repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
sequencelengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
mlfoundations/open_clip
computer-vision
1,026
@rwightman Could you clarify the FLOPs calculation for the EVA models?
Hi @rwightman, I have a question regarding the FLOPs calculation for EVA-based models in OpenCLIP. As far as I know, the image width (hidden size) for EVA-01 ViT-G is 1408. However, in the model_profile.csv file, the image width for all EVA models is listed as 768. Could you confirm whether this is a typo? Also, was the FLOPs calculation performed using the correct hidden size (e.g., 1408 for ViT-G)? Thanks for your time, and I appreciate your help!
closed
2025-02-07T03:21:10Z
2025-02-07T08:15:58Z
https://github.com/mlfoundations/open_clip/issues/1026
[]
ghost
3
davidteather/TikTok-Api
api
235
[BUG] - RuntimeError: This event loop is already running
This is a known bug and I am working to resolve it. The package works it just spits out a ton of unwanted text. Problematic code in browser.py ``` fut.result() # so the async part running the functions ```
closed
2020-08-24T21:25:21Z
2020-11-11T01:00:18Z
https://github.com/davidteather/TikTok-Api/issues/235
[ "bug", "Hacktoberfest" ]
davidteather
10
piccolo-orm/piccolo
fastapi
752
Error in PIP Install commands at Windows
Errors: ``` C:\Users\Max>pip install 'piccolo[postgres]' ERROR: Invalid requirement: "'piccolo[postgres]'" C:\Users\Max> C:\Users\Max>pip install 'piccolo[all]' ERROR: Invalid requirement: "'piccolo[all]'" ``` But I installed the package in the following way: ``` C:\Users\Max>pip install piccolo Collecting piccolo Downloading piccolo-0.105.0-py3-none-any.whl (336 kB) ---------------------------------------- 336.9/336.9 kB 135.8 kB/s eta 0:00:00 Requirement already satisfied: pydantic[email]>=1.6 in c:\users\max\appdata\local\programs\python\python310\lib\site-packages (from piccolo) (1.10.4) Collecting targ>=0.3.7 Downloading targ-0.3.7-py3-none-any.whl (7.2 kB) Requirement already satisfied: typing-extensions>=4.3.0 in c:\users\max\appdata\local\programs\python\python310\lib\site-packages (from piccolo) (4.4.0) Requirement already satisfied: inflection>=0.5.1 in c:\users\max\appdata\local\programs\python\python310\lib\site-packages (from piccolo) (0.5.1) Collecting black Downloading black-22.12.0-cp310-cp310-win_amd64.whl (1.2 MB) ---------------------------------------- 1.2/1.2 MB 447.4 kB/s eta 0:00:00 Requirement already satisfied: Jinja2>=2.11.0 in c:\users\max\appdata\local\programs\python\python310\lib\site-packages (from piccolo) (3.1.2) Requirement already satisfied: colorama>=0.4.0 in c:\users\max\appdata\local\programs\python\python310\lib\site-packages (from piccolo) (0.4.5) Requirement already satisfied: MarkupSafe>=2.0 in c:\users\max\appdata\local\programs\python\python310\lib\site-packages (from Jinja2>=2.11.0->piccolo) (2.1.1) Collecting email-validator>=1.0.3 Downloading email_validator-1.3.1-py2.py3-none-any.whl (22 kB) Collecting docstring-parser==0.12 Downloading docstring_parser-0.12.tar.gz (23 kB) Installing build dependencies ... done Getting requirements to build wheel ... done Preparing metadata (pyproject.toml) ... done Collecting mypy-extensions>=0.4.3 Downloading mypy_extensions-0.4.3-py2.py3-none-any.whl (4.5 kB) Collecting pathspec>=0.9.0 Downloading pathspec-0.11.0-py3-none-any.whl (29 kB) Requirement already satisfied: tomli>=1.1.0 in c:\users\max\appdata\local\programs\python\python310\lib\site-packages (from black->piccolo) (2.0.1) Requirement already satisfied: platformdirs>=2 in c:\users\max\appdata\local\programs\python\python310\lib\site-packages (from black->piccolo) (2.5.3) Requirement already satisfied: click>=8.0.0 in c:\users\max\appdata\local\programs\python\python310\lib\site-packages (from black->piccolo) (8.1.3) Collecting dnspython>=1.15.0 Downloading dnspython-2.3.0-py3-none-any.whl (283 kB) ---------------------------------------- 283.7/283.7 kB 499.9 kB/s eta 0:00:00 Requirement already satisfied: idna>=2.0.0 in c:\users\max\appdata\local\programs\python\python310\lib\site-packages (from email-validator>=1.0.3->pydantic[email]>=1.6->piccolo) (2.10) Building wheels for collected packages: docstring-parser Building wheel for docstring-parser (pyproject.toml) ... done Created wheel for docstring-parser: filename=docstring_parser-0.12-py3-none-any.whl size=31770 sha256=60cee92f6e6510b451033afad491d70ed5d89bc7aa362ccc106c467bfd357c1e Stored in directory: c:\users\max\appdata\local\pip\cache\wheels\96\a5\94\45395285735d7713cd816d5051a797e3c13231d0aa833c8d64 Successfully built docstring-parser Installing collected packages: mypy-extensions, pathspec, docstring-parser, dnspython, targ, email-validator, black, piccolo Successfully installed black-22.12.0 dnspython-2.3.0 docstring-parser-0.12 email-validator-1.3.1 mypy-extensions-0.4.3 pathspec-0.11.0 piccolo-0.105.0 targ-0.3.7 ```
closed
2023-01-29T19:00:21Z
2023-01-29T23:57:27Z
https://github.com/piccolo-orm/piccolo/issues/752
[]
BaseMax
3
localstack/localstack
python
11,698
feature request: IoT core rules with "http" action
### Is there an existing issue for this? - [X] I have searched the existing issues ### Feature description Support IoT core rules with "http" action. https://docs.aws.amazon.com/iot/latest/developerguide/https-rule-action.html ![image](https://github.com/user-attachments/assets/f603a873-f320-4262-aa3f-dc03b68e6fda) ### 🧑‍💻 Implementation _No response_ ### Anything else? _No response_
closed
2024-10-16T08:03:17Z
2025-01-06T11:41:25Z
https://github.com/localstack/localstack/issues/11698
[ "type: feature", "aws:iot", "status: backlog" ]
MartynasAndr
1
CorentinJ/Real-Time-Voice-Cloning
tensorflow
1,239
Error OutOfMemoryError
.
closed
2023-08-07T18:10:20Z
2023-08-07T18:14:30Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/1239
[]
Soosaaas
0
robusta-dev/robusta
automation
1,452
Robusta fetching data but not giving recommendations
I have configured my own prometheus to robusta and its fetching data but in efficiency tab its showing no data for every deployment's recommendation. <img width="1723" alt="Screenshot 2024-06-11 at 12 51 29 PM" src="https://github.com/robusta-dev/robusta/assets/169645780/2af02dcd-0b5f-4cd3-a328-133ef5af15a8">
open
2024-06-11T07:21:45Z
2024-06-14T07:16:47Z
https://github.com/robusta-dev/robusta/issues/1452
[]
manishbitscrunch
2
MaartenGr/BERTopic
nlp
1,551
BERTopic (Can't retrieve unregistered extension attribute 'trf_data'. Did you forget to call the set_extension method?)
Good morning, this is my code obtained from the following page: https://spacy.io/universe/project/bertopic after running it I get the following error: Can't retrieve unregistered extension attribute 'trf_data'. Did you forget to call the set_extension method? How can I solve this error? Instalación de las bibliotecas necesarias !pip install spacy !pip install bertopic !pip install scikit-learn Descargar el modelo de spaCy en inglés (medium) !python -m spacy download en_core_web_md Cargar las bibliotecas y el modelo import spacy from bertopic import BERTopic from sklearn.datasets import fetch_20newsgroups Cargar los documentos de la base de datos de 20 Newsgroups docs = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))['data'] Cargar el modelo de spaCy en inglés (medium) excluyendo componentes innecesarios nlp = spacy.load('en_core_web_md', exclude=['tagger', 'parser', 'ner', 'attribute_ruler', 'lemmatizer']) Crear el modelo BERTopic con spaCy topic_model = BERTopic(embedding_model=nlp) topics, probs = topic_model.fit_transform(docs) I have tried changing the version of spacy to one that is between version 3.3.0 and version 3.4.0, I still get the same error trying all of them spacy models (sm, md, lg, trf)
open
2023-09-29T09:35:49Z
2023-10-03T11:50:34Z
https://github.com/MaartenGr/BERTopic/issues/1551
[]
FranValero97
1
deepspeedai/DeepSpeed
pytorch
6,654
Command '['ninja', '-v']' returned non-zero exit status 1 - Unsupported NVHPC compiler found
I encountered multiple issues while trying to perform full fine-tuning of the LLaMA 3 8B model with DeepSpeed with A100-80GB x 2. As a result, I decided to follow the DeepSpeed tutorial on Huggingface. Below is the command I used, which closely follows the example in the tutorial: ``` deepspeed examples/pytorch/translation/run_translation.py \ --deepspeed ds_config_zero3.json \ --model_name_or_path t5-small --per_device_train_batch_size 1 \ --output_dir output_dir --overwrite_output_dir --fp16 \ --do_train --max_train_samples 500 --num_train_epochs 1 \ --dataset_name wmt16 --dataset_config "ro-en" \ --source_lang en --target_lang ro ``` And this is ds_config_zero3.json ``` { "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "bf16": { "enabled": "auto" }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": "auto" } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto" } }, "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "none", "pin_memory": true }, "offload_param": { "device": "none", "pin_memory": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1e9, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_16bit_weights_on_model_save": true }, "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "steps_per_print": 2000, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false } ``` Then I got this error ```[2024-10-23 11:22:51,662] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2024-10-23 11:22:53,732] [WARNING] [runner.py:202:fetch_hostfile] Unable to find hostfile, will proceed with training with local resources only. Detected CUDA_VISIBLE_DEVICES=0,1: setting --include=localhost:0,1 [2024-10-23 11:22:53,732] [INFO] [runner.py:568:main] cmd = /home/qmin2/anaconda3/envs/biicae/bin/python3.9 -u -m deepspeed.launcher.launch --world_info=eyJsb2NhbGhvc3QiOiBbMCwgMV19 --master_addr=127.0.0.1 --master_port=29500 --enable_each_rank_log=None run_translation.py --deepspeed ds_config.json --model_name_or_path t5-small --per_device_train_batch_size 1 --output_dir output_dir --overwrite_output_dir --fp16 --do_train --max_train_samples 500 --num_train_epochs 1 --dataset_name wmt16 --dataset_config ro-en --source_lang en --target_lang ro [2024-10-23 11:22:56,867] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2024-10-23 11:22:58,128] [INFO] [launch.py:145:main] WORLD INFO DICT: {'localhost': [0, 1]} [2024-10-23 11:22:58,128] [INFO] [launch.py:151:main] nnodes=1, num_local_procs=2, node_rank=0 [2024-10-23 11:22:58,128] [INFO] [launch.py:162:main] global_rank_mapping=defaultdict(<class 'list'>, {'localhost': [0, 1]}) [2024-10-23 11:22:58,128] [INFO] [launch.py:163:main] dist_world_size=2 [2024-10-23 11:22:58,128] [INFO] [launch.py:165:main] Setting CUDA_VISIBLE_DEVICES=0,1 [2024-10-23 11:22:58,138] [INFO] [launch.py:253:main] process 3332850 spawned with command: ['/home/qmin2/anaconda3/envs/biicae/bin/python3.9', '-u', 'run_translation.py', '--local_rank=0', '--deepspeed', 'ds_config.json', '--model_name_or_path', 't5-small', '--per_device_train_batch_size', '1', '--output_dir', 'output_dir', '--overwrite_output_dir', '--fp16', '--do_train', '--max_train_samples', '500', '--num_train_epochs', '1', '--dataset_name', 'wmt16', '--dataset_config', 'ro-en', '--source_lang', 'en', '--target_lang', 'ro'] [2024-10-23 11:22:58,154] [INFO] [launch.py:253:main] process 3332851 spawned with command: ['/home/qmin2/anaconda3/envs/biicae/bin/python3.9', '-u', 'run_translation.py', '--local_rank=1', '--deepspeed', 'ds_config.json', '--model_name_or_path', 't5-small', '--per_device_train_batch_size', '1', '--output_dir', 'output_dir', '--overwrite_output_dir', '--fp16', '--do_train', '--max_train_samples', '500', '--num_train_epochs', '1', '--dataset_name', 'wmt16', '--dataset_config', 'ro-en', '--source_lang', 'en', '--target_lang', 'ro'] [2024-10-23 11:23:03,294] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2024-10-23 11:23:03,580] [INFO] [comm.py:637:init_distributed] cdb=None [2024-10-23 11:23:03,580] [INFO] [comm.py:668:init_distributed] Initializing TorchBackend in DeepSpeed with backend nccl [2024-10-23 11:23:03,619] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2024-10-23 11:23:03,874] [INFO] [comm.py:637:init_distributed] cdb=None 10/23/2024 11:23:05 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: True, 16-bits training: True 10/23/2024 11:23:05 - INFO - __main__ - Training/evaluation parameters Seq2SeqTrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, batch_eval_metrics=False, bf16=False, bf16_full_eval=False, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=0, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=ds_config.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=None, eval_strategy=no, eval_use_gather_object=False, evaluation_strategy=None, fp16=True, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, generation_config=None, generation_max_length=None, generation_num_beams=None, gradient_accumulation_steps=1, gradient_checkpointing=False, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=None, hub_private_repo=False, hub_strategy=every_save, hub_token=<HUB_TOKEN>, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=5e-05, length_column_name=length, load_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=output_dir/runs/Oct23_11-23-02_n57.gasi-cluster, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=500, logging_strategy=steps, lr_scheduler_kwargs={}, lr_scheduler_type=linear, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mp_parameters=, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=1.0, optim=adamw_torch, optim_args=None, optim_target_modules=None, output_dir=output_dir, overwrite_output_dir=True, past_index=-1, per_device_eval_batch_size=8, per_device_train_batch_size=1, predict_with_generate=False, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=<PUSH_TO_HUB_TOKEN>, ray_scope=last, remove_unused_columns=True, report_to=['wandb'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=output_dir, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=500, save_strategy=steps, save_total_limit=None, seed=42, skip_memory_metrics=True, sortish_sampler=False, split_batches=None, tf32=None, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.0, warmup_steps=0, weight_decay=0.0, ) 10/23/2024 11:23:06 - WARNING - __main__ - Process rank: 1, device: cuda:1, n_gpu: 1, distributed training: True, 16-bits training: True Overwrite dataset info from restored data version if exists. 10/23/2024 11:23:16 - INFO - datasets.builder - Overwrite dataset info from restored data version if exists. Loading Dataset info from /home/qmin2/.cache/huggingface/datasets/wmt16/ro-en/0.0.0/41d8a4013aa1489f28fea60ec0932af246086482 10/23/2024 11:23:16 - INFO - datasets.info - Loading Dataset info from /home/qmin2/.cache/huggingface/datasets/wmt16/ro-en/0.0.0/41d8a4013aa1489f28fea60ec0932af246086482 Found cached dataset wmt16 (/home/qmin2/.cache/huggingface/datasets/wmt16/ro-en/0.0.0/41d8a4013aa1489f28fea60ec0932af246086482) 10/23/2024 11:23:16 - INFO - datasets.builder - Found cached dataset wmt16 (/home/qmin2/.cache/huggingface/datasets/wmt16/ro-en/0.0.0/41d8a4013aa1489f28fea60ec0932af246086482) Loading Dataset info from /home/qmin2/.cache/huggingface/datasets/wmt16/ro-en/0.0.0/41d8a4013aa1489f28fea60ec0932af246086482 10/23/2024 11:23:16 - INFO - datasets.info - Loading Dataset info from /home/qmin2/.cache/huggingface/datasets/wmt16/ro-en/0.0.0/41d8a4013aa1489f28fea60ec0932af246086482 [INFO|configuration_utils.py:679] 2024-10-23 11:23:16,977 >> loading configuration file config.json from cache at /home/qmin2/.cache/huggingface/hub/models--t5-small/snapshots/df1b051c49625cf57a3d0d8d3863ed4d13564fe4/config.json [INFO|configuration_utils.py:746] 2024-10-23 11:23:16,984 >> Model config T5Config { "_name_or_path": "t5-small", "architectures": [ "T5ForConditionalGeneration" ], "classifier_dropout": 0.0, "d_ff": 2048, "d_kv": 64, "d_model": 512, "decoder_start_token_id": 0, "dense_act_fn": "relu", "dropout_rate": 0.1, "eos_token_id": 1, "feed_forward_proj": "relu", "initializer_factor": 1.0, "is_encoder_decoder": true, "is_gated_act": false, "layer_norm_epsilon": 1e-06, "model_type": "t5", "n_positions": 512, "num_decoder_layers": 6, "num_heads": 8, "num_layers": 6, "output_past": true, "pad_token_id": 0, "relative_attention_max_distance": 128, "relative_attention_num_buckets": 32, "task_specific_params": { "summarization": { "early_stopping": true, "length_penalty": 2.0, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } }, "transformers_version": "4.46.0.dev0", "use_cache": true, "vocab_size": 32128 } [INFO|tokenization_utils_base.py:2211] 2024-10-23 11:23:17,206 >> loading file spiece.model from cache at /home/qmin2/.cache/huggingface/hub/models--t5-small/snapshots/df1b051c49625cf57a3d0d8d3863ed4d13564fe4/spiece.model [INFO|tokenization_utils_base.py:2211] 2024-10-23 11:23:17,206 >> loading file tokenizer.json from cache at /home/qmin2/.cache/huggingface/hub/models--t5-small/snapshots/df1b051c49625cf57a3d0d8d3863ed4d13564fe4/tokenizer.json [INFO|tokenization_utils_base.py:2211] 2024-10-23 11:23:17,206 >> loading file added_tokens.json from cache at None [INFO|tokenization_utils_base.py:2211] 2024-10-23 11:23:17,206 >> loading file special_tokens_map.json from cache at None [INFO|tokenization_utils_base.py:2211] 2024-10-23 11:23:17,206 >> loading file tokenizer_config.json from cache at /home/qmin2/.cache/huggingface/hub/models--t5-small/snapshots/df1b051c49625cf57a3d0d8d3863ed4d13564fe4/tokenizer_config.json [INFO|modeling_utils.py:3936] 2024-10-23 11:23:17,446 >> loading weights file model.safetensors from cache at /home/qmin2/.cache/huggingface/hub/models--t5-small/snapshots/df1b051c49625cf57a3d0d8d3863ed4d13564fe4/model.safetensors [INFO|modeling_utils.py:4079] 2024-10-23 11:23:17,453 >> Detected DeepSpeed ZeRO-3: activating zero.init() for this model [INFO|configuration_utils.py:1099] 2024-10-23 11:23:17,458 >> Generate config GenerationConfig { "decoder_start_token_id": 0, "eos_token_id": 1, "pad_token_id": 0 } [2024-10-23 11:23:18,839] [INFO] [partition_parameters.py:343:__exit__] finished initializing model - num_params = 132, num_elems = 0.08B [INFO|modeling_utils.py:4799] 2024-10-23 11:23:19,120 >> All model checkpoint weights were used when initializing T5ForConditionalGeneration. [INFO|modeling_utils.py:4807] 2024-10-23 11:23:19,120 >> All the weights of T5ForConditionalGeneration were initialized from the model checkpoint at t5-small. If your task is similar to the task the model of the checkpoint was trained on, you can already use T5ForConditionalGeneration for predictions without further training. [INFO|configuration_utils.py:1054] 2024-10-23 11:23:19,341 >> loading configuration file generation_config.json from cache at /home/qmin2/.cache/huggingface/hub/models--t5-small/snapshots/df1b051c49625cf57a3d0d8d3863ed4d13564fe4/generation_config.json [INFO|configuration_utils.py:1099] 2024-10-23 11:23:19,341 >> Generate config GenerationConfig { "decoder_start_token_id": 0, "eos_token_id": 1, "pad_token_id": 0 } [INFO|modeling_utils.py:2230] 2024-10-23 11:23:19,361 >> You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding dimension will be 32100. This might induce some performance reduction as *Tensor Cores* will not be available. For more details about this, or help on choosing the correct value for resizing, refer to this guide: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc Loading cached processed dataset at /home/qmin2/.cache/huggingface/datasets/wmt16/ro-en/0.0.0/41d8a4013aa1489f28fea60ec0932af246086482/cache-8862cd207eac132f.arrow 10/23/2024 11:23:19 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/qmin2/.cache/huggingface/datasets/wmt16/ro-en/0.0.0/41d8a4013aa1489f28fea60ec0932af246086482/cache-8862cd207eac132f.arrow 10/23/2024 11:23:20 - WARNING - accelerate.utils.other - Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher. [INFO|trainer.py:688] 2024-10-23 11:23:21,317 >> Using auto half precision backend [2024-10-23 11:23:21,487] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed info: version=0.13.2, git-hash=unknown, git-branch=unknown [2024-10-23 11:23:21,493] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Flops Profiler Enabled: False Using /home/qmin2/.cache/torch_extensions/py39_cu121 as PyTorch extensions root... /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/utils/cpp_extension.py:362: UserWarning: !! WARNING !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Your compiler (/opt/ohpc/pub/apps/nvidia/hpc_sdk/Linux_x86_64/22.2/compilers/bin/nvc++) is not compatible with the compiler Pytorch was built with for this platform, which is g++ on linux. Please use g++ to to compile your extension. Alternatively, you may compile PyTorch from source using /opt/ohpc/pub/apps/nvidia/hpc_sdk/Linux_x86_64/22.2/compilers/bin/nvc++, and then you can also use /opt/ohpc/pub/apps/nvidia/hpc_sdk/Linux_x86_64/22.2/compilers/bin/nvc++ to compile your extension. See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help with compiling PyTorch from source. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! WARNING !! warnings.warn(WRONG_COMPILER_WARNING.format( Detected CUDA files, patching ldflags Emitting ninja build file /home/qmin2/.cache/torch_extensions/py39_cu121/fused_adam/build.ninja... Building extension module fused_adam... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) [1/3] /opt/ohpc/pub/apps/nvidia/hpc_sdk/Linux_x86_64/22.2/compilers/bin/nvc++ -MMD -MF fused_adam_frontend.o.d -DTORCH_EXTENSION_NAME=fused_adam -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -I/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/includes -I/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/adam -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/torch/csrc/api/include -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/TH -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/THC -isystem /opt/ohpc/pub/apps/cuda/11.8/include -isystem /home/qmin2/anaconda3/envs/biicae/include/python3.9 -D_GLIBCXX_USE_CXX11_ABI=0 -fPIC -std=c++17 -O3 -std=c++17 -g -Wno-reorder -DVERSION_GE_1_1 -DVERSION_GE_1_3 -DVERSION_GE_1_5 -DBF16_AVAILABLE -c /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/adam/fused_adam_frontend.cpp -o fused_adam_frontend.o FAILED: fused_adam_frontend.o /opt/ohpc/pub/apps/nvidia/hpc_sdk/Linux_x86_64/22.2/compilers/bin/nvc++ -MMD -MF fused_adam_frontend.o.d -DTORCH_EXTENSION_NAME=fused_adam -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -I/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/includes -I/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/adam -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/torch/csrc/api/include -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/TH -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/THC -isystem /opt/ohpc/pub/apps/cuda/11.8/include -isystem /home/qmin2/anaconda3/envs/biicae/include/python3.9 -D_GLIBCXX_USE_CXX11_ABI=0 -fPIC -std=c++17 -O3 -std=c++17 -g -Wno-reorder -DVERSION_GE_1_1 -DVERSION_GE_1_3 -DVERSION_GE_1_5 -DBF16_AVAILABLE -c /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/adam/fused_adam_frontend.cpp -o fused_adam_frontend.o nvc++-Error-Unknown switch: -Wno-reorder [2/3] /opt/ohpc/pub/apps/cuda/11.8/bin/nvcc -ccbin /opt/ohpc/pub/apps/nvidia/hpc_sdk/Linux_x86_64/22.2/compilers/bin/nvc -DTORCH_EXTENSION_NAME=fused_adam -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -I/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/includes -I/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/adam -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/torch/csrc/api/include -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/TH -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/THC -isystem /opt/ohpc/pub/apps/cuda/11.8/include -isystem /home/qmin2/anaconda3/envs/biicae/include/python3.9 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_80,code=sm_80 --compiler-options '-fPIC' -O3 -DVERSION_GE_1_1 -DVERSION_GE_1_3 -DVERSION_GE_1_5 -lineinfo --use_fast_math -gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_80,code=compute_80 -DBF16_AVAILABLE -U__CUDA_NO_BFLOAT16_OPERATORS__ -U__CUDA_NO_BFLOAT162_OPERATORS__ -std=c++17 -c /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/adam/multi_tensor_adam.cu -o multi_tensor_adam.cuda.o FAILED: multi_tensor_adam.cuda.o /opt/ohpc/pub/apps/cuda/11.8/bin/nvcc -ccbin /opt/ohpc/pub/apps/nvidia/hpc_sdk/Linux_x86_64/22.2/compilers/bin/nvc -DTORCH_EXTENSION_NAME=fused_adam -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -I/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/includes -I/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/adam -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/torch/csrc/api/include -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/TH -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/THC -isystem /opt/ohpc/pub/apps/cuda/11.8/include -isystem /home/qmin2/anaconda3/envs/biicae/include/python3.9 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_80,code=sm_80 --compiler-options '-fPIC' -O3 -DVERSION_GE_1_1 -DVERSION_GE_1_3 -DVERSION_GE_1_5 -lineinfo --use_fast_math -gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_80,code=compute_80 -DBF16_AVAILABLE -U__CUDA_NO_BFLOAT16_OPERATORS__ -U__CUDA_NO_BFLOAT162_OPERATORS__ -std=c++17 -c /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/adam/multi_tensor_adam.cu -o multi_tensor_adam.cuda.o nvcc fatal : Unsupported NVHPC compiler found. nvc++ is the only NVHPC compiler that is supported. ninja: build stopped: subcommand failed. Traceback (most recent call last): File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/utils/cpp_extension.py", line 2100, in _run_ninja_build subprocess.run( File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/subprocess.py", line 524, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/qmin2/3rd_semester_research/qmin2_infini_attention/run_translation.py", line 699, in <module> main() File "/home/qmin2/3rd_semester_research/qmin2_infini_attention/run_translation.py", line 614, in main train_result = trainer.train(resume_from_checkpoint=checkpoint) File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/transformers/trainer.py", line 2112, in train return inner_training_loop( File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/transformers/trainer.py", line 2267, in _inner_training_loop model, self.optimizer, self.lr_scheduler = self.accelerator.prepare( File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/accelerate/accelerator.py", line 1219, in prepare result = self._prepare_deepspeed(*args) File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/accelerate/accelerator.py", line 1604, in _prepare_deepspeed engine, optimizer, _, lr_scheduler = deepspeed.initialize(**kwargs) File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/__init__.py", line 176, in initialize engine = DeepSpeedEngine(args=args, File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/runtime/engine.py", line 307, in __init__ self._configure_optimizer(optimizer, model_parameters) File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/runtime/engine.py", line 1231, in _configure_optimizer basic_optimizer = self._configure_basic_optimizer(model_parameters) File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/runtime/engine.py", line 1308, in _configure_basic_optimizer optimizer = FusedAdam( File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/adam/fused_adam.py", line 94, in __init__ fused_adam_cuda = FusedAdamBuilder().load() File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/op_builder/builder.py", line 478, in load return self.jit_load(verbose) File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/op_builder/builder.py", line 522, in jit_load op_module = load(name=self.name, File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/utils/cpp_extension.py", line 1308, in load return _jit_compile( File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/utils/cpp_extension.py", line 1710, in _jit_compile _write_ninja_file_and_build_library( File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/utils/cpp_extension.py", line 1823, in _write_ninja_file_and_build_library _run_ninja_build( File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/utils/cpp_extension.py", line 2116, in _run_ninja_build raise RuntimeError(message) from e RuntimeError: Error building extension 'fused_adam' Using /home/qmin2/.cache/torch_extensions/py39_cu121 as PyTorch extensions root... /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/utils/cpp_extension.py:362: UserWarning: !! WARNING !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Your compiler (/opt/ohpc/pub/apps/nvidia/hpc_sdk/Linux_x86_64/22.2/compilers/bin/nvc++) is not compatible with the compiler Pytorch was built with for this platform, which is g++ on linux. Please use g++ to to compile your extension. Alternatively, you may compile PyTorch from source using /opt/ohpc/pub/apps/nvidia/hpc_sdk/Linux_x86_64/22.2/compilers/bin/nvc++, and then you can also use /opt/ohpc/pub/apps/nvidia/hpc_sdk/Linux_x86_64/22.2/compilers/bin/nvc++ to compile your extension. See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help with compiling PyTorch from source. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! WARNING !! warnings.warn(WRONG_COMPILER_WARNING.format( Detected CUDA files, patching ldflags Emitting ninja build file /home/qmin2/.cache/torch_extensions/py39_cu121/fused_adam/build.ninja... Building extension module fused_adam... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) [1/3] /opt/ohpc/pub/apps/nvidia/hpc_sdk/Linux_x86_64/22.2/compilers/bin/nvc++ -MMD -MF fused_adam_frontend.o.d -DTORCH_EXTENSION_NAME=fused_adam -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -I/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/includes -I/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/adam -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/torch/csrc/api/include -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/TH -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/THC -isystem /opt/ohpc/pub/apps/cuda/11.8/include -isystem /home/qmin2/anaconda3/envs/biicae/include/python3.9 -D_GLIBCXX_USE_CXX11_ABI=0 -fPIC -std=c++17 -O3 -std=c++17 -g -Wno-reorder -DVERSION_GE_1_1 -DVERSION_GE_1_3 -DVERSION_GE_1_5 -DBF16_AVAILABLE -c /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/adam/fused_adam_frontend.cpp -o fused_adam_frontend.o FAILED: fused_adam_frontend.o /opt/ohpc/pub/apps/nvidia/hpc_sdk/Linux_x86_64/22.2/compilers/bin/nvc++ -MMD -MF fused_adam_frontend.o.d -DTORCH_EXTENSION_NAME=fused_adam -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -I/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/includes -I/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/adam -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/torch/csrc/api/include -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/TH -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/THC -isystem /opt/ohpc/pub/apps/cuda/11.8/include -isystem /home/qmin2/anaconda3/envs/biicae/include/python3.9 -D_GLIBCXX_USE_CXX11_ABI=0 -fPIC -std=c++17 -O3 -std=c++17 -g -Wno-reorder -DVERSION_GE_1_1 -DVERSION_GE_1_3 -DVERSION_GE_1_5 -DBF16_AVAILABLE -c /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/adam/fused_adam_frontend.cpp -o fused_adam_frontend.o nvc++-Error-Unknown switch: -Wno-reorder [2/3] /opt/ohpc/pub/apps/cuda/11.8/bin/nvcc -ccbin /opt/ohpc/pub/apps/nvidia/hpc_sdk/Linux_x86_64/22.2/compilers/bin/nvc -DTORCH_EXTENSION_NAME=fused_adam -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -I/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/includes -I/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/adam -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/torch/csrc/api/include -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/TH -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/THC -isystem /opt/ohpc/pub/apps/cuda/11.8/include -isystem /home/qmin2/anaconda3/envs/biicae/include/python3.9 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_80,code=sm_80 --compiler-options '-fPIC' -O3 -DVERSION_GE_1_1 -DVERSION_GE_1_3 -DVERSION_GE_1_5 -lineinfo --use_fast_math -gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_80,code=compute_80 -DBF16_AVAILABLE -U__CUDA_NO_BFLOAT16_OPERATORS__ -U__CUDA_NO_BFLOAT162_OPERATORS__ -std=c++17 -c /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/adam/multi_tensor_adam.cu -o multi_tensor_adam.cuda.o FAILED: multi_tensor_adam.cuda.o /opt/ohpc/pub/apps/cuda/11.8/bin/nvcc -ccbin /opt/ohpc/pub/apps/nvidia/hpc_sdk/Linux_x86_64/22.2/compilers/bin/nvc -DTORCH_EXTENSION_NAME=fused_adam -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -I/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/includes -I/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/adam -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/torch/csrc/api/include -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/TH -isystem /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/include/THC -isystem /opt/ohpc/pub/apps/cuda/11.8/include -isystem /home/qmin2/anaconda3/envs/biicae/include/python3.9 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_80,code=sm_80 --compiler-options '-fPIC' -O3 -DVERSION_GE_1_1 -DVERSION_GE_1_3 -DVERSION_GE_1_5 -lineinfo --use_fast_math -gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_80,code=compute_80 -DBF16_AVAILABLE -U__CUDA_NO_BFLOAT16_OPERATORS__ -U__CUDA_NO_BFLOAT162_OPERATORS__ -std=c++17 -c /home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/csrc/adam/multi_tensor_adam.cu -o multi_tensor_adam.cuda.o nvcc fatal : Unsupported NVHPC compiler found. nvc++ is the only NVHPC compiler that is supported. ninja: build stopped: subcommand failed. Traceback (most recent call last): File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/utils/cpp_extension.py", line 2100, in _run_ninja_build subprocess.run( File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/subprocess.py", line 524, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/qmin2/3rd_semester_research/qmin2_infini_attention/run_translation.py", line 699, in <module> main() File "/home/qmin2/3rd_semester_research/qmin2_infini_attention/run_translation.py", line 614, in main train_result = trainer.train(resume_from_checkpoint=checkpoint) File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/transformers/trainer.py", line 2112, in train return inner_training_loop( File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/transformers/trainer.py", line 2267, in _inner_training_loop model, self.optimizer, self.lr_scheduler = self.accelerator.prepare( File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/accelerate/accelerator.py", line 1219, in prepare result = self._prepare_deepspeed(*args) File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/accelerate/accelerator.py", line 1604, in _prepare_deepspeed engine, optimizer, _, lr_scheduler = deepspeed.initialize(**kwargs) File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/__init__.py", line 176, in initialize engine = DeepSpeedEngine(args=args, File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/runtime/engine.py", line 307, in __init__ self._configure_optimizer(optimizer, model_parameters) File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/runtime/engine.py", line 1231, in _configure_optimizer basic_optimizer = self._configure_basic_optimizer(model_parameters) File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/runtime/engine.py", line 1308, in _configure_basic_optimizer optimizer = FusedAdam( File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/adam/fused_adam.py", line 94, in __init__ fused_adam_cuda = FusedAdamBuilder().load() File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/op_builder/builder.py", line 478, in load return self.jit_load(verbose) File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/deepspeed/ops/op_builder/builder.py", line 522, in jit_load op_module = load(name=self.name, File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/utils/cpp_extension.py", line 1308, in load return _jit_compile( File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/utils/cpp_extension.py", line 1710, in _jit_compile _write_ninja_file_and_build_library( File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/utils/cpp_extension.py", line 1823, in _write_ninja_file_and_build_library _run_ninja_build( File "/home/qmin2/anaconda3/envs/biicae/lib/python3.9/site-packages/torch/utils/cpp_extension.py", line 2116, in _run_ninja_build raise RuntimeError(message) from e RuntimeError: Error building extension 'fused_adam' [2024-10-23 11:23:24,181] [INFO] [launch.py:316:sigkill_handler] Killing subprocess 3332850 [2024-10-23 11:23:24,181] [INFO] [launch.py:316:sigkill_handler] Killing subprocess 3332851 [2024-10-23 11:23:24,525] [ERROR] [launch.py:322:sigkill_handler] ['/home/qmin2/anaconda3/envs/biicae/bin/python3.9', '-u', 'run_translation.py', '--local_rank=1', '--deepspeed', 'ds_config.json', '--model_name_or_path', 't5-small', '--per_device_train_batch_size', '1', '--output_dir', 'output_dir', '--overwrite_output_dir', '--fp16', '--do_train', '--max_train_samples', '500', '--num_train_epochs', '1', '--dataset_name', 'wmt16', '--dataset_config', 'ro-en', '--source_lang', 'en', '--target_lang', 'ro'] exits with return code = 1 ``` For your information I'm using slurm cluster interactive mode. GPU: A100-80GB x 2 gcc --version : 12.2.0 nvcc --version : 11.8 nvc++ --version: nvc++ 22.2-0 64-bit target on x86-64 Linux -tp zen3 nvidia-smi shows NVIDIA-SMI 530.30.02 Driver Version: 530.30.02 CUDA Version: 12.1 This is pip list ``` pip list Package Version ------------------------ ------------ accelerate 1.0.1 aiohappyeyeballs 2.4.3 aiohttp 3.10.10 aiosignal 1.3.1 annotated-types 0.7.0 async-timeout 4.0.3 attrs 24.2.0 certifi 2024.8.30 charset-normalizer 3.4.0 colorama 0.4.6 datasets 3.0.2 deepspeed 0.15.3 dill 0.3.8 evaluate 0.4.3 filelock 3.13.1 frozenlist 1.4.1 fsspec 2024.2.0 hjson 3.1.0 huggingface-hub 0.26.1 idna 3.10 Jinja2 3.1.3 lxml 5.3.0 MarkupSafe 2.1.5 mpmath 1.3.0 msgpack 1.1.0 multidict 6.1.0 multiprocess 0.70.16 networkx 3.2.1 ninja 1.11.1.1 numpy 1.26.3 nvidia-cublas-cu11 11.11.3.6 nvidia-cuda-cupti-cu11 11.8.87 nvidia-cuda-nvrtc-cu11 11.8.89 nvidia-cuda-runtime-cu11 11.8.89 nvidia-cudnn-cu11 9.1.0.70 nvidia-cufft-cu11 10.9.0.58 nvidia-curand-cu11 10.3.0.86 nvidia-cusolver-cu11 11.4.1.48 nvidia-cusparse-cu11 11.7.5.86 nvidia-nccl-cu11 2.21.5 nvidia-nvtx-cu11 11.8.86 packaging 24.1 pandas 2.2.3 pillow 10.2.0 pip 24.2 portalocker 2.10.1 propcache 0.2.0 psutil 6.1.0 py-cpuinfo 9.0.0 pyarrow 17.0.0 pydantic 2.9.2 pydantic_core 2.23.4 pynvml 11.5.3 python-dateutil 2.9.0.post0 pytz 2024.2 PyYAML 6.0.2 regex 2024.9.11 requests 2.32.3 sacrebleu 2.4.3 safetensors 0.4.5 setuptools 75.1.0 six 1.16.0 sympy 1.13.1 tabulate 0.9.0 tokenizers 0.20.1 torch 2.5.0+cu118 torchaudio 2.5.0+cu118 torchvision 0.20.0+cu118 tqdm 4.66.5 transformers 4.46.0.dev0 triton 3.1.0 typing_extensions 4.9.0 tzdata 2024.2 urllib3 2.2.3 wheel 0.44.0 xxhash 3.5.0 yarl 1.16.0 ``` I spent lots of time handling this issue... Is there any solution for this?
closed
2024-10-23T02:33:37Z
2024-10-30T19:07:17Z
https://github.com/deepspeedai/DeepSpeed/issues/6654
[ "build" ]
qmin2
2
horovod/horovod
machine-learning
3,882
When running trainer script of transformers with some changes , throwing error
4/07/2023 15:13:14 - INFO - __main__ - Grouping texts into single entries [INFO|trainer.py:568] 2023-04-07 15:13:16,718 >> Using cuda_amp half precision backend /home/user/.local/lib/python3.8/site-packages/transformers/optimization.py:391: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning warnings.warn( Traceback (most recent call last): File "run_clm.py", line 555, in <module> main() File "run_clm.py", line 518, in main train_result = trainer.train(resume_from_checkpoint=checkpoint) File "/home/user/.local/lib/python3.8/site-packages/transformers/trainer.py", line 1572, in train return inner_training_loop( File "/home/user/.local/lib/python3.8/site-packages/transformers/trainer.py", line 1650, in _inner_training_loop self.create_optimizer_and_scheduler(num_training_steps=max_steps) File "/home/user/.local/lib/python3.8/site-packages/transformers/trainer.py", line 1021, in create_optimizer_and_scheduler self.create_optimizer() File "/home/user/.local/lib/python3.8/site-packages/transformers/trainer.py", line 1085, in create_optimizer hvd.broadcast_parameters(self.model.state_dict(), root_rank=0) #hvd_18 File "/usr/local/lib/python3.8/site-packages/horovod/torch/functions.py", line 54, in broadcast_parameters handle = broadcast_async_(p, root_rank, name) File "/usr/local/lib/python3.8/site-packages/horovod/torch/mpi_ops.py", line 880, in broadcast_async_ return _broadcast_async(tensor, tensor, root_rank, name, process_set) File "/usr/local/lib/python3.8/site-packages/horovod/torch/mpi_ops.py", line 777, in _broadcast_async function = _check_function(_broadcast_function_factory, tensor) File "/usr/local/lib/python3.8/site-packages/horovod/torch/mpi_ops.py", line 100, in _check_function raise ValueError('Tensor type %s is not supported.' % tensor.type())
closed
2023-04-07T06:35:46Z
2023-04-21T14:18:23Z
https://github.com/horovod/horovod/issues/3882
[]
22Mukesh22
0
sktime/sktime
data-science
7,496
[BUG] Loaded model from a saved sktime model failing to forecast on new data
I recently saved a deep neural network model (LSTFDLinear) after fitting it on a large dataset.After saving it i loaded it and wanted to update it and for it to make new forecasting figures based on the latest data but it keeps on giving results on the last fit procedure and does not change no matter what l do ...any help on how i can fix that .....Thank you
open
2024-12-08T16:12:30Z
2024-12-10T06:53:03Z
https://github.com/sktime/sktime/issues/7496
[ "bug" ]
jsteve677
2
jazzband/django-oauth-toolkit
django
745
Apps aren't loaded yet
Hello, I extended the classes "Server", "AbstractAccessToken" and "AbstractRefreshToken" in my models.py file. Then tells `OAUTH2_PROVIDER` to use it. But I always get the exception : ``` django.core.exceptions.AppRegistryNotReady: Apps aren't loaded yet. ``` Apparently, this error comes from the import : ``` from oauth2_provider.models import AbstractAccessToken, AbstractRefreshToken ``` I'm lost. Thanks for your help.
closed
2019-10-10T10:13:19Z
2021-10-23T01:19:55Z
https://github.com/jazzband/django-oauth-toolkit/issues/745
[]
Mysteriosis
0
plotly/plotly.py
plotly
5,087
add swarm plot
I can't find swarm plot in plotly, but can use this way to plot a swarm map: ``` import plotly.express as px import numpy as np import pandas as pd np.random.seed(1) y0 = np.random.randn(50) - 1 mm=pd.DataFrame({"org":y0}) tmp=[] for k in y0: tmp.append(np.floor(k*10)/10) mm["cut"]=tmp cc=pd.DataFrame(columns=["x","y"]) width=0.08 for s in mm.groupby("cut"): # print(type(s)) x=s[0] mp=s[1] ls=len(s[1]) mid= int(ls/2) org= -mid if ls%2==0: org=org+0.5 for i in range(ls): cc.loc[len(cc)]=[x,(i+org)*width] # for i in range(ls): # if i == mid: # org=org+1 # cc.loc[len(cc)]=[x,(i+org)*width] else: for i in range(ls): cc.loc[len(cc)]=[x,(i+org)*width] # print(mm) # print(cc) fig = px.scatter(cc,x='x',y='y',range_y=[-2,2]) # fig=px.strip(cc,x='x',y='y',range_y=[-2,2]) fig.show() ``` this is a example for how to deal data and transform data for swarm ![Image](https://github.com/user-attachments/assets/fffba213-52d8-45d6-babf-5bdd67871b27)
open
2025-03-14T07:50:26Z
2025-03-17T18:25:29Z
https://github.com/plotly/plotly.py/issues/5087
[ "feature", "P3" ]
suterberg
1
flairNLP/fundus
web-scraping
263
Unify `Pipeline` and `Crawler`.
With some upcoming features, especially an async API for the crawler as suggested by @dobbersc and formulated in #260 , the problem of documentation duplication became very obvious. The get rid of this problem @dobbersc and I came up with the idea to build up an inheritance schema like the following: ```python class BaseCrawler: # <- Former Pipeline. May as well be called Pipeline again # this class holds the entire logic def __init__(self, *scrapers: Scraper): self.scrapers = scrapers def crawl(self, ...) -> Iterator[Article]: ... for article in self.scrapers: ... class Crawler(BaseCrawler): # this class works as an alternative constructor to utilize PublisherCollection # for usability reasons. def __init__( self, *publishers: Union[PublisherEnum, Type[PublisherEnum]], restrict_sources_to: Optional[List[Type[URLSource]]] = None, ) -> None: # create scrapers ... self.scraper = ... crawler = Crawler(...) for article in crawler.crawl(): ... ```
closed
2023-07-04T18:41:48Z
2023-07-11T19:44:33Z
https://github.com/flairNLP/fundus/issues/263
[]
MaxDall
0
mwaskom/seaborn
data-science
3,114
Feature request: Parallel coordinates plots
When visualizing high-dimensional datasets, parallel coordinates plots are sometimes very useful. I would love for Seaborn to have a build in function to do this! **Resources** - Wikipedia: [Parallel coordinates](https://en.wikipedia.org/wiki/Parallel_coordinates) - Python Graph Gallery: [Parallel coordinate plot](https://www.python-graph-gallery.com/parallel-plot/) - plotly: [Parallel Coordinates Plot in Python](https://plotly.com/python/parallel-coordinates-plot/) - Pandas docs: [pandas.plotting.parallel_coordinates](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.plotting.parallel_coordinates.html)
closed
2022-10-27T13:14:14Z
2022-11-04T10:37:24Z
https://github.com/mwaskom/seaborn/issues/3114
[ "wishlist" ]
EwoutH
11
aio-libs/aiopg
sqlalchemy
65
Closing connection object throws exception
Hi, I am using aiopg with a Pool object that is shared among coroutines. Every once in a while, randomly I see following error: psycopg2.ProgrammingError: close cannot be used while an asynchronous query is u nderway I can reproduce the issue with following: <pre><code> pool = yield from aiopg.create_pool(dsn) with (yield from pool.cursor(timeout=1.0)) as cur: yield from cur.execute("SELECT pg_sleep(2)") </code></pre> It seems valid to raise TimeoutError rather than ProgrammingError, I believe. What do you think? Thanks,
closed
2015-07-10T09:46:19Z
2016-07-16T16:22:44Z
https://github.com/aio-libs/aiopg/issues/65
[]
sumerc
8
kensho-technologies/graphql-compiler
graphql
829
Add a timezone-aware datetime GraphQL scalar type: DateTimeTz
Since #827 merged, we don't have a way to represent timezone-aware datetimes. For this, I propose adding a new scalar type: `scalar DateTimeTz`, Python name `GraphQLDateTimeTz`. A few guidelines I'd like to propose: - Outputting a field of type `DateTimeTz` is guaranteed to produce a timezone-aware result. - Runtime arguments of type `DateTimeTz` are required to contain timezone information. - Its serialization as a string must always contain either an explicit `+HH:mm` suffix or the simple suffix `Z` which is equivalent to `+00:00`. Other suffixes, such as `+HH`, `+H`, `America/New_York` etc. are explicitly not permitted and unsupported. - When auto-generating schemas, if a datetime type is explicitly known to carry timezone information (for example, `TIMESTAMPTZ` in many SQL flavors), it must be represented as `DateTimeTz` in the auto-generated schema. - When auto-generating schemas, if it is uncertain whether a datetime type carries timezone information or not, it must be represented as `DateTime` (i.e. timezone-naive) and a warning must be emitted about the uncertainty. This warning must provide sufficient information to the user so that they are able to manually resolve the issue by explicitly configuring the field in question to appear as timezone-aware or naive.
open
2020-05-19T16:08:54Z
2020-05-19T21:26:34Z
https://github.com/kensho-technologies/graphql-compiler/issues/829
[ "enhancement" ]
obi1kenobi
2
pallets/flask
python
4,567
Move `abort` to the `Flask` app object
Add an `abort` method to the `Flask` app object. Similar to functions like `flask.json.dumps`, `flask.abort` should look for a `current_app` and call its `abort` method. This will allow applications to override the abort behavior.
closed
2022-05-02T14:29:47Z
2022-05-27T00:06:02Z
https://github.com/pallets/flask/issues/4567
[ "save-for-sprint" ]
davidism
4
adbar/trafilatura
web-scraping
82
Broken docs python example
["Producing TEI files"](https://trafilatura.readthedocs.io/en/latest/tutorial2.html#producing-tei-files) docs have this example ```python3 # load the necessary components import trafilatura # open a file and parse it downloaded = trafilatura.fetch_url('https://github.blog/2019-03-29-leader-spotlight-erin-spiceland/') result = trafilatura.extract(downloaded, tei_output=True, tei_validation=True) ``` [`extract` ](https://github.com/adbar/trafilatura/blob/d26d2136307261aa3537bc8da2a26fe2c6975ae9/trafilatura/core.py#L761)function doesn't have `tei_output` flag. To get the result as `TEI`, [`output_format`](https://github.com/tomwojcik/trafilatura/blob/master/trafilatura/core.py#L600 ) has to be passed accordingly.
closed
2021-06-07T11:50:12Z
2021-06-07T18:13:26Z
https://github.com/adbar/trafilatura/issues/82
[]
tomwojcik
0
axnsan12/drf-yasg
rest-api
378
Serializer to openapi.Schema
First off, awesome library! Running into an issue with some custom `ModelViewSet` methods not showing anything in their responses. To deal with it, I added a method decorator: ```python @method_decorator( name="list", decorator=swagger_auto_schema( operation_id="List Questions", operation_description="List Questions ", responses={"200": openapi.Response("OK", QuestionSerializer(many=True)}, security=[{"JWT": []}, {None: []}], ), ) ``` but it is unable to recognize that this should be wrapped in a `PageNumberPagination` result. I tried manually creating the payload by modifying the decorator: ```python @method_decorator( name="list", decorator=swagger_auto_schema( operation_id="List Questions", operation_description="List Questions", responses={"200": openapi.Response("OK", openapi.Schema( type=openapi.TYPE_OBJECT, properties=OrderedDict(( ('count', openapi.Schema(type=openapi.TYPE_INTEGER)), ('next', openapi.Schema(type=openapi.TYPE_STRING, format=openapi.FORMAT_URI, x_nullable=True)), ('previous', openapi.Schema(type=openapi.TYPE_STRING, format=openapi.FORMAT_URI, x_nullable=True)), ('results', openapi.Schema(type=openapi.TYPE_ARRAY, items=openapi.Response("OK", QuestionSerializer(many=True)))), )), required=['results'] ))}, security=[{"JWT": []}, {None: []}], ), ) ``` but obviously this doesn't work. I tried a few things in the "results" property, but couldn't generate a schema from the serializer. I saw another issue mentioning this but had trouble following along to a resolution. is there any way to do this?
open
2019-06-07T20:48:16Z
2025-03-07T12:16:50Z
https://github.com/axnsan12/drf-yasg/issues/378
[ "bug", "triage" ]
zak10
3
microsoft/nni
pytorch
5,720
NNI is starting, it's time to run an epoch but there's no value in the page?
**Describe the issue**: it's time to run an epoch but there's no value in the page? **Environment**: - NNI version:2.5 - Training service (local|remote|pai|aml|etc):local - Client OS:Win10 - Server OS (for remote mode only): - Python version: 3.7 - PyTorch/TensorFlow version:PyTorch - Is conda/virtualenv/venv used?:conda - Is running in Docker?: no **Configuration**: searchSpaceFile: search_space.json trialCommand: python train_nni.py trialGpuNumber: 0 trialConcurrency: 1 tuner: name: TPE classArgs: optimize_mode: maximize trainingService: platform: local ![image](https://github.com/microsoft/nni/assets/58765840/d6ad9705-574c-4e88-bc24-a1b031215e7e) **How to reproduce it?**:
open
2023-12-10T11:22:42Z
2023-12-10T11:22:42Z
https://github.com/microsoft/nni/issues/5720
[]
yao-ao
0
mckinsey/vizro
pydantic
281
Uploading files in Vizro apps
### Which package? vizro ### What's the problem this feature will solve? Perhaps there is a way already to do it, but I want the user to be able to select a file on the local computer and use it for analysis. I was hoping that there was a "vizro" object to do uploads, but I can't find one. Lacking that, can one somehow include a dcc object, such as Upload, into a "vizro" app? I saw one place that said one vizro object was "a thin wrapper" on a dcc object, but I don't know if there is someway for me to do that. Also lacking that, could I make a multipage app where I could have a dcc Update on a separate page or perhaps as a dropdown? If not, I think you really should have an "Upload" object or some object that includes that functionality. ### Describe the solution you'd like I described ideally want to do Upload in a vizro object in the "What's the problem" section above. ### Alternative Solutions I described alternative solutions in the "What's the problem" section above. ### Additional context Is there a vizro forum for discussing this sort of issue? I looked at the "dash" forum, but it only seemed to mention vizro in one post. ### Code of Conduct - [X] I agree to follow the [Code of Conduct](https://github.com/mckinsey/vizro/blob/main/CODE_OF_CONDUCT.md).
open
2024-01-24T03:56:05Z
2024-07-08T15:03:32Z
https://github.com/mckinsey/vizro/issues/281
[ "Feature Request :nerd_face:" ]
bcichowlas
2
deezer/spleeter
deep-learning
304
[Discussion] How to finetune “2stems-finetune” model with "F":1536
<!-- Please respect the title [Discussion] tag. --> Grettings. I tried trainning from checkpoint from "2stems-finetune" model, with my own vocals-accompaniment dataset(44.1khz, stereo). It works fine with "F":1024. Though reports error when I raise "F" to higher value like 1536. the error info as follows: (0) Invalid argument: assertion failed: [Need value.shape >= size, got ] [624 3072 2] [512 4608 2] [[{{node random_crop/Assert/Assert}}]] [[IteratorGetNext]] [[IteratorGetNext/_2768]] (1) Invalid argument: assertion failed: [Need value.shape >= size, got ] [624 3072 2] [512 4608 2] It seems that the "2stem-finetune" itself is trained on "F":1024, is there any way I can finetune it with higher "F" value, so I can take advantage of the information above 11khz from my own datasets? Any idea appreciated!
closed
2020-03-27T03:38:16Z
2020-04-02T09:14:36Z
https://github.com/deezer/spleeter/issues/304
[ "question" ]
blackpaintedman
1
Kludex/mangum
asyncio
44
Allow setting environment vars in CLI
closed
2019-07-31T05:31:54Z
2019-08-01T01:22:23Z
https://github.com/Kludex/mangum/issues/44
[]
jordaneremieff
0
Anjok07/ultimatevocalremovergui
pytorch
867
error by MDX-NET model:MDX23C-InstVoc HQ
Last Error Received: Process: MDX-Net If this error persists, please contact the developers with the error details. Raw Error Details: RuntimeError: "Error opening 'F:/***.wav': System error." Traceback Error: " File "UVR.py", line 6565, in process_start File "separate.py", line 683, in seperate File "separate.py", line 342, in final_process File "separate.py", line 406, in write_audio File "separate.py", line 379, in save_with_message File "separate.py", line 350, in save_audio_file File "soundfile.py", line 430, in write File "soundfile.py", line 740, in __init__ File "soundfile.py", line 1264, in _open File "soundfile.py", line 1455, in _error_check " Error Time Stamp [2023-10-07 13:07:04] Full Application Settings: vr_model: Choose Model aggression_setting: 10 window_size: 512 mdx_segment_size: 256 batch_size: Default crop_size: 256 is_tta: False is_output_image: False is_post_process: False is_high_end_process: False post_process_threshold: 0.2 vr_voc_inst_secondary_model: No Model Selected vr_other_secondary_model: No Model Selected vr_bass_secondary_model: No Model Selected vr_drums_secondary_model: No Model Selected vr_is_secondary_model_activate: False vr_voc_inst_secondary_model_scale: 0.9 vr_other_secondary_model_scale: 0.7 vr_bass_secondary_model_scale: 0.5 vr_drums_secondary_model_scale: 0.5 demucs_model: v3 | UVR_Model_1 segment: Default overlap: 0.25 overlap_mdx: Default overlap_mdx23: 8 shifts: 2 chunks_demucs: Auto margin_demucs: 44100 is_chunk_demucs: False is_chunk_mdxnet: False is_primary_stem_only_Demucs: False is_secondary_stem_only_Demucs: False is_split_mode: True is_demucs_combine_stems: True is_mdx23_combine_stems: True demucs_voc_inst_secondary_model: No Model Selected demucs_other_secondary_model: No Model Selected demucs_bass_secondary_model: No Model Selected demucs_drums_secondary_model: No Model Selected demucs_is_secondary_model_activate: False demucs_voc_inst_secondary_model_scale: 0.9 demucs_other_secondary_model_scale: 0.7 demucs_bass_secondary_model_scale: 0.5 demucs_drums_secondary_model_scale: 0.5 demucs_pre_proc_model: No Model Selected is_demucs_pre_proc_model_activate: False is_demucs_pre_proc_model_inst_mix: False mdx_net_model: MDX23C-InstVoc HQ chunks: Auto margin: 44100 compensate: Auto denoise_option: None is_match_frequency_pitch: True phase_option: Automatic phase_shifts: None is_save_align: False is_match_silence: True is_spec_match: False is_mdx_c_seg_def: False is_invert_spec: False is_deverb_vocals: False deverb_vocal_opt: Main Vocals Only voc_split_save_opt: Lead Only is_mixer_mode: False mdx_batch_size: Default mdx_voc_inst_secondary_model: No Model Selected mdx_other_secondary_model: No Model Selected mdx_bass_secondary_model: No Model Selected mdx_drums_secondary_model: No Model Selected mdx_is_secondary_model_activate: False mdx_voc_inst_secondary_model_scale: 0.9 mdx_other_secondary_model_scale: 0.7 mdx_bass_secondary_model_scale: 0.5 mdx_drums_secondary_model_scale: 0.5 is_save_all_outputs_ensemble: True is_append_ensemble_name: False chosen_audio_tool: Manual Ensemble choose_algorithm: Min Spec time_stretch_rate: 2.0 pitch_rate: 2.0 is_time_correction: True is_gpu_conversion: True is_primary_stem_only: False is_secondary_stem_only: False is_testing_audio: False is_auto_update_model_params: True is_add_model_name: False is_accept_any_input: False is_task_complete: False is_normalization: False is_wav_ensemble: False is_create_model_folder: False mp3_bit_set: 320k semitone_shift: 0 save_format: WAV wav_type_set: PCM_16 help_hints_var: False set_vocal_splitter: No Model Selected is_set_vocal_splitter: False is_save_inst_set_vocal_splitter: False model_sample_mode: False model_sample_mode_duration: 30 demucs_stems: Vocals mdx_stems: Vocals
open
2023-10-07T05:13:25Z
2023-12-28T12:01:58Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/867
[]
Errorrrrr
1
pydantic/FastUI
pydantic
262
Could we build a "plugin" system to expand the components library?
I think it would be great if components that are built in separate python / js package by the community could be brought in the `fastui` framework. This would make the components much easier to "pick and choose" and many of the components might not need to be in the main framework. My lack of js knowledge unfortunately prevent me for now to provide more thoughts as i'm not sure how that could be integrated in the current `prebuilt_html` approach and other. NB: I think the `polars` model for plugins is pretty cool, so just sharing for inspiration (albeit with a rust to python approach): [plugins](https://docs.pola.rs/user-guide/expressions/plugins/#community-plugins), [community](https://docs.pola.rs/user-guide/expressions/plugins/#community-plugins)
open
2024-04-05T08:55:37Z
2024-04-05T08:55:37Z
https://github.com/pydantic/FastUI/issues/262
[]
tim-x-y-z
0
graphql-python/graphene-sqlalchemy
graphql
341
Post processing relationship result with SQLAlchemyConnectionField
Hi there! Maybe someone asked this question, sorry. But how to do post processing or override relationship result with `SQLAlchemyConnectionField`? https://github.com/graphql-python/graphene-sqlalchemy/blob/master/examples/flask_sqlalchemy/schema.py#L36 ```Python class Query(graphene.ObjectType): .... all_departments = SQLAlchemyConnectionField(Department.connection, sort=None) def resolve_all_departments(root, info, *args, **kwargs): # Like result = super().resolve_all_departments() ? # Do post processing result / add some additional filters to query. # return result ```
closed
2022-04-29T22:01:47Z
2023-02-24T14:56:10Z
https://github.com/graphql-python/graphene-sqlalchemy/issues/341
[ "question" ]
ego
3
voila-dashboards/voila
jupyter
1,149
Framework
closed
2022-04-27T18:48:41Z
2022-04-27T18:48:49Z
https://github.com/voila-dashboards/voila/issues/1149
[]
FaisalF12
0
HumanSignal/labelImg
deep-learning
441
Application hangs on adding specific number of annotations for an image
<!-- Please provide as much as detail and example as you can. You can add screenshots if appropriate. --> on running labelImg.py the application hangs if I create more than 10 annotations for the medium resolution image, for a higher resolution image it hangs on the third selection - **OS: Windows 10** - **PyQt version: 1.5.2**
closed
2019-02-04T10:47:54Z
2024-01-07T13:33:57Z
https://github.com/HumanSignal/labelImg/issues/441
[]
PrakrutiChandak
3
AUTOMATIC1111/stable-diffusion-webui
pytorch
15,523
[Bug]: Webui Infotext settings not working correctly
### What happened? I added options in settings to remove all adetailer infotext to have a simple and clean infotext but adetailer info continue to be saved in infotext. I don't know if this bug is limited to adetailer or exist in all extensions. ### Steps to reproduce the problem Add what you don't want in infotext like image below ![Screenshot 2024-04-15 at 10-08-48 Stable Diffusion](https://github.com/AUTOMATIC1111/stable-diffusion-webui/assets/39129290/1f4b645a-dec8-45dc-92f4-61ab55c928c8) ### What should have happened? The adetailer (and others) info must no be inserted in infotext if they have been added to exclusion fields. Webui v1.8
open
2024-04-15T08:12:25Z
2024-04-15T08:24:36Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/15523
[ "bug-report" ]
ema7569
0
mitmproxy/pdoc
api
179
HTML generation / carriage return lost for multi-lines docstring
Hi, I'm uisng the PEP 287 -- reStructuredText Docstring Format for my documentation like: ``` """ This is a reST style. :param param1: this is a first param :param param2: this is a second param :returns: this is a description of what is returned :raises keyError: raises an exception """ ``` and when generating the HTML pdoc, all the lines are merged in one long line instead of n lines (unless I had '\n' at the end of each line but...) Thanks !
closed
2018-10-11T13:36:37Z
2021-01-19T16:52:27Z
https://github.com/mitmproxy/pdoc/issues/179
[]
shazz
7
lepture/authlib
django
494
JWE
How use: {"alg": "A256KW", "enc": "A256GCM"}
closed
2022-09-27T07:34:50Z
2022-09-27T07:49:38Z
https://github.com/lepture/authlib/issues/494
[]
timscriptov
1
Gozargah/Marzban
api
1,295
can't set custom node to user subscription in api
hi I want to create a functional for change the list of servers in users subscription but that I send a put request with something like { "links": [ "vless://heremysubcription to server 1", "False" ] } than I got response { "proxies": {}, "expire": 0, "data_limit": 0, "data_limit_reset_strategy": "no_reset", "inbounds": {}, "note": "string", "sub_updated_at": "2024-09-03T13:48:06.648Z", "sub_last_user_agent": "string", "online_at": "2024-09-03T13:48:06.648Z", "on_hold_expire_duration": 0, "on_hold_timeout": "2024-09-03T13:48:06.648Z", "auto_delete_in_days": 0, "username": "string", "status": "active", "used_traffic": 0, "lifetime_used_traffic": 0, "created_at": "2024-09-03T13:48:06.648Z", "links": [ "vless://heremysubcription to server 1", "vless://heremysubcription to server 2", "False"], "subscription_url": "", "excluded_inbounds": {}, "admin": { "username": "string", "is_sudo": true, "telegram_id": 0, "discord_webhook": "string" } } I got 2 node and 1 main server but I can't modify than is than is it the lack of ability to change the list of servers or am I doing something wrong I try put in the put request full list that got by /api/user/{username} and change just the array of links pls help me 🙏
closed
2024-09-03T13:54:57Z
2024-09-03T15:29:05Z
https://github.com/Gozargah/Marzban/issues/1295
[ "Question", "P3", "API" ]
MaximCemencov
4
replicate/cog
tensorflow
1,263
Prakash
closed
2023-08-20T04:02:00Z
2023-08-20T14:26:58Z
https://github.com/replicate/cog/issues/1263
[]
Prakash07zaliy
0
encode/databases
sqlalchemy
566
Drop support for python 3.7
Python 3.7 has just reached end-of-life: https://devguide.python.org/versions/#versions. We can drop support for it now and update the codebase to use features available in `^3.8`.
closed
2023-08-19T19:37:47Z
2024-02-22T22:34:25Z
https://github.com/encode/databases/issues/566
[]
zevisert
1
google-research/bert
nlp
1,210
How to guide BERT to [MASK] certain tokens
I am fairly new to BERT and I was wondering if there is a way to guide the model into only [MASK]ing certain words. For instance, if I wanted to only randomly [MASK] Verbs, how will I go about doing that? Thank you
open
2021-03-19T09:23:44Z
2021-03-19T09:23:44Z
https://github.com/google-research/bert/issues/1210
[]
AdaUchendu
0
Lightning-AI/pytorch-lightning
pytorch
19,779
Huge metrics jump between epochs && Step and epoch log not matched, when accumulate_grad_batches > 1
### Bug description So at first I noticed the huge jump between epochs for both loss and accuracy calculated by torchmetrics, I debugged for a couple days by adding the "drop_last=True" in the dataloader, add some dropout or changing the model but nothing changed. To clarify, Exp 4302c358770fe8041adbdc5137f079b8 has accumulate_grad_batches=4, batch size=2, ddp in 8 gpus, and exp a67c8a809390fe0b06b0d6737009f6e2: accumulated_grad_batches=1, batch_size=4, ddp in 4 gpus, all the other configurations are same so the overall batch sizes are equal. There are some observations maybe related to this problem: 1. There's no cycled lr schedule and I shuffle the train dataset before each epoch 2. The loss fluctuated a lot due to some random masking in training 3. The train epoch metrics curves and validation curves are quite normal, keeps decreasing. However, as you can see in the picture, exp 4302c358770fe8041adbdc5137f079b8, the step metrics and epoch metrics are not matched (log_every_n_steps=1). I tried to average the step metrics manually and they were not matched. 4. After debugging for a couple days, I set the accumulated_grad_batches to 1, exp a67c8a809390fe0b06b0d6737009f6e2, the problem solved. So after these experiments I tested the models. Both jumped and normal experiments worked just fine. Maybe there are some issues in the logging process but it's too hard to trace the code. The code to reproduce may take me a while so I just drop the descriptions here, if you have any thoughts on it. If you do need the code I'll see what I can do. <img width="1220" alt="image" src="https://github.com/Lightning-AI/pytorch-lightning/assets/55123830/edc23047-2630-4e28-b23a-546484b6781f"> <img width="432" alt="image" src="https://github.com/Lightning-AI/pytorch-lightning/assets/55123830/cd3f4abb-13d7-40f2-b13b-fd7c904ba77a"> <img width="1231" alt="image" src="https://github.com/Lightning-AI/pytorch-lightning/assets/55123830/ad259ded-e572-4e13-8372-2f98cd040b6c"> <img width="1232" alt="image" src="https://github.com/Lightning-AI/pytorch-lightning/assets/55123830/5289a757-9862-4aec-890d-fb6cefd274cd"> ### What version are you seeing the problem on? v2.2 ### How to reproduce the bug _No response_ ### Error messages and logs ``` # Error messages and logs here please ``` ### Environment <details> <summary>Current environment</summary> ``` #- Lightning Component (e.g. Trainer, LightningModule, LightningApp, LightningWork, LightningFlow): #- PyTorch Lightning Version (e.g., 1.5.0): #- Lightning App Version (e.g., 0.5.2): #- PyTorch Version (e.g., 2.0): #- Python version (e.g., 3.9): #- OS (e.g., Linux): #- CUDA/cuDNN version: #- GPU models and configuration: #- How you installed Lightning(`conda`, `pip`, source): #- Running environment of LightningApp (e.g. local, cloud): ``` </details> ### More info _No response_
open
2024-04-15T14:50:08Z
2024-04-16T06:32:47Z
https://github.com/Lightning-AI/pytorch-lightning/issues/19779
[ "bug", "needs triage" ]
stg1205
0
dmlc/gluon-cv
computer-vision
785
Any other parameters that make training time shorter(different epochs, decay epoch)?
The models in gluoncv perform very well, but the training parameters given in the shell script require a lot of time to train. For example, coco has to train 26 epochs, and this time will be longer if the GPU is insufficient. ![image](https://user-images.githubusercontent.com/16110591/58480146-4a17f780-818c-11e9-98ef-05059ee46007.png) When I used detectron, two different training parameters (1x, 2x) are provided. The training time of the former is less but it does not harm much performance. Does gluoncv have more experiments in this area? Can you provide some parameters that make training faster for people who are lack of gpu such as me ?
closed
2019-05-28T13:05:28Z
2019-06-10T10:04:20Z
https://github.com/dmlc/gluon-cv/issues/785
[]
zhoulukuan
2
PaddlePaddle/models
nlp
5,207
variational_seq2seq inference error
in models/PaddleNLP/legacy/seq2seq/variational_seq2seq/ run sh infer.sh ptb it shows: ---------------------- Error Message Summary: ---------------------- InvalidArgumentError: Dims of all Inputs(X) must be the same, but received input 1 dim is:320096, 1 not equal to input 0 dim:32, 1. [Hint: Expected input_dims[i] == input_dims[0], but received input_dims[i]:320096, 1 != input_dims[0]:32, 1.] at (/paddle/paddle/fluid/operators/stack_op.cc:46) [operator < stack > error] in model.py outputs, _ = dynamic_decode( beam_search_decoder, inits=dec_initial_states, max_step_num=max_length)
closed
2021-01-15T09:39:50Z
2021-01-25T06:52:15Z
https://github.com/PaddlePaddle/models/issues/5207
[ "paddlenlp" ]
nickyoungforu
9
deepspeedai/DeepSpeed
pytorch
6,827
[BUG] ImportError: libcufft.so.10: cannot read file data
**Describe the bug** A clear and concise description of what the bug is. The following error occurs when I execute DeepSpeed Traceback (most recent call last): File "/root/miniconda3/envs/deepspeed/bin/deepspeed", line 3, in <module> from deepspeed.launcher.runner import main File "/root/miniconda3/envs/deepspeed/lib/python3.10/site-packages/deepspeed/__init__.py", line 10, in <module> import torch File "/root/miniconda3/envs/deepspeed/lib/python3.10/site-packages/torch/__init__.py", line 367, in <module> from torch._C import * # noqa: F403 ImportError: /root/miniconda3/envs/deepspeed/lib/python3.10/site-packages/torch/lib/../../../../libcufft.so.10: cannot read file data **To Reproduce** Steps to reproduce the behavior: 1. Go to '...' 2. Click on '....' 3. Scroll down to '....' 4. See error **Expected behavior** A clear and concise description of what you expected to happen. **ds_report output** Please run `ds_report` to give us details about your setup. **Screenshots** If applicable, add screenshots to help explain your problem. **System info (please complete the following information):** - OS: [e.g. Ubuntu 18.04] - GPU count and types [e.g. two machines with x8 A100s each] - Interconnects (if applicable) [e.g., two machines connected with 100 Gbps IB] - Python version - Any other relevant info about your setup **Launcher context** Are you launching your experiment with the `deepspeed` launcher, MPI, or something else? **Docker context** Are you using a specific docker image that you can share? **Additional context** Add any other context about the problem here.
closed
2024-12-06T02:56:38Z
2024-12-09T18:14:50Z
https://github.com/deepspeedai/DeepSpeed/issues/6827
[ "bug", "training" ]
1259010439
2
jupyter-book/jupyter-book
jupyter
1,631
installation problem
### Describe the bug Hello, I have tried to install jupyter-book inside a virtual environment created with Python3.8.10. And I have errors during the installation (pip install -U jupyter-book) : ERROR: myst-parser 0.15.2 has requirement mdit-py-plugins~=0.2.8, but you'll have mdit-py-plugins 0.3.0 which is incompatible. ERROR: black 22.1.0 has requirement click>=8.0.0, but you'll have click 7.1.2 which is incompatible. ERROR: myst-nb 0.13.1 has requirement sphinx-togglebutton~=0.2.2, but you'll have sphinx-togglebutton 0.3.0 which is incompatible. ERROR: sphinx-book-theme 0.1.10 has requirement docutils<0.17,>=0.15, but you'll have docutils 0.17.1 which is incompatible. In case, it matters, I am on Ubuntu 20.04. Can someone help please ? ### Reproduce the bug pip install -U jupyter-book ### List your environment $ jb --version Jupyter Book : 0.12.1 External ToC : 0.2.3 MyST-Parser : 0.15.2 MyST-NB : 0.13.1 Sphinx Book Theme : 0.1.10 Jupyter-Cache : 0.4.3 NbClient : 0.5.10
closed
2022-02-08T08:48:03Z
2022-02-08T12:44:13Z
https://github.com/jupyter-book/jupyter-book/issues/1631
[ "bug" ]
kamelNaroun
4
CorentinJ/Real-Time-Voice-Cloning
python
724
Unable to unzip VoxCeleb1 and VoxCeleb2
I follow the instructions to download the datasets - VoxCeleb1 and VoxCeleb2 and concatenate the files using "cat vox1_dev* > vox1_dev_wav.zip". However, when I get the following error when I try to unzip it: tar: This does not look like a tar archive tar: Skipping to next header tar: Archive contains ‘\020\313¨/b\374!8\320\373h’ where numeric off_t value expected tar: Archive contains ‘V\001W\216A\306R\201\373\231\020\311’ where numeric off_t value expected tar: Archive contains ‘e\036\363\257N*\225\330[?\242\034’ where numeric off_t value expected tar: Archive contains ‘\272\r\227:jτ\335CT\277G’ where numeric off_t value expected tar: Exiting with failure status due to previous errors Kindly let me know how the datasets are supposed to be downloaded and used. Thank you!
closed
2021-04-05T12:04:18Z
2021-04-09T19:32:52Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/724
[]
namanshah971
3
okken/pytest-check
pytest
171
check doesn't respect runxfail option
When `runxfail` option is set (`pytest --runxfail ...`) tests that use `check` are reported as xfail instead of failed: _xfail_test.py_ ```python import pytest @pytest.mark.xfail(reason="foo") def test_xfail(check): with check: # with this line gone, this is actual behaviour assert False ``` # Expected behaviour ```bash $ pytest --runxfail xfail_test.py ================================================================ test session starts ================================================================= platform linux -- Python 3.10.12, pytest-8.3.4, pluggy-1.5.0 rootdir: /home/taylermulligan/pytest_xfail plugins: check-2.4.1 collected 1 item xfail_test.py F [100%] ====================================================================== FAILURES ====================================================================== _____________________________________________________________________ test_xfail _____________________________________________________________________ check = <pytest_check.context_manager.CheckContextManager object at 0x7f2db410d120> @pytest.mark.xfail(reason="foo") def test_xfail(check): > assert False E assert False xfail_test.py:5: AssertionError ============================================================== short test summary info =============================================================== FAILED xfail_test.py::test_xfail - assert False ================================================================= 1 failed in 0.01s ================================================================== ``` # Actual behaviour ```bash $ pytest --runxfail xfail_test.py ================================================================ test session starts ================================================================= platform linux -- Python 3.10.12, pytest-8.3.4, pluggy-1.5.0 rootdir: /home/taylermulligan/pytest_xfail plugins: check-2.4.1 collected 1 item xfail_test.py x [100%] ================================================================= 1 xfailed in 0.03s ================================================================= ```
closed
2024-12-10T21:04:43Z
2025-02-09T20:57:04Z
https://github.com/okken/pytest-check/issues/171
[]
taylermulligan
0
python-gino/gino
sqlalchemy
265
Compatibility with Python 3.7
- [x] Quart support for 3.7 (https://gitlab.com/pgjones/quart/merge_requests/19) - [x] Remove watchdog and PyYAML dependencies - [x] Travis tests for 3.7 (https://github.com/travis-ci/travis-ci/issues/9815)
closed
2018-07-02T05:56:09Z
2018-07-06T03:28:43Z
https://github.com/python-gino/gino/issues/265
[]
wwwjfy
2
google-research/bert
nlp
1,066
BERT-Tiny,BERT-Mini,BERT-Small,BERT-Medium - TF 2.0 checkpoints
Hi All , I am looking at BERT checkpoint here - https://github.com/tensorflow/models/tree/master/official/nlp/bert for TF 2.0 . Are checkpoints for BERT-Tiny,BERT-Mini,BERT-Small,BERT-Medium avaialbe in TF 2.0 ?
closed
2020-04-20T17:42:37Z
2020-08-14T19:17:55Z
https://github.com/google-research/bert/issues/1066
[]
17patelumang
2
aleju/imgaug
machine-learning
262
generate trapeze
Hello, With imgaug, I would like to transform the image to a trapeze. How I can do this ? ``` +--+ ++ | | to / \ +--+ +---+ ``` Thanks
open
2019-02-19T15:56:36Z
2019-02-25T09:35:16Z
https://github.com/aleju/imgaug/issues/262
[]
pprados
2
CTFd/CTFd
flask
1,774
Customize challenge submission response
We should probably be able to customize how a challenge submission response looks. LIke be able to change an alert to a toast or a modal or something and be able to customize the text in it.
open
2021-01-08T21:27:13Z
2021-01-08T21:27:13Z
https://github.com/CTFd/CTFd/issues/1774
[]
ColdHeat
0
2noise/ChatTTS
python
171
欢迎体验啊
欢迎体验: https://chattts.sctux.cc ![image](https://github.com/2noise/ChatTTS/assets/9714859/57078e31-c5a1-4b20-a458-a7b0d0ea08db)
closed
2024-06-01T08:43:26Z
2024-06-17T03:36:11Z
https://github.com/2noise/ChatTTS/issues/171
[]
guomaoqiu
3
HumanSignal/labelImg
deep-learning
792
Error opening file
The codes in labelImg.py only take 'jpg' types into consideration. Thus when the images' type isn't 'jpg' actually, it couldn't work out elegantly, like this: ![image](https://user-images.githubusercontent.com/31696569/132331781-cec9b721-6b5c-4c37-be0f-66a08a1c0631.png) - **OS:** Windows + anaconda - **PyQt version:** 5.9.7
open
2021-09-07T10:48:34Z
2021-11-19T13:33:15Z
https://github.com/HumanSignal/labelImg/issues/792
[]
Venessa-wei
8
2noise/ChatTTS
python
139
无法生成语音
<img width="1685" alt="image" src="https://github.com/2noise/ChatTTS/assets/10117682/aa8fba07-868f-4172-9910-884710233fb8"> 正常安装,在UI里输入文字,生成语音时无限等待。
closed
2024-05-31T09:53:52Z
2024-06-19T03:55:10Z
https://github.com/2noise/ChatTTS/issues/139
[]
swizardlv
7
ydataai/ydata-profiling
pandas
831
Correlation options in "Advanced Usage" not works as expected
Trying to run profiling with: profile = ProfileReport( postgres_db_table, title=db_parameter_dict["tableName"], html={"style": {"full_width": True}}, sort=None, minimal=None, interactions={'continuous': False}, orange_mode=True, correlations={ "pearson": {"calculate": True,"warn_high_correlations":True,"threshold":0.9}, "spearman": {"calculate": False}, "kendall": {"calculate": False}, "phi_k": {"calculate": False}, "cramers": {"calculate": False}, } ) parameters but no correlation visualizations shows up on report html. So i want to run just "Pearson" correlation but i can't. When i try parameters below: ProfileReport( postgres_db_table, title=db_parameter_dict["tableName"], html={"style": {"full_width": True}}, sort=None, minimal=None, interactions={'continuous': False}, orange_mode=True, correlations={"pearson": {"calculate": True}} ) Only "Phik, Cramers V" tabs shows up in profiling report html. To Reproduce Data: Famous Titanic dataset with 889 records and ['id', 'survived', 'pclass', 'name', 'sex', 'age', 'sibsp', 'parch', 'ticket', 'fare', 'embarked'] columns Version information: python: 3.7.0 Environment: Jupyter Notebook <details><summary>Click to expand <strong><em>Version information</em></strong></summary> <p> absl-py==0.13.0 adal==1.2.6 alembic==1.4.1 altair==4.1.0 amqp==2.6.1 apispec==3.3.2 appdirs==1.4.4 astroid==2.3.1 astunparse==1.6.3 atomicwrites==1.4.0 attrs==20.3.0 autopep8==1.5 azure-common==1.1.26 azure-graphrbac==0.61.1 azure-mgmt-authorization==0.61.0 azure-mgmt-containerregistry==2.8.0 azure-mgmt-keyvault==2.2.0 azure-mgmt-resource==12.0.0 azure-mgmt-storage==11.2.0 azureml-core==1.23.0 Babel==2.8.0 backcall==0.1.0 backoff==1.10.0 backports.tempfile==1.0 backports.weakref==1.0.post1 bcrypt==3.2.0 beautifulsoup4==4.9.0 billiard==3.6.3.0 bleach==3.1.0 bokeh==2.3.1 Boruta==0.3 boto==2.49.0 boto3==1.12.9 botocore==1.15.9 Bottleneck==1.3.2 Brotli==1.0.9 bs4==0.0.1 bson==0.5.9 cached-property==1.5.2 cachelib==0.1.1 cachetools==4.2.1 celery==4.4.7 certifi==2019.9.11 cffi==1.14.3 chardet==3.0.4 chart-studio==1.1.0 clang==5.0 click==8.0.0 cloudpickle==1.6.0 colorama==0.4.1 colorcet==2.0.6 colorlover==0.3.0 colour==0.1.5 confuse==1.4.0 contextlib2==0.6.0.post1 croniter==0.3.34 cryptography==3.2 cssselect==1.1.0 cufflinks==0.17.3 cx-Oracle==7.2.3 cycler==0.10.0 d6tcollect==1.0.5 d6tstack==0.2.0 dash==1.16.1 dash-core-components==1.12.1 dash-html-components==1.1.1 dash-renderer==1.8.1 dash-table==4.10.1 databricks-cli==0.14.2 dataclasses==0.6 decorator==4.4.0 defusedxml==0.6.0 dnspython==2.0.0 docker==4.4.4 docopt==0.6.2 docutils==0.15.2 dtreeviz==1.3 email-validator==1.1.1 entrypoints==0.3 et-xmlfile==1.0.1 exitstatus==1.4.0 extratools==0.8.2.1 fake-useragent==0.1.11 feature-selector===N-A findspark==1.4.2 Flask==1.1.1 Flask-AppBuilder==3.0.1 Flask-Babel==1.0.0 Flask-Caching==1.9.0 Flask-Compress==1.5.0 Flask-Cors==3.0.10 Flask-JWT-Extended==3.24.1 Flask-Login==0.4.1 Flask-Migrate==2.5.3 Flask-OpenID==1.2.5 Flask-SQLAlchemy==2.4.4 flask-talisman==0.7.0 Flask-WTF==0.14.3 flatbuffers==1.12 future==0.18.2 gast==0.4.0 gensim==3.8.1 geographiclib==1.50 geopy==2.0.0 gitdb==4.0.5 GitPython==3.1.14 google-api-core==1.26.0 google-auth==1.27.0 google-auth-oauthlib==0.4.6 google-cloud-core==1.6.0 google-cloud-storage==1.36.1 google-crc32c==1.1.2 google-pasta==0.2.0 google-resumable-media==1.2.0 googleapis-common-protos==1.53.0 graphviz==0.17 great-expectations==0.13.19 grpcio==1.40.0 gunicorn==20.0.4 h5py==3.1.0 htmlmin==0.1.12 humanize==2.6.0 idna==2.8 ImageHash==4.2.0 imageio==2.9.0 imbalanced-learn==0.5.0 imblearn==0.0 imgkit==1.2.2 importlib-metadata==1.7.0 iniconfig==1.1.1 instaloader==4.7.1 ipykernel==5.1.2 ipython==7.8.0 ipython-genutils==0.2.0 ipywidgets==7.5.1 isodate==0.6.0 isort==4.3.21 itsdangerous==1.1.0 jdcal==1.4.1 jedi==0.15.1 jeepney==0.6.0 Jinja2==2.11.2 jmespath==0.9.5 joblib==1.0.0 json5==0.8.5 jsonpatch==1.32 jsonpickle==2.0.0 jsonpointer==2.1 jsonschema==3.0.2 jupyter==1.0.0 jupyter-client==6.1.11 jupyter-console==6.2.0 jupyter-contrib-core==0.3.3 jupyter-contrib-nbextensions==0.5.1 jupyter-core==4.7.0 jupyter-highlight-selected-word==0.2.0 jupyter-latex-envs==1.4.6 jupyter-nbextensions-configurator==0.4.1 jupyterlab==1.1.3 jupyterlab-server==1.0.6 jupyterthemes==0.20.0 karateclub==1.0.11 keras==2.6.0 Keras-Preprocessing==1.1.2 kiwisolver==1.1.0 kombu==4.6.11 kubernetes==12.0.1 lazy-object-proxy==1.4.2 lesscpy==0.14.0 lightgbm==2.2.3 llvmlite==0.35.0 lxml==4.5.0 Mako==1.1.3 Markdown==3.2.2 MarkupSafe==1.1.1 marshmallow==3.8.0 marshmallow-enum==1.5.1 marshmallow-sqlalchemy==0.23.1 matplotlib==3.4.1 mccabe==0.6.1 MechanicalSoup==0.12.0 metakernel==0.27.5 missingno==0.4.2 mistune==0.8.4 mleap==0.16.1 mlxtend==0.17.3 msgpack==1.0.0 msrest==0.6.21 msrestazure==0.6.4 multimethod==1.4 natsort==7.0.1 nbconvert==5.6.0 nbformat==4.4.0 ndg-httpsclient==0.5.1 networkx==2.4 notebook==6.0.1 numba==0.52.0 numpy==1.19.5 oauthlib==3.1.0 openpyxl==3.0.6 opt-einsum==3.3.0 packaging==20.9 pandas==1.1.5 pandas-profiling==3.0.0 pandocfilters==1.4.2 param==1.10.1 paramiko==2.7.2 parse==1.15.0 parsedatetime==2.6 parso==0.5.1 pathlib2==2.3.5 pathspec==0.8.1 patsy==0.5.1 pexpect==4.8.0 phik==0.11.2 pickleshare==0.7.5 Pillow==8.2.0 plotly==4.14.3 pluggy==0.13.1 ply==3.11 polyline==1.4.0 prefixspan==0.5.2 prison==0.1.3 prometheus-client==0.7.1 prometheus-flask-exporter==0.18.1 prompt-toolkit==2.0.9 protobuf==3.15.4 psutil==5.7.0 psycopg2==2.8.6 ptyprocess==0.6.0 py==1.10.0 pyarrow==3.0.0 pyasn1==0.4.8 pyasn1-modules==0.2.8 pycodestyle==2.5.0 pycparser==2.20 pyct==0.4.8 pydantic==1.8.2 pydot==1.4.2 pyee==7.0.2 Pygments==2.4.2 PyGSP==0.5.1 PyJWT==1.7.1 pylint==2.4.2 pymssql==2.1.5 PyNaCl==1.4.0 pyodbc==4.0.27 pyOpenSSL==20.0.1 pyparsing==2.4.2 pyppeteer==0.2.2 pyquery==1.4.1 pyrsistent==0.15.4 pysftp==0.2.9 PySocks==1.7.1 pytest==6.2.4 python-dateutil==2.8.1 python-dotenv==0.14.0 python-editor==1.0.4 python-louvain==0.13 python3-openid==3.2.0 pytz==2019.2 PyWavelets==1.1.1 pywin32==227 pywinpty==0.5.5 PyYAML==5.3 pyzmq==18.1.0 qtconsole==5.0.1 QtPy==1.9.0 querystring-parser==1.2.4 requests==2.25.1 requests-html==0.10.0 requests-oauthlib==1.3.0 retrying==1.3.3 rsa==4.7.2 ruamel.yaml==0.16.12 ruamel.yaml.clib==0.2.2 s3transfer==0.3.3 scikit-image==0.18.1 scikit-learn==0.23.2 scikit-plot==0.3.7 scipy==1.6.0 seaborn==0.11.1 SecretStorage==3.3.1 Send2Trash==1.5.0 shap==0.36.0 Shapely==1.7.1 six==1.15.0 sklearn==0.0 slicer==0.0.7 smart-open==1.9.0 smmap==3.0.5 sortedcontainers==2.3.0 soupsieve==2.0 spylon==0.3.0 spylon-kernel==0.4.1 SQLAlchemy==1.3.19 SQLAlchemy-Utils==0.36.8 sqlparse==0.4.1 statsmodels==0.9.0 tabulate==0.8.9 tangled-up-in-unicode==0.1.0 tensorboard==2.6.0 tensorboard-data-server==0.6.1 tensorboard-plugin-wit==1.8.0 tensorflow==2.6.0 tensorflow-estimator==2.6.0 termcolor==1.1.0 terminado==0.8.2 testpath==0.4.2 threadpoolctl==2.1.0 tifffile==2021.4.8 toml==0.10.2 toolz==0.11.1 tornado==6.0.3 tqdm==4.60.0 traitlets==4.3.2 tweepy==3.8.0 twitter-scraper==0.4.2 typed-ast==1.4.0 typing-extensions==3.7.4.3 tzlocal==2.1 urllib3==1.25.9 vine==1.3.0 virtualenv==16.7.9 visions==0.7.1 w3lib==1.22.0 waitress==1.4.4 wcwidth==0.1.7 webencodings==0.5.1 websocket-client==0.58.0 websockets==8.1 Werkzeug==1.0.0 widgetsnbextension==3.5.1 wrapt==1.12.1 WTForms==2.3.3 xgboost==1.1.1 xlrd==1.2.0 XlsxWriter==1.2.2 yellowbrick==0.7 zipp==3.1.0 </p> </details>
open
2021-09-21T13:45:44Z
2021-09-21T13:45:44Z
https://github.com/ydataai/ydata-profiling/issues/831
[]
enesMesut
0
fastapi/sqlmodel
sqlalchemy
66
postgreSQL: SQLModel.metadata.create_all(engine) doesn't create the database file
### First Check - [X] I added a very descriptive title to this issue. - [X] I used the GitHub search to find a similar issue and didn't find it. - [X] I searched the SQLModel documentation, with the integrated search. - [X] I already searched in Google "How to X in SQLModel" and didn't find any information. - [X] I already read and followed all the tutorial in the docs and didn't find an answer. - [X] I already checked if it is not related to SQLModel but to [Pydantic](https://github.com/samuelcolvin/pydantic). - [X] I already checked if it is not related to SQLModel but to [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy). ### Commit to Help - [X] I commit to help with one of those options 👆 ### Example Code ```python from datetime import datetime from typing import Optional, Dict from sqlmodel import Field, SQLModel, create_engine class SemanticSearch(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) id_user: int date_time: datetime query: str clean_query: str engine = create_engine('postgresql://postgres:postgres@localhost:5432/embeddings_sts_tf', echo=True) SQLModel.metadata.create_all(engine) ``` ### Description Following the tutorial user guide based on sqlite I tried to do the same with postgresql database, but contrary to sqlite the `SQLModel.metadata.create_all(engine)` command doesn't seem to create my `embeddings_sts_tf` postgresql database ### Operating System Linux ### Operating System Details Ubuntu 18.04 LTS ### SQLModel Version 0.0.4 ### Python Version 3.8.8 ### Additional Context _No response_
open
2021-09-01T11:34:29Z
2021-09-02T21:28:11Z
https://github.com/fastapi/sqlmodel/issues/66
[ "question" ]
Matthieu-Tinycoaching
1
gunthercox/ChatterBot
machine-learning
1,641
Create bot for Support engineer
I have huge data of chats between clients and support Engineer for Perticula Software product, how I can create data set from this conversation so I would be able to Use ChatteBot as assistant to Support Engineer?
closed
2019-02-25T19:38:15Z
2025-02-25T22:50:46Z
https://github.com/gunthercox/ChatterBot/issues/1641
[]
arshpreetsingh
1
desec-io/desec-stack
rest-api
298
Replace Legacy DynDNS-Setup Checker with Forwarder to new Version
.. to save maintenance for two versions. The legacy version can be found at [dedyn.io/check/](https://dedyn.io/check) and https://github.com/desec-io/desec-stack/blob/master/www/html/check.html, respectively.
open
2020-02-07T09:20:12Z
2020-02-07T09:20:12Z
https://github.com/desec-io/desec-stack/issues/298
[]
nils-wisiol
0
kevlened/pytest-parallel
pytest
104
Maintainers needed
The project is not totally unmaintained but only minimal maintenance is done, and only obvious bugfixes will be quickly merged and released. If you want your pull request to be merged, please ask some other competent contributors to [review your patch](https://docs.github.com/en/github/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/reviewing-proposed-changes-in-a-pull-request#submitting-your-review). If you are interested in maintaining this project, please answer this issue.
open
2021-10-10T16:10:51Z
2023-12-26T23:34:15Z
https://github.com/kevlened/pytest-parallel/issues/104
[]
azmeuk
5
benbusby/whoogle-search
flask
367
[DMCA] <Search Results are removed in google (DMCA Takedown) >
Search results are ***censored*** by google (DMCA) Is there a way to show the results that are blocked? (I don't think so, This can't be done without doing crawling) Is there a way to implement this by looking at the urls that google's blocking?
closed
2021-06-22T06:52:05Z
2021-06-27T12:22:18Z
https://github.com/benbusby/whoogle-search/issues/367
[ "question" ]
Albonycal
2
d2l-ai/d2l-en
machine-learning
2,099
Need to tune performance for MXNet & TensorFlow for seq2seq
http://preview.d2l.ai.s3-website-us-west-2.amazonaws.com/d2l-en/master/chapter_recurrent-modern/seq2seq.html http://preview.d2l.ai.s3-website-us-west-2.amazonaws.com/d2l-en/master/chapter_attention-mechanisms/bahdanau-attention.html http://preview.d2l.ai.s3-website-us-west-2.amazonaws.com/d2l-en/master/chapter_attention-mechanisms/transformer.html We need to tune performance for MXNet & TensorFlow to obtain similar performance of PyTorch for each section, such as learning rate & max_epochs.
open
2022-04-13T07:55:48Z
2022-05-16T13:23:18Z
https://github.com/d2l-ai/d2l-en/issues/2099
[]
astonzhang
1
datadvance/DjangoChannelsGraphqlWs
graphql
11
Incompatibility with channels-rabbitmq
I got errors when trying to use django-channels-graphql-ws together with channels-rabbitmq, see https://github.com/CJWorkbench/channels_rabbitmq/issues/3. I don't understand the intricacies of the underlying problem, but I think you might at least appreciate the analysis provided by channels-rabbitmq's maintainer in the linked issue.
closed
2019-04-05T15:16:55Z
2019-04-20T01:43:43Z
https://github.com/datadvance/DjangoChannelsGraphqlWs/issues/11
[]
rakyi
1
kizniche/Mycodo
automation
1,196
Add K-96 multi gas GHG sensor for CH4, CO2, N2O
**Is your feature request related to a problem? Please describe.** A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] Dear Mycodo team, We are developing a new open-source soil greenhouse gas reader for farm application. this will use the newer Sense-air K-96 NDIR sensor or the existing K30 NDIR sensor to record CH4 and CO2 gas flux. This project is part of a USDA NIFA-supported program for open-source farming. I'm interested in a new feature - adding a K-96 sensor. **Describe the solution you'd like** A clear and concise description of what you want to happen. I need to add the K96 code to the input library. **Describe alternatives you've considered** A clear and concise description of any alternative solutions or features you've considered. This will supplement the K30 sensor option with a newer generation of more precise multi-gas NDIR sensors. **Additional context** Add any other context or screenshots about the feature request here. Sens-air provided the python code they are using to operate the sensor - see attached. [K96_ReadLog_v220516.txt](https://github.com/kizniche/Mycodo/files/8740610/K96_ReadLog_v220516.txt)
closed
2022-05-20T13:46:23Z
2024-10-04T04:00:57Z
https://github.com/kizniche/Mycodo/issues/1196
[ "enhancement", "Testing" ]
alonrab
14
wger-project/wger
django
1,183
Provide a way to let users donate using crypto currencies
## Use case Due to your great work on this project, good support and responsibility, I (and maybe some other people like me) want to donate to Wger project using crypto-currencies. Please provide a way to do so.
open
2022-11-16T20:06:46Z
2023-03-02T10:48:33Z
https://github.com/wger-project/wger/issues/1183
[]
mohammadrafigh
1
PokemonGoF/PokemonGo-Bot
automation
5,511
gmail login makes bot crash at start up
### Expected Behavior Bot to login with gmail account and start ### Actual Behavior Bot crashes right at start up. config.json: ``` { "websocket_server": false, "heartbeat_threshold": 10, "enable_social": true, "live_config_update": { "enabled": false, "tasks_only": false }, "tasks": [ { "//NOTE: This task MUST be placed on the top of task list": {}, "type": "RandomAlivePause", "config": { "enabled": false, "min_duration": "00:00:10", "max_duration": "00:10:00", "min_interval": "00:05:00", "max_interval": "01:30:00" } }, { "type": "HandleSoftBan" }, { "type": "CompleteTutorial", "config": { "enabled": false, "// set a name": "", "nickname": "", "// 0 = No Team, 1 = Blue, 2 = Red, 3 = Yellow": "", "team": 0 } }, { "type": "CollectLevelUpReward", "config": { "collect_reward": true, "level_limit": -1 } }, { "type": "IncubateEggs", "config": { "enabled": true, "infinite_longer_eggs_first": false, "breakable_longer_eggs_first": true, "min_interval": 120 } }, { "type": "UpdateLiveStats", "config": { "enabled": false, "min_interval": 10, "stats": ["uptime", "stardust_earned", "xp_earned", "xp_per_hour", "stops_visited"], "terminal_log": true, "terminal_title": true } }, { "type": "UpdateLiveInventory", "config": { "enabled": false, "min_interval": 120, "show_all_multiple_lines": false, "items": ["pokemon_bag", "space_info", "pokeballs", "greatballs", "ultraballs", "razzberries", "luckyegg"] } }, { "type": "ShowBestPokemon", "config": { "enabled": true, "min_interval": 60, "amount": 5, "order_by": "cp", "info_to_show": ["cp", "ivcp", "dps", "hp"] } }, { "type": "TransferPokemon", "config": { "enabled": true, "min_free_slot": 5, "transfer_wait_min": 3, "transfer_wait_max": 5 } }, { "type": "NicknamePokemon", "config": { "enabled": false, "nickname_above_iv": 0.9, "nickname_template": "{iv_pct}-{iv_ads}", "nickname_wait_min": 3, "nickname_wait_max": 5 } }, { "type": "EvolvePokemon", "config": { "enabled": false, "// evolve only pidgey and drowzee": "", "// evolve_list": "pidgey, drowzee", "// donot_evolve_list": "none", "// evolve all but pidgey and drowzee": "", "// evolve_list": "all", "// donot_evolve_list": "pidgey, drowzee", "evolve_list": "all", "donot_evolve_list": "none", "first_evolve_by": "cp", "evolve_above_cp": 500, "evolve_above_iv": 0.8, "logic": "or", "evolve_speed": 20, "min_pokemon_to_be_evolved": 1, "use_lucky_egg": false } }, { "type": "RecycleItems", "config": { "enabled": true, "min_empty_space": 15, "max_balls_keep": 150, "max_potions_keep": 50, "max_berries_keep": 70, "max_revives_keep": 70, "item_filter": { "Pokeball": { "keep" : 100 }, "Potion": { "keep" : 10 }, "Super Potion": { "keep" : 20 }, "Hyper Potion": { "keep" : 30 }, "Revive": { "keep" : 30 }, "Razz Berry": { "keep" : 100 } }, "recycle_wait_min": 3, "recycle_wait_max": 5, "recycle_force": true, "recycle_force_min": "00:01:00", "recycle_force_max": "00:05:00" } }, { "type": "CatchPokemon", "config": { "enabled": true, "catch_visible_pokemon": true, "catch_lured_pokemon": true, "min_ultraball_to_keep": 5, "berry_threshold": 0.35, "vip_berry_threshold": 0.9, "treat_unseen_as_vip": true, "daily_catch_limit": 800, "vanish_settings": { "consecutive_vanish_limit": 10, "rest_duration_min": "02:00:00", "rest_duration_max": "04:00:00" }, "catch_throw_parameters": { "excellent_rate": 0.1, "great_rate": 0.5, "nice_rate": 0.3, "normal_rate": 0.1, "spin_success_rate" : 0.6 }, "catch_simulation": { "flee_count": 3, "flee_duration": 2, "catch_wait_min": 3, "catch_wait_max": 6, "berry_wait_min": 3, "berry_wait_max": 5, "changeball_wait_min": 3, "changeball_wait_max": 5, "newtodex_wait_min": 20, "newtodex_wait_max": 30 } } }, { "type": "SpinFort", "config": { "enabled": true, "spin_wait_min": 3, "spin_wait_max": 5 } }, { "type": "UpdateWebInventory", "config": { "enabled": true } }, { "type": "MoveToFort", "config":{ "enabled": true, "lure_attraction": true, "lure_max_distance": 2000, "log_interval": 5 } }, { "type": "FollowSpiral", "config": { "enabled": true, "diameter": 4, "step_size": 70 } } ], "map_object_cache_time": 5, "forts": { "avoid_circles": true, "max_circle_size": 50, "cache_recent_forts": true }, "pokemon_bag": { "// if 'show_at_start' is true, it will log all the pokemons in the bag (not eggs) at bot start": {}, "show_at_start": true, "// if 'show_count' is true, it will show the amount of each pokemon (minimum 1)": {}, "show_count": false, "// if 'show_candies' is true, it will show the amount of candies for each pokemon": {}, "show_candies": false, "// 'pokemon_info' parameter define which info to show for each pokemon": {}, "// the available options are": {}, "// ['cp', 'iv_ads', 'iv_pct', 'ivcp', 'ncp', 'level', 'hp', 'moveset', 'dps']": {}, "pokemon_info": ["cp", "iv_pct"] }, "walk_max": 4.16, "walk_min": 2.16, "alt_min": 500, "alt_max": 1000, "sleep_schedule": { "enabled": true, "enable_reminder": false, "reminder_interval": 600, "entries": [ { "enabled": true, "time": "2:00", "duration": "5:30", "time_random_offset": "00:30", "duration_random_offset": "00:30", "wake_up_at_location": "" }, { "enabled": true, "time": "17:45", "duration": "3:00", "time_random_offset": "01:00", "duration_random_offset": "00:30", "wake_up_at_location": "" } ] }, "debug": false, "test": false, "walker_limit_output": false, "health_record": true, "location_cache": true, "distance_unit": "km", "reconnecting_timeout": 15, "logging": { "color": true, "show_datetime": true, "show_process_name": true, "show_log_level": true }, "catch": { "any": {"catch_above_cp": 0, "catch_above_iv": 0, "logic": "or" }, "// Pokemons with example": { "always_catch": true }, "// Gets filtered with release parameters": {}, "// Legendary pokemons (Goes under S-Tier)": {}, "Lapras": { "always_catch": true }, "Moltres": { "always_catch": true }, "Zapdos": { "always_catch": true }, "Articuno": { "always_catch": true }, "// S-Tier pokemons (if pokemon can be evolved into tier, list the representative)": {}, "Mewtwo": { "always_catch": true }, "Dragonite": { "always_catch": true }, "Snorlax": { "always_catch": true }, "// Mew evolves to Mewtwo": {}, "Mew": { "always_catch": true }, "Arcanine": { "always_catch": true }, "Vaporeon": { "always_catch": true }, "Gyarados": { "always_catch": true }, "Exeggutor": { "always_catch": true }, "Muk": { "always_catch": true }, "Weezing": { "always_catch": true }, "Flareon": { "always_catch": true }, "// Growlithe evolves to Arcanine": {}, "Growlithe": { "always_catch": true }, "// Dragonair evolves to Dragonite": {}, "Dragonair": { "always_catch": true }, "// Grimer evolves to Muk": {}, "Grimer": { "always_catch": true }, "// Magikarp evolves to Gyarados": {}, "Magikarp": { "always_catch": true }, "// Exeggcute evolves to Exeggutor": {}, "Exeggcute": { "always_catch": true }, "// Eevee evolves to many versions, like Vaporeon, Flareon": {}, "Eevee": { "always_catch": true }, "// A-Tier pokemons": {}, "Slowbro": { "always_catch": true }, "Victreebel": { "always_catch": true }, "Machamp": { "always_catch": true }, "Poliwrath": { "always_catch": true }, "Clefable": { "always_catch": true }, "Nidoking": { "always_catch": true }, "Venusaur": { "always_catch": true }, "Charizard": { "always_catch": true }, "Golduck": { "always_catch": true }, "Nidoqueen": { "always_catch": true }, "Vileplume": { "always_catch": true }, "Blastoise": { "always_catch": true }, "Omastar": { "always_catch": true }, "Aerodactyl": { "always_catch": true }, "Golem": { "always_catch": true }, "Wigglytuff": { "always_catch": true }, "Dewgong": { "always_catch": true }, "Ninetales": { "always_catch": true }, "Magmar": { "always_catch": true }, "Kabutops": { "always_catch": true }, "Electabuzz": { "always_catch": true }, "Starmie": { "always_catch": true }, "Jolteon": { "always_catch": true }, "Rapidash": { "always_catch": true }, "Pinsir": { "always_catch": true }, "Scyther": { "always_catch": true }, "Tentacruel": { "always_catch": true }, "Gengar": { "always_catch": true }, "Hypno": { "always_catch": true }, "Pidgeot": { "always_catch": true }, "Rhydon": { "always_catch": true }, "Seaking": { "always_catch": true }, "Kangaskhan": { "always_catch": true } }, "release": { "any": {"release_below_cp": 0, "release_below_iv": 0, "release_below_ivcp": 0, "logic": "or" }, "// Legendary pokemons (Goes under S-Tier)": {}, "Lapras": { "release_below_cp": 1041, "release_below_iv": 0.8, "logic": "and" }, "Moltres": { "release_below_cp": 1132, "release_below_iv": 0.8, "logic": "and" }, "Zapdos": { "release_below_cp": 1087, "release_below_iv": 0.8, "logic": "and" }, "Articuno": { "release_below_cp": 1039, "release_below_iv": 0.8, "logic": "and" }, "// S-Tier pokemons (if pokemon can be evolved into tier, list the representative)": {}, "Mewtwo": { "release_below_cp": 1447, "release_below_iv": 0.8, "logic": "and"}, "Dragonite": { "release_below_cp": 1221, "release_below_iv": 0.8, "logic": "and" }, "Snorlax": { "release_below_cp": 1087, "release_below_iv": 0.8, "logic": "and" }, "// Mew evolves to Mewtwo": {}, "Mew": { "release_below_cp": 1152, "release_below_iv": 0.8, "logic": "and" }, "Arcanine": { "release_below_cp": 1041, "release_below_iv": 0.8, "logic": "and" }, "Vaporeon": { "release_below_cp": 984, "release_below_iv": 0.8, "logic": "and" }, "Gyarados": { "release_below_cp": 938, "release_below_iv": 0.8, "logic": "and" }, "Exeggutor": { "release_below_cp": 1032, "release_below_iv": 0.8, "logic": "and" }, "Muk": { "release_below_cp": 909, "release_below_iv": 0.8, "logic": "and" }, "Weezing": { "release_below_cp": 784, "release_below_iv": 0.8, "logic": "and" }, "Flareon": { "release_below_cp": 924, "release_below_iv": 0.8, "logic": "and" }, "// Growlithe evolves to Arcanine": {}, "Growlithe": { "release_below_cp": 465, "release_below_iv": 0.8, "logic": "and" }, "// Dragonair evolves to Dragonite": {}, "Dragonair": { "release_below_cp": 609, "release_below_iv": 0.8, "logic": "and" }, "// Grimer evolves to Muk": {}, "Grimer": { "release_below_cp": 448, "release_below_iv": 0.8, "logic": "and" }, "// Magikarp evolves to Gyarados": {}, "Magikarp": { "release_below_cp": 91, "release_below_iv": 0.8, "logic": "and" }, "// Exeggcute evolves to Exeggutor": {}, "Exeggcute": { "release_below_cp": 384, "release_below_iv": 0.8, "logic": "and" }, "// Eevee evolves to many versions, like Vaporeon, Flareon": {}, "Eevee": { "release_below_cp": 376, "release_below_iv": 0.8, "logic": "and" }, "// A-Tier pokemons": {}, "Slowbro": { "release_below_cp": 907, "release_below_iv": 0.8, "logic": "and" }, "Victreebel": { "release_below_cp": 883, "release_below_iv": 0.8, "logic": "and" }, "Machamp": { "release_below_cp": 907, "release_below_iv": 0.8, "logic": "and" }, "Poliwrath": { "release_below_cp": 876, "release_below_iv": 0.8, "logic": "and" }, "Clefable": { "release_below_cp": 837, "release_below_iv": 0.8, "logic": "and" }, "Nidoking": { "release_below_cp": 864, "release_below_iv": 0.8, "logic": "and" }, "Venusaur": { "release_below_cp": 902, "release_below_iv": 0.8, "logic": "and" }, "Charizard": { "release_below_cp": 909, "release_below_iv": 0.8, "logic": "and" }, "Golduck": { "release_below_cp": 832, "release_below_iv": 0.8, "logic": "and" }, "Nidoqueen": { "release_below_cp": 868, "release_below_iv": 0.8, "logic": "and" }, "Vileplume": { "release_below_cp": 871, "release_below_iv": 0.8, "logic": "and" }, "Blastoise": { "release_below_cp": 888, "release_below_iv": 0.8, "logic": "and" }, "Omastar": { "release_below_cp": 780, "release_below_iv": 0.8, "logic": "and" }, "Aerodactyl": { "release_below_cp": 756, "release_below_iv": 0.8, "logic": "and" }, "Golem": { "release_below_cp": 804, "release_below_iv": 0.8, "logic": "and" }, "Wigglytuff": { "release_below_cp": 760, "release_below_iv": 0.8, "logic": "and" }, "Dewgong": { "release_below_cp": 748, "release_below_iv": 0.8, "logic": "and" }, "Ninetales": { "release_below_cp": 763, "release_below_iv": 0.8, "logic": "and" }, "Magmar": { "release_below_cp": 792, "release_below_iv": 0.8, "logic": "and" }, "Kabutops": { "release_below_cp": 744, "release_below_iv": 0.8, "logic": "and" }, "Electabuzz": { "release_below_cp": 739, "release_below_iv": 0.8, "logic": "and" }, "Starmie": { "release_below_cp": 763, "release_below_iv": 0.8, "logic": "and" }, "Jolteon": { "release_below_cp": 746, "release_below_iv": 0.8, "logic": "and" }, "Rapidash": { "release_below_cp": 768, "release_below_iv": 0.8, "logic": "and" }, "Pinsir": { "release_below_cp": 741, "release_below_iv": 0.8, "logic": "and" }, "Scyther": { "release_below_cp": 724, "release_below_iv": 0.8, "logic": "and" }, "Tentacruel": { "release_below_cp": 775, "release_below_iv": 0.8, "logic": "and" }, "Gengar": { "release_below_cp": 724, "release_below_iv": 0.8, "logic": "and" }, "Hypno": { "release_below_cp": 763, "release_below_iv": 0.8, "logic": "and" }, "Pidgeot": { "release_below_cp": 729, "release_below_iv": 0.8, "logic": "and" }, "Rhydon": { "release_below_cp": 782, "release_below_iv": 0.8, "logic": "and" }, "Seaking": { "release_below_cp": 712, "release_below_iv": 0.8, "logic": "and" }, "Kangaskhan": { "release_below_cp": 712, "release_below_iv": 0.8, "logic": "and" }, "// Koffing evolves to Weezing (A-Tier)": {}, "Koffing": { "release_below_cp": 403, "release_below_iv": 0.8, "logic": "and" }, "// Below is B-tier and lower pokemons": {}, "Caterpie": { "release_below_cp": 156, "release_below_iv": 0.8, "logic": "and" }, "Weedle": { "release_below_cp": 156, "release_below_iv": 0.8, "logic": "and" }, "Diglett": { "release_below_cp": 158, "release_below_iv": 0.8, "logic": "and" }, "Metapod": { "release_below_cp": 168, "release_below_iv": 0.8, "logic": "and" }, "Kakuna": { "release_below_cp": 170, "release_below_iv": 0.8, "logic": "and" }, "Rattata": { "release_below_cp": 204, "release_below_iv": 0.8, "logic": "and" }, "Abra": { "release_below_cp": 208, "release_below_iv": 0.8, "logic": "and" }, "Zubat": { "release_below_cp": 225, "release_below_iv": 0.8, "logic": "and" }, "Chansey": { "release_below_cp": 235, "release_below_iv": 0.8, "logic": "and" }, "Pidgey": { "release_below_cp": 237, "release_below_iv": 0.8, "logic": "and" }, "Spearow": { "release_below_cp": 240, "release_below_iv": 0.8, "logic": "and" }, "Meowth": { "release_below_cp": 264, "release_below_iv": 0.8, "logic": "and" }, "Krabby": { "release_below_cp": 276, "release_below_iv": 0.8, "logic": "and" }, "Sandshrew": { "release_below_cp": 278, "release_below_iv": 0.8, "logic": "and" }, "Poliwag": { "release_below_cp": 278, "release_below_iv": 0.8, "logic": "and" }, "Horsea": { "release_below_cp": 278, "release_below_iv": 0.8, "logic": "and" }, "Gastly": { "release_below_cp": 280, "release_below_iv": 0.8, "logic": "and" }, "Ekans": { "release_below_cp": 288, "release_below_iv": 0.8, "logic": "and" }, "Shellder": { "release_below_cp": 288, "release_below_iv": 0.8, "logic": "and" }, "Vulpix": { "release_below_cp": 290, "release_below_iv": 0.8, "logic": "and" }, "Voltorb": { "release_below_cp": 292, "release_below_iv": 0.8, "logic": "and" }, "Geodude": { "release_below_cp": 297, "release_below_iv": 0.8, "logic": "and" }, "Doduo": { "release_below_cp": 297, "release_below_iv": 0.8, "logic": "and" }, "Onix": { "release_below_cp": 300, "release_below_iv": 0.8, "logic": "and" }, "Mankey": { "release_below_cp": 307, "release_below_iv": 0.8, "logic": "and" }, "Pikachu": { "release_below_cp": 309, "release_below_iv": 0.8, "logic": "and" }, "Magnemite": { "release_below_cp": 312, "release_below_iv": 0.8, "logic": "and" }, "Tentacool": { "release_below_cp": 316, "release_below_iv": 0.8, "logic": "and" }, "Paras": { "release_below_cp": 319, "release_below_iv": 0.8, "logic": "and" }, "Jigglypuff": { "release_below_cp": 321, "release_below_iv": 0.8, "logic": "and" }, "Ditto": { "release_below_cp": 321, "release_below_iv": 0.8, "logic": "and" }, "Staryu": { "release_below_cp": 326, "release_below_iv": 0.8, "logic": "and" }, "Charmander": { "release_below_cp": 333, "release_below_iv": 0.8, "logic": "and" }, "Goldeen": { "release_below_cp": 336, "release_below_iv": 0.8, "logic": "and" }, "Squirtle": { "release_below_cp": 352, "release_below_iv": 0.8, "logic": "and" }, "Cubone": { "release_below_cp": 352, "release_below_iv": 0.8, "logic": "and" }, "Venonat": { "release_below_cp": 360, "release_below_iv": 0.8, "logic": "and" }, "Bulbasaur": { "release_below_cp": 374, "release_below_iv": 0.8, "logic": "and" }, "Drowzee": { "release_below_cp": 374, "release_below_iv": 0.8, "logic": "and" }, "Machop": { "release_below_cp": 381, "release_below_iv": 0.8, "logic": "and" }, "Psyduck": { "release_below_cp": 386, "release_below_iv": 0.8, "logic": "and" }, "Seel": { "release_below_cp": 386, "release_below_iv": 0.8, "logic": "and" }, "Kabuto": { "release_below_cp": 386, "release_below_iv": 0.8, "logic": "and" }, "Bellsprout": { "release_below_cp": 391, "release_below_iv": 0.8, "logic": "and" }, "Omanyte": { "release_below_cp": 391, "release_below_iv": 0.8, "logic": "and" }, "Kadabra": { "release_below_cp": 396, "release_below_iv": 0.8, "logic": "and" }, "Oddish": { "release_below_cp": 400, "release_below_iv": 0.8, "logic": "and" }, "Dugtrio": { "release_below_cp": 408, "release_below_iv": 0.8, "logic": "and" }, "Rhyhorn": { "release_below_cp": 412, "release_below_iv": 0.8, "logic": "and" }, "Clefairy": { "release_below_cp": 420, "release_below_iv": 0.8, "logic": "and" }, "Slowpoke": { "release_below_cp": 424, "release_below_iv": 0.8, "logic": "and" }, "Pidgeotto": { "release_below_cp": 427, "release_below_iv": 0.8, "logic": "and" }, "Farfetch'd": { "release_below_cp": 441, "release_below_iv": 0.8, "logic": "and" }, "Poliwhirl": { "release_below_cp": 468, "release_below_iv": 0.8, "logic": "and" }, "Nidorino": { "release_below_cp": 480, "release_below_iv": 0.8, "logic": "and" }, "Haunter": { "release_below_cp": 482, "release_below_iv": 0.8, "logic": "and" }, "Nidorina": { "release_below_cp": 489, "release_below_iv": 0.8, "logic": "and" }, "Graveler": { "release_below_cp": 501, "release_below_iv": 0.8, "logic": "and" }, "Beedrill": { "release_below_cp": 504, "release_below_iv": 0.8, "logic": "and" }, "Raticate": { "release_below_cp": 504, "release_below_iv": 0.8, "logic": "and" }, "Butterfree": { "release_below_cp": 508, "release_below_iv": 0.8, "logic": "and" }, "Hitmonlee": { "release_below_cp": 520, "release_below_iv": 0.8, "logic": "and" }, "Ponyta": { "release_below_cp": 530, "release_below_iv": 0.8, "logic": "and" }, "Hitmonchan": { "release_below_cp": 530, "release_below_iv": 0.8, "logic": "and" }, "Charmeleon": { "release_below_cp": 544, "release_below_iv": 0.8, "logic": "and" }, "Wartortle": { "release_below_cp": 552, "release_below_iv": 0.8, "logic": "and" }, "Persian": { "release_below_cp": 568, "release_below_iv": 0.8, "logic": "and" }, "Lickitung": { "release_below_cp": 568, "release_below_iv": 0.8, "logic": "and" }, "Ivysaur": { "release_below_cp": 571, "release_below_iv": 0.8, "logic": "and" }, "Electrode": { "release_below_cp": 576, "release_below_iv": 0.8, "logic": "and" }, "Marowak": { "release_below_cp": 578, "release_below_iv": 0.8, "logic": "and" }, "Gloom": { "release_below_cp": 590, "release_below_iv": 0.8, "logic": "and" }, "Porygon": { "release_below_cp": 590, "release_below_iv": 0.8, "logic": "and" }, "Seadra": { "release_below_cp": 597, "release_below_iv": 0.8, "logic": "and" }, "Jynx": { "release_below_cp": 600, "release_below_iv": 0.8, "logic": "and" }, "Weepinbell": { "release_below_cp": 602, "release_below_iv": 0.8, "logic": "and" }, "Tangela": { "release_below_cp": 607, "release_below_iv": 0.8, "logic": "and" }, "Fearow": { "release_below_cp": 609, "release_below_iv": 0.8, "logic": "and" }, "Parasect": { "release_below_cp": 609, "release_below_iv": 0.8, "logic": "and" }, "Machoke": { "release_below_cp": 614, "release_below_iv": 0.8, "logic": "and" }, "Arbok": { "release_below_cp": 616, "release_below_iv": 0.8, "logic": "and" }, "Sandslash": { "release_below_cp": 631, "release_below_iv": 0.8, "logic": "and" }, "Alakazam": { "release_below_cp": 633, "release_below_iv": 0.8, "logic": "and" }, "Kingler": { "release_below_cp": 636, "release_below_iv": 0.8, "logic": "and" }, "Dodrio": { "release_below_cp": 640, "release_below_iv": 0.8, "logic": "and" }, "Tauros": { "release_below_cp": 643, "release_below_iv": 0.8, "logic": "and" }, "Primeape": { "release_below_cp": 650, "release_below_iv": 0.8, "logic": "and" }, "Magneton": { "release_below_cp": 657, "release_below_iv": 0.8, "logic": "and" }, "Venomoth": { "release_below_cp": 660, "release_below_iv": 0.8, "logic": "and" }, "Golbat": { "release_below_cp": 672, "release_below_iv": 0.8, "logic": "and" }, "Raichu": { "release_below_cp": 708, "release_below_iv": 0.8, "logic": "and" }, "Cloyster": { "release_below_cp": 717, "release_below_iv": 0.8, "logic": "and"}, "Mr. Mime": { "release_below_cp": 650, "release_below_iv": 0.8, "logic": "and" } }, "vips" : { "Any pokemon put here directly force to use Berry & Best Ball to capture, to secure the capture rate": {}, "any": {"catch_above_cp": 1200, "catch_above_iv": 0.9, "logic": "or" }, "Lapras": {}, "Moltres": {}, "Zapdos": {}, "Articuno": {}, "// S-Tier pokemons (if pokemon can be evolved into tier, list the representative)": {}, "Mewtwo": {}, "Dragonite": {}, "Snorlax": {}, "// Mew evolves to Mewtwo": {}, "Mew": {}, "Arcanine": {}, "Vaporeon": {}, "Gyarados": {}, "Exeggutor": {}, "Muk": {}, "Weezing": {}, "Flareon": {} }, "websocket": { "start_embedded_server": true, "server_url": "127.0.0.1:4000" } } ``` auth.json ``` { "auth_service": "google", "username": "x@gmail.com", "password": "xx", "location": "Paris, Louvre", "favorite_locations":[ {"name": "Milan", "coords": "45.472849,9.177567"} ], "gmapkey": "x x x ", "encrypt_location": "", "telegram_token": "" } ``` ### Output when issue occurred ``` 2016-09-17 14:10:13,442 [ cli] [INFO] PokemonGO Bot v1.0 2016-09-17 14:10:13,461 [ cli] [INFO] commit: fef76945 2016-09-17 14:10:13,481 [ cli] [INFO] Configuration initialized 2016-09-17 14:10:13,483 [pokemongo_bot.health_record.bot_event] [INFO] Health check is enabled. For more information: 2016-09-17 14:10:13,483 [pokemongo_bot.health_record.bot_event] [INFO] https://github.com/PokemonGoF/PokemonGo-Bot/tree/dev#analytics 2016-09-17 14:10:13,504 [requests.packages.urllib3.connectionpool] [INFO] Starting new HTTP connection (1): www.google-analytics.com (11123) wsgi starting up on http://127.0.0.1:4000 [2016-09-17 14:10:13] [MainThread] [SleepSchedule] [INFO] Next sleep at 17:06:07, for a duration of 02:39:45 [2016-09-17 14:10:13] [MainThread] [PokemonGoBot] [INFO] Setting start location. [2016-09-17 14:10:13] [MainThread] [PokemonGoBot] [INFO] Location found: Paris, Louvre (48.8638931, 2.3423476, 0.0) [2016-09-17 14:10:13] [MainThread] [PokemonGoBot] [INFO] Now at (48.8638931, 2.3423476, 0.0) [2016-09-17 14:10:13] [MainThread] [PokemonGoBot] [INFO] Login procedure started. _inventory was not initialized _inventory was not initialized [2016-09-17 14:10:13] [MainThread] [ cli] [INFO] [2016-09-17 14:10:13] [MainThread] [ cli] [INFO] Ran for 0:00:00 [2016-09-17 14:10:13] [MainThread] [ cli] [INFO] Total XP Earned: 0 Average: 0.00/h [2016-09-17 14:10:13] [MainThread] [ cli] [INFO] Travelled 0.00km [2016-09-17 14:10:13] [MainThread] [ cli] [INFO] Visited 0 stops [2016-09-17 14:10:13] [MainThread] [ cli] [INFO] Encountered 0 pokemon, 0 caught, 0 released, 0 evolved, 0 never seen before () [2016-09-17 14:10:13] [MainThread] [ cli] [INFO] Threw 0 pokeballs [2016-09-17 14:10:13] [MainThread] [ cli] [INFO] Earned 0 Stardust [2016-09-17 14:10:13] [MainThread] [ cli] [INFO] Hatched eggs 0 [2016-09-17 14:10:13] [MainThread] [ cli] [INFO] [2016-09-17 14:10:13] [MainThread] [ cli] [INFO] Highest CP Pokemon: [2016-09-17 14:10:13] [MainThread] [ cli] [INFO] Most Perfect Pokemon: Traceback (most recent call last): File "pokecli.py", line 841, in <module> main() File "pokecli.py", line 189, in main bot = start_bot(bot, config) File "pokecli.py", line 144, in start_bot bot.start() File "/home/pi/pokebot/PokemonGo-Bot/pokemongo_bot/__init__.py", line 142, in start self._setup_api() File "/home/pi/pokebot/PokemonGo-Bot/pokemongo_bot/__init__.py", line 952, in _setup_api self.login() File "/home/pi/pokebot/PokemonGo-Bot/pokemongo_bot/__init__.py", line 886, in login str(self.config.password)) File "/home/pi/pokebot/PokemonGo-Bot/pokemongo_bot/api_wrapper.py", line 96, in login password=password File "/home/pi/pokebot/PokemonGo-Bot/src/pgoapi/pgoapi/pgoapi.py", line 94, in set_authentication if not self._auth_provider.user_login(username, password): File "/home/pi/pokebot/PokemonGo-Bot/src/pgoapi/pgoapi/auth_google.py", line 58, in user_login user_login = perform_master_login(username, password, self.GOOGLE_LOGIN_ANDROID_ID) File "/home/pi/pokebot/PokemonGo-Bot/local/lib/python2.7/site-packages/gpsoauth/__init__.py", line 66, in perform_master_login return _perform_auth_request(data) File "/home/pi/pokebot/PokemonGo-Bot/local/lib/python2.7/site-packages/gpsoauth/__init__.py", line 22, in _perform_auth_request headers={'User-Agent': useragent}) File "/home/pi/pokebot/PokemonGo-Bot/local/lib/python2.7/site-packages/requests/api.py", line 111, in post return request('post', url, data=data, json=json, **kwargs) File "/home/pi/pokebot/PokemonGo-Bot/local/lib/python2.7/site-packages/requests/api.py", line 57, in request return session.request(method=method, url=url, **kwargs) File "/home/pi/pokebot/PokemonGo-Bot/local/lib/python2.7/site-packages/requests/sessions.py", line 475, in request resp = self.send(prep, **send_kwargs) File "/home/pi/pokebot/PokemonGo-Bot/local/lib/python2.7/site-packages/requests/sessions.py", line 585, in send r = adapter.send(request, **kwargs) File "/home/pi/pokebot/PokemonGo-Bot/local/lib/python2.7/site-packages/requests/adapters.py", line 477, in send raise SSLError(e, request=request) requests.exceptions.SSLError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:581) [2016-09-17 14:10:14] [MainThread] [sentry.errors] [ERROR] Sentry responded with an error: 'ascii' codec can't decode byte 0x9c in position 1: ordinal not in range(128) (url: https://app.getsentry.com/api/90254/store/) Traceback (most recent call last): File "/home/pi/pokebot/PokemonGo-Bot/local/lib/python2.7/site-packages/raven/transport/threaded.py", line 174, in send_sync super(ThreadedHTTPTransport, self).send(data, headers) File "/home/pi/pokebot/PokemonGo-Bot/local/lib/python2.7/site-packages/raven/transport/http.py", line 47, in send ca_certs=self.ca_certs, File "/home/pi/pokebot/PokemonGo-Bot/local/lib/python2.7/site-packages/raven/utils/http.py", line 66, in urlopen return opener.open(url, data, timeout) File "/home/pi/pokebot/PokemonGo-Bot/local/lib/python2.7/site-packages/future/backports/urllib/request.py", line 494, in open response = self._open(req, data) File "/home/pi/pokebot/PokemonGo-Bot/local/lib/python2.7/site-packages/future/backports/urllib/request.py", line 512, in _open '_open', req) File "/home/pi/pokebot/PokemonGo-Bot/local/lib/python2.7/site-packages/future/backports/urllib/request.py", line 466, in _call_chain result = func(*args) File "/home/pi/pokebot/PokemonGo-Bot/local/lib/python2.7/site-packages/raven/utils/http.py", line 46, in https_open return self.do_open(ValidHTTPSConnection, req) File "/home/pi/pokebot/PokemonGo-Bot/local/lib/python2.7/site-packages/future/backports/urllib/request.py", line 1284, in do_open h.request(req.get_method(), req.selector, req.data, headers) File "/usr/lib/python2.7/httplib.py", line 1001, in request self._send_request(method, url, body, headers) File "/usr/lib/python2.7/httplib.py", line 1035, in _send_request self.endheaders(body) File "/usr/lib/python2.7/httplib.py", line 997, in endheaders self._send_output(message_body) File "/usr/lib/python2.7/httplib.py", line 848, in _send_output msg += message_body UnicodeDecodeError: 'ascii' codec can't decode byte 0x9c in position 1: ordinal not in range(128) [2016-09-17 14:10:14] [MainThread] [sentry.errors.uncaught] [ERROR] [u'SSLError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:581)', u' File "pokecli.py", line 841, in <module>', u' File "pokecli.py", line 189, in main', u' File "pokecli.py", line 144, in start_bot', u' File "pokemongo_bot/__init__.py", line 142, in start', u' File "pokemongo_bot/__init__.py", line 952, in _setup_api', u' File "pokemongo_bot/__init__.py", line 886, in login', u' File "pokemongo_bot/api_wrapper.py", line 96, in login', u' File "pgoapi/pgoapi.py", line 94, in set_authentication', u' File "pgoapi/auth_google.py", line 58, in user_login', u' File "gpsoauth/__init__.py", line 66, in perform_master_login', u' File "gpsoauth/__init__.py", line 22, in _perform_auth_request', u' File "requests/api.py", line 111, in post', u' File "requests/api.py", line 57, in request', u' File "requests/sessions.py", line 475, in request', u' File "requests/sessions.py", line 585, in send', u' File "requests/adapters.py", line 477, in send'] Sat 17 Sep 14:10:14 CEST 2016 Pokebot Stopped. Press any button or wait 20 seconds to continue. ``` ### Steps to Reproduce any time I start the bot with my gmail account, ptc account will work fine. ### Other Information OS: linux Branch: debian dev Git Commit: fef76945 I did download the encrypt.so again, but did no good. clean install with fresh config file wouldn't help either.
closed
2016-09-17T12:19:00Z
2016-09-22T03:41:57Z
https://github.com/PokemonGoF/PokemonGo-Bot/issues/5511
[]
prusterle
15
keras-team/keras
tensorflow
20,731
similar functions for `from_tensor` `to_tensor` from ragged api
I think ragged doesn't support yet. But is there any way to handle such following cases? ```python tf.RaggedTensor.from_tensor tf.RaggedTensor.to_tensor ... def __init__(self, **kwargs): super(RaggedToDenseTensor, self).__init__(**kwargs) def call(self, inputs): if isinstance(inputs, tf.RaggedTensor): inputs = inputs.to_tensor() return inputs ```
closed
2025-01-06T20:27:24Z
2025-01-14T23:40:27Z
https://github.com/keras-team/keras/issues/20731
[ "type:support" ]
innat
6
JaidedAI/EasyOCR
machine-learning
334
French language support
Hi, the model is not detecting french language, how can I add the model or train it?
closed
2020-12-17T14:43:31Z
2021-01-14T04:21:00Z
https://github.com/JaidedAI/EasyOCR/issues/334
[]
AnassKartit
1
airtai/faststream
asyncio
1,540
Feature: faststream should only require opentelemetry-api
To make it easier to switch the opentelemetry implementation it should be up to the user to install an implementation. The documentation can suggest `opentelemetry-sdk` but it should not be installed by default. This would allow a user to replace `opentelemetry-sdk` with a different implementation (e.g. Datadogs ddtrace that also implements the opentelemetry-api: https://ddtrace.readthedocs.io/en/stable/api.html#opentelemetry-api) This is also recommended by OpenTelemetry here: https://opentelemetry.io/docs/concepts/instrumentation/libraries/#opentelemetry-api
open
2024-06-20T13:36:38Z
2024-07-02T21:47:13Z
https://github.com/airtai/faststream/issues/1540
[ "enhancement" ]
florianmutter
2
ultrafunkamsterdam/undetected-chromedriver
automation
1,388
Getting detected by cloudflare
undetected chromedriver worked well till yesterday but now, cloudflare improved and the chromedriver is not bypassing cloudflare. I have attached the screenshot of it. cloudflare is just looping the captcha when selenium is running. When I close it, the website loads. ![image](https://github.com/ultrafunkamsterdam/undetected-chromedriver/assets/79296613/9a54afec-ae29-405f-b6b1-a6ce3366c019) This is my code snippet ![image](https://github.com/ultrafunkamsterdam/undetected-chromedriver/assets/79296613/d13bb5e3-96e1-4aa6-8b53-5fba43a2cc58) It works fine when the script isn't running. I also tried changing the binary to chrome rather than brave, but the issue still persists
open
2023-07-11T17:27:33Z
2025-02-04T20:26:42Z
https://github.com/ultrafunkamsterdam/undetected-chromedriver/issues/1388
[]
vndhote
56
CorentinJ/Real-Time-Voice-Cloning
python
519
AttributeError: module 'umap' has no attribute 'UMAP' on Windows 10
not sure if it is a platform specific problem, all umap import would need to be changed to this format: import umap.umap_ as umap to resolve this problem from multiple files: AttributeError: module 'umap' has no attribute 'UMAP'
closed
2020-09-03T01:31:28Z
2020-09-04T00:01:31Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/519
[]
lawrence124
4
allenai/allennlp
data-science
5,020
Try the DETR object detection model with our vision+language tasks
[DETR](https://github.com/facebookresearch/detr) is an interesting object detection model that fits into our `RegionDetector` abstraction. This task is about porting the DETR model to AllenNLP and trying it on all the vision+language tasks that are implemented right now. At the moment, this is VQAv2, GQA, and Visual Entailment, but by the time this gets picked up there could be more. DETR comes with some pre-trained weights, which we should try first. It would be a success to get within five points of our existing benchmarks on these tasks. If that works, we can try a second step: Move the `DetrRegionDetector` from the dataset reader to the model, and fine-tune its weights while training on the tasks. The best way to get started would be this: 1. Clone the [allennlp-models repo](https://github.com/allenai/allennlp-models) and run the existing training jobs for VQA, GQA, and Visual Entailment. There is a bit of setup involved with this because the datasets are so large, so this will come in handy later. 2. Start a new repo using the [AllenNLP Repository Template](https://github.com/allenai/allennlp-template-config-files), copy the GQA/VQA/VE models into it, and make sure they still run. 3. Write a `DetrRegionDetector`, using the structure from [`FasterRcnnRegionDetector`](https://github.com/allenai/allennlp/blob/main/allennlp/modules/vision/region_detector.py#L114), but using the code from [DETR](https://github.com/facebookresearch/detr). 4. Write a training config using the new region detector, train it, and compare scores.
open
2021-02-25T00:45:37Z
2021-03-09T23:41:02Z
https://github.com/allenai/allennlp/issues/5020
[ "Contributions welcome", "Models", "medium" ]
dirkgr
0
jmcnamara/XlsxWriter
pandas
731
timedeltas shifted by 24h
Hi, I am using XlsxWriter to show elapsed times in an "hours:minutes" format, but it appears to do add 24h to the value. With the code below I expect to see "1500:00", but I see "1524:00". This only happens with timedeltas > ~1440h. I am using Python version 3.6.9 and XlsxWriter 0.9.6 and Excel version 2016. Here is some code that demonstrates the problem: ```python from datetime import timedelta import xlsxwriter workbook = xlsxwriter.Workbook('timedelta.xlsx') worksheet = workbook.add_worksheet() delta_format = workbook.add_format({'num_format': '[HH]:MM'}) worksheet.write('A1', timedelta(hours=1500), delta_format) workbook.close() ```
closed
2020-07-14T11:02:06Z
2021-03-29T19:00:48Z
https://github.com/jmcnamara/XlsxWriter/issues/731
[ "bug", "wont_fix", "under investigation" ]
ktosiek
9
django-import-export/django-import-export
django
1,082
admin not working with utf-8 import of csv file
When trying to import a file containing names with foreign characters in utf-8 format using the admin mixin, import-export either fails or mangles the characters. This seems to be because when storing the uploaded data in a file in the temp directory prior to processing the data it uses text mode, which then complains on certain unicode combinations. If I change get_read_mode in formats to 'rb', everything then works properly. Is this a bug, or am I not setting something up correctly. I'm using django 3.1 and python 3.8 Thanks,
closed
2020-02-19T17:26:22Z
2020-05-28T07:24:59Z
https://github.com/django-import-export/django-import-export/issues/1082
[]
bilkusg
4
tensorlayer/TensorLayer
tensorflow
782
Feature request:TL implement of CornerPooling
`class CornetPool(Layer): """The :class:`CornetPool` class is 2D cornet pool, see `here <https://arxiv.org/abs/1808.01244/>`__. Parameters -------------- prev_layer : :class:`Layer` Previous layer. filter_size : int The filter size. mode:str BottomRight for the top left corrnet, TopLeft for the bottom right corrnet. name : str A unique layer name. """ def __init__( self, prev_layer = None, filter_size=(3,3), mode='BottomRight', name ='cornerpool_layer', ): Layer.__init__(self, prev_layer=prev_layer, name=name) self.inputs = prev_layer.outputs if mode=='BottomRight': temp=tf.keras.layers.ZeroPadding2D(padding=((0, filter_size[0]-1), (0, filter_size[1]-1)), name=name)(self.inputs) temp=tf.layers.max_pooling2d(temp, (filter_size[0],1), (1,1), padding='valid', data_format='channels_last') self.outputs=tf.layers.max_pooling2d(temp, (1,filter_size[1]), (1,1), padding='valid', data_format='channels_last',name=name) elif mode=='TopLeft': temp=tf.keras.layers.ZeroPadding2D(padding=((filter_size[0]-1,0), (filter_size[1]-1,0)), name=name)(self.inputs) temp=tf.layers.max_pooling2d(temp, (filter_size[0],1), (1,1), padding='valid', data_format='channels_last') self.outputs=tf.layers.max_pooling2d(temp, (1,filter_size[1]), (1,1), padding='valid', data_format='channels_last',name=name) else: raise AssertionError("Mode should be of 'BottomRight'and'TopLeft' ") self._add_layers(self.outputs)` Maybe Zero Padding is not a rigorous method for leaky relu activation func?
closed
2018-08-13T12:23:51Z
2018-08-13T12:26:23Z
https://github.com/tensorlayer/TensorLayer/issues/782
[ "duplicate" ]
Windaway
1
biolab/orange3
scikit-learn
6,219
Deprecate: use_label_encoder
``` test_XGB (test_xgb_cls.TestXGBCls) ... /home/runner/work/orange3/orange3/.tox/orange-released/lib/python3.8/site-packages/xgboost/sklearn.py:1421: UserWarning: `use_label_encoder` is deprecated in 1.7.0. warnings.warn("`use_label_encoder` is deprecated in 1.7.0.") /home/runner/work/orange3/orange3/.tox/orange-released/lib/python3.8/site-packages/xgboost/sklearn.py:1421: UserWarning: `use_label_encoder` is deprecated in 1.7.0. warnings.warn("`use_label_encoder` is deprecated in 1.7.0.") ```
closed
2022-11-22T18:25:05Z
2023-01-11T09:18:27Z
https://github.com/biolab/orange3/issues/6219
[ "snack" ]
markotoplak
1
iperov/DeepFaceLab
machine-learning
883
Error when applying XSeg Mask. Help would be appreciated ASAP
Full terminal window & error message: Applying trained XSeg model to aligned/ folder. Traceback (most recent call last): File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1334, in _do_call return fn(*args) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1317, in _run_fn self._extend_graph() File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1352, in _extend_graph tf_session.ExtendSession(self._session) tensorflow.python.framework.errors_impl.InvalidArgumentError: Cannot assign a device for operation XSeg/conv01/conv/weight: {{node XSeg/conv01/conv/weight}}was explicitly assigned to /device:GPU:0 but available devices are [ /job:localhost/replica:0/task:0/device:CPU:0 ]. Make sure the device specification refers to a valid device. The requested device appears to be a GPU, but CUDA is not enabled. [[{{node XSeg/conv01/conv/weight}}]] During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\main.py", line 324, in <module> arguments.func(arguments) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\main.py", line 285, in process_xsegapply XSegUtil.apply_xseg (Path(arguments.input_dir), Path(arguments.model_dir)) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\mainscripts\XSegUtil.py", line 32, in apply_xseg raise_on_no_model_files=True) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\facelib\XSegNet.py", line 68, in __init__ do_init = not model.load_weights( model_file_path ) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\core\leras\layers\Saveable.py", line 96, in load_weights nn.batch_set_value(tuples) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\core\leras\ops\__init__.py", line 29, in batch_set_value nn.tf_sess.run(assign_ops, feed_dict=feed_dict) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 929, in run run_metadata_ptr) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1152, in _run feed_dict_tensor, options, run_metadata) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1328, in _do_run run_metadata) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1348, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.InvalidArgumentError: Cannot assign a device for operation XSeg/conv01/conv/weight: node XSeg/conv01/conv/weight (defined at C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:76) was explicitly assigned to /device:GPU:0 but available devices are [ /job:localhost/replica:0/task:0/device:CPU:0 ]. Make sure the device specification refers to a valid device. The requested device appears to be a GPU, but CUDA is not enabled. [[node XSeg/conv01/conv/weight (defined at C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:76) ]] Caused by op 'XSeg/conv01/conv/weight', defined at: File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\main.py", line 324, in <module> arguments.func(arguments) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\main.py", line 285, in process_xsegapply XSegUtil.apply_xseg (Path(arguments.input_dir), Path(arguments.model_dir)) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\mainscripts\XSegUtil.py", line 32, in apply_xseg raise_on_no_model_files=True) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\facelib\XSegNet.py", line 41, in __init__ self.model_weights = self.model.get_weights() File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 77, in get_weights self.build() File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 65, in build self._build_sub(v[name],name) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 35, in _build_sub layer.build() File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 65, in build self._build_sub(v[name],name) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 33, in _build_sub layer.build_weights() File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\core\leras\layers\Conv2D.py", line 76, in build_weights self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.in_ch,self.out_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable ) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 1479, in get_variable aggregation=aggregation) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 1220, in get_variable aggregation=aggregation) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 547, in get_variable aggregation=aggregation) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 499, in _true_getter aggregation=aggregation) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 911, in _get_single_variable aggregation=aggregation) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\variables.py", line 213, in __call__ return cls._variable_v1_call(*args, **kwargs) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\variables.py", line 176, in _variable_v1_call aggregation=aggregation) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\variables.py", line 155, in <lambda> previous_getter = lambda **kwargs: default_variable_creator(None, **kwargs) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 2495, in default_variable_creator expected_shape=expected_shape, import_scope=import_scope) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\variables.py", line 217, in __call__ return super(VariableMetaclass, cls).__call__(*args, **kwargs) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\variables.py", line 1395, in __init__ constraint=constraint) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\variables.py", line 1509, in _init_from_args name=name) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\state_ops.py", line 79, in variable_op_v2 shared_name=shared_name) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\ops\gen_state_ops.py", line 1424, in variable_v2 shared_name=shared_name, name=name) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 788, in _apply_op_helper op_def=op_def) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\util\deprecation.py", line 507, in new_func return func(*args, **kwargs) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 3300, in create_op op_def=op_def) File "C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow\python\framework\ops.py", line 1801, in __init__ self._traceback = tf_stack.extract_stack() InvalidArgumentError (see above for traceback): Cannot assign a device for operation XSeg/conv01/conv/weight: node XSeg/conv01/conv/weight (defined at C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:76) was explicitly assigned to /device:GPU:0 but available devices are [ /job:localhost/replica:0/task:0/device:CPU:0 ]. Make sure the device specification refers to a valid device. The requested device appears to be a GPU, but CUDA is not enabled. [[node XSeg/conv01/conv/weight (defined at C:\Users\Joshua Waghorn\Documents\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\core\leras\layers\Conv2D.py:76) ]] Please send help ASAP. I really need to learn how to do a full head deepfake for my English Assessment. Thanks
open
2020-09-04T06:30:57Z
2023-06-08T21:18:14Z
https://github.com/iperov/DeepFaceLab/issues/883
[]
Xlectron
6
ydataai/ydata-profiling
jupyter
873
Embeddable HTML output
**Missing functionality** Over the last few days I've tried with no much success to adjust the current HTML so it can be embed on a Confluence page without affecting the whole page styles. Unfortunately, bootstrap overwrites multiple styles making the page to have an aesthetic look. **Proposed feature** Make an HTML export that's easy to embed in any site without affect the style of other components. **Alternatives considered** Painstakingly manual edit of current HMTL output. **Additional context** None
closed
2021-11-02T11:29:15Z
2021-11-03T20:51:40Z
https://github.com/ydataai/ydata-profiling/issues/873
[ "feature request 💬" ]
ciberger
1
huggingface/datasets
pytorch
6,580
dataset cache only stores one config of the dataset in parquet dir, and uses that for all other configs resulting in showing same data in all configs.
### Describe the bug ds = load_dataset("ai2_arc", "ARC-Easy"), i have tried to force redownload, delete cache and changing the cache dir. ### Steps to reproduce the bug dataset = [] dataset_name = "ai2_arc" possible_configs = [ 'ARC-Challenge', 'ARC-Easy' ] for config in possible_configs: dataset_slice = load_dataset(dataset_name, config,ignore_verifications=True,cache_dir='ai2_arc_files') dataset.append(dataset_slice) ### Expected behavior all configs should get saved in cache with their respective names. ### Environment info ai2_arc
closed
2024-01-11T03:14:18Z
2024-01-20T12:46:16Z
https://github.com/huggingface/datasets/issues/6580
[]
kartikgupta321
0
kennethreitz/responder
flask
51
Middleware
Supporting ASGI middleware would be a really good way to compartmentalise away bits of complexity, as we all promoting more of a cross-framework ecosystem. I'd suggest an interface of `app.add_middleware(cls, **options)` We could then do things like: * Move the GZip handling out of `Response`, and use `Starlette`'s GzipMiddleware, which will also take care of handling streaming responses (once responder has those) * Be able to use Starlette's `CORSMiddleware`. We can set up a default set of middleware if needed based on the configuration options presented to the `API(...)` class. Any objections or considerations?
closed
2018-10-15T11:39:52Z
2018-10-17T19:08:09Z
https://github.com/kennethreitz/responder/issues/51
[ "feature" ]
tomchristie
6
aminalaee/sqladmin
fastapi
879
Postgres json field dont work with asyncpg
### Checklist - [x] The bug is reproducible against the latest release or `master`. - [x] There are no similar issues or pull requests to fix it yet. ### Describe the bug If we use postgresql JSON field in mode like `data: Mapped[dict[any, any]] = mapped_column(JSON)` it works file on frontend site - shows default as '{}' for json field and correctly checks json format, but on create i got error: "descriptor 'encode' for 'str' objects doesn't apply to a 'dict' object" it happens because raw dict object later pass to asyncpg as is - but it should be passed not like {"key": "value"} but in single quaters: `{"key": "value"}` <img width="1347" alt="Image" src="https://github.com/user-attachments/assets/e7941526-7092-441a-a50c-d79b4f10fad9" /> ### Steps to reproduce the bug Try to use JSON field with asyncpg and create record. ### Expected behavior 0.20.1 ### Actual behavior _No response_ ### Debugging material _No response_ ### Environment alembic 1.14.0 A database migration tool for SQLAlchemy. annotated-types 0.7.0 Reusable constraint types to use with typing.Annotated anyio 4.6.2.post1 High level compatibility layer for multiple asynchronous event loop implementations asyncpg 0.29.0 An asyncio PostgreSQL driver fastapi 0.112.4 FastAPI framework, high performance, easy to learn, fast to code, ready for production fastapi-cli 0.0.5 Run and manage FastAPI apps from the command line with FastAPI CLI. 🚀 greenlet 3.1.1 Lightweight in-process concurrent programming httpcore 1.0.6 A minimal low-level HTTP client. httptools 0.6.4 A collection of framework independent HTTP protocol utils. httpx 0.27.2 The next generation HTTP client. identify 2.6.2 File identification library for Python idna 3.10 Internationalized Domain Names in Applications (IDNA) iniconfig 2.0.0 brain-dead simple config-ini parsing itsdangerous 2.2.0 Safely pass data to untrusted environments and back. jinja2 3.1.4 A very fast and expressive template engine. mako 1.3.6 A super-fast templating language that borrows the best ideas from the existing templating languages. markdown 3.7 Python implementation of John Gruber's Markdown. markdown-code-blocks 3.1.0 Generate html from markdown with code-block highlighting markdown-it-py 3.0.0 Python port of markdown-it. Markdown parsing, done right! markupsafe 3.0.2 Safely add untrusted strings to HTML/XML markup. mdurl 0.1.2 Markdown URL utilities mistune 2.0.5 A sane Markdown parser with useful plugins and renderers mypy 1.13.0 Optional static typing for Python mypy-extensions 1.0.0 Type system extensions for programs checked with the mypy type checker. nodeenv 1.9.1 Node.js virtual environment builder oauthlib 3.2.2 A generic, spec-compliant, thorough implementation of the OAuth request-signing logic orjson 3.10.11 Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy packaging 24.2 Core utilities for Python packages pathspec 0.12.1 Utility library for gitignore style pattern matching of file paths. platformdirs 4.3.6 A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`. pluggy 1.5.0 plugin and hook calling mechanisms for python pre-commit 3.8.0 A framework for managing and maintaining multi-language pre-commit hooks. psycopg2-binary 2.9.10 psycopg2 - Python-PostgreSQL Database Adapter pycparser 2.22 C parser in Python pydantic 2.9.2 Data validation using Python type hints pydantic-core 2.23.4 Core functionality for Pydantic validation and serialization pydantic-settings 2.6.1 Settings management using Pydantic pygments 2.18.0 Pygments is a syntax highlighting package written in Python. pytest 8.3.3 pytest: simple powerful testing with Python pytest-asyncio 0.24.0 Pytest support for asyncio python-dotenv 1.0.1 Read key-value pairs from a .env file and set them as environment variables python-multipart 0.0.17 A streaming multipart parser for Python pyyaml 6.0.2 YAML parser and emitter for Python requests 2.32.3 Python HTTP for Humans. requests-oauthlib 2.0.0 OAuthlib authentication support for Requests. rich 13.9.4 Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal ruff 0.5.7 An extremely fast Python linter and code formatter, written in Rust. sentry-sdk 2.18.0 Python client for Sentry (https://sentry.io) shellingham 1.5.4 Tool to Detect Surrounding Shell sniffio 1.3.1 Sniff out which async library your code is running under sqladmin 0.20.1 SQLAlchemy admin for FastAPI and Starlette sqlalchemy 2.0.36 Database Abstraction Library starlette 0.38.6 The little ASGI library that shines. structlog 24.4.0 Structured Logging for Python structlog-sentry 2.2.1 Sentry integration for structlog testcontainers 4.8.2 Python library for throwaway instances of anything that can run in a Docker container typer 0.13.0 Typer, build great CLIs. Easy to code. Based on Python type hints. typing-extensions 4.12.2 Backported and Experimental Type Hints for Python 3.8+ urllib3 2.2.3 HTTP library with thread-safe connection pooling, file post, and more. uvicorn 0.30.6 The lightning-fast ASGI server. uvloop 0.21.0 Fast implementation of asyncio event loop on top of libuv virtualenv 20.27.1 Virtual Python Environment builder watchfiles 0.24.0 Simple, modern and high performance file watching and code reload in python. websockets 14.1 An implementation of the WebSocket Protocol (RFC 6455 & 7692) werkzeug 3.1.3 The comprehensive WSGI web application library. wrapt 1.16.0 Module for decorators, wrappers and monkey patching. wtforms 3.1.2 Form validation and rendering for Python web development. ### Additional context _No response_
open
2025-02-05T22:30:33Z
2025-02-05T22:30:33Z
https://github.com/aminalaee/sqladmin/issues/879
[]
Vasiliy566
0
axnsan12/drf-yasg
django
457
swagger_auto_schema on request_body clears result schema?
``` @swagger_auto_schema(request_body=openapi.Schema( type=openapi.TYPE_OBJECT, properties={ } )) @list_route(methods=['post']) @get_cart_viewset() def remove_point(self, request, *args, **kwargs): ``` I get the empty response type. ``` Code | Description -- | -- 201 | Example ValueModel{ } ``` If I remove the swagger decorator ``` @list_route(methods=['post']) @get_cart_viewset() def remove_point(self, request, *args, **kwargs): ``` I get the following for the response type. Is this expected? I'm using drf-yasg==1.12.1 ``` Code | Description -- | -- 201 | Example ValueModelCart{id*integertitle: Idlast_synced_at*string($date-time)title: Last synced atcart_lines*[CartLine{id*integertitle: Idcart_idintegertitle: Cart idreadOnly: trueitemstringtitle: ItemreadOnly: truehyper_line_idintegertitle: Hyper line idreadOnly: truequantityintegertitle: 수량 | id* | integertitle: Id | last_synced_at* | string($date-time)title: Last synced at | cart_lines* | [CartLine{id*integertitle: Idcart_idintegertitle: Cart idreadOnly: trueitemstringtitle: ItemreadOnly: truehyper_line_idintegertitle: Hyper line idreadOnly: truequantityintegertitle: 수량 | id* | integertitle: Id | cart_id | integertitle: Cart idreadOnly: true | item | stringtitle: ItemreadOnly: true | hyper_line_id | integertitle: Hyper line idreadOnly: true | quantity | integertitle: 수량 id* | integertitle: Id last_synced_at* | string($date-time)title: Last synced at cart_lines* | [CartLine{id*integertitle: Idcart_idintegertitle: Cart idreadOnly: trueitemstringtitle: ItemreadOnly: truehyper_line_idintegertitle: Hyper line idreadOnly: truequantityintegertitle: 수량 | id* | integertitle: Id | cart_id | integertitle: Cart idreadOnly: true | item | stringtitle: ItemreadOnly: true | hyper_line_id | integertitle: Hyper line idreadOnly: true | quantity | integertitle: 수량 id* | integertitle: Id cart_id | integertitle: Cart idreadOnly: true item | stringtitle: ItemreadOnly: true hyper_line_id | integertitle: Hyper line idreadOnly: true quantity | integertitle: 수량 ```
closed
2019-09-19T07:54:35Z
2020-10-26T01:10:36Z
https://github.com/axnsan12/drf-yasg/issues/457
[]
pcompassion
2
lepture/authlib
django
394
httpx integration: add support for other async backends
**Is your feature request related to a problem? Please describe.** At the moment authlib's httpx integration only supports the default asyncio backend (i.e. usage of asyncio.Event in AsyncOAuth2Client). But httpx supports multiple backends (asyncio, trio, curio, anyio)[^1] As a user I'd expect a library claiming to integrate with another lib to support the same environments. **Describe the solution you'd like** Straightforward integration with the other async backends (trio, curio, anyio). Preferably in the way httpx provides it. The following code snippet could be how a user chooses to use the trio backend with the AsyncOAuth2Client. At least it is the way how it is done in httpx. ```python from authlib.integrations.httpx_client import AsyncOAuth2Client import trio ``` [^1]: https://www.python-httpx.org/async/#supported-async-environments
closed
2021-10-19T11:42:18Z
2022-01-12T22:12:43Z
https://github.com/lepture/authlib/issues/394
[ "feature request", "client" ]
nam3less
0
mwaskom/seaborn
matplotlib
3,704
[Bug] Plotting categorical columns includes empty categories
### A reproducible code example that demonstrates the problem ```python import matplotlib.pyplot as plt import pandas as pd import seaborn as sns countries = ['US', 'Canada', 'Spain', 'US', 'Canada', 'Sweden', 'Jordan', 'Netherlands', 'US', 'Spain'] df = pd.DataFrame(countries, columns=['Countries']) df['Countries'] = df['Countries'].astype('category') filtered_df = df[df['Countries'] == 'US'].copy() sns.countplot(filtered_df, x='Countries') plt.show() ``` ### The output that you are seeing (an image of a plot, or the error message) ![myplot](https://github.com/mwaskom/seaborn/assets/97323283/82c57729-fdb3-4d32-9577-49a4c2e519e0) ### A clear explanation of why you think something is wrong When plotting a categorical column, the resulting plot will contain all the categories even if they don't exist anymore. I couldn't find any direct information in the documentation about this. However, I found the following example at https://seaborn.pydata.org/tutorial/categorical.html#categorical-scatterplots. Specifically the part that contains ```python sns.catplot(data=tips.query("size != 3"), x="size", y="total_bill", native_scale=True) ``` Where the result had an empty column at `size=3`. Nonetheless, I'm not sure that this should be the case when creating a new dataframe without certain categories from the orginal one. I understand that this could be more of a pandas issue than seaborn's, but I felt like this should be mentioned or be more clearly documented. There's a couple of easy solutions to this problem currently ```python filtered_df['Countries'] = filtered_df['Countries'].astype('string') # Or filtered_df['Countries'] = filtered_df['Countries'].cat.remove_unused_categories() ``` ### The specific versions of seaborn and matplotlib that you are working with * **Python**: 3.12 * **seaborn**: 0.13.2 * **matplotlib**: 3.9.0 * This isn't specific to any version combinations though, because I observed the same behaviour with the oldest supported Python version (3.7)
closed
2024-06-02T23:05:40Z
2024-06-04T18:34:07Z
https://github.com/mwaskom/seaborn/issues/3704
[]
Yazan-Sharaya
3
Avaiga/taipy
data-visualization
1,909
[🐛 BUG] Certain python expression not working anymore in Markdown
### What went wrong? 🤔 Using < in a Python expression will create an issue. This is a regression from 3.1. ``` WARNING:root: --- 1 warning(s) were found for page '/' in variable 'md' --- - Warning 1: Missing leading pipe '|' in opening tag line 2: '<|{data[data["A"] < 3]}|chart|x=A|y=B|>'. ``` And the related visual element will not be shown. Develop version: ![image](https://github.com/user-attachments/assets/62adec94-ccd1-4a06-bb4d-9e592567a155) 3.1 version: ![image](https://github.com/user-attachments/assets/5a0073a8-dbdf-4047-97c2-9cd412ab7a4b) ### Expected Behavior The visual element should appear like in 3.1. ### Steps to Reproduce Issue Use the develop version. ```python from taipy.gui import Gui import pandas as pd data = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]}) md = """ <|{data[data["A"] < 3]}|chart|x=A|y=B|> """ Gui(md).run(port=2415) ``` ### Version of Taipy develop - 10/3/24 ### Acceptance Criteria - [ ] Ensure new code is unit tested, and check code coverage is at least 90%. - [ ] Create related issue in taipy-doc for documentation and Release Notes. ### Code of Conduct - [X] I have checked the [existing issues](https://github.com/Avaiga/taipy/issues?q=is%3Aissue+). - [ ] I am willing to work on this issue (optional)
closed
2024-10-04T08:23:19Z
2024-10-04T09:56:33Z
https://github.com/Avaiga/taipy/issues/1909
[ "🖰 GUI", "💥Malfunction" ]
FlorianJacta
0
keras-team/keras
tensorflow
20,902
pytorch backend lstm very +10x slow (maybe batch size with pytorch backend has different semantics than the traditional Keras semantics?)
https://stackoverflow.com/questions/78717341/keras-training-speed-with-pytorch-backend-is-a-lot-slower-than-with-tensorflow """ I am on native Windows and I used old Keras with TensorFlow 2.10 (GPU accelerated) before. I wanted to try Keras 3 with PyTorch backend. Can someone please help me why this model trains 10x slower with Keras 3.4.1 and PyTorch 2.3.1 backend? With my GPU a single epoch takes a little more than 2 minutes with TF, and over 20 minutes with PyTorch. import os os.environ["KERAS_BACKEND"] = "torch" import torch torch.cuda.is_available() # <-- returns True import keras from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from keras.layers import LSTM from keras import optimizers from keras.regularizers import l2 x_train, y_train = np.float32(x_train), np.float32(y_train) x_val, y_val = np.float32(x_val), np.float32(y_val) model=Sequential() reg=0.00001 model.add(LSTM( 80, return_sequences=True , dropout=0.0, kernel_regularizer=l2(reg), recurrent_regularizer=l2(reg), input_shape=(x_train.shape[1], x_train.shape[2]) )) model.add(LSTM( 80, return_sequences=False, dropout=0.0, kernel_regularizer=l2(reg), recurrent_regularizer=l2(reg) )) model.add(Dense(40)) model.add(Dense(40)) model.add(Dense(1)) opt = optimizers.Adam(learning_rate=lrate) model.compile(optimizer=opt, loss='mean_squared_error') from keras.callbacks import ModelCheckpoint from keras.callbacks import BackupAndRestore savecallback = ModelCheckpoint(basefolder+"/"+modelfile, save_best_only=False, monitor='val_loss', mode='min', verbose=1) backupcallback = BackupAndRestore(basefolder+"/tmp/backup_"+modelfile) hist=model.fit(x_train, y_train, validation_data=(x_val, y_val), batch_size=batchsize, epochs=20, callbacks=[savecallback, backupcallback]) I verified GPU acceleration with both backends. """
open
2025-02-14T01:44:09Z
2025-02-14T04:53:51Z
https://github.com/keras-team/keras/issues/20902
[ "backend:torch" ]
mw66
2
openapi-generators/openapi-python-client
rest-api
1,085
OpenAPI 3.0 default response not suported
**Describe the bug** I make use of the OpenAPI 3.0 default response feature on every handler: https://swagger.io/docs/specification/describing-responses/#default however this is unsupported by the codegen tool currently. **OpenAPI Spec File** https://github.com/Southclaws/storyden/blob/main/api/openapi.yaml **Desktop (please complete the following information):** - OS: Windows 11, Mac OS - Python Version: 3.12.4 - openapi-python-client version: 0.21.2 **Additional context**
closed
2024-07-29T18:02:07Z
2024-07-29T18:05:54Z
https://github.com/openapi-generators/openapi-python-client/issues/1085
[]
Southclaws
1
alirezamika/autoscraper
web-scraping
44
Add support for sepecifying text encoding.
I'm working with a legacy Chinese site with BIG5 text encoding, and I'm not able to set text encoding by passing arguments through `request_args`, because requests don't support it. So the results I get was garbled, like this: `'¡ ̧ÔÚÕâ ̧öÊÀ1⁄2ç ̧æÖÕÒÔǰ©¤©¤A¡1-promise/result-'`. Encoding can only be set by writing to the `encoding` property of requests object (According to [this](https://requests.readthedocs.io/en/master/user/quickstart/#response-content)). So maybe adding an `encoding` param and set encoding in `_get_soup` in `auto_scraper.py` would be a good idea.
closed
2021-01-10T09:20:01Z
2021-01-23T17:11:51Z
https://github.com/alirezamika/autoscraper/issues/44
[]
RealXuChe
3
psf/black
python
4,111
What is "Incorrectly formatted" ?
_Python syntax has changed? Or it hasn't? This line was not flagged in the past._ It would be nice to add a bit more info to that error message (e.g. a link or at least a code what exactly is violated). This way the message is more annoying than helpful. ![Screenshot 2023-12-15 at 10 07 24 am](https://github.com/psf/black/assets/82917641/42833680-de26-4ded-9598-b981a8121a66) ![Screenshot 2023-12-15 at 10 07 41 am](https://github.com/psf/black/assets/82917641/29c53938-95de-49b1-8131-3d592f57f130)
closed
2023-12-14T23:09:05Z
2023-12-15T00:18:21Z
https://github.com/psf/black/issues/4111
[ "T: style" ]
tfrokt
4
Python3WebSpider/ProxyPool
flask
190
为什么验证的返回的结果仍会带有本地ip,
![image](https://user-images.githubusercontent.com/92900942/225207607-0eb09083-c078-448c-a5d9-0a7eff87c711.png)
open
2023-03-15T04:36:33Z
2024-06-18T02:30:42Z
https://github.com/Python3WebSpider/ProxyPool/issues/190
[ "bug" ]
Whale-Yu
7
NVIDIA/pix2pixHD
computer-vision
319
RuntimeError: CUDA out of memory,continuous training?
I have trained 3000 pairs of data, and want to add another 2000 pairs to continue training, using the following command: ` python train.py --name comics --dataroot ./datasets/comics3Kto5K --loadSize 512 --label_nc 0 --no_instance --netG local --load_pretrain checkpoints0310/comics/` But the error is as follows: #RuntimeError: CUDA out of memory. Tried to allocate 98.00 MiB (GPU 0; 11.76 GiB total capacity; 8.86 GiB already allocated; 113.56 MiB free; 8.91 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF What is going on?
open
2023-03-14T01:46:12Z
2023-04-04T02:49:12Z
https://github.com/NVIDIA/pix2pixHD/issues/319
[]
watertianyi
5
idealo/image-super-resolution
computer-vision
172
git lfs can't download weights
open
2021-01-27T11:58:16Z
2021-04-02T16:41:20Z
https://github.com/idealo/image-super-resolution/issues/172
[]
ItamarGronich
1
huggingface/datasets
pandas
6,644
Support fsspec 2023.12
Support fsspec 2023.12 by handling previous and new glob behavior.
closed
2024-02-07T12:44:39Z
2024-02-29T15:12:18Z
https://github.com/huggingface/datasets/issues/6644
[ "enhancement" ]
albertvillanova
1
pyeve/eve
flask
554
'User-Restricted Resource Access' with HMAC authentication but it is doesn't work
Hi! I'm trying to use the 'User-Restricted Resource Access' with HMAC authentication but it is doesn't work. I just debugged the Eve code and I found this: /eve/io/base.py ![image](https://cloud.githubusercontent.com/assets/8345802/6021457/1f866f3e-ab9d-11e4-973b-c6fdd18a342c.png) The clause request.authorization isn't allowing that resources to be filter. Ok ![image](https://cloud.githubusercontent.com/assets/8345802/6021508/7a948d98-ab9d-11e4-8693-2b20d83d4119.png) Ok ![image](https://cloud.githubusercontent.com/assets/8345802/6021518/8fcaa530-ab9d-11e4-8518-0f415563bde4.png) NOK ![image](https://cloud.githubusercontent.com/assets/8345802/6021527/9aa0c71e-ab9d-11e4-9f55-957a8d86f116.png) This is caused because in file /werkzeug/http.py, the method parse_authorization_header is returning None. According with the documentation: 'The return value is either `None` if the header was invalid or not given'. Apparently it only supports basic and digest headers. There is some solution to solve it? This is my header: GET /trainingSet HTTP/1.1 Host: 127.0.0.1:5000 Content-Type: application/json Authorization: usr:8392495a7a3ec4002caba4cd8fbc196b932cddf7 Cache-Control: no-cache
closed
2015-02-03T14:16:19Z
2015-02-03T16:11:10Z
https://github.com/pyeve/eve/issues/554
[]
ghost
3
pyppeteer/pyppeteer
automation
144
How to properly cleanup non-existent chromium processes?
OS Info: Windows 10 v1909 Python version: Python 3.7.0 Pyppeteer version: pyppeteer==0.2.2 (also tried with dev version and ran into same problem) I am trying to take screenshots for 14 websites and of those 14 screenshots, 13 are successful. Which is great! However, one fails with Exception occurred: net::ERR_SSL_PROTOCOL_ERROR which is just because of me using https when it only supports http. However, the bigger problem is processes aren't getting cleaned up: ![image](https://user-images.githubusercontent.com/36310667/86081349-272cd680-ba63-11ea-8bc3-d9596411b1ff.png) Here is a snippet of the code with the screenshot functionality ```python async def take_screenshot(self, url): url = f'http://{url}' if ('http' not in url and 'https' not in url) else url # url = f'https://{url}' if ('http' not in url and 'https' not in url) else url url = url.replace('www.', '') print(f'Taking a screenshot of: {url}') browser = await launch(headless=True, ignoreHTTPSErrors=True, args=["--no-sandbox"]) browser = await browser.createIncognitoBrowserContext() page = await browser.newPage() try: # change default timeout from 30 to 35 seconds page.setDefaultNavigationTimeout(35000) await page.setUserAgent('Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/83.0.4103.106 Safari/537.36') await page.goto(url, waitUntil='networkidle0') await page.screenshot({'path': f'{self.output}\\{url.replace("http://", "").replace("https://", "")}.png'}) print('inside try and page has been closed') await page.close() # await browser.close() # return True except Exception as e: print(f'Exception occurred: {e} for: {url} ') # No matter what happens make sure browser and page are closed if page.isClosed() is False: print('page is closed as false') await page.close() print('browser is closed') await browser.close() ``` This is output from screenshot function when run: ``` Taking a screenshot of: https://x Taking a screenshot of: https://x Taking a screenshot of: https://x Taking a screenshot of: https://x Taking a screenshot of: https://x Taking a screenshot of: https://x Taking a screenshot of: https://x Taking a screenshot of: https://x Taking a screenshot of: https://x Taking a screenshot of: https://x inside try and page has been closed browser is closed Taking a screenshot of: https://x Taking a screenshot of: https://x Taking a screenshot of: https://x Taking a screenshot of: https://x Exception occurred: net::ERR_SSL_PROTOCOL_ERROR at https://x for: https://x page is closed as false browser is closed inside try and page has been closed browser is closed inside try and page has been closed browser is closed inside try and page has been closed browser is closed inside try and page has been closed browser is closed inside try and page has been closed browser is closed inside try and page has been closed browser is closed inside try and page has been closed browser is closed inside try and page has been closed browser is closed inside try and page has been closed browser is closed inside try and page has been closed browser is closed inside try and page has been closed browser is closed inside try and page has been closed browser is closed ```
open
2020-06-30T03:49:46Z
2021-12-26T14:10:23Z
https://github.com/pyppeteer/pyppeteer/issues/144
[ "bug" ]
NotoriousRebel
8
JaidedAI/EasyOCR
machine-learning
341
Terrible performance when trying to read single digit numbers. Performance improves significantly on using binary inverse thresholding, but not completely.
EasyOCR doesn't perform well when trying to read a page of purely single digit numbers. Replacing single digit numbers with at least 2 digits reverses this, with the reader recognizing almost all numbers correctly. I am using the allowlist string = '0123456789' to signal to the module that there are only digits present. The poor performance improves significantly if the image is preprocessed using binary inverse thresholding. The improvement isn't perfect however, and some numbers are still not captured. Test based on this image file: <img width="321" alt="test_numbers_singles" src="https://user-images.githubusercontent.com/7851954/103452682-dd4ed280-4cc9-11eb-8079-ee2ad036201f.PNG"> ## Performance with no pre-processing: ``` import easyocr import cv2 as cv # English reader = easyocr.Reader(['en']) # Without pre-processing filename = 'test_numbers_singles.PNG' img = cv.imread(filename) ocr = reader.readtext(img, allowlist='0123456789') img_annotated = img.copy() for elem in ocr: img_annotated = cv.line(img_annotated, tuple(elem[0][0]), tuple(elem[0][1]), (0, 255, 0), 2) img_annotated = cv.line(img_annotated, tuple(elem[0][1]), tuple(elem[0][2]), (0, 255, 0), 2) img_annotated = cv.line(img_annotated, tuple(elem[0][2]), tuple(elem[0][3]), (0, 255, 0), 2) img_annotated = cv.line(img_annotated, tuple(elem[0][3]), tuple(elem[0][0]), (0, 255, 0), 2) cv.imshow(filename, img_annotated); cv.waitKey(0); cv.destroyAllWindows() ``` Result: ![out-of-box-ocr](https://user-images.githubusercontent.com/7851954/103453344-eee7a880-4cd0-11eb-8409-0a55964bd383.png) ## With pre-processing ``` # With inverse binary thresholding ret, thresh = cv.threshold(img, 127, 255, cv.THRESH_BINARY_INV) ocr = reader.readtext(thresh, allowlist='0123456789') img_annotated = img.copy() for elem in ocr: img_annotated = cv.line(img_annotated, tuple(elem[0][0]), tuple(elem[0][1]), (0, 255, 0), 2) img_annotated = cv.line(img_annotated, tuple(elem[0][1]), tuple(elem[0][2]), (0, 255, 0), 2) img_annotated = cv.line(img_annotated, tuple(elem[0][2]), tuple(elem[0][3]), (0, 255, 0), 2) img_annotated = cv.line(img_annotated, tuple(elem[0][3]), tuple(elem[0][0]), (0, 255, 0), 2) cv.imshow(filename, img_annotated); cv.waitKey(0); cv.destroyAllWindows() ``` Result: ![inv-bin-thresholding-ocr](https://user-images.githubusercontent.com/7851954/103453371-3f5f0600-4cd1-11eb-99e8-c1587d2777b2.png) Performance improves, but there are still omissions as well as false detection/recognition. Repeating the above test with double digit numbers gives good performance out-of-box and almost perfect performance with the thresholding approach. Is there a workaround for my use case?
closed
2021-01-02T08:09:28Z
2024-11-18T09:30:23Z
https://github.com/JaidedAI/EasyOCR/issues/341
[]
Arpanio
5
vimalloc/flask-jwt-extended
flask
318
Validate token without authoration headers
Hello,thank you to create this wonderful library i want generator token to validate email like this: ```python @app.route('/register', methods=["GET", "POST"]) def register_view(): if request.method == 'POST': email = request.form.get('email') user = create_new_user() send_email( to=form.email.data, content=url_for('admin.auth_email_view', token=create_token(identity=user.id)) ) user.update(form.data) return generate_res() return {} @app.route('/auth/register/<string:token>') def auth_email_view(token): confirm_token(token) identify = get_jwt_identity() user = User.query_by_id(identify) if user: return {'status': 'success'} return {'status': 'failed'} ``` just use confirm_token without http headers to validate token, Is there any way to do this?
closed
2020-02-26T09:42:17Z
2020-02-27T02:20:53Z
https://github.com/vimalloc/flask-jwt-extended/issues/318
[]
joshuap233
2
deepset-ai/haystack
pytorch
8,271
docs: Pipeline.inputs()
Once a pipeline is created, it's difficult for users to _know_ how they should run the pipeline. We have quite a useful utility function for pipelines which is `.inputs()` which lists all the expected/required inputs for the components. We should use this in our docs heavily imo. This function is hardly visible, and we don't really provide any help on how a pipeline should be run other than trial and errors. Once a pipeline fails, the error us quite handy. And if a user knows to ues `.show()` that is also handy. But I think we should add this everywhere as something that a user colud make use of while creating/running pipelines. 1. In the pipelines doc 2. In all component docs where we have example pipelines..
closed
2024-08-22T13:27:22Z
2024-09-17T11:16:37Z
https://github.com/deepset-ai/haystack/issues/8271
[ "topic:pipeline", "type:documentation", "P2" ]
TuanaCelik
2
jupyterhub/zero-to-jupyterhub-k8s
jupyter
2,950
Parameter "singleuser.defaultUrl" not working
### Bug description With the lastest version of the Helm chart 2.0.0, the parameter "singleuser.defaultUrl" does not work. Setting it to "/lab" previously redirected the single-user servers to JupyterLab, now it opens the regular jupyter notebook <!-- Use this section to clearly and concisely describe the bug. --> #### Expected behaviour Redirect the user's address to /lab when setting `singleuser.defaultUrl: "/lab"` #### Actual behaviour It does not redirect to /lab, but instead to "/tree", the regular jupyter notebook ### How to reproduce 1. Deploy helm chart 1.2 with `singleuser.defaultUrl: "/lab"` 2. Start a User server: it gets redirected to "/lab" 3. Deploy helm chart 2.0.0 with `singleuser.defaultUrl: "/lab"` 4. Start a User server: it gets redirected to "tree" ### Your personal set up Tested with minikube version: v1.24.0 kubectl version ``` Client Version: version.Info{Major:"1", Minor:"22", GitVersion:"v1.22.4", GitCommit:"b695d79d4f967c403a96986f1750a35eb75e75f1", GitTreeState:"clean", BuildDate:"2021-11-17T15:48:33Z", GoVersion:"go1.16.10", Compiler:"gc", Platform:"linux/amd64"} Server Version: version.Info{Major:"1", Minor:"22", GitVersion:"v1.22.3", GitCommit:"c92036820499fedefec0f847e2054d824aea6cd1", GitTreeState:"clean", BuildDate:"2021-10-27T18:35:25Z", GoVersion:"go1.16.9", Compiler:"gc", Platform:"linux/amd64"} ```
closed
2022-11-17T13:10:47Z
2022-11-17T14:32:28Z
https://github.com/jupyterhub/zero-to-jupyterhub-k8s/issues/2950
[ "bug" ]
AdrianSanchezLopez
3
streamlit/streamlit
streamlit
10,151
Show table with merged cells
### Checklist - [X] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar feature requests. - [X] I added a descriptive title and summary to this issue. ### Summary For non-editable columns in st.dataframe or st.data_editor I want to display merged cells like the empty cells in the image above. I want to merge any columns (not necessarily all rows) or any rows (not necessarily all columns). It's ok if they are separated on selection like in the image below. ![merge](https://github.com/user-attachments/assets/63532b7c-7e2a-4a3a-a879-c1b7bee6f0a9) ![merge2](https://github.com/user-attachments/assets/13f8134d-625e-4c67-9de4-afe89d1a67b0) ### Why? It's just to improve the readability of the table. But this is very necessary as I want to continue using Streamlit in the future. ### How? It's fine to just remove the separator color for the specified coordinates. But I can't come up with a concise way to specify the coordinates. ### Additional Context _No response_
open
2025-01-10T06:30:49Z
2025-01-11T11:08:01Z
https://github.com/streamlit/streamlit/issues/10151
[ "type:enhancement", "feature:st.dataframe", "feature:st.table" ]
matsushitaa
3
graphql-python/graphene-sqlalchemy
graphql
342
Enum support for automatic hybrid property type conversion
See discussion in #340
open
2022-04-29T23:03:53Z
2022-04-29T23:03:53Z
https://github.com/graphql-python/graphene-sqlalchemy/issues/342
[ "enhancement" ]
erikwrede
0
inventree/InvenTree
django
8,656
Dev Container
### Deployment Method - [ ] Installer - [x] Docker Development - [ ] Docker Production - [ ] Bare metal Development - [ ] Bare metal Production - [ ] Digital Ocean image - [ ] Other (please provide a link `Steps to Reproduce` ### Describe the problem* When I walk through the dev container process, postCreateCommand.sh fails trying to install files. The last line looks like the script is trying to run `invoke dev.frontend-install` but it doesn't think that function exists. Also, when the dev container is installing, VS Code shows a notification saying "Could not find Biome in your dependencies. Either add the @biomejs/biome package to your dependencies, or download the Biome binary." When the container starts, this is the output: ``` Running the postCreateCommand from devcontainer.json... [15502 ms] Start: Run in container: /bin/sh -c .devcontainer/postCreateCommand.sh Error: [Errno 1] Operation not permitted: '/home/inventree/dev/venv/bin/Activate.ps1' .devcontainer/postCreateCommand.sh: line 8: /home/inventree/dev/venv/bin/activate: No such file or directory Updating InvenTree installation... Installing required python packages from '/home/inventree/src/backend/requirements.txt' Requirement already satisfied: pip in /usr/lib/python3.11/site-packages (23.1.2) Collecting pip Downloading pip-24.3.1-py3-none-any.whl (1.8 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.8/1.8 MB 5.0 MB/s eta 0:00:00 Requirement already satisfied: setuptools in /usr/lib/python3.11/site-packages (75.6.0) Installing collected packages: pip Attempting uninstall: pip Found existing installation: pip 23.1.2 Uninstalling pip-23.1.2: ERROR: Could not install packages due to an OSError: [Errno 13] Permission denied: '/usr/bin/pip' Consider using the `--user` option or check the permissions. ERROR: InvenTree command failed: 'pip3 install --no-cache-dir --disable-pip-version-check -U pip setuptools' - Refer to the error messages in the log above for more information ``` Then continues and gets here: ``` Successfully built django-querycount django-slowtests Installing collected packages: django-querycount, distlib, zipp, tomli, pyproject-hooks, pycparser, platformdirs, pip, nodeenv, isort, identify, filelock, django-test-migrations, django, coverage, cli ck, charset-normalizer, cfgv, virtualenv, importlib-metadata, django-slowtests, django-admin-shell, cffi, build, pre-commit, pip-tools, cryptography, pdfminer-six ERROR: Could not install packages due to an OSError: [Errno 13] Permission denied: '/usr/lib/python3.11/site-packages/querycount' Consider using the `--user` option or check the permissions. ERROR: InvenTree command failed: 'pip3 install -U --require-hashes -r src/backend/requirements-dev.txt' - Refer to the error messages in the log above for more information No idea what 'dev.frontend-install' is! ``` ### Steps to Reproduce I'm following the steps in the `docs/docs/develop/devcontainer.md` guide. Step 4 is where the errors happen. When I open a terminal, it does activate the virtual environment, but I am not able to run the server. I get a `ModuleNotFoundError: No module named 'django'` 1. Clone the repository (If you want to submit changes fork it and use the url to your fork in the next step) ```bash git clone https://github.com/inventree/InvenTree.git ``` 2. Open vscode, navigate to the extensions sidebar and search for `ms-vscode-remote.remote-containers`. Click on install. 3. Open the cloned folder from above by clicking on `file > open folder` 4. vscode should now ask you if you'd like to reopen this folder in a devcontainer. Click `Reopen in Container`. If it does not ask you, open the command palette (<kbd>CTRL/CMD</kbd>+<kbd>Shift</kbd>+<kbd>P</kbd>) and search for `Reopen in Container`. This can take a few minutes until the image is downloaded, build and setup with all dependencies. ### Relevant log output ```bash ```
closed
2024-12-11T16:04:00Z
2024-12-13T21:39:24Z
https://github.com/inventree/InvenTree/issues/8656
[ "bug", "setup" ]
ttftw
4
KevinMusgrave/pytorch-metric-learning
computer-vision
237
Using MPerClassSampler with thousands of labels?
I've misunderstood the API, thanks for an amazing repo:)
closed
2020-11-21T07:50:03Z
2020-11-21T08:16:34Z
https://github.com/KevinMusgrave/pytorch-metric-learning/issues/237
[]
dvirginz
0
OFA-Sys/Chinese-CLIP
computer-vision
344
翻译有点糟糕
![Screenshot from 2024-08-13 11-22-33](https://github.com/user-attachments/assets/09d6bb26-534f-415d-b0b3-f62401accc72) 我抽查了一些Flicker30k cn的翻译,很多语句不通。直觉上应该会对模型训练效果打折扣吧,不知道我的担忧是否是多余的。
open
2024-08-13T03:26:40Z
2024-08-13T03:26:40Z
https://github.com/OFA-Sys/Chinese-CLIP/issues/344
[]
ccl-private
0
SCIR-HI/Huatuo-Llama-Med-Chinese
nlp
22
运行infer.sh文件出现错误
运行infer.sh报错:没有找到adapter_config.json文件。 保存的权重文件如下: <img width="150" alt="image" src="https://user-images.githubusercontent.com/49066765/236186586-a8fb7d68-7803-42ce-9c79-456af57ecf97.png"> 请问是哪里出错导致没有adapter_config.json文件?
closed
2023-05-04T11:06:47Z
2023-05-05T08:36:53Z
https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese/issues/22
[]
CodingPeasantzgl
2
AUTOMATIC1111/stable-diffusion-webui
pytorch
16,643
[Bug]: WebUI not startting with --listen
### Checklist - [X] The issue exists after disabling all extensions - [X] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [X] The issue exists in the current version of the webui - [X] The issue has not been reported before recently - [ ] The issue has been reported before but has not been fixed yet ### What happened? Webui crash when trying to start with --listen flag ### Steps to reproduce the problem Go to webui-user.sh Add --listen flag to COMMANDLINE_ARGS ### What should have happened? Webui should start ### What browsers do you use to access the UI ? Mozilla Firefox ### Sysinfo [sysinfo-2024-11-11-09-02.json](https://github.com/user-attachments/files/17699866/sysinfo-2024-11-11-09-02.json) ### Console logs ```Shell https://pastebin.com/zZQJqvQj ``` ### Additional information _No response_
open
2024-11-11T09:08:11Z
2024-11-19T09:30:32Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/16643
[ "bug-report" ]
IcteFourU
2