input
stringlengths 11
7.65k
| target
stringlengths 22
8.26k
|
---|---|
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def encode(self):
if self.version == 6:
return {'ip6': self.ip_addr}
else:
return {'ip4': self.ip_addr} |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def version(self):
return self.ip_addr.version |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def address(self):
return self.addr |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def length(self):
return self.ip_addr.max_prefixlen |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def bytes(self):
return self.ip_addr.packed |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __eq__(self, other):
if isinstance(other, self.__class__):
return self.ip_addr == other.ip_addr
elif hasattr(other, "ip4") and hasattr(other, "ip6"):
# vl_api_address_union_t
if 4 == self.version:
return self.ip_addr == other.ip4
else:
return self.ip_addr == other.ip6
else:
raise Exception("Comparing VppIpAddressUnions:%s"
" with incomparable type: %s",
self, other) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __ne__(self, other):
return not (self == other) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __str__(self):
return str(self.ip_addr) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __init__(self, saddr, gaddr, glen):
self.saddr = saddr
self.gaddr = gaddr
self.glen = glen
if ip_address(self.saddr).version != \
ip_address(self.gaddr).version:
raise ValueError('Source and group addresses must be of the '
'same address family.') |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def encode(self):
return {
'af': ip_address(self.gaddr).vapi_af,
'grp_address': {
ip_address(self.gaddr).vapi_af_name: self.gaddr
},
'src_address': {
ip_address(self.saddr).vapi_af_name: self.saddr
},
'grp_address_length': self.glen,
} |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def length(self):
return self.glen |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def version(self):
return ip_address(self.gaddr).version |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __str__(self):
return "(%s,%s)/%d" % (self.saddr, self.gaddr, self.glen) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __eq__(self, other):
if isinstance(other, self.__class__):
return (self.glen == other.glen and
self.saddr == other.gaddr and
self.saddr == other.saddr)
elif (hasattr(other, "grp_address_length") and
hasattr(other, "grp_address") and
hasattr(other, "src_address")):
# vl_api_mprefix_t
if 4 == self.version:
return (self.glen == other.grp_address_length and
self.gaddr == str(other.grp_address.ip4) and
self.saddr == str(other.src_address.ip4))
else:
return (self.glen == other.grp_address_length and
self.gaddr == str(other.grp_address.ip6) and
self.saddr == str(other.src_address.ip6))
return NotImplemented |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __init__(self, test, policer_index, is_ip6=False):
self._test = test
self._policer_index = policer_index
self._is_ip6 = is_ip6 |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def add_vpp_config(self):
self._test.vapi.ip_punt_police(policer_index=self._policer_index,
is_ip6=self._is_ip6, is_add=True) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def remove_vpp_config(self):
self._test.vapi.ip_punt_police(policer_index=self._policer_index,
is_ip6=self._is_ip6, is_add=False) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __init__(self, test, rx_index, tx_index, nh_addr):
self._test = test
self._rx_index = rx_index
self._tx_index = tx_index
self._nh_addr = ip_address(nh_addr) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def encode(self):
return {"rx_sw_if_index": self._rx_index,
"tx_sw_if_index": self._tx_index, "nh": self._nh_addr} |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def add_vpp_config(self):
self._test.vapi.ip_punt_redirect(punt=self.encode(), is_add=True)
self._test.registry.register(self, self._test.logger) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def remove_vpp_config(self):
self._test.vapi.ip_punt_redirect(punt=self.encode(), is_add=False) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def get_vpp_config(self):
is_ipv6 = True if self._nh_addr.version == 6 else False
return self._test.vapi.ip_punt_redirect_dump(
sw_if_index=self._rx_index, is_ipv6=is_ipv6) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def query_vpp_config(self):
if self.get_vpp_config():
return True
return False |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __init__(self, test, nh, pmtu, table_id=0):
self._test = test
self.nh = nh
self.pmtu = pmtu
self.table_id = table_id |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def add_vpp_config(self):
self._test.vapi.ip_path_mtu_update(pmtu={'nh': self.nh,
'table_id': self.table_id,
'path_mtu': self.pmtu})
self._test.registry.register(self, self._test.logger)
return self |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def modify(self, pmtu):
self.pmtu = pmtu
self._test.vapi.ip_path_mtu_update(pmtu={'nh': self.nh,
'table_id': self.table_id,
'path_mtu': self.pmtu})
return self |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def remove_vpp_config(self):
self._test.vapi.ip_path_mtu_update(pmtu={'nh': self.nh,
'table_id': self.table_id,
'path_mtu': 0}) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def query_vpp_config(self):
ds = list(self._test.vapi.vpp.details_iter(
self._test.vapi.ip_path_mtu_get))
for d in ds:
if self.nh == str(d.pmtu.nh) \
and self.table_id == d.pmtu.table_id \
and self.pmtu == d.pmtu.path_mtu:
return True
return False |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def object_id(self):
return ("ip-path-mtu-%d-%s-%d" % (self.table_id,
self.nh,
self.pmtu)) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def gaussian(data, mean, covariance):
"""!
@brief Calculates gaussian for dataset using specified mean (mathematical expectation) and variance or covariance in case
multi-dimensional data. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __init__(self, sample, amount):
"""!
@brief Constructs EM initializer. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def initialize(self, init_type = ema_init_type.KMEANS_INITIALIZATION):
"""!
@brief Calculates initial parameters for EM algorithm: means and covariances using
specified strategy. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __calculate_initial_clusters(self, centers):
"""!
@brief Calculate Euclidean distance to each point from the each cluster.
@brief Nearest points are captured by according clusters and as a result clusters are updated. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __calculate_initial_covariances(self, initial_clusters):
covariances = []
for initial_cluster in initial_clusters:
if len(initial_cluster) > 1:
cluster_sample = [self.__sample[index_point] for index_point in initial_cluster]
covariances.append(numpy.cov(cluster_sample, rowvar=False))
else:
dimension = len(self.__sample[0])
covariances.append(numpy.zeros((dimension, dimension)) + random.random() / 10.0) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __initialize_random(self):
initial_means = [] |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __initialize_kmeans(self):
initial_centers = kmeans_plusplus_initializer(self.__sample, self.__amount).initialize()
kmeans_instance = kmeans(self.__sample, initial_centers, ccore = True)
kmeans_instance.process() |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __init__(self):
"""!
@brief Initializes EM observer. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def get_iterations(self):
"""!
@return (uint) Amount of iterations that were done by the EM algorithm. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def get_evolution_means(self):
"""!
@return (list) Mean of each cluster on each step of clustering. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def get_evolution_covariances(self):
"""!
@return (list) Covariance matrix (or variance in case of one-dimensional data) of each cluster on each step of clustering. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def get_evolution_clusters(self):
"""!
@return (list) Allocated clusters on each step of clustering. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def notify(self, means, covariances, clusters):
"""!
@brief This method is used by the algorithm to notify observer about changes where the algorithm
should provide new values: means, covariances and allocated clusters. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def show_clusters(clusters, sample, covariances, means, figure=None, display=True):
"""!
@brief Draws clusters and in case of two-dimensional dataset draws their ellipses.
@details Allocated figure by this method should be closed using `close()` method of this visualizer. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def close(figure):
"""!
@brief Closes figure object that was used or allocated by the visualizer. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def animate_cluster_allocation(data, observer, animation_velocity = 75, movie_fps = 1, save_movie = None):
"""!
@brief Animates clustering process that is performed by EM algorithm. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def init_frame():
return frame_generation(0) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def frame_generation(index_iteration):
figure.clf() |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __draw_ellipses(figure, visualizer, clusters, covariances, means):
ax = figure.get_axes()[0] |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __draw_ellipse(ax, x, y, angle, width, height, color):
if (width > 0.0) and (height > 0.0):
ax.plot(x, y, color=color, marker='x', markersize=6)
ellipse = patches.Ellipse((x, y), width, height, alpha=0.2, angle=-angle, linewidth=2, fill=True, zorder=2, color=color)
ax.add_patch(ellipse) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __init__(self, data, amount_clusters, means=None, variances=None, observer=None, tolerance=0.00001, iterations=100):
"""!
@brief Initializes Expectation-Maximization algorithm for cluster analysis. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def process(self):
"""!
@brief Run clustering process of the algorithm. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def get_clusters(self):
"""!
@return (list) Allocated clusters where each cluster is represented by list of indexes of points from dataset,
for example, two cluster may have following representation [[0, 1, 4], [2, 3, 5, 6]]. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def get_centers(self):
"""!
@return (list) Corresponding centers (means) of clusters. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def get_covariances(self):
"""!
@return (list) Corresponding variances (or covariances in case of multi-dimensional data) of clusters. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def get_probabilities(self):
"""!
@brief Returns 2-dimensional list with belong probability of each object from data to cluster correspondingly,
where that first index is for cluster and the second is for point. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __erase_empty_clusters(self):
clusters, means, variances, pic, gaussians, rc = [], [], [], [], [], [] |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __notify(self):
if self.__observer is not None:
self.__observer.notify(self.__means, self.__variances, self.__clusters) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __extract_clusters(self):
self.__clusters = [[] for _ in range(self.__amount_clusters)]
for index_point in range(len(self.__data)):
candidates = []
for index_cluster in range(self.__amount_clusters):
candidates.append((index_cluster, self.__rc[index_cluster][index_point])) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __log_likelihood(self):
likelihood = 0.0 |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __probabilities(self, index_cluster, index_point):
divider = 0.0
for i in range(self.__amount_clusters):
divider += self.__pic[i] * self.__gaussians[i][index_point] |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __expectation_step(self):
self.__gaussians = [ [] for _ in range(self.__amount_clusters) ]
for index in range(self.__amount_clusters):
self.__gaussians[index] = gaussian(self.__data, self.__means[index], self.__variances[index]) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __maximization_step(self):
self.__pic = []
self.__means = []
self.__variances = [] |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __get_stop_condition(self):
for covariance in self.__variances:
if numpy.linalg.norm(covariance) == 0.0:
return True |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __update_covariance(self, means, rc, mc):
covariance = 0.0
for index_point in range(len(self.__data)):
deviation = numpy.array([self.__data[index_point] - means])
covariance += rc[index_point] * deviation.T.dot(deviation) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __update_mean(self, rc, mc):
mean = 0.0
for index_point in range(len(self.__data)):
mean += rc[index_point] * self.__data[index_point] |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __normalize_probabilities(self):
for index_point in range(len(self.__data)):
probability = 0.0
for index_cluster in range(len(self.__clusters)):
probability += self.__rc[index_cluster][index_point] |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __normalize_probability(self, index_point, probability):
if probability == 0.0:
return |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __verify_arguments(self):
"""!
@brief Verify input parameters for the algorithm and throw exception in case of incorrectness. |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __enter__(self):
"""
Syntax sugar which helps in celery tasks, cron jobs, and other scripts
Usage:
with Tenant.objects.get(schema_name='test') as tenant:
# run some code in tenant test
# run some code in previous tenant (public probably)
"""
connection = connections[get_tenant_database_alias()]
self._previous_tenant.append(connection.tenant)
self.activate()
return self |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | async def handler(client, request):
if request.path == "/v6/challenge":
assert request.encode().decode() == CHALLENGE_REQUEST
response = http.HTTPResponse(200)
response.json = {
"challenge": "vaNgVZZH7gUse0y3t8Cksuln-TAVtvBmcD-ow59qp0E=",
"data": "dlL7ZBNSLmYo1hUlKYZiUA=="
}
return response
else:
assert request.encode().decode() == TOKEN_REQUEST
response = http.HTTPResponse(200)
response.json = {
"device_auth_token": "device token"
}
return response |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __exit__(self, exc_type, exc_val, exc_tb):
connection = connections[get_tenant_database_alias()]
connection.set_tenant(self._previous_tenant.pop()) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def activate(self):
"""
Syntax sugar that helps at django shell with fast tenant changing
Usage:
Tenant.objects.get(schema_name='test').activate()
"""
connection = connections[get_tenant_database_alias()]
connection.set_tenant(self) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def deactivate(cls):
"""
Syntax sugar, return to public schema
Usage:
test_tenant.deactivate()
# or simpler
Tenant.deactivate()
"""
connection = connections[get_tenant_database_alias()]
connection.set_schema_to_public() |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def save(self, verbosity=1, *args, **kwargs):
connection = connections[get_tenant_database_alias()]
is_new = self.pk is None
has_schema = hasattr(connection, 'schema_name')
if has_schema and is_new and connection.schema_name != get_public_schema_name():
raise Exception("Can't create tenant outside the public schema. "
"Current schema is %s." % connection.schema_name)
elif has_schema and not is_new and connection.schema_name not in (self.schema_name, get_public_schema_name()):
raise Exception("Can't update tenant outside it's own schema or "
"the public schema. Current schema is %s."
% connection.schema_name)
super().save(*args, **kwargs)
if has_schema and is_new and self.auto_create_schema:
try:
self.create_schema(check_if_exists=True, verbosity=verbosity)
post_schema_sync.send(sender=TenantMixin, tenant=self.serializable_fields())
except Exception:
# We failed creating the tenant, delete what we created and
# re-raise the exception
self.delete(force_drop=True)
raise
elif is_new:
# although we are not using the schema functions directly, the signal might be registered by a listener
schema_needs_to_be_sync.send(sender=TenantMixin, tenant=self.serializable_fields())
elif not is_new and self.auto_create_schema and not schema_exists(self.schema_name):
# Create schemas for existing models, deleting only the schema on failure
try:
self.create_schema(check_if_exists=True, verbosity=verbosity)
post_schema_sync.send(sender=TenantMixin, tenant=self.serializable_fields())
except Exception:
# We failed creating the schema, delete what we created and
# re-raise the exception
self._drop_schema()
raise |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def serializable_fields(self):
""" in certain cases the user model isn't serializable so you may want to only send the id """
return self |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def _drop_schema(self, force_drop=False):
""" Drops the schema"""
connection = connections[get_tenant_database_alias()]
has_schema = hasattr(connection, 'schema_name')
if has_schema and connection.schema_name not in (self.schema_name, get_public_schema_name()):
raise Exception("Can't delete tenant outside it's own schema or "
"the public schema. Current schema is %s."
% connection.schema_name)
if has_schema and schema_exists(self.schema_name) and (self.auto_drop_schema or force_drop):
self.pre_drop()
cursor = connection.cursor()
cursor.execute('DROP SCHEMA "%s" CASCADE' % self.schema_name) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def pre_drop(self):
"""
This is a routine which you could override to backup the tenant schema before dropping.
:return:
""" |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def delete(self, force_drop=False, *args, **kwargs):
"""
Deletes this row. Drops the tenant's schema if the attribute
auto_drop_schema set to True.
"""
self._drop_schema(force_drop)
super().delete(*args, **kwargs) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def create_schema(self, check_if_exists=False, sync_schema=True,
verbosity=1):
"""
Creates the schema 'schema_name' for this tenant. Optionally checks if
the schema already exists before creating it. Returns true if the
schema was created, false otherwise.
"""
# safety check
connection = connections[get_tenant_database_alias()]
_check_schema_name(self.schema_name)
cursor = connection.cursor()
if check_if_exists and schema_exists(self.schema_name):
return False
fake_migrations = get_creation_fakes_migrations()
if sync_schema:
if fake_migrations:
# copy tables and data from provided model schema
base_schema = get_tenant_base_schema()
clone_schema = CloneSchema()
clone_schema.clone_schema(base_schema, self.schema_name)
call_command('migrate_schemas',
tenant=True,
fake=True,
schema_name=self.schema_name,
interactive=False,
verbosity=verbosity)
else:
# create the schema
cursor.execute('CREATE SCHEMA "%s"' % self.schema_name)
call_command('migrate_schemas',
tenant=True,
schema_name=self.schema_name,
interactive=False,
verbosity=verbosity)
connection.set_schema_to_public() |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def get_primary_domain(self):
"""
Returns the primary domain of the tenant
"""
try:
domain = self.domains.get(is_primary=True)
return domain
except get_tenant_domain_model().DoesNotExist:
return None |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def reverse(self, request, view_name):
"""
Returns the URL of this tenant.
"""
http_type = 'https://' if request.is_secure() else 'http://'
domain = get_current_site(request).domain
url = ''.join((http_type, self.schema_name, '.', domain, reverse(view_name)))
return url |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def get_tenant_type(self):
"""
Get the type of tenant. Will only work for multi type tenants
:return: str
"""
return getattr(self, settings.MULTI_TYPE_DATABASE_FIELD) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def save(self, *args, **kwargs):
# Get all other primary domains with the same tenant
domain_list = self.__class__.objects.filter(tenant=self.tenant, is_primary=True).exclude(pk=self.pk)
# If we have no primary domain yet, set as primary domain by default
self.is_primary = self.is_primary or (not domain_list.exists())
if self.is_primary:
# Remove primary status of existing domains for tenant
domain_list.update(is_primary=False)
super().save(*args, **kwargs) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def addOperators(self, num, target):
"""
Adapted from https://leetcode.com/discuss/58614/java-standard-backtrace-ac-solutoin-short-and-clear
Algorithm:
1. DFS
2. Special handling for multiplication
3. Detect invalid number with leading 0's
:type num: str
:type target: int
:rtype: List[str]
"""
ret = []
self.dfs(num, target, 0, "", 0, 0, ret)
return ret |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def dfs(self, num, target, pos, cur_str, cur_val, mul, ret):
if pos >= len(num):
if cur_val == target:
ret.append(cur_str)
else:
for i in xrange(pos, len(num)):
if i != pos and num[pos] == "0":
continue
nxt_val = int(num[pos:i+1])
if not cur_str:
self.dfs(num, target, i+1, "%d"%nxt_val, nxt_val, nxt_val, ret)
else:
self.dfs(num, target, i+1, cur_str+"+%d"%nxt_val, cur_val+nxt_val, nxt_val, ret)
self.dfs(num, target, i+1, cur_str+"-%d"%nxt_val, cur_val-nxt_val, -nxt_val, ret)
self.dfs(num, target, i+1, cur_str+"*%d"%nxt_val, cur_val-mul+mul*nxt_val, mul*nxt_val, ret) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def implementor(rpc_code, blocking=False):
"""
RPC implementation function.
"""
return partial(_add_implementor, rpc_code, blocking) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def _add_implementor(rpc_code, blocking, fn):
# Validate the argument types.
if type(rpc_code) is not int:
raise TypeError("Expected int, got %r instead" % type(rpc_code))
if type(blocking) is not bool:
raise TypeError("Expected bool, got %r instead" % type(blocking))
if not callable(fn):
raise TypeError("Expected callable, got %r instead" % type(fn))
# Validate the RPC code.
if rpc_code in rpcMap:
try:
msg = "Duplicated RPC implementors for code %d: %s and %s"
msg %= (rpc_code, rpcMap[rpc_code][0].__name__, fn.__name__)
except Exception:
msg = "Duplicated RPC implementors for code: %d" % rpc_code
raise SyntaxError(msg)
# TODO: use introspection to validate the function signature
# Register the implementor.
rpcMap[rpc_code] = (fn, blocking)
# Return the implementor. No wrapping is needed! :)
return fn |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def rpc_bulk(orchestrator, audit_name, rpc_code, *arguments):
# Get the implementor for the RPC code.
# Raise NotImplementedError if it's not defined.
try:
method, blocking = rpcMap[rpc_code]
except KeyError:
raise NotImplementedError("RPC code not implemented: %r" % rpc_code)
# This can't be done with blocking implementors!
if blocking:
raise NotImplementedError(
"Cannot run blocking RPC calls in bulk. Code: %r" % rpc_code)
# Prepare a partial function call to the implementor.
caller = partial(method, orchestrator, audit_name)
# Use the built-in map() function to issue all the calls.
# This ensures we support the exact same interface and functionality.
return map(caller, *arguments) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def rpc_send_message(orchestrator, audit_name, message):
# Enqueue the ACK message.
orchestrator.enqueue_msg(message) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __init__(self, orchestrator):
"""
:param orchestrator: Orchestrator instance.
:type orchestrator: Orchestrator
"""
# Keep a reference to the Orchestrator.
self.__orchestrator = orchestrator
# Keep a reference to the global RPC map (it's faster this way).
self.__rpcMap = rpcMap
# Check all RPC messages have been mapped at this point.
missing = MSG_RPC_CODES.difference(self.__rpcMap.keys())
if missing:
msg = "Missing RPC implementors for codes: %s"
msg %= ", ".join(str(x) for x in sorted(missing))
raise SyntaxError(msg) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def orchestrator(self):
"""
:returns: Orchestrator instance.
:rtype: Orchestrator
"""
return self.__orchestrator |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def execute_rpc(self, audit_name, rpc_code, response_queue, args, kwargs):
"""
Honor a remote procedure call request from a plugin.
:param audit_name: Name of the audit requesting the call.
:type audit_name: str
:param rpc_code: RPC code.
:type rpc_code: int
:param response_queue: Response queue identity.
:type response_queue: str
:param args: Positional arguments to the call.
:type args: tuple
:param kwargs: Keyword arguments to the call.
:type kwargs: dict
"""
try:
# Get the implementor for the RPC code.
# Raise NotImplementedError if it's not defined.
try:
target, blocking = self.__rpcMap[rpc_code]
except KeyError:
raise NotImplementedError(
"RPC code not implemented: %r" % rpc_code)
# If it's a blocking call...
if blocking:
# Run the implementor in a new thread.
thread = Thread(
target = self._execute_rpc_implementor_background,
args = (
Config._context,
audit_name,
target,
response_queue,
args, kwargs),
)
thread.daemon = True
thread.start()
# If it's a non-blocking call...
else:
# Call the implementor directly.
self.execute_rpc_implementor(
audit_name, target, response_queue, args, kwargs)
# Catch exceptions and send them back.
except Exception:
if response_queue:
error = self.prepare_exception(*sys.exc_info())
try:
self.orchestrator.messageManager.send(
response_queue, (False, error))
except IOError:
import warnings
warnings.warn("RPC caller died!")
pass |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def _execute_rpc_implementor_background(self, context, audit_name, target,
response_queue, args, kwargs):
"""
Honor a remote procedure call request from a plugin,
from a background thread. Must only be used as the entry
point for said background thread!
:param context: Plugin execution context.
:type context: PluginContext
:param audit_name: Name of the audit requesting the call.
:type audit_name: str
:param target: RPC implementor function.
:type target: callable
:param response_queue: Response queue identity.
:type response_queue: str
:param args: Positional arguments to the call.
:type args: tuple
:param kwargs: Keyword arguments to the call.
:type kwargs: dict
"""
Config._context = context
self.execute_rpc_implementor(
audit_name, target, response_queue, args, kwargs) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def execute_rpc_implementor(self, audit_name, target, response_queue,
args, kwargs):
"""
Honor a remote procedure call request from a plugin.
:param audit_name: Name of the audit requesting the call.
:type audit_name: str
:param target: RPC implementor function.
:type target: callable
:param response_queue: Response queue identity.
:type response_queue: str
:param args: Positional arguments to the call.
:type args: tuple
:param kwargs: Keyword arguments to the call.
:type kwargs: dict
"""
try:
# Call the implementor and get the response.
response = target(self.orchestrator, audit_name, *args, **kwargs)
success = True
# Catch exceptions and prepare them for sending.
except Exception:
if response_queue:
response = self.prepare_exception(*sys.exc_info())
success = False
# If the call was synchronous,
# send the response/error back to the plugin.
if response_queue:
self.orchestrator.messageManager.send(
response_queue, (success, response)) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __init__(self, cost_withGradients):
super(CostModel, self).__init__()
self.cost_type = cost_withGradients
# --- Set-up evaluation cost
if self.cost_type is None:
self.cost_withGradients = constant_cost_withGradients
self.cost_type = 'Constant cost'
elif self.cost_type == 'evaluation_time':
self.cost_model = GPModel()
self.cost_withGradients = self._cost_gp_withGradients
self.num_updates = 0
else:
self.cost_withGradients = cost_withGradients
self.cost_type = 'User defined cost' |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __init__(self):
self.SOURCE_HTML_BASE_FOLDER_PATH = u"cameo_res\\source_html"
self.PARSED_RESULT_BASE_FOLDER_PATH = u"cameo_res\\parsed_result"
self.strWebsiteDomain = u"http://buzzorange.com/techorange"
self.dicSubCommandHandler = {
"index":self.downloadIndexPage,
"tag":self.downloadTagPag,
"news":self.downloadNewsPage
}
self.utility = Utility()
self.db = LocalDbForTECHORANGE()
self.driver = None |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def _cost_gp(self,x):
"""
Predicts the time cost of evaluating the function at x.
"""
m, _, _, _ = self.cost_model.predict_withGradients(x)
return np.exp(m) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def getUseageMessage(self):
return ("- TECHORANGE -\n"
"useage:\n"
"index - download entry page of TECHORANGE \n"
"tag - download not obtained tag page \n"
"news [tag] - download not obtained news [of given tag] \n") |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def _cost_gp_withGradients(self,x):
"""
Predicts the time cost and its gradient of evaluating the function at x.
"""
m, _, dmdx, _= self.cost_model.predict_withGradients(x)
return np.exp(m), np.exp(m)*dmdx |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def getDriver(self):
chromeDriverExeFilePath = "cameo_res\\chromedriver.exe"
driver = webdriver.Chrome(chromeDriverExeFilePath)
return driver |