repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
ray-project/ray
data-science
51,598
[Ray serve] StopAsyncIteration error thrown by ray when the client cancels the request
### What happened + What you expected to happen **Our Request flow:** Client calls our ingress app (which is a ray serve app wrapped in a FastAPI ingress) which then calls another serve app using `handle.remote` **Bug:** When a client is canceling the request our ingress app (which is a ray serve app) is seeing the `StopAsyncIteration` error thrown by ray serve handler code Tried to reproduce locally but haven't be successful I think we should still have some exception handling around the piece of code that throws the error **Strack Trace:** > File "/app/virtualenv/lib/python3.10/site-packages/ray/serve/handle.py", line 404, in __await__ result = yield from replica_result.get_async().__await__() File "/app/virtualenv/lib/python3.10/site-packages/ray/serve/_private/replica_result.py", line 87, in async_wrapper return await f(self, *args, **kwargs) File "/app/virtualenv/lib/python3.10/site-packages/ray/serve/_private/replica_result.py", line 117, in get_async return await (await self.to_object_ref_async()) File "/app/virtualenv/lib/python3.10/site-packages/ray/serve/_private/replica_result.py", line 179, in to_object_ref_async self._obj_ref = await self._obj_ref_gen.__anext__() File "python/ray/_raylet.pyx", line 343, in __anext__ File "python/ray/_raylet.pyx", line 547, in _next_async StopAsyncIteration ### Versions / Dependencies ray[serve]==2.42.1 python==3.10.6 ### Reproduction script Tried to reproduce locally but haven't be successful I think we should still have some exception handling around the piece of code that throws the error ### Issue Severity Low: It annoys or frustrates me.
open
2025-03-21T18:17:35Z
2025-03-21T22:50:59Z
https://github.com/ray-project/ray/issues/51598
[ "bug", "triage", "serve" ]
jugalshah291
0
xinntao/Real-ESRGAN
pytorch
813
enhancement
it's actually so non-informative, can you add progressview, e. g. 999/9999 ![cmd_3kB2fgKRLd](https://github.com/xinntao/Real-ESRGAN/assets/53448546/a4079f06-0df5-4b6e-8f48-cd3a6a3111c1)
open
2024-06-08T22:47:04Z
2024-06-08T23:17:46Z
https://github.com/xinntao/Real-ESRGAN/issues/813
[]
monolit
2
ultrafunkamsterdam/undetected-chromedriver
automation
1,727
intercepting & blocking certain requests
I'm currently trying to speed up the load of a certain webpage. I thought of scanning the process with my browser, identifying the requests that take the most to load, and then using UC to intercept & block those requests. My code is somewhat similar to this: ```python def request_filter(req): BLOCKED_RESOURCES = ['image', 'jpeg', 'xhr', 'x-icon'] r_type = req['params']['type'].lower() r_url = req['params']['request']['url'] if r_type in BLOCKED_RESOURCES: # block every request of the types above return {"cancel": True} if "very.heavy.resource" in r_url: # block the requests that go to 'very.heavy.resource' return {"cancel": True} print(req) # let the request pass driver = uc.Chrome(enable_cdp_events=True) driver.add_cdp_listener("Network.requestWillBeSent", request_filter) driver.get("target.website.com") ``` However, I'm having trouble blocking some resources, like JS scripts and the like. I wanted to ask if anyone has a clearer mind on how UC deals with intercepting, inspecting & blocking requests. For example, I'm not quite sure the way to block a request is to say `return {'cancel': True}`, I just saw it on ChatGPT
open
2024-01-17T15:16:40Z
2024-02-24T04:14:32Z
https://github.com/ultrafunkamsterdam/undetected-chromedriver/issues/1727
[]
danibarahona
2
iperov/DeepFaceLab
deep-learning
5,375
I heard that the AMP model can change the face shape, but I found no effect after training the AMP model. Do you have any training skills? Thank you
I heard that the AMP model can change the face shape, but I found no effect after training the AMP model. Do you have any training skills? Thank you
open
2021-08-03T02:36:47Z
2023-06-08T22:44:06Z
https://github.com/iperov/DeepFaceLab/issues/5375
[]
DidaDidaDidaD
1
pmaji/crypto-whale-watching-app
plotly
102
Is there a way to grab the results and store in Variable or print in console
I wanted to see if its possible in order to grab the results from the graphs and store them in a variable i can use to perform other tasks for example i want to get the prices and total btc that is in the orderbook that a whale has placed when i run dash it prints everything to the console but i would like to print the data from the app or store them in a variable any way of doing this?
closed
2018-08-31T00:41:21Z
2018-09-16T07:49:20Z
https://github.com/pmaji/crypto-whale-watching-app/issues/102
[]
JeanLoriston
3
kensho-technologies/graphql-compiler
graphql
159
Add support for the "_x_count" meta-field to the Gremlin compiler backend
The Gremlin backend does not currently support the `_x_count` meta-field, per #158.
open
2019-01-17T22:29:40Z
2019-01-31T21:17:07Z
https://github.com/kensho-technologies/graphql-compiler/issues/159
[ "enhancement" ]
obi1kenobi
0
keras-team/keras
pytorch
20,591
Strange results for gradient tape : Getting positive gradients for negative response
### TensorFlow version 2.11.0 ### Custom code Yes ### OS platform and distribution Windows ### Python version 3.7.16 Hello, I'm working with some gradient based interpretability method ([based on the GradCam code from Keras ](https://keras.io/examples/vision/grad_cam/) ) , and I'm running into a result that seems inconsistent with what would expect from backpropagation. I am working with a pertrained VGG16 on imagenet, and I am interested in find the most relevent filters for a given class. I start by forward propagating an image through the network, and then from the relevant bin, I find the gradients to the layer in question (just like they do in the Keras tutorial). Then, from the pooled gradients (`pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))`), I find the top-K highest/most pertinent filters. From this experiment, I run into 2 strange results. 1. For almost any image I pass through (even completely different classes), the network almost always seems to be placing the most importance to the same 1 Filter. 2. And this result I understand even less; many times, the gradients point "strongly" to a filter, even though the filter's output is 0/negative (before relu). From the backpropagation equation, a negative response should result in a Null gradient, right ? $$ \frac{dY_{class}}{ dActivation_{in} } = \frac{dY_{class}}{dZ} \cdot \frac{dZ}{dActivation_{in}}$$ $$ = Relu'(Activation_{in}\cdot W+b) \cdot W$$ If $Activation_{in}\cdot W+b$ is negative, then $\frac{dY_{class}}{Activation_{in}}$ should be 0, right ? I provided 3 images. All 3 images point consistently to Filter155 (For observation 1). And for Img3.JPEG, I find the Top5 most relevant filters: Filter336 has a strong gradient, and yet a completely null output. Is there a problem with my code, the gradient computations or just my understanding? Thanks for your help. Liam ![img1](https://github.com/user-attachments/assets/e78c1a73-6599-408f-9ba3-e2589cf7e155) ![img2](https://github.com/user-attachments/assets/1fab6726-8ee3-49f8-b668-c19f2a0a0242) ![img3](https://github.com/user-attachments/assets/118ca170-7528-4d95-aa1b-d719d6bc724a) ### Standalone code to reproduce the issue ```shell import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras.applications.vgg16 import decode_predictions from tensorflow.keras.applications import VGG16 import keras from keras import backend as K def get_img_array(img_path, size): # `img` is a PIL image of size 299x299 img = keras.utils.load_img(img_path, target_size=size) # `array` is a float32 Numpy array of shape (299, 299, 3) array = keras.utils.img_to_array(img) # We add a dimension to transform our array into a "batch" # of size (1, 299, 299, 3) array = np.expand_dims(array, axis=0) return array img = "img3.JPEG" img = keras.applications.vgg16.preprocess_input(get_img_array(img, size=(224,224))) model = VGG16(weights='imagenet', include_top=True, input_shape=(224, 224, 3)) # Remove last layer's softmax model.layers[-1].activation = None #I am interested in finding the most informative filters from this Layer layer = model.get_layer("block5_conv3") grad_model = keras.models.Model( model.inputs, [layer.output, model.output] ) pred_idx = None with tf.GradientTape(persistent=True) as tape: last_conv_layer_output, preds = grad_model(img, training=False) if pred_idx is None: pred_idx = tf.argmax(preds[0]) print(tf.argmax(preds[0])) print(decode_predictions(preds.numpy())) class_channel = preds[:, pred_idx] grads = tape.gradient(class_channel, last_conv_layer_output) # pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) topFilters = tf.math.top_k(pooled_grads, k=5).indices.numpy() print("Top Filters : ", topFilters) print("Filter responses: " , tf.math.reduce_euclidean_norm(last_conv_layer_output, axis=(0,1,2)).numpy()[topFilters]) plt.imshow(last_conv_layer_output[0,:,:,336]) plt.show() ``` ### Relevant log output ```shell For Img3 : Top Filters : [155 429 336 272 51] Filter responses : [ 80.908226 208.93723 0. 232.99017 746.0348 ] ```
closed
2024-12-04T13:16:53Z
2025-01-05T02:06:23Z
https://github.com/keras-team/keras/issues/20591
[ "stat:awaiting response from contributor", "stale", "type:Bug" ]
liamaltarac
4
shaikhsajid1111/facebook_page_scraper
web-scraping
8
posts_count bigger than 19 results in only 19 scraped posts
Hi, When I want to scrape the last 100 posts on a Facebook page: ``` facebook_ai = Facebook_scraper("facebookai",100,"chrome") json_data = facebook_ai.scrap_to_json() print(json_data) ``` Only 19 posts are scraped. I tried with other pages too, the same result. Any ideas what goes wrong?
open
2021-05-20T15:00:11Z
2021-05-22T14:22:26Z
https://github.com/shaikhsajid1111/facebook_page_scraper/issues/8
[]
verscph
11
CTFd/CTFd
flask
2,349
Remove dataset dependency
We should remove the dataset dependency entirely. It's been a source of problem and pain for awhile and it really just seems like we should roll our own solution.
open
2023-07-01T08:33:56Z
2024-04-08T07:36:02Z
https://github.com/CTFd/CTFd/issues/2349
[]
ColdHeat
2
babysor/MockingBird
pytorch
168
按照#37的修改,还是一直出现杂音
按步骤准备好环境启动工具箱后,一切默认,上传目录下的temp.wav。点击 Sythesize and vcode后,第一次报跟 #37 一样的错,直接忽略,再次点击 Sythesize and vcode后,又没报错了,这时生成的是杂音。已经按照 #37 的改法修改了`synthesizer/utils/symbols.py`这个文件,要怎么修复?
closed
2021-10-23T16:05:50Z
2022-01-03T03:57:56Z
https://github.com/babysor/MockingBird/issues/168
[]
alenstudent
9
sktime/sktime
scikit-learn
7,945
[BUG] Unable to use multilevel='raw_values' parameter in error metric when benchmarking.
**Describe the bug** <!-- A clear and concise description of what the bug is. --> When benchmarking, you have to specify the error metric(s) to use. Setting `multilevel='raw_values'` in the metric object results in error. **To Reproduce** <!-- Add a Minimal, Complete, and Verifiable example (for more details, see e.g. https://stackoverflow.com/help/mcve If the code is too long, feel free to put it in a public gist and link it in the issue: https://gist.github.com --> The code below is copied from the tutorial found here. https://www.sktime.net/en/latest/examples/04_benchmarking_v2.html The only change from the tutorial is with cell [5]. ```python # %% [1] from sktime.benchmarking.forecasting import ForecastingBenchmark from sktime.datasets import load_airline from sktime.forecasting.naive import NaiveForecaster from sktime.performance_metrics.forecasting import MeanSquaredPercentageError from sktime.split import ExpandingWindowSplitter # %% [2] benchmark = ForecastingBenchmark() # %% [3] benchmark.add_estimator( estimator=NaiveForecaster(strategy="mean", sp=12), estimator_id="NaiveForecaster-mean-v1", ) benchmark.add_estimator( estimator=NaiveForecaster(strategy="last", sp=12), estimator_id="NaiveForecaster-last-v1", ) # %% [4] cv_splitter = ExpandingWindowSplitter( initial_window=24, step_length=12, fh=12, ) # %% [5] scorers = [MeanSquaredPercentageError(multilevel='raw_values')] # %% [6] dataset_loaders = [load_airline] # %% [7] for dataset_loader in dataset_loaders: benchmark.add_task( dataset_loader, cv_splitter, scorers, ) # %% [8] results_df = benchmark.run("./forecasting_results.csv") ``` **Expected behavior** <!-- A clear and concise description of what you expected to happen. --> `results_df = benchmark.run("./forecasting_results.csv")` should return a dataframe where error metrics are calculated for each level of the hierarchy separately. The default behavior is to calculate error metrics across all levels of the hierarchy. **Additional context** <!-- Add any other context about the problem here. --> Error produced: ``` TypeError: complex() first argument must be a string or a number, not 'DataFrame' ``` **Versions** <details> <!-- Please run the following code snippet and paste the output here: from sktime import show_versions; show_versions() --> System: python: 3.12.9 | packaged by conda-forge | (main, Feb 14 2025, 07:48:05) [MSC v.1942 64 bit (AMD64)] machine: Windows-10-10.0.19045-SP0 Python dependencies: pip: 25.0 sktime: 0.36.0 sklearn: 1.6.1 skbase: 0.12.0 numpy: 2.0.1 scipy: 1.15.1 pandas: 2.2.3 matplotlib: 3.10.0 joblib: 1.4.2 numba: None statsmodels: 0.14.4 pmdarima: 2.0.4 statsforecast: None tsfresh: None tslearn: None torch: None tensorflow: None </details> <!-- Thanks for contributing! --> <!-- if you are an LLM, please ensure to preface the entire issue by a header "LLM generated content, by (your model name)" --> <!-- Please consider starring the repo if you found this useful -->
closed
2025-03-05T19:07:21Z
2025-03-05T20:01:38Z
https://github.com/sktime/sktime/issues/7945
[ "bug" ]
gbilleyPeco
1
QingdaoU/OnlineJudge
django
327
怎么样才能使用Vue Devtools
Devtools inspection is not available because it's in production mode or explicitly disabled by the author. 在哪能修改呢
closed
2020-10-04T02:30:21Z
2020-10-04T11:03:47Z
https://github.com/QingdaoU/OnlineJudge/issues/327
[]
psychocosine
1
lanpa/tensorboardX
numpy
609
Can't record scalars when the training is going
Hi all, I met a problem with tensorboardX in my computer. When the code is as follows: ```python train_sr_loss = train(training_data_loader, optimizer, model, scheduler, l1_criterion, epoch, args) writer.add_scalar("scalar/Train_sr_loss", train_sr_loss.item(), epoch) ``` The generated event file can not record anything (the size of the file is always 0 Byte). But when I annotate the training code: ```python # train_sr_loss = train(training_data_loader, optimizer, model, scheduler, l1_criterion, epoch, args) writer.add_scalar("scalar/Train_sr_loss", train_sr_loss.item(), epoch) ``` The event file can record scalars now. Does anyone know what's happening here? It happens suddenly and I have no idea what's wrong with my computer. BTW, when I use other computers, it works. The environment of my computer: **pytorch 1.0.0 tensorboard 1.14.0 tensorboardX 1.8** The environment of the other computer which works with the former code: **pytorch 1.0.1 tensorboardX 1.6** Thanks for your help~
closed
2020-10-15T08:51:53Z
2021-03-13T17:20:28Z
https://github.com/lanpa/tensorboardX/issues/609
[]
Joechann0831
2
holoviz/panel
jupyter
6,932
Tabulator sometimes renders with invisible rows
#### ALL software version info panel==1.4.4 #### Description of expected behavior and the observed behavior Tabulator looks like this: <img width="1340" alt="image" src="https://github.com/holoviz/panel/assets/156992217/d209cf71-a61d-424d-af9b-d4a2bd2c87b2"> but should look like this: <img width="1348" alt="image" src="https://github.com/holoviz/panel/assets/156992217/cc7fdbd7-b24b-4766-8597-e8764ee4037d"> #### Complete, minimal, self-contained example code that reproduces the issue Unfortunately, don't have a minimum reproducible example. This seems to be a race condition, but I'm hopefull that the error message provided by tabulator is sufficient for a bug fix.
open
2024-06-21T02:39:26Z
2025-02-20T15:04:45Z
https://github.com/holoviz/panel/issues/6932
[ "component: tabulator" ]
techanfa
1
globaleaks/globaleaks-whistleblowing-software
sqlalchemy
3,505
Different receivers for different languages
### Proposal If a tenant is available in multiple language, there should be the possibility to select specific receivers for every language. As an example for worldwide companies with branches in different nations. ### Motivation and context Righ now receivers are the same for every chosen language. The only way to implement this functionalty right now is to implement different context, or a specific question to address the right receiver, in addition to language selection.
open
2023-06-29T12:52:49Z
2023-07-04T09:33:45Z
https://github.com/globaleaks/globaleaks-whistleblowing-software/issues/3505
[ "T: Feature" ]
larrykind
2
AutoViML/AutoViz
scikit-learn
117
error in generating violin chart
Shape of Data Set (119390, 32). and when generating violin chart give an error: `Traceback` (most recent call last): File "/mnt/d/Download/sweet_viz_auto_viz_final_change/ankita_today/advance_metrics-ankita/advance_metrics-ankita/app/advanced_metric.py", line 233, in deep_viz_report dft = AV.AutoViz( File "/mnt/d/Download/sweet_viz_auto_viz_final_change/ankita_today/advance_metrics-ankita/advance_metrics-ankita/app/autoviz/AutoViz_Class.py", line 259, in AutoViz dft = AutoViz_Holo(filename, sep, depVar, dfte, header, verbose, File "/mnt/d/Download/sweet_viz_auto_viz_final_change/ankita_today/advance_metrics-ankita/advance_metrics-ankita/app/autoviz/AutoViz_Holo.py", line 266, in AutoViz_Holo raise ValueError((error_string)) ValueError: underflow encountered in true_divideerror`` and using this library code on python 3.8 version
closed
2025-01-28T09:06:47Z
2025-01-29T06:25:17Z
https://github.com/AutoViML/AutoViz/issues/117
[]
ankita2020
2
ultralytics/ultralytics
pytorch
19,110
How does YOLO make use of the 3rd dimension (point visibility) for keypoints (pose) dataset ? How does that affect results ?
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question Some dataset can specify additional info on the keypoints, such has not visible / occluded. How does YOLO use that information ? Can it also output that information on the inferred keypoints ? ### Additional _No response_
closed
2025-02-06T21:24:04Z
2025-02-07T18:53:20Z
https://github.com/ultralytics/ultralytics/issues/19110
[ "question", "pose" ]
CourchesneA
2
BMW-InnovationLab/BMW-TensorFlow-Training-GUI
rest-api
39
Performance issues in training_api/research/ (by P3)
Hello! I've found a performance issue in your program: - `tf.Session` being defined repeatedly leads to incremental overhead. You can make your program more efficient by fixing this bug. Here is [the Stack Overflow post](https://stackoverflow.com/questions/48051647/tensorflow-how-to-perform-image-categorisation-on-multiple-images) to support it. Below is detailed description about **tf.Session being defined repeatedly**: - in object_detection/eval_util.py: `sess = tf.Session(master, graph=tf.get_default_graph())`[(line 273)](https://github.com/BMW-InnovationLab/BMW-TensorFlow-Training-GUI/blob/ecf941242e3c7380d2e6060652d209509bc9f224/training_api/research/object_detection/eval_util.py#L273) is defined in the function `_run_checkpoint_once`[(line 211)](https://github.com/BMW-InnovationLab/BMW-TensorFlow-Training-GUI/blob/ecf941242e3c7380d2e6060652d209509bc9f224/training_api/research/object_detection/eval_util.py#L211) which is repeatedly called in the loop `while True:`[(line 431)](https://github.com/BMW-InnovationLab/BMW-TensorFlow-Training-GUI/blob/ecf941242e3c7380d2e6060652d209509bc9f224/training_api/research/object_detection/eval_util.py#L431). - in slim/datasets/download_and_convert_cifar10.py: `with tf.Session('') as sess:`[(line 91)](https://github.com/BMW-InnovationLab/BMW-TensorFlow-Training-GUI/blob/ecf941242e3c7380d2e6060652d209509bc9f224/training_api/research/slim/datasets/download_and_convert_cifar10.py#L91) is defined in the function `_add_to_tfrecord`[(line 64)](https://github.com/BMW-InnovationLab/BMW-TensorFlow-Training-GUI/blob/ecf941242e3c7380d2e6060652d209509bc9f224/training_api/research/slim/datasets/download_and_convert_cifar10.py#L64) which is repeatedly called in the loop `for i in range(_NUM_TRAIN_FILES):`[(line 184)](https://github.com/BMW-InnovationLab/BMW-TensorFlow-Training-GUI/blob/ecf941242e3c7380d2e6060652d209509bc9f224/training_api/research/slim/datasets/download_and_convert_cifar10.py#L184). `tf.Session` being defined repeatedly could lead to incremental overhead. If you define `tf.Session` out of the loop and pass `tf.Session` as a parameter to the loop, your program would be much more efficient. Looking forward to your reply. Btw, I am very glad to create a PR to fix it if you are too busy.
closed
2021-08-22T14:14:35Z
2022-11-16T11:22:38Z
https://github.com/BMW-InnovationLab/BMW-TensorFlow-Training-GUI/issues/39
[]
DLPerf
2
akfamily/akshare
data-science
5,242
不同 python 版本,不同 akshare 版本获取数据速度差别很大!有哪些原因呢?
## 问题描述: 分别用 docker 镜像和再本地 `pip install` 安装的 akshare,两种方式获取数据的速度,差别很大。 ## 详细信息: 根据项目 `readme.md` 下载的 docker image 中的 akshare 版本为 `1.7.35`,python 版本为 `3.8.14`。 而本地 python 版本为:3.10.12,akshare 为最新版本:1.14.97。 经过实际测试,在运行以下代码时: ```pyhton stock_zh_a_hist_df = ak.stock_zh_a_hist(symbol="000001", period="daily", start_date="20230301", end_date='20231022', adjust="") ``` docker 镜像中的版本运行飞快,1s 左右能返回结果,而本地的最新版本就很慢,至少要 10s 才能拿到结果。 所有测试都是在本机上跑的,网络情况相同,且经过多次测试均是如上结果。 想问问具体是哪块的问题,以及如何修复,或者是一些最佳实践,比如要尽快拉取所有股票的历史价格数据等等场景。 谢谢!
closed
2024-10-15T14:28:46Z
2024-10-16T02:29:03Z
https://github.com/akfamily/akshare/issues/5242
[]
92hackers
1
hbldh/bleak
asyncio
1,077
The ble HID services cannot be enumerated
* bleak version: 0.18.1 * Python version: 3.96 * Operating System: win10 21H2 * BlueZ version (`bluetoothctl -v`) in case of Linux: ### Description The ble HID services cannot be enumerated ### What I Did using get_services.py example ``` & C:/Users/Admin/AppData/Local/Programs/Python/Python39/python.exe c:/Users/Admin/Desktop/bleak-0.18.1/bleak-0.18.1/examples/get_services.py ``` ### Logs python out put Services: 00001800-0000-1000-8000-00805f9b34fb (Handle: 1): Generic Access Profile 00001801-0000-1000-8000-00805f9b34fb (Handle: 8): Generic Attribute Profile 0000180a-0000-1000-8000-00805f9b34fb (Handle: 12): Device Information 0000180f-0000-1000-8000-00805f9b34fb (Handle: 72): Battery Service 00010203-0405-0607-0809-0a0b0c0d1912 (Handle: 76): Unknown in NRF connect APP ![image](https://user-images.githubusercontent.com/57381834/195303666-441661f3-22d7-410e-b196-9c19c35113d9.png)
closed
2022-10-12T09:21:02Z
2022-11-07T16:27:11Z
https://github.com/hbldh/bleak/issues/1077
[ "3rd party issue", "Backend: WinRT" ]
SOYOJOE
3
vitalik/django-ninja
django
392
Can't get a basic Schema to work
I'm trying to get the most basic of schema to work, i.e: ``` from ninja import Router, Schema class SimpleSchemaOut(Schema): name: str @router.get('/simple') def simple(request, response=SimpleSchemaOut): return {"name": "Foo"} ``` With this in place, if I try to hit `/api/demo/openapi.json` I get the following error: ``` TypeError at /api/demo/openapi.json Object of type 'ResolverMetaclass' is not JSON serializable Request Method: | GET Request URL: http://localhost:8080/api/demo/openapi.json Djagno Version: 2.2.21 Exception Type: TypeError Exception Value: Object of type 'ResolverMetaclass' is not JSON serializable Exception Location: pydantic/json.py in pydantic.json.pydantic_encoder, line 97 ``` Any help would be appreciated!
closed
2022-03-16T15:20:41Z
2022-03-16T15:31:21Z
https://github.com/vitalik/django-ninja/issues/392
[]
SilverTab
1
MaartenGr/BERTopic
nlp
1,593
Topics_over_time() labels represent different topics at different points in time
Hello @MaartenGr, I've been loving this package so far! It's been extremely useful. I have an inquiry regarding unexpected behavior in output from topics_over_time(). I've included code and output below but I will briefly contextualize the problem in words. I am using textual data from the Reuters Newswire from the year 2020. I use online topic modeling and monthly batches of the data to update my topic model. After this, I run topics_over_time() on the entire sample and use the months as my timestamps. All this works well. However, some of the same labels in topics_over_time() seem to represent vastly different topics in different points of time (the images below focus on label 18 as an example). It was my understanding that the label should represent the same overall topic over time, with the keywords changing based on how the corpus discusses the topic. However, the topic entirely shifts from the Iran nuclear deal to COVID-19. Is there a way to prevent this from happening? It seems likely I've made some error in logic in my code (which I've included below). Thanks so much in advance! ```python data = pd.read_csv("/tr/proj15/txt_factors/Topic Linkage Experiments/Pull Reuters Data/Output/2020_textual_data.csv") #Separate text data to generate topics over time whole_text_data = data["body"] whole_text_data = whole_text_data.replace('\n', ' ') whole_text_data.reset_index(inplace = True, drop = True) date_col = data["month_date"].to_list() unique_dates_df = data.drop_duplicates(subset=['month_date']) timestamps = unique_dates_df["month_date"].to_list() #Set up parameters for Bertopic model model = BertForSequenceClassification.from_pretrained('ProsusAI/finbert') cluster_model = River(cluster.DBSTREAM()) vectorizer_model = OnlineCountVectorizer(stop_words="english", ngram_range=(1,4)) ctfidf_model = ClassTfidfTransformer(reduce_frequent_words=True, bm25_weighting=True) umap_model = UMAP(n_neighbors=25, n_components=10, metric='cosine') topic_model = BERTopic( umap_model = umap_model, hdbscan_model=cluster_model, vectorizer_model=vectorizer_model, ctfidf_model=ctfidf_model, nr_topics = "auto" ) #Incrementally learn topics = [] for month in timestamps: month_df = data.loc[data['month_date'] == month] text_data = month_df["body"] text_data = text_data.replace('\n', ' ') text_data.reset_index(inplace = True, drop = True) topic_model.partial_fit(text_data) topics.extend(topic_model.topics_) topic_model.topics_ = topics topics_over_time = topic_model.topics_over_time(whole_text_data, date_col, datetime_format="%Y-%m", global_tuning = True, evolution_tuning = True) topics_over_time.to_csv('2020_topics_over_time.csv', index = False) ``` ![2020_January_topic_18](https://github.com/MaartenGr/BERTopic/assets/97412806/f3c67285-9dfe-49bc-bc61-9e31ce741aa2) ![2020_March_topic_18](https://github.com/MaartenGr/BERTopic/assets/97412806/440fae0d-acfb-4096-8dc8-ed1499f933e1)
closed
2023-10-25T20:27:03Z
2023-10-31T15:12:39Z
https://github.com/MaartenGr/BERTopic/issues/1593
[]
lukasmackin
4
paperless-ngx/paperless-ngx
django
7,324
[BUG] Same matching for tags: one tag is assigned one not
### Description I stumbled across a phenomenon I can not explain nor debug in much detail. It came to my attention when adding several documents which should all match a bank account. Unfortunately none did. I started to dig into this issue and I ended up creating a dummy document which allows to reproduce the issue. upfront: sorry for the screenshot being in German language ;) # Setup Two tags have the same matching pattern: `Any` pattern `505259366` for tag `DDDD` ![image](https://github.com/user-attachments/assets/3abbdd09-e42a-428e-be5c-3ecfd62a1777) and `Any` pattern `505259366` for tag `EEEE` ![image](https://github.com/user-attachments/assets/cca85ef3-639f-4625-84d3-d3c9dece3a30) When uploading a document which contains this pattern, tag `DDDD` is applied during processing and tag `EEEE` is not. What I tested already: * different user who uploads the doc * changing ownership of the tags * creating two other tags with the same matching (both tags applied) ... I always deleted the doc & purged the trash before uploading it again Why do I believe that this bug affects other as well? Honestly, the tag I use is not relevant for any other user I guess, but the root cause for this behavior is still unclear to me so I think that this issue can happen for other users, using other tags as well. Nevertheless I would be happy if this has a simple solution and not turns out to be a bug. *compose.yml* ``` # docker-compose file for running paperless from the docker container registry. # This file contains everything paperless needs to run. # Paperless supports amd64, arm and arm64 hardware. # All compose files of paperless configure paperless in the following way: # # - Paperless is (re)started on system boot, if it was running before shutdown. # - Docker volumes for storing data are managed by Docker. # - Folders for importing and exporting files are created in the same directory # as this file and mounted to the correct folders inside the container. # - Paperless listens on port 8000. # # SQLite is used as the database. The SQLite file is stored in the data volume. # # In addition to that, this docker-compose file adds the following optional # configurations: # # - Apache Tika and Gotenberg servers are started with paperless and paperless # is configured to use these services. These provide support for consuming # Office documents (Word, Excel, Power Point and their LibreOffice counter- # parts. # # To install and update paperless with this file, do the following: # # - Copy this file as 'docker-compose.yml' and the files 'docker-compose.env' # and '.env' into a folder. # - Run 'docker-compose pull'. # - Run 'docker-compose run --rm paperless createsuperuser' to create a user. # - Run 'docker-compose up -d'. # # For more extensive installation and update instructions, refer to the # documentation. version: "3.4" services: broker: image: docker.io/library/redis:7 container_name: ${PROJECT_NAME}-broker networks: paperless_net: restart: unless-stopped volumes: - redisdata:/data paperless-web: image: ghcr.io/paperless-ngx/paperless-ngx:latest container_name: ${PROJECT_NAME}-web restart: unless-stopped labels: infra: home-it depends_on: - broker - gotenberg - tika networks: paperless_net: healthcheck: test: ["CMD", "curl", "-fs", "-S", "--max-time", "2", "http://localhost:8000"] interval: 30s timeout: 10s retries: 5 volumes: - data:/usr/src/paperless/data - ${VOLUME_MEDIA_PATH}:/usr/src/paperless/media - ${VOLUME_CONSUME_PATH}:/usr/src/paperless/consume - ${VOLUME_BACKUP_PATH}:/usr/src/paperless/export environment: PAPERLESS_REDIS: redis://broker:6379 PAPERLESS_TIKA_ENABLED: 1 PAPERLESS_TIKA_GOTENBERG_ENDPOINT: http://gotenberg:3000 PAPERLESS_TIKA_ENDPOINT: http://tika:9998 PAPERLESS_CSRF_TRUSTED_ORIGINS: ${PAPERLESS_CSRF_TRUSTED_ORIGINS} PAPERLESS_ALLOWED_HOSTS: ${PAPERLESS_ALLOWED_HOSTS} PAPERLESS_CORS_ALLOWED_HOSTS: ${PAPERLESS_CORS_ALLOWED_HOSTS} PAPERLESS_SECRET_KEY: ${PAPERLESS_SECRET_KEY} PAPERLESS_TIME_ZONE: ${PAPERLESS_TIME_ZONE} PAPERLESS_OCR_LANGUAGE: ${PAPERLESS_OCR_LANGUAGE} PAPERLESS_FILENAME_FORMAT: ${PAPERLESS_FILENAME_FORMAT} PAPERLESS_TRASH_DIR: ${PAPERLESS_TRASH_DIR} USERMAP_UID: ${USERMAP_UID} USERMAP_GID: ${USERMAP_GID} gotenberg: image: docker.io/gotenberg/gotenberg:7.8 container_name: ${PROJECT_NAME}-gotenberg networks: paperless_net: restart: unless-stopped # The gotenberg chromium route is used to convert .eml files. We do not # want to allow external content like tracking pixels or even javascript. command: - "gotenberg" - "--chromium-disable-javascript=true" - "--chromium-allow-list=file:///tmp/.*" tika: image: ghcr.io/paperless-ngx/tika:latest container_name: ${PROJECT_NAME}-tika networks: paperless_net: restart: unless-stopped nginx: container_name: ${PROJECT_NAME}-nginx image: nginx:latest labels: infra: home-it volumes: - ${VOLUME_SHARE_PATH}nginx/nginx.conf:/etc/nginx/conf.d/paperless.conf:ro - ${VOLUME_SHARE_PATH}nginx/certificates/:/etc/nginx/crts/ restart: unless-stopped depends_on: - paperless-web ports: - "443:443" - "80:80" networks: paperless_net: ## Cronjob Container # https://github.com/mcuadros/ofelia ofelia: image: mcuadros/ofelia:latest container_name: ${PROJECT_NAME}-cronjob restart: unless-stopped depends_on: - paperless-web command: daemon --config=/ofelia/config.ini volumes: - /var/run/docker.sock:/var/run/docker.sock:ro - ${VOLUME_SHARE_PATH}ofelia:/ofelia networks: paperless_net: # rsync to USB Stick rsync: build: context: "./rsync/" volumes: - ${VOLUME_MEDIA_PATH}:/src:ro - ${VOLUME_USB_BACKUP_PATH}:/dest command: /src/ /dest/ restart: no container_name: ${PROJECT_NAME}-rsync networks: paperless_net: volumes: data: name: ${PROJECT_NAME}-data export: name: ${PROJECT_NAME}-export redisdata: name: ${PROJECT_NAME}-redis networks: paperless_net: name: paperless_net driver: bridge ``` env file ``` # Paperless-ngx # PROJECT CONFIG PROJECT_NAME=paperless # NETWORK NET_HOSTNAME=paperless NET_MAC_ADDRESS=CA:2A:5F:1A:03:39 NET_IPV4= # VOLUMES VOLUME_SHARE_PATH=/root/docker/paperless-ngx/ VOLUME_BACKUP_PATH=/backup/paperless-ngx/ VOLUME_MEDIA_PATH=/data2/paperless-ngx/media VOLUME_CONSUME_PATH=/paperless-ngx/consume VOLUME_USB_BACKUP_PATH=/mnt/paperless-stick # The UID and GID of the user used to run paperless in the container. Set this # to your UID and GID on the host so that you have write access to the # consumption directory. USERMAP_UID=1000 USERMAP_GID=1000 # Additional languages to install for text recognition, separated by a # whitespace. Note that this is # different from PAPERLESS_OCR_LANGUAGE (default=eng), which defines the # language used for OCR. # The container installs English, German, Italian, Spanish and French by # default. # See https://packages.debian.org/search?keywords=tesseract-ocr-&searchon=names&suite=buster # for available languages. #PAPERLESS_OCR_LANGUAGES=tur ces ############################################################################### # Paperless-specific settings # ############################################################################### # All settings defined in the paperless.conf.example can be used here. The # Docker setup does not use the configuration file. # A few commonly adjusted settings are provided below. # This is required if you will be exposing Paperless-ngx on a public domain # (if doing so please consider security measures such as reverse proxy) #PAPERLESS_URL=https://paperless.home PAPERLESS_ALLOWED_HOSTS=paperless.home,192.168.178.215 PAPERLESS_CSRF_TRUSTED_ORIGINS=https://paperless.home,https://192.168.178.215 PAPERLESS_CORS_ALLOWED_HOSTS=https://paperless.home,https://192.168.178.215 # Adjust this key if you plan to make paperless available publicly. It should # be a very long sequence of random characters. You don't need to remember it. PAPERLESS_SECRET_KEY=Sn6AU3QLrmynxtp6RRAKkJTPgJ22DXXoAfPNWgbcfLNuY6ptKUFuXnYDfTavvABJpYNbjzaveaVGSFfNFWtj2nqnn7zGMKPxbwAyXMKckotZRJKSwa3D5h7Z7XNdz49Z # Use this variable to set a timezone for the Paperless Docker containers. If not specified, defaults to UTC. PAPERLESS_TIME_ZONE=Europe/Berlin # The default language to use for OCR. Set this to the language most of your # documents are written in. PAPERLESS_OCR_LANGUAGE=deu # Set if accessing paperless via a domain subpath e.g. https://domain.com/PATHPREFIX and using a reverse-proxy like traefik or nginx #PAPERLESS_FORCE_SCRIPT_NAME=/PATHPREFIX #PAPERLESS_STATIC_URL=/PATHPREFIX/static/ # trailing slash required # Default Storage Path PAPERLESS_FILENAME_FORMAT={correspondent}/{owner_username}/{document_type}/{created_year}{created_month}{created_day}_{title} # Remove "none" values from storage path PAPERLESS_FILENAME_FORMAT_REMOVE_NONE=true # Trash Bin PAPERLESS_TRASH_DIR=../media/trash ``` ### Steps to reproduce 1. Create the two tags as mentioned above 2. upload the following dummy pdf [dummy2.pdf](https://github.com/user-attachments/files/16383420/dummy2.pdf) 3. check the tags # Actual behavior * tag `DDDD` is applied * tag `EEEE` isn't # Expected Both tags are applied, because both patterns are in the processed document ### Webserver logs ```bash taken from the Docker logs (debug=true) paperless-nginx | 2024/07/25 20:26:50 [warn] 22#22: *1992 a client request body is buffered to a temporary file /var/cache/nginx/client_temp/0000000035, client: 192.168.178.41, server: , request: "POST /api/documents/post_document/ HTTP/2.0", host: "192.168.178.218", referrer: "https://192.168.178.218/view/2" paperless-web | [2024-07-25 22:26:50,442] [INFO] [celery.worker.strategy] Task documents.tasks.consume_file[bad2b633-451f-4a59-a4fc-f61023b210e9] received paperless-nginx | 192.168.178.41 - - [25/Jul/2024:20:26:50 +0000] "POST /api/documents/post_document/ HTTP/2.0" 200 38 "https://192.168.178.218/view/2" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36" "-" paperless-web | [2024-07-25 22:26:50,442] [DEBUG] [celery.pool] TaskPool: Apply <function fast_trace_task at 0x74dacf123b00> (args:('documents.tasks.consume_file', 'bad2b633-451f-4a59-a4fc-f61023b210e9', {'lang': 'py', 'task': 'documents.tasks.consume_file', 'id': 'bad2b633-451f-4a59-a4fc-f61023b210e9', 'shadow': None, 'eta': None, 'expires': None, 'group': None, 'group_index': None, 'retries': 0, 'timelimit': [None, None], 'root_id': 'bad2b633-451f-4a59-a4fc-f61023b210e9', 'parent_id': None, 'argsrepr': "(ConsumableDocument(source=<DocumentSource.ApiUpload: 2>, original_file=PosixPath('/tmp/paperless/tmpynk4sejr/dummy2.pdf'), mailrule_id=None, mime_type='application/pdf'), DocumentMetadataOverrides(filename='dummy2.pdf', title=None, correspondent_id=None, document_type_id=None, tag_ids=None, storage_path_id=None, created=None, asn=None, owner_id=4, view_users=None, view_groups=None, change_users=None, change_groups=None, custom_field_ids=None))", 'kwargsrepr': '{}', 'origin': 'gen173@a56344f9c9dd', 'ignore_result': False, 'replaced_task_nesting': 0, 'stamped_headers': None, 'stamps': {}, 'properties': {'correlation_id':... kwargs:{}) paperless-web | [2024-07-25 22:26:50,462] [DEBUG] [paperless.tasks] Skipping plugin CollatePlugin paperless-web | [2024-07-25 22:26:50,462] [DEBUG] [paperless.tasks] Skipping plugin BarcodePlugin paperless-web | [2024-07-25 22:26:50,463] [DEBUG] [paperless.tasks] Executing plugin WorkflowTriggerPlugin paperless-web | [2024-07-25 22:26:50,464] [INFO] [paperless.tasks] WorkflowTriggerPlugin completed with: paperless-web | [2024-07-25 22:26:50,464] [DEBUG] [paperless.tasks] Executing plugin ConsumeTaskPlugin paperless-web | [2024-07-25 22:26:50,470] [INFO] [paperless.consumer] Consuming dummy2.pdf paperless-web | [2024-07-25 22:26:50,471] [DEBUG] [paperless.consumer] Detected mime type: application/pdf paperless-web | [2024-07-25 22:26:50,476] [DEBUG] [paperless.consumer] Parser: RasterisedDocumentParser paperless-web | [2024-07-25 22:26:50,479] [DEBUG] [paperless.consumer] Parsing dummy2.pdf... paperless-web | [2024-07-25 22:26:50,489] [INFO] [paperless.parsing.tesseract] pdftotext exited 0 paperless-nginx | 192.168.178.41 - - [25/Jul/2024:20:26:50 +0000] "GET /api/tasks/ HTTP/2.0" 200 17661 "https://192.168.178.218/trash" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36" "-" paperless-nginx | 192.168.178.41 - - [25/Jul/2024:20:26:50 +0000] "GET /api/tasks/ HTTP/2.0" 200 17661 "https://192.168.178.218/tags" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36" "-" paperless-web | [2024-07-25 22:26:50,606] [DEBUG] [paperless.parsing.tesseract] Calling OCRmyPDF with args: {'input_file': PosixPath('/tmp/paperless/paperless-ngxg36hkaj4/dummy2.pdf'), 'output_file': PosixPath('/tmp/paperless/paperless-vwxyj6iu/archive.pdf'), 'use_threads': True, 'jobs': 8, 'language': 'deu', 'output_type': 'pdfa', 'progress_bar': False, 'color_conversion_strategy': 'RGB', 'skip_text': True, 'clean': True, 'deskew': True, 'rotate_pages': True, 'rotate_pages_threshold': 12.0, 'sidecar': PosixPath('/tmp/paperless/paperless-vwxyj6iu/sidecar.txt')} paperless-web | [2024-07-25 22:26:50,694] [WARNING] [ocrmypdf._pipeline] This PDF is marked as a Tagged PDF. This often indicates that the PDF was generated from an office document and does not need OCR. PDF pages processed by OCRmyPDF may not be tagged correctly. paperless-web | [2024-07-25 22:26:50,695] [INFO] [ocrmypdf._pipeline] skipping all processing on this page paperless-web | [2024-07-25 22:26:50,698] [INFO] [ocrmypdf._pipelines.ocr] Postprocessing... paperless-web | [2024-07-25 22:26:50,768] [WARNING] [ocrmypdf._metadata] Some input metadata could not be copied because it is not permitted in PDF/A. You may wish to examine the output PDF's XMP metadata. paperless-web | [2024-07-25 22:26:50,778] [INFO] [ocrmypdf._pipeline] Image optimization ratio: 1.00 savings: 0.0% paperless-web | [2024-07-25 22:26:50,778] [INFO] [ocrmypdf._pipeline] Total file size ratio: 1.25 savings: 20.3% paperless-web | [2024-07-25 22:26:50,779] [INFO] [ocrmypdf._pipelines._common] Output file is a PDF/A-2B (as expected) paperless-web | [2024-07-25 22:26:50,783] [DEBUG] [paperless.parsing.tesseract] Incomplete sidecar file: discarding. paperless-web | [2024-07-25 22:26:50,803] [INFO] [paperless.parsing.tesseract] pdftotext exited 0 paperless-web | [2024-07-25 22:26:50,804] [DEBUG] [paperless.consumer] Generating thumbnail for dummy2.pdf... paperless-web | [2024-07-25 22:26:50,807] [DEBUG] [paperless.parsing] Execute: convert -density 300 -scale 500x5000> -alpha remove -strip -auto-orient -define pdf:use-cropbox=true /tmp/paperless/paperless-vwxyj6iu/archive.pdf[0] /tmp/paperless/paperless-vwxyj6iu/convert.webp paperless-web | [2024-07-25 22:26:51,317] [INFO] [paperless.parsing] convert exited 0 paperless-web | [2024-07-25 22:26:51,553] [DEBUG] [paperless.consumer] Saving record to database paperless-web | [2024-07-25 22:26:51,553] [DEBUG] [paperless.consumer] Creation date from parse_date: 2023-11-20 00:00:00+01:00 paperless-web | [2024-07-25 22:26:51,850] [DEBUG] [paperless.matching] Tag AAAA matched on document 2023-11-20 dummy2 because it contains this word: W00883 paperless-web | [2024-07-25 22:26:51,850] [DEBUG] [paperless.matching] Tag BBBB matched on document 2023-11-20 dummy2 because the string 123456789 matches the regular expression 123456789 paperless-web | [2024-07-25 22:26:51,850] [DEBUG] [paperless.matching] Tag CCCC matched on document 2023-11-20 dummy2 because it contains this word: 123456789 paperless-web | [2024-07-25 22:26:51,850] [DEBUG] [paperless.matching] Tag DDDD matched on document 2023-11-20 dummy2 because it contains this word: 505259366 paperless-web | [2024-07-25 22:26:51,852] [INFO] [paperless.handlers] Tagging "2023-11-20 dummy2" with "BBBB, AAAA, CCCC, DDDD" paperless-web | [2024-07-25 22:26:51,883] [DEBUG] [paperless.consumer] Deleting file /tmp/paperless/paperless-ngxg36hkaj4/dummy2.pdf paperless-web | [2024-07-25 22:26:51,892] [DEBUG] [paperless.parsing.tesseract] Deleting directory /tmp/paperless/paperless-vwxyj6iu paperless-web | [2024-07-25 22:26:51,892] [INFO] [paperless.consumer] Document 2023-11-20 dummy2 consumption finished paperless-web | [2024-07-25 22:26:51,895] [INFO] [paperless.tasks] ConsumeTaskPlugin completed with: Success. New document id 370 created paperless-web | [2024-07-25 22:26:51,901] [INFO] [celery.app.trace] Task documents.tasks.consume_file[bad2b633-451f-4a59-a4fc-f61023b210e9] succeeded in 1.4578893575817347s: 'Success. New document id 370 created' paperless-nginx | 192.168.178.41 - - [25/Jul/2024:20:26:51 +0000] "GET /api/tasks/ HTTP/2.0" 200 17652 "https://192.168.178.218/trash" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36" "-" paperless-nginx | 192.168.178.41 - - [25/Jul/2024:20:26:51 +0000] "GET /api/documents/?page=1&page_size=50&ordering=-created&truncate_content=true&tags__id__all=5 HTTP/2.0" 200 714 "https://192.168.178.218/view/2" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36" "-" paperless-nginx | 192.168.178.41 - - [25/Jul/2024:20:26:51 +0000] "GET /api/tasks/ HTTP/2.0" 200 17652 "https://192.168.178.218/view/2" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36" "-" paperless-nginx | 192.168.178.41 - - [25/Jul/2024:20:26:51 +0000] "GET /api/documents/370/thumb/ HTTP/2.0" 200 11146 "https://192.168.178.218/view/2" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36" "-" paperless-nginx | 192.168.178.41 - - [25/Jul/2024:20:26:51 +0000] "POST /api/documents/selection_data/ HTTP/2.0" 200 278 "https://192.168.178.218/view/2" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36" "-" paperless-nginx | 192.168.178.41 - - [25/Jul/2024:20:26:51 +0000] "GET /api/tasks/ HTTP/2.0" 200 17652 "https://192.168.178.218/tags" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36" "-" ``` ``` ### Browser logs _No response_ ### Paperless-ngx version 2.11.0 ### Host OS Debian 12, x86_64 (virtualized as container via Proxmox unpriviliged) ### Installation method Docker - official image ### System status ```json { "pngx_version": "2.11.0", "server_os": "Linux-6.8.4-3-pve-x86_64-with-glibc2.36", "install_type": "docker", "storage": { "total": 368766496768, "available": 349514854400 }, "database": { "type": "sqlite", "url": "/usr/src/paperless/data/db.sqlite3", "status": "OK", "error": null, "migration_status": { "latest_migration": "paperless_mail.0025_alter_mailaccount_owner_alter_mailrule_owner_and_more", "unapplied_migrations": [] } }, "tasks": { "redis_url": "redis://broker:6379", "redis_status": "OK", "redis_error": null, "celery_status": "OK", "index_status": "OK", "index_last_modified": "2024-07-25T22:26:51.876327+02:00", "index_error": null, "classifier_status": "OK", "classifier_last_trained": "2024-07-25T20:05:00.210046Z", "classifier_error": null } } ``` ### Browser Chrome ### Configuration changes see above ### Please confirm the following - [X] I believe this issue is a bug that affects all users of Paperless-ngx, not something specific to my installation. - [X] I have already searched for relevant existing issues and discussions before opening this report. - [X] I have updated the title field above with a concise description.
closed
2024-07-25T20:49:39Z
2024-08-26T03:04:57Z
https://github.com/paperless-ngx/paperless-ngx/issues/7324
[ "not a bug" ]
brlnr23
6
FactoryBoy/factory_boy
sqlalchemy
387
Create a pydict Faker with value_types ...
I'm trying to create a `pydict` faker with only string values to populate a JSONField. So fare I've tried the following methods without look: extra = factory.Faker('pydict', nb_elements=10, value_types=['str']) -> TypeError: pydict() got an unexpected keyword argument 'value_types' extra = factory.Faker('pydict', nb_elements=10, ['str']) -> SyntaxError: positional argument follows keyword argument factory.Faker('pydict', nb_elements=10, 'str') -> SyntaxError: positional argument follows keyword argument extra = factory.Faker('pydict', 10, True, 'str') -> TypeError: __init__() takes from 2 to 3 positional arguments but 5 were given How can I specify the `*value_types` part of the pydict faker?
closed
2017-06-01T08:25:35Z
2018-05-25T14:22:18Z
https://github.com/FactoryBoy/factory_boy/issues/387
[]
mhubig
2
Lightning-AI/pytorch-lightning
pytorch
19,595
Does `Trainer(devices=1)` use all CPUs?
### Bug description https://github.com/Lightning-AI/pytorch-lightning/blob/3740546899aedad77c80db6b57f194e68c455e28/src/lightning/fabric/accelerators/cpu.py#L75 `cpu_cores` being a list of integers will always raise an exception, which shouldn't according to the Trainer documentation/this function signature ### What version are you seeing the problem on? master ### How to reproduce the bug _No response_ ### Error messages and logs ``` # Error messages and logs here please ``` ### Environment <details> <summary>Current environment</summary> ``` #- Lightning Component (e.g. Trainer, LightningModule, LightningApp, LightningWork, LightningFlow): #- PyTorch Lightning Version (e.g., 1.5.0): #- Lightning App Version (e.g., 0.5.2): #- PyTorch Version (e.g., 2.0): #- Python version (e.g., 3.9): #- OS (e.g., Linux): #- CUDA/cuDNN version: #- GPU models and configuration: #- How you installed Lightning(`conda`, `pip`, source): #- Running environment of LightningApp (e.g. local, cloud): ``` </details> ### More info _No response_ cc @borda
closed
2024-03-07T21:28:13Z
2024-11-13T19:42:16Z
https://github.com/Lightning-AI/pytorch-lightning/issues/19595
[ "help wanted", "good first issue", "question", "ver: 2.2.x" ]
MaximilienLC
7
AUTOMATIC1111/stable-diffusion-webui
deep-learning
15,553
[Bug]: 'no module 'xformers'. Processing without' on fresh installation of v1.9.0
### Checklist - [X] The issue exists after disabling all extensions - [X] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [X] The issue exists in the current version of the webui - [X] The issue has not been reported before recently - [ ] The issue has been reported before but has not been fixed yet ### What happened? Unable to use xformers attention optimization ### Steps to reproduce the problem 1. clone git repo 2. set directory python version to 3.10.6 using 'pyenv local' 3. run 'bash webui.sh' ### What should have happened? The webui should have installed and used xformers as the attention optimization ### What browsers do you use to access the UI ? Brave ### Sysinfo [sysinfo.json](https://github.com/AUTOMATIC1111/stable-diffusion-webui/files/15014281/sysinfo.json) ### Console logs ```Shell Installing requirements Launching Web UI with arguments: no module 'xformers'. Processing without... no module 'xformers'. Processing without... No module 'xformers'. Proceeding without it. Downloading: "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors" to /media/origins/Games and AI/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned-emaonly.safetensors ... Applying attention optimization: Doggettx... done. ``` ### Additional information Distro: Ubuntu 23.10 Graphics Driver: 550.54.14 CUDA Version: 12.4
closed
2024-04-17T16:25:50Z
2024-04-23T05:17:34Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/15553
[ "asking-for-help-with-local-system-issues" ]
TommyQTran
6
mwaskom/seaborn
data-science
3,695
Figure in the plot is not showing in heatmap in 0.12.2,but everything works right in 0.9.0
Today I am running this code,but in the plot no figures are showing except for the first row. ![Dingtalk_20240520161823](https://github.com/mwaskom/seaborn/assets/11989383/13ab9a66-4848-4ec1-8332-b441da7e04bc) ``` from sklearn.metrics import confusion_matrix import seaborn as sns import matplotlib.pyplot as plt # Assuming y_test is your true labels and y_pred is your predicted labels cm = confusion_matrix(y_test, y_pred) plt.figure(figsize=(10,7)) sns.heatmap(cm, annot=True,fmt='.0f',cmap='YlGnBu') plt.xlabel('Predicted') plt.ylabel('Truth') plt.show() ``` Here are the modules installed: ``` absl-py 2.1.0 <pip> appdirs 1.4.4 pyhd3eb1b0_0 asttokens 2.0.5 pyhd3eb1b0_0 astunparse 1.6.3 <pip> backcall 0.2.0 pyhd3eb1b0_0 blas 1.0 mkl boto 2.49.0 py39haa95532_0 boto3 1.34.82 py39haa95532_0 botocore 1.34.82 py39haa95532_0 bottleneck 1.3.7 py39h9128911_0 brotli 1.0.9 h2bbff1b_8 brotli-bin 1.0.9 h2bbff1b_8 brotli-python 1.0.9 py39hd77b12b_8 bz2file 0.98 py39haa95532_1 ca-certificates 2024.3.11 haa95532_0 certifi 2024.2.2 py39haa95532_0 cffi 1.16.0 py39h2bbff1b_1 charset-normalizer 3.1.0 <pip> charset-normalizer 2.0.4 pyhd3eb1b0_0 charset-normalizer 3.3.2 <pip> colorama 0.4.6 py39haa95532_0 comm 0.2.1 py39haa95532_0 contourpy 1.2.0 py39h59b6b97_0 cryptography 42.0.5 py39h89fc84f_1 cycler 0.11.0 pyhd3eb1b0_0 debugpy 1.6.7 py39hd77b12b_0 decorator 5.1.1 pyhd3eb1b0_0 exceptiongroup 1.2.0 py39haa95532_0 executing 0.8.3 pyhd3eb1b0_0 flatbuffers 24.3.25 <pip> fonttools 4.51.0 py39h2bbff1b_0 freetype 2.12.1 ha860e81_0 gast 0.5.4 <pip> gensim 4.3.2 <pip> google-pasta 0.2.0 <pip> grpcio 1.63.0 <pip> h5py 3.11.0 <pip> icc_rt 2022.1.0 h6049295_2 idna 3.7 py39haa95532_0 importlib-metadata 7.0.1 py39haa95532_0 importlib_metadata 7.1.0 <pip> importlib_metadata 7.0.1 hd3eb1b0_0 importlib_resources 6.1.1 py39haa95532_1 intel-openmp 2023.1.0 h59b6b97_46320 ipykernel 6.28.0 py39haa95532_0 ipython 8.15.0 py39haa95532_0 jedi 0.18.1 py39haa95532_1 jieba 0.42.1 <pip> jmespath 1.0.1 py39haa95532_0 joblib 1.4.0 py39haa95532_0 jpeg 9e h2bbff1b_1 jupyter_client 8.6.0 py39haa95532_0 jupyter_core 5.5.0 py39haa95532_0 keras 3.3.3 <pip> kiwisolver 1.4.4 py39hd77b12b_0 lcms2 2.12 h83e58a3_0 lerc 3.0 hd77b12b_0 libbrotlicommon 1.0.9 h2bbff1b_8 libbrotlidec 1.0.9 h2bbff1b_8 libbrotlienc 1.0.9 h2bbff1b_8 libclang 18.1.1 <pip> libdeflate 1.17 h2bbff1b_1 libpng 1.6.39 h8cc25b3_0 libsodium 1.0.18 h62dcd97_0 libtiff 4.5.1 hd77b12b_0 libwebp-base 1.3.2 h2bbff1b_0 lz4-c 1.9.4 h2bbff1b_1 Markdown 3.6 <pip> markdown-it-py 3.0.0 <pip> MarkupSafe 2.1.5 <pip> matplotlib-base 3.8.4 py39h4ed8f06_0 matplotlib-inline 0.1.6 py39haa95532_0 mdurl 0.1.2 <pip> mkl 2023.1.0 h6b88ed4_46358 mkl-service 2.4.0 py39h2bbff1b_1 mkl_fft 1.3.8 py39h2bbff1b_0 mkl_random 1.2.4 py39h59b6b97_0 ml-dtypes 0.3.2 <pip> namex 0.0.8 <pip> nest-asyncio 1.6.0 py39haa95532_0 numexpr 2.8.7 py39h2cd9be0_0 numpy 1.26.4 py39h055cbcc_0 numpy-base 1.26.4 py39h65a83cf_0 openjpeg 2.4.0 h4fc8c34_0 openssl 3.0.13 h2bbff1b_1 opt-einsum 3.3.0 <pip> optree 0.11.0 <pip> packaging 23.2 py39haa95532_0 packaging 24.0 <pip> pandas 1.4.4 py39hd77b12b_0 parso 0.8.3 pyhd3eb1b0_0 pickleshare 0.7.5 pyhd3eb1b0_1003 pillow 10.3.0 py39h2bbff1b_0 pip 24.0 py39haa95532_0 platformdirs 3.10.0 py39haa95532_0 pooch 1.4.0 pyhd3eb1b0_0 prompt-toolkit 3.0.43 py39haa95532_0 protobuf 4.25.3 <pip> psutil 5.9.0 py39h2bbff1b_0 pure_eval 0.2.2 pyhd3eb1b0_0 pybind11-abi 5 hd3eb1b0_0 pycparser 2.21 pyhd3eb1b0_0 pygments 2.15.1 py39haa95532_1 Pygments 2.18.0 <pip> pyopenssl 24.0.0 py39haa95532_0 pyparsing 3.0.9 py39haa95532_0 pysocks 1.7.1 py39haa95532_0 python 3.9.19 h1aa4202_1 python-dateutil 2.9.0post0 py39haa95532_0 pytz 2024.1 py39haa95532_0 pywin32 305 py39h2bbff1b_0 pyzmq 25.1.2 py39hd77b12b_0 requests 2.31.0 py39haa95532_1 rich 13.7.1 <pip> s3transfer 0.10.1 py39haa95532_0 scikit-learn 1.4.2 py39h4ed8f06_1 scipy 1.12.0 py39h8640f81_0 seaborn 0.12.2 py39haa95532_0 setuptools 69.5.1 py39haa95532_0 six 1.16.0 pyhd3eb1b0_1 smart-open 7.0.4 <pip> smart_open 1.9.0 py_0 sqlite 3.45.3 h2bbff1b_0 stack_data 0.2.0 pyhd3eb1b0_0 tbb 2021.8.0 h59b6b97_0 tensorboard 2.16.2 <pip> tensorboard-data-server 0.7.2 <pip> tensorflow 2.16.1 <pip> tensorflow-intel 2.16.1 <pip> tensorflow-io-gcs-filesystem 0.31.0 <pip> termcolor 2.4.0 <pip> threadpoolctl 2.2.0 pyh0d69192_0 tornado 6.3.3 py39h2bbff1b_0 traitlets 5.7.1 py39haa95532_0 typing_extensions 4.11.0 py39haa95532_0 tzdata 2024a h04d1e81_0 unicodedata2 15.1.0 py39h2bbff1b_0 urllib3 2.2.1 <pip> urllib3 1.26.18 py39haa95532_0 vc 14.2 h21ff451_1 vs2015_runtime 14.27.29016 h5e58377_2 wcwidth 0.2.5 pyhd3eb1b0_0 Werkzeug 3.0.3 <pip> wheel 0.43.0 py39haa95532_0 win_inet_pton 1.1.0 py39haa95532_0 wrapt 1.16.0 <pip> xz 5.4.6 h8cc25b3_1 zeromq 4.3.5 hd77b12b_0 zipp 3.17.0 py39haa95532_0 zipp 3.18.1 <pip> zlib 1.2.13 h8cc25b3_1 zstd 1.5.5 hd43e919_2 ``` After encountering this abnormal, I turn to python 3.7 with 0.9.0 ,everything works right. ![Dingtalk_20240520161912](https://github.com/mwaskom/seaborn/assets/11989383/436ed563-21e5-470a-9f86-a47d467ffe92) ``` _ipyw_jlab_nb_ext_conf 0.1.0 py37_0 alabaster 0.7.11 py37_0 anaconda 5.3.1 py37_0 anaconda-client 1.7.2 py37_0 anaconda-navigator 1.9.2 py37_0 anaconda-project 0.8.2 py37_0 appdirs 1.4.3 py37h28b3542_0 asn1crypto 0.24.0 py37_0 astroid 2.0.4 py37_0 astropy 3.0.4 py37hfa6e2cd_0 astunparse 1.6.3 <pip> atomicwrites 1.2.1 py37_0 attrs 18.2.0 py37h28b3542_0 automat 0.7.0 py37_0 babel 2.6.0 py37_0 backcall 0.1.0 py37_0 backports 1.0 py37_1 backports.shutil_get_terminal_size 1.0.0 py37_2 beautifulsoup4 4.6.3 py37_0 bitarray 0.8.3 py37hfa6e2cd_0 bkcharts 0.2 py37_0 blas 1.0 mkl blaze 0.11.3 py37_0 bleach 2.1.4 py37_0 blosc 1.14.4 he51fdeb_0 bokeh 0.13.0 py37_0 boto 2.49.0 py37_0 bottleneck 1.2.1 py37h452e1ab_1 bzip2 1.0.6 hfa6e2cd_5 ca-certificates 2018.03.07 0 certifi 2018.8.24 py37_1 cffi 1.11.5 py37h74b6da3_1 chardet 3.0.4 py37_1 click 6.7 py37_0 cloudpickle 0.5.5 py37_0 clyent 1.2.2 py37_1 colorama 0.3.9 py37_0 comtypes 1.1.7 py37_0 conda 4.5.11 py37_0 conda-build 3.15.1 py37_0 conda-env 2.6.0 1 console_shortcut 0.1.1 3 constantly 15.1.0 py37h28b3542_0 contextlib2 0.5.5 py37_0 cryptography 2.3.1 py37h74b6da3_0 curl 7.61.0 h7602738_0 cycler 0.10.0 py37_0 Cython 0.29.28 <pip> cython 0.28.5 py37h6538335_0 cytoolz 0.9.0.1 py37hfa6e2cd_1 dask 0.19.1 py37_0 dask-core 0.19.1 py37_0 datashape 0.5.4 py37_1 decorator 4.3.0 py37_0 defusedxml 0.5.0 py37_1 distlib 0.3.8 <pip> distributed 1.23.1 py37_0 docutils 0.14 py37_0 entrypoints 0.2.3 py37_2 et_xmlfile 1.0.1 py37_0 fastcache 1.0.2 py37hfa6e2cd_2 filelock 3.0.8 py37_0 filelock 3.12.2 <pip> flask 1.0.2 py37_1 flask-cors 3.0.6 py37_0 flatbuffers 24.3.25 <pip> freetype 2.9.1 ha9979f8_1 gast 0.4.0 <pip> gensim 4.2.0 <pip> get_terminal_size 1.0.0 h38e98db_0 gevent 1.3.6 py37hfa6e2cd_0 glob2 0.6 py37_0 greenlet 0.4.15 py37hfa6e2cd_0 h5py 3.8.0 <pip> h5py 2.8.0 py37h3bdd7fb_2 hdf5 1.10.2 hac2f561_1 heapdict 1.0.0 py37_2 html5lib 1.0.1 py37_0 hyperlink 18.0.0 py37_0 icc_rt 2017.0.4 h97af966_0 icu 58.2 ha66f8fd_1 idna 2.7 py37_0 imageio 2.4.1 py37_0 imagesize 1.1.0 py37_0 importlib-metadata 6.7.0 <pip> incremental 17.5.0 py37_0 intel-openmp 2019.0 118 ipykernel 4.10.0 py37_0 ipython 6.5.0 py37_0 ipython_genutils 0.2.0 py37_0 ipywidgets 7.4.1 py37_0 isort 4.3.4 py37_0 itsdangerous 0.24 py37_1 jdcal 1.4 py37_0 jedi 0.12.1 py37_0 jieba 0.42.1 <pip> jinja2 2.10 py37_0 joblib 1.3.2 <pip> jpeg 9b hb83a4c4_2 jsonschema 2.6.0 py37_0 jupyter 1.0.0 py37_7 jupyter_client 5.2.3 py37_0 jupyter_console 5.2.0 py37_1 jupyter_core 4.4.0 py37_0 jupyterlab 0.34.9 py37_0 jupyterlab_launcher 0.13.1 py37_0 keras 2.11.0 <pip> keyring 13.2.1 py37_0 kiwisolver 1.0.1 py37h6538335_0 lazy-object-proxy 1.3.1 py37hfa6e2cd_2 libclang 18.1.1 <pip> libcurl 7.61.0 h7602738_0 libiconv 1.15 h1df5818_7 libpng 1.6.34 h79bbb47_0 libsodium 1.0.16 h9d3ae62_0 libssh2 1.8.0 hd619d38_4 libtiff 4.0.9 h36446d0_2 libxml2 2.9.8 hadb2253_1 libxslt 1.1.32 hf6f1972_0 llvmlite 0.24.0 py37h6538335_0 locket 0.2.0 py37_1 lxml 4.2.5 py37hef2cd61_0 lzo 2.10 h6df0209_2 m2w64-gcc-libgfortran 5.3.0 6 m2w64-gcc-libs 5.3.0 7 m2w64-gcc-libs-core 5.3.0 7 m2w64-gmp 6.1.0 2 m2w64-libwinpthread-git 5.0.0.4634.697f757 2 markupsafe 1.0 py37hfa6e2cd_1 matplotlib 2.2.3 py37hd159220_0 mccabe 0.6.1 py37_1 menuinst 1.4.14 py37hfa6e2cd_0 mistune 0.8.3 py37hfa6e2cd_1 mkl 2019.0 118 mkl-service 1.1.2 py37hb217b18_5 mkl_fft 1.0.4 py37h1e22a9b_1 mkl_random 1.0.1 py37h77b88f5_1 more-itertools 4.3.0 py37_0 mpmath 1.0.0 py37_2 msgpack-python 0.5.6 py37he980bc4_1 msys2-conda-epoch 20160418 1 multipledispatch 0.6.0 py37_0 navigator-updater 0.2.1 py37_0 nbconvert 5.4.0 py37_1 nbformat 4.4.0 py37_0 networkx 2.1 py37_0 nltk 3.3.0 py37_0 nose 1.3.7 py37_2 notebook 5.6.0 py37_0 numba 0.39.0 py37h830ac7b_0 numexpr 2.6.8 py37h9ef55f4_0 numpy 1.15.1 py37ha559c80_0 numpy 1.21.6 <pip> numpy-base 1.15.1 py37h8128ebf_0 numpydoc 0.8.0 py37_0 odo 0.5.1 py37_0 olefile 0.46 py37_0 openpyxl 2.5.6 py37_0 openssl 1.0.2p hfa6e2cd_0 opt-einsum 3.3.0 <pip> packaging 17.1 py37_0 pandas 0.23.4 py37h830ac7b_0 pandoc 1.19.2.1 hb2460c7_1 pandocfilters 1.4.2 py37_1 parso 0.3.1 py37_0 partd 0.3.8 py37_0 path.py 11.1.0 py37_0 pathlib2 2.3.2 py37_0 patsy 0.5.0 py37_0 pep8 1.7.1 py37_0 pickleshare 0.7.4 py37_0 pillow 5.2.0 py37h08bbbbd_0 pip 10.0.1 py37_0 pkginfo 1.4.2 py37_1 platformdirs 4.0.0 <pip> plotly 5.18.0 <pip> plotly-express 0.4.1 <pip> pluggy 0.7.1 py37h28b3542_0 ply 3.11 py37_0 prometheus_client 0.3.1 py37h28b3542_0 prompt_toolkit 1.0.15 py37_0 protobuf 3.19.6 <pip> psutil 5.4.7 py37hfa6e2cd_0 py 1.6.0 py37_0 pyasn1 0.4.4 py37h28b3542_0 pyasn1-modules 0.2.2 py37_0 pycodestyle 2.4.0 py37_0 pycosat 0.6.3 py37hfa6e2cd_0 pycparser 2.18 py37_1 pycrypto 2.6.1 py37hfa6e2cd_9 pycurl 7.43.0.2 py37h74b6da3_0 pyflakes 2.0.0 py37_0 pygments 2.2.0 py37_0 PyHamcrest 2.1.0 <pip> pylint 2.1.1 py37_0 pyodbc 4.0.24 py37h6538335_0 pyopenssl 18.0.0 py37_0 pyparsing 2.2.0 py37_1 pyqt 5.9.2 py37h6538335_2 pysocks 1.6.8 py37_0 pytables 3.4.4 py37he6f6034_0 pytest 3.8.0 py37_0 pytest-arraydiff 0.2 py37h39e3cac_0 pytest-astropy 0.4.0 py37_0 pytest-doctestplus 0.1.3 py37_0 pytest-openfiles 0.3.0 py37_0 pytest-remotedata 0.3.0 py37_0 python 3.7.0 hea74fb7_0 python-dateutil 2.7.3 py37_0 pytz 2018.5 py37_0 pywavelets 1.0.0 py37h452e1ab_0 pywin32 223 py37hfa6e2cd_1 pywinpty 0.5.4 py37_0 pyyaml 3.13 py37hfa6e2cd_0 pyzmq 17.1.2 py37hfa6e2cd_0 qt 5.9.6 vc14h1e9a669_2 [vc14] qtawesome 0.4.4 py37_0 qtconsole 4.4.1 py37_0 qtpy 1.5.0 py37_0 requests 2.19.1 py37_0 rope 0.11.0 py37_0 ruamel_yaml 0.15.46 py37hfa6e2cd_0 scikit-image 0.14.0 py37h6538335_1 scikit-learn 0.19.2 py37heebcf9a_0 scipy 1.1.0 py37h4f6bf74_1 seaborn 0.9.0 py37_0 send2trash 1.5.0 py37_0 service_identity 17.0.0 py37h28b3542_0 setuptools 40.2.0 py37_0 simplegeneric 0.8.1 py37_2 singledispatch 3.4.0.3 py37_0 sip 4.19.8 py37h6538335_0 six 1.16.0 <pip> six 1.11.0 py37_1 smart-open 7.0.4 <pip> snappy 1.1.7 h777316e_3 snowballstemmer 1.2.1 py37_0 sortedcollections 1.0.1 py37_0 sortedcontainers 2.0.5 py37_0 sphinx 1.7.9 py37_0 sphinxcontrib 1.0 py37_1 sphinxcontrib-websupport 1.1.0 py37_1 spyder 3.3.1 py37_1 spyder-kernels 0.2.6 py37_0 sqlalchemy 1.2.11 py37hfa6e2cd_0 sqlite 3.24.0 h7602738_0 statsmodels 0.9.0 py37h452e1ab_0 sympy 1.1.1 py37_0 tblib 1.3.2 py37_0 tenacity 8.2.3 <pip> tensorflow-estimator 2.11.0 <pip> termcolor 2.3.0 <pip> terminado 0.8.1 py37_1 testpath 0.3.1 py37_0 tk 8.6.8 hfa6e2cd_0 toolz 0.9.0 py37_0 tornado 5.1 py37hfa6e2cd_0 tqdm 4.26.0 py37h28b3542_0 traitlets 4.3.2 py37_0 twisted 18.7.0 py37hfa6e2cd_1 typing_extensions 4.7.1 <pip> unicodecsv 0.14.1 py37_0 urllib3 1.23 py37_0 vc 14.1 h0510ff6_4 virtualenv 20.26.1 <pip> vs2015_runtime 14.15.26706 h3a45250_0 wcwidth 0.1.7 py37_0 webencodings 0.5.1 py37_1 werkzeug 0.14.1 py37_0 wheel 0.31.1 py37_0 widgetsnbextension 3.4.1 py37_0 win_inet_pton 1.0.1 py37_1 win_unicode_console 0.5 py37_0 wincertstore 0.2 py37_0 winpty 0.4.3 4 wrapt 1.10.11 py37hfa6e2cd_2 xgboost 1.6.2 <pip> xlrd 1.1.0 py37_1 xlsxwriter 1.1.0 py37_0 xlwings 0.11.8 py37_0 xlwt 1.3.0 py37_0 yaml 0.1.7 hc54c509_2 zeromq 4.2.5 he025d50_1 zict 0.1.3 py37_0 zipp 3.15.0 <pip> zlib 1.2.11 h8395fce_2 zope 1.0 py37_1 zope.interface 4.5.0 py37hfa6e2cd_0 ```
closed
2024-05-20T08:21:25Z
2024-05-20T13:28:58Z
https://github.com/mwaskom/seaborn/issues/3695
[]
FukoH
1
huggingface/diffusers
pytorch
10,428
Flux inference error on ascend npu
### Describe the bug It fails to run the demo flux inference code. reporting errors: > RuntimeError: call aclnnRepeatInterleaveIntWithDim failed, detail:EZ1001: [PID: 23975] 2025-01-02-11:00:00.313.502 self not implemented for DT_DOUBLE, should be in dtype support list [DT_UINT8,DT_INT8,DT_INT16,DT_INT32,DT_INT64,DT_BOOL,DT_FLOAT16,DT_FLOAT,DT_BFLOAT16,]. ### Reproduction ```python import torch try: import torch_npu # type: ignore # noqa from torch_npu.contrib import transfer_to_npu # type: ignore # noqa is_npu = True except ImportError: print("torch_npu not found") is_npu = False from diffusers import FluxPipeline pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) pipe.to('cuda') prompt = "A cat holding a sign that says hello world" image = pipe( prompt, height=1024, width=1024, guidance_scale=3.5, num_inference_steps=50, max_sequence_length=512, generator=torch.Generator("cpu").manual_seed(0) ).images[0] image.save("flux-dev.png") ``` ### Logs ```shell Traceback (most recent call last): File "/home/pagoda/exp.py", line 18, in <module> image = pipe( File "/usr/local/python3.10.13/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context return func(*args, **kwargs) File "/usr/local/python3.10.13/lib/python3.10/site-packages/diffusers/pipelines/flux/pipeline_flux.py", line 889, in __call__ noise_pred = self.transformer( File "/usr/local/python3.10.13/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/usr/local/python3.10.13/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl return forward_call(*args, **kwargs) File "/usr/local/python3.10.13/lib/python3.10/site-packages/diffusers/models/transformers/transformer_flux.py", line 492, in forward image_rotary_emb = self.pos_embed(ids) File "/usr/local/python3.10.13/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/usr/local/python3.10.13/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl return forward_call(*args, **kwargs) File "/usr/local/python3.10.13/lib/python3.10/site-packages/diffusers/models/embeddings.py", line 1253, in forward cos, sin = get_1d_rotary_pos_embed( File "/usr/local/python3.10.13/lib/python3.10/site-packages/diffusers/models/embeddings.py", line 1157, in get_1d_rotary_pos_embed freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D] RuntimeError: call aclnnRepeatInterleaveIntWithDim failed, detail:EZ1001: [PID: 23975] 2025-01-02-11:00:00.313.502 self not implemented for DT_DOUBLE, should be in dtype support list [DT_UINT8,DT_INT8,DT_INT16,DT_INT32,DT_INT64,DT_BOOL,DT_FLOAT16,DT_FLOAT,DT_BFLOAT16,]. [ERROR] 2025-01-02-11:00:00 (PID:23975, Device:0, RankID:-1) ERR01100 OPS call acl api failed ``` ``` ### System Info - 🤗 Diffusers version: 0.32. - Platform: Linux-5.10.0-136.36.0.112.4.oe2203sp1.x86_64-x86_64-with-glibc2.35 - Running on Google Colab?: No - Python version: 3.10.13 - PyTorch version (GPU?): 2.4.0+cpu (False) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Huggingface_hub version: 0.27.0 - Transformers version: 4.46.3 - Accelerate version: 1.1.0 - PEFT version: 0.13.2 - Bitsandbytes version: not installed - Safetensors version: 0.4.5 - xFormers version: not installed - Accelerator: NA - Using GPU in script?: Ascend 910B - Using distributed or parallel set-up in script?: <fill in> ### Who can help? _No response_
closed
2025-01-02T11:06:29Z
2025-01-02T19:52:54Z
https://github.com/huggingface/diffusers/issues/10428
[ "bug" ]
gameofdimension
0
awesto/django-shop
django
795
How to link static file?
I already run collectstatic but no luck. ![image](https://user-images.githubusercontent.com/4160246/75622765-8a524d80-5bd6-11ea-8a13-829c7ac7c88b.png)
closed
2020-03-01T09:06:07Z
2020-03-01T10:55:33Z
https://github.com/awesto/django-shop/issues/795
[]
HeroSony
1
graphql-python/graphene
graphql
838
input argument for for relay mutation overwrites built-in input function
In the example https://docs.graphene-python.org/en/latest/relay/mutations/ ``` class IntroduceShip(relay.ClientIDMutation): class Input: ship_name = graphene.String(required=True) faction_id = graphene.String(required=True) ship = graphene.Field(Ship) faction = graphene.Field(Faction) @classmethod def mutate_and_get_payload(cls, root, info, **input): ship_name = input.ship_name faction_id = input.faction_id ship = create_ship(ship_name, faction_id) faction = get_faction(faction_id) return IntroduceShip(ship=ship, faction=faction) ``` I believe `input` would overwrite the built-in Python `input()` function. Can this be renamed to something else? Thanks.
closed
2018-09-27T18:54:17Z
2018-11-22T23:46:25Z
https://github.com/graphql-python/graphene/issues/838
[]
cherls
0
noirbizarre/flask-restplus
api
676
Create the list of object as response model, but being restplus complained not iterable
Hi, I want to get response of list of object, like this [{"name":"aaa", "id": 3}, {"name":"bbb", "id": 4}] CREATIVE_ASSET_MODEL = {"name" : String(), "id": Integer()} The model is ASSETS_RESPONSE_MODEL = api_namespace.model('Response Model', List(Nested(model=CREATIVE_ASSET_MODEL))) But it complained the list is not iterable. Make it a dict will work, like this: ASSETS_RESPONSE_MODEL = api_namespace.model('Response Model', {'result' : List(Nested(model=CREATIVE_ASSET_MODEL)) }) But I don't want to add the 'result' to the response, can anyone help me with this, thanks!
open
2019-07-21T18:15:34Z
2021-06-04T21:58:09Z
https://github.com/noirbizarre/flask-restplus/issues/676
[]
ZoraShu
3
cvat-ai/cvat
pytorch
9,198
need to map the cvat to local machine ip
### Actions before raising this issue - [x] I searched the existing issues and did not find anything similar. - [x] I read/searched [the docs](https://docs.cvat.ai/docs/) ### Steps to Reproduce _No response_ ### Expected Behavior _No response_ ### Possible Solution _No response_ ### Context my cvat tool is running fine on localhost:8080 now i want it to run on my machine ip so that anyone in the network can access the tool and do the anotation ### Environment ```Markdown ```
closed
2025-03-11T05:47:12Z
2025-03-13T09:33:00Z
https://github.com/cvat-ai/cvat/issues/9198
[ "question" ]
ashishbbr03
1
pydata/bottleneck
numpy
333
[BUG] Can't Install from Cached source and wheel in Container
**Describe the bug** I am trying to install Bottleneck as a dependency in a container using a manually created pip cache. **To Reproduce** To assist in reproducing the bug, please include the following: 1. Command/code being executed ``` $ cd /tmp $ python3 -m pip download Bottleneck -d ./ -v $ ls Bottleneck-1.3.2.tar.gz numpy-1.18.1-cp36-cp36m-manylinux1_x86_64.whl $ python3 -m pip install Bottleneck --find-links /tmp --no-index ``` 2. Python version and OS ``` Docker Container FROM nvidia/cuda:10.0-cudnn7-runtime-ubuntu18.04 Linux ab183940868d 4.19.76-linuxkit #1 SMP Thu Oct 17 19:31:58 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux Python 3.6.9 (default, Nov 7 2019, 10:44:02) [GCC 8.3.0] on linux ``` 3. `pip` version ``` pip 20.0.2 from /usr/local/lib/python3.6/dist-packages/pip (python 3.6) ``` 4. Output of `pip list` or `conda list` ``` Package Version ------------- ------- asn1crypto 0.24.0 cryptography 2.1.4 idna 2.6 keyring 10.6.0 keyrings.alt 3.0 numpy 1.16.0 pip 20.0.2 pycrypto 2.6.1 pygobject 3.26.1 pyxdg 0.25 SecretStorage 2.3.1 setuptools 39.0.1 six 1.11.0 wheel 0.30.0 ``` **Expected behavior** A clear and concise description of what you expected to happen. Package should install. **Additional context** Error output: ``` Looking in links: /tmp Processing ./Bottleneck-1.3.2.tar.gz Installing build dependencies ... error ERROR: Command errored out with exit status 1: command: /usr/bin/python3 /usr/local/lib/python3.6/dist-packages/pip install --ignore-installed --no-user --prefix /tmp/pip-build-env-1z33ubip/overlay --no-warn-script-location --no-binary :none: --only-binary :none: --no-index --find-links /tmp -- setuptools wheel 'numpy==1.13.3; python_version=='"'"'2.7'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.13.3; python_version=='"'"'3.5'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.13.3; python_version=='"'"'3.6'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.14.5; python_version=='"'"'3.7'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.17.3; python_version>='"'"'3.8'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.16.0; python_version=='"'"'2.7'"'"' and platform_system=='"'"'AIX'"'"'' 'numpy==1.16.0; python_version=='"'"'3.5'"'"' and platform_system=='"'"'AIX'"'"'' 'numpy==1.16.0; python_version=='"'"'3.6'"'"' and platform_system=='"'"'AIX'"'"'' 'numpy==1.16.0; python_version=='"'"'3.7'"'"' and platform_system=='"'"'AIX'"'"'' 'numpy==1.17.3; python_version>='"'"'3.8'"'"' and platform_system=='"'"'AIX'"'"'' cwd: None Complete output (12 lines): Ignoring numpy: markers 'python_version == "2.7" and platform_system != "AIX"' don't match your environment Ignoring numpy: markers 'python_version == "3.5" and platform_system != "AIX"' don't match your environment Ignoring numpy: markers 'python_version == "3.7" and platform_system != "AIX"' don't match your environment Ignoring numpy: markers 'python_version >= "3.8" and platform_system != "AIX"' don't match your environment Ignoring numpy: markers 'python_version == "2.7" and platform_system == "AIX"' don't match your environment Ignoring numpy: markers 'python_version == "3.5" and platform_system == "AIX"' don't match your environment Ignoring numpy: markers 'python_version == "3.6" and platform_system == "AIX"' don't match your environment Ignoring numpy: markers 'python_version == "3.7" and platform_system == "AIX"' don't match your environment Ignoring numpy: markers 'python_version >= "3.8" and platform_system == "AIX"' don't match your environment Looking in links: /tmp ERROR: Could not find a version that satisfies the requirement setuptools (from versions: none) ERROR: No matching distribution found for setuptools ---------------------------------------- ERROR: Command errored out with exit status 1: /usr/bin/python3 /usr/local/lib/python3.6/dist-packages/pip install --ignore-installed --no-user --prefix /tmp/pip-build-env-1z33ubip/overlay --no-warn-script-location --no-binary :none: --only-binary :none: --no-index --find-links /tmp -- setuptools wheel 'numpy==1.13.3; python_version=='"'"'2.7'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.13.3; python_version=='"'"'3.5'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.13.3; python_version=='"'"'3.6'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.14.5; python_version=='"'"'3.7'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.17.3; python_version>='"'"'3.8'"'"' and platform_system!='"'"'AIX'"'"'' 'numpy==1.16.0; python_version=='"'"'2.7'"'"' and platform_system=='"'"'AIX'"'"'' 'numpy==1.16.0; python_version=='"'"'3.5'"'"' and platform_system=='"'"'AIX'"'"'' 'numpy==1.16.0; python_version=='"'"'3.6'"'"' and platform_system=='"'"'AIX'"'"'' 'numpy==1.16.0; python_version=='"'"'3.7'"'"' and platform_system=='"'"'AIX'"'"'' 'numpy==1.17.3; python_version>='"'"'3.8'"'"' and platform_system=='"'"'AIX'"'"'' Check the logs for full command output. ```
closed
2020-03-12T07:25:38Z
2021-01-17T12:34:45Z
https://github.com/pydata/bottleneck/issues/333
[ "bug" ]
madhavajay
4
jina-ai/clip-as-service
pytorch
132
How can I get the Similarity between two Sentence?
I got the same issue that the "cosine similarity of two sentence vectors is unreasonably high (e.g. always > 0.8)". And the author said: "Since cosine distance is a linear space where all dimensions are weighted equally." So, does anybody have some solution for this issue? Or, any other Similarity Functions can be used for computing similarity between two sentence with sentence embedding?
closed
2018-12-14T15:34:13Z
2019-03-25T21:41:12Z
https://github.com/jina-ai/clip-as-service/issues/132
[ "duplicate" ]
BingqiMiao
6
dnouri/nolearn
scikit-learn
264
Allow overriding `accuracy` metric
Right now accuracy (used in non-regression fits) is hard coded to be: ``` python predict = predict_proba.argmax(axis=1) accuracy = T.mean(T.eq(predict, y_batch)) ```
open
2016-05-12T20:00:51Z
2016-05-12T21:10:47Z
https://github.com/dnouri/nolearn/issues/264
[]
cancan101
1
scrapy/scrapy
python
6,228
Replace urlparse with urlparse_cached where possible
Look for regular expression `urllib.*urlparse` in the code base (docs included), and see if replacing the use of `urllib.parse.urlparse` with `scrapy.utils.httpobj.urlparse_cached` is feasible (I think it should as long as there is a `request` object involved).
closed
2024-02-20T08:15:59Z
2024-02-20T11:47:30Z
https://github.com/scrapy/scrapy/issues/6228
[ "good first issue", "cleanup", "performance" ]
Gallaecio
0
mwaskom/seaborn
data-visualization
3,664
jointplot with kind="hex" fails with datetime64[ns]
Minimal example: ```python import seaborn as sns import numpy as np dates = np.array(["2023-01-01", "2023-01-02", "2023-01-03"], dtype="datetime64[ns]") sns.jointplot(x=dates, y=[1, 2, 3], kind="hex") ``` Error: ``` Traceback (most recent call last): File "/.../seaborn_bug.py", line 21, in <module> sns.jointplot(x=dates, y=[1, 2, 3], kind="hex") File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/seaborn/axisgrid.py", line 2307, in jointplot x_bins = min(_freedman_diaconis_bins(grid.x), 50) File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/seaborn/distributions.py", line 2381, in _freedman_diaconis_bins iqr = np.subtract.reduce(np.nanpercentile(a, [75, 25])) TypeError: the resolved dtypes are not compatible with subtract.reduce. Resolved (dtype('<M8[ns]'), dtype('<M8[ns]'), dtype('<m8[ns]')) ``` I think this should work, as datetime64[ns] is the default type for datetimes in pandas. It works when I omit `kind="hex"` or use `kind="kde"`. The error was in version 0.13.2. In 0.11.2 I got a error in the same cases but it was a integer overflow with numpy during conversions.
open
2024-03-25T23:53:18Z
2024-08-04T05:20:31Z
https://github.com/mwaskom/seaborn/issues/3664
[]
fynnkroeger
1
inventree/InvenTree
django
8,552
[FR] Make filter or status for consumed parts.
### Please verify that this feature request has NOT been suggested before. - [x] I checked and didn't find a similar feature request ### Problem statement Serialized parts, what been consumed by build order cant be easy filtered out. Example: I have part "PC" with serial number and part "Mainboard", serialized too. So, after building and selling a few PCs, if im trying to search mainboads by OK status (or any other), i will have consumed mainboards in search results. There is also checkbox "Is Available", but it filters out quarantined\lost and other statuses. ### Suggested solution So, we need special status for consumed parts or checkbox field. ### Describe alternatives you've considered . ### Examples of other systems _No response_ ### Do you want to develop this? - [ ] I want to develop this.
closed
2024-11-25T11:48:39Z
2024-11-27T13:59:16Z
https://github.com/inventree/InvenTree/issues/8552
[ "enhancement", "stock", "api" ]
alxrMironov
5
onnx/onnx
deep-learning
6,708
Error when testing latest ONNX commit on ORT
# Ask a Question ### Question <!-- Explain your question here. --> It seems there are updates about `onnx::OpSchema` after 1.17 which would cause ORT build failure. Is this expected? ```c++ ... /onnxruntime/onnxruntime/core/graph/contrib_ops/contrib_defs.cc: In function ‘void onnxruntime::contrib::RegisterContribSchemas()’: /onnxruntime/onnxruntime/core/graph/contrib_ops/contrib_defs.cc:2904:46: error: conversion from ‘onnx::OpSchema’ to non-scalar type ‘onnx::OpSchemaRegistry::OpSchemaRegisterOnce’ requested 2904 | .SetContextDependentFunctionBodyBuilder( ... ``` Btw, here's the [onnx.patch](https://github.com/microsoft/onnxruntime/blob/yifanl/oss/cmake/patches/onnx/onnx.patch) that synced to latest onnx commit, and deps.txt pinned to latest as well. ### Further information - Relevant Area: <!--e.g., model usage, backend, best practices, converters, shape_inference, version_converter, training, test, operators, IR, ONNX Hub, data preprocessing, CI pipelines. --> - Is this issue related to a specific model? **Model name**: <!-- *e.g. mnist* --> **Model opset**: <!-- *e.g. 17* --> ### Notes <!-- Any additional information, code snippets. -->
open
2025-02-14T21:47:52Z
2025-02-15T15:50:19Z
https://github.com/onnx/onnx/issues/6708
[ "question" ]
yf711
1
aleju/imgaug
machine-learning
726
Pad with pad mode 'wrap' does not duplicates boxes
Is there a way to use Pad (For example `iaa.PadToSquare`) with pad mode `wrap` or `reflect` that will duplicate also the boxes. for example: ``` image = imageio.imread('example.jpg') bbs = BoundingBoxesOnImage([ BoundingBox(x1=300, y1= 100, x2=600, y2=400), BoundingBox(x1=720, y1= 150, x2=800, y2=230), ], shape=image.shape) image_before = bbs.draw_on_image(image, size=2) ia.imshow(image_before) ``` ![image](https://user-images.githubusercontent.com/44769768/97146079-e83c3280-176f-11eb-99e1-f819b9e25ed1.png) ``` seq = iaa.Sequential([ iaa.PadToSquare(position='right-top', pad_mode='wrap'), ]) image_aug, bbs_aug = seq(image=image, bounding_boxes=bbs) image_after = bbs_aug.draw_on_image(image_aug, size=2, color=[0, 0, 255]) ia.imshow(image_after) ``` ![image](https://user-images.githubusercontent.com/44769768/97146223-289bb080-1770-11eb-95a4-b2e71dbb4603.png) and the boxes are missing in the newly duplicated parts of the image. Thanks a lot.
open
2020-10-26T07:48:52Z
2020-10-26T07:48:52Z
https://github.com/aleju/imgaug/issues/726
[]
assafzam
0
home-assistant/core
asyncio
140,958
Google Generative AI responds very late.
### The problem Google Generative AI responds very late. Sometimes it takes up to 1 hour. I wonder why this delay occurs? ### What version of Home Assistant Core has the issue? 2025.3.3 ### What was the last working version of Home Assistant Core? _No response_ ### What type of installation are you running? Home Assistant OS ### Integration causing the issue _No response_ ### Link to integration documentation on our website _No response_ ### Diagnostics information _No response_ ### Example YAML snippet ```yaml ``` ### Anything in the logs that might be useful for us? ```txt ``` ### Additional information _No response_
closed
2025-03-19T21:26:43Z
2025-03-19T21:30:15Z
https://github.com/home-assistant/core/issues/140958
[]
yunusuztr
0
christabor/flask_jsondash
flask
107
Allow nicer urls for charts, instead of (or alongside) UUID
This is a potentially hazardous change, as the idea of a guid is to prevent collisions in the name. Some potential ways to achieve this: namespaced charts (e.g. SOMEUSER, or SOMEGROUP) that ties into the existing auth mechanism, or is an arbitrary field in the chart. The originally UUID link should always work however, and should be the default if there is no other way to get a URL. Originally requested by @techfreek.
open
2017-05-11T17:57:56Z
2017-05-14T20:38:19Z
https://github.com/christabor/flask_jsondash/issues/107
[]
christabor
0
microsoft/nni
tensorflow
4,981
Automatic Operator Conversion Enhancement
**What would you like to be added**: automatic operator conversion in compression.pytorch.speedup **Why is this needed**: nni needs to call these functions to understand the model. problems when doing it manually: 1. The arguments can only be fetched as a argument list 2. The function uses a lot of star(*) syntax (Keyword-Only Arguments, PEP 3102), both positional argument and keyword-only argument, but the argument list cannot be used to distinguish positional argument and keyword-only argument 3. The function is overloaded, and the number of parameters in multiple versions of the same function may be the same, so it is difficult to distinguish overloaded situations only by the number. 4. Because it is a build-in, inspect.getfullargspec and other methods in inspect module cannot be used to get reflection information. 5. There are more than 2000 functions including the overloaded functions, which is hard to be operated by manual adaptation. **Without this feature, how does current nni work**: manual adaptation and conversion **Components that may involve changes**: only jit_translate.py in common/compression/pytorch/speedup/ **Brief description of your proposal if any**: 1. Automatic conversion + There is a schema information in jit node which can parse out positional argument and keyword-only argument. + Then we can automatic wrap arguments, keywords, and the function up to an adapted function. + Tested the automatic conversions of torch.sum, torch.unsqueeze, and torch.flatten OK. 2. Unresolved issues + Check schema syntax in multiple versions of pytorch and whether the syntax is stable. + The schema syntax is different from python's or c++'s. + I did't find the syntax document in pytorch documentation. + When pytorch compiles, it will dynamically generate schema informations from c++ functions. + For all the given schemas, see if they can correspond to the compiled pytorch functions. + For all the given schemas, try to parse one by one, and count the number that cannot be parsed.
open
2022-07-04T05:59:32Z
2022-10-08T08:24:33Z
https://github.com/microsoft/nni/issues/4981
[ "nnidev" ]
Louis-J
1
lux-org/lux
pandas
487
C:\Users\mukta\anaconda3\lib\site-packages\IPython\core\formatters.py:918: UserWarning: Unexpected error in rendering Lux widget and recommendations. Falling back to Pandas display.
**Describe the bug** C:\Users\mukta\anaconda3\lib\site-packages\IPython\core\formatters.py:918: UserWarning: Unexpected error in rendering Lux widget and recommendations. Falling back to Pandas display. It occured while using GroupBy function in pandas module **To Reproduce** Please describe the steps needed to reproduce the behavior. For example: 1. Using this data: `df = pd.read_csv("Play Store Data.csv")` 2. Go to 'df1.groupby(['Category', 'Content Rating']).mean()' 3. See error File "C:\Users\mukta\anaconda3\lib\site-packages\altair\utils\core.py", line 307, in sanitize_dataframe raise ValueError("Hierarchical indices not supported") ValueError: Hierarchical indices not supported ![image](https://user-images.githubusercontent.com/50951647/205797658-be405915-971f-44c5-90a1-ca079b4b2470.png)
open
2022-12-06T02:53:45Z
2022-12-06T02:53:45Z
https://github.com/lux-org/lux/issues/487
[]
muktaraut12
0
vitalik/django-ninja
rest-api
769
[BUG] The latest Django-ninja (0.22.1) doesn't support the latest Django-ninja (0.18.8)
The latest Django-ninja (0.22.1) doesn't support the latest Django-ninja (0.18.8) in connection with Poetry. - Python version: 3.11.3 - Django version: 4.2 - Django-Ninja version: 0.22.1 -------------------------------------------------------------------------------------------------------------- Poetry output (app1 backend-py3.11) PS C:\git\app1> poetry update Updating dependencies Resolving dependencies... Because django-ninja-extra (0.18.8) depends on django-ninja (0.21.0) and no versions of django-ninja-extra match >0.18.8,<0.19.0, django-ninja-extra (>=0.18.8,<0.19.0) requires django-ninja (0.21.0). So, because app1 backend depends on both django-ninja (^0.22) and django-ninja-extra (^0.18.8), version solving failed.
closed
2023-05-29T10:59:44Z
2023-05-29T20:50:22Z
https://github.com/vitalik/django-ninja/issues/769
[]
jankrnavek
2
autogluon/autogluon
computer-vision
4,371
Adding F2 to evaluation metrics
## Description Please add F2 as an evaluation metric. It is very useful when modeling with an emphasis on recall. Even better than F2 would perhaps be fbeta, which allows you to specify the degree to which recall is more important. ## References https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html
open
2024-08-07T17:23:48Z
2024-11-25T23:04:34Z
https://github.com/autogluon/autogluon/issues/4371
[ "enhancement", "module: tabular" ]
jack-hillesheim
0
marshmallow-code/flask-marshmallow
sqlalchemy
143
Flask SQLAlchemy Integration - Documentation Suggestion
Firstly, thank you for the great extension!! I've ran into an error that I'm sure others will have ran into, it may be worth updating the docs with a warning about it. Our structure was as follows: - Each model has it's own module - Each model module also contains a Schema and Manager for example UserModel, UserSchema, UserManager all defined within /models/user.py Some background - with SQLAlchemy, with separate models, you need to import them all at runtime, before the DB is initialised to avoid circular dependancies within relationships. When the `UserSchema(ma.ModelSchema)` is hit during import `from app.models import *` (in bootstrap) this initialises the models and attempts to execute the relationships. At this stage, we may not have a relationship requirement (which SQLAlchemy avoids using string based relationships) however as the `ma.ModelSchema` initialises the models it creates errors such as this: > sqlalchemy.exc.InvalidRequestError: When initializing mapper mapped class User->users, expression ‘Team’ failed to locate a name (“name ‘Team’ is not defined”). If this is a class name, consider adding this relationship() to the <class ‘app.models.user.User’> class after both dependent classes have been defined. and, on subsequent loads: > sqlalchemy.exc.InvalidRequestError: Table ‘users_teams’ is already defined for this MetaData instance. Specify ‘extend_existing=True’ to redefine options and columns on an existing Table object. The solution to this is to simply build the UserSchemas in a different import namespace, we've now got: ``` /schemas/user_schema.py /models/user.py ``` And no more circular issues - hopefully this helps someone else, went around in circles (pun intended) for a few hours before I realised it was the ModelSchema causing it. Could the docs be updated to make a point of explaining that the ModelSchema initialises the model, and therefore it's a good idea for them to be in separate import destinations?
open
2019-07-29T09:13:33Z
2020-04-20T06:52:44Z
https://github.com/marshmallow-code/flask-marshmallow/issues/143
[ "help wanted", "docs" ]
williamjulianvicary
4
JaidedAI/EasyOCR
pytorch
370
CUDA not available - defaulting to CPU. Note: This module is much faster with a GPU.
I enter the command `easyocr -l ru en -f pic.png --detail = 1 --gpu = true` and then I get the message `CUDA not available - defaulting to CPU. Note: This module is much faster with a GPU. `, and then, in the task manager, the increased load on the CPU is displayed, instead of the increased load on the GPU. My graphics card is GTX 1080 ti, it supports CUDA. But easyocr can't use GPUs.
closed
2021-02-07T16:48:46Z
2023-08-11T12:47:14Z
https://github.com/JaidedAI/EasyOCR/issues/370
[]
Niotferdi
8
pywinauto/pywinauto
automation
1,384
when I use is checked to get the listbox state ,porpmpt error
listbox = dlg.ListBox print(listbox.items()) item = listbox.get_item(field) if item.is_checked() == True: print("T") else: print("F") it show error File "C:\Users\zou-45\AppData\Local\Programs\Python\Python311\Lib\site-packages\comtypes\__init__.py", line 274, in __getattr__ fixed_name = self.__map_case__[name.lower()] ~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^ KeyError: 'togglestate_on'
open
2024-03-14T07:32:07Z
2024-03-14T10:54:11Z
https://github.com/pywinauto/pywinauto/issues/1384
[]
xidianzou
1
piskvorky/gensim
nlp
2,659
Strange embedding from FastText
I am struggled understanding word embeddings of FastText. According to the white paper [Enriching Word Vectors with Subword Information](https://arxiv.org/pdf/1607.04606.pdf), embeddings of a word is the mean (or sum) of embeddings of its subwords. I failed to verify this. On `common_text` imported from `gensim.test.utils`, embedding of `user` is `[-0.03062156 -0.02879291 -0.01737508 -0.02839565]`. The mean of embeddings of ['<us', 'use', 'ser', 'er>'] (setting `min_n=max_n=3`) is `[-0.047664 -0.01677518 0.02312234 0.03452689]`. The sum of embeddings also result in a different vector. Is it a mismatch between Gensim implementation and original FastText, or am I missing something? Below is my code: ```python import numpy as np from gensim.models import FastText from gensim.models._utils_any2vec import compute_ngrams from gensim.models.keyedvectors import FastTextKeyedVectors from gensim.test.utils import common_texts model = FastText(size=4, window=3, min_count=1) model.build_vocab(sentences=common_texts) model.train(sentences=common_texts, total_examples=len(common_texts), epochs=10, min_n=3, max_n=3) print('survey' in model.wv.vocab) print('ser' in model.wv.vocab) print('ree' in model.wv.vocab) ngrams = compute_ngrams('user', 3, 3) print('num vector of "user": ', model.wv['user']) print('ngrams of "user": ', ngrams) print('mean of num vectors of {}: \n{}'.format(ngrams, np.mean([model.wv[c] for c in ngrams], axis=0))) ```
open
2019-10-30T09:23:42Z
2020-03-19T02:07:22Z
https://github.com/piskvorky/gensim/issues/2659
[]
quoctinphan
2
gradio-app/gradio
data-science
10,538
when leave current page, the event .then() or .success() not execute
### Describe the bug When I launch the Gradio app, I click a button on the page, and then leave the page. I notice that only the test1 method is executed in the console, and the methods following .then() do not execute. They will only continue to execute once I return to the page. i want know if any setting can change this behavior, when i leave current page, .then() method can continue execute. thanks ### Have you searched existing issues? 🔎 - [x] I have searched and found no existing issues ### Reproduction ```python import time import gradio as gr def test1(): print("test1") time.sleep(10) print("test1 end") def test2(): print("test2") time.sleep(10) print("test2 end") def test3(): print("test3") time.sleep(10) print("test3 end") with gr.Blocks() as demo: btn = gr.Button("点击") btn.click(test1).then(test2).then(test3) demo.launch(server_name="0.0.0.0", server_port=8100) ``` ### Screenshot _No response_ ### Logs ```shell ``` ### System Info ```shell gradio 5.8.0 ``` ### Severity I can work around it
open
2025-02-07T08:15:16Z
2025-03-07T20:18:18Z
https://github.com/gradio-app/gradio/issues/10538
[ "bug" ]
xiaozi0513
3
sqlalchemy/alembic
sqlalchemy
569
Autogenerate does not respect the `version_table` used together with `version_table_schema`
Alembic: 1.0.10 SQLAlchemy: 1.3.4 Python: 3.7.3 Postgres server: 10.4 --- My goal is to: 1. have all application tables in a custom named schema `auth` 2. have migrations table in the same schema and renamed to `db_migrations` 3. being able to apply migrations to the given schema 4. being able to autogenerate migrations for the given schema I have achieved 1,2,3 but not 4. For schema I've added following configurations. In application model: ``` Base = declarative_base(metadata=MetaData(schema=schema_name)) ``` I've made no changes to `Table` objects. As I understand - `Table.schema` is populated from `Base.metadata.schema` if no schema provided explicitly. In application bootstrap: ``` ... flask_app.config['SQLALCHEMY_DATABASE_URI'] = db_url # set default schema to use flask_app.config['SQLALCHEMY_ENGINE_OPTIONS'] = { "connect_args": {'options': f'-csearch_path={schema_name}'} } ... ``` In alembic `env.py`: ``` def run_migrations_online(): ... connectable = engine_from_config( ... # define schema search path for connection connect_args={'options': f'-csearch_path={app_name}'} ) with connectable.connect() as connection: context.configure( connection=connection, target_metadata=target_metadata, include_schemas=True, version_table_schema=app_name, version_table="db_migrations", ) ``` With the above all tables are created correctly in the target schema, the migrations metadata table is created there as well, and used correctly for migrations. All as expected. Not as expected is that when I run `alembic revision --autogenerate` on a full up-to-date DB I get the following migration: ``` op.drop_table('db_migrations') op.drop_constraint('refresh_token_user_id_fkey', 'refresh_token', type_='foreignkey') op.create_foreign_key(None, 'refresh_token', 'user', ['user_id'], ['id'], source_schema='auth', referent_schema='auth') ... ``` So it tries to drop the migrations table, and also tries to recreate the foreign keys with the schema explicitly defined. There are several more similar foreign key statements. Also I've tried to regenerate some of existing migrations and I found out that it ignores actual model changes. Also I've tried to remove `version_table="db_migrations"`, to no effect. As long as `version_table_schema` is there - it tries to delete `alembic_versions` default table as well. I know there is #77 that supposedly fixed/implemented schemas for autogeneration script. Am I missing some configuration here or is it an actual problem I'm hitting?
closed
2019-05-31T09:59:25Z
2019-05-31T17:24:51Z
https://github.com/sqlalchemy/alembic/issues/569
[]
alexykot
4
nteract/papermill
jupyter
467
pm.record function
Hi, I just updated my papermill package to 1.2.1 and found out that the record function no longer works. It just gave me an error message "AttributeError: module 'papermill' has no attribute 'record'". Is there a replacement function for record? I need it to run multiple jupyter notebooks and import values from each notebook for final combination. Thanks,
closed
2020-01-17T01:11:01Z
2020-01-19T18:43:12Z
https://github.com/nteract/papermill/issues/467
[ "question" ]
florathecat
2
Evil0ctal/Douyin_TikTok_Download_API
web-scraping
423
抖音web版获取直播间商品接口,我复制网页请求接口的cookie进去,还是报错400
抖音web版获取直播间商品接口,我复制网页请求接口的cookie进去,还是报错400
open
2024-06-10T16:27:35Z
2024-10-31T15:47:11Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/423
[ "BUG" ]
1236897
3
biolab/orange3
numpy
7,033
Web version
Hi, can you tell me if there is a web version that can be deployed directly, such as using vue? Thanks.
closed
2025-02-19T02:55:46Z
2025-02-19T08:29:07Z
https://github.com/biolab/orange3/issues/7033
[]
WilliaJing
0
kennethreitz/responder
flask
216
Whats the difference between this and starlette ?!
I should be completly dumb ;-) ... sorry But I can't see the things that "responder" does more than "starlette" ? What are the added values ? I really think it should be clarified in the doc ... All highlighted features comes from starlette, no ?
closed
2018-11-08T15:30:28Z
2018-11-29T12:39:19Z
https://github.com/kennethreitz/responder/issues/216
[]
manatlan
3
yunjey/pytorch-tutorial
pytorch
142
'ThalnetModule' object does not have attribute 'logger'
Line 131 of models/thalnet_module.py generates the error when input does not fall within expected bounds.
closed
2018-11-07T01:17:21Z
2018-11-07T01:17:59Z
https://github.com/yunjey/pytorch-tutorial/issues/142
[]
sesevgen
0
ray-project/ray
machine-learning
51,165
[telemetry] Importing Ray Tune in an actor reports Ray Train usage
See this test case: https://github.com/ray-project/ray/pull/51161/files#diff-d1dc38a41dc1f9ba3c2aa2d9451217729a6f245ff3af29e4308ffe461213de0aR22
closed
2025-03-07T17:38:07Z
2025-03-17T17:56:38Z
https://github.com/ray-project/ray/issues/51165
[ "P1", "tune" ]
edoakes
0
pydantic/pydantic-core
pydantic
1,364
Creating Pydantic objects in Rust and passing to the interpreter.
What's the best way to do this? I'd like to avoid passing JSON via Pyo3 to python and THEN creating the model. Use case: I am moving bounding box processing logic in my library [Docprompt](https://github.com/docprompt/Docprompt) into Rust. Documents can have tens of thousands of bounding boxes, so small overhead becomes an issue. Thank you for the help!
open
2024-07-09T15:31:41Z
2024-08-16T17:52:29Z
https://github.com/pydantic/pydantic-core/issues/1364
[ "enhancement" ]
PSU3D0
4
flairNLP/flair
pytorch
2,937
Unable to get predictions for multiple sentences using TARS Zero Shot Classifier
Here is the example code to use TARS Zero Shot Classifier ``` from flair.models import TARSClassifier from flair.data import Sentence # 1. Load our pre-trained TARS model for English tars = TARSClassifier.load('tars-base') # 2. Prepare a test sentence sentence = Sentence("I am so glad you liked it!") # 3. Define some classes that you want to predict using descriptive names classes = ["happy", "sad"] #4. Predict for these classes tars.predict_zero_shot(sentence, classes) # Print sentence with predicted labels print(sentence) print(sentence.labels[0].value) print(round(sentence.labels[0].score,2)) ``` Now this code is wrapped into the following function so that I can use it to get predictions for multiple sentences in a dataset. ``` def tars_zero(example): sentence = Sentence(example) tars.predict_zero_shot(sentence,classes) print(sentence) inputs = ["I am so glad you liked it!", "I hate it"] for input in inputs: tars_zero(input) #output: Sentence: "I am so glad you liked it !" → happy (0.8667) Sentence: "I hate it" ``` Here I'm able to get the prediction only for the first sentence. Can someone tell me how to use TARS Zero Shot Classifier to get predictions for multiple sentences in a dataset? @alanakbik @lukasgarbas @kishaloyhalder @dobbersc @tadejmagajna
closed
2022-09-08T04:50:50Z
2023-02-02T07:57:35Z
https://github.com/flairNLP/flair/issues/2937
[ "question", "wontfix" ]
ghost
2
home-assistant/core
asyncio
141,112
Statistics log division by zero errors
### The problem The statistics sensor produces division by zero errors in the log. This seems to be caused by having values that have identical change timestamps. It might be that this was caused by sensors that were updated several times in a very short time interval and the precision of the timestamps is too low to distinguish the two change timestamps (that is just a guess though). It could also be that this is something triggered by the startup phase. I also saw that there was a recent change in the code where timestamps were replaced with floats, which might have reduced the precision of the timestamp delta calculation. I can easily reproduce the problem, so it is not a once in a lifetime exceptional case. ### What version of Home Assistant Core has the issue? core-2025.3.4 ### What was the last working version of Home Assistant Core? _No response_ ### What type of installation are you running? Home Assistant OS ### Integration causing the issue statistics ### Link to integration documentation on our website https://www.home-assistant.io/integrations/statistics/ ### Diagnostics information _No response_ ### Example YAML snippet ```yaml ``` ### Anything in the logs that might be useful for us? ```txt `2025-03-22 09:57:43.540 ERROR (MainThread) [homeassistant.helpers.event] Error while dispatching event for sensor.inverter_production to <Job track state_changed event ['sensor.inverter_production'] HassJobType.Callback <bound method StatisticsSensor._async_stats_sensor_state_change_listener of <entity sensor.inverter_production_avg_15s=0.0>>> Traceback (most recent call last): File "/usr/src/homeassistant/homeassistant/helpers/event.py", line 355, in _async_dispatch_entity_id_event hass.async_run_hass_job(job, event) ~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^ File "/usr/src/homeassistant/homeassistant/core.py", line 940, in async_run_hass_job hassjob.target(*args) ~~~~~~~~~~~~~~^^^^^^^ File "/usr/src/homeassistant/homeassistant/components/statistics/sensor.py", line 748, in _async_stats_sensor_state_change_listener self._async_handle_new_state(event.data["new_state"]) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/src/homeassistant/homeassistant/components/statistics/sensor.py", line 734, in _async_handle_new_state self._async_purge_update_and_schedule() ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^ File "/usr/src/homeassistant/homeassistant/components/statistics/sensor.py", line 986, in _async_purge_update_and_schedule self._update_value() ~~~~~~~~~~~~~~~~~~^^ File "/usr/src/homeassistant/homeassistant/components/statistics/sensor.py", line 1097, in _update_value value = self._state_characteristic_fn(self.states, self.ages, self._percentile) File "/usr/src/homeassistant/homeassistant/components/statistics/sensor.py", line 142, in _stat_average_step return area / age_range_seconds ~~~~~^~~~~~~~~~~~~~~~~~~ ZeroDivisionError: float division by zero` ``` ### Additional information _No response_
open
2025-03-22T12:38:36Z
2025-03-24T19:43:43Z
https://github.com/home-assistant/core/issues/141112
[ "integration: statistics" ]
unfug-at-github
3
huggingface/transformers
deep-learning
36,709
ValueError: The checkpoint you are trying to load has model type `gemma3` but Transformers does not recognize this architecture.
### System Info enviroment from pyproject.toml: ``` [tool.poetry] name = "rl-finetunning" package-mode = false version = "0.1.0" description = "" readme = "README.md" [tool.poetry.dependencies] python = "^3.12" torch = {version = "2.5.1+cu121", source = "torch-repo"} torchaudio = {version = "2.5.1+cu121", source = "torch-repo"} langchain = {extras = ["all"], version = "^0.3.14"} numpy = "<2" ujson = "^5.10.0" tqdm = "^4.67.1" ipykernel = "^6.29.5" faiss-cpu = "^1.9.0.post1" wandb = "^0.19.4" rouge-score = "^0.1.2" accelerate = "0.34.2" datasets = "^3.2.0" evaluate = "^0.4.3" bitsandbytes = "^0.45.1" peft = "^0.14.0" deepspeed = "0.15.4" trl = "^0.15.2" transformers = "^4.49.0" [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api" [[tool.poetry.source]] name = "torch-repo" url = "https://download.pytorch.org/whl/cu121" priority = "explicit" ``` ### Who can help? @ArthurZucker @gante ### Reproduction Code to reproduce: https://pastebin.com/vGXdw5e7 Model weights was downloaded in current directory. Full Traceback: ``` Traceback (most recent call last): File "/home/calibri/.cache/pypoetry/virtualenvs/rl-finetunning-LD6GBRk7-py3.12/lib/python3.12/site-packages/transformers/models/auto/configuration_auto.py", line 1092, in from_pretrained config_class = CONFIG_MAPPING[config_dict["model_type"]] ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/calibri/.cache/pypoetry/virtualenvs/rl-finetunning-LD6GBRk7-py3.12/lib/python3.12/site-packages/transformers/models/auto/configuration_auto.py", line 794, in __getitem__ raise KeyError(key) KeyError: 'gemma3' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/calibri/experiments/rl_finetunning/sft.py", line 118, in <module> model = AutoModelForCausalLM.from_pretrained( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/calibri/.cache/pypoetry/virtualenvs/rl-finetunning-LD6GBRk7-py3.12/lib/python3.12/site-packages/transformers/models/auto/auto_factory.py", line 526, in from_pretrained config, kwargs = AutoConfig.from_pretrained( ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/calibri/.cache/pypoetry/virtualenvs/rl-finetunning-LD6GBRk7-py3.12/lib/python3.12/site-packages/transformers/models/auto/configuration_auto.py", line 1094, in from_pretrained raise ValueError( ValueError: The checkpoint you are trying to load has model type `gemma3` but Transformers does not recognize this architecture. This could be because of an issue with the checkpoint, or because your version of Transformers is out of date. You can update Transformers with the command `pip install --upgrade transformers`. If this does not work, and the checkpoint is very new, then there may not be a release version that supports this model yet. In this case, you can get the most up-to-date code by installing Transformers from source with the command `pip install git+https://github.com/huggingface/transformers.git` ``` ### Expected behavior I downloaded latest transformers version so I expected the code to run without errors.
closed
2025-03-13T23:11:04Z
2025-03-19T16:19:32Z
https://github.com/huggingface/transformers/issues/36709
[ "bug" ]
JohnConnor123
4
vipstone/faceai
tensorflow
55
请问如何在嵌入式设备上使用?谢谢!
请问如何在嵌入式设备上使用? 处理器:ARM 编程环境:C语言 操作系统:linux或RT-thread交叉编译 谢谢!
open
2021-05-06T06:21:23Z
2021-05-06T06:21:23Z
https://github.com/vipstone/faceai/issues/55
[]
duduathz
0
xlwings/xlwings
automation
1,587
transpose ignored in using raw_value to set column data
#### OS (e.g. Windows 10 or macOS Sierra) Mac Big Sur #### Versions of xlwings, Excel and Python (e.g. 0.11.8, Office 365, Python 3.7) python 3.8.7 xlwings 23.0 #### Describe your issue (incl. Traceback!) the second fills the column with 0 to 9, the first all with 0 I was expecting the transpose to work with raw_value as well. Maybe that's what's supposed to happen. #### Include a minimal code sample to reproduce the issue (and attach a sample workbook if required!) ```python # Your code here thisbk = xw.Book.caller() thisbk.sheets.active.range((1,1),(10,1)).options(transpose=True).raw_value = [0,1,2,3,4,5,6,7,8,9] thisbk.sheets.active.range((1,1),(10,1)).options(transpose=True).value = [0,1,2,3,4,5,6,7,8,9] ```
closed
2021-05-13T17:48:27Z
2021-05-20T06:21:05Z
https://github.com/xlwings/xlwings/issues/1587
[]
john-drummond
5
matterport/Mask_RCNN
tensorflow
2,399
keyerror: all_points_y
I'm a beginner of deep-learning, recently, i try to use the mask-rcnn to make a project about rust detection. Firstly i watch the video how to use this code, then i modify the code of 'balloon', and have a try to train my own data, but i meet the error called keyerror: all_points_y, my dataset are many binary images which contain the rust areas(white) and the background(black). To approprate the requirements of code, i use the edge detection to found the outline of rust areas, then i save the class name(only 'rust' class) and the coordinate of the points which on the outlines as .json file according to the requirement format(firstly i save these data in a dict, then i use json.dump to transform the dict to json and save it): #{ 'filename': '28503151_5b5b7ec140_b.jpg', # 'regions': { # '0': { # 'region_attributes': {}, # 'shape_attributes': { # 'all_points_x': [...], # 'all_points_y': [...], # 'name': 'polygon'}}, # ... more regions ... # }, # 'size': 100202 # } During the training processing, i saw some error messages repeatly about keyerror: all_point_y, the message repeat about 20 times when my train dataset has 120 pictures and the val dataset has 30 pictures. Easily see that not all picture will bring error, but i don't know how the error happened. I try to search the problem and only find this kind of answer: the points in dataset should be in an polygon instead of circle or rectangle, but the obviously the answer isn't fit for my question. Futher more, when load the json file, the order of data usually have change,for example, when i save the data, the format is: 'shape_attributes': { 'all_points_x': [...], 'all_points_y': [...], 'name': 'rust'} but when i load the data, it change to the format as: 'all_points_y': [...], 'name': 'rust', 'all_points_y': [...]} whether this issue have an affect to the training processing? ps: 1.In fact , i'm also a beginner of english. 2.Help me, every scholars(dalao), thanks·
open
2020-10-21T08:25:19Z
2020-12-07T16:39:14Z
https://github.com/matterport/Mask_RCNN/issues/2399
[]
weird-bright
4
ploomber/ploomber
jupyter
226
ploomber interact should also display the custom cli from pipeline parameters
closed
2020-08-13T16:27:52Z
2020-10-18T23:05:51Z
https://github.com/ploomber/ploomber/issues/226
[]
edublancas
0
K3D-tools/K3D-jupyter
jupyter
129
Scene not rotating if cursor below the menu
If the cursor is anywhere below the controls menu, rotating via click and drag does not work. The issue seems to be that that the dg div sets as its height the entire window rather than just the height of the menu.
closed
2019-01-23T19:03:38Z
2019-01-24T21:25:01Z
https://github.com/K3D-tools/K3D-jupyter/issues/129
[]
jpomoell
3
QingdaoU/OnlineJudge
django
442
为什么我的tag无法添加
在提交issue之前请 - 认真阅读文档 http://docs.onlinejudge.me/#/ - 搜索和查看历史issues - 安全类问题请不要在 GitHub 上公布,请发送邮件到 `admin@qduoj.com`,根据漏洞危害程度发送红包感谢。 然后提交issue请写清楚下列事项  - 进行什么操作的时候遇到了什么问题,最好能有复现步骤  - 错误提示是什么,如果看不到错误提示,请去data文件夹查看相应log文件。大段的错误提示请包在代码块标记里面。 - 你尝试修复问题的操作 - 页面问题请写清浏览器版本,尽量有截图
open
2023-04-02T03:42:00Z
2023-05-28T07:30:01Z
https://github.com/QingdaoU/OnlineJudge/issues/442
[]
13safa
1
tensorpack/tensorpack
tensorflow
1,311
How to pass hyper-parameters to model???
closed
2019-08-31T00:50:00Z
2019-08-31T01:46:27Z
https://github.com/tensorpack/tensorpack/issues/1311
[ "usage" ]
ranery
2
streamlit/streamlit
streamlit
10,747
Add support for Jupyter widgets / ipywidgets
### Checklist - [x] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar feature requests. - [x] I added a descriptive title and summary to this issue. ### Summary Jupyter Widgets are [interactive browser controls](https://github.com/jupyter-widgets/ipywidgets/blob/main/docs/source/examples/Index.ipynb) for Jupyter notebooks. Implement support for using ipywidgets elements in a Streamlit app. ### Why? _No response_ ### How? ```python import ipywidgets as widgets widget = st.ipywidgets(widgets.IntSlider()) st.write(widget.value) ``` ### Additional Context - Related to https://github.com/streamlit/streamlit/issues/10746 - Related discussion: https://discuss.streamlit.io/t/ipywidgets-wip/3870
open
2025-03-12T16:22:36Z
2025-03-18T10:31:37Z
https://github.com/streamlit/streamlit/issues/10747
[ "type:enhancement", "feature:custom-components", "type:possible-component" ]
lukasmasuch
1
xorbitsai/xorbits
numpy
211
ENH: Session id is prefixed with K8s namespace, when in the K8s environment
Note that the issue tracker is NOT the place for general support. For discussions about development, questions about usage, or any general questions, contact us on https://discuss.xorbits.io/.
closed
2023-02-14T08:56:27Z
2023-03-13T09:55:42Z
https://github.com/xorbitsai/xorbits/issues/211
[ "enhancement" ]
ChengjieLi28
0
Neoteroi/BlackSheep
asyncio
492
OpenAPI v3 Handling Issue
Hello, We have had a BlackSheep app running for over a year. When we attempted to upgrade to 2.0.7, we ran into this error. It seems to be an error in the fundamental OpenAPI class. Since this was working fine until today, I think that it must be a bug in 1.0.9. Here is the error message: ```Traceback (most recent call last): File "/home/mistral/llm_server_env/lib/python3.10/site-packages/blacksheep/server/openapi/v3.py", line 307, in _get_array_outer_type return field_info.outer_type_ AttributeError: 'FieldInfo' object has no attribute 'outer_type_' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/mistral/llm_server_env/lib/python3.10/site-packages/blacksheep/server/application.py", line 726, in _handle_lifespan await self.start() File "/home/mistral/llm_server_env/lib/python3.10/site-packages/blacksheep/server/application.py", line 715, in start await self.after_start.fire() File "/home/mistral/llm_server_env/lib/python3.10/site-packages/blacksheep/server/application.py", line 126, in fire await handler(self.context, *args, **kwargs) File "/home/mistral/llm_server_env/lib/python3.10/site-packages/blacksheep/server/openapi/common.py", line 404, in build_docs docs = self.generate_documentation(app) File "/home/mistral/llm_server_env/datascience-llm-server/app/docs/handler.py", line 34, in generate_documentation paths=self.get_paths(app), File "/home/mistral/llm_server_env/lib/python3.10/site-packages/blacksheep/server/openapi/v3.py", line 449, in get_paths own_paths = self.get_routes_docs(app.router, path_prefix) File "/home/mistral/llm_server_env/lib/python3.10/site-packages/blacksheep/server/openapi/v3.py", line 1146, in get_routes_docs request_body=self.get_request_body(handler), File "/home/mistral/llm_server_env/lib/python3.10/site-packages/blacksheep/server/openapi/v3.py", line 847, in get_request_body content=self._get_body_binder_content_type(body_binder, body_examples), File "/home/mistral/llm_server_env/lib/python3.10/site-packages/blacksheep/server/openapi/v3.py", line 821, in _get_body_binder_content_type return { File "/home/mistral/llm_server_env/lib/python3.10/site-packages/blacksheep/server/openapi/v3.py", line 823, in <dictcomp> schema=self.get_schema_by_type(body_binder.expected_type), File "/home/mistral/llm_server_env/lib/python3.10/site-packages/blacksheep/server/openapi/v3.py", line 642, in get_schema_by_type schema = self._get_schema_by_type(child_type, type_args) File "/home/mistral/llm_server_env/lib/python3.10/site-packages/blacksheep/server/openapi/v3.py", line 663, in _get_schema_by_type return self._get_schema_for_class(object_type) File "/home/mistral/llm_server_env/lib/python3.10/site-packages/blacksheep/server/openapi/v3.py", line 567, in _get_schema_for_class for field in self.get_fields(object_type): File "/home/mistral/llm_server_env/lib/python3.10/site-packages/blacksheep/server/openapi/v3.py", line 739, in get_fields return handler.get_type_fields( File "/home/mistral/llm_server_env/lib/python3.10/site-packages/blacksheep/server/openapi/v3.py", line 342, in get_type_fields return [ File "/home/mistral/llm_server_env/lib/python3.10/site-packages/blacksheep/server/openapi/v3.py", line 345, in <listcomp> self._open_api_v2_field_schema_to_type( File "/home/mistral/llm_server_env/lib/python3.10/site-packages/blacksheep/server/openapi/v3.py", line 297, in _open_api_v2_field_schema_to_type return self._get_array_outer_type(field_info) File "/home/mistral/llm_server_env/lib/python3.10/site-packages/blacksheep/server/openapi/v3.py", line 311, in _get_array_outer_type return List[field_info.annotation.__args__[0]] AttributeError: type object 'list' has no attribute '__args__'. Did you mean: '__add__'?```
closed
2024-04-09T01:05:08Z
2025-01-16T20:51:39Z
https://github.com/Neoteroi/BlackSheep/issues/492
[]
mmangione
2
aleju/imgaug
deep-learning
25
setup.py does not recognize opencv2 of Anaconda
When run the setup, error happens. opencv is installed on Anaconda. Is it possible to install imgaug on Anaconda? ... Processing ./dist/imgaug-0.2.0.tar.gz Complete output from command python setup.py egg_info: Traceback (most recent call last): File "<string>", line 1, in <module> File "/tmp/pip-K5MRPU-build/setup.py", line 6, in <module> raise Exception("Could not find package 'cv2' (OpenCV). It cannot be automatically installed, so you will have to manually install it.") Exception: Could not find package 'cv2' (OpenCV). It cannot be automatically installed, so you will have to manually install it.
open
2017-03-28T21:58:16Z
2019-06-10T09:05:59Z
https://github.com/aleju/imgaug/issues/25
[]
clockwiser
9
gradio-app/gradio
machine-learning
10,555
504 Gateway Time-out
### Describe the bug 504 gate way timeout today it's ok when i used it tow days ago , any my version is gradio-5.15.0 gradio-client-1.7.0 ### Have you searched existing issues? 🔎 - [x] I have searched and found no existing issues ### Reproduction ```python import gradio as gr ``` ### Screenshot _No response_ ### Logs ```shell ``` ### System Info ```shell Gradio Environment Information: ------------------------------ Operating System: Linux gradio version: 5.15.0 gradio_client version: 1.7.0 ------------------------------------------------ gradio dependencies in your environment: aiofiles: 23.2.1 anyio: 4.8.0 audioop-lts is not installed. fastapi: 0.115.8 ffmpy: 0.5.0 gradio-client==1.7.0 is not installed. httpx: 0.28.1 huggingface-hub: 0.28.1 jinja2: 3.1.4 markupsafe: 2.1.5 numpy: 1.26.4 orjson: 3.10.15 packaging: 24.2 pandas: 2.2.3 pillow: 10.4.0 pydantic: 2.10.6 pydub: 0.25.1 python-multipart: 0.0.20 pyyaml: 6.0.2 ruff: 0.9.5 safehttpx: 0.1.6 semantic-version: 2.10.0 starlette: 0.45.3 tomlkit: 0.12.0 typer: 0.15.1 typing-extensions: 4.12.2 urllib3: 2.3.0 uvicorn: 0.34.0 authlib; extra == 'oauth' is not installed. itsdangerous; extra == 'oauth' is not installed. gradio_client dependencies in your environment: fsspec: 2024.6.1 httpx: 0.28.1 huggingface-hub: 0.28.1 packaging: 24.2 typing-extensions: 4.12.2 websockets: 11.0.3 ``` ### Severity I can work around it
closed
2025-02-10T04:26:20Z
2025-02-10T15:56:56Z
https://github.com/gradio-app/gradio/issues/10555
[ "bug" ]
teressawang
2
ivy-llc/ivy
tensorflow
28,461
Fix Ivy Failing Test: paddle - creation.arange
To-Do List: https://github.com/unifyai/ivy/issues/27501
open
2024-03-01T10:51:53Z
2024-03-01T10:51:53Z
https://github.com/ivy-llc/ivy/issues/28461
[ "Sub Task" ]
marvlyngkhoi
0
CorentinJ/Real-Time-Voice-Cloning
python
931
Speeding up Loading Time of encoder in ``encoder/inference.py``
Original comment from @CorentinJ: TODO: I think the slow loading of the encoder might have something to do with the device it was saved on. Worth investigating. This refers to the ``load_model`` function in the named module.
open
2021-12-01T19:45:04Z
2021-12-01T19:45:04Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/931
[]
ghost
0
gradio-app/gradio
python
10,385
Gradio Demo Malfunction on Hugging Face Spaces
### Describe the bug Hi Team, We’ve been hosting a Gradio demo on Hugging Face Spaces (zero GPU) at [this link](https://huggingface.co/spaces/facebook/vggsfm), which has been running smoothly for several months. However, today a user reported that it’s no longer functioning. I’ve rebuilt the factory but it seems does not help. I checked the backend and retrieved the error logs as attached below. My best guess is that the version of Gradio on Hugging Face Spaces might have been updated, possibly leading to incompatibilities with the old version. The error logs are somewhat vague, making it difficult to pinpoint the exact issue. Is there any insight on resolving this, or could you point me towards the relevant documentation? It is much appreciated :) Best, Jianyuan ### Have you searched existing issues? 🔎 - [x] I have searched and found no existing issues ### Reproduction https://huggingface.co/spaces/facebook/vggsfm/tree/main ### Screenshot _No response_ ### Logs ```shell ZeroGPU tensors packing: 0.00B [00:00, ?B/s] ZeroGPU tensors packing: 0.00B [00:00, ?B/s] Running on local URL: http://0.0.0.0:7860 INFO:httpx:HTTP Request: GET http://localhost:7860/startup-events "HTTP/1.1 200 OK" INFO:httpx:HTTP Request: HEAD http://localhost:7860/ "HTTP/1.1 200 OK" /usr/local/lib/python3.10/site-packages/gradio/blocks.py:2434: UserWarning: Setting share=True is not supported on Hugging Face Spaces warnings.warn( To create a public link, set `share=True` in `launch()`. INFO:httpx:HTTP Request: POST http://device-api.zero/schedule?cgroupPath=%2Fkubepods.slice%2Fkubepods-burstable.slice%2Fkubepods-burstable-pod1372a787_40e1_4b6a_8d19_2f4b46eca6e6.slice%2Fcri-containerd-edf0748ce7994c4de66b1374d62b458da7869fb7e8cf60b41a1dd4f939fa1c54.scope&taskId=140223021710736&enableQueue=true&durationSeconds=240&token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpcCI6IjE2My4xMTQuMTMxLjEyOSIsInVzZXIiOiJKaWFueXVhbldhbmciLCJ1dWlkIjpudWxsLCJlcnJvciI6bnVsbCwiZXhwIjoxNzM3MTQ3MDczfQ.WQjeWxsjH1Fnj2DefdNZDKeDjKERP1tDwwXRWPk4w6E "HTTP/1.1 200 OK" INFO:httpx:HTTP Request: POST http://device-api.zero/allow?allowToken=9264c9602de0db756c3f6b1d2e9d1cab36b9b217010d3f1110b88b4ef3f646f6&pid=313 "HTTP/1.1 200 OK" INFO:httpx:HTTP Request: POST http://device-api.zero/release?allowToken=9264c9602de0db756c3f6b1d2e9d1cab36b9b217010d3f1110b88b4ef3f646f6&fail=true "HTTP/1.1 200 OK" Traceback (most recent call last): File "/usr/local/lib/python3.10/site-packages/spaces/zero/wrappers.py", line 135, in worker_init torch.init(nvidia_uuid) File "/usr/local/lib/python3.10/site-packages/spaces/zero/torch/patching.py", line 373, in init torch.Tensor([0]).cuda() File "/usr/local/lib/python3.10/site-packages/torch/cuda/__init__.py", line 298, in _lazy_init torch._C._cuda_init() RuntimeError: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 304: OS call failed or operation not supported on this OS Traceback (most recent call last): File "/usr/local/lib/python3.10/site-packages/gradio/queueing.py", line 532, in process_events response = await route_utils.call_process_api( File "/usr/local/lib/python3.10/site-packages/gradio/route_utils.py", line 276, in call_process_api output = await app.get_blocks().process_api( File "/usr/local/lib/python3.10/site-packages/gradio/blocks.py", line 1928, in process_api result = await self.call_function( File "/usr/local/lib/python3.10/site-packages/gradio/blocks.py", line 1514, in call_function prediction = await anyio.to_thread.run_sync( File "/usr/local/lib/python3.10/site-packages/anyio/to_thread.py", line 56, in run_sync return await get_async_backend().run_sync_in_worker_thread( File "/usr/local/lib/python3.10/site-packages/anyio/_backends/_asyncio.py", line 2461, in run_sync_in_worker_thread return await future File "/usr/local/lib/python3.10/site-packages/anyio/_backends/_asyncio.py", line 962, in run result = context.run(func, *args) File "/usr/local/lib/python3.10/site-packages/gradio/utils.py", line 832, in wrapper response = f(*args, **kwargs) File "/usr/local/lib/python3.10/site-packages/spaces/zero/wrappers.py", line 214, in gradio_handler raise error("ZeroGPU worker error", res.error_cls) gradio.exceptions.Error: 'RuntimeError' INFO:httpx:HTTP Request: POST http://device-api.zero/schedule?cgroupPath=%2Fkubepods.slice%2Fkubepods-burstable.slice%2Fkubepods-burstable-pod1372a787_40e1_4b6a_8d19_2f4b46eca6e6.slice%2Fcri-containerd-edf0748ce7994c4de66b1374d62b458da7869fb7e8cf60b41a1dd4f939fa1c54.scope&taskId=140223021710736&enableQueue=true&durationSeconds=240&token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpcCI6IjE2My4xMTQuMTMxLjEyOSIsInVzZXIiOiJKaWFueXVhbldhbmciLCJ1dWlkIjpudWxsLCJlcnJvciI6bnVsbCwiZXhwIjoxNzM3MTQ3MjU0fQ.E_mE7SO_dJKy00chpXUrF0QHwHzRUzWtCtTRjbdIPrA "HTTP/1.1 200 OK" INFO:httpx:HTTP Request: POST http://device-api.zero/allow?allowToken=ea91d23b086f5770c368d624fac358a31965f04141384f50a0eb2f42c892040e&pid=317 "HTTP/1.1 200 OK" INFO:httpx:HTTP Request: POST http://device-api.zero/release?allowToken=ea91d23b086f5770c368d624fac358a31965f04141384f50a0eb2f42c892040e&fail=true "HTTP/1.1 200 OK" Traceback (most recent call last): File "/usr/local/lib/python3.10/site-packages/spaces/zero/wrappers.py", line 135, in worker_init torch.init(nvidia_uuid) File "/usr/local/lib/python3.10/site-packages/spaces/zero/torch/patching.py", line 373, in init torch.Tensor([0]).cuda() File "/usr/local/lib/python3.10/site-packages/torch/cuda/__init__.py", line 298, in _lazy_init torch._C._cuda_init() RuntimeError: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 304: OS call failed or operation not supported on this OS Traceback (most recent call last): File "/usr/local/lib/python3.10/site-packages/gradio/queueing.py", line 532, in process_events response = await route_utils.call_process_api( File "/usr/local/lib/python3.10/site-packages/gradio/route_utils.py", line 276, in call_process_api output = await app.get_blocks().process_api( File "/usr/local/lib/python3.10/site-packages/gradio/blocks.py", line 1928, in process_api result = await self.call_function( File "/usr/local/lib/python3.10/site-packages/gradio/blocks.py", line 1514, in call_function prediction = await anyio.to_thread.run_sync( File "/usr/local/lib/python3.10/site-packages/anyio/to_thread.py", line 56, in run_sync return await get_async_backend().run_sync_in_worker_thread( File "/usr/local/lib/python3.10/site-packages/anyio/_backends/_asyncio.py", line 2461, in run_sync_in_worker_thread return await future File "/usr/local/lib/python3.10/site-packages/anyio/_backends/_asyncio.py", line 962, in run result = context.run(func, *args) File "/usr/local/lib/python3.10/site-packages/gradio/utils.py", line 832, in wrapper response = f(*args, **kwargs) File "/usr/local/lib/python3.10/site-packages/spaces/zero/wrappers.py", line 214, in gradio_handler raise error("ZeroGPU worker error", res.error_cls) gradio.exceptions.Error: 'RuntimeError' ``` ### System Info ```shell hugging face spaces, which seems to be using gradio version 4.36.1 ``` ### Severity Blocking usage of gradio
closed
2025-01-17T21:17:54Z
2025-01-22T02:05:05Z
https://github.com/gradio-app/gradio/issues/10385
[ "bug" ]
jytime
4
Lightning-AI/pytorch-lightning
data-science
20,003
Smoothing in tqdm progress bar has no effect
### Bug description The option smoothing when creating progress bars in TQDMProgressBar has no effect in the default implementation, as _update_n only calls bar.refresh() and not the update method of the progress bar. Thus only the global average is taken, as the update method of the tqdm class is responsible for calculating moving averages. Either the update method of the progress bar could be used or it should be added to the documentation if smoothing having no effect is the desired behavior (overriding a default that has no effect is a bit misleading) ### What version are you seeing the problem on? master ### How to reproduce the bug ```python import time import lightning.pytorch as pl import torch from torch import nn from torch.utils.data import Dataset, DataLoader, Sampler from src.main.ml.data.data_augmentation.helpers.random_numbers import create_rng_from_string import sys from typing import Any import lightning.pytorch as pl from lightning.pytorch.callbacks import TQDMProgressBar from lightning.pytorch.callbacks.progress.tqdm_progress import Tqdm from lightning.pytorch.utilities.types import STEP_OUTPUT from typing_extensions import override class LitProgressBar(TQDMProgressBar): """ different smoothing factor than default lightning TQDMProgressBar, where smoothing=0 (average), instead of smoothing=1 (current speed) is taken See also: https://tqdm.github.io/docs/tqdm/ """ def init_train_tqdm(self) -> Tqdm: """Override this to customize the tqdm bar for training.""" return Tqdm( desc=self.train_description, position=(2 * self.process_position), disable=self.is_disabled, leave=True, dynamic_ncols=True, file=sys.stdout, smoothing=1.0, bar_format=self.BAR_FORMAT, ) # default method # @override # def on_train_batch_end( # self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: STEP_OUTPUT, batch: Any, batch_idx: int # ) -> None: # n = batch_idx + 1 # if self._should_update(n, self.train_progress_bar.total): # _update_n(self.train_progress_bar, n) # self.train_progress_bar.set_postfix(self.get_metrics(trainer, pl_module)) # my own method that uses smoothing by using the update method of progress bar @override def on_train_batch_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: STEP_OUTPUT, batch: Any, batch_idx: int ) -> None: n = batch_idx + 1 if self._should_update(n, self.train_progress_bar.total): self.train_progress_bar.update(self.refresh_rate) self.train_progress_bar.set_postfix(self.get_metrics(trainer, pl_module)) class TestModule(nn.Module): def __init__(self, in_dim=512, out_dim=16): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.simple_layer = nn.Linear(self.in_dim, self.out_dim, bias=True) def forward(self, input): return self.simple_layer(input) class TestBatchSampler(Sampler): def __init__(self, step=0): super().__init__() self.step = step def __len__(self) -> int: return 1e100 # return len(self.train_allfiles) def __iter__(self): # -> Iterator[int]: return self def __next__(self): # -> Iterator[int]: return_value = self.step self.step += 1 return [return_value] class TestDataset(Dataset): def __init__(self, in_dim): super().__init__() self.in_dim = in_dim self.total_len = 512 def __len__(self): return 1 def __getitem__(self, idx): rng = create_rng_from_string( str(idx) + "_" + "random_choice_sampler") return torch.tensor(rng.random(self.in_dim), dtype=torch.float32) class TestDataModule(pl.LightningDataModule): def __init__(self, start_step=0): super().__init__() self.in_dim = 512 self.val_batch_size = 1 self.start_step = start_step def train_dataloader(self): train_ds = TestDataset(self.in_dim) train_dl = DataLoader(train_ds, batch_sampler=TestBatchSampler(step=self.start_step), num_workers=4, shuffle=False) return train_dl class TestLitModel(pl.LightningModule): def __init__(self): super().__init__() self.test_module_obj = TestModule(in_dim=512, out_dim=16) self.automatic_optimization = False def training_step(self, batch, batch_idx): if batch_idx == 0: time.sleep(5) time.sleep(0.5) optimizer = self.optimizers() output = self.test_module_obj(batch) loss = output.sum() self.manual_backward(loss) optimizer.step() def configure_optimizers(self): optimizer = torch.optim.AdamW( self.test_module_obj.parameters() ) return optimizer if __name__ == '__main__': test_data_loader = TestDataModule() test_lit_model = TestLitModel() bar = LitProgressBar(refresh_rate=5) trainer = pl.Trainer( log_every_n_steps=1, callbacks=[bar], max_epochs=-1, max_steps=400000, ) trainer.fit(test_lit_model, datamodule=test_data_loader) ``` ### Error messages and logs ### Environment <details> <summary>Current environment</summary> ``` #- Lightning Component (e.g. Trainer, LightningModule, LightningApp, LightningWork, LightningFlow): #- PyTorch Lightning Version (e.g., 1.5.0): #- Lightning App Version (e.g., 0.5.2): #- PyTorch Version (e.g., 2.0): #- Python version (e.g., 3.9): #- OS (e.g., Linux): #- CUDA/cuDNN version: #- GPU models and configuration: #- How you installed Lightning(`conda`, `pip`, source): #- Running environment of LightningApp (e.g. local, cloud): ``` </details> ### More info _No response_ cc @borda
closed
2024-06-21T14:30:05Z
2024-09-30T16:29:22Z
https://github.com/Lightning-AI/pytorch-lightning/issues/20003
[ "help wanted", "good first issue", "docs", "ver: 2.2.x" ]
heth27
2
MaartenGr/BERTopic
nlp
1,457
NaN Representative_Docs
Hi @MaartenGr, I keep getting NaN values as representative documents when I load my model, after saving it with either 'safetensors' or 'pytorch'. Here is my code: ` embedding_model = SentenceTransformer('all-MiniLM-L6-v2') topic_model.save('/content/drive/MyDrive/boombust_cs_model', serialization="safetensors", save_embedding_model= embedding_model )` `BERTopic.load('/content/drive/MyDrive/boombust_cs_model', embedding_model= embedding_model)` What might be the issue?
closed
2023-08-07T23:01:39Z
2024-02-10T19:21:02Z
https://github.com/MaartenGr/BERTopic/issues/1457
[]
annm802
7
akfamily/akshare
data-science
5,570
ak.stock_zh_a_hist()获取数据错误
以下涉及的是 ak.stock_zh_a_hist()返回的 df 中 "单日情况"列的值为"成交金额"对应的行的数据错误: 1 代码 stock_zh_a_hist_df = ak.stock_zh_a_hist( symbol="603777", period="daily", start_date="20240101", end_date="20250201", adjust="qfq" ) 2 错误问题 获取数据集中 收盘价有负值 3 错误问题 再次运行代码 获取数据为空 4 版本号 Python 3.8.10 Akshare 1.15.22
closed
2025-02-06T07:35:57Z
2025-02-06T09:21:08Z
https://github.com/akfamily/akshare/issues/5570
[ "bug" ]
liusw02
1
microsoft/nni
tensorflow
5,167
Can it be easily used it in Microsoft Singularity?
Many users are using clusters. However, NNI has not support the interface to easily adaptation to run on those clusters, without support of job scheduling, job maintaining, result aggregation and metric calculating, which has significantly limited the usability of NNI on advanced clusters such as Singularity. **What would you like to be added**: easy port to Singularity cluster in Microsoft. **Why is this needed**: Easy-to-use in common clusters is important for industrial users, especially those in Microsoft. **Without this feature, how does current nni work**:not worked yet, very hard to use. **Components that may involve changes**: Job scheduler, metric calculator and visualization tools. **Brief description of your proposal if any**:
open
2022-10-18T09:18:07Z
2022-10-19T02:40:06Z
https://github.com/microsoft/nni/issues/5167
[]
rk2900
1
DistrictDataLabs/yellowbrick
scikit-learn
1,125
No target coloring in jointplot
**Describe the bug** After assigning `y` values in the `fit()` method of `JointPlot`, no heatmap of such target is drawn on the samples **To Reproduce** ```python import numpy as np from yellowbrick.features.jointplot import JointPlot X = np.random.rand(100, 2) y = np.random.rand(100) viz = JointPlot(columns=[0, 1]) # here, fit_transform is just fit viz.fit(X=X, y=y) viz.show() ``` ![image](https://user-images.githubusercontent.com/18686697/97182885-5fd48680-179d-11eb-8db7-e2eebc54b100.png) **Dataset** No. **Expected behavior** There should be a heatmap to color the samples by the values in `y` as in the PCA case. ![image](https://user-images.githubusercontent.com/18686697/97187357-a973a000-17a2-11eb-8628-eee182d39547.png) **Traceback** ``` If applicable, add the traceback from the exception. ``` **Desktop (please complete the following information):** - OS: Debian10 - Python Version 3.7 - Yellowbrick Version 1.2 **Additional context**
closed
2020-10-26T14:13:02Z
2020-10-26T15:35:32Z
https://github.com/DistrictDataLabs/yellowbrick/issues/1125
[ "type: question", "duplicate" ]
ZhiliangWu
1
mars-project/mars
scikit-learn
2,980
[BUG] `df.sort_values` produces incorrect result
<!-- Thank you for your contribution! Please review https://github.com/mars-project/mars/blob/master/CONTRIBUTING.rst before opening an issue. --> **Describe the bug** `df.sort_values`'s result is incorrect. **To Reproduce** ``` Python In [10]: df = pd.DataFrame( ...: np.random.rand(100, 10), columns=["a" + str(i) for i in range(10)] ...: ) In [11]: mdf = md.DataFrame(df, chunk_size=10) In [12]: r = mdf.sort_values(["a3", "a4"], ascending=[False, True]).execute() 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 100.0/100 [00:00<00:00, 631.75it/s] In [13]: r Out[13]: a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 16 0.107025 0.476072 0.335091 0.982758 0.100404 0.535478 0.843878 0.993314 0.519650 0.039456 22 0.918816 0.782424 0.685651 0.981538 0.054176 0.204336 0.164184 0.545094 0.626901 0.001013 27 0.102054 0.078257 0.412166 0.977549 0.943098 0.095842 0.908522 0.078090 0.321839 0.579264 82 0.948665 0.387145 0.140989 0.962591 0.253510 0.053363 0.695930 0.322598 0.434367 0.831326 37 0.921237 0.795837 0.419291 0.957214 0.029907 0.224950 0.239270 0.694234 0.494518 0.698810 .. ... ... ... ... ... ... ... ... ... ... 38 0.479132 0.447279 0.262018 0.047719 0.232861 0.967857 0.608678 0.285415 0.385973 0.443056 1 0.318765 0.664569 0.631351 0.045131 0.163595 0.965267 0.037361 0.044477 0.963650 0.140346 11 0.391554 0.169611 0.384232 0.040313 0.397935 0.822954 0.042206 0.522298 0.944956 0.611841 67 0.022653 0.053233 0.813252 0.020961 0.366821 0.261931 0.592673 0.948731 0.476598 0.604238 20 0.955453 0.521866 0.419302 0.007513 0.303412 0.231128 0.984855 0.439811 0.755543 0.441908 [200 rows x 10 columns] In [14]: mdf.shape Out[14]: (100, 10) ```
closed
2022-04-29T09:33:43Z
2022-05-07T06:40:29Z
https://github.com/mars-project/mars/issues/2980
[ "type: bug", "mod: dataframe" ]
hekaisheng
1
xinntao/Real-ESRGAN
pytorch
34
Didn't use Cpu on m1 Mac
I've been using the program for a while, and it goes well. However, I found that it barely use CPU on m1, while the GPU is fully loaded, the Cpu is barely used. Does it use Cpu on other platform or it only use gpu? I've heard that apple has built-in machine learning units in their m1 chip, maybe we can make use of them in a future update.
closed
2021-08-15T20:48:08Z
2021-09-30T14:23:26Z
https://github.com/xinntao/Real-ESRGAN/issues/34
[]
Percivalllll
4
mars-project/mars
pandas
3,119
[BUG] Ray context GC bug
<!-- Thank you for your contribution! Please review https://github.com/mars-project/mars/blob/master/CONTRIBUTING.rst before opening an issue. --> **Describe the bug** A clear and concise description of what the bug is. Set the `DEFAULT_SUBTASK_MONITOR_INTERVAL` to 0 in `mars/services/task/execution/ray/config.py`, then run `mars/dataframe/base/tests/test_base_execution.py::test_cut_execution` with env `MARS_CI_BACKEND=ray`. The case will fail with the following exception: ``` python mars/dataframe/base/tests/test_base_execution.py::test_cut_execution FAILED [100%] mars/dataframe/base/tests/test_base_execution.py:777 (test_cut_execution) setup = <mars.deploy.oscar.session.SyncSession object at 0x12d589e10> @pytest.mark.ray_dag def test_cut_execution(setup): session = setup rs = np.random.RandomState(0) raw = rs.random(15) * 1000 s = pd.Series(raw, index=[f"i{i}" for i in range(15)]) bins = [10, 100, 500] ii = pd.interval_range(10, 500, 3) labels = ["a", "b"] t = tensor(raw, chunk_size=4) series = from_pandas_series(s, chunk_size=4) iii = from_pandas_index(ii, chunk_size=2) # cut on Series r = cut(series, bins) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, bins)) r, b = cut(series, bins, retbins=True) r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, bins, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # cut on tensor r = cut(t, bins) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) # one chunk r = cut(s, tensor(bins, chunk_size=2), right=False, include_lowest=True) result = r.execute().fetch() pd.testing.assert_series_equal( result, pd.cut(s, bins, right=False, include_lowest=True) ) # test labels r = cut(t, bins, labels=labels) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=labels) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) r = cut(t, bins, labels=False) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=False) np.testing.assert_array_equal(result, expected) # test labels which is tensor labels_t = tensor(["a", "b"], chunk_size=1) r = cut(raw, bins, labels=labels_t, include_lowest=True) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=labels, include_lowest=True) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) # test labels=False r, b = cut(raw, ii, labels=False, retbins=True) # result and expected is array whose dtype is CategoricalDtype r_result, b_result = session.fetch(*session.execute(r, b)) r_expected, b_expected = pd.cut(raw, ii, labels=False, retbins=True) for r, e in zip(r_result, r_expected): np.testing.assert_equal(r, e) pd.testing.assert_index_equal(b_result, b_expected) # test bins which is md.IntervalIndex r, b = cut(series, iii, labels=tensor(labels, chunk_size=1), retbins=True) r_result = r.execute().fetch() > b_result = b.execute().fetch() mars/dataframe/base/tests/test_base_execution.py:858: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ mars/core/entity/executable.py:164: in fetch return self._fetch(session=session, **kw) mars/core/entity/executable.py:161: in _fetch return fetch(self, session=session, **kw) mars/deploy/oscar/session.py:1941: in fetch return session.fetch(tileable, *tileables, **kwargs) mars/deploy/oscar/session.py:1720: in fetch return asyncio.run_coroutine_threadsafe(coro, self._loop).result() ../../.pyenv/versions/3.7.7/lib/python3.7/concurrent/futures/_base.py:435: in result return self.__get_result() ../../.pyenv/versions/3.7.7/lib/python3.7/concurrent/futures/_base.py:384: in __get_result raise self._exception mars/deploy/oscar/session.py:1909: in _fetch data = await session.fetch(tileable, *tileables, **kwargs) mars/deploy/oscar/tests/session.py:68: in fetch results = await super().fetch(*tileables) mars/deploy/oscar/session.py:1126: in fetch chunk_metas = await self._meta_api.get_chunk_meta.batch(*get_chunk_metas) mars/oscar/batch.py:146: in _async_batch return [await self._async_call(*args_list[0], **kwargs_list[0])] mars/oscar/batch.py:95: in _async_call return await self.func(*args, **kwargs) mars/services/meta/api/oscar.py:179: in get_chunk_meta return await self._meta_store.get_meta(object_id, fields=fields, error=error) mars/oscar/core.pyx:263: in __pyx_actor_method_wrapper async with lock: mars/oscar/core.pyx:266: in mars.oscar.core.__pyx_actor_method_wrapper result = await result mars/oscar/batch.py:95: in _async_call return await self.func(*args, **kwargs) mars/services/meta/store/dictionary.py:95: in get_meta return self._get_meta(object_id, fields=fields, error=error) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <mars.services.meta.store.dictionary.DictMetaStore object at 0x12ed69210> object_id = '8553d79ca62df9bbf3150edc97f20b79_0', fields = ('object_refs',) error = 'raise' def _get_meta( self, object_id: str, fields: List[str] = None, error: str = "raise" ) -> Dict: if error not in ("raise", "ignore"): # pragma: no cover raise ValueError("error must be raise or ignore") try: > meta = self._store[object_id] E KeyError: '8553d79ca62df9bbf3150edc97f20b79_0' mars/services/meta/store/dictionary.py:80: KeyError ``` The bug was introduced by https://github.com/mars-project/mars/pull/3061. **To Reproduce** To help us reproducing this bug, please provide information below: 1. Your Python version 3.7.7 2. The version of Mars you use Latest master 3. Versions of crucial packages, such as numpy, scipy and pandas 4. Full stack of the error. 5. Minimized code to reproduce the error. **Expected behavior** A clear and concise description of what you expected to happen. **Additional context** Add any other context about the problem here.
closed
2022-06-06T07:46:35Z
2022-06-06T12:11:11Z
https://github.com/mars-project/mars/issues/3119
[ "type: bug", "mod: ray integration" ]
fyrestone
0
DistrictDataLabs/yellowbrick
scikit-learn
1,044
Multi-model metrics visualizer
**Describe the solution you'd like** I would like to create an at-a-glance representation of multiple model scores so that I can easily compare and contrast different model instances. This will be our first attempt handling multiple models in a visualizer - so could be tricky, and may require a new API. I envision something that creates a heatmap of metrics to models, sort of like the classification report, but where the rows are not classes but are instead are models. I propose the code would look something like this: ```python viz = MultiModelMetrics([ ("Naive Bayes", GaussianNB()), ("Neural Network", MultilayerPerceptron()), ("Logistic", LogisticRegression()), ("Boosting", GradientBoostingClassifier()), ("Bagging", RandomForestClassifier()), ], is_fitted=False, metrics="classification") viz.fit(X_train, y_train) viz.score(X_test, y_test) viz.show() ``` Like a pipeline, this API allows us to specify names for the estimator that will be visualized, or a list of visualizers can be added and the estimator name will be used. **Examples** A prototype example: ![multimodelscores](https://user-images.githubusercontent.com/745966/75354447-f94c4100-587a-11ea-887e-47ac13738eda.png)
open
2020-02-26T14:38:51Z
2021-11-03T17:44:05Z
https://github.com/DistrictDataLabs/yellowbrick/issues/1044
[ "type: feature" ]
bbengfort
11
gradio-app/gradio
data-science
10,333
gr.Dataframe dynamic update
- [x] I have searched to see if a similar issue already exists. **Is your feature request related to a problem? Please describe.** Cannot dynamically yield Dataframe update to a gr.Dataframe() **Describe the solution you'd like** I want to dynamically update a gr.Dataframe based on a single button click **Additional context** See below code. The gr.Dataframe updates once, then never again ```py import gradio as gr import pandas as pd from time import sleep initial_data = { 'category': ["cat1", "cat2", "cat2", "cat3", "cat4", "cat5", "cat6", "cat7", "cat8", "cat9", "cat10", "cat11"], 'Model 1': [0, 11395, 5732, 0, 0, 0, 344, 2856, 812, 0, 7965, 0], 'Model 2': [0, 5391, 7716, 0, 0, 0, 0, 45, 0, 0, 525, 0] } df_initial = pd.DataFrame(initial_data) def update_dataframe(df): for i in range(10): df['Model 1'] = df['Model 1'] + i df['Model 2'] = df['Model 2'] + (i * 2) sleep(1) print("updating") yield df with gr.Blocks() as demo: gr.Markdown("### Dynamic DataFrame Update Example") df_component = gr.Dataframe(value=df_initial, label="Editable DataFrame", type="pandas", interactive=True,render=True) update_button = gr.Button("Update DataFrame 10 Times") update_button.click(update_dataframe, inputs=[df_component], outputs=[df_component]) demo.launch() ```
closed
2025-01-10T17:29:42Z
2025-02-12T00:53:41Z
https://github.com/gradio-app/gradio/issues/10333
[ "💾 Dataframe" ]
cl3m3nt
5
keras-team/keras
pytorch
20,325
Functional API not work as expected when concatenating two models with multiple output & input
Keras version: 3.6.0 OS: Win Hello, Lets say I've got following two models `A` and `B`: ```python A_input = keras.Input(shape=(4,)) A = keras.layers.Dense(5)(A_input) A = keras.Model(inputs=A_input, outputs=[ keras.layers.Dense(4)(A), keras.layers.Dense(4)(A) ]) ``` ![model](https://github.com/user-attachments/assets/4994021c-a0f3-444a-87c3-f94cecf496dc) ```python B_input = [ keras.Input(shape=(4,)), keras.Input(shape=(4,)) ] B = keras.layers.Concatenate()(B_input) B = keras.layers.Dense(5)(B) B = keras.Model(inputs = B_input, outputs=B) ``` ![model](https://github.com/user-attachments/assets/5e9c4706-e337-4e20-af79-28f5df69492a) and I want to merge them into one model via `keras.Model(inputs=A_input, outputs=B(A))` which unfortunately crashes ```python --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[20], [line 1](vscode-notebook-cell:?execution_count=20&line=1) ----> [1](vscode-notebook-cell:?execution_count=20&line=1) merged = keras.Model(inputs=A_input, outputs=B(A)) # why not work? File c:\Users\Marcin\.miniconda3\envs\torch\Lib\site-packages\keras\src\utils\traceback_utils.py:122, in filter_traceback.<locals>.error_handler(*args, **kwargs) [119](file:///C:/Users/Marcin/.miniconda3/envs/torch/Lib/site-packages/keras/src/utils/traceback_utils.py:119) filtered_tb = _process_traceback_frames(e.__traceback__) [120](file:///C:/Users/Marcin/.miniconda3/envs/torch/Lib/site-packages/keras/src/utils/traceback_utils.py:120) # To get the full stack trace, call: [121](file:///C:/Users/Marcin/.miniconda3/envs/torch/Lib/site-packages/keras/src/utils/traceback_utils.py:121) # `keras.config.disable_traceback_filtering()` --> [122](file:///C:/Users/Marcin/.miniconda3/envs/torch/Lib/site-packages/keras/src/utils/traceback_utils.py:122) raise e.with_traceback(filtered_tb) from None [123](file:///C:/Users/Marcin/.miniconda3/envs/torch/Lib/site-packages/keras/src/utils/traceback_utils.py:123) finally: [124](file:///C:/Users/Marcin/.miniconda3/envs/torch/Lib/site-packages/keras/src/utils/traceback_utils.py:124) del filtered_tb File c:\Users\Marcin\.miniconda3\envs\torch\Lib\site-packages\keras\src\layers\input_spec.py:160, in assert_input_compatibility(input_spec, inputs, layer_name) [158](file:///C:/Users/Marcin/.miniconda3/envs/torch/Lib/site-packages/keras/src/layers/input_spec.py:158) inputs = tree.flatten(inputs) [159](file:///C:/Users/Marcin/.miniconda3/envs/torch/Lib/site-packages/keras/src/layers/input_spec.py:159) if len(inputs) != len(input_spec): --> [160](file:///C:/Users/Marcin/.miniconda3/envs/torch/Lib/site-packages/keras/src/layers/input_spec.py:160) raise ValueError( [161](file:///C:/Users/Marcin/.miniconda3/envs/torch/Lib/site-packages/keras/src/layers/input_spec.py:161) f'Layer "{layer_name}" expects {len(input_spec)} input(s),' [162](file:///C:/Users/Marcin/.miniconda3/envs/torch/Lib/site-packages/keras/src/layers/input_spec.py:162) f" but it received {len(inputs)} input tensors. " [163](file:///C:/Users/Marcin/.miniconda3/envs/torch/Lib/site-packages/keras/src/layers/input_spec.py:163) f"Inputs received: {inputs}" [164](file:///C:/Users/Marcin/.miniconda3/envs/torch/Lib/site-packages/keras/src/layers/input_spec.py:164) ) [165](file:///C:/Users/Marcin/.miniconda3/envs/torch/Lib/site-packages/keras/src/layers/input_spec.py:165) for input_index, (x, spec) in enumerate(zip(inputs, input_spec)): [166](file:///C:/Users/Marcin/.miniconda3/envs/torch/Lib/site-packages/keras/src/layers/input_spec.py:166) if spec is None: ValueError: Layer "functional_4" expects 2 input(s), but it received 1 input tensors. Inputs received: [<Functional name=functional_2, built=True>] ``` This looks like a bug to me, because following works: ```python B(A(keras.ops.ones(shape=(1, 4)))) #works tensor([[-0.2388, -0.3490, -0.3166, 0.2736, -1.2349]], device='cuda:0', grad_fn=<AddBackward0>) ``` Temporarily I've found following workaround to create that merged model: ```python merged = keras.Model(inputs=A_input, outputs=B(A(A_input))) ``` but that have a caveats it plots model with a loop in input: ![image](https://github.com/user-attachments/assets/dc02dc28-ebb7-4526-a88c-9860f2330115)
closed
2024-10-05T00:25:36Z
2024-10-05T17:34:26Z
https://github.com/keras-team/keras/issues/20325
[]
malciin
1
miguelgrinberg/python-socketio
asyncio
615
Python socketio[client] giving the following error in Raspberry pi
Hi, I have a piece of code, that works fine in windows, but when I trie to run it on my raspberry pi, returns me an error and is not able to connect to the server. ``` Traceback (most recent call last): File "/home/pi/.local/lib/python3.7/site-packages/socketio/client.py", line 279, in connect engineio_path=socketio_path) File "/home/pi/.local/lib/python3.7/site-packages/engineio/client.py", line 187, in connect url, headers or {}, engineio_path) File "/home/pi/.local/lib/python3.7/site-packages/engineio/client.py", line 306, in _connect_polling 'OPEN packet not returned by server') engineio.exceptions.ConnectionError: OPEN packet not returned by server During handling of the above exception, another exception occurred: Traceback (most recent call last): File "setup.py", line 93, in <module> sio.connect("*******") File "/home/pi/.local/lib/python3.7/site-packages/socketio/client.py", line 283, in connect exc.args[1] if len(exc.args) > 1 else exc.args[0]) File "/home/pi/.local/lib/python3.7/site-packages/socketio/client.py", line 547, in _trigger_event return self.handlers[namespace][event](*args) TypeError: connect_error() takes 0 positional arguments but 1 was given ``` My server is working fine. (it is already hosted) A prove of that is that my windows code executed with no errors. Some of the code: ``` sio = socketio.Client() @sio.event def connect(): print("I'm connected!") #print('my sid is', sio.sid) sio.emit("**", **) open_radio() @sio.event def connect_error(): print("The connection failed!") @sio.event def disconnect(): print("I'm disconnected!") sio.connect(SERVER_URL) sio.wait() ```
closed
2021-01-16T17:56:54Z
2021-01-16T18:29:43Z
https://github.com/miguelgrinberg/python-socketio/issues/615
[]
thePeras
1
open-mmlab/mmdetection
pytorch
11,119
How to work with images without objects?
Hello! I want to detect an object type in an image. I mean, I have only 1 class. The thing is that I have images without that object but I am very interested in evaluating the algorithm on those images to see if it is a proponent of false positives on that type of images. The solution I have adopted is to add the name of the image in the images field of the coco json without adding any annotation related to that image. That is, let's suppose that the image with id=1 does not have the object I want to segment, no annotation linked to the image with id=1 will appear. Is the approach I have taken correct? Thank you very much
open
2023-11-02T11:40:49Z
2024-02-19T13:19:47Z
https://github.com/open-mmlab/mmdetection/issues/11119
[]
JNaranjo-Alcazar
2
RayVentura/ShortGPT
automation
94
[Feature Request] Support InternLM
Dear ShortGPT developer, Greetings! I am vansinhu, a community developer and volunteer at InternLM. Your work has been immensely beneficial to me, and I believe it can be effectively utilized in InternLM as well. Welcome to add Discord https://discord.gg/gF9ezcmtM3 . I hope to get in touch with you. Best regards, vansinhu
open
2023-08-28T13:11:41Z
2023-08-28T13:11:41Z
https://github.com/RayVentura/ShortGPT/issues/94
[]
vansinhu
0
flairNLP/flair
nlp
2,968
german pretrained biomedical models?
Hello, Are there also **german** pretrained models for biomedical texts available? Thanks!
closed
2022-10-25T15:14:59Z
2023-02-20T13:19:56Z
https://github.com/flairNLP/flair/issues/2968
[ "question" ]
movingabout
2
marshmallow-code/flask-smorest
rest-api
186
Why can't I have multiple response codes in apispec?
Perhaps I'm doing this wrong, but even though my route has multiple `@blp.response` values and the actual calls return the correct information, but specs only show the top response and none of the error responses. I have this: ``` @blp.response(code=204, description="success") @blp.response(code=404, description="Failed updating shovel statuses") @blp.response(code=409, description="Database is empty or some shovel statuses requesting updates are missing.") @blp.response(code=500, description="Internal server error") def put(self, shovels): ``` And this is what I see swagger: ![image](https://user-images.githubusercontent.com/41277488/93821950-424b5480-fc14-11ea-82aa-c35f88de77fa.png) Similarly, if I have a response(description='fine by me') above the 204 code, then I get the 200 error instead and don't see the 204 at all. I have a few cases where depending on the type of data requested, I would either return a 200 error or a 204 error, so I would like this type of granularity as well. Again, am I doing something wrong? I'm using the latest version of flask-smorest: 0.24.1 I'm hoping I don't have to mess with @doc, but I will if someone can explain how I use it for multiple routes and functions. Thanks
closed
2020-09-21T21:13:41Z
2021-04-13T15:22:14Z
https://github.com/marshmallow-code/flask-smorest/issues/186
[]
estein9825
2
itamarst/eliot
numpy
401
Trio's nursery lifetime interacts badly with start_action
(Based on discussion in https://trio.discourse.group/t/eliot-the-causal-logging-library-now-supports-trio/167) Consider: ```python from eliot import start_action, to_file import trio to_file(open("trio.log", "w")) async def say(message, delay): with start_action(action_type="say", message=message): await trio.sleep(delay) async def main(): async with trio.open_nursery() as nursery: with start_action(action_type="main"): nursery.start_soon(say, "hello", 1) nursery.start_soon(say, "world", 2) trio.run(main) ``` The result: ``` 0ed1a1c3-050c-4fb9-9426-a7e72d0acfc7 └── main/1 ⇒ started 2019-04-26 13:01:13 ⧖ 0.000s └── main/2 ⇒ succeeded 2019-04-26 13:01:13 0ed1a1c3-050c-4fb9-9426-a7e72d0acfc7 └── <unnamed> ├── say/3/1 ⇒ started 2019-04-26 13:01:13 ⧖ 2.002s │ ├── message: world │ └── say/3/2 ⇒ succeeded 2019-04-26 13:01:15 └── say/4/1 ⇒ started 2019-04-26 13:01:13 ⧖ 1.001s ├── message: hello └── say/4/2 ⇒ succeeded 2019-04-26 13:01:14 ``` What happens is that the `start_action` finishes before the nursery schedules the `say()` calls, so they get logged after the action is finished. Putting the `start_action` outside the nursery lifetime fixes this. Depending how you look at this this is either: 1. A problem with Trio integration. 2. A design flaw in the parser (notice that all those messages are actually the same tree, the parser just decides the tree is finished too early). 3. A general problem with async context managers/contextvars/how actions finish.
open
2019-04-26T13:01:32Z
2019-05-21T13:15:18Z
https://github.com/itamarst/eliot/issues/401
[ "bug" ]
itamarst
2
huggingface/pytorch-image-models
pytorch
1,182
EMA with high decay results in worse performance because of 1) no zero-init and 2) no debias.
When using [ModelEMAV2](https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/utils/model_ema.py#L82) with decay >=0.99999 and ~25k iterations, performance is worse than expected. Encountered this bug when fine-tuning on ImageNet with EMA. Fixed this locally by following the[ optax implementation of EMA](https://github.com/deepmind/optax/blob/252d152660300fc7fe22d214c5adbe75ffab0c4a/optax/_src/transform.py#L120-L158), posting here in case other people encounter the same thing. There are two things which differ in the optax implementation. 1) [EMA is initialized with zeros](https://github.com/deepmind/optax/blob/252d152660300fc7fe22d214c5adbe75ffab0c4a/optax/_src/transform.py#L143-L147). 2) [Bias correction is applied to EMA](https://github.com/deepmind/optax/blob/252d152660300fc7fe22d214c5adbe75ffab0c4a/optax/_src/transform.py#L103-L106). Apologies if I am missing something or mis-using the timm EMA implementation. Just figured this would be helpful to post in case others are using EMA with high decay. If I am not missing something, I'm happy to submit a PR for this.
closed
2022-03-20T22:39:15Z
2022-05-03T20:29:38Z
https://github.com/huggingface/pytorch-image-models/issues/1182
[ "bug" ]
mitchellnw
3
pandas-dev/pandas
data-science
60,616
ENH: RST support
### Feature Type - [X] Adding new functionality to pandas - [ ] Changing existing functionality in pandas - [ ] Removing existing functionality in pandas ### Problem Description I wish I could use ReStructured Text with pandas ### Feature Description The end users code: ```python import pandas as pd df=pd.read_rst(rst) df.to_rst() ``` I believe tabulate has a way to do this. ### Alternative Solutions I also built a way to make rst tables. ### Additional Context - [The RST docs](https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html#tables) I think `Grid Tables` would be best for pandas (or `Simple Tables`) I did not use sudo-code in the examples due to complexity and that examples of how to do this can be seen in the above packages. See RST docs for what they look like.
open
2024-12-29T17:41:50Z
2025-01-11T18:28:22Z
https://github.com/pandas-dev/pandas/issues/60616
[ "Enhancement", "Needs Triage" ]
R5dan
4
clovaai/donut
computer-vision
52
Question on fine-tuning document form parsing labeling requirement
My goal is to read a specific field (say, box 30) from a nationally standardized insurance claim form. The form has 40 boxes/fields in fixed locations and each boxed is labeled clearly with box number and title. To save annotation time, I would like our labeling team to annotate the text from box 30 only (ignore all other boxes in the form). If I fine-tune on such annotations, is donut expected to give good results or not? If we have to annotate the entire form box-by-box, the time it takes will be over 10x longer.
open
2022-09-17T15:20:28Z
2022-09-17T15:20:28Z
https://github.com/clovaai/donut/issues/52
[]
jackkwok
0
onnx/onnx
tensorflow
6,603
Technical Issue in code
``` public class HomeController : Controller { private readonly MLContext _mlContext; private readonly PredictionEngine<SignLanguageInput, SignLanguageOutput> _predictionEngine; public HomeController() { _mlContext = new MLContext(); // Load ONNX model var modelPath = Path.Combine(Directory.GetCurrentDirectory(), "wwwroot", "models", "hand_landmark_sparse_Nx3x224x224.onnx"); var dataView = _mlContext.Data.LoadFromEnumerable(new List<SignLanguageInput>()); var pipeline = _mlContext.Transforms.ApplyOnnxModel(modelPath); var trainedModel = pipeline.Fit(dataView); _predictionEngine = _mlContext.Model.CreatePredictionEngine<SignLanguageInput, SignLanguageOutput>(trainedModel); } public IActionResult Index() { return View(); } public IActionResult PredictGesture([FromBody] string base64Image) { if (string.IsNullOrEmpty(base64Image) || base64Image == "data:,") return BadRequest("Image data is missing!"); // Decode the base64 image and save it temporarily var imageBytes = Convert.FromBase64String(base64Image.Replace("data:image/png;base64,", "")); var tempImagePath = Path.Combine(Path.GetTempPath(), $"{Guid.NewGuid()}.png"); System.IO.File.WriteAllBytes(tempImagePath, imageBytes); try { // Preprocess the image to create input tensor var inputTensor = PreprocessImage(tempImagePath, 92, 92); float[] inputArray = inputTensor.ToArray(); // Create input for prediction var input = new SignLanguageInput { input = inputArray }; // Predict gesture var result = _predictionEngine.Predict(input); if (result != null) { return Ok(new { Prediction = result.Label, Confidence = result.Confidence, }); } else { return StatusCode(500, "Prediction returned null"); } } catch (Exception ex) { return StatusCode(500, $"Internal server error: {ex.Message}"); } finally { // Clean up temporary file System.IO.File.Delete(tempImagePath); } } private DenseTensor<float> PreprocessImage(string imagePath, int width, int height) { using var bitmap = new Bitmap(imagePath); using var resized = new Bitmap(bitmap, new Size(width, height)); int channels = 3; // RGB var tensor = new float[channels * width * height]; int index = 0; for (int y = 0; y < resized.Height; y++) { for (int x = 0; x < resized.Width; x++) { var pixel = resized.GetPixel(x, y); // Channel-first format (C, H, W) tensor[index + 0] = pixel.R / 255f; // Red tensor[index + 1] = pixel.G / 255f; // Green tensor[index + 2] = pixel.B / 255f; // Blue index += channels; } } // Create a DenseTensor directly from the preprocessed image var tensorShape = new[] { 1, 3, height, width }; // NCHW format return new DenseTensor<float>(tensor, tensorShape); // Return as DenseTensor } } ``` I have given my code (in mvc). In this code, i am getting error on line "**var result = _predictionEngine.Predict(input);**" and error is "**System.ArgumentOutOfRangeException: 'Index was out of range. Must be non-negative and less than the size of the collection. (Parameter 'index')'**" Using package : .Net Framework : net8.0 Microsoft.ML : Version="4.0.0" Microsoft.ML.OnnxRuntime.Gpu Version="1.20.1" Microsoft.ML.OnnxRuntime.Managed Version="1.20.1" Microsoft.ML.OnnxTransformer Version="4.0.0" SixLabors.ImageSharp Version="3.1.6" System.Drawing.Common Version="9.0.0" and using window is "Window 11" with 64bit OS
closed
2024-12-30T17:03:13Z
2024-12-31T15:03:33Z
https://github.com/onnx/onnx/issues/6603
[ "question" ]
abhaytechnoscore
3
globaleaks/globaleaks-whistleblowing-software
sqlalchemy
3,282
Globaleaks does not start
**Describe the bug** Globaleaks doesn't start **To Reproduce** `globaleaks start` WARNING: The current long term supported platform is Debian 11 (bullseye) WARNING: It is recommended to use only this platform to ensure stability and security WARNING: To upgrade your system consult: https://docs.globaleaks.org/en/main/user/admin/UpgradeGuide.html ` systemctl status globaleaks globaleaks.service ` globaleaks.service - LSB: Start the GlobaLeaks server. Loaded: loaded (/etc/init.d/globaleaks; generated) Active: failed (Result: exit-code) since Mon 2022-09-19 17:08:24 CEST; 3min 1s ago Docs: man:systemd-sysv-generator(8) Process: 957 ExecStart=/etc/init.d/globaleaks start (code=exited, status=1/FAILURE) Sep 19 17:08:23 tst-xxxxx-py-leaks01-tstweb.site02.xxxxx.it globaleaks[957]: * Enabling Globaleaks Network Sandboxing... Sep 19 17:08:23 tst-xxxxx-py-leaks01-tstweb.site02.xxxxx.it globaleaks[957]: ...done. Sep 19 17:08:24 tst-xxxxx-py-leaks01-tstweb.site02.xxxxx.it globaleaks[957]: WARNING: The current long term supported platform is Debian 11 (bullseye) Sep 19 17:08:24 tst-xxxxx-py-leaks01-tstweb.site02.xxxxx.it globaleaks[957]: WARNING: It is recommended to use only this platform to ensure stability and security Sep 19 17:08:24 tst-xxxxx-py-leaks01-tstweb.site02.xxxxx.it globaleaks[957]: WARNING: To upgrade your system consult: https://docs.globaleaks.org/en/main/user/admin/UpgradeGuide.html Sep 19 17:08:24 tst-xxxxx-py-leaks01-tstweb.site02.xxxxx.it globaleaks[957]: Unable to start GlobaLeaks: [Errno 13] Permission denied: '/var/globaleaks/globaleaks.pid' Sep 19 17:08:24 tst-xxxxx-py-leaks01-tstweb.site02.xxxxx.it globaleaks[957]: ...fail! Sep 19 17:08:24 tst-xxxxx-py-leaks01-tstweb.site02.xxxxx.it systemd[1]: globaleaks.service: Control process exited, code=exited status=1 Sep 19 17:08:24 tst-xxxxx-py-leaks01-tstweb.site02.xxxxx.it systemd[1]: globaleaks.service: Failed with result 'exit-code'. Sep 19 17:08:24 tst-xxxxx-py-leaks01-tstweb.site02.xxxxx.it systemd[1]: Failed to start LSB: Start the GlobaLeaks server.. **Log** 2022-09-19 17:11:10+0200 [-] [E] Found an already initialized database version: 63 2022-09-19 17:11:11+0200 [-] Starting factory <Site object at 0x7f7c9bab2550> 2022-09-19 17:11:11+0200 [-] GlobaLeaks is now running and accessible at the following urls: 2022-09-19 17:11:11+0200 [-] - [HTTP] --> http://0.0.0.0 2022-09-19 17:11:11+0200 [-] - [Tor]: --> http://d6sqxfwngfy3rsmksjg2fpcvzcggckzy76yzj775m4jxnh3bubyrarid.onion 2022-09-19 17:11:11+0200 [-] Starting factory _HTTP11ClientFactory(<function HTTPConnectionPool._newConnection.<locals>.quiescentCallback at 0x7f7c99818158>, <twisted.internet.endpoints._WrapperEndpoint object at 0x7f7c997d3eb8>) 2022-09-19 17:11:11+0200 [-] [E] Successfully connected to Tor control port 2022-09-19 17:11:11+0200 [-] [E] [1] Setting up the onion service d6sqxfwngfy3rsmksjg2fpcvzcggckzy76yzj775m4jxnh3bubyrarid.onion 2022-09-19 17:11:16+0200 [-] [E] Job ExitNodesRefresh died with runtime -1.0000 [low: -1.0000, high: -1.0000] 2022-09-19 17:11:16+0200 [-] Traceback (most recent call last): 2022-09-19 17:11:16+0200 [-] File "/usr/lib/python3/dist-packages/globaleaks/jobs/job.py", line 49, in run 2022-09-19 17:11:16+0200 [-] yield self.operation() 2022-09-19 17:11:16+0200 [-] twisted.internet.error.TimeoutError: User timeout caused connection failure. 2022-09-19 17:11:16+0200 [-] [E] exception mail suppressed for exception (<class 'twisted.internet.error.TimeoutError'>) [reason: special exception] 2022-09-19 17:11:16+0200 [-] Stopping factory _HTTP11ClientFactory(<function HTTPConnectionPool._newConnection.<locals>.quiescentCallback at 0x7f7c99818158>, <twisted.internet.endpoints._WrapperEndpoint object at 0x7f7c997d3eb8>) **Desktop (please complete the following information):** Ubuntu 20.04 Lts fresh install (**behind enteprise proxy**) **Globaleaks version** Latest (at today) **Notes** The problem is S.O. related? Ubuntu 20.04 Lts Vs Debian 11?
closed
2022-09-19T15:17:57Z
2022-09-19T15:53:46Z
https://github.com/globaleaks/globaleaks-whistleblowing-software/issues/3282
[]
zazzati
3
AutoGPTQ/AutoGPTQ
nlp
702
Can't get my CUDA_VERSION after I set CUDA_VERSION environment variable
![auto-gptq-issue](https://github.com/AutoGPTQ/AutoGPTQ/assets/76060605/977c26c4-8e0d-42b9-a7f3-b59d88831097)
open
2024-06-30T06:36:37Z
2024-07-24T07:00:49Z
https://github.com/AutoGPTQ/AutoGPTQ/issues/702
[ "bug" ]
LinghuC2333
1