repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
sequencelengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
pytest-dev/pytest-mock
pytest
400
Call args/kwargs stored in a Spy can be overwritten without intention
Suppose I have the following class definition and test code (in `test.py`): ``` class AClass: def foo(self, x): return None def bar(self): x = {"data": [1]} self.foo(x) x["data"].append(2) self.foo(x) def test_bar(mocker): a = AClass() spy = mocker.spy(a, "foo") a.bar() print(spy.call_args_list) ``` I want to check if `foo` has been called with the correct arguments. However, when I run `pytest -s test.py` I see the following output: ``` ... test.py::test_bar [call({'data': [1, 2]}), call({'data': [1, 2]})] ... ``` where I would've expected: ``` ... test.py::test_bar [call({'data': [1]}), call({'data': [1, 2]})] ... ``` I suspect the spy stores a reference to the calling args and kwargs, which allows for this behavior to happen. Creating a `deepcopy` would solve the issue, but I realize it can be quite costly to do so. Alternatively, having a flag to enable deep-copying if required would be useful.
closed
2023-12-11T14:59:19Z
2023-12-13T00:05:58Z
https://github.com/pytest-dev/pytest-mock/issues/400
[]
sybrenjansen
1
CorentinJ/Real-Time-Voice-Cloning
tensorflow
1,245
can i run this in google colab without any problem
and i tried too and i got this Running a test of your configuration... Found 1 GPUs available. Using GPU 0 (Tesla T4) of compute capability 7.5 with 15.8Gb total memory. Preparing the encoder, the synthesizer and the vocoder... Loaded encoder "encoder.pt" trained to step 1564501 Synthesizer using device: cuda Building Wave-RNN Trainable Parameters: 4.481M Loading model weights at saved_models/default/vocoder.pt Testing your configuration with small inputs. Testing the encoder... Traceback (most recent call last): File "/content/Real-Time-Voice-Cloning/demo_cli.py", line 80, in <module> encoder.embed_utterance(np.zeros(encoder.sampling_rate)) File "/content/Real-Time-Voice-Cloning/encoder/inference.py", line 144, in embed_utterance frames = audio.wav_to_mel_spectrogram(wav) File "/content/Real-Time-Voice-Cloning/encoder/audio.py", line 58, in wav_to_mel_spectrogram frames = librosa.feature.melspectrogram( TypeError: melspectrogram() takes 0 positional arguments but 2 positional arguments (and 2 keyword-only arguments) were given Colab paid products - Cancel contracts here
open
2023-08-27T03:38:26Z
2023-09-30T17:18:15Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/1245
[]
Gonharaka
1
Miserlou/Zappa
flask
1,911
Failed to generate or install certificate! :(
Facing below issue when trying to run zappa certify ``` (myenv) root@ip-10-0-0-20:/home/ubuntu/zappa-s3-signature# zappa certify prod Calling certify for stage prod.. Are you sure you want to certify? [y/n] y Certifying domain cnd.doxbot.io.. Setting DNS challenge.. Waiting for DNS to propagate.. Domain challenge did not pass: {u'status': u'invalid', u'token': u'86P82OiXd8YvlSl5UK-7-NRLhIWYtHx_wyUfiLoSehs', u'type': u'dns-01', u'uri': u'https://acme-v01.api.letsencrypt.org/acme/challenge/Vv84wVPPZN6QaW4-oDO-koxR_RXNtoYRtIWdIc3THaE/18970297341', u'error': {u'status': 403, u'type': u'urn:acme:error:unauthorized', u'detail': u'No TXT record found at _acme-challenge.cnd.doxbot.io'}} Failed to generate or install certificate! :( ============== ``` Route 53 entries ![image](https://user-images.githubusercontent.com/10459176/62233256-d1305880-b3e5-11e9-8a20-707ab16b09d5.png) Note: The TXT record was created by zappa, it isn't done manually
open
2019-07-31T17:22:49Z
2019-08-02T05:29:34Z
https://github.com/Miserlou/Zappa/issues/1911
[]
parikhudit
1
viewflow/viewflow
django
223
Django 2.1 support
When will viewflow supporto Django 2.1? I'm mostly concerned about the view permission
closed
2018-07-25T08:15:07Z
2018-08-21T08:56:43Z
https://github.com/viewflow/viewflow/issues/223
[ "request/question", "dev/flow" ]
lorenzomorandini
1
yt-dlp/yt-dlp
python
12,040
Add an argument to ignore --cookies-from-browser errors
### DO NOT REMOVE OR SKIP THE ISSUE TEMPLATE - [X] I understand that I will be **blocked** if I *intentionally* remove or skip any mandatory\* field ### Checklist - [X] I'm requesting a feature unrelated to a specific site - [X] I've looked through the [README](https://github.com/yt-dlp/yt-dlp#readme) - [X] I've verified that I have **updated yt-dlp to nightly or master** ([update instructions](https://github.com/yt-dlp/yt-dlp#update-channels)) - [X] I've searched [known issues](https://github.com/yt-dlp/yt-dlp/issues/3766) and the [bugtracker](https://github.com/yt-dlp/yt-dlp/issues?q=) for similar issues **including closed ones**. DO NOT post duplicates - [X] I've read the [guidelines for opening an issue](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#opening-an-issue) ### Provide a description that is worded well enough to be understood I would like to use YT-DLP with --cookies-from-browser argument. However, in case it fails to extract cookies, I would like it to just proceed with no cookies. I suggest to add an additional command line argument for this. Something like --cookies-from-browser-ignore-errors. Thanks! :) ### Provide verbose output that clearly demonstrates the problem - [X] Run **your** yt-dlp command with **-vU** flag added (`yt-dlp -vU <your command line>`) - [X] If using API, add `'verbose': True` to `YoutubeDL` params instead - [X] Copy the WHOLE output (starting with `[debug] Command-line config`) and insert it below ### Complete Verbose Output ``` [debug] Command-line config: ['-vU', '--cookies-from-browser', 'chrome', 'https://www.youtube.com/watch?v=p6ebfMzTgyY'] [debug] Encodings: locale cp1251, fs utf-8, pref cp1251, out utf-8, error utf-8, screen utf-8 [debug] yt-dlp version stable@2024.12.23 from yt-dlp/yt-dlp [65cf46cdd] (source) [debug] Lazy loading extractors is disabled [debug] Git HEAD: 0b6b7742c [debug] Python 3.10.11 (CPython AMD64 64bit) - Windows-10-10.0.19045-SP0 (OpenSSL 1.1.1t 7 Feb 2023) [debug] exe versions: ffmpeg 4.3.1 [debug] Optional libraries: sqlite3-3.40.1 [debug] Proxy map: {} Extracting cookies from chrome [debug] Extracting cookies from: "C:\Users\user\AppData\Local\Google\Chrome\User Data\Default\Network\Cookies" [debug] Found local state file at "C:\Users\user\AppData\Local\Google\Chrome\User Data\Local State" [Cookies] Loading cookie 0/ 30ERROR: Failed to decrypt with DPAPI. See https://github.com/yt-dlp/yt-dlp/issues/10927 for more info File "D:\Work\Source\yt-dlp\yt_dlp\__main__.py", line 17, in <module> yt_dlp.main() File "D:\Work\Source\yt-dlp\yt_dlp\__init__.py", line 1093, in main _exit(*variadic(_real_main(argv))) File "D:\Work\Source\yt-dlp\yt_dlp\__init__.py", line 991, in _real_main with YoutubeDL(ydl_opts) as ydl: File "D:\Work\Source\yt-dlp\yt_dlp\YoutubeDL.py", line 720, in __init__ self.print_debug_header() File "D:\Work\Source\yt-dlp\yt_dlp\YoutubeDL.py", line 4078, in print_debug_header write_debug(f'Request Handlers: {", ".join(rh.RH_NAME for rh in self._request_director.handlers.values())}') File "C:\Users\user\AppData\Local\Programs\Python\Python310\lib\functools.py", line 981, in __get__ val = self.func(instance) File "D:\Work\Source\yt-dlp\yt_dlp\YoutubeDL.py", line 4252, in _request_director return self.build_request_director(_REQUEST_HANDLERS.values(), _RH_PREFERENCES) File "D:\Work\Source\yt-dlp\yt_dlp\YoutubeDL.py", line 4227, in build_request_director cookiejar=self.cookiejar, File "C:\Users\user\AppData\Local\Programs\Python\Python310\lib\functools.py", line 981, in __get__ val = self.func(instance) File "D:\Work\Source\yt-dlp\yt_dlp\YoutubeDL.py", line 4118, in cookiejar return load_cookies( File "D:\Work\Source\yt-dlp\yt_dlp\cookies.py", line 99, in load_cookies extract_cookies_from_browser(browser_name, profile, YDLLogger(ydl), keyring=keyring, container=container)) File "D:\Work\Source\yt-dlp\yt_dlp\cookies.py", line 122, in extract_cookies_from_browser return _extract_chrome_cookies(browser_name, profile, keyring, logger) File "D:\Work\Source\yt-dlp\yt_dlp\cookies.py", line 331, in _extract_chrome_cookies is_encrypted, cookie = _process_chrome_cookie(decryptor, *line) File "D:\Work\Source\yt-dlp\yt_dlp\cookies.py", line 366, in _process_chrome_cookie value = decryptor.decrypt(encrypted_value) File "D:\Work\Source\yt-dlp\yt_dlp\cookies.py", line 551, in decrypt return _decrypt_windows_dpapi(encrypted_value, self._logger).decode() File "D:\Work\Source\yt-dlp\yt_dlp\cookies.py", line 1087, in _decrypt_windows_dpapi logger.error(message) File "D:\Work\Source\yt-dlp\yt_dlp\utils\_utils.py", line 5650, in error self._ydl.report_error(message, is_error=is_error) File "D:\Work\Source\yt-dlp\yt_dlp\YoutubeDL.py", line 1092, in report_error self.trouble(f'{self._format_err("ERROR:", self.Styles.ERROR)} {message}', *args, **kwargs) File "D:\Work\Source\yt-dlp\yt_dlp\YoutubeDL.py", line 1020, in trouble tb_data = traceback.format_list(traceback.extract_stack()) ERROR: Failed to decrypt with DPAPI. See https://github.com/yt-dlp/yt-dlp/issues/10927 for more info Traceback (most recent call last): File "D:\Work\Source\yt-dlp\yt_dlp\cookies.py", line 99, in load_cookies extract_cookies_from_browser(browser_name, profile, YDLLogger(ydl), keyring=keyring, container=container)) File "D:\Work\Source\yt-dlp\yt_dlp\cookies.py", line 122, in extract_cookies_from_browser return _extract_chrome_cookies(browser_name, profile, keyring, logger) File "D:\Work\Source\yt-dlp\yt_dlp\cookies.py", line 331, in _extract_chrome_cookies is_encrypted, cookie = _process_chrome_cookie(decryptor, *line) File "D:\Work\Source\yt-dlp\yt_dlp\cookies.py", line 366, in _process_chrome_cookie value = decryptor.decrypt(encrypted_value) File "D:\Work\Source\yt-dlp\yt_dlp\cookies.py", line 551, in decrypt return _decrypt_windows_dpapi(encrypted_value, self._logger).decode() File "D:\Work\Source\yt-dlp\yt_dlp\cookies.py", line 1088, in _decrypt_windows_dpapi raise DownloadError(message) # force exit yt_dlp.utils.DownloadError: Failed to decrypt with DPAPI. See https://github.com/yt-dlp/yt-dlp/issues/10927 for more info ```
closed
2025-01-09T16:25:46Z
2025-01-12T09:55:26Z
https://github.com/yt-dlp/yt-dlp/issues/12040
[ "enhancement", "wontfix", "core:cookies" ]
meowcateatrat
7
microsoft/unilm
nlp
1,452
[WavLM] Finetuning for speaker diarization
I am intending on using WavLM and finetuning it for speaker diarization. My aim is to obviously get the DER's that is in Readme for WavLM. I tried to find some resources on how to even begin this, and found some things on speaker recognition and verification. However, that isn't speaker diarization, so I was wondering if anyone had any pointers? (At the very least a starting place.)
open
2024-02-03T00:18:23Z
2024-12-17T19:45:02Z
https://github.com/microsoft/unilm/issues/1452
[]
aynig
1
sigmavirus24/github3.py
rest-api
210
Pages API
https://developer.github.com/changes/2014-02-13-exposing-the-page-api/
closed
2014-02-18T03:50:58Z
2014-05-27T11:29:41Z
https://github.com/sigmavirus24/github3.py/issues/210
[]
sigmavirus24
2
paperless-ngx/paperless-ngx
django
7,554
[BUG] Merging PDF + PNG omits PNG
### Description When attempting to merge a PDF-based document with another document that resulted from a PNG upload the merge process finishes without reporting any obvious error, but the resulting "merged" PDF is missing the page from the PNG-based document. No error is visible from the web frontend. Working around the issue by downloading and re-uploading the PDF generated for the PNG (and using that for the merge) unfortunately does not work as it is rejected as a duplicate. ### Steps to reproduce 1. Upload PDF 2. Upload PNG 3. Select both documents for merging (generate new metadata, do not delete original files). ### Webserver logs ```bash [2024-08-27 10:44:43,663] [INFO] [paperless.bulk_edit] Attempting to merge 2 documents into a single document. [2024-08-27 10:44:43,820] [ERROR] [paperless.bulk_edit] Error merging document 592, it will not be included in the merge: /usr/src/paperless/media/documents/originals/0000592.png: unable to find trailer dictionary while recovering damaged file Traceback (most recent call last): File "/usr/src/paperless/src/documents/bulk_edit.py", line 262, in merge with pikepdf.open(str(doc.source_path)) as pdf: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/pikepdf/_methods.py", line 398, in open pdf = Pdf._open( ^^^^^^^^^^ pikepdf._core.PdfError: /usr/src/paperless/media/documents/originals/0000592.png: unable to find trailer dictionary while recovering damaged file [2024-08-27 10:44:43,822] [INFO] [paperless.bulk_edit] Adding merged document to the task queue. [2024-08-27 10:44:43,857] [INFO] [celery.worker.strategy] Task documents.tasks.consume_file[fa0ac878-d0ad-472f-9f8b-b1a6f934d58a] received [2024-08-27 10:44:43,905] [INFO] [paperless.tasks] WorkflowTriggerPlugin completed with: [2024-08-27 10:44:43,913] [INFO] [paperless.consumer] Consuming 618_592_merged.pdf [2024-08-27 10:44:43,931] [INFO] [paperless.parsing.tesseract] pdftotext exited 0 [2024-08-27 10:44:45,693] [INFO] [ocrmypdf._pipeline] page is facing ⇧, confidence 5.52 - no change [2024-08-27 10:44:55,983] [INFO] [ocrmypdf._pipelines.ocr] Postprocessing... [2024-08-27 10:44:56,807] [INFO] [ocrmypdf._pipeline] Image optimization ratio: 1.22 savings: 18.3% [2024-08-27 10:44:56,808] [INFO] [ocrmypdf._pipeline] Total file size ratio: 1.24 savings: 19.6% [2024-08-27 10:44:56,810] [INFO] [ocrmypdf._pipelines._common] Output file is a PDF/A-2B (as expected) [2024-08-27 10:44:58,394] [INFO] [paperless.parsing] convert exited 0 [2024-08-27 10:45:01,713] [INFO] [paperless.handlers] Assigning correspondent Thilo-Alexander Ginkel to 2024-08-26 618_592_merged [2024-08-27 10:45:01,722] [INFO] [paperless.handlers] Assigning document type Abrechnung to 2024-08-26 Thilo-Alexander Ginkel 618_592_merged [2024-08-27 10:45:01,732] [INFO] [paperless.handlers] Tagging "2024-08-26 Thilo-Alexander Ginkel 618_592_merged" with "Veranstaltung, Abrechnung" [2024-08-27 10:45:01,799] [INFO] [paperless.consumer] Document 2024-08-26 Thilo-Alexander Ginkel 618_592_merged consumption finished [2024-08-27 10:45:01,803] [INFO] [paperless.tasks] ConsumeTaskPlugin completed with: Success. New document id 619 created ``` ### Browser logs _No response_ ### Paperless-ngx version 2.11.6 ### Host OS Ubuntu 22.04 ### Installation method Docker - official image ### System status ```json { "pngx_version": "2.11.6", "server_os": "Linux-5.15.0-117-generic-x86_64-with-glibc2.36", "install_type": "docker", "storage": { "total": 473533612032, "available": 359678787584 }, "database": { "type": "postgresql", "url": "paperless", "status": "OK", "error": null, "migration_status": { "latest_migration": "documents.1052_document_transaction_id", "unapplied_migrations": [] } }, "tasks": { "redis_url": "redis://broker:6379", "redis_status": "OK", "redis_error": null, "celery_status": "OK", "index_status": "OK", "index_last_modified": "2024-08-27T10:47:27.021629+02:00", "index_error": null, "classifier_status": "OK", "classifier_last_trained": "2024-08-27T08:05:00.617726Z", "classifier_error": null } } ``` ### Browser _No response_ ### Configuration changes _No response_ ### Please confirm the following - [X] I believe this issue is a bug that affects all users of Paperless-ngx, not something specific to my installation. - [X] I have already searched for relevant existing issues and discussions before opening this report. - [X] I have updated the title field above with a concise description.
closed
2024-08-27T08:57:28Z
2024-09-27T03:08:17Z
https://github.com/paperless-ngx/paperless-ngx/issues/7554
[ "not a bug" ]
ginkel
3
huggingface/datasets
tensorflow
7,164
fsspec.exceptions.FSTimeoutError when downloading dataset
### Describe the bug I am trying to download the `librispeech_asr` `clean` dataset, which results in a `FSTimeoutError` exception after downloading around 61% of the data. ### Steps to reproduce the bug ``` import datasets datasets.load_dataset("librispeech_asr", "clean") ``` The output is as follows: > Downloading data: 61%|██████████████▋ | 3.92G/6.39G [05:00<03:06, 13.2MB/s]Traceback (most recent call last): > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/.venv/lib/python3.12/site-packages/fsspec/asyn.py", line 56, in _runner > result[0] = await coro > ^^^^^^^^^^ > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/.venv/lib/python3.12/site-packages/fsspec/implementations/http.py", line 262, in _get_file > chunk = await r.content.read(chunk_size) > ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/.venv/lib/python3.12/site-packages/aiohttp/streams.py", line 393, in read > await self._wait("read") > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/.venv/lib/python3.12/site-packages/aiohttp/streams.py", line 311, in _wait > with self._timer: > ^^^^^^^^^^^ > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/.venv/lib/python3.12/site-packages/aiohttp/helpers.py", line 713, in __exit__ > raise asyncio.TimeoutError from None > TimeoutError > > The above exception was the direct cause of the following exception: > > Traceback (most recent call last): > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/load_dataset.py", line 3, in <module> > datasets.load_dataset("librispeech_asr", "clean") > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/.venv/lib/python3.12/site-packages/datasets/load.py", line 2096, in load_dataset > builder_instance.download_and_prepare( > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/.venv/lib/python3.12/site-packages/datasets/builder.py", line 924, in download_and_prepare > self._download_and_prepare( > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/.venv/lib/python3.12/site-packages/datasets/builder.py", line 1647, in _download_and_prepare > super()._download_and_prepare( > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/.venv/lib/python3.12/site-packages/datasets/builder.py", line 977, in _download_and_prepare > split_generators = self._split_generators(dl_manager, **split_generators_kwargs) > ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ > File "/Users/Timon/.cache/huggingface/modules/datasets_modules/datasets/librispeech_asr/2712a8f82f0d20807a56faadcd08734f9bdd24c850bb118ba21ff33ebff0432f/librispeech_asr.py", line 115, in _split_generators > archive_path = dl_manager.download(_DL_URLS[self.config.name]) > ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/.venv/lib/python3.12/site-packages/datasets/download/download_manager.py", line 159, in download > downloaded_path_or_paths = map_nested( > ^^^^^^^^^^^ > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/.venv/lib/python3.12/site-packages/datasets/utils/py_utils.py", line 512, in map_nested > _single_map_nested((function, obj, batched, batch_size, types, None, True, None)) > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/.venv/lib/python3.12/site-packages/datasets/utils/py_utils.py", line 380, in _single_map_nested > return [mapped_item for batch in iter_batched(data_struct, batch_size) for mapped_item in function(batch)] > ^^^^^^^^^^^^^^^ > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/.venv/lib/python3.12/site-packages/datasets/download/download_manager.py", line 216, in _download_batched > self._download_single(url_or_filename, download_config=download_config) > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/.venv/lib/python3.12/site-packages/datasets/download/download_manager.py", line 225, in _download_single > out = cached_path(url_or_filename, download_config=download_config) > ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/.venv/lib/python3.12/site-packages/datasets/utils/file_utils.py", line 205, in cached_path > output_path = get_from_cache( > ^^^^^^^^^^^^^^^ > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/.venv/lib/python3.12/site-packages/datasets/utils/file_utils.py", line 415, in get_from_cache > fsspec_get(url, temp_file, storage_options=storage_options, desc=download_desc, disable_tqdm=disable_tqdm) > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/.venv/lib/python3.12/site-packages/datasets/utils/file_utils.py", line 334, in fsspec_get > fs.get_file(path, temp_file.name, callback=callback) > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/.venv/lib/python3.12/site-packages/fsspec/asyn.py", line 118, in wrapper > return sync(self.loop, func, *args, **kwargs) > ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ > File "/Users/Timon/Documents/iEEG_deeplearning/wav2vec_pretrain/.venv/lib/python3.12/site-packages/fsspec/asyn.py", line 101, in sync > raise FSTimeoutError from return_result > fsspec.exceptions.FSTimeoutError > Downloading data: 61%|██████████████▋ | 3.92G/6.39G [05:00<03:09, 13.0MB/s] ### Expected behavior Complete the download ### Environment info Python version 3.12.6 Dependencies: > dependencies = [ > "accelerate>=0.34.2", > "datasets[audio]>=3.0.0", > "ipython>=8.18.1", > "librosa>=0.10.2.post1", > "torch>=2.4.1", > "torchaudio>=2.4.1", > "transformers>=4.44.2", > ] MacOS 14.6.1 (23G93)
open
2024-09-24T08:45:05Z
2025-01-14T09:48:23Z
https://github.com/huggingface/datasets/issues/7164
[]
timonmerk
6
deepinsight/insightface
pytorch
2,076
problem about the preprocess of face image before feed it into face recognition onnx model
I download the resnet 18 pretrained model(R18 | Glint360K | 72.07) for face encoding or face embedding or anything we call it, and it is onnx format. I do not know how to preprocess the aligned face image before feed it into this onnx model. I use the another face detect model and the alignment of dlib library. in the face embedding, I'd like use insightface pretrained model. I'd appeciated if any one can help me.
open
2022-08-16T08:51:40Z
2022-08-18T02:31:26Z
https://github.com/deepinsight/insightface/issues/2076
[]
smilealvin92
3
wagtail/wagtail
django
12,230
ES Autocomplete search queries should properly use boosted fields
### Is your proposal related to a problem? The fixes to Elasticsearch boosting from #10653 never properly made it into autocomplete queries. This means that if you're using the autocomplete method to search pages, it will often give a higher rank to pages with titles that don't match the search results. I've been able to make these changes in the site that I discovered this issue in, but the existing code is written in such a way that it's a challenge to make small changes to search backends without having to duplicate a lot of base Wagtail code, which I'd really like to not do. ### Describe the solution you'd like Autocomplete queries should also have boosted fields that are copied to using the same method as the base query compiler and then queried with a boost at runtime. ### Describe alternatives you've considered If the Wagtail team doesn't want to fully support this, it would still be appreciated to be able to break out some of the existing methods in ways that make it easier to extend. ### Additional context I know that the Wagtail team is generally critical about using partial matching/autocompletion for normal searches, but this came up because I've developed a relatively large Wagtail instance that uses autocomplete queries for their base site search. The client sells a large amount of products, and these products are often referred to by shortened versions of the page title. For example, 299 is a very common search term on our site, and users (and our client) expect to be able to find all of the products sold on the site in that product line, all of which will have titles like 299E4STD3G. In our cases, it makes sense then to use edgengrams for our main search, as that's one of the primary ways that users are browsing the site. I wouldn't be surprised if other Wagtail instances have similar requirements, so I think this is a reasonable usecase to support. ### Working on this I've already developed a solution for my site, so I know what places in the code need to be changed. I would likely need to do some additional work (tests, etc) to get it ready for the main repo, but I would be happy to work on it. Anyone can contribute to this. View our [contributing guidelines](https://docs.wagtail.org/en/latest/contributing/index.html), add a comment to the issue once you’re ready to start.
open
2024-08-14T18:16:11Z
2024-10-24T20:18:17Z
https://github.com/wagtail/wagtail/issues/12230
[ "type:Enhancement" ]
ethanaward
0
JaidedAI/EasyOCR
deep-learning
508
Heatmaps
Hello, Is it possible to get heatmaps from EasyOCR? Thank you in advance.
closed
2021-08-08T04:46:10Z
2022-03-02T09:25:04Z
https://github.com/JaidedAI/EasyOCR/issues/508
[]
alikaz3mi
5
biolab/orange3
pandas
6,503
Number of features remains disabled when Suggest features is closed during search
![suggest features](https://github.com/biolab/orange3/assets/5299789/8fd3572d-3564-45b0-b4ea-a0a23dea0cfa) How to reproduce: 1. open _Suggest features_ and run 2. close while running 3. choose another mode (circular, LDA or PCA) 4. open _Suggest features_: the _Number of variables_ field is disabled despite no search running OS: Windows 10 x64 Orange: 3.35.0
closed
2023-07-10T10:15:02Z
2023-09-01T13:40:06Z
https://github.com/biolab/orange3/issues/6503
[ "bug", "snack" ]
processo
0
pytorch/pytorch
python
148,902
Remove Direct Arm Compute Libray (ACL) Integration for Quantized Matmuls: `qlinear`/`qlinear_dynamic`
PR https://github.com/pytorch/pytorch/pull/148585 (temporarily) introduced a direct ACL implementation for `qlinear` and `qlinear_dynamic` for AArch64 when `USE_MKLDNN_ACL` is set. This direct ACL implementation is a lot faster than the existing implementations that utilized ACL through oneDNN (MKLDNN) due to the (current) API friction between the stateful ACL API and the stateless oneDNN API (see benchmarks and numbers on https://github.com/pytorch/pytorch/pull/148585). I'm creating this issue to make sure that we end up removing this direct ACL path for `qlinear` and `qlinear_dynamic` once we're done enabling a fast implementation for quantized matmuls through oneDNN+ACL. cc @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @vkuzo @jgong5 @Xia-Weiwen @leslie-fang-intel @msaroufim @malfet @snadampal @milpuz01
open
2025-03-10T18:46:14Z
2025-03-10T21:08:31Z
https://github.com/pytorch/pytorch/issues/148902
[ "oncall: quantization", "module: arm" ]
fadara01
1
ckan/ckan
api
8,347
db clean and search-index rebuild should remove orphans from index
## CKAN version all ## Describe the bug Old copies of metadata in the solr search index can cause performance and search result issues ### Steps to reproduce - create a dataset on a clean db - run `ckan db clean` - create a dataset with the same name - search now returns both datasets, and package_show with `id=name` is very slow ### Expected behavior Only the latest dataset is visible in search and retrieving datasets will act normally ### Additional details `ckan search-index clear`, `ckan search-index rebuild -c` or a later call to `ckan search-index clear-orphans` will fix the issue, but it would be nicer for `db clean` to clear the search index, and `search-index rebuild` should `clear-orphans` by default. reference: #7044
open
2024-07-17T21:24:48Z
2024-10-29T16:20:32Z
https://github.com/ckan/ckan/issues/8347
[ "Good for Contribution", "Beginner Friendly" ]
wardi
1
benbusby/whoogle-search
flask
661
[BUG] Settings keep resetting
**Describe the bug** Seemingly by random, my settings keep getting reset **To Reproduce** Steps to reproduce the behavior: 1. Search a couple times 2. Settings get reset **Deployment Method** - [ ] Heroku (one-click deploy) - [ ] Docker - [ ] `run` executable - [x] pip/pipx - [ ] Other: [describe setup] **Version of Whoogle Search** - [ ] Latest build from [source] (i.e. GitHub, Docker Hub, pip, etc) - [x] Version [v0.7.1] - [ ] Not sure **Instance:** https://gowogle.voring.me **Desktop (please complete the following information):** - OS: Linux - Browser: Mozilla Firefox 97.0
closed
2022-02-17T23:56:38Z
2022-08-01T16:32:44Z
https://github.com/benbusby/whoogle-search/issues/661
[ "bug" ]
ThatOneCalculator
6
tensorflow/tensor2tensor
machine-learning
1,885
train meachine translation OOM
### Description ![屏幕快照 2021-04-22 上午10 18 34](https://user-images.githubusercontent.com/33311822/115646780-5f383980-a355-11eb-93f0-f8438d825f55.png) Can you tell me why even I set batch_size to 4, also occur OOM problem ? I know maybe the OOM problem because of model save and eval, but I don't know the OOM problem more specific. ### Environment information python /root/anaconda3/lib/python3.6/site-packages/tensor2tensor/bin/t2t_trainer.py --data_dir=./data_dir \ --problem=translate_enzh_bpe50k \ --model=transformer \ --hparams="batch_size=4" \ --hparams_set=transformer_base_single_gpu \ --output_dir=./en_zh_model \ --schedule=continuous_train_and_eval \ --train_steps=900000 \ --t2t_usr_dir=user_dir process the english data with bpe. python 3.7 tensor2tensor == 1.9.0 tensorflow-gpu == 1.12.0 ![屏幕快照 2021-04-22 上午10 30 12](https://user-images.githubusercontent.com/33311822/115647151-e71e4380-a355-11eb-81f4-fa8e3e0e1b88.png) ``` OS: <your answer here> $ pip freeze | grep tensor # your output here $ python -V # your output here ``` ### For bugs: reproduction and error logs ``` # Steps to reproduce: ... ``` ``` # Error logs: ... ```
closed
2021-04-22T02:32:26Z
2021-04-23T09:52:56Z
https://github.com/tensorflow/tensor2tensor/issues/1885
[]
charlesfufu
0
rougier/numpy-100
numpy
135
Alternative solution for 21
You can also use: ```python np.tile(np.identity(2),(4,4)) ```
closed
2020-12-28T14:04:00Z
2021-08-30T09:10:14Z
https://github.com/rougier/numpy-100/issues/135
[]
yunisdev
2
jina-ai/serve
deep-learning
5,231
Bug: For external Executors, passing entire address to `host` does not work
The following syntax, which is supported for the gateway, does not work for external executors: ```python f.add(host='grpc://localhost:1234', external=True) ``` Instead, host and port have to be precised separately: ```python f.add(host='localhost', port=1234, external=True) ``` Not that this bug also applies to replicated external Executors: ```python f.add(host='grpc://localhost:1234,grpc://localhost:1235', external=True) ```
closed
2022-09-30T08:29:10Z
2022-10-06T10:49:27Z
https://github.com/jina-ai/serve/issues/5231
[]
JohannesMessner
0
mjhea0/flaskr-tdd
flask
82
test_messages, maybe a mistake, maybe my error
Current block is: ``` def test_messages(client): """Ensure that user can post messages""" login(client, app.config["USERNAME"], app.config["PASSWORD"]) rv = client.post( "/add", data=dict(title="<Hello>", text="<strong>HTML</strong> allowed here"), follow_redirects=True, ) assert b"No entries here so far" not in rv.data assert b"&lt;Hello&gt;" in rv.data assert b"<strong>HTML</strong> allowed here" in rv.data ``` But this never passes the final test. I replaced the first of the 3 asserts with `assert b"New entry was successfully posted" in rv.data` Which then passes
open
2023-11-10T16:43:14Z
2023-11-10T16:43:14Z
https://github.com/mjhea0/flaskr-tdd/issues/82
[]
barendburger
0
nltk/nltk
nlp
2,735
Importing words throws numpy deprecation warning
Warning: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations max_n_alphas=1000, n_jobs=None, eps=np.finfo(np.float).eps
closed
2021-06-22T21:04:34Z
2021-07-28T19:38:38Z
https://github.com/nltk/nltk/issues/2735
[]
ihawn
2
microsoft/nni
deep-learning
5,187
Error reported when NNI was used to prune Albert-tiny
**Describe the issue**: I'm just pruning the linear layer. Everything seemed fine, but the following problem occurred when I was about to use the ModelSpeedup module to speed up the model. ``` device = torch.device("cpu") inputs =(torch.LongTensor([tokenizer_out['input_ids']]).to(device),torch.LongTensor([tokenizer_out['attention_mask']]).to(device)) ModelSpeedup(S_model, inputs, masks).speedup_model() ``` ``` config_list = [{ 'sparsity_per_layer': 0.5, 'op_types': ['Linear'] }, { 'exclude': True, 'op_names': ['dense2'] }] ``` ``` bert_model.transformer.layer.0.attention.q_lin sparsity : 0.5 bert_model.transformer.layer.0.attention.k_lin sparsity : 0.5 bert_model.transformer.layer.0.attention.v_lin sparsity : 0.5 bert_model.transformer.layer.0.attention.out_lin sparsity : 0.5 bert_model.transformer.layer.0.ffn.lin1 sparsity : 0.5 bert_model.transformer.layer.0.ffn.lin2 sparsity : 0.5 bert_model.transformer.layer.1.attention.q_lin sparsity : 0.5 bert_model.transformer.layer.1.attention.k_lin sparsity : 0.5 bert_model.transformer.layer.1.attention.v_lin sparsity : 0.5 bert_model.transformer.layer.1.attention.out_lin sparsity : 0.5 bert_model.transformer.layer.1.ffn.lin1 sparsity : 0.5 bert_model.transformer.layer.1.ffn.lin2 sparsity : 0.5 bert_model.transformer.layer.2.attention.q_lin sparsity : 0.5 bert_model.transformer.layer.2.attention.k_lin sparsity : 0.5 bert_model.transformer.layer.2.attention.v_lin sparsity : 0.5 bert_model.transformer.layer.2.attention.out_lin sparsity : 0.5 bert_model.transformer.layer.2.ffn.lin1 sparsity : 0.5 bert_model.transformer.layer.2.ffn.lin2 sparsity : 0.5 bert_model.transformer.layer.3.attention.q_lin sparsity : 0.5 bert_model.transformer.layer.3.attention.k_lin sparsity : 0.5 bert_model.transformer.layer.3.attention.v_lin sparsity : 0.5 bert_model.transformer.layer.3.attention.out_lin sparsity : 0.5 bert_model.transformer.layer.3.ffn.lin1 sparsity : 0.5 bert_model.transformer.layer.3.ffn.lin2 sparsity : 0.5 cpu [2022-10-26 08:50:04] start to speedup the model no multi-dimension masks found. [2022-10-26 08:50:05] infer module masks... [2022-10-26 08:50:05] Update mask for bert_model.embeddings.word_embeddings [2022-10-26 08:50:06] Update mask for bert_model.embeddings.aten::size.46 [2022-10-26 08:50:06] Update mask for bert_model.embeddings.aten::slice.47 [2022-10-26 08:50:06] Slice dim:0, Slice obj:slice(0, 9223372036854775807, 1) [2022-10-26 08:50:06] Get attribute: bert_model [2022-10-26 08:50:06] Get attribute: embeddings [2022-10-26 08:50:06] Get attribute: position_ids [2022-10-26 08:50:06] Update mask for bert_model.transformer.layer.0.attention.aten::eq.61 [2022-10-26 08:50:06] Update mask for bert_model.transformer.layer.1.attention.aten::eq.84 [2022-10-26 08:50:06] Update mask for bert_model.transformer.layer.2.attention.aten::eq.107 [2022-10-26 08:50:06] Update mask for bert_model.transformer.layer.3.attention.aten::eq.130 [2022-10-26 08:50:06] Update mask for bert_model.embeddings.aten::slice.48 [2022-10-26 08:50:06] Slice dim:1, Slice obj:slice(0, tensor([300]), 1) [2022-10-26 08:50:06] Model has Slice operation, and the operand size=torch.Size([1, 512]), Slice object:(slice(None, None, None), slice(0, tensor([300]), 1)) [2022-10-26 08:50:06] Model has Slice operation, and the operand size=torch.Size([1, 512]), Slice object:(slice(None, None, None), slice(0, tensor([300]), 1)) [2022-10-26 08:50:06] Update mask for bert_model.embeddings.position_embeddings [2022-10-26 08:50:06] Update mask for bert_model.embeddings.aten::add.49 [2022-10-26 08:50:06] Update mask for bert_model.embeddings.LayerNorm [2022-10-26 08:50:06] Update mask for bert_model.embeddings.dropout [2022-10-26 08:50:06] Update mask for bert_model.transformer.layer.0.attention.q_lin [2022-10-26 08:50:06] Update mask for bert_model.transformer.layer.0.attention.k_lin [2022-10-26 08:50:06] Update mask for bert_model.transformer.layer.0.attention.v_lin [2022-10-26 08:50:06] Update mask for bert_model.transformer.layer.0.attention.aten::size.50 [2022-10-26 08:50:06] Update mask for bert_model.transformer.layer.0.attention.aten::size.51 [2022-10-26 08:50:06] Update mask for bert_model.transformer.layer.0.attention.aten::view.52 [2022-10-26 08:50:06] WARNING: throw some args away when calling the function "view" [2022-10-26 08:50:06] WARNING: throw some args away when calling the function "view" [2022-10-26 08:50:06] Update mask for bert_model.transformer.layer.0.attention.aten::view.54 [2022-10-26 08:50:06] WARNING: throw some args away when calling the function "view" [2022-10-26 08:50:06] WARNING: throw some args away when calling the function "view" [2022-10-26 08:50:06] Update mask for bert_model.transformer.layer.0.attention.aten::view.56 [2022-10-26 08:50:06] WARNING: throw some args away when calling the function "view" [2022-10-26 08:50:06] WARNING: throw some args away when calling the function "view" [2022-10-26 08:50:06] Update mask for bert_model.transformer.layer.0.attention.aten::view.62 [2022-10-26 08:50:06] WARNING: throw some args away when calling the function "view" Traceback (most recent call last): File "/workspace/bert2distill_albert/prune_s2_main.py", line 67, in <module> prune_student_model(configs, dataManager, logger) File "/workspace/bert2distill_albert/engines/prune_distill_model.py", line 112, in prune_student_model ModelSpeedup(S_model, inputs, masks).speedup_model() File "/root/miniconda3/envs/tf_nlp/lib/python3.8/site-packages/nni/compression/pytorch/speedup/compressor.py", line 543, in speedup_model self.infer_modules_masks() File "/root/miniconda3/envs/tf_nlp/lib/python3.8/site-packages/nni/compression/pytorch/speedup/compressor.py", line 380, in infer_modules_masks self.update_direct_sparsity(curnode) File "/root/miniconda3/envs/tf_nlp/lib/python3.8/site-packages/nni/compression/pytorch/speedup/compressor.py", line 247, in update_direct_sparsity _auto_infer.update_direct_sparsity() File "/root/miniconda3/envs/tf_nlp/lib/python3.8/site-packages/nni/compression/pytorch/speedup/infer_mask.py", line 328, in update_direct_sparsity self.random_init() File "/root/miniconda3/envs/tf_nlp/lib/python3.8/site-packages/nni/compression/pytorch/speedup/infer_mask.py", line 138, in random_init randomize_tensor(tensor, start, end) File "/root/miniconda3/envs/tf_nlp/lib/python3.8/site-packages/nni/compression/pytorch/utils/utils.py", line 72, in randomize_tensor torch.randint(int(start), int(end), tensor.size(), RuntimeError: to - 1 is out of bounds for bool ``` **Environment**: - NNI version:2.9 - Training service (local|remote|pai|aml|etc): - Client OS: - Server OS (for remote mode only): - Python version:3.8 - PyTorch/TensorFlow version:1.12.1 - Is conda/virtualenv/venv used?: - Is running in Docker?: **Configuration**: - Experiment config (remember to remove secrets!): - Search space: **Log message**: - nnimanager.log: - dispatcher.log: - nnictl stdout and stderr: <!-- Where can you find the log files: LOG: https://github.com/microsoft/nni/blob/master/docs/en_US/Tutorial/HowToDebug.md#experiment-root-director STDOUT/STDERR: https://nni.readthedocs.io/en/stable/reference/nnictl.html#nnictl-log-stdout --> **How to reproduce it?**:
closed
2022-10-26T09:03:02Z
2022-12-07T03:05:15Z
https://github.com/microsoft/nni/issues/5187
[]
Smile-L-up
11
modin-project/modin
pandas
6,576
Don't use deprecated `is_int64_dtype` and `is_period_dtype` functions
closed
2023-09-18T13:46:19Z
2023-09-18T16:31:49Z
https://github.com/modin-project/modin/issues/6576
[ "Code Quality 💯", "P2" ]
anmyachev
0
graphql-python/graphene-django
graphql
890
Extending connections using relay on same level as edges.
I have been pulling my hair out tying to solve this one. I would appreciate some help with this. Graphene Relay specs limits me to having my api calls received in the following format: ``` QUERY: { allSpecies { edges { node { id name } } } } RECEIVED DATA "data": { "allSpecies": { "edges": [ { "node": { "id": "U3BlY2llOjE=", "name": "Human" } }, { "node": { "id": "U3BlY2llOjI=", "name": "Alien" } } ] } } } ``` I want to be able to create a same level property to access the api without going through edges and node first but still keep relay integrated for the purposes of pagination in case i need the added functionality. ``` NEW QUERY: { allSpecies { newProperty{ id name } } } ``` In my current setup I am trying to point my newly created property "new property" to the edges node. How can I easily point to the same edges connection from the connection class and receive the same list of data? Is there a better way to do this? ``` class Custom(graphene.Connection): class Meta: abstract = True new_property = graphene.List(graphene.String) def resolve_new_property(self, info): return self.edges class Specie(DjangoObjectType): eye_colors = graphene.List(graphene.String) hair_colors = graphene.List(graphene.String) skin_colors = graphene.List(graphene.String) def resolve_eye_colors(self, info): return [c.strip() for c in self.eye_colors.split(',')] def resolve_hair_colors(self, info): return [c.strip() for c in self.hair_colors.split(',')] def resolve_skin_colors(self, info): return [c.strip() for c in self.skin_colors.split(',')] class Meta: model = models.Species interfaces = (Node, ) exclude_fields = ('created', 'edited', 'eye_colors', 'hair_colors', 'skin_colors') filter_fields = {'name': {'startswith', 'contains'}} connection_class = Custom class Query(graphene.ObjectType): all_species = DjangoFilterConnectionField(Specie) schema = graphene.Schema( query=Query, mutation=Mutation ) ``` After running the query, I get the following error ``` { "data": { "allSpecies": { "newProperty": "[<graphene.relay.connection.SpecieEdge object at 0x04BB2750>, <graphene.relay.connection.SpecieEdge object at 0x04BB23F0>]" } } } ```
open
2020-03-03T20:27:24Z
2020-07-02T09:07:05Z
https://github.com/graphql-python/graphene-django/issues/890
[]
mahelmahmoud
0
blacklanternsecurity/bbot
automation
1,550
Preset config should take priority over include
We need to write a test that makes sure a preset's `config` section overrides the config from any other preset specified in the `include` section.
closed
2024-07-09T16:51:24Z
2025-01-24T21:19:51Z
https://github.com/blacklanternsecurity/bbot/issues/1550
[ "bug" ]
TheTechromancer
2
liangliangyy/DjangoBlog
django
559
1146, "Table 'djangoblog.django_site' doesn't exist"
添加文章的时候为什么提示这个:1146, "Table 'djangoblog.django_site' doesn't exist" 我看着Models中也没有site这个model啊
closed
2022-03-13T08:12:08Z
2022-10-11T07:05:58Z
https://github.com/liangliangyy/DjangoBlog/issues/559
[]
15210859049
6
fastapi-users/fastapi-users
fastapi
1,170
GET users/me returns different ObjectId on each call
also on the `/register` route. See: https://github.com/fastapi-users/fastapi-users/discussions/1142
closed
2023-03-10T13:54:50Z
2024-07-14T13:24:43Z
https://github.com/fastapi-users/fastapi-users/issues/1170
[ "bug" ]
gegnew
1
huggingface/datasets
pandas
7,084
More easily support streaming local files
### Feature request Simplify downloading and streaming datasets locally. Specifically, perhaps add an option to `load_dataset(..., streaming="download_first")` or add better support for streaming symlinked or arrow files. ### Motivation I have downloaded FineWeb-edu locally and currently trying to stream the dataset from the local files. I have both the raw parquet files using `hugginface-cli download --repo-type dataset HuggingFaceFW/fineweb-edu` and the processed arrow files using `load_dataset("HuggingFaceFW/fineweb-edu")`. Streaming the files locally does not work well for both file types for two different reasons. **Arrow files** When running `load_dataset("arrow", data_files={"train": "~/.cache/huggingface/datasets/HuggingFaceFW___fineweb-edu/default/0.0.0/5b89d1ea9319fe101b3cbdacd89a903aca1d6052/fineweb-edu-train-*.arrow"})` resolving the data files is fast, but because `arrow` is not included in the known [extensions file list](https://github.com/huggingface/datasets/blob/ce4a0c573920607bc6c814605734091b06b860e7/src/datasets/utils/file_utils.py#L738) , all files are opened and scanned to determine the compression type. Adding `arrow` to the known extension types resolves this issue. **Parquet files** When running `load_dataset("arrow", data_files={"train": "~/.cache/huggingface/hub/dataset-HuggingFaceFW___fineweb-edu/snapshots/5b89d1ea9319fe101b3cbdacd89a903aca1d6052/data/CC-MAIN-*/train-*.parquet"})` the paths do not get resolved because the parquet files are symlinked from the blobs (which contain all files in case there are different versions). This occurs because the [pattern matching](https://github.com/huggingface/datasets/blob/ce4a0c573920607bc6c814605734091b06b860e7/src/datasets/data_files.py#L389) checks if the path is a file and does not check for symlinks. Symlinks (at least on my machine) are of type "other". ### Your contribution I have created a PR for fixing arrow file streaming and symlinks. However, I have not checked locally if the tests work or new tests need to be added. IMO, the easiest option would be to add a `streaming=download_first` option, but I'm afraid that exceeds my current knowledge of how the datasets library works. https://github.com/huggingface/datasets/pull/7083
open
2024-07-31T09:03:15Z
2024-07-31T09:05:58Z
https://github.com/huggingface/datasets/issues/7084
[ "enhancement" ]
fschlatt
0
databricks/koalas
pandas
2,235
No module named 'databricks' after installing koalas
I have installed koalas using conda install. However when I try the following import, I get an ModuleNotFoundError. Can you help me to solve this issue? >>> import databricks.koalas as ks Traceback (most recent call last): File "<stdin>", line 1, in <module> ModuleNotFoundError: No module named 'databricks'
open
2024-07-05T05:30:16Z
2024-07-05T08:50:07Z
https://github.com/databricks/koalas/issues/2235
[]
loungehub
1
deeppavlov/DeepPavlov
nlp
1,388
Look into GA & Medium analytics to see what's most popular right now (e.g., blog posts, etc.)
Moved to internal Trello
closed
2021-01-27T10:04:12Z
2021-11-30T10:19:41Z
https://github.com/deeppavlov/DeepPavlov/issues/1388
[]
danielkornev
0
google-research/bert
nlp
546
Fine-tuning bert results in a strange output, what happened?
I am applying bert to my own model and use the functions in modeling.py. After some times of training, I found the output of bert model (model.get_pooled_output()) contains only 1&-1 and different input sentences produce the same output. I used tf.stop_gradient and then everything is correct. What happened to this bert fine-tuning?
open
2019-04-04T02:41:43Z
2019-04-04T02:41:43Z
https://github.com/google-research/bert/issues/546
[]
RefluxNing
0
ClimbsRocks/auto_ml
scikit-learn
106
df support
Here are the things we need to make sure df support includes: - [x] splitting out the output column - [x] convert a list of dictionaries to a DataFrame (ideally with error logging to the user) - [x] convert numbers stored as strings to proper numbers - [x] convert numbers stored as strings with commas in them to proper numbers. - [x] dropping all rows where the output column is an ineligible value (nan, None, etc.). this particularly comes into play for our subpredictors. - [x] ignoring (dropping) any columns that should be ignored - [x] date feature engineering - [x] robust feature scaling - [x] optional (gscv) feature truncating - [x] removing all nan, None, and other values - [ ] FUTURE: imputing missing values - [x] getting dummies from categorical columns - [x] convert to a scipy sparse matrix - [x] support NLP feature transformations. For now we'll just do it as-is, but in the future, we'll probably split this out into it's own thing that we'l do separately, and just hstack the sparse results from tfidfvectorizer onto the sparse results from vectorizing our dataframe.
closed
2016-10-08T17:49:49Z
2016-10-11T03:00:18Z
https://github.com/ClimbsRocks/auto_ml/issues/106
[]
ClimbsRocks
2
tiangolo/uvicorn-gunicorn-fastapi-docker
pydantic
92
Virtual Env is not respected
Hey, I have a dockerfile like this: ... FROM tiangolo/uvicorn-gunicorn-fastapi:python3.8 AS service COPY --from=test_runner /venv /venv ENV PATH=/venv/bin:$PATH When I run the container It cannot find my installed packaged.
closed
2021-06-08T09:10:15Z
2024-08-25T03:44:10Z
https://github.com/tiangolo/uvicorn-gunicorn-fastapi-docker/issues/92
[]
jomach
0
ludwig-ai/ludwig
computer-vision
3,570
Upload to HF fails for non-LLM trained
**Describe the bug** When a model is trained for categories/classification, the model weights are saved a `file` called `model/model_weights`. If the model is trained with type llm instead, the weights are saved to the **directory** `model/model_weights` with contents `README.md`, `adapter_config.json`, `adapter_model.bin`. **To Reproduce** Steps to reproduce the behavior: 1. Train a model with name `MODEL_NAME=bug-reprod-model` and config ``` { "input_features": [ { "name": "text", "type": "text", "encoder": { "trainable": true, "pretrained_model_name_or_path": "meta-llama/Llama-2-7b-hf", "adapter": { "type": "lora" } } } ], "output_features": [ { "name": "label", "type": "category" } ] } ``` 2. Attempt to uploaded the trained model for hugging face account `HF_ID=bug-reprod-hf-id` ``` ludwig upload hf_hub -r $HF_ID/$MODEL_NAME -m $MODEL_NAME/api_experiment_$MODEL_NAME ``` You should see an error like this ![image](https://github.com/ludwig-ai/ludwig/assets/459925/e049b23e-0872-4f7e-bda5-b49cdbea00ee) 3. Manually move the weights file to a directory ``` pushd $MODEL_NAME/api_experiment_$MODEL_NAME/model && \ mv model_weights adapter_model.bin && \ mkdir model_weights && \ mv adapter_model.bin model_weights && \ cp ~/save/$MODEL_NAME/{adapter_config.json,README.md} model_weights && \ popd ``` 4. The upload to HF should now be successful ``` ludwig upload hf_hub -r $HF_ID/$MODEL_NAME -m $MODEL_NAME/api_experiment_$MODEL_NAME ``` ![image](https://github.com/ludwig-ai/ludwig/assets/459925/ce5d403c-716c-436f-a0a4-685421ad77ac) **Expected behavior** The model should upload to HF without having to manually create the directory **Environment (please complete the following information):** - OS: Distributor ID: Ubuntu Description: Ubuntu 20.04.6 LTS Release: 20.04 Codename: focal - Version: CUDA 11.8 - Pytorch: 2.0.0+cu118 - Python: 3.8.10 - Ludwig: 0.8.1.post1 **Additional context** Add any other context about the problem here. @arnavgarg1
closed
2023-08-31T19:42:18Z
2024-10-18T16:58:41Z
https://github.com/ludwig-ai/ludwig/issues/3570
[]
thelinuxkid
1
qubvel-org/segmentation_models.pytorch
computer-vision
56
KeyError: 'resnext50_32x4d'
what's wrong with resnext50_32x4d? `model = smp.Unet("resnext50_32x4d", encoder_weights="imagenet", classes=4, activation='sigmoid')` error: KeyError: 'resnext50_32x4d' However, it's defined here: https://github.com/qubvel/segmentation_models.pytorch/blob/master/segmentation_models_pytorch/encoders/resnet.py#L85
closed
2019-09-12T02:08:19Z
2019-09-13T15:31:00Z
https://github.com/qubvel-org/segmentation_models.pytorch/issues/56
[]
hktxt
1
davidsandberg/facenet
tensorflow
557
A mistake in guidline of Validate on LFW
Hi, I am trying to follow the tutorial of Validate on LFW. However I found an error in the command. I think that it may be confused the beginner. I help to address the mistake. ``` cd ~/datasets mkdir -p lfw/raw tar xvf ~/Downloads/lfw.tgz -C /lfw/raw --strip-components=1 ``` While we are in the `~/datasets` folder, we need to decompress the files into `lfw/raw` rather than `/lfw/raw`. Thanks!
closed
2017-11-28T09:52:02Z
2018-04-11T16:23:12Z
https://github.com/davidsandberg/facenet/issues/557
[]
jennyHsiao
1
xorbitsai/xorbits
numpy
153
DOC: `np` is alias both for `numpy` and `xorbits.numpy` which may cause ambiguity
![image](https://user-images.githubusercontent.com/109654808/211239986-0dbe33e7-1ec7-46fa-a93d-9d4bba34cc42.png) After `import numpy as np`, the `np` has become numpy instead of xorbits.numpy, I recommend to use `import numpy` directly.
open
2023-01-09T04:13:12Z
2023-05-17T04:27:19Z
https://github.com/xorbitsai/xorbits/issues/153
[ "documentation", "good first issue" ]
qianduoduo0904
0
Anjok07/ultimatevocalremovergui
pytorch
1,569
error while processing
Last Error Received: Process: Ensemble Mode If this error persists, please contact the developers with the error details. Raw Error Details: RuntimeError: "MPS backend out of memory (MPS allocated: 1.76 GB, other allocations: 1.57 GB, max allowed: 3.40 GB). Tried to allocate 160.00 MB on private pool. Use PYTORCH_MPS_HIGH_WATERMARK_RATIO=0.0 to disable upper limit for memory allocations (may cause system failure)." Traceback Error: " File "UVR.py", line 6584, in process_start File "separate.py", line 1025, in seperate File "separate.py", line 1153, in inference_vr File "separate.py", line 1120, in _execute File "lib_v5/vr_network/nets.py", line 161, in predict_mask File "lib_v5/vr_network/nets.py", line 137, in forward File "lib_v5/vr_network/nets.py", line 45, in __call__ File "lib_v5/vr_network/layers.py", line 77, in __call__ File "lib_v5/vr_network/layers.py", line 24, in __call__ File "torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "torch/nn/modules/container.py", line 215, in forward input = module(input) ^^^^^^^^^^^^^ File "torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "torch/nn/modules/conv.py", line 460, in forward return self._conv_forward(input, self.weight, self.bias) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "torch/nn/modules/conv.py", line 456, in _conv_forward return F.conv2d(input, weight, bias, self.stride, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ " Error Time Stamp [2024-09-25 13:15:42] Full Application Settings: vr_model: Choose Model aggression_setting: 5 window_size: 512 mdx_segment_size: 256 batch_size: Default crop_size: 256 is_tta: False is_output_image: False is_post_process: False is_high_end_process: False post_process_threshold: 0.2 vr_voc_inst_secondary_model: No Model Selected vr_other_secondary_model: No Model Selected vr_bass_secondary_model: No Model Selected vr_drums_secondary_model: No Model Selected vr_is_secondary_model_activate: False vr_voc_inst_secondary_model_scale: 0.9 vr_other_secondary_model_scale: 0.7 vr_bass_secondary_model_scale: 0.5 vr_drums_secondary_model_scale: 0.5 demucs_model: Choose Model segment: Default overlap: 0.25 overlap_mdx: Default overlap_mdx23: 8 shifts: 2 chunks_demucs: Auto margin_demucs: 44100 is_chunk_demucs: False is_chunk_mdxnet: False is_primary_stem_only_Demucs: False is_secondary_stem_only_Demucs: False is_split_mode: True is_demucs_combine_stems: True is_mdx23_combine_stems: True demucs_voc_inst_secondary_model: No Model Selected demucs_other_secondary_model: No Model Selected demucs_bass_secondary_model: No Model Selected demucs_drums_secondary_model: No Model Selected demucs_is_secondary_model_activate: False demucs_voc_inst_secondary_model_scale: 0.9 demucs_other_secondary_model_scale: 0.7 demucs_bass_secondary_model_scale: 0.5 demucs_drums_secondary_model_scale: 0.5 demucs_pre_proc_model: No Model Selected is_demucs_pre_proc_model_activate: False is_demucs_pre_proc_model_inst_mix: False mdx_net_model: Choose Model chunks: Auto margin: 44100 compensate: Auto denoise_option: None is_match_frequency_pitch: True phase_option: Automatic phase_shifts: None is_save_align: False is_match_silence: True is_spec_match: False is_mdx_c_seg_def: False is_invert_spec: False is_deverb_vocals: False deverb_vocal_opt: Main Vocals Only voc_split_save_opt: Lead Only is_mixer_mode: False mdx_batch_size: Default mdx_voc_inst_secondary_model: No Model Selected mdx_other_secondary_model: No Model Selected mdx_bass_secondary_model: No Model Selected mdx_drums_secondary_model: No Model Selected mdx_is_secondary_model_activate: False mdx_voc_inst_secondary_model_scale: 0.9 mdx_other_secondary_model_scale: 0.7 mdx_bass_secondary_model_scale: 0.5 mdx_drums_secondary_model_scale: 0.5 is_save_all_outputs_ensemble: True is_append_ensemble_name: False chosen_audio_tool: Manual Ensemble choose_algorithm: Min Spec time_stretch_rate: 2.0 pitch_rate: 2.0 is_time_correction: True is_gpu_conversion: True is_primary_stem_only: False is_secondary_stem_only: True is_testing_audio: False is_auto_update_model_params: True is_add_model_name: False is_accept_any_input: False is_task_complete: False is_normalization: False is_wav_ensemble: False is_create_model_folder: False mp3_bit_set: 320k semitone_shift: 0 save_format: WAV wav_type_set: PCM_16 cuda_set: Default help_hints_var: True set_vocal_splitter: No Model Selected is_set_vocal_splitter: False is_save_inst_set_vocal_splitter: False model_sample_mode: False model_sample_mode_duration: 30 demucs_stems: All Stems mdx_stems: All Stems
open
2024-09-25T10:30:15Z
2024-09-25T10:30:15Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/1569
[]
Samkata03
0
kizniche/Mycodo
automation
665
high CPU rPi 3B
## Mycodo Issue Report: Mycodo Version: 7.5.8 Python Version: 3.5.3 (default, Sep 27 2018, 17:25:39) [GCC 6.3.0 20170516] Database Version: 6333b0832b3d Daemon Status: Running Daemon Process ID: 1108 Daemon RAM Usage: 110.196 MB Daemon Virtualenv: Yes Frontend RAM Usage: 54.984 MB Frontend Virtualenv: Yes #### Problem Description High CPU usage slow response to commands ### Errors 2019-06-13 21:22:07,639 - ERROR - mycodo.daemon - Could not query output state: 'NoneType' object has no attribute 'output_state' 2019-06-13 21:22:11,112 - ERROR - mycodo.daemon - Could not find Output Controller 2019-06-13 21:33:47,277 - ERROR - mycodo.daemon - Could not query output state: You must setup() the GPIO channel first 2019-06-13 21:33:47,714 - ERROR - mycodo.daemon - Could not query output state: You must setup() the GPIO channel first 2019-06-13 21:33:50,264 - ERROR - mycodo.daemon - Could not query output state: You must setup() the GPIO channel first 2019-06-13 21:57:35,184 - ERROR - mycodo.daemon - Could not query output state: 'NoneType' object has no attribute 'output_state' 2019-06-13 21:57:44,772 - ERROR - mycodo.daemon - Could not query output state: 'NoneType' object has no attribute 'output_state' 2019-06-13 21:57:45,880 - ERROR - mycodo.daemon - Could not query output state: 'NoneType' object has no attribute 'output_state' 2019-06-13 21:57:46,894 - ERROR - mycodo.daemon - Could not query output state: 'NoneType' object has no attribute 'output_state' 2019-06-13 21:57:53,029 - ERROR - mycodo.daemon - Could not query output state: 'NoneType' object has no attribute 'output_state' 2019-06-13 21:58:41,684 - ERROR - mycodo.daemon - Could not query output state: 'NoneType' object has no attribute 'output_state htop screenshot: ![image](https://user-images.githubusercontent.com/22091149/59547260-e6622e00-8ef0-11e9-8e48-ee75d58ffeab.png) Controls using high cpu are GPIO hardwired controls that seem to physically work ok but generating daemon errors.
closed
2019-06-15T05:11:45Z
2019-06-16T14:32:28Z
https://github.com/kizniche/Mycodo/issues/665
[]
SAM26K
18
LAION-AI/Open-Assistant
python
2,853
Tollboard: Active users filter not applied when switching between time ranges
When opening the Trollboard the "Daily" view correctly shows only enabled users. But when switching over to "Weekly" while the "Show active users" option is still active all users (including disabled one) are shown. Only after clicking on "Show banned users" and then again on "Show active users" the filter is applied correctly. Make sure the list is always filtered according to current filter settings (test switching between the time-ranges).
open
2023-04-23T10:54:14Z
2023-04-23T10:54:14Z
https://github.com/LAION-AI/Open-Assistant/issues/2853
[ "bug", "website" ]
andreaskoepf
0
biosustain/potion
sqlalchemy
64
Add option to keep key order in fields.Object() and FieldSet.parse_request()
open
2016-01-15T12:27:45Z
2016-01-15T12:27:45Z
https://github.com/biosustain/potion/issues/64
[]
lyschoening
0
iterative/dvc
machine-learning
10,206
dvc push: Unexpected error when pushing to Google Cloud storage or S3
# Bug Report dvc push: "Unexpected error" when pushing to Google Cloud storage or S3 ### Reproduce ``` dvc init dvc remote add -d s3 s3://bucket # or gcs gs://bucket dvc import-url https://data.dvc.org/get-started/data.xml dvc push -v ``` output (s3): ``` 2023-12-27 19:56:42,605 DEBUG: v3.36.1 (pip), CPython 3.9.18 on Linux-5.15.139-93.147.amzn2.x86_64-x86_64-with-glibc2.26 2023-12-27 19:56:42,605 DEBUG: command: /path/bin/dvc push -v Collecting |0.00 [00:00, ?entry/s] Pushing |0.00 [00:00, ?file/s] Collecting my.bucket/key on s3 |3.00 [00:00, 4.84entry/s] 2023-12-27 19:56:43,676 ERROR: unexpected error Traceback (most recent call last): File "/path/lib/python3.9/site-packages/dvc/cli/__init__.py", line 211, in main ret = cmd.do_run() File "/path/lib/python3.9/site-packages/dvc/cli/command.py", line 27, in do_run return self.run() File "/path/lib/python3.9/site-packages/dvc/commands/data_sync.py", line 64, in run processed_files_count = self.repo.push( File "/path/lib/python3.9/site-packages/dvc/repo/__init__.py", line 65, in wrapper return f(repo, *args, **kwargs) File "/path/lib/python3.9/site-packages/dvc/repo/push.py", line 144, in push push_transferred, push_failed = ipush( File "/path/lib/python3.9/site-packages/dvc_data/index/push.py", line 101, in push old = build(data.path, data.fs) File "/path/lib/python3.9/site-packages/dvc_data/index/build.py", line 90, in build for entry in build_entries(path, fs, ignore=ignore): File "/path/lib/python3.9/site-packages/dvc_data/index/build.py", line 55, in build_entries walk_iter = fs.walk(path, detail=detail) File "/path/lib/python3.9/site-packages/dvc_http/__init__.py", line 162, in walk raise NotImplementedError NotImplementedError 2023-12-27 19:56:43,752 DEBUG: link type reflink is not available ([Errno 95] no more link types left to try out) 2023-12-27 19:56:43,755 DEBUG: Removing '/path/.MHVNkr3eAijD7Q5aau3NRK.tmp' 2023-12-27 19:56:43,755 DEBUG: Removing '/path/.MHVNkr3eAijD7Q5aau3NRK.tmp' 2023-12-27 19:56:43,757 DEBUG: Removing '/path/.MHVNkr3eAijD7Q5aau3NRK.tmp' 2023-12-27 19:56:43,757 DEBUG: Removing '/path/bkw-9036/.dvc/cache/files/md5/.mnnSioPUuXvRUCqUV2ug87.tmp' 2023-12-27 19:56:43,777 DEBUG: Version info for developers: DVC version: 3.36.1 (pip) ------------------------- Platform: Python 3.9.18 on Linux-5.15.139-93.147.amzn2.x86_64-x86_64-with-glibc2.26 Subprojects: dvc_data = 3.3.0 dvc_objects = 3.0.0 dvc_render = 1.0.0 dvc_task = 0.3.0 scmrepo = 2.0.2 Supports: gs (gcsfs = 2023.12.2.post1), http (aiohttp = 3.9.1, aiohttp-retry = 2.8.3), https (aiohttp = 3.9.1, aiohttp-retry = 2.8.3), s3 (s3fs = 2023.12.2, boto3 = 1.33.13) Config: Global: /home/jdt/.config/dvc System: /etc/xdg/dvc Cache types: hardlink, symlink Cache directory: ext4 on /dev/nvme1n1p1 Caches: local Remotes: s3 Workspace directory: ext4 on /dev/nvme1n1p1 Repo: dvc, git Repo.site_cache_dir: /var/tmp/dvc/repo/9d9135fb99d9d827364c4dc5a42cdc60 Having any troubles? Hit us up at https://dvc.org/support, we are always happy to help! 2023-12-27 19:56:43,781 DEBUG: Analytics is enabled. 2023-12-27 19:56:43,860 DEBUG: Trying to spawn ['daemon', 'analytics', '/tmp/tmpccxiwrmd', '-v'] 2023-12-27 19:56:43,871 DEBUG: Spawned ['daemon', 'analytics', '/tmp/tmpccxiwrmd', '-v'] with pid 22406 ``` output (gcs): ``` 2023-12-27 19:47:22,768 DEBUG: v3.36.1 (pip), CPython 3.9.18 on Linux-5.15.139-93.147.amzn2.x86_64-x86_64-with-glibc2.26 2023-12-27 19:47:22,769 DEBUG: command: /path/bin/dvc push -v Collecting |0.00 [00:00, ?entry/s] Pushing |0.00 [00:00, ?file/s] Collecting bucket/path on gs |3.00 [00:01, 2.84entry/s] 2023-12-27 19:47:24,328 ERROR: unexpected error Traceback (most recent call last): File "/path/lib/python3.9/site-packages/dvc/cli/__init__.py", line 211, in main ret = cmd.do_run() File "/path/lib/python3.9/site-packages/dvc/cli/command.py", line 27, in do_run return self.run() File "/path/lib/python3.9/site-packages/dvc/commands/data_sync.py", line 64, in run processed_files_count = self.repo.push( File "/path/lib/python3.9/site-packages/dvc/repo/__init__.py", line 65, in wrapper return f(repo, *args, **kwargs) File "/path/lib/python3.9/site-packages/dvc/repo/push.py", line 144, in push push_transferred, push_failed = ipush( File "/path/lib/python3.9/site-packages/dvc_data/index/push.py", line 101, in push old = build(data.path, data.fs) File "/path/lib/python3.9/site-packages/dvc_data/index/build.py", line 90, in build for entry in build_entries(path, fs, ignore=ignore): File "/path/lib/python3.9/site-packages/dvc_data/index/build.py", line 55, in build_entries walk_iter = fs.walk(path, detail=detail) File "/path/lib/python3.9/site-packages/dvc_http/__init__.py", line 162, in walk raise NotImplementedError NotImplementedError 2023-12-27 19:47:24,370 DEBUG: link type reflink is not available ([Errno 95] no more link types left to try out) 2023-12-27 19:47:24,371 DEBUG: Removing '/path/.fJ4uXqQznknWmbrzzUTXLQ.tmp' 2023-12-27 19:47:24,371 DEBUG: Removing '/path/.fJ4uXqQznknWmbrzzUTXLQ.tmp' 2023-12-27 19:47:24,371 DEBUG: Removing '/path/.fJ4uXqQznknWmbrzzUTXLQ.tmp' 2023-12-27 19:47:24,371 DEBUG: Removing '/path/bkw-9036/.dvc/cache/files/md5/.M6iwnJkjQgKzg54kN6chVi.tmp' 2023-12-27 19:47:24,377 DEBUG: Version info for developers: DVC version: 3.36.1 (pip) ------------------------- Platform: Python 3.9.18 on Linux-5.15.139-93.147.amzn2.x86_64-x86_64-with-glibc2.26 Subprojects: dvc_data = 3.3.0 dvc_objects = 3.0.0 dvc_render = 1.0.0 dvc_task = 0.3.0 scmrepo = 2.0.2 Supports: gs (gcsfs = 2023.12.2.post1), http (aiohttp = 3.9.1, aiohttp-retry = 2.8.3), https (aiohttp = 3.9.1, aiohttp-retry = 2.8.3) Config: Global: /home/jdt/.config/dvc System: /etc/xdg/dvc Cache types: hardlink, symlink Cache directory: ext4 on /dev/nvme1n1p1 Caches: local Remotes: gs Workspace directory: ext4 on /dev/nvme1n1p1 Repo: dvc, git Repo.site_cache_dir: /var/tmp/dvc/repo/9d9135fb99d9d827364c4dc5a42cdc60 Having any troubles? Hit us up at https://dvc.org/support, we are always happy to help! 2023-12-27 19:47:24,379 DEBUG: Analytics is enabled. 2023-12-27 19:47:24,445 DEBUG: Trying to spawn ['daemon', 'analytics', '/tmp/tmpk_30nnlt', '-v'] 2023-12-27 19:47:24,455 DEBUG: Spawned ['daemon', 'analytics', '/tmp/tmpk_30nnlt', '-v'] with pid 15755 ``` ### Expected Successful push ### Environment information <!-- This is required to ensure that we can reproduce the bug. --> ``` DVC version: 3.36.1 (pip) ------------------------- Platform: Python 3.9.18 on Linux-5.15.139-93.147.amzn2.x86_64-x86_64-with-glibc2.26 Subprojects: dvc_data = 3.3.0 dvc_objects = 3.0.0 dvc_render = 1.0.0 dvc_task = 0.3.0 scmrepo = 2.0.2 Supports: gs (gcsfs = 2023.12.2.post1), http (aiohttp = 3.9.1, aiohttp-retry = 2.8.3), https (aiohttp = 3.9.1, aiohttp-retry = 2.8.3), s3 (s3fs = 2023.12.2, boto3 = 1.33.13) Config: Global: /home/jdt/.config/dvc System: /etc/xdg/dvc Cache types: hardlink, symlink Cache directory: ext4 on /dev/nvme1n1p1 Caches: local Remotes: s3 Workspace directory: ext4 on /dev/nvme1n1p1 Repo: dvc, git Repo.site_cache_dir: /var/tmp/dvc/repo/c9c73dbc105eb09a15137f49a60e6a5b ``` **Additional Information (if any):**
closed
2023-12-28T03:32:06Z
2024-01-03T01:17:32Z
https://github.com/iterative/dvc/issues/10206
[ "bug" ]
turkanis
12
aleju/imgaug
deep-learning
406
how to use imgaug with pytorch
I want to use imgaug with pytorch. def __getitem__(self, index) in torch.utils.data.Dataset can process one picture at a time, but in seq(images = images, keypoints = keypoints), I must give 4 dims (B, H, W, Channel). I want to know how to use imgaug without expansion dimension. Thank you!
open
2019-08-30T07:17:43Z
2021-05-16T09:30:08Z
https://github.com/aleju/imgaug/issues/406
[]
flowtcw
11
TencentARC/GFPGAN
deep-learning
23
'BASICSR_JIT' is not recognized as an internal or external command
Is this an issue with setting environment variables in Windows? Is there a method to resolve this?
closed
2021-07-21T00:25:14Z
2021-07-21T15:33:15Z
https://github.com/TencentARC/GFPGAN/issues/23
[]
Kubishime
1
ageitgey/face_recognition
machine-learning
1,203
为什么小孩的识别效果不好?
是因为人脸对齐时,小孩的人脸对齐效果不好造成的么?
open
2020-08-20T10:02:36Z
2020-08-20T10:02:36Z
https://github.com/ageitgey/face_recognition/issues/1203
[]
yfq512
0
ultralytics/ultralytics
machine-learning
19,270
expected str, bytes or os.PathLike object, not NoneType
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and found no similar bug report. ### Ultralytics YOLO Component _No response_ ### Bug I imported the dataset directly from Roboflow, so it should not have problem. The following is the code I run from ultralytics import YOLO, checks, hub checks() hub.login('hidden') model = YOLO('https://hub.ultralytics.com/models/DDnZzdKNetoATXL0SY0Q') results = model.train() Traceback (most recent call last): File "C:\Program Files\Python310\lib\site-packages\ultralytics\engine\trainer.py", line 558, in get_dataset elif self.args.data.split(".")[-1] in {"yaml", "yml"} or self.args.task in { AttributeError: 'NoneType' object has no attribute 'split' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Users\a\Desktop\Weight1\Train.py", line 7, in <module> results = model.train() File "C:\Program Files\Python310\lib\site-packages\ultralytics\engine\model.py", line 803, in train self.trainer = (trainer or self._smart_load("trainer"))(overrides=args, _callbacks=self.callbacks) File "C:\Program Files\Python310\lib\site-packages\ultralytics\engine\trainer.py", line 134, in __init__ self.trainset, self.testset = self.get_dataset() File "C:\Program Files\Python310\lib\site-packages\ultralytics\engine\trainer.py", line 568, in get_dataset raise RuntimeError(emojis(f"Dataset '{clean_url(self.args.data)}' error ❌ {e}")) from e File "C:\Program Files\Python310\lib\site-packages\ultralytics\utils\__init__.py", line 1301, in clean_url url = Path(url).as_posix().replace(":/", "://") # Pathlib turns :// -> :/, as_posix() for Windows File "C:\Program Files\Python310\lib\pathlib.py", line 960, in __new__ self = cls._from_parts(args) File "C:\Program Files\Python310\lib\pathlib.py", line 594, in _from_parts drv, root, parts = self._parse_args(args) File "C:\Program Files\Python310\lib\pathlib.py", line 578, in _parse_args a = os.fspath(a) TypeError: expected str, bytes or os.PathLike object, not NoneType ### Environment Ultralytics 8.3.75 🚀 Python-3.10.11 torch-2.5.1+cu118 CUDA:0 (NVIDIA GeForce RTX 2080 Ti, 11264MiB) Setup complete ✅ (16 CPUs, 15.9 GB RAM, 306.5/446.5 GB disk) OS Windows-10-10.0.19045-SP0 Environment Windows Python 3.10.11 Install pip RAM 15.93 GB Disk 306.5/446.5 GB CPU AMD Ryzen 7 5700X 8-Core Processor CPU count 16 GPU NVIDIA GeForce RTX 2080 Ti, 11264MiB GPU count 1 CUDA 11.8 numpy ✅ 1.26.4<=2.1.1,>=1.23.0 matplotlib ✅ 3.10.0>=3.3.0 opencv-python ✅ 4.10.0.84>=4.6.0 pillow ✅ 10.4.0>=7.1.2 pyyaml ✅ 6.0.2>=5.3.1 requests ✅ 2.32.3>=2.23.0 scipy ✅ 1.15.1>=1.4.1 torch ✅ 2.5.1+cu118>=1.8.0 torch ✅ 2.5.1+cu118!=2.4.0,>=1.8.0; sys_platform == "win32" torchvision ✅ 0.20.1+cu118>=0.9.0 tqdm ✅ 4.67.1>=4.64.0 psutil ✅ 6.1.1 py-cpuinfo ✅ 9.0.0 pandas ✅ 2.2.3>=1.1.4 seaborn ✅ 0.13.2>=0.11.0 ultralytics-thop ✅ 2.0.14>=2.0.0 ### Minimal Reproducible Example from ultralytics import YOLO, checks, hub checks() hub.login('hidden') model = YOLO('https://hub.ultralytics.com/models/DDnZzdKNetoATXL0SY0Q') results = model.train() ### Additional _No response_ ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
open
2025-02-16T22:55:49Z
2025-02-16T23:15:55Z
https://github.com/ultralytics/ultralytics/issues/19270
[ "question" ]
felixho789
2
opengeos/leafmap
streamlit
122
Add pydeck as a new plotting backend
References: - https://deckgl.readthedocs.io - https://github.com/agressin/pydeck_myTileLayer
closed
2021-10-16T18:23:01Z
2021-10-17T17:35:17Z
https://github.com/opengeos/leafmap/issues/122
[ "Feature Request" ]
giswqs
1
piccolo-orm/piccolo
fastapi
883
auto migrations fails when table in schema
Hello, I'm running the latest Postgres image, python 3.11.3 (venv) and piccolo 0.119.0. When i create a new asgi application with a fresh venv, i can perfectly add, change and delete rows using the migrations new .. --auto / forward command. Then i can migrate the table into a schema e.g. `class Task(Table, schema="blog"):`, running forward will succefully put the table into that schema. But as soon as it is in a schema i'm not able to perform any auto migrations anymore. It won't find that table: ``` - 2023-09-08T14:20:15:789180 [forwards]... The command failed. relation "task" does not exist Traceback (most recent call last): File "C:\venvs\piccolodb\Lib\site-packages\targ\__init__.py", line 448, in run command.call_with(arg_class) File "C:\venvs\piccolodb\Lib\site-packages\targ\__init__.py", line 229, in call_with asyncio.run(self.command(**cleaned_kwargs)) File "C:\Program Files\Python311\Lib\asyncio\runners.py", line 190, in run return runner.run(main) ^^^^^^^^^^^^^^^^ File "C:\Program Files\Python311\Lib\asyncio\runners.py", line 118, in run return self._loop.run_until_complete(task) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Program Files\Python311\Lib\asyncio\base_events.py", line 653, in run_until_complete return future.result() ^^^^^^^^^^^^^^^ File "C:\venvs\piccolodb\Lib\site-packages\piccolo\apps\migrations\commands\forwards.py", line 159, in forwards response = await run_forwards( ^^^^^^^^^^^^^^^^^^^ File "C:\venvs\piccolodb\Lib\site-packages\piccolo\apps\migrations\commands\forwards.py", line 120, in run_forwards response = await manager.run() ^^^^^^^^^^^^^^^^^^^ File "C:\venvs\piccolodb\Lib\site-packages\piccolo\apps\migrations\commands\forwards.py", line 97, in run return await self.run_migrations(app_config) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\venvs\piccolodb\Lib\site-packages\piccolo\apps\migrations\commands\forwards.py", line 82, in run_migrations await response.run() File "C:\venvs\piccolodb\Lib\site-packages\piccolo\apps\migrations\auto\migration_manager.py", line 863, in run await self._run_drop_columns(backwards=backwards) File "C:\venvs\piccolodb\Lib\site-packages\piccolo\apps\migrations\auto\migration_manager.py", line 642, in _run_drop_columns await self._run_query( File "C:\venvs\piccolodb\Lib\site-packages\piccolo\apps\migrations\auto\migration_manager.py", line 393, in _run_query await query.run() File "C:\venvs\piccolodb\Lib\site-packages\piccolo\query\base.py", line 445, in run return await engine.run_ddl(self.ddl[0], in_pool=in_pool) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\venvs\piccolodb\Lib\site-packages\piccolo\engine\postgres.py", line 553, in run_ddl response = await current_transaction.connection.fetch(ddl) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\venvs\piccolodb\Lib\site-packages\asyncpg\connection.py", line 620, in fetch return await self._execute( ^^^^^^^^^^^^^^^^^^^^ File "C:\venvs\piccolodb\Lib\site-packages\asyncpg\connection.py", line 1659, in _execute result, _ = await self.__execute( ^^^^^^^^^^^^^^^^^^^^^ File "C:\venvs\piccolodb\Lib\site-packages\asyncpg\connection.py", line 1684, in __execute return await self._do_execute( ^^^^^^^^^^^^^^^^^^^^^^^ File "C:\venvs\piccolodb\Lib\site-packages\asyncpg\connection.py", line 1731, in _do_execute result = await executor(stmt, None) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "asyncpg\protocol\protocol.pyx", line 201, in bind_execute asyncpg.exceptions.UndefinedTableError: relation "task" does not exist ``` I can change the migration_file from ```` from piccolo.apps.migrations.auto.migration_manager import MigrationManager ID = "2023-09-08T14:20:15:789180" VERSION = "0.119.0" DESCRIPTION = "" async def forwards(): manager = MigrationManager( migration_id=ID, app_name="home", description=DESCRIPTION ) manager.drop_column( table_class_name="Task", tablename="task", column_name="completed_at", db_column_name="completed_at", ) return manager ```` to ```` .... manager.drop_column( table_class_name="Task", tablename="blog.task", column_name="completed_at", db_column_name="completed_at", ) return manager ```` it will perform the migration. Any clues what's going on here?
closed
2023-09-08T12:39:29Z
2023-09-09T00:37:30Z
https://github.com/piccolo-orm/piccolo/issues/883
[]
lherrman
3
polarsource/polar
fastapi
4,598
Orders API: Use `get_unprefixed_state` for state output to strip country prefix
Stripe Tax uses `ISO 3166-2` with subdivisions to perform a lookup on tax rates, e.g `country-state`, which makes sense. On checkout we therefore store the state in this format too for tax calculations. However, customers expect a separation. Getting country from `orders.billing_address.country` and state from `orders.billing_address.state` (clean from country codes). So our output of the schema should use `get_unprefixed_state` to strip the country code from the state output in our API.
open
2024-12-04T10:08:20Z
2024-12-04T10:08:20Z
https://github.com/polarsource/polar/issues/4598
[ "enhancement", "dx" ]
birkjernstrom
0
marcomusy/vedo
numpy
894
Convert colored mesh to volume
Hi, given a mesh with colors appointed to each vertex, how can I convert it into a volume (voxel format) with the colors of the voxels relating to these points. Is there a simple way to achieve this? My purpose requires taking either the nearest point as the color, or the most frequent color within the space of the voxel. Thanks. Note that I currently use `mesh.binarize(spacing, fg_val=1, bg_val=0)` but this (obviously) doesn't convert the colors into voxel metadata.
closed
2023-07-07T06:35:56Z
2023-07-14T11:58:41Z
https://github.com/marcomusy/vedo/issues/894
[]
JeffreyWardman
6
teamhide/fastapi-boilerplate
sqlalchemy
21
What is the config for postgres ?
Hi, Can you guide me how can I change config for postgres ? I am using postgres+pyscopg2://postgres:password@localhost:5432/fastapi. But I have no luck ?
closed
2023-04-24T07:22:08Z
2024-01-28T09:09:54Z
https://github.com/teamhide/fastapi-boilerplate/issues/21
[]
phtran-dev
1
browser-use/browser-use
python
362
UPDATE the Langchain Chat models support
### Type of Documentation Issue Incorrect documentation ### Documentation Page https://docs.browser-use.com/customize/langchain-models ### Issue Description Currently I have used Gemini to run this `from langchain_google_genai import ChatGoogleGenerativeAI from browser_use import Agent import asyncio from dotenv import load_dotenv load_dotenv() async def main(): agent = Agent( task="Go to Reddit, search for 'browser-use' in the search bar, click on the first post and return the first comment.", llm=ChatGoogleGenerativeAI(model="gemini-1.5-flash"), ) result = await agent.run() print(result) asyncio.run(main())` and it worked fine so do update the docs ### Suggested Changes `from langchain_google_genai import ChatGoogleGenerativeAI from browser_use import Agent import asyncio from dotenv import load_dotenv load_dotenv() async def main(): agent = Agent( task="Go to Reddit, search for 'browser-use' in the search bar, click on the first post and return the first comment.", llm=ChatGoogleGenerativeAI(model="gemini-1.5-flash"), ) result = await agent.run() print(result) asyncio.run(main())`
closed
2025-01-23T19:22:48Z
2025-01-24T11:58:32Z
https://github.com/browser-use/browser-use/issues/362
[ "documentation" ]
snpixel
1
HIT-SCIR/ltp
nlp
573
如何高速处理5万多行的分词数据
为了处理5万多行的分词数据,改写了脚本案例 import sys,os,time sys.path.append(os.path.abspath(os.path.dirname(__file__) + '/' + '..')) from ltp import LTP root_path=os.path.abspath(os.path.dirname(__file__) + '/' + '..') ltp = LTP(path = "base") url = "tests/zrbzdz.txt" t1 = time.time() url = "tests/zrbzdz.txt" t1 = time.time() output='' with open(url,"r",encoding='utf-8-sig') as f: lines=f.readlines() for line in lines: segment, _ = ltp.seg([line]) output+="/ ".join(segment[0])+'\n' tt = time.time()-t1 # 输出分词后的文件路径 LTP_f = open("tests/output/1_LTP.txt","wb") LTP_f.write(output.encode('utf-8')) LTP_f.close() print('time ' + str(tt)) 执行这个脚本,数据5万多条,执行时间43分钟,怎么解决这个时间长的问题
closed
2022-08-11T01:23:13Z
2023-01-20T17:59:25Z
https://github.com/HIT-SCIR/ltp/issues/573
[]
liyanfu520
7
erdewit/ib_insync
asyncio
128
Getting OrderHistory
I'm wondering if there is a way to get history of all orders. My bot needs to check some information on past orders to make buy or sell decision.
closed
2019-01-18T04:46:00Z
2020-07-04T13:59:37Z
https://github.com/erdewit/ib_insync/issues/128
[]
quadricanna
14
dpgaspar/Flask-AppBuilder
rest-api
2,261
get a list of requirements
### Environment windows 10 Flask-Appbuilder version:4.0.0 apispec==3.3.2 attrs==23.2.0 Authlib==1.0.0 Babel==2.14.0 cffi==1.15.1 click==8.1.7 colorama==0.4.6 cryptography==42.0.8 dnspython==2.3.0 email-validator==1.3.1 Flask==2.0.3 Flask-AppBuilder==4.0.0 Flask-Babel==2.0.0 Flask-JSGlue==0.3.1 Flask-JWT-Extended==4.6.0 Flask-Login==0.5.0 Flask-SQLAlchemy==2.5.1 Flask-WTF==0.15.1 greenlet==3.0.3 idna==3.7 importlib-metadata==6.7.0 importlib-resources==5.12.0 itsdangerous==2.1.2 jinja2==3.1.4 jsonschema==4.17.3 MarkupSafe==2.1.5 marshmallow==3.19.0 marshmallow-enum==1.5.1 marshmallow-sqlalchemy==0.26.1 packaging==24.0 pkgutil-resolve-name==1.3.10 prison==0.2.1 pycparser==2.21 PyJWT==2.8.0 pyrsistent==0.19.3 python-dateutil==2.9.0.post0 pytz==2024.1 PyYAML==6.0.1 six==1.16.0 SQLAlchemy==1.4.52 SQLAlchemy-Utils==0.41.2 typing-extensions==4.7.1 Werkzeug==2.0.3 WTForms==2.3.3 zipp==3.15.0 ### Describe the expected results i wanna to run oauth + flask appbuilder so i need the correct versions to run it ### Describe the actual results at pycharm ``` from ssl import SSLContext File "c:\users\usuario\anaconda3\lib\ssl.py", line 98, in <module> import _ssl # if we can't import it, let the error propagate ImportError: DLL load failed: No se puede encontrar el módulo especificado. ``` at console ``` from jinja2 import Markup ImportError: cannot import name 'Markup' from 'jinja2' ```
open
2024-07-17T19:54:34Z
2024-07-18T20:17:50Z
https://github.com/dpgaspar/Flask-AppBuilder/issues/2261
[]
EnriqueGautoSand
1
coqui-ai/TTS
deep-learning
2,957
[Bug] Text input via cat and multiple lines
### Describe the bug When feeding multiple lines of text using cat into the tts command line tool, tts creates long pauses after a line break. ### To Reproduce 1. Write some text with line breaks into demo.txt 2. Execute tts --text "$(cat demo.txt)" --out_path demo.wav --model_name whatever/model ### Expected behavior It shouldn't make a pause when just a simple line break is found. ### Logs _No response_ ### Environment ```shell Windows 10 64 bit using WSL 2 and Ubuntu 23.04. coqui tts 0.17.2 and Python 3.11. ``` ### Additional context _No response_
closed
2023-09-17T08:38:06Z
2023-10-29T18:11:12Z
https://github.com/coqui-ai/TTS/issues/2957
[ "bug", "wontfix" ]
domasofan
3
deeppavlov/DeepPavlov
tensorflow
892
Downgrade tensoflow version AttributeError
There is no fixed tensorflow version in requirments.txt. So, if I downgrade tensorflow to version 1.10, I'll catch error: "AttributeError: module 'tensorflow' has no attribute 'init_scope'.
closed
2019-06-20T14:43:11Z
2019-07-15T13:14:32Z
https://github.com/deeppavlov/DeepPavlov/issues/892
[]
artyerokhin
2
marcomusy/vedo
numpy
229
Could not find example to adjust threshold
First thanks for sharing this wonderful project. I can use command line vedo https://vedo.embl.es/examples/data/head.vti to see head isosurface and adjust threshold. But could not find any scrip in example to do this. Could you please help?
closed
2020-10-16T15:04:06Z
2020-10-17T00:54:46Z
https://github.com/marcomusy/vedo/issues/229
[]
mit10000
4
ansible/awx
django
15,795
awx.conf.settings The current value "'GroupOfUniqueNamesType'" for setting "AUTH_LDAP_GROUP_TYPE" is invalid
### Please confirm the following - [x] I agree to follow this project's [code of conduct](https://docs.ansible.com/ansible/latest/community/code_of_conduct.html). - [x] I have checked the [current issues](https://github.com/ansible/awx/issues) for duplicates. - [x] I understand that AWX is open source software provided for free and that I might not receive a timely response. - [x] I am **NOT** reporting a (potential) security vulnerability. (These should be emailed to `security@ansible.com` instead.) ### Bug Summary I am using [awx operator](https://github.com/ansible/awx-operator), I am using the latest version, `2.19.1`, https://github.com/ansible/awx-operator/releases/tag/2.19.1. I am using the extra settings to configure my ldap, https://github.com/ansible/awx-operator/blob/devel/docs/user-guide/advanced-configuration/extra-settings.md#extra-settings I follow this settings : https://github.com/ansible/awx-operator/blob/devel/docs/user-guide/advanced-configuration/enabling-ldap-integration-at-awx-bootstrap.md The Ldap feature is working as expected, however, I have this error log generated, continuously in my awx web pod, it flood the disk space. Can someone look at this issue? ### AWX version awx operator v2.19.1 ### Select the relevant components - [x] UI - [ ] UI (tech preview) - [ ] API - [ ] Docs - [ ] Collection - [ ] CLI - [ ] Other ### Installation method kubernetes ### Modifications no ### Ansible version 2.19.1 ### Operating system kubernetes ### Web browser Chrome ### Steps to reproduce follow this settings in my awx configuration manifest, https://github.com/ansible/awx-operator/blob/devel/docs/user-guide/advanced-configuration/enabling-ldap-integration-at-awx-bootstrap.md it gave me this error log in the web pod, however, ldap works as expected. ### Expected results no error message should be generated in awx pod. ### Actual results ``` 2025-01-29 20:41:49,696 WARNING [dbb9620b7e334a86815755d844c08c83] awx.conf.settings The current value "{'name_attr': 'cn'}" for setting "AUTH_LDAP_GROUP_TYPE_PARAMS" is invalid. Traceback (most recent call last): File "/var/lib/awx/venv/awx/lib64/python3.11/site-packages/awx/conf/settings.py", line 402, in _get_local internal_value = field.to_internal_value(value) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/var/lib/awx/venv/awx/lib64/python3.11/site-packages/awx/sso/fields.py", line 480, in to_internal_value group_type_cls = find_class_in_modules(group_type_str) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/var/lib/awx/venv/awx/lib64/python3.11/site-packages/awx/sso/fields.py", line 52, in find_class_in_modules cls = getattr(m, class_name, None) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ TypeError: attribute name must be string, not 'type' 2025-01-29 20:41:49,697 WARNING [dbb9620b7e334a86815755d844c08c83] awx.conf.settings The current value "'GroupOfUniqueNamesType'" for setting "AUTH_LDAP_GROUP_TYPE" is invalid. Traceback (most recent call last): File "/var/lib/awx/venv/awx/lib64/python3.11/site-packages/awx/conf/settings.py", line 402, in _get_local internal_value = field.to_internal_value(value) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/var/lib/awx/venv/awx/lib64/python3.11/site-packages/awx/sso/fields.py", line 458, in to_internal_value self.fail('invalid_parameters', parameters_type=type(params)) File "/var/lib/awx/venv/awx/lib64/python3.11/site-packages/rest_framework/fields.py", line 603, in fail raise ValidationError(message_string, code=key) rest_framework.exceptions.ValidationError: [ErrorDetail(string="Invalid group_type parameters. Expected instance of dict but got <class 'type'> instead.", code='invalid_parameters')] 2025-01-29 20:41:49,698 WARNING [dbb9620b7e334a86815755d844c08c83] awx.conf.settings The current value "{'name_attr': 'cn'}" for setting "AUTH_LDAP_GROUP_TYPE_PARAMS" is invalid. Traceback (most recent call last): File "/var/lib/awx/venv/awx/lib64/python3.11/site-packages/awx/conf/settings.py", line 402, in _get_local internal_value = field.to_internal_value(value) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/var/lib/awx/venv/awx/lib64/python3.11/site-packages/awx/sso/fields.py", line 480, in to_internal_value group_type_cls = find_class_in_modules(group_type_str) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/var/lib/awx/venv/awx/lib64/python3.11/site-packages/awx/sso/fields.py", line 52, in find_class_in_modules cls = getattr(m, class_name, None) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ TypeError: attribute name must be string, not 'type' ``` ### Additional information _No response_
open
2025-01-29T21:08:03Z
2025-02-05T18:24:42Z
https://github.com/ansible/awx/issues/15795
[ "type:bug", "needs_triage", "community" ]
kevrrnet
1
python-restx/flask-restx
flask
623
自动化文档能否使用最新版本3.0及以上?
自动化文档能否使用最新版本3.0及以上?
open
2024-10-15T02:32:13Z
2024-10-15T02:32:13Z
https://github.com/python-restx/flask-restx/issues/623
[ "enhancement" ]
haike-1213
0
mckinsey/vizro
plotly
740
[Docs] Simplify our docs code examples
I believe someone from the development team should help streamline our code examples in the documentation. Upon rereading them, I noticed many instances where simplification is possible. Here are some specific recommendations: - [ ] https://github.com/mckinsey/vizro/issues/713 - if this won't be done in the GHC, we should do it - [ ] Eliminate any unnecessary controls. - [ ] Remove any unnecessary filter interactions or actions. - [ ] Exclude any secondary or tertiary components that aren't essential. In general, we should remove everything that isn't required to demonstrate the feature in question. This approach will keep the tutorials focused and prevent distractions from the main purpose. **Example:** ``` from vizro import Vizro import vizro.models as vm import vizro.plotly.express as px df = px.data.gapminder() gapminder_data = ( df.groupby(by=["continent", "year"]). agg({"lifeExp": "mean", "pop": "sum", "gdpPercap": "mean"}).reset_index() ) first_page = vm.Page( title="First Page", layout=vm.Layout(grid=[[0, 0], [1, 2], [1, 2], [1, 2]]), components=[ vm.Card( text=""" # First dashboard page This pages shows the inclusion of markdown text in a page and how components can be structured using Layout. """, ), vm.Graph( id="box_cont", figure=px.box(gapminder_data, x="continent", y="lifeExp", color="continent", labels={"lifeExp": "Life Expectancy", "continent": "Continent"}), ), vm.Graph( id="line_gdp", figure=px.line(gapminder_data, x="year", y="gdpPercap", color="continent", labels={"year": "Year", "continent": "Continent", "gdpPercap":"GDP Per Cap"}), ), ], controls=[ vm.Filter(column="continent", targets=["box_cont", "line_gdp"]), ], ) dashboard = vm.Dashboard(pages=[first_page]) Vizro().build(dashboard).run() ``` **What could be removed:** - `id` provision inside the charts - Removal of `targets` inside `vm.Filter` as it will target all charts if not specified - Removal of `labels` argument inside charts
open
2024-09-24T08:53:38Z
2024-09-24T08:57:32Z
https://github.com/mckinsey/vizro/issues/740
[ "Nice to have :cherries:" ]
huong-li-nguyen
0
keras-team/keras
deep-learning
20,890
Improve Model.layers setter error message
Current error message for Model.layers setter is ambiguous and doesn't explain how to properly handle layers. Current: “`Model.layers` attribute is reserved and should not be used. Please use another name.” Proposed: “`Model.layers` is a read-only property. Use Model.add() to add new layers.”
closed
2025-02-10T22:46:01Z
2025-02-20T18:11:56Z
https://github.com/keras-team/keras/issues/20890
[ "type:docs" ]
nikolasavic3
2
2noise/ChatTTS
python
64
add model to hugging face
closed
2024-05-29T16:30:38Z
2024-07-15T04:01:47Z
https://github.com/2noise/ChatTTS/issues/64
[ "stale" ]
clmnt
2
plotly/dash
plotly
2,827
cannot pickle 'SSLContext' with background callback
**Describe your context** Windows 11, Python 3.9 ``` dash 2.16.1 dash-bootstrap-components 1.4.1 dash-core-components 2.0.0 dash-html-components 2.0.0 dash-table 5.0.0 ``` Occurs with Edge & Chrome. **Describe the bug** I use a background callback in a multi-page app that throws an error when called: * ``TypeError: cannot pickle 'SSLContext' object`` in the browser (without more details, see screenshot below) * in the standard output: ``` Traceback (most recent call last): File "<string>", line 1, in <module> File "C:\Users\201021305\.conda\envs\track\lib\site-packages\multiprocess\spawn.py", line 116, in spawn_main exitcode = _main(fd, parent_sentinel) File "C:\Users\201021305\.conda\envs\track\lib\site-packages\multiprocess\spawn.py", line 126, in _main self = reduction.pickle.load(from_parent) File "C:\Users\201021305\.conda\envs\track\lib\site-packages\dill\_dill.py", line 289, in load return Unpickler(file, ignore=ignore, **kwds).load() File "C:\Users\201021305\.conda\envs\track\lib\site-packages\dill\_dill.py", line 444, in load obj = StockUnpickler.load(self) EOFError: Ran out of input ``` Here's how the callback is defined: ```python BACKGROUND_CALLBACK_MANAGER = dash.DiskcacheManager(diskcache.Cache("./cache")) @dash.callback( [...] prevent_initial_call=True, background=True, manager=BACKGROUND_CALLBACK_MANAGER, ) ``` The callback involves an object that has a SQLAlchemy engine as an attribute. The connection is made through SSL, so I guess this is the object that fails to be pickled. However, I can serialize this object successfully with ``dill.dumps``, so I'm not sure... Maybe related to https://github.com/uqfoundation/dill/issues/308, but until the issue is fixed, there might be a workaround? **Expected behavior** I expect the callback to run without error. **Screenshots** ![image](https://github.com/plotly/dash/assets/91310456/275be119-c556-44f7-9eba-e8322243575a)
open
2024-04-03T11:13:34Z
2024-08-13T19:48:24Z
https://github.com/plotly/dash/issues/2827
[ "bug", "P3" ]
fxstempfelals
7
plotly/dash
dash
2,802
allow deletion of data from Heat Figs with Patch()
I am trying to delete some data from a heat fig, and it doesn't seem to be possible with patch. With patch, you would return something like ``` fig = Patch() del fig['data'][0][x][0] ``` to delete the first item in the heatfig. The issue is that the heatfig has the following structure: ``` { "data": [ { "x": ["2021-12-21T19:58:00.542000", "2021-12-21T19:58:01.542000", "2021-12-21T19:58:02.542000" ], "y": [13500.0, 13503.33591, 13506.67183 ], "z": [[599.8054, 581.1404, 570.4771 ], [678.9323, 644.2858, 610.9979 ], [576.6772, 568.9164, 565.6251 ], }]} ``` and so you would need to loop through each list in the z field to remove the first item as well (as the heatfig is a 3D array). We can't know ahead of time how many items are in the z field making it impossible to delete data. Basically, if you want to remove the first timestamp in the fig, you would need the data to look like: ``` { "data": [ { "x": ["2021-12-21T19:58:01.542000", "2021-12-21T19:58:02.542000" ], "y": [13500.0, 13503.33591, 13506.67183 ], "z": [[581.1404, 570.4771 ], [644.2858, 610.9979 ], [568.9164, 565.6251 ], }]} ``` I don't want to load in the whole fig as state because it is quite large (and defeats the purpose of using a Patch()). I haven't found a work around for this yet.
open
2024-03-18T19:34:51Z
2024-08-13T19:47:46Z
https://github.com/plotly/dash/issues/2802
[ "feature", "P3" ]
cleaaum
4
django-import-export/django-import-export
django
1,100
please update your documentation about IMPORT_EXPORT_USE_TRANSACTIONS
IMPORT_EXPORT_USE_TRANSACTIONS default is True and not False as documented in latest https://django-import-export.readthedocs.io/en/stable/installation.html IMPORT_EXPORT_USE_TRANSACTIONS = False in settings is **mandatory** if one want to actually import something in a mysql db (at least) without it : result = somemodel_resource.import_data(datanew, dry_run=True) will fail with "ImproperlyConfigured" and no explanation. spend 3 hours to tweak my csv and test just about this before to look at import_export\resources.py, and its a pity because the project is really cool.
closed
2020-03-18T13:10:26Z
2023-04-12T13:52:12Z
https://github.com/django-import-export/django-import-export/issues/1100
[ "docs", "good first issue" ]
spamandeggs
1
yt-dlp/yt-dlp
python
11,835
[SoundCloud] Some cover arts are downloaded in 100x100 resolution instead of original size
### DO NOT REMOVE OR SKIP THE ISSUE TEMPLATE - [X] I understand that I will be **blocked** if I *intentionally* remove or skip any mandatory\* field ### Checklist - [X] I'm reporting that yt-dlp is broken on a **supported** site - [X] I've verified that I have **updated yt-dlp to nightly or master** ([update instructions](https://github.com/yt-dlp/yt-dlp#update-channels)) - [X] I've checked that all provided URLs are playable in a browser with the same IP and same login details - [X] I've checked that all URLs and arguments with special characters are [properly quoted or escaped](https://github.com/yt-dlp/yt-dlp/wiki/FAQ#video-url-contains-an-ampersand--and-im-getting-some-strange-output-1-2839-or-v-is-not-recognized-as-an-internal-or-external-command) - [X] I've searched [known issues](https://github.com/yt-dlp/yt-dlp/issues/3766) and the [bugtracker](https://github.com/yt-dlp/yt-dlp/issues?q=) for similar issues **including closed ones**. DO NOT post duplicates - [X] I've read the [guidelines for opening an issue](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#opening-an-issue) - [ ] I've read about [sharing account credentials](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#are-you-willing-to-share-account-details-if-needed) and I'm willing to share it if required ### Region Poland ### Provide a description that is worded well enough to be understood Hi, I am not entirely sure if it is a bug, but I’ve noticed that some SoundCloud cover arts ([sample song](https://soundcloud.com/shinpuru/miracle)) are downloaded in 100x100 dimensions, even though the original artwork is available in higher resolution. To download the file, I use this command and obtain the following log: ```bash ❯ yt-dlp --add-metadata --parse-metadata "%(artists)l:%(meta_artist)s" --embed-thumbnail -o "%(artists)l - %(title)s.%(ext)s" https://soundcloud.com/shinpuru/miracle [soundcloud] Extracting URL: https://soundcloud.com/shinpuru/miracle [soundcloud] shinpuru/miracle: Downloading info JSON [soundcloud] 1987169691: Downloading hls_aac format info JSON [soundcloud] 1987169691: Downloading hls_mp3 format info JSON [soundcloud] 1987169691: Downloading http_mp3 format info JSON [soundcloud] 1987169691: Downloading hls_opus format info JSON [MetadataParser] Parsed meta_artist from '%(artists)l': 'shinpuru' [info] 1987169691: Downloading 1 format(s): hls_aac_160k [info] Downloading video thumbnail 0 ... [info] Writing video thumbnail 0 to: shinpuru - Miracle.png [hlsnative] Downloading m3u8 manifest [hlsnative] Total fragments: 11 [download] Destination: shinpuru - Miracle.m4a [download] 100% of 2.16MiB in 00:00:00 at 5.86MiB/s [FixupM4a] Correcting container of "shinpuru - Miracle.m4a" [Metadata] Adding metadata to "shinpuru - Miracle.m4a" [EmbedThumbnail] mutagen: Adding thumbnail to "shinpuru - Miracle.m4a" ``` The downloaded `shinpuru - Miracle.m4a` file has 100x100 cover art dimensions, while the [original art](https://i1.sndcdn.com/artworks-hh0yahMrXxlmwJKO-72s1hA-original.png) seems to be 500x500. This is not an issue for some other songs, such as [this one](https://soundcloud.com/capturelight/one-second-per-second) being downloaded in the `.opus` format with 1999x1999 cover art. ### Provide verbose output that clearly demonstrates the problem - [X] Run **your** yt-dlp command with **-vU** flag added (`yt-dlp -vU <your command line>`) - [ ] If using API, add `'verbose': True` to `YoutubeDL` params instead - [X] Copy the WHOLE output (starting with `[debug] Command-line config`) and insert it below ### Complete Verbose Output ```shell [debug] Command-line config: ['-vU'] [debug] Encodings: locale cp1252, fs utf-8, pref cp1252, out utf-8, error utf-8, screen utf-8 [debug] yt-dlp version stable@2024.12.13 from yt-dlp/yt-dlp [542166962] (pip) [debug] Python 3.12.7 (CPython AMD64 64bit) - Windows-11-10.0.26100-SP0 (OpenSSL 3.3.2 3 Sep 2024) [debug] exe versions: ffmpeg 7.1-essentials_build-www.gyan.dev (setts), ffprobe 7.1-essentials_build-www.gyan.dev [debug] Optional libraries: Cryptodome-3.17, brotli-1.1.0, certifi-2024.08.30, mutagen-1.47.0, requests-2.32.3, sqlite3-3.47.0, urllib3-2.2.3, websockets-13.1 [debug] Proxy map: {} [debug] Request Handlers: urllib, requests, websockets [debug] Loaded 1837 extractors [debug] Fetching release info: https://api.github.com/repos/yt-dlp/yt-dlp/releases/latest Latest version: stable@2024.12.13 from yt-dlp/yt-dlp yt-dlp is up to date (stable@2024.12.13 from yt-dlp/yt-dlp) ```
closed
2024-12-17T00:21:57Z
2025-02-23T06:20:55Z
https://github.com/yt-dlp/yt-dlp/issues/11835
[ "site-bug", "patch-available" ]
pyxelr
5
vitalik/django-ninja
rest-api
355
[BUG] Reverse url names are not auto generated
**Describe the bug** Reverse resolution of urls described on https://django-ninja.rest-framework.com/tutorial/urls/ does not work for me. By inspecting the generated resolver, I discovered, that views that do not explicitly specify `url_name` do not have a name generated at all. View function name is not used. **Versions (please complete the following information):** - Python version: 3.8 - Django version: 3.2 - Django-Ninja version: 0.17.0
closed
2022-02-09T14:01:11Z
2022-06-26T16:29:26Z
https://github.com/vitalik/django-ninja/issues/355
[]
stinovlas
2
Tanuki/tanuki.py
pydantic
19
Resolve Jupyter notebook system error with typed returns
--------------------------------------------------------------------------- OSError Traceback (most recent call last) Cell In[67], line 1 ----> 1 x = create_todolist_item("I need to go and visit Jeff at 3pm tomorrow") 2 print(x) File ~/Paperplane/repos/monkey-patch.py/examples/wikipedia/../../src/monkey.py:202, in Monkey.patch.<locals>.wrapper(*args, **kwargs) 200 @wraps(test_func) 201 def wrapper(*args, **kwargs): --> 202 function_description = Register.load_function_description(test_func) 203 f = str(function_description.__dict__.__repr__() + "\n") 204 output = Monkey.language_modeler.generate(args, kwargs, Monkey.function_modeler, function_description) File ~/Paperplane/repos/monkey-patch.py/examples/wikipedia/../../src/register.py:86, in Register.load_function_description(func_object) 80 # Extract class definitions for input and output types 81 input_class_definitions = { 82 param_name: get_class_definition(param_type) 83 for param_name, param_type in input_type_hints.items() 84 } ---> 86 output_class_definition = get_class_definition(output_type_hint) 88 return FunctionDescription( 89 name=func_object.__name__, 90 docstring=docstring, (...) 94 output_class_definition=output_class_definition 95 ) File ~/Paperplane/repos/monkey-patch.py/examples/wikipedia/../../src/register.py:77, in Register.load_function_description.<locals>.get_class_definition(class_type) 75 return [get_class_definition(arg) for arg in class_type.__args__ if arg is not None] 76 elif inspect.isclass(class_type) and class_type.__module__ != "builtins": ---> 77 return inspect.getsource(class_type) 78 return class_type.__name__ File /usr/local/Cellar/python@3.11/3.11.4_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/inspect.py:1262, in getsource(object) 1256 def getsource(object): 1257 """Return the text of the source code for an object. 1258 1259 The argument may be a module, class, method, function, traceback, frame, 1260 or code object. The source code is returned as a single string. An 1261 OSError is raised if the source code cannot be retrieved.""" -> 1262 lines, lnum = getsourcelines(object) 1263 return ''.join(lines) File /usr/local/Cellar/python@3.11/3.11.4_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/inspect.py:1244, in getsourcelines(object) 1236 """Return a list of source lines and starting line number for an object. 1237 1238 The argument may be a module, class, method, function, traceback, frame, (...) 1241 original source file the first line of code was found. An OSError is 1242 raised if the source code cannot be retrieved.""" 1243 object = unwrap(object) -> 1244 lines, lnum = findsource(object) 1246 if istraceback(object): 1247 object = object.tb_frame File /usr/local/Cellar/python@3.11/3.11.4_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/inspect.py:1063, in findsource(object) 1055 def findsource(object): 1056 """Return the entire source file and starting line number for an object. 1057 1058 The argument may be a module, class, method, function, traceback, frame, 1059 or code object. The source code is returned as a list of all the lines 1060 in the file and the line number indexes a line in that list. An OSError 1061 is raised if the source code cannot be retrieved.""" -> 1063 file = getsourcefile(object) 1064 if file: 1065 # Invalidate cache if needed. 1066 linecache.checkcache(file) File /usr/local/Cellar/python@3.11/3.11.4_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/inspect.py:940, in getsourcefile(object) 936 def getsourcefile(object): 937 """Return the filename that can be used to locate an object's source. 938 Return None if no way can be identified to get the source. 939 """ --> 940 filename = getfile(object) 941 all_bytecode_suffixes = importlib.machinery.DEBUG_BYTECODE_SUFFIXES[:] 942 all_bytecode_suffixes += importlib.machinery.OPTIMIZED_BYTECODE_SUFFIXES[:] File /usr/local/Cellar/python@3.11/3.11.4_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/inspect.py:908, in getfile(object) 906 return module.__file__ 907 if object.__module__ == '__main__': --> 908 raise OSError('source code not available') 909 raise TypeError('{!r} is a built-in class'.format(object)) 910 if ismethod(object): OSError: source code not available
open
2023-10-31T20:59:28Z
2023-10-31T20:59:28Z
https://github.com/Tanuki/tanuki.py/issues/19
[]
bmagz
0
dropbox/sqlalchemy-stubs
sqlalchemy
139
Execution contexts missing some functions
SQLAlchemy allows defining column defaults with a callable getting the insert/update context as an argument ([doc](https://docs.sqlalchemy.org/en/13/core/defaults.html?highlight=column%20default%20callable#context-sensitive-default-functions)), e.g: ```python def get_default(context): return context.get_current_parameters()['name'] + 'whatever' class MyModel(Base): __tablename__ = 'my_model' id = Column(Integer, primary_key=True) name = Column(Unicode, nullable=False) something = Column(Unicode, default=get_default, nullable=False) ``` I'm trying to add type annotations to the `get_default` function in my code. For the example above, the return type would be a `str` (the column is defined as `Unicode`). The `context` argument is (in my case, using PostgreSQL with the pyscopg2 backend) an instance of the `sqlalchemy.dialects.postgresql.psycopg2.PGExecutionContext_psycopg2` class. Its MRO is: ``` >>> sqlalchemy.dialects.postgresql.psycopg2.PGExecutionContext_psycopg2.__mro__ (<class 'sqlalchemy.dialects.postgresql.psycopg2.PGExecutionContext_psycopg2'>, <class 'sqlalchemy.dialects.postgresql.base.PGExecutionContext'>, <class 'sqlalchemy.engine.default.DefaultExecutionContext'>, <class 'sqlalchemy.engine.interfaces.ExecutionContext'>, <class 'object'>) ``` The problem is none of these classes have the `get_current_parameters()` method defined in sqlalchemy-stubs. In SQLAlchemy, it's defined in [`sqlalchemy.engine.default.DefaultExecutionContext`](https://github.com/sqlalchemy/sqlalchemy/blob/master/lib/sqlalchemy/engine/default.py#L1324), all the child classes just inherit from it. I'd be happy to send a pull request adding the stubs for this function, but I'm unsure about the return value, since it returns a dictionary: > which includes entries for each column/value pair that is part > of the INSERT or UPDATE statement. The keys of the dictionary will be > the key value of each :class:`.Column`, which is usually synonymous > with the name. So it seems to me the return value would be a `Dict[str, Any]`, since the key (name) of the `Column` will be a string, and its type can be anything, depending on how the column is defined. ``` def get_current_parameters(isolate_multiinsert_groups: bool = True) -> Dict[str, Any]: ... ``` Is that correct?
open
2020-01-22T11:23:49Z
2020-01-22T16:48:05Z
https://github.com/dropbox/sqlalchemy-stubs/issues/139
[ "priority-normal", "topic-stubs" ]
bochecha
2
mwaskom/seaborn
data-visualization
3,591
Heatmap doees not display all entries
Hi all, I have an issue with my heatmap. I generated a dataframe with 30k columns and here I set some of the values to a non-nan value (2k of them) (some might be double hits but that is beside the point). The values I fill the dataframe with are values between 0-1 to tell the function how to color each sample When I plot this, I only get a low amount of hits displayed and wondered why this is. In my real case example what is shown is even less (more rows, less non-nan's) as in this example. Am I doing something wrong here? python=3.12; seaborn=0.12; matplotlib=3.8.2; pandas=2.1.4 (Ubuntu=22.04) ``` import seaborn as sns import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np import os import pandas as pd new_dict = {} for k in ["a", "b", "c", "d"]: v = {str(idx): None for idx in range(30000)} rand_ints = [np.random.randint(low=0, high=30000) for i in range(2000)] for v_hits in rand_ints: v[str(v_hits)] = v_hits/30000 new_dict[k] = v df_heatmap_hits = pd.DataFrame(new_dict).transpose() sns.heatmap(df_heatmap_hits) plt.show() ```
closed
2023-12-11T11:45:03Z
2023-12-11T16:34:24Z
https://github.com/mwaskom/seaborn/issues/3591
[]
dansteiert
5
vi3k6i5/flashtext
nlp
96
how to find keyword from a a string like regex does?
for example i have a string : "todayIgotEmailreport" how do i get email keyword from this string ?? `if i use str.contains('report,False,regex=True)` this will return this string. how can we do it with flashtext?
closed
2019-11-08T03:25:36Z
2020-02-13T18:32:46Z
https://github.com/vi3k6i5/flashtext/issues/96
[]
ilovefood2
3
dynaconf/dynaconf
django
734
[RFC] Add option to validate only current env in validators.validate
**Problem** I currently have a problem in a project when trying to validate a configuration. I have some variables in production that I do not have in development environment, and that are contained in a .secrets file not present in my project. I would like to validate the presence of the production variables when I run the project in production environment. However when running the validators, they go through all environments, and thus fail when trying to validate my production environment in development because some variables are missing as the .secrets.yml file is not present. **Proposed Solution** I just wanted to know if you had considered this issue. I did a quick fix on my side by adding a `check_only_current_env: bool = False` var to all `validate` functions in [validators.py](https://github.com/rochacbruno/dynaconf/blob/master/dynaconf/validator.py) and simply add a check in `Validator.validate` before the [validate_items lines](https://github.com/rochacbruno/dynaconf/blob/master/dynaconf/validator.py#L193-L205): ``` if check_only_current_env: if settings.current_env in self.envs: this._validate_items(...) return ``` I am open to any other solutions and can also make a pull request with this small change. Thank you very much for the project it's really nice !
closed
2022-04-08T09:08:18Z
2022-04-11T18:45:38Z
https://github.com/dynaconf/dynaconf/issues/734
[ "Not a Bug", "RFC" ]
UgoBena
2
pandas-dev/pandas
data-science
60,747
DOC: Reinstate the JupyterLite-based live shell for the pandas website
## Description Hello, I've recently been looking into the JupyterLite shell for [the `pandas` website's Getting Started page](https://pandas.org/getting_started.html) that briefly used to serve as an interactive endpoint for users browsing the website. It was discussed in https://github.com/pandas-dev/pandas/issues/46682 and added in #47428, subsequently [reported to be a bit slow back then](https://github.com/pandas-dev/pandas/issues/47530), and was removed as a result in https://github.com/pandas-dev/pandas/pull/49807. I'd like to propose reinstating this shell for the website (either on the same page, or elsewhere on the [docs website's landing page](https://pandas.pydata.org/docs/index.html) via [the `jupyterlite-sphinx` project](https://github.com/jupyterlite/jupyterlite-sphinx), similar to https://github.com/matplotlib/matplotlib/pull/22634), and wish to seek thoughts from the `pandas` maintainers via this issue on whether it would be a good idea to do so for usage by newcomers. ## Rationale and additional context - In early 2025, it has been a lot of time by now, and while the world of Python running in WebAssembly still experimental, we've since then made a bunch of improvements across the Pyodide and JupyterLite ecosystems across many past releases – both for improving the stability of the shell, if not its speed, and for being able to run `pandas` code within it. - As the one who helped add the WASM CI job for Pandas last year via $57896, this is a related area in terms of `pandas`'s usage within Pyodide, and I would be happy to maintain the shell if it's added and establish some relevant automations towards its upkeep. - We have been working on similar improvements to contemporary shells, such as those that exist and have been retained on the websites for [NumPy](https://numpy.org/)and [SymPy](https://live.sympy.org/), recently xref: https://github.com/Quansight-Labs/czi-scientific-python-mgmt/issues/134 Thank you for your time! :) <hr> P.S. Here's a short [example](https://jupyterlite.github.io/demo/repl/index.html?&code=import%20pandas%20as%20pd%0Adf%20%3D%20pd.DataFrame(%0A%20%20%20%20%5B%5B1,%202%5D,%20%5B4,%205%5D,%20%5B7,%208%5D%5D,%0A%20%20%20%20index%3D%5B%27cobra%27,%20%27viper%27,%20%27sidewinder%27%5D,%0A%20%20%20%20columns%3D%5B%27max_speed%27,%20%27shield%27%5D%0A)%0Adf.loc%5B%5B%27viper%27,%20%27sidewinder%27%5D%5D%0A&kernel=python&execute=1), which takes ~7.5 seconds for me to load on a decently stable connection – but even for those with throttled connections, it should be easy to add a small admonition before it that just says "This is an experimental playground", or just prefix the word "Experimental" before the heading. P.P.S. I noticed that a similar approach has been taken by the Ibis project; they have an admonition on this page: https://ibis-project.org/tutorials/browser/repl that states that it is experimental at the moment. cc: @jtpio for visibility, as he was among those who collaborated on (and led) this effort previously through the issues and PRs linked. <hr> The description and rationale have been copied over with minor changes from my recent message on 18/01/2025 in the `pandas` Slack workspace: https://pandas-dev-community.slack.com/archives/C03PH1SU1M1/p1737168137448029 as suggested by @rhshadrach, which should help this proposal receive greater visibility.
closed
2025-01-21T13:29:59Z
2025-03-04T01:25:36Z
https://github.com/pandas-dev/pandas/issues/60747
[ "Enhancement", "Web" ]
agriyakhetarpal
2
dgtlmoon/changedetection.io
web-scraping
2,217
[feature] Use a chrome plugin that can both add the site and the cookies that were used at the time (keep the login etc)
**_TLDR - A chrome extension that can add a URL to your cdio install as well as store the cookies used._** So from working on https://github.com/dgtlmoon/changedetection.io/issues/2197 , it turns out that setting cookies is more complicated that just setting the `cookie: xyz=1` custom header field, it is also 10)% necessary to enter data like "expires, httpOnly, domain" etc, which is kind of 'meta-data' to the cookie that is not actually set in the "cookie" header field. So I found this https://github.com/kairi003/Get-cookies.txt-LOCALLY I was thinking that this could be forked to push the current URL and cookies to your changedetection installation at the click of a button using the existing API. With some little hack it could be made to recognise the "api settings" page and automatically setup the API token, you just have to locate to the config page This would also solve one piece that is missing, which is some chrome button to add a site to your watch - however setting the actual "Visual selector" should still be done (for now) in changedetection, but that could be an easy addition in the future to the chrome extension Another idea is that it could also be told to set the mode to simple 'change detecting' or 'restock detection' etc
closed
2024-02-26T17:19:49Z
2024-03-17T17:28:18Z
https://github.com/dgtlmoon/changedetection.io/issues/2217
[ "enhancement" ]
dgtlmoon
8
aio-libs/aiopg
sqlalchemy
546
Bulk update values with SQLAlchemy
Since aiopg does not support bulk insert (https://github.com/aio-libs/aiopg/issues/112), so I use this to insert everything in a single query: ``` await conn.execute( sa_foo_table .insert() .values([ dict(name='name1', x=1), dict(name='name2', x=2), dict(name='name3', x=3), ]) ) ``` Is there any such thing for bulk updating? Because if I update one by one, it might take quite some time (there are thousands of rows).
open
2019-03-14T08:45:32Z
2020-01-15T18:07:27Z
https://github.com/aio-libs/aiopg/issues/546
[]
Yureien
4
open-mmlab/mmdetection
pytorch
11,816
如何在window
closed
2024-06-28T02:40:02Z
2024-06-28T02:40:16Z
https://github.com/open-mmlab/mmdetection/issues/11816
[]
wdzwdxy
0
PokemonGoF/PokemonGo-Bot
automation
6,321
bot doesnot run File "pokecli.py", line 35, in <module>
File "pokecli.py", line 35, in <module> import six ImportError: No module named six Something went wrong and the bot needed to be restarted. Please investigate the cause. Waiting for 46 seconds, press a key to continue ...
open
2023-12-20T02:56:32Z
2023-12-21T12:35:32Z
https://github.com/PokemonGoF/PokemonGo-Bot/issues/6321
[]
omarmuhammad552
1
hankcs/HanLP
nlp
1,289
我可以用自己的训练集训练一个依存句法分析模型吗
closed
2019-10-03T07:44:39Z
2020-05-13T10:52:38Z
https://github.com/hankcs/HanLP/issues/1289
[ "ignored" ]
parkourcx
2
hyperspy/hyperspy
data-visualization
3,129
Complex signal type warning
Hi everyone, I get the following warning while loading a hologram: `sig1 = hs.load(s1, signal_type='hologram')` `WARNING:hyperspy.io: signal_type='complex_signal2d' not understood. See hs.print_known_signal_types() for a list of installed signal types or https://github.com/hyperspy/hyperspy-extensions-list for the list of all hyperspy extensions providing signals. ` It is pretty annoying, since I load multiple files and the warning extends over multiple pages. In this list (hs.print_known_signal_types()), the signal_type appears. I need to load the signal as indicated above, otherwise I cannot call a few functions like: ```python sb_position = sig1.estimate_sideband_position(ap_cb_radius=None, sb='lower') sb_size = sig1.estimate_sideband_size(sb_position) * 2/3 statistics = sig1.statistics(sb_position=sb_position) out_size = int(2*sb_size.data) wave_image = sig1.reconstruct_phase(ref1, sb_position=sb_position, sb_size=sb_size, output_shape=(out_size, out_size)) wave = wave_image.unwrapped_phase() ``` If I don't call them with the signal_type option, these functions are not available. What do I do wrong?
open
2023-04-15T08:44:02Z
2023-04-15T14:10:57Z
https://github.com/hyperspy/hyperspy/issues/3129
[]
opens21
5
dpgaspar/Flask-AppBuilder
flask
2,022
Nested Group LDAP Auth not working in Airflow FAB
Hi All, I am currently using flask_appbuilder.security.manager in order to provide LDAP authentication for my Airflow Users. While doing the AUTH_ROLES_MAPPING I have noticed that it only works for direct members of the AD groups not the nested groups. Has anyone been able to get this to work for nested groups? Example: in my current set up _> AUTH_ROLES_MAPPING = {"CN=DIRECTGROUP,OU=!!sample,OU=!!sample,OU=!!sample,DC=sample,DC=sample" : ["Viewer", "executer"], User A: member of DIRECTGROUP User B: member of NESTEDGROUP which is a member of DIRECTGROUP_ Only User A would be able to login to my airflow instance as Viewer/Executer. User B gets assigned to default "Public" role since flask is not able to drill down to the subtree. I have tried using the Microsoft special string via AUTH_LDAP_SEARCH_FILTER but no luck. I browsed to different options in FAB but couldn't find one which supports this. Current config options used(webserver_config.py) in Airflow 2.3.2 import os from airflow.www.fab_security.manager import AUTH_LDAP basedir = os.path.abspath(os.path.dirname(file)) Flask-WTF flag for CSRF WTF_CSRF_ENABLED = True AUTH_LDAP_SEARCH = "dc=sample,dc=samp,dc=com" # the LDAP search base AUTH_LDAP_UID_FIELD = "sAMAccountName" AUTH_LDAP_BIND_USER & AUTH_LDAP_BIND_PASSWORD AUTH_USER_REGISTRATION = True AUTH_USER_REGISTRATION_ROLE = "Public" AUTH_LDAP_GROUP_FIELD = "memberOf" AUTH_LDAP_SEARCH_FILTER='(&(objectClass=user)(memberOf:1.2.840.113556.1.4.1941:=CN=DIRECTGROUP,OU=!!sample,OU=!!sample,OU=!!sample,DC=sample,DC=sample)) AUTH_ROLES_SYNC_AT_LOGIN=True PERMANENT_SESSION_LIFETIME=1800 ### Environment Flask-Appbuilder version: 3.4.5 pip freeze output: aenum==3.1.11 aiohttp==3.8.4 aioretry==5.0.2 aiosignal==1.3.1 alembic==1.8.0 ansible==6.3.0 ansible-core==2.13.3 anyio==3.6.1 apache-airflow==2.3.2 apache-airflow-providers-ftp==2.1.2 apache-airflow-providers-http==2.1.2 apache-airflow-providers-imap==2.2.3 apache-airflow-providers-microsoft-mssql==2.1.1 apache-airflow-providers-postgres==3.0.0 apache-airflow-providers-snowflake==2.5.1 apache-airflow-providers-sqlite==2.1.3 apispec==3.3.2 appdirs==1.4.4 APScheduler==3.10.1 argcomplete==2.0.0 asn1crypto==1.5.1 async-timeout==4.0.2 attrs==20.3.0 auth-lib==1.2.0 azure-core==1.26.3 azure-storage-blob==12.15.0 Babel==2.10.1 backoff==1.11.1 bcpy==0.1.8 bcrypt==4.0.1 beautifulsoup4==4.11.1 blinker==1.4 bs4==0.0.1 cachelib==0.7.0 case-conversion==2.1.0 cattrs==1.10.0 cdsapi==0.5.1 certifi==2022.12.7 cetools==1.10.2 cffi==1.15.0 cftime==1.6.0 chardet==5.1.0 charset-normalizer==2.0.12 click==8.1.3 clickclick==20.10.2 clipboard==0.0.4 colorama==0.4.4 colorlog==4.8.0 colour==0.1.5 commonmark==0.9.1 configparser==5.3.0 connexion==2.13.1 coverage==7.2.2 crayons==0.4.0 cron-descriptor==1.2.31 croniter==1.3.5 cronitor==4.6.0 cryptography==3.4.8 cssselect==1.2.0 cursor==1.3.5 decorator==4.4.2 defusedxml==0.7.1 Deprecated==1.2.13 dill==0.3.1.1 distro==1.8.0 dnspython==2.2.1 docutils==0.18.1 email-validator==1.2.1 et-xmlfile==1.1.0 exceptiongroup==1.1.1 fake-useragent==1.1.3 Flask==1.1.2 Flask-AppBuilder==3.4.5 Flask-Babel==2.0.0 Flask-Caching==1.11.1 Flask-JWT-Extended==3.25.1 Flask-Login==0.4.1 Flask-OpenID==1.3.0 Flask-Session==0.4.0 Flask-SQLAlchemy==2.5.1 Flask-WTF==0.14.3 freezegun==1.2.2 frozenlist==1.3.3 ftfy==6.1.1 fuzzywuzzy==0.18.0 gender-guesser==0.4.0 graphviz==0.20 greenlet==1.1.2 gunicorn==20.1.0 h11==0.12.0 html-text==0.5.2 html5lib==1.1 http-constants==0.5.0 httpcore==0.15.0 httpx==0.23.0 humanize==4.6.0 idna==3.3 imageio==2.26.1 imageio-ffmpeg==0.4.8 importlib-metadata==4.11.4 importlib-resources==5.12.0 infi.systray==0.1.12 inflect==6.0.2 inflection==0.5.1 iniconfig==2.0.0 isodate==0.6.1 itsdangerous==1.1.0 Jinja2==3.0.3 jsonschema==4.5.1 kayrros-client==1.2.17 lazy-object-proxy==1.7.1 lockfile==0.12.2 lxml==4.8.0 Mako==1.2.0 Markdown==3.3.7 MarkupSafe==2.0.1 marshmallow==3.16.0 marshmallow-enum==1.5.1 marshmallow-oneofschema==3.0.1 marshmallow-sqlalchemy==0.26.1 maybe-else==0.2.1 mbstrdecoder==1.1.2 mock==5.0.1 moviepy==1.0.3 msal==1.21.0 msoffcrypto-tool==5.0.0 multidict==6.0.4 mypy-extensions==1.0.0 nest-asyncio==1.5.6 ntlm-auth==1.5.0 numpy==1.23.5 O365==2.0.21 oauthlib==3.2.2 office365==0.3.15 Office365-REST-Python-Client==2.3.16 olefile==0.46 openpyxl==3.0.7 oscrypto==1.3.0 packaging==21.3 pandas==1.1.5 pandera==0.6.5 paramiko==2.12.0 parse==1.19.0 parsedatetime==2.6 pathmagic==0.3.14 pathspec==0.9.0 pendulum==2.1.2 Pillow==9.4.0 pluggy==1.0.0 ply==3.11 polars==0.15.16 prettierfier==1.0.3 prison==0.2.1 proglog==0.1.10 psutil==5.8.0 psycopg2-binary==2.9.5 py==1.11.0 pyADW==2.9.997 pyarrow==11.0.0 pyasn1==0.4.8 pycparser==2.21 pycryptodomex==3.17 pycurl==7.45.2 pydantic==1.9.2 pydub==0.25.1 pyee==8.2.2 Pygments==2.12.0 pyinstrument==4.4.0 pyiotools==0.3.18 PyJWT==1.7.1 pykerberos==1.2.4 pymiscutils==0.3.14 pymssql==2.2.7 PyNaCl==1.5.0 pyodbc==4.0.32 pyOpenSSL==20.0.1 pyparsing==2.4.7 PyPDF2==3.0.1 pyperclip==1.8.2 pyppeteer==1.0.2 PyQt5==5.15.9 PyQt5-Qt5==5.15.2 PyQt5-sip==12.11.1 pyquery==2.0.0 pyrsistent==0.18.1 pysmb==1.2.7 PySocks==1.7.1 pysubtypes==0.3.18 pytest==7.2.2 python-daemon==2.3.0 python-dateutil==2.8.2 python-docx==0.8.11 python-nvd3==0.15.0 python-slugify==6.1.2 python3-openid==3.2.0 pytz==2022.1 pytz-deprecation-shim==0.1.0.post0 pytzdata==2020.1 pyxlsb==1.0.9 PyYAML==5.4.1 readchar==4.0.5 regex==2023.3.23 requests==2.26.0 requests-html==0.10.0 requests-kerberos==0.11.0 requests-ntlm==1.1.0 requests-oauthlib==1.3.1 responses==0.23.1 retry==0.9.2 rfc3986==1.5.0 rich==12.4.4 scipy==1.5.4 scraping-framework==2.23.506 selenium==3.141.0 selenium-stealth==1.0.6 Send2Trash==1.8.0 setproctitle==1.2.3 simplejson==3.18.4 six==1.16.0 sniffio==1.2.0 snowflake-connector-python==2.7.1 snowflake-sqlalchemy==1.4.7 soupsieve==2.4 SQLAlchemy==1.4.9 SQLAlchemy-JSONField==1.0.0 SQLAlchemy-Utils==0.38.2 statsd==4.0.1 stopwatch.py==2.0.1 stringcase==1.2.0 swagger-ui-bundle==0.0.9 sxl==0.0.1a10 synmax-api-python-client==0.0.29 tabula-py==2.3.0 tabulate==0.8.9 tenacity==8.0.1 termcolor==1.1.0 text-unidecode==1.3 tomli==2.0.1 tqdm==4.65.0 typepy==1.3.0 types-PyYAML==6.0.12.8 typing-inspect==0.8.0 typing_extensions==4.2.0 tzdata==2022.7 tzlocal==4.3 unicodecsv==0.14.1 urllib3==1.26.9 w3lib==2.1.1 wcwidth==0.2.6 webdriver-manager==3.5.3 webencodings==0.5.1 websockets==10.4 Werkzeug==1.0.1 wrapt==1.14.1 WTForms==2.3.3 xarray==0.16.2 xlrd==1.2.0 XlsxWriter==3.0.9 yarl==1.8.2 zipp==3.8.0 ### Describe the expected results Users from nested groups should be assigned the roles as per the primary group role mapping configured in "AUTH_ROLES_MAPPING" ### Describe the actual results User gets assigned to the default airflow role ```pytb Paste the full traceback if there was an exception. ``` ### Steps to reproduce
open
2023-04-18T15:33:35Z
2023-05-03T09:22:42Z
https://github.com/dpgaspar/Flask-AppBuilder/issues/2022
[ "enhancement" ]
ranga2crazyy
1
Yorko/mlcourse.ai
matplotlib
13
Ссылка на 3 статью
Добавьте пожалуйста в readme ссылку на третью статью на хабр.
closed
2017-03-17T07:43:27Z
2017-03-17T08:05:13Z
https://github.com/Yorko/mlcourse.ai/issues/13
[ "minor_fix" ]
loopdigga96
2
seleniumbase/SeleniumBase
pytest
2,957
Upgrade `seleniumbase` to use the newer `selenium` (`4.23.1`)
## Upgrade `seleniumbase` to use the newer `selenium` (`4.23.1`) `selenium` `4.23.1` has been released. `selenium` `4.23.0` had a bug, which why `seleniumbase` `4.28.7` is still using `selenium` `4.22.0` (the previous version). Now it's safe to upgrade that dependency if all tests pass.
closed
2024-07-24T18:03:27Z
2024-07-25T15:35:11Z
https://github.com/seleniumbase/SeleniumBase/issues/2957
[ "dependencies" ]
mdmintz
1
seleniumbase/SeleniumBase
pytest
2,821
https://proxy-tools.com/proxy (reCAPTCHA)
On the site https://proxy-tools.com/proxy / when you click on "Show port" in the browser, the captcha passes without additional verification. However, if you use the script, an additional check appears. My script `from seleniumbase import SB with SB(uc=True, test=True, locale_code="en") as sb: url = "https://proxy-tools.com/proxy/https" sb.driver.uc_open_with_reconnect(url, 1) sb.click('button:contains("Got")') sb.driver.uc_click('a[data-target="#showPorts"]') sb.switch_to_frame("iframe") sb.driver.uc_click('span[id="recaptcha-anchor"',reconnect_time=10) `
closed
2024-06-03T05:40:43Z
2024-06-03T12:57:16Z
https://github.com/seleniumbase/SeleniumBase/issues/2821
[ "external", "UC Mode / CDP Mode" ]
MaxKarpyza
1
explosion/spaCy
machine-learning
13,238
TypeError: can not serialize 'DocTransformerOutput' object
This seems to be exactly #6672, but since that's locked, I cannot comment on it. ## How to reproduce the behaviour The example from #6672: ```python import spacy sentence = "I love you." nlp = spacy.load('en_core_web_trf') doc = nlp(sentence) doc.to_bytes() ``` raises `TypeError: can not serialize 'DocTransformerOutput' object`. ## Info about spaCy - **spaCy version:** 3.7.2 - **Platform:** Linux-6.2.0-1018-lowlatency-x86_64-with-glibc2.37 - **Python version:** 3.11.4 - **Pipelines:** en_core_web_trf (3.7.3), de_core_news_lg (3.7.0), de_core_news_md (3.7.0), de_core_news_sm (3.7.0), de_dep_news_trf (3.7.2)
closed
2024-01-16T12:27:25Z
2024-02-26T00:02:33Z
https://github.com/explosion/spaCy/issues/13238
[ "bug", "feat / serialize", "feat / transformer" ]
sliedes
4
pytest-dev/pytest-xdist
pytest
203
testsuite completely falls appart locally
``` Replacing crashed slave gw494 [gw495] node down: Traceback (most recent call last): File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/execnet/gateway_base.py", line 1072, in executetask do_exec(co, loc) # noqa File "<string>", line 1, in do_exec File "<remote exec>", line 174, in <module> OSError: [Errno 2] No such file or directory Replacing crashed slave gw495 [gw496] node down: Traceback (most recent call last): File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/execnet/gateway_base.py", line 1072, in executetask do_exec(co, loc) # noqa File "<string>", line 1, in do_exec File "<remote exec>", line 174, in <module> OSError: [Errno 2] No such file or directory Replacing crashed slave gw496 [gw497] node down: Traceback (most recent call last): File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/execnet/gateway_base.py", line 1072, in executetask do_exec(co, loc) # noqa File "<string>", line 1, in do_exec File "<remote exec>", line 174, in <module> OSError: [Errno 2] No such file or directory Replacing crashed slave gw497 [gw498] node down: Traceback (most recent call last): File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/execnet/gateway_base.py", line 1072, in executetask do_exec(co, loc) # noqa File "<string>", line 1, in do_exec File "<remote exec>", line 174, in <module> OSError: [Errno 2] No such file or directory Replacing crashed slave gw498 INTERNALERROR> Traceback (most recent call last): INTERNALERROR> File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/_pytest/main.py", line 110, in wrap_session INTERNALERROR> session.exitstatus = doit(config, session) or 0 INTERNALERROR> File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/_pytest/main.py", line 146, in _main INTERNALERROR> config.hook.pytest_runtestloop(session=session) INTERNALERROR> File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/_pytest/vendored_packages/pluggy.py", line 745, in __call__ INTERNALERROR> return self._hookexec(self, self._nonwrappers + self._wrappers, kwargs) INTERNALERROR> File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/_pytest/vendored_packages/pluggy.py", line 339, in _hookexec INTERNALERROR> return self._inner_hookexec(hook, methods, kwargs) INTERNALERROR> File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/_pytest/vendored_packages/pluggy.py", line 302, in __call__ INTERNALERROR> return outcome.get_result() INTERNALERROR> File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/_pytest/vendored_packages/pluggy.py", line 280, in get_result INTERNALERROR> _reraise(*ex) # noqa INTERNALERROR> File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/_pytest/vendored_packages/pluggy.py", line 265, in __init__ INTERNALERROR> self.result = func() INTERNALERROR> File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/_pytest/vendored_packages/pluggy.py", line 300, in <lambda> INTERNALERROR> outcome = _CallOutcome(lambda: self.oldcall(hook, hook_impls, kwargs)) INTERNALERROR> File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/_pytest/vendored_packages/pluggy.py", line 334, in <lambda> INTERNALERROR> _MultiCall(methods, kwargs, hook.spec_opts).execute() INTERNALERROR> File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/_pytest/vendored_packages/pluggy.py", line 614, in execute INTERNALERROR> res = hook_impl.function(*args) INTERNALERROR> File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/xdist/dsession.py", line 114, in pytest_runtestloop INTERNALERROR> self.loop_once() INTERNALERROR> File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/xdist/dsession.py", line 133, in loop_once INTERNALERROR> call(**kwargs) INTERNALERROR> File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/xdist/dsession.py", line 197, in slave_errordown INTERNALERROR> self._clone_node(node) INTERNALERROR> File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/xdist/dsession.py", line 261, in _clone_node INTERNALERROR> node = self.nodemanager.setup_node(spec, self.queue.put) INTERNALERROR> File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/xdist/slavemanage.py", line 68, in setup_node INTERNALERROR> gw = self.group.makegateway(spec) INTERNALERROR> File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/execnet/multi.py", line 127, in makegateway INTERNALERROR> io = gateway_io.create_io(spec, execmodel=self.execmodel) INTERNALERROR> File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/execnet/gateway_io.py", line 113, in create_io INTERNALERROR> return Popen2IOMaster(args, execmodel) INTERNALERROR> File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/execnet/gateway_io.py", line 17, in __init__ INTERNALERROR> self.popen = p = execmodel.PopenPiped(args) INTERNALERROR> File "/home/rpfannsc/Projects/pytest-dev/pytest-xdist/.tox/py27/lib/python2.7/site-packages/execnet/gateway_base.py", line 178, in PopenPiped INTERNALERROR> return self.subprocess.Popen(args, stdout=PIPE, stdin=PIPE) INTERNALERROR> File "/usr/lib64/python2.7/subprocess.py", line 390, in __init__ INTERNALERROR> errread, errwrite) INTERNALERROR> File "/usr/lib64/python2.7/subprocess.py", line 908, in _execute_child INTERNALERROR> errpipe_read, errpipe_write = self.pipe_cloexec() INTERNALERROR> File "/usr/lib64/python2.7/subprocess.py", line 860, in pipe_cloexec INTERNALERROR> r, w = os.pipe() INTERNALERROR> OSError: [Errno 24] Too many open files ```
closed
2017-08-05T07:45:49Z
2024-01-08T10:30:02Z
https://github.com/pytest-dev/pytest-xdist/issues/203
[ "needs information" ]
RonnyPfannschmidt
3
yaroslaff/nudecrawler
web-scraping
3
IndexError: tuple index out of range
It works, but after a while it drops out with an error ``` Traceback (most recent call last): File "/root/nudecrawler/bin/nudecrawler", line 467, in <module> main() File "/root/nudecrawler/bin/nudecrawler", line 456, in main check_word(w, day, args.fails, print_urls = args.urls, resumecount=resumecount) File "/root/nudecrawler/bin/nudecrawler", line 263, in check_word p = analyse(url) File "/root/nudecrawler/bin/nudecrawler", line 165, in analyse p.check_all() File "/usr/local/lib/python3.9/dist-packages/nudecrawler/page.py", line 150, in check_all self.check_images() File "/usr/local/lib/python3.9/dist-packages/nudecrawler/page.py", line 318, in check_images self.is_nude(url) File "/usr/local/lib/python3.9/dist-packages/nudecrawler/page.py", line 290, in is_nude self.do_detect_image(url) File "/usr/local/lib/python3.9/dist-packages/nudecrawler/page.py", line 246, in do_detect_image verdict = ri.detect_image(self.detect_image) File "/usr/local/lib/python3.9/dist-packages/nudecrawler/remoteimage.py", line 60, in detect_image return n.parse().result File "/usr/local/lib/python3.9/dist-packages/nude.py", line 90, in parse b = pixels[x, y][2] # blue IndexError: tuple index out of range ``` Python 3.9.2 Debian 11.6 Use with wordlist.txt and urls.txt from here
closed
2023-04-07T18:58:54Z
2023-04-12T18:42:00Z
https://github.com/yaroslaff/nudecrawler/issues/3
[]
jeffscrum
9
modin-project/modin
data-science
7,334
BUG: Series.compare with differently named series raises ValueError, but should not
### Modin version checks - [X] I have checked that this issue has not already been reported. - [X] I have confirmed this bug exists on the latest released version of Modin. - [X] I have confirmed this bug exists on the main branch of Modin. (In order to do this you can follow [this guide](https://modin.readthedocs.io/en/stable/getting_started/installation.html#installing-from-the-github-main-branch).) ### Reproducible Example ```python import modin.pandas as pd pd.Series(1, name='a').compare(pd.Series(2, name='b')) ``` ### Issue Description `DataFrame.compare` requires the two frames to have the same columns, but `Series.compare` should not. ### Expected Behavior should match pandas and ignore the series `name`. ### Error Logs <details> ```python-traceback RayTaskError(ValueError) Traceback (most recent call last) File ~/miniconda3/envs/modin-latest/lib/python3.9/site-packages/IPython/core/formatters.py:708, in PlainTextFormatter.__call__(self, obj) 701 stream = StringIO() 702 printer = pretty.RepresentationPrinter(stream, self.verbose, 703 self.max_width, self.newline, 704 max_seq_length=self.max_seq_length, 705 singleton_pprinters=self.singleton_printers, 706 type_pprinters=self.type_printers, 707 deferred_pprinters=self.deferred_printers) --> 708 printer.pretty(obj) 709 printer.flush() 710 return stream.getvalue() File ~/miniconda3/envs/modin-latest/lib/python3.9/site-packages/IPython/lib/pretty.py:410, in RepresentationPrinter.pretty(self, obj) 407 return meth(obj, self, cycle) 408 if cls is not object \ 409 and callable(cls.__dict__.get('__repr__')): --> 410 return _repr_pprint(obj, self, cycle) 412 return _default_pprint(obj, self, cycle) 413 finally: File ~/miniconda3/envs/modin-latest/lib/python3.9/site-packages/IPython/lib/pretty.py:778, in _repr_pprint(obj, p, cycle) 776 """A pprint that just redirects to the normal repr function.""" 777 # Find newlines and replace them with p.break_() --> 778 output = repr(obj) 779 lines = output.splitlines() 780 with p.group(): File ~/sources/modin/modin/logging/logger_decorator.py:144, in enable_logging.<locals>.decorator.<locals>.run_and_log(*args, **kwargs) 129 """ 130 Compute function with logging if Modin logging is enabled. 131 (...) 141 Any 142 """ 143 if LogMode.get() == "disable": --> 144 return obj(*args, **kwargs) 146 logger = get_logger() 147 logger.log(log_level, start_line) File ~/sources/modin/modin/pandas/dataframe.py:273, in DataFrame.__repr__(self) 271 num_rows = pandas.get_option("display.max_rows") or len(self.index) 272 num_cols = pandas.get_option("display.max_columns") or len(self.columns) --> 273 result = repr(self._build_repr_df(num_rows, num_cols)) 274 if len(self.index) > num_rows or len(self.columns) > num_cols: 275 # The split here is so that we don't repr pandas row lengths. 276 return result.rsplit("\n\n", 1)[0] + "\n\n[{0} rows x {1} columns]".format( 277 len(self.index), len(self.columns) 278 ) File ~/sources/modin/modin/logging/logger_decorator.py:144, in enable_logging.<locals>.decorator.<locals>.run_and_log(*args, **kwargs) 129 """ 130 Compute function with logging if Modin logging is enabled. 131 (...) 141 Any 142 """ 143 if LogMode.get() == "disable": --> 144 return obj(*args, **kwargs) 146 logger = get_logger() 147 logger.log(log_level, start_line) File ~/sources/modin/modin/pandas/base.py:276, in BasePandasDataset._build_repr_df(self, num_rows, num_cols) 254 """ 255 Build pandas DataFrame for string representation. 256 (...) 273 A pandas dataset with `num_rows` or fewer rows and `num_cols` or fewer columns. 274 """ 275 # Fast track for empty dataframe. --> 276 if len(self.index) == 0 or (self._is_dataframe and len(self.columns) == 0): 277 return pandas.DataFrame( 278 index=self.index, 279 columns=self.columns if self._is_dataframe else None, 280 ) 281 row_indexer = _get_repr_axis_label_indexer(self.index, num_rows) File ~/sources/modin/modin/pandas/base.py:4294, in BasePandasDataset.__getattribute__(self, item) 4280 @disable_logging 4281 def __getattribute__(self, item) -> Any: 4282 """ 4283 Return item from the `BasePandasDataset`. 4284 (...) 4292 Any 4293 """ -> 4294 attr = super().__getattribute__(item) 4295 if item not in _DEFAULT_BEHAVIOUR and not self._query_compiler.lazy_execution: 4296 # We default to pandas on empty DataFrames. This avoids a large amount of 4297 # pain in underlying implementation and returns a result immediately rather 4298 # than dealing with the edge cases that empty DataFrames have. 4299 if callable(attr) and self.empty and hasattr(self._pandas_class, item): File ~/sources/modin/modin/pandas/base.py:643, in BasePandasDataset._get_index(self) 634 def _get_index(self) -> pandas.Index: 635 """ 636 Get the index for this DataFrame. 637 (...) 641 The union of all indexes across the partitions. 642 """ --> 643 return self._query_compiler.index File ~/sources/modin/modin/core/storage_formats/pandas/query_compiler.py:102, in _get_axis.<locals>.<lambda>(self) 89 """ 90 Build index labels getter of the specified axis. 91 (...) 99 callable(PandasQueryCompiler) -> pandas.Index 100 """ 101 if axis == 0: --> 102 return lambda self: self._modin_frame.index 103 else: 104 return lambda self: self._modin_frame.columns File ~/sources/modin/modin/core/dataframe/pandas/dataframe/dataframe.py:709, in PandasDataframe._get_index(self) 700 """ 701 Get the index from the cache object. 702 (...) 706 An index object containing the row labels. 707 """ 708 if self.has_index_cache: --> 709 index, row_lengths = self._index_cache.get(return_lengths=True) 710 else: 711 index, row_lengths = self._compute_axis_labels_and_lengths(0) File ~/sources/modin/modin/core/dataframe/pandas/metadata/index.py:194, in ModinIndex.get(self, return_lengths) 192 if not self.is_materialized: 193 if callable(self._value): --> 194 index, self._lengths_cache = self._value() 195 self._value = ensure_index(index) 196 elif self._value is None: File ~/sources/modin/modin/core/dataframe/pandas/metadata/index.py:106, in ModinIndex._get_default_callable.<locals>.<lambda>() 91 @staticmethod 92 def _get_default_callable(dataframe_obj, axis): 93 """ 94 Build a callable extracting index labels and partitions lengths for the specified axis. 95 (...) 104 callable() -> tuple(pandas.Index, list[ints]) 105 """ --> 106 return lambda: dataframe_obj._compute_axis_labels_and_lengths(axis) File ~/sources/modin/modin/logging/logger_decorator.py:144, in enable_logging.<locals>.decorator.<locals>.run_and_log(*args, **kwargs) 129 """ 130 Compute function with logging if Modin logging is enabled. 131 (...) 141 Any 142 """ 143 if LogMode.get() == "disable": --> 144 return obj(*args, **kwargs) 146 logger = get_logger() 147 logger.log(log_level, start_line) File ~/sources/modin/modin/core/dataframe/pandas/dataframe/dataframe.py:835, in PandasDataframe._compute_axis_labels_and_lengths(self, axis, partitions) 833 if partitions is None: 834 partitions = self._partitions --> 835 new_index, internal_idx = self._partition_mgr_cls.get_indices(axis, partitions) 836 return new_index, list(map(len, internal_idx)) File ~/sources/modin/modin/logging/logger_decorator.py:144, in enable_logging.<locals>.decorator.<locals>.run_and_log(*args, **kwargs) 129 """ 130 Compute function with logging if Modin logging is enabled. 131 (...) 141 Any 142 """ 143 if LogMode.get() == "disable": --> 144 return obj(*args, **kwargs) 146 logger = get_logger() 147 logger.log(log_level, start_line) File ~/sources/modin/modin/core/dataframe/pandas/partitioning/partition_manager.py:1193, in PandasDataframePartitionManager.get_indices(cls, axis, partitions, index_func) 1191 if len(target): 1192 new_idx = [idx.apply(func) for idx in target[0]] -> 1193 new_idx = cls.get_objects_from_partitions(new_idx) 1194 else: 1195 new_idx = [pandas.Index([])] File ~/sources/modin/modin/logging/logger_decorator.py:144, in enable_logging.<locals>.decorator.<locals>.run_and_log(*args, **kwargs) 129 """ 130 Compute function with logging if Modin logging is enabled. 131 (...) 141 Any 142 """ 143 if LogMode.get() == "disable": --> 144 return obj(*args, **kwargs) 146 logger = get_logger() 147 logger.log(log_level, start_line) File ~/sources/modin/modin/core/dataframe/pandas/partitioning/partition_manager.py:1134, in PandasDataframePartitionManager.get_objects_from_partitions(cls, partitions) 1130 partitions[idx] = part.force_materialization() 1131 assert all( 1132 [len(partition.list_of_blocks) == 1 for partition in partitions] 1133 ), "Implementation assumes that each partition contains a single block." -> 1134 return cls._execution_wrapper.materialize( 1135 [partition.list_of_blocks[0] for partition in partitions] 1136 ) 1137 return [partition.get() for partition in partitions] File ~/sources/modin/modin/core/execution/ray/common/engine_wrapper.py:139, in RayWrapper.materialize(cls, obj_id) 136 return ray.get(obj_id) if isinstance(obj_id, ray.ObjectRef) else obj_id 138 if all(isinstance(obj, ray.ObjectRef) for obj in obj_id): --> 139 return ray.get(obj_id) 141 ids = {} 142 result = [] File ~/miniconda3/envs/modin-latest/lib/python3.9/site-packages/ray/_private/auto_init_hook.py:24, in wrap_auto_init.<locals>.auto_init_wrapper(*args, **kwargs) 21 @wraps(fn) 22 def auto_init_wrapper(*args, **kwargs): 23 auto_init_ray() ---> 24 return fn(*args, **kwargs) File ~/miniconda3/envs/modin-latest/lib/python3.9/site-packages/ray/_private/client_mode_hook.py:103, in client_mode_hook.<locals>.wrapper(*args, **kwargs) 101 if func.__name__ != "init" or is_client_mode_enabled_by_default: 102 return getattr(ray, func.__name__)(*args, **kwargs) --> 103 return func(*args, **kwargs) File ~/miniconda3/envs/modin-latest/lib/python3.9/site-packages/ray/_private/worker.py:2563, in get(object_refs, timeout) 2561 worker.core_worker.dump_object_store_memory_usage() 2562 if isinstance(value, RayTaskError): -> 2563 raise value.as_instanceof_cause() 2564 else: 2565 raise value RayTaskError(ValueError): ray::remote_exec_func() (pid=58063, ip=127.0.0.1) At least one of the input arguments for this task could not be computed: ray.exceptions.RayTaskError: ray::_deploy_ray_func() (pid=58063, ip=127.0.0.1) File "/Users/mvashishtha/sources/modin/modin/core/execution/ray/implementations/pandas_on_ray/partitioning/virtual_partition.py", line 335, in _deploy_ray_func result = deployer(axis, f_to_deploy, f_args, f_kwargs, *deploy_args, **kwargs) File "/Users/mvashishtha/sources/modin/modin/logging/logger_decorator.py", line 144, in run_and_log return obj(*args, **kwargs) File "/Users/mvashishtha/sources/modin/modin/core/dataframe/pandas/partitioning/axis_partition.py", line 575, in deploy_func_between_two_axis_partitions result = func(lt_frame, rt_frame, *f_args, **f_kwargs) File "/Users/mvashishtha/sources/modin/modin/core/dataframe/pandas/dataframe/dataframe.py", line 2078, in _tree_reduce_func series_result = func(df, *args, **kwargs) File "/Users/mvashishtha/sources/modin/modin/core/storage_formats/pandas/query_compiler.py", line 4663, in <lambda> lambda left, right: pandas.DataFrame.compare( File "/Users/mvashishtha/miniconda3/envs/modin-latest/lib/python3.9/site-packages/pandas/core/frame.py", line 8580, in compare return super().compare( File "/Users/mvashishtha/miniconda3/envs/modin-latest/lib/python3.9/site-packages/pandas/core/generic.py", line 10118, in compare mask = ~((self == other) | (self.isna() & other.isna())) File "/Users/mvashishtha/miniconda3/envs/modin-latest/lib/python3.9/site-packages/pandas/core/ops/common.py", line 76, in new_method return method(self, other) File "/Users/mvashishtha/miniconda3/envs/modin-latest/lib/python3.9/site-packages/pandas/core/arraylike.py", line 40, in __eq__ return self._cmp_method(other, operator.eq) File "/Users/mvashishtha/miniconda3/envs/modin-latest/lib/python3.9/site-packages/pandas/core/frame.py", line 7884, in _cmp_method self, other = self._align_for_op(other, axis, flex=False, level=None) File "/Users/mvashishtha/miniconda3/envs/modin-latest/lib/python3.9/site-packages/pandas/core/frame.py", line 8183, in _align_for_op raise ValueError( ValueError: Can only compare identically-labeled (both index and columns) DataFrame objects ``` </details> ### Installed Versions <details> ``` INSTALLED VERSIONS ------------------ commit : 759d548814a6ac224e83e7531cf98e20b13d85cb python : 3.9.18.final.0 python-bits : 64 OS : Darwin OS-release : 23.5.0 Version : Darwin Kernel Version 23.5.0: Wed May 1 20:14:38 PDT 2024; root:xnu-10063.121.3~5/RELEASE_ARM64_T6020 machine : arm64 processor : arm byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8 Modin dependencies ------------------ modin : 0.31.0+2.g759d5488 ray : 2.8.0 dask : 2024.3.1 distributed : 2024.3.1 pandas dependencies ------------------- pandas : 2.2.1 numpy : 1.26.1 pytz : 2023.3.post1 dateutil : 2.8.2 setuptools : 68.0.0 pip : 23.3 Cython : None pytest : 8.1.1 hypothesis : None sphinx : 7.2.6 blosc : None feather : None xlsxwriter : None lxml.etree : 5.1.0 html5lib : None pymysql : None psycopg2 : 2.9.9 jinja2 : 3.1.2 IPython : 8.17.2 pandas_datareader : None adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : 4.12.3 bottleneck : None dataframe-api-compat : None fastparquet : 2024.2.0 fsspec : 2024.3.1 gcsfs : None matplotlib : 3.8.1 numba : None numexpr : 2.8.4 odfpy : None openpyxl : 3.1.2 pandas_gbq : 0.22.0 pyarrow : 14.0.1 pyreadstat : None python-calamine : None pyxlsb : None s3fs : 2024.3.1 scipy : 1.11.3 sqlalchemy : 2.0.29 tables : 3.9.2 tabulate : 0.9.0 xarray : 2024.2.0 xlrd : 2.0.1 zstandard : None tzdata : 2023.3 qtpy : None pyqt5 : None ``` </details>
open
2024-06-29T00:26:36Z
2024-06-29T00:27:05Z
https://github.com/modin-project/modin/issues/7334
[ "bug 🦗", "P2", "Interfaces and abstractions" ]
sfc-gh-mvashishtha
1
mouredev/Hello-Python
fastapi
478
网赌被黑怎么办、有办法挽救吗
出黑咨询+微:zdn200 微信:xiaolu460570 飞机“@lc15688 如果你出现以下这些情况,说明你已经被黑了:↓ ↓ 【网赌被黑怎么办】【网赌赢了平台不给出款】【系统更新】【取款失败】【注单异常】【网络波动】【提交失败】 【单注为回归 】【单注未更新】【出款通道维护】 【打双倍流水】 【充值同等的金额】 关于网上网赌娱乐平台赢钱了各种借口不给出款最新解决方法 切记,只要你赢钱了,遇到任何不给你提现的借口,基本表明你已经被黑了 ![Image](https://github.com/user-attachments/assets/ab40b20b-bc35-4aaa-af97-796c193e68c7)
closed
2025-03-06T08:37:06Z
2025-03-10T13:47:08Z
https://github.com/mouredev/Hello-Python/issues/478
[]
khyl55
0
django-import-export/django-import-export
django
1,730
V4: _check_import_id_fields doesn't produce intended error message.
**Describe the bug** With V4 I have started getting following errors on `django-hordak` tests (for some reason it updates to pre versions even if it is not requested): ``` File "/home/runner/work/django-hordak/django-hordak/hordak/views/statement_csv_import.py", line 84, in post self.result = resource.import_data( ^^^^^^^^^^^^^^^^^^^^^ File "/opt/hostedtoolcache/Python/3.12.1/x64/lib/python3.12/site-packages/django_import_export-4.0.0b2-py3.12.egg/import_export/resources.py", line 799, in import_data result = self.import_data_inner( ^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/hostedtoolcache/Python/3.12.1/x64/lib/python3.12/site-packages/django_import_export-4.0.0b2-py3.12.egg/import_export/resources.py", line 835, in import_data_inner self._check_import_id_fields(dataset.headers) File "/opt/hostedtoolcache/Python/3.12.1/x64/lib/python3.12/site-packages/django_import_export-4.0.0b2-py3.12.egg/import_export/resources.py", line 1068, in _check_import_id_fields import_id_fields = [self.fields[f] for f in self.get_import_id_fields()] ~~~~~~~~~~~^^^ KeyError: 'id' ``` (https://github.com/adamcharnock/django-hordak/actions/runs/7421188620/job/20194029428) I expect, that the `_check_import_id_fields` function should provide better error output like `The following import_id_fields are not present in the dataset` in such cases. **Versions (please complete the following information):** - Django Import Export: 4.0.0b2 - Python 3.8-3.12 - Django 4.2-5.0
closed
2024-01-05T11:51:28Z
2024-05-03T08:08:59Z
https://github.com/django-import-export/django-import-export/issues/1730
[ "bug" ]
PetrDlouhy
3
dynaconf/dynaconf
fastapi
1,259
[3.3.0] Adjust Python versions supported
### Discussed in https://github.com/dynaconf/dynaconf/discussions/1258 <div type='discussions-op-text'> <sup>Originally posted by **judy-devData** February 19, 2025</sup> The latest version of dynaconf released on february 17 includes support for Python 3.11. Are there any plans in the near future to support python 3.12?</div> -- We must support the latest 5 versions of Python https://endoflife.date/python 3.9, 3.10, 3.11, 3.12 and 3.13 So this issue is about dropping 3.8 and ensuring test matrix covers the versions above and also ensure metadata is updated on package.
open
2025-02-19T15:32:06Z
2025-02-19T15:32:06Z
https://github.com/dynaconf/dynaconf/issues/1259
[]
rochacbruno
0
miguelgrinberg/python-socketio
asyncio
593
Client doesn't work on simple example. Error: simplejson.errors.JSONDecodeError
I'm trying to run the simple example: ``` import socketio sio = socketio.Client() @sio.event def connect(): print('connected to server') @sio.event def disconnect(): print('disconnected from server') sio.connect('wss://echo.websocket.org') sio.wait() ``` but I'm getting an error: `Traceback (most recent call last): File "cli.py", line 15, in <module> sio.connect('wss://echo.websocket.org') File "/home/ihor/.local/lib/python3.6/site-packages/socketio/client.py", line 275, in connect engineio_path=socketio_path) File "/home/ihor/.local/lib/python3.6/site-packages/engineio/client.py", line 187, in connect url, headers or {}, engineio_path) File "/home/ihor/.local/lib/python3.6/site-packages/engineio/client.py", line 292, in _connect_polling arg = r.json() File "/home/ihor/.local/lib/python3.6/site-packages/requests/models.py", line 900, in json return complexjson.loads(self.text, **kwargs) File "/usr/lib/python3/dist-packages/simplejson/__init__.py", line 518, in loads return _default_decoder.decode(s) File "/usr/lib/python3/dist-packages/simplejson/decoder.py", line 370, in decode obj, end = self.raw_decode(s) File "/usr/lib/python3/dist-packages/simplejson/decoder.py", line 400, in raw_decode return self.scan_once(s, idx=_w(s, idx).end()) simplejson.errors.JSONDecodeError: Expecting value: line 1 column 1 (char 0)` I tried also to import json module and set it to sio.Client(json=json) but got the same error. Please advice the solution.
closed
2020-12-21T20:49:44Z
2020-12-21T20:58:43Z
https://github.com/miguelgrinberg/python-socketio/issues/593
[]
ihormihal
1
plotly/dash-table
dash
233
Clean up build output & committed build/intermediary files
Following #212, some issues in the build and general lifecycle of the repo have become apparent. Here are some points to fix, explore, or justify. 1. Make the build output file name match those of other Dash repos (e.g lib/dash-table.[min|dev].js) 2. Do not commit build and intermediary results in the repo (e.g. /dash_table, /lib, /dist) 3. Expose source map
open
2018-11-08T12:58:18Z
2019-07-06T12:24:45Z
https://github.com/plotly/dash-table/issues/233
[ "dash-type-maintenance" ]
Marc-Andre-Rivet
0
scikit-learn-contrib/metric-learn
scikit-learn
215
set/update the preprocessor outside the init
Just a thought, but it might be useful to have a function to update/set the preprocessor outside of the init. Right now it is just initialized when calling fit (so using sth like `mcc.set_params(preprocessor=X)` won't help). But one might realize later after fitting that they need a/another preprocessor, for instance if they want to `score_pairs` on a huge dataset, or maybe if they want to `score_pairs` on a different dataset than the one they used at fit time.
open
2019-06-12T09:49:31Z
2019-06-12T14:07:32Z
https://github.com/scikit-learn-contrib/metric-learn/issues/215
[]
wdevazelhes
1
inventree/InvenTree
django
9,260
Reverse proxy: Contradictory scheme headers
### Deployment Method - [ ] Installer - [ ] Docker Development - [ ] Docker Production - [ ] Bare metal Development - [ ] Bare metal Production - [ ] Digital Ocean image - [x] Other (please provide a link `Steps to Reproduce` ### Describe the problem* First I would like to apologize for being a completely lost n00b. I'm clearly out of my depth here. I have spun up multiple docker containers and LXCs in the past, and reverse-proxied them successfully with Linuxserver's SWAG container with extremely minimal config, but there is something going WAY over my head here. My config resulted in "Bad Request; Contradictory scheme headers", and everything I did just seemed to make the situation worse until I restored from backups. ### Steps to Reproduce 1. Install [Inventree LXC via Proxmox Helper Scripts](https://community-scripts.github.io/ProxmoxVE/scripts?id=inventree) (Not sure if they're using the installer script or their own script for a bare metal install. I've looked at their script source and it's all black magic to me; I guess the script somehow is importing more steps from somewhere else because as far as I comprehend the linked script source seems to do basically nothing.) 2. Inventree is working fine at http://192.168.43.157 (aside from seemingly defaulting to CUI instead of PUI and I can't seem to figure out how to change that default yet, but that's tangential to this post). 3. Use [LinuxServer's SWAG container](https://docs.linuxserver.io/general/swag/) along with the [Cloudflared mod](https://github.com/linuxserver/docker-mods/tree/universal-cloudflared) to perform reverse-proxying including automatically getting LetsEncrypt cert, setting DNS records, and configuring Cloudflare tunnel. There is an [example of how they do this on their blog](https://www.linuxserver.io/blog/zero-trust-hosting-and-reverse-proxy-via-cloudflare-swag-and-authelia) but I don't use the additional authentication layer (eg. authelia) yet. 4. The container provides prebuilt proxy confs for many selfhosted services, but unfortunately not Inventree. I've created my own confs based on their [sample subdomain conf](https://github.com/linuxserver/reverse-proxy-confs/blob/master/_template.subdomain.conf.sample) without any issues before. Here's my inventree.subdomain.conf: ``` ## Version 2024/07/16 # Basically just the example conf server { listen 443 ssl; listen [::]:443 ssl; server_name inventree.*; include /config/nginx/ssl.conf; client_max_body_size 0; location / { include /config/nginx/proxy.conf; include /config/nginx/resolver.conf; set $upstream_app 192.168.43.157; set $upstream_port 80; set $upstream_proto http; proxy_pass $upstream_proto://$upstream_app:$upstream_port; } } ``` 5. Reload nginx and fail utterly to load the site externally 6. Read documentation, Reddit, Github discourse, make various changes to nginx proxy conf and/or Inventree config.yaml, see site get progressively more broken with each change 7. Restore LXC from last night's working backup so it's at least accessible by IP again 8. Sheepishly post on Github and hope someone is willing to help ### Relevant log output ```bash Bad Request Contradictory scheme headers ```
closed
2025-03-07T20:54:32Z
2025-03-11T23:11:05Z
https://github.com/inventree/InvenTree/issues/9260
[ "question", "setup" ]
realcanadrian
2
python-restx/flask-restx
flask
545
Swagger schema creation can crash if multiple requests arrive quickly on startup [theory]
Hello flask-restx team! This is a bit of a nasty one sorry! We have recently twice observed a crash (call stack below) inside the Swagger() constructor on application startup, when it receives its first request. The exception being thrown ("dictionary changed size during iteration") is indicative of a threading issue where there are multiple threads concurrently trying to construct a Swagger() object, which is assigned to a cached property on the Api class when the first request that requires validation arrives (or when the swagger-ui url is loaded). As there are no locks and no threads in flask-restx, it appears that the Swagger() constructor is not thread-safe, and if multiple requests arrive very quickly at application startup (and flask is running with threaded=True), it is possible that data corruption and crashes can happen during schema rendering. Please note this is just my theory on root cause, and I'm submitting this issue to hear from anyone else in case I've assumed wrong. The crash randomly happens (we've seen it twice in the last week), and despite trying, I have so far not found a way to reproduce it unfortunately. As for a fix, it would seem that a lock should be used to guarantee thread-safety of the Swagger() constructor. I would be happy to work on a PR for that if advised by flask-restx maintainers. ### **Code** Happy to provide, in particular the model definitions we use, if it helps, but as this is largish application and the call stack indicates a non-reproducible threading condition, my thought is that the root cause is not directly related to our model definitions. So I initially wanted to seek advice on course of action based on the call stack and my interpretation. We do have Nested fields, but only a single level of nesting. ### **Repro Steps** (if applicable) Sorry, not known. ### **Expected Behavior** If multiple requests reach the server quickly on startup, schema creation should be synchronized to ensure it is created before any request is processed. ### **Actual Behavior** If schema creation fails, the application continues to run, but requests that expect validation using can crash during validation when schema is referenced, indicative of corrupt/incomplete schema, for example, we see this: Traceback (most recent call last): File "/home/app/.local/lib/python3.8/site-packages/jsonschema/validators.py", line 966, in resolve_fragment document = document[part] KeyError: 'definitions' ### **Error Messages/Stack Trace** 2023-05-29 11:52:47,766 ERROR T140221658154752 [api.__schema__] Unable to render schema Traceback (most recent call last): File "/home/app/.local/lib/python3.8/site-packages/flask_restx/api.py", line 573, in __schema__ self._schema = Swagger(self).as_dict() File "/home/app/.local/lib/python3.8/site-packages/flask_restx/swagger.py", line 275, in as_dict serialized = self.serialize_resource( File "/home/app/.local/lib/python3.8/site-packages/flask_restx/swagger.py", line 482, in serialize_resource path[method] = self.serialize_operation(doc, method) File "/home/app/.local/lib/python3.8/site-packages/flask_restx/swagger.py", line 488, in serialize_operation "responses": self.responses_for(doc, method) or None, File "/home/app/.local/lib/python3.8/site-packages/flask_restx/swagger.py", line 622, in responses_for responses[code]["schema"] = self.serialize_schema(d["model"]) File "/home/app/.local/lib/python3.8/site-packages/flask_restx/swagger.py", line 672, in serialize_schema self.register_model(model) File "/home/app/.local/lib/python3.8/site-packages/flask_restx/swagger.py", line 703, in register_model self.register_field(field) File "/home/app/.local/lib/python3.8/site-packages/flask_restx/swagger.py", line 713, in register_field self.register_field(field.container) File "/home/app/.local/lib/python3.8/site-packages/flask_restx/swagger.py", line 711, in register_field self.register_model(field.nested) File "/home/app/.local/lib/python3.8/site-packages/flask_restx/fields.py", line 261, in nested return getattr(self.model, "resolved", self.model) File "/home/app/.local/lib/python3.8/site-packages/werkzeug/utils.py", line 109, in __get__ value = self.fget(obj) # type: ignore File "/home/app/.local/lib/python3.8/site-packages/flask_restx/model.py", line 176, in resolved resolved = copy.deepcopy(self) File "/usr/local/lib/python3.8/copy.py", line 153, in deepcopy y = copier(memo) File "/home/app/.local/lib/python3.8/site-packages/flask_restx/model.py", line 236, in __deepcopy__ [(key, copy.deepcopy(value, memo)) for key, value in self.items()], File "/home/app/.local/lib/python3.8/site-packages/flask_restx/model.py", line 236, in <listcomp> [(key, copy.deepcopy(value, memo)) for key, value in self.items()], File "/usr/local/lib/python3.8/copy.py", line 172, in deepcopy y = _reconstruct(x, memo, *rv) File "/usr/local/lib/python3.8/copy.py", line 270, in _reconstruct state = deepcopy(state, memo) File "/usr/local/lib/python3.8/copy.py", line 146, in deepcopy y = copier(x, memo) File "/usr/local/lib/python3.8/copy.py", line 229, in _deepcopy_dict for key, value in x.items(): **RuntimeError: dictionary changed size during iteration** 2023-05-29 11:52:47,866 DEBUG T140221658154752 PUT to /api/v1/devices/100 processed in 169ms code 200 2023-05-29 11:52:47,880 DEBUG T140221972719360 PUT to /api/v1/devices/101 processed in 178ms code 200 2023-05-29 11:52:47,886 DEBUG T140221658154752 POST to /api/v1/devices/query processed in 17ms code 200 2023-05-29 11:52:47,888 DEBUG T140221689624320 PUT to /api/v1/devices/102 processed in 188ms code 200 2023-05-29 11:52:47,909 DEBUG T140221972719360 POST to /api/v1/devices/query processed in 4ms code 200 ^^^ Note the multiple requests arriving on different theads within the same second as the crash, logged after the call stack ^^^ ### **Environment** - Python version 3.8.10 - Flask version 2.0.3 - Flask-RESTX version 1.0.6 - Other installed Flask extensions (none) Thanks for your time.
open
2023-06-06T06:06:01Z
2024-02-22T13:45:55Z
https://github.com/python-restx/flask-restx/issues/545
[ "bug" ]
peterhorsley
3
darrenburns/posting
automation
217
Bug: ignore user-agent header and uses it own user-agent
When i set a user-agent posting ignore my user-agent and use it default user agent i'v had posting v2.3.0 and i update to v2.5.2 but it not fixed!
closed
2025-03-09T11:28:03Z
2025-03-13T20:05:50Z
https://github.com/darrenburns/posting/issues/217
[ "bug" ]
ImMohammad20000
4
graphql-python/flask-graphql
graphql
85
which graphiql version is using?
I have `Flask-GraphQL==2.0.1` installed and inside Chrome it is requiring dependencies like > http://cdn.jsdelivr.net/npm/graphiql@0.11.11/graphiql.min.js note: currently the latest version in jsdelivr is 1.0.6 however the github readme says > graphiql_version: The graphiql version to load. __Defaults to "1.0.3".__ reallly? If I set `graphiql_version=1.0.3 ` explicitly, then Chrome throws error > Uncaught Error: GraphiQL 0.18.0 and after is not compatible with React 15 or below I did not find anywhere the `render_graphiql.py` set the variable to "1.0.3" In my local drive is `GRAPHIQL_VERSION = '0.11.11'`; and gitlab `GRAPHIQL_VERSION = '0.7.1'`
open
2020-11-16T09:42:44Z
2021-07-27T03:31:55Z
https://github.com/graphql-python/flask-graphql/issues/85
[]
qinst64
2
ageitgey/face_recognition
machine-learning
1,185
giving cpu as parameter ?
* face_recognition version:1.3.0 * Python version:3.7.6 * Operating System:3.7.6 ### Description I want to know how to give CPU as a parameter in the API calls
open
2020-07-11T10:56:33Z
2020-07-27T13:40:35Z
https://github.com/ageitgey/face_recognition/issues/1185
[]
silexxx
1
mwaskom/seaborn
matplotlib
3,239
[Feature Request] sns.histplot() automatically supports discreted axis labeling.
# Background / related function desc As the doc saids: When both x and y are assigned, a bivariate histogram is computed and shown as a heatmap: ```python sns.histplot(penguins, x="bill_depth_mm", y="body_mass_g") ``` ![image](https://user-images.githubusercontent.com/23258141/215312148-a51a8e14-0640-4224-af42-96105436238f.png) --- # The requested feature is that **If the provided `x=` was a `Pandas Categorical DType`, well cause It's a cat dtype, so what I expected `seaborn` could treat it as discrete variable instead of continuous variable.** Recalls that the `Pandas Categorical DType` it could be a `numeric cat` like `Categories (5, int64): [1 < 10 < 100 < 1000 < 10000]`, or `str cat` like `Categories (3, object): ['0', '10ms', '20ms', '30ms']`. - If it's `str cat`, the `histplot` gives the expected result. ![image](https://user-images.githubusercontent.com/23258141/215312742-ee2d395b-f87e-4221-95b4-04582c9939b6.png) - However, if `num cat`, and it just follows the numberic axis labeling. ![image](https://user-images.githubusercontent.com/23258141/215312764-f78046f4-5a31-4f90-9738-90350f0ae1b3.png) Indeed, may be we can work around by using `log_scale=(True)`, but what if the `num cat` is not log-scale cat? Like `[1 < 200 < 1000< 1200]`. # Currently best workaround I found For those `num cat` dtype columns in dataframe, just convert to `str cat` first then apply histplot(). ```python df[col] = df[col].astype(str).astype('category') sns.histplot(df, x=x, y=col) ```
closed
2023-01-29T07:53:32Z
2023-02-06T17:29:56Z
https://github.com/mwaskom/seaborn/issues/3239
[]
kaimo455
4