id
stringlengths 14
15
| text
stringlengths 44
2.47k
| source
stringlengths 61
181
|
---|---|---|
dd3d3b58bd05-0 | langchain.callbacks.labelstudio_callback.get_default_label_configs¶
langchain.callbacks.labelstudio_callback.get_default_label_configs(mode: Union[str, LabelStudioMode]) → Tuple[str, LabelStudioMode][source]¶ | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.labelstudio_callback.get_default_label_configs.html |
a46930af6bf4-0 | langchain.callbacks.tracers.log_stream.RunLog¶
class langchain.callbacks.tracers.log_stream.RunLog(*ops: Dict[str, Any], state: RunState)[source]¶
Attributes
state
Current state of the log, obtained from applying all ops in sequence.
Methods
__init__(*ops, state)
__init__(*ops: Dict[str, Any], state: RunState) → None[source]¶ | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.log_stream.RunLog.html |
5600d6c5007e-0 | langchain.callbacks.tracers.langchain.wait_for_all_tracers¶
langchain.callbacks.tracers.langchain.wait_for_all_tracers() → None[source]¶
Wait for all tracers to finish.
Examples using wait_for_all_tracers¶
LangSmith Walkthrough | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.langchain.wait_for_all_tracers.html |
74cc398353af-0 | langchain.callbacks.tracers.wandb.WandbTracer¶
class langchain.callbacks.tracers.wandb.WandbTracer(run_args: Optional[WandbRunArgs] = None, **kwargs: Any)[source]¶
Callback Handler that logs to Weights and Biases.
This handler will log the model architecture and run traces to Weights and Biases.
This will ensure that all LangChain activity is logged to W&B.
Initializes the WandbTracer.
Parameters
run_args – (dict, optional) Arguments to pass to wandb.init(). If not
provided, wandb.init() will be called with no arguments. Please
refer to the wandb.init for more details.
To use W&B to monitor all LangChain activity, add this tracer like any other
LangChain callback:
```
from wandb.integration.langchain import WandbTracer
tracer = WandbTracer()
chain = LLMChain(llm, callbacks=[tracer])
# …end of notebook / script:
tracer.finish()
```
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__([run_args])
Initializes the WandbTracer.
finish()
Waits for all asynchronous processes to finish and data to upload.
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id[, inputs]) | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.wandb.WandbTracer.html |
74cc398353af-1 | on_chain_end(outputs, *, run_id[, inputs])
End a trace for a chain run.
on_chain_error(error, *[, inputs])
Handle an error for a chain run.
on_chain_start(serialized, inputs, *, run_id)
Start a trace for a chain run.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id, **kwargs)
End a trace for an LLM run.
on_llm_error(error, *, run_id, **kwargs)
Handle an error for an LLM run.
on_llm_new_token(token, *[, chunk, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Start a trace for an LLM run.
on_retriever_end(documents, *, run_id, **kwargs)
Run when Retriever ends running.
on_retriever_error(error, *, run_id, **kwargs)
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id, **kwargs)
Run on a retry event.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id, **kwargs)
End a trace for a tool run.
on_tool_error(error, *, run_id, **kwargs)
Handle an error for a tool run.
on_tool_start(serialized, input_str, *, run_id) | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.wandb.WandbTracer.html |
74cc398353af-2 | on_tool_start(serialized, input_str, *, run_id)
Start a trace for a tool run.
__init__(run_args: Optional[WandbRunArgs] = None, **kwargs: Any) → None[source]¶
Initializes the WandbTracer.
Parameters
run_args – (dict, optional) Arguments to pass to wandb.init(). If not
provided, wandb.init() will be called with no arguments. Please
refer to the wandb.init for more details.
To use W&B to monitor all LangChain activity, add this tracer like any other
LangChain callback:
```
from wandb.integration.langchain import WandbTracer
tracer = WandbTracer()
chain = LLMChain(llm, callbacks=[tracer])
# …end of notebook / script:
tracer.finish()
```
finish() → None[source]¶
Waits for all asynchronous processes to finish and data to upload.
Proxy for wandb.finish().
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → Run¶
End a trace for a chain run.
on_chain_error(error: BaseException, *, inputs: Optional[Dict[str, Any]] = None, run_id: UUID, **kwargs: Any) → Run¶
Handle an error for a chain run. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.wandb.WandbTracer.html |
74cc398353af-3 | Handle an error for a chain run.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, run_type: Optional[str] = None, name: Optional[str] = None, **kwargs: Any) → Run¶
Start a trace for a chain run.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → Run¶
End a trace for an LLM run.
on_llm_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶
Handle an error for an LLM run.
on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Run¶
Run on new LLM token. Only available when streaming is enabled.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶
Start a trace for an LLM run. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.wandb.WandbTracer.html |
74cc398353af-4 | Start a trace for an LLM run.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, **kwargs: Any) → Run¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, **kwargs: Any) → Run¶
Run on a retry event.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text.
on_tool_end(output: str, *, run_id: UUID, **kwargs: Any) → Run¶
End a trace for a tool run.
on_tool_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶
Handle an error for a tool run.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶
Start a trace for a tool run. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.wandb.WandbTracer.html |
c5df85f3e68e-0 | langchain.callbacks.manager.CallbackManagerForChainGroup¶
class langchain.callbacks.manager.CallbackManagerForChainGroup(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: uuid.UUID | None = None, *, parent_run_manager: CallbackManagerForChainRun, **kwargs: Any)[source]¶
Initialize callback manager.
Attributes
is_async
Whether the callback manager is async.
Methods
__init__(handlers[, inheritable_handlers, ...])
Initialize callback manager.
add_handler(handler[, inherit])
Add a handler to the callback manager.
add_metadata(metadata[, inherit])
add_tags(tags[, inherit])
configure([inheritable_callbacks, ...])
Configure the callback manager.
copy()
Copy the callback manager.
on_chain_end(outputs, **kwargs)
Run when traced chain group ends.
on_chain_error(error, **kwargs)
Run when chain errors.
on_chain_start(serialized, inputs[, run_id])
Run when chain starts running.
on_chat_model_start(serialized, messages, ...)
Run when LLM starts running.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts running.
on_retriever_start(serialized, query[, ...])
Run when retriever starts running.
on_tool_start(serialized, input_str[, ...])
Run when tool starts running.
remove_handler(handler)
Remove a handler from the callback manager.
remove_metadata(keys)
remove_tags(tags)
set_handler(handler[, inherit])
Set handler as the only handler on the callback manager.
set_handlers(handlers[, inherit])
Set handlers as the only handlers on the callback manager. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManagerForChainGroup.html |
c5df85f3e68e-1 | Set handlers as the only handlers on the callback manager.
__init__(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: uuid.UUID | None = None, *, parent_run_manager: CallbackManagerForChainRun, **kwargs: Any) → None[source]¶
Initialize callback manager.
add_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶
Add a handler to the callback manager.
add_metadata(metadata: Dict[str, Any], inherit: bool = True) → None¶
add_tags(tags: List[str], inherit: bool = True) → None¶
classmethod configure(inheritable_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, local_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, verbose: bool = False, inheritable_tags: Optional[List[str]] = None, local_tags: Optional[List[str]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, local_metadata: Optional[Dict[str, Any]] = None) → CallbackManager¶
Configure the callback manager.
Parameters
inheritable_callbacks (Optional[Callbacks], optional) – The inheritable
callbacks. Defaults to None.
local_callbacks (Optional[Callbacks], optional) – The local callbacks.
Defaults to None.
verbose (bool, optional) – Whether to enable verbose mode. Defaults to False.
inheritable_tags (Optional[List[str]], optional) – The inheritable tags.
Defaults to None.
local_tags (Optional[List[str]], optional) – The local tags.
Defaults to None.
inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable
metadata. Defaults to None.
local_metadata (Optional[Dict[str, Any]], optional) – The local metadata.
Defaults to None.
Returns | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManagerForChainGroup.html |
c5df85f3e68e-2 | Defaults to None.
Returns
The configured callback manager.
Return type
CallbackManager
copy() → T¶
Copy the callback manager.
on_chain_end(outputs: Union[Dict[str, Any], Any], **kwargs: Any) → None[source]¶
Run when traced chain group ends.
Parameters
outputs (Union[Dict[str, Any], Any]) – The outputs of the chain.
on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when chain errors.
Parameters
error (Exception or KeyboardInterrupt) – The error.
on_chain_start(serialized: Dict[str, Any], inputs: Union[Dict[str, Any], Any], run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForChainRun¶
Run when chain starts running.
Parameters
serialized (Dict[str, Any]) – The serialized chain.
inputs (Union[Dict[str, Any], Any]) – The inputs to the chain.
run_id (UUID, optional) – The ID of the run. Defaults to None.
Returns
The callback manager for the chain run.
Return type
CallbackManagerForChainRun
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → List[CallbackManagerForLLMRun]¶
Run when LLM starts running.
Parameters
serialized (Dict[str, Any]) – The serialized LLM.
messages (List[List[BaseMessage]]) – The list of messages.
run_id (UUID, optional) – The ID of the run. Defaults to None.
Returns
A callback manager for eachlist of messages as an LLM run.
Return type
List[CallbackManagerForLLMRun] | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManagerForChainGroup.html |
c5df85f3e68e-3 | Return type
List[CallbackManagerForLLMRun]
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → List[CallbackManagerForLLMRun]¶
Run when LLM starts running.
Parameters
serialized (Dict[str, Any]) – The serialized LLM.
prompts (List[str]) – The list of prompts.
run_id (UUID, optional) – The ID of the run. Defaults to None.
Returns
A callback manager for eachprompt as an LLM run.
Return type
List[CallbackManagerForLLMRun]
on_retriever_start(serialized: Dict[str, Any], query: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForRetrieverRun¶
Run when retriever starts running.
on_tool_start(serialized: Dict[str, Any], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → CallbackManagerForToolRun¶
Run when tool starts running.
Parameters
serialized (Dict[str, Any]) – The serialized tool.
input_str (str) – The input to the tool.
run_id (UUID, optional) – The ID of the run. Defaults to None.
parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None.
Returns
The callback manager for the tool run.
Return type
CallbackManagerForToolRun
remove_handler(handler: BaseCallbackHandler) → None¶
Remove a handler from the callback manager.
remove_metadata(keys: List[str]) → None¶
remove_tags(tags: List[str]) → None¶
set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManagerForChainGroup.html |
c5df85f3e68e-4 | set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶
Set handler as the only handler on the callback manager.
set_handlers(handlers: List[BaseCallbackHandler], inherit: bool = True) → None¶
Set handlers as the only handlers on the callback manager. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManagerForChainGroup.html |
4d2f85f15cb9-0 | langchain.callbacks.arthur_callback.ArthurCallbackHandler¶
class langchain.callbacks.arthur_callback.ArthurCallbackHandler(arthur_model: ArthurModel)[source]¶
Callback Handler that logs to Arthur platform.
Arthur helps enterprise teams optimize model operations
and performance at scale. The Arthur API tracks model
performance, explainability, and fairness across tabular,
NLP, and CV models. Our API is model- and platform-agnostic,
and continuously scales with complex and dynamic enterprise needs.
To learn more about Arthur, visit our website at
https://www.arthur.ai/ or read the Arthur docs at
https://docs.arthur.ai/
Initialize callback handler.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__(arthur_model)
Initialize callback handler.
from_credentials(model_id[, arthur_url, ...])
Initialize callback handler from Arthur credentials.
on_agent_action(action, **kwargs)
Do nothing when agent takes a specific action.
on_agent_finish(finish, **kwargs)
Do nothing
on_chain_end(outputs, **kwargs)
On chain end, do nothing.
on_chain_error(error, **kwargs)
Do nothing when LLM chain outputs an error.
on_chain_start(serialized, inputs, **kwargs)
On chain start, do nothing.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, **kwargs)
On LLM end, send data to Arthur. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.arthur_callback.ArthurCallbackHandler.html |
4d2f85f15cb9-1 | On LLM end, send data to Arthur.
on_llm_error(error, **kwargs)
Do nothing when LLM outputs an error.
on_llm_new_token(token, **kwargs)
On new token, pass.
on_llm_start(serialized, prompts, **kwargs)
On LLM start, save the input prompts
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, **kwargs)
Do nothing
on_tool_end(output[, observation_prefix, ...])
Do nothing when tool ends.
on_tool_error(error, **kwargs)
Do nothing when tool outputs an error.
on_tool_start(serialized, input_str, **kwargs)
Do nothing when tool starts.
__init__(arthur_model: ArthurModel) → None[source]¶
Initialize callback handler.
classmethod from_credentials(model_id: str, arthur_url: Optional[str] = 'https://app.arthur.ai', arthur_login: Optional[str] = None, arthur_password: Optional[str] = None) → ArthurCallbackHandler[source]¶
Initialize callback handler from Arthur credentials.
Parameters
model_id (str) – The ID of the arthur model to log to.
arthur_url (str, optional) – The URL of the Arthur instance to log to.
Defaults to “https://app.arthur.ai”. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.arthur_callback.ArthurCallbackHandler.html |
4d2f85f15cb9-2 | Defaults to “https://app.arthur.ai”.
arthur_login (str, optional) – The login to use to connect to Arthur.
Defaults to None.
arthur_password (str, optional) – The password to use to connect to
Arthur. Defaults to None.
Returns
The initialized callback handler.
Return type
ArthurCallbackHandler
on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶
Do nothing when agent takes a specific action.
on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶
Do nothing
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
On chain end, do nothing.
on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶
Do nothing when LLM chain outputs an error.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶
On chain start, do nothing.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
On LLM end, send data to Arthur.
on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶
Do nothing when LLM outputs an error.
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
On new token, pass. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.arthur_callback.ArthurCallbackHandler.html |
4d2f85f15cb9-3 | On new token, pass.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
On LLM start, save the input prompts
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on a retry event.
on_text(text: str, **kwargs: Any) → None[source]¶
Do nothing
on_tool_end(output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶
Do nothing when tool ends.
on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶
Do nothing when tool outputs an error.
on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶
Do nothing when tool starts.
Examples using ArthurCallbackHandler¶
Arthur | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.arthur_callback.ArthurCallbackHandler.html |
6c40dc04e971-0 | langchain.callbacks.base.ToolManagerMixin¶
class langchain.callbacks.base.ToolManagerMixin[source]¶
Mixin for tool callbacks.
Methods
__init__()
on_tool_end(output, *, run_id[, parent_run_id])
Run when tool ends running.
on_tool_error(error, *, run_id[, parent_run_id])
Run when tool errors.
__init__()¶
on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run when tool ends running.
on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run when tool errors. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.base.ToolManagerMixin.html |
64c332b6ff77-0 | langchain.callbacks.streamlit.streamlit_callback_handler.LLMThoughtLabeler¶
class langchain.callbacks.streamlit.streamlit_callback_handler.LLMThoughtLabeler[source]¶
Generates markdown labels for LLMThought containers. Pass a custom
subclass of this to StreamlitCallbackHandler to override its default
labeling logic.
Methods
__init__()
get_final_agent_thought_label()
Return the markdown label for the agent's final thought - the "Now I have the answer" thought, that doesn't involve a tool.
get_history_label()
Return a markdown label for the special 'history' container that contains overflow thoughts.
get_initial_label()
Return the markdown label for a new LLMThought that doesn't have an associated tool yet.
get_tool_label(tool, is_complete)
Return the label for an LLMThought that has an associated tool.
__init__()¶
get_final_agent_thought_label() → str[source]¶
Return the markdown label for the agent’s final thought -
the “Now I have the answer” thought, that doesn’t involve
a tool.
get_history_label() → str[source]¶
Return a markdown label for the special ‘history’ container
that contains overflow thoughts.
get_initial_label() → str[source]¶
Return the markdown label for a new LLMThought that doesn’t have
an associated tool yet.
get_tool_label(tool: ToolRecord, is_complete: bool) → str[source]¶
Return the label for an LLMThought that has an associated
tool.
Parameters
tool – The tool’s ToolRecord
is_complete – True if the thought is complete; False if the thought
is still receiving input.
Return type
The markdown label for the thought’s container. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streamlit.streamlit_callback_handler.LLMThoughtLabeler.html |
f824dd30a2fb-0 | langchain.callbacks.manager.AsyncCallbackManager¶
class langchain.callbacks.manager.AsyncCallbackManager(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Async callback manager that handles callbacks from LangChain.
Initialize callback manager.
Attributes
is_async
Return whether the handler is async.
Methods
__init__(handlers[, inheritable_handlers, ...])
Initialize callback manager.
add_handler(handler[, inherit])
Add a handler to the callback manager.
add_metadata(metadata[, inherit])
add_tags(tags[, inherit])
configure([inheritable_callbacks, ...])
Configure the async callback manager.
copy()
Copy the callback manager.
on_chain_start(serialized, inputs[, run_id])
Run when chain starts running.
on_chat_model_start(serialized, messages, ...)
Run when LLM starts running.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts running.
on_retriever_start(serialized, query[, ...])
Run when retriever starts running.
on_tool_start(serialized, input_str[, ...])
Run when tool starts running.
remove_handler(handler)
Remove a handler from the callback manager.
remove_metadata(keys)
remove_tags(tags)
set_handler(handler[, inherit])
Set handler as the only handler on the callback manager.
set_handlers(handlers[, inherit])
Set handlers as the only handlers on the callback manager. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncCallbackManager.html |
f824dd30a2fb-1 | Set handlers as the only handlers on the callback manager.
__init__(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶
Initialize callback manager.
add_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶
Add a handler to the callback manager.
add_metadata(metadata: Dict[str, Any], inherit: bool = True) → None¶
add_tags(tags: List[str], inherit: bool = True) → None¶
classmethod configure(inheritable_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, local_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, verbose: bool = False, inheritable_tags: Optional[List[str]] = None, local_tags: Optional[List[str]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, local_metadata: Optional[Dict[str, Any]] = None) → AsyncCallbackManager[source]¶
Configure the async callback manager.
Parameters
inheritable_callbacks (Optional[Callbacks], optional) – The inheritable
callbacks. Defaults to None.
local_callbacks (Optional[Callbacks], optional) – The local callbacks.
Defaults to None.
verbose (bool, optional) – Whether to enable verbose mode. Defaults to False.
inheritable_tags (Optional[List[str]], optional) – The inheritable tags.
Defaults to None.
local_tags (Optional[List[str]], optional) – The local tags.
Defaults to None.
inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncCallbackManager.html |
f824dd30a2fb-2 | inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable
metadata. Defaults to None.
local_metadata (Optional[Dict[str, Any]], optional) – The local metadata.
Defaults to None.
Returns
The configured async callback manager.
Return type
AsyncCallbackManager
copy() → T¶
Copy the callback manager.
async on_chain_start(serialized: Dict[str, Any], inputs: Union[Dict[str, Any], Any], run_id: Optional[UUID] = None, **kwargs: Any) → AsyncCallbackManagerForChainRun[source]¶
Run when chain starts running.
Parameters
serialized (Dict[str, Any]) – The serialized chain.
inputs (Union[Dict[str, Any], Any]) – The inputs to the chain.
run_id (UUID, optional) – The ID of the run. Defaults to None.
Returns
The async callback managerfor the chain run.
Return type
AsyncCallbackManagerForChainRun
async on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → List[AsyncCallbackManagerForLLMRun][source]¶
Run when LLM starts running.
Parameters
serialized (Dict[str, Any]) – The serialized LLM.
messages (List[List[BaseMessage]]) – The list of messages.
run_id (UUID, optional) – The ID of the run. Defaults to None.
Returns
The list ofasync callback managers, one for each LLM Run
corresponding to each inner message list.
Return type
List[AsyncCallbackManagerForLLMRun]
async on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → List[AsyncCallbackManagerForLLMRun][source]¶
Run when LLM starts running.
Parameters | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncCallbackManager.html |
f824dd30a2fb-3 | Run when LLM starts running.
Parameters
serialized (Dict[str, Any]) – The serialized LLM.
prompts (List[str]) – The list of prompts.
run_id (UUID, optional) – The ID of the run. Defaults to None.
Returns
The list of asynccallback managers, one for each LLM Run corresponding
to each prompt.
Return type
List[AsyncCallbackManagerForLLMRun]
async on_retriever_start(serialized: Dict[str, Any], query: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → AsyncCallbackManagerForRetrieverRun[source]¶
Run when retriever starts running.
async on_tool_start(serialized: Dict[str, Any], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → AsyncCallbackManagerForToolRun[source]¶
Run when tool starts running.
Parameters
serialized (Dict[str, Any]) – The serialized tool.
input_str (str) – The input to the tool.
run_id (UUID, optional) – The ID of the run. Defaults to None.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
Returns
The async callback managerfor the tool run.
Return type
AsyncCallbackManagerForToolRun
remove_handler(handler: BaseCallbackHandler) → None¶
Remove a handler from the callback manager.
remove_metadata(keys: List[str]) → None¶
remove_tags(tags: List[str]) → None¶
set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶
Set handler as the only handler on the callback manager. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncCallbackManager.html |
f824dd30a2fb-4 | Set handler as the only handler on the callback manager.
set_handlers(handlers: List[BaseCallbackHandler], inherit: bool = True) → None¶
Set handlers as the only handlers on the callback manager. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncCallbackManager.html |
b3f5001aad0e-0 | langchain.callbacks.tracers.schemas.LLMRun¶
class langchain.callbacks.tracers.schemas.LLMRun[source]¶
Bases: BaseRun
Class for LLMRun.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param child_execution_order: int [Required]¶
param end_time: datetime.datetime [Optional]¶
param error: Optional[str] = None¶
param execution_order: int [Required]¶
param extra: Optional[Dict[str, Any]] = None¶
param parent_uuid: Optional[str] = None¶
param prompts: List[str] [Required]¶
param response: Optional[langchain.schema.output.LLMResult] = None¶
param serialized: Dict[str, Any] [Required]¶
param session_id: int [Required]¶
param start_time: datetime.datetime [Optional]¶
param uuid: str [Required]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.LLMRun.html |
b3f5001aad0e-1 | exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶ | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.LLMRun.html |
b3f5001aad0e-2 | classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.LLMRun.html |
03c2feb325c8-0 | langchain.callbacks.context_callback.import_context¶
langchain.callbacks.context_callback.import_context() → Any[source]¶
Import the getcontext package. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.context_callback.import_context.html |
c16012084ac7-0 | langchain.callbacks.streaming_stdout_final_only.FinalStreamingStdOutCallbackHandler¶
class langchain.callbacks.streaming_stdout_final_only.FinalStreamingStdOutCallbackHandler(*, answer_prefix_tokens: Optional[List[str]] = None, strip_tokens: bool = True, stream_prefix: bool = False)[source]¶
Callback handler for streaming in agents.
Only works with agents using LLMs that support streaming.
Only the final output of the agent will be streamed.
Instantiate FinalStreamingStdOutCallbackHandler.
Parameters
answer_prefix_tokens – Token sequence that prefixes the answer.
Default is [“Final”, “Answer”, “:”]
strip_tokens – Ignore white spaces and new lines when comparing
answer_prefix_tokens to last tokens? (to determine if answer has been
reached)
stream_prefix – Should answer prefix itself also be streamed?
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__(*[, answer_prefix_tokens, ...])
Instantiate FinalStreamingStdOutCallbackHandler.
append_to_last_tokens(token)
check_if_answer_reached()
on_agent_action(action, **kwargs)
Run on agent action.
on_agent_finish(finish, **kwargs)
Run on agent end.
on_chain_end(outputs, **kwargs)
Run when chain ends running.
on_chain_error(error, **kwargs)
Run when chain errors.
on_chain_start(serialized, inputs, **kwargs)
Run when chain starts running.
on_chat_model_start(serialized, messages, ...)
Run when LLM starts running. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_stdout_final_only.FinalStreamingStdOutCallbackHandler.html |
c16012084ac7-1 | Run when LLM starts running.
on_llm_end(response, **kwargs)
Run when LLM ends running.
on_llm_error(error, **kwargs)
Run when LLM errors.
on_llm_new_token(token, **kwargs)
Run on new LLM token.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts running.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, **kwargs)
Run on arbitrary text.
on_tool_end(output, **kwargs)
Run when tool ends running.
on_tool_error(error, **kwargs)
Run when tool errors.
on_tool_start(serialized, input_str, **kwargs)
Run when tool starts running.
__init__(*, answer_prefix_tokens: Optional[List[str]] = None, strip_tokens: bool = True, stream_prefix: bool = False) → None[source]¶
Instantiate FinalStreamingStdOutCallbackHandler.
Parameters
answer_prefix_tokens – Token sequence that prefixes the answer.
Default is [“Final”, “Answer”, “:”]
strip_tokens – Ignore white spaces and new lines when comparing
answer_prefix_tokens to last tokens? (to determine if answer has been
reached)
stream_prefix – Should answer prefix itself also be streamed?
append_to_last_tokens(token: str) → None[source]¶ | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_stdout_final_only.FinalStreamingStdOutCallbackHandler.html |
c16012084ac7-2 | append_to_last_tokens(token: str) → None[source]¶
check_if_answer_reached() → bool[source]¶
on_agent_action(action: AgentAction, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, **kwargs: Any) → None¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None¶
Run when chain ends running.
on_chain_error(error: BaseException, **kwargs: Any) → None¶
Run when chain errors.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None¶
Run when chain starts running.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → None¶
Run when LLM starts running.
on_llm_end(response: LLMResult, **kwargs: Any) → None¶
Run when LLM ends running.
on_llm_error(error: BaseException, **kwargs: Any) → None¶
Run when LLM errors.
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
Run on new LLM token. Only available when streaming is enabled.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
Run when LLM starts running.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_stdout_final_only.FinalStreamingStdOutCallbackHandler.html |
c16012084ac7-3 | Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on a retry event.
on_text(text: str, **kwargs: Any) → None¶
Run on arbitrary text.
on_tool_end(output: str, **kwargs: Any) → None¶
Run when tool ends running.
on_tool_error(error: BaseException, **kwargs: Any) → None¶
Run when tool errors.
on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None¶
Run when tool starts running.
Examples using FinalStreamingStdOutCallbackHandler¶
Streaming final agent output | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_stdout_final_only.FinalStreamingStdOutCallbackHandler.html |
d479d9ab30b9-0 | langchain.callbacks.manager.get_openai_callback¶
langchain.callbacks.manager.get_openai_callback() → Generator[OpenAICallbackHandler, None, None][source]¶
Get the OpenAI callback handler in a context manager.
which conveniently exposes token and cost information.
Returns
The OpenAI callback handler.
Return type
OpenAICallbackHandler
Example
>>> with get_openai_callback() as cb:
... # Use the OpenAI callback handler
Examples using get_openai_callback¶
Azure
Token counting
Tracking token usage
Run arbitrary functions | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.get_openai_callback.html |
74dd0232dfac-0 | langchain.callbacks.sagemaker_callback.SageMakerCallbackHandler¶
class langchain.callbacks.sagemaker_callback.SageMakerCallbackHandler(run: Any)[source]¶
Callback Handler that logs prompt artifacts and metrics to SageMaker Experiments.
Parameters
run (sagemaker.experiments.run.Run) – Run object where the experiment is logged.
Initialize callback handler.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__(run)
Initialize callback handler.
flush_tracker()
Reset the steps and delete the temporary local directory.
jsonf(data, data_dir, filename[, is_output])
To log the input data as json file artifact.
on_agent_action(action, **kwargs)
Run on agent action.
on_agent_finish(finish, **kwargs)
Run when agent ends running.
on_chain_end(outputs, **kwargs)
Run when chain ends running.
on_chain_error(error, **kwargs)
Run when chain errors.
on_chain_start(serialized, inputs, **kwargs)
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, **kwargs)
Run when LLM ends running.
on_llm_error(error, **kwargs)
Run when LLM errors.
on_llm_new_token(token, **kwargs)
Run when LLM generates a new token.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.sagemaker_callback.SageMakerCallbackHandler.html |
74dd0232dfac-1 | Run when LLM starts.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, **kwargs)
Run when agent is ending.
on_tool_end(output, **kwargs)
Run when tool ends running.
on_tool_error(error, **kwargs)
Run when tool errors.
on_tool_start(serialized, input_str, **kwargs)
Run when tool starts running.
__init__(run: Any) → None[source]¶
Initialize callback handler.
flush_tracker() → None[source]¶
Reset the steps and delete the temporary local directory.
jsonf(data: Dict[str, Any], data_dir: str, filename: str, is_output: Optional[bool] = True) → None[source]¶
To log the input data as json file artifact.
on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶
Run on agent action.
on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶
Run when agent ends running.
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain ends running.
on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when chain errors.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.sagemaker_callback.SageMakerCallbackHandler.html |
74dd0232dfac-2 | Run when chain starts running.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Run when LLM ends running.
on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when LLM errors.
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
Run when LLM generates a new token.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
Run when LLM starts.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.sagemaker_callback.SageMakerCallbackHandler.html |
74dd0232dfac-3 | Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on a retry event.
on_text(text: str, **kwargs: Any) → None[source]¶
Run when agent is ending.
on_tool_end(output: str, **kwargs: Any) → None[source]¶
Run when tool ends running.
on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when tool errors.
on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶
Run when tool starts running.
Examples using SageMakerCallbackHandler¶
SageMaker Tracking | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.sagemaker_callback.SageMakerCallbackHandler.html |
5bcc21662fe9-0 | langchain.callbacks.manager.tracing_v2_enabled¶
langchain.callbacks.manager.tracing_v2_enabled(project_name: Optional[str] = None, *, example_id: Optional[Union[str, UUID]] = None, tags: Optional[List[str]] = None, client: Optional[LangSmithClient] = None) → Generator[None, None, None][source]¶
Instruct LangChain to log all runs in context to LangSmith.
Parameters
project_name (str, optional) – The name of the project.
Defaults to “default”.
example_id (str or UUID, optional) – The ID of the example.
Defaults to None.
tags (List[str], optional) – The tags to add to the run.
Defaults to None.
Returns
None
Example
>>> with tracing_v2_enabled():
... # LangChain code will automatically be traced
Examples using tracing_v2_enabled¶
LangSmith Walkthrough | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.tracing_v2_enabled.html |
24ba2d3086b5-0 | langchain.callbacks.human.HumanApprovalCallbackHandler¶
class langchain.callbacks.human.HumanApprovalCallbackHandler(approve: ~typing.Callable[[~typing.Any], bool] = <function _default_approve>, should_check: ~typing.Callable[[~typing.Dict[str, ~typing.Any]], bool] = <function _default_true>)[source]¶
Callback for manually validating values.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__([approve, should_check])
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id[, parent_run_id])
Run when chain ends running.
on_chain_error(error, *, run_id[, parent_run_id])
Run when chain errors.
on_chain_start(serialized, inputs, *, run_id)
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id[, parent_run_id])
Run when LLM ends running.
on_llm_error(error, *, run_id[, parent_run_id])
Run when LLM errors.
on_llm_new_token(token, *[, chunk, ...])
Run on new LLM token. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.human.HumanApprovalCallbackHandler.html |
24ba2d3086b5-1 | Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Run when LLM starts running.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id[, parent_run_id])
Run when tool ends running.
on_tool_error(error, *, run_id[, parent_run_id])
Run when tool errors.
on_tool_start(serialized, input_str, *, run_id)
Run when tool starts running.
__init__(approve: ~typing.Callable[[~typing.Any], bool] = <function _default_approve>, should_check: ~typing.Callable[[~typing.Dict[str, ~typing.Any]], bool] = <function _default_true>)[source]¶
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.human.HumanApprovalCallbackHandler.html |
24ba2d3086b5-2 | Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when chain ends running.
on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when chain errors.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when chain starts running.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when LLM ends running.
on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when LLM errors.
on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on new LLM token. Only available when streaming is enabled.
Parameters | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.human.HumanApprovalCallbackHandler.html |
24ba2d3086b5-3 | Run on new LLM token. Only available when streaming is enabled.
Parameters
token (str) – The new token.
chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk,
information. (containing content and other) –
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when LLM starts running.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on a retry event.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.human.HumanApprovalCallbackHandler.html |
24ba2d3086b5-4 | Run on arbitrary text.
on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when tool ends running.
on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when tool errors.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run when tool starts running.
Examples using HumanApprovalCallbackHandler¶
Human-in-the-loop Tool Validation | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.human.HumanApprovalCallbackHandler.html |
3099f09ade08-0 | langchain.callbacks.manager.AsyncCallbackManagerForLLMRun¶
class langchain.callbacks.manager.AsyncCallbackManagerForLLMRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Async callback manager for LLM run.
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
on_llm_end(response, **kwargs)
Run when LLM ends running.
on_llm_error(error, **kwargs)
Run when LLM errors.
on_llm_new_token(token, *[, chunk])
Run when LLM generates a new token.
on_retry(retry_state, **kwargs)
Run on a retry event.
on_text(text, **kwargs)
Run when text is received. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncCallbackManagerForLLMRun.html |
3099f09ade08-1 | on_text(text, **kwargs)
Run when text is received.
__init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
classmethod get_noop_manager() → BRM¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
async on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Run when LLM ends running.
Parameters
response (LLMResult) – The LLM result.
async on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when LLM errors.
Parameters
error (Exception or KeyboardInterrupt) – The error. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncCallbackManagerForLLMRun.html |
3099f09ade08-2 | Run when LLM errors.
Parameters
error (Exception or KeyboardInterrupt) – The error.
async on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, **kwargs: Any) → None[source]¶
Run when LLM generates a new token.
Parameters
token (str) – The new token.
async on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶
Run on a retry event.
async on_text(text: str, **kwargs: Any) → Any¶
Run when text is received.
Parameters
text (str) – The received text.
Returns
The result of the callback.
Return type
Any | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.AsyncCallbackManagerForLLMRun.html |
cfe2f9e844c0-0 | langchain.callbacks.manager.CallbackManagerForToolRun¶
class langchain.callbacks.manager.CallbackManagerForToolRun(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶
Callback manager for tool run.
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
Methods
__init__(*, run_id, handlers, ...[, ...])
Initialize the run manager.
get_child([tag])
Get a child callback manager.
get_noop_manager()
Return a manager that doesn't perform any operations.
on_retry(retry_state, **kwargs)
Run on a retry event.
on_text(text, **kwargs)
Run when text is received.
on_tool_end(output, **kwargs)
Run when tool ends running.
on_tool_error(error, **kwargs)
Run when tool errors. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManagerForToolRun.html |
cfe2f9e844c0-1 | on_tool_error(error, **kwargs)
Run when tool errors.
__init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶
Initialize the run manager.
Parameters
run_id (UUID) – The ID of the run.
handlers (List[BaseCallbackHandler]) – The list of handlers.
inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers.
parent_run_id (UUID, optional) – The ID of the parent run.
Defaults to None.
tags (Optional[List[str]]) – The list of tags.
inheritable_tags (Optional[List[str]]) – The list of inheritable tags.
metadata (Optional[Dict[str, Any]]) – The metadata.
inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata.
get_child(tag: Optional[str] = None) → CallbackManager¶
Get a child callback manager.
Parameters
tag (str, optional) – The tag for the child callback manager.
Defaults to None.
Returns
The child callback manager.
Return type
CallbackManager
classmethod get_noop_manager() → BRM¶
Return a manager that doesn’t perform any operations.
Returns
The noop manager.
Return type
BaseRunManager
on_retry(retry_state: RetryCallState, **kwargs: Any) → None¶
Run on a retry event.
on_text(text: str, **kwargs: Any) → Any¶
Run when text is received.
Parameters
text (str) – The received text.
Returns | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManagerForToolRun.html |
cfe2f9e844c0-2 | Parameters
text (str) – The received text.
Returns
The result of the callback.
Return type
Any
on_tool_end(output: str, **kwargs: Any) → None[source]¶
Run when tool ends running.
Parameters
output (str) – The output of the tool.
on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when tool errors.
Parameters
error (Exception or KeyboardInterrupt) – The error.
Examples using CallbackManagerForToolRun¶
Defining Custom Tools | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.CallbackManagerForToolRun.html |
b64457ab762e-0 | langchain.callbacks.base.LLMManagerMixin¶
class langchain.callbacks.base.LLMManagerMixin[source]¶
Mixin for LLM callbacks.
Methods
__init__()
on_llm_end(response, *, run_id[, parent_run_id])
Run when LLM ends running.
on_llm_error(error, *, run_id[, parent_run_id])
Run when LLM errors.
on_llm_new_token(token, *[, chunk, ...])
Run on new LLM token.
__init__()¶
on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run when LLM ends running.
on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run when LLM errors.
on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run on new LLM token. Only available when streaming is enabled.
Parameters
token (str) – The new token.
chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk,
information. (containing content and other) – | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.base.LLMManagerMixin.html |
7bc8678ca13e-0 | langchain.callbacks.mlflow_callback.import_mlflow¶
langchain.callbacks.mlflow_callback.import_mlflow() → Any[source]¶
Import the mlflow python package and raise an error if it is not installed. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.mlflow_callback.import_mlflow.html |
6366b1cff13a-0 | langchain.callbacks.tracers.base.BaseTracer¶
class langchain.callbacks.tracers.base.BaseTracer(**kwargs: Any)[source]¶
Base interface for tracers.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__(**kwargs)
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id[, inputs])
End a trace for a chain run.
on_chain_error(error, *[, inputs])
Handle an error for a chain run.
on_chain_start(serialized, inputs, *, run_id)
Start a trace for a chain run.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id, **kwargs)
End a trace for an LLM run.
on_llm_error(error, *, run_id, **kwargs)
Handle an error for an LLM run.
on_llm_new_token(token, *[, chunk, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Start a trace for an LLM run.
on_retriever_end(documents, *, run_id, **kwargs)
Run when Retriever ends running. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.base.BaseTracer.html |
6366b1cff13a-1 | Run when Retriever ends running.
on_retriever_error(error, *, run_id, **kwargs)
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id, **kwargs)
Run on a retry event.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id, **kwargs)
End a trace for a tool run.
on_tool_error(error, *, run_id, **kwargs)
Handle an error for a tool run.
on_tool_start(serialized, input_str, *, run_id)
Start a trace for a tool run.
__init__(**kwargs: Any) → None[source]¶
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → Run[source]¶
End a trace for a chain run.
on_chain_error(error: BaseException, *, inputs: Optional[Dict[str, Any]] = None, run_id: UUID, **kwargs: Any) → Run[source]¶
Handle an error for a chain run. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.base.BaseTracer.html |
6366b1cff13a-2 | Handle an error for a chain run.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, run_type: Optional[str] = None, name: Optional[str] = None, **kwargs: Any) → Run[source]¶
Start a trace for a chain run.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → Run[source]¶
End a trace for an LLM run.
on_llm_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run[source]¶
Handle an error for an LLM run.
on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Run[source]¶
Run on new LLM token. Only available when streaming is enabled.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run[source]¶ | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.base.BaseTracer.html |
6366b1cff13a-3 | Start a trace for an LLM run.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, **kwargs: Any) → Run[source]¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run[source]¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run[source]¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, **kwargs: Any) → Run[source]¶
Run on a retry event.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text.
on_tool_end(output: str, *, run_id: UUID, **kwargs: Any) → Run[source]¶
End a trace for a tool run.
on_tool_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run[source]¶
Handle an error for a tool run.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run[source]¶
Start a trace for a tool run. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.base.BaseTracer.html |
98b5e8b23b97-0 | langchain.callbacks.streamlit.streamlit_callback_handler.LLMThoughtState¶
class langchain.callbacks.streamlit.streamlit_callback_handler.LLMThoughtState(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶
Enumerator of the LLMThought state.
THINKING = 'THINKING'¶
RUNNING_TOOL = 'RUNNING_TOOL'¶
COMPLETE = 'COMPLETE'¶ | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streamlit.streamlit_callback_handler.LLMThoughtState.html |
9256af6e1b66-0 | langchain.callbacks.tracers.schemas.BaseRun¶
class langchain.callbacks.tracers.schemas.BaseRun[source]¶
Bases: BaseModel
Base class for Run.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param child_execution_order: int [Required]¶
param end_time: datetime.datetime [Optional]¶
param error: Optional[str] = None¶
param execution_order: int [Required]¶
param extra: Optional[Dict[str, Any]] = None¶
param parent_uuid: Optional[str] = None¶
param serialized: Dict[str, Any] [Required]¶
param session_id: int [Required]¶
param start_time: datetime.datetime [Optional]¶
param uuid: str [Required]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.BaseRun.html |
9256af6e1b66-1 | the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.BaseRun.html |
9256af6e1b66-2 | classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.BaseRun.html |
447e816770b1-0 | langchain.callbacks.promptlayer_callback.PromptLayerCallbackHandler¶
class langchain.callbacks.promptlayer_callback.PromptLayerCallbackHandler(pl_id_callback: Optional[Callable[[...], Any]] = None, pl_tags: Optional[List[str]] = None)[source]¶
Callback handler for promptlayer.
Initialize the PromptLayerCallbackHandler.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__([pl_id_callback, pl_tags])
Initialize the PromptLayerCallbackHandler.
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id[, parent_run_id])
Run when chain ends running.
on_chain_error(error, *, run_id[, parent_run_id])
Run when chain errors.
on_chain_start(serialized, inputs, *, run_id)
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id[, parent_run_id])
Run when LLM ends running.
on_llm_error(error, *, run_id[, parent_run_id])
Run when LLM errors.
on_llm_new_token(token, *[, chunk, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id) | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.promptlayer_callback.PromptLayerCallbackHandler.html |
447e816770b1-1 | on_llm_start(serialized, prompts, *, run_id)
Run when LLM starts running.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id[, parent_run_id])
Run when tool ends running.
on_tool_error(error, *, run_id[, parent_run_id])
Run when tool errors.
on_tool_start(serialized, input_str, *, run_id)
Run when tool starts running.
__init__(pl_id_callback: Optional[Callable[[...], Any]] = None, pl_tags: Optional[List[str]] = None) → None[source]¶
Initialize the PromptLayerCallbackHandler.
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when chain ends running. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.promptlayer_callback.PromptLayerCallbackHandler.html |
447e816770b1-2 | Run when chain ends running.
on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when chain errors.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when chain starts running.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → Any[source]¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → None[source]¶
Run when LLM ends running.
on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when LLM errors.
on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on new LLM token. Only available when streaming is enabled.
Parameters
token (str) – The new token.
chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk,
information. (containing content and other) – | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.promptlayer_callback.PromptLayerCallbackHandler.html |
447e816770b1-3 | information. (containing content and other) –
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → Any[source]¶
Run when LLM starts running.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on a retry event.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text.
on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when tool ends running.
on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when tool errors. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.promptlayer_callback.PromptLayerCallbackHandler.html |
447e816770b1-4 | Run when tool errors.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when tool starts running.
Examples using PromptLayerCallbackHandler¶
PromptLayer | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.promptlayer_callback.PromptLayerCallbackHandler.html |
0e098d323ae6-0 | langchain.callbacks.wandb_callback.WandbCallbackHandler¶
class langchain.callbacks.wandb_callback.WandbCallbackHandler(job_type: Optional[str] = None, project: Optional[str] = 'langchain_callback_demo', entity: Optional[str] = None, tags: Optional[Sequence] = None, group: Optional[str] = None, name: Optional[str] = None, notes: Optional[str] = None, visualize: bool = False, complexity_metrics: bool = False, stream_logs: bool = False)[source]¶
Callback Handler that logs to Weights and Biases.
Parameters
job_type (str) – The type of job.
project (str) – The project to log to.
entity (str) – The entity to log to.
tags (list) – The tags to log.
group (str) – The group to log to.
name (str) – The name of the run.
notes (str) – The notes to log.
visualize (bool) – Whether to visualize the run.
complexity_metrics (bool) – Whether to log complexity metrics.
stream_logs (bool) – Whether to stream callback actions to W&B
This handler will utilize the associated callback method called and formats
the input of each callback function with metadata regarding the state of LLM run,
and adds the response to the list of records for both the {method}_records and
action. It then logs the response using the run.log() method to Weights and Biases.
Initialize callback handler.
Attributes
always_verbose
Whether to call verbose callbacks even if verbose is False.
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.wandb_callback.WandbCallbackHandler.html |
0e098d323ae6-1 | ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__([job_type, project, entity, tags, ...])
Initialize callback handler.
flush_tracker([langchain_asset, reset, ...])
Flush the tracker and reset the session.
get_custom_callback_meta()
on_agent_action(action, **kwargs)
Run on agent action.
on_agent_finish(finish, **kwargs)
Run when agent ends running.
on_chain_end(outputs, **kwargs)
Run when chain ends running.
on_chain_error(error, **kwargs)
Run when chain errors.
on_chain_start(serialized, inputs, **kwargs)
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, **kwargs)
Run when LLM ends running.
on_llm_error(error, **kwargs)
Run when LLM errors.
on_llm_new_token(token, **kwargs)
Run when LLM generates a new token.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, **kwargs)
Run when agent is ending. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.wandb_callback.WandbCallbackHandler.html |
0e098d323ae6-2 | on_text(text, **kwargs)
Run when agent is ending.
on_tool_end(output, **kwargs)
Run when tool ends running.
on_tool_error(error, **kwargs)
Run when tool errors.
on_tool_start(serialized, input_str, **kwargs)
Run when tool starts running.
reset_callback_meta()
Reset the callback metadata.
__init__(job_type: Optional[str] = None, project: Optional[str] = 'langchain_callback_demo', entity: Optional[str] = None, tags: Optional[Sequence] = None, group: Optional[str] = None, name: Optional[str] = None, notes: Optional[str] = None, visualize: bool = False, complexity_metrics: bool = False, stream_logs: bool = False) → None[source]¶
Initialize callback handler.
flush_tracker(langchain_asset: Any = None, reset: bool = True, finish: bool = False, job_type: Optional[str] = None, project: Optional[str] = None, entity: Optional[str] = None, tags: Optional[Sequence] = None, group: Optional[str] = None, name: Optional[str] = None, notes: Optional[str] = None, visualize: Optional[bool] = None, complexity_metrics: Optional[bool] = None) → None[source]¶
Flush the tracker and reset the session.
Parameters
langchain_asset – The langchain asset to save.
reset – Whether to reset the session.
finish – Whether to finish the run.
job_type – The job type.
project – The project.
entity – The entity.
tags – The tags.
group – The group.
name – The name.
notes – The notes.
visualize – Whether to visualize.
complexity_metrics – Whether to compute complexity metrics.
Returns – None | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.wandb_callback.WandbCallbackHandler.html |
0e098d323ae6-3 | complexity_metrics – Whether to compute complexity metrics.
Returns – None
get_custom_callback_meta() → Dict[str, Any]¶
on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶
Run on agent action.
on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶
Run when agent ends running.
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain ends running.
on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when chain errors.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain starts running.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when a chat model starts running.
on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Run when LLM ends running.
on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when LLM errors.
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
Run when LLM generates a new token.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
Run when LLM starts. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.wandb_callback.WandbCallbackHandler.html |
0e098d323ae6-4 | Run when LLM starts.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on a retry event.
on_text(text: str, **kwargs: Any) → None[source]¶
Run when agent is ending.
on_tool_end(output: str, **kwargs: Any) → None[source]¶
Run when tool ends running.
on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when tool errors.
on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶
Run when tool starts running.
reset_callback_meta() → None¶
Reset the callback metadata.
Examples using WandbCallbackHandler¶
Weights & Biases | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.wandb_callback.WandbCallbackHandler.html |
305467f9d8c4-0 | langchain.callbacks.base.AsyncCallbackHandler¶
class langchain.callbacks.base.AsyncCallbackHandler[source]¶
Async callback handler that can be used to handle callbacks from langchain.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__()
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id[, ...])
Run when chain ends running.
on_chain_error(error, *, run_id[, ...])
Run when chain errors.
on_chain_start(serialized, inputs, *, run_id)
Run when chain starts running.
on_chat_model_start(serialized, messages, *, ...)
Run when a chat model starts running.
on_llm_end(response, *, run_id[, ...])
Run when LLM ends running.
on_llm_error(error, *, run_id[, ...])
Run when LLM errors.
on_llm_new_token(token, *[, chunk, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Run when LLM starts running.
on_retriever_end(documents, *, run_id[, ...])
Run on retriever end.
on_retriever_error(error, *, run_id[, ...])
Run on retriever error. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.base.AsyncCallbackHandler.html |
305467f9d8c4-1 | Run on retriever error.
on_retriever_start(serialized, query, *, run_id)
Run on retriever start.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, *, run_id[, parent_run_id, tags])
Run on arbitrary text.
on_tool_end(output, *, run_id[, ...])
Run when tool ends running.
on_tool_error(error, *, run_id[, ...])
Run when tool errors.
on_tool_start(serialized, input_str, *, run_id)
Run when tool starts running.
__init__()¶
async on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run on agent action.
async on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run on agent end.
async on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run when chain ends running.
async on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run when chain errors. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.base.AsyncCallbackHandler.html |
305467f9d8c4-2 | Run when chain errors.
async on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶
Run when chain starts running.
async on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶
Run when a chat model starts running.
async on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run when LLM ends running.
async on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run when LLM errors.
async on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run on new LLM token. Only available when streaming is enabled. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.base.AsyncCallbackHandler.html |
305467f9d8c4-3 | Run on new LLM token. Only available when streaming is enabled.
async on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶
Run when LLM starts running.
async on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run on retriever end.
async on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run on retriever error.
async on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶
Run on retriever start.
async on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run on a retry event.
async on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run on arbitrary text. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.base.AsyncCallbackHandler.html |
305467f9d8c4-4 | Run on arbitrary text.
async on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run when tool ends running.
async on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶
Run when tool errors.
async on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶
Run when tool starts running.
Examples using AsyncCallbackHandler¶
Async callbacks | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.base.AsyncCallbackHandler.html |
6be37d193bb4-0 | langchain.callbacks.infino_callback.import_infino¶
langchain.callbacks.infino_callback.import_infino() → Any[source]¶
Import the infino client. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.infino_callback.import_infino.html |
e8c7f8a79b57-0 | langchain.callbacks.tracers.schemas.ChainRun¶
class langchain.callbacks.tracers.schemas.ChainRun[source]¶
Bases: BaseRun
Class for ChainRun.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param child_chain_runs: List[langchain.callbacks.tracers.schemas.ChainRun] [Optional]¶
param child_execution_order: int [Required]¶
param child_llm_runs: List[langchain.callbacks.tracers.schemas.LLMRun] [Optional]¶
param child_tool_runs: List[langchain.callbacks.tracers.schemas.ToolRun] [Optional]¶
param end_time: datetime.datetime [Optional]¶
param error: Optional[str] = None¶
param execution_order: int [Required]¶
param extra: Optional[Dict[str, Any]] = None¶
param inputs: Dict[str, Any] [Required]¶
param outputs: Optional[Dict[str, Any]] = None¶
param parent_uuid: Optional[str] = None¶
param serialized: Dict[str, Any] [Required]¶
param session_id: int [Required]¶
param start_time: datetime.datetime [Optional]¶
param uuid: str [Required]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.ChainRun.html |
e8c7f8a79b57-1 | Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶ | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.ChainRun.html |
e8c7f8a79b57-2 | classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.schemas.ChainRun.html |
94ee1baae4c9-0 | langchain.callbacks.base.ChainManagerMixin¶
class langchain.callbacks.base.ChainManagerMixin[source]¶
Mixin for chain callbacks.
Methods
__init__()
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id[, parent_run_id])
Run when chain ends running.
on_chain_error(error, *, run_id[, parent_run_id])
Run when chain errors.
__init__()¶
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run when chain ends running.
on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run when chain errors. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.base.ChainManagerMixin.html |
e4624a723d4e-0 | langchain.callbacks.streaming_stdout.StreamingStdOutCallbackHandler¶
class langchain.callbacks.streaming_stdout.StreamingStdOutCallbackHandler[source]¶
Callback handler for streaming. Only works with LLMs that support streaming.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__()
on_agent_action(action, **kwargs)
Run on agent action.
on_agent_finish(finish, **kwargs)
Run on agent end.
on_chain_end(outputs, **kwargs)
Run when chain ends running.
on_chain_error(error, **kwargs)
Run when chain errors.
on_chain_start(serialized, inputs, **kwargs)
Run when chain starts running.
on_chat_model_start(serialized, messages, ...)
Run when LLM starts running.
on_llm_end(response, **kwargs)
Run when LLM ends running.
on_llm_error(error, **kwargs)
Run when LLM errors.
on_llm_new_token(token, **kwargs)
Run on new LLM token.
on_llm_start(serialized, prompts, **kwargs)
Run when LLM starts running.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_stdout.StreamingStdOutCallbackHandler.html |
e4624a723d4e-1 | Run when Retriever starts running.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, **kwargs)
Run on arbitrary text.
on_tool_end(output, **kwargs)
Run when tool ends running.
on_tool_error(error, **kwargs)
Run when tool errors.
on_tool_start(serialized, input_str, **kwargs)
Run when tool starts running.
__init__()¶
on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶
Run on agent action.
on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain ends running.
on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when chain errors.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain starts running.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → None[source]¶
Run when LLM starts running.
on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Run when LLM ends running.
on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when LLM errors.
on_llm_new_token(token: str, **kwargs: Any) → None[source]¶
Run on new LLM token. Only available when streaming is enabled. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_stdout.StreamingStdOutCallbackHandler.html |
e4624a723d4e-2 | Run on new LLM token. Only available when streaming is enabled.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶
Run when LLM starts running.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on a retry event.
on_text(text: str, **kwargs: Any) → None[source]¶
Run on arbitrary text.
on_tool_end(output: str, **kwargs: Any) → None[source]¶
Run when tool ends running.
on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶
Run when tool errors.
on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶
Run when tool starts running.
Examples using StreamingStdOutCallbackHandler¶
Anthropic
🚅 LiteLLM
Ollama
GPT4All
Arthur | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_stdout.StreamingStdOutCallbackHandler.html |
e4624a723d4e-3 | 🚅 LiteLLM
Ollama
GPT4All
Arthur
Chat Over Documents with Vectara
TextGen
Llama.cpp
Titan Takeoff
Eden AI
C Transformers
Huggingface TextGen Inference
Replicate
Run LLMs locally
Set env var OPENAI_API_KEY or load from a .env file
Use local LLMs
WebResearchRetriever | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_stdout.StreamingStdOutCallbackHandler.html |
b526d9da30ed-0 | langchain.callbacks.utils.import_textstat¶
langchain.callbacks.utils.import_textstat() → Any[source]¶
Import the textstat python package and raise an error if it is not installed. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.utils.import_textstat.html |
f2056c8c7bc3-0 | langchain.callbacks.mlflow_callback.analyze_text¶
langchain.callbacks.mlflow_callback.analyze_text(text: str, nlp: Any = None) → dict[source]¶
Analyze text using textstat and spacy.
Parameters
text (str) – The text to analyze.
nlp (spacy.lang) – The spacy language model to use for visualization.
Returns
A dictionary containing the complexity metrics and visualizationfiles serialized to HTML string.
Return type
(dict) | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.mlflow_callback.analyze_text.html |
bf7d293e7a44-0 | langchain.callbacks.llmonitor_callback.UserContextManager¶
class langchain.callbacks.llmonitor_callback.UserContextManager(user_id: str, user_props: Any = None)[source]¶
Methods
__init__(user_id[, user_props])
__init__(user_id: str, user_props: Any = None) → None[source]¶ | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.llmonitor_callback.UserContextManager.html |
11cebbe7daba-0 | langchain.callbacks.manager.collect_runs¶
langchain.callbacks.manager.collect_runs() → Generator[RunCollectorCallbackHandler, None, None][source]¶
Collect all run traces in context.
Returns
The run collector callback handler.
Return type
run_collector.RunCollectorCallbackHandler
Example
>>> with collect_runs() as runs_cb:
chain.invoke("foo")
run_id = runs_cb.traced_runs[0].id | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.manager.collect_runs.html |
5ed9f121525c-0 | langchain.callbacks.context_callback.ContextCallbackHandler¶
class langchain.callbacks.context_callback.ContextCallbackHandler(token: str = '', verbose: bool = False, **kwargs: Any)[source]¶
Callback Handler that records transcripts to the Context service.
(https://context.ai).
Keyword Arguments
token (optional) – The token with which to authenticate requests to Context.
Visit https://with.context.ai/settings to generate a token.
If not provided, the value of the CONTEXT_TOKEN environment
variable will be used.
Raises
ImportError – if the context-python package is not installed.
Chat Example:>>> from langchain.llms import ChatOpenAI
>>> from langchain.callbacks import ContextCallbackHandler
>>> context_callback = ContextCallbackHandler(
... token="<CONTEXT_TOKEN_HERE>",
... )
>>> chat = ChatOpenAI(
... temperature=0,
... headers={"user_id": "123"},
... callbacks=[context_callback],
... openai_api_key="API_KEY_HERE",
... )
>>> messages = [
... SystemMessage(content="You translate English to French."),
... HumanMessage(content="I love programming with LangChain."),
... ]
>>> chat(messages)
Chain Example:>>> from langchain.chains import LLMChain
>>> from langchain.chat_models import ChatOpenAI
>>> from langchain.callbacks import ContextCallbackHandler
>>> context_callback = ContextCallbackHandler(
... token="<CONTEXT_TOKEN_HERE>",
... )
>>> human_message_prompt = HumanMessagePromptTemplate(
... prompt=PromptTemplate(
... template="What is a good name for a company that makes {product}?",
... input_variables=["product"],
... ),
... )
>>> chat_prompt_template = ChatPromptTemplate.from_messages(
... [human_message_prompt]
... )
>>> callback = ContextCallbackHandler(token) | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.context_callback.ContextCallbackHandler.html |
5ed9f121525c-1 | ... [human_message_prompt]
... )
>>> callback = ContextCallbackHandler(token)
>>> # Note: the same callback object must be shared between the
... LLM and the chain.
>>> chat = ChatOpenAI(temperature=0.9, callbacks=[callback])
>>> chain = LLMChain(
... llm=chat,
... prompt=chat_prompt_template,
... callbacks=[callback]
... )
>>> chain.run("colorful socks")
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__([token, verbose])
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, **kwargs)
Run when chain ends.
on_chain_error(error, *, run_id[, parent_run_id])
Run when chain errors.
on_chain_start(serialized, inputs, **kwargs)
Run when chain starts.
on_chat_model_start(serialized, messages, *, ...)
Run when the chat model is started.
on_llm_end(response, **kwargs)
Run when LLM ends.
on_llm_error(error, *, run_id[, parent_run_id])
Run when LLM errors.
on_llm_new_token(token, *[, chunk, ...])
Run on new LLM token. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.context_callback.ContextCallbackHandler.html |
5ed9f121525c-2 | Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Run when LLM starts running.
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id[, parent_run_id])
Run on a retry event.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id[, parent_run_id])
Run when tool ends running.
on_tool_error(error, *, run_id[, parent_run_id])
Run when tool errors.
on_tool_start(serialized, input_str, *, run_id)
Run when tool starts running.
__init__(token: str = '', verbose: bool = False, **kwargs: Any) → None[source]¶
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain ends.
on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.context_callback.ContextCallbackHandler.html |
5ed9f121525c-3 | Run when chain errors.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶
Run when chain starts.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, **kwargs: Any) → Any[source]¶
Run when the chat model is started.
on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶
Run when LLM ends.
on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when LLM errors.
on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on new LLM token. Only available when streaming is enabled.
Parameters
token (str) – The new token.
chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk,
information. (containing content and other) –
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when LLM starts running.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever ends running. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.context_callback.ContextCallbackHandler.html |
5ed9f121525c-4 | Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on a retry event.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text.
on_tool_end(output: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when tool ends running.
on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run when tool errors.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run when tool starts running.
Examples using ContextCallbackHandler¶
Context | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.context_callback.ContextCallbackHandler.html |
a12d5b5e0680-0 | langchain.callbacks.tracers.langchain.log_error_once¶
langchain.callbacks.tracers.langchain.log_error_once(method: str, exception: Exception) → None[source]¶
Log an error once. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.langchain.log_error_once.html |
e796b18fc09f-0 | langchain.callbacks.comet_ml_callback.import_comet_ml¶
langchain.callbacks.comet_ml_callback.import_comet_ml() → Any[source]¶
Import comet_ml and raise an error if it is not installed. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.comet_ml_callback.import_comet_ml.html |
558c4ff65bff-0 | langchain.callbacks.base.RetrieverManagerMixin¶
class langchain.callbacks.base.RetrieverManagerMixin[source]¶
Mixin for Retriever callbacks.
Methods
__init__()
on_retriever_end(documents, *, run_id[, ...])
Run when Retriever ends running.
on_retriever_error(error, *, run_id[, ...])
Run when Retriever errors.
__init__()¶
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶
Run when Retriever errors. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.base.RetrieverManagerMixin.html |
bd42a4e24d48-0 | langchain.callbacks.tracers.langchain.LangChainTracer¶
class langchain.callbacks.tracers.langchain.LangChainTracer(example_id: Optional[Union[str, UUID]] = None, project_name: Optional[str] = None, client: Optional[Client] = None, tags: Optional[List[str]] = None, use_threading: bool = True, **kwargs: Any)[source]¶
An implementation of the SharedTracer that POSTS to the langchain endpoint.
Initialize the LangChain tracer.
Attributes
ignore_agent
Whether to ignore agent callbacks.
ignore_chain
Whether to ignore chain callbacks.
ignore_chat_model
Whether to ignore chat model callbacks.
ignore_llm
Whether to ignore LLM callbacks.
ignore_retriever
Whether to ignore retriever callbacks.
ignore_retry
Whether to ignore retry callbacks.
raise_error
run_inline
Methods
__init__([example_id, project_name, client, ...])
Initialize the LangChain tracer.
on_agent_action(action, *, run_id[, ...])
Run on agent action.
on_agent_finish(finish, *, run_id[, ...])
Run on agent end.
on_chain_end(outputs, *, run_id[, inputs])
End a trace for a chain run.
on_chain_error(error, *[, inputs])
Handle an error for a chain run.
on_chain_start(serialized, inputs, *, run_id)
Start a trace for a chain run.
on_chat_model_start(serialized, messages, *, ...)
Start a trace for an LLM run.
on_llm_end(response, *, run_id, **kwargs)
End a trace for an LLM run.
on_llm_error(error, *, run_id, **kwargs)
Handle an error for an LLM run. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.langchain.LangChainTracer.html |
bd42a4e24d48-1 | Handle an error for an LLM run.
on_llm_new_token(token, *[, chunk, ...])
Run on new LLM token.
on_llm_start(serialized, prompts, *, run_id)
Start a trace for an LLM run.
on_retriever_end(documents, *, run_id, **kwargs)
Run when Retriever ends running.
on_retriever_error(error, *, run_id, **kwargs)
Run when Retriever errors.
on_retriever_start(serialized, query, *, run_id)
Run when Retriever starts running.
on_retry(retry_state, *, run_id, **kwargs)
Run on a retry event.
on_text(text, *, run_id[, parent_run_id])
Run on arbitrary text.
on_tool_end(output, *, run_id, **kwargs)
End a trace for a tool run.
on_tool_error(error, *, run_id, **kwargs)
Handle an error for a tool run.
on_tool_start(serialized, input_str, *, run_id)
Start a trace for a tool run.
wait_for_futures()
Wait for the given futures to complete.
__init__(example_id: Optional[Union[str, UUID]] = None, project_name: Optional[str] = None, client: Optional[Client] = None, tags: Optional[List[str]] = None, use_threading: bool = True, **kwargs: Any) → None[source]¶
Initialize the LangChain tracer.
on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent action. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.langchain.LangChainTracer.html |
bd42a4e24d48-2 | Run on agent action.
on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on agent end.
on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → Run¶
End a trace for a chain run.
on_chain_error(error: BaseException, *, inputs: Optional[Dict[str, Any]] = None, run_id: UUID, **kwargs: Any) → Run¶
Handle an error for a chain run.
on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, run_type: Optional[str] = None, name: Optional[str] = None, **kwargs: Any) → Run¶
Start a trace for a chain run.
on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → None[source]¶
Start a trace for an LLM run.
on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → Run¶
End a trace for an LLM run.
on_llm_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶
Handle an error for an LLM run. | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.langchain.LangChainTracer.html |
bd42a4e24d48-3 | Handle an error for an LLM run.
on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Run¶
Run on new LLM token. Only available when streaming is enabled.
on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶
Start a trace for an LLM run.
on_retriever_end(documents: Sequence[Document], *, run_id: UUID, **kwargs: Any) → Run¶
Run when Retriever ends running.
on_retriever_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶
Run when Retriever errors.
on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶
Run when Retriever starts running.
on_retry(retry_state: RetryCallState, *, run_id: UUID, **kwargs: Any) → Run¶
Run on a retry event.
on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
Run on arbitrary text.
on_tool_end(output: str, *, run_id: UUID, **kwargs: Any) → Run¶ | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.langchain.LangChainTracer.html |
bd42a4e24d48-4 | End a trace for a tool run.
on_tool_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶
Handle an error for a tool run.
on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶
Start a trace for a tool run.
wait_for_futures() → None[source]¶
Wait for the given futures to complete.
Examples using LangChainTracer¶
Async API | https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.tracers.langchain.LangChainTracer.html |