id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
2,761,200,623
[EZ] Update jinja2 to 3.1.5
malfet
closed
[ "better-engineering", "Merged", "topic: not user facing" ]
6
CONTRIBUTOR
To make Dependabot happy about https://cwe.mitre.org/data/definitions/150.html
true
2,761,195,654
Update scheduler.py
malfet
closed
[ "module: inductor", "ciflow/inductor" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143922 * #143921 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,761,195,618
Add mps to GPU_TYPES
malfet
closed
[ "module: inductor", "ciflow/inductor" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #143922 * __->__ #143921 Because it is a GPU cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,761,174,598
[ReduceOps] Add dimension checking for cummin()/cummax().
dcci
closed
[ "Merged", "module: reductions", "ciflow/trunk", "release notes: linalg_frontend" ]
6
MEMBER
Summary: cum{min,max} didn't guard against 0-d vector and allowed an arbitrary dimension to be passed. Test Plan: torch_test.py Reviewers: Subscribers: Tasks: Tags: Fixes #71477
true
2,761,154,042
remove allow-untyped-defs from ao/nn/qat/dynamic/modules/linear.py
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "release notes: AO frontend" ]
12
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143919
true
2,761,154,002
remove allow-untyped-defs from utils/tensorboard/_convert_np.py
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143918
true
2,761,153,957
remove allow-untyped-defs from distributed/elastic/multiprocessing/subprocess_handler/handlers.py
bobrenjc93
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing", "release notes: distributed (torchelastic)" ]
9
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143917 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,761,153,865
remove allow-untyped-defs from _inductor/codegen/aoti_hipify_utils.py
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143916 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,761,153,809
remove allow-untyped-defs from distributed/pipelining/_unflatten.py
bobrenjc93
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing" ]
9
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #143916 * __->__ #143915 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,761,136,144
RuntimeError: could not create an engine
xyang2013
closed
[ "module: windows", "triaged", "module: xpu" ]
25
NONE
### 🐛 Describe the bug Hi, I experienced the following error (the message before the exception): File c:\Users\xiaoy\anaconda3\envs\llm2\Lib\site-packages\torch\nn\modules\linear.py:125, in Linear.forward(self, input) 124 def forward(self, input: Tensor) -> Tensor: --> 125 return F.linear(input, self.weight, self.bias) RuntimeError: could not create an engine The code is running fine if I set the device to 'cpu'. But when I set it to 'xpu', I got the above error. GPU: Intel ARC B580 (with the latest driver) OS: Windows 11 Conda/Python: 3.12 PyTorch instance: pip3 install --pre torch --index-url https://download.pytorch.org/whl/nightly/xpu ### Versions PyTorch version: 2.6.0.dev20241222+xpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Microsoft Windows 11 Pro (10.0.26100 64-bit) GCC version: Could not collect Clang version: Could not collect CMake version: Could not collect Libc version: N/A Python version: 3.12.8 | packaged by Anaconda, Inc. | (main, Dec 11 2024, 16:48:34) [MSC v.1929 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-11-10.0.26100-SP0 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Name: Intel(R) Core(TM) i7-14700K Manufacturer: GenuineIntel Family: 198 Architecture: 9 ProcessorType: 3 DeviceID: CPU0 CurrentClockSpeed: 3400 MaxClockSpeed: 3400 L2CacheSize: 28672 L2CacheSpeed: None Revision: None Versions of relevant libraries: [pip3] numpy==2.2.1 [pip3] torch==2.6.0.dev20241222+xpu [conda] numpy 2.2.1 pypi_0 pypi [conda] torch 2.6.0.dev20241222+xpu pypi_0 pypi cc @peterjc123 @mszhanyi @skyline75489 @nbcsm @iremyux @Blackhex @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,761,126,573
Set up Mac builds with clang >= 17 even though Xcode only has at most clang 16
swolchok
open
[ "module: binaries", "module: ci", "triaged", "enhancement" ]
4
CONTRIBUTOR
### 🚀 The feature, motivation and pitch This would enable a couple disparate improvements: 1) Our binary releases should include the latest compiler features and optimizations. The concrete motivating example is that the compiler used for Mac wheels apparently doesn't pass [`COMPILER_SUPPORTS_BF16_TARGET`](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/cpu/ReducedPrecisionFloatGemvFastPathKernel.cpp#L161) (i.e., clang version greater than 15), which causes a slower bfloat16 gemv kernel to be used. 2) We should have test coverage for CPU bfloat16 support on Mac (#142703) -- clang 16 purports to be able to build it, but is buggy and we actually need 17+. ### Alternatives do nothing until Apple gets around to releasing an Xcode with clang 17 or later and we get around to updating to it. ### Additional context Xcode clang version history: https://gist.github.com/yamaya/2924292 . Latest at time of writing is Xcode 16.2 with `Apple clang version 16.0.0 (clang-1600.0.26.6)` cc @seemethere @malfet @osalpekar @atalman @pytorch/pytorch-dev-infra
true
2,761,088,011
Fix always true scaled_mm test
dnikolaev-amd
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: float8", "ciflow/rocm" ]
17
CONTRIBUTOR
Looks like `out_fp8` should use matmul without scales and `out_fp8_s` with Scales were optional arguments before PR https://github.com/pytorch/pytorch/pull/128683 Then test_float8_scale started comparing two identical results and lost its meaning Reason of making scales required https://github.com/pytorch/pytorch/pull/128683#issuecomment-2169146402UMBER This PR uses scale=1.0 to compare result with scaled matmul cc @yanbing-j @vkuzo @albanD @kadeng @penguinwu
true
2,761,034,531
Add `_benchmark_func` convenience method
malfet
closed
[ "Stale", "release notes: benchmark", "topic: improvements", "ciflow/mps" ]
3
CONTRIBUTOR
Which could be used to benchmark simple ops with just one line of code, for example: ```shell % python -c "import torch;print(torch.testing._benchmark_func(torch.add, (1024, 1024), device='mps', dtype=torch.int32))" <torch.utils.benchmark.utils.common.Measurement object at 0x1081dee40> f(*args);torch.mps.synchronize() setup: args = [torch.testing.make_tensor(s, dtype=torch.int32, device='mps') for s in (1024, 1024)] Median: 145.63 us IQR: 21.00 us (130.33 to 151.33) 1397 measurements, 1 runs per measurement, 1 thread WARNING: Interquartile range is 14.4% of the median measurement. This could indicate system fluctuation. ```
true
2,761,029,625
The link for the source in page torch.Tensor.backward is broken.
qqwqqw689
closed
[ "module: docs", "module: autograd", "triaged", "needs design" ]
3
NONE
### 📚 The doc issue The link for the source in page torch.Tensor.backward is broken.[link](https://pytorch.org/docs/stable/generated/torch.Tensor.backward.html) ### Suggest a potential alternative/fix _No response_ cc @svekars @brycebortree @sekyondaMeta @AlannaBurke @ezyang @albanD @gqchen @pearu @nikitaved @soulitzer @Varal7 @xmfan
true
2,761,016,695
cpp_wrapper: Move #includes to per-device header files
benjaminglass1
closed
[ "open source", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ciflow/xpu", "ci-no-td" ]
17
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144349 * #144293 * #144002 * __->__ #143909 This prepares us for the next PR in the stack, where we introduce pre-compiled per-device header files to save compilation time. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov Differential Revision: [D67938955](https://our.internmc.facebook.com/intern/diff/D67938955)
true
2,760,977,421
[EZ] Update sympy to 1.13.3
malfet
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
9
CONTRIBUTOR
And remove python>=3.9 check as it currently covers all supported python versions Fixes https://github.com/pytorch/pytorch/issues/143907
true
2,760,882,282
update `sympy` version in `requirement.txt`
evan0greenup
closed
[ "triage review", "module: build", "module: ci" ]
1
NONE
### 🐛 Describe the bug Now, sympy version is `1.13.3`, but `torch` is hard required `sympy` version to be `1.13.1`, it will cause inconvenient in an environment which require `sympy` to be latest. ### Versions <https://github.com/pytorch/pytorch/blob/a20765a9c1e578beb5e53f9a3ef0c13ea6839768/requirements.txt#L19> cc @malfet @seemethere @pytorch/pytorch-dev-infra @chauhang @penguinwu
true
2,760,761,266
How to correctly asynchronously copy a GPU tensor to a CPU tensor in another process without introducing blocking?
zhanghb55
open
[ "needs reproduction", "oncall: distributed", "triaged" ]
2
NONE
### 🐛 Describe the bug I am developing a distributed PyTorch application designed to asynchronously transfer data from a GPU process to a CPU process, ensuring that GPU computations remain non-blocking. In my current implementation, I utilize the non-blocking copy_ method to transfer data from a GPU tensor to a CPU tensor and then employ dist.isend to send the data to another rank. However, under certain conditions, this setup leads to a deadlock. ```python import torch import torch.distributed as dist import os def gpu_to_cpu_and_send(rank, size): tensor = torch.randn(4096, 8192).cuda(rank) # On specific GPU print(tensor[-1][-1]) print(f"Rank {rank}: Created tensor on GPU") cpu_tensor = torch.zeros(4096, 8192) cpu_tensor.copy_(tensor, non_blocking=True) # Non-blocking GPU to CPU copy print(f"Rank {rank}: Copied tensor to CPU (non-blocking)") if rank == 0: print(f"Rank {rank}: Sending tensor to rank 1") dist.isend(tensor=cpu_tensor, dst=1) # Sending data to rank 1 print(f"Rank {rank}: Data sent to rank 1") def receive_data(rank, size): received_tensor = torch.zeros(4096, 8192) print(f"Rank {rank}: Waiting to receive data") dist.recv(tensor=received_tensor, src=0) # Receiving data from rank 0 print(f"Rank {rank}: Received data from rank 0") print(received_tensor[-1][-1]) def main(): rank = int(os.environ['RANK']) size = int(os.environ['WORLD_SIZE']) dist.init_process_group(backend='gloo', rank=rank, world_size=size) if rank == 0: gpu_to_cpu_and_send(rank, size) elif rank == 1: receive_data(rank, size) if __name__ == "__main__": main() ``` ### Versions torchrun --nproc_per_node=2 demo.py Run with Nvidia GPU. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,760,730,501
The special size tensor containing batches has a difference of a few tens of thousands in calculation results between CPU and GPU
fine2copyV
open
[ "needs reproduction", "module: cuda", "triaged" ]
4
NONE
### 🐛 Describe the bug You can modify the comments to switch and run to view the changes in the results! ``` import torch.nn as nn import torch.nn.functional as F import torch BN_MOMENTUM = 0.1 def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ConvInGPUError(nn.Module): def __init__(self): super(ConvInGPUError, self).__init__() self.block = BasicBlock self.inplanes = 256 self.layer = self._make_layer(self.block, 256, 2, stride=2) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): out = self.layer(x.clone()) # B = 2 out_1 = self.layer(x.clone()[:1]) print(f'in forward max diff: torch.max(out - out_1): {torch.max(out[:1] - out_1[:1]):.20f}') print(f'in forward min diff: torch.min(out - out_1): {torch.min(out[:1] - out_1[:1]):.20f}') print(f'in forward mean diff: torch.mean(out - out_1): {torch.mean(out[:1] - out_1[:1]):.20f}') return x if __name__ == "__main__": torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.use_deterministic_algorithms(True) torch.manual_seed(42) model = ConvInGPUError() model.eval() # you can compare the result of gpu and cpu by using the same input, but the result is different # gpu model.cuda() input_data = torch.normal(0, 1, size=(2, 256, 48, 96)).cuda() # cpu # input_data = torch.normal(0, 1, size=(2, 256, 48, 96)) with torch.no_grad(): output = model(input_data) print(output.shape) """ # input_data = torch.randn(2, 256, 96, 192) # input_data = torch.normal(0,1,(2, 256, 48, 160)) # input_data = torch.normal(0,1,(2, 256, 40, 160)) """ ``` ### Versions ![image](https://github.com/user-attachments/assets/f9e87459-d86b-46c7-8ec3-307a9b89c987) The results on GPU and CPU are inconsistent. 1. The current batch input is 2, and the complete inference yields A. 2. Slice first and then infer to obtain B. The difference obtained by subtracting A and B is not completely zero. date:20241227 cc @ptrblck @msaroufim @eqy
true
2,760,710,227
[Inductor][CPP] Remove redundant Buffers after Grouped GEMM Fusion
leslie-fang-intel
closed
[ "open source", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143904 * #143897 * #143796 **Summary** In this PR, we remove the extra kernel arguments and the extra buffers allocation when any `MultiOutput Buffer` is consumed by an out-template epilogue. If any `MultiOutput Buffer` is consumed by an out-template epilogue, the `Grouped GEMM Template` should bypass storing it in the `MultiOutput Buffer` and instead write it directly to the corresponding out-template epilogue. **Remove extra kernel arguments** For the case listed above, a `MultiOutput Buffer` shouldn't exist in the Kernel's args if it's consumed by an out-template epilogue. We mark this `MultiOutput Buffer` as `REMOVED` for this case. **Remove the extra buffers allocation** For the case listed above, a `MultiOutput Buffer` shouldn't be allocated. We introduce the `outputs_removed` attribute in the `CppTemplateBuffer`. This attribute tracks `MultiOutput Buffers` that are directly used by out-template epilogues. During code generation, if a `MultiOutput Buffer` is listed in `outputs_removed`, its buffer allocation line is omitted to prevent unnecessary memory usage. **Test Plan** ``` python -u -m pytest -s -v test/inductor/test_cpu_select_algorithm.py -k test_grouped_linear_epilogue ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,760,678,480
[Quant][Inductor][X86] Separate unary post op fusion and lowering for qlinear
Xia-Weiwen
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "intel", "module: inductor", "ciflow/inductor" ]
8
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144318 * #144312 * #144224 * __->__ #143903 **Summary** The current implementation fuses quantized ops and their post ops and lowers the fused the op to cpp backend in the same pass. It is better to separate post op fusion and lowering because - it looks better in terms of design - we need the post op fusion pass for PT2E quantization eager mode This PR is the first of a series of PRs which separate post op fusion and lowering for quantized linear and convolution. It moves unary post op fusion of qlinear out of the lowering pass. This PR moves the fusion pass from the lowering pass to after the weight-prepack pass. The workflow is 1. Weight prepack for qlinear so that `dq - linear` patterns are replaced by `onednn.qlinear_pointwise` 2. Fuse `onednn.qlinear_pointwise` and post ops 3. Lower to cpp backend This PR adds additional `PatternMatcherPass`'s to handle the post op fusion. Pattern matchers used for fusion are reused. **Test plan** It is covered by existing UTs in `test_mkldnn_pattern_matcher.py` for post op fusion. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,760,655,983
[Easy] add quotes to shell activation commands
XuehaiPan
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
9
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #143262 * __->__ #143902
true
2,760,622,674
gpu, matmul, shape is bad, the debug quits and I got no way to hold it.
YagaoDirac
closed
[ "needs reproduction", "module: cuda", "triaged" ]
2
NONE
### 🐛 Describe the bug python312 pytorch2.5.1+cu124 win11, vs code. gtx1660 inside a customized autograd.function. very small model. I messed with the shape, and the matmul throwed. I started to check everything as usual, but the process quits like 20seconds after it throwed. Then I move the entire task to cpu, everything worked. The exception is accute. The only problem is it quits automatically. I know the gpu is not very good at reporting exceptions but it never ends the process itself. That's all the report. Thank you for reading. Simply close this issue after reading. 🎉🎉🎉 ### Versions python312 pytorch2.5.1+cu124 win11, vs code. gtx1660 inside a customized autograd.function. very small model. cc @ptrblck @msaroufim @eqy
true
2,760,618,934
FSDP mixed precision ignores buffer_dtype
GLivshits
closed
[ "oncall: distributed", "module: fsdp" ]
1
NONE
### 🐛 Describe the bug Hello. I found out that buffers in FSDP are not casted to requested dtype, and code breaks. User is forced to cast buffers each time in forward. Piece of error: ``` File "/home/user/regbuf_compile_debug.py", line 44, in forward return nn.functional.conv2d(x, self.kernel, groups=self.kernel.shape[0], stride=2, padding=self.padding) RuntimeError: expected scalar type Half but found Float ``` Repro script: ``` import argparse import os from contextlib import nullcontext from typing import Tuple import torch import torch.distributed as dist import torch.nn.functional as F from torch import nn from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp import MixedPrecision, ShardingStrategy from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler from torch.distributed.fsdp.wrap import ModuleWrapPolicy from tqdm.auto import tqdm torch._dynamo.config.inline_inbuilt_nn_modules = False torch._dynamo.config.optimize_ddp = False def setup(rank, world_size): os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "12355" dist.init_process_group("nccl", rank=rank, world_size=world_size) def cleanup(): dist.destroy_process_group() class NonLearnableConv(nn.Module): def __init__(self, kernel: Tuple[int], in_channels: int): super().__init__() self.padding = (len(kernel) - 1) // 2 kernel = torch.tensor(kernel, dtype=torch.float32) kernel = kernel / kernel.sum() kernel = kernel.outer(kernel)[None, None].repeat(in_channels, 1, 1, 1) self.register_buffer("kernel", kernel) def forward(self, x: torch.Tensor) -> torch.Tensor: print(x.dtype, self.kernel.dtype) return nn.functional.conv2d(x, self.kernel, groups=self.kernel.shape[0], stride=2, padding=self.padding) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--batch_size", type=int, default=32) parser.add_argument("--grad_accum_steps", type=int, default=1) parser.add_argument("--num_iterations", type=int, default=200) parser.add_argument("--use_fsdp", action="store_true") parser.add_argument("--use_compile", action="store_true") args = parser.parse_args() return args def main(rank, world_size, args): setup(rank, world_size) torch.cuda.set_device(rank) device = torch.device(f"cuda:{rank}") dtype = torch.float16 model = nn.Sequential( nn.Sequential(nn.Conv2d(3, 64, 3, padding=1)), nn.Sequential(NonLearnableConv((1, 2, 2, 1), 64)), nn.Sequential(nn.Conv2d(64, 3, 3, padding=1)), nn.Sequential(NonLearnableConv((1, 2, 2, 1), 3)), ).to(device) if args.use_fsdp: model = FSDP( module=model, device_id=rank, use_orig_params=args.use_compile, sharding_strategy=ShardingStrategy.HYBRID_SHARD, forward_prefetch=True, limit_all_gathers=True, auto_wrap_policy=ModuleWrapPolicy({nn.Sequential}), mixed_precision=MixedPrecision( param_dtype=dtype, buffer_dtype=dtype, reduce_dtype=dtype, ), ) loss_amp_context = torch.amp.autocast("cuda", dtype=dtype, enabled=True) model_amp_context = nullcontext() scaler = ShardedGradScaler(enabled=dtype is torch.float16) else: loss_amp_context = torch.amp.autocast("cuda", dtype=dtype, enabled=True) model_amp_context = loss_amp_context scaler = torch.amp.GradScaler("cuda", enabled=dtype is torch.float16) if args.use_compile: print("Trying compile.") model.compile(mode="default", dynamic=False) optimizer = torch.optim.Adam(model.parameters(), lr=1e-5, betas=(0.9, 0.98)) iterator = range(args.num_iterations) if rank == 0: iterator = tqdm(iterator, total=args.num_iterations, miniters=10) for _ in iterator: for _ in range(args.grad_accum_steps): x = torch.randn(args.batch_size, 3, 128, 128, device=device) with model_amp_context: out = model(x) with loss_amp_context: loss = out.mean() / args.grad_accum_steps loss_test = loss.clone() # Ensure local loss is not changed by allreduce torch.distributed.all_reduce(loss_test) # Check if any gpu has NaN loss if torch.isnan(loss_test): raise ValueError("NaN loss.") scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() optimizer.zero_grad() cleanup() if __name__ == "__main__": args = parse_args() world_size = torch.cuda.device_count() torch.multiprocessing.freeze_support() if world_size == 1: main(0, world_size, args) else: torch.multiprocessing.spawn(fn=main, args=(world_size, args), nprocs=world_size, join=True) ``` Successful launch without FSDP: `python regbuf_compile_debug.py` To break: `python regbuf_compile_debug.py --use_fsdp` This error propagates in real setup on UNet model (buffers are casted to input time in forward) with attention blocks when using FSDP, compile and gradient accumulation, dtype errors appear + sometimes _dynamo does not even find registered buffer and fails with AttributeError. ### Versions PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.30.0 Libc version: glibc-2.35 Python version: 3.10.13 | packaged by conda-forge | (main, Dec 23 2023, 15:36:39) [GCC 12.3.0] (64-bit runtime) Python platform: Linux-5.4.210-39.1-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.4.99 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A800-SXM4-80GB GPU 1: NVIDIA A800-SXM4-80GB GPU 2: NVIDIA A800-SXM4-80GB GPU 3: NVIDIA A800-SXM4-80GB GPU 4: NVIDIA A800-SXM4-80GB GPU 5: NVIDIA A800-SXM4-80GB GPU 6: NVIDIA A800-SXM4-80GB GPU 7: NVIDIA A800-SXM4-80GB Nvidia driver version: 550.54.14 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 120 On-line CPU(s) list: 0-119 Vendor ID: AuthenticAMD Model name: AMD EPYC 7662 64-Core Processor CPU family: 23 Model: 49 Thread(s) per core: 1 Core(s) per socket: 1 Socket(s): 120 Stepping: 0 BogoMIPS: 3992.37 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw perfctr_core ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr wbnoinvd arat npt nrip_save umip rdpid arch_capabilities Virtualization: AMD-V L1d cache: 7.5 MiB (120 instances) L1i cache: 7.5 MiB (120 instances) L2 cache: 60 MiB (120 instances) L3 cache: 1.9 GiB (120 instances) NUMA node(s): 4 NUMA node0 CPU(s): 0-29 NUMA node1 CPU(s): 30-59 NUMA node2 CPU(s): 60-89 NUMA node3 CPU(s): 90-119 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] flake8==5.0.4 [pip3] lovely-numpy==0.2.13 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] open-clip-torch==2.24.0 [pip3] pytorch-warmup==0.1.1 [pip3] torch==2.5.1 [pip3] torch-fidelity==0.3.0 [pip3] torch-model-archiver==0.11.1 [pip3] torch-tb-profiler==0.4.3 [pip3] torch-workflow-archiver==0.2.14 [pip3] torchaudio==2.5.1 [pip3] torchdata==0.7.1 [pip3] torchmetrics==1.4.0.post0 [pip3] torchsde==0.2.6 [pip3] torchserve==0.11.1 [pip3] torchvision==0.20.1 [pip3] triton==3.1.0 [conda] lovely-numpy 0.2.13 pypi_0 pypi [conda] numpy 1.26.4 pypi_0 pypi [conda] open-clip-torch 2.24.0 pypi_0 pypi [conda] torch 2.5.1 pypi_0 pypi [conda] torch-fidelity 0.3.0 pypi_0 pypi [conda] torch-model-archiver 0.11.1 pypi_0 pypi [conda] torch-tb-profiler 0.4.3 pypi_0 pypi [conda] torch-workflow-archiver 0.2.14 pypi_0 pypi [conda] torchaudio 2.5.1 pypi_0 pypi [conda] torchdata 0.7.1 pypi_0 pypi [conda] torchmetrics 1.4.0.post0 pypi_0 pypi [conda] torchsde 0.2.6 pypi_0 pypi [conda] torchserve 0.11.1 pypi_0 pypi [conda] torchvision 0.20.1 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @zhaojuanmao @mrshenli @rohan-varma @chauhang
true
2,760,616,632
Fix boundary conditions for hardswish backward
CaoE
closed
[ "module: cpu", "open source", "Merged", "ciflow/trunk", "release notes: nn", "topic: not user facing" ]
7
COLLABORATOR
Fixes #136345. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,760,613,728
pytorch2.5.1的版本支持这个算子了吗:aclnnFusedInferAttentionScoreV2
ZWQ2-A11Y
closed
[ "triage review", "module: PrivateUse1" ]
3
NONE
pytorch2.5.1的版本支持这个算子了吗:aclnnFusedInferAttentionScoreV2 cc @NmomoN @mengpenghui @fwenguang @cdzhan @1274085042 @PHLens
true
2,760,568,736
[Inductor][CPP] Enable Epilogue Fusion for Grouped GEMM Template
leslie-fang-intel
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143897 * #143796 **Summary** In this PR, we enable the epilogues fusion and code generation for Grouped GEMM. Here are the high-level description of how we implement it. **Fusion** - The Grouped GEMM Template produces a `Template Buffer` with a `MultiOutputLayout` and a set of `MultiOutput Buffers`, where each buffer corresponds to a specific GEMM. - During the initial round of fusion, the `Template Buffer` and all associated `MultiOutput Buffers` are fused into a `FusedSchedulerNode` by extending the existing fusion design. - In subsequent fusion rounds, this `FusedSchedulerNode` can further fuse with its epilogues, following the original fusion design principles. **Code Gen** We maintain a list of epilogues and codegen it one by one. - If any of the GEMM has bias, we create a extra `bias_add` epilogue and prepend it at first of the epilogue list. - If any of the GEMM has no epilogue, we create a `to_bf16` copy epilogue and append it at last of the epilogue list. **TestPlan** ``` python -u -m pytest -s -v test/inductor/test_cpu_select_algorithm.py -k test_grouped_linear_epilogue ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @BoyuanFeng
true
2,760,465,533
Using acc_t for log_softmax
yanbing-j
open
[ "module: cpu", "open source", "ciflow/trunk", "topic: not user facing" ]
11
COLLABORATOR
This PR is to fix https://github.com/pytorch/pytorch/issues/140222. Using high precision as the accumulate type for log_softmax forward. Reproducer in the issue can pass now. Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143896 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,760,441,591
When using torch.compile to compile the function _kernel_make_viewless_tensor, an error occurs:AssertionError: wrong number of dimensions
FY-Summer
closed
[ "triaged", "oncall: pt2", "module: inductor" ]
3
NONE
### 🐛 Describe the bug test device: NVidia L20 software version: torch 2.5.1 torchaudio 2.5.1 torchvision 0.20.1 triton 3.1.0 The test codes are as follows. I’m sure it’s related to the parameter “requires_grad” of the function ”_kernel_make_viewless_tensor“, because changing it to False allows the codes to pass, and the graph generated by torch.compile will be different. ``` # The codes are sourced from https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/utils.py:183 def _kernel_make_viewless_tensor(inp, requires_grad): """Make a viewless tensor. View tensors have the undesirable side-affect of retaining a reference to the originally-viewed tensor, even after manually setting the '.data' field. This method creates a new tensor that links to the old tensor's data, without linking the viewed tensor, referenced via the '._base' field. """ out = torch.empty((1,), dtype=inp.dtype, device=inp.device, requires_grad=requires_grad) out.data = inp.data return out t1 = torch.randn(20, 50, 30, dtype=torch.bfloat16).to('cuda') c = torch.compile(_kernel_make_viewless_tensor) t2 = _kernel_make_viewless_tensor(t1, True) t3 = c(t1, True) print(f"allclose result = {torch.allclose(t2, t3, atol=1e-5, rtol=1e-5)}") ``` The test results are as follows: ``` Traceback (most recent call last): File "/data/test/b.py", line 20, in <module> t3 = c(t1, True) File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 465, in _fn return fn(*args, **kwargs) File "/data/test/b.py", line 12, in _kernel_make_viewless_tensor out = torch.empty((1,), dtype=inp.dtype, device=inp.device, requires_grad=requires_grad) File "/data/test/b.py", line 12, in torch_dynamo_resume_in__kernel_make_viewless_tensor_at_12 out = torch.empty((1,), dtype=inp.dtype, device=inp.device, requires_grad=requires_grad) File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 632, in _fn return fn(*args, **kwargs) File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/aot_autograd.py", line 1100, in forward return compiled_fn(full_args) File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 321, in runtime_wrapper all_outs = call_func_at_runtime_with_args( File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/utils.py", line 124, in call_func_at_runtime_with_args out = normalize_as_list(f(args)) File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 667, in inner_fn outs = compiled_fn(args) File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 488, in wrapper return compiled_fn(runtime_args) File "/usr/local/lib/python3.10/dist-packages/torch/_inductor/codecache.py", line 1478, in __call__ return self.current_callable(inputs) File "/usr/local/lib/python3.10/dist-packages/torch/_inductor/utils.py", line 1977, in run return model(new_inputs) File "/tmp/torchinductor_root/ld/cldpqwvjtbpm3peqlchlnst5etn44gyzsepxnck35bn7pm4epvvj.py", line 35, in call assert_size_stride(arg0_1, (20, 50, 30), (1500, 30, 1)) AssertionError: wrong number of dimensions # /tmp/torchinductor_root/ld/cldpqwvjtbpm3peqlchlnst5etn44gyzsepxnck35bn7pm4epvvj.py # AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (20, 50, 30), (1500, 30, 1)) assert_size_stride(arg1_1, (20, 50, 30), (1500, 30, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [], Original ATen: [] buf0 = torch.ops.aten.set_.source_Tensor(arg0_1, arg1_1) assert_size_stride(buf0, (20, 50, 30), (1500, 30, 1)) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((20, 50, 30), (1500, 30, 1), device='cuda:0', dtype=torch.bfloat16) arg1_1 = rand_strided((20, 50, 30), (1500, 30, 1), device='cuda:0', dtype=torch.bfloat16) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module) ``` ### Versions Collecting environment information... PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.29.2 Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-4.18.0-372.9.1.el8.x86_64-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.4.131 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA L20 Versions of relevant libraries: [pip3] numpy==1.24.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cudnn-frontend==1.3.0 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] nvtx==0.2.5 [pip3] onnx==1.16.0 [pip3] optree==0.11.0 [pip3] pynvjitlink==0.1.13 [pip3] pytorch-quantization==2.1.2 [pip3] pytorch-triton==3.0.0+989adb9a2 [pip3] torch==2.5.1 [pip3] torchaudio==2.5.1 [pip3] torchvision==0.20.1 [pip3] transformer-engine-torch==1.9.0 [pip3] triton==3.1.0 cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @aakhundov
true
2,760,435,965
Fix fft jit ops cpu
ZhaoqiongZ
closed
[ "triaged", "open source", "Stale", "ciflow/trunk", "topic: not user facing" ]
12
CONTRIBUTOR
Fixes #142484
true
2,760,354,401
[Inductor] Implement primitive Metal compiler
malfet
closed
[ "Merged", "ciflow/trunk", "topic: improvements", "release notes: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
8
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143893 * #143892 Still work in progress, only works for element wise operations. Current implementation could be used to turn something like ```python def f(x): return x[:,::2].sin() + x[:, 1::2].cos() ``` into the following shader ```python # Topologically Sorted Source Nodes: [sin, cos, add], Original ATen: [aten.sin, aten.cos, aten.add] # Source node to ATen node mapping: # add => add # cos => cos # sin => sin # Graph fragment: # %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%slice_2,), kwargs = {}) # %cos : [num_users=1] = call_function[target=torch.ops.aten.cos.default](args = (%slice_4,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sin, %cos), kwargs = {}) mps_lib = torch.mps._compile_shader(""" kernel void kernel_0( device float* out_ptr0, constant float* in_ptr0, uint xindex [[thread_position_in_grid]] ) { int x0 = xindex; auto tmp0 = in_ptr0[2*x0]; auto tmp1 = metal::precise::sin(tmp0); auto tmp2 = in_ptr0[2*x0 + 1]; auto tmp3 = metal::precise::cos(tmp2); auto tmp4 = tmp1 + tmp3; out_ptr0[x0] = static_cast<float>(tmp4); } """) ``` Please note, that `torch.compile` in 2.7 is an early prototype and one should wait with migration until 2.8 is out, see progress tracker here: https://github.com/pytorch/pytorch/issues/150121 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,760,354,375
[Inductor] Add MPS device op overrides
malfet
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #143893 * __->__ #143892 Mostly dummy interface as MPS backend currently limited to a single device cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,760,354,344
[Dynamo] Add MPSDevice interface
malfet
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #143893 * #143892 * __->__ #143891 That simply checks if device is available and whether or not it supports bf16 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,760,342,091
TORCH_NCCL_ENABLE_TIMING break nccl/matmul overlapping
cos120
closed
[ "oncall: distributed", "module: nccl" ]
22
NONE
### 🐛 Describe the bug I am using Megatron-LM for training, I found that if I set `TORCH_NCCL_ENABLE_TIMING=1`, all overlaping kernels in Megatron-LM will not overlapped, including dw/dx backward in layer norm and zero1 reduce scatter/allgather not overlapping with matmul. I have submit a issue to `TransformerEngine` https://github.com/NVIDIA/TransformerEngine/issues/1353, maybe it relates to `CUDA_DEVICE_MAX_CONNECTIONS=1` ### Versions I am using 4 A100-SXM4 with pytorch2.4.0+cu124 and mcore0.9.0 with transformer engine(0.11.0+fc03478) ### update1 I use fsdp1 with 8 A100-SXM4 with pytorch2.4.0+cu124, and I tracing 3 configurations - TORCH_NCCL_ENABLE_TIMING=1 not break overlapping of NCCL and matmul - CUDA_DEVICE_MAX_CONNECTIONS=1 break reduce scatter in `FullyShardedDataParallel._post_backward_hook` ![image](https://github.com/user-attachments/assets/42f3fae0-9554-400b-8ef0-ca0b99541c4c) - CUDA_DEVICE_MAX_CONNECTIONS=1 TORCH_NCCL_ENABLE_TIMING=1 break all overlap, including allgather in forward ![forward allgather overlap](https://github.com/user-attachments/assets/a608c054-8c64-4a0d-9f7f-198fe145b03e) ![backward allgather/reduce scatter](https://github.com/user-attachments/assets/495b07a1-99c2-47ef-90d1-a16b386894b4) I upload timeline and reproduce code, just set different env and run ```bash CUDA_DEVICE_MAX_CONNECTIONS=1 TORCH_NCCL_ENABLE_TIMING=1 python -m torch.distributed.run --master-addr localhost --master-port 5555 --nnodes 1 --nproc-per-node 8 --node-rank 0 ``` [timeline.tar.gz](https://github.com/user-attachments/files/18326850/timeline.tar.gz) cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,760,310,498
The in-place version of unsqueezed is not supported by TorchDynamo when used in a specific way
meetmul
open
[ "triaged", "oncall: pt2", "module: dynamo" ]
0
NONE
### 🐛 Describe the bug If I directly call `torch.Tensor.unsqueeze_(x,y)` in my function, torch.compile fails with InternalTorchDynamoError. However, if I change the code to `x.unsqueeze_(y) format, torch.compile works. code: ```python import torch @torch.compile def f1(x, y): return x.unsqueeze(y) @torch.compile def f2(x, y): return torch.Tensor.unsqueeze_(x, y) x = torch.tensor([1, 2, 3, 4]) y = 0 print(f1(x, y)) print(f2(x, y)) ``` When running `f2`, pytorch throws the following error: ``` torch._dynamo.exc.InternalTorchDynamoError: IndexError: list index out of range You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True ``` ### Versions [pip3] numpy==1.26.2 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] optree==0.13.1 [pip3] torch==2.5.1 [pip3] triton==3.1.0 [conda] numpy 1.26.2 pypi_0 pypi [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] optree 0.13.1 pypi_0 pypi [conda] torch 2.5.1 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true
2,760,287,213
[dynamo] Trace through overridden __getattribute__ method
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor", "keep-going" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #143698 * __->__ #143888 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,760,268,096
`torch.accelerator` cross-device utilities and properties
stas00
open
[ "triaged", "module: accelerator" ]
2
CONTRIBUTOR
### 🚀 The feature, motivation and pitch as suggested by @albanD [here](https://pytorch.slack.com/archives/C3PDTEV8E/p1735120754479929?thread_ts=1735017298.875249&cid=C3PDTEV8E) opening an issue to discuss which cross-device utilities and device property fields should pytorch support. 1. properties report at the moment is inconsistent - `torch.cuda.get_device_properties` does work for CUDA and ROCm but not other accelerators, e.g. one needs to use `torch.hpu.get_device_properties` for Gaudi. - depending on whether it's CUDA or ROCm - the fields it outputs aren't the same - so a programmer can't reliably write cross-device applications - a lot of info is missing, e.g. to get CUDA cores count I have to use `nvidia-settings -q CUDACores -t` or `cuda.bindings.runtime.cudaGetDeviceProperties()` - need to depend on other libs/utils and again this is not cross-device (albeit one could argue that this is a cuda-specific setting, so there is no cross-device cuda-core count - not sure) - @albanD mentioned that `torch.accelerator` API should be overcoming the above issues 2. then let's discuss which cross-device utils should be there. ### cache clearing - one that I started the discussion on is cache clearing - this is important for benchmarking - currently various hacks are used to perform that e.g. see for example how a hardcoded 256MB tensor is used by triton's `do_bench` - [init](https://github.com/triton-lang/triton/blob/a2b398e0bb1b120f31cf386d6ae3261c3ab84207/third_party/nvidia/backend/driver.py#L555-L556), [clearing](https://github.com/triton-lang/triton/blob/6ad95ee4fd9b1e172717323460fd54c250dd7d65/python/triton/testing.py#L120-L127) - so that anybody using that either wastes compute on clearing more cache than there is or as accelerators get bigger 256MB will be not enough and the benchmark will return flawed results. The other complication is that which cache are we clearing? In the NVIDIA world it's L1+L2, but for AMD it's L1+L2+AMD Infinity cache (Last Level Cache). You will find the table of high end accelerator caches here https://github.com/stas00/ml-engineering/tree/master/compute/accelerator#caches - it's very inconsistent across accelerators - e.g. Intel Gaudi3 cache can be either L3 or L2 depending on the use case! cc @albanD @guangyey @EikanWang
true
2,760,254,098
[RFC] Identifying dynamic int8 symmetric vs asymmetric quantization of activation/input in Inductor-CPU
sanchitintel
open
[ "oncall: pt2", "oncall: cpu inductor" ]
0
COLLABORATOR
### 🚀 The feature, motivation and pitch ## Problem statement If int8 asymmetric quantization is used, at Inductor compile time, the input used while invoking `torch.compile` might be such that the zero-points of activation for some quantized linear may _coincidentally_ be zero (per-tensor quantization) or all zeros (per-token quantization). In such a case, we might mistake this case to pertain to symmetric quantization. Please suggest some solutions to this problem besides these two. ## Potential solution 1 One solution is to make zero-point optional for dequantizing an int8 tensor. In torchao, it is possible to make some changes to ensure that int8 symmetric quantization would not have zero-points, so they wouldn’t be present in the Inductor graph. But similar changes would have to be made for PT2E quantization as well. Nevertheless, if this change is made only in torchao, then we could still leverage this change with Inductor patterns corresponding to int8 symmetrically quantized activations that don't use zero-points for dequantization, but users who don't use torchao wouldn't benefit. cc @chauhang @penguinwu @leslie-fang-intel @Xia-Weiwen # Alternatives ## Potential solution 2 For per-tensor quantization, we could add a runtime check in Inductor codegened code that'd detect as to whether the int8 quantization-type of an activation is symmetric or asymmetric (by checking if zp is 0). But this approach may not be as performant for per-channel quantization (would need to check if any zp value is non-zero). #### This approach needs some new infra in Inductor-CPU codegen - Support of two variants of epilogues, both of which are compiled, but only one of which is used at runtime depending upon some check. In this case, one variant would only applies activation & weight scales, while the second one would also compute compensation) – the decision to use one of them is to be made at runtime for the whole quantized linear. ### Additional context We can compute int8 quantized linear with int8xint8 -> int32 GEMMs, so long as weights are not asymmetrically quantized. If activations are asymmetrically quantized, we can apply compensation pertaining to zero-points of activation, after applying activation & weight scales. If activations are symmetrically quantized, the computation is straightforward, and after int8 x int8 -> int32 GEMMs, we only need to apply pointwise activation & weight scales (which can happen at the block-level if we apply epilogues at micro-kernel level).
true
2,760,246,016
restore 'unused' variable to fix test_cuda_device_memory_allocated
dnikolaev-amd
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
5
CONTRIBUTOR
This PR fix `test_cuda_multigpu.py::TestCudaMultiGPU::test_cuda_device_memory_allocated` by restoring a deleted 'unused' variable from commit https://github.com/pytorch/pytorch/commit/d8c8ba24404ef892d4d948eb095b69d90b9ba7e6 cc @jithunnair-amd @jeffdaily @pruthvistony
true
2,760,218,546
[Inductor] Relax size constraints for re-inplacing
BoyuanFeng
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
5
CONTRIBUTOR
Current reinplacing requires input buffer and output buffer has exactly the same storage size. However, matmul padding may increase the tensor size slightly for better performance, which prevents reinplacing. This PR changes the size constraints to be: - input and output buffer have exactly the same symbolic expression for storage size (i.e., sympy str). - it's statically known that 0.99 * input_size <= output_size <= input_size ### Apply on llm.c See the reuse of `buf1`. Before relaxing size requirements on re-inplacing: ([P1703512078](https://www.internalfb.com/phabricator/paste/view/P1703512078)) ![1](https://github.com/user-attachments/assets/1472f550-6eb8-4d5c-9965-49bbb20d81a9) After relaxing size requirements on re-inplacing: ([P1703513053](https://www.internalfb.com/phabricator/paste/view/P1703513053)) ![2](https://github.com/user-attachments/assets/416294dd-30eb-4e12-a36c-1aebf9af530b) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,760,201,298
[dtensor] add src_data_rank to distribute_tensor API
wanchaol
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (dtensor)" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144005 * __->__ #143883 As titled, this PR add a kwarg src_data_rank to the distribute_tensor API, to allow user specify a specific rank as the full tensor source data. Previously we by default specify group_rank=0 as the source of truth for single device semantic, this new option: * gives advanced user flexiblity to choose the source data rank * allow user to specify None explicity, which means we will skip the communications needed (scatter/broadcast) for the cases that does not care about single device semantic (i.e. loading from a checkpoint) cc @H-Huang @awgu @kwen2501 @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,760,194,003
Add support for list, tuple and dict in numeric debugger
jerryzh168
closed
[ "Merged", "ciflow/trunk", "release notes: quantization" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143882 Summary: Previously numeric debugger only supports torch.Tensor, this PR adds support for list, tuple and dict as well Test Plan: python test/test_quantization.py -k test_extract_results_from_loggers_list_output Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D67660049](https://our.internmc.facebook.com/intern/diff/D67660049)
true
2,760,172,691
remove allow-untyped-defs from _inductor/codegen/cpu_device_op_overrides.py
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143881 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,760,141,925
Add option to serialization config to reduce random reads from get_record_offset when loading with mmap=True
mikaylagawarecki
closed
[ "Merged", "Reverted", "ciflow/trunk", "release notes: python_frontend", "topic: improvements", "ciflow/inductor", "ci-no-td" ]
13
CONTRIBUTOR
## Background This PR adds `torch.utils.serialization.config.load.calculate_storage_offsets`. This option relies on the previous PR in this stack, where storage order was changed to non lexicographical. A `.format_version` entry was added to the zipfile and `calculate_storage_offsets` will only work on checkpoints with `.format_version`. When this is turned on, for `torch.load(mmap=True)`, offsets of each storage record (other than the 0th storage will be calculated instead of relying on `miniz` APIs to determine this). The existing APIs will issue multiple random reads (reading the end of central directory record, then reading the zipfile header for the record) to determine the storage offset where the record starts. This can greatly degrade `torch.load(mmap=True)` performance for non-filesystem cases. https://github.com/pytorch/pytorch/blob/6aaae9d78f0992ac6265552e4f8323ef11d62bb0/caffe2/serialize/inline_container.cc#L589-L605 ## How does this work The format for the checkpoint is as such ``` archive_name/ |_ data.pkl |_.format_version |_byteorder |_data/ |_ 0 |_ 1 |_ 2 |_ ... |_ ``` Each `data/i` record represents a storage, where storages are written in the order that the Pickler encounters them. For each storage, our `persistent_load` logic saves the following metadata to the pickle file `dtype, numel, key, location` where `numel` is the number of bytes in the storage. Note that we always use `miniz` writer in the zip64 mode per [here](https://github.com/pytorch/pytorch/blob/7796e308d0636bcbfb2490c80291edd440d4bc42/caffe2/serialize/inline_container.cc#L701) A zipfile record written by miniz looks as such ``` ---------------- ----------------- ------------------- ---------------- --------- ------------------------------ | 30 byte header | n byte filename | zip64_extra_data | m byte padding | storage | 16 or 24 byte local dir footer | ---------------- ----------------- ------------------- ---------------- --------- ------------------------------ ``` - The header size (30) is given by [`MZ_ZIP_LOCAL_DIR_HEADER_SIZE`](https://github.com/pytorch/pytorch/blob/main/third_party/miniz-3.0.2/miniz.c?fbclid=IwZXh0bgNhZW0CMTEAAR2O8Vysd--UoSCxW70gabXIS1dbz733oHwuUQ5_Ff1hY2WU6PL2i6CSH4A_aem_J9oaU2HpDeWtJKOU9EnVqw#L3290) - filename will be `"{archive_name}/{filepath}"` - `zip64_extra_data` is determined by [`mz_zip_writer_create_zip64_extra_data`](https://github.com/pytorch/pytorch/blob/7796e308d0636bcbfb2490c80291edd440d4bc42/third_party/miniz-3.0.2/miniz.c#L6202). Note that [we only create zip64_extra_data if storage_size >= 0xFFFFFFFF or the offset of the start of the header >= 0xFFFFFFFF](https://github.com/pytorch/pytorch/blob/7796e308d0636bcbfb2490c80291edd440d4bc42/third_party/miniz-3.0.2/miniz.c#L6519-L6524) - `m` is determined by [`getPadding`](https://github.com/pytorch/pytorch/blob/7796e308d0636bcbfb2490c80291edd440d4bc42/caffe2/serialize/inline_container.cc#L254), which accounts for filename, zip64_extra_data to determine `m` such that the start of `storage` is aligned to 64 bytes. The `m` bytes will always start with `F B padding_size" as the first 4 bytes - The local dir footer size is determined based on [this snippet ](https://github.com/pytorch/pytorch/blob/7796e308d0636bcbfb2490c80291edd440d4bc42/third_party/miniz-3.0.2/miniz.c#L6610-L6632): if the buffer size is 0 it is skipped. If the zip64_extra_data was created, it is 24, otherwise it is 16. When `torch.utils.serialization.config.load.calculate_storage_offsets` is set we do the following - We keep track of where the "cursor" is in the file using `current_offset`, after each persistent_load call, it will be at the offset where the header for the next record starts - for the 0th storage, "data/0", we use the regular get_record_offset to determine the start of the storage - for any other storage, (where the storages will be in order encountered by the unpickler, 0, 1, 2, 3, ...) we use `get_record_offset_no_read`, which re-uses the `getPadding` logic to determine the offset of the storage - Note that `load_tensor` will only ever be called again with the same key if the storage's `._data_ptr()` is 0 [[pointer1](https://github.com/pytorch/pytorch/blob/main/torch/serialization.py#L1917-L1918)][[pointer2](https://github.com/pytorch/pytorch/blob/main/torch/serialization.py#L1936-L1937)], so we cache the offsets for this edge case - After each storage, if the storage is non-zero, we account for the local dir footer based on the logic described above ## Testing strategy The agreed upon testing strategy was as follows: - Add debug code gated by an environment flag `TORCH_SERIALIZATION_DEBUG` that will run this offset calculation logic and verify it against getRecordOffset for each storage (when mmap=False) - This flag is set throughout CI, which means that every time `torch.load` is called, the offset calculation logic is implicitly being tested. Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143880 * #143879 cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel Differential Revision: [D67673026](https://our.internmc.facebook.com/intern/diff/D67673026)
true
2,760,141,879
Remove lexicographical sorting of storage keys in torch.save
mikaylagawarecki
closed
[ "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "ci-no-td" ]
27
CONTRIBUTOR
Currently the order lexicographical (i.e. 0, 10, 11, ...19, 2, ....) instead of 0, 1, 2, 3, 4, 5 (the order that storage metadata is actually pickled in), since PyTorch will never be used with Python < 3.7 we can be assured that the keys will be read in the order of insertion (numerically sorted) This makes it such that the order storages are written in are the same as the pickling/unpickling order so we can calculate their offsets with less random reads Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #143880 * __->__ #143879
true
2,760,111,010
[fr][c10d] fix flaky test
c-p-i-o
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143878 * #143865 Summary: Test erroneously assumed that input/output sizes are same and that all states are matchable. Fixes issue #143798 Test Plan: Test passes Reviewers Test passes cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,760,071,733
dont assign a size to _assert_scalar in partitioner
bdhirsh
closed
[ "Merged", "ciflow/trunk", "release notes: composability", "ciflow/inductor" ]
8
CONTRIBUTOR
Fixes https://github.com/pytorch/pytorch/issues/143876 Open to other suggestions - we have an invariant that all nodes in our ATen graphs should have a `meta['val']` field, but I don't think this is actually true in all cases, so I just hardcoded the invariant to ignore `_assert_scalar()` (which is a "special" op used in dynamic shapes for runtime asserts, and doesn't have a meta['val'] field) Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144097 * #141131 * #144438 * __->__ #143877
true
2,760,059,559
`aten._assert_scalar` can hard error the partitioner
bdhirsh
closed
[ "triaged", "oncall: pt2", "module: dynamic shapes", "module: aotdispatch", "module: pt2-dispatcher" ]
0
CONTRIBUTOR
internal xref: https://fb.workplace.com/groups/1075192433118967/permalink/1567692087202330/ (second xref: https://fb.workplace.com/groups/1075192433118967/posts/1574136133224592/?comment_id=1575214129783459&reply_comment_id=1577334836238055) I haven't been able to run the internal repro properly, but I did make a (hopefully representative) tiny OSS repro: ``` import torch torch._dynamo.config.capture_dynamic_output_shape_ops = True from torch._functorch import config config.ban_recompute_not_in_allowlist = False @torch.compile(backend="aot_eager") def f(x): y = x.nonzero() tmp = torch.ones_like(y) return x.sum() + tmp.sum() x = torch.ones(4, requires_grad=True) out = f(x) ``` cc @chauhang @penguinwu @ezyang @bobrenjc93 @zou3519 @yf225
true
2,760,054,588
Use random64 in Fischer-Yates algorithm for large N (#143682)
ngimel
closed
[ "release notes: dataloader" ]
1
COLLABORATOR
Fixes bug in randperm https://nbsanity.com/static/a4774194938414dedcec7d6e99727d31/Shuffling_20in_20torch_20vs_20numpy-public.html Pull Request resolved: https://github.com/pytorch/pytorch/pull/143682 Approved by: https://github.com/eqy, https://github.com/albanD Fixes #ISSUE_NUMBER
true
2,760,047,872
[Performance] Simple arithemtic operations are slower using MPS than Metal
malfet
closed
[ "module: performance", "triaged", "module: mps" ]
1
CONTRIBUTOR
### 🐛 Describe the bug Reported by @swolchok and could be confirmed by running something like the following ```python import torch from timeit import default_timer from torch.utils.benchmark import Measurement, Timer def bench_binary( n, binary_func, dtype=torch.float32, ) -> Measurement: t = Timer( stmt=f"f(x, y);f(x, y); f(x, y); torch.mps.synchronize()", setup=f"x, y=torch.rand((2, {n}), dtype={dtype}, device='mps').unbind(0)", globals = {'f': binary_func}, language="python", timer=default_timer ) return t.blocked_autorange() mps_lib = torch.mps._compile_shader(""" #include <metal_stdlib> using namespace metal; template<typename T> kernel void add(constant T* x, constant T* y, device T* out, uint index [[thread_position_in_grid]]) { out[index] = static_cast<T>(x[index] + y[index]); } template [[host_name("add_float")]] kernel void add(constant float*, constant float*, device float*, uint); template [[host_name("add_half")]] kernel void add(constant half*, constant half*, device half*, uint); template [[host_name("add_bfloat")]] kernel void add(constant bfloat*, constant bfloat*, device bfloat*, uint); """) def metal_add(x, y): rc = torch.empty_like(x) { torch.float: mps_lib.add_float, torch.half: mps_lib.add_half, torch.bfloat16: mps_lib.add_bfloat }[x.dtype](x, y, rc) return rc if __name__ == "__main__": n = 1024**2 for dtype in [torch.float32, torch.float16, torch.bfloat16]: # Validate correctness first inp = torch.rand(2, n, dtype=dtype, device="mps").unbind(0) out = torch.add(*inp) out_metal = metal_add(*inp) if not torch.allclose(out, out_metal): raise RuntimeError(f"out-out_metal.abs().max() is {(out-out_metal).abs().max().item()} for {dtype}") eager_t = bench_binary(n, torch.add, dtype) metal_t = bench_binary(n, metal_add, dtype) use_msec = eager_t.mean > 1e-4 or metal_t.mean > 1e-4 multiplier = 1e3 if use_msec else 1e6 uname = "msec" if use_msec else "usec" print(f"torch.add()x3 {str(dtype):>14} {eager_t.mean*multiplier:>7.2f} {uname} metal_add()x3: {metal_t.mean*multiplier:>7.2f} {uname} speedup: {eager_t.mean/metal_t.mean:>7.2f}") ``` On M1 pro Metal implementation of the same shader runs 20% faster than MPS one for 1 million elements ``` torch.add()x3 torch.float32 0.53 msec metal_add()x3: 0.42 msec speedup: 1.27 torch.add()x3 torch.float16 0.45 msec metal_add()x3: 0.37 msec speedup: 1.21 torch.add()x3 torch.bfloat16 0.44 msec metal_add()x3: 0.37 msec speedup: 1.19 ``` More involved example can be seen here: https://github.com/pytorch/pytorch/pull/143656 ### Versions 2.5.1, nightly cc @msaroufim @kulinseth @albanD @DenisVieriu97 @jhavukainen
true
2,760,031,393
use statically known true over guards in tensor view ops
bobrenjc93
closed
[ "ciflow/trunk", "topic: not user facing" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143873 internal xref: https://fb.workplace.com/groups/1075192433118967/posts/1570866680218204/ Differential Revision: [D67651945](https://our.internmc.facebook.com/intern/diff/D67651945)
true
2,760,030,184
[FlexAttention] make bm creation cuda-graphable
drisspg
closed
[ "topic: not user facing", "module: inductor", "ciflow/inductor", "module: flex attention" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143872 # Summary Addresses: https://github.com/pytorch/pytorch/issues/143840 Current dynamic failing test: test/inductor/test_flex_attention.py::TestBlockMask::test_compiling_create_block_mask_no_recompile - torch._dynamo.exc.TorchRuntimeError: Failed running call_method scatter_(*(BatchedTensor(lvl=2,... with CC @zou3519 for ideas on why this failing ``` Shell File "/home/drisspg/meta/pytorch/torch/_dynamo/utils.py", line 2694, in run_node raise RuntimeError(make_error_message(e)).with_traceback( File "/home/drisspg/meta/pytorch/torch/_dynamo/utils.py", line 2678, in run_node return getattr(args[0], node.target)(*args[1:], **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ torch._dynamo.exc.TorchRuntimeError: Failed running call_method scatter_(*(BatchedTensor(lvl=2, bdim=0, value= BatchedTensor(lvl=1, bdim=0, value= FakeTensor(..., device='cuda:0', size=(s0, s1, (s2 + 127//128), ((s3 + 127//128)) + 1), dtype=torch.int32) ) ), 1, BatchedTensor(lvl=2, bdim=0, value= BatchedTensor(lvl=1, bdim=0, value= FakeTensor(..., device='cuda:0', size=(s0, s1, (s2 + 127//128), (s3 + 127//128)), dtype=torch.int64) ) ), BatchedTensor(lvl=2, bdim=0, value= BatchedTensor(lvl=1, bdim=0, value= FakeTensor(..., device='cuda:0', size=(s0, s1, (s2 + 127//128), (s3 + 127//128)), dtype=torch.int32) ) )), **{}): Cannot call sizes() on tensor with symbolic sizes/strides Exception raised from throw_cannot_call_with_symbolic at /home/drisspg/meta/pytorch/c10/core/TensorImpl.cpp:291 (most recent call first): frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x7fc0fd78fbe8 in /home/drisspg/meta/pytorch/torch/lib/libc10.so) frame #1: c10::TensorImpl::throw_cannot_call_with_symbolic(char const*) const + 0x8d (0x7fc0fd738181 in /home/drisspg/meta/pytorch/torch/lib/libc10.so) frame #2: at::functorch::BatchedTensorImpl::sizes_custom() const + 0x5c (0x7fc0ec1a0e0c in /home/drisspg/meta/pytorch/torch/lib/libtorch_cpu.so) frame #3: <unknown function> + 0x179d11f (0x7fc0ec19d11f in /home/drisspg/meta/pytorch/torch/lib/libtorch_cpu.so) frame #4: <unknown function> + 0x64036c (0x7fc0fde4036c in /home/drisspg/meta/pytorch/torch/lib/libtorch_python.so) frame #5: <unknown function> + 0x63ceed (0x7fc0fde3ceed in /home/drisspg/meta/pytorch/torch/lib/libtorch_python.so) frame #6: <unknown function> + 0x17c145b (0x7fc0ec1c145b in /home/drisspg/meta/pytorch/torch/lib/libtorch_cpu.so) frame #7: <unknown function> + 0x17ab401 (0x7fc0ec1ab401 in /home/drisspg/meta/pytorch/torch/lib/libtorch_cpu.so) frame #8: <unknown function> + 0x17a614c (0x7fc0ec1a614c in /home/drisspg/meta/pytorch/torch/lib/libtorch_cpu.so) frame #9: <unknown function> + 0x64036c (0x7fc0fde4036c in /home/drisspg/meta/pytorch/torch/lib/libtorch_python.so) frame #10: <unknown function> + 0x63ceed (0x7fc0fde3ceed in /home/drisspg/meta/pytorch/torch/lib/libtorch_python.so) frame #11: at::_ops::scatter__src::call(at::Tensor&, long, at::Tensor const&, at::Tensor const&) + 0x3d1 (0x7fc0ecec4281 in /home/drisspg/meta/pytorch/torch/lib/libtorch_cpu.so) frame #12: <unknown function> + 0x41b9c2 (0x7fc0fdc1b9c2 in /home/drisspg/meta/pytorch/torch/lib/libtorch_python.so) frame #13: <unknown function> + 0x2240a8 (0x55944f3cc0a8 in /home/drisspg/.conda/envs/dev/bin/python3) frame #14: _PyObject_Call + 0xb5 (0x55944f3dcb35 in /home/drisspg/.conda/envs/dev/bin/python3) frame #15: <unknown function> + 0x11350a (0x55944f2bb50a in /home/drisspg/.conda/envs/dev/bin/python3) frame #16: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #17: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #18: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #19: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #20: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #21: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #22: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #23: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #24: <unknown function> + 0x11350a (0x55944f2bb50a in /home/drisspg/.conda/envs/dev/bin/python3) frame #25: _PyObject_Call + 0x12b (0x55944f3dcbab in /home/drisspg/.conda/envs/dev/bin/python3) frame #26: <unknown function> + 0x11350a (0x55944f2bb50a in /home/drisspg/.conda/envs/dev/bin/python3) frame #27: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #28: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #29: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #30: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #31: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #32: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #33: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #34: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #35: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #36: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #37: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #38: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #39: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #40: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #41: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #42: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #43: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #44: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #45: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #46: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #47: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #48: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #49: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #50: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #51: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #52: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #53: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #54: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #55: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #56: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #57: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #58: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #59: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #60: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) frame #61: PyObject_Vectorcall + 0x2e (0x55944f3c0cbe in /home/drisspg/.conda/envs/dev/bin/python3) frame #62: <unknown function> + 0x112892 (0x55944f2ba892 in /home/drisspg/.conda/envs/dev/bin/python3) from user code: File "/home/drisspg/meta/pytorch/torch/nn/attention/flex_attention.py", line 890, in create_block_mask block_mask = _create_sparse_block_from_block_mask( File "/home/drisspg/meta/pytorch/torch/nn/attention/flex_attention.py", line 762, in _create_sparse_block_from_block_mask return BlockMask.from_kv_blocks( File "/home/drisspg/meta/pytorch/torch/nn/attention/flex_attention.py", line 350, in from_kv_blocks q_num_blocks, q_indices = _transpose_ordered(kv_num_blocks, kv_indices) File "/home/drisspg/meta/pytorch/torch/nn/attention/flex_attention.py", line 184, in _transpose_ordered dense = _ordered_to_dense(num_blocks_in_row, col_indices) File "/home/drisspg/meta/pytorch/torch/nn/attention/flex_attention.py", line 169, in _ordered_to_dense out = create_dense_batched(num_blocks_in_row, col_indices) File "/home/drisspg/meta/pytorch/torch/_functorch/apis.py", line 203, in wrapped return vmap_impl( File "/home/drisspg/meta/pytorch/torch/_functorch/vmap.py", line 331, in vmap_impl return _flat_vmap( File "/home/drisspg/meta/pytorch/torch/_functorch/vmap.py", line 479, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/home/drisspg/meta/pytorch/torch/_functorch/apis.py", line 203, in wrapped return vmap_impl( File "/home/drisspg/meta/pytorch/torch/_functorch/vmap.py", line 331, in vmap_impl return _flat_vmap( File "/home/drisspg/meta/pytorch/torch/_functorch/vmap.py", line 479, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/home/drisspg/meta/pytorch/torch/nn/attention/flex_attention.py", line 162, in create_dense_one dense_mask.scatter_(1, valid_indices.to(torch.int64), values) Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True To execute this test, run the following from the base repo dir: python test/inductor/test_flex_attention.py TestBlockMask.test_compiling_create_block_mask_no_recompile ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @Chillee @yanboliang @BoyuanFeng
true
2,760,011,236
remove allow-untyped-defs from torch/distributed/pipelining/_debug.py
bobrenjc93
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing" ]
9
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143871 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,760,011,176
remove allow-untyped-defs from _inductor/codegen/rocm/rocm_template_buffer.py
bobrenjc93
closed
[ "module: rocm", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ciflow/rocm" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143870 cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,760,011,123
remove allow-untyped-defs from distributed/elastic/multiprocessing/errors/handlers.py
bobrenjc93
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing", "release notes: distributed (torchelastic)" ]
12
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143869 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,760,011,088
remove allow-untyped-defs from fx/experimental/refinement_types.py
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "release notes: fx", "topic: not user facing", "fx" ]
10
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143868 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,760,011,032
remove allow-untyped-defs from torch/ao/quantization/experimental/APoT_tensor.py
bobrenjc93
closed
[ "release notes: quantization", "release notes: AO frontend" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #143873 * #143871 * #143870 * #143869 * #143868 * __->__ #143867
true
2,759,989,549
Fix batch-specific attention mod for NJT + Flex
jbschlosser
closed
[ "Merged", "ciflow/trunk", "topic: bug fixes", "release notes: nested tensor" ]
9
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143866 Fixes #143788
true
2,759,977,242
[fr][c10d] log trace capture enabled or not in flight recorder
c-p-i-o
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (c10d)" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #143878 * __->__ #143865 Summary: Refactor logging for flight recorder so we can log if the capture was with or without stack trace capture enabled. We introduce a new column ('trace_enabled') in the logger. Test Plan: Tested on local job and noted that correct output was produced. Internal link: https://fburl.com/scuba/c10d_flight_recorder/ulhqnmhg cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,759,949,743
Adaptive pool MPS
sebassaras02
open
[ "triaged", "enhancement", "module: pooling", "module: mps" ]
1
NONE
### 🚀 The feature, motivation and pitch Hello, I've been trying to train a VGG architecture over a M3 chip. I have this mistake: RuntimeError: Adaptive pool MPS: output sizes must be divisible by input sizes. Non-divisible input sizes are not implemented on MPS device yet. For now, you can manually transfer tensor to cpu in this case. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/96056) ### Alternatives _No response_ ### Additional context _No response_ cc @mikaylagawarecki @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
2,759,820,850
Composite RoPE gives ridiculous profiling trace
Mmmofan
closed
[ "triaged" ]
1
NONE
### 🐛 Describe the bug As I described in https://discuss.pytorch.org/t/composite-rope-backward-gives-a-large-tocopybackward0-in-profiling-trace/214668 , this code outputs a ridiculous trace json: ```python #!/usr/bin/env python # encoding: utf-8 import torch from torch.nn import functional as F import time import os from functools import partial import torch import torch.distributed as dist from torch.profiler import ( profile, ProfilerActivity, schedule, ) def trace_handler(profiler, file_path, op_name): file_path = os.path.join(file_path, f"profiling-{op_name}.trace.json") profiler.export_chrome_trace(file_path) def get_profiler(file_path, op_name): warmup = 5 profile_schedule = schedule(wait=2, warmup=warmup, active=1) profiler = profile( activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], schedule=profile_schedule, record_shapes=True, on_trace_ready=partial(trace_handler, file_path=file_path, op_name=op_name), with_flops=True, profile_memory=True, with_modules=True, ) return profiler def rotate_half(t: torch.Tensor) -> torch.Tensor: t_1, t_2 = torch.chunk(t, 2, dim=-1) return torch.cat((-t_2, t_1), dim=-1) def apply_rotary_pos_emb_bshd(t: torch.Tensor, freqs: torch.Tensor): rot_dim = freqs.shape[-1] # ideally t_pass is empty so rotary pos embedding is applied to all tensor t t, t_pass = t[..., :rot_dim], t[..., rot_dim:] # first part is cosine component # second part is sine component, need to change signs with _rotate_half method cos_ = torch.cos(freqs).to(t.dtype) sin_ = torch.sin(freqs).to(t.dtype) t = (t * cos_) + (rotate_half(t) * sin_) return torch.cat((t, t_pass), dim=-1) def test_ops(op_func, op_name, in_params: dict): # for warm up out = op_func(**in_params) loss = out.sum() loss.backward() profiler = get_profiler("/workspace", op_name) test_iters = 10 torch.cuda.synchronize() start = time.time() with profiler as prof: for _ in range(test_iters): out = op_func(**in_params) loss = out.sum() loss.backward() prof.step() torch.cuda.synchronize() using_time = time.time() - start print(f'{op_name} \t cost: {using_time}') def test_rope(): max_seq_len = 4096 batch_size = 10 head_num = 32 dim = 128 * 32 dim = dim // head_num input_shape = (max_seq_len, batch_size, head_num, dim) input_ts = torch.randn(input_shape, dtype=torch.float32, requires_grad=True) freqs_cis_i = torch.randn(max_seq_len, dim) freqs_cis_4d = freqs_cis.reshape(max_seq_len, 1, 1, dim) input_data_out_F = { "t": input_ts.cuda(), "freqs": freqs_cis_4d.cuda() } test_ops(op_func=apply_rotary_pos_emb_bshd, op_name="rope", in_params=input_data_out_F, ) if __name__ == '__main__': test_rope() ``` The trace looks like <img width="1304" alt="image" src="https://github.com/user-attachments/assets/3d3214b2-8fdd-480f-b5a5-9c11e7f7b82b" /> ### Versions CUDA: 12.2 PyTorch: v2.4.0 System: Ubuntu22.04
true
2,759,745,960
pytorch v2.2.2 build for nvidia jetson orin nano 8GB
lida2003
closed
[ "module: build", "triaged", "module: jetson" ]
2
NONE
### 🐛 Describe the bug pytorch v2.2.2 build for nvidia jetson orin 8GB Previous discussion here FYI: https://forums.developer.nvidia.com/t/request-build-script-for-pytorch-or-up-to-date-pytorh-binary-release-supporting-jetson-boards-running-l4t35-6-ubuntu20-04/316972/12 ``` commit 39901f229520a5256505ec24782f716ee7ddc843 (HEAD, tag: v2.2.2-rc3, tag: v2.2.2, origin/release/2.2) Author: pytorchbot <soumith+bot@pytorch.org> Date: Mon Mar 25 14:33:04 2024 -0700 Fix lower precision check for MKLDNN on Windows (#122645) Fixes #120788 Pull Request resolved: https://github.com/pytorch/pytorch/pull/121618 Approved by: https://github.com/xuhancn, https://github.com/jgong5, https://github.com/mingfeima, https://github.com/seemethere (cherry picked from commit 03717430cc54609189cc7df593b2c96a99fb7f55) Co-authored-by: CaoE <e.cao@intel.com> ``` ``` Software part of jetson-stats 4.2.12 - (c) 2024, Raffaello Bonghi Model: NVIDIA Orin Nano Developer Kit - Jetpack 5.1.4 [L4T 35.6.0] NV Power Mode[0]: 15W Serial Number: [XXX Show with: jetson_release -s XXX] Hardware: - P-Number: p3767-0005 - Module: NVIDIA Jetson Orin Nano (Developer kit) Platform: - Distribution: Ubuntu 20.04 focal - Release: 5.10.216-tegra jtop: - Version: 4.2.12 - Service: Active Libraries: - CUDA: 11.4.315 - cuDNN: 8.6.0.166 - TensorRT: 8.5.2.2 - VPI: 2.4.8 - OpenCV: 4.9.0 - with CUDA: YES DeepStream C/C++ SDK version: 6.3 Python Environment: Python 3.8.10 GStreamer: YES (1.16.3) NVIDIA CUDA: YES (ver 11.4, CUFFT CUBLAS FAST_MATH) OpenCV version: 4.9.0 CUDA True YOLO version: 8.3.33 Torch version: 2.1.0a0+41361538.nv23.06 Torchvision version: 0.16.1+fdea156 DeepStream SDK version: 1.1.8 ``` ### Error logs ``` [4405/5756] Building CXX object caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_1.cpp.o FAILED: caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_1.cpp.o /usr/bin/ccache /usr/bin/c++ -DAT_PER_OPERATOR_HEADERS -DCAFFE2_BUILD_MAIN_LIB -DCPUINFO_SUPPORTED_PLATFORM=1 -DFMT_HEADER_ONLY=1 -DFXDIV_USE_INLINE_ASSEMBLY=0 -DHAVE_MALLOC_USABLE_SIZE=1 -DHAVE_MMAP=1 -DHAVE_SHM_OPEN=1 -DHAVE_SHM_UNLINK=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNNP_CONVOLUTION_ONLY=0 -DNNP_INFERENCE_ONLY=0 -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DUSE_EXTERNAL_MZCRC -D_FILE_OFFSET_BITS=64 -Dtorch_cpu_EXPORTS -I/home/daniel/Work/pytorch_v2.2.2/build/aten/src -I/home/daniel/Work/pytorch_v2.2.2/aten/src -I/home/daniel/Work/pytorch_v2.2.2/build -I/home/daniel/Work/pytorch_v2.2.2 -I/home/daniel/Work/pytorch_v2.2.2/cmake/../third_party/benchmark/include -I/home/daniel/Work/pytorch_v2.2.2/third_party/onnx -I/home/daniel/Work/pytorch_v2.2.2/build/third_party/onnx -I/home/daniel/Work/pytorch_v2.2.2/third_party/foxi -I/home/daniel/Work/pytorch_v2.2.2/build/third_party/foxi -I/home/daniel/Work/pytorch_v2.2.2/torch/csrc/api -I/home/daniel/Work/pytorch_v2.2.2/torch/csrc/api/include -I/home/daniel/Work/pytorch_v2.2.2/caffe2/aten/src/TH -I/home/daniel/Work/pytorch_v2.2.2/build/caffe2/aten/src/TH -I/home/daniel/Work/pytorch_v2.2.2/build/caffe2/aten/src -I/home/daniel/Work/pytorch_v2.2.2/build/caffe2/../aten/src -I/home/daniel/Work/pytorch_v2.2.2/torch/csrc -I/home/daniel/Work/pytorch_v2.2.2/third_party/miniz-2.1.0 -I/home/daniel/Work/pytorch_v2.2.2/third_party/kineto/libkineto/include -I/home/daniel/Work/pytorch_v2.2.2/third_party/kineto/libkineto/src -I/home/daniel/Work/pytorch_v2.2.2/aten/src/ATen/.. -I/home/daniel/Work/pytorch_v2.2.2/third_party/FXdiv/include -I/home/daniel/Work/pytorch_v2.2.2/c10/.. -I/home/daniel/Work/pytorch_v2.2.2/third_party/pthreadpool/include -I/home/daniel/Work/pytorch_v2.2.2/third_party/cpuinfo/include -I/home/daniel/Work/pytorch_v2.2.2/third_party/NNPACK/include -I/home/daniel/Work/pytorch_v2.2.2/third_party/FP16/include -I/home/daniel/Work/pytorch_v2.2.2/third_party/fmt/include -I/home/daniel/Work/pytorch_v2.2.2/third_party/flatbuffers/include -isystem /home/daniel/Work/pytorch_v2.2.2/cmake/../third_party/googletest/googlemock/include -isystem /home/daniel/Work/pytorch_v2.2.2/cmake/../third_party/googletest/googletest/include -isystem /home/daniel/Work/pytorch_v2.2.2/third_party/protobuf/src -isystem /home/daniel/Work/pytorch_v2.2.2/third_party/XNNPACK/include -isystem /home/daniel/Work/pytorch_v2.2.2/cmake/../third_party/eigen -isystem /usr/local/cuda/include -isystem /home/daniel/Work/pytorch_v2.2.2/build/include -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow -O3 -DNDEBUG -DNDEBUG -std=gnu++17 -fPIC -D__NEON__ -Wall -Wextra -Wdeprecated -Wno-unused-parameter -Wno-unused-function -Wno-missing-field-initializers -Wno-unknown-pragmas -Wno-type-limits -Wno-array-bounds -Wno-strict-overflow -Wno-strict-aliasing -Wno-maybe-uninitialized -fvisibility=hidden -O2 -pthread -fopenmp -MD -MT caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_1.cpp.o -MF caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_1.cpp.o.d -o caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_1.cpp.o -c /home/daniel/Work/pytorch_v2.2.2/build/aten/src/ATen/Operators_1.cpp c++: fatal error: Killed signal terminated program cc1plus compilation terminated. [4406/5756] Building CXX object caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/RegisterCPU.cpp.o FAILED: caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/RegisterCPU.cpp.o /usr/bin/ccache /usr/bin/c++ -DAT_PER_OPERATOR_HEADERS -DCAFFE2_BUILD_MAIN_LIB -DCPUINFO_SUPPORTED_PLATFORM=1 -DFMT_HEADER_ONLY=1 -DFXDIV_USE_INLINE_ASSEMBLY=0 -DHAVE_MALLOC_USABLE_SIZE=1 -DHAVE_MMAP=1 -DHAVE_SHM_OPEN=1 -DHAVE_SHM_UNLINK=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNNP_CONVOLUTION_ONLY=0 -DNNP_INFERENCE_ONLY=0 -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DUSE_EXTERNAL_MZCRC -D_FILE_OFFSET_BITS=64 -Dtorch_cpu_EXPORTS -I/home/daniel/Work/pytorch_v2.2.2/build/aten/src -I/home/daniel/Work/pytorch_v2.2.2/aten/src -I/home/daniel/Work/pytorch_v2.2.2/build -I/home/daniel/Work/pytorch_v2.2.2 -I/home/daniel/Work/pytorch_v2.2.2/cmake/../third_party/benchmark/include -I/home/daniel/Work/pytorch_v2.2.2/third_party/onnx -I/home/daniel/Work/pytorch_v2.2.2/build/third_party/onnx -I/home/daniel/Work/pytorch_v2.2.2/third_party/foxi -I/home/daniel/Work/pytorch_v2.2.2/build/third_party/foxi -I/home/daniel/Work/pytorch_v2.2.2/torch/csrc/api -I/home/daniel/Work/pytorch_v2.2.2/torch/csrc/api/include -I/home/daniel/Work/pytorch_v2.2.2/caffe2/aten/src/TH -I/home/daniel/Work/pytorch_v2.2.2/build/caffe2/aten/src/TH -I/home/daniel/Work/pytorch_v2.2.2/build/caffe2/aten/src -I/home/daniel/Work/pytorch_v2.2.2/build/caffe2/../aten/src -I/home/daniel/Work/pytorch_v2.2.2/torch/csrc -I/home/daniel/Work/pytorch_v2.2.2/third_party/miniz-2.1.0 -I/home/daniel/Work/pytorch_v2.2.2/third_party/kineto/libkineto/include -I/home/daniel/Work/pytorch_v2.2.2/third_party/kineto/libkineto/src -I/home/daniel/Work/pytorch_v2.2.2/aten/src/ATen/.. -I/home/daniel/Work/pytorch_v2.2.2/third_party/FXdiv/include -I/home/daniel/Work/pytorch_v2.2.2/c10/.. -I/home/daniel/Work/pytorch_v2.2.2/third_party/pthreadpool/include -I/home/daniel/Work/pytorch_v2.2.2/third_party/cpuinfo/include -I/home/daniel/Work/pytorch_v2.2.2/third_party/NNPACK/include -I/home/daniel/Work/pytorch_v2.2.2/third_party/FP16/include -I/home/daniel/Work/pytorch_v2.2.2/third_party/fmt/include -I/home/daniel/Work/pytorch_v2.2.2/third_party/flatbuffers/include -isystem /home/daniel/Work/pytorch_v2.2.2/cmake/../third_party/googletest/googlemock/include -isystem /home/daniel/Work/pytorch_v2.2.2/cmake/../third_party/googletest/googletest/include -isystem /home/daniel/Work/pytorch_v2.2.2/third_party/protobuf/src -isystem /home/daniel/Work/pytorch_v2.2.2/third_party/XNNPACK/include -isystem /home/daniel/Work/pytorch_v2.2.2/cmake/../third_party/eigen -isystem /usr/local/cuda/include -isystem /home/daniel/Work/pytorch_v2.2.2/build/include -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow -O3 -DNDEBUG -DNDEBUG -std=gnu++17 -fPIC -D__NEON__ -Wall -Wextra -Wdeprecated -Wno-unused-parameter -Wno-unused-function -Wno-missing-field-initializers -Wno-unknown-pragmas -Wno-type-limits -Wno-array-bounds -Wno-strict-overflow -Wno-strict-aliasing -Wno-maybe-uninitialized -fvisibility=hidden -O2 -pthread -fopenmp -MD -MT caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/RegisterCPU.cpp.o -MF caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/RegisterCPU.cpp.o.d -o caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/RegisterCPU.cpp.o -c /home/daniel/Work/pytorch_v2.2.2/build/aten/src/ATen/RegisterCPU.cpp c++: fatal error: Killed signal terminated program cc1plus compilation terminated. [4412/5756] Building CXX object caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_2.cpp.o ninja: build stopped: subcommand failed. ``` ### Versions ``` daniel@daniel-nvidia:~/Work/pytorch$ python3 collect_env.py Collecting environment information... PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (aarch64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 Clang version: Could not collect CMake version: version 3.31.0 Libc version: glibc-2.31 Python version: 3.8.10 (default, Nov 7 2024, 13:10:47) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.10.216-tegra-aarch64-with-glibc2.29 Is CUDA available: N/A CUDA runtime version: 11.4.315 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Probably one of the following: /usr/lib/aarch64-linux-gnu/libcudnn.so.8.6.0 /usr/lib/aarch64-linux-gnu/libcudnn_adv_infer.so.8.6.0 /usr/lib/aarch64-linux-gnu/libcudnn_adv_train.so.8.6.0 /usr/lib/aarch64-linux-gnu/libcudnn_cnn_infer.so.8.6.0 /usr/lib/aarch64-linux-gnu/libcudnn_cnn_train.so.8.6.0 /usr/lib/aarch64-linux-gnu/libcudnn_ops_infer.so.8.6.0 /usr/lib/aarch64-linux-gnu/libcudnn_ops_train.so.8.6.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: aarch64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 6 On-line CPU(s) list: 0-5 Thread(s) per core: 1 Core(s) per socket: 3 Socket(s): 2 Vendor ID: ARM Model: 1 Model name: ARMv8 Processor rev 1 (v8l) Stepping: r0p1 CPU max MHz: 1510.4000 CPU min MHz: 115.2000 BogoMIPS: 62.50 L1d cache: 384 KiB L1i cache: 384 KiB L2 cache: 1.5 MiB L3 cache: 2 MiB Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; __user pointer sanitization Vulnerability Spectre v2: Mitigation; CSV2, but not BHB Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop asimddp uscat ilrcpc flagm Versions of relevant libraries: [pip3] numpy==1.23.5 [pip3] onnx==1.17.0 [pip3] onnx-graphsurgeon==0.3.12 [pip3] onnxruntime==1.16.3 [pip3] onnxruntime-gpu==1.17.0 [pip3] onnxslim==0.1.36 [pip3] optree==0.13.1 [pip3] torch==2.1.0a0+41361538.nv23.6 [pip3] torch2trt==0.5.0 [pip3] torchvision==0.16.1 [conda] Could not collect ``` cc @malfet @seemethere @ptrblck @puririshi98 @chauhang @penguinwu
true
2,759,696,192
_transform_bias_rescale_qkv cpu op get error on debug build
garfield1997
open
[ "module: nn", "triaged" ]
2
CONTRIBUTOR
### 🐛 Describe the bug The following code will produce the following error code ``` import torch qkv = torch.randn([4, 16, 576]) qkv_bias = torch.randn([576]) num_heads=4 torch._transform_bias_rescale_qkv( qkv, qkv_bias, num_heads ) ``` output ``` Traceback (most recent call last): File "/workspace/testops.py", line 7, in <module> torch._transform_bias_rescale_qkv( RuntimeError: t.storage().use_count() == 1 INTERNAL ASSERT FAILED at "/workspace/pytorch/torch/csrc/autograd/autograd_not_implemented_fallback.cpp":413, please report a bug to PyTorch. ``` ### Versions nightly hash b74622335a2c4776fa654939ec89bf1ef45b8a2f (pytorch) root@bjys1040:/workspace# python collect_env.py Collecting environment information... PyTorch version: 2.6.0a0+gitb746223 Is debug build: True CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.2 Libc version: glibc-2.35 Python version: 3.10.8 (main, Nov 6 2024, 16:44:26) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.4.0-42-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 104 On-line CPU(s) list: 0-103 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 26 Socket(s): 2 Stepping: 7 CPU max MHz: 4000.0000 CPU min MHz: 1000.0000 BogoMIPS: 4200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.6 MiB (52 instances) L1i cache: 1.6 MiB (52 instances) L2 cache: 52 MiB (52 instances) L3 cache: 71.5 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-25,52-77 NUMA node1 CPU(s): 26-51,78-103 Vulnerability Itlb multihit: KVM: Mitigation: Split huge pages Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] optree==0.13.1 [pip3] torch==2.6.0.dev20241215+cpu [pip3] torchaudio==2.6.0.dev20241215+cpu [pip3] torchvision==0.22.0.dev20241215+cpu [conda] Could not collect cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
true
2,759,665,288
MPSNDArray 限制了单个 NDArray 的内存大小上限为 4GB
OutisLi
open
[ "needs reproduction", "module: crash", "triaged", "module: 64-bit", "module: mps" ]
2
NONE
### 🐛 Describe the bug /AppleInternal/Library/BuildRoots/b11baf73-9ee0-11ef-b7b4-7aebe1f78c73/Library/Caches/com.apple.xbs/Sources/MetalPerformanceShaders/MPSCore/Types/MPSNDArray.mm:850: failed assertion `[MPSNDArray initWithDevice:descriptor:isTextureBacked:] Error: total bytes of NDArray > 2**32' [1] 13512 abort /opt/homebrew/Caskroom/miniforge/base/envs/pyTrim/bin/python /opt/homebrew/Caskroom/miniforge/base/envs/pyTrim/lib/python3.12/multiprocessing/resource_tracker.py:254: UserWarning: resource_tracker: There appear to be 1 leaked semaphore objects to clean up at shutdown warnings.warn('resource_tracker: There appear to be %d ' However, my program only consumes little ram, but with several very large tensor, the total ram is enough. How to overcome this limit? ### Versions pytorch 2.5.1 cpu_generic_py312h99d64c8_6 conda-forge I am using mac mini with m4Pro, 64G RAM, macos15.2, cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
2,759,644,273
Make init_method deprecated to fix TCP connection refused error
taozhiwei
open
[ "oncall: distributed", "triaged", "open source", "topic: not user facing", "module: inductor" ]
11
CONTRIBUTOR
``` import os os.environ["TORCH_CPP_LOG_LEVEL"] = "INFO" os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" import torch import torch.distributed as dist def main(): rank = int(os.environ["RANK"]) if "RANK" in os.environ else 0 world_size = int( os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 dist.init_process_group("gloo", rank=rank, world_size=world_size,init_method="tcp://localhost:35980") dist.destroy_process_group() if __name__ == "__main__": main() ``` Save the above code to `test_init_process.py,` then run `torchrun --nproc_per_node=4 test_init_process.py` will result in the following errors`[I1226 11:25:16.460453259 socket.cpp:919] [c10d - trace] The server socket on localhost:35980 is not yet listening (errno: 111 - Connection refused), will retry.` you must use `torchrun --nproc_per_node=4 --rdzv-endpoint localhost:35980 test_init_process.py` can be executed normally. Because the default IP and port set by [https://github.com/pytorch/pytorch/blob/v2.6.0-rc3/torch/distributed/run.py#L597-L616](https://github.com/pytorch/pytorch/blob/v2.6.0-rc3/torch/distributed/run.py#L597-L616) are not consistent with the settings the parameter init_method of method init_process_group. BTW,The default IP and port settings will prevent [this code](https://github.com/pytorch/pytorch/blob/v2.6.0-rc3/torch/distributed/launcher/api.py#L170-L173) from running,Should we remove the default IP and port settings? cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,759,631,923
`@torch.jit.script` causes `pytest-cov` to miss function body
anvdn
open
[ "oncall: jit", "feature" ]
1
NONE
### 🐛 Describe the bug When decorating a function with `@torch.jit.script`, its body's code coverage is ignored by `pytest-cov`. Even with exhaustive testing, the coverage report always considered the function code as uncovered. ### Instructions to reproduce ``` root/ │ ├── ml_framework/ │ └── module.py │ └── tests/ └── test_module.py ``` `module.py` ```python import torch @torch.jit.script def function() -> int: return 0 ``` `test_module.py` ``` from unittest import TestCase from module import function class TestModule(TestCase): def test_function(self) -> None: self.assertEqual(0, function()) ``` Run: ``` pytest --cov=ml_framework.module test_module.py --cov-report html cov/ ``` - with the decorator (the function body is tested hence should appear as covered) <img width="400" alt="image" src="https://github.com/user-attachments/assets/c1b2e28e-b61b-4126-a2ac-b38b8a511844" /> - without the decorator <img width="400" alt="image" src="https://github.com/user-attachments/assets/201d21e1-e822-4daa-8bb8-e41748e45de5" /> ### Versions PyTorch version: 2.2.2 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 14.6.1 (x86_64) GCC version: Could not collect Clang version: 15.0.0 (clang-1500.3.9.4) CMake version: Could not collect Libc version: N/A Python version: 3.11.7 (main, May 15 2024, 22:19:42) [Clang 15.0.0 (clang-1500.3.9.4)] (64-bit runtime) Python platform: macOS-14.6.1-x86_64-i386-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz Versions of relevant libraries: [pip3] mypy==1.13.0 [pip3] mypy-boto3-ecr==1.35.21 [pip3] mypy-boto3-s3==1.35.76.post1 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] onnx==1.17.0 [pip3] onnxruntime==1.20.1 [pip3] pytorch-lightning==2.4.0 [pip3] torch==2.2.2+cpu [pip3] torchmetrics==1.4.2 [pip3] torchvision==0.17.2+cpu cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
2,759,624,458
pytorch v2.3.1 build for nvidia jetson orin nano 8GB
lida2003
closed
[ "module: build", "module: jetson" ]
1
NONE
### 🐛 Describe the bug pytorch v2.3.1 build for nvidia jetson orin 8GB Previous discussion here FYI: https://forums.developer.nvidia.com/t/request-build-script-for-pytorch-or-up-to-date-pytorh-binary-release-supporting-jetson-boards-running-l4t35-6-ubuntu20-04/316972/12 ``` $ git log -n 1 commit 63d5e9221bedd1546b7d364b5ce4171547db12a9 (HEAD, tag: v2.3.1, origin/release/2.3) Author: pytorchbot <soumith+bot@pytorch.org> Date: Wed May 29 08:15:01 2024 -0700 [EZ] Pin scipy to 1.12 for Py-3.12 (#127322) [EZ] Pin scipy to 1.12 for Py-3.12 (#123795) This caused false positive failures/reverts for https://github.com/pytorch/pytorch/pull/123689 and https://github.com/pytorch/pytorch/pull/123595 Fixes https://github.com/pytorch/pytorch/issues/123655 Pull Request resolved: https://github.com/pytorch/pytorch/pull/123795 Approved by: https://github.com/huydhn (cherry picked from commit 2a597cfd2c63459dd303cf7922eb4c3750a76e75) Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com> ``` ``` Software part of jetson-stats 4.2.12 - (c) 2024, Raffaello Bonghi Model: NVIDIA Orin Nano Developer Kit - Jetpack 5.1.4 [L4T 35.6.0] NV Power Mode[0]: 15W Serial Number: [XXX Show with: jetson_release -s XXX] Hardware: - P-Number: p3767-0005 - Module: NVIDIA Jetson Orin Nano (Developer kit) Platform: - Distribution: Ubuntu 20.04 focal - Release: 5.10.216-tegra jtop: - Version: 4.2.12 - Service: Active Libraries: - CUDA: 11.4.315 - cuDNN: 8.6.0.166 - TensorRT: 8.5.2.2 - VPI: 2.4.8 - OpenCV: 4.9.0 - with CUDA: YES DeepStream C/C++ SDK version: 6.3 Python Environment: Python 3.8.10 GStreamer: YES (1.16.3) NVIDIA CUDA: YES (ver 11.4, CUFFT CUBLAS FAST_MATH) OpenCV version: 4.9.0 CUDA True YOLO version: 8.3.33 Torch version: 2.1.0a0+41361538.nv23.06 Torchvision version: 0.16.1+fdea156 DeepStream SDK version: 1.1.8 ``` ### Error logs - LOG 1: first build ``` FAILED: caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_1.cpp.o /usr/bin/ccache /usr/bin/c++ -DAT_PER_OPERATOR_HEADERS -DCAFFE2_BUILD_MAIN_LIB -DCPUINFO_SUPPORTED_PLATFORM=1 -DFLASHATTENTION_DISABLE_ALIBI -DFMT_HEADER_ONLY=1 -DFXDIV_USE_INLINE_ASSEMBLY=0 -DHAVE_MALLOC_USABLE_SIZE=1 -DHAVE_MMAP=1 -DHAVE_SHM_OPEN=1 -DHAVE_SHM_UNLINK=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNNP_CONVOLUTION_ONLY=0 -DNNP_INFERENCE_ONLY=0 -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DUSE_EXTERNAL_MZCRC -D_FILE_OFFSET_BITS=64 -Dtorch_cpu_EXPORTS -I/home/daniel/Work/pytorch_v2.3.1/build/aten/src -I/home/daniel/Work/pytorch_v2.3.1/aten/src -I/home/daniel/Work/pytorch_v2.3.1/build -I/home/daniel/Work/pytorch_v2.3.1 -I/home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/benchmark/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/onnx -I/home/daniel/Work/pytorch_v2.3.1/build/third_party/onnx -I/home/daniel/Work/pytorch_v2.3.1/third_party/foxi -I/home/daniel/Work/pytorch_v2.3.1/build/third_party/foxi -I/home/daniel/Work/pytorch_v2.3.1/torch/csrc/api -I/home/daniel/Work/pytorch_v2.3.1/torch/csrc/api/include -I/home/daniel/Work/pytorch_v2.3.1/caffe2/aten/src/TH -I/home/daniel/Work/pytorch_v2.3.1/build/caffe2/aten/src/TH -I/home/daniel/Work/pytorch_v2.3.1/build/caffe2/aten/src -I/home/daniel/Work/pytorch_v2.3.1/build/caffe2/../aten/src -I/home/daniel/Work/pytorch_v2.3.1/torch/csrc -I/home/daniel/Work/pytorch_v2.3.1/third_party/miniz-2.1.0 -I/home/daniel/Work/pytorch_v2.3.1/third_party/kineto/libkineto/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/kineto/libkineto/src -I/home/daniel/Work/pytorch_v2.3.1/aten/src/ATen/.. -I/home/daniel/Work/pytorch_v2.3.1/third_party/FXdiv/include -I/home/daniel/Work/pytorch_v2.3.1/c10/.. -I/home/daniel/Work/pytorch_v2.3.1/third_party/pthreadpool/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/cpuinfo/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/NNPACK/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/FP16/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/fmt/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/flatbuffers/include -isystem /home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/googletest/googlemock/include -isystem /home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/googletest/googletest/include -isystem /home/daniel/Work/pytorch_v2.3.1/third_party/protobuf/src -isystem /home/daniel/Work/pytorch_v2.3.1/third_party/XNNPACK/include -isystem /home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/eigen -isystem /usr/local/cuda/include -isystem /home/daniel/Work/pytorch_v2.3.1/build/include -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow -O3 -DNDEBUG -DNDEBUG -std=gnu++17 -fPIC -D__NEON__ -Wall -Wextra -Wdeprecated -Wno-unused-parameter -Wno-unused-function -Wno-missing-field-initializers -Wno-unknown-pragmas -Wno-type-limits -Wno-array-bounds -Wno-strict-overflow -Wno-strict-aliasing -Wno-maybe-uninitialized -fvisibility=hidden -O2 -pthread -fopenmp -MD -MT caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_1.cpp.o -MF caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_1.cpp.o.d -o caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_1.cpp.o -c /home/daniel/Work/pytorch_v2.3.1/build/aten/src/ATen/Operators_1.cpp c++: fatal error: Killed signal terminated program cc1plus compilation terminated. [5192/6660] Building CXX object caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_2.cpp.o FAILED: caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_2.cpp.o /usr/bin/ccache /usr/bin/c++ -DAT_PER_OPERATOR_HEADERS -DCAFFE2_BUILD_MAIN_LIB -DCPUINFO_SUPPORTED_PLATFORM=1 -DFLASHATTENTION_DISABLE_ALIBI -DFMT_HEADER_ONLY=1 -DFXDIV_USE_INLINE_ASSEMBLY=0 -DHAVE_MALLOC_USABLE_SIZE=1 -DHAVE_MMAP=1 -DHAVE_SHM_OPEN=1 -DHAVE_SHM_UNLINK=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNNP_CONVOLUTION_ONLY=0 -DNNP_INFERENCE_ONLY=0 -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DUSE_EXTERNAL_MZCRC -D_FILE_OFFSET_BITS=64 -Dtorch_cpu_EXPORTS -I/home/daniel/Work/pytorch_v2.3.1/build/aten/src -I/home/daniel/Work/pytorch_v2.3.1/aten/src -I/home/daniel/Work/pytorch_v2.3.1/build -I/home/daniel/Work/pytorch_v2.3.1 -I/home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/benchmark/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/onnx -I/home/daniel/Work/pytorch_v2.3.1/build/third_party/onnx -I/home/daniel/Work/pytorch_v2.3.1/third_party/foxi -I/home/daniel/Work/pytorch_v2.3.1/build/third_party/foxi -I/home/daniel/Work/pytorch_v2.3.1/torch/csrc/api -I/home/daniel/Work/pytorch_v2.3.1/torch/csrc/api/include -I/home/daniel/Work/pytorch_v2.3.1/caffe2/aten/src/TH -I/home/daniel/Work/pytorch_v2.3.1/build/caffe2/aten/src/TH -I/home/daniel/Work/pytorch_v2.3.1/build/caffe2/aten/src -I/home/daniel/Work/pytorch_v2.3.1/build/caffe2/../aten/src -I/home/daniel/Work/pytorch_v2.3.1/torch/csrc -I/home/daniel/Work/pytorch_v2.3.1/third_party/miniz-2.1.0 -I/home/daniel/Work/pytorch_v2.3.1/third_party/kineto/libkineto/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/kineto/libkineto/src -I/home/daniel/Work/pytorch_v2.3.1/aten/src/ATen/.. -I/home/daniel/Work/pytorch_v2.3.1/third_party/FXdiv/include -I/home/daniel/Work/pytorch_v2.3.1/c10/.. -I/home/daniel/Work/pytorch_v2.3.1/third_party/pthreadpool/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/cpuinfo/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/NNPACK/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/FP16/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/fmt/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/flatbuffers/include -isystem /home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/googletest/googlemock/include -isystem /home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/googletest/googletest/include -isystem /home/daniel/Work/pytorch_v2.3.1/third_party/protobuf/src -isystem /home/daniel/Work/pytorch_v2.3.1/third_party/XNNPACK/include -isystem /home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/eigen -isystem /usr/local/cuda/include -isystem /home/daniel/Work/pytorch_v2.3.1/build/include -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow -O3 -DNDEBUG -DNDEBUG -std=gnu++17 -fPIC -D__NEON__ -Wall -Wextra -Wdeprecated -Wno-unused-parameter -Wno-unused-function -Wno-missing-field-initializers -Wno-unknown-pragmas -Wno-type-limits -Wno-array-bounds -Wno-strict-overflow -Wno-strict-aliasing -Wno-maybe-uninitialized -fvisibility=hidden -O2 -pthread -fopenmp -MD -MT caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_2.cpp.o -MF caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_2.cpp.o.d -o caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_2.cpp.o -c /home/daniel/Work/pytorch_v2.3.1/build/aten/src/ATen/Operators_2.cpp c++: fatal error: Killed signal terminated program cc1plus compilation terminated. [5193/6660] Building CXX object caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/RegisterCPU.cpp.o FAILED: caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/RegisterCPU.cpp.o /usr/bin/ccache /usr/bin/c++ -DAT_PER_OPERATOR_HEADERS -DCAFFE2_BUILD_MAIN_LIB -DCPUINFO_SUPPORTED_PLATFORM=1 -DFLASHATTENTION_DISABLE_ALIBI -DFMT_HEADER_ONLY=1 -DFXDIV_USE_INLINE_ASSEMBLY=0 -DHAVE_MALLOC_USABLE_SIZE=1 -DHAVE_MMAP=1 -DHAVE_SHM_OPEN=1 -DHAVE_SHM_UNLINK=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNNP_CONVOLUTION_ONLY=0 -DNNP_INFERENCE_ONLY=0 -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DUSE_EXTERNAL_MZCRC -D_FILE_OFFSET_BITS=64 -Dtorch_cpu_EXPORTS -I/home/daniel/Work/pytorch_v2.3.1/build/aten/src -I/home/daniel/Work/pytorch_v2.3.1/aten/src -I/home/daniel/Work/pytorch_v2.3.1/build -I/home/daniel/Work/pytorch_v2.3.1 -I/home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/benchmark/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/onnx -I/home/daniel/Work/pytorch_v2.3.1/build/third_party/onnx -I/home/daniel/Work/pytorch_v2.3.1/third_party/foxi -I/home/daniel/Work/pytorch_v2.3.1/build/third_party/foxi -I/home/daniel/Work/pytorch_v2.3.1/torch/csrc/api -I/home/daniel/Work/pytorch_v2.3.1/torch/csrc/api/include -I/home/daniel/Work/pytorch_v2.3.1/caffe2/aten/src/TH -I/home/daniel/Work/pytorch_v2.3.1/build/caffe2/aten/src/TH -I/home/daniel/Work/pytorch_v2.3.1/build/caffe2/aten/src -I/home/daniel/Work/pytorch_v2.3.1/build/caffe2/../aten/src -I/home/daniel/Work/pytorch_v2.3.1/torch/csrc -I/home/daniel/Work/pytorch_v2.3.1/third_party/miniz-2.1.0 -I/home/daniel/Work/pytorch_v2.3.1/third_party/kineto/libkineto/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/kineto/libkineto/src -I/home/daniel/Work/pytorch_v2.3.1/aten/src/ATen/.. -I/home/daniel/Work/pytorch_v2.3.1/third_party/FXdiv/include -I/home/daniel/Work/pytorch_v2.3.1/c10/.. -I/home/daniel/Work/pytorch_v2.3.1/third_party/pthreadpool/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/cpuinfo/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/NNPACK/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/FP16/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/fmt/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/flatbuffers/include -isystem /home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/googletest/googlemock/include -isystem /home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/googletest/googletest/include -isystem /home/daniel/Work/pytorch_v2.3.1/third_party/protobuf/src -isystem /home/daniel/Work/pytorch_v2.3.1/third_party/XNNPACK/include -isystem /home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/eigen -isystem /usr/local/cuda/include -isystem /home/daniel/Work/pytorch_v2.3.1/build/include -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow -O3 -DNDEBUG -DNDEBUG -std=gnu++17 -fPIC -D__NEON__ -Wall -Wextra -Wdeprecated -Wno-unused-parameter -Wno-unused-function -Wno-missing-field-initializers -Wno-unknown-pragmas -Wno-type-limits -Wno-array-bounds -Wno-strict-overflow -Wno-strict-aliasing -Wno-maybe-uninitialized -fvisibility=hidden -O2 -pthread -fopenmp -MD -MT caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/RegisterCPU.cpp.o -MF caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/RegisterCPU.cpp.o.d -o caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/RegisterCPU.cpp.o -c /home/daniel/Work/pytorch_v2.3.1/build/aten/src/ATen/RegisterCPU.cpp c++: fatal error: Killed signal terminated program cc1plus compilation terminated. [5198/6660] Building CXX object caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_3.cpp.o ninja: build stopped: subcommand failed. ``` - LOG 2: second build ``` Building wheel torch-2.3.1 -- Building version 2.3.1 cmake --build . --target install --config Release [2/1464] Building CXX object caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_1.cpp.o FAILED: caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_1.cpp.o /usr/bin/ccache /usr/bin/c++ -DAT_PER_OPERATOR_HEADERS -DCAFFE2_BUILD_MAIN_LIB -DCPUINFO_SUPPORTED_PLATFORM=1 -DFLASHATTENTION_DISABLE_ALIBI -DFMT_HEADER_ONLY=1 -DFXDIV_USE_INLINE_ASSEMBLY=0 -DHAVE_MALLOC_USABLE_SIZE=1 -DHAVE_MMAP=1 -DHAVE_SHM_OPEN=1 -DHAVE_SHM_UNLINK=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNNP_CONVOLUTION_ONLY=0 -DNNP_INFERENCE_ONLY=0 -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DUSE_EXTERNAL_MZCRC -D_FILE_OFFSET_BITS=64 -Dtorch_cpu_EXPORTS -I/home/daniel/Work/pytorch_v2.3.1/build/aten/src -I/home/daniel/Work/pytorch_v2.3.1/aten/src -I/home/daniel/Work/pytorch_v2.3.1/build -I/home/daniel/Work/pytorch_v2.3.1 -I/home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/benchmark/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/onnx -I/home/daniel/Work/pytorch_v2.3.1/build/third_party/onnx -I/home/daniel/Work/pytorch_v2.3.1/third_party/foxi -I/home/daniel/Work/pytorch_v2.3.1/build/third_party/foxi -I/home/daniel/Work/pytorch_v2.3.1/torch/csrc/api -I/home/daniel/Work/pytorch_v2.3.1/torch/csrc/api/include -I/home/daniel/Work/pytorch_v2.3.1/caffe2/aten/src/TH -I/home/daniel/Work/pytorch_v2.3.1/build/caffe2/aten/src/TH -I/home/daniel/Work/pytorch_v2.3.1/build/caffe2/aten/src -I/home/daniel/Work/pytorch_v2.3.1/build/caffe2/../aten/src -I/home/daniel/Work/pytorch_v2.3.1/torch/csrc -I/home/daniel/Work/pytorch_v2.3.1/third_party/miniz-2.1.0 -I/home/daniel/Work/pytorch_v2.3.1/third_party/kineto/libkineto/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/kineto/libkineto/src -I/home/daniel/Work/pytorch_v2.3.1/aten/src/ATen/.. -I/home/daniel/Work/pytorch_v2.3.1/third_party/FXdiv/include -I/home/daniel/Work/pytorch_v2.3.1/c10/.. -I/home/daniel/Work/pytorch_v2.3.1/third_party/pthreadpool/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/cpuinfo/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/NNPACK/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/FP16/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/fmt/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/flatbuffers/include -isystem /home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/googletest/googlemock/include -isystem /home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/googletest/googletest/include -isystem /home/daniel/Work/pytorch_v2.3.1/third_party/protobuf/src -isystem /home/daniel/Work/pytorch_v2.3.1/third_party/XNNPACK/include -isystem /home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/eigen -isystem /usr/local/cuda/include -isystem /home/daniel/Work/pytorch_v2.3.1/build/include -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow -O3 -DNDEBUG -DNDEBUG -std=gnu++17 -fPIC -D__NEON__ -Wall -Wextra -Wdeprecated -Wno-unused-parameter -Wno-unused-function -Wno-missing-field-initializers -Wno-unknown-pragmas -Wno-type-limits -Wno-array-bounds -Wno-strict-overflow -Wno-strict-aliasing -Wno-maybe-uninitialized -fvisibility=hidden -O2 -pthread -fopenmp -MD -MT caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_1.cpp.o -MF caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_1.cpp.o.d -o caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_1.cpp.o -c /home/daniel/Work/pytorch_v2.3.1/build/aten/src/ATen/Operators_1.cpp c++: fatal error: Killed signal terminated program cc1plus compilation terminated. [3/1464] Building CXX object caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/RegisterCPU.cpp.o FAILED: caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/RegisterCPU.cpp.o /usr/bin/ccache /usr/bin/c++ -DAT_PER_OPERATOR_HEADERS -DCAFFE2_BUILD_MAIN_LIB -DCPUINFO_SUPPORTED_PLATFORM=1 -DFLASHATTENTION_DISABLE_ALIBI -DFMT_HEADER_ONLY=1 -DFXDIV_USE_INLINE_ASSEMBLY=0 -DHAVE_MALLOC_USABLE_SIZE=1 -DHAVE_MMAP=1 -DHAVE_SHM_OPEN=1 -DHAVE_SHM_UNLINK=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNNP_CONVOLUTION_ONLY=0 -DNNP_INFERENCE_ONLY=0 -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DUSE_EXTERNAL_MZCRC -D_FILE_OFFSET_BITS=64 -Dtorch_cpu_EXPORTS -I/home/daniel/Work/pytorch_v2.3.1/build/aten/src -I/home/daniel/Work/pytorch_v2.3.1/aten/src -I/home/daniel/Work/pytorch_v2.3.1/build -I/home/daniel/Work/pytorch_v2.3.1 -I/home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/benchmark/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/onnx -I/home/daniel/Work/pytorch_v2.3.1/build/third_party/onnx -I/home/daniel/Work/pytorch_v2.3.1/third_party/foxi -I/home/daniel/Work/pytorch_v2.3.1/build/third_party/foxi -I/home/daniel/Work/pytorch_v2.3.1/torch/csrc/api -I/home/daniel/Work/pytorch_v2.3.1/torch/csrc/api/include -I/home/daniel/Work/pytorch_v2.3.1/caffe2/aten/src/TH -I/home/daniel/Work/pytorch_v2.3.1/build/caffe2/aten/src/TH -I/home/daniel/Work/pytorch_v2.3.1/build/caffe2/aten/src -I/home/daniel/Work/pytorch_v2.3.1/build/caffe2/../aten/src -I/home/daniel/Work/pytorch_v2.3.1/torch/csrc -I/home/daniel/Work/pytorch_v2.3.1/third_party/miniz-2.1.0 -I/home/daniel/Work/pytorch_v2.3.1/third_party/kineto/libkineto/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/kineto/libkineto/src -I/home/daniel/Work/pytorch_v2.3.1/aten/src/ATen/.. -I/home/daniel/Work/pytorch_v2.3.1/third_party/FXdiv/include -I/home/daniel/Work/pytorch_v2.3.1/c10/.. -I/home/daniel/Work/pytorch_v2.3.1/third_party/pthreadpool/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/cpuinfo/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/NNPACK/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/FP16/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/fmt/include -I/home/daniel/Work/pytorch_v2.3.1/third_party/flatbuffers/include -isystem /home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/googletest/googlemock/include -isystem /home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/googletest/googletest/include -isystem /home/daniel/Work/pytorch_v2.3.1/third_party/protobuf/src -isystem /home/daniel/Work/pytorch_v2.3.1/third_party/XNNPACK/include -isystem /home/daniel/Work/pytorch_v2.3.1/cmake/../third_party/eigen -isystem /usr/local/cuda/include -isystem /home/daniel/Work/pytorch_v2.3.1/build/include -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow -O3 -DNDEBUG -DNDEBUG -std=gnu++17 -fPIC -D__NEON__ -Wall -Wextra -Wdeprecated -Wno-unused-parameter -Wno-unused-function -Wno-missing-field-initializers -Wno-unknown-pragmas -Wno-type-limits -Wno-array-bounds -Wno-strict-overflow -Wno-strict-aliasing -Wno-maybe-uninitialized -fvisibility=hidden -O2 -pthread -fopenmp -MD -MT caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/RegisterCPU.cpp.o -MF caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/RegisterCPU.cpp.o.d -o caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/RegisterCPU.cpp.o -c /home/daniel/Work/pytorch_v2.3.1/build/aten/src/ATen/RegisterCPU.cpp c++: fatal error: Killed signal terminated program cc1plus compilation terminated. [9/1464] Building CXX object caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/Operators_2.cpp.o ninja: build stopped: subcommand failed. ``` ### Versions ``` daniel@daniel-nvidia:~/Work/pytorch$ python3 collect_env.py Collecting environment information... PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (aarch64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 Clang version: Could not collect CMake version: version 3.31.0 Libc version: glibc-2.31 Python version: 3.8.10 (default, Nov 7 2024, 13:10:47) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.10.216-tegra-aarch64-with-glibc2.29 Is CUDA available: N/A CUDA runtime version: 11.4.315 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Probably one of the following: /usr/lib/aarch64-linux-gnu/libcudnn.so.8.6.0 /usr/lib/aarch64-linux-gnu/libcudnn_adv_infer.so.8.6.0 /usr/lib/aarch64-linux-gnu/libcudnn_adv_train.so.8.6.0 /usr/lib/aarch64-linux-gnu/libcudnn_cnn_infer.so.8.6.0 /usr/lib/aarch64-linux-gnu/libcudnn_cnn_train.so.8.6.0 /usr/lib/aarch64-linux-gnu/libcudnn_ops_infer.so.8.6.0 /usr/lib/aarch64-linux-gnu/libcudnn_ops_train.so.8.6.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: aarch64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 6 On-line CPU(s) list: 0-5 Thread(s) per core: 1 Core(s) per socket: 3 Socket(s): 2 Vendor ID: ARM Model: 1 Model name: ARMv8 Processor rev 1 (v8l) Stepping: r0p1 CPU max MHz: 1510.4000 CPU min MHz: 115.2000 BogoMIPS: 62.50 L1d cache: 384 KiB L1i cache: 384 KiB L2 cache: 1.5 MiB L3 cache: 2 MiB Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; __user pointer sanitization Vulnerability Spectre v2: Mitigation; CSV2, but not BHB Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop asimddp uscat ilrcpc flagm Versions of relevant libraries: [pip3] numpy==1.23.5 [pip3] onnx==1.17.0 [pip3] onnx-graphsurgeon==0.3.12 [pip3] onnxruntime==1.16.3 [pip3] onnxruntime-gpu==1.17.0 [pip3] onnxslim==0.1.36 [pip3] optree==0.13.1 [pip3] torch==2.1.0a0+41361538.nv23.6 [pip3] torch2trt==0.5.0 [pip3] torchvision==0.16.1 [conda] Could not collect ``` cc @malfet @seemethere @ptrblck @puririshi98 @chauhang @penguinwu
true
2,759,594,987
Fix _create_c10d_store error
taozhiwei
closed
[ "oncall: distributed", "module: rocm", "module: cpu", "release notes: releng", "fx", "module: inductor", "module: dynamo" ]
2
CONTRIBUTOR
Fixes #ISSUE_NUMBER cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @ezyang @SherlockNoMad @EikanWang @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @zhuhaozhe @blzheng @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @LucasLLC @MeetVadakkanchery @mhorowitz @pradeepfn
true
2,759,484,185
Can't script a tensorrt model
He1pa
open
[ "oncall: jit" ]
2
NONE
### 🐛 Describe the bug I am a newbie for pytorch. I try to use tensorrt to optimize the model and save it as trt engine(*.plan). I tried the following: torch -> trt model -> torch script -> trt engine try to script a tensorrt model ``` class Model(nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor): x = x * 2 return x if __name__ == '__main__': device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = Model().eval().cuda() trt_model = torch.compile(model, backend="tensorrt") script_model = torch.jit.script(trt_model) script_model.save("script_model.ts") trt_engine = torch_tensorrt.ts.convert_method_to_trt_engine(script_model, inputs= [torch_tensorrt.Input((1,10))]) with open(f"trt_engine.plan", 'wb') as f: f.write(trt_engine) print("model plan saved") ``` but in `script_model = torch.jit.script(trt_model)` get error > Traceback (most recent call last): File "/ossfs/workspace/MetaGR/trt/build_trt_engine.py", line 138, in <module> script_model = torch.jit.script(trt_model) File "/opt/conda/envs/*/lib/python3.10/site-packages/torch/jit/_script.py", line 1429, in script ret = _script_impl( File "/opt/conda/envs/*/lib/python3.10/site-packages/torch/jit/_script.py", line 1147, in _script_impl return torch.jit._recursive.create_script_module( File "/opt/conda/envs/*/lib/python3.10/site-packages/torch/jit/_recursive.py", line 555, in create_script_module concrete_type = get_module_concrete_type(nn_module, share_types) File "/opt/conda/envs/*/lib/python3.10/site-packages/torch/jit/_recursive.py", line 504, in get_module_concrete_type concrete_type = concrete_type_store.get_or_create_concrete_type(nn_module) File "/opt/conda/envs/*/lib/python3.10/site-packages/torch/jit/_recursive.py", line 436, in get_or_create_concrete_type concrete_type_builder = infer_concrete_type_builder(nn_module) File "/opt/conda/envs/*/lib/python3.10/site-packages/torch/jit/_recursive.py", line 396, in infer_concrete_type_builder attr_type, inferred = infer_type(name, value) File "/opt/conda/envs/*/lib/python3.10/site-packages/torch/jit/_recursive.py", line 228, in infer_type ann_to_type = torch.jit.annotations.ann_to_type( File "/opt/conda/envs/*/lib/python3.10/site-packages/torch/jit/annotations.py", line 516, in ann_to_type raise ValueError(f"Unknown type annotation: '{ann}' at {loc.highlight()}") ValueError: Unknown type annotation: 'Callable[..., Any]' at I tried to find the reason. When name is` _torchdynamo_orig_callable`, the error occurs. torch/jit/_recursive.py ``` def infer_concrete_type_builder(nn_module, share_types=True): ... for name, value in nn_module.__dict__.items(): ... attr_type, inferred = infer_type(name, value) ``` And I printed the __dict__.items() of `model` and `trt_model`, and found that there is no `_torchdynamo_orig_callable` in `model`, but there is in `trt_model`. I don’t know what to do next. ### Versions Collecting environment information... PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Alibaba Group Enterprise Linux Server 7.2 (Paladin) (x86_64) GCC version: (GCC) 10.2.1 20200825 (Alibaba 10.2.1-3 2.17) Clang version: Could not collect CMake version: version 3.26.4 Libc version: glibc-2.32 Python version: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-4.9.151-015.ali3000.alios7.x86_64-x86_64-with-glibc2.32 Is CUDA available: True CUDA runtime version: 12.4.131 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: A10-1-PCIE-24GB-XGB-V Nvidia driver version: 470.82.01 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 106 Model name: Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz Stepping: 6 CPU MHz: 3499.859 CPU max MHz: 3500.0000 CPU min MHz: 800.0000 BogoMIPS: 5800.00 Virtualization: VT-x L1d cache: 48K L1i cache: 32K L2 cache: 1280K L3 cache: 49152K NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb invpcid_single ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq pconfig flush_l1d arch_capabilities Versions of relevant libraries: [pip3] lion-pytorch==0.2.2 [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] pytorch-lightning==1.9.5 [pip3] pytorch-triton==3.0.0+dedb7bdf33 [pip3] torch==2.5.1 [pip3] torch_no_python==2.5.0.dev20240816+cu121 [pip3] torch_tensorrt==2.5.0.dev20240816+cu121 [pip3] torchao==0.7.0+git75f52ae7 [pip3] torchinfo==1.8.0 [pip3] torchmetrics==1.4.1 [pip3] torchvision==0.20.1 [pip3] triton==3.1.0 [conda] lion-pytorch 0.2.2 pypi_0 pypi [conda] numpy 1.26.4 pypi_0 pypi [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] pytorch-lightning 1.9.5 pypi_0 pypi [conda] pytorch-triton 3.0.0+dedb7bdf33 pypi_0 pypi [conda] torch 2.5.1 pypi_0 pypi [conda] torch-no-python 2.5.0.dev20240816+cu121 pypi_0 pypi [conda] torch-tensorrt 2.5.0.dev20240816+cu121 pypi_0 pypi [conda] torchao 0.7.0+git75f52ae7 pypi_0 pypi [conda] torchinfo 1.8.0 pypi_0 pypi [conda] torchmetrics 1.4.1 pypi_0 pypi [conda] torchvision 0.20.1 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
2,759,467,427
Update torch-xpu-ops commit pin
xytintel
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/xpu" ]
4
CONTRIBUTOR
Update the torch-xpu-ops commit to [214f33](https://github.com/intel/torch-xpu-ops/commit/214f33b9d969930a18656a82b5c5d8da53cdcb8e), includes: - Fix building issue for transformer related operators - Improve XPU operator coverage
true
2,759,457,585
[CPU][Operator] one channel_shuffle test of the operator benchmark has a Performance fluctuation issue
LifengWang
open
[ "needs reproduction", "module: performance", "module: nn", "triaged" ]
6
CONTRIBUTOR
### 🐛 Describe the bug I conducted the operator benchmark and found one channel_shuffle test of the operator benchmark has a performance fluctuation issue. The test is benchmarkchannel_shuffle_batch_size4_channels_per_group64_height64_width64_groups4_channel_lastTrue. Set up the test environment according to the [Operator Micro-benchmarks README](https://github.com/pytorch/pytorch/tree/main/benchmarks/operator_benchmark) and conducted the following commands 10 times. ``` taskset -c 0-23 python -m pt.channel_shuffle_test --test-name channel_shuffle_batch_size4_channels_per_group64_height64_width64_groups4_channel_lastTrue ``` Here are the test results from my environment. We can clearly observe significant performance fluctuations in the test logs for rounds 3 and 9. ``` channel_shuffle_test_round_10.log:Forward Execution Time (us) : 120.766 channel_shuffle_test_round_10.log:Forward Execution Time (us) : 119.556 channel_shuffle_test_round_1.log:Forward Execution Time (us) : 120.853 channel_shuffle_test_round_1.log:Forward Execution Time (us) : 119.538 channel_shuffle_test_round_2.log:Forward Execution Time (us) : 117.764 channel_shuffle_test_round_2.log:Forward Execution Time (us) : 117.233 channel_shuffle_test_round_3.log:Forward Execution Time (us) : 789.170 channel_shuffle_test_round_3.log:Forward Execution Time (us) : 118.370 channel_shuffle_test_round_4.log:Forward Execution Time (us) : 118.316 channel_shuffle_test_round_4.log:Forward Execution Time (us) : 117.791 channel_shuffle_test_round_5.log:Forward Execution Time (us) : 118.098 channel_shuffle_test_round_5.log:Forward Execution Time (us) : 120.020 channel_shuffle_test_round_6.log:Forward Execution Time (us) : 118.721 channel_shuffle_test_round_6.log:Forward Execution Time (us) : 117.861 channel_shuffle_test_round_7.log:Forward Execution Time (us) : 119.729 channel_shuffle_test_round_7.log:Forward Execution Time (us) : 119.001 channel_shuffle_test_round_8.log:Forward Execution Time (us) : 119.005 channel_shuffle_test_round_8.log:Forward Execution Time (us) : 117.391 channel_shuffle_test_round_9.log:Forward Execution Time (us) : 858.333 channel_shuffle_test_round_9.log:Forward Execution Time (us) : 117.732 ``` ### Versions Versions ``` PyTorch version: 2.6.0.dev20241224+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 Clang version: Could not collect CMake version: version 3.16.3 Libc version: glibc-2.31 Python version: 3.9.21 | packaged by conda-forge | (main, Dec 5 2024, 13:51:40) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-5.4.0-192-generic-x86_64-with-glibc2.31 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 57 bits virtual CPU(s): 112 On-line CPU(s) list: 0-111 Thread(s) per core: 2 Core(s) per socket: 28 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 106 Model name: Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz Stepping: 6 CPU MHz: 3400.001 CPU max MHz: 3500.0000 CPU min MHz: 800.0000 BogoMIPS: 5200.00 Virtualization: VT-x L1d cache: 2.6 MiB L1i cache: 1.8 MiB L2 cache: 70 MiB L3 cache: 84 MiB NUMA node0 CPU(s): 0-27,56-83 NUMA node1 CPU(s): 28-55,84-111 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Vulnerable, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear pconfig flush_l1d arch_capabilities Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] torch==2.6.0.dev20241224+cpu [pip3] torchaudio==2.6.0.dev20241224+cpu [pip3] torchvision==0.22.0.dev20241224+cpu [conda] numpy 1.26.4 pypi_0 pypi [conda] torch 2.6.0.dev20241224+cpu pypi_0 pypi [conda] torchaudio 2.6.0.dev20241224+cpu pypi_0 pypi [conda] torchvision 0.22.0.dev20241224+cpu pypi_0 pypi ``` cc @msaroufim @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
true
2,759,446,630
[CI] Disable sccache for xpu test
chuanqi129
closed
[ "open source", "Merged", "topic: not user facing", "ciflow/xpu" ]
3
COLLABORATOR
WA for https://github.com/pytorch/pytorch/issues/143585
true
2,759,412,541
[WIP] [Inductor][CPP] Support Group GEMM Epilogue Fusion
leslie-fang-intel
closed
[ "open source", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143850 * #143820 * #143796 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,759,384,359
Refine CUDA Stream priority
guangyey
closed
[ "open source", "Merged", "ciflow/trunk", "release notes: cuda", "topic: improvements" ]
4
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143849 * #143799 * #141123 * #141119 * #142347 # Motivation As mentioned in https://github.com/pytorch/pytorch/pull/141119#discussion_r1897480515, we properly handle the priority value if it is outside of the priority range. # Additional Context If the value falls outside of the allowed priority range, it will automatically be mapped to the nearest valid priority(either lowest or highest).
true
2,759,286,265
[Inductor][CPU] Fix C++ compile error of torch.max on bool type
blzheng
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
6
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143848 Fix https://github.com/pytorch/pytorch/issues/143568 Before: ![image](https://github.com/user-attachments/assets/3e1e869e-7ae7-45c0-a334-8a663028e003) After: ![image](https://github.com/user-attachments/assets/91f72920-64bd-449a-a6c6-6048409c1450) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,759,239,903
memory_format=torch.preserve_format doesn't apply to tensors with strides of zero
EmmettBicker
closed
[ "triage review", "module: python frontend" ]
3
CONTRIBUTOR
### 🐛 Describe the bug The memory_format=torch.preserve_format seems to ignore tensors with a 0 stride somewhere, like in this following example. I don't know if this is intentional or not, but I wanted to bring it up in case it wasn't! ```py import torch arg = torch.randn([2,1]).expand(2,2) print(arg.stride()) # (1, 0) print(arg.clone(memory_format=torch.preserve_format).stride()) # (2, 1) ``` ### Versions ``` Collecting environment information... PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.2 Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.153.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.6.85 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 2060 with Max-Q Design Nvidia driver version: 560.94 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 6 On-line CPU(s) list: 0-5 Vendor ID: AuthenticAMD Model name: AMD Ryzen 9 4900HS with Radeon Graphics CPU family: 23 Model: 96 Thread(s) per core: 2 Core(s) per socket: 3 Socket(s): 1 Stepping: 1 BogoMIPS: 5988.75 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip rdpid Virtualization: AMD-V Hypervisor vendor: Microsoft Virtualization type: full L1d cache: 96 KiB (3 instances) L1i cache: 96 KiB (3 instances) L2 cache: 1.5 MiB (3 instances) L3 cache: 4 MiB (1 instance) Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection Vulnerability Spec rstack overflow: Mitigation; safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.26.3 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.5.1+cu124 [pip3] torchaudio==2.5.1+cu124 [pip3] torchvision==0.20.1+cu124 ``` cc @albanD
true
2,759,233,264
Check F2C BLAS for OpenBLAS and other vendors
isuruf
open
[ "open source", "release notes: build" ]
6
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143846 This issue came from https://github.com/conda-forge/pytorch-cpu-feedstock/issues/180. MKL follows the F2C convention for returning single precision floats as doubles and uses the G77 convention for returning complex valued scalars. OpenBLAS does the opposite. There is a check for this already, but it's done only when the Generic BLAS vendor code path is used and this PR moves that code to `Dependencies.cmake` to make it work when the BLAS vendor is OpenBLAS and others
true
2,759,200,450
[Inductor][lowering] support out_dtype for dequant lowering
Valentine233
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
COLLABORATOR
In lowering, support the parameter `out_dtype` for `dequant_per_tensor` and `dequant_per_channel`. Fix the following runtime error issue found in https://github.com/pytorch/ao/pull/1372: ``` File "/home/liaoxuan/pytorch_ao/torch/_inductor/lowering.py", line 452, in wrapped out = decomp_fn(*args, **kwargs) torch._dynamo.exc.BackendCompilerFailed: backend='compile_fx_wrapper' raised: LoweringException: TypeError: quantized_decomposed_dequantize_per_tensor_default() got an unexpected keyword argument 'out_dtype' target: quantized_decomposed.dequantize_per_tensor.default args[0]: TensorBox(StorageBox( InputBuffer(name='arg0_1', layout=FixedLayout('cpu', torch.uint8, size=[1, 7, 7, 9], stride=[441, 63, 9, 1])) )) args[1]: 0.01 args[2]: 100 args[3]: 0 args[4]: 255 args[5]: torch.uint8 kwargs: {'out_dtype': torch.bfloat16} ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,759,148,084
Bump jinja2 from 3.1.4 to 3.1.5 in /.ci/docker
dependabot[bot]
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "dependency issue", "python" ]
4
CONTRIBUTOR
Bumps [jinja2](https://github.com/pallets/jinja) from 3.1.4 to 3.1.5. <details> <summary>Release notes</summary> <p><em>Sourced from <a href="https://github.com/pallets/jinja/releases">jinja2's releases</a>.</em></p> <blockquote> <h2>3.1.5</h2> <p>This is the Jinja 3.1.5 security fix release, which fixes security issues and bugs but does not otherwise change behavior and should not result in breaking changes compared to the latest feature release.</p> <p>PyPI: <a href="https://pypi.org/project/Jinja2/3.1.5/">https://pypi.org/project/Jinja2/3.1.5/</a> Changes: <a href="https://jinja.palletsprojects.com/changes/#version-3-1-5">https://jinja.palletsprojects.com/changes/#version-3-1-5</a> Milestone: <a href="https://github.com/pallets/jinja/milestone/16?closed=1">https://github.com/pallets/jinja/milestone/16?closed=1</a></p> <ul> <li>The sandboxed environment handles indirect calls to <code>str.format</code>, such as by passing a stored reference to a filter that calls its argument. <a href="https://github.com/pallets/jinja/security/advisories/GHSA-q2x7-8rv6-6q7h">GHSA-q2x7-8rv6-6q7h</a></li> <li>Escape template name before formatting it into error messages, to avoid issues with names that contain f-string syntax. <a href="https://redirect.github.com/pallets/jinja/issues/1792">#1792</a>, <a href="https://github.com/pallets/jinja/security/advisories/GHSA-gmj6-6f8f-6699">GHSA-gmj6-6f8f-6699</a></li> <li>Sandbox does not allow <code>clear</code> and <code>pop</code> on known mutable sequence types. <a href="https://redirect.github.com/pallets/jinja/issues/2032">#2032</a></li> <li>Calling sync <code>render</code> for an async template uses <code>asyncio.run</code>. <a href="https://redirect.github.com/pallets/jinja/issues/1952">#1952</a></li> <li>Avoid unclosed <code>auto_aiter</code> warnings. <a href="https://redirect.github.com/pallets/jinja/issues/1960">#1960</a></li> <li>Return an <code>aclose</code>-able <code>AsyncGenerator</code> from <code>Template.generate_async</code>. <a href="https://redirect.github.com/pallets/jinja/issues/1960">#1960</a></li> <li>Avoid leaving <code>root_render_func()</code> unclosed in <code>Template.generate_async</code>. <a href="https://redirect.github.com/pallets/jinja/issues/1960">#1960</a></li> <li>Avoid leaving async generators unclosed in blocks, includes and extends. <a href="https://redirect.github.com/pallets/jinja/issues/1960">#1960</a></li> <li>The runtime uses the correct <code>concat</code> function for the current environment when calling block references. <a href="https://redirect.github.com/pallets/jinja/issues/1701">#1701</a></li> <li>Make <code>|unique</code> async-aware, allowing it to be used after another async-aware filter. <a href="https://redirect.github.com/pallets/jinja/issues/1781">#1781</a></li> <li><code>|int</code> filter handles <code>OverflowError</code> from scientific notation. <a href="https://redirect.github.com/pallets/jinja/issues/1921">#1921</a></li> <li>Make compiling deterministic for tuple unpacking in a <code>{% set ... %}</code> call. <a href="https://redirect.github.com/pallets/jinja/issues/2021">#2021</a></li> <li>Fix dunder protocol (<code>copy</code>/<code>pickle</code>/etc) interaction with <code>Undefined</code> objects. <a href="https://redirect.github.com/pallets/jinja/issues/2025">#2025</a></li> <li>Fix <code>copy</code>/<code>pickle</code> support for the internal <code>missing</code> object. <a href="https://redirect.github.com/pallets/jinja/issues/2027">#2027</a></li> <li><code>Environment.overlay(enable_async)</code> is applied correctly. <a href="https://redirect.github.com/pallets/jinja/issues/2061">#2061</a></li> <li>The error message from <code>FileSystemLoader</code> includes the paths that were searched. <a href="https://redirect.github.com/pallets/jinja/issues/1661">#1661</a></li> <li><code>PackageLoader</code> shows a clearer error message when the package does not contain the templates directory. <a href="https://redirect.github.com/pallets/jinja/issues/1705">#1705</a></li> <li>Improve annotations for methods returning copies. <a href="https://redirect.github.com/pallets/jinja/issues/1880">#1880</a></li> <li><code>urlize</code> does not add <code>mailto:</code> to values like <code>@a@b</code>. <a href="https://redirect.github.com/pallets/jinja/issues/1870">#1870</a></li> <li>Tests decorated with <code>@pass_context</code> can be used with the <code>|select</code> filter. <a href="https://redirect.github.com/pallets/jinja/issues/1624">#1624</a></li> <li>Using <code>set</code> for multiple assignment (<code>a, b = 1, 2</code>) does not fail when the target is a namespace attribute. <a href="https://redirect.github.com/pallets/jinja/issues/1413">#1413</a></li> <li>Using <code>set</code> in all branches of <code>{% if %}{% elif %}{% else %}</code> blocks does not cause the variable to be considered initially undefined. <a href="https://redirect.github.com/pallets/jinja/issues/1253">#1253</a></li> </ul> </blockquote> </details> <details> <summary>Changelog</summary> <p><em>Sourced from <a href="https://github.com/pallets/jinja/blob/main/CHANGES.rst">jinja2's changelog</a>.</em></p> <blockquote> <h2>Version 3.1.5</h2> <p>Released 2024-12-21</p> <ul> <li>The sandboxed environment handles indirect calls to <code>str.format</code>, such as by passing a stored reference to a filter that calls its argument. :ghsa:<code>q2x7-8rv6-6q7h</code></li> <li>Escape template name before formatting it into error messages, to avoid issues with names that contain f-string syntax. :issue:<code>1792</code>, :ghsa:<code>gmj6-6f8f-6699</code></li> <li>Sandbox does not allow <code>clear</code> and <code>pop</code> on known mutable sequence types. :issue:<code>2032</code></li> <li>Calling sync <code>render</code> for an async template uses <code>asyncio.run</code>. :pr:<code>1952</code></li> <li>Avoid unclosed <code>auto_aiter</code> warnings. :pr:<code>1960</code></li> <li>Return an <code>aclose</code>-able <code>AsyncGenerator</code> from <code>Template.generate_async</code>. :pr:<code>1960</code></li> <li>Avoid leaving <code>root_render_func()</code> unclosed in <code>Template.generate_async</code>. :pr:<code>1960</code></li> <li>Avoid leaving async generators unclosed in blocks, includes and extends. :pr:<code>1960</code></li> <li>The runtime uses the correct <code>concat</code> function for the current environment when calling block references. :issue:<code>1701</code></li> <li>Make <code>|unique</code> async-aware, allowing it to be used after another async-aware filter. :issue:<code>1781</code></li> <li><code>|int</code> filter handles <code>OverflowError</code> from scientific notation. :issue:<code>1921</code></li> <li>Make compiling deterministic for tuple unpacking in a <code>{% set ... %}</code> call. :issue:<code>2021</code></li> <li>Fix dunder protocol (<code>copy</code>/<code>pickle</code>/etc) interaction with <code>Undefined</code> objects. :issue:<code>2025</code></li> <li>Fix <code>copy</code>/<code>pickle</code> support for the internal <code>missing</code> object. :issue:<code>2027</code></li> <li><code>Environment.overlay(enable_async)</code> is applied correctly. :pr:<code>2061</code></li> <li>The error message from <code>FileSystemLoader</code> includes the paths that were searched. :issue:<code>1661</code></li> <li><code>PackageLoader</code> shows a clearer error message when the package does not contain the templates directory. :issue:<code>1705</code></li> <li>Improve annotations for methods returning copies. :pr:<code>1880</code></li> <li><code>urlize</code> does not add <code>mailto:</code> to values like <code>@a@b</code>. :pr:<code>1870</code></li> <li>Tests decorated with <code>@pass_context`` can be used with the ``|select`` filter. :issue:</code>1624`</li> <li>Using <code>set</code> for multiple assignment (<code>a, b = 1, 2</code>) does not fail when the target is a namespace attribute. :issue:<code>1413</code></li> <li>Using <code>set</code> in all branches of <code>{% if %}{% elif %}{% else %}</code> blocks does not cause the variable to be considered initially undefined. :issue:<code>1253</code></li> </ul> </blockquote> </details> <details> <summary>Commits</summary> <ul> <li><a href="https://github.com/pallets/jinja/commit/877f6e51be8e1765b06d911cfaa9033775f051d1"><code>877f6e5</code></a> release version 3.1.5</li> <li><a href="https://github.com/pallets/jinja/commit/8d588592653b052f957b720e1fc93196e06f207f"><code>8d58859</code></a> remove test pypi</li> <li><a href="https://github.com/pallets/jinja/commit/eda8fe86fd716dfce24910294e9f1fc81fbc740c"><code>eda8fe8</code></a> update dev dependencies</li> <li><a href="https://github.com/pallets/jinja/commit/c8fdce1e0333f1122b244b03a48535fdd7b03d91"><code>c8fdce1</code></a> Fix bug involving calling set on a template parameter within all branches of ...</li> <li><a href="https://github.com/pallets/jinja/commit/66587ce989e5a478e0bb165371fa2b9d42b7040f"><code>66587ce</code></a> Fix bug where set would sometimes fail within if</li> <li><a href="https://github.com/pallets/jinja/commit/fbc3a696c729d177340cc089531de7e2e5b6f065"><code>fbc3a69</code></a> Add support for namespaces in tuple parsing (<a href="https://redirect.github.com/pallets/jinja/issues/1664">#1664</a>)</li> <li><a href="https://github.com/pallets/jinja/commit/b8f4831d41e6a7cb5c40d42f074ffd92d2daccfc"><code>b8f4831</code></a> more comments about nsref assignment</li> <li><a href="https://github.com/pallets/jinja/commit/ee832194cd9f55f75e5a51359b709d535efe957f"><code>ee83219</code></a> Add support for namespaces in tuple assignment</li> <li><a href="https://github.com/pallets/jinja/commit/1d55cddbb28e433779511f28f13a2d8c4ec45826"><code>1d55cdd</code></a> Triple quotes in docs (<a href="https://redirect.github.com/pallets/jinja/issues/2064">#2064</a>)</li> <li><a href="https://github.com/pallets/jinja/commit/8a8eafc6b992ba177f1d3dd483f8465f18a11116"><code>8a8eafc</code></a> edit block assignment section</li> <li>Additional commits viewable in <a href="https://github.com/pallets/jinja/compare/3.1.4...3.1.5">compare view</a></li> </ul> </details> <br /> [![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=jinja2&package-manager=pip&previous-version=3.1.4&new-version=3.1.5)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) --- <details> <summary>Dependabot commands and options</summary> <br /> You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show <dependency name> ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself) You can disable automated security fix PRs for this repo from the [Security Alerts page](https://github.com/pytorch/pytorch/network/alerts). </details>
true
2,759,146,299
[Submodule] Bump libfmt to 11.1.0
cyyever
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
3
COLLABORATOR
Fixes #ISSUE_NUMBER
true
2,759,145,849
subgraph rewriter supports matched pattern with no users
YangQun1
closed
[ "open source", "Merged", "ciflow/trunk", "release notes: fx", "fx" ]
8
CONTRIBUTOR
Fixes #143841 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,759,143,372
Subgraph rewriter failed when the matched pattern has no users
YangQun1
closed
[ "oncall: pt2", "oncall: export" ]
2
CONTRIBUTOR
### 🐛 Describe the bug The subgraph rewriter will throw an error "The returning_nodes should have at least one user node", when the matched pattern has no users in the original graph. Can reproduce with below example ```python class M(torch.nn.Module): def forward(self, x, y, cache): m = torch.mul(x, y) n = cache.index_copy(0, torch.tensor([0]), m) p = torch.ops.aten.copy.default(cache, n) q = torch.ops.aten.copy_.default(cache, p) u = torch.relu(cache) return u # check the result to ensure cache is updated before relu op def pattern(self_tensor, src_tensor): p = torch.ops.aten.copy.default(self_tensor, src_tensor) q = torch.ops.aten.copy_.default(self_tensor, p) return q def replacement(self_tensor, src_tensor): q = torch.ops.aten.copy_.default(self_tensor, src_tensor) return q def comparison(x, y, cache): m = torch.mul(x, y) n = cache.index_copy(0, torch.tensor([0]), m) q = torch.ops.aten.copy_.default(cache, n) u = torch.relu(cache) return u traced = symbolic_trace(M()) print(traced) comparison_fn = symbolic_trace(comparison) print(comparison_fn) subgraph_rewriter.replace_pattern(traced, pattern, replacement) ``` ### Versions Collecting environment information... PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Ubuntu 22.04 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-126-generic-x86_64-with-glibc2.35 Is CUDA available: N/A CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz CPU family: 6 Model: 85 Thread(s) per core: 1 Core(s) per socket: 6 Socket(s): 2 Stepping: 0 BogoMIPS: 4389.68 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon nopl xtopology tsc_reliable nonstop_tsc cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 invpcid avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xsaves arat pku ospke md_clear flush_l1d arch_capabilities Virtualization: VT-x Hypervisor vendor: VMware Virtualization type: full L1d cache: 384 KiB (12 instances) L1i cache: 384 KiB (12 instances) L2 cache: 12 MiB (12 instances) L3 cache: 71.5 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-11 Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Mitigation; PTE Inversion; VMX flush not necessary, SMT disabled Vulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] flake8==6.1.0 [pip3] flake8-bugbear==23.3.23 [pip3] flake8-comprehensions==3.15.0 [pip3] flake8-executable==2.1.3 [pip3] flake8-logging-format==0.9.0 [pip3] flake8-pyi==23.3.1 [pip3] flake8-simplify==0.19.3 [pip3] mypy==1.10.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu11==11.11.3.6 [pip3] nvidia-cuda-cupti-cu11==11.8.87 [pip3] nvidia-cuda-nvrtc-cu11==11.8.89 [pip3] nvidia-cuda-runtime-cu11==11.8.89 [pip3] nvidia-cudnn-cu11==8.7.0.84 [pip3] nvidia-cufft-cu11==10.9.0.58 [pip3] nvidia-curand-cu11==10.3.0.86 [pip3] nvidia-cusolver-cu11==11.4.1.48 [pip3] nvidia-cusparse-cu11==11.7.5.86 [pip3] nvidia-nccl-cu11==2.20.5 [pip3] nvidia-nvtx-cu11==11.8.86 [pip3] optree==0.12.1 [pip3] pytorch-triton==3.0.0+45fff310c8 [pip3] torch==2.6.0a0+gitf6cd540 [pip3] torchaudio==2.2.0.dev20240429+cu118 [pip3] torchvision==0.20.0.dev20240726+cpu [conda] Could not collect cc @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
true
2,759,123,651
FlexAttention `create_block_mask` contains a CUDA sync
moinnadeem
closed
[ "triaged", "oncall: pt2", "module: higher order operators", "module: pt2-dispatcher", "module: flex attention" ]
1
NONE
### 🐛 Describe the bug I am trying to capture our model forward pass into a CUDA graph, but Flex Attention's `create_block_mask` contains a graph break. I'm honestly not sure if this is a "bug" or a "feature request". I have tested `create_block_mask` both with and without `_compile=True` and it happens in both cases. Relevant stack trace: ``` RuntimeError: called a synchronizing CUDA operation While executing %setitem : [num_users=0] = call_function[target=operator.setitem](args = (%dense_mask_2, (%row_indi ces, %valid_indices), 1), kwargs = {}) Original traceback: File "/opt/conda/envs/main-env/lib/python3.11/site-packages/torch/nn/attention/flex_attention.py", line 893, in c reate_block_mask block_mask = _create_sparse_block_from_block_mask( File "/opt/conda/envs/main-env/lib/python3.11/site-packages/torch/nn/attention/flex_attention.py", line 765, in _ create_sparse_block_from_block_mask return BlockMask.from_kv_blocks( File "/opt/conda/envs/main-env/lib/python3.11/site-packages/torch/nn/attention/flex_attention.py", line 353, in f rom_kv_blocks q_num_blocks, q_indices = _transpose_ordered(kv_num_blocks, kv_indices) File "/opt/conda/envs/main-env/lib/python3.11/site-packages/torch/nn/attention/flex_attention.py", line 187, in _ transpose_ordered dense = _ordered_to_dense(num_blocks_in_row, col_indices) File "/opt/conda/envs/main-env/lib/python3.11/site-packages/torch/nn/attention/flex_attention.py", line 172, in _ ordered_to_dense out = create_dense_batched(num_blocks_in_row, col_indices) File "/opt/conda/envs/main-env/lib/python3.11/site-packages/torch/_functorch/apis.py", line 203, in wrapped return vmap_impl( File "/opt/conda/envs/main-env/lib/python3.11/site-packages/torch/_functorch/vmap.py", line 331, in vmap_impl return _flat_vmap( File "/opt/conda/envs/main-env/lib/python3.11/site-packages/torch/_functorch/vmap.py", line 479, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/opt/conda/envs/main-env/lib/python3.11/site-packages/torch/_functorch/apis.py", line 203, in wrapped return vmap_impl( File "/opt/conda/envs/main-env/lib/python3.11/site-packages/torch/_functorch/vmap.py", line 331, in vmap_impl return _flat_vmap( File "/opt/conda/envs/main-env/lib/python3.11/site-packages/torch/_functorch/vmap.py", line 479, in _flat_vmap batched_outputs = func(*batched_inputs, **kwargs) File "/opt/conda/envs/main-env/lib/python3.11/site-packages/torch/nn/attention/flex_attention.py", line 165, in c reate_dense_one dense_mask[row_indices, valid_indices] = 1 ``` ### Versions ``` Collecting environment information... PyTorch version: 2.6.0.dev20241211+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 Clang version: Could not collect CMake version: version 3.16.3 Libc version: glibc-2.31 Python version: 3.11.10 | packaged by conda-forge | (main, Oct 16 2024, 01:27:36) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-6.8.0-49-generic-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 12.6.77 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-40GB Nvidia driver version: 550.127.05 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 48 bits physical, 48 bits virtual CPU(s): 30 On-line CPU(s) list: 0-29 Thread(s) per core: 1 Core(s) per socket: 1 Socket(s): 30 NUMA node(s): 1 Vendor ID: AuthenticAMD CPU family: 25 Model: 1 Model name: AMD EPYC 7J13 64-Core Processor Stepping: 1 CPU MHz: 2449.998 BogoMIPS: 4899.99 Virtualization: AMD-V Hypervisor vendor: KVM Virtualization type: full L1d cache: 1.9 MiB L1i cache: 1.9 MiB L2 cache: 15 MiB L3 cache: 480 MiB NUMA node0 CPU(s): 0-29 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm rep_good nopl cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw perfctr_core ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_ad just bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr wbnoinvd arat npt nrip_save umip pku ospke vaes vpclmulqdq rdpid fsrm arch_capabilities Versions of relevant libraries: [pip3] flake8==7.1.1 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-dlprof-pytorch-nvtx==1.8.0 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] onnx==1.17.0 [pip3] pytorch-ignite==0.5.0.post2 [pip3] pytorch-lightning==2.4.0 [pip3] pytorch-triton==3.2.0+git35c6c7c6 [pip3] torch==2.6.0.dev20241211+cu126 [pip3] torch-stoi==0.2.3 [pip3] torchaudio==2.5.0.dev20241211+cu126 [pip3] torchcde==0.2.5 [pip3] torchcfm==1.0.6 [pip3] torchdiffeq==0.2.0 [pip3] torchdyn==1.0.6 [pip3] torchmetrics==1.5.2 [pip3] torchsde==0.2.6 [pip3] torchvision==0.20.0.dev20241211+cu126 [pip3] triton==3.1.0 [conda] blas 1.0 mkl conda-forge [conda] cuda-cudart 12.1.105 0 nvidia [conda] cuda-cupti 12.1.105 0 nvidia [conda] cuda-libraries 12.1.0 0 nvidia [conda] cuda-nvrtc 12.1.105 0 nvidia [conda] cuda-nvtx 12.1.105 0 nvidia [conda] cuda-opencl 12.6.77 0 nvidia [conda] cuda-runtime 12.1.0 0 nvidia [conda] libblas 3.9.0 16_linux64_mkl conda-forge [conda] libcblas 3.9.0 16_linux64_mkl conda-forge [conda] libcublas 12.1.0.26 0 nvidia [conda] libcufft 11.0.2.4 0 nvidia [conda] libcurand 10.3.7.77 0 nvidia [conda] libcusolver 11.4.4.55 0 nvidia [conda] libcusparse 12.0.2.55 0 nvidia [conda] liblapack 3.9.0 16_linux64_mkl conda-forge [conda] libnvjitlink 12.1.105 0 nvidia [conda] libopenvino-pytorch-frontend 2024.3.0 he02047a_0 conda-forge [conda] mkl 2022.1.0 hc2b9512_224 [conda] numpy 1.26.4 py311h64a7726_0 conda-forge [conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-dlprof-pytorch-nvtx 1.8.0 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi [conda] pytorch-cuda 12.1 ha16c6d3_6 pytorch [conda] pytorch-ignite 0.5.0.post2 pypi_0 pypi [conda] pytorch-lightning 2.4.0 pyhd8ed1ab_0 conda-forge [conda] pytorch-mutex 1.0 cuda pytorch [conda] pytorch-triton 3.2.0+git35c6c7c6 pypi_0 pypi [conda] torch 2.6.0.dev20241211+cu126 pypi_0 pypi [conda] torch-stoi 0.2.3 pypi_0 pypi [conda] torchaudio 2.5.0.dev20241211+cu126 pypi_0 pypi [conda] torchcde 0.2.5 pypi_0 pypi [conda] torchcfm 1.0.6 pypi_0 pypi [conda] torchdiffeq 0.2.0 pypi_0 pypi [conda] torchdyn 1.0.6 pypi_0 pypi [conda] torchmetrics 1.5.2 pyhe5570ce_0 conda-forge [conda] torchsde 0.2.6 pypi_0 pypi [conda] torchtriton 3.1.0 py311 pytorch [conda] torchvision 0.20.0.dev20241211+cu126 pypi_0 pypi ``` cc @chauhang @penguinwu @zou3519 @ydwu4 @bdhirsh @yf225 @Chillee @drisspg @yanboliang @BoyuanFeng
true
2,759,055,014
[CD] Remove redundant triton dependency for xpu wheels
chuanqi129
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/binaries_wheel" ]
8
COLLABORATOR
Due to XPU CD wheels enabled pypi dependencies by https://github.com/pytorch/pytorch/pull/141135, so the PYTORCH_EXTRA_INSTALL_REQUIREMENTS has value for XPU CD wheel build. Works for https://github.com/pytorch/pytorch/issues/139722 and https://github.com/pytorch/pytorch/issues/114850 Fixes #143838
true
2,759,054,047
PyTorch XPU 2.6 RC wheel has multiple triton dependencies
chuanqi129
closed
[ "triaged", "module: xpu" ]
0
COLLABORATOR
### 🐛 Describe the bug Currently, the xpu CD linux wheels have multiple triton pypi packages dependencies, which depends on `triton` and `pytorch-triton-xpu`, refer ``` $ pip install torch==2.6 --index-url https://download.pytorch.org/whl/test/xpu Looking in indexes: https://download.pytorch.org/whl/test/xpu Collecting torch==2.6 Using cached https://download.pytorch.org/whl/test/xpu/torch-2.6.0%2Bxpu-cp310-cp310-linux_x86_64.whl (1027.1 MB) Collecting filelock (from torch==2.6) Using cached https://download.pytorch.org/whl/test/filelock-3.13.1-py3-none-any.whl (11 kB) Collecting typing-extensions>=4.10.0 (from torch==2.6) Using cached https://download.pytorch.org/whl/test/typing_extensions-4.12.2-py3-none-any.whl (37 kB) Collecting sympy==1.13.1 (from torch==2.6) Using cached https://download.pytorch.org/whl/test/sympy-1.13.1-py3-none-any.whl (6.2 MB) Collecting networkx (from torch==2.6) Using cached https://download.pytorch.org/whl/test/networkx-3.3-py3-none-any.whl (1.7 MB) Collecting jinja2 (from torch==2.6) Using cached https://download.pytorch.org/whl/test/Jinja2-3.1.4-py3-none-any.whl (133 kB) Collecting fsspec (from torch==2.6) Using cached https://download.pytorch.org/whl/test/fsspec-2024.6.1-py3-none-any.whl (177 kB) Collecting intel-cmplr-lib-rt==2025.0.2 (from torch==2.6) Using cached https://download.pytorch.org/whl/test/xpu/intel_cmplr_lib_rt-2025.0.2-py2.py3-none-manylinux_2_28_x86_64.whl (45.9 MB) Collecting intel-cmplr-lib-ur==2025.0.2 (from torch==2.6) Using cached https://download.pytorch.org/whl/test/xpu/intel_cmplr_lib_ur-2025.0.2-py2.py3-none-manylinux_2_28_x86_64.whl (25.1 MB) Collecting intel-cmplr-lic-rt==2025.0.2 (from torch==2.6) Using cached https://download.pytorch.org/whl/test/xpu/intel_cmplr_lic_rt-2025.0.2-py2.py3-none-manylinux_2_28_x86_64.whl (18 kB) Collecting intel-sycl-rt==2025.0.2 (from torch==2.6) Using cached https://download.pytorch.org/whl/test/xpu/intel_sycl_rt-2025.0.2-py2.py3-none-manylinux_2_28_x86_64.whl (12.4 MB) Collecting tcmlib==1.2.0 (from torch==2.6) Using cached https://download.pytorch.org/whl/test/xpu/tcmlib-1.2.0-py2.py3-none-manylinux_2_28_x86_64.whl (4.2 MB) Collecting umf==0.9.1 (from torch==2.6) Using cached https://download.pytorch.org/whl/test/xpu/umf-0.9.1-py2.py3-none-manylinux_2_28_x86_64.whl (161 kB) Collecting intel-pti==0.10.0 (from torch==2.6) Using cached https://download.pytorch.org/whl/test/xpu/intel_pti-0.10.0-py2.py3-none-manylinux_2_28_x86_64.whl (651 kB) Collecting triton==3.2.0 (from torch==2.6) Using cached https://download.pytorch.org/whl/test/triton-3.2.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (163.3 MB) Collecting pytorch-triton-xpu==3.2.0 (from torch==2.6) Using cached https://download.pytorch.org/whl/test/pytorch_triton_xpu-3.2.0-cp310-cp310-linux_x86_64.whl (348.4 MB) Collecting packaging (from pytorch-triton-xpu==3.2.0->torch==2.6) Using cached https://download.pytorch.org/whl/test/packaging-22.0-py3-none-any.whl (42 kB) Collecting mpmath<1.4,>=1.1.0 (from sympy==1.13.1->torch==2.6) Using cached https://download.pytorch.org/whl/test/mpmath-1.3.0-py3-none-any.whl (536 kB) Collecting MarkupSafe>=2.0 (from jinja2->torch==2.6) Using cached https://download.pytorch.org/whl/test/MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25 kB) Installing collected packages: triton, tcmlib, mpmath, intel-pti, intel-cmplr-lic-rt, intel-cmplr-lib-rt, umf, typing-extensions, sympy, packaging, networkx, MarkupSafe, fsspec, filelock, pytorch-triton-xpu, jinja2, intel-cmplr-lib-ur, intel-sycl-rt, torch Successfully installed MarkupSafe-2.1.5 filelock-3.13.1 fsspec-2024.6.1 intel-cmplr-lib-rt-2025.0.2 intel-cmplr-lib-ur-2025.0.2 intel-cmplr-lic-rt-2025.0.2 intel-pti-0.10.0 intel-sycl-rt-2025.0.2 jinja2-3.1.4 mpmath-1.3.0 networkx-3.3 packaging-22.0 pytorch-triton-xpu-3.2.0 sympy-1.13.1 tcmlib-1.2.0 torch-2.6.0+xpu triton-3.2.0 typing-extensions-4.12.2 umf-0.9.1 ``` ### Versions pytorch 2.6.0 and latest main cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,758,895,058
[BE]: Update mypy to 1.14.0
Skylion007
closed
[ "open source", "Stale", "topic: not user facing" ]
3
COLLABORATOR
Updates mypy to the latest and greatest
true
2,758,891,270
Integration of AdamCPR Optimizer into PyTorch
ZiadHelal
open
[ "module: optimizer", "triaged" ]
1
NONE
### 🚀 The feature, motivation and pitch # Proposal: Integration of AdamCPR Optimizer into PyTorch **Authors:** - @ZiadHelal ## **Summary** We propose the integration of AdamCPR, a novel deep learning optimizer developed at the University of Freiburg, into PyTorch's core optimizer library. AdamCPR builds upon the widely adopted AdamW (also originating from our lab) and introduces Constrained Parameter Regularization (CPR) to improve optimization dynamics and generalization. CPR enforces adaptive and individualized regularization constraints across parameter matrices, requiring minimal hyperparameter tuning while outperforming AdamW on diverse tasks such as language modeling, image classification, and medical image segmentation. For details, see our paper: [Improving Deep Learning Optimization through Constrained Parameter Regularization](https://arxiv.org/abs/2311.09058). ## **Motivation** AdamCPR addresses key limitations of uniform regularization in traditional optimizers, offering: - **Dynamic Regularization:** CPR adapts the penalty strength during training, eliminating the need for manual weight decay scheduling. - **Improved Performance:** Demonstrated gains in multiple benchmarks, including CIFAR100 (+1.5% accuracy), ImageNet (+2-3% accuracy on DeiT models), and GPT-2 pretraining (33% reduced training time to achieve comparable perplexity). - **Wide Applicability:** Suitable for diverse tasks, including fine-tuning large-scale models and training robust classifiers in noisy settings. ### Experimental Highlights 1. **GPT-2 Pretraining:** CPR achieved the same perplexity as AdamW with **33% fewer training steps**, translating into significant computational savings. 2. **Image Classification:** CPR outperformed AdamW in training ResNet18 on CIFAR100 with +1.5% accuracy and DeiT-Small on ImageNet with +2% top-1 accuracy. 3. **Medical Image Segmentation:** CPR improved Dice scores in tasks such as Brain Tumor Segmentation (+0.43%) and Multi-Atlas Labeling (+0.24%) compared to SGD with weight decay. ### Addressing Concerns 1. While AdamCPR is implemented in our [lab's GitHub repository](https://github.com/automl/CPR) and PyTorch encourages the exploration of optimizers in third-party libraries, we believe AdamCPR merits inclusion in the core library due to its foundational improvements, broad applicability, and lineage from AdamW, which is a widely used and trusted optimizer in PyTorch. Integrating AdamCPR would provide the community with a robust, efficient, and ready-to-use tool, fostering adoption and reducing the need for users to implement or maintain custom solutions. 2. CPR has been tested extensively across diverse domains, achieving consistent performance gains with minimal to zero hyperparameter tuning. 3. Our lab has pioneered impactful contributions like AdamW, and AdamCPR continues this trajectory, representing the cutting edge of optimizer research. ## **Proposed Implementation** AdamCPR builds on PyTorch’s existing optimizer framework, ensuring compatibility and ease of integration: 1. **Single Tensor & Multi (foreach) Tensor Implementation :** This is already implemented in our repo. 4. **Fused Implementation (Planned):** Targeted for CUDA optimization, offering significant speedup in large-scale deployments. ## **Metrics** - Performance improvement over AdamW on diverse tasks: - CIFAR100: +1.5% accuracy on ResNet18. - ImageNet: +2-3% accuracy on DeiT models. - GPT-2: 33% reduction in training budget for equivalent perplexity. - Reduction in hyperparameter tuning effort (e.g., weight decay). - Computational efficiency compared to baseline optimizers (runtime increase <6%). ## **Drawbacks** 1. **Runtime Overhead:** Minor increase in training time (~0.5–5% in most settings) due to additional computations for constraints. We look forward to feedback from the PyTorch team, specifically Optimizers maintainers @janeyx99 @albanD @jbschlosser. ### Alternatives _No response_ ### Additional context _No response_ cc @vincentqb @jbschlosser @albanD @janeyx99 @crcrpar
true
2,758,860,352
[inductor] Simplify get_launch_args_* handling
jansel
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ciflow/inductor-rocm" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #143835 * #143818 * #143817 * #143815 * #143814 * #143813 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,758,847,815
Copy trans fixl2 miss
coderfeli
closed
[ "oncall: distributed", "module: rocm", "release notes: releng", "module: inductor" ]
2
NONE
Fixes #ISSUE_NUMBER cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,758,846,948
[1/N]Add Intel GPU Support to Torch Test Cases
daisyden
closed
[ "triaged", "open source", "Stale", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/xpu", "ci-no-td" ]
7
NONE
As the first step to https://github.com/pytorch/pytorch/issues/142029: - Define device checkers in common_utils.py to facilitate test generalization, for example GPU_TYPE for current available gpu device. - Define dtypesIfGPU and backward_dtypesIfGPU in OpInfo - Use GPU_TYPE, dtypesIfGPU and backward_dtypesIfGPU to make op_db general for GPU devices. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,758,831,533
flex_attention: OutOfResources
rmmr
closed
[ "triaged", "oncall: pt2", "module: higher order operators", "module: pt2-dispatcher", "module: flex attention" ]
1
NONE
### 🐛 Describe the bug Not sure if my expectations are wrong, but this should just work? ``` import torch from torch.nn.attention.flex_attention import flex_attention torch.compiler.reset() flex_attention = torch.compile(flex_attention) torch.manual_seed(1) x = torch.rand(1, 1, 32, 256).to(device="cuda") flex_attention(x, x, x) ``` - dim `128` still works - but `256` and above all fail. - `torch.nn.functional.scaled_dot_product_attention` simply works for any dim `256 - 16384` ### Raises ``` BackendCompilerFailed: backend='inductor' raised: OutOfResources: out of resource: shared memory, Required: 106496, Hardware limit: 101376. Reducing block sizes or `num_stages` may help. Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True ``` ### Versions PyTorch version: 2.6.0.dev20241225+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.12.8 (main, Dec 4 2024, 08:54:12) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-127-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090 Nvidia driver version: 550.127.05 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: AuthenticAMD Model name: AMD Ryzen 9 7950X3D 16-Core Processor CPU family: 25 Model: 97 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 1 Stepping: 2 Frequency boost: enabled CPU max MHz: 5758.5928 CPU min MHz: 3000.0000 BogoMIPS: 8384.48 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid overflow_recov succor smca fsrm flush_l1d Virtualization: AMD-V L1d cache: 512 KiB (16 instances) L1i cache: 512 KiB (16 instances) L2 cache: 16 MiB (16 instances) L3 cache: 128 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.1 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] pytorch-lightning==2.5.0.post0 [pip3] pytorch-triton==3.2.0+git0d4682f0 [pip3] torch==2.6.0.dev20241225+cu124 [pip3] torch-model-archiver==0.12.0 [pip3] torchmetrics==1.6.0 [pip3] torchserve==0.12.0 [pip3] triton==3.1.0 [conda] Could not collect cc @chauhang @penguinwu @zou3519 @ydwu4 @bdhirsh @yf225 @Chillee @drisspg @yanboliang @BoyuanFeng
true
2,758,781,540
After pth is converted into ptl, the prediction result is very different from pth
lizhiwen19900709
open
[ "oncall: jit" ]
1
NONE
### 🐛 Describe the bug # 加载原始配置和模型 checkpoint = torch.load(checkpoint_path, map_location='cuda') args = checkpoint['args'] args.num_classes = 250 # 构建模型 model, _, _ = build_model(args) model.load_state_dict(checkpoint['model']) model.eval() wrapped_model = DETRWrapper(model) original_model = wrapped_model # 保存原始模型的引用 # 准备示例输入 example_input = torch.randn(1, 3, 448, 448) # 测试前向传播 with torch.no_grad(): try: semantic_map = wrapped_model(example_input) print("Model test forward pass successful") print(f"Output shape: semantic_map {semantic_map.shape}") except Exception as e: print(f"Error during test forward pass: {e}") return try: # 使用TorchScript跟踪模型 traced_model = torch.jit.trace(wrapped_model, example_input) # 确保模型在CPU上 traced_model = traced_model.cpu() # 添加详细的验证步骤 def validate_outputs(pth_model, ptl_model, test_input): with torch.no_grad(): pth_output = pth_model(test_input) ptl_output = ptl_model(test_input) # 确保输出类型一致 if pth_output.dtype != ptl_output.dtype: print(f"Warning: Output dtype mismatch - PTH: {pth_output.dtype}, PTL: {ptl_output.dtype}") # 比较预测结果 match_percentage = (pth_output == ptl_output).float().mean() * 100 print(f"Prediction match percentage: {match_percentage:.2f}%") # 检查类别分布 pth_classes = torch.unique(pth_output, sorted=True) ptl_classes = torch.unique(ptl_output, sorted=True) print(f"PTH unique classes: {pth_classes}") print(f"PTL unique classes: {ptl_classes}") return match_percentage > 95 # 要求95%以上的预测匹配 # 在保存模型前进行验证 if not validate_outputs(wrapped_model, traced_model, example_input): print("Warning: Model conversion validation failed!") return # 保存模型 traced_model.save(output_path) ### Versions 2.1.0+cu118 cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
2,758,751,093
[Doc] Add `weight` and `bias` attributes to RMSNorm and GroupNorm
gau-nernst
closed
[ "triaged", "open source", "Stale" ]
3
NONE
I noticed RMSNorm doc doesn't mention about `weight` and `bias` attributes like LayerNorm does, so I adds it here. While adding that, I saw GroupNorm also didn't have such attribute doc, so I added it too. New rendered text Class | Doc ------|------ RMSNorm | <img width="656" alt="image" src="https://github.com/user-attachments/assets/3937323d-9137-4067-b283-320a50a653ba" /> GroupNorm | <img width="759" alt="image" src="https://github.com/user-attachments/assets/6213aad2-e928-446e-96bd-e799bc83f7ad" />
true
2,758,717,385
[DCP]Distributed checkpoint `set_optimizer_state_dict` cause optimizer step error when optimizer contains empty param group
FindDefinition
closed
[ "oncall: distributed", "module: optimizer", "triaged" ]
9
NONE
### 🐛 Describe the bug DCP `set_optimizer_state_dict` introduce wrong param group and cause `optim.step` raise error when original state dict contains param group that doesn't have any parameters. * Error Message ``` [rank1]: Traceback (most recent call last): [rank1]: File "/path/to/pytorch_bug/dcp_bug.py", line 45, in <module> [rank1]: optim_new.step() [rank1]: File "/opt/miniconda/envs/torchtitan/lib/python3.11/site-packages/torch/optim/optimizer.py", line 493, in wrapper [rank1]: out = func(*args, **kwargs) [rank1]: ^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/opt/miniconda/envs/torchtitan/lib/python3.11/site-packages/torch/optim/optimizer.py", line 91, in _use_grad [rank1]: ret = func(self, *args, **kwargs) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/opt/miniconda/envs/torchtitan/lib/python3.11/site-packages/torch/optim/adamw.py", line 230, in step [rank1]: beta1, beta2 = cast(Tuple[float, float], group["betas"]) [rank1]: ~~~~~^^^^^^^^^ [rank1]: KeyError: 'betas' ``` * Code `torchrun --nnodes=1 --nproc-per-node=4 --standalone /path/to/pytorch_bug/dcp_bug.py` ```Python import torch import torch.distributed.checkpoint as dcp from torch.distributed.checkpoint.state_dict import get_optimizer_state_dict, set_optimizer_state_dict from torch.distributed.device_mesh import init_device_mesh from torch.distributed.tensor.parallel import ( parallelize_module, ColwiseParallel, ) from torch.distributed.tensor import Shard, DTensor, Replicate import os _world_size = int(os.environ["WORLD_SIZE"]) device_mesh = init_device_mesh(device_type="cuda", mesh_shape=(_world_size,)) class TestMod(torch.nn.Module): def __init__(self): super().__init__() self.fc = torch.nn.Linear(64, 64) def forward(self, x): return self.fc(x) mod = TestMod().cuda() parallelize_module(mod, device_mesh, { "fc": ColwiseParallel(use_local_output=False) }) optim = torch.optim.AdamW([ {"params": mod.parameters()}, {"params": [], "lr": 0.2}, # empty pg group here ], lr=0.1) optim_new = torch.optim.AdamW([ {"params": mod.parameters()}, {"params": [], "lr": 0.2}, # empty pg group here ], lr=0.1) # init optimizer state sample_inp = torch.randn(2, 128, 64).cuda() sample_target = torch.randn(2, 128, 64).cuda() loss_cls = torch.nn.MSELoss() optim.zero_grad() output = mod(sample_inp).redistribute(device_mesh, [Replicate()]).to_local() loss = loss_cls(output, sample_target) loss.backward() optim.step() # bug optim_state_dict = get_optimizer_state_dict(mod, optim) set_optimizer_state_dict(mod, optim_new, optim_state_dict) optim_new.step() ``` ### Versions ``` PyTorch version: 2.6.0.dev20241222+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.11.10 (main, Oct 3 2024, 07:29:13) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.4.210-4-velinux1-amd64-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect Nvidia driver version: 535.86.10 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] numpy==2.1.3 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] pytorch-triton==3.2.0+git0d4682f0 [pip3] torch==2.6.0.dev20241222+cu124 [pip3] torchaudio==2.6.0.dev20241222+cu124 [pip3] torchdata==0.9.0 [pip3] torchpippy==0.2.0+1bcb2bf [pip3] torchtitan==0.0.2 [pip3] torchvision==0.22.0.dev20241222+cu124 [pip3] triton==3.1.0 [conda] blas 1.0 mkl [conda] cuda-cudart 12.1.105 0 nvidia [conda] cuda-cupti 12.1.105 0 nvidia [conda] cuda-libraries 12.1.0 0 nvidia [conda] cuda-nvrtc 12.1.105 0 nvidia [conda] cuda-nvtx 12.1.105 0 nvidia [conda] cuda-opencl 12.4.127 0 nvidia [conda] cuda-runtime 12.1.0 0 nvidia [conda] libcublas 12.1.0.26 0 nvidia [conda] libcufft 11.0.2.4 0 nvidia [conda] libcurand 10.3.5.147 0 nvidia [conda] libcusolver 11.4.4.55 0 nvidia [conda] libcusparse 12.0.2.55 0 nvidia [conda] libnvjitlink 12.1.105 0 nvidia [conda] mkl 2023.1.0 h213fc3f_46344 [conda] mkl-service 2.4.0 py311h5eee18b_1 [conda] mkl_fft 1.3.11 py311h5eee18b_0 [conda] mkl_random 1.2.8 py311ha02d727_0 [conda] numpy 2.1.3 py311h08b1b3b_0 [conda] numpy-base 2.1.3 py311hf175353_0 [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] pytorch-cuda 12.1 ha16c6d3_6 pytorch [conda] pytorch-triton 3.2.0+git0d4682f0 pypi_0 pypi [conda] torch 2.6.0.dev20241222+cu124 pypi_0 pypi [conda] torchaudio 2.6.0.dev20241222+cu124 pypi_0 pypi [conda] torchdata 0.9.0 pypi_0 pypi [conda] torchpippy 0.2.0+1bcb2bf pypi_0 pypi [conda] torchtitan 0.0.2 pypi_0 pypi [conda] torchvision 0.22.0.dev20241222+cu124 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi ``` cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @vincentqb @jbschlosser @albanD @janeyx99 @crcrpar @LucasLLC @pradeepfn
true
2,758,695,846
XPU PyTorch 2.6 WARNING: hwloc library not found in /tcm/latest/lib
ekaakurniawan
closed
[ "triaged", "module: xpu" ]
3
NONE
### 🐛 Describe the bug When setting up UMF environment variables, I get the following warning. It is due to ONEAPI_ROOT is never set. ``` $ source /opt/intel/oneapi/umf/0.9/env/vars.sh WARNING: hwloc library not found in /tcm/latest/lib ``` I need to run oneAPI setup variables to clear the warning. Please help to verify. ``` source /opt/intel/oneapi/setvars.sh ``` Steps I follow are from this link. https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpu/2-6.html __Set Up Intel Deep Learning Environment Variables__ ``` source /opt/intel/oneapi/compiler/2025.0/env/vars.sh source /opt/intel/oneapi/umf/0.9/env/vars.sh source /opt/intel/oneapi/pti/0.10/env/vars.sh ``` ### Versions ``` $ python collect_env.py Collecting environment information... PyTorch version: 2.6.0+xpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 24.04.1 LTS (x86_64) GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 Clang version: Could not collect CMake version: version 3.28.3 Libc version: glibc-2.39 Python version: 3.12.3 (main, Nov 6 2024, 18:32:19) [GCC 13.2.0] (64-bit runtime) Python platform: Linux-6.8.0-51-generic-x86_64-with-glibc2.39 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 24 On-line CPU(s) list: 0-23 Vendor ID: GenuineIntel Model name: Intel(R) Core(TM) Ultra 9 285K CPU family: 6 Model: 198 Thread(s) per core: 1 Core(s) per socket: 1 Socket(s): 24 Stepping: 2 CPU(s) scaling MHz: 27% CPU max MHz: 5100.0000 CPU min MHz: 800.0000 BogoMIPS: 7372.80 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault intel_ppin ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdt_a rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect user_shstk avx_vnni lam wbnoinvd dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi vnmi umip pku ospke waitpkg gfni vaes vpclmulqdq tme rdpid bus_lock_detect movdiri movdir64b fsrm md_clear serialize arch_lbr ibt flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 768 KiB (20 instances) L1i cache: 1.3 MiB (20 instances) L2 cache: 40 MiB (12 instances) L3 cache: 36 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-23 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.1.2 [pip3] pytorch-triton-xpu==3.2.0 [pip3] torch==2.6.0+xpu [pip3] torchaudio==2.6.0+xpu [pip3] torchvision==0.21.0+xpu [pip3] triton==3.2.0 [conda] Could not collect ``` cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,758,685,432
[don't merge] build cpu via vs2022 (test diff)
xuhancn
closed
[ "open source", "ciflow/binaries", "topic: not user facing" ]
1
COLLABORATOR
Fixes #ISSUE_NUMBER
true
2,758,684,671
Tensor.item() blocks cudaLaunchKernel on other threads.
li-yi-dong
closed
[]
1
CONTRIBUTOR
### 🐛 Describe the bug Tensor.item() using `cudaMemcpyAsync` which triggers a Memcpy DtoH (Device -> Pageable). It seems that this kind of `cudaMemcpyAsync` would block any other `cudaLaunchKernel`, even on other thread. ![image](https://github.com/user-attachments/assets/a3484a7e-f1d7-4e9c-87ab-b0ff95c00918) I'm trying to implement overlapping between model forward with data preparation. This kind of behavior hurts the performance and even causing deadlock. Why `.item()` method must use pageable host memory? Is there any way to work around? ### Versions Collecting environment information... PyTorch version: 2.1.2 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.29.0 Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.10.135.bsk.6-amd64-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.4.131 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H20 GPU 1: NVIDIA H20 GPU 2: NVIDIA H20 GPU 3: NVIDIA H20 GPU 4: NVIDIA H20 GPU 5: NVIDIA H20 GPU 6: NVIDIA H20 GPU 7: NVIDIA H20 Nvidia driver version: 535.161.08 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 192 On-line CPU(s) list: 0-191 Vendor ID: GenuineIntel BIOS Vendor ID: Intel(R) Corporation Model name: Intel(R) Xeon(R) Platinum 8457C BIOS Model name: Intel(R) Xeon(R) Platinum 8457C CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 48 Socket(s): 2 Stepping: 8 CPU max MHz: 3800.0000 CPU min MHz: 800.0000 BogoMIPS: 5200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 4.5 MiB (96 instances) L1i cache: 3 MiB (96 instances) L2 cache: 192 MiB (96 instances) L3 cache: 195 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-47,96-143 NUMA node1 CPU(s): 48-95,144-191 Versions of relevant libraries: [pip3] cudnn==1.1.2 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.24.4 [pip3] nvtx==0.2.5 [pip3] onnx==1.16.0 [pip3] optree==0.11.0 [pip3] pynvjitlink==0.1.13 [pip3] pytorch-quantization==2.1.2 [pip3] pytorch-triton==2.1.0+e6216047b8 [pip3] torch==2.1.2 [pip3] torchaudio==2.1.2+cu121 [pip3] torchdata==0.7.1a0 [pip3] torchtext==0.17.0a0 [pip3] torchtyping==0.1.5 [pip3] torchvision==0.16.2+cu121 [pip3] triton==2.1.0 [pip3] tritonclient==2.50.0 [conda] Could not collect
true
2,758,643,409
[inductor][cpu] AMP/FP32 single thread performance regression in 2024-12-23 nightly release
zxd1997066
open
[ "needs reproduction", "triaged", "oncall: pt2", "module: dynamo" ]
6
CONTRIBUTOR
### 🐛 Describe the bug <p>AMP static shape default wrapper</p><table border="1" class="dataframe table"> <thead> <tr style="text-align: right;"> <th>suite</th> <th>name</th> <th>thread</th> <th>batch_size_new</th> <th>speed_up_new</th> <th>inductor_new</th> <th>eager_new</th> <th>compilation_latency_new</th> <th>batch_size_old</th> <th>speed_up_old</th> <th>inductor_old</th> <th>eager_old</th> <th>compilation_latency_old</th> <th>Ratio Speedup(New/old)</th> <th>Eager Ratio(old/new)</th> <th>Inductor Ratio(old/new)</th> <th>Compilation_latency_Ratio(old/new)</th> </tr> </thead> <tbody> <tr> <td>torchbench</td> <td>pyhpc_isoneutral_mixing</td> <td>single</td> <td>1</td> <td>23.99195</td> <td>0.0001438</td> <td>0.00345004241</td> <td>46.329881</td> <td>1</td> <td>28.984441</td> <td>0.00012082</td> <td>0.00350190016162</td> <td>45.62457</td> <td>0.83</td> <td>1.02</td> <td>0.84</td> <td>0.98</td> </tr> <tr> <td>torchbench</td> <td>lennard_jones</td> <td>single</td> <td>1</td> <td>3.080003</td> <td>8.8519e-05</td> <td>0.000272638785557</td> <td>38.040263</td> <td>1</td> <td>3.433204</td> <td>7.742e-05</td> <td>0.00026579865367999997</td> <td>38.885432</td> <td>0.9</td> <td>0.97</td> <td>0.87</td> <td>1.02</td> </tr> </tbody> </table> <p>AMP dynamic shape cpp wrapper</p><table border="1" class="dataframe table"> <thead> <tr style="text-align: right;"> <th>suite</th> <th>name</th> <th>thread</th> <th>batch_size_new</th> <th>speed_up_new</th> <th>inductor_new</th> <th>eager_new</th> <th>compilation_latency_new</th> <th>batch_size_old</th> <th>speed_up_old</th> <th>inductor_old</th> <th>eager_old</th> <th>compilation_latency_old</th> <th>Ratio Speedup(New/old)</th> <th>Eager Ratio(old/new)</th> <th>Inductor Ratio(old/new)</th> <th>Compilation_latency_Ratio(old/new)</th> </tr> </thead> <tbody> <tr> <td>torchbench</td> <td>pyhpc_isoneutral_mixing</td> <td>single</td> <td>1</td> <td>30.10916</td> <td>5.8161999999999996e-05</td> <td>0.0017512089639199998</td> <td>12.582083</td> <td>1</td> <td>38.434939</td> <td>4.9305e-05</td> <td>0.001895034667395</td> <td>12.577097</td> <td>0.78</td> <td>1.08</td> <td>0.85</td> <td>1.0</td> </tr> </tbody> </table> <p>AMP static shape cpp wrapper</p><table border="1" class="dataframe table"> <thead> <tr style="text-align: right;"> <th>suite</th> <th>name</th> <th>thread</th> <th>batch_size_new</th> <th>speed_up_new</th> <th>inductor_new</th> <th>eager_new</th> <th>compilation_latency_new</th> <th>batch_size_old</th> <th>speed_up_old</th> <th>inductor_old</th> <th>eager_old</th> <th>compilation_latency_old</th> <th>Ratio Speedup(New/old)</th> <th>Eager Ratio(old/new)</th> <th>Inductor Ratio(old/new)</th> <th>Compilation_latency_Ratio(old/new)</th> </tr> </thead> <tbody> <tr> <td>torchbench</td> <td>pyhpc_isoneutral_mixing</td> <td>single</td> <td>1</td> <td>29.729494</td> <td>5.8566e-05</td> <td>0.001741137545604</td> <td>12.629471</td> <td>1</td> <td>34.628374</td> <td>5.1991000000000004e-05</td> <td>0.0018003637926340002</td> <td>12.62295</td> <td>0.86</td> <td>1.03</td> <td>0.89</td> <td>1.0</td> </tr> </tbody> </table> <p>AMP dynamic shape default wrapper</p><table border="1" class="dataframe table"> <thead> <tr style="text-align: right;"> <th>suite</th> <th>name</th> <th>thread</th> <th>batch_size_new</th> <th>speed_up_new</th> <th>inductor_new</th> <th>eager_new</th> <th>compilation_latency_new</th> <th>batch_size_old</th> <th>speed_up_old</th> <th>inductor_old</th> <th>eager_old</th> <th>compilation_latency_old</th> <th>Ratio Speedup(New/old)</th> <th>Eager Ratio(old/new)</th> <th>Inductor Ratio(old/new)</th> <th>Compilation_latency_Ratio(old/new)</th> </tr> </thead> <tbody> <tr> <td>torchbench</td> <td>pyhpc_isoneutral_mixing</td> <td>single</td> <td>1</td> <td>29.646898</td> <td>0.000106697</td> <td>0.003163235075906</td> <td>30.752565</td> <td>1</td> <td>37.355747</td> <td>8.9253e-05</td> <td>0.003334112486991</td> <td>30.668563</td> <td>0.79</td> <td>1.05</td> <td>0.84</td> <td>1.0</td> </tr> </tbody> </table> <p>FP32 static shape CPP wrapper</p><table border="1" class="dataframe table"> <thead> <tr style="text-align: right;"> <th>suite</th> <th>name</th> <th>thread</th> <th>batch_size_new</th> <th>speed_up_new</th> <th>inductor_new</th> <th>eager_new</th> <th>compilation_latency_new</th> <th>batch_size_old</th> <th>speed_up_old</th> <th>inductor_old</th> <th>eager_old</th> <th>compilation_latency_old</th> <th>Ratio Speedup(New/old)</th> <th>Eager Ratio(old/new)</th> <th>Inductor Ratio(old/new)</th> <th>Compilation_latency_Ratio(old/new)</th> </tr> </thead> <tbody> <tr> <td>torchbench</td> <td>lennard_jones</td> <td>single</td> <td>1</td> <td>1.379054</td> <td>5.8948e-05</td> <td>8.1292475192e-05</td> <td>7.819986</td> <td>1</td> <td>1.597033</td> <td>5.0586e-05</td> <td>8.0787511338e-05</td> <td>7.780064</td> <td>0.86</td> <td>0.99</td> <td>0.86</td> <td>0.99</td> </tr> <tr> <td>torchbench</td> <td>pyhpc_equation_of_state</td> <td>single</td> <td>1</td> <td>19.078431</td> <td>6.2443e-05</td> <td>0.0011913144669329998</td> <td>11.053214</td> <td>1</td> <td>22.690209</td> <td>5.2470000000000004e-05</td> <td>0.0011905552662300001</td> <td>10.964946</td> <td>0.84</td> <td>1.0</td> <td>0.84</td> <td>0.99</td> </tr> <tr> <td>torchbench</td> <td>pyhpc_isoneutral_mixing</td> <td>single</td> <td>1</td> <td>40.936272</td> <td>7.7847e-05</td> <td>0.0031867659663840004</td> <td>13.349267</td> <td>1</td> <td>47.610703</td> <td>6.633e-05</td> <td>0.00315801792999</td> <td>13.237678</td> <td>0.86</td> <td>0.99</td> <td>0.85</td> <td>0.99</td> </tr> </tbody> </table> the last good commit: c04f0bb7b9537758e1e5c956ebcb20e153ef9544 ``` /workspace/pytorch# bash inductor_single_run.sh single inference performance torchbench pyhpc_isoneutral_mixing amp Testing with inductor. single-thread testing.... loading model: 0it [00:00, ?it/s] cpu eval pyhpc_isoneutral_mixing running benchmark: 100%|█████████████████████████████████████████████████████| 50/50 [00:00<00:00, 484.21it/s] 35.332x WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] dev,name,batch_size,speedup,abs_latency,compilation_latency,compression_ratio,eager_peak_mem,dynamo_peak_mem,calls_captured,unique_graphs,graph_breaks,unique_graph_breaks,autograd_captures,autograd_compiles,cudagraph_skips cpu,pyhpc_isoneutral_mixing,1,35.332336,0.049990,11.903519,0.795666,40.422605,50.803507,746,1,0,0,0,0,1 ``` the bad commit: 18261e9f39580989b5902b6b70f6a8371372c5c8 ``` /workspace/pytorch# bash inductor_single_run.sh single inference performance torchbench pyhpc_isoneutral_mixing amp Testing with inductor. single-thread testing.... loading model: 0it [00:00, ?it/s] cpu eval pyhpc_isoneutral_mixing running benchmark: 100%|█████████████████████████████████████████████████████| 50/50 [00:00<00:00, 492.06it/s] 30.152x WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] dev,name,batch_size,speedup,abs_latency,compilation_latency,compression_ratio,eager_peak_mem,dynamo_peak_mem,calls_captured,unique_graphs,graph_breaks,unique_graph_breaks,autograd_captures,autograd_compiles,cudagraph_skips cpu,pyhpc_isoneutral_mixing,1,30.152358,0.057168,7.816028,0.808176,40.422605,50.017075,746,1,0,0,0,0,1 ``` ### Versions </table><p>SW info</p><table border="1" class="dataframe table"> <thead> <tr style="text-align: right;"> <th>name</th> <th>target_branch</th> <th>target_commit</th> <th>refer_branch</th> <th>refer_commit</th> </tr> </thead> <tbody> <tr> <td>torchbench</td> <td>main</td> <td>766a5e3a</td> <td>main</td> <td>766a5e3a</td> </tr> <tr> <td>torch</td> <td>main</td> <td>f1cbf4b1b5a299f999c11e77bfabe39c7f04efdc</td> <td>main</td> <td>dd2d360b7d5dcc66660fdfe8da083a7077dada56</td> </tr> <tr> <td>torchvision</td> <td>main</td> <td>0.19.0a0+d23a6e1</td> <td>main</td> <td>0.19.0a0+d23a6e1</td> </tr> <tr> <td>torchtext</td> <td>main</td> <td>0.16.0a0+b0ebddc</td> <td>main</td> <td>0.16.0a0+b0ebddc</td> </tr> <tr> <td>torchaudio</td> <td>main</td> <td>2.6.0a0+b6d4675</td> <td>main</td> <td>2.5.0a0+265bc5c</td> </tr> <tr> <td>torchdata</td> <td>main</td> <td>0.7.1a0+0790338</td> <td>main</td> <td>0.7.1a0+0790338</td> </tr> <tr> <td>dynamo_benchmarks</td> <td>main</td> <td>nightly</td> <td>main</td> <td>nightly</td> </tr> </tbody> </table> </table> Repro: [inductor_single_run.sh](https://github.com/chuanqi129/inductor-tools/blob//main/scripts/modelbench/inductor_single_run.sh) bash inductor_single_run.sh single inference performance torchbench pyhpc_isoneutral_mixing amp Suspected guilty commit: https://github.com/pytorch/pytorch/commit/18261e9f39580989b5902b6b70f6a8371372c5c8 [torchbench-pyhpc_isoneutral_mixing-inference-amp-static-default-single-performance-drop_guilty_commit.log](https://github.com/user-attachments/files/18244801/torchbench-pyhpc_isoneutral_mixing-inference-amp-static-default-single-performance-drop_guilty_commit.log) cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames @chuanqi129
true
2,758,605,243
Possible race condition found in TailLogTest.test_tail
cdzhan
open
[ "oncall: distributed", "module: tests", "module: elastic" ]
1
CONTRIBUTOR
### 🐛 Describe the bug ### Error message ```bash Time: 12/20/2024 10:05:37, Level: 40000, Log: Traceback (most recent call last): File "/opt/py3.10/lib/python3.10/unittest/case.py", line 59, in testPartExecutor yield File "/opt/py3.10/lib/python3.10/unittest/case.py", line 591, in run self._callTestMethod(testMethod) File "/opt/py3.10/lib/python3.10/unittest/case.py", line 549, in _callTestMethod method() File "/torch/src/pytorch/test/distributed/elastic/multiprocessing/tail_log_test.py", line 83, in test_tail self.assertEqual( File "/opt/py3.10/lib/python3.10/unittest/case.py", line 845, in assertEqual assertion_func(first, second, msg=msg) File "/opt/py3.10/lib/python3.10/unittest/case.py", line 1144, in assertDictEqual self.fail(self._formatMessage(msg, standardMsg)) File "/opt/py3.10/lib/python3.10/unittest/case.py", line 675, in fail raise self.failureException(msg) AssertionError: {'[writer0]': {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1[156927 chars]999}} != {'[writer1]': {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1[156922 chars]999}} Diff is 722560 characters long. Set self.maxDiff to None to see it. ``` ### Possible root cause Some woker threads of `TailLog` might open their log files later than when they receive the stop signal? It's difficult to reproduce, and I have only encountered it once. ### Versions main cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @mruberry @ZainRizvi @dzhulgakov
true
2,758,557,847
[Inductor][CPP][CPU] Fix floating point exception error during division/mod
maybeLee
closed
[ "triaged", "open source", "Stale", "ciflow/trunk", "topic: not user facing", "module: inductor" ]
4
CONTRIBUTOR
Fixes #143649 This PR fixes the floating point exception in four operators: torch.floor_divide, torch.remainder, torch.fmod, torch.divide. Before this PR, when both `a` and `b` are integer tensors and `b=0`: | API | Eager Mode | torch.compile mode | | -------- | ------- | ------- | | torch.floor_divide(a,b) | RuntimeError("ZeroDivisionError") | FPE (core dumped) | | torch.remainder(a,b) | RuntimeError("ZeroDivisionError") | FPE (core dumped) | | torch.fmod(a,b) | RuntimeError("ZeroDivisionError") | FPE (core dumped) | | torch.divide(a,b, rounding_mode='trunc') | RuntimeError("ZeroDivisionError") | FPE (core dumped) | After this PR, when both `a` and `b` are integer tensors and `b=0`: | API | Eager Mode | torch.compile mode | | -------- | ------- | ------- | | torch.floor_divide(a,b) | RuntimeError("ZeroDivisionError") | RuntimeError("ZeroDivisionError") | | torch.remainder(a,b) | RuntimeError("ZeroDivisionError") | RuntimeError("ZeroDivisionError") | | torch.fmod(a,b) | RuntimeError("ZeroDivisionError") | RuntimeError("ZeroDivisionError") | | torch.divide(a,b, rounding_mode='trunc') | RuntimeError("ZeroDivisionError") | RuntimeError("ZeroDivisionError") | ### Test Plan ``` pytest -s -v test/inductor/test_cpu_select_algorithm.py -k test_cpu_integer_div_by_zero ``` Additionally, I wrote a toy script to check that the CPU inference efficiency of these four operators is not influenced very much. Therefore, I assume adding these checkers is affordable. | API | Before this PR | After this PR | | -------- | ------- | ------- | | torch.floor_divide(a,b) | 3.168026606241862e-05 | 3.1781593958536786e-05 | | torch.fmod(a,b) | 3.8297573725382486e-05 | 3.777662913004557e-05 | | torch.remainder(a,b) | 4.244565963745117e-05 | 4.1649738947550455e-05 | | torch.divide(a,b, rounding_mode='trunc') | 4.503051439921061e-05 | 4.452188809712728e-05 | <details> <summary>Detailed Code For Measuring The Efficiency</summary> ``` import time import torch import numpy as np np.random.seed(2024) op_list = [torch.floor_divide, torch.fmod, torch.remainder, torch.divide] cop_list = [torch.compile(f) for f in op_list] dtype_list = [torch.int16, torch.int32, torch.int64, torch.float16, torch.float32, torch.float64] # cold start for cop in cop_list: for dtype in dtype_list: value = torch.tensor(np.random.randn(1,2,3), dtype=dtype) value[value == 0] = 1 divisor = torch.tensor(np.random.randn(1,2,3), dtype=dtype) divisor[divisor == 0] = 1 try: res = cop(value, divisor) except RuntimeError as e: pass for op, cop in zip(op_list, cop_list): print(f"Benchmarking {op.__name__}") inference_time_list = [] for dtype in dtype_list: for i in range(100): value = torch.tensor(np.random.randn(1,2,3), dtype=dtype) value[value == 0] = 1 divisor = torch.tensor(np.random.randn(1,2,3), dtype=dtype) divisor[divisor == 0] = 1 start = time.time() try: res = cop(value, divisor) except RuntimeError as e: pass inference_time_list.append(time.time() - start) print(f"Average inference time: {np.mean(inference_time_list)}") print(f"Max inference time: {np.max(inference_time_list)}") print(f"Min inference time: {np.min(inference_time_list)}") ``` </details> cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true