repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
sequencelengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
explosion/spaCy
machine-learning
13,652
No compatible packages found for v3.8.2 of spaCy
It seems like the recently pushed` 3.8.2` version has some issues downloading models. ``` python -m spacy download en_core_web_md ✘ No compatible package found for 'en-core-web-md' (spaCy v3.8.2) ``` Here's my system info. ``` C:\Users\victim\AppData\Local\Programs\Python\Python312\Lib\site-packages\spacy\util.py:910: UserWarning: [W095] Model 'en_core_web_md' (3.7.1) was trained with spaCy v3.7.2 and may not be 100% compatible with the current version (3.8.2). If you see errors or degraded performance, download a newer compatible model or retrain your custom model with the current spaCy version. For more details and available updates, run: python -m spacy validate warnings.warn(warn_msg) ============================== Info about spaCy ============================== spaCy version 3.8.2 Location C:\Users\victim\AppData\Local\Programs\Python\Python312\Lib\site-packages\spacy Platform Windows-11-10.0.22631-SP0 Python version 3.12.6 Pipelines en_core_web_md (3.7.1) ``` Issue fix: Just make it en_core_web_md instead of en-core-web-md
closed
2024-10-04T09:35:19Z
2024-11-04T00:03:06Z
https://github.com/explosion/spaCy/issues/13652
[]
HydraDragonAntivirus
1
matplotlib/matplotlib
matplotlib
28,907
[Bug]: completely freezes
### Bug summary "When using PyCharm (regardless of the version) in debug mode or starting matplotlib.pyplot.plot in the Python console, the process completely freezes, and I can only force it to end." ### Code for reproduction ```Python import matplotlib matplotlib.use('tkagg') import matplotlib.pyplot as plt import numpy as np plt.imshow(np.zeros((10, 10))) plt.show() ``` ### Actual outcome any version of pycharm ### Expected outcome nothing ### Additional information _No response_ ### Operating system _No response_ ### Matplotlib Version 3.9.* ### Matplotlib Backend _No response_ ### Python version _No response_ ### Jupyter version _No response_ ### Installation pip
closed
2024-09-29T14:50:21Z
2024-10-30T01:16:24Z
https://github.com/matplotlib/matplotlib/issues/28907
[ "status: needs clarification" ]
name-used
17
dmlc/gluon-nlp
numpy
1,020
HybridBeamSearch broken
## Description HybridBeamSearch tests break after https://github.com/apache/incubator-mxnet/pull/16836. Prior to the change in MXNet, the tests wouldn't fail because MXNet wouldn't give a chance to the operator to verify that types are correct. ### Error Message ``` tests/unittest/test_sequence_sampler.py <class 'test_sequence_sampler.test_beam_search.<locals>.RNNDecoder'> RNNDecoder 2 1 3 0 1.0 1 terminate called after throwing an instance of 'dmlc::Error' what(): [05:56:03] src/operator/numpy/linalg/./../../tensor/../elemwise_op_common.h:135: Check failed: assign(&dattr, vec.at(i)): Incompatible attr in node hybridbeamsearchsampler0_identity0 at 0-th output: expected int32, got float32 Stack trace: [bt] (0) /home/ubuntu/.pyenv/versions/3.7.3/lib/python3.7/site-packages/mxnet/libmxnet.so(+0x30a67b) [0x7f154ef8567b] [bt] (1) /home/ubuntu/.pyenv/versions/3.7.3/lib/python3.7/site-packages/mxnet/libmxnet.so(+0x31ad42) [0x7f154ef95d42] [bt] (2) /home/ubuntu/.pyenv/versions/3.7.3/lib/python3.7/site-packages/mxnet/libmxnet.so(+0x33ee9c) [0x7f154efb9e9c] [bt] (3) /home/ubuntu/.pyenv/versions/3.7.3/lib/python3.7/site-packages/mxnet/libmxnet.so(+0x35804f6) [0x7f15521fb4f6] Fatal Python error: Aborted Current thread 0x00007f156ffa0700 (most recent call first): File "/home/ubuntu/.pyenv/versions/3.7.3/lib/python3.7/site-packages/mxnet/_ctypes/ndarray.py", line 170 in __call__ File "/home/ubuntu/.pyenv/versions/3.7.3/lib/python3.7/site-packages/mxnet/gluon/block.py", line 1020 in _call_cached_op File "/home/ubuntu/.pyenv/versions/3.7.3/lib/python3.7/site-packages/mxnet/gluon/block.py", line 1148 in forward File "/home/ubuntu/.pyenv/versions/3.7.3/lib/python3.7/site-packages/mxnet/gluon/block.py", line 693 in __call__ File "/home/ubuntu/projects/gluon-nlp/tests/unittest/test_sequence_sampler.py", line 280 in test_beam_search File "/home/ubuntu/.pyenv/versions/3.7.3/lib/python3.7/site-packages/_pytest/python.py", line 176 in pytest_pyfunc_call File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/callers.py", line 187 in _multicall File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/manager.py", line 81 in <lambda> File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/manager.py", line 87 in _hookexec File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/hooks.py", line 289 in __call__ File "/home/ubuntu/.pyenv/versions/3.7.3/lib/python3.7/site-packages/_pytest/python.py", line 1445 in runtest File "/home/ubuntu/.pyenv/versions/3.7.3/lib/python3.7/site-packages/_pytest/runner.py", line 126 in pytest_runtest_call File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/callers.py", line 187 in _multicall File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/manager.py", line 81 in <lambda> File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/manager.py", line 87 in _hookexec File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/hooks.py", line 289 in __call__ File "/home/ubuntu/.local/lib/python3.7/site-packages/flaky/flaky_pytest_plugin.py", line 306 in <lambda> File "/home/ubuntu/.pyenv/versions/3.7.3/lib/python3.7/site-packages/_pytest/runner.py", line 229 in from_call File "/home/ubuntu/.local/lib/python3.7/site-packages/flaky/flaky_pytest_plugin.py", line 307 in call_runtest_hook File "/home/ubuntu/.local/lib/python3.7/site-packages/flaky/flaky_pytest_plugin.py", line 129 in call_and_report File "/home/ubuntu/.pyenv/versions/3.7.3/lib/python3.7/site-packages/_pytest/runner.py", line 96 in runtestprotocol File "/home/ubuntu/.pyenv/versions/3.7.3/lib/python3.7/site-packages/_pytest/runner.py", line 81 in pytest_runtest_protocol File "/home/ubuntu/.local/lib/python3.7/site-packages/flaky/flaky_pytest_plugin.py", line 92 in pytest_runtest_protocol File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/callers.py", line 187 in _multicall File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/manager.py", line 81 in <lambda> File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/manager.py", line 87 in _hookexec File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/hooks.py", line 289 in __call__ File "/home/ubuntu/.pyenv/versions/3.7.3/lib/python3.7/site-packages/_pytest/main.py", line 264 in pytest_runtestloop File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/callers.py", line 187 in _multicall File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/manager.py", line 81 in <lambda> File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/manager.py", line 87 in _hookexec File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/hooks.py", line 289 in __call__ File "/home/ubuntu/.pyenv/versions/3.7.3/lib/python3.7/site-packages/_pytest/main.py", line 240 in _main File "/home/ubuntu/.pyenv/versions/3.7.3/lib/python3.7/site-packages/_pytest/main.py", line 196 in wrap_session File "/home/ubuntu/.pyenv/versions/3.7.3/lib/python3.7/site-packages/_pytest/main.py", line 233 in pytest_cmdline_main File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/callers.py", line 187 in _multicall File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/manager.py", line 81 in <lambda> File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/manager.py", line 87 in _hookexec File "/home/ubuntu/.local/lib/python3.7/site-packages/pluggy/hooks.py", line 289 in __call__ File "/home/ubuntu/.pyenv/versions/3.7.3/lib/python3.7/site-packages/_pytest/config/__init__.py", line 92 in main File "/home/ubuntu/.pyenv/versions/3.7.3/bin/pytest", line 8 in <module> zsh: abort (core dumped) pytest --color=yes -s tests/unittest/test_sequence_sampler.py -k ``` ## To Reproduce (If you developed your own code, please provide a short script that reproduces the error. For existing examples, please provide link.) ### Steps to reproduce 1. `pip install --upgrade --pre 'mxnet==1.6.0b20191122'` 2. `pytest --color=yes -s tests/unittest/test_sequence_sampler.py -k 'test_beam_search[HybridBeamSearchSampler-True]'' @junrushao1994
open
2019-11-25T05:58:34Z
2019-11-25T08:50:48Z
https://github.com/dmlc/gluon-nlp/issues/1020
[ "bug" ]
leezu
1
Lightning-AI/pytorch-lightning
data-science
19,972
Increase MlflowLogger parameter value length limit
### Description & Motivation Currently, MlflowLogger parameter value length is limited to 250 (#5893) which is too low for class names, data augmentations or others. Recent MLflow support up to 6000 (mlflow/mlflow#9709). ### Pitch MLflow use `mlflow.utils.validation.MAX_PARAM_VAL_LENGTH` to validate parameter value length. `mlflow.utils.validation.MAX_PARAM_VAL_LENGTH` exist in mlflow >= 1.0 I believe we can use it to reliably truncate parameter value without checking MLflow version. ```python class MLFlowLogger(Logger): @rank_zero_only def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None: # type: ignore[override] ... from mlflow.utils.validation import MAX_PARAM_VAL_LENGTH # Truncate parameter values to MAX_PARAM_VAL_LENGTH characters. params_list = [Param(key=k, value=str(v)[:MAX_PARAM_VAL_LENGTH]) for k, v in params.items()] ... ``` ### Alternatives _No response_ ### Additional context _No response_ cc @borda
open
2024-06-13T01:36:39Z
2024-06-13T01:37:00Z
https://github.com/Lightning-AI/pytorch-lightning/issues/19972
[ "feature", "needs triage" ]
jhjo432
0
jazzband/django-oauth-toolkit
django
777
access token detail page in admin very slow
We upgrade django-oauth-toolkit recently, and can't open access token detail page in admin now, because source_refresh_token is not in raw_id_fields, and can be a very large list.
closed
2020-01-19T07:48:17Z
2020-02-07T05:24:59Z
https://github.com/jazzband/django-oauth-toolkit/issues/777
[]
Yiling-J
0
joke2k/django-environ
django
314
Add elasticsearch7 to search scheme
closed
2021-09-01T07:30:07Z
2021-09-06T08:31:11Z
https://github.com/joke2k/django-environ/issues/314
[ "enhancement" ]
sergeyklay
1
ets-labs/python-dependency-injector
asyncio
105
Rename AbstractCatalog to DeclarativeCatalog (with backward compatibility)
closed
2015-11-09T22:04:08Z
2015-11-10T08:42:55Z
https://github.com/ets-labs/python-dependency-injector/issues/105
[ "feature", "refactoring" ]
rmk135
0
django-import-export/django-import-export
django
1,270
ManyToMany fields are not checked for changes in skip_row
**Describe the bug** If a ManyToMany field of the resource contains changes and `skip_unchanged = True`, those changes are not checked and the rows are therefore ignored. **To Reproduce** Steps to reproduce the behavior: 1. Set `skip_unchanged = True` in your ModelResource 2. ModelResource should contain a Django ManyToManyField, like `categories` in a `Book` 3. `categories` field is in the list of `fields` to import 4. Import 5. Change categories in some Book 6. Import again, no changes are detected **Versions (please complete the following information):** - Django Import Export: 2.5 - Python 3.6 - Django 2.2.20 **Expected behavior** When importing, the changes to ManyToMany fields should be detected even if `skip_unchanged` is set to `True`
closed
2021-04-16T12:54:39Z
2023-04-12T13:41:10Z
https://github.com/django-import-export/django-import-export/issues/1270
[ "bug" ]
manelclos
4
plotly/dash-core-components
dash
229
add localstorage/sessionstorage support
It would be better that dash core components has localstorage or sessionstorage support, The code is simple however useful. And it is a better way to share state than hidden div from my view. here is a quick experiment code: https://github.com/Benjamin-Shengming/local_storage
closed
2018-07-07T06:11:11Z
2018-10-03T15:06:47Z
https://github.com/plotly/dash-core-components/issues/229
[]
Benjamin-Shengming
1
django-oscar/django-oscar
django
3,994
Supported version 3.x
Hi all, according to the main page there is currently no supported 3.x version. Is this correct? Is there a roadmap for future versions? Also, DataCash does not seem to be alive any more. https://docs.oscarcommerce.com/en/latest/index.html Many thanks
closed
2022-10-18T15:11:20Z
2023-06-16T10:13:30Z
https://github.com/django-oscar/django-oscar/issues/3994
[]
Chrescht
1
aimhubio/aim
data-visualization
3,233
corrupted index db . Deleting the index db to avoid errors ..
## ❓Question Hi, I am following the instructions in a fresh python environment from the page [https://aimstack.readthedocs.io/en/latest/using/remote_tracking.html#server-side-setup](https://aimstack.readthedocs.io/en/latest/using/remote_tracking.html#server-side-setup) .However, when I click on the ui link, a strange exception is caught and I see the following print: ``` ubuntu@ip-172-31-42-100:~/server-tracking$ aim up Running Aim UI on repo `<Repo#-2658956876120156914 path=/home/ubuntu/server-tracking/.aim read_only=None>` Open http://127.0.0.1:43800 Press Ctrl+C to exit Corrupted index db. Deleting the index db to avoid errors. Please run `aim storage reindex command to restore optimal performance.` ``` After I run `aim storage reindex ` and restart the ui, nothing changes, same error when I open UI in browser. I doubt it is an expected behavior. Could it be related to some known bug? ### Env info Python: 3.10.12 aim: 3.25.0
open
2024-10-03T03:27:47Z
2024-11-07T16:20:01Z
https://github.com/aimhubio/aim/issues/3233
[ "type / question" ]
merryHunter
5
CorentinJ/Real-Time-Voice-Cloning
pytorch
946
Getting stuck on "Loading the encoder" bit (not responding)
Hey, I just installed everything. I'm having trouble where whenever I try to input anything it loads up successfully and then gets caught on "Loading the encoder" and then says it's not responding. I have an RTX 3080. I've tried redownloading and using different pretrained.pt files for the encoder thing it's trying to load.
open
2021-12-10T10:32:13Z
2022-01-10T12:11:13Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/946
[]
HirabayashiCallie
2
keras-team/keras
tensorflow
20,648
tf.keras.models.Sequential
hi dear. i have problem: model = tf.keras.models.Sequential([ mobile_net, ### ann layer tf.keras.layers.Dense(1, activation='sigmoid') #[0, 1] or [1, 0] ]) in new versions of tensorflow and keras it has problme : ValueError: Only instances of keras.Layer can be added to a Sequential model. Received: <tensorflow_hub.keras_layer.KerasLayer object at 0x77d2995e4680> (of type <class 'tensorflow_hub.keras_layer.KerasLayer'>) what should i do can you solve it? this is my code even if you want you can take a look! thanks ![Screenshot From 2024-12-12 14-47-00](https://github.com/user-attachments/assets/106c142a-24a3-4330-9455-29d679eb5c52)
closed
2024-12-15T20:25:59Z
2024-12-18T06:55:16Z
https://github.com/keras-team/keras/issues/20648
[ "type:support" ]
moeinnm-99
9
ckan/ckan
api
7,712
[Guidance] Resource access authorization
## CKAN version: 2.10 We have a requirement to enforce users to log-in to preview and download resources whilst keeping the datasets public i.e. Datasets must be publicly searchable and browsable but when a user goes to preview/download resources (of public or private Datasets), they should be redirected to the login page. This should apply to API as well. E.g. `resource_show` should return 401 if user doesn't send a valid API key. Are you able to guide us to implement this using CKAN's plugins toolkit? We looked at `IAuthFunctions` but it seems to operate at `action` layer rather than `views` i.e. we can add a custom auth function to `resource_show` but resource view seems to be using other actions under the hood (e.g. `package_show`), which we don't want to put behind authorization.
closed
2023-07-25T05:08:02Z
2023-07-25T13:17:51Z
https://github.com/ckan/ckan/issues/7712
[]
IndikaUdagedara
1
streamlit/streamlit
python
10,101
Support Multi-Tenant Folder Structure for Built-In Pages Navigation
### Checklist - [X] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar feature requests. - [X] I added a descriptive title and summary to this issue. ### Summary Currently, Streamlit automatically generates a sidebar navigation based on the scripts in a pages/ folder. I’d like to extend this to support tenant-based folders, so that each authenticated user (tenant) sees only the pages within their designated folder. This would enable a seamless multi-tenant dashboard structure within a single Streamlit app. ### Why? 1. Multi-Tenant Support: In many SaaS scenarios, each tenant (or client/project) has unique pages or dashboards. 2. Scalability: Storing tenant-specific pages in dedicated folders would keep the codebase organized, while reusing common components across tenants. 3. Security & Personalization: Automatically generating the correct sidebar for each tenant ensures that users only see content relevant to their role or tenant. ### How? - Extended Pages Folder: Introduce an optional directory structure such as: tenants/ --tenant1/ ----page1.py ---- page2.py --tenant2/ ----page1.py ----page2.py - Automatic Side Nav: Streamlit would detect these sub-folders at runtime (similar to how it currently handles pages/) and generate a tenant-specific navigation based on authentication or session state. - Role/Tenant Check: When a user logs in, Streamlit could read a tenant or role from st.session_state and render pages from the corresponding tenant folder only. - Optional Config: Perhaps a parameter or config setting in config.toml (e.g., multi_tenant = true) that, when enabled, triggers this multi-folder scanning and nav generation. ### Additional Context _No response_
open
2025-01-03T14:37:11Z
2025-01-03T18:25:21Z
https://github.com/streamlit/streamlit/issues/10101
[ "type:enhancement", "feature:multipage-apps" ]
marwanelmo
2
httpie/cli
api
838
Allow specifying default hostnames (instead of localhost)
This seems to be related to #215 and #180, but is not a pure duplicate: I would like to be able to create an alias or shell function for accessing a certain rest API requiring authentication. I started with function girder { https --session=~/.girder_session.json girder.host.local.lan/api/v1/$1 ${@:2} } but my main problem is that I cannot change the HTTP method (e.g. to PUT or PATCH) this way. I would like to be able to have a different way of specifying the default host, so that I do not have to add a commandline parsing around httpie. And I do have some hope, since httpie *already* supports a default hostname, only that it's hardcoded to be localhost. I see two potential solutions: 1. #215 contains a small change introducing an environment variable for the default host, which would solve my issue. 2. Another idea I had (more in the line of #180) would be to make the default hostname an optional part of the sessions. Maybe that could even be made to work with named sessions, by looking into a "default" host directory: `~/.httpie/sessions/default/<name>.json` With both solutions, the above shell function could be turned into a simple alias passing the desired `--session` parameter.
open
2020-01-18T10:02:31Z
2023-12-12T12:33:04Z
https://github.com/httpie/cli/issues/838
[ "needs product design" ]
hmeine
4
xlwings/xlwings
automation
1,904
Returning a dataframe as an excel table from a UDF
#### OS (e.g. Windows 10 or macOS Sierra) #### Versions of xlwings, Excel and Python (e.g. 0.11.8, Office 365, Python 3.7) #### Describe your issue (incl. Traceback!) Researched this extensively and could not find a way. Straightforward to return a dynamic array, but is it possible to return an excel table? Can do in a Macro but not via an excel function. ```python # Your traceback here ``` #### Include a minimal code sample to reproduce the issue (and attach a sample workbook if required!) ```python # Your code here ```
closed
2022-04-28T08:58:21Z
2022-05-21T17:46:45Z
https://github.com/xlwings/xlwings/issues/1904
[]
vasilopoulos
3
Miserlou/Zappa
flask
1,380
Django App Times Out on Lambda (Runs Successfully Locally)
<!--- Provide a general summary of the issue in the Title above --> ## Context <!--- Provide a more detailed introduction to the issue itself, and why you consider it to be a bug --> <!--- Also, please make sure that you are running Zappa _from a virtual environment_ and are using Python 2.7/3.6 --> The app runs fine locally but times out in Lambda. It is setup in a private subnet and can access the database as I was able to successfully run migrations through manage command on Zappa. I am even able to create a superuser through Zappa cli. ## Expected Behavior <!--- Tell us what should happen --> When trying to access the admin page `...amazonaws.com/staging/admin` it should load the admin page. If I try to access `...amazonaws.com/staging/` it successfully loads then debug page because of invalid url path. ## Actual Behavior <!--- Tell us what happens instead --> **When trying to access the admin page `...amazonaws.com/staging/admin` it throws `{"message": "Endpoint request timed out"}`** ## Possible Fix <!--- Not obligatory, but suggest a fix or reason for the bug --> Remove all local apps from INSTALLED_APPS change database connection on RDS to Postgres only and remove Django GIS functionality. Remove GIS related library path in settings.py (GEOS and GDAL). These attempts to fix didn't work. Next things: TRIM EVERYTHING (REDIS, CELERY, ETC). If this fails then try with a new project to see if there is an issue with DB Connection or VPC or Security Groups. Any sample projects I can try to deploy in my VPC? ## Steps to Reproduce <!--- Provide a link to a live example, or an unambiguous set of steps to --> <!--- reproduce this bug include code to reproduce, if relevant --> Sorry unable to provide right now. Will try to start a new project and see if I face the same issue. ## Your Environment <!--- Include as many relevant details about the environment you experienced the bug in --> * Zappa version used: `0.45.1` * Operating System and Python version: `OSX 10.13.2` `Python 3.6.1` ``` ``` * Link to your project (optional): * Your `zappa_settings.py`: ``` staging: profile_name: myprofile aws_region: us-east-1 s3_bucket: myproject-zappa project_name: myproject-django runtime": python3.6 django_settings: config.settings.zappa keep_warm_expression: rate(8 minutes) delete_s3_zip: false timeout_seconds: 30 vpc_config: SubnetIds: - subnet-xxx - subnet-xxx SecurityGroupIds: - sg-xxx tags: Stage: Staging aws_environment_variables: GDAL_DATA: "/var/task/gdal_data/" ```
closed
2018-02-06T22:21:16Z
2021-09-22T14:31:34Z
https://github.com/Miserlou/Zappa/issues/1380
[ "aws" ]
hammadzz
4
seleniumbase/SeleniumBase
pytest
2,635
UC Mode not working on window server 2022
Last week, my code worked fine but after updating my code couldn't bypass the cloudflare bot. For information, I use Windows Server 2022. This is my code: ``` def you_message(text: str, out_type: str = 'json', timeout: int = 20): """Function to send a message and get results from YouChat.com Args: text (str): text to send out_type (str): type of result (json, string). Defaults to 'json'. timeout (int): timeout in seconds to wait for a result. Defaults to 20. Returns: str: response of the message """ qoted_text = urllib.parse.quote_plus(text) result = {} data = "" with SB(uc=True) as sb: sb.open( f"https://you.com/api/streamingSearch?q={qoted_text}&domain=youchat") timeout_delta = time.time() + timeout stream_available = False while time.time() <= timeout_delta: try: sb.assert_text("event: youChatIntent", timeout=8.45) if 'error' in result: result.pop('error') data = sb.get_text("body pre") break except Exception: pass # Try to easy solve captcha challenge try: if sb.assert_element('iframe'): sb.switch_to_frame("iframe") sb.find_element(".ctp-checkbox-label", timeout=1).click() # sb.save_screenshot('sel2.png') # Debug except Exception: result['error'] = 'Selenium was detected! Try again later. Captcha not solved automaticly.' finally: # Force exit from iframe sb.switch_to_default_content() if time.time() > timeout_delta: # sb.save_screenshot('sel-timeout.png') # Debug result['error'] = 'Timeout while getting data from Selenium! Try again later.' res_message = "" for line in data.split("\n"): if line.startswith("data: {"): json_data = json.loads(line[5:]) if 'youChatToken' in json_data: res_message += json_data['youChatToken'] result['generated_text'] = res_message if out_type == 'json': return json.dumps(result) else: str_res = result['error'] if ( 'error' in result) else result['generated_text'] return str_res ```
closed
2024-03-24T17:45:54Z
2024-03-24T18:14:44Z
https://github.com/seleniumbase/SeleniumBase/issues/2635
[ "invalid usage", "UC Mode / CDP Mode" ]
zing75blog
1
cupy/cupy
numpy
8,375
cupyx.scipy.map_coordinates recompiled when coordinates array shape changes
### Description The kernel used in [cupyx.scipy.map_coordinates](https://github.com/cupy/cupy/blob/cd1c7367b6666597fda0b62960781479c6e26b41/cupyx/scipy/ndimage/_interpolation.py#L252) is recompile each time the shape of the argument `coordinates` changes. The shape of the input `coordinates` is provided to the function [_interp_kernels._get_map_kernel](https://github.com/cupy/cupy/blob/cd1c7367b6666597fda0b62960781479c6e26b41/cupyx/scipy/ndimage/_interp_kernels.py#L492) through the argument `yshape` . This function is decorated with `@cupy._util.memoize` and as a result of having `yshape` as input, changing `yshape` causes a cache miss in the memoization. This argument is actually not used in the CUDA kernel because we use `omit_in_coord=True`. As a result the CUDA kernel is recompiled each time the shape of `map_coordinates` changes. We should not provide the shape as input to` _interp_kernels._get_map_kernel` so that we can reuse the same kernel when the shape of the argument `coordinates` changes but not the dimension. ### To Reproduce ```py # Write the code here ``` ### Installation Wheel (`pip install cupy-***`) ### Environment _No response_ ### Additional Information _No response_
closed
2024-06-12T16:33:45Z
2024-06-19T08:39:26Z
https://github.com/cupy/cupy/issues/8375
[ "cat:enhancement", "contribution welcome" ]
martinResearch
0
vitalik/django-ninja
rest-api
329
patch release with pydantic 1.9?
Hi, any chance we could do a patch release with the fix to allow pydantic 1.9?
closed
2022-01-18T12:13:49Z
2022-01-20T15:28:49Z
https://github.com/vitalik/django-ninja/issues/329
[]
davidszotten
2
facebookresearch/fairseq
pytorch
4,714
What are the utilities of kaldi_initializer.py and kaldi_decoder.py scripts present inside the fairseq/examples/speech_recognition/kaldi folder?
## ❓ Questions and Help What are the utilities of kaldi_initializer.py and kaldi_decoder.py scripts present inside the fairseq/examples/speech_recognition/kaldi folder?
open
2022-09-11T11:17:26Z
2022-09-11T11:17:26Z
https://github.com/facebookresearch/fairseq/issues/4714
[ "question", "needs triage" ]
mukherjeesougata
0
wger-project/wger
django
1,723
Multi Value Measurements
## Use case Some measurements e.g. Blood Pressure consist of multiple values. While this could be entered into wger via 2 custom measurement this feels wrong. Especially as the the date picker in web / app only allows to set a date not a time (not sure if i should open a second request on that) so the measurements cant be linked together by timestamp. E.g. https://codeberg.org/toz/MediLog medilog is a nice example for these multi value measurements tracked via an app. ## Proposal Extend the custom measurements to allow to define multiple values per measurement. Optional: Add some of the common ones as selectable defaults. e.g. https://github.com/wger-project/wger/issues/875 lists already most common ones.
open
2024-07-10T08:51:04Z
2024-07-10T08:51:04Z
https://github.com/wger-project/wger/issues/1723
[]
derpeter
0
lorien/grab
web-scraping
395
Wrong Thread method for Python 3.9.0+
``` /lib/python3.10/site-packages/grab/spider/base_service.py", line 64, in is_alive return self.thread.isAlive() AttributeError: 'Thread' object has no attribute 'isAlive'. Did you mean: 'is_alive'? ``` Python 3.10, but I saw same problem in 3.9
closed
2022-06-16T08:14:05Z
2022-12-08T03:22:53Z
https://github.com/lorien/grab/issues/395
[]
notzeldon
1
mongkok/fastapi-debug-toolbar
graphql
39
IP restrictions via ALLOWED_IPS not working
I tried to get ALLOWED_IPS to work and found that the test ```python remote_addr in settings.ALLOWED_IPS ``` in https://github.com/mongkok/fastapi-debug-toolbar/blob/main/debug_toolbar/middleware.py#L25 always returns `False` because `remote_addr` is of type `str` and `ALLOWED_IPS` is a list of type `IPv4Address`. Printing the variables in question returns for ```python print(f"{remote_addr} in {settings.ALLOWED_IPS}: {remote_addr in settings.ALLOWED_IPS}") print(f"{type(remote_addr)} {type(settings.ALLOWED_IPS[0])}") ``` the results ```python 127.0.0.1 in [IPv4Address('127.0.0.1'), IPv4Address('1.2.3.4')]: False <class 'str'> <class 'ipaddress.IPv4Address'> ```
closed
2024-01-23T12:27:28Z
2024-02-13T08:40:22Z
https://github.com/mongkok/fastapi-debug-toolbar/issues/39
[]
MartinSchmidt123
1
encode/apistar
api
652
CLI arguments are not validated correctly.
This is related to #650 (which is about `--path`). CLI arguments aren't enforced, or given sensible defaults. The one I hit is `--format`. If you don't provide this there is no error until you get to the final "Valid schema" message. At that point you get a totally mysterious `KeyError`: ``` (apistar) ~/Desktop $ apistar validate --path schema.yml Traceback (most recent call last): ... File ".../apistar/cli.py", line 163, in validate }[format] KeyError: None ``` Cracking open `cli.py`, `format` there is the missing CLI argument. Sending `--format=openapi` resolves the issue. `format` should be required, so as to provide a helpful error message. Maybe it should default to `openapi`...
closed
2019-03-25T15:04:59Z
2020-06-04T17:09:29Z
https://github.com/encode/apistar/issues/652
[]
carltongibson
0
ansible/awx
automation
15,104
awx workflow_job_templates launch --wait command fails with ('Connection aborted.', RemoteDisconnected('Remote end closed connection without response'))
### Please confirm the following - [X] I agree to follow this project's [code of conduct](https://docs.ansible.com/ansible/latest/community/code_of_conduct.html). - [X] I have checked the [current issues](https://github.com/ansible/awx/issues) for duplicates. - [X] I understand that AWX is open source software provided for free and that I might not receive a timely response. - [X] I am **NOT** reporting a (potential) security vulnerability. (These should be emailed to `security@ansible.com` instead.) ### Bug Summary awx workflow_job_templates launch --wait command fails with ('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')) It should wait for workflow to complete in ansible tower but rather the remote connection is closed. ### AWX version 24.2.0 ### Select the relevant components - [ ] UI - [ ] UI (tech preview) - [ ] API - [ ] Docs - [ ] Collection - [X] CLI - [ ] Other ### Installation method N/A ### Modifications no ### Ansible version Ansible Automation Platform Controller 4.3.6 ### Operating system redhat linux 8 ### Web browser _No response_ ### Steps to reproduce awx workflow_job_templates launch --wait command fails with ('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')) ### Expected results It should wait for workflow to complete in ansible tower but rather the remote connection is closed. ### Actual results awx workflow_job_templates launch --wait command fails with ('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')) ### Additional information _No response_
open
2024-04-11T21:44:37Z
2024-04-26T15:14:11Z
https://github.com/ansible/awx/issues/15104
[ "type:bug", "needs_triage", "community" ]
akshat87
4
napari/napari
numpy
7,380
Investigate hard threading failure on a qt_dims_slider test run
### 🐛 Bug Report threading failure when executing qt_dim test on 1 CI run Lines that concern me in the run: ```sh File "/home/runner/work/napari/napari/napari/_qt/widgets/qt_dims_slider.py", line 603 in work File "/home/runner/work/napari/napari/napari/_qt/widgets/qt_dims_slider.py", line 553 in run ``` ### 💡 Steps to Reproduce View https://github.com/napari/napari/actions/runs/11871954145/job/33085271415?pr=7378#step:14:405 ### 💡 Expected Behavior No hard failure ### 🌎 Environment CI ### 💡 Additional Context ```sh napari/_qt/widgets/_tests/test_qt_dims.py ..........Fatal Python error: Aborted Thread 0x00007efff2ffe640 (most recent call first): File "/opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/threading.py", line 331 in wait File "/opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/threading.py", line 629 in wait File "/home/runner/work/napari/napari/napari/_qt/widgets/qt_dims_slider.py", line 603 in work File "/home/runner/work/napari/napari/napari/_qt/widgets/qt_dims_slider.py", line 553 in run File "/home/runner/work/napari/napari/napari/conftest.py", line 582 in run_with_trace Thread 0x00007f0063013640 (most recent call first): File "/opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/threading.py", line 327 in wait File "/opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/multiprocessing/queues.py", line 231 in _feed File "/opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/threading.py", line 982 in run File "/opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/threading.py", line 1045 in _bootstrap_inner File "/opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/threading.py", line 1002 in _bootstrap Current thread 0x00007f00e440eb80 (most recent call first): File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/pytestqt/plugin.py", line 222 in _process_events File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/pytestqt/plugin.py", line 206 in pytest_runtest_teardown File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/pluggy/_callers.py", line 98 in _multicall File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/pluggy/_manager.py", line 120 in _hookexec File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/pluggy/_hooks.py", line 513 in __call__ File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/_pytest/runner.py", line 242 in <lambda> File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/_pytest/runner.py", line 341 in from_call File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/_pytest/runner.py", line 241 in call_and_report File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/_pytest/runner.py", line 137 in runtestprotocol File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/_pytest/runner.py", line 113 in pytest_runtest_protocol File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/pluggy/_callers.py", line 103 in _multicall File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/pluggy/_manager.py", line 120 in _hookexec File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/pluggy/_hooks.py", line 513 in __call__ File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/_pytest/main.py", line 362 in pytest_runtestloop File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/pluggy/_callers.py", line 103 in _multicall File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/pluggy/_manager.py", line 120 in _hookexec File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/pluggy/_hooks.py", line 513 in __call__ File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/_pytest/main.py", line 337 in _main File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/_pytest/main.py", line 283 in wrap_session File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/_pytest/main.py", line 330 in pytest_cmdline_main File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/pluggy/_callers.py", line 103 in _multicall File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/pluggy/_manager.py", line 120 in _hookexec File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/pluggy/_hooks.py", line 513 in __call__ File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/_pytest/config/__init__.py", line 175 in main File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/_pytest/config/__init__.py", line 201 in console_main File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/pytest/__main__.py", line 9 in <module> File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/coverage/execfile.py", line 208 in run File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/coverage/cmdline.py", line 858 in do_run File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/coverage/cmdline.py", line 681 in command_line File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/lib/python3.11/site-packages/coverage/cmdline.py", line 970 in main File "/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/bin/coverage", line 8 in <module> Extension modules: pydantic.typing, pydantic.errors, pydantic.version, pydantic.utils, pydantic.class_validators, pydantic.config, pydantic.color, pydantic.datetime_parse, pydantic.validators, pydantic.networks, pydantic.types, pydantic.json, pydantic.error_wrappers, pydantic.fields, pydantic.parse, pydantic.schema, pydantic.main, pydantic.dataclasses, pydantic.annotated_types, pydantic.decorator, pydantic.env_settings, pydantic.tools, pydantic, psygnal._dataclass_utils, psygnal._exceptions, psygnal._mypyc, psygnal._weak_callback, psygnal._queue, psygnal._signal, psygnal._group, psygnal._group_descriptor, psygnal._evented_decorator, yaml._yaml, numpy._core._multiarray_umath, numpy._core._multiarray_tests, numpy.linalg._umath_linalg, psutil._psutil_linux, psutil._psutil_posix, markupsafe._speedups, scipy._lib._ccallback_c, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, charset_normalizer.md, scipy.sparse._sparsetools, _csparsetools, scipy.sparse._csparsetools, scipy.linalg._fblas, scipy.linalg._flapack, scipy.linalg.cython_lapack, scipy.linalg._cythonized_array_utils, scipy.linalg._solve_toeplitz, scipy.linalg._decomp_lu_cython, scipy.linalg._matfuncs_sqrtm_triu, scipy.linalg.cython_blas, scipy.linalg._matfuncs_expm, scipy.linalg._decomp_update, scipy.sparse.linalg._dsolve._superlu, scipy.sparse.linalg._eigen.arpack._arpack, scipy.sparse.linalg._propack._spropack, scipy.sparse.linalg._propack._dpropack, scipy.sparse.linalg._propack._cpropack, scipy.sparse.linalg._propack._zpropack, scipy.sparse.csgraph._tools, scipy.sparse.csgraph._shortest_path, scipy.sparse.csgraph._traversal, scipy.sparse.csgraph._min_spanning_tree, scipy.sparse.csgraph._flow, scipy.sparse.csgraph._matching, scipy.sparse.csgraph._reordering, scipy._lib._uarray._uarray, scipy.special._ufuncs_cxx, scipy.special._ufuncs, scipy.special._specfun, scipy.special._comb, scipy.special._ellip_harm_2, scipy.fftpack.convolve, numba.core.typeconv._typeconv, numba._helperlib, numba._dynfunc, numba._dispatcher, numba.core.runtime._nrt_python, numba.np.ufunc._internal, numba.experimental.jitclass._box, skimage._shared.geometry, lxml._elementpath, lxml.etree, scipy.spatial._ckdtree, scipy._lib.messagestream, scipy.spatial._qhull, scipy.spatial._voronoi, scipy.spatial._distance_wrap, scipy.spatial._hausdorff, scipy.spatial.transform._rotation, pandas._libs.tslibs.ccalendar, pandas._libs.tslibs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.tslibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._libs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pandas._libs.ops, pandas._libs.hashing, pandas._libs.arrays, pandas._libs.tslib, pandas._libs.sparse, pandas._libs.internals, pandas._libs.indexing, pandas._libs.index, pandas._libs.writers, pandas._libs.join, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.json, pandas._libs.parsers, pandas._libs.testing, PyQt5.QtCore, scipy.ndimage._nd_image, _ni_label, scipy.ndimage._ni_label, skimage.draw._draw, scipy.optimize._group_columns, scipy.optimize._trlib._trlib, scipy.optimize._lbfgsb, _moduleTNC, scipy.optimize._moduleTNC, scipy.optimize._cobyla, scipy.optimize._slsqp, scipy.optimize._minpack, scipy.optimize._lsq.givens_elimination, scipy.optimize._zeros, scipy.optimize._highs.cython.src._highs_wrapper, scipy.optimize._highs._highs_wrapper, scipy.optimize._highs.cython.src._highs_constants, scipy.optimize._highs._highs_constants, scipy.linalg._interpolative, scipy.optimize._bglu_dense, scipy.optimize._lsap, scipy.optimize._direct, scipy.integrate._odepack, scipy.integrate._quadpack, scipy.integrate._vode, scipy.integrate._dop, scipy.integrate._lsoda, scipy.interpolate._fitpack, scipy.interpolate._dfitpack, scipy.interpolate._bspl, scipy.interpolate._ppoly, scipy.interpolate.interpnd, scipy.interpolate._rbfinterp_pythran, scipy.interpolate._rgi_cython, scipy.special.cython_special, scipy.stats._stats, scipy.stats._biasedurn, scipy.stats._levy_stable.levyst, scipy.stats._stats_pythran, scipy.stats._ansari_swilk_statistics, scipy.stats._sobol, scipy.stats._qmc_cy, scipy.stats._mvn, scipy.stats._rcont.rcont, scipy.stats._unuran.unuran_wrapper, vispy.visuals.text._sdf_cpu, PyQt5.QtGui, PyQt5.QtWidgets, PyQt5.QtTest, requests.packages.charset_normalizer.md, requests.packages.chardet.md, PyQt5.QtSvg, PyQt5.QtOpenGL, kiwisolver._cext, numcodecs.compat_ext, numcodecs.blosc, numcodecs.zstd, numcodecs.lz4, numcodecs._shuffle, numcodecs.jenkins, numcodecs.vlen, numcodecs.fletcher32, PIL._imaging, pydantic._hypothesis_plugin, skimage.transform._warps_cy, skimage.morphology._misc_cy, skimage.measure._ccomp, _skeletonize_3d_cy, skimage.morphology._skeletonize_3d_cy, skimage.morphology._skeletonize_cy, skimage.measure._pnpoly, skimage.morphology._convex_hull, skimage.morphology._grayreconstruct, skimage.morphology._extrema_cy, skimage.morphology._flood_fill_cy, skimage.morphology._max_tree, PIL._imagingmath, PIL._webp (total: 219) F [3765/4316]py311-linux-pyqt5-cov: exit -6 (574.94 seconds) /home/runner/work/napari/napari> coverage run --parallel-mode -m pytest --color=yes --basetemp=/home/runner/work/napari/napari/.tox/py311-linux-pyqt5-cov/tmp --ignore tools --maxfail=5 --json-report --pystack-threshold=60 --pystack-args=--native-all --json-report-file=/home/runner/work/napari/napari/report-py311-linux-pyqt5-cov.json --basetemp=.pytest_tmp --save-leaked-object-graph pid=4521 py311-linux-pyqt5-cov: FAIL code -6 (583.98=setup[9.04]+cmd[0.00,574.94] seconds) evaluation failed :( (584.30 seconds) Error: The process '/usr/bin/bash' failed with exit code 250 The process '/usr/bin/bash' failed with exit code 250 ```
open
2024-11-16T18:11:55Z
2024-11-16T18:16:45Z
https://github.com/napari/napari/issues/7380
[ "bug", "tests", "ci" ]
willingc
0
laurentS/slowapi
fastapi
176
Add as package in arch user repository
Would somebody be so kind and ad this to the AUR?
open
2023-11-25T14:55:51Z
2023-11-25T14:55:51Z
https://github.com/laurentS/slowapi/issues/176
[]
RottenSchnitzel
0
jofpin/trape
flask
181
ngrok error
When executing the command python2 trape.py --url https://goodfon.com --port 8080 the error "Process Process-1: Traceback (most recent call last): File "/usr/lib/python2.7/multiprocessing/process.py", line 267, in _bootstrap self.run() File "/usr/lib/python2.7/multiprocessing/process.py", line 114, in run self._target(*self._args, **self._kwargs) File "/root/Репозитории/trape/core/ngrok.py", line 81, in start_ngrok result = subprocess.check_output([str_ngrok, "http", port, '-log', hash + '.nlog']) File "/usr/lib/python2.7/subprocess.py", line 223, in check_output raise CalledProcessError(retcode, cmd, output=output) CalledProcessError: Command '['./ngrok', 'http', '8080', '-log', 'cd50ed8.nlog']' returned non-zero exit status 1 [x] ERROR: ---=[ We can't connect with nGrok " gets out, help I don’t know what to do
open
2019-09-21T19:03:12Z
2022-10-09T15:27:05Z
https://github.com/jofpin/trape/issues/181
[]
JoKerJAYS
6
darrenburns/pytest-clarity
pytest
19
pprintpp might be better for complex/nested cases
https://github.com/wolever/pprintpp#why-is-it-prettier
closed
2021-03-12T08:13:43Z
2021-06-11T19:06:00Z
https://github.com/darrenburns/pytest-clarity/issues/19
[]
dz0
0
stitchfix/hamilton
numpy
6
Requirements to open source hamilton
- [x] examples to run/use hamilton - [x] onboarding documentation - [x] contributor documentation - [x] contributor guidelines - [x] scrub documentation - [x] scrub commit history - [x] Determine license - [x] Legal sign off -- yes changed BSD-3 Clause Clear License - [] push to pypi - [] make repo public - [] notify interested persons - [] publish blog post
closed
2021-05-02T18:54:39Z
2021-09-02T18:28:01Z
https://github.com/stitchfix/hamilton/issues/6
[]
skrawcz
1
dynaconf/dynaconf
fastapi
720
[bug] LOAD_DOTENV_FOR_DYNACONF environment variable does not work
**Describe the bug** When setting `LOAD_DOTENV_FOR_DYNACONF` prior to load settings, variables from `.env` file are ignored unless I specify `load_dotenv=True` in class constructor. **To Reproduce** Steps to reproduce the behavior: 1. Having the following folder structure <details> <summary> Project structure </summary> ``` . ├── .env ├── config │   ├── settings-staging.yaml │   └── settings.yaml └── src └── app └── app.py ``` </details> 2. Having the following config files: <details> <summary> Config files </summary> **config/settings.yaml** ```yaml default: foo: bar: ``` and **config/settings-staging.yaml** ```yaml staging: foo: bar: baz ``` and **.env** ```dotenv MERGE_ENABLED_FOR_DYNACONF=true ENV_FOR_DYNACONF=staging ROOT_PATH_FOR_DYNACONF=config ENVIRONMENTS_FOR_DYNACONF=true ``` </details> 3. Having the following app code: <details> <summary> Code </summary> **src/app/app.py** ```python import os from pathlib import Path from dynaconf import Dynaconf env = {key: val for key, val in os.environ.items() if 'DYNACONF' in key} assert env == {}, f'Dynaconf environment not empty {env}' os.environ['LOAD_DOTENV_FOR_DYNACONF'] = 'true' settings_files = [ Path.cwd() / 'config' / 'settings.yaml', Path.cwd() / 'config' / 'settings-staging.yaml'] assert all(p.exists() for p in settings_files), 'Some of the given config files do not exist' settings = Dynaconf( settings_module=settings_files, # load_dotenv=True ) assert settings.FOO.get('bar') == 'baz', 'Missing key FOO=bar in settings' ``` </details> 4. Executing under the following environment <details> <summary> Execution </summary> ```bash # conda 4.11.0 $ conda create -p venv python=3.7.2 $ venv/bin/python /path/src/app.py ``` </details> **Expected behavior** As described previously I expected that Dynaconf would load environment from `.env` file. More precisely, the exact same behaviour when setting `load_dotenv=True` in class constructor. Instead, Dynaconf raises an `AttributeError: 'Settings' object has no attribute 'FOO'`. **Environment (please complete the following information):** - System Version: macOS 12.2.1 (21D62) - Kernel Version: Darwin 21.3.0 - Dynaconf Version 3.1.7
closed
2022-02-22T07:46:05Z
2022-06-02T19:21:51Z
https://github.com/dynaconf/dynaconf/issues/720
[ "bug" ]
tokr94
1
matterport/Mask_RCNN
tensorflow
2,993
No module 'keras.engine'
trying to run the demo file to get started. Running into this error in the mrcnn/model.py file. Has anyone seen this before? I cant seem to find keras.engine to install. 21 import keras.backend as K 22 import keras.layers as KL ---> 23 import keras.engine as KE 24 import keras.models as KM 26 from mrcnn import utils ModuleNotFoundError: No module named 'keras.engine'
closed
2023-09-28T15:23:33Z
2025-02-25T23:08:50Z
https://github.com/matterport/Mask_RCNN/issues/2993
[]
lrpalmer27
14
jupyter-incubator/sparkmagic
jupyter
809
[BUG] Default Docker container got broken
**Describe the bug** I believe there was a new push of the image by datamechanics (5 days ago ?) and now sparkmagic docker image does not work anymore. If you log to the spark-1 container, and try ../bin/pyspark I get this error: Caused by: java.lang.IllegalArgumentException: Unrecognized Hadoop major version number: 3.1.0 at org.apache.hadoop.hive.shims.ShimLoader.getMajorVersion(ShimLoader.java:174) at org.apache.hadoop.hive.shims.ShimLoader.loadShims(ShimLoader.java:139) at org.apache.hadoop.hive.shims.ShimLoader.getHadoopShims(ShimLoader.java:100) at org.apache.hadoop.hive.conf.HiveConf$ConfVars.<clinit>(HiveConf.java:368) **To Reproduce** git clone https://github.com/jupyter-incubator/sparkmagic sparkmagic-dev cd sparkmagic-dev docker compose up then create a new PySpark notebook and a simple command does not. work. eg. %data = [(1, 'John', 'Doe')] ``` The code failed because of a fatal error: Error sending http request and maximum retry encountered.. Some things to try: a) Make sure Spark has enough available resources for Jupyter to create a Spark context. b) Contact your Jupyter administrator to make sure the Spark magics library is configured correctly. c) Restart the kernel. ``` **Expected behavior** PySpark kernel should work **Screenshots** If applicable, add screenshots to help explain your problem. **Versions:** - SparkMagic 20.4 or master - Livy (if you know it) - Spark 2.4.7 **Additional context** I believe there was a new push of the image by datamechanics (5 days ago ?)
open
2023-03-13T17:34:48Z
2023-04-05T15:28:01Z
https://github.com/jupyter-incubator/sparkmagic/issues/809
[]
ltregan
4
ultralytics/yolov5
machine-learning
13,462
UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 in position 233: illegal multibyte sequence
### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar bug report. ### YOLOv5 Component _No response_ ### Bug D:\0_yyyzt\AIM\yolo\yolov5> python train.py --weights yolov5s.pt --epochs 300 --batch-size 16 --workers 8 --data D:\0_yyyzt\AIM\yolo\datasets\zhengtu\zhengtu.yaml train: weights=yolov5s.pt, cfg=, data=D:\0_yyyzt\AIM\yolo\datasets\zhengtu\zhengtu.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=300, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, evolve_population=data\hyps, resume_evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs\train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest, ndjson_console=False, ndjson_file=False github: up to date with https://github.com/ultralytics/yolov5 YOLOv5 v7.0-389-ge62a31b6 Python-3.11.9 torch-2.5.1+cpu CPU hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0 TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/ COMET WARNING: Comet credentials have not been set. Comet will default to offline logging. Please set your credentials to enable online logging. COMET INFO: Using 'D:\\0_yyyzt\\AIM\\yolo\\yolov5\\.cometml-runs' path as offline directory. Pass 'offline_directory' parameter into constructor or set the 'COMET_OFFLINE_DIRECTORY' environment variable to manually choose where to store offline experiment archives. Traceback (most recent call last): File "D:\0_yyyzt\AIM\yolo\yolov5\train.py", line 986, in <module> main(opt) File "D:\0_yyyzt\AIM\yolo\yolov5\train.py", line 688, in main train(opt.hyp, opt, device, callbacks) File "D:\0_yyyzt\AIM\yolo\yolov5\train.py", line 180, in train loggers = Loggers( ^^^^^^^^ File "D:\0_yyyzt\AIM\yolo\yolov5\utils\loggers\__init__.py", line 153, in __init__ self.comet_logger = CometLogger(self.opt, self.hyp) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\0_yyyzt\AIM\yolo\yolov5\utils\loggers\comet\__init__.py", line 102, in __init__ self.data_dict = self.check_dataset(self.opt.data) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\0_yyyzt\AIM\yolo\yolov5\utils\loggers\comet\__init__.py", line 252, in check_dataset data_config = yaml.safe_load(f) ^^^^^^^^^^^^^^^^^ File "C:\Users\1\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\yaml\__init__.py", line 125, in safe_load return load(stream, SafeLoader) ^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\1\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\yaml\__init__.py", line 79, in load loader = Loader(stream) ^^^^^^^^^^^^^^ File "C:\Users\1\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\yaml\loader.py", line 34, in __init__ Reader.__init__(self, stream) File "C:\Users\1\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\yaml\reader.py", line 85, in __init__ self.determine_encoding() File "C:\Users\1\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\yaml\reader.py", line 124, in determine_encoding self.update_raw() File "C:\Users\1\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\yaml\reader.py", line 178, in update_raw data = self.stream.read(size) ^^^^^^^^^^^^^^^^^^^^^^ UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 in position 233: illegal multibyte sequence COMET INFO: The process of logging environment details (conda environment, git patch) is underway. Please be patient as this may take some time. COMET INFO: --------------------------------------------------------------------------------------- COMET INFO: Comet.ml OfflineExperiment Summary COMET INFO: --------------------------------------------------------------------------------------- COMET INFO: Data: COMET INFO: display_summary_level : 1 COMET INFO: name : exp COMET INFO: url : [OfflineExperiment will get URL after upload] COMET INFO: Others: COMET INFO: Name : exp COMET INFO: offline_experiment : True COMET INFO: Uploads: COMET INFO: environment details : 1 COMET INFO: git metadata : 1 COMET INFO: installed packages : 1 COMET INFO: COMET INFO: Still saving offline stats to messages file before program termination (may take up to 120 seconds) COMET INFO: Begin archiving the offline data. COMET INFO: To upload this offline experiment, run: comet upload D:\0_yyyzt\AIM\yolo\yolov5\.cometml-runs\e9b6f27f962c4a25bfeb02399ccf699f.zip ### Environment OS=win py=3.11.9 use=cpu NoUse NVIDIA ### Minimal Reproducible Example D:\0_yyyzt\AIM\yolo\yolov5> python train.py --weights yolov5s.pt --epochs 300 --batch-size 16 --workers 8 --data D:\0_yyyzt\AIM\yolo\datasets\zhengtu\zhengtu.yaml train: weights=yolov5s.pt, cfg=, data=D:\0_yyyzt\AIM\yolo\datasets\zhengtu\zhengtu.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=300, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, evolve_population=data\hyps, resume_evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs\train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest, ndjson_console=False, ndjson_file=False github: up to date with https://github.com/ultralytics/yolov5 YOLOv5 v7.0-389-ge62a31b6 Python-3.11.9 torch-2.5.1+cpu CPU hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0 TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/ COMET WARNING: Comet credentials have not been set. Comet will default to offline logging. Please set your credentials to enable online logging. COMET INFO: Using 'D:\\0_yyyzt\\AIM\\yolo\\yolov5\\.cometml-runs' path as offline directory. Pass 'offline_directory' parameter into constructor or set the 'COMET_OFFLINE_DIRECTORY' environment variable to manually choose where to store offline experiment archives. Traceback (most recent call last): File "D:\0_yyyzt\AIM\yolo\yolov5\train.py", line 986, in <module> main(opt) File "D:\0_yyyzt\AIM\yolo\yolov5\train.py", line 688, in main train(opt.hyp, opt, device, callbacks) File "D:\0_yyyzt\AIM\yolo\yolov5\train.py", line 180, in train loggers = Loggers( ^^^^^^^^ File "D:\0_yyyzt\AIM\yolo\yolov5\utils\loggers\__init__.py", line 153, in __init__ self.comet_logger = CometLogger(self.opt, self.hyp) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\0_yyyzt\AIM\yolo\yolov5\utils\loggers\comet\__init__.py", line 102, in __init__ self.data_dict = self.check_dataset(self.opt.data) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\0_yyyzt\AIM\yolo\yolov5\utils\loggers\comet\__init__.py", line 252, in check_dataset data_config = yaml.safe_load(f) ^^^^^^^^^^^^^^^^^ File "C:\Users\1\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\yaml\__init__.py", line 125, in safe_load return load(stream, SafeLoader) ^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\1\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\yaml\__init__.py", line 79, in load loader = Loader(stream) ^^^^^^^^^^^^^^ File "C:\Users\1\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\yaml\loader.py", line 34, in __init__ Reader.__init__(self, stream) File "C:\Users\1\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\yaml\reader.py", line 85, in __init__ self.determine_encoding() File "C:\Users\1\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\yaml\reader.py", line 124, in determine_encoding self.update_raw() File "C:\Users\1\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\yaml\reader.py", line 178, in update_raw data = self.stream.read(size) ^^^^^^^^^^^^^^^^^^^^^^ UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 in position 233: illegal multibyte sequence COMET INFO: The process of logging environment details (conda environment, git patch) is underway. Please be patient as this may take some time. COMET INFO: --------------------------------------------------------------------------------------- COMET INFO: Comet.ml OfflineExperiment Summary COMET INFO: --------------------------------------------------------------------------------------- COMET INFO: Data: COMET INFO: display_summary_level : 1 COMET INFO: name : exp COMET INFO: url : [OfflineExperiment will get URL after upload] COMET INFO: Others: COMET INFO: Name : exp COMET INFO: offline_experiment : True COMET INFO: Uploads: COMET INFO: environment details : 1 COMET INFO: git metadata : 1 COMET INFO: installed packages : 1 COMET INFO: COMET INFO: Still saving offline stats to messages file before program termination (may take up to 120 seconds) COMET INFO: Begin archiving the offline data. COMET INFO: To upload this offline experiment, run: comet upload D:\0_yyyzt\AIM\yolo\yolov5\.cometml-runs\e9b6f27f962c4a25bfeb02399ccf699f.zip ### Additional D:\0_yyyzt\AIM\yolo\yolov5> python train.py --weights yolov5s.pt --epochs 300 --batch-size 16 --workers 8 --data D:\0_yyyzt\AIM\yolo\datasets\zhengtu\zhengtu.yaml train: weights=yolov5s.pt, cfg=, data=D:\0_yyyzt\AIM\yolo\datasets\zhengtu\zhengtu.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=300, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, evolve_population=data\hyps, resume_evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs\train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest, ndjson_console=False, ndjson_file=False github: up to date with https://github.com/ultralytics/yolov5 YOLOv5 v7.0-389-ge62a31b6 Python-3.11.9 torch-2.5.1+cpu CPU hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0 TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/ COMET WARNING: Comet credentials have not been set. Comet will default to offline logging. Please set your credentials to enable online logging. COMET INFO: Using 'D:\\0_yyyzt\\AIM\\yolo\\yolov5\\.cometml-runs' path as offline directory. Pass 'offline_directory' parameter into constructor or set the 'COMET_OFFLINE_DIRECTORY' environment variable to manually choose where to store offline experiment archives. Traceback (most recent call last): File "D:\0_yyyzt\AIM\yolo\yolov5\train.py", line 986, in <module> main(opt) File "D:\0_yyyzt\AIM\yolo\yolov5\train.py", line 688, in main train(opt.hyp, opt, device, callbacks) File "D:\0_yyyzt\AIM\yolo\yolov5\train.py", line 180, in train loggers = Loggers( ^^^^^^^^ File "D:\0_yyyzt\AIM\yolo\yolov5\utils\loggers\__init__.py", line 153, in __init__ self.comet_logger = CometLogger(self.opt, self.hyp) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\0_yyyzt\AIM\yolo\yolov5\utils\loggers\comet\__init__.py", line 102, in __init__ self.data_dict = self.check_dataset(self.opt.data) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\0_yyyzt\AIM\yolo\yolov5\utils\loggers\comet\__init__.py", line 252, in check_dataset data_config = yaml.safe_load(f) ^^^^^^^^^^^^^^^^^ File "C:\Users\1\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\yaml\__init__.py", line 125, in safe_load return load(stream, SafeLoader) ^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\1\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\yaml\__init__.py", line 79, in load loader = Loader(stream) ^^^^^^^^^^^^^^ File "C:\Users\1\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\yaml\loader.py", line 34, in __init__ Reader.__init__(self, stream) File "C:\Users\1\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\yaml\reader.py", line 85, in __init__ self.determine_encoding() File "C:\Users\1\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\yaml\reader.py", line 124, in determine_encoding self.update_raw() File "C:\Users\1\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\yaml\reader.py", line 178, in update_raw data = self.stream.read(size) ^^^^^^^^^^^^^^^^^^^^^^ UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 in position 233: illegal multibyte sequence COMET INFO: The process of logging environment details (conda environment, git patch) is underway. Please be patient as this may take some time. COMET INFO: --------------------------------------------------------------------------------------- COMET INFO: Comet.ml OfflineExperiment Summary COMET INFO: --------------------------------------------------------------------------------------- COMET INFO: Data: COMET INFO: display_summary_level : 1 COMET INFO: name : exp COMET INFO: url : [OfflineExperiment will get URL after upload] COMET INFO: Others: COMET INFO: Name : exp COMET INFO: offline_experiment : True COMET INFO: Uploads: COMET INFO: environment details : 1 COMET INFO: git metadata : 1 COMET INFO: installed packages : 1 COMET INFO: COMET INFO: Still saving offline stats to messages file before program termination (may take up to 120 seconds) COMET INFO: Begin archiving the offline data. COMET INFO: To upload this offline experiment, run: comet upload D:\0_yyyzt\AIM\yolo\yolov5\.cometml-runs\e9b6f27f962c4a25bfeb02399ccf699f.zip ### Are you willing to submit a PR? - [X] Yes I'd like to help by submitting a PR!
open
2024-12-16T17:13:08Z
2024-12-17T06:52:36Z
https://github.com/ultralytics/yolov5/issues/13462
[ "bug", "devops" ]
zhangsiying2001
2
matplotlib/mplfinance
matplotlib
126
Bug Report: min/max return NaN if nan in data, can use np.nanmin/np.nanmax instead.
**[From @char101](https://github.com/matplotlib/mplfinance/issues/116#issuecomment-623977064)** > I have found one problem due to the usage of `min` and `max` on `ndarray` (https://github.com/matplotlib/mplfinance/blob/master/src/mplfinance/plotting.py#L424). If the array contains `nan` then both `min` and `max` will return `nan` so it should be replaced with `np.nanmin` and `np.nanmax`.
closed
2020-05-05T10:51:07Z
2020-06-07T23:45:01Z
https://github.com/matplotlib/mplfinance/issues/126
[ "bug", "released" ]
DanielGoldfarb
10
Gozargah/Marzban
api
1,637
Invalid Request User ID Error (proxy/vless/inbound)
سلام، من در حال استفاده از پنل مرزبان (نسخه v0.8.4) به همراه xray (نسخه 1.8.24) هستم. تنظیمات اینت‌باند به صورت VLESS TCP Header می‌باشند و هنگام برقراری ارتباط با سرور با خطاهایی مواجه می‌شوم که به نظر می‌رسد ناشی از درخواست نامعتبر (invalid request user id) باشد. خطاهای مشاهده شده در لاگ‌های سرور مسترم (مرزبان): ``` 2025/02/09 09:55:56 [Info] [2327410349] proxy/vless/inbound: firstLen = 0 2025/02/09 09:55:56 [Info] [2327410349] app/proxyman/inbound: connection ends > proxy/vless/encoding: failed to read request version > EOF ``` خطاهای مشاهده شده در لاگ‌ یکی از سرورهای نود: ``` 2025/02/09 10:09:36 [Info] [25915429] proxy/freedom: dialing to tcp:142.250.200.132:443 2025/02/09 10:09:36 [Info] [25915429] transport/internet/tcp: dialing TCP to tcp:142.250.200.132:443 2025/02/09 10:09:36 [Info] [25915429] proxy/freedom: connection opened to tcp:www.google.com:443, local endpoint 45.86.229.247:58274, remote endpoint 142.250.200.132:443 2025/02/09 10:09:36 [Info] [25915429] proxy: CopyRawConn readv 2025/02/09 10:09:36 [Info] [3560550531] proxy/vless/inbound: firstLen = 152 2025/02/09 10:09:36 from 127.0.0.1:55316 rejected proxy/vless/encoding: invalid request user id 2025/02/09 10:09:36 [Info] [3560550531] app/proxyman/inbound: connection ends > proxy/vless/inbound: invalid request from 127.0.0.1:55316 > proxy/vless/encoding: invalid request user id 2025/02/09 10:09:36 [Info] [2094259789] app/proxyman/inbound: connection ends > proxy/vless/inbound: connection ends > context canceled ``` داخل سرویس ها قطعی مکرر به وجود اومده، خیلی ممنونم میشم در صورتی که اطلاع دارید چطوری مشکل رو حل کنم سپاس از شما.
open
2025-02-09T10:14:59Z
2025-03-17T02:33:07Z
https://github.com/Gozargah/Marzban/issues/1637
[]
neilgleichner
3
erdewit/ib_insync
asyncio
615
Dividends Payment Schedule
I am looking to pull IB's dividend projections for a stock/ETF. I can see this information when I hover over the "Dividend Yield %" column for the ticker in my TWS watchlist/monitor, but don't know how to pull this information through ib_insync . For example (today's date = 13-Jul-2023): ![IB Dividend Projection](https://github.com/erdewit/ib_insync/assets/29904583/4adfc819-5460-49c0-85cf-2854e15e5055)
closed
2023-07-13T18:46:08Z
2023-07-23T09:04:35Z
https://github.com/erdewit/ib_insync/issues/615
[]
atamkapoor
1
biolab/orange3
data-visualization
6,466
Plots in Reports and exporting get wrong x/y axis
<!-- Thanks for taking the time to report a bug! If you're raising an issue about an add-on (i.e., installed via Options > Add-ons), raise an issue in the relevant add-on's issue tracker instead. See: https://github.com/biolab?q=orange3 To fix the bug, we need to be able to reproduce it. Please answer the following questions to the best of your ability. --> **What's wrong?** <!-- Be specific, clear, and concise. Include screenshots if relevant. --> <!-- If you're getting an error message, copy it, and enclose it with three backticks (```). --> The scatter-plot when saved to a report or exported to a file looks different. Axis and annotation are wrong. Scaling of axis is wrong. The whole thing gets unusable as you can see on the screenshot below. <img width="2056" alt="grafik" src="https://github.com/biolab/orange3/assets/32239392/c26c1467-2e1e-4be1-bf96-afb631e19d5f"> **How can we reproduce the problem?** <!-- Upload a zip with the .ows file and data. --> <!-- Describe the steps (open this widget, click there, then add this...) --> IT can be reproduced very easily. Take or draw some data. Do a scatter-plot of two variables and save it to the report. **What's your environment?** <!-- To find your Orange version, see "Help → About → Version" or `Orange.version.full_version` in code --> - Operating system: Mac OS Ventura 13.4 - Orange version: 3.35.0 - How you installed Orange: stand alone
closed
2023-06-07T08:14:12Z
2023-09-15T11:54:37Z
https://github.com/biolab/orange3/issues/6466
[ "bug report" ]
WolframRinke
4
yihong0618/running_page
data-visualization
163
[TODO] fix all alert
closed
2021-08-17T08:54:20Z
2022-01-07T05:19:48Z
https://github.com/yihong0618/running_page/issues/163
[]
yihong0618
0
deepspeedai/DeepSpeed
deep-learning
7,012
nv-ds-chat CI test failure
The Nightly CI for https://github.com/deepspeedai/DeepSpeed/actions/runs/13230975186 failed.
closed
2025-02-07T00:26:40Z
2025-02-10T22:30:14Z
https://github.com/deepspeedai/DeepSpeed/issues/7012
[ "ci-failure" ]
github-actions[bot]
0
lmcgartland/graphene-file-upload
graphql
29
No UI example found
We are trying to use this in our project not able to create a ui not even properly test.we need an documentation/ examples including ui
open
2019-03-01T20:39:22Z
2022-12-14T00:57:49Z
https://github.com/lmcgartland/graphene-file-upload/issues/29
[]
amal-chandran
8
keras-team/keras
pytorch
21,078
How Do I Track a List of Objects for Export?
I define an `EnsembleModel` class that is constructed from a list of other Keras models. ``` class EnsembleModel(keras.Model): def __init__( self, models: Iterable[keras.Model], reduce_fn: Callable = keras.ops.mean, **kwargs): super(EnsembleModel, self).__init__(**kwargs) self.models = models # self.model0 = models[0] # self.model1 = models[1] self.reduce_fn = reduce_fn @tf.function(input_signature=[input_signature]) def call( self, input: Dict[Text, Any]) -> Any: all_outputs = [keras.ops.reshape(model(input), newshape=(-1,)) for model in self.models] output = self.reduce_fn(all_outputs, axis=0) return output averaging_model = EnsembleModel(models=[model0, model1]) ``` I then wish to export the ensemble model: ``` averaging_model.export("export/1/", input_signature=[input_signature]) ``` But I get an error on the export: ``` AssertionError: Tried to export a function which references an 'untracked' resource. TensorFlow objects (e.g. tf.Variable) captured by functions must be 'tracked' by assigning them to an attribute of a tracked object or assigned to an attribute of the main object directly. See the information below: Function name = b'__inference_signature_wrapper___call___10899653' Captured Tensor = <ResourceHandle(name="10671455", device="/job:localhost/replica:0/task:0/device:CPU:0", container="localhost", type="tensorflow::lookup::LookupInterface", dtype and shapes : "[ ]")> Trackable referencing this tensor = <tensorflow.python.ops.lookup_ops.StaticHashTable object at 0x7fd62d126990> Internal Tensor = Tensor("10899255:0", shape=(), dtype=resource) ``` If I explicitly assign the models to variables in the constructor: ``` self.model0 = models[0] self.model1 = models[1] ``` It works fine (even if I don't reference those variables anywhere else). But I want an instance of the `EnsembleModel` class to support an arbitrary list of models. How can I ensure the models are "tracked" so that I don't get an error on export?
open
2025-03-21T02:25:34Z
2025-03-24T05:45:11Z
https://github.com/keras-team/keras/issues/21078
[ "type:support" ]
rlcauvin
1
BayesWitnesses/m2cgen
scikit-learn
212
Can support native xgboost.core.Booster model?
closed
2020-05-09T02:22:44Z
2020-05-20T01:44:38Z
https://github.com/BayesWitnesses/m2cgen/issues/212
[]
yuanjie-ai
2
Farama-Foundation/PettingZoo
api
896
TypeError: aec_to_parallel_wrapper.render() got an unexpected keyword argument 'mode'
### Question I am learning Maddpg algorithm recently. After my algorithm is completed in the MPE environment training in Pettingzoo, I encountered the following problems when evaluating the algorithm: `Traceback (most recent call last): File "D:\PyCharm 2021.2.2\code\maddpg-pettingzoo-pytorch-master\evaluate.py", line 41, in <module> frame_list.append(Image.fromarray(env.render(mode='rgb_array'))) TypeError: aec_to_parallel_wrapper.render() got an unexpected keyword argument 'mode'` How can I solve this problem?
closed
2023-03-08T08:37:14Z
2023-03-15T06:42:55Z
https://github.com/Farama-Foundation/PettingZoo/issues/896
[ "question" ]
wagh311
2
d2l-ai/d2l-en
deep-learning
2,522
Apple M2 processor GPU in pytorch
This is a feature request, please correct me if I am wrong, but it seems like we don't have any support for Apple's GPU. I noticed that there is a pull request that hasn't been merged addressing the same issue https://github.com/d2l-ai/d2l-en/pull/2453#issue-1616863143 I would like to volunteer to implant it for Apple silicon. Please let me know if there is an effort going on to address this problem @AnirudhDagar
open
2023-06-30T08:04:20Z
2023-08-28T09:03:23Z
https://github.com/d2l-ai/d2l-en/issues/2522
[]
cx-olquinjica
1
katanaml/sparrow
computer-vision
9
extraction Invalid sparrow key error
I already installed the application through the docker method and the normal streamlit run method and I don't know what I'm doing wrong but when I try to execute the extraction for a given document it gives me this error: { "error":"Invalid Sparrow key." } Also I can't delete or create any labels or groups in the setup section. Thanks for all your work.
closed
2023-06-06T03:47:24Z
2024-03-20T12:00:37Z
https://github.com/katanaml/sparrow/issues/9
[]
dani-lu
8
PaddlePaddle/PaddleHub
nlp
2,212
wav2lip输出报错,
执行代码为 import paddlehub as hub module = hub.Module(name="wav2lip") face_input_path = "1.MP4" audio_input_path = "1.wav" module.wav2lip_transfer(face=face_input_path, audio=audio_input_path, output_dir='./transfer_result/', use_gpu=False) 包版本为 paddlepaddle版本:2.4.1 paddlehub:2.3.1 Python:3.7.4(更换过3.9.16无效) 系统:win10 每次module.wav2lip_transfer显示Model loaded时到0/8会卡住,然后过一会py崩溃,报错会显示超过int32过大或者过小,求帮忙看看,中间有段时间突然可以使用了,不知道为啥,后来重装环境后又不行了。 ![image](https://user-images.githubusercontent.com/126392345/221409077-3a0a853d-860c-434c-a25f-eea60555f449.png)
open
2023-02-26T12:02:37Z
2024-02-26T05:00:07Z
https://github.com/PaddlePaddle/PaddleHub/issues/2212
[]
zjjzff123
2
docarray/docarray
fastapi
1,152
Dynamic class creation
**Is your feature request related to a problem? Please describe.** In some scenarios users might want to dynamically create a class. For example, in the search apps, data might be given through different sources, it might have a folder structure, and we are then responsible for converting it to a suitable docarray format, where this feature will come handy. **Describe the solution you'd like** Having a function that takes pairs of field names and their corresponding types and returns a class **Describe alternatives you've considered** Tried with [Pydantic's `create_model`](https://docs.pydantic.dev/usage/models/#dynamic-model-creation), and it works ok, but this doesn't return a `BaseDocument` so would be nice to have it handled inside docarray.
closed
2023-02-20T13:44:25Z
2023-02-28T14:19:51Z
https://github.com/docarray/docarray/issues/1152
[]
jupyterjazz
0
slackapi/bolt-python
fastapi
557
How to know the user id of the receiving user?
My goal is to create an automated "voice mail" for users when they are not available. Say there are three users - A, B, C. Arrow pointing outward means a user is sending a message to another user. ``` User A -> User B User A -> User C ``` Assume that user B and user C have installed my Slack app but user A hasn't. Now, my question is how can I get the `WebClient` based on the receiving user? I need to know the right `WebClient` such that I can respond to the sending user on their behalf. That is, when User A sends a message to user B then I want to respond on behalf of User B. ```bash pip freeze | grep slack python --version sw_vers && uname -v # or `ver` ``` #### The `slack_bolt` version (Paste the output of `pip freeze | grep slack`) slack-bolt==1.11.0 slack-sdk==3.11.2 #### Python runtime version (Paste the output of `python --version`) 3.8.0 #### OS info (Paste the output of `sw_vers && uname -v` on macOS/Linux or `ver` on Windows OS) ProductName: macOS ProductVersion: 12.1 BuildVersion: 21C52 Darwin Kernel Version 21.2.0: Sun Nov 28 20:28:54 PST 2021; root:xnu-8019.61.5~1/RELEASE_X86_64 ### Expected result: Get the `WebClient` of the receiving user ### Actual result: Get the `WebClient` of the installed user ## Requirements Please read the [Contributing guidelines](https://github.com/slackapi/bolt-python/blob/main/.github/contributing.md) and [Code of Conduct](https://slackhq.github.io/code-of-conduct) before creating this issue or pull request. By submitting, you are agreeing to those rules.
closed
2021-12-28T12:31:19Z
2022-02-18T05:17:06Z
https://github.com/slackapi/bolt-python/issues/557
[ "question", "auto-triage-stale" ]
SamarpanRai-TomTom
7
CorentinJ/Real-Time-Voice-Cloning
python
576
able to do Speech-To-Speech Synthesis
Can it perform Speech to speech synthesis, instead of text to speech
closed
2020-10-26T23:27:04Z
2021-04-28T19:41:00Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/576
[]
ruah1984
1
FactoryBoy/factory_boy
sqlalchemy
143
factory.DjangoModelFactory class Meta: not working
Documentation guides to define factories like this: ``` class UserFactory(factory.Factory): class Meta: model = models.User ``` , I get `*** TypeError: 'Meta' is an invalid keyword argument for this function` when calling `UserFactory()`. Instead I found that removing `class Meta:` definition and using: ``` class UserFactory(factory.Factory): FACTORY_FOR = models.User ``` seems to work...
closed
2014-05-21T10:35:45Z
2014-08-04T11:07:28Z
https://github.com/FactoryBoy/factory_boy/issues/143
[]
JsseL
8
jmcnamara/XlsxWriter
pandas
652
create check box
Does XlsxWriter can create check box in excel? I just find Buttons in documents
closed
2019-08-27T15:17:38Z
2019-08-27T17:08:41Z
https://github.com/jmcnamara/XlsxWriter/issues/652
[ "question" ]
shahmohamadi
1
ivy-llc/ivy
numpy
28,510
Fix Frontend Failing Test: jax - math.paddle.conj
To do List: https://github.com/unifyai/ivy/issues/27496
closed
2024-03-08T11:05:58Z
2024-03-14T21:30:32Z
https://github.com/ivy-llc/ivy/issues/28510
[ "Sub Task" ]
ZJay07
0
google-research/bert
tensorflow
1,182
Appropriate training steps for fine-tuning on language model
I want to fine-tune BERT-base-uncased for the language model, according to my custom dataset. It consists of around 80M tweets. I'm a bit puzzled about how many training steps I should set so it is trained optimally (not under-/over-fit). The README says that it should practically be more than/around 10k steps, but what about large data collections as such the one I have? Does anybody have any estimation?
open
2020-12-06T10:58:10Z
2021-02-05T16:06:35Z
https://github.com/google-research/bert/issues/1182
[]
sajastu
1
dsdanielpark/Bard-API
api
84
KeyError: 'images' when using ChatBard
This is the code snippet I run: ''' from bardapi import ChatBard chat = ChatBard(token=token, language='en') chat.start() ''' Sometimes it pops up the keyerror, even if I modify the code in chat.py, is that a problem related to network? Note that I'm using a virtual network. Thanks guys. <img width="927" alt="image" src="https://github.com/dsdanielpark/Bard-API/assets/82095274/23b165d2-906f-432f-9995-af9c8dc38ead">
closed
2023-06-29T14:03:15Z
2023-06-30T06:43:35Z
https://github.com/dsdanielpark/Bard-API/issues/84
[]
Xiansssss
2
automl/auto-sklearn
scikit-learn
1,543
[Question] Do you cant import auto-sklearn also? How can I import it successfully?
Hello, I cant import auto-sklearn anymore. I use Google Colab, so I always need to install auto-sklearn when opening a notebook, which works fine. Importing auto-sklearn I get following error: IncorrectPackageVersionError: found 'dask' version 2.12.0 but requires dask version >=2021.12 When updating dask, it doesnt work either. Greetings
closed
2022-07-20T12:27:26Z
2022-07-23T13:59:21Z
https://github.com/automl/auto-sklearn/issues/1543
[ "question" ]
kobabulbul
4
littlecodersh/ItChat
api
288
不能获取国家地区信息?
get_friends后,联系人没有国家和地区相关的字段。但是网页版微信确实有这个信息的显示
closed
2017-03-18T12:45:05Z
2017-03-22T07:49:56Z
https://github.com/littlecodersh/ItChat/issues/288
[ "question" ]
finalion
1
harry0703/MoneyPrinterTurbo
automation
438
获取脚本失败是什么原因
2024-07-05 12:21:52.174 | INFO | __main__:<module>:654 - 开始生成视频 2024-07-05 12:21:52.175 | INFO | __main__:<module>:655 - { "video_subject": "为什么要跑步", "video_script": "", "video_terms": "", "video_aspect": "9:16", "video_concat_mode": "random", "video_clip_duration": 3, "video_count": 1, "video_source": "pexels", "video_materials": null, "video_language": "zh-CN", "voice_name": "zh-CN-XiaoxiaoNeural-Female", "voice_volume": 1.0, "bgm_type": "random", "bgm_file": "", "bgm_volume": 0.2, "subtitle_enabled": true, "subtitle_position": "bottom", "font_name": "MicrosoftYaHeiBold.ttc", "text_fore_color": "#FFFFFF", "text_background_color": "transparent", "font_size": 60, "stroke_color": "#000000", "stroke_width": 1.5, "n_threads": 2, "paragraph_number": 1 } 2024-07-05 12:21:52.175 | INFO | app.services.task:start:30 - start task: bbfa3e14-f31e-48b3-b3eb-69bf9b7c512e 2024-07-05 12:21:52.178 | INFO | app.services.task:start:39 - ## generating video script 2024-07-05 12:21:52.178 | INFO | app.services.llm:generate_script:258 - subject: 为什么要跑步 2024-07-05 12:21:52.179 | INFO | app.services.llm:_generate_response:18 - llm provider: openai 2024-07-05 12:22:12.487 | ERROR | app.services.llm:generate_script:294 - failed to generate script: Request timed out. 2024-07-05 12:22:12.488 | WARNING | app.services.llm:generate_script:297 - failed to generate video script, trying again... 1 2024-07-05 12:22:12.489 | INFO | app.services.llm:_generate_response:18 - llm provider: openai 2024-07-05 12:22:30.172 | ERROR | app.services.llm:generate_script:294 - failed to generate script: Request timed out. 2024-07-05 12:22:30.172 | WARNING | app.services.llm:generate_script:297 - failed to generate video script, trying again... 2 2024-07-05 12:22:30.172 | INFO | app.services.llm:_generate_response:18 - llm provider: openai 2024-07-05 12:22:47.898 | ERROR | app.services.llm:generate_script:294 - failed to generate script: Request timed out. 2024-07-05 12:22:47.898 | WARNING | app.services.llm:generate_script:297 - failed to generate video script, trying again... 3 2024-07-05 12:22:47.898 | INFO | app.services.llm:_generate_response:18 - llm provider: openai 2024-07-05 12:23:02.654 | ERROR | app.services.llm:generate_script:294 - failed to generate script: Request timed out. 2024-07-05 12:23:02.655 | WARNING | app.services.llm:generate_script:297 - failed to generate video script, trying again... 4 2024-07-05 12:23:02.655 | INFO | app.services.llm:_generate_response:18 - llm provider: openai 2024-07-05 12:23:20.408 | ERROR | app.services.llm:generate_script:294 - failed to generate script: Request timed out. 2024-07-05 12:23:20.408 | WARNING | app.services.llm:generate_script:297 - failed to generate video script, trying again... 5 2024-07-05 12:23:20.411 | SUCCESS | app.services.llm:generate_script:299 - completed: 2024-07-05 12:23:20.412 | ERROR | app.services.task:start:49 - failed to generate video script. 2024-07-05 12:23:20.413 | ERROR | __main__:<module>:661 - 视频生成失败
closed
2024-07-05T04:26:54Z
2024-07-05T07:01:52Z
https://github.com/harry0703/MoneyPrinterTurbo/issues/438
[]
yzh000000
1
marshmallow-code/apispec
rest-api
60
Schema Refs
Today, to add a ref to a Schema from a Schema's nested field, we must add a `ref` parameter, as such: ``` cat_with_ref = fields.Nested(CategorySchema, ref='Category', description="A category") ``` To me, it looks like we're repeating `Category` (which is gettable by removing `Schema` from the `CategorySchema` name). I think we should do it the other way around: automatically add a ref such as `#/definitions/Category` for any `fields.Nested(CategorySchema)`, unless `use_refs=false` is passed to the APISpec. What do you think ?
closed
2016-03-16T09:25:55Z
2016-03-25T02:06:08Z
https://github.com/marshmallow-code/apispec/issues/60
[]
martinlatrille
1
pytorch/pytorch
python
149,497
symbolic_trace failed on deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
### 🐛 Describe the bug ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer from torch_mlir import fx model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) prompt = "What are the benefits of using AI in healthcare?" input_ids = tokenizer.encode(prompt, return_tensors="pt") model.eval() traced_model = torch.fx.symbolic_trace(model) m = fx.export_and_import(traced_model, (input_ids,), enable_ir_printing=True, enable_graph_printing=True) with open("qwen1.5b_s.mlir", "w") as f: f.write(str(m)) ``` ```shell Traceback (most recent call last): File "/home/hmsjwzb/work/models/QWEN/./qwen5.py", line 55, in <module> traced_model = torch.fx.symbolic_trace(model) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/torch/fx/_symbolic_trace.py", line 1314, in symbolic_trace graph = tracer.trace(root, concrete_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/torch/fx/_symbolic_trace.py", line 788, in trace fn, args = self.create_args_for_root( ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/torch/fx/_symbolic_trace.py", line 679, in create_args_for_root root_fn = _patch_function(root_fn, len(args)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/torch/fx/_symbolic_trace.py", line 184, in _patch_function new_code = CodeType(*co_args) # type: ignore[arg-type] ^^^^^^^^^^^^^^^^^^ ValueError: code: co_varnames is too small ``` ### Versions ```shell Collecting environment information... PyTorch version: 2.7.0.dev20250310+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 19.1.7 (https://github.com/llvm/llvm-project.git cd708029e0b2869e80abe31ddb175f7c35361f90) CMake version: version 3.31.6 Libc version: glibc-2.35 Python version: 3.11.11+local (heads/3.11-dirty:f0895aa9c1d, Dec 20 2024, 14:17:01) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: GenuineIntel Model name: 13th Gen Intel(R) Core(TM) i9-13900 CPU family: 6 Model: 183 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 1 Stepping: 1 CPU max MHz: 5600.0000 CPU min MHz: 800.0000 BogoMIPS: 3993.60 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect user_shstk avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi vnmi umip pku ospke waitpkg gfni vaes vpclmulqdq tme rdpid movdiri movdir64b fsrm md_clear serialize pconfig arch_lbr ibt flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 896 KiB (24 instances) L1i cache: 1.3 MiB (24 instances) L2 cache: 32 MiB (12 instances) L3 cache: 36 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Mitigation; Clear Register File Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.3 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] onnx==1.16.1 [pip3] onnxscript==0.2.2 [pip3] optree==0.14.0 [pip3] torch==2.7.0.dev20250310+cpu [pip3] torchvision==0.22.0.dev20250310+cpu [pip3] triton==3.2.0 [conda] magma-cuda121 2.6.1 ``` cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
open
2025-03-19T10:06:25Z
2025-03-20T19:22:01Z
https://github.com/pytorch/pytorch/issues/149497
[ "module: fx", "oncall: fx" ]
FlintWangacc
1
jina-ai/clip-as-service
pytorch
219
Can request don't use bert-as-service client
I want to use you server structure into my project, I have a question , Can I request bert-as-service server don't use bert-as-service client, just use python request? because in your code, I see that you use zmq to request the bert-as-service server.
closed
2019-01-25T06:44:00Z
2019-01-29T01:04:38Z
https://github.com/jina-ai/clip-as-service/issues/219
[]
xiongma
2
Significant-Gravitas/AutoGPT
python
9,603
Switch from Selenium to mouse clicks on (x,y) via Vision API
Hello, when will you switch from Selenium and Puppeteer to mouse clicks on (x,y) via Vision API? OpenAI - https://platform.openai.com/docs/guides/vision Anthropic - https://docs.anthropic.com/en/docs/build-with-claude/vision Qwen2.5-VL - https://github.com/QwenLM/Qwen2.5-VL You can see the implementation here https://github.com/anthropics/anthropic-quickstarts/tree/main/computer-use-demo demo: https://youtu.be/vH2f7cjXjKI?t=24 Now many sites have WAF, it blocks Selenium and Puppeteer, checks TLS fingerprints in browser builds. With the advent of ML in WAF products, we will increasingly encounter blocking. Mouse emulation and Vision API are universal things that can be used everywhere (even with GUI apps of a specific OS).
open
2025-03-07T15:01:58Z
2025-03-07T15:08:52Z
https://github.com/Significant-Gravitas/AutoGPT/issues/9603
[]
eiko4
0
graphql-python/gql
graphql
452
Unable to print schema with gql and error is an SSL error
**Describe the bug** gql-cli is not using SSL even when the endpoint URL clearly requests this. **To Reproduce** Steps to reproduce the behavior. Below, the API-Key header is redacted: ``` gql-cli --print-schema -d -H 'API-Key: NRAK-1TTZZQEJWB1QV1FJVD8ZRK4ZKHD' 'Accept: application/json' -- https://api.newrelic.com/graphql ``` I get a long backtrace, but the bottom line is as follows: ``` aiohttp.client_exceptions.ClientConnectorError: Cannot connect to host api.newrelic.com:443 ssl:False [Connection reset by peer] ``` **Expected behavior** A clear and concise description of what you expected to happen. When given a URL beginning with https, `gql-cli` should enable SSL/TLS. **System info (please complete the following information):** - *OS:* MacOS - *Python version:* Python 3.11.5 - *gql version:* 3.4.1 - *graphql-core version:* 3.2.3
closed
2023-12-01T01:14:56Z
2023-12-01T13:50:42Z
https://github.com/graphql-python/gql/issues/452
[ "type: invalid" ]
danizen
1
noirbizarre/flask-restplus
flask
403
swagger docs: Available authorizations not populated correctly
Please let me know if I have an error in my code. But I tried to replicate the [example code](http://flask-restplus.readthedocs.io/en/stable/swagger.html#documenting-authorizations) as closely as possible. I am trying to specify authorization for my resource ``` authorizations = { "apikey": { "type": "apiKey", "in": "header", "name": "X-API-KEY" } } ns = Namespace("Entry", authorizations=authorizations) @ns.route("/") class ApiEntry(Resource): @ns.doc(security="apikey") @jwt_required def delete(self, entry_id: int): ``` When this renders as a Swagger doc webpage, I see this: ![screen shot 2018-03-05 at 2 13 11 pm](https://user-images.githubusercontent.com/2791268/37002684-5d56beae-207f-11e8-9981-bd9532729c12.png) Nothing to indicate that there is an available authorization except the exclamation mark. When I click on it, I see this popup. As you can see, it has no content. ![screen shot 2018-03-05 at 2 16 23 pm](https://user-images.githubusercontent.com/2791268/37002822-cd0cfbaa-207f-11e8-9190-bce37fe4b00c.png) But I believe I specified everything correctly, so why is the authorization not being picked up?
open
2018-03-05T22:17:00Z
2018-03-06T00:08:26Z
https://github.com/noirbizarre/flask-restplus/issues/403
[]
boompig
3
PaddlePaddle/PaddleHub
nlp
1,871
hub install ***出错
hub version: 2.2.0 system: windows 10 tools: pycharm 2021.2.2 错误现象:我在pycharm中的terminal中使用hub install ABC,会出现:FileNotFoundError: [Errno 2] No such file or directory: 'ABC\\module.py' 但是:但是我在系统中的cmd,使用hub install ABC,却是正确的 错误原因: 经过我的仔细排查,我发现如果你的pycharm下存在你要安装的包名相同文件夹,就会发生此Bug,比如我要安装ABC, hub install ABC, 我的pycharm项目下也存在这个ABC目录,则就会在paddlehub/commands/install.py 的第46行: if os.path.exists(_arg) and os.path.isdir(_arg):判断错误, 它返回的实际是我pycharm项目下的目录《Q:\workspace_pycharm\paddlehub_use\ABC》存在,从而导致后续找不到《Q:\workspace_pycharm\paddlehub_use\ABC\module.py》 ![image](https://user-images.githubusercontent.com/44843774/168759326-5b1f5417-91e3-415d-96a3-205890744bfb.png) **避免此Bug的方法: 不要在项目下方放与要安装的模块名有相同的文件夹名** ![image](https://user-images.githubusercontent.com/44843774/168760373-d832d137-079b-4046-81c4-d72cd6104b16.png)
open
2022-05-17T07:58:12Z
2024-02-26T05:02:09Z
https://github.com/PaddlePaddle/PaddleHub/issues/1871
[]
AndACat
1
pytest-dev/pytest-qt
pytest
475
How to automatically select documents from QFileDialog?
I want to test my Graphical User Interface with the qtbot from pytest-qt. I am new to testing in general and i could need some guidance on how to start writing these tests. I want the bot to click on the file icon, then a QFileDialog opens, as in the picture below and the bot needs to select a pdf. I already looked for documentation and what i found was not really helpful, i didn't understand how to set the qtbot up. ![image](https://user-images.githubusercontent.com/50309885/216043172-80dfa6a2-4b09-4b3b-9b1a-4c04313e16af.png) ```python from PySide2.QtWidgets import QMainWindow, QPushButton, QApplication, QFileDialog class MainWindow(QMainWindow): def __init__(self): super(MainWindow, self).__init__() self.button = '' btn = QPushButton('Open File', self) btn.move(10, 10) btn.clicked.connect(self.open_file) self.resize(420, 450) def open_file(self): pdf_dialog_obj = QFileDialog.getOpenFileNames(self, "Open Pdf", "/Downloads", "Pdf Files (*.pdf)",) pdf_path = pdf_dialog_obj[0] print(pdf_path) if __name__ == '__main__': import sys app = QApplication(sys.argv) MW = MainWindow() MW.show() sys.exit(app.exec_()) ``` Like: https://stackoverflow.com/questions/58731798/gui-testing-in-pyside2-with-qtbot
closed
2023-02-01T12:32:03Z
2023-02-03T03:35:05Z
https://github.com/pytest-dev/pytest-qt/issues/475
[ "question :question:" ]
ningwana
4
python-visualization/folium
data-visualization
1,598
FastMarkerCluster with Rectangles
**Is your feature request related to a problem? Please describe.** I am trying to make a map with lots of rectangles. For scalability I want to use `FastMarkerCluster`. **Describe the solution you'd like** An example how to achieve this with the custom `callback` argument of `FastMarkerCluster`. **Describe alternatives you've considered** I have followed https://stackoverflow.com/questions/55082227/use-customized-markers-in-fastmarkercluster-in-python-folium and https://gis.stackexchange.com/questions/197882/is-it-possible-to-cluster-polygons-in-leaflet to come up with the following code (that does not work): ```python import folium from folium.plugins import FastMarkerCluster callback = """\ function (row) { L.RectangleClusterable = L.Rectangle.extend({ _originalInitialize: L.Rectangle.prototype.initialize, initialize: function (bounds, options) { this._originalInitialize(bounds, options); this._latlng = this.getBounds().getCenter(); // Define the polygon "center". }, getLatLng: function () { return this._latlng; }, // dummy method. setLatLng: function () {} }); var marker; var bounds = [[row[0],row[1]],[row[2],row[3]]]; var marker; var bounds = [[row[0],row[1]],[row[2],row[3]]]; marker = new L.RectangleClusterable(bounds, {color: row[4], fill: false}); return marker; }; """ dummy_datalist = [[15.239767846087643, -3.430904007476068, 15.274550329009562, -3.3952112382419943, 'red'], [12.555053058361464, 22.69460273995349, 12.589536739962934, 22.730168087109885, 'red'], [10.578401022114354, 18.96000929066635, 10.613334525077851, 18.99486324338091, 'red'], [-28.82025939819514, 20.279894065524264, -28.78580537471939, 20.31947355512883, 'red'], [15.243305252384948, 0.6368612962996214, 15.277369210446777, 0.6731502741999579, 'red']] map = folium.Map(location = [0.0, 20.0], zoom_start = 3) FastMarkerCluster(dummy_datalist, callback = callback).add_to(map) map ``` It just displays nothing on top of the map. Help is very much appreciated! Update: Fixed it, I had a mistake in the Javascript. :)
closed
2022-05-25T13:15:39Z
2022-05-25T17:31:40Z
https://github.com/python-visualization/folium/issues/1598
[]
vitusbenson
0
AirtestProject/Airtest
automation
256
GUI工具安装后,连接上设备后,进行操作时脚本编辑窗没有任何变化
(请尽量按照下面提示内容填写,有助于我们快速定位和解决问题,感谢配合。否则直接关闭。) **(重要!问题分类)** * 测试开发环境AirtestIDE使用问题 -> https://github.com/AirtestProject/AirtestIDE/issues * 控件识别、树状结构、poco库报错 -> https://github.com/AirtestProject/Poco/issues * 图像识别、设备控制相关问题 -> 按下面的步骤 **描述问题bug** GUI工具安装后,连接上设备后,进行操作时脚本编辑窗没有任何变化 **相关截图** ![image](https://user-images.githubusercontent.com/33715724/51524869-07ef4a00-1e6a-11e9-8a7b-8d0183bf9e8c.png) **复现步骤** 1. 打开IDE 2. 打开计算器 3. 点击IDE上窗口选择,选择计算器窗口 4. 点击计算器上的按钮 **预期效果** 脚本编辑窗出现对应操作的脚本 **python 版本:** `python2.7` **airtest 版本:** `1.2.0` > airtest版本通过`pip freeze`可以命令可以查到 **设备:** - 系统: windows 7 64位
open
2019-01-22T09:22:45Z
2019-05-14T12:04:51Z
https://github.com/AirtestProject/Airtest/issues/256
[]
hellapple
9
ultralytics/ultralytics
python
19,830
For human detection task, do I need to train again COCO dataset with human label only ?
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question Hi there, I want to improve YOLO11n for the human detection task. I have a question: if I use a pretrained YOLO11n model trained on the COCO dataset to train for human detection on the COCO dataset again, is it possible to improve the current mAP score (39.5 on ultralytics site) on this ? ### Additional _No response_
open
2025-03-23T10:03:52Z
2025-03-23T12:20:57Z
https://github.com/ultralytics/ultralytics/issues/19830
[ "question", "detect" ]
ElectricGoal
3
Anjok07/ultimatevocalremovergui
pytorch
758
One day i started having a problem.... I don't know what to do and asking for help.
Last Error Received: Process: MDX-Net If this error persists, please contact the developers with the error details. Raw Error Details: Fail: "[ONNXRuntimeError] : 1 : FAIL : Non-zero status code returned while running FusedConv node. Name:'Conv_0' Status Message: CUDNN error executing cudnnFindConvolutionForwardAlgorithmEx( s_.handle, s_.x_tensor, s_.x_data, s_.w_desc, s_.w_data, s_.conv_desc, s_.y_tensor, s_.y_data, 1, &algo_count, &perf, algo_search_workspace.get(), max_ws_size)" Traceback Error: " File "UVR.py", line 4716, in process_start File "separate.py", line 287, in seperate File "separate.py", line 366, in demix_base File "separate.py", line 386, in run_model File "separate.py", line 281, in <lambda> File "onnxruntime\capi\onnxruntime_inference_collection.py", line 192, in run " Error Time Stamp [2023-08-23 02:06:54] Full Application Settings: vr_model: Choose Model aggression_setting: 10 window_size: 512 batch_size: Default crop_size: 256 is_tta: False is_output_image: False is_post_process: False is_high_end_process: False post_process_threshold: 0.2 vr_voc_inst_secondary_model: No Model Selected vr_other_secondary_model: No Model Selected vr_bass_secondary_model: No Model Selected vr_drums_secondary_model: No Model Selected vr_is_secondary_model_activate: False vr_voc_inst_secondary_model_scale: 0.9 vr_other_secondary_model_scale: 0.7 vr_bass_secondary_model_scale: 0.5 vr_drums_secondary_model_scale: 0.5 demucs_model: Choose Model segment: Default overlap: 0.25 shifts: 2 chunks_demucs: Auto margin_demucs: 44100 is_chunk_demucs: False is_chunk_mdxnet: False is_primary_stem_only_Demucs: False is_secondary_stem_only_Demucs: False is_split_mode: True is_demucs_combine_stems: True demucs_voc_inst_secondary_model: No Model Selected demucs_other_secondary_model: No Model Selected demucs_bass_secondary_model: No Model Selected demucs_drums_secondary_model: No Model Selected demucs_is_secondary_model_activate: False demucs_voc_inst_secondary_model_scale: 0.9 demucs_other_secondary_model_scale: 0.7 demucs_bass_secondary_model_scale: 0.5 demucs_drums_secondary_model_scale: 0.5 demucs_pre_proc_model: No Model Selected is_demucs_pre_proc_model_activate: False is_demucs_pre_proc_model_inst_mix: False mdx_net_model: UVR-MDX-NET Inst HQ 3 chunks: Auto margin: 44100 compensate: Auto is_denoise: False is_invert_spec: False is_mixer_mode: False mdx_batch_size: 2 mdx_voc_inst_secondary_model: No Model Selected mdx_other_secondary_model: No Model Selected mdx_bass_secondary_model: No Model Selected mdx_drums_secondary_model: No Model Selected mdx_is_secondary_model_activate: False mdx_voc_inst_secondary_model_scale: 0.9 mdx_other_secondary_model_scale: 0.7 mdx_bass_secondary_model_scale: 0.5 mdx_drums_secondary_model_scale: 0.5 is_save_all_outputs_ensemble: True is_append_ensemble_name: False chosen_audio_tool: Manual Ensemble choose_algorithm: Min Spec time_stretch_rate: 2.0 pitch_rate: 2.0 is_gpu_conversion: True is_primary_stem_only: True is_secondary_stem_only: False is_testing_audio: False is_add_model_name: False is_accept_any_input: False is_task_complete: False is_normalization: True is_create_model_folder: False mp3_bit_set: 320k save_format: WAV wav_type_set: PCM_24 help_hints_var: True model_sample_mode: False model_sample_mode_duration: 30 demucs_stems: All Stems
open
2023-08-22T19:07:49Z
2023-08-22T19:07:49Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/758
[]
dimadt
0
giotto-ai/giotto-tda
scikit-learn
582
Question/References about calculations of Pairwise distance metrics
Hello! I have been using the pairwise distance functions to create distance matrices for manifold learning (UMAP). Up to this point, I have been calculating full distance matrices as input to the algorithm. Now however, I am in a situation where I am calculating the distances between 10s of thousands of persistence diagrams and I can no longer calculate the full distance mayrices. In order to use the heuristics built into the UMAP algorithm, I need need to be able to compile the distance function with Numba. Unfortunately, I believe this means I need to write them from scratch. I have attempted to write functions that emulate the behavior of `gtda.diagrams.PairwiseDistance`, which I have used previously, but I cannot seem to be able to match the output. Additionally, I have had trouble finding the code that actually performs the distance calculation. Would it be possible to get references for how the distances are calculated? Thank you so much!
closed
2021-06-17T17:36:00Z
2021-06-18T07:04:15Z
https://github.com/giotto-ai/giotto-tda/issues/582
[]
mir-cat
0
tflearn/tflearn
data-science
422
feed_dict_builder does work with traditional feed dict
in https://github.com/tflearn/tflearn/blob/master/tflearn/utils.py:feed_dict_builder if the input feed dict contains a mapping of tf.tensor to data, this is not added to the resulting feed dict. Line 294 and line 331, continue the iteration through the input feed_dict but never update the output feed dict. As a result when trying to predict by inputting a tensor -> value feed dict, prediction fails.
open
2016-10-29T20:32:15Z
2016-10-30T19:37:04Z
https://github.com/tflearn/tflearn/issues/422
[]
blake-varden
3
johnthagen/python-blueprint
pytest
85
Pass -Werror to pytest rather than python
From `pytest --help`: ``` pytest-warnings: -W PYTHONWARNINGS, --pythonwarnings=PYTHONWARNINGS set which warnings to report, see -W option of python itself. ``` Passing `-Werror` to `pytest` directly is recommended from the `help`, and works better for `pytest-xdist`.
closed
2022-03-08T14:58:27Z
2022-05-15T23:18:10Z
https://github.com/johnthagen/python-blueprint/issues/85
[]
johnthagen
0
keras-team/keras
tensorflow
20,420
keras.src vs keras.api design question
This is more of a question for me to better understand the codebase. Working on #20399 , I realised since there's a distinction between `keras.src` and `keras.api` (which is exposed as `keras` in the end), makes it impossible to do certain things. For instance, if you want to typehint an input as `keras.Model`, then you'd need to do a `import keras.Model` kinda thing. But that results in a circular import issue along these lines: ```py Cell In[1], line 1 ----> 1 from keras.wrappers import KerasClassifier File ~/Projects/gh/me/keras/keras/__init__.py:4 1 import os 3 # DO NOT EDIT. Generated by api_gen.sh ----> 4 from keras.api import DTypePolicy 5 from keras.api import FloatDTypePolicy 6 from keras.api import Function File ~/Projects/gh/me/keras/keras/api/__init__.py:7 1 """DO NOT EDIT. 2 3 This file was autogenerated. Do not edit it by hand, 4 since your modifications would be overwritten. 5 """ ----> 7 from keras.api import _tf_keras 8 from keras.api import activations 9 from keras.api import applications File ~/Projects/gh/me/keras/keras/api/_tf_keras/__init__.py:1 ----> 1 from keras.api._tf_keras import keras File ~/Projects/gh/me/keras/keras/api/_tf_keras/keras/__init__.py:28 26 from keras.api import utils 27 from keras.api import visualization ---> 28 from keras.api import wrappers 29 from keras.api._tf_keras.keras import backend 30 from keras.api._tf_keras.keras import layers File ~/Projects/gh/me/keras/keras/api/wrappers/__init__.py:7 1 """DO NOT EDIT. 2 3 This file was autogenerated. Do not edit it by hand, 4 since your modifications would be overwritten. 5 """ ----> 7 from keras.src.wrappers._sklearn import KerasClassifier 8 from keras.src.wrappers._sklearn import KerasRegressor File ~/Projects/gh/me/keras/keras/src/wrappers/_sklearn.py:37 35 import keras 36 from keras.src import losses as losses_module ---> 37 from keras import Model 38 from keras.src.api_export import keras_export 39 from keras.src.wrappers._utils import accepts_kwargs ImportError: cannot import name 'Model' from partially initialized module 'keras' (most likely due to a circular import) (/home/adrin/Projects/gh/me/keras/keras/__init__.py) ``` Checking the codebase, I realise typehints are not a thing we do here, so I'll remove them, but it still begs the question, what are the gains with the separation of the two folders, which adds quite a bit of complexity. In other projects, we tend to have a leading `_` on file names, and `__init__.py` exposes what needs to be _public_ on the user API level.
closed
2024-10-28T09:17:36Z
2025-03-13T03:10:09Z
https://github.com/keras-team/keras/issues/20420
[ "type:support" ]
adrinjalali
7
dask/dask
scikit-learn
11,336
An inconsistency between the documentation of `dask.array.percentile` and code implementation
**Describe the issue**: As mentioned in the parameter `method ` in the documentation of [`dask.array.percentile`](https://docs.dask.org/en/stable/generated/dask.array.percentile.html?highlight=percentile): > **method{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}, optional** The interpolation method to use when the desired percentile lies between two data points i < j. **Only valid for internal_method='dask'.** However, Corresponding part in the source code: ```python if ( internal_method == "tdigest" and method == "linear" and (np.issubdtype(dtype, np.floating) or np.issubdtype(dtype, np.integer)) ): from dask.utils import import_required import_required( "crick", "crick is a required dependency for using the t-digest method." ) name = "percentile_tdigest_chunk-" + token dsk = { (name, i): (_tdigest_chunk, key) for i, key in enumerate(a.__dask_keys__()) } name2 = "percentile_tdigest-" + token dsk2 = {(name2, 0): (_percentiles_from_tdigest, q, sorted(dsk))} ``` Apparently, method is only valid for internal_method='dask', but also valid for internal_method='tdigest'. Maybe you can check it and improve the documentation.
open
2024-08-21T07:07:55Z
2024-08-21T11:50:32Z
https://github.com/dask/dask/issues/11336
[ "array", "documentation" ]
ParsifalXu
2
coqui-ai/TTS
pytorch
3,563
[Feature request]
i am trying to clone voice with mp3 but i am getting an error is it a bug, i neeed to adjust some settings or its not avalible yet? Thanks
closed
2024-02-04T19:02:08Z
2025-01-03T09:48:05Z
https://github.com/coqui-ai/TTS/issues/3563
[ "wontfix", "feature request" ]
m00nsp3ll
1
xlwings/xlwings
automation
1,951
How to get/set different colours of the same range from an Excel file using xlwings in python?
It is possible to get/set the colour of a range using `xlwings` like this: import xlwings as xw # Define RGB codes green = (226, 239, 218) red = (252, 228, 214) grey = (242, 242, 242) # Connect to the Excel file wb = xw.Book(EXCEL_FILENAME) sht = wb.sheets[EXCEL_SHEETNAME] # Set the color of the whole range to grey sht.range("A1:C7").color = grey print(sht.range("A1:C7").color) # prints (242, 242, 242) # Set the color to some sub-ranges sht['A1'].color = green print(sht.range("A1").color) # prints (226, 239, 218) sht['B2:B6'].color = green sht['A4:A6'].color = red print(sht.range("A4:A6").color) # prints (252, 228, 214) sht['C1'].color = red sht['C3:C7'].color = red Getting/Setting the colour of a range works well, as long as there is only one colour in this range. But when there are several colours, it cannot handle the different codes properly print(sht.range("A1:C7").color) # prints (0, 0, 0) I am trying to find a way to retrieve in a single call a pandas dataframe with the corresponding colours of range. In a similar way that it is possible to get/set all the values or even formula of a range. # Retrieve the values of a range print(sht.range("A1:C7").value) # example: [[1.0, 'b1', 3.0], [2.0, 3.0, None], [3.0, 'b3', 'c3'], [6.0, 'b4', 'c4'], [5.0, 'b5', 'c5'], [6.0, 'b6', 'c6'], [7.0, 'b7', 'c7']] # Retrieve the formula of a range print(sht.range("A1:C7").formula) # example: (('1', 'b1', '=A1+2'), ('2', '=A2+1', ''), ('3', 'b3', 'c3'), ('=A3+3', 'b4', 'c4'), ('5', 'b5', 'c5'), ('6', 'b6', 'c6'), ('7', 'b7', 'c7')) # Retrieve the formula of a range print(sht.range("A1:C7").color) # From our previous example: (0, 0, 0) Is it possible to handle several colours in one call instead of having to split per continuous ranges of the same colours? It would be great to be able to get/set a list of tuples (containing the RGB codes) instead of a single one for the whole range. Many thanks in advance!
open
2022-07-05T16:26:57Z
2022-09-28T13:52:12Z
https://github.com/xlwings/xlwings/issues/1951
[]
Rom2BE
4
flasgger/flasgger
rest-api
242
Conflicting files due to installation of examples
There is a file conflict between flasgger and micawber, because both install files into the too generic path name examples. For reference, please see [this Arch Linux bug](https://bugs.archlinux.org/task/60006) and this [bug with micawber](https://github.com/coleifer/micawber/issues/83). As a solution, micawber and flasgger should either not install these examples at all, or if required into a unique directory (e.g. micawber-examples) or another system directory (e.g. on Linux: /usr/share/doc/python-micawber/examples, which is usually done by the packagers). I will remove them for now to resolve the file conflict.
closed
2018-09-15T06:30:08Z
2018-09-18T00:56:36Z
https://github.com/flasgger/flasgger/issues/242
[ "bug" ]
dvzrv
2
open-mmlab/mmdetection
pytorch
11,292
Training xdecoder error
**Problem** I want to train the xdecoder model, but there is an error. ```none Traceback (most recent call last): File "./tools/train.py", line 121, in <module> main() File "./tools/train.py", line 110, in main runner = Runner.from_cfg(cfg) File "/opt/conda/envs/mmdet/lib/python3.8/site-packages/mmengine/runner/runner.py", line 462, in from_cfg runner = cls( File "/opt/conda/envs/mmdet/lib/python3.8/site-packages/mmengine/runner/runner.py", line 429, in __init__ self.model = self.build_model(model) File "/opt/conda/envs/mmdet/lib/python3.8/site-packages/mmengine/runner/runner.py", line 836, in build_model model = MODELS.build(model) File "/opt/conda/envs/mmdet/lib/python3.8/site-packages/mmengine/registry/registry.py", line 570, in build return self.build_func(cfg, *args, **kwargs, registry=self) File "/opt/conda/envs/mmdet/lib/python3.8/site-packages/mmengine/registry/build_functions.py", line 232, in build_model_from_cfg return build_from_cfg(cfg, registry, default_args) File "/opt/conda/envs/mmdet/lib/python3.8/site-packages/mmengine/registry/build_functions.py", line 121, in build_from_cfg obj = obj_cls(**args) # type: ignore File "/data/mmdet/mmdetection-3.2.0/projects/XDecoder/xdecoder/xdecoder.py", line 27, in __init__ self.sem_seg_head = MODELS.build(head_) # TODO: sem_seg_head -> head File "/opt/conda/envs/mmdet/lib/python3.8/site-packages/mmengine/registry/registry.py", line 570, in build return self.build_func(cfg, *args, **kwargs, registry=self) File "/opt/conda/envs/mmdet/lib/python3.8/site-packages/mmengine/registry/build_functions.py", line 232, in build_model_from_cfg return build_from_cfg(cfg, registry, default_args) File "/opt/conda/envs/mmdet/lib/python3.8/site-packages/mmengine/registry/build_functions.py", line 121, in build_from_cfg obj = obj_cls(**args) # type: ignore File "/data/mmdet/mmdetection-3.2.0/projects/XDecoder/xdecoder/unified_head.py", line 34, in __init__ self.predictor = MODELS.build(transformer_decoder_) File "/opt/conda/envs/mmdet/lib/python3.8/site-packages/mmengine/registry/registry.py", line 570, in build return self.build_func(cfg, *args, **kwargs, registry=self) File "/opt/conda/envs/mmdet/lib/python3.8/site-packages/mmengine/registry/build_functions.py", line 232, in build_model_from_cfg return build_from_cfg(cfg, registry, default_args) File "/opt/conda/envs/mmdet/lib/python3.8/site-packages/mmengine/registry/build_functions.py", line 121, in build_from_cfg obj = obj_cls(**args) # type: ignore File "/data/mmdet/mmdetection-3.2.0/projects/XDecoder/xdecoder/transformer_decoder.py", line 97, in __init__ self.lang_encoder = LanguageEncoder() File "/data/mmdet/mmdetection-3.2.0/projects/XDecoder/xdecoder/language_model.py", line 30, in __init__ self.lang_encoder = Transformer(max_token_num, File "/data/mmdet/mmdetection-3.2.0/projects/XDecoder/xdecoder/language_model.py", line 145, in __init__ torch.empty(self.context_length, width)) TypeError: empty(): argument 'size' must be tuple of SymInts, but found element of type int at pos 1 ``` ** Command** the command I used is ```none bash ./tools/dist_train.sh ./projects/XDecoder/configs/xdecoder-tiny_zeroshot_open-vocab-panoptic_coco.py 8 ``` **Environment** ```none Python 3.8.18 torch 1.13.0 torchaudio 0.13.0 torchvision 0.14.0 mmcv 2.1.0 mmdet 3.2.0 mmengine 0.10.1 ``` Thank you very much.
closed
2023-12-18T05:42:01Z
2023-12-26T10:18:58Z
https://github.com/open-mmlab/mmdetection/issues/11292
[]
JunDaLee
1
JaidedAI/EasyOCR
pytorch
875
trainingDataset
Hi everyone, I need the dataset for starting the training process using train.py
open
2022-10-17T05:17:17Z
2022-10-17T05:17:17Z
https://github.com/JaidedAI/EasyOCR/issues/875
[]
dewMohamed
0
plotly/dash
data-visualization
2,912
'orthographic' mode do not save the graph aspect (uirevision - camera point of view)
while using 'orthographic' mode(fig['layout']['scene']['camera']['projection']['type']), uirevision set to 'foo' in order to keep the last figure camera settings, does not work. meaning that while orthographic is set, you cannot retain figure user camera changes. ``` dash 2.17.0 dash-core-components 2.0.0 dash-html-components 2.0.0 dash-table 5.0.0 plotly 2.32 ```
open
2024-07-04T12:28:52Z
2024-08-13T19:54:14Z
https://github.com/plotly/dash/issues/2912
[ "bug", "P3" ]
AlmogHadad
0
prkumar/uplink
rest-api
189
Expose a request hook: i.e., @response_handler for requests
**Is your feature request related to a problem? Please describe.** Creating this issue as a follow up of a question asked on [gitter](https://gitter.im/python-uplink/Lobby?at=5e2213bb3ea53f0f663f700a): > is there any way to log all the executed requests? Currently, this is not easily doable. Listening for requests is technically possible by using a `RequestTemplate`. You could define your own `RequestTemplate` subclass and implement the `before_request `method to log each request sent. For an example of how to define and register a RetryTemplate, you can take a look at the `retry` decorator. **Describe the solution you'd like** We could expose a `@request_handler` decorator that enables users to add hooks that execute before a request is sent. **Additional context** As part of this work, we should define and expose a simplified interface of the user's request.
open
2020-01-19T22:35:24Z
2023-05-19T16:51:26Z
https://github.com/prkumar/uplink/issues/189
[]
prkumar
5
vitalik/django-ninja
rest-api
385
Cursor pagination
**Is your feature request related to a problem? Please describe.** The current way to implement pagination is based on limit offset. I prefer the cursor style pagination. **Describe the solution you'd like** Standard way to implement cursor style pagination, similar to DRF one: https://www.django-rest-framework.org/api-guide/pagination/#cursorpagination
open
2022-03-08T10:04:00Z
2024-06-07T15:52:10Z
https://github.com/vitalik/django-ninja/issues/385
[]
asaff1
2
plotly/dash-bio
dash
290
App QA 2: Molecule viewer
- [x] Some more cool proteins to visualize in sample datasets: http://pdb101.rcsb.org/motm/231 http://pdb101.rcsb.org/motm/121 http://pdb101.rcsb.org/browse/nucleic-acids The P53 - https://www.rcsb.org/structure/1uol - [x] Which DNA and Protein are these ![image](https://user-images.githubusercontent.com/1865834/55284908-fdf83480-534d-11e9-8de9-d8c61b2d8a69.png) Would be cool to have a description when change in dropdown - [ ] Check out PyMOL for app ideas and UI ![image](https://user-images.githubusercontent.com/1865834/55284976-78758400-534f-11e9-89da-9a8203e710d2.png) - PYMOL shows selection at top and uses a table on the right for what you've selected. Black background is nice.
closed
2019-03-31T04:55:13Z
2019-04-29T19:11:09Z
https://github.com/plotly/dash-bio/issues/290
[ "App QA" ]
jackparmer
1
thp/urlwatch
automation
701
How to use environment variables in URLs?
I have a question on using environment variables in side a job. ```yaml name: "my job" url: https://mysite.org?api_key=${env variable} filter: - some filter... ``` Is this possible today?
open
2022-04-11T16:38:17Z
2022-04-11T22:01:09Z
https://github.com/thp/urlwatch/issues/701
[]
throwaway29345
1
geex-arts/django-jet
django
171
Error when trying to add item with pk not of Integer type
#I have a table that has pk of string and when I try to add an item to this table django-jet crashes with the error: ``` ValueError: invalid literal for int() with base 10: '' ``` All the other tables with numeric PKs work fine. django-jet version 1.0.4 HEre is the complete stack trace ``` Internal Server Error: /admin/inventory/item/add/ Traceback (most recent call last): File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/core/handlers/exception.py", line 39, in inner response = get_response(request) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/core/handlers/base.py", line 249, in _legacy_get_response response = self._get_response(request) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/core/handlers/base.py", line 187, in _get_response response = self.process_exception_by_middleware(e, request) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/core/handlers/base.py", line 185, in _get_response response = wrapped_callback(request, *callback_args, **callback_kwargs) File "/usr/local/Cellar/python3/3.5.1/Frameworks/Python.framework/Versions/3.5/lib/python3.5/contextlib.py", line 30, in inner return func(*args, **kwds) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/contrib/admin/options.py", line 544, in wrapper return self.admin_site.admin_view(view)(*args, **kwargs) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/utils/decorators.py", line 149, in _wrapped_view response = view_func(request, *args, **kwargs) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/views/decorators/cache.py", line 57, in _wrapped_view_func response = view_func(request, *args, **kwargs) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/contrib/admin/sites.py", line 211, in inner return view(request, *args, **kwargs) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/contrib/admin/options.py", line 1509, in add_view return self.changeform_view(request, None, form_url, extra_context) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/utils/decorators.py", line 67, in _wrapper return bound_func(*args, **kwargs) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/utils/decorators.py", line 149, in _wrapped_view response = view_func(request, *args, **kwargs) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/utils/decorators.py", line 63, in bound_func return func.__get__(self, type(self))(*args2, **kwargs2) File "/usr/local/Cellar/python3/3.5.1/Frameworks/Python.framework/Versions/3.5/lib/python3.5/contextlib.py", line 30, in inner return func(*args, **kwds) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/contrib/admin/options.py", line 1464, in changeform_view formsets, inline_instances = self._create_formsets(request, form.instance, change=False) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/contrib/admin/options.py", line 1815, in _create_formsets formsets.append(FormSet(**formset_params)) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/contrib/contenttypes/forms.py", line 30, in __init__ self.ct_fk_field.name: self.instance.pk, File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/db/models/query.py", line 796, in filter return self._filter_or_exclude(False, *args, **kwargs) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/db/models/query.py", line 814, in _filter_or_exclude clone.query.add_q(Q(*args, **kwargs)) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/db/models/sql/query.py", line 1227, in add_q clause, _ = self._add_q(q_object, self.used_aliases) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/db/models/sql/query.py", line 1253, in _add_q allow_joins=allow_joins, split_subq=split_subq, File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/db/models/sql/query.py", line 1187, in build_filter condition = self.build_lookup(lookups, col, value) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/db/models/sql/query.py", line 1083, in build_lookup return final_lookup(lhs, rhs) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/db/models/lookups.py", line 19, in __init__ self.rhs = self.get_prep_lookup() File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/db/models/lookups.py", line 59, in get_prep_lookup return self.lhs.output_field.get_prep_value(self.rhs) File "/Users/delio/.virtualenvs/inventory/lib/python3.5/site-packages/django/db/models/fields/__init__.py", line 1832, in get_prep_value return int(value) ValueError: invalid literal for int() with base 10: '' [30/Jan/2017 14:02:20] "GET /admin/inventory/item/add/ HTTP/1.1" 500 186330 ```
closed
2017-01-30T21:05:13Z
2018-08-27T18:25:15Z
https://github.com/geex-arts/django-jet/issues/171
[]
jangeador
5
errbotio/errbot
automation
1,388
Errbot --init shouldn't crash if plugins/ exists
### I am... * [ ] Reporting a bug * [X] Suggesting a new feature * [ ] Requesting help with running my bot * [ ] Requesting help writing plugins * [ ] Here about something else ### I am running... * Errbot version: 6.1.1 * OS version: Ubuntu 18.04 LTS * Python version: 3.7.3 * Using a virtual environment: yes ### Issue description `errbot --init` crashes if the plugin or data sub directories already exists. This prevents the command from being idempotent (once you correct an error the caused failure, you can't just rerun the script). It can be useful to initiate with plugins in the `plugins/` directory.
closed
2019-09-30T17:43:42Z
2020-01-19T01:21:57Z
https://github.com/errbotio/errbot/issues/1388
[ "type: bug", "#configuration" ]
torgeirl
2
junyanz/pytorch-CycleGAN-and-pix2pix
deep-learning
1,066
Having problem in loading trained model stage
Hi! Yesterday I trained my model with my own data for 300 epochs. However, when I want to reuse the model on test set, it came up with some error information `Traceback (most recent call last): File "pix2pix/test.py", line 39, in <module> model.setup(opt) # regular setup: load and print networks; create schedulers File "/data/chengzihao/intern-programme/code/oneWeekPrice/pix2pix/models/base_model.py", line 88, in setup self.load_networks(load_suffix) File "/data/chengzihao/intern-programme/code/oneWeekPrice/pix2pix/models/base_model.py", line 198, in load_networks net.load_state_dict(state_dict) File "/home/xiangwei/anaconda2/envs/tensorflow3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 719, in load_state_dict self.__class__.__name__, "\n\t".join(error_msgs))) RuntimeError: Error(s) in loading state_dict for UnetGenerator: Missing key(s) in state_dict: "model.model.1.model.2.weight", "model.model.1.model.2.bias", "model.model.1.model.2.running_mean", "model.model.1.model.2.running_var", "model.model.1.model.3.model.2.weight", "model.model.1.model.3.model.2.bias", "model.model.1.model.3.model.2.running_mean", "model.model.1.model.3.model.2.running_var", "model.model.1.model.3.model.3.model.2.weight", "model.model.1.model.3.model.3.model.2.bias", "model.model.1.model.3.model.3.model.2.running_mean", "model.model.1.model.3.model.3.model.2.running_var", "model.model.1.model.3.model.3.model.3.model.2.weight", "model.model.1.model.3.model.3.model.3.model.2.bias", "model.model.1.model.3.model.3.model.3.model.2.running_mean", "model.model.1.model.3.model.3.model.3.model.2.running_var", "model.model.1.model.3.model.3.model.3.model.3.model.2.weight", "model.model.1.model.3.model.3.model.3.model.3.model.2.bias", "model.model.1.model.3.model.3.model.3.model.3.model.2.running_mean", "model.model.1.model.3.model.3.model.3.model.3.model.2.running_var", "model.model.1.model.3.model.3.model.3.model.3.model.3.model.2.weight", "model.model.1.model.3.model.3.model.3.model.3.model.3.model.2.bias", "model.model.1.model.3.model.3.model.3.model.3.model.3.model.2.running_mean", "model.model.1.model.3.model.3.model.3.model.3.model.3.model.2.running_var", "model.model.1.model.3.model.3.model.3.model.3.model.3.model.3.model.4.weight", "model.model.1.model.3.model.3.model.3.model.3.model.3.model.3.model.4.bias", "model.model.1.model.3.model.3.model.3.model.3.model.3.model.3.model.4.running_mean", "model.model.1.model.3.model.3.model.3.model.3.model.3.model.3.model.4.running_var", "model.model.1.model.3.model.3.model.3.model.3.model.3.model.6.weight", "model.model.1.model.3.model.3.model.3.model.3.model.3.model.6.bias", "model.model.1.model.3.model.3.model.3.model.3.model.3.model.6.running_mean", "model.model.1.model.3.model.3.model.3.model.3.model.3.model.6.running_var", "model.model.1.model.3.model.3.model.3.model.3.model.6.weight", "model.model.1.model.3.model.3.model.3.model.3.model.6.bias", "model.model.1.model.3.model.3.model.3.model.3.model.6.running_mean", "model.model.1.model.3.model.3.model.3.model.3.model.6.running_var", "model.model.1.model.3.model.3.model.3.model.6.weight", "model.model.1.model.3.model.3.model.3.model.6.bias", "model.model.1.model.3.model.3.model.3.model.6.running_mean", "model.model.1.model.3.model.3.model.3.model.6.running_var", "model.model.1.model.3.model.3.model.6.weight", "model.model.1.model.3.model.3.model.6.bias", "model.model.1.model.3.model.3.model.6.running_mean", "model.model.1.model.3.model.3.model.6.running_var", "model.model.1.model.3.model.6.weight", "model.model.1.model.3.model.6.bias", "model.model.1.model.3.model.6.running_mean", "model.model.1.model.3.model.6.running_var", "model.model.1.model.6.weight", "model.model.1.model.6.bias", "model.model.1.model.6.running_mean", "model.model.1.model.6.running_var". Unexpected key(s) in state_dict: "model.model.0.bias", "model.model.1.model.1.bias", "model.model.1.model.3.model.1.bias", "model.model.1.model.3.model.3.model.1.bias", "model.model.1.model.3.model.3.model.3.model.1.bias", "model.model.1.model.3.model.3.model.3.model.3.model.1.bias", "model.model.1.model.3.model.3.model.3.model.3.model.3.model.1.bias", "model.model.1.model.3.model.3.model.3.model.3.model.3.model.3.model.1.bias", "model.model.1.model.3.model.3.model.3.model.3.model.3.model.3.model.3.bias", "model.model.1.model.3.model.3.model.3.model.3.model.3.model.5.bias", "model.model.1.model.3.model.3.model.3.model.3.model.5.bias", "model.model.1.model.3.model.3.model.3.model.5.bias", "model.model.1.model.3.model.3.model.5.bias", "model.model.1.model.3.model.5.bias", "model.model.1.model.5.bias". ` It seems like the dict stored in the model file cannot be read. The hyper parameters I used in the training step is as follows > ----------------- Options --------------- aspect_ratio: 1.0 batch_size: 1 beta1: 0.5 checkpoints_dir: pix2pix/checkpoints [default: ./checkpoints] continue_train: True [default: False] crop_size: 256 dataroot: pix2pix/datasets/0610-v2-fixPosition [default: None] dataset_mode: aligned direction: AtoB display_env: main display_freq: 300 [default: 400] display_id: 1 display_ncols: 4 display_port: 8097 display_server: http://localhost display_winsize: 256 epoch: 150 [default: latest] epoch_count: 151 [default: 1] gan_mode: lsgan [default: vanilla] gpu_ids: 0,1 [default: 0] init_gain: 0.02 init_type: normal input_nc: 1 [default: 3] isTrain: True [default: None] lambda_L1: 20.0 [default: 100.0] load_iter: 0 [default: 0] load_size: 286 lr: 0.0002 lr_decay_iters: 50 lr_policy: linear max_dataset_size: 3000 [default: inf] model: pix2pix n_epochs: 30 [default: 100] n_epochs_decay: 270 [default: 100] n_layers_D: 3 name: 0610v2 [default: experiment_name] ndf: 32 [default: 64] netD: basic netG: unet_256 ngf: 64 no_dropout: False no_flip: True [default: False] no_html: False norm: instance [default: batch] num_threads: 3 [default: 4] output_nc: 1 [default: 3] phase: train pool_size: 0 preprocess: none [default: resize_and_crop] print_freq: 300 [default: 100] save_by_iter: False save_epoch_freq: 2 [default: 5] save_latest_freq: 5000 serial_batches: False suffix: update_html_freq: 1000 verbose: False ----------------- End ------------------- Actually, I have reused the same code before and it is my first time to meet such problem. Could someone give me some advice? Thanks a lot!
closed
2020-06-11T01:47:56Z
2020-06-11T05:34:37Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1066
[]
Orange199609
1
junyanz/pytorch-CycleGAN-and-pix2pix
computer-vision
947
Runing this repository in Windows?
@andyli @heaversm @junyanz I am training it in the Windows platform. it is OK in training except a little change! I changed the num_thread=0. When the num_thread=0, then it is training without error in Windows, otherwise it gives the following error: > ForkingPickler(file, protocol).dump(obj) > BrokenPipeError: [Errno 32] Broken pipe Is there any way to solve it? Will it reduce the accuracy or not for num_thread=0?
open
2020-03-05T03:09:01Z
2020-03-08T21:14:38Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/947
[]
K-M-Ibrahim-Khalilullah
1
comfyanonymous/ComfyUI
pytorch
7,301
LoadImage returns a 64x64 mask even when there's no mask painted
### Expected Behavior LoadImage should return "None" for Mask, when no mask is painted ### Actual Behavior LoadImage returns a 64x64 mask even when there's no mask painted ### Steps to Reproduce LoadImage -> MaskToImage -> PreviewImage ### Debug Logs ```powershell n/a ``` ### Other this affects "mask optional" nodes, as I cannot just connect things together, as I _always_ get a mask, even when none is painted.
open
2025-03-18T15:20:50Z
2025-03-19T17:43:16Z
https://github.com/comfyanonymous/ComfyUI/issues/7301
[ "Potential Bug" ]
ghostsquad
12
dynaconf/dynaconf
django
824
[RFC] Support multidoc yaml files
**Is your feature request related to a problem? Please describe.** Sometimes it can be difficult or impossible to pass multiple files with config fragments. yaml support multiple documents in one file and `safe_load_all` from pyaml api loads that accordingly. It is standard yaml feature, it would be nice to support it and make in usable in cases when passing one file (composited from more files) would be easier. **Describe the solution you'd like** Support `safe_load_all` as yaml loader. **Describe alternatives you've considered** Passing multiple files will do the work, however it doesn't have to be always straightforward. **Additional context** I have prepared a patch
closed
2022-10-30T08:14:30Z
2023-07-18T20:24:08Z
https://github.com/dynaconf/dynaconf/issues/824
[ "Not a Bug", "RFC" ]
mangan
0
FactoryBoy/factory_boy
django
407
Change default faker locale in factory_boy
How can I set the default locale in Python's factory_boy for all of my Factories? In docs says that one should set it with factory.Faker.override_default_locale but that does nothing to my fakers... ```python import factory from app.models import Example from custom_fakers import CustomFakers # I use custom fakers, this indeed are added factory.Faker.add_provider(CustomFakers) # But not default locales factory.Faker.override_default_locale('es_ES') class ExampleFactory(factory.django.DjangoModelFactory): class Meta: model = Example name = factory.Faker('first_name') >>> from example import ExampleFactory >>> e1 = ExampleFactory() >>> e1.name >>> u'Chad' ```
open
2017-08-21T13:38:15Z
2021-01-16T15:44:35Z
https://github.com/FactoryBoy/factory_boy/issues/407
[ "Feature", "Doc" ]
3ynm
10
dynaconf/dynaconf
fastapi
559
Add an example with Django and Celery
Add celery to Django example and dicumentarion to django.md related to:https://stackoverflow.com/questions/66016398/how-to-use-dynaconf-to-configure-celery/66769693#66769693
open
2021-03-23T19:06:02Z
2022-06-29T13:57:06Z
https://github.com/dynaconf/dynaconf/issues/559
[ "wontfix", "Docs", "django" ]
rochacbruno
1
plotly/dash-table
plotly
804
Bootstrap.min.css breaks Dropdown
I was using this in the dash external stylesheets: * https://maxcdn.bootstrapcdn.com/bootstrap/3.4.0/css/bootstrap.min.css I ended up removing that stylesheet and functionality returned to the dropdown within the datatable. I'm not sure if you can fix the problem (or find the problem within that stylesheet, but hopefully someone can resolve their issue faster after reading this potentially invalid bug report.
open
2020-07-15T11:52:07Z
2021-07-19T12:36:15Z
https://github.com/plotly/dash-table/issues/804
[]
rbrasga
3
ets-labs/python-dependency-injector
flask
4
Callable provider
Need to create `Callable` provider. Current `Function` provider is a _static_ provider of an function object. Idea of `Callable` is to provide an callable function with some predefined dependencies.
closed
2015-01-27T21:42:22Z
2015-01-27T22:51:12Z
https://github.com/ets-labs/python-dependency-injector/issues/4
[ "enhancement" ]
rmk135
0
lanpa/tensorboardX
numpy
606
GCS Connection Error
**Describe the bug** Got `ConnectionError` while training after looking at the traceback it seems when `event_file_writer` do `flush()` and if there's a connection error it hangs that thread as well as training. **Expected behavior** Training to complete without any errors. **Traceback** ``` Exception in thread Thread-65: Traceback (most recent call last): File "/usr/local/lib/python3.7/dist-packages/urllib3/connectionpool.py", line 677, in urlopen chunked=chunked, File "/usr/local/lib/python3.7/dist-packages/urllib3/connectionpool.py", line 426, in _make_request six.raise_from(e, None) File "<string>", line 3, in raise_from File "/usr/local/lib/python3.7/dist-packages/urllib3/connectionpool.py", line 421, in _make_request httplib_response = conn.getresponse() File "/usr/lib/python3.7/http/client.py", line 1344, in getresponse response.begin() File "/usr/lib/python3.7/http/client.py", line 306, in begin version, status, reason = self._read_status() File "/usr/lib/python3.7/http/client.py", line 275, in _read_status raise RemoteDisconnected("Remote end closed connection without" http.client.RemoteDisconnected: Remote end closed connection without response During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/local/lib/python3.7/dist-packages/requests/adapters.py", line 449, in send timeout=timeout File "/usr/local/lib/python3.7/dist-packages/urllib3/connectionpool.py", line 727, in urlopen method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] File "/usr/local/lib/python3.7/dist-packages/urllib3/util/retry.py", line 403, in increment raise six.reraise(type(error), error, _stacktrace) File "/usr/local/lib/python3.7/dist-packages/urllib3/packages/six.py", line 734, in reraise raise value.with_traceback(tb) File "/usr/local/lib/python3.7/dist-packages/urllib3/connectionpool.py", line 677, in urlopen chunked=chunked, File "/usr/local/lib/python3.7/dist-packages/urllib3/connectionpool.py", line 426, in _make_request six.raise_from(e, None) File "<string>", line 3, in raise_from File "/usr/local/lib/python3.7/dist-packages/urllib3/connectionpool.py", line 421, in _make_request httplib_response = conn.getresponse() File "/usr/lib/python3.7/http/client.py", line 1344, in getresponse response.begin() File "/usr/lib/python3.7/http/client.py", line 306, in begin version, status, reason = self._read_status() File "/usr/lib/python3.7/http/client.py", line 275, in _read_status raise RemoteDisconnected("Remote end closed connection without" urllib3.exceptions.ProtocolError: ('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/lib/python3.7/threading.py", line 926, in _bootstrap_inner self.run() File "/usr/local/lib/python3.7/dist-packages/tensorboardX/event_file_writer.py", line 219, in run self._record_writer.flush() File "/usr/local/lib/python3.7/dist-packages/tensorboardX/event_file_writer.py", line 69, in flush self._py_recordio_writer.flush() File "/usr/local/lib/python3.7/dist-packages/tensorboardX/record_writer.py", line 187, in flush self._writer.flush() File "/usr/local/lib/python3.7/dist-packages/tensorboardX/record_writer.py", line 149, in flush self.blob.upload_from_string(upload_buffer.getvalue()) File "/usr/local/lib/python3.7/dist-packages/google/cloud/storage/blob.py", line 1733, in upload_from_string if_metageneration_not_match=if_metageneration_not_match, File "/usr/local/lib/python3.7/dist-packages/google/cloud/storage/blob.py", line 1567, in upload_from_file if_metageneration_not_match, File "/usr/local/lib/python3.7/dist-packages/google/cloud/storage/blob.py", line 1420, in _do_upload if_metageneration_not_match, File "/usr/local/lib/python3.7/dist-packages/google/cloud/storage/blob.py", line 1098, in _do_multipart_upload response = upload.transmit(transport, data, object_metadata, content_type) File "/usr/local/lib/python3.7/dist-packages/google/resumable_media/requests/upload.py", line 106, in transmit retry_strategy=self._retry_strategy, File "/usr/local/lib/python3.7/dist-packages/google/resumable_media/requests/_helpers.py", line 136, in http_request return _helpers.wait_and_retry(func, RequestsMixin._get_status_code, retry_strategy) File "/usr/local/lib/python3.7/dist-packages/google/resumable_media/_helpers.py", line 150, in wait_and_retry response = func() File "/usr/local/lib/python3.7/dist-packages/google/auth/transport/requests.py", line 470, in request **kwargs File "/usr/local/lib/python3.7/dist-packages/requests/sessions.py", line 530, in request resp = self.send(prep, **send_kwargs) File "/usr/local/lib/python3.7/dist-packages/requests/sessions.py", line 643, in send r = adapter.send(request, **kwargs) File "/usr/local/lib/python3.7/dist-packages/requests/adapters.py", line 498, in send raise ConnectionError(err, request=request) requests.exceptions.ConnectionError: ('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')) ``` Seems like there's already a PR that handle connection error for S3: https://github.com/lanpa/tensorboardX/pull/555
open
2020-10-12T22:11:31Z
2020-10-13T17:32:44Z
https://github.com/lanpa/tensorboardX/issues/606
[]
Saurav-D
0
feder-cr/Jobs_Applier_AI_Agent_AIHawk
automation
717
[FEATURE]: Make Cover Letter file name not use UNIX time
### Feature summary Cover Letter File Name with Job ### Feature description Instead of having the the cover letter file name generated with the unix time, I propose making the job name and then just appending `(1)` if there are conflicts. Employers can potentially see this and it looks like a bot. ### Motivation Hide that this is a bot ### Alternatives considered I think there are a lot of possible solutions to this but that the current one should be changed ### Additional context _No response_
closed
2024-11-03T03:02:17Z
2024-11-19T23:45:41Z
https://github.com/feder-cr/Jobs_Applier_AI_Agent_AIHawk/issues/717
[ "enhancement" ]
FrancescoVassalli
3
hankcs/HanLP
nlp
1,255
【建议】是否作者分派任务,多人贡献,作者审核
首先非常感觉提供HanLP这么棒的开源项目,据我所知,现在HanLP还是您一个人维护的, 是否可以由您,或者您组建一个大牛团队,比如HanLP委员会QQ群来把关,然后将HanLP的任务分解为容易实现的明细项,然后由热心网友领取任务开发,然后提交汇总。 这样,作者就可以专注核心部分,不用干那么多体力活了。 当然,这只是一个建议,不一定可行,真正落地还需要考虑很多方面的细则
closed
2019-07-31T08:16:21Z
2020-01-01T10:48:57Z
https://github.com/hankcs/HanLP/issues/1255
[ "ignored" ]
xiyuan27
2