id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
2,748,565,642
Build jobs intermittently timeout
malfet
closed
[ "module: ci", "triaged" ]
2
CONTRIBUTOR
### 🐛 Describe the bug For example https://github.com/pytorch/pytorch/actions/runs/12392465209/job/34591708343 And following jobs are also slow: I.e. https://github.com/pytorch/pytorch/actions/runs/12392605222/job/34592144299 took 3.5h to finish and sccache stats are: ``` + sccache --show-stats Compile requests 8563 Compile requests executed 8671 Cache hits 7063 Cache hits (C/C++) 6699 Cache hits (CUBIN) 203 Cache hits (CUDA) 79 Cache hits (PTX) 82 Cache misses 1289 Cache misses (C/C++) 704 Cache misses (CUBIN) 87 Cache misses (CUDA) 290 Cache misses (PTX) 208 Cache hits rate 84.57 % Cache hits rate (C/C++) 90.49 % Cache hits rate (CUBIN) 70.00 % Cache hits rate (CUDA) 21.41 % Cache hits rate (PTX) 28.28 % ``` Next [job](https://github.com/pytorch/pytorch/actions/runs/12393382203/job/34594520498) finished in 2.3h and sccache stats are ``` + sccache --show-stats Compile requests 8563 Compile requests executed 8665 Cache hits 7489 Cache hits (C/C++) 7134 Cache hits (CUBIN) 197 Cache hits (CUDA) 81 Cache hits (PTX) 77 Cache misses 859 Cache misses (C/C++) 269 Cache misses (CUBIN) 91 Cache misses (CUDA) 288 Cache misses (PTX) 211 Cache hits rate 89.71 % Cache hits rate (C/C++) 96.37 % Cache hits rate (CUBIN) 68.40 % Cache hits rate (CUDA) 21.95 % Cache hits rate (PTX) 26.74 % ``` Next [job](https://github.com/pytorch/pytorch/actions/runs/12394446893/job/34597937899) finishes under 2 hours with following cache stats ``` + sccache --show-stats Compile requests 8563 Compile requests executed 7942 Cache hits 7501 Cache hits (C/C++) 7168 Cache hits (CUBIN) 7 Cache hits (CUDA) 322 Cache hits (PTX) 4 Cache misses 365 Cache misses (C/C++) 235 Cache misses (CUBIN) 40 Cache misses (CUDA) 47 Cache misses (PTX) 43 Cache hits rate 95.36 % Cache hits rate (C/C++) 96.83 % Cache hits rate (CUBIN) 14.89 % Cache hits rate (CUDA) 87.26 % Cache hits rate (PTX) 8.51 % Cache timeouts 0 Cache read errors 0 Forced recaches 0 Cache write errors 1 Cache errors 23 Cache errors (C/C++) 23 Compilations 412 Compilation failures 6 Non-cacheable compilations 0 Non-cacheable calls 423 Non-compilation calls 339 Unsupported compiler calls 0 Average cache write 0.127 s Average compiler 33.825 s Average cache read hit 0.032 s ``` ### Versions CI cc @seemethere @pytorch/pytorch-dev-infra
true
2,748,517,773
[BE] Move Mac BB test to its own step
malfet
closed
[ "Merged", "release notes: releng", "ciflow/binaries_wheel", "ciflow/binaries_libtorch" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143513
true
2,748,504,186
[BE] Delete `install sccache` step from MacBB
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/binaries_wheel" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #143513 * __->__ #143512 * #143511 To the best of my knowledge, this step never executed and there were no MacOS binary build running on trunk for a while
true
2,748,503,733
[BE] Integrate 5 line build script into template
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/binaries_wheel" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #143513 * #143512 * __->__ #143511
true
2,748,456,907
Add support for differentiable LR in SGD + test v2.0
EmmettBicker
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "release notes: optim" ]
10
CONTRIBUTOR
Second PR in a larger project to broader support for differentiable optimizers with @janeyx99 ! The first one had an issue near the end so this is the second PR on that subject. See #143122 for the development up until this point.
true
2,748,403,650
leaking c++ singleton specifically
duduyi2013
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
10
CONTRIBUTOR
Summary: fix forward for S477887 leaking c++ singleton specifically when c++ shutdown, it tries to destruct the singleton and acquire GIL, at this moment python runtime exists already, causing undefined behavior. Leaking here specifically so that we won't try to destroy singleton at the shutdown phase Test Plan: n/a Differential Revision: D67400633
true
2,748,386,329
Upgrade submodule ideep for bf16f32 matmul changes
aditew01
closed
[ "module: cpu", "triaged", "module: mkldnn", "open source", "module: arm", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/linux-aarch64" ]
3
COLLABORATOR
This change will enable this PR #140159 to pick proper kernels in bf16 mode for SDPA layer. cc: @yanbing-j cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @gujinghui @PenghuiCheng @jianyuh @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal @malfet @milpuz01
true
2,748,379,403
[ROCm] Fix unit test: matmul_offline_mgpu_tunableop
naromero77amd
closed
[ "module: rocm", "open source", "Merged", "ciflow/trunk", "release notes: linalg_frontend", "ciflow/periodic" ]
12
COLLABORATOR
Fixes #141652 This PR contains: - Fix for `matmul_offline_mgpu_tunableop` - Modifications to _checking_tuning_assertions to enable TunableOp if it is disabled. Also moved it into the concurrent futures initializer. cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang
true
2,748,320,790
Prevent torch.jit.load path in torch.load when weights_only=True
pytorchbot
closed
[ "open source" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #143403 * __->__ #143326
true
2,748,286,378
[Dynamo] torch._dynamo.exc.Unsupported: sort with non-constant keys
SamGinzburg
closed
[ "triaged", "oncall: pt2", "module: dynamo", "dynamo-triage-jan2025" ]
5
CONTRIBUTOR
### 🐛 Describe the bug This error was encountered while trying to implement a version of [Autotuner.prune_configs](https://github.com/triton-lang/triton/blob/137bc62102f4a261cc921998221cea2b046a6c1b/python/triton/runtime/autotuner.py#L214) from Triton. This function was modified from operating on a dict to a list (dict with config keys is also not supported). A minimal repro would look something like: ```python est_timing: List[Tuple[triton.runtime.Config, float]] est_timing = [ (config, perf_model(**named_args, **kwargs, **config.all_kwargs())) for config in configs ] configs = sorted(est_timing, key=lambda x: est_timing[1])[:top_k] ``` Here is the complete function which triggered the error (for reproducibility): ```python def call_prune_configs( # type: ignore[no-untyped-def] autotuner, early_config_prune: Callable, perf_model: Callable, top_k: float, is_top_k_float: bool, configs: List, named_args: Dict, kwargs: Dict, ): if early_config_prune: configs = early_config_prune(configs, named_args, **kwargs) if perf_model: # we assert top_k is a float before calling this if is_top_k_float and top_k <= 1.0: top_k = int(len(configs) * top_k) if len(configs) > top_k: est_timing = [ (config, perf_model(**named_args, **kwargs, **config.all_kwargs())) for config in configs ] configs = sorted(est_timing, key=lambda x: est_timing[1])[:top_k] return configs # Called in torch/_higher_order_ops/triton_kernel_wrap.py pruned_configs = self.call_user_defined_fn( call_prune_configs, [ variable, wrapped_early_configs_prune, wrapped_perf_model, wrapped_configs_top_k, wrapped_is_top_k_float, wrapped_configs, named_args, kwargs, ], {}, tx, variable.source, ) ``` Here is a stack trace of the generated bytecode leading up to the error: ```bash "/data/users/ginzburg/pytorch/torch/_higher_order_ops/triton_kernel_wrap.py", line 1023> [BuiltinVariable(sorted), ListVariable(length=2), TupleVariable(length=1)] V1218 08:22:05.910000 934875 torch/_dynamo/symbolic_convert.py:956] [0/0] [__trace_bytecode] TRACE LOAD_CONST call_prune_configs.<locals>.<lambda> [BuiltinVariable(sorted), ListVariable(length=2), TupleVariable(length=1), ConstantVariable(code: <code object <lambda> at 0x7f9e3c5fbb50, file "/data/users/ginzburg/pytorch/torch/_higher_order_ops/triton_kernel_wrap.py", line 1023>)] V1218 08:22:05.910000 934875 torch/_dynamo/symbolic_convert.py:956] [0/0] [__trace_bytecode] TRACE MAKE_FUNCTION 8 [BuiltinVariable(sorted), ListVariable(length=2), TupleVariable(length=1), ConstantVariable(code: <code object <lambda> at 0x7f9e3c5fbb50, file "/data/users/ginzburg/pytorch/torch/_higher_order_ops/triton_kernel_wrap.py", line 1023>), ConstantVariable(str: 'call_prune_configs.<locals>.<lambda>')] V1218 08:22:05.910000 934875 torch/_dynamo/symbolic_convert.py:956] [0/0] [__trace_bytecode] TRACE LOAD_CONST ('key',) [BuiltinVariable(sorted), ListVariable(length=2), NestedUserFunctionVariable()] V1218 08:22:05.911000 934875 torch/_dynamo/symbolic_convert.py:956] [0/0] [__trace_bytecode] TRACE CALL_FUNCTION_KW 2 [BuiltinVariable(sorted), ListVariable(length=2), NestedUserFunctionVariable(), TupleVariable(length=1)] V1218 08:22:05.911000 934875 torch/_dynamo/symbolic_convert.py:956] [0/0] [__trace_bytecode] TRACE LOAD_DEREF est_timing [] V1218 08:22:05.911000 934875 torch/_dynamo/symbolic_convert.py:956] [0/0] [__trace_bytecode] TRACE LOAD_CONST 1 [ListVariable(length=2)] V1218 08:22:05.911000 934875 torch/_dynamo/symbolic_convert.py:956] [0/0] [__trace_bytecode] TRACE BINARY_SUBSCR None [ListVariable(length=2), ConstantVariable(int: 1)] V1218 08:22:05.911000 934875 torch/_dynamo/symbolic_convert.py:956] [0/0] [__trace_bytecode] TRACE RETURN_VALUE None [TupleVariable(length=2)] V1218 08:22:05.911000 934875 torch/_dynamo/symbolic_convert.py:956] [0/0] [__trace_bytecode] TRACE LOAD_DEREF est_timing [] V1218 08:22:05.911000 934875 torch/_dynamo/symbolic_convert.py:956] [0/0] [__trace_bytecode] TRACE LOAD_CONST 1 [ListVariable(length=2)] V1218 08:22:05.911000 934875 torch/_dynamo/symbolic_convert.py:956] [0/0] [__trace_bytecode] TRACE BINARY_SUBSCR None [ListVariable(length=2), ConstantVariable(int: 1)] V1218 08:22:05.912000 934875 torch/_dynamo/symbolic_convert.py:956] [0/0] [__trace_bytecode] TRACE RETURN_VALUE None [TupleVariable(length=2)] inline_call [('sort with non-constant keys', 1)] ``` ### Versions PyTorch version: 2.6.0a0+git28e242f Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: CentOS Stream 9 (x86_64) GCC version: (GCC) 11.5.0 20240719 (Red Hat 11.5.0-2) Clang version: 18.1.8 (CentOS 18.1.8-3.el9) CMake version: version 3.26.4 Libc version: glibc-2.34 Python version: 3.10.15 (main, Oct 3 2024, 07:27:34) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.4.3-0 Versions of relevant libraries: [pip3] flake8==6.1.0 [pip3] flake8-bugbear==23.3.23 [pip3] flake8-comprehensions==3.15.0 [pip3] flake8-executable==2.1.3 [pip3] flake8-logging-format==0.9.0 [pip3] flake8-pyi==23.3.1 [pip3] flake8-simplify==0.19.3 [pip3] mypy==1.13.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] onnx==1.16.1 [pip3] onnxscript==0.1.0.dev20240817 [pip3] optree==0.13.0 [pip3] pytorch-triton==3.2.0+git35c6c7c6 [pip3] torch==2.6.0a0+git28e242f [conda] blas 1.0 mkl [conda] magma-cuda121 2.6.1 1 pytorch [conda] mkl 2023.1.0 h213fc3f_46344 [conda] mkl-include 2023.1.0 h06a4308_46344 [conda] mkl-service 2.4.0 py310h5eee18b_1 [conda] mkl_fft 1.3.10 py310h5eee18b_0 [conda] mkl_random 1.2.7 py310h1128e8f_0 [conda] numpy 1.26.4 py310h5f9d8c6_0 [conda] numpy-base 1.26.4 py310hb5e798b_0 [conda] optree 0.13.0 pypi_0 pypi [conda] pytorch-triton 3.2.0+git35c6c7c6 pypi_0 pypi [conda] torch 2.6.0a0+git28e242f dev_0 <develop> [conda] torchfix 0.4.0 pypi_0 pypi cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true
2,748,239,659
Fix old-compiler-unfriendly zero init of bfloat16_t array
swolchok
closed
[ "module: cpu", "fb-exported", "Merged", "ciflow/trunk", "release notes: cpp", "ciflow/linux-aarch64" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * (to be filled) clang versions before 17 don't like to assign 0 to a bfloat16_t. gcc versions before 13 also won't assign 0.0 to a bfloat16_t. (Citation: https://godbolt.org/z/Gzs5ebdej) Differential Revision: [D67396740](https://our.internmc.facebook.com/intern/diff/D67396740/) cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,748,201,659
fix: resolve recursion overflow issue by hashing weak references
aeeeeeep
closed
[ "triaged", "open source", "Stale" ]
6
NONE
Issue Using `weakref` with recursive objects in PyTorch causes recursion overflow due to the __hash__ method using id(key). Fix Changed self._id = id(key) to self._id = id(ref(key)) in the `__hash__` method to base the hash on the weak reference, preventing recursion overflow. Fixes #ISSUE_NUMBER
true
2,748,153,149
AssertionError: not bool like VR[1.00000000000000, 1.00000000000000]
ezyang
closed
[ "triage review", "oncall: pt2", "module: dynamic shapes", "module: inductor" ]
1
CONTRIBUTOR
### 🐛 Describe the bug I triggered this bug while bisecting, it is not blocking me. Backtrace: ``` Traceback (most recent call last): File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_dynamo/convert_frame.py", line 979, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_dynamo/convert_frame.py", line 709, in compile_inner return _compile_inner(code, one_graph, hooks, transform) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_utils_internal.py", line 306, in wrapper_function result = StrobelightCompileTimeProfiler.profile_compile_time( File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/caffe2/fb/strobelight/compile_time_profiler.py", line 162, in profile_compile_time return func(*args, **kwargs) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_dynamo/convert_frame.py", line 744, in _compile_inner out_code = transform_code_object(code, transform) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_dynamo/bytecode_transformation.py", line 1348, in transform_code_object transformations(instructions, code_options) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_dynamo/convert_frame.py", line 233, in _fn return fn(*args, **kwargs) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_dynamo/convert_frame.py", line 661, in transform tracer.run() File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_dynamo/symbolic_convert.py", line 2900, in run super().run() File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_dynamo/symbolic_convert.py", line 1120, in run while self.step(): File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_dynamo/symbolic_convert.py", line 1032, in step self.dispatch_table[inst.opcode](self, inst) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_dynamo/symbolic_convert.py", line 3091, in RETURN_VALUE self._return(inst) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_dynamo/symbolic_convert.py", line 3076, in _return self.output.compile_subgraph( File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_dynamo/output_graph.py", line 1110, in compile_subgraph self.compile_and_call_fx_graph(tx, pass2.graph_output_vars(), root) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_dynamo/output_graph.py", line 1349, in compile_and_call_fx_graph compiled_fn = self.call_user_compiler(gm) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_dynamo/output_graph.py", line 1399, in call_user_compiler return self._call_user_compiler(gm) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_dynamo/output_graph.py", line 1448, in _call_user_compiler raise BackendCompilerFailed(self.compiler_fn, e).with_traceback( File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_dynamo/output_graph.py", line 1429, in _call_user_compiler compiled_fn = compiler_fn(gm, self.example_inputs()) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_dynamo/repro/after_dynamo.py", line 130, in __call__ compiled_gm = compiler_fn(gm, example_inputs) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/__init__.py", line 2301, in __call__ return compile_fx(model_, inputs_, config_patches=self.config) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/compile_fx.py", line 1449, in compile_fx return compile_fx( File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/compile_fx.py", line 1733, in compile_fx return aot_autograd( File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_dynamo/backends/common.py", line 72, in __call__ cg = aot_module_simplified(gm, example_inputs, **self.kwargs) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_functorch/aot_autograd.py", line 1103, in aot_module_simplified compiled_fn = dispatch_and_compile() File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_functorch/aot_autograd.py", line 1079, in dispatch_and_compile compiled_fn, _ = create_aot_dispatcher_function( File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_functorch/aot_autograd.py", line 527, in create_aot_dispatcher_function return _create_aot_dispatcher_function( File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_functorch/aot_autograd.py", line 778, in _create_aot_dispatcher_function compiled_fn, fw_metadata = compiler_fn( File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_functorch/_aot_autograd/jit_compile_runtime_wrappers.py", line 655, in aot_dispatch_autograd compiled_fw_func = aot_config.fw_compiler(fw_module, adjusted_flat_args) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/compile_fx.py", line 1546, in fw_compiler_base return _fw_compiler_base(model, example_inputs, is_inference) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/compile_fx.py", line 1615, in _fw_compiler_base return inner_compile( File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/runtime/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/compile_fx.py", line 599, in compile_fx_inner return wrap_compiler_debug(_compile_fx_inner, compiler_name="inductor")( File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_dynamo/repro/after_aot.py", line 102, in debug_wrapper inner_compiled_fn = compiler_fn(gm, example_inputs) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/fb/utils.py", line 167, in newFunction return old_func(*args, **kwargs) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/compile_fx.py", line 756, in _compile_fx_inner compiled_graph = FxGraphCache.load( File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/codecache.py", line 1515, in load compiled_graph = compile_fx_fn( File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/compile_fx.py", line 663, in codegen_and_compile compiled_graph = fx_codegen_and_compile(gm, example_inputs, **fx_kwargs) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/compile_fx.py", line 974, in fx_codegen_and_compile compiled_fn = graph.compile_to_fn() File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/graph.py", line 2043, in compile_to_fn return self.compile_to_module().call File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/graph.py", line 1954, in compile_to_module return self._compile_to_module() File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/graph.py", line 1960, in _compile_to_module self.codegen_with_cpp_wrapper() if self.cpp_wrapper else self.codegen() File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/graph.py", line 1896, in codegen self.scheduler.codegen() File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/scheduler.py", line 3489, in codegen return self._codegen() File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/scheduler.py", line 3568, in _codegen self.get_backend(device).codegen_node(node) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/codegen/cuda_combined_scheduling.py", line 80, in codegen_node return self._triton_scheduling.codegen_node(node) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/codegen/simd.py", line 1195, in codegen_node return self.codegen_node_schedule( File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/codegen/simd.py", line 1263, in codegen_node_schedule self.codegen_node_schedule_with_kernel(node_schedule, kernel) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/codegen/simd.py", line 1353, in codegen_node_schedule_with_kernel node.codegen(index_vars) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/scheduler.py", line 1020, in codegen with V.set_ops_handler( File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/runtime/lib/python3.10/contextlib.py", line 135, in __enter__ return next(self.gen) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/codegen/common.py", line 2071, in set_current_node self.node_to_bounds = node._body.bounds().get_bounds() File "<string>", line 5, in get_bounds_cache_on_self File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/bounds.py", line 74, in get_bounds interpreter.run(V.get_ops_handler(), initial_env=self._bounds) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/loop_body.py", line 60, in run return super().run(*args, **kwargs) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/fx/interpreter.py", line 167, in run self.env[node] = self.run_node(node) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/_inductor/loop_body.py", line 56, in run_node return super().run_node(n) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/fx/interpreter.py", line 228, in run_node return getattr(self, n.op)(n.target, args, kwargs) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/fx/interpreter.py", line 332, in call_method return getattr(self_obj, target)(*args_tail, **kwargs) File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/utils/_sympy/value_ranges.py", line 853, in where a = a.boolify() File "/data/users/ezyang/fbsource/buck-out/v2/gen/fbcode/1b080a82294b728e/bento_kernels/pytorch/__bento_kernel_pytorch_binary__/bento_kernel_pytorch_binary#link-tree/torch/utils/_sympy/value_ranges.py", line 223, in boolify raise AssertionError(f"not bool like {self}") torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: AssertionError: not bool like VR[1.00000000000000, 1.00000000000000] Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True ``` This tlparse isn't great, I need to make a cleaner one. tlparse: https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmpOsBxLd/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=100#[7/0] I think https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmpOsBxLd/7_0_0/inductor_post_grad_graph_900.txt?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=100 is what induces the problem though. I'm working on the internal repro instructions. ### Versions main cc @chauhang @penguinwu @bobrenjc93 @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @aakhundov
true
2,748,132,812
Fix docs load state dict
joldov
closed
[ "triaged", "open source", "Stale", "module: dynamo", "release notes: AO frontend" ]
2
NONE
Fixes #141364: - Added proper indentation and formatting - Improved readability for assign by breaking the text into shorter sentences - Added "NamedTuple:" before the return description to clarify the type for Sphinx cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,748,078,907
[dynamo] add two-point iter test
williamwen42
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
5
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143500 Implements the last checkbox for https://github.com/pytorch/pytorch/issues/112532. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,747,950,887
[Reland 2.6][dynamo][pytree] make CXX pytree traceable: `tree_{flatten,unflatten,structure,map,map_}`
XuehaiPan
closed
[ "open source", "module: dynamo", "ciflow/inductor", "ci-no-td" ]
4
COLLABORATOR
Reland PRs: - #137398 - #137399 These two PRs are in a series of PRs there the first one is in the release branch before the branch cut. - 78543e60020b9fabd73d32ee7b1d5803a07d5e94 - #137397 This PR tries to add the follow-ups into the release branch as well. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,747,762,194
AOTI_TORCH_CHECK failed in aot_compile-d model
mstebelev
closed
[ "triaged", "oncall: pt2", "ciflow/inductor", "oncall: export", "oncall: cpu inductor", "module: aotinductor" ]
10
NONE
### 🐛 Describe the bug I exported some model using `torch.export(strict=False)`. Exported model itself works well, but if I compile it using `torch._inductor.aot_compile`, the process crashes with some internal check in generated code. Reproducer: https://colab.research.google.com/drive/1U8fe9k85_S4fRurxz_M7g9kYf7Yq2CRy?usp=sharing Exported program to reproduce is here: [exported_program.pt2.zip](https://github.com/user-attachments/files/18181526/exported_program.pt2.zip) Another reproducer with model generation: https://colab.research.google.com/drive/1W930GmsJEDVMdsBKHuTQruqV6IyoLqBa?usp=sharing The same in pytorch nightly build https://colab.research.google.com/drive/1WcRHyac8K2G6Ed4v1NywCoHSGDAMEstq?usp=sharing the generated code is here [c5dq6ajvevkzbzmo54sijfiqey4wp7tumw7wdk34ethlfoqcf2by.cpp.zip](https://github.com/user-attachments/files/18181571/c5dq6ajvevkzbzmo54sijfiqey4wp7tumw7wdk34ethlfoqcf2by.cpp.zip) ### Error logs ``` prediction/deployable_modules/tests/test_something.py !!! Uncaught exception: index out of bounds: 0 <= tmp7 < ks1 Exception raised from cpp_fused_index_index_put_stack_zeros_4 at /tmp/torchinductor_vscode/c5dq6ajvevkzbzmo54sijfiqey4wp7tumw7wdk34ethlfoqcf2by.cpp:1084 (most recent call first): frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x9e (0x7ff115c286de in /home/vscode/.cache/bazel/_bazel_vscode/93fd2cd9b3c5d87ae416561bff883334/execroot/__main__/bazel-out/k8-opt/bin/prediction/deployable_modules/tests/test_something.runfiles/pytorch/lib/python3.10/site-packages/torch/lib/libc10.so) frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, char const*) + 0x80 (0x7ff115bcd0a8 in /home/vscode/.cache/bazel/_bazel_vscode/93fd2cd9b3c5d87ae416561bff883334/execroot/__main__/bazel-out/k8-opt/bin/prediction/deployable_modules/tests/test_something.runfiles/pytorch/lib/python3.10/site-packages/torch/lib/libc10.so) frame #2: <unknown function> + 0x5024044 (0x7ff173653044 in /home/vscode/.cache/bazel/_bazel_vscode/93fd2cd9b3c5d87ae416561bff883334/execroot/__main__/bazel-out/k8-opt/bin/prediction/deployable_modules/tests/test_something.runfiles/pytorch/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) frame #3: cpp_fused_index_index_put_stack_zeros_4 + 0xdcd (0x7ff0bf4a4acd in /tmp/torchinductor_vscode/cxe2kfjxcuzlrkqbjd6yr6psu3h364iewxfja7zwiewr56krpm3n.so) frame #4: torch::aot_inductor::AOTInductorModel::run_impl(AtenTensorOpaque**, AtenTensorOpaque**, void*, AOTIProxyExecutorOpaque*) + 0xded (0x7ff0bf4a621d in /tmp/torchinductor_vscode/cxe2kfjxcuzlrkqbjd6yr6psu3h364iewxfja7zwiewr56krpm3n.so) frame #5: torch::aot_inductor::AOTInductorModelContainer::run(AtenTensorOpaque**, AtenTensorOpaque**, void*, AOTIProxyExecutorOpaque*) + 0xf1 (0x7ff0bf4b4c01 in /tmp/torchinductor_vscode/cxe2kfjxcuzlrkqbjd6yr6psu3h364iewxfja7zwiewr56krpm3n.so) frame #6: AOTInductorModelContainerRun + 0x86 (0x7ff0bf4a9686 in /tmp/torchinductor_vscode/cxe2kfjxcuzlrkqbjd6yr6psu3h364iewxfja7zwiewr56krpm3n.so) frame #7: torch::inductor::AOTIModelContainerRunner::run(std::vector<at::Tensor, std::allocator<at::Tensor> >&, AOTInductorStreamOpaque*) + 0x115 (0x7ff1736394e5 in /home/vscode/.cache/bazel/_bazel_vscode/93fd2cd9b3c5d87ae416561bff883334/execroot/__main__/bazel-out/k8-opt/bin/prediction/deployable_modules/tests/test_something.runfiles/pytorch/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) frame #8: torch::inductor::AOTIModelContainerRunnerCpu::run(std::vector<at::Tensor, std::allocator<at::Tensor> >&) + 0x22 (0x7ff17363a192 in /home/vscode/.cache/bazel/_bazel_vscode/93fd2cd9b3c5d87ae416561bff883334/execroot/__main__/bazel-out/k8-opt/bin/prediction/deployable_modules/tests/test_something.runfiles/pytorch/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so) frame #9: <unknown function> + 0x8cbcbf (0x7ff17c609cbf in /home/vscode/.cache/bazel/_bazel_vscode/93fd2cd9b3c5d87ae416561bff883334/execroot/__main__/bazel-out/k8-opt/bin/prediction/deployable_modules/tests/test_something.runfiles/pytorch/lib/python3.10/site-packages/torch/lib/libtorch_python.so) frame #10: <unknown function> + 0x48edbf (0x7ff17c1ccdbf in /home/vscode/.cache/bazel/_bazel_vscode/93fd2cd9b3c5d87ae416561bff883334/execroot/__main__/bazel-out/k8-opt/bin/prediction/deployable_modules/tests/test_something.runfiles/pytorch/lib/python3.10/site-packages/torch/lib/libtorch_python.so) <omitting python frames> , terminating !!! ``` ### Versions I had the problem in torch 2.5.1 built from nixpkgs, but it reproduces also in vanilla torch 2.5.1+cu121 from google colab. Also I checked it on nightly build 2.6. The difference is that I see some error in python, and ipynb kernel doesn't crash cc @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4 @desertfire @chenyang78
true
2,747,683,610
No reproducibility after ONNX export of fully converted QAT model
onnxruntime-user
open
[ "module: onnx", "oncall: quantization", "triaged" ]
0
NONE
### 🐛 Describe the bug When I use quantization-aware training, results are not reproducible between: 1. fake quantized model 2. real quantized model 3. exported ONNX model ### Code example ```python import torch import onnxruntime as ort torch.manual_seed(42) def dummy_training(model): model.train() image = torch.rand(1, 3, 224, 224) model(image) # ... class DummyModel(torch.nn.Module): def __init__(self): super().__init__() self.quant = torch.ao.quantization.QuantStub() self.conv = torch.nn.Conv2d(3, 1, 1) self.bn = torch.nn.BatchNorm2d(1) self.relu = torch.nn.ReLU() self.dequant = torch.ao.quantization.DeQuantStub() def forward(self, x): x = self.quant(x) x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.dequant(x) return x def fuse_model(self): torch.ao.quantization.fuse_modules(self, ['conv', 'bn', 'relu'], inplace=True) model_fp32 = DummyModel() # prepare qat model_fp32.eval() model_fp32.qconfig = torch.ao.quantization.get_default_qat_qconfig('x86') model_fp32.fuse_model() model_fp32.train() model_fake_quant = torch.ao.quantization.prepare_qat(model_fp32) # run training dummy_training(model_fake_quant) # quantize model_fake_quant.eval() model_fake_quant.apply(torch.ao.quantization.disable_observer) model_fake_quant.apply(torch.nn.intrinsic.qat.freeze_bn_stats) model_real_quant = torch.ao.quantization.convert(model_fake_quant) # create onnx model torch.onnx.export(model_real_quant, torch.rand(1, 3, 224, 224), "quantized.onnx", input_names=["input"], output_names=["output"]) model_onnx = ort.InferenceSession("quantized.onnx", providers=["CPUExecutionProvider"]) # test reproducability x = torch.rand(1, 3, 224, 224) res_fake_quant = model_fake_quant(x) res_real_quant = model_real_quant(x) res_onnx = model_onnx.run(None, {"input": x.numpy()})[0] # all asserts will fail!!! # torch.testing.assert_close(res_fake_quant, res_real_quant) torch.testing.assert_close(res_real_quant, torch.tensor(res_onnx)) # torch.testing.assert_close(res_fake_quant, torch.tensor(res_onnx)) ``` ### Error ``` Traceback (most recent call last): File "D:\Projekte\Quantization 2.0\qat_reproduce3.py", line 62, in <module> torch.testing.assert_close(res_real_quant, torch.tensor(res_onnx)) File "D:\Tools\Venv\Pytorch_2.5\lib\site-packages\torch\testing\_comparison.py", line 1524, in assert_close raise error_metas[0].to_error(msg) AssertionError: Tensor-likes are not close! Mismatched elements: 49 / 50176 (0.1%) Greatest absolute difference: 0.011374831199645996 at index (0, 0, 105, 1) (up to 1e-05 allowed) Greatest relative difference: 0.021739039570093155 at index (0, 0, 116, 173) (up to 1.3e-06 allowed) ``` ### Expected Behavior According to https://discuss.pytorch.org/t/173684 we cannot expect a fake quantized model to behave the same as the quantized model. However, I would expect that once the model is fully quantized, it behaves the same between Pytorch and ONNX Runtime. This was the case for all float32 models I tested. In this minimal example, the problem ist not severe, but for a real model (ResNet18), the number of mismatched elements grows to over 40% and the greatest absolute difference to 0.05 (greated rel diff to infinity). ### Versions ``` Collecting environment information... PyTorch version: 2.4.1+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Microsoft Windows 10 Pro (10.0.19045 64-Bit) GCC version: Could not collect Clang version: Could not collect CMake version: Could not collect Libc version: N/A Python version: 3.8.10 (tags/v3.8.10:3d8993a, May 3 2021, 11:48:03) [MSC v.1928 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.19045-SP0 Is CUDA available: True CUDA runtime version: 11.6.55 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Quadro RTX 5000 GPU 1: Quadro RTX 5000 Nvidia driver version: Could not collect cuDNN version: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\bin\cudnn_ops_train64_8.dll HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Name: Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz Manufacturer: GenuineIntel Family: 179 Architecture: 9 ProcessorType: 3 DeviceID: CPU0 CurrentClockSpeed: 2201 MaxClockSpeed: 2201 L2CacheSize: 3072 L2CacheSpeed: None Revision: 20225 Versions of relevant libraries: [pip3] numpy==1.24.1 [pip3] onnx==1.17.0 [pip3] onnxruntime-gpu==1.19.2 [pip3] torch==2.4.1+cu118 [pip3] torchvision==0.19.1+cu118 [conda] Could not collect ``` cc @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @vkuzo @jgong5 @Xia-Weiwen @leslie-fang-intel @msaroufim
true
2,747,451,048
infer_size(a, b) fails when it could return a value
xadupre
open
[ "triaged", "oncall: pt2", "module: fakeTensor" ]
3
COLLABORATOR
### 🐛 Describe the bug In function [infer_size](https://github.com/pytorch/pytorch/blob/main/torch/_subclasses/fake_impls.py#L845), the case where both conditions sizeA == 1 and sizeB == 1 are unknown, assuming the model is valid, the function could set ``expandedSizes[i]`` instead of raising an exception: ```python if ( guard_size_oblivious(sizeA == 1) or guard_size_oblivious(sizeB == 1) or sizeA == sizeB ): expandedSizes[i] = sizeB if guard_size_oblivious(sizeA == 1) else sizeA else: expandedSizes[i] = torch.sym_max(sizeA, sizeB) ``` ### Versions ``` Collecting environment information... PyTorch version: 2.6.0.dev20241216+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.2 Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.167.4-microsoft-standard-WSL2-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.6.68 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4060 Laptop GPU Nvidia driver version: 538.92 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.3.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 20 On-line CPU(s) list: 0-19 Vendor ID: GenuineIntel Model name: 13th Gen Intel(R) Core(TM) i7-13800H CPU family: 6 Model: 186 Thread(s) per core: 2 Core(s) per socket: 10 Socket(s): 1 Stepping: 2 BogoMIPS: 5836.79 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves avx_vnni umip waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize flush_l1d arch_capabilities Virtualization: VT-x Hypervisor vendor: Microsoft Virtualization type: full L1d cache: 480 KiB (10 instances) L1i cache: 320 KiB (10 instances) L2 cache: 12.5 MiB (10 instances) L3 cache: 24 MiB (1 instance) Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Mitigation; Clear Register File Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] bert_pytorch==0.0.1a4 [pip3] clip-anytorch==2.6.0 [pip3] CoCa-pytorch==0.1.0 [pip3] dalle2-pytorch==1.15.6 [pip3] ema-pytorch==0.7.0 [pip3] executorch==0.4.0 [pip3] flake8==7.1.1 [pip3] mypy==1.11.2 [pip3] mypy-extensions==1.0.0 [pip3] numpy==2.2.0 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] onnx==1.18.0 [pip3] onnx-extended==0.3.0 [pip3] onnxconverter-common==1.14.0 [pip3] onnxruntime==1.20.1 [pip3] onnxruntime-genai==0.5.2 [pip3] onnxruntime-gpu==1.21.0 [pip3] onnxruntime-training==1.21.0+cu121 [pip3] onnxscript==0.1.0.dev20240905 [pip3] open_clip_torch==2.26.1 [pip3] pytorch-triton==3.2.0+git35c6c7c6 [pip3] pytorch-warmup==0.1.1 [pip3] rotary-embedding-torch==0.8.4 [pip3] torch==2.6.0.dev20241216+cu126 [pip3] torch-fidelity==0.3.0 [pip3] torch_geometric==2.4.0 [pip3] torchao==0.5.0 [pip3] torchaudio==2.6.0.dev20241216+cu126 [pip3] torchmetrics==1.4.3 [pip3] torchvision==0.22.0.dev20241216+cu126 [pip3] triton==3.1.0 [pip3] vector-quantize-pytorch==1.18.1 [conda] Could not collect ``` cc @chauhang @penguinwu @eellison @zou3519 @bdhirsh @yf225
true
2,747,434,072
sympy.C.ConstantInteger has no method name
xadupre
open
[ "needs reproduction", "triaged", "module: fx", "oncall: pt2", "module: dynamic shapes" ]
3
COLLABORATOR
### 🐛 Describe the bug In line, https://github.com/pytorch/pytorch/blob/main/torch/fx/experimental/symbolic_shapes.py#L1652 instruction ``src.name()`` fails when src is One or Zero (sympy.S.One or numpy.S.Zero) because it does not exist for singleton. ### Versions ``` Collecting environment information... PyTorch version: 2.6.0.dev20241216+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.2 Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.167.4-microsoft-standard-WSL2-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.6.68 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4060 Laptop GPU Nvidia driver version: 538.92 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.3.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 20 On-line CPU(s) list: 0-19 Vendor ID: GenuineIntel Model name: 13th Gen Intel(R) Core(TM) i7-13800H CPU family: 6 Model: 186 Thread(s) per core: 2 Core(s) per socket: 10 Socket(s): 1 Stepping: 2 BogoMIPS: 5836.79 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves avx_vnni umip waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize flush_l1d arch_capabilities Virtualization: VT-x Hypervisor vendor: Microsoft Virtualization type: full L1d cache: 480 KiB (10 instances) L1i cache: 320 KiB (10 instances) L2 cache: 12.5 MiB (10 instances) L3 cache: 24 MiB (1 instance) Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Mitigation; Clear Register File Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] bert_pytorch==0.0.1a4 [pip3] clip-anytorch==2.6.0 [pip3] CoCa-pytorch==0.1.0 [pip3] dalle2-pytorch==1.15.6 [pip3] ema-pytorch==0.7.0 [pip3] executorch==0.4.0 [pip3] flake8==7.1.1 [pip3] mypy==1.11.2 [pip3] mypy-extensions==1.0.0 [pip3] numpy==2.2.0 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] onnx==1.18.0 [pip3] onnx-extended==0.3.0 [pip3] onnxconverter-common==1.14.0 [pip3] onnxruntime==1.20.1 [pip3] onnxruntime-genai==0.5.2 [pip3] onnxruntime-gpu==1.21.0 [pip3] onnxruntime-training==1.21.0+cu121 [pip3] onnxscript==0.1.0.dev20240905 [pip3] open_clip_torch==2.26.1 [pip3] pytorch-triton==3.2.0+git35c6c7c6 [pip3] pytorch-warmup==0.1.1 [pip3] rotary-embedding-torch==0.8.4 [pip3] torch==2.6.0.dev20241216+cu126 [pip3] torch-fidelity==0.3.0 [pip3] torch_geometric==2.4.0 [pip3] torchao==0.5.0 [pip3] torchaudio==2.6.0.dev20241216+cu126 [pip3] torchmetrics==1.4.3 [pip3] torchvision==0.22.0.dev20241216+cu126 [pip3] triton==3.1.0 [pip3] vector-quantize-pytorch==1.18.1 [conda] Could not collect ``` cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @chauhang @penguinwu @bobrenjc93
true
2,747,251,771
Fix torch.histogramdd description
zeshengzong
closed
[ "open source", "Stale", "release notes: python_frontend" ]
2
CONTRIBUTOR
Fixes #124435
true
2,747,233,054
[Inductor UT] Mark test case test_linear_and_cel as requires_cuda as
etaf
closed
[ "open source", "topic: not user facing", "module: inductor", "ciflow/inductor", "ciflow/xpu" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #142322 * __->__ #143492 * #143491 it's only for cuda now. Fix #143479 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,747,232,941
[Inductor XPU] Add XPU check for `is_big_gpu()`.
etaf
closed
[ "open source", "Merged", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #142322 * __->__ #143491 Fix #143472 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,747,230,673
Segmentation fault (core dumped) in `replication_pad2d`
LongZE666
open
[ "module: crash", "module: error checking", "triaged", "topic: fuzzer" ]
2
NONE
### 🐛 Describe the bug Under specific inputs, `replication_pad2d` triggered a crash. ```python import torch self = torch.full((9, 9, 2, 4, 3,), 1.251e+12, dtype=torch.float) padding = [0, 0, 0, 0] torch._C._nn.replication_pad2d(self, padding) ``` Output ``` Segmentation fault (core dumped) ``` ### Versions PyTorch version: 2.5.0a0+git32f585d Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.13.0 | packaged by Anaconda, Inc. | (main, Oct 7 2024, 21:29:38) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 80 On-line CPU(s) list: 0-79 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 20 Socket(s): 2 Stepping: 7 CPU max MHz: 4000.0000 CPU min MHz: 800.0000 BogoMIPS: 4200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.3 MiB (40 instances) L1i cache: 1.3 MiB (40 instances) L2 cache: 40 MiB (40 instances) L3 cache: 55 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==2.1.3 [pip3] torch==2.5.0a0+git32f585d [conda] numpy 2.1.3 pypi_0 pypi [conda] torch 2.5.0a0+git32f585d pypi_0 pypi cc @malfet
true
2,747,218,170
Floating point exception (core dumped) in `thnn_conv2d`
LongZE666
closed
[ "module: crash", "module: nn", "module: error checking", "module: convolution", "triaged", "topic: fuzzer" ]
1
NONE
### 🐛 Describe the bug Under specific inputs, `thnn_conv2d` triggered a crash. ```python import torch self = torch.full((9, 2, 3, 9,), 1e+13, dtype=torch.float) weight = torch.full((8, 2, 3, 3,), 7.89645e+16, dtype=torch.float) kernel_size = [36028797018963968, 36028797018963968] bias = None stride = [1048576, 1048576] padding = [36028797018963968, 36028797018963968] torch._C._nn.thnn_conv2d(self, weight, kernel_size, bias, stride, padding) ``` Output ``` Floating point exception (core dumped) ``` ### Versions PyTorch version: 2.5.0a0+git32f585d Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.13.0 | packaged by Anaconda, Inc. | (main, Oct 7 2024, 21:29:38) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 80 On-line CPU(s) list: 0-79 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 20 Socket(s): 2 Stepping: 7 CPU max MHz: 4000.0000 CPU min MHz: 800.0000 BogoMIPS: 4200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.3 MiB (40 instances) L1i cache: 1.3 MiB (40 instances) L2 cache: 40 MiB (40 instances) L3 cache: 55 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==2.1.3 [pip3] torch==2.5.0a0+git32f585d [conda] numpy 2.1.3 pypi_0 pypi [conda] torch 2.5.0a0+git32f585d pypi_0 pypi cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki @malfet
true
2,747,211,871
Aborted (core dumped) in `replication_pad3d`
LongZE666
closed
[ "module: crash", "module: nn", "module: error checking", "triaged", "topic: fuzzer" ]
2
NONE
### 🐛 Describe the bug Under specific inputs, `replication_pad3d` triggered a crash. ```python import torch self = torch.full((9, 1, 1, 9, 1, 8, 8, 7, 8,), 1.4013e-45, dtype=torch.float) padding = [0, 0, 0, 0, 0, 0] torch.ops.aten.replication_pad3d(self, padding) ``` Output ``` double free or corruption (out) Aborted (core dumped) ``` ### Versions PyTorch version: 2.5.0a0+git32f585d Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.13.0 | packaged by Anaconda, Inc. | (main, Oct 7 2024, 21:29:38) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 80 On-line CPU(s) list: 0-79 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 20 Socket(s): 2 Stepping: 7 CPU max MHz: 4000.0000 CPU min MHz: 800.0000 BogoMIPS: 4200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.3 MiB (40 instances) L1i cache: 1.3 MiB (40 instances) L2 cache: 40 MiB (40 instances) L3 cache: 55 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==2.1.3 [pip3] torch==2.5.0a0+git32f585d [conda] numpy 2.1.3 pypi_0 pypi [conda] torch 2.5.0a0+git32f585d pypi_0 pypi cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki @malfet
true
2,747,204,933
Aborted (core dumped) in `replication_pad1d`
LongZE666
open
[ "module: crash", "module: error checking", "triaged", "actionable", "topic: fuzzer" ]
2
NONE
### 🐛 Describe the bug Under specific inputs, `replication_pad1d` triggered a crash. ```python import torch self = torch.full((9, 9, 7, 1,), 3.5e+35, dtype=torch.float) padding = [-2, -2] torch.ops.aten.replication_pad1d(self, padding) ``` Output ``` corrupted size vs. prev_size Aborted (core dumped) ``` ### Versions PyTorch version: 2.5.0a0+git32f585d Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.13.0 | packaged by Anaconda, Inc. | (main, Oct 7 2024, 21:29:38) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 80 On-line CPU(s) list: 0-79 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 20 Socket(s): 2 Stepping: 7 CPU max MHz: 4000.0000 CPU min MHz: 800.0000 BogoMIPS: 4200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.3 MiB (40 instances) L1i cache: 1.3 MiB (40 instances) L2 cache: 40 MiB (40 instances) L3 cache: 55 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==2.1.3 [pip3] torch==2.5.0a0+git32f585d [conda] numpy 2.1.3 pypi_0 pypi [conda] torch 2.5.0a0+git32f585d pypi_0 pypi cc @malfet
true
2,747,201,678
torch cumsum gives incorrect output for large tensors
mzaidi59
closed
[ "high priority", "module: cuda", "triaged", "module: 64-bit" ]
6
NONE
### 🐛 Describe the bug We (@akhilkedia @anshmn) observed that torch.cumsum(() returns incorrect output for large tensors Correct Case with small tensor - ``` import torch a = torch.ones((4096*8, 100000), dtype=torch.float, device='cuda') a /= 100000 c = a.cumsum(dim=-1) print(c[0,-5:]) ``` Output ``` tensor([1.0000, 1.0000, 1.0000, 1.0000, 1.0000], device='cuda:0') ``` Incorrect Case with large tensor - ``` import torch b = torch.ones((2*4096*8, 100000), dtype=torch.float, device='cuda') b /= 100000 d = b.cumsum(dim=-1) print(d[0,-5:]) ``` Output ``` tensor([0.6729, 0.6729, 0.6729, 0.6730, 0.6730], device='cuda:0') ``` In the incorrect case, the cumulative sum is wrong starting from index (32702) (replacing cumsum with original value in tensor). The incorrect sum is then propagated till the end. ``` print(b[0, 32702:32702+4]) print(d[0, 32702:32702+4]) ``` Output ``` tensor([1.0000e-05, 1.0000e-05, 1.0000e-05, 1.0000e-05], device='cuda:0') tensor([3.2703e-01, 3.2704e-01, 1.0000e-05, 2.0000e-05], device='cuda:0') ``` ### Versions Collecting environment information... PyTorch version: 2.2.0a0+81ea7a4 Is debug build: False CUDA used to build PyTorch: 12.3 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.27.9 Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-78-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.3.107 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3 Nvidia driver version: 535.129.03 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8462Y+ CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 Stepping: 8 BogoMIPS: 5600.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 3 MiB (64 instances) L1i cache: 2 MiB (64 instances) L2 cache: 128 MiB (64 instances) L3 cache: 120 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103,105,107,109,111,113,115,117,119,121,123,125,127 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.24.4 [pip3] nvtx==0.2.5 [pip3] onnx==1.15.0rc2 [pip3] optree==0.10.0 [pip3] pytorch-quantization==2.1.2 [pip3] torch==2.2.0a0+81ea7a4 [pip3] torch-tensorrt==2.2.0a0 [pip3] torchdata==0.7.0a0 [pip3] torchtext==0.17.0a0 [pip3] torchvision==0.17.0a0 [pip3] triton==2.1.0+6e4932c [conda] Could not collect cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @ptrblck @eqy
true
2,747,199,702
Aborted (core dumped) in `mkldnn_rnn_layer`
LongZE666
open
[ "module: crash", "module: error checking", "triaged", "module: mkldnn", "topic: fuzzer" ]
1
NONE
### 🐛 Describe the bug Under specific inputs, `mkldnn_rnn_layer` triggered a crash. ```python import torch input = torch.full((1, 8, 1,), 4.13506, dtype=torch.float) weight0 = torch.full((5, 8,), 2.47475, dtype=torch.float) weight1 = torch.full((5, 8,), 8.52373, dtype=torch.float) weight2 = torch.full((5,), 5.73429, dtype=torch.float) weight3 = torch.full((5,), 6.42933, dtype=torch.float) hx_ = torch.full((1, 8,), 9.12846, dtype=torch.float) cx_ = torch.full((1, 1,), 6.00218, dtype=torch.float) reverse = False batch_sizes = [] mode = 2 hidden_size = 8 num_layers = 2 has_biases = True bidirectional = False batch_first = False train = False torch.mkldnn_rnn_layer(input, weight0, weight1, weight2, weight3, hx_, cx_, reverse, batch_sizes, mode, hidden_size, num_layers, has_biases, bidirectional, batch_first, train) ``` Output ``` double free or corruption (!prev) Aborted (core dumped ``` ### Versions PyTorch version: 2.5.0a0+git32f585d Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.13.0 | packaged by Anaconda, Inc. | (main, Oct 7 2024, 21:29:38) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 80 On-line CPU(s) list: 0-79 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 20 Socket(s): 2 Stepping: 7 CPU max MHz: 4000.0000 CPU min MHz: 800.0000 BogoMIPS: 4200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.3 MiB (40 instances) L1i cache: 1.3 MiB (40 instances) L2 cache: 40 MiB (40 instances) L3 cache: 55 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==2.1.3 [pip3] torch==2.5.0a0+git32f585d [conda] numpy 2.1.3 pypi_0 pypi [conda] torch 2.5.0a0+git32f585d pypi_0 pypi cc @malfet @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal
true
2,747,195,247
Segmentation fault (core dumped) in `gru_cell`
LongZE666
open
[ "module: crash", "module: error checking", "triaged", "actionable", "module: empty tensor", "topic: fuzzer" ]
1
NONE
### 🐛 Describe the bug Under specific inputs, `gru_cell` triggered a crash. ```python import torch input = torch.full((0, 8,), 0, dtype=torch.float) hx = torch.full((0, 9,), 0, dtype=torch.float) w_ih = torch.full((1, 8,), 1.251e+12, dtype=torch.float) w_hh = torch.full((1, 9,), 1.4013e-45, dtype=torch.float) b_ih = None b_hh = None torch.gru_cell(input, hx, w_ih, w_hh, b_ih, b_hh) ``` Output ``` Segmentation fault (core dumped) ``` ### Versions PyTorch version: 2.5.0a0+git32f585d Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.13.0 | packaged by Anaconda, Inc. | (main, Oct 7 2024, 21:29:38) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 80 On-line CPU(s) list: 0-79 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 20 Socket(s): 2 Stepping: 7 CPU max MHz: 4000.0000 CPU min MHz: 800.0000 BogoMIPS: 4200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.3 MiB (40 instances) L1i cache: 1.3 MiB (40 instances) L2 cache: 40 MiB (40 instances) L3 cache: 55 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==2.1.3 [pip3] torch==2.5.0a0+git32f585d [conda] numpy 2.1.3 pypi_0 pypi [conda] torch 2.5.0a0+git32f585d pypi_0 pypi cc @malfet
true
2,747,188,022
Segmentation fault (core dumped) in `embedding_bag.padding_idx`
LongZE666
open
[ "module: crash", "module: error checking", "triaged", "module: embedding", "module: empty tensor", "topic: fuzzer" ]
0
NONE
### 🐛 Describe the bug Under specific inputs, `embedding_bag.padding_idx` triggered a crash. ```python import torch weight = torch.full((3, 4,), 1.11111e+15, dtype=torch.float) indices = torch.full((5,), -2147483648, dtype=torch.long) offsets = torch.full((0,), 0, dtype=torch.long) scale_grad_by_freq = False mode = 3046875451 sparse = False per_sample_weights = None include_last_offset = False padding_idx = None torch.ops.aten.embedding_bag.padding_idx(weight, indices, offsets, scale_grad_by_freq, mode, sparse, per_sample_weights, include_last_offset, padding_idx) ``` Output ``` Segmentation fault (core dumped) ``` ### Versions PyTorch version: 2.5.0a0+git32f585d Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.13.0 | packaged by Anaconda, Inc. | (main, Oct 7 2024, 21:29:38) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 80 On-line CPU(s) list: 0-79 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 20 Socket(s): 2 Stepping: 7 CPU max MHz: 4000.0000 CPU min MHz: 800.0000 BogoMIPS: 4200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.3 MiB (40 instances) L1i cache: 1.3 MiB (40 instances) L2 cache: 40 MiB (40 instances) L3 cache: 55 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==2.1.3 [pip3] torch==2.5.0a0+git32f585d [conda] numpy 2.1.3 pypi_0 pypi [conda] torch 2.5.0a0+git32f585d pypi_0 pypi cc @malfet
true
2,747,179,041
Segmentation fault (core dumped) in `embedding_backward`
LongZE666
open
[ "module: crash", "module: error checking", "triaged", "module: embedding", "module: empty tensor", "topic: fuzzer" ]
0
NONE
### 🐛 Describe the bug Under specific inputs, `embedding_backward` triggered a crash. ```python import torch grad = torch.full((8, 0, 3, 7, 6, 1, 0,), 0, dtype=torch.float) indices = torch.full((2,), 1250999896764, dtype=torch.long) num_weights =536870912 padding_idx = 4194304 scale_grad_by_freq = True sparse = False torch.ops.aten.embedding_backward(grad, indices, num_weights, padding_idx, scale_grad_by_freq, sparse) ``` Output ``` Segmentation fault (core dumped) ``` ### Versions PyTorch version: 2.5.0a0+git32f585d Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.13.0 | packaged by Anaconda, Inc. | (main, Oct 7 2024, 21:29:38) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 80 On-line CPU(s) list: 0-79 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 20 Socket(s): 2 Stepping: 7 CPU max MHz: 4000.0000 CPU min MHz: 800.0000 BogoMIPS: 4200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.3 MiB (40 instances) L1i cache: 1.3 MiB (40 instances) L2 cache: 40 MiB (40 instances) L3 cache: 55 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==2.1.3 [pip3] torch==2.5.0a0+git32f585d [conda] numpy 2.1.3 pypi_0 pypi [conda] torch 2.5.0a0+git32f585d pypi_0 pypi cc @malfet
true
2,747,174,664
Segmentation fault (core dumped) in `conv3d`
LongZE666
open
[ "module: crash", "module: nn", "module: error checking", "module: convolution", "triaged", "topic: fuzzer" ]
1
NONE
### 🐛 Describe the bug Under specific inputs, `conv3d` triggered a crash. ```python import torch input = torch.full((3, 1, 3, 4, 3,), 4.44444e+12, dtype=torch.float) weight = torch.full((3, 1, 3, 1, 3,), 1e+13, dtype=torch.float) bias = None stride = [1, 1, 1] padding = "same" dilation = [3046875451, 3046875451, 3046875451] groups = 1 #torch.ops.aten.conv3d.padding(input, weight, bias, stride, padding, dilation, groups) torch.nn.functional.conv3d(input, weight, bias, stride, padding, dilation, groups) ``` Output ``` Segmentation fault (core dumped) ``` ### Versions PyTorch version: 2.5.0a0+git32f585d Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.13.0 | packaged by Anaconda, Inc. | (main, Oct 7 2024, 21:29:38) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 80 On-line CPU(s) list: 0-79 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 20 Socket(s): 2 Stepping: 7 CPU max MHz: 4000.0000 CPU min MHz: 800.0000 BogoMIPS: 4200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.3 MiB (40 instances) L1i cache: 1.3 MiB (40 instances) L2 cache: 40 MiB (40 instances) L3 cache: 55 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==2.1.3 [pip3] torch==2.5.0a0+git32f585d [conda] numpy 2.1.3 pypi_0 pypi [conda] torch 2.5.0a0+git32f585d pypi_0 pypi cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki @malfet
true
2,747,167,862
Segmentation fault (core dumped) in `conv1d`
LongZE666
open
[ "module: crash", "module: nn", "module: error checking", "triaged", "module: edge cases", "topic: fuzzer" ]
2
NONE
### 🐛 Describe the bug Under specific inputs, `conv1d` triggered a crash. ```python import torch input = torch.full((10, 10, 9,), 0, dtype=torch.float) weight = torch.full((2, 10, 9,), 9.0072e+15, dtype=torch.float) bias = None stride = [1] padding = "same" dilation = [2147483648] groups = 1 # torch.ops.aten.conv1d.padding(input, weight, bias, stride, padding, dilation, groups) torch.nn.functional.conv1d(input, weight, bias, stride, padding, dilation, groups) ``` Output ``` Segmentation fault (core dumped) ``` ### Versions PyTorch version: 2.5.0a0+git32f585d Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.13.0 | packaged by Anaconda, Inc. | (main, Oct 7 2024, 21:29:38) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 80 On-line CPU(s) list: 0-79 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 20 Socket(s): 2 Stepping: 7 CPU max MHz: 4000.0000 CPU min MHz: 800.0000 BogoMIPS: 4200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.3 MiB (40 instances) L1i cache: 1.3 MiB (40 instances) L2 cache: 40 MiB (40 instances) L3 cache: 55 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==2.1.3 [pip3] torch==2.5.0a0+git32f585d [conda] numpy 2.1.3 pypi_0 pypi [conda] torch 2.5.0a0+git32f585d pypi_0 pypi cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki @malfet
true
2,747,158,019
[Break XPU] Newly added test case with CUDA hard code failed on XPU.
etaf
closed
[ "triaged", "module: xpu" ]
0
COLLABORATOR
### 🐛 Describe the bug The newly added test case `test_linear_and_cel` in test/inductor/test_inplace_padding.py has "cuda" hard code but run on XPU.:https://hud.pytorch.org/pr/pytorch/pytorch/142322#34573031104 ``` 2024-12-18T04:27:31.8569895Z =================================== FAILURES =================================== 2024-12-18T04:27:31.8570211Z ____________________ InplacePaddingTest.test_linear_and_cel ____________________ 2024-12-18T04:27:31.8570515Z Traceback (most recent call last): 2024-12-18T04:27:31.8570900Z File "/var/lib/jenkins/pytorch/test/inductor/test_inplace_padding.py", line 146, in test_linear_and_cel 2024-12-18T04:27:31.8571333Z x = torch.randn(B * T, C, requires_grad=True).cuda().bfloat16() 2024-12-18T04:27:31.8571744Z File "/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/cuda/__init__.py", line 311, in _lazy_init 2024-12-18T04:27:31.8572183Z raise AssertionError("Torch not compiled with CUDA enabled") 2024-12-18T04:27:31.8572499Z AssertionError: Torch not compiled with CUDA enabled 2024-12-18T04:27:31.8572673Z 2024-12-18T04:27:31.8572814Z To execute this test, run the following from the base repo dir: 2024-12-18T04:27:31.8573196Z python test/inductor/test_inplace_padding.py InplacePaddingTest.test_linear_and_cel ``` Seems the test case only suitable for CUDA as it has device bias code like `os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"` We should mark it as requires_cuda. ### Versions PyTorch version: 2.6.0a0+gite6c7400 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.2 Libc version: glibc-2.35 Python version: 3.10.15 | packaged by conda-forge | (main, Oct 16 2024, 01:24:24) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-5.15.47+prerelease24.6.13-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,747,116,491
[DONT MERGE]Xpu win whl
chuanqi129
closed
[ "open source", "ciflow/binaries" ]
2
COLLABORATOR
Fixes #ISSUE_NUMBER
true
2,747,092,342
Tensor size for `masked_fill` exceeds the limit supported by the MPS backend: must be less than 2**32 elements
rusnov
closed
[ "module: crash", "triaged", "module: mps" ]
8
NONE
### 🐛 Describe the bug I get the following error, when using `masked_fill` on larger tensors. See error and the minimal code below. **Error:** ``` /AppleInternal/Library/BuildRoots/.../Library/Caches/com.apple.xbs/Sources/MetalPerformanceShaders/MPSCore/Types/MPSNDArray.mm:850: failed assertion `[MPSNDArray initWithDevice:descriptor:isTextureBacked:] Error: total bytes of NDArray > 2**32' ``` **Code:** ```python import torch device = torch.device("mps") mask_bool = torch.triu(torch.ones(1024, 1024, device=device), diagonal=1).bool() attn_scores = torch.rand(48, 25, 1024, 1024, device=device) attn_scores.masked_fill_(mask_bool, 0) ``` ### Versions ``` PyTorch version: 2.6.0.dev20241217 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 15.2 (arm64) GCC version: Could not collect Clang version: 16.0.0 (clang-1600.0.26.6) CMake version: Could not collect Libc version: N/A Python version: 3.11.10 | packaged by conda-forge | (main, Oct 16 2024, 01:26:25) [Clang 17.0.6 ] (64-bit runtime) Python platform: macOS-15.2-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M4 Max Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] optree==0.13.1 [pip3] torch==2.6.0.dev20241217 [pip3] torchaudio==2.6.0.dev20241217 [pip3] torchvision==0.22.0.dev20241217 [conda] numpy 1.26.4 pypi_0 pypi [conda] optree 0.13.1 pypi_0 pypi [conda] torch 2.6.0.dev20241217 pypi_0 pypi [conda] torchaudio 2.6.0.dev20241217 pypi_0 pypi [conda] torchvision 0.22.0.dev20241217 pypi_0 pypi ``` cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
2,747,056,176
Address source code building command for Intel GPU support
ZailiWang
closed
[ "triaged", "open source", "Merged", "topic: not user facing" ]
14
CONTRIBUTOR
As the title
true
2,747,022,409
reduce import torch time.
xuhancn
closed
[ "open source", "Stale", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
2
COLLABORATOR
Fixes #140970 Original code: <img width="413" alt="Image" src="https://github.com/user-attachments/assets/8035580c-f261-4b4c-a652-61d1666da894" /> It takes 2.1s This PR, `load torch_cpu` modules to replace `import torch`: <img width="438" alt="Image" src="https://github.com/user-attachments/assets/d6d5fe31-ae67-4cbe-b3cb-38187405b1f5" /> It takes 1.18s The performance is speed up. But, 1. The code is hard to be maintained. 2. Mac OS still not work. @gjong5 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,746,904,505
[ONNX] Failed to export PyTorch-2-Export-Quantized model to onnx
veritas-Qiu
open
[ "module: onnx", "triaged" ]
1
CONTRIBUTOR
### 🐛 Describe the bug try to quantize a model like [this link](https://pytorch.org/tutorials/prototype/pt2e_quant_qat.html) (only different in model structures and datasets) then export the quantized model to onnx by `torch.onnx.export` (original model is able to output), and get ```Traceback (most recent call last): File "d:\my_project\train_quantized.py", line 798, in <module> onnx_program = torch.onnx.export(model, torch_input, "my_quantized.onnx") File "D:\anaconda3\envs\hm\lib\site-packages\torch\onnx\__init__.py", line 375, in export export( File "D:\anaconda3\envs\hm\lib\site-packages\torch\onnx\utils.py", line 502, in export _export( File "D:\anaconda3\envs\hm\lib\site-packages\torch\onnx\utils.py", line 1564, in _export graph, params_dict, torch_out = _model_to_graph( File "D:\anaconda3\envs\hm\lib\site-packages\torch\onnx\utils.py", line 1117, in _model_to_graph graph = _optimize_graph( File "D:\anaconda3\envs\hm\lib\site-packages\torch\onnx\utils.py", line 639, in _optimize_graph graph = _C._jit_pass_onnx(graph, operator_export_type) File "D:\anaconda3\envs\hm\lib\site-packages\torch\onnx\utils.py", line 1848, in _run_symbolic_function raise errors.UnsupportedOperatorError( torch.onnx.errors.UnsupportedOperatorError: ONNX export failed on an operator with unrecognized namespace quantized_decomposed::quantize_per_tensor. If you are trying to export a custom operator, make sure you registered it with the right domain and version. ``` ### Versions Collecting environment information... PyTorch version: 2.5.1 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Microsoft Windows 11 专业版 (10.0.22631 64 位) GCC version: Could not collect Clang version: Could not collect CMake version: Could not collect Libc version: N/A Python version: 3.10.14 | packaged by conda-forge | (main, Mar 20 2024, 12:40:08) [MSC v.1938 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.22631-SP0 Is CUDA available: True CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090 D Nvidia driver version: 560.94 cuDNN version: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin\cudnn_ops_train64_8.dll HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Name: Intel(R) Core(TM) i9-14900KF Manufacturer: GenuineIntel Family: 207 Architecture: 9 ProcessorType: 3 DeviceID: CPU0 CurrentClockSpeed: 3200 MaxClockSpeed: 3200 L2CacheSize: 32768 L2CacheSpeed: None Revision: None Versions of relevant libraries: [pip3] efficientnet_pytorch==0.7.1 [pip3] flake8==7.1.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==2.1.3 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] onnx==1.16.0 [pip3] onnx-tool==0.9.0 [pip3] onnxruntime==1.17.1 [pip3] onnxscript==0.1.0.dev20241218 [pip3] onnxsim==0.4.36 [pip3] optree==0.12.1 [pip3] pytorch-lightning==2.4.0 [pip3] segmentation-models-pytorch==0.3.4 [pip3] torch==2.5.1 [pip3] torch-pruning==1.5.1 [pip3] torch-tb-profiler==0.4.3 [pip3] torch_tensorrt==2.5.0 [pip3] torchaudio==2.5.1 [pip3] torchmetrics==1.4.2 [pip3] torchvision==0.20.1 [conda] blas 1.0 mkl defaults [conda] cuda-cudart 11.8.89 0 nvidia [conda] cuda-cudart-dev 11.8.89 0 nvidia [conda] cuda-cupti 11.8.87 0 nvidia [conda] cuda-libraries 11.8.0 0 nvidia [conda] cuda-libraries-dev 11.8.0 0 nvidia [conda] cuda-nvrtc 11.8.89 0 nvidia [conda] cuda-nvrtc-dev 11.8.89 0 nvidia [conda] cuda-nvtx 11.8.86 0 nvidia [conda] cuda-opencl 12.5.39 he0c23c2_1 conda-forge [conda] cuda-opencl-dev 12.5.39 he0c23c2_1 conda-forge [conda] cuda-runtime 11.8.0 0 nvidia [conda] efficientnet-pytorch 0.7.1 pypi_0 pypi [conda] libcublas 11.11.3.6 0 nvidia [conda] libcublas-dev 11.11.3.6 0 nvidia [conda] libcufft 10.9.0.58 0 nvidia [conda] libcufft-dev 10.9.0.58 0 nvidia [conda] libcurand 10.3.6.82 he0c23c2_0 conda-forge [conda] libcurand-dev 10.3.6.82 he0c23c2_0 conda-forge [conda] libcusolver 11.4.1.48 0 nvidia [conda] libcusolver-dev 11.4.1.48 0 nvidia [conda] libcusparse 11.7.5.86 0 nvidia [conda] libcusparse-dev 11.7.5.86 0 nvidia [conda] libnvjitlink 12.4.127 0 nvidia [conda] libnvjitlink-dev 12.4.127 0 nvidia [conda] mkl 2021.4.0 pypi_0 pypi [conda] mkl-service 2.4.0 py310h2bbff1b_1 defaults [conda] mkl_fft 1.3.11 py310h827c3e9_0 defaults [conda] mkl_random 1.2.8 py310hc64d2fc_0 defaults [conda] numpy 2.1.3 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi [conda] optree 0.12.1 pypi_0 pypi [conda] pytorch 2.5.1 py3.10_cuda11.8_cudnn9_0 pytorch [conda] pytorch-cuda 11.8 h24eeafa_6 pytorch [conda] pytorch-lightning 2.4.0 pypi_0 pypi [conda] pytorch-mutex 1.0 cuda pytorch [conda] segmentation-models-pytorch 0.3.4 pypi_0 pypi [conda] torch-pruning 1.5.1 pypi_0 pypi [conda] torch-tb-profiler 0.4.3 pypi_0 pypi [conda] torch-tensorrt 2.5.0 pypi_0 pypi [conda] torchaudio 2.5.1 pypi_0 pypi [conda] torchmetrics 1.4.2 pypi_0 pypi [conda] torchvision 0.20.1 pypi_0 pypi
true
2,746,898,464
Fix space typo in warning message
SilverSoldier
closed
[ "oncall: distributed", "triaged", "open source", "Merged", "Stale", "release notes: distributed (fsdp)" ]
15
CONTRIBUTOR
Warning shows up like this (no space between willbe): ``` /home/xxx/.local/lib/python3.11/site-packages/torch/distributed/fsdp/_state_dict_utils.py:827: UserWarning: When using ``NO_SHARD`` for ``ShardingStrategy``, full_state_dict willbe returned. ``` cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,746,897,879
[Break XPU] The device-bias hard code in `is_big_gpu` cause case failures on XPU.
etaf
closed
[ "triaged", "module: xpu" ]
1
COLLABORATOR
### 🐛 Describe the bug We found the recent XPU CI failure https://hud.pytorch.org/pr/pytorch/pytorch/142322#34573031104 which is caused by #143339 ``` Z _______________ AOTInductorTestABICompatibleGpu.test_conv3d_xpu ________________ 2024-12-18T04:17:23.7324890Z Traceback (most recent call last): 2024-12-18T04:17:23.7325205Z File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor.py", line 11965, in new_test 2024-12-18T04:17:23.7325511Z return value(self) 2024-12-18T04:17:23.7325794Z File "/var/lib/jenkins/pytorch/test/inductor/test_aot_inductor.py", line 4116, in test_conv3d 2024-12-18T04:17:23.7326123Z if self.device != GPU_TYPE or not is_big_gpu(): 2024-12-18T04:17:23.7326472Z File "/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/_inductor/utils.py", line 1134, in is_big_gpu 2024-12-18T04:17:23.7326825Z prop = DeviceProperties.create(device) 2024-12-18T04:17:23.7327170Z File "/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/_inductor/runtime/hints.py", line 139, in create 2024-12-18T04:17:23.7327539Z props = device_interface.get_device_properties(device) 2024-12-18T04:17:23.7327919Z File "/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/cuda/__init__.py", line 524, in get_device_properties 2024-12-18T04:17:23.7328298Z _lazy_init() # will define _get_device_properties 2024-12-18T04:17:23.7328643Z File "/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/cuda/__init__.py", line 311, in _lazy_init 2024-12-18T04:17:23.7329071Z raise AssertionError("Torch not compiled with CUDA enabled") 2024-12-18T04:17:23.7329345Z AssertionError: Torch not compiled with CUDA enabled 2024-12-18T04:17:23.7329493Z 2024-12-18T04:17:23.7329613Z To execute this test, run the following from the base repo dir: 2024-12-18T04:17:23.7330007Z python test/inductor/test_aot_inductor.py AOTInductorTestABICompatibleGpu.test_conv3d_xpu ``` The root cause is the "cuda" hard code in `is_big_gpu`. ### Versions PyTorch version: 2.6.0a0+gite6c7400 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.2 Libc version: glibc-2.35 Python version: 3.10.15 | packaged by conda-forge | (main, Oct 16 2024, 01:24:24) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-5.15.47+prerelease24.6.13-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,746,892,469
NFS errors during DataLoader shutdown when num_workers > 1 when temporary directory is on NFS
edoyango
open
[ "triaged", "module: data" ]
0
NONE
### 🐛 Describe the bug Hi, This is more of a mild annoyance rather than a show-stopping issue. This issue occurs when on Linux and when using an NFS-mounted directory as the temporary directory. When finished iterating over a DataLoader object, I get the following errors: ``` Traceback (most recent call last): File "/usr/lib64/python3.9/multiprocessing/util.py", line 300, in _run_finalizers finalizer() File "/usr/lib64/python3.9/multiprocessing/util.py", line 224, in __call__ res = self._callback(*self._args, **self._kwargs) File "/usr/lib64/python3.9/multiprocessing/util.py", line 133, in _remove_temp_dir rmtree(tempdir) File "/usr/lib64/python3.9/shutil.py", line 734, in rmtree _rmtree_safe_fd(fd, path, onerror) File "/usr/lib64/python3.9/shutil.py", line 690, in _rmtree_safe_fd onerror(os.unlink, fullname, sys.exc_info()) File "/usr/lib64/python3.9/shutil.py", line 688, in _rmtree_safe_fd os.unlink(entry.name, dir_fd=topfd) OSError: [Errno 16] Device or resource busy: '.nfs8b2479d03841bd4400015e16' Traceback (most recent call last): File "/usr/lib64/python3.9/multiprocessing/util.py", line 300, in _run_finalizers finalizer() File "/usr/lib64/python3.9/multiprocessing/util.py", line 224, in __call__ res = self._callback(*self._args, **self._kwargs) File "/usr/lib64/python3.9/multiprocessing/util.py", line 133, in _remove_temp_dir rmtree(tempdir) File "/usr/lib64/python3.9/shutil.py", line 734, in rmtree _rmtree_safe_fd(fd, path, onerror) File "/usr/lib64/python3.9/shutil.py", line 690, in _rmtree_safe_fd onerror(os.unlink, fullname, sys.exc_info()) File "/usr/lib64/python3.9/shutil.py", line 688, in _rmtree_safe_fd os.unlink(entry.name, dir_fd=topfd) OSError: [Errno 16] Device or resource busy: '.nfs17203ac1c489d74f00015e15' ``` Code to reproduce: ``` from torch.utils.data import DataLoader, Dataset class ExampleDataset(Dataset): def __len__(self): return 100 def __getitem__(self, index): return index dataset = ExampleDataset() dl = DataLoader(dataset, num_workers=2) for i in dl: print(i) ``` I believe this is related to shutdown/cleanup of multiprocessing managers/workers https://github.com/python/cpython/issues/58186. The error occurs precisely when shutting down the workers https://github.com/pytorch/pytorch/blob/main/torch/utils/data/dataloader.py#L1582, but I don't understand enough about how the dataloader works to suggest a fix. I know in most cases it's easier to just use a local directory as tmp, but our cluster (academic HPC) is setup such that each node has minimal local disk space and local disk space is shared by multiple users. Thanks, Ed ### Versions Collecting environment information... PyTorch version: 1.13.1+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Red Hat Enterprise Linux 9.1 (Plow) (x86_64) GCC version: (GCC) 11.4.1 20231218 (Red Hat 11.4.1-3) Clang version: Could not collect CMake version: version 3.26.5 Libc version: glibc-2.34 Python version: 3.9.18 (main, Jul 3 2024, 00:00:00) [GCC 11.4.1 20231218 (Red Hat 11.4.1-3)] (64-bit runtime) Python platform: Linux-5.14.0-162.23.1.el9_1.x86_64-x86_64-with-glibc2.34 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 45 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 48 On-line CPU(s) list: 0-47 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz CPU family: 6 Model: 79 Thread(s) per core: 1 Core(s) per socket: 1 Socket(s): 48 Stepping: 1 BogoMIPS: 5187.98 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon nopl xtopology tsc_reliable nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 avx2 smep bmi2 invpcid rdseed adx smap xsaveopt arat md_clear flush_l1d arch_capabilities Hypervisor vendor: VMware Virtualization type: full L1d cache: 1.5 MiB (48 instances) L1i cache: 1.5 MiB (48 instances) L2 cache: 12 MiB (48 instances) L3 cache: 1.6 GiB (48 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-23 NUMA node1 CPU(s): 24-47 Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu11==11.10.3.66 [pip3] nvidia-cuda-nvrtc-cu11==11.7.99 [pip3] nvidia-cuda-runtime-cu11==11.7.99 [pip3] nvidia-cudnn-cu11==8.5.0.96 [pip3] onnx==1.17.0 [pip3] onnxruntime==1.19.2 [pip3] torch==1.13.1 [pip3] torchvision==0.14.1 [conda] Could not collect cc @andrewkho @divyanshk @VitalyFedyunin @dzhulgakov
true
2,746,885,941
[c10d] thread safety issue with CUDAEventCache
suo
closed
[ "oncall: distributed", "module: c10d" ]
4
MEMBER
The following race can happen if we ever schedule NCCL work from a different thread than the original Python thread, and that thread dies before process shutdown. 1. The CUDAEventCache is [thread-local](https://github.com/pytorch/pytorch/blob/main/torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp#L839-L841). 2. WorkNCCL [stores a cached Event](https://github.com/pytorch/pytorch/blob/main/torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp#L479-L484). 3. The cached Event holds a reference to the cache that created it, via a [captured `this` pointer](https://github.com/pytorch/pytorch/blob/main/torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp#L810). 4. The thread that created the WorkNCCL could die at any time, destructing its thread-local CUDAEventCache and leaving the reference in (3) dangling. 5. On destruction, we [attempt to drain](https://github.com/pytorch/pytorch/blob/main/torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp#L2245) completed `Work`s, and try to dereference this dangling reference and explode. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,746,853,880
Larger numerical divergence after applying torch.compile on a batch-linear model
maybeLee
closed
[ "triaged", "oncall: pt2", "module: inductor" ]
7
CONTRIBUTOR
### 🐛 Describe the bug Hi I am trying to use torch.compile to optimize a model's performance. However, I notice that the optimized model has larger numerical divergence compared to the original one. Here is the simplified reproducible script: ``` import torch from torch import nn torch.manual_seed(0) NUM_INPUT=50 INPUT_SIZE=500 NUM_LINEAR=2 DEVICE="cuda" class SimpleModel(nn.Module): def __init__(self, device=DEVICE): super().__init__() self.device = device self.weights = torch.nn.ParameterList( [torch.nn.Parameter(torch.randn(NUM_INPUT, INPUT_SIZE//NUM_LINEAR)) for _ in range(NUM_LINEAR)] ).to(self.device) self.biases = torch.nn.ParameterList( [torch.randn(NUM_INPUT).to(self.device) for _ in range(NUM_LINEAR)] ).to(self.device) def to_float(self): for layer in [self.weights, self.biases]: layer = layer.cpu().float().to(self.device) def to_double(self): for layer in [self.weights, self.biases]: layer = layer.cpu().double().to(self.device) def forward(self, x): l1_out = torch.split(x.to(self.device), INPUT_SIZE//NUM_LINEAR, dim=1) l1_linear = [] for i in range(len(l1_out)): l1_linear.append( torch.nn.functional.linear( l1_out[i], self.weights[i], self.biases[i]) ) l1_out = torch.cat(l1_linear, dim=1) return l1_out arg = torch.randn(NUM_INPUT, INPUT_SIZE, device=DEVICE) arg = arg + torch.randn(NUM_INPUT, INPUT_SIZE, device=DEVICE) + torch.tensor(100, dtype=torch.float32, device=DEVICE) low_input = arg.to(torch.float32) high_input = arg.to(torch.float64) model = SimpleModel() fp32_origin = model(low_input) model.to_double() fp64_ref = model(high_input) optimized_model = torch.compile(model).to(DEVICE) optimized_model.to_float() fp32_compiled = optimized_model(low_input) print("Eager divergence", torch.max(torch.abs(fp32_origin - fp64_ref))) print("Compile divergence", torch.max(torch.abs(fp32_compiled - fp64_ref))) ``` Output: ``` Eager divergence tensor(0.0008, device='cuda:0', dtype=torch.float64, grad_fn=<MaxBackward1>) Compile divergence tensor(0.0018, device='cuda:0', dtype=torch.float64, grad_fn=<MaxBackward1>) ``` Essentially, the model is quite simple (with only two linear layers), however the numerical divergence (i.e., fp64-fp32) increases from 0.0008 to 0.0018. Here I did some simple checks: 1. This issue only occurs in GPU but not CPU. 2. If the NUM_INPUT is small (e.g., 30), this issue does not occur. I am very interested in your opinion regarding this issue. In particular, may I ask to what extend of precision degradation introduced by torch.compile do you think is acceptable? ### Versions Versions of relevant libraries: [pip3] numpy==2.0.2 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] onnx==1.17.0 [pip3] onnxscript==0.1.0.dev20241112 [pip3] optree==0.13.1 [pip3] torch==2.5.0 [pip3] torchvision==0.20.1 [pip3] torchviz==0.0.2 [pip3] triton==3.1.0 [conda] numpy 2.0.2 pypi_0 pypi [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] optree 0.13.1 pypi_0 pypi [conda] torch 2.5.0 pypi_0 pypi [conda] torchvision 0.20.1 pypi_0 pypi [conda] torchviz 0.0.2 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @aakhundov
true
2,746,738,299
dummy pr
xuhancn
closed
[ "open source", "topic: not user facing", "ciflow/xpu" ]
1
COLLABORATOR
Fixes #ISSUE_NUMBER
true
2,746,731,051
log guard_size_oblivious call sites
bobrenjc93
closed
[ "release notes: fx", "topic: not user facing", "fx", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143467 This makes it much easier to know what's going on when we guard on data dependent operations. Currently if we throw on guard on data dependent, we only show the python invocation that caused it (not the underlying leaf c++ call which truly causes it). For reviewers: I was torn on whether or not to make this a special thing separate to TORCH_LOGS="dynamic" but decided against it since dynamic is already opt in. The benefit is we now get much more visibility when users run with this flag on, but logs do get a bit more spewy. I'm still open to the idea of moving these logs somewhere else and maybe building a UI on top of it to make it easier to manage the information overload. cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,746,685,478
Support Dict Parameter Type for custom_op
xinyu-intel
open
[ "triaged", "module: custom-operators", "oncall: pt2", "module: pt2-dispatcher" ]
4
CONTRIBUTOR
### 🐛 Describe the bug Is it possible to support infer_schema for custom_op which has Dict as input parameters? I think opschema can support such sig `(Tensor t, Dict(str, Any) meta) -> Tensor`. Also, can such inputs be mutated? ```python import torch from typing import Dict, Any @torch.library.custom_op("host_code::collect_max", mutates_args=(), device_types="cpu") def fn(t: torch.Tensor, meta: Dict[str, Any]) -> torch.Tensor: meta["max"] = t.max().item() return t.clone() @torch.library.register_fake("host_code::collect_max") def fn_fake(t: torch.Tensor, meta: Dict[str, Any]) -> torch.Tensor: return t t = torch.randn((3,3)) meta = {} fn(t, meta) print(meta) ``` ### Error logs ``` Traceback (most recent call last): File "/Users/chenxiny/workspace/dynamo_case/custom_op.py", line 5, in <module> def fn(t: torch.Tensor, meta: Dict[str, Any]): File "/Users/chenxiny/miniforge3/envs/torch-metal/lib/python3.10/site-packages/torch/_library/custom_ops.py", line 121, in inner schema_str = torch.library.infer_schema(fn, mutates_args=mutates_args) File "/Users/chenxiny/miniforge3/envs/torch-metal/lib/python3.10/site-packages/torch/_library/infer_schema.py", line 106, in infer_schema error_fn( File "/Users/chenxiny/miniforge3/envs/torch-metal/lib/python3.10/site-packages/torch/_library/infer_schema.py", line 58, in error_fn raise ValueError( ValueError: infer_schema(func): Parameter meta has unsupported type typing.Dict[str, typing.Any]. The valid types are: dict_keys([<class 'torch.Tensor'>, typing.Optional[torch.Tensor], typing.Sequence[torch.Tensor], typing.List[torch.Tensor], typing.Sequence[typing.Optional[torch.Tensor]], typing.List[typing.Optional[torch.Tensor]], <class 'int'>, typing.Optional[int], typing.Sequence[int], typing.List[int], typing.Optional[typing.Sequence[int]], typing.Optional[typing.List[int]], <class 'float'>, typing.Optional[float], typing.Sequence[float], typing.List[float], typing.Optional[typing.Sequence[float]], typing.Optional[typing.List[float]], <class 'bool'>, typing.Optional[bool], typing.Sequence[bool], typing.List[bool], typing.Optional[typing.Sequence[bool]], typing.Optional[typing.List[bool]], <class 'str'>, typing.Optional[str], typing.Union[int, float, bool], typing.Union[int, float, bool, NoneType], typing.Sequence[typing.Union[int, float, bool]], typing.List[typing.Union[int, float, bool]], <class 'torch.dtype'>, typing.Optional[torch.dtype], <class 'torch.device'>, typing.Optional[torch.device]]). Got func with signature (t: torch.Tensor, meta: Dict[str, Any])) ``` ### Versions ``` PyTorch version: 2.6.0.dev20241126 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 15.1.1 (arm64) GCC version: Could not collect Clang version: 15.0.0 (clang-1500.3.9.4) CMake version: Could not collect Libc version: N/A Python version: 3.10.15 | packaged by conda-forge | (main, Oct 16 2024, 01:24:20) [Clang 17.0.6 ] (64-bit runtime) Python platform: macOS-15.1.1-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Pro Versions of relevant libraries: [pip3] numpy==2.1.2 [pip3] torch==2.6.0.dev20241126 [pip3] torchaudio==2.5.0.dev20241126 [pip3] torchvision==0.20.0.dev20241126 [conda] numpy 2.1.2 pypi_0 pypi [conda] torch 2.6.0.dev20241126 pypi_0 pypi [conda] torchaudio 2.5.0.dev20241126 pypi_0 pypi [conda] torchvision 0.20.0.dev20241126 pypi_0 pypi ``` cc @chauhang @penguinwu @zou3519 @bdhirsh @yf225
true
2,746,631,749
[ROCm] MI300X FP8 scaled_mm is extremely slow on nightly
OrenLeung
open
[ "module: performance", "module: rocm", "triaged" ]
22
CONTRIBUTOR
### 🐛 Describe the bug Hi AMD Team, `torch._scaled_mm` is extremely slow on MI300X at ~100TFLOP/s verus ~1200TFLOP/s on H100 Can you look into this? cc: @hliuca ## ROCm ``` m=16384 n=8192 k=1280: 108.07154472843483 m=16384 n=1024 k=8192: 110.56206220309926 m=16384 n=8192 k=7168: 109.66662842248034 m=16384 n=3584 k=8192: 110.59228182207659 m=8192 n=8192 k=8192: 109.86138366796457 ``` ## H100 ``` m=16384 n=8192 k=1280: 1239.4133451945781 m=16384 n=1024 k=8192: 1347.0844475792383 m=16384 n=8192 k=7168: 1332.2623882545472 m=16384 n=3584 k=8192: 1309.4453003269748 m=8192 n=8192 k=8192: 1304.5406858844613 ``` ## Reprod ``` import time import torch from triton.testing import do_bench torch.manual_seed(0) repeats = 200 warmup = 30 timeout = 0.5 device = 'cuda' # GEMM Shapes shapes = [ (16384, 8192, 1280), (16384, 1024, 8192), (16384, 8192, 7168), (16384, 3584, 8192), (8192, 8192, 8192) ] results = [] for (m, n, k) in shapes: # FLOPS nFLOPS = 2 * m * n * k a_fp8_e5m2 = torch.randn(m, k, device=device).to(torch.float8_e5m2fnuz) b_fp8_e5m2 = torch.randn(n, k, device=device).to(torch.float8_e4m3fnuz).transpose(-1, -2) scale_a = torch.tensor(1.0, device=device, dtype=torch.float32) scale_b = torch.tensor(1.0, device=device, dtype=torch.float32) ms_fp8_scaled_mm_e4m3 = do_bench(lambda: torch._scaled_mm(a_fp8_e5m2, b_fp8_e5m2, scale_a, scale_b), warmup=warmup, rep=repeats) tflops_fp8_scaled_mm_e4m3 = nFLOPS / ms_fp8_scaled_mm_e4m3 * 1e-9 time.sleep(timeout) print(f"{m=} {n=} {k=}: {tflops_fp8_scaled_mm_e4m3}") ``` cc: @hliuca ### Versions ```bash pip list | grep torch pytorch-triton-rocm 3.2.0+git35c6c7c6 torch 2.6.0.dev20241216+rocm6.2.4 ``` cc @msaroufim @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,746,624,804
Add a register_replacement to fix float8 delayed scaling kernel fusion issues
y-sq
closed
[ "fb-exported", "Stale", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
8
CONTRIBUTOR
Summary: We previously tried the `defer_reduction_split_after_fusion` way to fix the fusion issue. However, as we agree that the longer-term solution is cooperative reduction + tiled reduction, the defer reduction split approach will also be a shorter-term solution. And we want to keep the shorter-term solution simpler. This pr uses the `pattern_matcher` to match the fp8 delayed scaling pattern, simply replace every `max(abs(x))` with `max(abs(x), dim=-1), max()`. It generates the same result as the defer reduction split approach . Test Plan: Run float8 training script. Amax and cast are fused in delayed scaling; dynamic scaling is not affected. The delayed scaling kernel also looks reasonable to me, https://fburl.com/phabricator/iqmlollk ``` TORCH_LOGS="fusion" TORCHINDUCTOR_LOOP_ORDERING_AFTER_FUSION=1 buck run mode/opt scripts/shuqiyang/test_inductor:test_float8 -- ~/local/tmp/20241120_test --dtype_filter float8 --scaling_type_input delayed --scaling_type_weight delayed --scaling_type_grad_output delayed 2>&1 | tee ~/test_compile.txt ``` ``` TORCH_LOGS="fusion" TORCHINDUCTOR_LOOP_ORDERING_AFTER_FUSION=1 buck run mode/opt scripts/shuqiyang/test_inductor:test_float8 -- ~/local/tmp/20241120_test --dtype_filter float8 --scaling_type_input dynamic --scaling_type_weight dynamic --scaling_type_grad_output dynamic 2>&1 | tee ~/test_compile.txt ``` Differential Revision: D67135795 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,746,613,893
unreasonable ConstraintViolationError when using torch dynamo to compile torch model
Jason3900
open
[ "triaged", "oncall: pt2", "module: dynamic shapes", "module: dynamo", "oncall: export" ]
3
NONE
### 🐛 Describe the bug I'm using torch dynamo backend to compile model to export to tensorrt. ```python inputs = [torch.randn(1, 3, 28, 288, 512).cuda().to(torch.float16)] dynamic_h = torch.export.Dim("dim_3", min=224, max=640) dynamic_w = torch.export.Dim("dim_4", min=224, max=640) dynamic_t = torch.export.Dim("dim_2", min=1, max=200) dynamic_shapes={"x": {2:dynamic_t, 3: dynamic_h, 4: dynamic_w}} exp_program = torch.export.export(encoder_model, args=tuple(inputs), dynamic_shapes=dynamic_shapes, strict=True) trt_model = torch_tensorrt.dynamo.compile( exported_program=exp_program, assume_dynamic_shape_support=True, inputs=inputs, make_refitable=True, disable_tf32=True, debug=True, enabled_precisions={torch.half, torch.float}, torch_executed_ops={}, min_block_size=17, truncate_double=True, use_python_runtime=False) ``` I've confirmed that the h, w dim can be dynamic without constraint error but the dim_2 cannot. It's quite strange. I trace the cause and found it's in here ```python class GroupNormSpatial(nn.Module): """GroupNorm with spatial dimensions ignored.""" def __init__(self, num_groups, num_channels, epsilon: float = 1e-5, affine=True): super().__init__() # affine=False # TODO: for tensorrt only self.norm_fn = nn.GroupNorm(num_groups=num_groups, num_channels=num_channels, eps=epsilon, affine=affine) def forward(self, inputs: torch.Tensor) -> torch.Tensor: if int(inputs.ndim) == 5: # video b, c, t, h, w = inputs.shape inputs = inputs.permute(0,2,1,3,4).flatten(start_dim=0, end_dim=1) # ERROR out = self.norm_fn(inputs) out = out.reshape(b, t, c, h, w).permute(0,2,1,3,4) # ERROR return out else: # Image, b c h w -> b c h w out = self.norm_fn(inputs) return out ``` ``` I1218 02:40:31.595000 155463 torch/_utils_internal.py:116] [0/0] CompilationMetrics(compile_id='0/0', frame_key='1', co_name='forward', co_filename='xxx,py', co_firstlineno=50, cache_size=0, accumulated_cache_size=0, guard_count=None, shape_env_guard_count=None, graph_op_count=None, graph_node_count=None, graph_input_count=None, start_time=1734489622.2484767, entire_frame_compile_time_s=None, backend_compile_time_s=None, inductor_compile_time_s=None, code_gen_time_s=None, fail_type="<class 'torch.fx.experimental.symbolic_shapes.ConstraintViolationError'>", fail_reason='Constraints violated (dim_2)! For more information, run with TORCH_LOGS="+dynamic".\n - Not all values of dim_2 = L[\'x\'].size()[2] in the specified range dim_2 <= 200 satisfy the generated guard Ne(Mod(1, ((L[\'x\'].size()[2] - 1)//2) + 1), 0).\n - Not all values of dim_2 = L[\'x\'].size()[2] in the specified range dim_2 <= 200 satisfy the generated guard Ne(Mod(1, ((L[\'x\'].size()[2] - 1)//4) + 1), 0).\n - Not all values of dim_2 = L[\'x\'].size()[2] in the specified range dim_2 <= 200 satisfy the generated guard 9 <= L[\'x\'].size()[2] and L[\'x\'].size()[2] <= 200', fail_user_frame_filename=None, fail_user_frame_lineno=None, non_compliant_ops=set(), compliant_custom_ops=set(), restart_reasons=set(), dynamo_time_before_restart_s=9.347490787506104, has_guarded_code=False, possibly_missed_reinplacing_opportunities=None) ``` ### Versions I'm using ngc torch `nvcr.io/nvidia/pytorch:24.10-py3` cc @chauhang @penguinwu @ezyang @bobrenjc93 @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
true
2,746,588,868
Fix torch._refs.tensor error with empty list
zeshengzong
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
10
CONTRIBUTOR
Fixes #143216 **Test Result** **Before** ```python >>> import torch >>> torch._refs.tensor([]) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/zong/code/pytorch/torch/_refs/__init__.py", line 6614, in tensor new_tensor = _internal_new_from_data( ^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zong/code/pytorch/torch/_refs/__init__.py", line 6596, in _internal_new_from_data tensor = _recursive_build(inferred_scalar_type, data) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zong/code/pytorch/torch/_refs/__init__.py", line 6545, in _recursive_build return torch.stack([_recursive_build(scalarType, item) for item in seq]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: stack expects a non-empty TensorList ``` **After** ```python >>> torch._refs.tensor([]) tensor([]) >>> torch._refs.tensor([], device='cuda') tensor([], device='cuda:0') ``` ```bash $ pytest test/test_tensor_creation_ops.py -k test_refs_tensor ``` ![image](https://github.com/user-attachments/assets/5be4c17a-bea6-4b7b-bec1-b4fcb417a8cd) ```bash $ lintrunner ``` ![image](https://github.com/user-attachments/assets/e8f88f41-78ac-4337-b53f-2e524de2bec0) cc @ezyang @albanD
true
2,746,555,992
[Inductor][CPU] disable bernoulli_p decomposition
blzheng
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
5
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143460 Fix https://github.com/pytorch/pytorch/issues/142853 `fallback_random=True` should cause RNG to match between compile/eager (by having compile fall back to eager for RNG ops), but the `bernoulli_p` decompose function is not fully consistent with the eager CPU implementation. We remove the decomp and keep the version for` fallback_random=False`. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,746,520,622
Add save_config and load_config arguments to torch.save/load
mikaylagawarecki
closed
[ "Stale", "release notes: python_frontend", "topic: improvements" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143459 * #143342 * #143324
true
2,746,502,522
[Inductor] move custom pre pass
Valentine233
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
COLLABORATOR
Fixes #143363. Move `joint_custom_pre` pass after `remove_noop_ops`/`constant_folding`, in order to get the same behavior as `pattern_matcher`. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,746,476,513
[while_loop][jit inductor] auto-unspecialize int input and output to unbacked symints
ydwu4
open
[ "Stale", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143457 cpp_wrapper codegen doesn't work yet because: 1. wrapper codegen logic assumes tensor output, we need to support int outputs 2. since cpp is strongly typed, we must declare the variable to be either tensor or int and assign the output to the outer declared variable, which requires the code refactoring mentioned in https://github.com/pytorch/pytorch/blob/main/torch/_inductor/codegen/wrapper.py#L2577-L2582. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,746,476,059
[hop][inductor] track the dependency on unbacked symbols correctly with constant_args for hops
ydwu4
closed
[ "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ci-no-td" ]
11
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143456 Before the PR, we're getting an undefined symbol error for output code when an unbacked symint is **only** used in the hop because we didn't correctly record the dependency of the unbacked symbols for hops and it gets DCEed accidentally. This PR adds the symbol arguments to `constant_args`, where the dependencies can be correctly constructed when `get_unbacked_symbol_uses` is called to check constant_args. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,746,464,964
Add strict kwarg to `nn.Module.set_submodule` and fix bug for non dot delineated strings
mariovas3
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "release notes: nn", "topic: improvements" ]
16
CONTRIBUTOR
Before fixing set_submodule, it used to create leaf modules when the target was not a dot-delimited string. After the fix it will not create a new attribute if target is a non-dot-delimited string. If you want to create leaf nodes of `nn.Module` parent nodes, you can use `replace_or_create_new_leaf_module`. Fixes https://github.com/pytorch/pytorch/issues/143441
true
2,746,453,932
[foreach_map] Add foreach_map Adam impl to compiled optimizer tests
mlazos
closed
[ "Merged", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: inductor" ]
3
CONTRIBUTOR
Adds a foreach_map backed Adam to compiled optimizer tests cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,746,444,346
Compiler Bisector Improvements
eellison
open
[ "triaged", "module: inductor" ]
6
CONTRIBUTOR
### 🚀 The feature, motivation and pitch @ezyang has been using Compiler Bisector internally and run it into a few feature requests. - [ ] Query for backend, subsystems - [ ] Config option to check meta stride for all ops, not just custom ops - [ ] Option to specify particular backend/subsystem to iterate over - [ ] Better print outs of how to manually run a particular bisect - for instance, if we bisected lowerings it should inform user to compare: `TORCH_BISECT_SUBSYSTEM=lowerings TORCH_BISECT_BACKEND=inductor TORCH_BISECT_MAX=21` and `TORCH_BISECT_SUBSYSTEM=lowerings TORCH_BISECT_BACKEND=inductor TORCH_BISECT_MAX=20` Other requests - [ ] Option to bisect which compiled graph is causing the issue first. Potentially we would bisect to the bad fwd/backward. then see if fwd, back, or joint graph passes/partitioner is the issue. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @exclamaforte who was interested ### Alternatives _No response_ ### Additional context _No response_
true
2,746,429,384
[Inductor] Fix _can_be_inplace function (#143279)
jiayisunx
closed
[ "open source", "module: inductor", "ciflow/inductor" ]
1
COLLABORATOR
Summary: Modify _can_be_inplace function: return False if `_other.data` is an instance of `ir.BaseView`. Fix https://github.com/pytorch/pytorch/issues/143280. Pull Request resolved: https://github.com/pytorch/pytorch/pull/143279 Approved by: https://github.com/leslie-fang-intel, https://github.com/jansel, https://github.com/jgong5 Fixes #ISSUE_NUMBER cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,746,381,128
[MTIA] (4/n) Implement PyTorch APIs to query/reset device peak memory usage
chaos5958
closed
[ "fb-exported", "Stale", "ciflow/trunk", "topic: not user facing" ]
6
CONTRIBUTOR
Summary: This diff implements the "reset_peak_memory_stats" PyTorch API for MTIA devices, which resets the peak device DRAM usage Test Plan: ``` buck2 test //mtia/host_runtime/torch_mtia/tests:test_torch_mtia_api -- -r test_reset_peak_memory_stats ``` https://www.internalfb.com/intern/testinfra/testrun/281475371812293 Reviewed By: yuhc, egienvalue Differential Revision: D67120168
true
2,746,356,265
Make Inductor cpp backend enable_floating_point_contract_flag to take string
hl475
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
18
CONTRIBUTOR
Differential Revision: D66269001 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,746,323,174
[MPS] Add `aten::angle`
sezelt
closed
[ "triaged", "open source", "Merged", "release notes: mps", "ciflow/mps" ]
6
CONTRIBUTOR
This adds an MPS backend implementation for `aten::angle` and `aten::angle_out` (mentioned in issue #77764), following the example #78408.
true
2,746,310,552
Enable CPP/CUDAExtension with py_limited_api for python agnosticism
pytorchbot
closed
[ "open source" ]
1
COLLABORATOR
Getting tested with ao, but now there is a real test i added. ## What does this PR do? We want to allow custom PyTorch extensions to be able to build one wheel for multiple Python versions, in other words, achieve python agnosticism. It turns out that there is such a way that setuptools/Python provides already! Namely, if the user promises to use only the Python limited API in their extension, they can pass in `py_limited_api` to their Extension class and to the bdist_wheel command (with a min python version) in order to build 1 wheel that will suffice across multiple Python versions. Sounds lovely! Why don't people do that already with PyTorch? Well 2 things. This workflow is hardly documented (even searching for python agnostic specifically does not reveal many answers) so I'd expect that people simply don't know about it. But even if they did, _PyTorch_ custom Extensions would still not work because we always link torch_python, which does not abide by py_limited_api rules. So this is where this PR comes in! We respect when the user specifies py_limited_api and skip linking torch_python under that condition, allowing users to enroll in the provided functionality I just described. ## How do I know this PR works? I manually tested my silly little ultra_norm locally (with `import python_agnostic`) and wrote a test case for the extension showing that - torch_python doesn't show up in the ldd tree - no Py- symbols show up It may be a little confusing that our test case is actually python-free (more clean than python-agnostic) but it is sufficient (and not necessary) towards showing that this change works. Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #138088
true
2,746,306,961
[dynamo] Properly model root frame globals during inlining
StrongerXi
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143447 This patch updates `InliningInstructionTranslator.STORE_GLOBAL` to properly check whether `self.f_globals` is the same as root frame `f_globals`. See added comments for why this is important. Fixes #143425. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,746,283,733
[c10d][fr] flight recorder improvements
c-p-i-o
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (c10d)" ]
12
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143446 Summary: 1. Flight recorder dumps are now automatically dumped by default upon timeout or exception. Users don't need to opt-in. 2. Change default dump location to running user's home directory `.cache` folder. Test Plan: 1. Tested locally by running the crash program from flight recorder tutorial page. https://pytorch.org/tutorials/prototype/flight_recorder_tutorial.html#an-end-to-end-example 2. Noted that flight recorder files were correctly created. ❯ pwd /home/cpio/.cache/fr_trace ❯ ls nccl_trace_rank_0 nccl_trace_rank_1 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k Differential Revision: [D67363720](https://our.internmc.facebook.com/intern/diff/D67363720)
true
2,746,267,089
update kineto to XPU Windows fixed PR. [submodule kineto]
xuhancn
closed
[ "module: windows", "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "intel", "ciflow/xpu" ]
15
COLLABORATOR
Include XPU Windows Fixed PR: https://github.com/pytorch/kineto/pull/1012 cc @peterjc123 @mszhanyi @skyline75489 @nbcsm @iremyux @Blackhex @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,746,230,091
[ONNX] Save dynamic shapes constraints to ONNX metadata
titaiwangms
closed
[ "module: onnx", "triaged", "onnx-triaged" ]
5
COLLABORATOR
We should include shape constraints in ONNX metadata to provide more information to users. This can also reveal to the users why certain axes should remain static for them to further debug in their models.
true
2,746,225,890
[ONNX] Rename dynamic shapes produced by ExportedProgram to dynamic_axes
titaiwangms
closed
[ "module: onnx", "triaged", "onnx-triaged" ]
3
COLLABORATOR
`torch.export.export` names dynamic shapes to be s0, s1, s2, s3, ..., etc. However, in ONNX, users could pass in the naming through `dynamic_axes` and `input_names`. We need to rename them to what users request.
true
2,746,223,503
fix checking non-trivial input constraints
avikchaudhuri
closed
[ "fb-exported", "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: export" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143442 A bunch of auto dynamic shape tests would fail non-strict retraceability because when checking input constraints, we'd compare non-trivial expressions, which would require / affect shape env. ``` ... is not tracked with proxy for <torch.fx.experimental.proxy_tensor._ModuleStackTracer object ... ``` I've also observed this bug internally. This PR does an early check on whether args passed have concrete shapes, and only then proceeds: as before, we 1. try to unify / solve with the arg dim when the corresponding placeholder node dim is symbolic in one symbol 2. check directly if the placeholder node dim is concrete 3. otherwise defer to run time. Differential Revision: [D67359596](https://our.internmc.facebook.com/intern/diff/D67359596/)
true
2,746,190,350
Bug-set-submodule-assigns-module-to-new-attribute
mariovas3
closed
[ "module: nn", "triaged" ]
0
CONTRIBUTOR
### 🐛 Describe the bug Based on the docstring of `nn.Module.set_submodule` - https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.set_submodule we have `Set the submodule given by target if it exists, otherwise throw an error.` This is violated when passing non-dot-delimited strings. This is because calling `.split('.')` on non-dot-delimited strings will result in a singleton list - `'0'.split('.') -> ['0']`. Currently you pop the last element of the resulting list, making it an empty list and the for loop that follows (where all the validation checks are done) gets skipped. So you directly jump to setting the attribute even though it might not exist. https://github.com/pytorch/pytorch/blob/main/torch/nn/modules/module.py#L773 E.g., see the example below: ```python from torch import nn class SimpleModel(nn.Module): def __init__(self): super().__init__() self.net = nn.Linear(3, 4) model = SimpleModel() model.set_submodule('0', nn.Conv2d(2, 3, 3)) # this will work, despite there being no module named '0' in model assert isinstance(getattr(model, '0'), nn.Conv2d) try: model.set_submodule('foo.bar', nn.Conv2d(2, 3, 3)) except AttributeError as e: message = str(e) assert message == 'SimpleModel has no attribute `foo`' ``` I tested the above using the nightly release environment - created using the `pytorch/tools/nightly.py` script. I am available to work on this, if you believe it is of value. ### Versions output of the `collect_env.py` script: ``` Collecting environment information... PyTorch version: 2.6.0.dev20241216+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 Clang version: Could not collect CMake version: version 3.31.2 Libc version: glibc-2.31 Python version: 3.11.11 (main, Dec 11 2024, 16:28:39) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-125-generic-x86_64-with-glibc2.31 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 39 bits physical, 48 bits virtual CPU(s): 8 On-line CPU(s) list: 0-7 Thread(s) per core: 2 Core(s) per socket: 4 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 142 Model name: Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz Stepping: 12 CPU MHz: 1800.000 CPU max MHz: 3900.0000 CPU min MHz: 400.0000 BogoMIPS: 3600.00 Virtualisation: VT-x L1d cache: 128 KiB L1i cache: 128 KiB L2 cache: 1 MiB L3 cache: 6 MiB NUMA node0 CPU(s): 0-7 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Mitigation; Microcode Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust sgx bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp md_clear flush_l1d arch_capabilities Versions of relevant libraries: [pip3] mypy==1.13.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==2.2.0 [conda] No relevant packages ``` cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
true
2,746,177,352
Locale issues in colab: after tensor(1j).cuda().abs() !commands cannot be executed.
fzimmermann89
open
[ "triaged", "module: third_party", "module: python frontend" ]
7
CONTRIBUTOR
### 🐛 Describe the bug Running the following in colab (T4 runtime): ``` import torch a=torch.tensor(1j,device="cuda") a.abs() !echo "cake is a lie" ``` results in an `NotImplementedError: A UTF-8 locale is required. Got ANSI_X3.4-1968` it has to be a) complex b) abs c) on cuda. otherwise, the final commands succeeds. It seems like the complex abs cuda kernel modifies the locale? Related: https://github.com/googlecolab/colabtools/issues/3409 ### Versions default google colab torch 2.5.1+cu121 python 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] cc @albanD
true
2,746,174,157
remove allow-untyped-defs for torch/fx/experimental/debug.py
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "release notes: fx", "topic: not user facing", "fx" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143439 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,746,174,081
remove allow-untyped-defs for torch/_functorch/batch_norm_replacement.py
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143438
true
2,746,173,937
remove allow-untyped-defs for torch/nn/parallel/__init__.py
bobrenjc93
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143437 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,746,173,856
remove allow-untyped-defs for torch/_inductor/test_operators.py
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143436 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,746,173,783
remove allow-untyped-defs for torch/_export/passes/remove_runtime_assertions.py
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor", "release notes: export" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #143439 * #143438 * #143437 * #143436 * __->__ #143435
true
2,746,173,145
Missing nightly 20241217 on x86_64
Jack-Khuu
open
[ "module: binaries", "triaged" ]
1
CONTRIBUTOR
### 🐛 Describe the bug I'm looking at bumping the nightly pin in torchchat to dev20241217, but it looks like the nightly isn't being found. Was there a wheel failure or was there a install support change recently (< 1 week)? Looking a [download.pytorch.org](https://download.pytorch.org/whl/nightly/torch/) list, 1217 seems a bit sparse (66 matches vs 80+) https://github.com/pytorch/torchchat/actions/runs/12381837837/job/34561243200?pr=1426 ``` + pip3 install --extra-index-url https://download.pytorch.org/whl/nightly/cpu torch==2.6.0.dev20241217 torchvision==0.22.0.dev20241217 torchtune==0.5.0.dev20241126 Looking in indexes: https://pypi.org/simple, https://download.pytorch.org/whl/nightly/cpu ERROR: Could not find a version that satisfies the requirement torch==2.6.0.dev20241217 (from versions: 1.11.0, 1.12.0, 1.12.1, 1.13.0, 1.13.1, 2.0.0, 2.0.1, 2.1.0, 2.1.1, 2.1.2, 2.2.0, 2.2.1, 2.2.2, 2.3.0, 2.3.1, 2.4.0, 2.4.1, 2.5.0, 2.5.1, 2.6.0.dev20241019+cpu, 2.6.0.dev20241020+cpu, 2.6.0.dev20241021+cpu, 2.6.0.dev20241022+cpu, 2.6.0.dev20241023+cpu, 2.6.0.dev20241024+cpu, 2.6.0.dev20241025+cpu, 2.6.0.dev20241026+cpu, 2.6.0.dev20241027+cpu, 2.6.0.dev20241028+cpu, 2.6.0.dev20241029+cpu, 2.6.0.dev20241030+cpu, 2.6.0.dev20241031+cpu, 2.6.0.dev20241101+cpu, 2.6.0.dev20241102+cpu, 2.6.0.dev20241103+cpu, 2.6.0.dev20241104+cpu, 2.6.0.dev20241105+cpu, 2.6.0.dev20241106+cpu, 2.6.0.dev20241107+cpu, 2.6.0.dev20241108+cpu, 2.6.0.dev20241109+cpu, 2.6.0.dev20241111+cpu, 2.6.0.dev20241112+cpu, 2.6.0.dev20241113+cpu, 2.6.0.dev20241114+cpu, 2.6.0.dev20241115+cpu, 2.6.0.dev20241116+cpu, 2.6.0.dev20241117+cpu, 2.6.0.dev20241118+cpu, 2.6.0.dev20241119+cpu, 2.6.0.dev20241120+cpu, 2.6.0.dev20241121+cpu, 2.6.0.dev20241122+cpu, 2.6.0.dev20241124+cpu, 2.6.0.dev20241125+cpu, 2.6.0.dev20241126+cpu, 2.6.0.dev20241127+cpu, 2.6.0.dev20241128+cpu, 2.6.0.dev20241129+cpu, 2.6.0.dev20241130+cpu, 2.6.0.dev20241201+cpu, 2.6.0.dev20241202+cpu, 2.6.0.dev20241203+cpu, 2.6.0.dev20241204+cpu, 2.6.0.dev20241205+cpu, 2.6.0.dev20241206+cpu, 2.6.0.dev20241207+cpu, 2.6.0.dev20241208+cpu, 2.6.0.dev20241209+cpu, 2.6.0.dev20241210+cpu, 2.6.0.dev20241211+cpu, 2.6.0.dev20241212+cpu, 2.6.0.dev20241213+cpu, 2.6.0.dev20241214+cpu, 2.6.0.dev20241215+cpu, 2.6.0.dev20241216+cpu) ERROR: No matching distribution found for torch==2.6.0.dev20241217 ``` ### Versions Linux runner 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64 x86_64 GNU/Linux cc @seemethere @malfet @osalpekar @atalman
true
2,746,155,774
Backout D66648013
mlazos
closed
[ "fb-exported", "Merged", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: inductor" ]
7
CONTRIBUTOR
Summary: backing out https://www.internalfb.com/diff/D66648013 (see comments there for justification) I will reland and disallow the bfloat16 atomics behavior on A100 because it causes a pretty significant performance regression. Test Plan: This is a revert Differential Revision: D67357485 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,746,123,852
Eager style export V0 API.
zhxchen17
closed
[ "fb-exported", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
10
CONTRIBUTOR
Summary: Prototype of an end-to-end export workflow to call a torch.compiled model eagerly and package every single compiled model in the wrapped region of the code. Code sample: ``` @torch.compile(fullgraph=True) def f(x, y): return x + y # Compile the model and save it on disk with torch.compiler._fullgraph_package(mode="package", path="/tmp/model.pt2", frontend="dynamo"): f(torch.randn(3), torch.randn(3)) # Load the saved model back and call it in-place. with torch.compiler._fullgraph_package(mode="load", path="/tmp/model.pt2"): f(torch.randn(3), torch.randn(3)) ``` Internally, fullgraph_package will call export and aoti step by step and finally package all the compiled models into a single package when we exit the context. (see test_fullgraph_package.py for more information) Since this is an AOT workflow, we have to assume that the package file(s) saved from this API are likely to be used in a different environment, despite the fact that it may or may not cause soundness issue. To make this BC-safe, we need to give each compilation a unique name so that the models being loaded are addressable from a different process. (Right now we just assign the unique compilatin name/id using the function's FQN. Ideally user should be able to specify the compilation name directly on torch.compile()) For now, the plan of record is we want to make this ctx manager API standalone because we need to put at least three arguments here: 1. `mode` which indicates whether we're saving or loading the packages 2. `path` to specify where we store the compiled package. 3. `frontend` to speciy whether the programming model. We haven't made a final decision on where to put this funtionality, and the purpose of this diff is to demonstrate what an ideal workflow to do partial model capture for torchnative. Test Plan: buck test mode/opt caffe2/test:test_export -- -r FullgraphPackage OSS: test_fullgraph_package.py Differential Revision: D67353701 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,746,123,503
aot_eager causes CPU RNG behavior to change
ezyang
closed
[ "triaged", "oncall: pt2", "module: aotdispatch", "module: pt2-dispatcher" ]
5
CONTRIBUTOR
### 🐛 Describe the bug Repro ``` import torch def f(image_latent): B = 2 num_ref = 3 num_tar = 3 x = torch.rand(B, 12) indices = torch.argsort(torch.rand(*x.shape), dim=-1)[:, :num_ref + num_tar] return image_latent[torch.arange(B).unsqueeze(-1), indices][:, :num_ref] torch.manual_seed(54321) torch.cuda.manual_seed_all(54321) print(torch.compile(backend="aot_eager", fullgraph=True)(f)(torch.randn((2, 12, 16, 32, 32), device='cuda')).sum()) torch.manual_seed(54321) torch.cuda.manual_seed_all(54321) print(torch.compile(backend="aot_eager", fullgraph=True)(f)(torch.randn((2, 12, 16, 32, 32), device='cuda')).sum()) torch.manual_seed(54321) torch.cuda.manual_seed_all(54321) print(torch.compile(backend="eager", fullgraph=True)(f)(torch.randn((2, 12, 16, 32, 32), device='cuda')).sum()) torch.manual_seed(54321) torch.cuda.manual_seed_all(54321) print(torch.compile(backend="eager", fullgraph=True)(f)(torch.randn((2, 12, 16, 32, 32), device='cuda')).sum()) ``` This prints ``` tensor(209.5920, device='cuda:0') tensor(209.5920, device='cuda:0') tensor(300.4904, device='cuda:0') tensor(300.4904, device='cuda:0') ``` From the duplicate runs, you can see that it is internally deterministic, but aot_eager perturbs the randomness somehow. ### Versions main cc @chauhang @penguinwu @zou3519 @bdhirsh @yf225
true
2,746,107,833
[pytorch/et] Allow ET to save additional resources for completing a trace like generated kernels and index tensor data
sanrise
closed
[ "fb-exported", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "ci-no-td" ]
14
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143430 The resources directory lets ET observer dump any additional data like Triton kernels while capturing the ET. This allows us to use the ET trace to replay PT2 workloads and get visibility into data like generated kernels and their usage in a model, index tensor data etc. We also added a few ways to enable ET and ET Resources through the OS environment variables. Setting `ENABLE_PYTORCH_EXECUTION_TRACE` will enable default Execution Tracing in Pytorch. Additionally setting `ENABLE_PYTORCH_EXECUTION_TRACE_EXTRAS` will enable ET to collect extra resources from the ET run like Triton Kernels. Differential Revision: [D58707846](https://our.internmc.facebook.com/intern/diff/D58707846/)
true
2,746,076,900
[BE] Update triton repo link
malfet
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
It should be https://github.com/triton-lang/triton rather than https://github.com/openai/triton shouldn't it? cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,746,074,800
[pytorch/et] Allow ET to save additional resources for completing a trace like generated kernels and index tensor data (#142521)
sanrise
closed
[ "fb-exported" ]
3
CONTRIBUTOR
Summary: The resources directory lets ET observer dump any additional data like Triton kernels while capturing the ET. This allows us to use the ET trace to replay PT2 workloads and get visibility into data like generated kernels and their usage in a model, index tensor data etc. We also added a few ways to enable ET and ET Resources through the OS environment variables. Setting `ENABLE_PYTORCH_EXECUTION_TRACE` will enable default Execution Tracing in Pytorch. Additionally setting `ENABLE_PYTORCH_EXECUTION_TRACE_EXTRAS` will enable ET to collect extra resources from the ET run like Triton Kernels. Test Plan: `export ENABLE_PYTORCH_EXECUTION_TRACE=1;export ENABLE_PYTORCH_EXECUTION_TRACE_EXTRAS=1;buck2 run @//mode/opt //kineto/libkineto/fb/integration_tests:e2e_integration -- --run_resnet --enable_profiling --trace_handler=auto_trace --ngpus=2 --num_iters=150` Reviewed By: briancoutinho, shengfukevin Differential Revision: D58707846
true
2,746,068,307
Implement increment and add_to_set for CompileEventLogger
jamesjwu
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor" ]
13
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143427 This diff implements `increment` and `add_to_set`, which are features of MetricsContext, but not ChromiumEventLogger. This allows us to add a bunch of other metricscontext callsites to use CompileEventLogger instead. Differential Revision: [D67354867](https://our.internmc.facebook.com/intern/diff/D67354867/) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @BoyuanFeng
true
2,746,054,290
[reland] Kill capture_pre_autograd_graph API
yushangdi
closed
[ "fb-exported", "Merged", "ciflow/trunk", "release notes: quantization", "release notes: releng", "ci-no-td" ]
4
CONTRIBUTOR
Summary: Delete the following API: - capture_pre_autograd_graph() - capture_pre_autograd_graph_using_training_ir() - gm_using_training_ir() Update XLA pin to include https://github.com/pytorch/xla/pull/8398 There's no more call sites to `capture_pre_autograd_graph`. Except 1) two test cases in coreml, guarded by version guard, PR to remove: https://github.com/apple/coremltools/pull/2400 2) a few call sites guarded by version guard (< 2.5.0) Test Plan: CI Differential Revision: D67354440
true
2,746,035,623
Dynamo fails to propagate updates to global variable
guilhermeleobas
closed
[ "oncall: pt2", "module: dynamo", "dynamo-triage-june2024" ]
0
COLLABORATOR
### 🐛 Describe the bug I discovered this one while working on https://github.com/pytorch/pytorch/pull/136033. The reproducer without using `@contextmanager` is a bit tricky, but the idea is the same. To reproduce, one needs two files to have different globals. ```python # main file import torch import other_file z = 1 k = 2 def create_fn(): def fn(x): global k k = 100 return x.sin() return fn @torch.compile(backend="eager", fullgraph=True) def foo(x): fn = create_fn() global z other_file.run_fn(fn, x) z = k + 10 # k is not updated to 100 x = torch.randn(2, 3) foo(x) print(f'{z=} - {k=}') assert z == 110 assert k == 100 ``` ```python # second file def run_fn(fn, x): fn(x) ``` The assignment `k = 100` is not propagated to the parent `InstructionTranslator` as `fn` is called by `second_file::run_fn`. There's a check in `STORE_GLOBAL` for `self.f_globals is self.parent.f_globals` to determine whether the `symbolic_globals` is updated or not. Maybe the fix for this one is to use the same symbolic_globals object for all InstructionTranslators in the same module? https://github.com/pytorch/pytorch/blob/9283c40ba8e6adf55db3d12f7451d86bb9c68632/torch/_dynamo/symbolic_convert.py#L3333-L3342 ### Versions main branch cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true
2,746,026,381
higher rank convolution
sycamoreoak
open
[ "module: nn", "triaged" ]
0
NONE
### 🚀 The feature, motivation and pitch would it be possible to add official pytorch support for higher rank convolution? thanks! ### Alternatives _No response_ ### Additional context working at a higher rank can be useful, depending on the application! cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
true
2,746,015,275
Use Manylinux 2.28 for nightly build and cxx11-abi
atalman
closed
[ "Merged", "ciflow/binaries", "topic: not user facing" ]
4
CONTRIBUTOR
As per: https://dev-discuss.pytorch.org/t/pytorch-linux-wheels-switching-to-new-wheel-build-platform-manylinux-2-28-on-november-12-2024/2581 Linux Builds: CPU, CUDA 11.8, CUDA 12.4 switched to Manylinux 2.28 and D_GLIBCXX_USE_CXX11_ABI=1 on the week of Dec 16
true
2,745,929,853
cpp_builder.py: Build in -O2 to improve compilation time
benjaminglass1
closed
[ "open source", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
2
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143422 * #143421 * #143223 * #141371 This does not appear to affect performance substantively (benchmarks pending), since we already apply OMP optimizations to loops which should be tightly optimized. This PR additionally applies the `noexecstack` linker flag, so that GCC on some platforms stops warning about executable stacks in the output shared libraries. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,745,929,519
AOTI fallback ops: remove ops that were never codegen'ed
benjaminglass1
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor", "module: aotinductor" ]
9
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144124 * #144123 * #144002 * #143909 * __->__ #143421 * #143223 * #141371 Removes 4 fallback ops that are currently not possible to codegen, which does not break ABI-compatibility. 1. `_cudnn_rnn_backward` and `_histogramdd_bin_edges` both return `Tensor[]`, which we cannot codegen with the current design. 2. `_sparse_coo_tensor_with_dims_and_tensors` only supplies a Sparse operator, which we don't support. 3. `zeros.names` requires a `Dimname` input, which we can't currently codegen. Removing these ops from the list will improve test performance, since the fallback op generation will use the Python proxy executor instead of calling non-existent C functions. cc @desertfire @chenyang78 @penguinwu
true
2,745,918,870
Introduce CompileEventLogger, replace usages of metrics_context and chromium_event with it
jamesjwu
closed
[ "fb-exported", "Merged", "ciflow/trunk", "module: inductor", "module: dynamo", "ciflow/inductor", "release notes: AO frontend" ]
11
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #143427 * __->__ #143420 **Problem statement**: I want to be able to centralize and simplify the process by which people add columns/data to existing spans. We have MetricsContext and ChromiumEventLogger, and there's various choices you can make to decide where and when to log different levels of observability for your events. To resolve this, I want a central API for "adding to events under dynamo_timed". **CompileEventLogger** is intended as a frontend for MetricsContext and ChromiumEventLogger so we can use the same class for handling everything. CompileEventLogger is intended be used within a `dynamo_timed()` context. Its purpose is to 1. log to existing events that are in progress (i.e. within dynamo_timed), and 2. log instant events to chromium that are independent of any specific span. CompileEventLogger has three log levels: - CHROMIUM: Log only to chromium events, visible via tlparse. - PT2_COMPILE: Log to chromium_events + pt2_compile_events - COMPILATION_METRIC: Log to compilation metrics in addition to the toplevel chromium and pt2_compile_event. In addition, we have a function CompileEventLogger.add() that automagically chooses the correct log level. For now, it is conservative, and will never automagically choose to log CompilationMetrics (though I could imagine it figuring out the metadata are all keys in CompilationMetric and therefore loggable there). The goal here is to make one single interface to log stuff for observability reasons, and make it as easy as possible. Not included in this diff: - V1 of this diff will not have implementations of `increment` and `add_to_set` which MetricsContext has, so those usages are not replaced yet. But I'll add those in a followup. - We don't handle `RuntimeMetricsContext`. It's unclear if I want that to be part of this, because under RuntimeMetricsContext there might not be a toplevel event to log to, so chromium events doesn't make sense in that context. So I might leave that separate for now. Differential Revision: [D67346203](https://our.internmc.facebook.com/intern/diff/D67346203/) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,745,909,540
OpenGL interoperability
cajoek
closed
[ "module: cuda" ]
4
NONE
### 🚀 The feature, motivation and pitch Zero-copy transfer of data between PyTorch and OpenGL on GPU by including "OpenGL interoperability" from CUDA in pytorch. I am working on a real-time machine learning graphics project which uses OpenGL both as an intermediate processing step in the model and to visualize the output. Right now transfer of data between PyTorch and OpenGL is a problem for both training and inference. Without any additional packages i can copy data from PyTorch CUDA to CPU and then back to OpenGL on GPU, this is very simple but slow. I can instead use some cuda bindings for python and a separate CUDA Toolkit installation to avoid the data transfer but this is quite complex and there are many competing ways and tools for doing this which makes it hard to navigate. Old similar issue: https://github.com/pytorch/pytorch/issues/20047 Crosspost: https://github.com/pytorch/vision/issues/8803 ### Alternatives _No response_ ### Additional context The 2 main ways I have been using OpenGL from python are with the packages `moderngl` and `PyOpenGL`. cc @ptrblck @msaroufim @eqy
true
2,745,907,760
[ODML] Make the ML feature provider thread safe
seanxiaoxiao
closed
[ "oncall: jit", "fb-exported", "Merged", "ciflow/trunk", "release notes: jit" ]
73
CONTRIBUTOR
Summary: This PR is generated from a meta internal Diff, aiming to resolve a crash from a race condition on the dictionary. Test Plan: Build and run Print out the count/name/value of the dictionary and see if the values are get/set/removed correctly. Observe the print statement on app start within IG @diff-train-skip-merge cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
2,745,906,201
[compiled autograd] stop specializing on metadata during initial trace
zou3519
closed
[ "Merged", "Reverted", "ciflow/trunk", "module: inductor", "module: dynamo", "ciflow/inductor", "release notes: dynamo", "keep-going", "module: compiled autograd", "ci-no-td" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144115 * __->__ #143417 * #143405 * #143387 * #143304 * #143296 The previous PRs built up to this. We change compiled autograd's initial trace to stop baking in metadata. While tracing, we allocate some weirdly shaped tensors that we can put proxies on. The initial trace should not be accessing any metadata of these tensors (it will likely error out if it does because of how weird the shapes are). This involved fixing some various sites where we do specialize on the metadata, like: - we change CopySlices's apply_with_saved to proxy some calls into the graph (this change is fairly hard to split out by itself). - we stop calling InputBuffer::add - we delete the weird metadata from the graph so that no graph passes can make use of it. Test Plan: - tests cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @xmfan
true
2,745,892,843
[ROCm] port CK rowwise F8 from fbgemm (#140856)
drisspg
closed
[ "module: rocm", "fb-exported", "Stale", "ciflow/binaries", "ciflow/trunk", "topic: not user facing", "skip-pr-sanity-checks", "ciflow/rocm" ]
11
CONTRIBUTOR
Summary: author @jeffdaily This ports (copies) FBGEMM's implementation from jwfromm. https://github.com/pytorch/FBGEMM/tree/main/fbgemm_gpu/experimental/gen_ai/src/quantize/ck_extensions/fp8_rowwise cc sunway513 jithunnair-amd pruthvistony ROCmSupport dllehr-amd jataylo hongxiayang naromero77amd yanbing-j vkuzo albanD kadeng penguinwu Reviewed By: atalman Differential Revision: D66797096 Pulled By: drisspg cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @albanD
true
2,745,859,524
Fix sample inputs leaked from subtest
soulitzer
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143415 * #143333
true
2,745,853,716
[PassRate] TorchBench training PassRate is less than 100
IvanKobzarev
open
[ "high priority", "triaged", "oncall: pt2" ]
3
CONTRIBUTOR
### 🐛 Describe the bug Umbrella Task for the < 100 TorchBench PassRate https://hud.pytorch.org/benchmark/compilers ![Screenshot 2024-12-17 at 20 28 13](https://github.com/user-attachments/assets/212780be-d6d3-4923-9b72-9cdb337d6c6d) ### Versions master cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu
true
2,745,819,535
don't rethrow guard on data dependent errors
bobrenjc93
closed
[ "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143413 as discussed offline, this makes errors much easier to read/understand
true