id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
2,769,714,249
[Inductor] Add convolution output size checking to the meta function
DDEle
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor" ]
4
CONTRIBUTOR
Fixes #144013 Adding a size check to the meta function, similar to which in the CUDA/CPU aten op. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,769,674,242
[Quant][Inductor][X86] Separate binary post op fusion and lowering for qlinear
Xia-Weiwen
closed
[ "open source", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "intel", "module: inductor", "ciflow/inductor", "ci-no-td" ]
8
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144318 * #144312 * __->__ #144224 **Summary** The current implementation fuses quantized ops and their post ops and lowers the fused op to cpp backend in the same pass. It is better to separate post op fusion and lowering because - it looks better in terms of design - we need the post op fusion pass for PT2E quantization eager mode As one of a series of PRs which do the separation, this PR moves binary post op fusion of qlinear out of the lowering pass to after the weight-prepack pass. The workflow is 1. Weight prepack for qlinear so that `dq - linear` patterns are replaced by `onednn.qlinear_pointwise` 2. Fuse `onednn.qlinear_pointwise` and post ops 3. Lower to cpp backend This PR adds additional `PatternMatcherPass`'s to handle the post op fusion. Pattern matchers used for fusion are reused. **Test plan** It is covered by existing UTs in `test_mkldnn_pattern_matcher.py` for post op fusion. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @BoyuanFeng
true
2,769,668,541
Support LayerNorm2d
Luciennnnnnn
open
[ "module: nn", "triaged" ]
4
NONE
### 🚀 The feature, motivation and pitch Hi, I want to use a layernorm with BCHW features, where normalization applied to every pixel, see [this](https://github.com/huggingface/pytorch-image-models/blob/131518c15cef20aa6cfe3c6831af3a1d0637e3d1/timm/layers/norm.py#L71) for a reference. Currently, we have to use 2 `reshape` ops in order utilizing fast layernorm implementation of pytorch. ### Alternatives _No response_ ### Additional context _No response_ cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
true
2,769,548,511
Enable clang-analyzer checks of Clang-tidy
cyyever
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
6
COLLABORATOR
Fixes #ISSUE_NUMBER
true
2,769,523,676
[dynamo][dicts] Skip dict length guard
anijain2305
closed
[ "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144221 * #144165 * #143997 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,769,476,807
use `torch.special.xlogy` to implement `x_log_x`
randolf-scholz
closed
[ "module: distributions", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
15
CONTRIBUTOR
Fixes #144279 Using `x* x.log()` does not produce the correct value when `x=0`. cc @fritzo @neerajprad @alicanb @nikitaved
true
2,769,405,685
Full static typing for `torch.distributions`
randolf-scholz
open
[ "module: distributions", "module: typing", "triaged", "open source", "release notes: python_frontend" ]
5
CONTRIBUTOR
Fixes #144196 Extends #144197 #144106 #144110 ## Open Problems /// LSP violations - [ ] `mixture_same_family.py`: `cdf` and `log_prob` violate LSP (argument named `x` instead of `value`). - suggestion: Imo these kinds of methods should make use of positional-only parameters, at least in base classes. - [ ] `exp_family.py`: LSP problem with `_log_normalizer` (parent class requires `(*natural_params: Tensor) -> Tensor`, subclasses implement `(a: Tensor, b: Tensor) -> Tensor`). - suggestion: change parent class signature to `(natural_params: Tuple[Tensor, ...]) -> Tensor`. While this is BC breaking, (a) this is a private method, i.e. implementation detail, and (b) [no one other than torch seems to overwrite it](https://github.com/search?q=%22def+_log_normalizer%28self%2C+*%22&type=code&p=2) - [ ] `constraints.py`: `dependent_property`: mypy does not apply the same special casing to subclasses of `property` as it does to `property` itself, hence the need for `type: ignore[assignment]` statements. - affects: `relaxed_bernoulli.py`, `relaxed_categorical.py`, `logistic_normal.py`, `log_normal.py`, `kumaraswamy.py`, `half_cauchy.py`, `half_normal.py`, `inverse_gamma.py`, `gumbel.py`, `weibull.py`. - suggestion: consider a construction similar to `lazy_property` in `distributions/utils`. - [ ] `constraints.py` public interface not usable as type hints. - More crisp design would likely have one class per constraints, instead of using a mix of classes and instances. - suggestion: Add 1 class per constraint in the public interface; this can be subclasses of the existing ones. - As a workaround, I currently added a bunch of `TypeAlias`-variants, but that is likely not the best solution. - [ ] `transforms.py`: `_InverseTransform.with_cache` violates LSP. - suggestion: change `with_cache` to return `_InverseTransform`. - [ ] `test_distributions.py`: One test uses [`Dist.arg_constraints.get`](https://github.com/pytorch/pytorch/blob/3649e2e7bde8ff06f6fe6ac4168e879e9e4f5c0a/test/distributions/test_distributions.py#L6753), hence assumes `arg_constraints` is a class-attribute, but the base class `Distribution` defines it as a `@property`. - [ ] `test_distributions.py`: One test uses [`Dist.support.event_dim`](https://github.com/pytorch/pytorch/blob/3649e2e7bde8ff06f6fe6ac4168e879e9e4f5c0a/test/distributions/test_distributions.py#L1431), hence assumes `support` is a class-attribute, but the base class `Distribution` defines it as a `@property`. - [ ] `test_distributions.py`: Multiple tests use [`dist.cdf(float)`](https://github.com/pytorch/pytorch/blob/3649e2e7bde8ff06f6fe6ac4168e879e9e4f5c0a/test/distributions/test_distributions.py#L3517), but the base class annotates `cdf(Tensor) -> Tensor`. - suggestion: replace float values with tensors in test, unless floats should be officially supported. Note that floats are nonsensical for [multivariate distributions](https://en.wikipedia.org/wiki/Cumulative_distribution_function#Multivariate_case), so supporting it would probably require introducing a subclass for univariate distributions. - [ ] `test_distributions.py`: Multiple tests use [`dist.log_prob(float)`](https://github.com/pytorch/pytorch/blob/3649e2e7bde8ff06f6fe6ac4168e879e9e4f5c0a/test/distributions/test_distributions.py#L4066), but the base class annotates `log_prob(Tensor) -> Tensor`. ## Notes - `__init__.py`: use `+=` instead of `extends` ([ruff PYI056](https://docs.astral.sh/ruff/rules/unsupported-method-call-on-all/)) - `binomial.py`: Allow `float` arguments in `probs` and `logits` (gets used in tests) - `constraints.py`: made `_DependentProperty` a generic class, and `_DependentProperty.__call__` polymorphic. - `constraint_registry.py`: Made `ConstraintRegistry.register` a polymorphic method, checking that the factory is compatible with the constraint. - `constraint_registry.py`: Needed to add `type: ignore` comments to functions that try to register multiple different constraints at once. - maybe split them up? - `dirichlet.py`: `@once_differentiable` is untyped, requires `type: ignore[misc]` comment. - `dirichlet.py`: `ctx: Any` could be replaced with `ctx: FunctionContext`, however, the type lacks the `saved_tensors` attribute. - `distribution.py`: `Distribution._get_checked_instance` Accessing `"__init__"` on an instance is unsound, requires `type: ignore` comment. - `distribution.py`: Changed `support` from `Optional[Constraint]` to `Constraint` (consistent with the existing docstring, and several functions in tests rely on this assumption) - `exp_family.py`: small update to `ExponentialFamily.entropy` to fix type error. - `independent.py`: fixed type bug in `Independent.support`. - `multivariate_normal.py`: Added `type: ignore` comments to `_batch_mahalanobis` caused by[^1]. - `relaxed_bernoulli.py`: Allow float temperature argument (used in tests) - `relaxed_categorical.py`: Allow float temperature argument (used in tests) - `transforms.py`: Needed to change `ComposeTransform.__init__` signature to accept `Sequence[Transform]` rather than just `list[Transform]` (covariance!) - `transformed_distribution.py`: Needed to change `TransformedDistribution.__init__` signature to accept `Sequence[Transform]` rather than just `list[Transform]` (covariance!) - `transformed_distribution.py`: `TransformedDistribution.support` is problematic, because the parent class defines it as `@property` but several subclasses define it as an attribute, violating LSP. - `von_mises.py`: fixed `result` type being initialized as `float` instead of `Tensor`. - `von_mises.py`: `@torch.jit.script_if_tracing` is untyped, requires `type: ignore[misc]` comment. - `von_mises.py`: Allow float `loc` and `scale` (used in tests) [^1]: `torch.Size` is not correctly typed, causing `mypy` to think `Size + Size` is `tuple[int, ...]` instead of `Size`, see <https://github.com/pytorch/pytorch/issues/144218>. cc @fritzo @neerajprad @alicanb @nikitaved @ezyang @malfet @xuzhao9 @gramster
true
2,769,403,709
Improve static typing for `torch.Size`
randolf-scholz
closed
[ "module: typing", "triaged" ]
0
CONTRIBUTOR
### 🚀 The feature, motivation and pitch There are several issues with the current type hints for `torch.Size`: https://github.com/pytorch/pytorch/blob/9f94710e48bfefc6a8e32af956e45d5a847c6467/torch/_C/__init__.pyi.in#L172-L180 It simply subclasses `tuple[int, ...]`, but this causes several typing errors, for example: ```python import torch x = torch.Size([1,2,3]) y = torch.Size([4,5,6]) reveal_type(x+y) # tuple[int, ...], not Size !!! ``` [This is because `tuple.__add__` is annotated to return `tuple`](https://github.com/python/typeshed/blob/9f28171658b9ca6c32a7cb93fbb99fc92b17858b/stdlib/builtins.pyi#L985-L988). ### Alternatives _No response_ ### Additional context _No response_ cc @ezyang @malfet @xuzhao9 @gramster
true
2,769,387,753
PyTorch Enum PYI stubs are invalid. Fix typing of PYI stubs
Skylion007
open
[ "module: typing", "module: lint", "triaged" ]
2
COLLABORATOR
### 🐛 Describe the bug Updating mypy reveals that the way we have defined enums in our PYI stub is not valid. Specifically, we are not suppose to annotate the type of any values per https://typing.readthedocs.io/en/latest/spec/enums.html#defining-members . Therefore, we need to fix the typing and update it to a more modern typing system. See #143837 for some example errors. ### Versions master as of today cc @ezyang @malfet @xuzhao9 @gramster
true
2,769,344,725
Update ddp.rst
bm777
closed
[ "open source" ]
3
NONE
Fixes #ISSUE_NUMBER
true
2,769,343,284
[dynamo][user-defined] Share _getattr_static between UserDefinedClass and Object VT
anijain2305
closed
[ "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144215 * #144173 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,769,333,069
Add overloads to diagonal docs
jackson-tsang578
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "release notes: python_frontend" ]
10
CONTRIBUTOR
Fixes #126827. Refactored doc to demonstrate when none of the optional values are passed in. Added another example so that all overloads of the function are covered.
true
2,769,328,227
[onnx] Fix bug for exporting torch.cdist into onnx and support 'compute_mode'
ygq65536
closed
[ "module: onnx", "triaged", "open source", "Merged", "ciflow/trunk", "release notes: onnx", "topic: improvements" ]
6
CONTRIBUTOR
### Fix bug for exporting torch.cdist and support 'compute_mode' In [cdist,](https://github.com/pytorch/pytorch/blob/main/torch/onnx/symbolic_opset9.py#L6181) the 'compute_mode' was ignored, which leads to a big difference of the computation flow between original torch.cdist and the exported onnx file when computing Euclidean distance (p=2). For computing Euclidean distance, the running of exported onnx model will be 10x slower than running torch.cdist directly, and also very likely to cause CUDA OOM for larger matrixes unnecessarily. This code is going for exporting the same onnx computation flow with the forward of torch.cdist defined at [forward implementation](https://github.com/pytorch/pytorch/blob/9225f149ebec1ff16d0ef31105ee8ecf4fb09efc/aten/src/ATen/native/Distance.cpp#L66-L149.) under every compute_mode. Fixes #144212
true
2,769,327,250
[onnx] export unexpected onnx for torch.cdist, which is slow and easy to cause CUDA OOM
ygq65536
closed
[ "module: onnx", "triaged" ]
0
CONTRIBUTOR
### 🐛 Describe the bug In [cdist,](https://github.com/pytorch/pytorch/blob/main/torch/onnx/symbolic_opset9.py#L6181) the 'compute_mode' was ignored, which leads to a big difference of the computation flow between original torch.cdist and the exported onnx file when computing Euclidean distance (p=2). For computing Euclidean distance, the running of exported onnx model will be 10x slower than running torch.cdist directly, and also very likely to cause CUDA OOM for larger matrixes unnecessarily. here is the code for replicate this: ```python import torch import onnxruntime as ort import onnx import torch.onnx import numpy as np import time import ctypes import onnxruntime as ort # export LD_LIBRARY_PATH=/home/vipuser/miniconda3/envs/torch/lib/python3.12/site-packages/nvidia/cudnn/lib/:$LD_CLIBRARY_PATH class Averager: def __init__(self): self.call_count = {} self.total_sum = {} def __call__(self, name, num): if name not in self.call_count: self.call_count[name] = 0 if name not in self.total_sum: self.total_sum[name] = 0 # ignore first time return self.call_count[name] += 1 # Increment call count self.total_sum[name] += num # Add result to total sum def get(self, name): assert name in self.call_count assert name in self.total_sum return self.total_sum[name]/self.call_count[name] class Cdist(torch.nn.Module): def forward(self, x, y, p=2.0, compute_mode="use_mm_for_euclid_dist_if_necessary"): # type: (Tensor, Tensor, float, str) -> (Tensor) r"""Computes batched the p-norm distance between each pair of the two collections of row vectors. Args: x1 (Tensor): input tensor of shape :math:`B \times P \times M`. x2 (Tensor): input tensor of shape :math:`B \times R \times M`. p: p value for the p-norm distance to calculate between each vector pair :math:`\in [0, \infty]`. compute_mode: 'use_mm_for_euclid_dist_if_necessary' - will use matrix multiplication approach to calculate euclidean distance (p = 2) if P > 25 or R > 25 'use_mm_for_euclid_dist' - will always use matrix multiplication approach to calculate euclidean distance (p = 2) 'donot_use_mm_for_euclid_dist' - will never use matrix multiplication approach to calculate euclidean distance (p = 2) Default: use_mm_for_euclid_dist_if_necessary. If x1 has shape :math:`B \times P \times M` and x2 has shape :math:`B \times R \times M` then the output will have shape :math:`B \times P \times R`. This function is equivalent to `scipy.spatial.distance.cdist(input,'minkowski', p=p)` if :math:`p \in (0, \infty)`. When :math:`p = 0` it is equivalent to `scipy.spatial.distance.cdist(input, 'hamming') * M`. When :math:`p = \infty`, the closest scipy function is `scipy.spatial.distance.cdist(xn, lambda x, y: np.abs(x - y).max())`. """ return torch.cdist(x, y, p, compute_mode) def test(compute_mode = "use_mm_for_euclid_dist", p=2.0): print(">>", compute_mode, p) model = Cdist() # Instantiate the model # Export the model to ONNX format x = torch.randn(1, 640, 128, ) y = torch.randn(2, 1280, 128, ) torch.onnx.export(model, (x, y, p, compute_mode), # Pass the two dummy inputs as a tuple "cdist_.onnx", # Output ONNX file input_names=["x", "y",], # Names for the input tensors output_names=["output"], # Name for the output tensor # dynamic_axes={"input1": {0: "batch_size"}, "input2": {0: "batch_size"}, "output": {0: "batch_size"}}, # Optional: dynamic batch size opset_version=9) # Specify the ONNX opset version inputs = [x, y] names = ["x", "y"] inputs_dict = {i:j for i, j in zip(names, inputs)} start = time.time() output_pytorch = model(x.cuda(), y.cuda(), p, compute_mode).cpu() # print(output_pytorch.size(), output_pytorch[0][0][:3]) # print("torch model run for:", time.time()-start, "s") inputs_dict = {i:j.numpy() for i, j in zip(names, inputs)} onnx_model_path = "cdist_.onnx" # Replace with the path to your ONNX model session = ort.InferenceSession(onnx_model_path, providers=['CUDAExecutionProvider']) start = time.time() onnx_output = session.run(["output"], inputs_dict)[0] onnx_time_cost = time.time()-start # print("onnx model run for:", onnx_time_cost, "s") onnx_output_tensor = torch.from_numpy(onnx_output) # print(onnx_output_tensor.size(), onnx_output_tensor[0][0][:3]) if not torch.allclose(output_pytorch, onnx_output_tensor, rtol=1e-2): print("The outputs of the PyTorch model and the ONNX model are different!") else: print("ok") return onnx_time_cost if __name__=="__main__": avg = Averager() testtimes = 20 p = 2.0 for i in range(testtimes): avg("donot_use_mm_for_euclid_dist", test("donot_use_mm_for_euclid_dist", p)) avg("use_mm_for_euclid_dist_if_necessary", test("use_mm_for_euclid_dist_if_necessary", p)) avg("use_mm_for_euclid_dist", test("use_mm_for_euclid_dist", p)) print("donot_use_mm_for_euclid_dist: average time:", avg.get("donot_use_mm_for_euclid_dist")) print("use_mm_for_euclid_dist_if_necessary: average time:", avg.get("use_mm_for_euclid_dist_if_necessary")) print("use_mm_for_euclid_dist: average time:", avg.get("use_mm_for_euclid_dist")) ``` Just compare the time cost between torch.cdist and exported cdist model at different mode will show the difference. here is a result of the difference between three mode for the exported onnx model: #### before fixing the bug, the time cost for onnx model is all the same. ``` donot_use_mm_for_euclid_dist: average time: 0.09469890594482422 use_mm_for_euclid_dist_if_necessary: average time: 0.08542945510462711 use_mm_for_euclid_dist: average time: 0.09019689810903449 ``` #### after fixing the bug, the time cost for onnx model is 10x faster when using the accelerated computation method. ``` donot_use_mm_for_euclid_dist: average time: 0.10753977926153886 use_mm_for_euclid_dist_if_necessary: average time: 0.008870099720201995 use_mm_for_euclid_dist: average time: 0.011054039001464844 ``` ### Versions PyTorch version: 2.5.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct 4 2024, 13:27:36) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.2.0-37-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.4.99 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3080 Nvidia driver version: 550.127.05 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 40 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 8 On-line CPU(s) list: 0-7 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6133 CPU @ 2.50GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 4 Socket(s): 1 Stepping: 4 BogoMIPS: 4999.90 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 arat pku ospke md_clear arch_capabilities L1d cache: 256 KiB (8 instances) L1i cache: 256 KiB (8 instances) L2 cache: 16 MiB (4 instances) L3 cache: 16 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-7 Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS, IBPB conditional, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown Versions of relevant libraries: [pip3] numpy==2.1.3 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] onnx==1.17.0 [pip3] onnxruntime-gpu==1.20.1 [pip3] torch==2.5.0 [pip3] torchaudio==2.5.0 [pip3] torchvision==0.20.0 [pip3] triton==3.1.0 [conda] numpy 2.1.3 pypi_0 pypi [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] torch 2.5.0 pypi_0 pypi [conda] torchaudio 2.5.0 pypi_0 pypi [conda] torchvision 0.20.0 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi
true
2,769,284,213
`torch.nn.functional.one_hot` has inconsistent execution behavior under torch.compile
meetmul
open
[ "high priority", "triaged", "oncall: pt2", "module: dynamo" ]
5
NONE
### 🐛 Describe the bug First of all, given the following input: ```python a = torch.arange(0, 5) % 3 # [0,1,2,0,1] a = a.to('cuda') num_classes = 1 ``` Directly calling `torch.nn.functional.one_hot` will throw a `RuntimeError`, which seems expected since the `max(a) > num_classes` (although the error message could be better refined) ```python res = torch.nn.functional.one_hot(a,num_classes) print(res) ------ ../aten/src/ATen/native/cuda/ScatterGatherKernel.cu:365: operator(): block: [0,0,0], thread: [1,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed. ../aten/src/ATen/native/cuda/ScatterGatherKernel.cu:365: operator(): block: [0,0,0], thread: [2,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed. ../aten/src/ATen/native/cuda/ScatterGatherKernel.cu:365: operator(): block: [0,0,0], thread: [4,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed. ... RuntimeError: CUDA error: device-side assert triggered CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1 Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ``` However, when calling `torch.nn.functional.one_hot` optimized by `torch.compile`, this optimized API will work normally without exceptions: ```python res = torch.compile(torch.nn.functional.one_hot)(a,num_classes) print(res) ------ tensor([[1], [0], [0], [1], [0]], device='cuda:0') ``` Then interesting thing happens, if I first call directly call `torch.nn.functional.one_hot`, then call the optimized `torch.nn.functional.one_hot`. This time, **the optimized API will then raise an Exception instead of working normally as it previously behaves**: ```python torch.nn.functional.one_hot(a,num_classes) res = torch.compile(torch.nn.functional.one_hot)(a,num_classes) print(res) ------ ../aten/src/ATen/native/cuda/ScatterGatherKernel.cu:365: operator(): block: [0,0,0], thread: [1,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed. ../aten/src/ATen/native/cuda/ScatterGatherKernel.cu:365: operator(): block: [0,0,0], thread: [2,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed. ../aten/src/ATen/native/cuda/ScatterGatherKernel.cu:365: operator(): block: [0,0,0], thread: [4,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed. ...... torch._dynamo.exc.InternalTorchDynamoError: RuntimeError: CUDA error: device-side assert triggered CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1 Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ``` ### Versions [pip3] numpy==1.26.2 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] optree==0.13.1 [pip3] torch==2.5.1 [pip3] triton==3.1.0 [conda] numpy 1.26.2 pypi_0 pypi [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] optree 0.13.1 pypi_0 pypi [conda] torch 2.5.1 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @amjames
true
2,769,248,572
Add inheritance possibilities
MaKaNu
open
[ "module: sparse", "triaged" ]
0
NONE
### 🚀 The feature, motivation and pitch While inheritance of a normal tensor is possible, a more specialized tensor it seems not be able to achieve, since: ``` NotImplementedError: Cannot access storage of SparseTensorImpl ``` In the following forum post https://discuss.pytorch.org/t/how-to-inherit-sparse-tensor/214920 I described the scenario, where I wanted to extend a sparse_coo_tensor, to create a specialized sparse tensor ### Alternatives The only alternative seems to be composition, which is not the right approach for something that only extends/limits capabilities of the original object. ### Additional context _No response_ cc @alexsamardzic @nikitaved @pearu @cpuhrsch @amjames @bhosmer @jcaip
true
2,769,186,823
Update torch-xpu-ops commit pin
EikanWang
closed
[ "open source", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
1
COLLABORATOR
Update the torch-xpu-ops commit to [28cfac20ec662abdb0ac98faf122450013e8f520](https://github.com/intel/torch-xpu-ops/commit/28cfac20ec662abdb0ac98faf122450013e8f520), includes: - Disable batch_norm vectorization path to fix accuracy issues. - Fix the LSRM/RNN implementation error. Pull Request resolved: https://github.com/pytorch/pytorch/pull/143984 Approved by: https://github.com/EikanWang, https://github.com/ruidazeng, https://github.com/desertfire, https://github.com/jansel (cherry picked from commit 1e881ceecfe80532206ca4e0acb64391fab8b935) cc @voznesenskym @penguinwu @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,769,166,419
Apply Ruff fixes and pyupgrade to torch/jit
cyyever
closed
[ "oncall: jit", "triaged", "open source", "Merged", "ciflow/trunk", "release notes: jit", "suppress-bc-linter" ]
9
COLLABORATOR
Fixes #ISSUE_NUMBER cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
2,769,128,194
`pack_padded_sequence ` -> `pad_packed_sequence` can silently truncate input tensor when max length is smaller than actual max sequence length
brylee10
closed
[ "module: nn", "module: rnn", "triaged", "actionable" ]
2
NONE
### 🐛 Describe the bug Running `pack_padded_sequence` -> `pad_packed_sequence` functions can silently truncates the input tensor when the largest value in `lengths` are smaller than the actual sequence lengths of the input tensor. This truncation occurs without any warning or error. Expected Behavior: The `pack_padded_sequence` function should raise a warning or error if the the sequence length in the input tensor exceeds the maximum sequence length in `lengths`. Potential Solution: A `warnings.warn()` message could be added to `pack_padded_sequence` if the length validation fails. **Reproduction** ```python import torch from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence input_tensor = torch.randn(3, 5, 3) # Note: The first sequence has a length smaller than its actual length (4 > 3) lengths = [4, 2, 3] packed = pack_padded_sequence(input_tensor, lengths, batch_first=True, enforce_sorted=False) unpacked, unpacked_lengths = pad_packed_sequence(packed, batch_first=True) # Outputs: (3, 4, 3) print("Unpacked Sequence Shape:", unpacked.shape) # Outputs: [4, 2, 3] print("Unpacked Lengths:", unpacked_lengths) print("Original Sequence:", input_tensor) # Note: the last sequence length inde has been truncated print("Unpacked Sequence:", unpacked) ``` ### Versions PyTorch version: 2.5.1 cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
true
2,769,121,939
Error when compiling document
aaronjie
open
[ "module: build", "module: docs", "triaged" ]
3
NONE
### 🐛 Describe the bug Hi there. I tried to compile the doc using following command: ` git clone https://github.com/pytorch/pytorch.git cd pytorch/docs pip install -r requirements.txt make html ` However, I encountered following errors: ` Traceback (most recent call last): File "/content/pytorch/docs/source/scripts/build_opsets.py", line 75, in <module> main() File "/content/pytorch/docs/source/scripts/build_opsets.py", line 58, in main aten_ops_list = get_aten() File "/content/pytorch/docs/source/scripts/build_opsets.py", line 20, in get_aten parsed_yaml = parse_native_yaml(NATIVE_FUNCTION_YAML_PATH, TAGS_YAML_PATH) File "/usr/local/lib/python3.10/dist-packages/torchgen/gen.py", line 241, in parse_native_yaml _GLOBAL_PARSE_NATIVE_YAML_CACHE[path] = parse_native_yaml_struct( File "/usr/local/lib/python3.10/dist-packages/torchgen/gen.py", line 180, in parse_native_yaml_struct add_generated_native_functions(rs, bs) File "/usr/local/lib/python3.10/dist-packages/torchgen/native_function_generation.py", line 479, in add_generated_native_functions raise AssertionError( AssertionError: Found an operator that we could not generate an out= variant for: _assert_tensor_metadata(Tensor a, SymInt[]? size=None, SymInt[]? stride=None, ScalarType? dtype=None, *, Device? device=None, Layout? layout=None) -> (). This type of operators don't have tensor-like return, making it difficult to generate a proper out= variant. If out= variant is not needed, please add the function name into FUNCTIONAL_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT list. make: *** [Makefile:25: opset] Error 1 ` Thank you. ### Versions % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 24353 100 24353 0 0 87236 0 --:--:-- --:--:-- --:--:-- 86975 Collecting environment information... PyTorch version: 2.5.1+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.31.2 Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.1.85+-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 12.2.140 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.6 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.6 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.6 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.6 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.6 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.6 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.6 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 2 On-line CPU(s) list: 0,1 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) CPU @ 2.20GHz CPU family: 6 Model: 79 Thread(s) per core: 2 Core(s) per socket: 1 Socket(s): 1 Stepping: 0 BogoMIPS: 4399.99 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xsaveopt arat md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 32 KiB (1 instance) L1i cache: 32 KiB (1 instance) L2 cache: 256 KiB (1 instance) L3 cache: 55 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0,1 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable; SMT Host state unknown Vulnerability Meltdown: Vulnerable Vulnerability Mmio stale data: Vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Vulnerable Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Not affected; BHI: Vulnerable (Syscall hardening enabled) Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.6.0.74 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-nccl-cu12==2.23.4 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvtx==0.2.10 [pip3] optree==0.13.1 [pip3] pynvjitlink-cu12==0.4.0 [pip3] pytorch_sphinx_theme==0.0.24 [pip3] torch==2.5.1+cu121 [pip3] torchaudio==2.5.1+cu121 [pip3] torchsummary==1.5.1 [pip3] torchvision==0.20.1+cu121 [conda] Could not collect cc @malfet @seemethere @svekars @brycebortree @sekyondaMeta @AlannaBurke
true
2,769,068,023
[5/N] Apply Ruff fixes and pyupgrade to Python 3.9
cyyever
closed
[ "oncall: distributed", "oncall: jit", "triaged", "open source", "Merged", "ciflow/trunk", "release notes: fx", "fx", "ciflow/inductor", "suppress-bc-linter" ]
8
COLLABORATOR
Fixes #ISSUE_NUMBER cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @EikanWang @jgong5 @wenzhe-nrv @sanchitintel @ezyang @SherlockNoMad
true
2,769,066,065
Apply Ruff fixes and pyupgrade
cyyever
closed
[ "oncall: distributed", "oncall: jit", "release notes: fx", "fx", "module: inductor", "module: dynamo", "ciflow/inductor" ]
1
COLLABORATOR
Fixes #ISSUE_NUMBER cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @EikanWang @jgong5 @wenzhe-nrv @sanchitintel @ezyang @SherlockNoMad @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,769,044,898
Cant’t find amdgpu.ids when installed in venv
Outssiss
closed
[ "needs reproduction", "module: binaries", "module: rocm", "triaged" ]
5
NONE
I installed python via pyenv (tried both 3.11.11 and 3.12.8), created a venv and then installed torch in that virtual environment, this throws the warning “amdgpu.ids: No such file or directory” two times in a row, I assume one for the integrated GPU and another one for the dedicated one. But if instead I install torch directly on the global pyenv install this warning goes away and everything works as expected. I then tried installing torch in the global instance and then also in the venv and noticed that this got rid of the warnings when running in the venv. Turns out that torch in the venv still looks for the amdgpu.ids file in the location of the global install (/home/josef/.pyenv/versions/3.12.8/lib/python3.12/site-packages/torch/share/libdrm/amdgpu.ids) instead that on the venv location (/home/josef/CodeThings/PytorchThingsEnv/.venv/lib/python3.12/site-packages/torch/share/libdrm/amdgpu.ids) and if I remove the file from the global location, the warnings come back. Some information about the machine: CPU: Ryzen 7 7700X GPU: Radeon RX 7800 XT ROCm version: 6.2 OS: Arch Linux ### Versions Collecting environment information... amdgpu.ids: No such file or directory amdgpu.ids: No such file or directory PyTorch version: 2.5.1+rocm6.2 Is debug build: False CUDA used to build PyTorch: N/A ROCM used to build PyTorch: 6.2.41133-dd7f95766 OS: Arch Linux (x86_64) GCC version: (GCC) 14.2.1 20240910 Clang version: 18.1.8 CMake version: version 3.31.3 Libc version: glibc-2.40 Python version: 3.12.8 (main, Jan 5 2025, 00:50:31) [GCC 14.2.1 20240910] (64-bit runtime) Python platform: Linux-6.12.6-arch1-1-x86_64-with-glibc2.40 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: AMD Radeon Graphics (gfx1101) Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: 6.2.41133 MIOpen runtime version: 3.2.0 Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 16 On-line CPU(s) list: 0-15 Vendor ID: AuthenticAMD Model name: AMD Ryzen 7 7700X 8-Core Processor CPU family: 25 Model: 97 Thread(s) per core: 2 Core(s) per socket: 8 Socket(s): 1 Stepping: 2 Frequency boost: enabled CPU(s) scaling MHz: 64% CPU max MHz: 5573,0000 CPU min MHz: 545,0000 BogoMIPS: 8986,46 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid overflow_recov succor smca fsrm flush_l1d amd_lbr_pmc_freeze Virtualization: AMD-V L1d cache: 256 KiB (8 instances) L1i cache: 256 KiB (8 instances) L2 cache: 8 MiB (8 instances) L3 cache: 32 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-15 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.26.3 [pip3] pytorch-triton-rocm==3.1.0 [pip3] torch==2.5.1+rocm6.2 [pip3] torchaudio==2.5.1+rocm6.2 [pip3] torchvision==0.20.1+rocm6.2 [conda] Could not collect cc @seemethere @malfet @osalpekar @atalman @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,769,042,166
[ca] dedup node names when AOT bwd graph is reused multiple times
xmfan
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor", "module: compiled autograd" ]
3
MEMBER
This error started popping up in HUD CA benchmarks: ```python File "/data/users/xmfan/core/b/pytorch/torch/_dynamo/compiled_autograd.py", line 371, in dce self.fx_tracer.graph.eliminate_dead_code(is_impure) File "/data/users/xmfan/core/b/pytorch/torch/fx/graph.py", line 1862, in eliminate_dead_code self.lint() File "/data/users/xmfan/core/b/pytorch/torch/fx/graph.py", line 1753, in lint raise RuntimeError(f"Node redefined name {node.name}!") RuntimeError: Node redefined name aot0_expand! ``` We added CA initial capture's renaming (https://github.com/pytorch/pytorch/pull/133148) to help debug issues with AOT backward, but it errors out when we have multiple instances of the same AOT backward. This likely only showed up now because of increased hierarchical graph reuse. I fix it by adding a postfix counter to the node name Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144202 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,768,985,751
Update core.py to fix typo
jxmorris12
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
13
CONTRIBUTOR
dype -> dtype Fixes #ISSUE_NUMBER
true
2,768,977,214
[BE][Ez]: Update CUDNN Frontend submodule to 1.9.0
Skylion007
closed
[ "open source", "better-engineering", "Merged", "ciflow/trunk", "topic: not user facing" ]
3
COLLABORATOR
* Update CUDNN Frontend to 1.9.0, which include some API improvements, new features, and bugfixes. This is a header only lib fix so should be pretty straight forward. * Nicest feature is that it now logs / print warnings when the CUDNN compiled version does not match the dynamically loaded one * Fixes corrupted / truncated log lines from being printed by CUDNN Frontend
true
2,768,972,651
[mps/BE] Fix linter warning/advice.
dcci
closed
[ "Merged", "topic: not user facing", "module: mps", "ciflow/mps" ]
3
MEMBER
Two spaces before an inline comment according to E261. cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
2,768,953,718
[mps/BE] Enable a test that now passes.
dcci
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
9
MEMBER
After the implementation of floordiv in https://github.com/pytorch/pytorch/commit/464b50dbd7e0692970a2e34aac5b2eeb088741c6 landed, this now passes. cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,768,952,636
[typing] Add type hints to `__init__` methods in `torch.distributions`.
randolf-scholz
closed
[ "module: distributions", "module: typing", "triaged", "open source", "Merged", "Stale", "release notes: python_frontend" ]
19
CONTRIBUTOR
Fixes #144196 Extends #144106 and #144110 ## Open Problems: - [x] Annotating with `numbers.Number` is a bad idea, should consider using `float`, `SupportsFloat` or some `Procotol`. https://github.com/pytorch/pytorch/pull/144197#discussion_r1903324769 # Notes - `beta.py`: needed to add `type: ignore` since `broadcast_all` is untyped. - `categorical.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - ~~`dirichlet.py`: replaced `axis` with `dim` arguments.~~ #144402 - `gemoetric.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - ~~`independent.py`: fixed bug in `Independent.__init__` where `tuple[int, ...]` could be passed to `Distribution.__init__` instead of `torch.Size`.~~ **EDIT:** turns out the bug is related to typing of `torch.Size`. #144218 - `independent.py`: made `Independent` a generic class of its base distribution. - `multivariate_normal.py`: converted `else` branches of mutually exclusive arguments to `if` branch[^2]. - `relaxed_bernoulli.py`: added class-level type hint for `base_dist`. - `relaxed_categorical.py`: added class-level type hint for `base_dist`. - ~~`transforms.py`: Added missing argument to docstring of `ReshapeTransform`~~ #144401 - ~~`transforms.py`: Fixed bug in `AffineTransform.sign` (could return `Tensor` instead of `int`).~~ #144400 - `transforms.py`: Added `type: ignore` comments to `AffineTransform.log_abs_det_jacobian`[^1]; replaced `torch.abs(scale)` with `scale.abs()`. - `transforms.py`: Added `type: ignore` comments to `AffineTransform.__eq__`[^1]. - `transforms.py`: Fixed type hint on `CumulativeDistributionTransform.domain`. Note that this is still an LSP violation, because `Transform.domain` is defined as `Constraint`, but `Distribution.domain` is defined as `Optional[Constraint]`. - skipped: `constraints.py`, `constraints_registry.py`, `kl.py`, `utils.py`, `exp_family.py`, `__init__.py`. ## Remark `TransformedDistribution`: `__init__` uses the check `if reinterpreted_batch_ndims > 0:`, which can lead to the creation of `Independent` distributions with only 1 component. This results in awkward code like `base_dist.base_dist` in `LogisticNormal`. ```python import torch from torch.distributions import * b1 = Normal(torch.tensor([0.0]), torch.tensor([1.0])) b2 = MultivariateNormal(torch.tensor([0.0]), torch.eye(1)) t = StickBreakingTransform() d1 = TransformedDistribution(b1, t) d2 = TransformedDistribution(b2, t) print(d1.base_dist) # Independent with 1 dimension print(d2.base_dist) # MultivariateNormal ``` One could consider changing this to `if reinterpreted_batch_ndims > 1:`. [^1]: Usage of `isinstance(value, numbers.Real)` leads to problems with static typing, as the `numbers` module is not supported by `mypy` (see <https://github.com/python/mypy/issues/3186>). This results in us having to add type-ignore comments in several places [^2]: Otherwise, we would have to add a bunch of `type: ignore` comments to make `mypy` happy, as it isn't able to perform the type narrowing. Ideally, such code should be replaced with structural pattern matching once support for Python 3.9 is dropped. cc @fritzo @neerajprad @alicanb @nikitaved @ezyang @malfet @xuzhao9 @gramster
true
2,768,951,708
[typing] Add static type hints to `torch.distributions`.
randolf-scholz
closed
[ "module: distributions", "module: typing", "triaged" ]
7
CONTRIBUTOR
### 🚀 The feature, motivation and pitch Current lack of type hints causes some issues, for instance #76772 - [x] Add type hints for `lazy_property` class (#144110) - [x] Add type hints for `@property` and `@lazy_property` (#144110) - [x] Add type hints to `__init__` methods (#144197) - [ ] Add type hints to methods (#144219) - [ ] Add type hints to attributes (#144219) - [ ] Add type hints to utility functions (#144219) ### Alternatives _No response_ ### Additional context _No response_ cc @fritzo @neerajprad @alicanb @nikitaved @ezyang @malfet @xuzhao9 @gramster
true
2,768,951,494
[mps/inductor] Add support for floor().
dcci
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: mps", "module: inductor", "ciflow/inductor" ]
7
MEMBER
cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,768,937,877
[EZ][BE] Cleanup `test_mps_basic`
malfet
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
6
CONTRIBUTOR
- Sort imported tests alphabetically - Run `add` tests with `check_lowp=False` as it is tested explicitly by parametrization - Do not hardcode device, but rather use `self.device` property cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,768,916,380
Cholesky mps implementation
Isalia20
closed
[ "triaged", "open source", "Merged", "Reverted", "ciflow/trunk", "release notes: mps", "ciflow/mps", "module: inductor", "ciflow/inductor", "ci-no-td" ]
39
COLLABORATOR
Requested in #77764 PR is still in draft because it needs some cleanups and optimizations to get to cpu performance the least. Tasks: - [x] Make `upper=True` work, only `upper=False` works now - [x] Code cleanup - [x] Optimizations(Though might need some help on this)(tried my best, maybe there is still some more to squeeze out) - [x] Checks for positive definite input - [x] Support for (*, N, N) input, currently only supports (B, N, N) input - [x] Support other dtypes(float16, bfloat16) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,768,892,573
Add support for cpu scalar in addcdiv
EmmettBicker
closed
[ "triaged", "open source", "Stale", "release notes: python_frontend" ]
5
CONTRIBUTOR
Fixes #143306 Adds support for CPU scalar for tensor_2 in addcdiv. For example: ``` import torch a = torch.rand(2, 2, device="cuda") b = torch.tensor(1e-3) torch.add(a, b) torch.addcdiv(a, a, b) # used to fail, now works ``` Nearly identical to #143264
true
2,768,845,758
c10::optional -> std::optional in a few places
jeanschmidt
closed
[ "fb-exported", "release notes: cpp" ]
45
CONTRIBUTOR
Test Plan: Sandcastle Reviewed By: malfet Differential Revision: D67816636
true
2,768,832,048
'>>' operator broken on MPS with uint8, pytorch 2.5.1 and nightlies
Vargol
closed
[ "triaged", "module: correctness (silent)", "module: mps" ]
4
NONE
### 🐛 Describe the bug rshift is not working on MPS for unit8, it gives the wrong result. It works for int32, uint8 is used throughout GGUF for quantisation which is getting more and more important. ```py >>> import torch >>> x = torch.Tensor([255]).to(torch.uint8) >>> print (x) tensor([255], dtype=torch.uint8) >>> x >> 4 tensor([15], dtype=torch.uint8) >>> >>> print (x) tensor([255], dtype=torch.uint8) >>> y = x.to('mps') >>> print (y) tensor([255], device='mps:0', dtype=torch.uint8) >>> >>> y >> 4 tensor([255], device='mps:0', dtype=torch.uint8) ``` Note int32 works >>> x = torch.Tensor([255]).to(torch.int32) >>> y = x.to('mps') >>> y >> 4 tensor([15], device='mps:0', dtype=torch.int32) ### Versions Collecting environment information... PyTorch version: 2.6.0.dev20241226 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 15.2 (arm64) GCC version: Could not collect Clang version: 16.0.0 (clang-1600.0.26.6) CMake version: version 3.29.5 Libc version: N/A Python version: 3.11.10 (main, Sep 7 2024, 08:05:54) [Clang 16.0.0 (clang-1600.0.26.3)] (64-bit runtime) Python platform: macOS-15.2-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M3 Versions of relevant libraries: [pip3] numpy==2.1.2 [pip3] torch==2.6.0.dev20241226 [pip3] torchao==0.7.0 [pip3] torchvideo==0.0.0 [pip3] torchvision==0.22.0.dev20241226 [conda] Could not collect cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
2,768,785,557
Update ruff and black to use Python 3.9 as a baseline
cyyever
closed
[ "open source", "Stale", "topic: not user facing" ]
5
COLLABORATOR
Fixes #ISSUE_NUMBER
true
2,768,680,836
BackendCompilerFailed error is raised when applying torch.compile on torch.fill
maybeLee
closed
[ "triaged", "oncall: pt2", "module: inductor" ]
0
CONTRIBUTOR
### 🐛 Describe the bug When compiling torch.fill in cuda environment, the compiled function will raise `BackendCompilerFailed` error when input is an `uint` tensor. It seems that this issue is caused by invalid argument type when using triton's API `tl.full`. Note that directly calling torch.fill with uint tensor does not lead to any exception. Here is the code to reproduce: ``` import torch f = torch.fill cf = torch.compile(f) input = torch.randn(1,2,3).to(torch.uint32).to('cuda') value = -90 print(f(input,value)) # tensor([[[4294967206, 4294967206, 4294967206],[4294967206, 4294967206, 4294967206]]], device='cuda:0',dtype=torch.uint32) cf_out = cf(input,value) ``` Although the traceback is super long, the error message seems straightforward: ``` E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] Triton compilation failed: triton_poi_fused_fill_0 E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] def triton_poi_fused_fill_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] xnumel = 6 E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] xoffset = tl.program_id(0) * XBLOCK E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] xindex = xoffset + tl.arange(0, XBLOCK)[:] E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] xmask = xindex < xnumel E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] x0 = xindex E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] tmp0 = tl.full([1], -90, tl.uint32) E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] tl.store(out_ptr0 + (x0), tmp0, xmask) E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] metadata: {'signature': {'out_ptr0': '*u32', 'xnumel': 'i32'}, 'device': 0, 'constants': {'XBLOCK': 8}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())], 'device_type': 'cuda', 'num_warps': 1, 'num_stages': 1, 'debug': True, 'cc': 86} E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] Traceback (most recent call last): E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] File "/opt/conda/lib/python3.11/site-packages/triton/language/core.py", line 35, in wrapper E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] return fn(*args, **kwargs) E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] ^^^^^^^^^^^^^^^^^^^ E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] File "/opt/conda/lib/python3.11/site-packages/triton/language/core.py", line 1223, in full E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] return semantic.full(shape, value, dtype, _builder) E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] File "/opt/conda/lib/python3.11/site-packages/triton/language/semantic.py", line 530, in full E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] value = get_value_fn(value) E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] ^^^^^^^^^^^^^^^^^^^ E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] TypeError: get_uint32(): incompatible function arguments. The following argument types are supported: E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] 1. (self: triton._C.libtriton.ir.builder, arg0: int) -> triton._C.libtriton.ir.value E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] Invoked with: <triton._C.libtriton.ir.builder object at 0x7fca9840ecf0>, -90 E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] The above exception was the direct cause of the following exception: E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] Traceback (most recent call last): E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] File "/opt/conda/lib/python3.11/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 532, in _precompile_config E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] binary = triton.compile(*compile_args, **compile_kwargs) E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] File "/opt/conda/lib/python3.11/site-packages/triton/compiler/compiler.py", line 276, in compile E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] module = src.make_ir(options, codegen_fns, context) E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] File "/opt/conda/lib/python3.11/site-packages/triton/compiler/compiler.py", line 113, in make_ir E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] return ast_to_ttir(self.fn, self, context=context, options=options, codegen_fns=codegen_fns) E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] triton.compiler.errors.CompilationError: at 7:11: E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] def triton_poi_fused_fill_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] xnumel = 6 E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] xoffset = tl.program_id(0) * XBLOCK E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] xindex = xoffset + tl.arange(0, XBLOCK)[:] E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] xmask = xindex < xnumel E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] x0 = xindex E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] tmp0 = tl.full([1], -90, tl.uint32) E0104 08:55:10.835000 220442 site-packages/torch/_inductor/runtime/triton_heuristics.py:534] [0/0] ^ Traceback (most recent call last): File "/root/try.py", line 7, in <module> cf_out = cf(input,value) ^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/eval_frame.py", line 576, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 1404, in __call__ return self._torchdynamo_orig_callable( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 1188, in __call__ result = self._inner_convert( ^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 565, in __call__ return _compile( ^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 1005, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 733, in compile_inner return _compile_inner(code, one_graph, hooks, transform) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_utils_internal.py", line 95, in wrapper_function return function(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 768, in _compile_inner out_code = transform_code_object(code, transform) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/bytecode_transformation.py", line 1402, in transform_code_object transformations(instructions, code_options) File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 236, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/convert_frame.py", line 680, in transform tracer.run() File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/symbolic_convert.py", line 2906, in run super().run() File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/symbolic_convert.py", line 1076, in run while self.step(): ^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/symbolic_convert.py", line 986, in step self.dispatch_table[inst.opcode](self, inst) File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/symbolic_convert.py", line 3086, in RETURN_VALUE self._return(inst) File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/symbolic_convert.py", line 3071, in _return self.output.compile_subgraph( File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/output_graph.py", line 1107, in compile_subgraph self.compile_and_call_fx_graph( File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/output_graph.py", line 1390, in compile_and_call_fx_graph compiled_fn = self.call_user_compiler(gm) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/output_graph.py", line 1440, in call_user_compiler return self._call_user_compiler(gm) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/output_graph.py", line 1493, in _call_user_compiler raise BackendCompilerFailed(self.compiler_fn, e).with_traceback( File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/output_graph.py", line 1472, in _call_user_compiler compiled_fn = compiler_fn(gm, self.example_inputs()) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/repro/after_dynamo.py", line 130, in __call__ compiled_gm = compiler_fn(gm, example_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/__init__.py", line 2314, in __call__ return compile_fx(model_, inputs_, config_patches=self.config) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_inductor/compile_fx.py", line 1886, in compile_fx return aot_autograd( ^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/backends/common.py", line 83, in __call__ cg = aot_module_simplified(gm, example_inputs, **self.kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_functorch/aot_autograd.py", line 1170, in aot_module_simplified compiled_fn = AOTAutogradCache.load( ^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_functorch/_aot_autograd/autograd_cache.py", line 754, in load compiled_fn = dispatch_and_compile() ^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_functorch/aot_autograd.py", line 1155, in dispatch_and_compile compiled_fn, _ = create_aot_dispatcher_function( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_functorch/aot_autograd.py", line 582, in create_aot_dispatcher_function return _create_aot_dispatcher_function( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_functorch/aot_autograd.py", line 832, in _create_aot_dispatcher_function compiled_fn, fw_metadata = compiler_fn( ^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_functorch/_aot_autograd/jit_compile_runtime_wrappers.py", line 201, in aot_dispatch_base compiled_fw = compiler(fw_module, updated_flat_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_functorch/aot_autograd.py", line 491, in __call__ return self.compiler_fn(gm, example_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_inductor/compile_fx.py", line 1764, in fw_compiler_base return inner_compile( ^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_inductor/compile_fx.py", line 575, in compile_fx_inner return wrap_compiler_debug(_compile_fx_inner, compiler_name="inductor")( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/repro/after_aot.py", line 102, in debug_wrapper inner_compiled_fn = compiler_fn(gm, example_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_inductor/compile_fx.py", line 689, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( ^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_inductor/compile_fx.py", line 1132, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_inductor/compile_fx.py", line 1047, in codegen_and_compile compiled_fn = graph.compile_to_module().call ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_inductor/graph.py", line 1978, in compile_to_module return self._compile_to_module() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_inductor/graph.py", line 2019, in _compile_to_module mod = PyCodeCache.load_by_key_path( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_inductor/codecache.py", line 2769, in load_by_key_path mod = _reload_python_module(key, path) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_inductor/runtime/compile_tasks.py", line 46, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) File "/tmp/torchinductor_root/iy/ciyo7ytism5a7pcooebqj3wuyepsq3xgyjogs2vpfqkhrxqs2l5w.py", line 48, in <module> triton_poi_fused_fill_0 = async_compile.triton('triton_poi_fused_fill_0', ''' ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_inductor/async_compile.py", line 214, in triton kernel.precompile() File "/opt/conda/lib/python3.11/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 302, in precompile compiled_binary, launcher = self._precompile_config( ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 532, in _precompile_config binary = triton.compile(*compile_args, **compile_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/triton/compiler/compiler.py", line 276, in compile module = src.make_ir(options, codegen_fns, context) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/triton/compiler/compiler.py", line 113, in make_ir return ast_to_ttir(self.fn, self, context=context, options=options, codegen_fns=codegen_fns) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: CompilationError: at 7:11: def triton_poi_fused_fill_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.full([1], -90, tl.uint32) ^ Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True ``` ### Versions Collecting environment information... PyTorch version: 2.6.0a0+gite15442a Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.2 Libc version: glibc-2.35 Python version: 3.11.10 | packaged by conda-forge | (main, Oct 16 2024, 01:27:36) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-5.14.0-427.37.1.el9_4.x86_64-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.4.131 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 GPU 3: NVIDIA GeForce RTX 3090 Nvidia driver version: 560.35.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Vendor ID: AuthenticAMD Model name: AMD Ryzen Threadripper PRO 3975WX 32-Cores CPU family: 23 Model: 49 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU max MHz: 4368.1641 CPU min MHz: 2200.0000 BogoMIPS: 7000.73 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sev sev_es Virtualization: AMD-V L1d cache: 1 MiB (32 instances) L1i cache: 1 MiB (32 instances) L2 cache: 16 MiB (32 instances) L3 cache: 128 MiB (8 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-63 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy==1.13.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.2 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] onnx==1.17.0 [pip3] onnxscript==0.1.0.dev20240817 [pip3] optree==0.13.0 [pip3] torch==2.6.0a0+gite15442a [pip3] triton==3.1.0 [conda] numpy 1.26.2 pypi_0 pypi [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] optree 0.13.0 pypi_0 pypi [conda] torch 2.6.0a0+gite15442a pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @aakhundov @BoyuanFeng
true
2,768,542,491
Wrong meta function for constant_pad_nd
ywq880611
open
[ "triaged", "oncall: pt2", "module: decompositions", "module: inductor" ]
5
CONTRIBUTOR
### 🐛 Describe the bug When I'm working on this [PR](https://github.com/pytorch/pytorch/pull/140399), I meet a test failed case `python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_fft_hfftn_cuda_float16`, it's related to `constant_pad_nd` op. ## Summary I found there is two potential dispatched methods for `constant_pad_nd` when run it directly with `meta` device and run it in `inductor` and they didn't return the same tensor. ## Code 1. Directly run it with `meta` device: ``` import torch a = torch.empty_strided((2, 4, 5), (20, 1, 4), dtype=torch.complex128, device='meta') print(a.shape) print(a.stride()) b = torch.constant_pad_nd(a, [0, 0, 0, -2, 0, 0]) print(b.shape) print(b.stride()) ``` If we run the above code, we could see for any of `meta`, `cuda` and `cpu` device, it will print: ``` torch.Size([2, 4, 5]) (20, 1, 4) torch.Size([2, 2, 5]) (10, 1, 2) ``` So the `meta` device matches the `cpu` and `cuda` device, it do **meet our expectation**. 2. torch.compile: We run `constant_pad_nd` with same arguments but run it with compiled. ``` import torch a = torch.empty_strided((2, 4, 5), (20, 1, 4), dtype=torch.complex128, device='cuda') def foo(a): b = torch.constant_pad_nd(a, [0, 0, 0, -2, 0, 0]) return b new_foo = torch.compile(foo) new_foo(a) ``` We could try to print the graph of ir: ![forward_decomp](https://github.com/user-attachments/assets/31b4f87d-4746-4571-a012-7106d9fd6edf) We could see in the pink box, the stride of `constant_pad_nd` is **`(10, 5, 1)`**, it's **not aligned** with the stride above **`(10, 1, 2)`**, so we could image there is mismatch in the meta function for directly run and run it in `inductor`. ## Analysis ### call stack I tried to debug the two different behavior, I found both of the two approaches will go to: https://github.com/pytorch/pytorch/blob/816328fa51382e9b50e60fb928a690d5c1bdadaf/torch/_prims_common/wrappers.py#L290-L291 but they may have different `fn` 1. Directly run it with `meta` device: it will go to some function called `empty_like`: https://github.com/pytorch/pytorch/blob/816328fa51382e9b50e60fb928a690d5c1bdadaf/torch/_refs/__init__.py#L4972-L5010 In this method, it will keep the output's stride aligned with the `cpu` or `cuda` device. 2. torch.compile: It will go to some function called `constant_pad_nd`: https://github.com/pytorch/pytorch/blob/816328fa51382e9b50e60fb928a690d5c1bdadaf/torch/_refs/__init__.py#L2901-L2981 In this method, it seems it didn't keep the stride align with the `cpu` or `cuda` device. ### my guess I suspected it was caused when we initialize meta function for each op, because it seems we didn't have a meta function for `constant_pad_nd`, so pytorch skip some setup here: https://github.com/pytorch/pytorch/blob/816328fa51382e9b50e60fb928a690d5c1bdadaf/torch/_meta_registrations.py#L6921-L6926 ## Potential solution I'm not very clear if it's an expected behavior, if it's not, there are two potential solution in my mind: 1. Ask `inductor` to call the `empty_like` in the above. 2. Introduce a meta function `meta_constant_pad_nd` for this op and make it run in both of the two places mentioned above. WDYT? Any help would be very appreciated! Thank you! ### Versions ``` Collecting environment information... PyTorch version: 2.6.0a0+gitf3ec745 Is debug build: True CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 10.5.0-1ubuntu1~22.04) 10.5.0 Clang version: Could not collect CMake version: version 3.31.1 Libc version: glibc-2.35 Python version: 3.11.10 (main, Oct 3 2024, 07:29:13) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.8.0-49-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.6.77 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3080 Nvidia driver version: 560.35.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 20 On-line CPU(s) list: 0-19 Vendor ID: GenuineIntel Model name: 12th Gen Intel(R) Core(TM) i7-12700K CPU family: 6 Model: 151 Thread(s) per core: 2 Core(s) per socket: 12 Socket(s): 1 Stepping: 2 CPU max MHz: 5000.0000 CPU min MHz: 800.0000 BogoMIPS: 7219.20 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l2 cdp_l2 ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdt_a rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect user_shstk avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi vnmi umip pku ospke waitpkg gfni vaes vpclmulqdq tme rdpid movdiri movdir64b fsrm md_clear serialize pconfig arch_lbr ibt flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 512 KiB (12 instances) L1i cache: 512 KiB (12 instances) L2 cache: 12 MiB (9 instances) L3 cache: 25 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-19 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Mitigation; Clear Register File Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] flake8==6.1.0 [pip3] flake8-bugbear==23.3.23 [pip3] flake8-comprehensions==3.15.0 [pip3] flake8-executable==2.1.3 [pip3] flake8-logging-format==0.9.0 [pip3] flake8-pyi==23.3.1 [pip3] flake8-simplify==0.19.3 [pip3] mypy==1.11.2 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.0 [pip3] onnx==1.17.0 [pip3] onnxscript==0.1.0.dev20240817 [pip3] optree==0.13.1 [pip3] torch==2.6.0a0+gitf3ec745 [pip3] triton==3.1.0 [conda] numpy 1.26.0 pypi_0 pypi [conda] optree 0.13.1 pypi_0 pypi [conda] torch 2.6.0a0+gitf3ec745 dev_0 <develop> [conda] torchfix 0.4.0 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi ``` cc @chauhang @penguinwu @SherlockNoMad @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @aakhundov @BoyuanFeng
true
2,768,512,251
[inductor] [cpu] `sum-softmax` throw `AssertionError: buf1`
shaoyuyoung
closed
[ "oncall: pt2", "oncall: cpu inductor" ]
2
CONTRIBUTOR
### 🐛 Describe the bug **symptom**: when using `.sum` and `torch.nn.Softmax` and setting their `dim=-1`, CPU inductor would throw an assertion error. **device**: only CPU. triton backend outputs correctly. I am not sure whether it is my CPU problem. I have run this on colab and got the same result. ```python import torch torch.manual_seed(0) torch.set_grad_enabled(False) from torch._inductor import config config.fallback_random = True class Model(torch.nn.Module): def __init__(self): super().__init__() self.softmax = torch.nn.Softmax(dim=-1) def forward(self, x): x = x.sum(dim=-1) x = self.softmax(x) return x model = Model() x = torch.randn(8, 8, 2) inputs = [x] try: output = model(*inputs) print("succeed on eager") except Exception as e: print(e) try: c_model = torch.compile(model) c_output = c_model(*inputs) print("succeed on inductor") except Exception as e: print(e) ``` ### Error logs ``` succeed on eager C0104 14:26:37.238000 836437 site-packages/torch/_inductor/scheduler.py:1140] [0/0] Error in codegen for ComputedBuffer(name='buf3', layout=FixedLayout('cpu', torch.float32, size=[8, 8], stride=[8, 1]), data=Pointwise(device=device(type='cpu'), dtype=torch.float32, inner_fn=<function make_pointwise.<locals>.inner.<locals>.inner_fn at 0x7fd288683740>, ranges=[8, 8])) AssertionError: buf1 ``` ### Versions PyTorch version: 20241230 OS: Ubuntu 20.04.6 LTS (x86_64) CPU: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz GPU: V100 <details> <summary>click for detailed env</summary> ``` PyTorch version: 2.6.0.dev20241230+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 Clang version: 16.0.1 CMake version: version 3.26.0 Libc version: glibc-2.31 Python version: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct 4 2024, 13:27:36) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.4.0-204-generic-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 12.6.68 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Tesla V100-SXM2-32GB GPU 1: Tesla V100-SXM2-32GB GPU 2: Tesla V100-SXM2-32GB GPU 3: Tesla V100-SXM2-32GB Nvidia driver version: 560.35.03 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.6.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 40 bits physical, 48 bits virtual CPU(s): 20 On-line CPU(s) list: 0-19 Thread(s) per core: 1 Core(s) per socket: 20 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz Stepping: 7 CPU MHz: 2499.998 BogoMIPS: 4999.99 Hypervisor vendor: KVM Virtualization type: full L1d cache: 640 KiB L1i cache: 640 KiB L2 cache: 80 MiB L3 cache: 16 MiB NUMA node0 CPU(s): 0-19 Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status Vulnerability Itlb multihit: KVM: Vulnerable Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch topoext cpuid_fault invpcid_single pti ssbd ibrs ibpb fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat umip pku ospke avx512_vnni Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] onnx==1.17.0 [pip3] onnxruntime==1.20.1 [pip3] onnxscript==0.1.0.dev20241205 [pip3] optree==0.13.1 [pip3] pytorch-triton==3.2.0+git0d4682f0 [pip3] torch==2.6.0.dev20241230+cu126 [pip3] torchaudio==2.6.0.dev20241230+cu126 [pip3] torchvision==0.22.0.dev20241230+cu126 [pip3] triton==3.0.0 [conda] numpy 1.26.4 pypi_0 pypi [conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi [conda] optree 0.13.1 pypi_0 pypi [conda] pytorch-triton 3.2.0+git0d4682f0 pypi_0 pypi [conda] torch 2.6.0.dev20241230+cu126 pypi_0 pypi [conda] torchaudio 2.6.0.dev20241230+cu126 pypi_0 pypi [conda] torchvision 0.22.0.dev20241230+cu126 pypi_0 pypi [conda] triton 3.0.0 pypi_0 pypi ``` </details> cc @chauhang @penguinwu
true
2,768,392,600
Fix annotate_getitem_nodes for new type annotations
cyyever
closed
[ "open source", "release notes: fx", "fx" ]
1
COLLABORATOR
Fixes #ISSUE_NUMBER cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,768,385,251
[dynamo][user-defined] Shared getattr_static_helper between UserDefinedClass and UserDefinedObject
anijain2305
closed
[ "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144184 * #144173 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,768,382,668
[inductor] `index_copy` looses the shape check on inductor
shaoyuyoung
open
[ "triaged", "oncall: pt2", "module: inductor" ]
0
CONTRIBUTOR
### 🐛 Describe the bug **symptom**: eager would throw the error when the shape of x and y is different. But inductor seems to do a special processing.... It broadcasts y to the same shape as x. **device**: both cuda and CPU ```python import torch import torch.nn as nn torch.manual_seed(0) torch.set_grad_enabled(False) from torch._inductor import config config.fallback_random = True class Model(nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x, y, indices): x = torch.index_copy(x, 0, indices, y) return x model = Model().cuda() x = torch.randn(1, 2).cuda() y = torch.randn(1, 1).cuda() indices = torch.tensor([0]).cuda() print(x) print(y) inputs = [x, y, indices] try: model(*inputs) except Exception as e: print(f"fail on eager: {e}") try: c_model = torch.compile(model) output = c_model(*inputs) print(output) except Exception as e: print(f"fail on inductor: {e}") ``` ### Error logs ``` tensor([[ 1.5410, -0.2934]], device='cuda:0') tensor([[-2.1788]], device='cuda:0') fail on eager: index_copy_(): Source/destination tensor must have same slice shapes. Destination slice shape: 2 at dimension 0 and source slice shape: 1 at dimension 0. tensor([[-2.1788, -2.1788]], device='cuda:0') ``` ### Versions PyTorch version: 20241230 OS: Ubuntu 20.04.6 LTS (x86_64) CPU: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz GPU: V100 <details> <summary>click for detailed env</summary> ``` PyTorch version: 2.6.0.dev20241230+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 Clang version: 16.0.1 CMake version: version 3.26.0 Libc version: glibc-2.31 Python version: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct 4 2024, 13:27:36) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.4.0-204-generic-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 12.6.68 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Tesla V100-SXM2-32GB GPU 1: Tesla V100-SXM2-32GB GPU 2: Tesla V100-SXM2-32GB GPU 3: Tesla V100-SXM2-32GB Nvidia driver version: 560.35.03 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.6.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 40 bits physical, 48 bits virtual CPU(s): 20 On-line CPU(s) list: 0-19 Thread(s) per core: 1 Core(s) per socket: 20 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz Stepping: 7 CPU MHz: 2499.998 BogoMIPS: 4999.99 Hypervisor vendor: KVM Virtualization type: full L1d cache: 640 KiB L1i cache: 640 KiB L2 cache: 80 MiB L3 cache: 16 MiB NUMA node0 CPU(s): 0-19 Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status Vulnerability Itlb multihit: KVM: Vulnerable Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch topoext cpuid_fault invpcid_single pti ssbd ibrs ibpb fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat umip pku ospke avx512_vnni Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] onnx==1.17.0 [pip3] onnxruntime==1.20.1 [pip3] onnxscript==0.1.0.dev20241205 [pip3] optree==0.13.1 [pip3] pytorch-triton==3.2.0+git0d4682f0 [pip3] torch==2.6.0.dev20241230+cu126 [pip3] torchaudio==2.6.0.dev20241230+cu126 [pip3] torchvision==0.22.0.dev20241230+cu126 [pip3] triton==3.0.0 [conda] numpy 1.26.4 pypi_0 pypi [conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi [conda] optree 0.13.1 pypi_0 pypi [conda] pytorch-triton 3.2.0+git0d4682f0 pypi_0 pypi [conda] torch 2.6.0.dev20241230+cu126 pypi_0 pypi [conda] torchaudio 2.6.0.dev20241230+cu126 pypi_0 pypi [conda] torchvision 0.22.0.dev20241230+cu126 pypi_0 pypi [conda] triton 3.0.0 pypi_0 pypi ``` </details> cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @aakhundov
true
2,768,382,414
Fix ruff warnings in caffe2 and functorch
cyyever
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
7
COLLABORATOR
In preparation for upgrading ruff config to py3.9.
true
2,768,355,936
Memory leak trying to average disc/gen losses during HiFiGAN training
AznamirWoW
closed
[]
3
NONE
### 🐛 Describe the bug Using ```epoch_disc_sum += loss_disc``` and ```epoch_gen_sum += loss_gen_all``` in the code below eats ~3MB/step RAM, so with a train 3500 steps long it consumes ~10GB by the end of the epoch, then the allocated RAM value drops down (triggered by torch.cuda.empty_cache() perhaps) ``` epoch_disc_sum = 0.0 epoch_gen_sum = 0.0 for batch_idx, info in data_iterator: phone, pitch, spec, wave = info # Forward pass use_amp = config.train.fp16_run and device.type == "cuda" with autocast(enabled=use_amp): model_output = net_g(phone, pitch, spec) y_hat, x_mask, z_mask, (z, z_p, m_p, logs_p, m_q, logs_q) = (model_output) y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, y_hat.detach()) with autocast(enabled=False): loss_disc, _, _ = discriminator_loss(y_d_hat_r, y_d_hat_g) # Discriminator backward and update epoch_disc_sum += loss_disc #.item() optim_d.zero_grad() scaler.scale(loss_disc).backward() scaler.unscale_(optim_d) grad_norm_d = torch.nn.utils.clip_grad_norm_(net_d.parameters(), max_norm=1000.0) scaler.step(optim_d) scaler.update() # Generator backward and update with autocast(enabled=use_amp): _, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat) with autocast(enabled=False): loss_mel = fn_mel_loss(wave, y_hat) * config.train.c_mel / 3.0 loss_env = envelope_loss(wave, y_hat) loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * config.train.c_kl loss_fm = feature_loss(fmap_r, fmap_g) loss_gen, _ = generator_loss(y_d_hat_g) loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_env epoch_gen_sum += loss_gen_all #.item() optim_g.zero_grad() scaler.scale(loss_gen_all).backward() scaler.unscale_(optim_g) grad_norm_g = torch.nn.utils.clip_grad_norm_(net_g.parameters(), max_norm=1000.0) scaler.step(optim_g) scaler.update() with torch.no_grad(): torch.cuda.empty_cache() #avg_losses["disc_loss_queue"].append(epoch_disc_sum / len(train_loader)) #avg_losses["gen_loss_queue"].append(epoch_gen_sum / len(train_loader)) ``` ### Versions PyTorch version: 2.3.1+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: Microsoft Windows 10 Pro (10.0.19045 64-bit) GCC version: Could not collect Clang version: Could not collect CMake version: Could not collect Libc version: N/A Python version: 3.10.16 | packaged by Anaconda, Inc. | (main, Dec 11 2024, 16:19:12) [MSC v.1929 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.19045-SP0 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4070 Ti SUPER Nvidia driver version: 566.36 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Name: AMD Ryzen 5 7600X 6-Core Processor Manufacturer: AuthenticAMD Family: 107 Architecture: 9 ProcessorType: 3 DeviceID: CPU0 CurrentClockSpeed: 4701 MaxClockSpeed: 4701 L2CacheSize: 6144 L2CacheSpeed: None Revision: 24834 Versions of relevant libraries: [pip3] numpy==1.23.5 [pip3] torch==2.3.1+cu121 [pip3] torchaudio==2.3.1+cu121 [pip3] torchcrepe==0.0.23 [pip3] torchfcpe==0.0.4 [pip3] torchvision==0.18.1+cu121 [conda] Could not collect
true
2,768,345,649
[Submodule] Upgrade to Cutlass 3.6
drisspg
closed
[ "module: cuda", "Merged", "Reverted", "ciflow/trunk", "release notes: sparse", "ci-no-td" ]
17
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144180 cc @ptrblck @msaroufim @eqy
true
2,768,345,086
Add fallbacks for aten._assert_tensor_metadata in inductor lowering
yushangdi
closed
[ "fb-exported", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Summary: We are adding `aten._assert_tensor_metadata` op in exported graphs in https://github.com/pytorch/pytorch/pull/142420, and we need an explicit fallback when `config.implicit_fallbacks = False`. Test Plan: ``` buck2 run mode/dev-nosan fbcode//caffe2/test/inductor:test_aot_inductor -- -r assert_tensor_meta ``` Differential Revision: D67817861 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,768,329,243
c10::string_view -> std::string_view in Device.cpp
r-barnes
closed
[ "fb-exported", "Merged", "ciflow/trunk", "release notes: cpp", "topic: improvements" ]
4
CONTRIBUTOR
Test Plan: Sandcastle Differential Revision: D67817163
true
2,768,328,235
c10::string_view -> std::string_view in torchgen
r-barnes
closed
[ "fb-exported", "Stale", "ciflow/trunk", "release notes: cpp", "topic: improvements", "topic: not user facing" ]
6
CONTRIBUTOR
Test Plan: Sandcastle Differential Revision: D67817109
true
2,768,313,729
[inductor] Avoid specializing over symbolic value during constant folding
StrongerXi
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144176 Fixes #143667. See more context in the issue. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,768,299,353
Compiled autograd fails due to `AttributeError: 'NoneType' object has no attribute 'bw_module'`
akihironitta
closed
[ "triaged", "oncall: pt2", "module: compiled autograd" ]
2
CONTRIBUTOR
### 🐛 Describe the bug Tried to use Compiled Autograd with this patch https://github.com/pyg-team/pytorch-frame/commit/a3df884148daf3f1983685aff926166af37a371a on nightly, following the tutorial https://pytorch.org/tutorials/intermediate/compiled_autograd_tutorial.html, however, it fails due to `AttributeError: 'NoneType' object has no attribute 'bw_module'`. ### Error logs ```console git clone -b akihironitta/compiled-autograd https://github.com/pyg-team/pytorch-frame.git cd pytorch-frame pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu126 pip install -e . python examples/trompt.py --compile ``` ``` Epoch 1: 0%| | 0/57 [00:04<?, ?it/s] Traceback (most recent call last): File "/home/aki/work/github.com/pyg-team/pytorch-frame/examples/trompt.py", line 157, in <module> train_loss = train(epoch) File "/home/aki/work/github.com/pyg-team/pytorch-frame/examples/trompt.py", line 126, in train loss.backward() File "/home/aki/miniconda3/envs/pyf-pt-nightly/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward torch.autograd.backward( File "/home/aki/miniconda3/envs/pyf-pt-nightly/lib/python3.10/site-packages/torch/autograd/__init__.py", line 347, in backward _engine_run_backward( File "/home/aki/miniconda3/envs/pyf-pt-nightly/lib/python3.10/site-packages/torch/autograd/graph.py", line 823, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/home/aki/miniconda3/envs/pyf-pt-nightly/lib/python3.10/site-packages/torch/_dynamo/compiled_autograd.py", line 819, in set_node_origin "aot_gm": forward_cls._lazy_backward_info.bw_module, AttributeError: 'NoneType' object has no attribute 'bw_module' ``` ### Versions ``` Collecting environment information... PyTorch version: 2.6.0.dev20241231+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 Clang version: Could not collect CMake version: version 3.28.3 Libc version: glibc-2.31 Python version: 3.10.16 (main, Dec 11 2024, 16:24:50) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-1055-aws-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA L4 Nvidia driver version: 545.23.08 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 48 bits physical, 48 bits virtual CPU(s): 16 On-line CPU(s) list: 0-15 Thread(s) per core: 2 Core(s) per socket: 8 Socket(s): 1 NUMA node(s): 1 Vendor ID: AuthenticAMD CPU family: 25 Model: 1 Model name: AMD EPYC 7R13 Processor Stepping: 1 CPU MHz: 2649.998 BogoMIPS: 5299.99 Hypervisor vendor: KVM Virtualization type: full L1d cache: 256 KiB L1i cache: 256 KiB L2 cache: 4 MiB L3 cache: 32 MiB NUMA node0 CPU(s): 0-15 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; safe RET, no microcode Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save vaes vpclmulqdq rdpid Versions of relevant libraries: [pip3] numpy==2.2.1 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] pytorch-frame==0.2.3 [pip3] pytorch-triton==3.2.0+git0d4682f0 [pip3] torch==2.6.0.dev20241231+cu126 [conda] numpy 2.2.1 pypi_0 pypi [conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi [conda] pytorch-frame 0.2.3 pypi_0 pypi [conda] pytorch-triton 3.2.0+git0d4682f0 pypi_0 pypi [conda] torch 2.6.0.dev20241231+cu126 pypi_0 pypi ``` cc @chauhang @penguinwu @xmfan @yf225
true
2,768,281,733
[dynamo][user-defined] Use __getattribute__ for getsetdescriptor lookups
anijain2305
closed
[ "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144184 * __->__ #144174 * #144173 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,768,279,561
[dynamo][user-defined] Remove __getattribute__ checks and add getsetdescriptor
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144184 * __->__ #144173 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,768,275,133
Refactor FxGraphDrawer to use HTML-like labels (#137726) (#137726)
exclamaforte
closed
[ "fb-exported", "Stale", "ciflow/trunk", "release notes: releng", "fx", "module: inductor", "ciflow/inductor" ]
4
CONTRIBUTOR
Summary: Fixes https://github.com/pytorch/pytorch/issues/137499 Testing: Added a new unit test to make sure that the regression case succeeds. I'm debating about whether to make the borders visible. I'm partial to no borders, but it might make it harder for some people to read? ![68a2b0e3-orig_fx_graph_diagram](https://github.com/user-attachments/assets/fbc2fd98-9e76-488e-8ebe-c64fbf206932) Vs. ![2bfe1c4f-orig_fx_graph_diagram](https://github.com/user-attachments/assets/b6bc88ba-dda2-4cf7-84ac-a615e1e03a74) Approved by: https://github.com/eellison, https://github.com/malfet Test Plan: contbuild & OSS CI, see https://hud.pytorch.org/commit/pytorch/pytorch/1e738420296a84406cd0a1626074ea6447a6603a Reviewed By: jingsh, dulinriley Differential Revision: D65460378 Pulled By: exclamaforte cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @BoyuanFeng
true
2,768,267,438
[dtensor] deprecate _shard_tensor to use src_data_rank=None
wanchaol
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (dtensor)" ]
4
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144171 as titled, we can achieve no comm sharding for the inference case with src_data_rank=None, so deprecate the private APi cc @H-Huang @awgu @kwen2501 @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,768,260,704
[MPS] Fix `nllnd_loss_backward` crash with different dtypes
malfet
closed
[ "Merged", "topic: bug fixes", "release notes: mps", "ciflow/mps" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #143966 * __->__ #144170 * #144084 * #144083 * #144162 * #144167 Otherwise, invoking with torch.half inputs, but float weights will result in ``` (mpsFileLoc): /AppleInternal/Library/BuildRoots/b11baf73-9ee0-11ef-b7b4-7aebe1f78c73/Library/Caches/com.apple.xbs/Sources/MetalPerformanceShadersGraph/mpsgraph/MetalPerformanceShadersGraph/Core/Files/MPSGraphUtilities.mm:233:0: error: 'mps.divide' op requires the same element type for all operands and results (mpsFileLoc): /AppleInternal/Library/BuildRoots/b11baf73-9ee0-11ef-b7b4-7aebe1f78c73/Library/Caches/com.apple.xbs/Sources/MetalPerformanceShadersGraph/mpsgraph/MetalPerformanceShadersGraph/Core/Files/MPSGraphUtilities.mm:233:0: note: see current operation: %16 = "mps.divide"(%15, %arg2) : (tensor<5x5xf16>, tensor<1xf32>) -> tensor<*xf32> (mpsFileLoc): /AppleInternal/Library/BuildRoots/b11baf73-9ee0-11ef-b7b4-7aebe1f78c73/Library/Caches/com.apple.xbs/Sources/MetalPerformanceShadersGraph/mpsgraph/MetalPerformanceShadersGraph/Core/Files/MPSGraphUtilities.mm:233:0: error: 'mps.divide' op requires the same element type for all operands and results (mpsFileLoc): /AppleInternal/Library/BuildRoots/b11baf73-9ee0-11ef-b7b4-7aebe1f78c73/Library/Caches/com.apple.xbs/Sources/MetalPerformanceShadersGraph/mpsgraph/MetalPerformanceShadersGraph/Core/Files/MPSGraphUtilities.mm:233:0: note: see current operation: %16 = "mps.divide"(%15, %arg2) : (tensor<5x5xf16>, tensor<1xf32>) -> tensor<*xf32> 2025-01-03 14:13:18.747151-0800 python[87772:4027380] /AppleInternal/Library/BuildRoots/b11baf73-9ee0-11ef-b7b4-7aebe1f78c73/Library/Caches/com.apple.xbs/Sources/MetalPerformanceShadersGraph/mpsgraph/MetalPerformanceShadersGraph/Core/Files/MPSGraphExecutable.mm, line 975: error 'original module failed verification' /AppleInternal/Library/BuildRoots/b11baf73-9ee0-11ef-b7b4-7aebe1f78c73/Library/Caches/com.apple.xbs/Sources/MetalPerformanceShadersGraph/mpsgraph/MetalPerformanceShadersGraph/Core/Files/MPSGraphExecutable.mm:975: failed assertion `original module failed verification' ``` Test plan: `python -mpytest test/inductor/test_torchinductor.py -k test_nll_loss_backward_mps` should not crash
true
2,768,244,186
[mps/inductor] Add support for log().
dcci
closed
[ "Merged", "topic: not user facing", "module: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
5
MEMBER
Tested via: ``` % pytest test/inductor/test_mps_basic.py ``` cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,768,241,947
detect fake mode in proxy_tensor creation in make_fx
yushangdi
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "fx", "ciflow/inductor" ]
5
CONTRIBUTOR
Summary: Fixes https://github.com/pytorch/pytorch/issues/143742 A FakeTensorMode may already exist when we are setting the "val" meta of a proxy tensor. We should detect existing FakeTensorMode before creating a new one. Otherwise, we could cause an error when using `detect_fake_mode` later, because there are now multiple FakeTensorModes existing. Test Plan: The error in https://github.com/pytorch/pytorch/issues/143742 Differential Revision: D67813111 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,768,221,425
[MPSInductor] Extend `constant` to bool type
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #143966 * #144170 * #144084 * #144083 * #144162 * __->__ #144167 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,768,214,438
[dtensor] move all tests to distribute/tensor folder
wanchaol
closed
[ "oncall: distributed", "Merged", "Reverted", "ciflow/trunk", "release notes: releng", "fx", "module: inductor", "ciflow/inductor", "ci-no-td" ]
8
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144166 as titled, mainly moving files cc @H-Huang @awgu @kwen2501 @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,768,186,248
[dynamo][easy] Move dict tests to test_dicts.py
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
12
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144342 * __->__ #144165 * #143997 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,768,147,221
Make whl metadata public readable
huydhn
closed
[ "Merged", "topic: not user facing", "test-config/default" ]
3
CONTRIBUTOR
After https://github.com/pytorch/pytorch/pull/143677/files#r1902138480 lands, the new nightly wheel metadata is not readable publicly causing pip install to fail, for example https://github.com/pytorch/pytorch/actions/runs/12603415308/job/35128414909. FBGEMM folks are also noticed this failure on their end (cc @q10)
true
2,768,116,315
[dynamo] Trace torch.typename
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144165 * #143997 * #144160 * __->__ #144163 * #144158 * #144141 * #144130 * #144129 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,768,080,704
[MPSInductor] Add `remainder` op
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #143966 * #144170 * #144084 * #144083 * __->__ #144162 * #144167 For it to return correct result for half precision type it must be upcast to float cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,768,062,489
[BE] typing for decorators
aorenste
closed
[ "oncall: distributed", "fb-exported", "Merged", "ciflow/trunk", "release notes: quantization", "topic: not user facing", "fx", "module: inductor", "ciflow/inductor", "release notes: AO frontend" ]
9
CONTRIBUTOR
Summary: Untyped decorators strip annotations from the decorated items. - _compile - _inductor/fx_passes/post_grad - _inductor/lowering - _library/custom_ops - _meta_registrations - _ops - _refs/nn/functional - ao/quantization/quantizer/xnnpack_quantizer_utils - distributed/_composable/contract - fx/experimental/graph_gradual_typechecker - fx/experimental/migrate_gradual_types/constraint_generator - optim/optimizer - signal/windows/windows - testing/_internal/common_device_type - torch/_inductor/decomposition - utils/flop_counter Test Plan: unit tests Differential Revision: D62302684 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,768,050,084
[dynamo][lazy] LazyVT utils to get original value/source and is_hashable
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144165 * #143997 * __->__ #144160 * #144163 * #144158 * #144141 * #144130 * #144129 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,768,031,584
Allow generic python data structure input for torch.autograd.Function
nmerrillq
open
[ "module: autograd", "triaged", "needs research", "has workaround" ]
4
NONE
### 🚀 The feature, motivation and pitch I have a custom C++ function that takes in dicts of inputs which can contain different tensors depending on the mode and returns the gradients in the backwards pass. Currently, torch.autograd.Function does not support dict input. It would be nice if it could support dict/list/tuple as input and traverse the input internally and allow the output gradients to be of the same type as the input. There are workarounds for list and tuple, such as exploiting the `*` operator, but not for dict. Here is an example of the desired usage: ``` import torch from custom_cpp_impl import CustomClass cls = CustomClass() class MyCustomFunction(torch.autograd.Function): @staticmethod def forward(ctx, input_dict): ctx.save_for_backward(input_dict) output = cls.forward(input_dict) return output @staticmethod def backward(ctx, grad_output): input_dict = ctx.saved_tensors grad_dict = cls.backward(input_dict, grad_output) # Keys would be same as input_dict return grad_dict # Run in "xy" mode input_dict0 = {'x': torch.tensor(2.0, requires_grad=True), 'y': torch.tensor(3.0, requires_grad=True)} output0 = MyCustomFunction.apply(input_dict0) output0.backward() print(input_dict0['x'].grad) print(input_dict0['y'].grad) # Run in "yz" mode input_dict1 = {'y': torch.tensor(3.0, requires_grad=True), 'z': torch.tensor(4.0, requires_grad=True)} output1 = MyCustomFunction.apply(input_dict1) output1.backward() print(input_dict1['y'].grad) print(input_dict1['z'].grad) ``` The returned gradients dict from `backward()` could have the same keys as the input dict, or be prefixed with `'grad_'` for example. Currently when you try something like this you get `RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn`. I believe there are many users (such as the user in [this](https://discuss.pytorch.org/t/custom-autograd-function-list-dict-input/21862) discussion) who could benefit from this to write more concise custom autograd functions rather than making a different function for each case of the dict input which can be very lengthy and redundant. ### Alternatives The only alternative I can think of right now is to make a different autograd function for each case of the dict input. For example, if the dict can contain 'x' and 'y' or 'y' and 'z' that get processed in the C++ code differently you would have to do this: ``` import torch from custom_cpp_impl import CustomClass cls = CustomClass() class MyCustomFunctionXY(torch.autograd.Function): @staticmethod def forward(ctx, x, y): output = cls.forward({"x": x, "y": y}) ctx.save_for_backward(x, y) return output @staticmethod def backward(ctx, grad_output): x, y = ctx.saved_tensors grads = cls.backward({"x": x, "y": y}, grad_output) return grads["grad_x"], grads["grad_y"] class MyCustomFunctionYZ(torch.autograd.Function): @staticmethod def forward(ctx, y, z): output = cls.forward({"y": y, "z": z}) ctx.save_for_backward(y, z) return output @staticmethod def backward(ctx, grad_output): y, z = ctx.saved_tensors grads = cls.backward({"y": y, "z": z}, grad_output) return grads["grad_y"], grads["grad_z"] input_dict0 = {'x': torch.tensor(2.0, requires_grad=True), 'y': torch.tensor(3.0, requires_grad=True)} input_dict1 = {'y': torch.tensor(3.0, requires_grad=True), 'z': torch.tensor(4.0, requires_grad=True)} output0 = MyCustomFunctionXY.apply(input_dict0['x'], input_dict0['y']) output0.backward() output1 = MyCustomFunctionYZ.apply(input_dict1['y'], input_dict1['z']) output1.backward() ``` which is not very concise considering the C++ code is written to take in different combinations of dict input. ### Additional context _No response_ cc @ezyang @albanD @gqchen @pearu @nikitaved @soulitzer @Varal7 @xmfan
true
2,768,005,003
[dynamo][easy] Move symnode helpers to utils
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor", "merging" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144165 * #143997 * #144160 * #144163 * __->__ #144158 * #144141 * #144130 * #144129 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,768,004,191
Revert "Add support for `contextmanager` in Dynamo (#136033)"
guilhermeleobas
closed
[ "open source", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
8
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144157 This reverts commit 673cc88fd607ed888662e8732df0dc935841b20b. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,767,947,017
[MPSInductor] Add `constant`, `isinf` and `isnan` ops
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #143966 * #144084 * #144083 * #144050 * __->__ #144156 * #144105 * #144122 * #144051 * #144055 Per Table 6.5 of [Metal Language Specification](https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf) infinity is `HUGE_VALF` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,767,918,290
[ez] Use strip for arg sanitization in upload_metadata_file to improve readability
clee2000
closed
[ "Merged", "topic: not user facing" ]
3
CONTRIBUTOR
Minor thing that improves readability. I didn't realize you could specify characters for strip when I wrote this
true
2,767,918,036
fix memleak, detach instead of clone to not drag around graph
janeyx99
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/periodic" ]
5
CONTRIBUTOR
Thanks @clee2000 for bringing the memleak to my attention: https://github.com/pytorch/pytorch/actions/runs/12549765082/job/34996244798. This memleak in the test was caused by the differentiable flavors. Because we had param.clone() and param persisted outside the for loop, the autograd graph would continue growing for each optimizer.step instead of being deleted after the optim input was used up. To clarify, I had still expected (and still do expect) the test to fully clean everything up once the test is over, but I didn't get the chance to look into why that's not the case. This change would preliminarily unblock this particular test from failing the memleak CI. Use detach instead of clone, which is...cheaper anyway :D since a detach I've learned from @soulitzer is a view with requires_grad=False Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144154
true
2,767,835,554
Update copyright year to 2025
kuraga
closed
[ "triaged", "open source", "topic: not user facing" ]
3
CONTRIBUTOR
null
true
2,767,810,384
`torch.device(0)` makes CUDA init fail in subprocess since `2.5.0`
cbensimon
closed
[ "high priority", "module: cuda", "triaged", "module: regression", "module: accelerator" ]
11
NONE
### 🐛 Describe the bug ```python from multiprocessing import Process import torch torch.device(0) # Note that torch.device('cuda') or torch.device('cuda:0') do not trigger the issue def cuda_init(): torch.Tensor([0]).cuda() p = Process(target=cuda_init) p.start() p.join() assert p.exitcode == 0 ``` This code snippet succeeds on PyTorch `2.4.1` and fails on `2.5.0`: ``` RuntimeError: CUDA error: initialization error Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ``` Indeed, since `2.5.0`, `torch.device(0)` calls `at::getAccelerator`, which ends up calling `cudaGetDeviceCount` and thus initializing CUDA and preventing forks It seems to be directly linked with: - https://github.com/pytorch/pytorch/pull/131811 (especially the change in `torch/csrc/utils/python_arg_parser.h`) ### Versions Collecting environment information... PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.5 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 Clang version: Could not collect CMake version: version 3.26.3 Libc version: glibc-2.31 Python version: 3.10.9 (main, Feb 3 2023, 11:29:04) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.15.0-1028-aws-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 11.0.221 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A10G Nvidia driver version: 535.183.01 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 48 bits physical, 48 bits virtual CPU(s): 8 On-line CPU(s) list: 0-7 Thread(s) per core: 2 Core(s) per socket: 4 Socket(s): 1 NUMA node(s): 1 Vendor ID: AuthenticAMD CPU family: 23 Model: 49 Model name: AMD EPYC 7R32 Stepping: 0 CPU MHz: 2820.130 BogoMIPS: 5599.99 Hypervisor vendor: KVM Virtualization type: full L1d cache: 128 KiB L1i cache: 128 KiB L2 cache: 2 MiB L3 cache: 16 MiB NUMA node0 CPU(s): 0-7 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save rdpid Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu11==11.10.3.66 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu11==11.7.101 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu11==11.7.99 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu11==11.7.99 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu11==8.5.0.96 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu11==10.9.0.58 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu11==10.2.10.91 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu11==11.4.0.1 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu11==11.7.4.91 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu11==2.14.3 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu11==11.7.91 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.5.1 [pip3] torchaudio==2.5.1 [pip3] torchsde==0.2.6 [pip3] torchvision==0.20.1 [pip3] triton==3.1.0 [conda] Could not collect cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @ptrblck @eqy @albanD @guangyey @EikanWang
true
2,767,606,919
fix a bug for fft c2c stride in cpu
ywq880611
closed
[ "triaged", "open source", "module: fft" ]
5
CONTRIBUTOR
Fixes #144150 Please see details in the issue. cc @mruberry
true
2,767,606,307
Wrong stride for fft_c2c for cpu tensor
ywq880611
closed
[ "module: cpu", "triaged", "module: mkl", "module: fft" ]
2
CONTRIBUTOR
### 🐛 Describe the bug ## Summary I found there are some diffs for output tensor's stride for `fft_c2c` op on different device, is it an expected behavior? I also found there are some other issues already have, but it seems this kind of problem was still not fixed yet... and it may block this [PR](https://github.com/pytorch/pytorch/pull/140399), so I file an new issue here. ## Case For the below code snippet: ``` import torch a = torch.zeros((5, 6, 7), dtype=torch.complex64, device='cpu') print(a.shape) print(a.stride()) b = torch._fft_c2c(a, [0], 2, False) print(b.shape) print(b.stride()) ``` For `cpu` tensor, its output is: ``` torch.Size([5, 6, 7]) (42, 7, 1) cpu _fft_c2c_mkl 1 torch.Size([5, 6, 7]) (42, 7, 1) ``` For both `cuda` and `meta` tensor, its output is: ``` torch.Size([5, 6, 7]) (42, 7, 1) torch.Size([5, 6, 7]) (1, 35, 5) ``` We could see the stride for `cpu` is **`(42, 7, 1)`**, but for other device is **`(1, 35, 5)`**, hence I though the implement of `_fft_c2c` for `cpu` tensor may be wrong. ## Analysis 1. For `meta` device, there is a long helper function to keep it stride same as `cuda` mode: https://github.com/pytorch/pytorch/blob/a1ae8fadc709f7c18788f8828ee3166f96245bec/torch/_meta_registrations.py#L221-L271 2. For `cpu` device, there are two kinds of implement `pocketfft` and `mlk`. A) if we enable `pocketfft` at build time: https://github.com/pytorch/pytorch/blob/a1ae8fadc709f7c18788f8828ee3166f96245bec/aten/src/ATen/native/mkl/SpectralOps.cpp#L309-L328 There is no logic to make the stride align with `cuda` mode. B) if we just use `mlk`: https://github.com/pytorch/pytorch/blob/a1ae8fadc709f7c18788f8828ee3166f96245bec/aten/src/ATen/native/mkl/SpectralOps.cpp#L562-L571 It will call to `_exec_fft`, which will keep the output's stride align with `cuda` mode. ## Potential solution I thought we could port some logic in `_exec_fft` in `mlk` to `pocketfft` to align the stride, I drafted a PR, PTAL, thanks! ### Versions Collecting environment information... PyTorch version: 2.6.0a0+gitf3ec745 Is debug build: True CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 10.5.0-1ubuntu1~22.04) 10.5.0 Clang version: Could not collect CMake version: version 3.31.1 Libc version: glibc-2.35 Python version: 3.11.10 (main, Oct 3 2024, 07:29:13) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.8.0-49-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.6.77 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3080 Nvidia driver version: 560.35.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 20 On-line CPU(s) list: 0-19 Vendor ID: GenuineIntel Model name: 12th Gen Intel(R) Core(TM) i7-12700K CPU family: 6 Model: 151 Thread(s) per core: 2 Core(s) per socket: 12 Socket(s): 1 Stepping: 2 CPU max MHz: 5000.0000 CPU min MHz: 800.0000 BogoMIPS: 7219.20 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l2 cdp_l2 ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdt_a rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect user_shstk avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi vnmi umip pku ospke waitpkg gfni vaes vpclmulqdq tme rdpid movdiri movdir64b fsrm md_clear serialize pconfig arch_lbr ibt flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 512 KiB (12 instances) L1i cache: 512 KiB (12 instances) L2 cache: 12 MiB (9 instances) L3 cache: 25 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-19 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Mitigation; Clear Register File Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] flake8==6.1.0 [pip3] flake8-bugbear==23.3.23 [pip3] flake8-comprehensions==3.15.0 [pip3] flake8-executable==2.1.3 [pip3] flake8-logging-format==0.9.0 [pip3] flake8-pyi==23.3.1 [pip3] flake8-simplify==0.19.3 [pip3] mypy==1.11.2 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.0 [pip3] onnx==1.17.0 [pip3] onnxscript==0.1.0.dev20240817 [pip3] optree==0.13.1 [pip3] torch==2.6.0a0+gitf3ec745 [pip3] triton==3.1.0 [conda] numpy 1.26.0 pypi_0 pypi [conda] optree 0.13.1 pypi_0 pypi [conda] torch 2.6.0a0+gitf3ec745 dev_0 <develop> [conda] torchfix 0.4.0 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @mruberry
true
2,767,510,309
S390x cancelled jobs cleanup
AlekseiNikiforovIBM
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/s390" ]
4
COLLABORATOR
Sometimes job is cancelled during nested docker container creation. This leads to nested docker container not being stopped and worker hanging forever in the job. Improve nested docker containers cleanup for these cases.
true
2,767,454,835
Unable to parse and visualize "trace view" with tensorboard
Neronjust2017
open
[ "module: tensorboard", "oncall: profiler" ]
0
NONE
### 🐛 Describe the bug I'm using the following code to profile my PyTorch model. https://github.com/Lightning-AI/pytorch-lightning/issues/20525 ```python import torch from pytorch_lightning.profilers import PyTorchProfiler import lightning as L schedule = torch.profiler.schedule( wait=2, warmup=2, active=5, repeat=10 ) profiler = PyTorchProfiler( dirpath="{tbprofiler_path}", filename="trace", schedule=schedule, export_to_chrome=True, with_stack=True, record_shapes=True, record_module_names=True, profile_memory=True ) trainer_arg_dict["profiler"] = profiler return L.Trainer( **trainer_arg_dict, ) ``` The code terminated normally, however, I got this error when using tensorboard to visualize the trace results. ![image](https://github.com/user-attachments/assets/c2cb8d94-e3dc-4957-b059-681d1c0a158b) and the overview result also seems incorrect. ![image](https://github.com/user-attachments/assets/2e264326-16e7-42c4-866a-d376b6a7ad82) The CPU peak memory usage is only 3.0, which is also quite strange. Any suggestions about this? Thanks. ![image](https://github.com/user-attachments/assets/a4d9a41c-f134-4f16-851d-98f84ef13471) ### Versions PyTorch version: 2.3.0a0+6ddf5cf85e.nv24.04 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.29.0 Libc version: glibc-2.35 Python version: 3.10.12 (main, Jul 29 2024, 16:56:48) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-3.10.0-1160.el7.x86_64-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.4.131 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-80GB Nvidia driver version: 470.199.02 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz CPU family: 6 Model: 106 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 Stepping: 6 CPU max MHz: 3500.0000 CPU min MHz: 800.0000 BogoMIPS: 5800.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb cat_l3 invpcid_single intel_pt ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq md_clear pconfig spec_ctrl intel_stibp flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 3 MiB (64 instances) L1i cache: 2 MiB (64 instances) L2 cache: 80 MiB (64 instances) L3 cache: 96 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; Load fences, usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] cudnn==1.1.2 [pip3] efficientnet-pytorch==0.7.1 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.23.5 [pip3] nvtx==0.2.5 [pip3] onnx==1.16.0 [pip3] onnxruntime==1.16.0 [pip3] optree==0.11.0 [pip3] pynvjitlink==0.1.13 [pip3] pytorch-lightning==2.4.0 [pip3] pytorch-quantization==2.1.2 [pip3] pytorch-triton==3.0.0+a9bc1a364 [pip3] torch==2.3.0a0+6ddf5cf85e.nv24.4 [pip3] torch-scatter==2.1.2 [pip3] torch-tensorrt==2.3.0a0 [pip3] torchdata==0.7.1a0 [pip3] torchmetrics==1.4.2 [pip3] torchtext==0.17.0a0 [pip3] torchvision==0.18.0a0 [conda] Could not collect cc @robieta @chaekit @guotuofeng @guyang3532 @dzhulgakov @davidberard98 @briancoutinho @sraikund16 @sanrise
true
2,767,208,118
Introduce test skip markers for Sandcastle
Flamefire
closed
[ "oncall: distributed", "oncall: jit", "triaged", "open source", "Stale", "release notes: package/deploy" ]
2
COLLABORATOR
Simplify the markers a bit to make them more expressive It also makes it easier to skip those tests "manually" by changing the single definition of the skip marker. This is important to reduce potential false positives (of failed tests) in some environments, such as HPC clusters cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
2,767,202,095
Skip ao_sparsity TestComposability for missing FBGEMM
Flamefire
closed
[ "triaged", "open source", "Merged", "Stale", "ciflow/trunk", "topic: not user facing" ]
5
COLLABORATOR
Those tests (from test_ao_sparsity) require FBGEMM which may not be available. So add the skip decorator. Fixes #87364
true
2,767,154,255
[reland][attempt2][AMD] Turn on TF32 for aten::mm
xw285cornell
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor", "ci-no-td" ]
5
CONTRIBUTOR
Summary: https://github.com/pytorch/pytorch/pull/143549 was reverted due to some internal/oss tooling issue. Relanding. hipblaslt supports TF32, so adding the support. Original PR https://github.com/pytorch/pytorch/pull/139869 Test Plan: CI Differential Revision: D67785496 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,767,093,520
torch.onnx.export failed with Process finished with exit code 136 (interrupted by signal 8:SIGFPE)
My-captain
closed
[ "module: crash", "module: onnx", "triaged" ]
21
NONE
### 🐛 Describe the bug Hello everyone, I am attempting to export the visual encoder (SigLIP-400M) of MiniCPMV-2.6 along with the modality projection module (Resampler) to ONNX. Here are the issues I'm encountering: 1. The export fails with an exit code 136 (interrupted by signal 8: SIGFPE), regardless of whether dynamo mode is used or not. 2. This exception cannot be caught by Python, and the reproducible code is located in the `v26_export_demo` within the following zip package. Could anyone help me with this problem? [v26quant.zip](https://github.com/user-attachments/files/18297225/v26quant.zip) ### Versions pytorch 2.1.2+cu121 python 3.10
true
2,767,081,296
Bug in using Intel A750 GPU
ca1ic0
closed
[ "triaged", "module: xpu" ]
14
NONE
### 🐛 Describe the bug According to the [https://pytorch.org/docs/main/notes/get_start_xpu.html](url), 0. i install ubuntu24.04 OS 1. i install gpu driver 2. i install the intel ai essensial package 3. i install the miniconda and create new env ``` conda create -n torch-xpu python ``` 4. install the preview torch ``` pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/test/xpu ``` 5. use torch ``` (torch-xpu) calico@calico-B450M-HDV-R4-0:~$ python Python 3.13.1 | packaged by Anaconda, Inc. | (main, Dec 11 2024, 16:29:23) [GCC 11.2.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import torch >>> torch.xpu.is_available() /home/calico/miniconda3/envs/torch-xpu/lib/python3.13/site-packages/torch/xpu/__init__.py:60: UserWarning: Failed to initialize XPU devices. The driver may not be installed, installed incorrectly, or incompatible with the current setup. Please refer to the guideline (https://github.com/pytorch/pytorch?tab=readme-ov-file#intel-gpu-support) for proper installation and configuration. (Triggered internally at /pytorch/c10/xpu/XPUFunctions.cpp:54.) return torch._C._xpu_getDeviceCount() False ``` and i also notice that ,when i source the oneapi-umf env, report a warning ``` (torch-xpu) calico@calico-B450M-HDV-R4-0:~$ source /opt/intel/oneapi/umf/0.9/env/vars.sh WARNING: hwloc library not found in /tcm/latest/lib ``` ### Versions Collecting environment information... PyTorch version: 2.6.0+xpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 24.04.1 LTS (x86_64) GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.39 Python version: 3.13.1 | packaged by Anaconda, Inc. | (main, Dec 11 2024, 16:29:23) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.8.0-51-generic-x86_64-with-glibc2.39 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Vendor ID: AuthenticAMD Model name: AMD Ryzen 5 5500 CPU family: 25 Model: 80 Thread(s) per core: 2 Core(s) per socket: 6 Socket(s): 1 Stepping: 0 CPU(s) scaling MHz: 68% CPU max MHz: 4267.0000 CPU min MHz: 400.0000 BogoMIPS: 7200.13 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm debug_swap Virtualization: AMD-V L1d cache: 192 KiB (6 instances) L1i cache: 192 KiB (6 instances) L2 cache: 3 MiB (6 instances) L3 cache: 16 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-11 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.1.2 [pip3] pytorch-triton-xpu==3.2.0 [pip3] torch==2.6.0+xpu [pip3] torchaudio==2.6.0+xpu [pip3] torchvision==0.21.0+xpu [pip3] triton==3.2.0 [conda] numpy 2.1.2 pypi_0 pypi [conda] pytorch-triton-xpu 3.2.0 pypi_0 pypi [conda] torch 2.6.0+xpu pypi_0 pypi [conda] torchaudio 2.6.0+xpu pypi_0 pypi [conda] torchvision 0.21.0+xpu pypi_0 pypi [conda] triton 3.2.0 pypi_0 pypi cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,767,024,119
[torch.compile] Errors on autograd.Function forward returns non-Tensor
yanboliang
closed
[ "triaged", "oncall: pt2", "module: higher order operators", "module: pt2-dispatcher", "dynamo-autograd-function" ]
0
CONTRIBUTOR
### 🐛 Describe the bug Repro: ``` import torch from torch.autograd import Function class MyFunction(Function): @staticmethod def forward(ctx, x): return x, [1, 2, 3] # Tensor and list of integers @staticmethod def backward(ctx, grad_output1, grad_output2): return grad_output1 x = torch.tensor(2.0, requires_grad=True) @torch.compile(backend="aot_eager", fullgraph=True) def fn(x): return MyFunction.apply(x) y = fn(x) print(y) y[0].backward() print(x.grad) ``` Error stack: ``` File "/home/ybliang/local/pytorch/torch/_dynamo/variables/higher_order_ops.py", line 2420, in call_function (fwd_out, _), fwd_graph, fwd_freevars = speculate_subgraph( File "/home/ybliang/local/pytorch/torch/_dynamo/variables/higher_order_ops.py", line 693, in speculate_subgraph raise ex File "/home/ybliang/local/pytorch/torch/_dynamo/variables/higher_order_ops.py", line 589, in speculate_subgraph unimplemented( File "/home/ybliang/local/pytorch/torch/_dynamo/exc.py", line 322, in unimplemented raise Unsupported(msg, case_name=case_name) torch._dynamo.exc.Unsupported: HigherOrderOperator body's output must consist of tensors only from user code: File "/data/users/ybliang/debug/debug5.py", line 18, in fn return MyFunction.apply(x) Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information ``` This issue was discovered while I'm working on #143811. Although the typical approach to passing constants to the backward function is by saving them in ```ctx```, we still need to ensure it works seamlessly in compile mode, as it already works correctly in eager mode. ### Versions N/A cc @chauhang @penguinwu @zou3519 @ydwu4 @bdhirsh @yf225
true
2,767,008,867
[dynamo][easy] Miscellaneous fixes
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144062 * #144061 * #143997 * __->__ #144141 * #144130 * #144129 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,767,008,557
[Intel GPU][Inductor] Convert Conv1D to 2D in inductor
jianyizh
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/xpu" ]
4
CONTRIBUTOR
Layout optimization in inductor does not apply to Conv1D. We convert Conv1D to channel last Conv2D for better performance on Intel GPU. For example, demucs fp16 inference in torchbench can improve from 149ms to 91ms on Max 1100. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,766,947,941
Update TorchDynamo-based ONNX Exporter memory usage example code.
fatcat-z
closed
[ "module: onnx", "open source", "Merged", "ciflow/trunk", "release notes: onnx", "topic: docs" ]
4
COLLABORATOR
Address related comments earlier.
true
2,766,932,075
Increase C10_COMPILE_TIME_MAX_GPUS to 128
cyyever
closed
[ "triaged", "open source", "Merged", "Reverted", "Stale", "ciflow/trunk", "topic: not user facing", "ci-no-td" ]
20
COLLABORATOR
To facilitate further possible changes of DeviceIndex to int16_t.
true
2,766,920,691
Use more bits to represent `DeviceIndex`
kstreee-furiosa
closed
[]
2
NONE
### 🚀 The feature, motivation and pitch In some case, current 8 bits representation of DeviceIndex not enough to cover all devices. (actually, it is 7 bits, Device.h requires non-negative value for DeviceIndex, so the first bits can't use) In our case ([FuriosaAI](https://furiosa.ai/)), RNGD has 8 PEs within a single chip, and it can be fused with each others, to specify all combination of PE units requires 8 + 4 (2PE fusion) + 2 (4PE fusion). It requires at least 4 bits to represent all independent PE identification within a chip. Then we only have 3 bits to specify NPU, it only covers 7 NPUs, which is not enough. ### Alternatives Use at least 16bits to represent DeviceIndex ### Additional context I'm willing to contribute for this issue, but don't know what is the proper process of contribution (approval for change first? or code change first?). Any guide for contribution is welcomed.
true
2,766,908,872
remove allow-untyped-defs from nn/utils/_deprecation_utils.py
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #144136
true
2,766,908,831
remove allow-untyped-defs from export/_remove_auto_functionalized_pass.py
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "release notes: export" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144136 * __->__ #144135
true
2,766,908,798
remove allow-untyped-defs onnx/_internal/exporter/_fx_passes.py
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "release notes: onnx", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144136 * #144135 * __->__ #144134
true
2,766,908,767
remove allow-untyped-defs from torch/onnx/operators.py
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "release notes: onnx", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144136 * #144135 * #144134 * __->__ #144133
true
2,766,908,735
remove allow-untyped-defs from torch/jit/_passes/_property_propagation.py
bobrenjc93
closed
[ "oncall: jit", "Merged", "ciflow/trunk", "release notes: jit", "topic: not user facing" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144136 * #144135 * #144134 * #144133 * __->__ #144132 cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
2,766,908,694
remove allow-untyped-defs from torch/distributed/fsdp/_dynamo_utils.py
bobrenjc93
closed
[ "oncall: distributed", "module: typing", "Merged", "release notes: distributed (fsdp)", "topic: not user facing", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144136 * #144135 * #144134 * #144133 * #144132 * __->__ #144131 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @ezyang @malfet @xuzhao9 @gramster
true
2,766,905,749
[dynamo][easy] Minor fixes in guards.cpp
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144062 * #144061 * #143997 * #144141 * __->__ #144130 * #144129 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,766,905,690
[dynamo] remove inline inbuilt tests as flag is enabled by default
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #144062 * #144061 * #143997 * #144141 * #144130 * __->__ #144129 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,766,876,459
Enable IPO on torch targets
cyyever
closed
[ "triaged", "open source", "Stale", "ciflow/binaries", "topic: not user facing" ]
13
COLLABORATOR
Try IPO builds
true
2,766,857,474
Fix C++20 Wambiguous-reversed-operator warnings
cyyever
closed
[ "module: cpu", "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
7
COLLABORATOR
Fixes #ISSUE_NUMBER cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,766,847,613
Use sccache 0.9.0 on ROCm build job
huydhn
closed
[ "module: rocm", "Merged", "topic: not user facing", "test-config/default", "ciflow/rocm" ]
7
CONTRIBUTOR
TSIA, sccache 0.9.0 seems to work fine with ROCm build job cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true