input
stringlengths 11
7.65k
| target
stringlengths 22
8.26k
|
---|---|
def prefix(self):
return True | def _get_selected_path(self):
"""
Helper function to get the selected path
@return Gtk.TreePath : returns exactly one path for the selected object
or None
"""
selection = self.get_selection()
if selection:
model, selected_paths = self.get_selection().get_selected_rows()
if selected_paths:
return selected_paths[0]
return None |
def prefix(self):
return True | def getHead(self):
return self.Head |
def prefix(self):
return True | def select_backend(self, backend_id=None):
"""
Selects the backend corresponding to backend_id.
If backend_id is none, refreshes the current configuration panel.
@param backend_id: the id of the backend to select
"""
selection = self.get_selection()
if backend_id in self.backendid_to_iter:
backend_iter = self.backendid_to_iter[backend_id]
if selection:
selection.select_iter(backend_iter)
else:
if self._get_selected_path():
# We just reselect the currently selected entry
self.on_select_row()
else:
# If nothing is selected, we select the first entry
if selection:
selection.select_path("0")
self.dialog.on_backend_selected(self.get_selected_backend_id()) |
def prefix(self):
return True | def getTail(self):
return self.Tail |
def prefix(self):
return True | def drawMe(self, g):
self.g = g
self.g.beginPath()
self.g.moveTo(self.p1.x,self.p1.y)
self.g.lineTo(self.p2.x,self.p2.y)
self.g.stroke() |
def prefix(self):
return True | def test(self):
return ("this is pure test to Inherit") |
def prefix(self):
return True | def __init__(self, p1, p2):
self.p1 = p1
self.p2 = p2
self.length = math.sqrt(math.pow((self.p2.x - self.p1.x), 2) + math.pow((self.p2.y - self.p1.y), 2)) |
def prefix(self):
return True | def drawMe(self, g):
self.g = g
hole = 5
radius = 10
length = self.getR()
# alert(length)
# 儲存先前的繪圖狀態
self.g.save()
self.g.translate(self.p1.x,self.p1.y)
#alert(str(self.p1.x)+","+str(self.p1.y))
#self.g.rotate(-((math.pi/2)-self.getT()))
self.g.rotate(-math.pi*0.5 + self.getT())
#alert(str(self.getT()))
#self.g.rotate(10*math.pi/180)
#this.g.rotate(-(Math.PI/2-this.getT()));
# 必須配合畫在 y 軸上的 Link, 進行座標轉換, 也可以改為畫在 x 軸上...
self.g.beginPath()
self.g.moveTo(0,0)
self.g.arc(0, 0, hole, 0, 2*math.pi, true)
self.g.stroke()
self.g.moveTo(0,length)
self.g.beginPath()
self.g.arc(0,length, hole, 0, 2*math.pi, true)
self.g.stroke()
self.g.moveTo(0,0)
self.g.beginPath()
self.g.arc(0,0, radius, 0, math.pi, true)
self.g.moveTo(0+radius,0)
self.g.lineTo(0+radius,0+length)
self.g.stroke()
self.g.moveTo(0,0+length)
self.g.beginPath()
self.g.arc(0, 0+length, radius, math.pi, 0, true)
self.g.moveTo(0-radius,0+length)
self.g.lineTo(0-radius,0)
self.g.stroke()
self.g.restore() |
def prefix(self):
return True | def __init__(self, p1, p2, p3):
self.p1 = p1
self.p2 = p2
self.p3 = p3 |
def prefix(self):
return True | def getLenp3(self):
p1 = self.p1
ret = p1.distance(self.p2)
return ret |
def prefix(self):
return True | def getLenp1(self):
p2 = self.p2
ret = p2.distance(self.p3)
return ret |
def prefix(self):
return True | def getLenp2(self):
p1 = self.p1
ret = p1.distance(self.p3)
return ret |
def prefix(self):
return True | def getAp1(self):
ret = math.acos(((self.getLenp2() * self.getLenp2() + self.getLenp3() * self.getLenp3()) - self.getLenp1() * self.getLenp1()) / (2* self.getLenp2() * self.getLenp3()))
return ret |
def prefix(self):
return True | def getAp2(self):
ret =math.acos(((self.getLenp1() * self.getLenp1() + self.getLenp3() * self.getLenp3()) - self.getLenp2() * self.getLenp2()) / (2* self.getLenp1() * self.getLenp3()))
return ret |
def prefix(self):
return True | def getAp3(self):
ret = math.acos(((self.getLenp1() * self.getLenp1() + self.getLenp2() * self.getLenp2()) - self.getLenp3() * self.getLenp3()) / (2* self.getLenp1() * self.getLenp2()))
return ret |
def prefix(self):
return True | def drawMe(self, g):
self.g = g
r = 5
# 繪出三個頂點
self.p1.drawMe(self.g,r)
self.p2.drawMe(self.g,r)
self.p3.drawMe(self.g,r)
line1 = Line(self.p1,self.p2)
line2 = Line(self.p1,self.p3)
line3 = Line(self.p2,self.p3)
# 繪出三邊線
line1.drawMe(self.g)
line2.drawMe(self.g)
line3.drawMe(self.g) |
def prefix(self):
return True | def setSSS(self, lenp3, lenp1, lenp2):
self.lenp3 = lenp3
self.lenp1 = lenp1
self.lenp2 = lenp2
self.ap1 = math.acos(((self.lenp2 * self.lenp2 + self.lenp3 * self.lenp3) - self.lenp1 * self.lenp1) / (2* self.lenp2 * self.lenp3))
self.ap2 = math.acos(((self.lenp1 * self.lenp1 + self.lenp3 * self.lenp3) - self.lenp2 * self.lenp2) / (2* self.lenp1 * self.lenp3))
self.ap3 = math.acos(((self.lenp1 * self.lenp1 + self.lenp2 * self.lenp2) - self.lenp3 * self.lenp3) / (2* self.lenp1 * self.lenp2)) |
def prefix(self):
return True | def setSAS(self, lenp3, ap2, lenp1):
self.lenp3 = lenp3
self.ap2 = ap2
self.lenp1 = lenp1
self.lenp2 = math.sqrt((self.lenp3 * self.lenp3 + self.lenp1 * self.lenp1) - 2* self.lenp3 * self.lenp1 * math.cos(self.ap2))
#等於 SSS(AB, BC, CA) |
def prefix(self):
return True | def setSaSS(self, lenp2, lenp3, lenp1):
self.lenp2 = lenp2
self.lenp3 = lenp3
self.lenp1 = lenp1
if(self.lenp1 > (self.lenp2 + self.lenp3)):
#<CAB 夾角為 180 度, 三點共線且 A 介於 BC 之間
ret = math.pi
else :
# <CAB 夾角為 0, 三點共線且 A 不在 BC 之間
if((self.lenp1 < (self.lenp2 - self.lenp3)) or (self.lenp1 < (self.lenp3 - self.lenp2))):
ret = 0.0
else :
# 透過餘絃定理求出夾角 <CAB
ret = math.acos(((self.lenp2 * self.lenp2 + self.lenp3 * self.lenp3) - self.lenp1 * self.lenp1) / (2 * self.lenp2 * self.lenp3))
return ret |
def prefix(self):
return True | def getSSS(self):
temp = []
temp.append( self.getLenp1() )
temp.append( self.getLenp2() )
temp.append( self.getLenp3() )
return temp |
def prefix(self):
return True | def getAAA(self):
temp = []
temp.append( self.getAp1() )
temp.append( self.getAp2() )
temp.append( self.getAp3() )
return temp |
def prefix(self):
return True | def getASASAS(self):
temp = []
temp.append(self.getAp1())
temp.append(self.getLenp1())
temp.append(self.getAp2())
temp.append(self.getLenp2())
temp.append(self.getAp3())
temp.append(self.getLenp3())
return temp |
def prefix(self):
return True | def setPPSS(self, p1, p3, lenp1, lenp3):
temp = []
self.p1 = p1
self.p3 = p3
self.lenp1 = lenp1
self.lenp3 = lenp3
#bp3 is the angle beside p3 point, cp3 is the angle for line23, p2 is the output
line31 = Line(p3, p1)
self.lenp2 = line31.getR()
#self.lenp2 = self.p3.distance(self.p1)
#這裡是求角3
ap3 = math.acos(((self.lenp1 * self.lenp1 + self.lenp2 * self.lenp2) - self.lenp3 * self.lenp3) / (2 * self.lenp1 * self.lenp2))
#ap3 = math.acos(((self.lenp1 * self.lenp1 + self.lenp3 * self.lenp3) - self.lenp2 * self.lenp2) / (2 * self.lenp1 * self.lenp3))
bp3 = line31.getT()
cp3 = bp3 - ap3
temp.append(p3.x + self.lenp1*math.cos(cp3))#p2.x
temp.append(p3.y + self.lenp1*math.sin(cp3))#p2.y
return temp |
def prefix(self):
return True | def draw():
global theta
context.clearRect(0, 0, canvas.width, canvas.height)
line1.drawMe(context)
line2.drawMe(context)
line3.drawMe(context)
#triangle1.drawMe(context)
#triangle2.drawMe(context)
theta += dx
p2.x = p1.x + line1.length*math.cos(theta*degree)
p2.y = p1.y - line1.length*math.sin(theta*degree)
p3.x, p3.y = triangle2.setPPSS(p2,p4,link2_len,link3_len)
p1.tag(context) |
def prefix(self):
return True | def __init__(self, store):
self.store = store |
def prefix(self):
return True | def __init__(self, name):
self._name = name |
def prefix(self):
return True | def __init__(self, x, y):
self.x = x
self.y = y |
def prefix(self):
return True | def __init__(self, action: str = None) -> None:
super().__init__(prefix, action) |
def prefix(self):
return True | def draw(self, context):
pass |
def prefix(self):
return True | def conversion_fn():
"""Temporary function."""
pass |
def prefix(self):
return True | def _files(self):
return [] |
def prefix(self):
return True | def no_op(*args, **kwargs):
pass |
def prefix(self):
return True | def open(read_server_info=True):
return |
def prefix(self):
return True | def query_vpp_config(self):
NotImplemented |
def prefix(self):
return True | def tag(g, p):
None |
def prefix(self):
return True | def vsParseFd(self, fd):
raise NotImplementedError() |
def prefix(self):
return True | def test_should_encode_false(self):
encoded = cypher_repr(False)
assert encoded == u"false" |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def _maybe_name(obj):
"""Returns object name if it has one, or a message otherwise.
This is useful for names that apper in error messages.
Args:
obj: Object to get the name of.
Returns:
name, "None", or a "no name" message.
"""
if obj is None:
return "None"
elif hasattr(obj, "name"):
return obj.name
else:
return "<no name for %s>" % type(obj) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def testResidualWrapper(self):
wrapper_type = rnn_cell_wrapper_v2.ResidualWrapper
x = ops.convert_to_tensor_v2_with_dispatch(
np.array([[1., 1., 1.]]), dtype="float32")
m = ops.convert_to_tensor_v2_with_dispatch(
np.array([[0.1, 0.1, 0.1]]), dtype="float32")
base_cell = rnn_cell_impl.GRUCell(
3, kernel_initializer=init_ops.constant_initializer(0.5),
bias_initializer=init_ops.constant_initializer(0.5))
g, m_new = base_cell(x, m)
wrapper_object = wrapper_type(base_cell)
children = wrapper_object._trackable_children()
wrapper_object.get_config() # Should not throw an error
self.assertIn("cell", children)
self.assertIs(children["cell"], base_cell)
g_res, m_new_res = wrapper_object(x, m)
self.evaluate([variables_lib.global_variables_initializer()])
res = self.evaluate([g, g_res, m_new, m_new_res])
# Residual connections
self.assertAllClose(res[1], res[0] + [1., 1., 1.])
# States are left untouched
self.assertAllClose(res[2], res[3]) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def _restore_checkpoint_and_maybe_run_saved_model_initializers(
sess, saver, path):
"""Restores checkpoint values and SavedModel initializers if found."""
# NOTE: All references to SavedModel refer to SavedModels loaded from the
# load_v2 API (which does not require the `sess` argument).
# If the graph contains resources loaded from a SavedModel, they are not
# restored when calling `saver.restore`. Thus, the SavedModel initializer must
# be called with `saver.restore` to properly initialize the model.
# The SavedModel init is stored in the "saved_model_initializers" collection.
# This collection is part of the MetaGraph's default_init_op, so it is already
# called by MonitoredSession as long as the saver doesn't restore any
# checkpoints from the working dir.
saved_model_init_ops = ops.get_collection("saved_model_initializers")
if saved_model_init_ops:
sess.run(saved_model_init_ops)
# The saver must be called *after* the SavedModel init, because the SavedModel
# init will restore the variables from the SavedModel variables directory.
# Initializing/restoring twice is not ideal but there's no other way to do it.
saver.restore(sess, path) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def residual_with_slice_fn(inp, out):
inp_sliced = array_ops.slice(inp, [0, 0], [-1, 3])
return inp_sliced + out |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __init__(self,
local_init_op=None,
ready_op=None,
ready_for_local_init_op=None,
graph=None,
recovery_wait_secs=30,
local_init_run_options=None,
local_init_feed_dict=None):
"""Creates a SessionManager.
The `local_init_op` is an `Operation` that is run always after a new session
was created. If `None`, this step is skipped.
The `ready_op` is an `Operation` used to check if the model is ready. The
model is considered ready if that operation returns an empty 1D string
tensor. If the operation returns a non empty 1D string tensor, the elements
are concatenated and used to indicate to the user why the model is not
ready.
The `ready_for_local_init_op` is an `Operation` used to check if the model
is ready to run local_init_op. The model is considered ready if that
operation returns an empty 1D string tensor. If the operation returns a non
empty 1D string tensor, the elements are concatenated and used to indicate
to the user why the model is not ready.
If `ready_op` is `None`, the model is not checked for readiness.
`recovery_wait_secs` is the number of seconds between checks that
the model is ready. It is used by processes to wait for a model to
be initialized or restored. Defaults to 30 seconds.
Args:
local_init_op: An `Operation` run immediately after session creation.
Usually used to initialize tables and local variables.
ready_op: An `Operation` to check if the model is initialized.
ready_for_local_init_op: An `Operation` to check if the model is ready
to run local_init_op.
graph: The `Graph` that the model will use.
recovery_wait_secs: Seconds between checks for the model to be ready.
local_init_run_options: RunOptions to be passed to session.run when
executing the local_init_op.
local_init_feed_dict: Optional session feed dictionary to use when running
the local_init_op.
Raises:
ValueError: If ready_for_local_init_op is not None but local_init_op is
None
"""
# Sets default values of arguments.
if graph is None:
graph = ops.get_default_graph()
self._local_init_op = local_init_op
self._ready_op = ready_op
self._ready_for_local_init_op = ready_for_local_init_op
self._graph = graph
self._recovery_wait_secs = recovery_wait_secs
self._target = None
self._local_init_run_options = local_init_run_options
self._local_init_feed_dict = local_init_feed_dict
if ready_for_local_init_op is not None and local_init_op is None:
raise ValueError("If you pass a ready_for_local_init_op "
"you must also pass a local_init_op "
", ready_for_local_init_op [%s]" %
ready_for_local_init_op) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def testDeviceWrapper(self):
wrapper_type = rnn_cell_wrapper_v2.DeviceWrapper
x = array_ops.zeros([1, 3])
m = array_ops.zeros([1, 3])
cell = rnn_cell_impl.GRUCell(3)
wrapped_cell = wrapper_type(cell, "/cpu:0")
children = wrapped_cell._trackable_children()
wrapped_cell.get_config() # Should not throw an error
self.assertIn("cell", children)
self.assertIs(children["cell"], cell)
outputs, _ = wrapped_cell(x, m)
self.assertIn("cpu:0", outputs.device.lower()) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def _restore_checkpoint(self,
master,
saver=None,
checkpoint_dir=None,
checkpoint_filename_with_path=None,
wait_for_checkpoint=False,
max_wait_secs=7200,
config=None):
"""Creates a `Session`, and tries to restore a checkpoint.
Args:
master: `String` representation of the TensorFlow master to use.
saver: A `Saver` object used to restore a model.
checkpoint_dir: Path to the checkpoint files. The latest checkpoint in the
dir will be used to restore.
checkpoint_filename_with_path: Full file name path to the checkpoint file.
wait_for_checkpoint: Whether to wait for checkpoint to become available.
max_wait_secs: Maximum time to wait for checkpoints to become available.
config: Optional `ConfigProto` proto used to configure the session.
Returns:
A pair (sess, is_restored) where 'is_restored' is `True` if
the session could be restored, `False` otherwise.
Raises:
ValueError: If both checkpoint_dir and checkpoint_filename_with_path are
set.
"""
self._target = master
# This is required to so that we initialize the TPU device before
# restoring from checkpoint since we'll be placing variables on the device
# and TPUInitialize wipes out the memory of the device.
strategy = distribution_strategy_context.get_strategy()
if strategy and hasattr(strategy.extended,
"_experimental_initialize_system"):
strategy.extended._experimental_initialize_system() # pylint: disable=protected-access
sess = session.Session(self._target, graph=self._graph, config=config)
if checkpoint_dir and checkpoint_filename_with_path:
raise ValueError("Can not provide both checkpoint_dir and "
"checkpoint_filename_with_path.")
# If either saver or checkpoint_* is not specified, cannot restore. Just
# return.
if not saver or not (checkpoint_dir or checkpoint_filename_with_path):
return sess, False
if checkpoint_filename_with_path:
_restore_checkpoint_and_maybe_run_saved_model_initializers(
sess, saver, checkpoint_filename_with_path)
return sess, True
# Waits up until max_wait_secs for checkpoint to become available.
wait_time = 0
ckpt = checkpoint_management.get_checkpoint_state(checkpoint_dir)
while not ckpt or not ckpt.model_checkpoint_path:
if wait_for_checkpoint and wait_time < max_wait_secs:
logging.info("Waiting for checkpoint to be available.")
time.sleep(self._recovery_wait_secs)
wait_time += self._recovery_wait_secs
ckpt = checkpoint_management.get_checkpoint_state(checkpoint_dir)
else:
return sess, False
# Loads the checkpoint.
_restore_checkpoint_and_maybe_run_saved_model_initializers(
sess, saver, ckpt.model_checkpoint_path)
saver.recover_last_checkpoints(ckpt.all_model_checkpoint_paths)
return sess, True |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def testWrapperKerasStyle(self, wrapper, wrapper_v2):
"""Tests if wrapper cell is instantiated in keras style scope."""
wrapped_cell_v2 = wrapper_v2(rnn_cell_impl.BasicRNNCell(1))
self.assertIsNone(getattr(wrapped_cell_v2, "_keras_style", None))
wrapped_cell = wrapper(rnn_cell_impl.BasicRNNCell(1))
self.assertFalse(wrapped_cell._keras_style) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def prepare_session(self,
master,
init_op=None,
saver=None,
checkpoint_dir=None,
checkpoint_filename_with_path=None,
wait_for_checkpoint=False,
max_wait_secs=7200,
config=None,
init_feed_dict=None,
init_fn=None):
"""Creates a `Session`. Makes sure the model is ready to be used.
Creates a `Session` on 'master'. If a `saver` object is passed in, and
`checkpoint_dir` points to a directory containing valid checkpoint
files, then it will try to recover the model from checkpoint. If
no checkpoint files are available, and `wait_for_checkpoint` is
`True`, then the process would check every `recovery_wait_secs`,
up to `max_wait_secs`, for recovery to succeed.
If the model cannot be recovered successfully then it is initialized by
running the `init_op` and calling `init_fn` if they are provided.
The `local_init_op` is also run after init_op and init_fn, regardless of
whether the model was recovered successfully, but only if
`ready_for_local_init_op` passes.
If the model is recovered from a checkpoint it is assumed that all
global variables have been initialized, in particular neither `init_op`
nor `init_fn` will be executed.
It is an error if the model cannot be recovered and no `init_op`
or `init_fn` or `local_init_op` are passed.
Args:
master: `String` representation of the TensorFlow master to use.
init_op: Optional `Operation` used to initialize the model.
saver: A `Saver` object used to restore a model.
checkpoint_dir: Path to the checkpoint files. The latest checkpoint in the
dir will be used to restore.
checkpoint_filename_with_path: Full file name path to the checkpoint file.
wait_for_checkpoint: Whether to wait for checkpoint to become available.
max_wait_secs: Maximum time to wait for checkpoints to become available.
config: Optional `ConfigProto` proto used to configure the session.
init_feed_dict: Optional dictionary that maps `Tensor` objects to feed
values. This feed dictionary is passed to the session `run()` call when
running the init op.
init_fn: Optional callable used to initialize the model. Called after the
optional `init_op` is called. The callable must accept one argument,
the session being initialized.
Returns:
A `Session` object that can be used to drive the model.
Raises:
RuntimeError: If the model cannot be initialized or recovered.
ValueError: If both checkpoint_dir and checkpoint_filename_with_path are
set.
"""
sess, is_loaded_from_checkpoint = self._restore_checkpoint(
master,
saver,
checkpoint_dir=checkpoint_dir,
checkpoint_filename_with_path=checkpoint_filename_with_path,
wait_for_checkpoint=wait_for_checkpoint,
max_wait_secs=max_wait_secs,
config=config)
if not is_loaded_from_checkpoint:
if init_op is None and not init_fn and self._local_init_op is None:
raise RuntimeError("Model is not initialized and no init_op or "
"init_fn or local_init_op was given")
if init_op is not None:
sess.run(init_op, feed_dict=init_feed_dict)
if init_fn:
init_fn(sess)
local_init_success, msg = self._try_run_local_init_op(sess)
if not local_init_success:
raise RuntimeError(
"Init operations did not make model ready for local_init. "
"Init op: %s, init fn: %s, error: %s" % (_maybe_name(init_op),
init_fn,
msg))
is_ready, msg = self._model_ready(sess)
if not is_ready:
raise RuntimeError(
"Init operations did not make model ready. "
"Init op: %s, init fn: %s, local_init_op: %s, error: %s" %
(_maybe_name(init_op), init_fn, self._local_init_op, msg))
return sess |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def testWrapperWeights(self, wrapper):
"""Tests that wrapper weights contain wrapped cells weights."""
base_cell = layers.SimpleRNNCell(1, name="basic_rnn_cell")
rnn_cell = wrapper(base_cell)
rnn_layer = layers.RNN(rnn_cell)
inputs = ops.convert_to_tensor_v2_with_dispatch([[[1]]],
dtype=dtypes.float32)
rnn_layer(inputs)
wrapper_name = generic_utils.to_snake_case(wrapper.__name__)
expected_weights = ["rnn/" + wrapper_name + "/" + var for var in
("kernel:0", "recurrent_kernel:0", "bias:0")]
self.assertLen(rnn_cell.weights, 3)
self.assertCountEqual([v.name for v in rnn_cell.weights], expected_weights)
self.assertCountEqual([v.name for v in rnn_cell.trainable_variables],
expected_weights)
self.assertCountEqual([v.name for v in rnn_cell.non_trainable_variables],
[])
self.assertCountEqual([v.name for v in rnn_cell.cell.weights],
expected_weights) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def recover_session(self,
master,
saver=None,
checkpoint_dir=None,
checkpoint_filename_with_path=None,
wait_for_checkpoint=False,
max_wait_secs=7200,
config=None):
"""Creates a `Session`, recovering if possible.
Creates a new session on 'master'. If the session is not initialized
and can be recovered from a checkpoint, recover it.
Args:
master: `String` representation of the TensorFlow master to use.
saver: A `Saver` object used to restore a model.
checkpoint_dir: Path to the checkpoint files. The latest checkpoint in the
dir will be used to restore.
checkpoint_filename_with_path: Full file name path to the checkpoint file.
wait_for_checkpoint: Whether to wait for checkpoint to become available.
max_wait_secs: Maximum time to wait for checkpoints to become available.
config: Optional `ConfigProto` proto used to configure the session.
Returns:
A pair (sess, initialized) where 'initialized' is `True` if
the session could be recovered and initialized, `False` otherwise.
Raises:
ValueError: If both checkpoint_dir and checkpoint_filename_with_path are
set.
"""
sess, is_loaded_from_checkpoint = self._restore_checkpoint(
master,
saver,
checkpoint_dir=checkpoint_dir,
checkpoint_filename_with_path=checkpoint_filename_with_path,
wait_for_checkpoint=wait_for_checkpoint,
max_wait_secs=max_wait_secs,
config=config)
# Always try to run local_init_op
local_init_success, msg = self._try_run_local_init_op(sess)
if not is_loaded_from_checkpoint:
# Do not need to run checks for readiness
return sess, False
restoring_file = checkpoint_dir or checkpoint_filename_with_path
if not local_init_success:
logging.info(
"Restoring model from %s did not make model ready for local init:"
" %s", restoring_file, msg)
return sess, False
is_ready, msg = self._model_ready(sess)
if not is_ready:
logging.info("Restoring model from %s did not make model ready: %s",
restoring_file, msg)
return sess, False
logging.info("Restored model from %s", restoring_file)
return sess, is_loaded_from_checkpoint |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def testWrapperV2Caller(self, wrapper):
"""Tests that wrapper V2 is using the LayerRNNCell's caller."""
with legacy_base_layer.keras_style_scope():
base_cell = rnn_cell_impl.MultiRNNCell(
[rnn_cell_impl.BasicRNNCell(1) for _ in range(2)])
rnn_cell = wrapper(base_cell)
inputs = ops.convert_to_tensor_v2_with_dispatch([[1]], dtype=dtypes.float32)
state = ops.convert_to_tensor_v2_with_dispatch([[1]], dtype=dtypes.float32)
_ = rnn_cell(inputs, [state, state])
weights = base_cell._cells[0].weights
self.assertLen(weights, expected_len=2)
self.assertTrue(all("_wrapper" in v.name for v in weights)) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def wait_for_session(self, master, config=None, max_wait_secs=float("Inf")):
"""Creates a new `Session` and waits for model to be ready.
Creates a new `Session` on 'master'. Waits for the model to be
initialized or recovered from a checkpoint. It's expected that
another thread or process will make the model ready, and that this
is intended to be used by threads/processes that participate in a
distributed training configuration where a different thread/process
is responsible for initializing or recovering the model being trained.
NB: The amount of time this method waits for the session is bounded
by max_wait_secs. By default, this function will wait indefinitely.
Args:
master: `String` representation of the TensorFlow master to use.
config: Optional ConfigProto proto used to configure the session.
max_wait_secs: Maximum time to wait for the session to become available.
Returns:
A `Session`. May be None if the operation exceeds the timeout
specified by config.operation_timeout_in_ms.
Raises:
tf.DeadlineExceededError: if the session is not available after
max_wait_secs.
"""
self._target = master
if max_wait_secs is None:
max_wait_secs = float("Inf")
timer = _CountDownTimer(max_wait_secs)
while True:
sess = session.Session(self._target, graph=self._graph, config=config)
not_ready_msg = None
not_ready_local_msg = None
local_init_success, not_ready_local_msg = self._try_run_local_init_op(
sess)
if local_init_success:
# Successful if local_init_op is None, or ready_for_local_init_op passes
is_ready, not_ready_msg = self._model_ready(sess)
if is_ready:
return sess
self._safe_close(sess)
# Do we have enough time left to try again?
remaining_ms_after_wait = (
timer.secs_remaining() - self._recovery_wait_secs)
if remaining_ms_after_wait < 0:
raise errors.DeadlineExceededError(
None, None,
"Session was not ready after waiting %d secs." % (max_wait_secs,))
logging.info("Waiting for model to be ready. "
"Ready_for_local_init_op: %s, ready: %s",
not_ready_local_msg, not_ready_msg)
time.sleep(self._recovery_wait_secs) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def testWrapperV2Build(self, wrapper):
cell = rnn_cell_impl.LSTMCell(10)
wrapper = wrapper(cell)
wrapper.build((1,))
self.assertTrue(cell.built) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def _safe_close(self, sess):
"""Closes a session without raising an exception.
Just like sess.close() but ignores exceptions.
Args:
sess: A `Session`.
"""
# pylint: disable=broad-except
try:
sess.close()
except Exception:
# Intentionally not logging to avoid user complaints that
# they get cryptic errors. We really do not care that Close
# fails.
pass
# pylint: enable=broad-except |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def testDeviceWrapperSerialization(self):
wrapper_cls = rnn_cell_wrapper_v2.DeviceWrapper
cell = layers.LSTMCell(10)
wrapper = wrapper_cls(cell, "/cpu:0")
config = wrapper.get_config()
reconstructed_wrapper = wrapper_cls.from_config(config)
self.assertDictEqual(config, reconstructed_wrapper.get_config())
self.assertIsInstance(reconstructed_wrapper, wrapper_cls) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def _model_ready(self, sess):
"""Checks if the model is ready or not.
Args:
sess: A `Session`.
Returns:
A tuple (is_ready, msg), where is_ready is True if ready and False
otherwise, and msg is `None` if the model is ready, a `String` with the
reason why it is not ready otherwise.
"""
return _ready(self._ready_op, sess, "Model not ready") |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def residual_fn(inputs, outputs):
return inputs * 3 + outputs |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def _model_ready_for_local_init(self, sess):
"""Checks if the model is ready to run local_init_op.
Args:
sess: A `Session`.
Returns:
A tuple (is_ready, msg), where is_ready is True if ready to run
local_init_op and False otherwise, and msg is `None` if the model is
ready to run local_init_op, a `String` with the reason why it is not ready
otherwise.
"""
return _ready(self._ready_for_local_init_op, sess,
"Model not ready for local init") |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def dropout_state_filter_visitor(unused_state):
return False |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def _try_run_local_init_op(self, sess):
"""Tries to run _local_init_op, if not None, and is ready for local init.
Args:
sess: A `Session`.
Returns:
A tuple (is_successful, msg), where is_successful is True if
_local_init_op is None, or we ran _local_init_op, and False otherwise;
and msg is a `String` with the reason why the model was not ready to run
local init.
"""
if self._local_init_op is not None:
is_ready_for_local_init, msg = self._model_ready_for_local_init(sess)
if is_ready_for_local_init:
logging.info("Running local_init_op.")
sess.run(self._local_init_op, feed_dict=self._local_init_feed_dict,
options=self._local_init_run_options)
logging.info("Done running local_init_op.")
return True, None
else:
return False, msg
return True, None |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def testDropoutWrapperWithKerasLSTMCell(self):
wrapper_cls = rnn_cell_wrapper_v2.DropoutWrapper
cell = layers.LSTMCell(10)
with self.assertRaisesRegex(ValueError, "does not work with "):
wrapper_cls(cell)
cell = layers.LSTMCellV2(10)
with self.assertRaisesRegex(ValueError, "does not work with "):
wrapper_cls(cell) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def _ready(op, sess, msg):
"""Checks if the model is ready or not, as determined by op.
Args:
op: An op, either _ready_op or _ready_for_local_init_op, which defines the
readiness of the model.
sess: A `Session`.
msg: A message to log to warning if not ready
Returns:
A tuple (is_ready, msg), where is_ready is True if ready and False
otherwise, and msg is `None` if the model is ready, a `String` with the
reason why it is not ready otherwise.
"""
if op is None:
return True, None
else:
try:
ready_value = sess.run(op)
# The model is considered ready if ready_op returns an empty 1-D tensor.
# Also compare to `None` and dtype being int32 for backward
# compatibility.
if (ready_value is None or ready_value.dtype == np.int32 or
ready_value.size == 0):
return True, None
else:
# TODO(sherrym): If a custom ready_op returns other types of tensor,
# or strings other than variable names, this message could be
# confusing.
non_initialized_varnames = ", ".join(
[i.decode("utf-8") for i in ready_value])
return False, "Variables not initialized: " + non_initialized_varnames
except errors.FailedPreconditionError as e:
if "uninitialized" not in str(e):
logging.warning("%s : error [%s]", msg, str(e))
raise e
return False, str(e) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __init__(self, duration_secs):
self._start_time_secs = time.time()
self._duration_secs = duration_secs |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __init__(self, name: str, get_converter: t.Optional[t.Callable] = None) -> None:
self.__name__ = name
self.get_converter = get_converter |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_refraction_angle():
n1, n2 = symbols('n1, n2')
m1 = Medium('m1')
m2 = Medium('m2')
r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
i = Matrix([1, 1, 1])
n = Matrix([0, 0, 1])
normal_ray = Ray3D(Point3D(0, 0, 0), Point3D(0, 0, 1))
P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
assert refraction_angle(r1, 1, 1, n) == Matrix([
[ 1],
[ 1],
[-1]])
assert refraction_angle([1, 1, 1], 1, 1, n) == Matrix([
[ 1],
[ 1],
[-1]])
assert refraction_angle((1, 1, 1), 1, 1, n) == Matrix([
[ 1],
[ 1],
[-1]])
assert refraction_angle(i, 1, 1, [0, 0, 1]) == Matrix([
[ 1],
[ 1],
[-1]])
assert refraction_angle(i, 1, 1, (0, 0, 1)) == Matrix([
[ 1],
[ 1],
[-1]])
assert refraction_angle(i, 1, 1, normal_ray) == Matrix([
[ 1],
[ 1],
[-1]])
assert refraction_angle(i, 1, 1, plane=P) == Matrix([
[ 1],
[ 1],
[-1]])
assert refraction_angle(r1, 1, 1, plane=P) == \
Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
assert refraction_angle(r1, m1, 1.33, plane=P) == \
Ray3D(Point3D(0, 0, 0), Point3D(Rational(100, 133), Rational(100, 133), -789378201649271*sqrt(3)/1000000000000000))
assert refraction_angle(r1, 1, m2, plane=P) == \
Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))
assert refraction_angle(r1, n1, n2, plane=P) == \
Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)))
assert refraction_angle(r1, 1.33, 1, plane=P) == 0 # TIR
assert refraction_angle(r1, 1, 1, normal_ray) == \
Ray3D(Point3D(0, 0, 0), direction_ratio=[1, 1, -1])
assert ae(refraction_angle(0.5, 1, 2), 0.24207, 5)
assert ae(refraction_angle(0.5, 2, 1), 1.28293, 5)
raises(ValueError, lambda: refraction_angle(r1, m1, m2, normal_ray, P))
raises(TypeError, lambda: refraction_angle(m1, m1, m2)) # can add other values for arg[0]
raises(TypeError, lambda: refraction_angle(r1, m1, m2, None, i))
raises(TypeError, lambda: refraction_angle(r1, m1, m2, m2)) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __get__(self, obj: t.Any, owner: t.Any = None) -> t.Any:
if obj is None:
return self
rv = obj.config[self.__name__]
if self.get_converter is not None:
rv = self.get_converter(rv)
return rv |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_fresnel_coefficients():
assert all(ae(i, j, 5) for i, j in zip(
fresnel_coefficients(0.5, 1, 1.33),
[0.11163, -0.17138, 0.83581, 0.82862]))
assert all(ae(i, j, 5) for i, j in zip(
fresnel_coefficients(0.5, 1.33, 1),
[-0.07726, 0.20482, 1.22724, 1.20482]))
m1 = Medium('m1')
m2 = Medium('m2', n=2)
assert all(ae(i, j, 5) for i, j in zip(
fresnel_coefficients(0.3, m1, m2),
[0.31784, -0.34865, 0.65892, 0.65135]))
ans = [[-0.23563, -0.97184], [0.81648, -0.57738]]
got = fresnel_coefficients(0.6, m2, m1)
for i, j in zip(got, ans):
for a, b in zip(i.as_real_imag(), j):
assert ae(a, b, 5) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __set__(self, obj: t.Any, value: t.Any) -> None:
obj.config[self.__name__] = value |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_deviation():
n1, n2 = symbols('n1, n2')
r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
n = Matrix([0, 0, 1])
i = Matrix([-1, -1, -1])
normal_ray = Ray3D(Point3D(0, 0, 0), Point3D(0, 0, 1))
P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
assert deviation(r1, 1, 1, normal=n) == 0
assert deviation(r1, 1, 1, plane=P) == 0
assert deviation(r1, 1, 1.1, plane=P).evalf(3) + 0.119 < 1e-3
assert deviation(i, 1, 1.1, normal=normal_ray).evalf(3) + 0.119 < 1e-3
assert deviation(r1, 1.33, 1, plane=P) is None # TIR
assert deviation(r1, 1, 1, normal=[0, 0, 1]) == 0
assert deviation([-1, -1, -1], 1, 1, normal=[0, 0, 1]) == 0
assert ae(deviation(0.5, 1, 2), -0.25793, 5)
assert ae(deviation(0.5, 2, 1), 0.78293, 5) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def __init__(self, root_path: str, defaults: t.Optional[dict] = None) -> None:
dict.__init__(self, defaults or {})
self.root_path = root_path |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_brewster_angle():
m1 = Medium('m1', n=1)
m2 = Medium('m2', n=1.33)
assert ae(brewster_angle(m1, m2), 0.93, 2)
m1 = Medium('m1', permittivity=e0, n=1)
m2 = Medium('m2', permittivity=e0, n=1.33)
assert ae(brewster_angle(m1, m2), 0.93, 2)
assert ae(brewster_angle(1, 1.33), 0.93, 2) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def from_envvar(self, variable_name: str, silent: bool = False) -> bool:
"""Loads a configuration from an environment variable pointing to
a configuration file. This is basically just a shortcut with nicer
error messages for this line of code::
app.config.from_pyfile(os.environ['YOURAPPLICATION_SETTINGS'])
:param variable_name: name of the environment variable
:param silent: set to ``True`` if you want silent failure for missing
files.
:return: bool. ``True`` if able to load config, ``False`` otherwise.
"""
rv = os.environ.get(variable_name)
if not rv:
if silent:
return False
raise RuntimeError(
f"The environment variable {variable_name!r} is not set"
" and as such configuration could not be loaded. Set"
" this variable and make it point to a configuration"
" file"
)
return self.from_pyfile(rv, silent=silent) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_critical_angle():
m1 = Medium('m1', n=1)
m2 = Medium('m2', n=1.33)
assert ae(critical_angle(m2, m1), 0.85, 2) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def from_pyfile(self, filename: str, silent: bool = False) -> bool:
"""Updates the values in the config from a Python file. This function
behaves as if the file was imported as module with the
:meth:`from_object` function.
:param filename: the filename of the config. This can either be an
absolute filename or a filename relative to the
root path.
:param silent: set to ``True`` if you want silent failure for missing
files.
.. versionadded:: 0.7
`silent` parameter.
"""
filename = os.path.join(self.root_path, filename)
d = types.ModuleType("config")
d.__file__ = filename
try:
with open(filename, mode="rb") as config_file:
exec(compile(config_file.read(), filename, "exec"), d.__dict__)
except OSError as e:
if silent and e.errno in (errno.ENOENT, errno.EISDIR, errno.ENOTDIR):
return False
e.strerror = f"Unable to load configuration file ({e.strerror})"
raise
self.from_object(d)
return True |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_lens_makers_formula():
n1, n2 = symbols('n1, n2')
m1 = Medium('m1', permittivity=e0, n=1)
m2 = Medium('m2', permittivity=e0, n=1.33)
assert lens_makers_formula(n1, n2, 10, -10) == 5*n2/(n1 - n2)
assert ae(lens_makers_formula(m1, m2, 10, -10), -20.15, 2)
assert ae(lens_makers_formula(1.33, 1, 10, -10), 15.15, 2) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def from_object(self, obj: t.Union[object, str]) -> None:
"""Updates the values from the given object. An object can be of one
of the following two types:
- a string: in this case the object with that name will be imported
- an actual object reference: that object is used directly
Objects are usually either modules or classes. :meth:`from_object`
loads only the uppercase attributes of the module/class. A ``dict``
object will not work with :meth:`from_object` because the keys of a
``dict`` are not attributes of the ``dict`` class.
Example of module-based configuration::
app.config.from_object('yourapplication.default_config')
from yourapplication import default_config
app.config.from_object(default_config)
Nothing is done to the object before loading. If the object is a
class and has ``@property`` attributes, it needs to be
instantiated before being passed to this method.
You should not use this function to load the actual configuration but
rather configuration defaults. The actual config should be loaded
with :meth:`from_pyfile` and ideally from a location not within the
package because the package might be installed system wide.
See :ref:`config-dev-prod` for an example of class-based configuration
using :meth:`from_object`.
:param obj: an import name or object
"""
if isinstance(obj, str):
obj = import_string(obj)
for key in dir(obj):
if key.isupper():
self[key] = getattr(obj, key) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_mirror_formula():
u, v, f = symbols('u, v, f')
assert mirror_formula(focal_length=f, u=u) == f*u/(-f + u)
assert mirror_formula(focal_length=f, v=v) == f*v/(-f + v)
assert mirror_formula(u=u, v=v) == u*v/(u + v)
assert mirror_formula(u=oo, v=v) == v
assert mirror_formula(u=oo, v=oo) is oo
assert mirror_formula(focal_length=oo, u=u) == -u
assert mirror_formula(u=u, v=oo) == u
assert mirror_formula(focal_length=oo, v=oo) is oo
assert mirror_formula(focal_length=f, v=oo) == f
assert mirror_formula(focal_length=oo, v=v) == -v
assert mirror_formula(focal_length=oo, u=oo) is oo
assert mirror_formula(focal_length=f, u=oo) == f
assert mirror_formula(focal_length=oo, u=u) == -u
raises(ValueError, lambda: mirror_formula(focal_length=f, u=u, v=v)) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def from_file(
self,
filename: str,
load: t.Callable[[t.IO[t.Any]], t.Mapping],
silent: bool = False,
) -> bool:
"""Update the values in the config from a file that is loaded
using the ``load`` parameter. The loaded data is passed to the
:meth:`from_mapping` method.
.. code-block:: python
import toml
app.config.from_file("config.toml", load=toml.load)
:param filename: The path to the data file. This can be an
absolute path or relative to the config root path.
:param load: A callable that takes a file handle and returns a
mapping of loaded data from the file.
:type load: ``Callable[[Reader], Mapping]`` where ``Reader``
implements a ``read`` method.
:param silent: Ignore the file if it doesn't exist.
.. versionadded:: 2.0
"""
filename = os.path.join(self.root_path, filename)
try:
with open(filename) as f:
obj = load(f)
except OSError as e:
if silent and e.errno in (errno.ENOENT, errno.EISDIR):
return False
e.strerror = f"Unable to load configuration file ({e.strerror})"
raise
return self.from_mapping(obj) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_lens_formula():
u, v, f = symbols('u, v, f')
assert lens_formula(focal_length=f, u=u) == f*u/(f + u)
assert lens_formula(focal_length=f, v=v) == f*v/(f - v)
assert lens_formula(u=u, v=v) == u*v/(u - v)
assert lens_formula(u=oo, v=v) == v
assert lens_formula(u=oo, v=oo) is oo
assert lens_formula(focal_length=oo, u=u) == u
assert lens_formula(u=u, v=oo) == -u
assert lens_formula(focal_length=oo, v=oo) is -oo
assert lens_formula(focal_length=oo, v=v) == v
assert lens_formula(focal_length=f, v=oo) == -f
assert lens_formula(focal_length=oo, u=oo) is oo
assert lens_formula(focal_length=oo, u=u) == u
assert lens_formula(focal_length=f, u=oo) == f
raises(ValueError, lambda: lens_formula(focal_length=f, u=u, v=v)) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def from_json(self, filename: str, silent: bool = False) -> bool:
"""Update the values in the config from a JSON file. The loaded
data is passed to the :meth:`from_mapping` method.
:param filename: The path to the JSON file. This can be an
absolute path or relative to the config root path.
:param silent: Ignore the file if it doesn't exist.
.. deprecated:: 2.0.0
Will be removed in Flask 2.1. Use :meth:`from_file` instead.
This was removed early in 2.0.0, was added back in 2.0.1.
.. versionadded:: 0.11
"""
import warnings
from . import json
warnings.warn(
"'from_json' is deprecated and will be removed in Flask"
" 2.1. Use 'from_file(path, json.load)' instead.",
DeprecationWarning,
stacklevel=2,
)
return self.from_file(filename, json.load, silent=silent) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_hyperfocal_distance():
f, N, c = symbols('f, N, c')
assert hyperfocal_distance(f=f, N=N, c=c) == f**2/(N*c)
assert ae(hyperfocal_distance(f=0.5, N=8, c=0.0033), 9.47, 2) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def from_mapping(
self, mapping: t.Optional[t.Mapping[str, t.Any]] = None, **kwargs: t.Any
) -> bool:
"""Updates the config like :meth:`update` ignoring items with non-upper
keys.
.. versionadded:: 0.11
"""
mappings: t.Dict[str, t.Any] = {}
if mapping is not None:
mappings.update(mapping)
mappings.update(kwargs)
for key, value in mappings.items():
if key.isupper():
self[key] = value
return True |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def get_namespace(
self, namespace: str, lowercase: bool = True, trim_namespace: bool = True
) -> t.Dict[str, t.Any]:
"""Returns a dictionary containing a subset of configuration options
that match the specified namespace/prefix. Example usage::
app.config['IMAGE_STORE_TYPE'] = 'fs'
app.config['IMAGE_STORE_PATH'] = '/var/app/images'
app.config['IMAGE_STORE_BASE_URL'] = 'http://img.website.com'
image_store_config = app.config.get_namespace('IMAGE_STORE_')
The resulting dictionary `image_store_config` would look like::
{
'type': 'fs',
'path': '/var/app/images',
'base_url': 'http://img.website.com'
}
This is often useful when configuration options map directly to
keyword arguments in functions or class constructors.
:param namespace: a configuration namespace
:param lowercase: a flag indicating if the keys of the resulting
dictionary should be lowercase
:param trim_namespace: a flag indicating if the keys of the resulting
dictionary should not include the namespace
.. versionadded:: 0.11
"""
rv = {}
for k, v in self.items():
if not k.startswith(namespace):
continue
if trim_namespace:
key = k[len(namespace) :]
else:
key = k
if lowercase:
key = key.lower()
rv[key] = v
return rv |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | async def async_get_pickup_events() -> list[PickupEvent]:
"""Get the next pickup."""
try:
return await client.async_get_pickup_events(
start_date=date.today(), end_date=date.today() + timedelta(weeks=4)
)
except RecollectError as err:
raise UpdateFailed(
f"Error while requesting data from ReCollect: {err}"
) from err |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_can_write_simple_identifier(self):
escaped = cypher_escape("foo")
assert escaped == "foo" |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | async def async_reload_entry(hass: HomeAssistant, entry: ConfigEntry) -> None:
"""Handle an options update."""
await hass.config_entries.async_reload(entry.entry_id) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_can_write_identifier_with_odd_chars(self):
escaped = cypher_escape("foo bar")
assert escaped == "`foo bar`" |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_can_write_identifier_containing_back_ticks(self):
escaped = cypher_escape("foo `bar`")
assert escaped == "`foo ``bar```" |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_cannot_write_empty_identifier(self):
with self.assertRaises(ValueError):
_ = cypher_escape("") |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_cannot_write_none_identifier(self):
with self.assertRaises(TypeError):
_ = cypher_escape(None) |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_should_encode_none(self):
encoded = cypher_repr(None)
assert encoded == u"null" |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_should_encode_true(self):
encoded = cypher_repr(True)
assert encoded == u"true" |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_should_encode_zero(self):
encoded = cypher_repr(0)
assert encoded == u"0" |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_should_encode_positive_integer(self):
encoded = cypher_repr(123)
assert encoded == u"123" |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_should_encode_negative_integer(self):
encoded = cypher_repr(-123)
assert encoded == u"-123" |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_should_encode_zero(self):
encoded = cypher_repr(0.0)
assert encoded == u"0.0" |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_should_encode_positive_float(self):
encoded = cypher_repr(123.456)
assert encoded == u"123.456" |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_should_encode_negative_float(self):
encoded = cypher_repr(-123.456)
assert encoded == u"-123.456" |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_should_encode_bytes_with_escaped_chars(self):
encoded = cypher_repr(b"hello, 'world'", quote=u"'")
assert encoded == u"'hello, \\'world\\''" |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_should_encode_empty_string(self):
encoded = cypher_repr(u"")
assert encoded == u"''" |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_should_encode_backspace(self):
encoded = cypher_repr(u"\b")
assert encoded == u"'\\b'" |
def emit(self, level, message):
raise NotImplementedError('Please implement an emit method') | def test_should_encode_horizontal_tab(self):
encoded = cypher_repr(u"\t")
assert encoded == u"'\\t'" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.