclature of 3.6 relative selectivity in ion exchange 11.37 10 Index Terms Links Cellulose acetate polymers: description of 10.10 properties of 10.26 Cellulose-acetate-butyrate polymer: description of 10.11 properties of 10.26 Cellulose-acetate-propionate polymer: description of 10.11 properties of 10.28 Cellulose nitrate polymer: description of 10.11 properties of 10.28 Cellulose triacetate 10.10 Cellulosic polymers: description of 10.10 properties of 10.26 Celsius to Fahrenheit conversion factors 2.54 Centered period, use of 3.2 Centistokes, conversion factors 2.82 Cerium: bond dissociation energies 4.43 equations and equivalents for 11.66 gravimetric factors 11.47 Cesium: bond dissociation energies 4.44 gravimetric factors 11.47 Chain compounds, formulas for 3.2 Chain-transfer agents for polymers 10.4 Characteristic of a common logarithm 2.102 Characteristic low-mass neutral fragments from the molecular ion 7.127 Charge numbers in inorganic formulas 3.4 Charge-to-mass ratio for electron 2.4 Charles' law 5.169 Chemical Abstracts indexing system 1.49 Chemical blowing agents for polymers 10.6 Chemical nomenclature: inorganic 3.1 organic 1.2 Chemical reactions, symbols, SI units and definitions 2.7 Chemical resistance: or polymers 10.64 of rubbers 10.65 Chemical shifts: of boron-11 7.111 of carbon-13 7.99 attached to a double bond 7.103 in carbonyl groups 7.106 in substituted benzenes 7.104 in substituted pyridines 7.105 of fluorine-19 7.117 of nitrogen-15 7.112 of phosphorus-31 7.119 11 Index Terms Links Chemical shifts: (Cont.) of protons in methine and methylene groups, estimation of 7.94 of protons, in monosubstituted benzene 7.96 of residual protons in incompletely deuterated solvents 7.98 of silicon-29 7.118 Chemical structures: of crystals 4.58 of ion-exchange resins 11.32 of polymers 10.8 10.58 of rubbers 10.58 Chemical symbols and definitions 2.6 Chemicals: common reactive and incompatible 11.130 flammable 11.136 recommended for refrigerated storage 11.136 which polymerize or decompose on extended refrigeration 11.136 Chi square distribution 2.128 percentiles of 2.129 Chiral compounds, sequence rules for 1.44 Chirality and optical activity 1.45 Chloride, formation constants with 8.83 Chlorinated polyester polymer, properties of 10.28 Chlorinated poly(vinyl chloride), properties of 10.56 Chlorine: bond dissociation energies 4.44 gravimetric factors 11.47 overpotential of 8.140 solubility in water at various temperatures 5.4 Chlorosulfonated polyethylene 10.58 Chromatographic behavior of solutes 11.27 Chromatographic solvents 11.16 Chromatography, symbols and definitions for 2.8 Chromium: bond dissociation energies 4.44 gravimetric factors 11.47 Chromophores, electronic absorption bands for 7.19 Circle, properties of 2.110 Citrate reference pH buffer solution at various temperatures 8.105 Citric acid, formation constants with 8.90 Clapeyron equation 6.3 Clausius-Clapeyron equation 6.3 Cleaning solutions for fritted glassware 11.69 Cobalt: bond dissociation energies 4.33 gravimetric factors 11.48 Coefficient of linear expansion, of polymers 10.22 Coefficient of variation, in statistics 2.114 Coefficient of viscosity 5.137 12 Index Terms Links Collective inorganic names 3.4 Colloid chemistry, symbols, SI units, and definitions for 2.10 Colloids, protective 11.95 Column efficiency 11.27 Column selectivity factor (see Relative retention) Combustible mixtures in air 5.139 Commercial plastics, properties of 10.22 Common logarithms 2.102 Complexometric titrations 11.89 indicators for 11.96 Compressibility factor, in gas chromatography 11.26 critical 6.134 Compressibility of water 5.156 Compressive modulus of polymers 10.22 Compressive strength, rupture, of polymers 10.22 Compton wavelength of electron, neutron, and proton 2.4 Conductance 8.157 of electrolyte solution, defined 8.169 relations in 8.168 Conductivities, equivalent, of electrolytes in aqueous solutions 8.163 Conductivity: defined 8.168 equivalent 8.169 electrical, of various pure liquids 8.161 of standard potassium chloride solutions 8.160 of water at various temperatures 8.168 Conductivity, thermal: of elements 4.2 of gases at various temperatures 5.148 of liquids at various temperatures 5.151 of solids 5.154 Cone, volume and area of 2.112 Confidence level and limits 2.124 Configuration, electronic, of elements 4.2 Conformational isomers 1.39 Conjunctive nomenclature 1.21 Constants, fundamental 2.117 Control charts 2.137 Conversion factors 2.35 temperature 2.54 Cooling mixtures 11.3 Coordination bonds, dipole moments 4.54 Coordination compounds, inorganic nomenclature of 3.10 Copolymerization 10.3 Copper: bond dissociation energies 4.44 gravimetric factors 11.49 Copper vs. copper-nickel alloy thermocouple 11.140 11.149 13 Index Terms Links Correction for solvents in ultraviolet-visible region 7.23 Coupling agents for polymers 10.4 Covalent radii of elements 4.35 Critical compressibility factor, defined 6.143 Critical density 6.143 Critical phenomena 6.142 Critical pressure 6.142 of elements and compounds 6.142 Critical temperature, of elements and compounds 6.141 Critical volume, of elements and compounds 6.142 Critical X-ray absorption energies 7.8 Cross-linked polymer, defined 10.3 Cross section, thermal neutron absorption, of nuclides 4.59 Crucibles used for fusions 11.70 Cryoscopic constants 11.4 Crystal lattice types 4.57 Crystalline polymers 10.2 Crystal structures, in inorganic nomenclature 3.10 Crystals, analyzing, for X-ray spectroscopy 7.15 Cube, area and volume of 2.112 Cubic crystal lattices 4.57 Cubical coefficients of thermal expansion 11.105 Cumulated double bonds: infrared frequencies of 7.49 Raman frequencies of 7.77 Curium, bond dissociation energy 4.44 Curve fitting 2.133 Cyanato type compounds, nomenclature of 1.36 Cyanide, formation constants with 8.84 Cyclic compounds, conformations of 1.41 Cyclic hydrocarbons with side chains, nomenclature of 1.11 Cyclic ring systems: carbon-13 chemical shifts in 7.100 nitrogen-15 chemical shifts in 7.113 proton chemical shifts in 7.93 Cyclohexanol, binary azeotropes with 5.70 Cylinder, volume and area of 2.112 Dalton's law of partial pressures 5.170 Dative bonds, dipole moments 4.54 Debye-Hückel equation 8.2 8.5 Decay of radionuclides 4.59 Definitions of physical and chemical quantities 2.6 Deflection temperature of polymers under flexural load 10.22 Degree Celsius (see Celsius to Fahrenheit conversion factors) 14 Index Terms Links Degree Fahrenheit (see Fahrenheit to Celsius conversion factors) Degree kelvin 2.3 Degree of ionic character of bonds 4.29 Degrees of freedom, in statistics 2.123 Deionizer, in flame photometry 7.41 Demasking 11.93 Demasking agents (table) 11.100 Density: of aqueous glycerol solutions 5.138 conversion to degrees Baumé and Twaddell 2.85 critical 6.143 determined, with pyknometer 5.89 with plummet or sinker 5.89 of elements 3.12 hydrometers and relation between scales 2.66 of inorganic compounds 3.12 of mercury 5.87 of moist air 5.88 of organic compounds 1.76 of solvents 11.18 and specific gravity 2.66 5.87 of sucrose solutions 5.138 of water 5.85 Derivatives and differentiation 2.104 Desiccants 11.5 Detection limits, atomic absorption and atomic emission 7.29 Determinative errors 2.118 Deuterated solvents, chemical shifts: of carbon-13 7.110 of residual protons 7.98 Deuterium oxide, vapor pressure of 5.30 Dew point readings and relative humidity 11.9 Diallyl phthalate molding polymers, properties of 10.26 Diallyl phthalate polymers 10.10 Diamagnetic shielding factor, spherical water molecule 2.4 1,2-Diarninocyclohexane-N,N,N',N'-tetra- acetic acid formation constants with 8.90 Diastereomers 1.39 Diatomic molecules: binding energies of 4.41 bond lengths 4.29 Dibenzoylmethane, formation constants with 8.91 Dichromate, volumetric factors for 11.79 Dielectric constant: discussion of 5.137 of inorganic compounds 5.130 of organic compounds 5.105 of water at various temperatures 5.134 of polymers 10.22 15 Index Terms Links Dielectric strength of polymers 10.22 Dienes, absorption maxima of 7.19 Dienones, absorption wavelength of 7.22 Differentiation, rules for 2.104 4,5-Dihydroxybenzene-1,3-disulfonic acid, formation constants with 8.91 Dimensionless quantities, symbols and definitions 2.22 2,3-Dimercaptopropan-1-of, formation constants with 8.92 Dimethylglyoxime, formation constants with 8.92 Dimethylsulfoxide, pKa values in 8.81 Dipole moments 4.53 discussion of 5.136 of inorganic compounds 5.130 of organic compounds 5.105 2,2-Dipyridyl, formation constants with 8.92 Dispersion of data, measures of 2.121 Dissipation (power) factor of polymers 10.22 Dissociation energy of diatomic molecules 4.41 Distribution coefficient in ion exchange 11.39 Distribution curve, normal 2.119 Distribution of measurements 2.118 Distribution ratio, symbols and definitions for 2.8 Double bonds: cumulated: infrared frequencies of 7.49 Raman frequencies of 7.77 estimation of chemical shift of protons attached 7.95 infrared red frequencies of 7.49 protons attached, estimation of chemical shift 7.95 Raman frequencies of 7.79 Double-bond radii, of elements 4.35 Drying agents 11.5 Drying and humidification 11.5 Duane-Hunt equation 7.39 Durometer hardness of rubbers 10.63 Dynamic viscosity 5.137 Dysprosium, bond dissociation energies 4.44 Ebullioscopic constants 11.13 ED PM rubber 10.60 EDTA complex, formation constants of 11.97 EDTA, values of α4 at various pH values 11.97 Effective ionic radii in aqueous solutions 8.4 Effective plate number 11.28 Einstein equation 7.38 Elastomeric fibers 10.18 Elastomers, defined 10.2 Electric quadrupole moment of elements 7.89 Electrical conductivity of pure liquids 8.161 Electrical properties of polymers 10.22 16 Index Terms Links Electrical resistivity of elements 4.2 Electric current 2.3 Electricity, symbols, SI units, and definitions 2.11 Electrochemistry, symbols, SI units, and definitions 2.12 Electrode potentials 8.124 Electrodes, reference, potential of 8.113 Electrolytes, equivalent conductivities in aqueous solutions 8.163 Electromagnetic radiation 7.38 symbols, SI units, and definitions for 2.13 Electrometric measurement of pH 8.115 Electron affinities, of elements, molecules, and radicals 4.24 Electron magnetic moment 2.4 Electron radius, classical 2.4 Electron rest mass 2.4 Electronegative constituents, in inorganic formulas 3.3 Electronegativity 4.28 of elements (table) 4.29 Electronic absorption bands for chromophores 7.19 Electronic configuration of elements 4.2 Electrothermal atomic absorption, detection limits of elements 7.29 Elementary charge 2.4 Elements: abundance of naturally occurring isotopes 4.81 atom radius of 4.29 atomic number of 4.2 density of 3.12 effective ionic radii 4.30 electrical resistivity of 4.2 electron affinities of 4.24 electronegativities of 4.29 electronic configuration and properties 4.1 ionization energy 4.6 isotopes of naturally occurring 4.81 linear thermal expansion of 4.2 magnetic moment of 7.89 names and symbols for 3.3 nuclear properties of 4.42 7.89 potentials of 8.124 quadrupole moment of 7.89 sensitive emission limes of 7.34 standard stock solutions 11.107 symbols of 4.2 thermal conductivity of 4.2 work functions of 4.80 X-ray filters for 7.14 Ellipse, area of 2.111 Ellipsoid, area and volume of 2.113 Elongation, at break of polymers 10.22 ultimate, of rubbers 10.60 17 Index Terms Links Emergent stem correction of thermometers 11.150 Emission energies, X-ray 7.10 Emission limits of elements 7.29 Emission spectra, X-ray 7.3 Emission wavelengths, of fluorescent compounds 7.25 Empirical formula index of organic compounds 1.58 Enantiomers 1.46 Enclosing marks, use in inorganic formulas 3.2 Energy equivalents 2.4 Energy of ionization of molecular and radical species 4.8 Engler degrees 2.82 Enones, absorption wavelength of 7.22 Enthalpies: of inorganic compounds 6.81 of organic compounds 6.5 Enthalpy: of formation 6.2 of ions 4.8 of melting: of inorganic compounds 6.124 of organic compounds 6.51 of sublimation 6.3 of inorganic compounds 6.124 of organic compounds 6.51 of a system 6.4 of vaporization 6.3 of inorganic compounds 6.124 of organic compounds 6.51 Enthalpy change of bonds (see Bond dissociation energies) Entropies: of inorganic compounds 6.81 of melting 6.4 6.51 of organic compounds 6.5 of sublimation 6.4 of vaporization 6.4 Entropy of a system 6.5 Epichlorohydrin rubber 10.59 Epoxy casting resins, properties of 10.30 Epoxy polymers 10.11 Epoxy resins, properties of 10.28 Epoxy silicone polymers, properties of 10.48 Equations of state for real gases 5.170 Equivalent conductances: of hydrogen ion at various temperatures 8.168 of hydroxyl ion at various temperatures 8.168 Equivalent conductivity: defined 8.169 of electrolytes in aqueous solutions 8.163 Equivalent ionic conductances, limiting 8.157 18 Index Terms Links Equivalent weights for redox determinations 11.84 (See also Titrimetric factors) Erbium, bond dissociation energies 4.45 gravimetric factors 11.49 Eriochrome Black T, formation constants with 8.92 Error curve 2.119 Error probability, in statistics 2.123 Errors in quantitative analysis 2.118 Esters: binary azeotropes with 5.59 infrared frequencies of 7.50 of inorganic acids 3.9 nomenclature of 1.36 Raman frequencies of 7.78 Ethane, solubility in water at various temperatures 5.4 1,2-Ethanediol, binary azeotropes with 5.72 1,2-Ethanediol monoacetate, binary azeotropes with 5.73 Ethanol: binary azeotrop es with 5.66 pKa values in 8.81 ternary azeotropes with 5.77 vapor permeability for polymers 10.69 Ethanolamine, formation constants with 8.93 Ethanol-water mixtures, freezing point of 5.83 Ethers: binary azeotropes with 5.61 infrared frequencies of 7.58 Raman frequencies of 7.85 2-Ethoxyethanol, binary azeotropes with 5.72 Ethyl acetate, vapor permeability for polymers 10.69 Ethyl cellulose polymer: description of 10.11 properties of 10.28 Ethylene, solubility in water at various temperatures 5.4 Ethylene-chlorotrifluoroethylene copolymer: description of 10.13 properties of 10.32 Ethylene glycol-water mixtures, freezing point of 5.84 Ethylene-propylene-diene rubber 10.60 Ethylene-tetrafluoroethylene copolymer 10.13 Ethylene-vinyl acetate copolymer, properties of 10.44 Ethylenediamine, formation constants with 8.93 Ethylenediamine-N,N,N',N'-tetraacetic acid, formation constants with 8.93 Ethylenediaminetetraacetic acid, values of α4 at various pH 11.91 Europium, bond dissociation energies 4.45 19 Index Terms Links Excitation wavelengths of fluorescent compounds 7.25 Expansion in series 2.115 Explosive limits of combustible mixtures in air 5.139 Exponential series 2.115 Eykrnan equation 5.135 F statistic (tables) 2.131 F test for equality of variances 2.130 Face-centered lattices 4.57 Fahrenheit to Celsius conversion factors 2.54 Faraday constant 2.5 Fats, properties of 10.69 Fatty oil hy drometer 2.67 Fehling's solution 11.114 Filters, membrane 11.70 for X-rays 7.132 Fine structure constant 2.5 First radiation constant 2.5 Flame atomic absorption, detection limits of elements 7.29 Flame emission, detection limits of elements 7.29 Flame retardants for polymers 10.5 Flammable chemicals 11.115 Flammable limits of combustible mixtures in air 5.139 Flash point of organic compounds 1.76 Flasks, volumetric, tolerances for 11.102 Flexural modulus of polymers 10.22 Flexural strength, rupture, of polymers 10.22 Fluidity, definition of 5.133 Fluorescence 7.25 laws of 7.38 plasma atomic, detection limits of elements 7.29 quantum yield values 7.28 standards 7 .28 Fluorescent compounds, excitation and emission wavelengths 7.25 Fluorescent indicators for acid-base titrations 8.120 Fluoride, formation constants with 8.84 Fluorinated ethylene-propylene resin: description of 10.12 properties of 10.32 Fluorine: bond dissociation energies 4.45 equations and equivalents for 11.68 gravimetric factors 11.49 Fluorine-carbon spin coupling constants 7.109 Fluorine-19 to fluorine-19 spin coupling constants 7.118 Fluorine-19 chemical shifts 7.117 20 Index Terms Links Fluorocarbon polymers: description of 10.12 properties of 10.30 Fluxes for sample decomposition 11.70 Foaming agents for polymers 10.5 Foams, polyurethane 10.18 Formation, enthalpy of 6.2 Formation constants of metal complexes 8.82 with inorganic ligands 8.83 with organic ligands 8.88 Formic acid, binary azeotropes with 5.62 Formula weights: of inorganic compounds 3.14 of organic compounds 1.76 Formulas: of inorganic compounds 3.14 of organic compounds 1.76 of plastic materials 10.8 10.58 writing, of inorganic compounds 3.1 (See also Nomenclature) Fortin barometer 2.70 Fourier's series 2.116 Fragmentation patterns in mass spectrometry 7.126 Free radicals, writing formula for 3.2 Freedom, degrees of, in statistics 2.123 Freezing mixtures 5.83 11.3 Freezing point, molecular lowering of 11.4 Frequency, defined 7.38 Fritted glassware: cleaning solutions for 11.69 pore sizes of 11.71 Functional class names in radicofunctional nomenclature 1.22 Functional groups, in ion-exchange resins 11.32 nomenclature of 1.23 Functional organic compounds, nomenclature of 1.17 Fundamental physical constants 2.3 Fused polycyclic hydrocarbons, nomenclature of 1.6 Fusion, heats of (see Heats of melting) g factor (Landé) for free electron 2.5 Gadolinium, bond dissociation energies 4.45 gravimetric factors 11.50 Gallium, bond dissociation energies 4.27 Gas (ideal), molar equivalent at various pressures and temperatures 2.88 Gas chromatography: McReynolds' constants 11.21 stationary phases 11.21 Gas constant 2.5 21 Index Terms Links Gases: equations of state for 5.170 permeability constants of polymers and rubbers 10.66 physical chemistry equations for 5.169 reduction to standard temperature and pressure 2.91 solubility in water at various temperatures 5.3 thermal conductivities at various temperatures 5.148 Van der Waals' constants 5.157 velocity of 5.171 Gaussian distribution curve 2.119 Geometric mean of set of numbers 2.118 2.119 Geometrical isomerism 1.43 Geometrical isomers, sequences rules for 1.44 Geometry, molecular 4.56 Germanium, bond dissociation energies 4.45 gravimetric factors 11.50 Gibbs energies of formation: of inorganic compounds 6.81 of organic compounds 6.5 Glycerol-water mixtures: density and viscosity of 5.138 freezing point of 5.85 Glycine, formation constants with 8.94 Gold, bond dissociation energies 4.45 gravimetric factors 11.50 Graft copolymers 10.3 Graham's law of diffusion, of gases 5.171 Grating equation 7.40 Gravimetric analysis, reagents for 11.67 Gravimetric factors 11.41 Gravitational constant 2.4 Gravity-latitude corrections for barometer 2.75 Greek alphabet 2.25 GRN rubber 10.59 Group dipole moments 4.54 Group refractions 5.136 Gutta percha 10.58 Hafnium, bond dissociation energies 4.45 Haggenmacher equation 6.3 Half-lives, of nuclides 4.59 Half-wave potentials, voltarnmetric: of inorganic materials 8.141 of organic materials 8.146 Haloalkanes, Raman frequencies of 7.80 Halogen compounds: infrared frequencies of 7.62 Raman frequencies of 7.86 Halogen-carbon bond lengths 4.36 Halogen derivatives (organic), nomenclature of 1.31 22 Index Terms Links Halogenated hydrocarbons, binary azeotropes with 5.59 Hammett equation 9.2 Hammett substituent constants 9.2 Hardness: of polymers 10.22 of rubbers 10.63 Hartree energy 2.5 Heat capacities: of inorganic compounds 6.81 6.124 of organic compounds 6.5 6.51 Heat capacity of any phase 6.3 Heating baths 11.15 Heating temperatures of precipitates 11.72 Heats of fusion (see Heats of melting) Heats of melting: of inorganic compounds 6.124 of organic compounds 6.51 Heats of sublimation: of inorganic compounds 6.124 of organic compounds 6.51 Heats of vaporization: of inorganic compounds 6.124 of organic compounds 6.51 Helium: gas permeability of polymers and rubbers 10.66 solubility in water at various temperatures 5.8 Henry's law for gases 5.172 Heteroaromatics, primary absorption bands of 7.23 Heteroatomic inorganic anions, nomenclature of 3.5 Heterocyclic rings: carbon-13 chemical shifts 7.100 7.101 proton chemical shifts, in saturated 7.93 in unsaturated 7.94 Raman frequencies of 7.87 Heterocyclic systems, nomenclature of 1.11 Hexagonal crystal lattice 4.57 4.58 Hexane, vapor permeability for polymers 10.69 High-density polyethylene, properties of 10.44 High performance liquid chromatography 11.30 Hittorf transport numbers 8.169 HPLC, typical performances 11.31 Humidity, relative: from dew points 11.9 from wet and dry bulb thermometer readings 11.8 Humidity, solutions for maintaining constant 11.6 11.7 Hybrid bonds 4.56 Hydrocarbon ring assemblies, nomenclature of 1.10 Hydrocarbons: binary azeotropes with 5.61 halogenated, binary azeotropes with 5.59 23 Index Terms Links Hydrogen: binary inorganic compounds, 3.5 nomenclature of bond dissociation energies 4.46 bond lengths with other elements 4.39 gas permeability of polymers and rubbers 10.66 gravimetric factors 11.50 infrared frequencies of single bonded 7.42 overpotential of 8.140 solubility in water at various temperatures 5.4 Hydrogen-carbon: bond lengths 4.37 single bonds, infrared frequencies of 7.41 Raman frequencies of 7.71 spin coupling constants 7.107 7.108 Hydrogen bromide, solubility in water at various temperatures 5.8 Hydrogen chloride, solubility in water at various temperatures 5.8 Hydrogen ion, equivalent conductance at various temperatures 8.168 (See also pH) Hydrogen-nitrogen, infrared absorption frequencies 7.46 spin coupling constants 7.122 Raman frequencies 7.74 Hydrogen overpotential 8.140 Hydrogen sulfide, solubility in water at various temperatures 5.6 Hydrometer conversion table 2.85 Hydrometers 2.66 Hydroxide, formation constants with 8.84 N-(2-Hy droxyethyl)ethylenediarnine- N,N,N'-triacetic acid, formation constants with 8.95 6-Hydroxy -2-methylquinoline, formation constants with 8.95 Hydroxyl group: infrared frequencies of 7.44 Raman frequencies of 7.74 Hydroxyl ion, equivalent conductance at various temperatures 8.168 Hydroxylarnines, nomenclature of 1.31 8-Hydroxyquinoline-5-sulfonic acid, formation constants with 8.95 Hypotheses about means 2.126 Ice, vapor pressure of 5.26 ICP, detection limits of elements 7.29 Ignition temperature, (see Autoignition) Imides, infrared frequencies of 7.53 Imines: infrared frequencies of 7.46 7.54 nomenclature of 1.32 24 Index Terms Links Impact strength (Izod) of polymers 10.22 Inches mercury, conversion to other pressure units 2.87 Inches water, conversion to other pressure units 2.87 Incompatible and reactive chemicals 11.130 Indeterminate errors 2.118 Indicators: for acid-base titrations 8.116 for complexometric titrations 11.96 for oxidation-reduction titrations 8.122 preparation of 11.109 Indium, bond dissociation energies 4.47 gravimetric factors 11.51 Induction coupled plasma, detection limits of elements 7.29 Inductive effect of a substituent 9.2 Infrared spectroscopy 7.41 Infrared transmission characteristics of solvents 7.68 Infrared transmitting materials 7.67 Inhibitors for polymers 10.6 Inorganic acids, binary azeotropes with 5.58 Inorganic compounds: nomenclature of 3.1 physical constants of 3.12 physical properties of 5.130 proton-transfer reactions of 8.18 solubilities in water at various temperatures 5.9 solubility rules for 11.105 synonyms and mineral names 3.62 thermodynamic properties of 6.81 vapor pressures of 5.31 Inorganic ions: infrared frequencies of 7.64 limiting equivalent conductances 8.157 Integrals 2.105 Intercept of best-fit line, errors in 2.35 International temperature scale, fixed points in 11.138 International Union of Pure and Applied Chemistry, nomenclature: of inorganic compounds 3.1 of organic compounds 1.1 Interplanar spacings 7.13 for Kα1 radiation, of α-quartz 7.14 for Kα1 radiation, of silicon 7.14 Interplanar spacings, standards for 7.13 Iodate, formation constants with 8.85 Iodide, formation constants with 8.85 25 Index Terms Links Iodine: bond dissociation energies 4.47 gravimetric factors 11.51 overpotential of 8.140 titrimetric factors 11.78 Iodine titrant, volumetric factors for 11.78 Iodine value: of fats and oils 10.69 of waxes 10.72 lon-exchange 11.37 lon-exchange resins, guide to 11.32 Ion product constant of water at various temperatures 8.6 Ionic character of a bond 4.29 Ionic conductances, limiting equivalent 8.157 Ionic crystal lattices 4.57 Ionic equivalent conductivity, defined 8.169 Ionic mobility, defined 8.169 Ionic radii 4.34 in aqueous solutions 8.4 8.5 of elements 4.29 Ionic strength 8.2 Ionization energy: of elements 4.6 of molecular species 4.8 of radical species 4.8 Ionization of metals in a plasma 7.40 Ionized emission lines of elements 7.34 lonomer polymers 10.17 Ions: activity coefficients in water 8.3 enthalpy of formation 6.2 limiting equivalent conductances 8.157 Indium, bond dissociation energies 4.47 Iron: bond dissociation energies 4.47 gravimetric factors 11.51 Iron vs. copper-nickel alloy thermocouple 11.139 11.140 11.144 Isobutyric acid, binary azeotropes with 5.65 Isopolyanions, inorganic, nomenclature of 3.7 Isotactic arrangement 10.3 Isotopic abundances: naturally occurring elements 4.81 7.123 of selected elements 7.124 Isotopically labeled compounds, nomenclature of 3.4 ITS-90, fixed points in 11.137 11.138 IUPAC (see International Union of Pure and Applied Chemistry) Izod impact strength of polymers 10.22 Josephson frequency-voltage ratio 2.5 Joule-Thompson coefficient for real gases 5.172 26 Index Terms Links Kα1 lines, mass absorption coefficients for 7.16 Kelvin, definition of 2.3 Kelvin scale, conversion to other thermometer scales 2.66 Ketenes, nomenclature of 1.32 Ketones: binary azeotropes with 5.61 5.74 infrared frequencies of 7.51 nomenclature of 1.32 Raman frequencies of 7.78 Kilogram, definition of 2.3 Kinematic viscosity 5.138 Kinetics, symbols, SI units, and definitions for 2.14 Kovats retention indices 11.26 Krypton: bond dissociation energies 4.47 solubility in water at various temperatures 5.8 3.4 Laboratory solutions 11.106 Lactarns, nomenclature of 1.34 Lactic acid, formation constants with 8.96 Lactides, nomenclature of 1.34 Lactims, nomenclature of 1.34 Lactometers 2.67 Lactones: infrared frequencies of 7.50 nomenclature of 1.34 Ladder polymer, defined 10.3 Lanthanum, bond dissociation energies 4.47 Laser lines of argon-ion plasma 7.89 Latitude-gravity corrections for barometry 2.75 Lattice types of crystal structures 4.57 Laws of photometry 7.38 Lead: bond dissociation energies 4.47 gravimetric factors 11.52 Least squares or best-fit line 2.133 Length 2.3 Level of significance, in statistics 2.124 Ligand names, abbreviations for 3.11 Ligands: abbreviations for names 3.11 attachment points of 3.10 inorganic, nomenclature of 3.10 Limiting equivalent ionic conductances 8.157 Linear free energy relationships 9.2 Linear polymers, defined 10.3 Linear thermal expansion of elements 4.2 Liquids: electrical conductivity of pure 8.161 thermal conductivities of 5.150 27 Index Terms Links Lithium: bond dissociation energies 4.47 gravimetric factors 11.53 Logarithmic series 2.115 Logarithms 2.102 Lorentz and Lorenz equation 5.135 Low-density polyethylene, properties of 10.44 Lubricants for polymers 10.6 Luminous intensity 2.3 Lutetium, bond dissociation energies 4.48 Magnesium: bond dissociation energies 4.48 gravimetric factors 11.53 Magnesium chloride brines, freezing point of 5.86 Magnetic flux quantum 2.5 Magnetic moment: of elements 7.89 of protons in water 2.5 Magnetism, symbols, SI units, and definitions for 2.10 Manganese: bond dissociation energies 4.48 gravimetric factors 11.54 Mantissa of a common logarithm 2.102 Masking agents 11.92 (table) 11.98 Mass 2.3 Mass absorption coefficients for Kα1 and W Lα1 lines 7.15 Mass differences, exact 7.124 Mass spectra, correlation with molecular structure 7.123 Mathematical symbols and abbreviations 2.23 Maximum allowable exposure limits for gases and vapors 11.121 Maximum recommended service temperature of polymers 10.22 McReynold's constants in gas chromatography 11.21 Mean free path of gases 5.171 Mean ionic activity coefficient 8.2 Mean of set of numbers 2.111 Measurements, distribution of 2.111 Measures of dispersion of data 2.114 Mechanical properties of polymers 10.22 Mechanics, symbols, SI units, and definitions for 2.15 Median of set of numbers 2.118 Medium-density polyethylene, properties of 10.44 Melamine formaldehyde polymer: description of 10.13 properties of 10.32 28 Index Terms Links Melmine phenolic, woodflour-cellulose , filled plastic properties of 10.34 Melting, enthalpy of 6.4 of inorganic compounds 6.112 of organic compounds 6.51 Melting point: of inorganic compounds 3.14 molecular lowering of 11.4 of organic compounds 1.76 of waxes 10.72 Melting temperature of polymers 10.22 Membrane filters 11.70 Mercury: bond dissociation energies 4.48 density at various temperatures 5.87 gravimetric factors 11.55 vapor pressure of 5.24 Metal-carbon bond lengths 4.38 Metal complexes, formation constants of 8.83 Metal salts of organic acids, solubilities in water at various temperatures 5.9 Metastable peaks, use in mass spectrometry 7.125 Meter, definition of 2.3 Methacrylate monomers 10.10 Methane, solubility in water at various temperatures 5.6 Methanol: binary azeotropes with 5.66 pKa values in 8.81 ternary azeotropes with 5.77 5.82 Methanol-water mixtures, freezing point of 5.83 Methine protons: chemical shift of 7.92 estimation of chemical shift for 7.94 3-Methyl-l-butanol: binary azeotropes with 5.70 ternary azeotropes with 5.78 2-Methyl-l-propanol, ternary azeotropes with 5.78 2-Methyl-2-propanol: binary azeotropes with 5.69 ternary azeotropes with 5.78 Methyl protons, chemical shift of 7.92 Methylene protons: chemical shift of 7.92 estimation of chemical shift for 7.94 Micropipets, tolerances for 11.103 Millimeters mercury, conversion to other pressure units 2.87 Millimeters water, conversion to other pressure units 2.87 Mineral names of inorganic compounds 3.61 Minimum radius ratio of hybrid bonds 4.56 Mixed acid-base indicators 8.118 29 Index Terms Links Mode for set of numbers 2.118 Moist air: density of 5.88 refractive index of 5.135 Molal values from molar values 2.88 Molar absorptivity, defined 7.39 Molar equivalent of 1 liter of gas at various pressures and temperatures 2.88 Molar refraction 5.135 Molar values, conversion to molal 2.88 Molar volume, ideal gas 2.5 Mole, definition of 2.3 Molecular formula: of inorganic compounds 3.2 3.14 of organic compounds 1.76 Molecular geometry 4.56 Molecular lowering of the melting point 11.4 Molecular structure, determination from mass spectra 7.123 Molecular weight: determined by lowering of melting point 11.4 determined by molecular elevation of boiling point 11.13 Molecules: electron affinities of 4.25 ionization energy of 4.8 symbols, SI units and definitions 2.6 Molybdenum: bond dissociation energies 4.48 gravimetric factors 11.55 Monoclinic crystal lattices 4.57 4.58 Monocyclic aliphatic and aromatic hydrocarbons, nomenclature of 1.5 Multiplicative prefixes in inorganic nomenclature 3.10 Multiplying affixes 1.21 Must hydrometer 2.68 Naperian base (e) 2.117 Naphthalenes, Raman frequencies of 7.82 Natural abundance: of elements 7.89 of nuclides 4.59 7.89 Natural rubber: description of 10.58 properties of 10.63 synthetic 10.60 Naturally occurring isotopes, relative abundance of 4.81 NBR rubber 10.59 NBS (see NIST, National Institute for Science and Technology) Near infrared region, absorption frequencies in 7.64 Neodymium, bond dissociation energies 4.48 30 Index Terms Links Neon-neon bond dissociation energy 4.48 Neon, solubility in water at various temperatures 5.8 Neoprene 10.60 Neptunium-oxygen bond dissociation energy 4.48 Neutral inorganic radicals, nomenclature of 3.5 Neutron rest mass 2.4 New York Board of Health lactometer 2.67 Newtons per square meter, conversion to other pressure units 2.87 Nickel: bond dissociation energies 4.48 gravimetric factors 11.55 Nickel-chromium: vs. copper-nickel alloys thermocouple 11.139 11.140 11.143 vs. nickel-aluminum alloys thermocouple 11.139 11.140 11.145 Niobium, gravimetric factors 11.56 Niobium-oxygen bond dissociation energy 4.48 NIST pH buffer solution 8.105 8.106 Nitrate, formation constants with 8.86 Nitric oxide, solubility in water at various temperarores 5.6 Nitrile polymers: description of 10.13 properties of 10.34 Nitrile rubber 10.59 Nitriles: binary azeotropes with 5.62 nomenclature of 1.35 Nitrilotriactic acid, formation constants with 8.96 Nitro compounds: infrared frequencies of 7.55 Raman frequencies of 7.81 Nitrogen: bond dissociation energies 4.48 gas permeability of polymers and rubbers 10.66 gravimetric factors 11.56 solubility in water at various temperatures 5.6 Nitrogen-carbon: bond lengths 4.37 spin coupling constants 7.116 Nitrogen-15: chemical shifts 7.112 chemical shifts for standards 7.115 chemical shifts in monosubstituted pyridine 7.115 Nitrogen-14 NMR data (see Nitrogen-15) Nitrogen-fluorine spin coupling constants 7.116 Nitrogen-hydrogen bonds: infrared frequencies 7.46 Raman frequencies of 7.75 Nitrogen-hydrogen spin coupling constants 7.115 Nitrogen-nitrogen double bonds, Raman frequencies of 7.81 Nitrogen-other elements bond lengths 4.39 31 Index Terms Links Nitrogen-oxygen double bonds, Raman frequencies of 7.85 1-Nitroso-2-naphthol, formation constants with 8.97 Nitrous oxide, solubility in water at various temperatures 5.8 NMR frequency of elements for 1-kG field 7.89 NMR sensitivity at constant field of elements 7.89 NMR spectroscopy 7.92 Nomenclature: of inorganic compounds 3.1 of organic compounds 1.1 Nonaqueous solvents: pKa values in 8.81 potential ranges in 8.80 Nonfunctional organic compounds, nomenclature of 1.1 Normal distribution curve in statistics 2.119 Novolac resin, properties of 10.11 10.30 Nuclear magnetic resonance 7.89 Nuclear magneton 2.5 Nuclear properties of elements 4.58 7.89 Nuclear reactions, symbols for 2.8 Nuclear spin of elements 7.89 Nuclides: capture cross section, thermal 4.59 natural abundance of 4.59 7.89 properties of 4.58 radiation emitted 4.59 Numbering of organic compounds 1.20 Numerical prefixes 2.25 Nylon II polymers: description of 10.14 properties of 10.38 Nylon 6 polymers: description of 10.14 properties of 10.36 Nylon 6/9 polymers: description of 10.14 properties of 10.38 Nylon 6/6-nylon 6 copolymer, properties of 10.36 Nylon 6/6 polymers: description of 10.14 properties of 10.36 Nylon 6/12 polymers: description of 10.14 properties of 10.38 Nylon 12 polymer: description of 10.14 properties of 10.38 Octahedral covalent radii of elements 4.36 Oils, properties of 10.69 Oleometer 2.68 32 Index Terms Links One-tailed test, in statistics 2.125 Optical rotation 1.46 Orbitals, hybridized 4.56 Ordinates and areas of normal distribution curve 2.119 Organic acids: binary azeotropes with 5.58 5.62 salts of, solubilities at various temperatures 5.9 Organic compounds: dielectric constants 5.105 dipole moments 5.105 empirical formula index of 1.58 half-wave potentials 8.146 physical properties of 1.76 5.90 proton-transfer reactions of 8.24 surface tensions 5.90 thermodynamic properties of 6.5 6.51 vapor pressures of 5.39 viscosity of 5.90 Organic ions, limiting equivalent conductances 8.157 Organic radicals, names and formulas of 1.51 Organic solvents arranged by boiling points 11.10 Organosulfur halides, nomenclature of 1.38 Orientation, spatial, of common hybrid bonds 4.56 Orthorhomic crystal lattices 4.57 4.58 Osmium-oxygen bond dissociation energy 4.49 Ostwald dilution law 8.169 Overpotentials of electrode reactions 8.140 Oxalate, formation constants with 8.97 Oxidation numbers, in inorganic formulas 3.4 Oxidation-reduction indicators 8.122 11.83 Oxidation-reduction titrants 11.82 Oxidation-reduction titrations, equations for 11.84 Oximes, infrared frequencies of 7.54 Oxygen: bond dissociation energies 4.49 gas permeability of polymers and rubbers 10.66 overpotential 8.140 solubility in water at various temperatures 5.6 Oxygen-carbon bond lengths 4.37 Oxygen-hydrogen bonds, infrared frequencies 7.44 Oxygen-other elements bond lengths 4.29 Ozone, solubility in water at various temperatures 5.8 Palladium, gravimetric factors 11.57 -oxygen bond dissociation energy 4.49 Parabola, properties of 2.111 Parallelogram, area of 2.109 Particles, symbols for 2.8 Partition ratio 11.28 Pascals, conversion to other pressure units 2.87 Path length, of cuvettes 7.40 PCTA copolyester 10.16 33 Index Terms Links Peak asymmetry factor 11.28 11.29 Percent absorption to absorbance, table 2.96 Percent humidity: of calcium chloride solutions 11.7 of sodium hydroxide solutions 11.7 of sulfuric acid solutions 11.7 at various temperatures for various solutions 11.6 Perfluoroalkoxy polymer: description of 10.12 properties of 10.30 Permanganate, volumetric factors for 11.86 Permeability of vacuum 2.5 Peroxides: infrared frequencies of 7.58 nomenclature of 1.35 pH buffer solutions, standard reference 8.104 pH measurement: of blood and biological materials 8.106 electrometric 8.115 in 50 weight percent methanol-water 8.109 pH range: of acid-base indicators 8.116 of fluorescent indicators 8.120 pH values: for buffer solutions in alcohol-water solvents 8.109 of solutions, calculation of approximate 8.17 8.23 1,10-Phenanthroline, formation constants with 9.98 Phenol, binary azeotropes with 5.71 Phenol-formaldehyde resin 10.14 Phenolic polymers: description of 10.14 properties of 10.34 Phenols: nomenclature of 1.24 retained trivial names of 1.25 Phosphate reference pH buffer solutions at various temperatures 8.105 Phosphate-succinate reference pH buffer solution 8.108 Phosphorus: bond dissociation energies 4.49 gravimetric factors 11.57 other elements bond lengths 4.40 Phosphorus compounds: infrared frequencies of 7.60 nomenclature of 1.36 Phosphorus-31: chemical shifts 7.119 spin coupling constants 7.122 Photometry, laws of 7.38 Phthalate reference pH buffer solution at various temperatures 8.105 Phthalic acid, formation constants with 9.99 34 Index Terms Links Physical chemistry equations for gases 5.169 Physical constants, fundamental 2.3 Physical properties: of inorganic compounds 3.12 of organic compounds 1.76 of polymers 10.22 Physical symbols and definitions 2.6 pi (π), value of 2.117 Piperidine, formation constants with 8.99 Pipet capacity tolerances 11.103 pKa values at various temperatures 8.73 pKa values: of acid-base indicators 8.116 of inorganic materials 8.18 8.73 in nonaqueous solvents 8.81 of organic materials 8.24 pKa o values: for Hammett equation 9.7 for Taft equation 9.8 Planck constant 2.5 Planck radiation law 11.138 Plane angle 2.3 Plant fats and oils, properties of 10.70 Plastic families (table) 10.6 Plasticizers for polymers 10.7 Plastics, commercial: formulas and key properties of 10.8 properties of commercial 10.22 Plate height 11.28 Plate number 11.28 Platinum: bond dissociation energies 4.44 gravimetric factors 11.58 Platinum-10% rhodium alloy vs. platinum thermocouple 11.139 11.140 11.148 Platinum-13% rhodium alloy vs. platinum thermocouple 11.139 11.140 11.147 Platinum-30% rhodium vs. platinum-6% rhodium alloys 11.139 Polyacrylate rubbers 10.59 Poly(acrylic acid) and poly(methacrylic acid) copolymer 10.9 Poly(acrylonitrile) polymers 10.10 Polyallomer polyolefin polymer, properties of 10.46 Polyamide polymers: description of 10.14 properties of 10.36 Poly(amide-imide) polymers: description of 10.15 properties of 10.38 Poly(aryl ether) polymer, properties of 10.40 Polyatomic inorganic anions, nomenclature of 3.7 Polybutadiene rubber 10.59 35 Index Terms Links Polybutylene polymers 10.17 Polybutylene extrusion polymer, properties of 10.46 Poly(butylene terephthalate) polymers: description of 10.15 properties of 10.40 Polycarbonate polymer: description of 10.15 properties of 10.40 Polycarbonate-acrylonitrile-butadiene-styrene alloy 10.26 Polychloroprene rubber 10.60 Poly(chlorotrifluoroethylene) polymer: description of 10.12 properties of 10.30 Polycyclic hydrocarbons, fused, nomenclature of 1.6 Poly(1,4-cyclohexanedimethylene terephthalic acid) polymer 10.16 Polyester polymers 10.15 10.20 Polyester thermoplastic elastomers, properties of 10.54 Polyesters 10.15 10.20 Poly(ether sulfone) polymer, properties of 10.52 Polyethylene polymers: description of 10.16 properties of 10.44 Poly(ethylene terephthalate) polymers: description of 10.15 properties of 10.40 Polygon, area and properties of 2.110 Polyhedra, area of surface and volume 2.112 Polyimide polymers: description of 10.16 properties of 10.42 Polyisobutylene rubber 10.60 Polyisoprene rubber 10.60 Polymers: 10.2 additives to 10.4 gas permeability of 10.66 properties of commercial 10.22 resistance to chemicals 10.64 structural differences 10.3 vapor permeability constants for 10.69 Poly(methyl acrylate) 10.9 Poly(methyl methacrylate) polymer: description of 10.9 properties of 10.24 Poly(methylpentene) polymer: description of 10.16 properties of 10.44 Polyolefin polymers 10.16 in elastomers 10.20 properties of 10.44 36 Index Terms Links Polyolefin thermoplastic elastomers, properties of 10.54 Poly(phenyl sulfone) polymer, properties of 10.52 Poly(phenylene sulfide) polymer: description of 10.17 properties of 10.46 Polypropylene polymers: description of 10.17 properties of 10.46 Polysiloxanes 10.19 Polystyrene polymers: description of 10.19 properties of 10.48 Polysulfide rubbers 10.61 Polysulfone polymers: description of 10.20 properties of 10.52 Poly(tetrafluoroethylene) polymer: description of 10.12 properties of 10.30 Poly(vinyl acetate) polymer 10.21 Poly(vinyl alcohol) polymer 10.21 Poly(vinyl butyral) polymer: description of 10.21 properties of 10.56 Poly(vinyl chloride): description of 10.20 properties of 10.56 Poly(vinyl chloride) and poly(vinyl acetate) polymers, properties of 10.54 Poly(vinyl fluoride) polymer 10.13 Poly(vinyl formal) polymer, properties of 10.56 Poly(vinylidene chloride) polymer: description of 10.21 10.58 properties of 10.56 Poly(vinylidene fluoride) polymer: description of 10.13 properties of 10.32 Polyurethane polymers: description of 10.18 properties of 10.48 Pore sizes: of fritted glassware 11.60 of membrane filters 11.60 Potassium: bond dissociation energies 4.32 gravimetric factors 11.58 Potassium dichromate, volumetric factors for 11.79 Potassium permanganate, volumetric factors for 11.80 Potentials of elements and their compounds 8.124 Pounds per square inch, conversion to other units 2.87 Praseodymium, bond dissociation energies 4.49 37 Index Terms Links Precipitates, heating temperatures, composition of weighing forms, and gravimetric factors 11.72 Precipitation titrations 11.89 indicators for 11.94 standard solutions for 11.95 Prefixes: numerical (multiplying) 2.25 SI 2.25 use in inorganic formulas 3.2 Pressure, altitude variation of 2.78 Pressure conversion chart 2.87 Pressure, critical 6.143 Prestone-water mixtures, freezing point of 5.84 Primary standards: for acid-base titrations 11.74 for precipitation titrations 11.94 for redox titrations 11.82 Prismoid, volume of 2.112 Probability curve 2.119 Promethium, bond dissociation energies 4.50 1-Propanol, binary azeotropes with 5.67 1-Propanol, ternary azeotropic mixtures 5.77 2-Propanol, binary azeotropes with 5.68 2-Propanol, ternary azeotropic mixtures 5.77 Properties of plastic materials 10.8 Propionic acid: binary azeotropes with 5.64 ternary azeotropic mixtures 5.82 Propylene glycol-water mixtures, freezing point of 5.85 Propylene-1,2-diamine, formation constants with 8.99 Protective colloids 11.95 Proton chemical shifts: 7.92 attached to a double bond 7.95 in monosubstituted benzene 7.95 of reference compounds 7.98 Proton magnetic moment 2.5 Proton magnetogyric ratio 2.5 Proton resonance frequency per field in water 2.5 Proton rest mass 2.5 Proton spin coupling constants 7.97 Proton-transfer reactions 8.17 of inorganic materials 8.18 8.73 in nonaqueous solvents 8.81 of organic materials 8.24 at various temperatures 8.73 Protonated inorganic anions, nomenclature of 3.6 Protons attached to double bond, estimation of chemical shift of 7.95 Psi, conversion to other pressure units 2.87 Pyknometer, determinations with 5.89 38 Index Terms Links Pyridine: binary azeotropes with 5.75 carbon-13 chemical shifts in substituted 7.115 fonnation constants with 8.99 nitrogen-l5 chemical shifts in monosubstituted 7.115 Pyridine-2,6-dicarboxylic acid, formation constants with 8.99 1-(2-Pyridylazo)-2-naphthol, formation constants with 8.100 4-(2-Pyridylazo)resorcinol, formation constants with 8.100 Pyrocatechol-3,5-disulfonate, formation constants with 8.99 Pyrophosphate, formation constants with 8.86 Quadratic mean of set of numbers 2.119 Quadrupole moment of elements 7.89 Quantum of circulation 2.5 Quantum-charge ratio 2.5 Quantum yield values, fluorescence 7.28 Quartz, int erplanar spacings with Kα1 radiation 7.14 Quevenne lactometer 2.67 δ-Quinolinol, formation constants with 8.101 Radian, definition of 2.3 Radiation buffer 7.41 Radiation: electromagnetic, symbols, SI units, and definitions for 2.12 emitted by radionuclides 4.59 Radical species, ionization energy of 4.8 Radicals: electron affinities of 4.27 from ring systems, nomenclature of 1.10 Radicofunctional nomenclature 1.22 Radioactivity from nuclides 4.59 Radium-chlorine bond dissociation energy 4.50 Radius ratio, minimum 4.56 Radon, solubility in water at various temperatures 5.8 Raman frequencies: of aromatic compounds 7.82 of carbonyl bands 7.78 of cumulated double bonds 7.76 of double bonds 7.79 of ethers 7.85 of halogen compounds 7.86 of heterocyclic rings 7.87 of single bonds to hydrogen and carbon 7.71 of sulfur compounds 7.84 of triple bonds 7.76 Raman spectroscopy 7.71 Random errors 2.118 39 Index Terms Links Rankine scale, conversion of 2.66 Ratio, electron-to-proton magnetic moments 2.5 Rayon 10.11 Reaction parameters in Harnmett equation 9.2 9.7 Reactive and incompatible chemicals 11.130 Reagents, preparation of 11.109 Reaumur scale, conversion of 2.66 Rectangle, area of 2.109 Reduced plate height 11.31 Reduced velocity 11.31 Redwood seconds at several temperatures 2.82 Reference compounds in NMR: proton chemical shifts of 7.98 for nitrogen-15 chemical shifts 7.115 Reference electrodes 8.113 Refractions, atomic and group (table) 5.135 molar 5.135 Refractive index: of chromatographic solvents 11.16 discussion of 5.135 of fats and oils 10.69 of moist air 5.135 of organic compounds 1.76 of solvents 11.18 of water at various temperatures 5.134 of waxes 10.72 Refrigerated storage, chemical recommended for 11.136 Relative abundance of naturally occurring isotopes 4.81 Relative humidity: from dew point readings 11.9 from wet and dry bulb thermometer readings 11.8 Relative retention 11.28 Replacement nomenclature 1.22 Residual protons (NMR) in incompletely deuterated solvents 7.98 Resistance, chemical: of polymers 10.64 of rubbers 10.65 Resistivity: defined 8.168 electrical, of elements 4.2 (see also Conductivity) Resolution 11.28 11.29 Resonance effect of a substituent 9.2 Retention behavior of solutes in chromatography 11.27 Retention time (or volume) 11.27 Reversing a series 2.116 Reynolds number 5.138 40 Index Terms Links Rho values: for Hammett equation 9.7 in nucleophilic substitutions 9.8 for special reaction centers 9.8 Rhodium: bond dissociation energies 4.50 gravimetric factors 11.60 Rhombohedral crystal lattice 4.57 4.58 Ring assemblies of hydrocarbons, nomenclature of 1.10 Ring systems, radicals from, nomenclature of 1.10 Rockwell hardness of polymers 10.22 Root mean square 2.119 RT/nF values at several temperatures 8.115 Rubbers: 10.58 gas permeability of 10.66 properties of natural and synthetic 10.63 resistance to chemicals 10.64 Rubidium: bond dissociation energies 4.50 gravimetric factors 11.60 Ruthenium, bond dissociation energies 4.51 Rydberg constant 2.5 Saccharometers 2.68 Saha equation 7.41 Salicylaldoxime, formation constants with 8.101 Salicylic acid, formation constants with 8.101 Salinometer 2.68 Salts: of inorganic acids, nomenclature of 3.10 of organic acids, nomenclature of 1.36 Samarium, bond dissociation energies 4.50 Sample decomposition, fluxes for 11.61 Sample variance 2.118 SAN copolymers: description of 10.20 properties of 10.52 Saponification value: of fats and oils 10.69 of waxes 10.72 Saturated air, mass of water vapor in, at various temperatures 5.156 Saturated heterocyclic ring systems, proton NMR signal 7.93 Saybolt universal viscosity at several temperatures 2.82 Scandium, bond dissociation energies 4.50 Screens, see sieves Sea level, reduction of barometer readings to 2.79 Second, definition of 2.3 Second radiation constant 2.5 41 Index Terms Links Selection rules: for parent heterocyclic system 1.15 for principal alicyclic chain 1.18 for principal ring system 1.18 Selectivity coefficients for ion-exchange resins 11.37 Selenium: bond dissociation energies 4.50 gravimetric factors 11.60 Selellium-carboll bond lengths 4.38 Self-ignitioll temperatures of combustible mixture in air 5.139 Sensitivity of elements at constant field (NMR) 7.89 Separation methods 11.16 Sequence rules, geometrical isomers and chiral compounds 1.44 Service temperature: of commercial plastics 10.23 of rubbers of commercial plastics 10.63 Shore hardness: of polymers 10.22 of natural and synthetic rubbers 10.63 SI prefixes 2.24 SI units: base 2.3 definition of 2.3 derived 2.4 supplementary 2.3 Sieve openings 11.137 Sieve sizes, U.S. standard 11.137 Silica, solvent strength parameters 11.16 Silicon: bond dissociation energies 4.50 gravimetric factors 11.61 interplanar spacings with Kα1, radiation 7.14 Silicon compounds: infrared frequencies of 7.61 nomenclature of 1.37 Silicon-carboll bond lengths 4.38 Silicone polymers, properties of 10.48 Silicone rubbers 10.61 Silicones 10.18 Silicon-other elements bond lengths 4.40 Silicon-29 chemical shifts 7.119 Silver: bond dissociation energies 4.50 gravimetric factors 11.61 Silver nitrate, volumetric factors for 11.81 Silver/silver bromide reference electrode, EMF as function of temperature 8.113 Silver/silver chloride reference electrode, EMF as function of temperature 8.113 Silver/silver iodide reference electrode, EMF as function of temperature 8.113 42 Index Terms Links Single-bond radii, of elements 4.35 Single bonds between hydrogen and carbon: infrared frequencies of 7.41 Raman frequencies of 7.71 Single bonds between hydrogen and oxygen, infrared frequencies 7.44 Single bonds between hydrogen and nitrogen 7.46 Single-bond radii, of elements 4.35 Slope of best-fit line, errors in 2.135 Sodium: bond dissociation energies 4.51 gravimetric factors 11.61 Sodium chloride brines, freezing point of 5.86 Sodium hydroxide solutions, percent humidity of 11.7 Sodium thiosulfate solution, volumetric factors for 11.82 Solid angle 2.3 Solid state, symbols, SI units, and definitions for 2.16 Solidification point, of fats and oils 10.69 Solids, thermal conductivities 5.154 Solid state, symbols, SI units, and definitions for 2.16 Solubility: of gases in water at various temperatures 5.3 of inorganic compounds 3.14 in water at various temperatures 5.9 of organic compounds 1.76 Solubility products: 8.6 at various temperatures 8.73 Solubility rules for inorganic compounds 11.105 Solute band profile 11.29 Solutes, chromatographic behavior of 11.27 Solutions for analytical use, preparation of 11.109 Solvent strength parameter 11.16 Solvents: acid-base, properties of 8.90 arranged by boiling points 11.10 of chromatographic interest 11.16 correction for in ultraviolet-visible region 7.23 having the same refractive index and same density 11.18 infrared transmission characteristics 7.68 positions of residual protons (NMR) in incompletely deuterated 7.98 ultraviolet cutoffs of 7.20 Soxhlet lactometer 2.67 Space, symbols, SI units, and definitions for 2.17 Spatial orientation of common hybrid bonds 4.56 Specialist nomenclature for heterocyclic systems 1.11 43 Index Terms Links Specific gravity: 5.87 conversion to density 2.66 corrections for buoyant effect of air 5.89 of fats and oils 10.69 of polymers 10.22 of rubbers 10.63 of waxes 10.72 Specific heat: of any phase 6.4 of polymers 10.23 (see also Heat capacities) Specific refraction 5.135 Specific resistance 8.168 Specific rotation 1.47 Spectrophotometry, laws of 7.39 Spectroscopic relationships 7.38 Spectroscopy, symbols, SI units, and definitions for 2.16 Speed of light in vacuum 2.5 Sphere, area and volume of 2.112 Spin coupling constants: carbon-carbon 7.108 carbon-fluorine 7.109 of carbon-hydrogen 7.107 of carbon with nuclei other than hydrogen 7.110 fluorine-fluorine 7.118 nitrogen-fluorine 7.116 nitrogen-hydrogen 7.115 of phosphorus 7.122 of protons 7.97 Spin, nuclear, of elements 7.89 Sprayometer 2.68 Stability constants (see Formation constants) Standard acceleration of free fall 2.5 Standard atmosphere 2.5 Standard deviation: of chromatographic band 11.29 in statistics 2.120 Standard enthalpies for compounds 6.2 Standardized variable 2.120 Standard letter symbols 2.26 Standard stock solutions for elements 11.107 Standards: for acid-base titrations 11.74 for fluorescence 7.28 for precipitation titrations 11.94 for redox titrations 11.82 States of aggregation, abbreviations for 2.7 Stationary phases in gas chromatography 11.21 Statistical tables 2.117 Stefan's law 7.39 Stefan-Boltzmann constant 2.5 Steradian, definition of 2.3 Stereochemistry 1.39 44 Index Terms Links Stereoisomers 1.39 Stoichiometric proportions, in inorganic nomenclature 3.3 Straight-chain alkanes, names of 1.2 Strontium: bond dissociation energies 4.51 gravimetric factors 11.63 Structural formulas (see Formulas) Student t values (table) 2.124 Student's distribution 2.123 Styrene-acrylonitrile copolymers: description of 10.19 properties of 10.52 Styrene-butadiene copolymer, properties of 10.52 Styrene-butadiene rubber 10.61 Styrene-butadiene-styrene block copolymers 10.20 Styrene-maleic acid copolymer, properties of 10.42 Styrenic polymers: description of 10.19 properties of 10.48 Sublimation, enthalpy of: 6.3 of inorganic compounds 6.124 of organic compounds 6.51 Sublimation, entropy of 6.4 Substitution pattern of benzene ring: infrared frequencies 7.57 Raman frequencies 7.82 Substitutive nomenclature 1.17 Succinic acid, formation constants with 8.102 Sucrose-water solutions, density and viscosity of 5.138 Suffixes for specialist nomenclature of Heterocyclic systems 1.12 Sulfate, formation constants with 8.86 Sulfite, formation constants with 8.87 Sulfone polymers: description of 10.20 properties of 10.52 Sulfones, nomenclature of 1.38 Sulfonium compounds, nomenclature of 1.38 5-Sulfosalicylic acid, formation constants with 8.102 Sulfoxides, nomenclature of 1.38 Sulfur acids, nomenclature of 1.38 Sulfur: bond dissociation energies 4.51 -carbon bond lengths 4.38 gravimetric factors 11.64 -other elements bond lengths 4.40 Sulfur compounds: infrared frequencies of 7.59 nomenclature of 1.37 Raman frequencies of 7.84 Sulfur dioxide, solubility in water at various temperatures 5.6 45 Index Terms Links Sulfuric acid solutions: percent humidity of 11.7 specific vapor pressures of 11.7 Sultams, nomenclature of 1.39 Sultones, nomenclature of 1.39 Supercritical fluids, table 11.26 Suppression of ionization in a plasma 7.41 Surface areas and volumes 2.109 Surface chemistry, symbols, SI units, and definitions for 2.10 Surface tension: discussion of 5.136 of inorganic compounds 5.130 of organic compounds 5.90 of water at various temperatures 5.134 Symbols: of elements 4.2 mathematical 2.23 physical and chemical 2.6 standard letter 2.26 Symmetry in crystal structures 4.58 Syndiotactic arrangement 10.3 Synonyms of inorganic compounds 3.61 Synthetic rubbers: defined 10.3 natural 10.60 properties of 10.63 Systematic errors 2.118 t, values of 2.124 t test 2.123 Tacticity, defined 10.3 Taft sigma values 9.2 Taft substituent constants 9.2 Tantalum: bond dissociation energies 4.51 gravimetric factors 11.64 Tartaric acid, formation constants with 8.102 Tartrate reference pH buffer solution at various temperatures 8.105 Tellurium: bond dissociation energies 4.51 gravimetric factors 11.64 Temperature correction, for barometric readings 2.72 Temperature 2.3 conversion between Celsius and Fahrenheit scales 2.54 critical 6.141 measurement of 11.138 Tensile modulus of polymers 10.22 Tensile yield strength: at break of polymers 10.22 of natural and synthetic rubbers 10.63 46 Index Terms Links Tension, aqueous (see Vapor pressure) Terbium, bond dissociation energies 4.51 Ternary azeotropic mixtures 5.77 containing water and alcohols 5.77 Tests of significance, in statistics 2.126 Tetragonal crystal lattices 4.53 4.57 Tetraoxalate reference pH buffer solution at various temperatures 8.105 Thallium: bond dissociation energies 4.51 gravimetric factors 11.65 Theoretical plates 11.28 Thermal conductivity: 5.148 of elements 4.2 of gases at various temperatures 5.148 of liquids at various temperatures 5.151 of polymers 10.23 of solids 5.154 Thermal expansion: cubical coefficients of 11.105 linear, coefficient of, elements 4.2 Thermal neutron absorption cross section of nuclides 4.59 Thermal properties of polymers 10.22 Thermocouples 11.138 Type B 11.139 Type E 11.139 11.140 11.143 Type I 11.139 11.140 11.144 Type K 11.139 11.140 11.145 Type N 11.139 11.140 11.146 Type R 11.139 11.140 11.147 Type S 11.139 11.140 11.148 Type T 11.139 11.140 11.149 Thermodynamtic properties 6.1 Thermodynamtics, symbols, SI units, and definitions for 2.19 Thermoelastic elastomers 10.20 Thermometer scales, conversion between 2.59 Thermometers, correction for emergent stem 11.150 Thermometry 11.137 Thermoplastic elastomers: defined 10.2 10.20 properties of 10.54 Thermoplastic polyester polymers 10.40 Thermoplastic polyurethane elastomer, properties of 10.48 Thermosetting alkyd polyesters, properties of 10.42 Thermosetting polymers, defined 10.2 Thiocyanate, formation constants with 8.87 Thioesters and thioacids, infrared frequencies of 7.53 Thioglycolic acid, formation constants with 8.103 Thiophene, binary azeotropes with 5.76 47 Index Terms Links Thiosulfate: formation constants with 8.87 volumetric factors for 11.88 Thiourea, formation constants with 8.103 Thomson cross section 2.5 Thorium: bond dissociation energies 4.51 gravimetric factors 11.65 Thoron, formation constant with 8.103 Threshold limit value (TLV) for gases and vapors 11.121 Thullium, bond dissociation energies 4.51 Time: of analysis in chromatography 11.31 defined 2.3 symbols, SI units, and definitions for 2.17 Tin: bond dissociation energies 4.51 gravimetric factors 11.65 Tiron, formation constants with 8.91 Titanium: bond dissociation energies 4.52 gravimetric factors 11.65 Titrimetric factors: acids 11.76 bases 11.77 iodine 11.78 potassium dichromate 11.79 potassium permanganate 11.80 silver nitrate 11.81 sodium thiosulfate 11.82 Titrimetric solutions, standard: for acid-base titrations 11.84 for elements 11.107 for precipitation titrations 11.94 for redox titrations 11.82 Tolerances: for analytical weights 11.71 for burets 11.103 for pipets 11.103 for volumetric flasks 11.102 Torsional asymmetry 1.47 Torus, area and volume of 2.113 Tralle hydrometer 2.68 Transference numbers 8.169 Transmittance: to absorbance (table) 2.98 defined 7.39 Transport properties, symbols, SI units, and definitions for 2.21 Trapezoid, area of 2.109 Triangle, area of 2.109 Triclinic crystal lattice 4.57 Triethanolamine, formation constants with 8.103 48 Index Terms Links Triethylenetetrarnine, formation constants with 8.103 1,1,1-Trifluoro-3,2'-thenoylacetone, formation constants with 8.104 Trigonometric functions: of an angle 2.113 functions, series for 2.116 Triple-bond radii, of elements 4.35 Triple bonds: infrared frequencies of 7.47 Raman frequencies of 7.76 Triple points of various materials 5.168 Trivial names of heterocyclic systems for use in fusion names 1.13 Trouton's rule 6.3 Tungsten: bond dissociation energies 4.52 gravimetric factors 11.66 Tungsten Lα1 line, mass absorption coefficients for 7.16 Twaddell degrees: conversion to degrees Baume 2.85 conversion to density 2.85 Twaddell hydrometer 2.68 Two-tailed test, in statistics 2.125 Ultraviolet-visible spectroscopy 7.19 Ultraviolet cutoff: of chromatographic solvents 11.16 of spectrograde solvents 7.20 Ultraviolet stabilizers for polymers 10.7 Unit cells in crystal structures 4.59 Unsaturated carbon-hydrogen bond, Raman frequencies 7.73 Unsaturated polyester polymers 10.16 Unsaturated cyclic ring systems, carbon-13 chemical shifts 7.101 Unsaturated heterocyclic ring systems, proton chemical shifts in 7.94 Uranium: bond dissociation energies 4.52 gravimetric factors 11.66 Urea formaldehyde resin 10.21 description of 10.58 properties of 10.54 Ureas, infrared frequencies of 7.53 Van der Waals' constants for gases 5.157 Van der Waals' equation of state for gases 5.157 5.170 Vanadium: bond dissociation energies 4.52 gravimetric factors 11.66 Vapor density, of gases 5.171 49 Index Terms Links Vaporization: enthalpy of 6.3 of inorganic compounds 6.124 of organic compounds 6.51 entropy of 6.4 Vapor permeability constants for polymers 10.69 Vapor-pressure equations 5.29 Vapor pressure: of ammonia (liquid) 5.27 of deuterium oxide 5.30 of ice 5.26 of inorganic compounds 5.31 of mercury 5.24 of water 5.28 of organic compounds 5.39 of solutions 11.6 Variance in statistics 2.114 Velocities of gas molecules 5.171 Vinyl polymers: description of 10.20 properties of 10.54 Virial equation of state for gases 5.170 Viscosity: of aqueous glycol solutions 5.138 of chromatographic solvents 11.16 conversions 2.82 discussion of 5.137 of inorganic compounds 5.130 of organic compounds 5.90 of sucrose solutions 5.138 of water at various temperatures 5.134 Voltammetric half-wave potentials: of inorganic materials 8.141 of organic materials 8.146 Volume: critical 6.143 factors for simplified computation of 11.104 of geometric objects 2.109 Volume resistivity (dc) of polymers 10.22 Volumetric analysis 11.74 Volumetric factors 11.76 Volumetric flasks, tolerances for 11.102 Volumetric primary standards: acid-base titrations 11.74 complexometric titrations 11.91 precipitation titrations 11.94 for redox titrations 11.82 Vulcanization and curing 10.7 Water: absorption by polymers 10.22 binary azeotropes with 5.58 boiling points of 5.57 compressibility of 5.150 50 Index Terms Links Water (Cont.) conductivity of pure, at various temperatures 8.168 density at various temperatures 5.87 dielectric constant, refractive index, surface tension, viscosity 5.134 ion product constant of, at various temperatures 8.6 ternary azeotropes with 5.79 vapor pressure of 5.28 Water vapor: gas permeability of polymers and rubbers 10.66 mass of in saturated air 5.156 Wavelength: defined 7.38 maxima of acid-base indicators 8.116 to wavenumber conversion, table 2.101 and X-ray tube voltage relationship 7.39 Wavenumber to wavelength conversion, table 2.101 Waxes, properties of 10.72 Weighings in air to weighings in vacuo, conversion of 2.83 Weights, analytical, tolerances for 11.71 Wet and dry bulb thermometer readings and relative humidity 11.8 Wien displacement constant 2.5 Wien displacement law 7.38 Wijs solution for iodine number 11.121 Wine and must hydrometer 2.68 Woodward-Fieser rules 7.19 Work functions of elements 4.80 Writing formulas of inorganic compounds 3.1 Xenon: bond dissociation energies 4.52 solubility in water at various temperatures 5.8 X-ray absorption edges, wavelengths of 7.5 X-ray absorption energies, critical 7.8 X-ray emission energies 7.10 X-ray emission spectra 7.3 X-ray filters 7.14 X-ray lines, mass absorption coefficients for 7.16 X-ray methods 7.2 X-ray spectroscopy, analyzing crystals for 7.15 X-ray tube voltage and wavelength relationship 7.39 Xylenol orange, formation constants with 8.104 Ytterbium, bond dissociation energies 4.52 Yttrium, bond dissociation energies 4.52 Zeeman splitting constant 2.4 Zinc: bond dissociation energies 4.52 gravimetric factors 11.66 51 Index Terms Links Zincon, formation constant with 8.104 Zirconium: bond dissociation energies 4.53 gravimetric factors 11.67 z statistics 2.120
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.