id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
2,800,314,548
Dynamo graph break on PEP585 generic types
aorenste
closed
[ "triaged", "oncall: pt2", "module: dynamo" ]
1
CONTRIBUTOR
### 🐛 Describe the bug If you change test/dynamo/test_misc.py test_function_annotation() from: ```python def inner(y: typing.List[Variable]): return x + 1 ``` to ```python def inner(y: list[Variable]): return x + 1 ``` then dynamo will graph break instead of treating it the same. This doesn't seem to happen on py3.9 but does happen on py3.12. Didn't try other versions. ### Versions current main branch cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true
2,800,218,474
The `sympy` dependency spec for pytorch on PyPi wheel is still unchanged.
stevenleeS0ht
closed
[ "oncall: releng", "triaged", "module: third_party" ]
4
NONE
When run `pip install -U torch`, it will still require `sympy==1.13.1` and will uninstall the latest `sympy` which is version `1.13.3` in the virtual environment. The reason is due to the dependency spec unchanged in `setup.py`.
true
2,800,213,713
update sympy version 1.13.3 in setup.py (previously update only in requirement.txt)
stevenleeS0ht
open
[ "open source", "Stale", "ciflow/binaries", "ciflow/trunk", "topic: not user facing" ]
14
NONE
Previously, only update `sympy` version number in `requirement.txt`, but `setup.py` is unchanged. In PyPI, the wheel will relay on the dependency spec in `setup.py`, so only change in `setup.py` will be effective.
true
2,800,036,058
Raise MutationError if there are side effects when returning generator
guilhermeleobas
closed
[ "open source", "Merged", "module: dynamo", "ciflow/inductor", "release notes: dynamo" ]
4
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #142513 * __->__ #145223 * #144420 * #144424 * #144423 * #144422 * #144421 * #141055 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,799,780,114
Refactoring Distributed test cases to be device agnostic [1/n]
AnantGulati
closed
[ "oncall: distributed", "module: cpu", "triaged", "open source", "module: amp (automated mixed precision)", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "module: compiled autograd" ]
19
CONTRIBUTOR
In this series of PR we intend to refactoring distributed test cases to enable to be completely device agnostic. These changes will include the following approaches to do the same : - Allowing for multiple device types using instantiate_device_type_test - Replacing calls to cuda stream with torch.get_device_module(device) wherever it applies - Skipping set up steps required while using MultiProcessTestCase with DistributedTestBase (#138216) wherever applicable - Replacing explicit calls to distributed backend (NCCL,HCCL,etc) with get_default_backend_for_device (#140536). This should result in significant improvement in usability for all devices cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @mcarilli @ptrblck @leslie-fang-intel @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @LucasLLC @MeetVadakkanchery @mhorowitz @pradeepfn @ekr0 @xmfan
true
2,799,502,744
make latexpdf
dimpy-cmd
closed
[ "module: docs", "module: ci", "triaged" ]
2
NONE
### 🐛 Describe the bug DEPRECATION: Legacy editable install of pytorch_sphinx_theme from git+https://github.com/pytorch/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme (from -r requirements.txt (line 2)) (setup.py develop) is deprecated. pip 25.0 will enforce this behaviour change. A possible replacement is to add a pyproject.toml or enable --use-pep517, and use setuptools >= 64. If the resulting installation is not behaving as expected, try using --config-settings editable_mode=compat. Please consult the setuptools documentation for more information. Discussion can be found at https://github.com/pypa/pip/issues/11 ### Versions pip 25 will break pip install -e So from 2025 pip is no longer supporting this in command make latexpdf. cc @svekars @brycebortree @sekyondaMeta @AlannaBurke @seemethere @malfet @pytorch/pytorch-dev-infra
true
2,799,382,763
Regression in the compilation of the torch.all operation in PyTorch version 2.6.0 compared to 2.5.1
wdziurdz
open
[ "triaged", "module: regression", "oncall: pt2", "module: dynamo", "module: empty tensor" ]
3
CONTRIBUTOR
### 🐛 Describe the bug There is an issue with tracing after upgrading to PyTorch 2.6.0 from 2.5.1. It appears to be a regression related to compiling the torch.all operation. Before the upgrade, the code below compiles without any graph breaks in PyTorch 2.5.1: ```python import torch @torch.compile(backend="inductor") def compiled_fn(input_tensor: torch.Tensor): output_tensor = torch.empty((0,), dtype=torch.bool).to(input_tensor.device) result = torch.all(input_tensor, dim=2, out=output_tensor) return result if __name__ == "__main__": input_tensor = torch.randint(0, 2, (2, 3, 4), dtype=torch.bool, device="cpu") output = compiled_fn(input_tensor) ``` The code compiles to the following FX graph in PyTorch 2.5.1: ``` V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] TRACED GRAPH V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] ===== __compiled_fn_1 ===== V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] /home/user1/venv1/lib/python3.10/site-packages/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module): V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] def forward(self, L_input_tensor_: "b8[2, 3, 4][12, 4, 1]cpu"): V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] l_input_tensor_ = L_input_tensor_ V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] # File: tests/compile/test_all.py:5 in compiled_fn, code: output_tensor = torch.empty((0,), dtype=torch.bool).to(input_tensor.device) V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] empty: "b8[2, 3][3, 1]cpu" = torch.empty((0,), dtype = torch.bool) V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] output_tensor: "b8[2, 3][3, 1]cpu" = empty.to(device(type='cpu')); empty = None V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] # File: tests/compile/test_all.py:6 in compiled_fn, code: result = torch.all(input_tensor, dim=2, out=output_tensor) V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] result: "b8[2, 3][3, 1]cpu" = torch.all(l_input_tensor_, dim = 2, out = output_tensor); l_input_tensor_ = output_tensor = None V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] return (result,) V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] ``` However, after upgrading to PyTorch 2.6.0, the code fails to compile to the same graph and results in graph breaks: ``` V0120 14:57:46.684000 74548 torch/_dynamo/output_graph.py:972] [0/0_1] COMPILING GRAPH due to GraphCompileReason(reason='out variants with resizing on graph inputs', user_stack=[<FrameSummary file tests/compile/test_all.py, line 6 in compiled_fn>], graph_break=True) V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1615] [0/0_1] REMOVE UNUSED GRAPHARG L['input_tensor'] V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] TRACED GRAPH V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] ===== __compiled_fn_2 ===== V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] /home/user1/venv1/lib/python3.10/site-packages/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module): V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] def forward(self): V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] # File: tests/compile/test_all.py:5 in compiled_fn, code: output_tensor = torch.empty((0,), dtype=torch.bool).to(input_tensor.device) V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] empty: "b8[0][1]cpu" = torch.empty((0,), dtype = torch.bool) V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] output_tensor: "b8[0][1]cpu" = empty.to(device(type='cpu')); empty = None V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] return (output_tensor,) V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] ``` Please investigate this regression. Full logs 2.5.1: ``` V0120 14:51:10.919000 72022 torch/_dynamo/convert_frame.py:864] [0/0] torchdynamo start compiling compiled_fn tests/compile/test_all.py:3, stack (elided 5 frames): V0120 14:51:10.919000 72022 torch/_dynamo/convert_frame.py:864] [0/0] File "tests/compile/test_all.py", line 14, in <module> V0120 14:51:10.919000 72022 torch/_dynamo/convert_frame.py:864] [0/0] output = compiled_fn(input_tensor) V0120 14:51:10.919000 72022 torch/_dynamo/convert_frame.py:864] [0/0] I0120 14:51:10.920000 72022 torch/_dynamo/utils.py:859] [0/0] ChromiumEventLogger initialized with id 11952b32-9bff-4a1f-ae82-08757a4285ab I0120 14:51:10.921000 72022 torch/_dynamo/logging.py:57] [0/0] Step 1: torchdynamo start tracing compiled_fn tests/compile/test_all.py:3 V0120 14:51:10.922000 72022 torch/fx/experimental/symbolic_shapes.py:2498] [0/0] create_env V0120 14:51:10.939000 72022 torch/_dynamo/symbolic_convert.py:865] [0/0] [__trace_source] TRACE starts_line tests/compile/test_all.py:5 in compiled_fn (compiled_fn) V0120 14:51:10.939000 72022 torch/_dynamo/symbolic_convert.py:865] [0/0] [__trace_source] output_tensor = torch.empty((0,), dtype=torch.bool).to(input_tensor.device) V0120 14:51:10.940000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE LOAD_GLOBAL torch [] V0120 14:51:10.941000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE LOAD_ATTR empty [PythonModuleVariable(<module 'torch' from '/home/user1/venv1/lib/python3.10/site-packages/torch/__init__.py'>)] V0120 14:51:10.942000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE LOAD_CONST (0,) [TorchInGraphFunctionVariable(<built-in method empty of type object at 0x7f188888aa20>)] V0120 14:51:10.942000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE LOAD_GLOBAL torch [TorchInGraphFunctionVariable(<built-in method empty of type object at 0x7f188888aa20>), TupleVariable(length=1)] V0120 14:51:10.943000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE LOAD_ATTR bool [TorchInGraphFunctionVariable(<built-in method empty of type object at 0x7f188888aa20>), TupleVariable(length=1), PythonModuleVariable(<module 'torch' from '/home/user1/venv1/lib/python3.10/site-packages/torch/__init__.py'>)] V0120 14:51:10.944000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE LOAD_CONST ('dtype',) [TorchInGraphFunctionVariable(<built-in method empty of type object at 0x7f188888aa20>), TupleVariable(length=1), ConstantVariable()] V0120 14:51:10.944000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE CALL_FUNCTION_KW 2 [TorchInGraphFunctionVariable(<built-in method empty of type object at 0x7f188888aa20>), TupleVariable(length=1), ConstantVariable(), TupleVariable(length=1)] V0120 14:51:10.947000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE LOAD_ATTR to [TensorVariable()] V0120 14:51:10.947000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE LOAD_FAST input_tensor [GetAttrVariable()] V0120 14:51:10.948000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE LOAD_ATTR device [GetAttrVariable(), LazyVariableTracker()] V0120 14:51:10.948000 72022 torch/_dynamo/output_graph.py:2107] [0/0] create_graph_input L_input_tensor_ L['input_tensor'] V0120 14:51:10.949000 72022 torch/_dynamo/variables/builder.py:2702] [0/0] wrap_to_fake L['input_tensor'] (2, 3, 4) StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>, <DimDynamic.STATIC: 2>, <DimDynamic.STATIC: 2>], dynamic_strides=[<DimDynamic.INFER_STRIDE: 4>, <DimDynamic.INFER_STRIDE: 4>, <DimDynamic.INFER_STRIDE: 4>], constraint_sizes=[None, None, None], constraint_strides=[None, None, None], view_base_context=None, tensor_source=LocalSource(local_name='input_tensor', cell_or_freevar=False), shape_env_to_source_to_symbol_cache={}) <class 'torch.Tensor'> V0120 14:51:10.951000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE CALL_FUNCTION 1 [GetAttrVariable(), ConstantVariable()] V0120 14:51:10.952000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE STORE_FAST output_tensor [TensorVariable()] V0120 14:51:10.953000 72022 torch/_dynamo/symbolic_convert.py:865] [0/0] [__trace_source] TRACE starts_line tests/compile/test_all.py:6 in compiled_fn (compiled_fn) V0120 14:51:10.953000 72022 torch/_dynamo/symbolic_convert.py:865] [0/0] [__trace_source] result = torch.all(input_tensor, dim=2, out=output_tensor) V0120 14:51:10.953000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE LOAD_GLOBAL torch [] V0120 14:51:10.953000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE LOAD_ATTR all [PythonModuleVariable(<module 'torch' from '/home/user1/venv1/lib/python3.10/site-packages/torch/__init__.py'>)] V0120 14:51:10.954000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE LOAD_FAST input_tensor [TorchInGraphFunctionVariable(<built-in method all of type object at 0x7f188888aa20>)] V0120 14:51:10.954000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE LOAD_CONST 2 [TorchInGraphFunctionVariable(<built-in method all of type object at 0x7f188888aa20>), TensorVariable()] V0120 14:51:10.955000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE LOAD_FAST output_tensor [TorchInGraphFunctionVariable(<built-in method all of type object at 0x7f188888aa20>), TensorVariable(), ConstantVariable()] V0120 14:51:10.955000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE LOAD_CONST ('dim', 'out') [TorchInGraphFunctionVariable(<built-in method all of type object at 0x7f188888aa20>), TensorVariable(), ConstantVariable(), TensorVariable()] V0120 14:51:10.956000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE CALL_FUNCTION_KW 3 [TorchInGraphFunctionVariable(<built-in method all of type object at 0x7f188888aa20>), TensorVariable(), ConstantVariable(), TensorVariable(), TupleVariable(length=2)] V0120 14:51:10.959000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE STORE_FAST result [TensorVariable()] V0120 14:51:10.960000 72022 torch/_dynamo/symbolic_convert.py:865] [0/0] [__trace_source] TRACE starts_line tests/compile/test_all.py:7 in compiled_fn (compiled_fn) V0120 14:51:10.960000 72022 torch/_dynamo/symbolic_convert.py:865] [0/0] [__trace_source] return result V0120 14:51:10.960000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE LOAD_FAST result [] V0120 14:51:10.960000 72022 torch/_dynamo/symbolic_convert.py:888] [0/0] [__trace_bytecode] TRACE RETURN_VALUE None [TensorVariable()] I0120 14:51:10.961000 72022 torch/_dynamo/logging.py:57] [0/0] Step 1: torchdynamo done tracing compiled_fn (RETURN_VALUE) V0120 14:51:10.961000 72022 torch/_dynamo/symbolic_convert.py:2971] [0/0] RETURN_VALUE triggered compile V0120 14:51:10.961000 72022 torch/_dynamo/output_graph.py:1004] [0/0] COMPILING GRAPH due to GraphCompileReason(reason='return_value', user_stack=[<FrameSummary file tests/compile/test_all.py, line 7 in compiled_fn>], graph_break=False) V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] TRACED GRAPH V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] ===== __compiled_fn_1 ===== V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] /home/user1/venv1/lib/python3.10/site-packages/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module): V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] def forward(self, L_input_tensor_: "b8[2, 3, 4][12, 4, 1]cpu"): V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] l_input_tensor_ = L_input_tensor_ V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] # File: tests/compile/test_all.py:5 in compiled_fn, code: output_tensor = torch.empty((0,), dtype=torch.bool).to(input_tensor.device) V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] empty: "b8[2, 3][3, 1]cpu" = torch.empty((0,), dtype = torch.bool) V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] output_tensor: "b8[2, 3][3, 1]cpu" = empty.to(device(type='cpu')); empty = None V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] # File: tests/compile/test_all.py:6 in compiled_fn, code: result = torch.all(input_tensor, dim=2, out=output_tensor) V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] result: "b8[2, 3][3, 1]cpu" = torch.all(l_input_tensor_, dim = 2, out = output_tensor); l_input_tensor_ = output_tensor = None V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] return (result,) V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] V0120 14:51:10.966000 72022 torch/_dynamo/output_graph.py:1371] [0/0] [__graph_code] I0120 14:51:10.968000 72022 torch/_dynamo/logging.py:57] [0/0] Step 2: calling compiler function inductor V0120 14:51:12.792000 72022 torch/fx/experimental/symbolic_shapes.py:5201] [0/0] eval True == True [statically known] I0120 14:51:22.070000 72022 torch/fx/experimental/symbolic_shapes.py:3646] [0/0] produce_guards W0120 14:51:22.072000 72022 torch/_inductor/debug.py:434] [0/0] model__0_inference_0 debug trace: /home/user1/qnpu/env_name/src/torch_compile_debug/run_2025_01_20_14_51_10_921557-pid_72022/torchinductor/model__0_inference_0.0 I0120 14:51:22.076000 72022 torch/_dynamo/logging.py:57] [0/0] Step 2: done compiler function inductor I0120 14:51:22.080000 72022 torch/fx/experimental/symbolic_shapes.py:3646] [0/0] produce_guards V0120 14:51:22.080000 72022 torch/fx/experimental/symbolic_shapes.py:3830] [0/0] track_symint L['input_tensor'].size()[0] 2 None V0120 14:51:22.081000 72022 torch/fx/experimental/symbolic_shapes.py:3830] [0/0] track_symint L['input_tensor'].size()[1] 3 None V0120 14:51:22.081000 72022 torch/fx/experimental/symbolic_shapes.py:3830] [0/0] track_symint L['input_tensor'].size()[2] 4 None V0120 14:51:22.081000 72022 torch/fx/experimental/symbolic_shapes.py:3830] [0/0] track_symint L['input_tensor'].stride()[0] 12 None V0120 14:51:22.082000 72022 torch/fx/experimental/symbolic_shapes.py:3830] [0/0] track_symint L['input_tensor'].stride()[1] 4 None V0120 14:51:22.082000 72022 torch/fx/experimental/symbolic_shapes.py:3830] [0/0] track_symint L['input_tensor'].stride()[2] 1 None V0120 14:51:22.082000 72022 torch/fx/experimental/symbolic_shapes.py:3830] [0/0] track_symint L['input_tensor'].storage_offset() 0 None V0120 14:51:22.083000 72022 torch/fx/experimental/symbolic_shapes.py:3998] [0/0] Skipping guard L['input_tensor'].size()[0] == 2 V0120 14:51:22.083000 72022 torch/fx/experimental/symbolic_shapes.py:3998] [0/0] Skipping guard L['input_tensor'].size()[1] == 3 V0120 14:51:22.084000 72022 torch/fx/experimental/symbolic_shapes.py:3998] [0/0] Skipping guard L['input_tensor'].size()[2] == 4 V0120 14:51:22.084000 72022 torch/fx/experimental/symbolic_shapes.py:3998] [0/0] Skipping guard L['input_tensor'].stride()[0] == 12 V0120 14:51:22.085000 72022 torch/fx/experimental/symbolic_shapes.py:3998] [0/0] Skipping guard L['input_tensor'].stride()[1] == 4 V0120 14:51:22.085000 72022 torch/fx/experimental/symbolic_shapes.py:3998] [0/0] Skipping guard L['input_tensor'].stride()[2] == 1 V0120 14:51:22.085000 72022 torch/fx/experimental/symbolic_shapes.py:3998] [0/0] Skipping guard L['input_tensor'].storage_offset() == 0 V0120 14:51:22.086000 72022 torch/_dynamo/guards.py:2314] [0/0] [__guards] GUARDS: V0120 14:51:22.087000 72022 torch/_dynamo/guards.py:2280] [0/0] [__guards] V0120 14:51:22.087000 72022 torch/_dynamo/guards.py:2280] [0/0] [__guards] TREE_GUARD_MANAGER: V0120 14:51:22.087000 72022 torch/_dynamo/guards.py:2280] [0/0] [__guards] +- RootGuardManager V0120 14:51:22.087000 72022 torch/_dynamo/guards.py:2280] [0/0] [__guards] | +- DEFAULT_DEVICE: utils_device.CURRENT_DEVICE == None # _dynamo/output_graph.py:471 in init_ambient_guards V0120 14:51:22.087000 72022 torch/_dynamo/guards.py:2280] [0/0] [__guards] | +- GLOBAL_STATE: ___check_global_state() V0120 14:51:22.087000 72022 torch/_dynamo/guards.py:2280] [0/0] [__guards] | +- TORCH_FUNCTION_MODE_STACK: ___check_torch_function_mode_stack() V0120 14:51:22.087000 72022 torch/_dynamo/guards.py:2280] [0/0] [__guards] | +- GuardManager: source=L['input_tensor'], accessed_by=DictGetItemGuardAccessor(input_tensor) V0120 14:51:22.087000 72022 torch/_dynamo/guards.py:2280] [0/0] [__guards] | | +- TENSOR_MATCH: check_tensor(L['input_tensor'], Tensor, DispatchKeySet(CPU, BackendSelect, ADInplaceOrView, AutogradCPU), torch.bool, device=None, requires_grad=False, size=[2, 3, 4], stride=[12, 4, 1]) # output_tensor = torch.empty((0,), dtype=torch.bool).to(input_tensor.device) # qnpu/env_name/src/pytorch-integration/tests/pytest_working/any_mode/test_hpu_all_any.py:5 in compiled_fn V0120 14:51:22.087000 72022 torch/_dynamo/guards.py:2280] [0/0] [__guards] | | +- NO_HASATTR: hasattr(L['input_tensor'], '_dynamo_dynamic_indices') == False # output_tensor = torch.empty((0,), dtype=torch.bool).to(input_tensor.device) # qnpu/env_name/src/pytorch-integration/tests/pytest_working/any_mode/test_hpu_all_any.py:5 in compiled_fn V0120 14:51:22.087000 72022 torch/_dynamo/guards.py:2280] [0/0] [__guards] | +- GuardManager: source=G, accessed_by=GlobalsGuardAccessor V0120 14:51:22.087000 72022 torch/_dynamo/guards.py:2280] [0/0] [__guards] | | +- GuardManager: source=G['torch'], accessed_by=DictGetItemGuardAccessor(torch) V0120 14:51:22.087000 72022 torch/_dynamo/guards.py:2280] [0/0] [__guards] | | | +- ID_MATCH: ___check_obj_id(G['torch'], 139743351173376) # output_tensor = torch.empty((0,), dtype=torch.bool).to(input_tensor.device) # qnpu/env_name/src/pytorch-integration/tests/pytest_working/any_mode/test_hpu_all_any.py:5 in compiled_fn V0120 14:51:22.087000 72022 torch/_dynamo/guards.py:2280] [0/0] [__guards] | | | +- GuardManager: source=G['torch'].all, accessed_by=GetAttrGuardAccessor(all) V0120 14:51:22.087000 72022 torch/_dynamo/guards.py:2280] [0/0] [__guards] | | | | +- ID_MATCH: ___check_obj_id(G['torch'].all, 139743348124352) # result = torch.all(input_tensor, dim=2, out=output_tensor) # qnpu/env_name/src/pytorch-integration/tests/pytest_working/any_mode/test_hpu_all_any.py:6 in compiled_fn V0120 14:51:22.087000 72022 torch/_dynamo/guards.py:2280] [0/0] [__guards] | | | +- GuardManager: source=G['torch'].bool, accessed_by=GetAttrGuardAccessor(bool) V0120 14:51:22.087000 72022 torch/_dynamo/guards.py:2280] [0/0] [__guards] | | | | +- EQUALS_MATCH: G['torch'].bool == torch.bool # output_tensor = torch.empty((0,), dtype=torch.bool).to(input_tensor.device) # qnpu/env_name/src/pytorch-integration/tests/pytest_working/any_mode/test_hpu_all_any.py:5 in compiled_fn V0120 14:51:22.087000 72022 torch/_dynamo/guards.py:2280] [0/0] [__guards] | | | +- GuardManager: source=G['torch'].empty, accessed_by=GetAttrGuardAccessor(empty) V0120 14:51:22.087000 72022 torch/_dynamo/guards.py:2280] [0/0] [__guards] | | | | +- ID_MATCH: ___check_obj_id(G['torch'].empty, 139743348128512) # output_tensor = torch.empty((0,), dtype=torch.bool).to(input_tensor.device) # qnpu/env_name/src/pytorch-integration/tests/pytest_working/any_mode/test_hpu_all_any.py:5 in compiled_fn V0120 14:51:22.087000 72022 torch/_dynamo/guards.py:2280] [0/0] [__guards] V0120 14:51:22.088000 72022 torch/_dynamo/convert_frame.py:1234] skipping: _fn (reason: in skipfiles, file: /home/user1/venv1/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py) V0120 14:51:22.089000 72022 torch/_dynamo/convert_frame.py:1234] skipping: _maybe_set_eval_frame (reason: in skipfiles, file: /home/user1/venv1/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py) V0120 14:51:22.089000 72022 torch/_dynamo/convert_frame.py:1234] skipping: justknobs_check (reason: in skipfiles, file: /home/user1/venv1/lib/python3.10/site-packages/torch/_utils_internal.py) ``` Full logs 2.6.0: ``` V0120 14:57:46.629000 74548 torch/_dynamo/convert_frame.py:1345] skipping: _is_skip_guard_eval_unsafe_stance (reason: in skipfiles, file: /home/user1/venv1/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py) I0120 14:57:46.631000 74548 torch/_dynamo/utils.py:1162] [0/0] ChromiumEventLogger initialized with id 9bec8ac0-9067-4f58-ba32-04edd2949f59 V0120 14:57:46.632000 74548 torch/_dynamo/convert_frame.py:930] [0/0] torchdynamo start compiling compiled_fn tests/compile/test_all.py:3, stack (elided 5 frames): V0120 14:57:46.632000 74548 torch/_dynamo/convert_frame.py:930] [0/0] File "tests/compile/test_all.py", line 14, in <module> V0120 14:57:46.632000 74548 torch/_dynamo/convert_frame.py:930] [0/0] output = compiled_fn(input_tensor) V0120 14:57:46.632000 74548 torch/_dynamo/convert_frame.py:930] [0/0] I0120 14:57:46.633000 74548 torch/_dynamo/symbolic_convert.py:2706] [0/0] Step 1: torchdynamo start tracing compiled_fn tests/compile/test_all.py:3 I0120 14:57:46.634000 74548 torch/fx/experimental/symbolic_shapes.py:3192] [0/0] create_env V0120 14:57:46.637000 74548 torch/_dynamo/symbolic_convert.py:932] [0/0] [__trace_source] TRACE starts_line tests/compile/test_all.py:5 in compiled_fn (compiled_fn) V0120 14:57:46.637000 74548 torch/_dynamo/symbolic_convert.py:932] [0/0] [__trace_source] output_tensor = torch.empty((0,), dtype=torch.bool).to(input_tensor.device) V0120 14:57:46.638000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0] [__trace_bytecode] TRACE LOAD_GLOBAL torch [] V0120 14:57:46.640000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0] [__trace_bytecode] TRACE LOAD_ATTR empty [PythonModuleVariable(<module 'torch' from '/home/user1/venv1/lib/python3.10/site-packages/torch/__init__.py'>)] V0120 14:57:46.641000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0] [__trace_bytecode] TRACE LOAD_CONST (0,) [TorchInGraphFunctionVariable(<built-in method empty of type object at 0x7f144a228020>)] V0120 14:57:46.642000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0] [__trace_bytecode] TRACE LOAD_GLOBAL torch [TorchInGraphFunctionVariable(<built-in method empty of type object at 0x7f144a228020>), TupleVariable(length=1)] V0120 14:57:46.642000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0] [__trace_bytecode] TRACE LOAD_ATTR bool [TorchInGraphFunctionVariable(<built-in method empty of type object at 0x7f144a228020>), TupleVariable(length=1), PythonModuleVariable(<module 'torch' from '/home/user1/venv1/lib/python3.10/site-packages/torch/__init__.py'>)] V0120 14:57:46.643000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0] [__trace_bytecode] TRACE LOAD_CONST ('dtype',) [TorchInGraphFunctionVariable(<built-in method empty of type object at 0x7f144a228020>), TupleVariable(length=1), ConstantVariable(dtype: torch.bool)] V0120 14:57:46.643000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0] [__trace_bytecode] TRACE CALL_FUNCTION_KW 2 [TorchInGraphFunctionVariable(<built-in method empty of type object at 0x7f144a228020>), TupleVariable(length=1), ConstantVariable(dtype: torch.bool), TupleVariable(length=1)] V0120 14:57:46.655000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0] [__trace_bytecode] TRACE LOAD_ATTR to [TensorVariable()] V0120 14:57:46.655000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0] [__trace_bytecode] TRACE LOAD_FAST input_tensor [GetAttrVariable(TensorVariable(), to)] V0120 14:57:46.656000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0] [__trace_bytecode] TRACE LOAD_ATTR device [GetAttrVariable(TensorVariable(), to), LazyVariableTracker()] V0120 14:57:46.656000 74548 torch/_dynamo/variables/builder.py:2853] [0/0] wrap_to_fake L['input_tensor'] (2, 3, 4) StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>, <DimDynamic.STATIC: 2>, <DimDynamic.STATIC: 2>], dynamic_strides=[<DimDynamic.INFER_STRIDE: 4>, <DimDynamic.INFER_STRIDE: 4>, <DimDynamic.INFER_STRIDE: 4>], constraint_sizes=[None, None, None], constraint_strides=[None, None, None], view_base_context=None, tensor_source=LocalSource(local_name='input_tensor', is_input=True, is_derefed_cell_contents=False), shape_env_to_source_to_symbol_cache={}) <class 'torch.Tensor'> V0120 14:57:46.658000 74548 torch/_dynamo/output_graph.py:2156] [0/0] create_graph_input L_input_tensor_ L['input_tensor'] FakeTensor(..., size=(2, 3, 4), dtype=torch.bool) at debug_level 0 before=False V0120 14:57:46.659000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0] [__trace_bytecode] TRACE CALL_FUNCTION 1 [GetAttrVariable(TensorVariable(), to), ConstantVariable(device: device(type='cpu'))] V0120 14:57:46.660000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0] [__trace_bytecode] TRACE STORE_FAST output_tensor [TensorVariable()] V0120 14:57:46.661000 74548 torch/_dynamo/symbolic_convert.py:932] [0/0] [__trace_source] TRACE starts_line tests/compile/test_all.py:6 in compiled_fn (compiled_fn) V0120 14:57:46.661000 74548 torch/_dynamo/symbolic_convert.py:932] [0/0] [__trace_source] result = torch.all(input_tensor, dim=2, out=output_tensor) V0120 14:57:46.661000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0] [__trace_bytecode] TRACE LOAD_GLOBAL torch [] V0120 14:57:46.662000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0] [__trace_bytecode] TRACE LOAD_ATTR all [PythonModuleVariable(<module 'torch' from '/home/user1/venv1/lib/python3.10/site-packages/torch/__init__.py'>)] V0120 14:57:46.662000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0] [__trace_bytecode] TRACE LOAD_FAST input_tensor [TorchInGraphFunctionVariable(<built-in method all of type object at 0x7f144a228020>)] V0120 14:57:46.663000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0] [__trace_bytecode] TRACE LOAD_CONST 2 [TorchInGraphFunctionVariable(<built-in method all of type object at 0x7f144a228020>), TensorVariable()] V0120 14:57:46.663000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0] [__trace_bytecode] TRACE LOAD_FAST output_tensor [TorchInGraphFunctionVariable(<built-in method all of type object at 0x7f144a228020>), TensorVariable(), ConstantVariable(int: 2)] V0120 14:57:46.664000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0] [__trace_bytecode] TRACE LOAD_CONST ('dim', 'out') [TorchInGraphFunctionVariable(<built-in method all of type object at 0x7f144a228020>), TensorVariable(), ConstantVariable(int: 2), TensorVariable()] V0120 14:57:46.664000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0] [__trace_bytecode] TRACE CALL_FUNCTION_KW 3 [TorchInGraphFunctionVariable(<built-in method all of type object at 0x7f144a228020>), TensorVariable(), ConstantVariable(int: 2), TensorVariable(), TupleVariable(length=2)] V0120 14:57:46.668000 74548 torch/_dynamo/symbolic_convert.py:435] [0/0] [__graph_breaks] Graph break in user code at tests/compile/test_all.py:6 V0120 14:57:46.668000 74548 torch/_dynamo/symbolic_convert.py:435] [0/0] [__graph_breaks] Reason: Unsupported: out variants with resizing on graph inputs V0120 14:57:46.668000 74548 torch/_dynamo/symbolic_convert.py:435] [0/0] [__graph_breaks] User code traceback: V0120 14:57:46.668000 74548 torch/_dynamo/symbolic_convert.py:435] [0/0] [__graph_breaks] File "tests/compile/test_all.py", line 6, in compiled_fn V0120 14:57:46.668000 74548 torch/_dynamo/symbolic_convert.py:435] [0/0] [__graph_breaks] result = torch.all(input_tensor, dim=2, out=output_tensor) V0120 14:57:46.668000 74548 torch/_dynamo/symbolic_convert.py:435] [0/0] [__graph_breaks] I0120 14:57:46.668000 74548 torch/_dynamo/convert_frame.py:755] [0/0] Restarting analysis due to _dynamo/symbolic_convert.py:161 in fail_and_restart_analysis I0120 14:57:46.669000 74548 torch/_dynamo/symbolic_convert.py:2706] [0/0_1] Step 1: torchdynamo start tracing compiled_fn tests/compile/test_all.py:3 I0120 14:57:46.670000 74548 torch/fx/experimental/symbolic_shapes.py:3192] [0/0_1] create_env V0120 14:57:46.671000 74548 torch/_dynamo/symbolic_convert.py:932] [0/0_1] [__trace_source] TRACE starts_line tests/compile/test_all.py:5 in compiled_fn (compiled_fn) V0120 14:57:46.671000 74548 torch/_dynamo/symbolic_convert.py:932] [0/0_1] [__trace_source] output_tensor = torch.empty((0,), dtype=torch.bool).to(input_tensor.device) V0120 14:57:46.671000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0_1] [__trace_bytecode] TRACE LOAD_GLOBAL torch [] V0120 14:57:46.672000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0_1] [__trace_bytecode] TRACE LOAD_ATTR empty [PythonModuleVariable(<module 'torch' from '/home/user1/venv1/lib/python3.10/site-packages/torch/__init__.py'>)] V0120 14:57:46.672000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0_1] [__trace_bytecode] TRACE LOAD_CONST (0,) [TorchInGraphFunctionVariable(<built-in method empty of type object at 0x7f144a228020>)] V0120 14:57:46.673000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0_1] [__trace_bytecode] TRACE LOAD_GLOBAL torch [TorchInGraphFunctionVariable(<built-in method empty of type object at 0x7f144a228020>), TupleVariable(length=1)] V0120 14:57:46.673000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0_1] [__trace_bytecode] TRACE LOAD_ATTR bool [TorchInGraphFunctionVariable(<built-in method empty of type object at 0x7f144a228020>), TupleVariable(length=1), PythonModuleVariable(<module 'torch' from '/home/user1/venv1/lib/python3.10/site-packages/torch/__init__.py'>)] V0120 14:57:46.674000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0_1] [__trace_bytecode] TRACE LOAD_CONST ('dtype',) [TorchInGraphFunctionVariable(<built-in method empty of type object at 0x7f144a228020>), TupleVariable(length=1), ConstantVariable(dtype: torch.bool)] V0120 14:57:46.674000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0_1] [__trace_bytecode] TRACE CALL_FUNCTION_KW 2 [TorchInGraphFunctionVariable(<built-in method empty of type object at 0x7f144a228020>), TupleVariable(length=1), ConstantVariable(dtype: torch.bool), TupleVariable(length=1)] V0120 14:57:46.675000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0_1] [__trace_bytecode] TRACE LOAD_ATTR to [TensorVariable()] V0120 14:57:46.676000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0_1] [__trace_bytecode] TRACE LOAD_FAST input_tensor [GetAttrVariable(TensorVariable(), to)] V0120 14:57:46.676000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0_1] [__trace_bytecode] TRACE LOAD_ATTR device [GetAttrVariable(TensorVariable(), to), LazyVariableTracker()] V0120 14:57:46.677000 74548 torch/_dynamo/variables/builder.py:2853] [0/0_1] wrap_to_fake L['input_tensor'] (2, 3, 4) StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>, <DimDynamic.STATIC: 2>, <DimDynamic.STATIC: 2>], dynamic_strides=[<DimDynamic.INFER_STRIDE: 4>, <DimDynamic.INFER_STRIDE: 4>, <DimDynamic.INFER_STRIDE: 4>], constraint_sizes=[None, None, None], constraint_strides=[None, None, None], view_base_context=None, tensor_source=LocalSource(local_name='input_tensor', is_input=True, is_derefed_cell_contents=False), shape_env_to_source_to_symbol_cache={}) <class 'torch.Tensor'> V0120 14:57:46.678000 74548 torch/_dynamo/output_graph.py:2156] [0/0_1] create_graph_input L_input_tensor_ L['input_tensor'] FakeTensor(..., size=(2, 3, 4), dtype=torch.bool) at debug_level 0 before=False V0120 14:57:46.679000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0_1] [__trace_bytecode] TRACE CALL_FUNCTION 1 [GetAttrVariable(TensorVariable(), to), ConstantVariable(device: device(type='cpu'))] V0120 14:57:46.680000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0_1] [__trace_bytecode] TRACE STORE_FAST output_tensor [TensorVariable()] V0120 14:57:46.681000 74548 torch/_dynamo/symbolic_convert.py:932] [0/0_1] [__trace_source] TRACE starts_line tests/compile/test_all.py:6 in compiled_fn (compiled_fn) V0120 14:57:46.681000 74548 torch/_dynamo/symbolic_convert.py:932] [0/0_1] [__trace_source] result = torch.all(input_tensor, dim=2, out=output_tensor) V0120 14:57:46.681000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0_1] [__trace_bytecode] TRACE LOAD_GLOBAL torch [] V0120 14:57:46.681000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0_1] [__trace_bytecode] TRACE LOAD_ATTR all [PythonModuleVariable(<module 'torch' from '/home/user1/venv1/lib/python3.10/site-packages/torch/__init__.py'>)] V0120 14:57:46.682000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0_1] [__trace_bytecode] TRACE LOAD_FAST input_tensor [TorchInGraphFunctionVariable(<built-in method all of type object at 0x7f144a228020>)] V0120 14:57:46.682000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0_1] [__trace_bytecode] TRACE LOAD_CONST 2 [TorchInGraphFunctionVariable(<built-in method all of type object at 0x7f144a228020>), TensorVariable()] V0120 14:57:46.683000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0_1] [__trace_bytecode] TRACE LOAD_FAST output_tensor [TorchInGraphFunctionVariable(<built-in method all of type object at 0x7f144a228020>), TensorVariable(), ConstantVariable(int: 2)] V0120 14:57:46.683000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0_1] [__trace_bytecode] TRACE LOAD_CONST ('dim', 'out') [TorchInGraphFunctionVariable(<built-in method all of type object at 0x7f144a228020>), TensorVariable(), ConstantVariable(int: 2), TensorVariable()] V0120 14:57:46.684000 74548 torch/_dynamo/symbolic_convert.py:955] [0/0_1] [__trace_bytecode] TRACE CALL_FUNCTION_KW 3 [TorchInGraphFunctionVariable(<built-in method all of type object at 0x7f144a228020>), TensorVariable(), ConstantVariable(int: 2), TensorVariable(), TupleVariable(length=2)] V0120 14:57:46.684000 74548 torch/_dynamo/output_graph.py:972] [0/0_1] COMPILING GRAPH due to GraphCompileReason(reason='out variants with resizing on graph inputs', user_stack=[<FrameSummary file tests/compile/test_all.py, line 6 in compiled_fn>], graph_break=True) V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1615] [0/0_1] REMOVE UNUSED GRAPHARG L['input_tensor'] V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] TRACED GRAPH V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] ===== __compiled_fn_2 ===== V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] /home/user1/venv1/lib/python3.10/site-packages/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module): V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] def forward(self): V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] # File: tests/compile/test_all.py:5 in compiled_fn, code: output_tensor = torch.empty((0,), dtype=torch.bool).to(input_tensor.device) V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] empty: "b8[0][1]cpu" = torch.empty((0,), dtype = torch.bool) V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] output_tensor: "b8[0][1]cpu" = empty.to(device(type='cpu')); empty = None V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] return (output_tensor,) V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] V0120 14:57:46.689000 74548 torch/_dynamo/output_graph.py:1353] [0/0_1] [__graph_code] I0120 14:57:46.691000 74548 torch/_dynamo/output_graph.py:1458] [0/0_1] Step 2: calling compiler function inductor W0120 14:57:48.602000 74548 torch/_inductor/debug.py:435] [0/0_1] model__0_inference_0 debug trace: /home/user1/qnpu/env_name/src/torch_compile_debug/run_2025_01_20_14_57_46_633319-pid_74548/torchinductor/model__0_inference_0.0 I0120 14:57:48.606000 74548 torch/_dynamo/output_graph.py:1463] [0/0_1] Step 2: done compiler function inductor I0120 14:57:48.611000 74548 torch/fx/experimental/symbolic_shapes.py:4547] [0/0_1] produce_guards V0120 14:57:48.612000 74548 torch/fx/experimental/symbolic_shapes.py:4755] [0/0_1] track_symint L['input_tensor'].size()[0] 2 None V0120 14:57:48.612000 74548 torch/fx/experimental/symbolic_shapes.py:4755] [0/0_1] track_symint L['input_tensor'].size()[1] 3 None V0120 14:57:48.612000 74548 torch/fx/experimental/symbolic_shapes.py:4755] [0/0_1] track_symint L['input_tensor'].size()[2] 4 None V0120 14:57:48.613000 74548 torch/fx/experimental/symbolic_shapes.py:4755] [0/0_1] track_symint L['input_tensor'].stride()[0] 12 None V0120 14:57:48.613000 74548 torch/fx/experimental/symbolic_shapes.py:4755] [0/0_1] track_symint L['input_tensor'].stride()[1] 4 None V0120 14:57:48.613000 74548 torch/fx/experimental/symbolic_shapes.py:4755] [0/0_1] track_symint L['input_tensor'].stride()[2] 1 None V0120 14:57:48.614000 74548 torch/fx/experimental/symbolic_shapes.py:4755] [0/0_1] track_symint L['input_tensor'].storage_offset() 0 None V0120 14:57:48.614000 74548 torch/fx/experimental/symbolic_shapes.py:4958] [0/0_1] Skipping guard L['input_tensor'].size()[0] == 2 V0120 14:57:48.615000 74548 torch/fx/experimental/symbolic_shapes.py:4958] [0/0_1] Skipping guard L['input_tensor'].size()[1] == 3 V0120 14:57:48.615000 74548 torch/fx/experimental/symbolic_shapes.py:4958] [0/0_1] Skipping guard L['input_tensor'].size()[2] == 4 V0120 14:57:48.616000 74548 torch/fx/experimental/symbolic_shapes.py:4958] [0/0_1] Skipping guard L['input_tensor'].stride()[0] == 12 V0120 14:57:48.616000 74548 torch/fx/experimental/symbolic_shapes.py:4958] [0/0_1] Skipping guard L['input_tensor'].stride()[1] == 4 V0120 14:57:48.616000 74548 torch/fx/experimental/symbolic_shapes.py:4958] [0/0_1] Skipping guard L['input_tensor'].stride()[2] == 1 V0120 14:57:48.617000 74548 torch/fx/experimental/symbolic_shapes.py:4958] [0/0_1] Skipping guard L['input_tensor'].storage_offset() == 0 V0120 14:57:48.617000 74548 torch/_dynamo/guards.py:2364] [0/0_1] [__guards] GUARDS: V0120 14:57:48.618000 74548 torch/_dynamo/guards.py:2321] [0/0_1] [__guards] V0120 14:57:48.618000 74548 torch/_dynamo/guards.py:2321] [0/0_1] [__guards] TREE_GUARD_MANAGER: V0120 14:57:48.618000 74548 torch/_dynamo/guards.py:2321] [0/0_1] [__guards] +- RootGuardManager V0120 14:57:48.618000 74548 torch/_dynamo/guards.py:2321] [0/0_1] [__guards] | +- DEFAULT_DEVICE: utils_device.CURRENT_DEVICE == None # _dynamo/output_graph.py:493 in init_ambient_guards V0120 14:57:48.618000 74548 torch/_dynamo/guards.py:2321] [0/0_1] [__guards] | +- GLOBAL_STATE: ___check_global_state() V0120 14:57:48.618000 74548 torch/_dynamo/guards.py:2321] [0/0_1] [__guards] | +- TORCH_FUNCTION_MODE_STACK: ___check_torch_function_mode_stack() V0120 14:57:48.618000 74548 torch/_dynamo/guards.py:2321] [0/0_1] [__guards] | +- GuardManager: source=L['input_tensor'], accessed_by=DictGetItemGuardAccessor('input_tensor') V0120 14:57:48.618000 74548 torch/_dynamo/guards.py:2321] [0/0_1] [__guards] | | +- TENSOR_MATCH: check_tensor(L['input_tensor'], Tensor, DispatchKeySet(CPU, BackendSelect, ADInplaceOrView, AutogradCPU), torch.bool, device=None, requires_grad=False, size=[2, 3, 4], stride=[12, 4, 1]) # output_tensor = torch.empty((0,), dtype=torch.bool).to(input_tensor.device) # qnpu/env_name/src/pytorch-integration/tests/pytest_working/any_mode/test_hpu_all_any.py:5 in compiled_fn V0120 14:57:48.618000 74548 torch/_dynamo/guards.py:2321] [0/0_1] [__guards] | | +- NO_HASATTR: hasattr(L['input_tensor'], '_dynamo_dynamic_indices') == False # output_tensor = torch.empty((0,), dtype=torch.bool).to(input_tensor.device) # qnpu/env_name/src/pytorch-integration/tests/pytest_working/any_mode/test_hpu_all_any.py:5 in compiled_fn V0120 14:57:48.618000 74548 torch/_dynamo/guards.py:2321] [0/0_1] [__guards] | +- GuardManager: source=G, accessed_by=GlobalsGuardAccessor V0120 14:57:48.618000 74548 torch/_dynamo/guards.py:2321] [0/0_1] [__guards] | | +- GuardManager: source=G['torch'], accessed_by=DictGetItemGuardAccessor('torch') V0120 14:57:48.618000 74548 torch/_dynamo/guards.py:2321] [0/0_1] [__guards] | | | +- ID_MATCH: ___check_obj_id(G['torch'], 139725124415584) # output_tensor = torch.empty((0,), dtype=torch.bool).to(input_tensor.device) # qnpu/env_name/src/pytorch-integration/tests/pytest_working/any_mode/test_hpu_all_any.py:5 in compiled_fn V0120 14:57:48.618000 74548 torch/_dynamo/guards.py:2321] [0/0_1] [__guards] | | | +- GuardManager: source=G['torch'].all, accessed_by=GetAttrGuardAccessor(all) V0120 14:57:48.618000 74548 torch/_dynamo/guards.py:2321] [0/0_1] [__guards] | | | | +- ID_MATCH: ___check_obj_id(G['torch'].all, 139725121374464) # result = torch.all(input_tensor, dim=2, out=output_tensor) # qnpu/env_name/src/pytorch-integration/tests/pytest_working/any_mode/test_hpu_all_any.py:6 in compiled_fn V0120 14:57:48.618000 74548 torch/_dynamo/guards.py:2321] [0/0_1] [__guards] | | | +- GuardManager: source=G['torch'].bool, accessed_by=GetAttrGuardAccessor(bool) V0120 14:57:48.618000 74548 torch/_dynamo/guards.py:2321] [0/0_1] [__guards] | | | | +- EQUALS_MATCH: G['torch'].bool == torch.bool # output_tensor = torch.empty((0,), dtype=torch.bool).to(input_tensor.device) # qnpu/env_name/src/pytorch-integration/tests/pytest_working/any_mode/test_hpu_all_any.py:5 in compiled_fn V0120 14:57:48.618000 74548 torch/_dynamo/guards.py:2321] [0/0_1] [__guards] | | | +- GuardManager: source=G['torch'].empty, accessed_by=GetAttrGuardAccessor(empty) V0120 14:57:48.618000 74548 torch/_dynamo/guards.py:2321] [0/0_1] [__guards] | | | | +- ID_MATCH: ___check_obj_id(G['torch'].empty, 139725121378624) # output_tensor = torch.empty((0,), dtype=torch.bool).to(input_tensor.device) # qnpu/env_name/src/pytorch-integration/tests/pytest_working/any_mode/test_hpu_all_any.py:5 in compiled_fn V0120 14:57:48.618000 74548 torch/_dynamo/guards.py:2321] [0/0_1] [__guards] V0120 14:57:49.619000 74548 torch/_dynamo/guards.py:2346] [0/0_1] [__guards] Guard eval latency = 0.76 us I0120 14:57:49.620000 74548 torch/_dynamo/pgo.py:636] [0/0_1] put_code_state: no cache key, skipping V0120 14:57:49.626000 74548 torch/_dynamo/convert_frame.py:1345] skipping: _fn (reason: in skipfiles, file: /home/user1/venv1/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py) V0120 14:57:49.627000 74548 torch/_dynamo/convert_frame.py:1345] skipping: _callback_from_stance (reason: in skipfiles, file: /home/user1/venv1/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py) V0120 14:57:49.627000 74548 torch/_dynamo/convert_frame.py:1345] skipping: _maybe_set_eval_frame (reason: in skipfiles, file: /home/user1/venv1/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py) V0120 14:57:49.628000 74548 torch/_dynamo/convert_frame.py:1345] skipping: justknobs_check (reason: in skipfiles, file: /home/user1/venv1/lib/python3.10/site-packages/torch/_utils_internal.py) V0120 14:57:49.629000 74548 torch/_dynamo/convert_frame.py:930] [1/0] torchdynamo start compiling torch_dynamo_resume_in_compiled_fn_at_6 tests/compile/test_all.py:6, stack (elided 5 frames): V0120 14:57:49.629000 74548 torch/_dynamo/convert_frame.py:930] [1/0] File "tests/compile/test_all.py", line 14, in <module> V0120 14:57:49.629000 74548 torch/_dynamo/convert_frame.py:930] [1/0] output = compiled_fn(input_tensor) V0120 14:57:49.629000 74548 torch/_dynamo/convert_frame.py:930] [1/0] File "/home/user1/venv1/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 574, in _fn V0120 14:57:49.629000 74548 torch/_dynamo/convert_frame.py:930] [1/0] return fn(*args, **kwargs) V0120 14:57:49.629000 74548 torch/_dynamo/convert_frame.py:930] [1/0] I0120 14:57:49.630000 74548 torch/_dynamo/symbolic_convert.py:2706] [1/0] Step 1: torchdynamo start tracing torch_dynamo_resume_in_compiled_fn_at_6 tests/compile/test_all.py:6 I0120 14:57:49.631000 74548 torch/fx/experimental/symbolic_shapes.py:3192] [1/0] create_env V0120 14:57:49.632000 74548 torch/_dynamo/symbolic_convert.py:932] [1/0] [__trace_source] TRACE starts_line tests/compile/test_all.py:6 in torch_dynamo_resume_in_compiled_fn_at_6 (compiled_fn) V0120 14:57:49.632000 74548 torch/_dynamo/symbolic_convert.py:932] [1/0] [__trace_source] result = torch.all(input_tensor, dim=2, out=output_tensor) V0120 14:57:49.632000 74548 torch/_dynamo/symbolic_convert.py:955] [1/0] [__trace_bytecode] TRACE LOAD_FAST ___stack0 [] V0120 14:57:49.633000 74548 torch/_dynamo/symbolic_convert.py:955] [1/0] [__trace_bytecode] TRACE JUMP_ABSOLUTE 42 [LazyVariableTracker()] V0120 14:57:49.633000 74548 torch/_dynamo/symbolic_convert.py:955] [1/0] [__trace_bytecode] TRACE STORE_FAST result [LazyVariableTracker()] V0120 14:57:49.634000 74548 torch/_dynamo/variables/builder.py:2853] [1/0] wrap_to_fake L['___stack0'] (2, 3) StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>, <DimDynamic.STATIC: 2>], dynamic_strides=[<DimDynamic.INFER_STRIDE: 4>, <DimDynamic.INFER_STRIDE: 4>], constraint_sizes=[None, None], constraint_strides=[None, None], view_base_context=None, tensor_source=LocalSource(local_name='___stack0', is_input=True, is_derefed_cell_contents=False), shape_env_to_source_to_symbol_cache={}) <class 'torch.Tensor'> V0120 14:57:49.635000 74548 torch/_dynamo/output_graph.py:2156] [1/0] create_graph_input L_stack0_ L['___stack0'] FakeTensor(..., size=(2, 3), dtype=torch.bool) at debug_level 0 before=False V0120 14:57:49.637000 74548 torch/_dynamo/symbolic_convert.py:932] [1/0] [__trace_source] TRACE starts_line tests/compile/test_all.py:7 in torch_dynamo_resume_in_compiled_fn_at_6 (compiled_fn) V0120 14:57:49.637000 74548 torch/_dynamo/symbolic_convert.py:932] [1/0] [__trace_source] return result V0120 14:57:49.637000 74548 torch/_dynamo/symbolic_convert.py:955] [1/0] [__trace_bytecode] TRACE LOAD_FAST result [] V0120 14:57:49.637000 74548 torch/_dynamo/symbolic_convert.py:955] [1/0] [__trace_bytecode] TRACE RETURN_VALUE None [TensorVariable()] V0120 14:57:49.638000 74548 torch/_dynamo/convert_frame.py:768] [1/0] Skipping frame because no content in function call torch_dynamo_resume_in_compiled_fn_at_6 tests/compile/test_all.py 6 I0120 14:57:49.638000 74548 torch/_dynamo/pgo.py:636] [1/0] put_code_state: no cache key, skipping I0120 14:57:49.644000 74548 torch/_dynamo/eval_frame.py:398] TorchDynamo attempted to trace the following frames: [ I0120 14:57:49.644000 74548 torch/_dynamo/eval_frame.py:398] * compiled_fn tests/compile/test_all.py:3 I0120 14:57:49.644000 74548 torch/_dynamo/eval_frame.py:398] ] ``` ### Versions Collecting environment information... PyTorch version: 2.6.0a0+gitc15b011 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.5 CMake version: version 3.31.2 Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-127-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz CPU family: 6 Model: 85 Thread(s) per core: 1 Core(s) per socket: 6 Socket(s): 2 Stepping: 0 BogoMIPS: 5187.81 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon nopl xtopology tsc_reliable nonstop_tsc cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 invpcid avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xsaves arat pku ospke md_clear flush_l1d arch_capabilities Virtualization: VT-x Hypervisor vendor: VMware Virtualization type: full L1d cache: 384 KiB (12 instances) L1i cache: 384 KiB (12 instances) L2 cache: 12 MiB (12 instances) L3 cache: 38.5 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-11 Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Mitigation; PTE Inversion; VMX flush not necessary, SMT disabled Vulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.6.0a0+gitc15b011 [pip3] torch_tb_profiler==0.4.0 [pip3] triton==3.1.0 cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @amjames
true
2,799,317,705
`torch.compile` may produce wrong result with `Linear+MaxPool2d+BatchNorm2d`.
Zoeeeeey
closed
[ "oncall: pt2", "oncall: cpu inductor" ]
4
NONE
### 🐛 Describe the bug Hi! I found that the following model gives different results after compile. ```python import torch def fn(): v4_0 = torch.nn.Parameter(torch.randn([8, 1, 4, 1], dtype=torch.float32), requires_grad=True) v5_0 = torch.nn.Parameter(torch.empty([1, 1, 4, 1], dtype=torch.float32), requires_grad=True) v6_0 = torch.cat((v4_0, v5_0), dim=0) v6_0_flat = v6_0.view(-1, 1) # 展平并调整形状 linear_layer = torch.nn.Linear(in_features=1, out_features=43, bias=True) v2_0 = linear_layer(v6_0_flat) v2_0_unsqueezed = v2_0.unsqueeze(0).unsqueeze(0) # 添加批次和通道维度以满足 MaxPool2d 的输入要求 maxpool_layer = torch.nn.MaxPool2d(kernel_size=(2, 42), stride=2, padding=0, dilation=1, ceil_mode=False) v1_0 = maxpool_layer(v2_0_unsqueezed) batchnorm_layer = torch.nn.BatchNorm2d(1, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) v0_0 = batchnorm_layer(v2_0_unsqueezed) return v1_0, v0_0 ret_eager = fn() compiled = torch.compile(fn) ret_compiled = compiled() # assert torch.allclose(ret_eager[0], ret_compiled[0]), '\n'.join(map(str, ["", ret_eager[0], ret_compiled[0]])) # assert torch.allclose(ret_eager[1], ret_compiled[1]), '\n'.join(map(str, ["", ret_eager[1], ret_compiled[1]])) torch.testing.assert_close(ret_eager[0], ret_compiled[0]) # OUTPUT: # AssertionError: Tensor-likes are not close! # # Mismatched elements: 18 / 18 (100.0%) # Greatest absolute difference: nan at index (0, 0, 16, 0) (up to 1e-05 allowed) # Greatest relative difference: nan at index (0, 0, 16, 0) (up to 1.3e-06 allowed) torch.testing.assert_close(ret_eager[1], ret_compiled[1]) # OUTPUT: # AssertionError: Tensor-likes are not close! # # Mismatched elements: 1548 / 1548 (100.0%) # Greatest absolute difference: nan at index (0, 0, 0, 0) (up to 1e-05 allowed) # Greatest relative difference: nan at index (0, 0, 0, 0) (up to 1.3e-06 allowed) ``` ### Error logs ``` Python # AssertionError: Tensor-likes are not close! # # Mismatched elements: 18 / 18 (100.0%) # Greatest absolute difference: nan at index (0, 0, 16, 0) (up to 1e-05 allowed) # Greatest relative difference: nan at index (0, 0, 16, 0) (up to 1.3e-06 allowed) #... # AssertionError: Tensor-likes are not close! # # Mismatched elements: 1548 / 1548 (100.0%) # Greatest absolute difference: nan at index (0, 0, 0, 0) (up to 1e-05 allowed) # Greatest relative difference: nan at index (0, 0, 0, 0) (up to 1.3e-06 allowed) ``` ### Versions ```bash Collecting environment information... PyTorch version: 2.7.0.dev20250116+cpu Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.5 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.16.3 Libc version: glibc-2.31 Python version: 3.10.16 (main, Dec 11 2024, 16:24:50) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.4.0-100-generic-x86_64-with-glibc2.31 Is CUDA available: False CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3080 Ti Nvidia driver version: 535.104.05 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.6.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] numpy==2.2.1 [pip3] torch==2.7.0.dev20250116+cpu [pip3] torchaudio==2.6.0.dev20250116+cpu [pip3] torchvision==0.22.0.dev20250116+cpu [conda] numpy 2.2.1 pypi_0 pypi [conda] torch 2.7.0.dev20250116+cpu pypi_0 pypi [conda] torchaudio 2.6.0.dev20250116+cpu pypi_0 pypi [conda] torchvision 0.22.0.dev20250116+cpu pypi_0 pypi ``` cc @chauhang @penguinwu
true
2,799,241,509
getting different results when adding `torch.Tensor` or python number to a DTensor - Is that expected?
thevasudevgupta
open
[ "oncall: distributed", "module: dtensor" ]
3
NONE
### 🐛 Describe the bug ```python # torchrun --nproc-per-node 2 scripts/dtensor.py import os import torch from torch.distributed.tensor import init_device_mesh, Shard, distribute_tensor use_tensor = False rank = int(os.getenv("RANK")) world_size = int(os.getenv("WORLD_SIZE")) torch.manual_seed(0) tensor1 = torch.rand(1000, 88) mesh = init_device_mesh("cpu", (world_size,)) norm1 = torch.linalg.vector_norm(tensor1) norm1 += torch.tensor(2) if use_tensor else 2 print(f"{norm1}\n") tensor2 = distribute_tensor(tensor1, mesh, [Shard(dim=0)]) norm2 = torch.linalg.vector_norm(tensor2) norm2 += torch.tensor(2) if use_tensor else 2 print(f"{norm2.full_tensor()}\n") ``` setting `use_tensor = False` gives different results - is that expected? `use_tensor = True` works fine and gives same results; ### Versions ``` Collecting environment information... PyTorch version: 2.5.1 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 15.2 (arm64) GCC version: Could not collect Clang version: 16.0.0 (clang-1600.0.26.6) CMake version: version 3.30.2 Libc version: N/A Python version: 3.10.8 (main, Nov 24 2022, 08:08:27) [Clang 14.0.6 ] (64-bit runtime) Python platform: macOS-15.2-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M2 Versions of relevant libraries: [pip3] flake8==7.1.1 [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.25.2 [pip3] pytorch-lightning==2.0.1.post0 [pip3] torch==2.5.1 [pip3] torchaudio==2.0.0.dev20230302 [pip3] torchdata==0.6.1 [pip3] torchmetrics==0.11.4 [pip3] torchtext==0.15.2 [pip3] torchvision==0.19.0 [conda] numpy 1.25.2 pypi_0 pypi [conda] pytorch-lightning 2.0.1.post0 pypi_0 pypi [conda] torch 2.5.1 pypi_0 pypi [conda] torchaudio 2.0.0.dev20230302 pypi_0 pypi [conda] torchdata 0.6.1 pypi_0 pypi [conda] torchmetrics 0.11.4 pypi_0 pypi [conda] torchtext 0.15.2 pypi_0 pypi [conda] torchvision 0.19.0 pypi_0 pypi ``` cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @tianyu-l @XilunWu
true
2,799,189,123
DISABLED test_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True_grad_False (__main__.TestFxGraphCache)
pytorch-bot[bot]
closed
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
4
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True_grad_False&suite=TestFxGraphCache&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35863944744). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True_grad_False` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_codecache.py", line 146, in test_cache_load_function self.assertEqual( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4036, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Scalars are not equal! Expected 7 but got 14. Absolute difference: 7 Relative difference: 1.0 To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_codecache.py TestFxGraphCache.test_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True_grad_False This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_codecache.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,799,054,463
[ARM] - test_quantized_module.py test_lstm_api fails on Aarch64
robert-hardwick
closed
[ "oncall: quantization", "module: arm" ]
3
COLLABORATOR
### 🐛 Describe the bug We are seeing test_lstm_api in test_quantized_module.py fail on Aarch64. It is currently not enabled in CI - we would like to enable this. This happens due to change of input dimensions here -https://github.com/pytorch/pytorch/blob/92b9da1fc2b0a834f54f4d97fd4a2402f47bce07/test/quantization/core/test_quantized_module.py#L1758 causes cache miss and implementation falls back to default_lowp_kind. ``` AIL: test_lstm_api (__main__.TestDynamicQuantizedModule) ---------------------------------------------------------------------- Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 2979, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_quantized.py", line 171, in test_fn for qengine in supported_qengines: File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/hypothesis/core.py", line 1145, in wrapped_test raise the_error_hypothesis_found File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_quantized.py", line 174, in test_fn qfunction(*args, **kwargs) File "/var/lib/jenkins/workspace/test/quantization/core/test_quantized_module.py", line 1760, in test_lstm_api self.check_eager_serialization(cell_dq, ref_dq, [x]) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_quantization.py", line 674, in check_eager_serialization check_outputs(ref_out, load_out) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_quantization.py", line 667, in check_outputs self.assertEqual(ref_out[0], load_out[0]) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3885, in assertEqual raise error_metas.pop()[0].to_error( AssertionError: Tensor-likes are not close! Mismatched elements: 1400 / 1400 (100.0%) Greatest absolute difference: 1.1401878595352173 at index (8, 18, 6) (up to 1e-05 allowed) Greatest relative difference: 5944.72802734375 at index (4, 4, 6) (up to 1.3e-06 allowed) To execute this test, run the following from the base repo dir: python test/quantization/core/test_quantized_module.py TestDynamicQuantizedModule.test_lstm_api This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ---------------------------------------------------------------------- Ran 46 tests in 45.840s FAILED (failures=1, skipped=4) ``` Fixed in https://github.com/pytorch/pytorch/pull/135058 ### Versions jenkins@73bf36410487:~/workspace$ python3 collect_env.py Collecting environment information... PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (aarch64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.2 Libc version: glibc-2.35 Python version: 3.10.16 | packaged by conda-forge | (main, Dec 5 2024, 14:08:42) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-6.8.0-1021-aws-aarch64-with-glibc2.35 Is CUDA available: N/A CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: aarch64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 48 On-line CPU(s) list: 0-47 Vendor ID: ARM Model: 1 Thread(s) per core: 1 Core(s) per cluster: 48 Socket(s): - Cluster(s): 1 Stepping: r1p1 BogoMIPS: 2100.00 Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm jscvt fcma lrcpc dcpop sha3 sm3 sm4 asimddp sha512 sve asimdfhm dit uscat ilrcpc flagm ssbs paca pacg dcpodp svei8mm svebf16 i8mm bf16 dgh rng L1d cache: 3 MiB (48 instances) L1i cache: 3 MiB (48 instances) L2 cache: 48 MiB (48 instances) L3 cache: 32 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-47 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; __user pointer sanitization Vulnerability Spectre v2: Mitigation; CSV2, BHB Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy==1.13.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.22.4 [pip3] onnx==1.17.0 [pip3] onnxscript==0.1.0.dev20240817 [pip3] optree==0.13.0 [pip3] torch==2.5.1 [conda] No relevant packages cc @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @vkuzo @jgong5 @Xia-Weiwen @leslie-fang-intel @msaroufim @malfet @snadampal @milpuz01
true
2,798,892,131
solve apl dependency issue
alinpahontu2912
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
7
COLLABORATOR
According to the [APL documentation](https://developer.arm.com/documentation/101004/2404/General-information/Arm-Performance-Libraries-example-programs), libraries ending with _mp are OpenMP multi-threaded libraries. When a project is compiled with MSVC and the -openmp flag, the vcomp library (Visual C++ implementation of OpenMP) is used for runtime calls. However, the current APL implementation uses the libomp.dll (LLVM) variant. As a result, there are unexpected behaviors at runtime. --- For Example: ```python import torch # Create a sparse tensor # Input (Sparse Tensor): # [[0, 1], # [1, 0]] indices = torch.tensor([[0, 1], [1, 0]]) values = torch.tensor([1, 1], dtype=torch.float32) size = torch.Size([2, 2]) sparse_tensor = torch.sparse_coo_tensor(indices, values, size) # Convert sparse tensor to dense tensor dense_tensor = sparse_tensor.to_dense() # Expected Output (Dense Tensor): # [[0, 1], # [1, 0]] print("\nDense Tensor:") print(dense_tensor) ``` However, it prints unexpected outputs such as: ```python # [[0, 11], # [10, 0]] ``` The issue arises because the following code does not function as expected at runtime: https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/ParallelOpenMP.h#L30 ```c++ // returns 1 , however since OpenMP is enabled it should return total number of threads int64_t num_threads = omp_get_num_threads(); ``` --- In the runtime, loading multiple OpenMP libraries (in this case `libomp` and `vcomp`) is causing unexpected behaviours. So, we've changed libraries from `_mp` to non `_mp` versions and we used `vcomp` for OpenMP calls.
true
2,798,884,722
Nested tensor support for pointwise matrix multiplication of nested tensor and normal tensor
kkj15dk
open
[ "triaged", "module: nestedtensor" ]
9
NONE
### 🚀 The feature, motivation and pitch I am using nested tensors (jagged layout) for my input data, and I need to apply rotary positional embeddings to qkv vectors. At the moment I cannot see how to do this efficiently. I've landed on this slow list comprehension (see below), where I am slicing the normal tensor using and multiplying with the elements of the nested tensor. ``` def rotate_half(x): # x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :] # old implementation x1, x2 = x.chunk(2, dim= -1) return torch.cat( (-x2, x1), dim=-1 ) # @torch.jit.script # TODO: I don't think this is supported for torchscript with nested tensors # def _apply_rotary_pos_emb_torchscript(qkv, cos, sin): def _apply_rotary_pos_emb(qkv, cos, sin): # qkv shape: (B, j1, 3, n_heads, head_dim), cos & sin shape: (1, j1.max(), 1, head_dim) if qkv.is_nested: cos = cos.squeeze(0) sin = sin.squeeze(0) # slow list comprehension result_list = [(t * cos[:t.shape[0]]) + (rotate_half(t) * sin[:t.shape[0]]) for t in qkv.unbind()] # Reassemble the list of tensors back into a nested tensor return torch.nested.as_nested_tensor(result_list) return (qkv * cos) + (rotate_half(qkv) * sin) ``` ### Alternatives You could convert the cos and sin tensors to nested tensors of the same shape as qkv, and multiply these, but this does also not seem like an optimal solution, and requires copying the cos and sin vectors as much as we have batch size. There might be some way of applying rotary positional embeddings to nested tensors that I haven't thought of. If so, please let me know! ### Additional context I am working on a project utilizing protein sequences as input data. The data varies widely in sequence length. min sequence length is probably 32 tokens, the max is whatever I set the max length to be, probably 4096 tokens. I am using layout=torch.jagged at the moment, as this seem to be the best format to It's the perfect project for nested tensors, but so far, FlashAttention, Rotary positional embeddings, and loss calculations are proving to be difficult to implement with efficient computations cc @cpuhrsch @jbschlosser @bhosmer @drisspg @soulitzer @davidberard98 @YuqingJ
true
2,798,740,877
Significant precision error from torch.compile
Edenzzzz
open
[ "needs reproduction", "triaged", "module: correctness (silent)", "bug", "oncall: pt2", "module: inductor" ]
5
NONE
### 🐛 Describe the bug When wrapping torch.compile around a forward region of a model (both `reduce-overhead` and `max-autotune-no-cudagraphs`), the speed-up is accompanied by significant precision error. This happens even when wrapping around the smallest op as shown below. After enabling `CUDA_LAUNCH_BLOCKING=1`, the precision error is gone. It would be troublesome to provide a minimun reproducier as this is an ongoing project involving large model block dependencies, but can also try if needed. ![Image](https://github.com/user-attachments/assets/f77d240e-b734-4770-80a5-1201cbbb8a8a) ![Image](https://github.com/user-attachments/assets/efcd0557-300d-4d29-b662-cf8c3f506e23) ### Profile trace of pure cuda graph showing perf. benefits but also incurring error Even though `reduce-overhead` is used, Triton kernel fusion(the purple region) still cuts in, which might be causing the error. ![Image](https://github.com/user-attachments/assets/c030d48e-d69b-4e62-8fa1-960c248bf72c) ### Versions Collecting environment information... PyTorch version: 2.7.0.dev20250109+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.30.0 Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.8.0-1017-aws-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.5.82 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3 GPU 1: NVIDIA H100 80GB HBM3 GPU 2: NVIDIA H100 80GB HBM3 GPU 3: NVIDIA H100 80GB HBM3 Nvidia driver version: 550.127.05 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.2.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 192 On-line CPU(s) list: 0-191 Vendor ID: AuthenticAMD Model name: AMD EPYC 7R13 Processor CPU family: 25 Model: 1 Thread(s) per core: 2 Core(s) per socket: 48 Socket(s): 2 Stepping: 1 BogoMIPS: 5299.99 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext perfctr_core ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save vaes vpclmulqdq rdpid Hypervisor vendor: KVM Virtualization type: full L1d cache: 3 MiB (96 instances) L1i cache: 3 MiB (96 instances) L2 cache: 48 MiB (96 instances) L3 cache: 384 MiB (12 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-47,96-143 NUMA node1 CPU(s): 48-95,144-191 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==2.1.2 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cudnn-frontend==1.5.1 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] nvtx==0.2.5 [pip3] onnx==1.16.0 [pip3] optree==0.13.1 [pip3] pynvjitlink==0.2.3 [pip3] pytorch-triton==3.2.0+git0d4682f0 [pip3] torch==2.7.0.dev20250109+cu124 [pip3] torch-tensorrt==2.5.0a0 [pip3] torchaudio==2.6.0.dev20250109+cu124 [pip3] torchvision==0.22.0.dev20250109+cu124 cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @muchulee8 @ColinPeppler @amjames @desertfire @aakhundov @mcarilli @eellison @BoyuanFeng
true
2,798,732,377
DISABLED test_remote_cache_load_function_device_cuda_float32_dynamic_False_bundle_triton_False (__main__.TestFxGraphCache)
pytorch-bot[bot]
open
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
5
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_remote_cache_load_function_device_cuda_float32_dynamic_False_bundle_triton_False&suite=TestFxGraphCache&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35856926954). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 4 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_remote_cache_load_function_device_cuda_float32_dynamic_False_bundle_triton_False` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_codecache.py", line 266, in test_remote_cache_load_function self.assertEqual(global_stats.fx_graph, Stats(1, 3, 1)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4036, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Object comparison failed: _GlobalItemStats(num_put=2, num_get_hit=2, num_get_miss=2) != Stats(num_put=1, num_get_hit=3, num_get_miss=1) To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_codecache.py TestFxGraphCache.test_remote_cache_load_function_device_cuda_float32_dynamic_False_bundle_triton_False This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_codecache.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,798,732,275
DISABLED test_aoti (__main__.TestMemoryPlanning)
pytorch-bot[bot]
open
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
3
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_aoti&suite=TestMemoryPlanning&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35856927508). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 4 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_aoti` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_memory_planning.py", line 113, in test_aoti ).run( RuntimeError: Expected to find "int64_t int_array_2[] = {24L + align(12L*s0), };" but did not find it Searched string: Auto-tuning code written to /tmp/tmp92c6h0z4/tmp0ptwdcmx.py ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE Output code: From CHECK: int64_t int_array_2[] = {24L + align(12L*s0), }; To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_memory_planning.py TestMemoryPlanning.test_aoti This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_memory_planning.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,798,732,162
DISABLED test_reorder_peak_memory_lpmf (__main__.TestOperatorReorderForPeakMemory)
pytorch-bot[bot]
open
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
6
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_reorder_peak_memory_lpmf&suite=TestOperatorReorderForPeakMemory&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35856927699). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 4 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_reorder_peak_memory_lpmf` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_memory.py", line 114, in test_reorder_peak_memory_lpmf .run(code) RuntimeError: Expected to find "buf0 = " but did not find it Searched string: extern_kernels.mm(primals_2, primals_3, out=buf2) del primals_3 buf1 = empty_strided_cuda((2048, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [t1], Original ATen: [aten.mm] extern_kernels.mm(primals_2, buf0, out=buf1) del buf0 buf3 = empty_strided_cuda((2048, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [t3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf1, (2048, 10), (12, 1), 0), primals_4, out=buf3) buf6 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [sum_1], Original ATen: [aten.sum] stream0 = get_raw_stream(0) triton_red_fused_sum_1.run(buf3, buf6, 1, 2048, grid=grid(1), stream=stream0) del buf3 buf5 = empty_strided_cuda((2048, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [t4], Original ATen: [aten.mm] extern_kernels.mm(buf2, buf4, out=buf5) del buf4 buf7 = empty_strided_cuda((3, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [sum_2], Original ATen: [aten.sum] stream0 = get_raw_stream(0) triton_red_fused_sum_2.run(buf5, buf7, 3, 6827, grid=grid(3), stream=stream0) del buf5 buf9 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [sum_2, add], Original ATen: [aten.sum, aten.add] stream0 = get_raw_stream(0) triton_per_fused_add_sum_3.run(buf9, buf7, 1, 3, grid=grid(1), stream=stream0) del buf7 return (buf9, primals_2, reinterpret_tensor(buf2, (1, 2048), (1, 1), 0), reinterpret_tensor(primals_5, (10, 1), (1, 10), 0), reinterpret_tensor(buf1, (10, 2048), (1, 12), 0), reinterpret_tensor(primals_4, (1, 10), (1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 10), (10, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2048, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((10, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, 10), (10, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module) From CHECK: buf0 = To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_memory.py TestOperatorReorderForPeakMemory.test_reorder_peak_memory_lpmf This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_memory.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,798,675,566
Fix incorrect citation of authors in documentation
kyo-takano
closed
[ "open source", "Merged", "Stale", "ciflow/trunk", "release notes: optim" ]
12
CONTRIBUTOR
This PR corrects the citation of Adafactor authors "Noam Shazeer" and "Mitchell Stern" in the documentation. The current text incorrectly lists them as "Shazeer, Noam, and Mitchell Stern," which seems to be a result of a data parsing issue of some reference manager(s) [as you can find many papers with the same issue](https://www.google.com/search?q=%22Shazeer%2C+Noam%2C+and+Mitchell+Stern%22). The updated citation follows standard conventions for author names.
true
2,798,636,562
Some FlexAttention learned bias bugs/limitations
Chillee
open
[ "triaged", "oncall: pt2", "module: higher order operators", "module: pt2-dispatcher", "module: flex attention" ]
0
COLLABORATOR
### 🐛 Describe the bug ## Ex 1 ```Python import torch from torch.nn.attention.flex_attention import flex_attention, create_block_mask, create_mask torch.set_default_device('cuda') flex_attention = torch.compile(flex_attention, dynamic=False) result = torch.randn((), requires_grad=True) def score_mod(score, b, h, q, kv): return score * result S = 8192 torch.manual_seed(0) q, k, v = [torch.randn(1, 1, S, 64, dtype=torch.float16, requires_grad=True) for _ in range(3)] flex_attention(q, k, v, score_mod=score_mod).sum().backward() ``` ```Shell File "/home/chilli/local/pytorch/torch/fx/interpreter.py", line 230, in run_node return getattr(self, n.op)(n.target, args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/chilli/local/pytorch/torch/_inductor/graph.py", line 1147, in call_function raise LoweringException(e, target, args, kwargs).with_traceback( File "/home/chilli/local/pytorch/torch/_inductor/graph.py", line 1137, in call_function out = lowerings[target](*args, **kwargs) # type: ignore[index] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/chilli/local/pytorch/torch/_inductor/lowering.py", line 452, in wrapped out = decomp_fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/chilli/local/pytorch/torch/_inductor/kernel/flex_attention.py", line 2226, in flex_attention_backward joint_outputs = process_joint_outputs( ^^^^^^^^^^^^^^^^^^^^^^ File "/home/chilli/local/pytorch/torch/_inductor/kernel/flex_attention.py", line 2103, in process_joint_outputs grads_out = [get_out(x) for x in other_grads] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/chilli/local/pytorch/torch/_inductor/kernel/flex_attention.py", line 2103, in <listcomp> grads_out = [get_out(x) for x in other_grads] ^^^^^^^^^^ File "/home/chilli/local/pytorch/torch/_inductor/kernel/flex_attention.py", line 2100, in get_out assert buf.name is not None ^^^^^^^^^^^^^^^^^^^^ torch._inductor.exc.LoweringException: AssertionError: target: flex_attention_backward args[0]: TensorBox(StorageBox( InputBuffer(name='primals_1', layout=FixedLayout('cuda:0', torch.float16, size=[1, 1, 8192, 64], stride=[524288, 524288, 64, 1])) )) args[1]: TensorBox(StorageBox( InputBuffer(name='primals_2', layout=FixedLayout('cuda:0', torch.float16, size=[1, 1, 8192, 64], stride=[524288, 524288, 64, 1])) )) args[2]: TensorBox(StorageBox( ``` ## Ex 2 ```Python import torch from torch.nn.attention.flex_attention import flex_attention, create_block_mask, create_mask torch.set_default_device('cuda') flex_attention = torch.compile(flex_attention, dynamic=False) result = torch.randn((1,), requires_grad=True) def score_mod(score, b, h, q, kv): return score * result[score.new_zeros((), dtype=torch.int)] S = 8192 torch.manual_seed(0) q, k, v = [torch.randn(1, 1, S, 64, dtype=torch.float16, requires_grad=True) for _ in range(3)] flex_attention(q, k, v, score_mod=score_mod).sum().backward() ``` ```Shell Traceback (most recent call last): File "/home/chilli/.conda/envs/py311/lib/python3.11/site-packages/triton/language/core.py", line 35, in wrapper return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/home/chilli/.conda/envs/py311/lib/python3.11/site-packages/triton/language/core.py", line 1268, in broadcast_to return semantic.broadcast_impl_shape(input, shape, _builder) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/chilli/.conda/envs/py311/lib/python3.11/site-packages/triton/language/semantic.py", line 732, in broadcast_impl_shape raise ValueError(f"Cannot broadcast, rank mismatch: {src_shape}, {shape}") ValueError: Cannot broadcast, rank mismatch: [1], [64, 64] The above exception was the direct cause of the following exception: triton.compiler.errors.CompilationError: at 96:33: if CHECK_BLOCK_BOUNDARY: grad_scores = tl.where(offs_n2[None, :] < KV_LEN, grad_scores, 0.0) # ~~~~~~~~~~~~~~~~~~~ Apply other buffer grad writes ~~~~~~~~~~~~~ if WRITE_DQ: scatter_mask = offs_m2[:, None] < Q_LEN and offs_n2[None, :] < KV_LEN tmp12 = tl.full([1], 0, tl.int32) tmp13 = (ds) tmp14 = (pre_mod_scores) tmp15 = tmp13 * tmp14 tmp16 = tmp15.to(tl.float32) tl.atomic_add(in_ptr17 + tl.broadcast_to(tmp12, tmp16.shape), tmp16, scatter_mask, sem='relaxed') ^ The above exception was the direct cause of the following exception: triton.compiler.errors.CompilationError: at 79:17: dq = bwd_dq_block_mn( arg_Q, arg_K, arg_V, arg_LSE, arg_DELTA, arg_DO, arg_DQ, arg_DV, arg_KV_NUM_BLKS, arg_KV_IDX, arg_Q_NUM_BLKS, arg_Q_IDX, arg_FULL_KV_NUM_BLKS, arg_FULL_KV_IDX, arg_FULL_Q_NUM_BLKS, arg_FULL_Q_IDX, in_ptr16, in_ptr17, out_ptr0, dq, q, kT_ptrs, vT_ptrs, do, Di, lse, Q_LEN, KV_LEN, off_z, off_hq, offs_m2, offs_n2, stride_kn, stride_kd, stride_vn, stride_vd, kv_indices, sparse_kv_num_blocks, MATMUL_PRECISION, RCP_LN2, IS_FULL_BLOCKS, CHECK_BLOCK_BOUNDARY=True, ) ``` ### Versions N/A cc @chauhang @penguinwu @zou3519 @ydwu4 @bdhirsh @yf225 @drisspg @yanboliang @BoyuanFeng
true
2,798,540,327
When using `torch.jit.trace` with `Linear+MaxPool2d+BatchNorm2d`, different results are observed.
Zoeeeeey
closed
[]
1
NONE
### 🐛 Describe the bug Hi! I found that the following model gives different results after using `torch.jit.trace`. Are there any bugs in this process? ```python import numpy as np import torch import torch.nn as nn class SymbolNet(nn.Module): def __init__(self): super(SymbolNet, self).__init__() self.m3 = nn.Linear(in_features=1, out_features=43, bias=True) self.m4 = nn.MaxPool2d(kernel_size=(2, 42), stride=2, padding=0, dilation=1, ceil_mode=False) self.m5 = nn.BatchNorm2d(1, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) def forward(self, x): x = self.m3(x) x = self.m4(x) x = self.m5(x) return x model = SymbolNet() inp = np.random.rand(24, 1, 4, 1).astype('float32') m_out = model(torch.from_numpy(inp).to('cpu')) m_out = [v.cpu().detach() for v in m_out] # torch2numpy m_out = [v.resolve_conj().numpy() if v.is_conj() else v.numpy() for v in m_out] # Compile the model opt = torch.jit.trace(model.eval(), torch.from_numpy(inp).to('cpu')) # Compiled run opt_out = opt(torch.from_numpy(inp).to('cpu')) opt_out = [v.cpu().detach() for v in opt_out] opt_out = [v.resolve_conj().numpy() if v.is_conj() else v.numpy() for v in opt_out] # Differential testing for i, (l, r) in enumerate(zip(m_out, opt_out)): np.testing.assert_allclose(l, r, rtol=1e-2, atol=1e-3, err_msg=f"Result mismatch @ index {i}") ``` Output: ```python # AssertionError: # Not equal to tolerance rtol=0.01, atol=0.001 # Result mismatch @ index 0 # Mismatched elements: 2 / 2 (100%) # Max absolute difference among violations: 2.5436974 # Max relative difference among violations: 2.408335 # ACTUAL: array([[[-0.560976], # [-1.487492]]], dtype=float32) # DESIRED: array([[[1.169456], # [1.056206]]], dtype=float32) ``` ### Versions ```bash Collecting environment information... PyTorch version: 2.7.0.dev20250116+cpu Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.5 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.16.3 Libc version: glibc-2.31 Python version: 3.10.16 (main, Dec 11 2024, 16:24:50) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.4.0-100-generic-x86_64-with-glibc2.31 Is CUDA available: False CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3080 Ti Nvidia driver version: 535.104.05 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.6.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] numpy==2.2.1 [pip3] torch==2.7.0.dev20250116+cpu [pip3] torchaudio==2.6.0.dev20250116+cpu [pip3] torchvision==0.22.0.dev20250116+cpu [conda] numpy 2.2.1 pypi_0 pypi [conda] torch 2.7.0.dev20250116+cpu pypi_0 pypi [conda] torchaudio 2.6.0.dev20250116+cpu pypi_0 pypi [conda] torchvision 0.22.0.dev20250116+cpu pypi_0 pypi ```
true
2,798,443,871
Update slow tests
pytorchupdatebot
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/slow", "ci-no-td" ]
6
COLLABORATOR
This PR is auto-generated weekly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/weekly.yml). Update the list of slow tests.
true
2,798,351,514
CI test: TestAutograd.test_gradcheck_nondeterministic
yanboliang
closed
[ "topic: not user facing" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145205 ``` PYTORCH_TEST_WITH_DYNAMO=1 python test/test_autograd.py TestAutograd.test_gradcheck_nondeterministic ```
true
2,798,346,582
[CI][CUDA][Dynamic Shape] xfail: DynamicShapesCodegenGPUTests.test_linspace4_dynamic_shapes_cuda
nWEIdia
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
6
COLLABORATOR
python test/inductor/test_torchinductor_codegen_dynamic_shapes.py DynamicShapesCodegenGPUTests.test_linspace4_dynamic_shapes_cuda failed to generate triton kernels, causing assert failures on 2x H100 systems (and 2x Grace H100 systems). Failures like below: Finline_call [] stats [('calls_captured', 1), ('unique_graphs', 1)] inductor [('fxgraph_cache_miss', 1)] aot_autograd [('total', 1), ('autograd_cache_miss', 1), ('autograd_cache_saved', 1), ('ok', 1)] FAIL: test_linspace4_dynamic_shapes_cuda (__main__.DynamicShapesCodegenGPUTests.test_linspace4_dynamic_shapes_cuda) [61/1892]---------------------------------------------------------------------- Traceback (most recent call last): File "/usr/local/lib/python3.12/dist-packages/torch/testing/_internal/common_utils.py", line 3114, in wrapper method(*args, **kwargs) File "/opt/pytorch/pytorch/test/inductor/test_torchinductor.py", line 12212, in new_test return value(self) ^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/testing.py", line 420, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/opt/pytorch/pytorch/test/inductor/test_torchinductor.py", line 2603, in test_linspace4 self.common(fn, (torch.Tensor([]),)) File "/opt/pytorch/pytorch/test/inductor/test_torchinductor_codegen_dynamic_shapes.py", line 424, in common return check_codegen( ^^^^^^^^^^^^^^ File "/opt/pytorch/pytorch/test/inductor/test_torchinductor_codegen_dynamic_shapes.py", line 82, in check_codegen self.assertTrue("def triton" in code, f"Failed to find triton kernel\n{code}") AssertionError: False is not true : Failed to find triton kernel # AOT ID: ['0_inference'] [42/1892]from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() empty_strided_p2p = torch._C._distributed_c10d._SymmetricMemory.empty_strided_p2p async_compile.wait(globals()) del async_compile def call(args): with torch.cuda._DeviceGuard(1): torch.cuda.set_device(1) buf0 = empty_strided_cuda((0, ), (1, ), torch.float32) return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance fn = lambda: call([]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module) To execute this test, run the following from the base repo dir: python test/inductor/test_torchinductor_codegen_dynamic_shapes.py DynamicShapesCodegenGPUTests.test_linspace4_dynamic_shapes_cuda This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @atalman @malfet @ptrblck @eqy @tinglvv
true
2,798,291,858
Indexed ^= (XOR in-place) operation doesn't work as expected on MPS backend
TrevorPeyton
closed
[ "high priority", "triaged", "module: regression", "module: correctness (silent)", "module: mps" ]
1
NONE
### 🐛 Describe the bug The ^= (XOR in-place) operation produces incorrect results on the MPS backend. The behavior is inconsistent with other backends, such as CPU. Specifically, the operation appears to modify unintended values in the tensor. ``` import torch # On CPU zeros = torch.zeros((10, 2), dtype=torch.int16, device="cpu") zeros[:, 0] ^= 1 print(zeros) # Expected and correct output: # tensor([[1, 0], # [1, 0], # [1, 0], # [1, 0], # [1, 0], # [1, 0], # [1, 0], # [1, 0], # [1, 0], # [1, 0]], dtype=torch.int16) # On MPS zeros = torch.zeros((10, 2), dtype=torch.int16, device="mps") zeros[:, 0] ^= 1 print(zeros) # Incorrect output: # tensor([[1, 1], # [1, 1], # [1, 1], # [1, 1], # [1, 1], # [0, 0], # [0, 0], # [0, 0], # [0, 0], # [0, 0]], device='mps:0', dtype=torch.int16) # Non-in-place workaround zeros = torch.zeros((10, 2), dtype=torch.int16, device="mps") zeros[:, 0] = zeros[:, 0] ^ 1 print(zeros) # Correct output: # tensor([[1, 0], # [1, 0], # [1, 0], # [1, 0], # [1, 0], # [1, 0], # [1, 0], # [1, 0], # [1, 0], # [1, 0]], device='mps:0', dtype=torch.int16) ``` ### Versions PyTorch version: 2.5.1 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 15.2 (arm64) GCC version: Could not collect Clang version: 16.0.0 (clang-1600.0.26.4) CMake version: Could not collect Libc version: N/A Python version: 3.12.3 | packaged by conda-forge | (main, Apr 15 2024, 18:35:20) [Clang 16.0.6 ] (64-bit runtime) Python platform: macOS-15.2-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Max Versions of relevant libraries: [pip3] numpy==2.1.2 [pip3] onnx==1.17.0 [pip3] torch==2.5.1 [pip3] torchaudio==2.5.1 [pip3] torchvision==0.20.1 [conda] numpy 2.1.2 py312h801f5e3_0 conda-forge [conda] pytorch 2.5.1 py3.12_0 pytorch [conda] torchaudio 2.5.1 py312_cpu pytorch [conda] torchvision 0.20.1 py312_cpu pytorch cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
2,798,234,888
PEP585 update - torch/_higher_order_ops torch/_subclasses torch/backends torch/compiler torch/cuda torch/masked torch/mtia torch/nested
aorenste
closed
[ "Merged", "ciflow/trunk", "release notes: foreach_frontend", "topic: not user facing", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145202 See #145101 for details.
true
2,798,233,149
PEP585 update - torch/utils
aorenste
closed
[ "oncall: jit", "module: cpu", "Merged", "ciflow/trunk", "release notes: foreach_frontend", "topic: not user facing", "suppress-bc-linter" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145201 See #145101 for details. cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel @mingfeima @XiaobingSuper @ashokei @jingxu10
true
2,798,231,873
PEP585 update - torch/testing
aorenste
closed
[ "oncall: distributed", "oncall: jit", "Merged", "ciflow/trunk", "release notes: distributed (rpc)", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145200 See #145101 for details. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
2,798,230,013
PEP585 update - torch/ao
aorenste
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "fx", "release notes: AO frontend" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145199 See #145101 for details. cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,798,228,958
PEP585 update - torch/_inductor
aorenste
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "suppress-bc-linter" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145198 See #145101 for details. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,798,088,684
Use std::string_view in get_fully_qualified_type_name
cyyever
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
11
COLLABORATOR
The same as #139164 but open a new PR due to messy history there.
true
2,798,084,002
Guard size oblivious within empty_tensor_restride_symint
bobrenjc93
closed
[ "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145196 * #145047 * #143961
true
2,798,062,786
[CI][CUDA][Distributed][FSDP] Remove hardcoded world size of 2
nWEIdia
closed
[ "oncall: distributed", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
4
COLLABORATOR
as these unit tests would fail if run on a single GPU (i.e**. skip_if_lt_x_gpu(2)) seems to view world size as 2 even on platforms with 1 GPU.** cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @atalman @malfet @ptrblck @eqy @tinglvv
true
2,797,985,569
Add transpose support for CppMicroGemmFP32Vec
CaoE
closed
[ "module: cpu", "open source", "ciflow/trunk", "topic: improvements", "module: inductor", "ciflow/inductor", "release notes: inductor" ]
1
COLLABORATOR
* Add transposed B support for CppMicroGemmFP32Vec * Add support for arbitrary N size Expand CppMicroGemmFP32Vec to generate gemm kernel that supports transposed B and N of arbitrary size. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,946,135
DISABLED test_reuse_kernel_cuda (__main__.AOTInductorTestABICompatibleGpu)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
3
NONE
Platforms: rocm, inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_reuse_kernel_cuda&suite=AOTInductorTestABICompatibleGpu&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35845021672). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_reuse_kernel_cuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor.py", line 12376, in new_test return value(self) File "/var/lib/jenkins/pytorch/test/inductor/test_aot_inductor.py", line 1824, in test_reuse_kernel self.code_check_count( File "/var/lib/jenkins/pytorch/test/inductor/test_aot_inductor_utils.py", line 245, in code_check_count ).run(src_code) RuntimeError: Expected to find "triton_poi_fused_sin_0 = loadKernel(" but did not find it Searched string: #include <torch/csrc/inductor/aoti_runtime/interface.h> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE #include <torch/csrc/inductor/aoti_runtime/model.h> // Definition of AOTI runtime interface functions From CHECK-COUNT-1: triton_poi_fused_sin_0 = loadKernel( To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_aot_inductor.py AOTInductorTestABICompatibleGpu.test_reuse_kernel_cuda This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_aot_inductor.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,945,908
DISABLED test_mixed_mm (__main__.TestPatternMatcher)
pytorch-bot[bot]
open
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
5
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_mixed_mm&suite=TestPatternMatcher&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35845054943). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 4 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_mixed_mm` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_pattern_matcher.py", line 346, in test_mixed_mm self._test_mixed_impl(fn, args, True, False) File "/var/lib/jenkins/pytorch/test/inductor/test_pattern_matcher.py", line 316, in _test_mixed_impl self.assertEqual("mixed_mm" in code, mixed_mm_expected) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4036, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Booleans mismatch: False is not True To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_pattern_matcher.py TestPatternMatcher.test_mixed_mm This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_pattern_matcher.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,945,867
DISABLED test_remote_cache_load_function_device_cuda_float32_dynamic_False_bundle_triton_True (__main__.TestFxGraphCache)
pytorch-bot[bot]
open
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
5
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_remote_cache_load_function_device_cuda_float32_dynamic_False_bundle_triton_True&suite=TestFxGraphCache&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35845055086). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 4 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_remote_cache_load_function_device_cuda_float32_dynamic_False_bundle_triton_True` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_codecache.py", line 266, in test_remote_cache_load_function self.assertEqual(global_stats.fx_graph, Stats(1, 3, 1)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4036, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Object comparison failed: _GlobalItemStats(num_put=2, num_get_hit=2, num_get_miss=2) != Stats(num_put=1, num_get_hit=3, num_get_miss=1) To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_codecache.py TestFxGraphCache.test_remote_cache_load_function_device_cuda_float32_dynamic_False_bundle_triton_True This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_codecache.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,945,833
DISABLED test_remote_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True (__main__.TestFxGraphCache)
pytorch-bot[bot]
open
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
3
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_remote_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True&suite=TestFxGraphCache&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35845055086). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_remote_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_codecache.py", line 266, in test_remote_cache_load_function self.assertEqual(global_stats.fx_graph, Stats(1, 3, 1)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4036, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Object comparison failed: _GlobalItemStats(num_put=2, num_get_hit=2, num_get_miss=2) != Stats(num_put=1, num_get_hit=3, num_get_miss=1) To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_codecache.py TestFxGraphCache.test_remote_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_codecache.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,945,778
DISABLED test_slice_scatter_reinplace_cuda (__main__.GPUTests)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
66
NONE
Platforms: rocm, inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_slice_scatter_reinplace_cuda&suite=GPUTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35845342970). Over the past 3 hours, it has been determined flaky in 9 workflow(s) with 12 failures and 9 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_slice_scatter_reinplace_cuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor.py", line 7999, in test_slice_scatter_reinplace assertGeneratedKernelCountEqual(self, 1) File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor.py", line 727, in assertGeneratedKernelCountEqual self.assertEqual(torch._inductor.metrics.generated_kernel_count, expected) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4036, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Scalars are not equal! Expected 1 but got 2. Absolute difference: 1 Relative difference: 1.0 To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_torchinductor.py GPUTests.test_slice_scatter_reinplace_cuda This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor.py` cc @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,945,728
DISABLED test_sdpa_rewriter_12_cuda (__main__.SDPAPatternRewriterCudaDynamicTests)
pytorch-bot[bot]
open
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
3
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_sdpa_rewriter_12_cuda&suite=SDPAPatternRewriterCudaDynamicTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35844263142). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 9 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_sdpa_rewriter_12_cuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_fused_attention.py", line 612, in _test_sdpa_rewriter_12 self._check_common(dot_prod_attention, contains=False, has_dropout=True) File "/var/lib/jenkins/pytorch/test/inductor/test_fused_attention.py", line 85, in _check_common self.assertGreaterEqual(counters["inductor"]["fuse_attention"], 1) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 1250, in assertGreaterEqual self.fail(self._formatMessage(msg, standardMsg)) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 675, in fail raise self.failureException(msg) AssertionError: 0 not greater than or equal to 1 To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_fused_attention.py SDPAPatternRewriterCudaDynamicTests.test_sdpa_rewriter_12_cuda This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_fused_attention.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,945,683
DISABLED test_sdpa_rewriter_12_cuda (__main__.SDPAPatternRewriterCudaTests)
pytorch-bot[bot]
open
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
3
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_sdpa_rewriter_12_cuda&suite=SDPAPatternRewriterCudaTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35845055086). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 4 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_sdpa_rewriter_12_cuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_fused_attention.py", line 612, in _test_sdpa_rewriter_12 self._check_common(dot_prod_attention, contains=False, has_dropout=True) File "/var/lib/jenkins/pytorch/test/inductor/test_fused_attention.py", line 85, in _check_common self.assertGreaterEqual(counters["inductor"]["fuse_attention"], 1) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 1250, in assertGreaterEqual self.fail(self._formatMessage(msg, standardMsg)) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 675, in fail raise self.failureException(msg) AssertionError: 0 not greater than or equal to 1 To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_fused_attention.py SDPAPatternRewriterCudaTests.test_sdpa_rewriter_12_cuda This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_fused_attention.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,945,642
DISABLED test_mm_concat_cuda (__main__.FreezingGpuTests)
pytorch-bot[bot]
open
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
3
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_mm_concat_cuda&suite=FreezingGpuTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35843835162). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 9 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_mm_concat_cuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_inductor_freezing.py", line 336, in test_mm_concat ).run(code[0]) RuntimeError: Expected to not find "triton.jit" but found it min_elem_per_thread=0 ) @triton.jit ~~~~~~~~~~ <--- HERE def triton_poi_fused_mm_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 144 From CHECK-NOT: triton.jit To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_inductor_freezing.py FreezingGpuTests.test_mm_concat_cuda This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_inductor_freezing.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,945,641
DISABLED test_mm_concat_cuda (__main__.FreezingGpuTests)
pytorch-bot[bot]
closed
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
1
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_mm_concat_cuda&suite=FreezingGpuTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35845055018). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_mm_concat_cuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_inductor_freezing.py", line 355, in test_mm_concat ).run(code[0]) RuntimeError: Expected to not find "triton.jit" but found it min_elem_per_thread=0 ) @triton.jit ~~~~~~~~~~ <--- HERE def triton_poi_fused_mm_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 144 From CHECK-NOT: triton.jit To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_inductor_freezing.py FreezingGpuTests.test_mm_concat_cuda This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_inductor_freezing.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,945,309
DISABLED test_aoti_eager_cache_hit_dynamic_shapes_cuda (__main__.DynamicShapesCodegenGPUTests)
pytorch-bot[bot]
closed
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
5
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_aoti_eager_cache_hit_dynamic_shapes_cuda&suite=DynamicShapesCodegenGPUTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35845054943). Over the past 3 hours, it has been determined flaky in 4 workflow(s) with 4 failures and 4 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_aoti_eager_cache_hit_dynamic_shapes_cuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor.py", line 1093, in test_aoti_eager_cache_hit res_value = getattr(torch.ops.aten, op_name)(input_tensor) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 1158, in __call__ return self._op(*args, **(kwargs or {})) RuntimeError: aot_compile_function.ptr() != nullptr && aot_compile_function.ptr() != Py_None INTERNAL ASSERT FAILED at "/var/lib/jenkins/workspace/torch/csrc/inductor/aoti_eager/kernel_holder.cpp":507, please report a bug to PyTorch. Failed to import - torch._inductor.aoti_eager.aoti_compile_with_persistent_cache To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_torchinductor_codegen_dynamic_shapes.py DynamicShapesCodegenGPUTests.test_aoti_eager_cache_hit_dynamic_shapes_cuda This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_codegen_dynamic_shapes.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,945,278
DISABLED test_reorder_peak_memory_dfs (__main__.TestOperatorReorderForPeakMemory)
pytorch-bot[bot]
open
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
3
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_reorder_peak_memory_dfs&suite=TestOperatorReorderForPeakMemory&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35845054777). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_reorder_peak_memory_dfs` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_memory.py", line 200, in test_reorder_peak_memory_dfs .run(code) RuntimeError: Expected to find "buf3 = " but did not find it Searched string: stream0 = get_raw_stream(0) triton_red_fused_sum_2.run(buf4, buf6, 1, 2048, grid=grid(1), stream=stream0) buf1 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [t2], Original ATen: [aten.mm] extern_kernels.mm(primals_2, primals_3, out=buf1) del primals_3 buf5 = empty_strided_cuda((2048, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [t4], Original ATen: [aten.mm] extern_kernels.mm(buf1, primals_5, out=buf5) buf7 = empty_strided_cuda((3, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [sum_2], Original ATen: [aten.sum] stream0 = get_raw_stream(0) triton_red_fused_sum_3.run(buf5, buf7, 3, 6827, grid=grid(3), stream=stream0) del buf5 buf9 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [sum_2, add], Original ATen: [aten.sum, aten.add] stream0 = get_raw_stream(0) triton_per_fused_add_sum_4.run(buf9, buf7, 1, 3, grid=grid(1), stream=stream0) del buf7 return (buf9, primals_2, reinterpret_tensor(buf1, (1, 2048), (1, 1), 0), reinterpret_tensor(primals_5, (10, 1), (1, 10), 0), reinterpret_tensor(buf0, (10, 2048), (1, 10), 0), reinterpret_tensor(primals_4, (1, 10), (1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 10), (10, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2048, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((10, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, 10), (10, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module) From CHECK: buf3 = To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_memory.py TestOperatorReorderForPeakMemory.test_reorder_peak_memory_dfs This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_memory.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,945,264
DISABLED test_remote_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_False (__main__.TestFxGraphCache)
pytorch-bot[bot]
open
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
5
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_remote_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_False&suite=TestFxGraphCache&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35845021511). Over the past 3 hours, it has been determined flaky in 4 workflow(s) with 14 failures and 4 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_remote_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_False` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_codecache.py", line 266, in test_remote_cache_load_function self.assertEqual(global_stats.fx_graph, Stats(1, 3, 1)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4036, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Object comparison failed: _GlobalItemStats(num_put=2, num_get_hit=2, num_get_miss=2) != Stats(num_put=1, num_get_hit=3, num_get_miss=1) To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_codecache.py TestFxGraphCache.test_remote_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_False This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_codecache.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,945,259
DISABLED test_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True_grad_True (__main__.TestFxGraphCache)
pytorch-bot[bot]
closed
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
6
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True_grad_True&suite=TestFxGraphCache&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35845055086). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 5 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True_grad_True` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_codecache.py", line 146, in test_cache_load_function self.assertEqual( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4036, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Scalars are not equal! Expected 14 but got 35. Absolute difference: 21 Relative difference: 1.5 To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_codecache.py TestFxGraphCache.test_cache_load_function_device_cuda_bfloat16_dynamic_False_bundle_triton_True_grad_True This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_codecache.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,896,021
Added torch check to ensure indices are not empty
abcarlisle
closed
[ "triaged", "open source", "Stale", "topic: not user facing" ]
4
CONTRIBUTOR
Fixes #142459 cc @mruberry @jbschlosser @walterddr @mikaylagawarecki
true
2,797,788,860
[scan] scan dim handling in user-facing scan()
bohnstingl
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo" ]
11
COLLABORATOR
This PR introduces the capability that the scan dim is handled in the user facing scan() call. Internally, the scan dim is always shifted to dim 0 and then the scan is performed over that dim. This is a follow-up PR from https://github.com/bohnstingl/pytorch/pull/3 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames @ydwu4
true
2,797,774,272
PEP585 update - mostly toplevels
aorenste
closed
[ "oncall: jit", "module: amp (automated mixed precision)", "Merged", "ciflow/trunk", "release notes: jit", "topic: not user facing", "suppress-bc-linter" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145178 See #145101 for details. cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel @mcarilli @ptrblck @leslie-fang-intel
true
2,797,773,847
PEP585 update - .ci android aten
aorenste
closed
[ "Merged", "ciflow/trunk", "release notes: releng", "topic: not user facing", "suppress-bc-linter" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145177 See #145101 for details.
true
2,797,773,687
PEP585 update - test
aorenste
closed
[ "oncall: distributed", "oncall: jit", "Merged", "ciflow/trunk", "release notes: quantization", "topic: not user facing", "fx", "module: inductor", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145176 See #145101 for details. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @EikanWang @jgong5 @wenzhe-nrv @sanchitintel @ezyang @SherlockNoMad @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @LucasLLC @MeetVadakkanchery @mhorowitz @pradeepfn @ekr0
true
2,797,772,975
PEP585 update - torch/nn torch/optim torch/package torch/profiler torch/serialization torch/sparse torch/xpu
aorenste
closed
[ "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "suppress-bc-linter", "release notes: optim", "ci-no-td" ]
8
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145175 See #145101 for details.
true
2,797,772,502
PEP585 update - torch/onnx
aorenste
closed
[ "Merged", "ciflow/trunk", "release notes: onnx", "topic: not user facing", "fx" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145174 See #145101 for details. cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,797,730,083
[BE]: Improve typing for torch/fx/_pytree.py and torch/utils/_pytree.py
Skylion007
closed
[ "open source", "better-engineering", "Merged", "ciflow/trunk", "release notes: fx", "fx" ]
3
COLLABORATOR
Improve type inference in _pytree.py utility functions cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,797,715,500
[BE]: Update CUTLASS submodule to 3.7.0
Skylion007
closed
[ "open source", "better-engineering", "Merged", "ciflow/trunk", "topic: not user facing" ]
17
COLLABORATOR
* This has a couple of new features, but mostly has a lot of bugfixes for the prior releases * This is the last Hopper-focused release of CUTLASS before blackwell drops, so let's upgrade to it. * Most of the remaining diff noise is copyright year updates on the CUTLASS submodule
true
2,797,658,331
torch/_prims/executor.py #TODO : caching
Andrwaa
closed
[]
3
NONE
### 🚀 The feature, motivation and pitch I'm working on #TODO : caching in torch/_prims/executor.py, and this is my idea to implement that functionality: ``` from typing import Any, Callable, Optional, TypeVar from typing_extensions import ParamSpec, TypeVarTuple, Unpack import hashlib import pickle import inspect from torch._prims.context import TorchRefsMode from torch.fx import GraphModule from torch.fx.experimental.proxy_tensor import make_fx, wrapper_and_args_for_make_fx T = TypeVar("T") P = ParamSpec("P") Ts = TypeVarTuple("Ts") def execute( gm: GraphModule, *args: Unpack[Ts], executor: str = "aten", executor_parameters: Optional[dict] = None, ) -> Any: """ Prototype ATen executor. Just executes the context's graph. """ if executor == "aten": return gm.forward(*args) msg = f"Received unexpected value for 'executor': {executor}. Allowed values are: aten." raise ValueError(msg) def compute_cache_key(fn: Callable, args: tuple, kwargs: dict) -> str: """ Compute a unique key for the function and its parameters (args, kwargs). The key is based on the function's source code and serialized arguments. """ fn_code = pickle.dumps(inspect.getsource(fn).encode("utf-8")) args_data = pickle.dumps((args, kwargs)) return hashlib.sha256(fn_code + args_data).hexdigest() _cache = {} def make_traced(fn: Callable[P, T]) -> Callable[P, T]: """ Returns a tracked function that uses caching for reuse the graphs already drawn previously. """ def _traced(*args: P.args, **kwargs: P.kwargs) -> T: executor = str(kwargs.pop("executor", "aten")) cache_key = compute_cache_key(fn, args, kwargs) if cache_key in _cache: gm = _cache[cache_key] else: wrapped, all_args = wrapper_and_args_for_make_fx(fn, args, kwargs) with TorchRefsMode(): gm = make_fx(wrapped)(all_args) _cache[cache_key] = gm return execute(gm, *args, executor=executor) return _traced ``` My doubt is whether pickle also works with complex types, like tensors, to generate a unique key to perform the storage.
true
2,797,580,890
CUDA initialization error with vLLM 0.5.4 and PyTorch 2.4.0+cu121
TaoShuchang
open
[ "oncall: distributed" ]
0
NONE
### 🐛 Describe the bug CUDA initialization error in forked subprocesses when using **vLLM 0.5.4 with PyTorch 2.4.0+cu121**. The same code works with vLLM 0.5.0 and PyTorch 2.3.0+cu121, but fails with newer versions (vLLM 0.6.2 with PyTorch 2.5.1+cu121). **Error Message:** ``` RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method ``` **Environment:** - vLLM: 0.5.4 (Also tested with 0.6.2) - PyTorch: 2.4.0+cu121 (Also tested with 2.5.1+cu121) - CUDA: 12.2 - GPU Driver: 535.54.03 - OS: [Add your operating system here] **Steps to Reproduce:** 1. Install vLLM 0.5.4 and PyTorch 2.4.0+cu121 2. Set the following environment variables: ```bash export PYTHONMULTIPROCESSING_START_METHOD=spawn export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" export VLLM_USE_SPAWN=1 export PYTHONPATH="${PYTHONPATH}:/mnt/data/taoshuchang.tsc/IR_RAG/IRM" export MASTER_PORT=29500 export MASTER_ADDR=localhost export WORLD_SIZE=$(echo $CUDA_VISIBLE_DEVICES | tr ',' '\n' | wc -l) export CUDA_DEVICE_ORDER=PCI_BUS_ID ``` 3. Run a script that uses vLLM to load a large language model (e.g., LLaMA 3.3-70B) 4. Observe the CUDA initialization error in forked subprocesses **Additional Context:** - This issue doesn't occur with vLLM 0.5.0 and PyTorch 2.3.0+cu121 - vLLM 0.5.4 is required to load LLaMA 3.3, which necessitates PyTorch 2.4.0+cu121 **Questions:** 1. Is this a known issue with PyTorch 2.4.0+cu121 and newer versions? 2. Are there any workarounds or configurations to resolve this issue? 3. Is there a compatibility matrix for vLLM, PyTorch, and CUDA versions? **Attempted Solutions:** - Tried vLLM 0.6.2 with PyTorch 2.5.1+cu121, but encountered the same error - Set `PYTHONMULTIPROCESSING_START_METHOD=spawn` as suggested in error message **Full error trace:** ``` INFO 01-19 03:55:21 config.py:899] Defaulting to use mp for distributed inference INFO 01-19 03:55:21 llm_engine.py:226] Initializing an LLM engine (v0.6.1.dev238+ge2c6e0a82) with config: model='/mnt/data/taoshuchang.tsc/IR_RAG/ckpt/hotpot_contriever/analyze_merge//hotpot_1doc_other_Meta-Llama-3-70B-Instruct_lr1e5', speculative_config=None, tokenizer='/mnt/data/taoshuchang.tsc/IR_RAG/ckpt/hotpot_contriever/analyze_merge//hotpot_1doc_other_Meta-Llama-3-70B-Instruct_lr1e5', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=8192, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=8, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=/mnt/data/taoshuchang.tsc/IR_RAG/ckpt/hotpot_contriever/analyze_merge//hotpot_1doc_other_Meta-Llama-3-70B-Instruct_lr1e5, use_v2_block_manager=False, num_scheduler_steps=1, multi_step_stream_outputs=False, enable_prefix_caching=False, use_async_output_proc=True, use_cached_outputs=False, mm_processor_kwargs=None) WARNING 01-19 03:55:22 multiproc_gpu_executor.py:53] Reducing Torch parallelism from 32 threads to 1 to avoid unnecessary CPU contention. Set OMP_NUM_THREADS in the external environment to tune this value as needed. INFO 01-19 03:55:22 custom_cache_manager.py:17] Setting Triton cache manager to: vllm.triton_utils.custom_cache_manager:CustomCacheManager (VllmWorkerProcess pid=305) INFO 01-19 03:55:24 multiproc_worker_utils.py:218] Worker ready; awaiting tasks (VllmWorkerProcess pid=305) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] Exception in worker VllmWorkerProcess while processing method init_device: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method, Traceback (most recent call last): (VllmWorkerProcess pid=305) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/executor/multiproc_worker_utils.py", line 226, in _run_worker_process (VllmWorkerProcess pid=305) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] output = executor(*args, **kwargs) (VllmWorkerProcess pid=305) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] ^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorkerProcess pid=305) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/worker/worker.py", line 166, in init_device (VllmWorkerProcess pid=305) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] torch.cuda.set_device(self.device) (VllmWorkerProcess pid=305) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/torch/cuda/__init__.py", line 478, in set_device (VllmWorkerProcess pid=305) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] torch._C._cuda_setDevice(device) (VllmWorkerProcess pid=305) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/torch/cuda/__init__.py", line 305, in _lazy_init (VllmWorkerProcess pid=305) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] raise RuntimeError( (VllmWorkerProcess pid=305) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method (VllmWorkerProcess pid=305) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] (VllmWorkerProcess pid=307) INFO 01-19 03:55:24 multiproc_worker_utils.py:218] Worker ready; awaiting tasks (VllmWorkerProcess pid=308) INFO 01-19 03:55:24 multiproc_worker_utils.py:218] Worker ready; awaiting tasks (VllmWorkerProcess pid=306) INFO 01-19 03:55:24 multiproc_worker_utils.py:218] Worker ready; awaiting tasks (VllmWorkerProcess pid=303) INFO 01-19 03:55:24 multiproc_worker_utils.py:218] Worker ready; awaiting tasks (VllmWorkerProcess pid=304) INFO 01-19 03:55:24 multiproc_worker_utils.py:218] Worker ready; awaiting tasks (VllmWorkerProcess pid=307) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] Exception in worker VllmWorkerProcess while processing method init_device: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method, Traceback (most recent call last): (VllmWorkerProcess pid=307) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/executor/multiproc_worker_utils.py", line 226, in _run_worker_process (VllmWorkerProcess pid=307) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] output = executor(*args, **kwargs) (VllmWorkerProcess pid=307) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] ^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorkerProcess pid=307) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/worker/worker.py", line 166, in init_device (VllmWorkerProcess pid=307) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] torch.cuda.set_device(self.device) (VllmWorkerProcess pid=307) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/torch/cuda/__init__.py", line 478, in set_device (VllmWorkerProcess pid=307) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] torch._C._cuda_setDevice(device) (VllmWorkerProcess pid=307) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/torch/cuda/__init__.py", line 305, in _lazy_init (VllmWorkerProcess pid=307) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] raise RuntimeError( (VllmWorkerProcess pid=307) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method (VllmWorkerProcess pid=307) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] (VllmWorkerProcess pid=308) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] Exception in worker VllmWorkerProcess while processing method init_device: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method, Traceback (most recent call last): (VllmWorkerProcess pid=308) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/executor/multiproc_worker_utils.py", line 226, in _run_worker_process (VllmWorkerProcess pid=308) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] output = executor(*args, **kwargs) (VllmWorkerProcess pid=308) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] ^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorkerProcess pid=308) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/worker/worker.py", line 166, in init_device (VllmWorkerProcess pid=308) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] torch.cuda.set_device(self.device) (VllmWorkerProcess pid=308) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/torch/cuda/__init__.py", line 478, in set_device (VllmWorkerProcess pid=308) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] torch._C._cuda_setDevice(device) (VllmWorkerProcess pid=308) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/torch/cuda/__init__.py", line 305, in _lazy_init (VllmWorkerProcess pid=308) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] raise RuntimeError( (VllmWorkerProcess pid=308) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method (VllmWorkerProcess pid=308) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] (VllmWorkerProcess pid=303) (VllmWorkerProcess pid=306) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] Exception in worker VllmWorkerProcess while processing method init_device: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method, Traceback (most recent call last): ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] Exception in worker VllmWorkerProcess while processing method init_device: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method, Traceback (most recent call last): (VllmWorkerProcess pid=303) (VllmWorkerProcess pid=306) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/executor/multiproc_worker_utils.py", line 226, in _run_worker_process ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/executor/multiproc_worker_utils.py", line 226, in _run_worker_process (VllmWorkerProcess pid=303) (VllmWorkerProcess pid=306) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] output = executor(*args, **kwargs) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] output = executor(*args, **kwargs) (VllmWorkerProcess pid=303) (VllmWorkerProcess pid=306) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] ^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] ^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorkerProcess pid=303) (VllmWorkerProcess pid=306) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/worker/worker.py", line 166, in init_device ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/worker/worker.py", line 166, in init_device (VllmWorkerProcess pid=303) (VllmWorkerProcess pid=306) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] torch.cuda.set_device(self.device) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] torch.cuda.set_device(self.device) (VllmWorkerProcess pid=303) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/torch/cuda/__init__.py", line 478, in set_device (VllmWorkerProcess pid=306) (VllmWorkerProcess pid=303) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/torch/cuda/__init__.py", line 478, in set_device (VllmWorkerProcess pid=306) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] torch._C._cuda_setDevice(device) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] torch._C._cuda_setDevice(device) (VllmWorkerProcess pid=303) (VllmWorkerProcess pid=306) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/torch/cuda/__init__.py", line 305, in _lazy_init ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/torch/cuda/__init__.py", line 305, in _lazy_init (VllmWorkerProcess pid=303) (VllmWorkerProcess pid=306) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] raise RuntimeError( ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] raise RuntimeError( (VllmWorkerProcess pid=306) (VllmWorkerProcess pid=303) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method (VllmWorkerProcess pid=306) (VllmWorkerProcess pid=303) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] (VllmWorkerProcess pid=302) INFO 01-19 03:55:24 multiproc_worker_utils.py:218] Worker ready; awaiting tasks (VllmWorkerProcess pid=304) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] Exception in worker VllmWorkerProcess while processing method init_device: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method, Traceback (most recent call last): (VllmWorkerProcess pid=304) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/executor/multiproc_worker_utils.py", line 226, in _run_worker_process (VllmWorkerProcess pid=304) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] output = executor(*args, **kwargs) (VllmWorkerProcess pid=304) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] ^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorkerProcess pid=304) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/worker/worker.py", line 166, in init_device (VllmWorkerProcess pid=304) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] torch.cuda.set_device(self.device) (VllmWorkerProcess pid=304) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/torch/cuda/__init__.py", line 478, in set_device (VllmWorkerProcess pid=304) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] torch._C._cuda_setDevice(device) (VllmWorkerProcess pid=304) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/torch/cuda/__init__.py", line 305, in _lazy_init (VllmWorkerProcess pid=304) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] raise RuntimeError( (VllmWorkerProcess pid=304) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method (VllmWorkerProcess pid=304) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] (VllmWorkerProcess pid=302) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] Exception in worker VllmWorkerProcess while processing method init_device: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method, Traceback (most recent call last): (VllmWorkerProcess pid=302) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/executor/multiproc_worker_utils.py", line 226, in _run_worker_process (VllmWorkerProcess pid=302) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] output = executor(*args, **kwargs) (VllmWorkerProcess pid=302) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] ^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorkerProcess pid=302) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/worker/worker.py", line 166, in init_device (VllmWorkerProcess pid=302) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] torch.cuda.set_device(self.device) (VllmWorkerProcess pid=302) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/torch/cuda/__init__.py", line 478, in set_device (VllmWorkerProcess pid=302) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] torch._C._cuda_setDevice(device) (VllmWorkerProcess pid=302) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/torch/cuda/__init__.py", line 305, in _lazy_init (VllmWorkerProcess pid=302) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] raise RuntimeError( (VllmWorkerProcess pid=302) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method (VllmWorkerProcess pid=302) ERROR 01-19 03:55:24 multiproc_worker_utils.py:233] ERROR 01-19 04:05:25 multiproc_worker_utils.py:120] Worker VllmWorkerProcess pid 305 died, exit code: -15 INFO 01-19 04:05:25 multiproc_worker_utils.py:124] Killing local vLLM worker processes /mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/_distutils_hack/__init__.py:54: UserWarning: Reliance on distutils from stdlib is deprecated. Users must rely on setuptools to provide the distutils module. Avoid importing distutils or import setuptools first, and avoid setting SETUPTOOLS_USE_DISTUTILS=stdlib. Register concerns at https://github.com/pypa/setuptools/issues/new?template=distutils-deprecation.yml warnings.warn( Traceback (most recent call last): File "/mnt/data/taoshuchang.tsc/IR_RAG/IRM/inference_new.py", line 299, in <module> main() File "/mnt/data/taoshuchang.tsc/IR_RAG/IRM/inference_new.py", line 291, in main evaluate_retrieval( File "/mnt/data/taoshuchang.tsc/IR_RAG/IRM/inference_new.py", line 236, in evaluate_retrieval llm = load_model(model_path, enable_lora=enable_lora) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/mnt/data/taoshuchang.tsc/IR_RAG/IRM/inference_new.py", line 49, in load_model llm = LLM(model=model_path, tensor_parallel_size=torch.cuda.device_count(), enable_lora=enable_lora) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/entrypoints/llm.py", line 214, in __init__ self.llm_engine = LLMEngine.from_engine_args( ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/engine/llm_engine.py", line 564, in from_engine_args engine = cls( ^^^^ File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/engine/llm_engine.py", line 325, in __init__ self.model_executor = executor_class( ^^^^^^^^^^^^^^^ File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/executor/distributed_gpu_executor.py", line 26, in __init__ super().__init__(*args, **kwargs) File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/executor/executor_base.py", line 47, in __init__ self._init_executor() File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/executor/multiproc_gpu_executor.py", line 110, in _init_executor self._run_workers("init_device") File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/executor/multiproc_gpu_executor.py", line 185, in _run_workers driver_worker_output = driver_worker_method(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/worker/worker.py", line 176, in init_device init_worker_distributed_environment(self.parallel_config, self.rank, File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/worker/worker.py", line 448, in init_worker_distributed_environment init_distributed_environment(parallel_config.world_size, rank, File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/vllm/distributed/parallel_state.py", line 946, in init_distributed_environment torch.distributed.init_process_group( File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/torch/distributed/c10d_logger.py", line 83, in wrapper return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/torch/distributed/c10d_logger.py", line 97, in wrapper func_return = func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/torch/distributed/distributed_c10d.py", line 1520, in init_process_group store, rank, world_size = next(rendezvous_iterator) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/torch/distributed/rendezvous.py", line 221, in _tcp_rendezvous_handler store = _create_c10d_store( ^^^^^^^^^^^^^^^^^^^ File "/mnt/data/taoshuchang.tsc/anaconda3/envs/py311llama33/lib/python3.11/site-packages/torch/distributed/rendezvous.py", line 189, in _create_c10d_store return TCPStore( ^^^^^^^^^ torch.distributed.DistStoreError: Timed out after 601 seconds waiting for clients. 1/8 clients joined. ERROR conda.cli.main_run:execute(49): `conda run python -u /mnt/data/taoshuchang.tsc/IR_RAG/IRM/inference_new.py --test_data_path /mnt/data/taoshuchang.tsc/IR_RAG/IRM/datasets/hotpot_contriever/hotpot-dev.json --batch_size 4 --model_path /mnt/data/taoshuchang.tsc/IR_RAG/ckpt/hotpot_contriever/analyze_merge//hotpot_1doc_other_Meta-Llama-3-70B-Instruct_lr1e5 --result_save_path /mnt/data/taoshuchang.tsc/IR_RAG/IRM/result/hotpot_contriever/analyze/hotpot_1doc_other_Meta-Llama-3-70B-Instruct_lr1e5.json --batch True` failed. (See above for error) ``` Thank you for your help in resolving this issue. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,797,530,173
Added weight to MSELoss Criterion
JacobGlennAyers
closed
[ "triaged", "open source", "Stale", "release notes: nn", "topic: improvements" ]
4
NONE
- Changed Inheritance of MSELoss from _Loss to _WeightedLoss - Modified MSELoss to include weight parameter - Removed TODO - Added weight documentation to MSELoss Class topic: enhancement release notes: nn I couldn't find this in any issues or under any existing PR Requests, I only found it by finding the TODO in the loss.py file. Edit - Accidental Markdown all caps removed
true
2,797,476,080
empty_cache does not work for CUDAPluggableAllocator + MemPool
youkaichao
open
[ "module: cuda", "triaged" ]
3
COLLABORATOR
### 🐛 Describe the bug I'm trying to use `CUDAPluggableAllocator`, following https://pytorch.org/docs/stable/notes/cuda.html#using-custom-memory-allocators-for-cuda . However, it has a critical limitation, that `torch.cuda.memory.change_current_allocator` needs to be called before any allocation, and we cannot switch the allocator. Following @syed-ahmed 's suggestion, I'm trying to use `CUDAPluggableAllocator` with `MemPool`, and it seems to work, in the sense that I can switch between allocators. However, I find that, in this way, the pool never returns memory to the underlying allocator. Here is a simple demonstration code snippet: ```python import torch import torch.utils.cpp_extension cpp_sources = """ // save as alloc.cc // compile with g++ alloc.cc -o alloc.so -I/usr/local/cuda/include -shared -fPIC #include <sys/types.h> #include <cuda_runtime_api.h> #include <iostream> // Compile with g++ alloc.cc -o alloc.so -I/usr/local/cuda/include -shared -fPIC extern "C" { void* my_malloc(ssize_t size, int device, cudaStream_t stream) { void *ptr; cudaMalloc(&ptr, size); std::cout<<"C side: alloc "<<ptr<< " " <<size<<std::endl; return ptr; } void my_free(void* ptr, ssize_t size, int device, cudaStream_t stream) { std::cout<<"C side: free "<<ptr<< " "<<size<<std::endl; cudaFree(ptr); } // hack: add this placeholder function to let PyTorch generate module extension template at::Tensor sin_add(at::Tensor x, at::Tensor y) { return x.sin() + y.sin(); } } """ module = torch.utils.cpp_extension.load_inline("alloc", cpp_sources, with_cuda=True, functions=['sin_add']) so_file = module.__file__ def f(): new_alloc = torch.cuda.memory.CUDAPluggableAllocator( so_file, 'my_malloc', 'my_free') with torch.cuda.use_mem_pool(torch.cuda.MemPool(new_alloc._allocator)): for factor in (1024, 1024 ** 2): print(f"Allocate {60 * factor} bytes of memory on the GPU from Python") data = torch.empty((60, factor), dtype=torch.uint8, device="cuda") print(f"Free {60 * factor} bytes of memory on the GPU from Python") del data print("Python side: memory is released") print(f"Allocate {70 * factor} bytes of memory on the GPU from Python") data = torch.empty((70, factor), dtype=torch.uint8, device="cuda") print(f"Free {70 * factor} bytes of memory on the GPU from Python") del data print("Python side: memory is released") # torch.cuda.empty_cache() here will error: RuntimeError: captures_underway.empty() INTERNAL ASSERT FAILED at "../c10/cuda/CUDACachingAllocator.cpp":2967, please report a bug to PyTorch. # torch.cuda.empty_cache() here does not take effect. f() import gc gc.collect() ``` Running the code, we can see that `C side: alloc ` is called properly. However, `C side: free ` is never called. In addition, if I call `torch.cuda.empty_cache()` inside `with torch.cuda.use_mem_pool`, it will trigger an assertion error. Ultimately, my goal is to switch between `CUDAPluggableAllocator` and the default allocator, and also `empty_cache` for the `CUDAPluggableAllocator`. ### Versions PyTorch 2.5.1+cu124 cc @ptrblck @msaroufim @eqy
true
2,797,406,816
[BE]: Update NCCL submodule to 2.24.3
tmm1
closed
[ "triaged", "open source", "topic: not user facing" ]
4
CONTRIBUTOR
Update NCCL to the latest version Last bump was in https://github.com/pytorch/pytorch/pull/124014 See upstream release notes here: https://docs.nvidia.com/deeplearning/nccl/release-notes/rel_2-24-3.html#rel_2-24-3 cc @Skylion007
true
2,797,269,721
PEP585 update - torch/fx
aorenste
closed
[ "Merged", "ciflow/trunk", "release notes: fx", "topic: not user facing", "fx", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145166 See #145101 for details. cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,797,269,550
PEP585 update - torch/export
aorenste
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "release notes: export", "suppress-bc-linter" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145165 See #145101 for details.
true
2,797,269,212
PEP585 update - torch/distributed
aorenste
closed
[ "oncall: distributed", "Merged", "Reverted", "ciflow/trunk", "release notes: distributed (sharded)", "topic: not user facing", "suppress-bc-linter", "ci-no-td" ]
9
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145164 See #145101 for details. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,797,269,037
PEP585 update - torch/distributed/elastic torch/distributed/checkpoint
aorenste
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing", "suppress-bc-linter", "release notes: distributed (torchelastic)" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145163 See #145101 for details. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @LucasLLC @MeetVadakkanchery @mhorowitz @pradeepfn @ekr0
true
2,797,267,366
PEP585 update - torch/distributed/fsdp
aorenste
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (fsdp)", "topic: not user facing", "ciflow/inductor", "suppress-bc-linter" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145162 See #145101 for details. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,797,260,843
[mps/inductor] Introduce a metal approx for erf() and use it.
dcci
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
6
MEMBER
Probably we can do better, but this is a start. cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,221,337
[MPSInductor] Add `TrueDiv` and `Round[Int|Decimal]`
malfet
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #145156 * __->__ #145160 That fixes `test_builtins_round_float_ndigits_neg` and `test_builtins_round` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,219,150
Enable bfloat16 testing on MacOS14+
malfet
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #145160 * #145156 * __->__ #145159 * #145157 As Metal-3.1 supports this dtype cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,215,927
Pytorch matmul for nested 4D tensors in jagged layout doesn't work
GabMartino
open
[ "triaged", "module: nestedtensor" ]
8
NONE
### 🐛 Describe the bug Why this code doesn't work, even though is suggested to use the jagged layout: ```python x = torch.nested.nested_tensor([torch.randn(4, 100, 16), torch.randn(4, 150, 16)], layout=torch.jagged) y = torch.nested.nested_tensor([torch.randn(4, 16, 100), torch.randn(4, 16, 150)], layout=torch.jagged) v = torch.matmul(x, y) ``` reporting this error: ```bash RuntimeError: matmul(): not supported between inputs of shapes (2, 4, j1, 16) and torch.Size([2, 4, 16, j2]) ``` Instead with the strided layout works perfectly? The "j1" and "j2" suggests a wrong arrangement of the tensors? Thank you to everyone! ### Versions PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 OS: Ubuntu 24.04.1 LTS (x86_64) GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.39 Python version: 3.9.21 (main, Dec 4 2024, 08:53:34) [GCC 13.2.0] (64-bit runtime) Versions of relevant libraries: [pip3] numpy==2.0.2 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] pytorch-lightning==2.5.0.post0 [pip3] torch==2.6.0+cu124 [pip3] torchmetrics==1.6.1 [pip3] triton==3.2.0 [conda] Could not collect cc @cpuhrsch @jbschlosser @bhosmer @drisspg @soulitzer @davidberard98 @YuqingJ
true
2,797,171,719
[MPSInductor][BE] NaN-propagating min/max to header
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #145160 * #145156 * #145159 * __->__ #145157 May be to be later reused from eager op as well Also, didn't know that Metal already have type_traits And use `metal::isunorderder(a, b)` instead of `metal::isnan(a + b)` is it is defined as function that is equivalent `a != a || b != b`, but I suspect it might have a best native implementation for the specific architecture cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,171,696
Make `inductor_utils.requires_gpu` accept MPS
malfet
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "keep-going" ]
9
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145156 Not yet ready to setp HAS_GPU to true, but can unskip tests that require GPU (Noticed while running test_mps_basics.py that `test_scalar_cpu_tensor_arg` is getting skipped) - Replace `GPU_TYPE` with `self.device` in `test_custom_op_fixed_layout_sequential`, `test_inductor_layout_optimization_input_mutations`, `test_mutable_custom_op_fixed_layout2` otherwise they GPU tests are just running for _cpu suffixes. - Tweak `test_tmp_not_defined_issue3` to work correctly on CPU, by defining `test_device` and `test_device_0` - UnXFail `test_mutable_custom_op_fixed_layout2_dynamic_shapes` as it should just work on CPU - Add `skip_if_no_triton` decorator and decorate `test_reduction_config_limit` with it, as it does not need CPU nor GPU, but rather a triton backend. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @desertfire @chauhang @aakhundov
true
2,797,123,821
The latest PyTorch XPU wheel 2.7.0.dev20250117+xpu does not work on Windows
pbchekin
closed
[ "module: binaries", "module: windows", "triaged", "module: xpu" ]
10
NONE
Steps: ``` # This installs 2.7.0.dev20250117+xpu pip install torch --index-url https://download.pytorch.org/whl/nightly/xpu python -c 'import torch;print(torch.__version__)' ``` Result: ``` OSError: [WinError 126] The specified module could not be found. Error loading "C:\.venv\lib\site-packages\torch\lib\shm.dll" or one of its dependencies. ``` The last known wheel that worked is `2.7.0.dev20250110+xpu`: ``` # This installs 2.7.0.dev20250110+xpu pip install torch --index-url https://download.pytorch.org/whl/nightly/xpu python -c 'import torch;print(torch.__version__)' ``` Result: ``` 2.7.0.dev20250110+xpu ``` cc @seemethere @malfet @osalpekar @atalman @peterjc123 @mszhanyi @skyline75489 @nbcsm @iremyux @Blackhex @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,797,071,173
Tweak schema_check to handle annotated builtin types
aorenste
closed
[ "Merged", "ciflow/inductor", "release notes: export" ]
1
CONTRIBUTOR
As of python 3.9 annotated lists can be written as `list[T]` and `List[T]` has been deprecated. However schema_check was converting `list[T]` to simply be `list`. This change teaches it to handle `list[T]` the same as `List[T]`. A couple small drive-by changes I noticed as well: - Path concatenation should use `os.path.join`, not `+` - Spelling in error message Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #145138 * __->__ #145154
true
2,797,067,669
[BE]: Apply ruff PERF401 to torch
Skylion007
open
[ "oncall: distributed", "oncall: jit", "open source", "better-engineering", "ciflow/trunk", "release notes: quantization", "fx", "module: inductor", "module: dynamo", "ciflow/inductor", "release notes: AO frontend" ]
12
COLLABORATOR
Applies PERF401 optimizations to torch. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @EikanWang @jgong5 @wenzhe-nrv @sanchitintel @ezyang @SherlockNoMad @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,060,620
[BE]: Simplify set add with set update
Skylion007
closed
[ "open source", "better-engineering", "Merged", "Reverted", "ciflow/trunk", "ciflow/inductor", "release notes: export", "ci-no-td" ]
13
COLLABORATOR
Simplifies the set update slightly to be more readable and efficient.
true
2,797,056,331
Driver Allocated Memory grows unrestricted when using torch.unique on MPS device
BjoernBiltzinger
closed
[ "module: memory usage", "triaged", "module: mps" ]
2
NONE
### 🐛 Describe the bug When using `torch.unique` in a loop on the MPS backend, the memory allocated by the driver grows unrestricted. In my real application that leads to an `RuntimeError: MPS backend out of memory (MPS allocated: 24.00 MB, other allocations: 36.24 GB, max allowed: 36.27 GB)` error late in the training. I created this minimal example with the same behaviour. ```python import torch import gc def test_operations(iterations: int, shape: tuple[int, int]) -> None: print(f"PyTorch version: {torch.__version__}") # Test 1: torch.unique print("\nTest 1: torch.unique") x = torch.randint(0, 2, shape, device="mps") for i in range(iterations): y = torch.unique(x) del y # Empty cache and collect garbage to make sure torch.mps.empty_cache() gc.collect() if i % 10 == 0: print( f"Iter {i}: Driver Allocated Memory: {torch.mps.driver_allocated_memory() / (1024**2):.2f}MB, Current Allocated Memory: {torch.mps.current_allocated_memory() / (1024**2):.2f}MB" ) # Test 2: torch.sort (comparison) print("\nTest 2: torch.sort") for i in range(iterations): y = torch.sort(x)[0] del y # Empty cache and collect garbage to make sure torch.mps.empty_cache() gc.collect() if i % 10 == 0: print( f"Iter {i}: Driver memory: {torch.mps.driver_allocated_memory() / (1024**2):.2f}MB, Current memory: {torch.mps.current_allocated_memory() / (1024**2):.2f}MB" ) test_operations(iterations=100, shape=(2000, 10)) ``` Results in ``` PyTorch version: 2.5.1 Test 1: torch.unique Iter 0: Driver Allocated Memory: 18.73MB, Current Allocated Memory: 0.15MB Iter 10: Driver Allocated Memory: 98.73MB, Current Allocated Memory: 0.15MB Iter 20: Driver Allocated Memory: 178.73MB, Current Allocated Memory: 0.15MB Iter 30: Driver Allocated Memory: 258.73MB, Current Allocated Memory: 0.15MB Iter 40: Driver Allocated Memory: 338.73MB, Current Allocated Memory: 0.15MB Iter 50: Driver Allocated Memory: 418.73MB, Current Allocated Memory: 0.15MB Iter 60: Driver Allocated Memory: 578.73MB, Current Allocated Memory: 0.15MB Iter 70: Driver Allocated Memory: 738.72MB, Current Allocated Memory: 0.15MB Iter 80: Driver Allocated Memory: 898.72MB, Current Allocated Memory: 0.15MB Iter 90: Driver Allocated Memory: 1058.72MB, Current Allocated Memory: 0.15MB Test 2: torch.sort Iter 0: Driver memory: 1202.72MB, Current memory: 0.15MB Iter 10: Driver memory: 1202.72MB, Current memory: 0.15MB Iter 20: Driver memory: 1202.72MB, Current memory: 0.15MB Iter 30: Driver memory: 1202.72MB, Current memory: 0.15MB Iter 40: Driver memory: 1202.72MB, Current memory: 0.15MB Iter 50: Driver memory: 1202.72MB, Current memory: 0.15MB Iter 60: Driver memory: 1202.72MB, Current memory: 0.15MB Iter 70: Driver memory: 1202.72MB, Current memory: 0.15MB Iter 80: Driver memory: 1202.72MB, Current memory: 0.15MB Iter 90: Driver memory: 1202.72MB, Current memory: 0.15MB ``` Showing the increase in the driver allocated memory when using `torch.unique` but not when using another function like `torch.sort`. I just used `torch.sort` as comparison here. Is this behaviour expected? ### Versions Collecting environment information... PyTorch version: 2.5.1 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 15.2 (arm64) GCC version: Could not collect Clang version: 16.0.0 (clang-1600.0.26.6) CMake version: Could not collect Libc version: N/A Python version: 3.11.11 (main, Dec 3 2024, 17:20:40) [Clang 16.0.0 (clang-1600.0.26.4)] (64-bit runtime) Python platform: macOS-15.2-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M2 Pro Versions of relevant libraries: [pip3] torch==2.5.1 [conda] Could not collect cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
2,797,045,905
[inductor] Simplify _inductor/utils.py slightly
rec
closed
[ "oncall: distributed", "module: rocm", "open source", "better-engineering", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
4
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145150 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,045,870
[inductor] Add type annotations to _inductor/utils.py
rec
closed
[ "module: inductor", "ciflow/inductor" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #145150 * __->__ #145149 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,797,010,678
[BE][PYFMT] bump `ruff format` target version to py39: add parentheses around long `with`-statements
XuehaiPan
closed
[ "open source", "ciflow/trunk", "release notes: onnx", "topic: not user facing", "fx", "module: dynamo", "ciflow/inductor" ]
10
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #145606 * #144546 * #144569 * __->__ #145148 * #146509 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,796,955,392
[BE][Easy] increase pip timeout for nightly tool: 15s -> 60s
XuehaiPan
open
[ "open source", "Stale", "topic: not user facing" ]
3
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145147
true
2,796,951,812
improve perf for layer_norm
ywq880611
closed
[ "triaged", "open source", "Stale", "release notes: cuda" ]
2
CONTRIBUTOR
Fixes #145145 Please see more details in the issue.
true
2,796,940,106
[RFC] Improve performance for layer_norm op for cuda with revectorized
ywq880611
open
[ "module: nn", "module: cuda", "triaged", "topic: performance" ]
4
CONTRIBUTOR
### 🚀 The feature, motivation and pitch I found there is big perf drop if the size of layer_norm's inside size is not multiple of 4, there is a micro test case: ```python import torch DEVICE=torch.device('cuda') # Time cost for near 1024 for cnt in range(2040, 2050): x = torch.randn(4096, cnt, device=DEVICE, dtype=torch.float32) w_shape = (x.shape[-1], ) #warm up need_warmup = True round = 5 if need_warmup: for _ in range(round): output = torch.nn.functional.layer_norm(x, w_shape) torch.cuda.synchronize() start_time = torch.cuda.Event(enable_timing=True) end_time = torch.cuda.Event(enable_timing=True) # Start time start_time.record() # Apply layernorm for _ in range(round): output = torch.nn.functional.layer_norm(x, w_shape) # End time end_time.record() torch.cuda.synchronize() # Calculate elapsed time elapsed_time_ms = start_time.elapsed_time(end_time) # print(f"CUDA Time: {elapsed_time_ms:.6f} ms") gbps = lambda ms: round * 2 * x.numel() * x.element_size() * 1e-9 / (ms * 1e-3) print(f"n as {cnt} of softmax: {gbps(elapsed_time_ms):.6f} gb/s") ``` Its output is: ``` n as 2040 of softmax: 483.555543 gb/s n as 2041 of softmax: 345.531858 gb/s n as 2042 of softmax: 345.369984 gb/s n as 2043 of softmax: 347.825623 gb/s n as 2044 of softmax: 489.580822 gb/s n as 2045 of softmax: 345.591973 gb/s n as 2046 of softmax: 346.057951 gb/s n as 2047 of softmax: 345.850055 gb/s n as 2048 of softmax: 470.192376 gb/s n as 2049 of softmax: 347.012446 gb/s ``` We could see for the perf for input with `N = 2040, 2044, 2048` is obvious greater than other input `(480 vs 340)`. Therefore, what I would like to do is **mitigating the perf gap between these input**. ### Alternatives The root cause is that there is two kernels for `layer_norm`: https://github.com/pytorch/pytorch/blob/5e4cf3e6ad6f1f06436f409b394ae02e5ed5583d/aten/src/ATen/native/cuda/layer_norm_kernel.cu#L824-L837 We could see if `N` is multiple of `num_vec_elems (4)`, it will call a kernel called `launch_vectorized_layer_norm_kernel`, which could load vectorized elements. So what we could do is to also enable vectorized elements load for those case whose `N` is not multiple for `num_vec_elems (4)`. I tried a draft implement to achieve it, it could improve performance same as the vectorized case, for this case it's about **~40%**, `(480 vs 340) take 2042 as example`. Optimized data: ``` n as 2040 of softmax: 459.758796 gb/s n as 2041 of softmax: 497.804886 gb/s n as 2042 of softmax: 479.061575 gb/s n as 2043 of softmax: 477.197096 gb/s n as 2044 of softmax: 473.285078 gb/s n as 2045 of softmax: 473.795206 gb/s n as 2046 of softmax: 495.999985 gb/s n as 2047 of softmax: 499.649134 gb/s n as 2048 of softmax: 455.111104 gb/s n as 2049 of softmax: 473.928423 gb/s ``` ### Additional context Here is a [doc](https://docs.google.com/document/d/1TFIbJAO3tek1-EltVvMC_0TgYuEeBZw8rxDrSb_Wx8Q/edit?tab=t.0) contains some stuffs about it. And there is another optimization, we could see there is still perf gap for `layer_norm` in `pytorch` and `triton`, we may mitigate the gap by using **register to cache the data in pytorch kernel**, because the `launch_vectorized_layer_norm_kernel` load data from gmem twice yet, but I guess the `N` for `layer_norm` op may usually be a very big number (> 10k for some 2d layer_norm), so it may introduce much register pressure, WDYT? cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki @ptrblck @msaroufim @eqy
true
2,796,928,799
Please add fp16 to MPS devices.
AimoneAndex
open
[ "needs reproduction", "triaged", "module: amp (automated mixed precision)", "module: mps" ]
2
NONE
### 🚀 The feature, motivation and pitch I used torch==2.7 to train llama via huggingface transformers,but Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 9.00it/s] trainable params: 4,194,304 || all params: 6,933,450,752 || trainable%: 0.0605 Traceback (most recent call last): File "/Users/rbhan/Data/StellAIHub/Train/LanguageModel/xmt.py", line 115, in <module> trainer = Trainer( ^^^^^^^^ File "/Users/rbhan/Data/AIHub/Trans-Penv/transformers/src/transformers/utils/deprecation.py", line 165, in wrapped_func return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/Users/rbhan/Data/AIHub/Trans-Penv/transformers/src/transformers/trainer.py", line 459, in __init__ self.create_accelerator_and_postprocess() File "/Users/rbhan/Data/AIHub/Trans-Penv/transformers/src/transformers/trainer.py", line 5071, in create_accelerator_and_postprocess self.accelerator = Accelerator(**args) ^^^^^^^^^^^^^^^^^^^ File "/Users/rbhan/Data/AIHub/Trans-Penv/accelerate/src/accelerate/accelerator.py", line 495, in __init__ raise ValueError(f"fp16 mixed precision requires a GPU (not {self.device.type!r}).") ValueError: fp16 mixed precision requires a GPU (not 'mps'). ### Alternatives So when can pytorch support fp16 on MPS?I have waited for one year,but no solution.Thank you! ### Additional context _No response_ cc @mcarilli @ptrblck @leslie-fang-intel @jgong5 @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
2,796,906,847
Bracket indexing not working
moghadas76
open
[ "needs reproduction", "triaged", "module: advanced indexing" ]
2
NONE
### 🐛 Describe the bug Unsqueezing not working ```python import torch tn = torch.randn(6980, 1, 12, 16, 20) tn[[1], :, :, :, :].shape # (1, 1, 12, 16, 20) tn[[1], :, [11], :, :].shape # (1, 1, 16, 20) ``` ### Versions PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.12.4 | packaged by Anaconda, Inc. | (main, Jun 18 2024, 15:12:24) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.8.0-51-generic-x86_64-with-glibc2.35 Is CUDA available: N/A CUDA runtime version: 11.5.119 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090 GPU 1: NVIDIA GeForce RTX 4090 Nvidia driver version: 555.42.02 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: GenuineIntel Model name: 13th Gen Intel(R) Core(TM) i9-13900F CPU family: 6 Model: 183 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 1 Stepping: 1 CPU max MHz: 5600.0000 CPU min MHz: 800.0000 BogoMIPS: 3993.60 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect user_shstk avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi vnmi umip pku ospke waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize arch_lbr ibt flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 896 KiB (24 instances) L1i cache: 1.3 MiB (24 instances) L2 cache: 32 MiB (12 instances) L3 cache: 36 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Mitigation; Clear Register File Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.1.0 [conda] blas 1.0 mkl [conda] cuda-cudart 12.1.105 0 nvidia [conda] cuda-cupti 12.1.105 0 nvidia [conda] cuda-libraries 12.1.0 0 nvidia [conda] cuda-nvrtc 12.1.105 0 nvidia [conda] cuda-nvtx 12.1.105 0 nvidia [conda] cuda-opencl 12.3.52 0 nvidia [conda] cuda-runtime 12.1.0 0 nvidia [conda] easy-torch 1.3.2 pypi_0 pypi [conda] ffmpeg 4.3 hf484d3e_0 pytorch [conda] libcublas 12.1.0.26 0 nvidia [conda] libcufft 11.0.2.4 0 nvidia [conda] libcurand 10.3.4.52 0 nvidia [conda] libcusolver 11.4.4.55 0 nvidia [conda] libcusparse 12.0.2.55 0 nvidia [conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch [conda] libnvjitlink 12.1.105 0 nvidia [conda] mkl 2023.1.0 h213fc3f_46343 [conda] mkl-service 2.4.0 py311h5eee18b_1 [conda] mkl_fft 1.3.8 py311h5eee18b_0 [conda] mkl_random 1.2.4 py311hdb19cb5_0 [conda] numpy 1.24.4 pypi_0 pypi [conda] nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cudnn-cu12 8.9.2.26 pypi_0 pypi [conda] nvidia-cufft-cu12 11.0.2.54 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.2.106 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.4.5.107 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.1.0.106 pypi_0 pypi [conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.1.105 pypi_0 pypi [conda] pytorch-cuda 12.1 ha16c6d3_5 pytorch [conda] pytorch-forecasting 1.2.0 pypi_0 pypi [conda] pytorch-lightning 2.2.0 pypi_0 pypi [conda] pytorch-mutex 1.0 cuda pytorch [conda] torch 2.3.0 pypi_0 pypi [conda] torch-cluster 1.6.3+pt23cu121 pypi_0 pypi [conda] torch-geometric 2.4.0 pypi_0 pypi [conda] torch-scatter 2.1.2+pt23cu121 pypi_0 pypi [conda] torch-sparse 0.6.18+pt23cu121 pypi_0 pypi [conda] torch-spline-conv 1.2.2+pt23cu121 pypi_0 pypi [conda] torch-summary 1.4.5 pypi_0 pypi [conda] torchaudio 2.3.0 pypi_0 pypi [conda] torchinfo 1.8.0 pypi_0 pypi [conda] torchmetrics 1.3.0.post0 pypi_0 pypi [conda] torchsummary 1.5.1 pypi_0 pypi [conda] torchvision 0.18.0 pypi_0 pypi [conda] triton 2.3.0 pypi_0 pypi
true
2,796,906,161
Release Pyotrch version 2.6.0 in pypi
farzanehnakhaee70
closed
[ "module: cuda", "oncall: releng" ]
1
NONE
### 🚀 The feature, motivation and pitch Currently in nvidia/pytorch:24.12, the version of torch which is used is torch 2.6.0. However, it is not yet published in pypi. [Here](https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-24-12.html#rel-24-12) is theire release note. When is possible to publish it in pypi? ### Alternatives _No response_ ### Additional context _No response_ cc @ptrblck @msaroufim @eqy
true
2,796,787,112
PEP585 update - torch/distributed/tensor
aorenste
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (ddp)", "topic: not user facing", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145141 See #145101 for details. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,796,786,880
PEP585 update - torch/ao/quantization
aorenste
closed
[ "Merged", "ciflow/trunk", "release notes: quantization", "topic: not user facing", "fx", "release notes: AO frontend" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145140 See #145101 for details. cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,796,786,632
PEP585 update - torch/_functorch
aorenste
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor", "release notes: AO frontend" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145139 See #145101 for details.
true
2,796,786,294
PEP585 update - torch/_export
aorenste
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor", "release notes: export" ]
9
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145138 * #145154 See #145101 for details.
true
2,796,786,027
PEP585 update - torch/_inductor/[_-i]*
aorenste
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145137 See #145101 for details. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,796,600,843
[inductor] [bug fix] Fix `conv` on processing uint
shaoyuyoung
open
[ "triaged", "open source", "ciflow/trunk", "topic: not user facing", "module: inductor" ]
21
CONTRIBUTOR
Fixes #144314 ut ``` pytest -s -v test/inductor/test_torchinductor.py -k test_conv_errors_with_uint ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,796,568,899
DISABLED test_integers_t1_uint8_np_longlong (__main__.TestArrayFromScalar)
izaitsevfb
closed
[ "skipped" ]
2
CONTRIBUTOR
[Test was renamed, broken previously.](https://github.com/pytorch/pytorch/pull/133546#issuecomment-2599333158) Platforms: linux This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22torch_np%2Fnumpy_tests%2Fcore%2Ftest_scalar_ctors.py%3A%3ATestArrayFromScalar%3A%3Atest_integers_t1_uint8_np_longlong%22%5D)).
true
2,796,568,673
DISABLED test_dtype_passthrough_dtype_complex128 (__main__.TestDLPack)
izaitsevfb
closed
[ "skipped" ]
2
CONTRIBUTOR
[Test was renamed, broken previously.](https://github.com/pytorch/pytorch/pull/133546#issuecomment-2599333158) Platforms: linux This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22torch_np%2Fnumpy_tests%2Fcore%2Ftest_dlpack.py%3A%3ATestDLPack%3A%3Atest_dtype_passthrough_dtype_complex128%22%5D)).
true
2,796,567,618
[inductor] fix MA on poor gpu
shunting314
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #140249 * __->__ #145133 Found this bug when debugging a MA issue in CI that can not be repro-ed on devgpu. On GPU with less than 68 SMs (like NVidia L4 used in CI), running torch compile in max-autotune mode may result in the following confusing error https://gist.github.com/shunting314/370f42f547e3367a3773237942725a86 complaining about layout: ``` torch._inductor.exc.InductorError: LoweringException: AssertionError: convert FlexibleLayout to FixedLayout first ``` The reason is, even if we don't pick Triton template, Inductor still returns a MultiTemplateBuffer for tuned addmm. MultiTemplateBuffer.get_reads called from Reduction.num_splits may indexing a FlexibleLayout which results in the error aforementioned. The issue does not appear on devgpu because we freeze the layout of addmm inputs when rendering triton templates. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,796,541,647
[dynamo] Log guard latency
anijain2305
closed
[ "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor", "ci-no-td" ]
9
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145132 * #145509 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,796,529,276
[inductor] Fix ignored options for torch.compile
jansel
closed
[ "Merged", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #145131 #139833 broke `torch.compile(options=...)` so that many (all?) options passed in get completely ignored. @alexreinking pointed this out when `options={"cpu_backend":"halide"}` did nothing. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
true
2,796,525,833
[cuBLAS][cuBLASLt] Unify `cuBLASLt` workspaces with `cuBLAS` workspaces
eqy
closed
[ "module: cuda", "triaged", "module: cublas", "open source", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "ciflow/periodic", "module: dynamo", "ciflow/inductor", "matrix multiplication", "ciflow/rocm", "ci-no-td" ]
87
COLLABORATOR
As `cuBLAS` workspaces are already per-stream, there shouldn't be kernel execution overlap with `cuBLASLt` kernels. This PR reuses `cuBLAS` workspaces for `cuBLASLt` for the following benefits: + caching (`cuBLAS` workspaces were already cached, so now we get that for `cuBLASLt`) + "free" workspace size bump for `cuBLASLt` `cuBLASLt` workspace sizes were previously smaller than those for `cuBLAS` by default which potentially hurts performance, and we encountered difficulty in increasing the size due to downstream OOMs , see also #120925 + fixes behavior broken behavior with the memtracker; https://github.com/pytorch/pytorch/pull/139442 attempted to handle peaky allocation behavior that broke memtracker equivalence tests but it didn't seem to fully work, here the cached/reused `cuBLAS` workspace seems to fix it + one environment variable to rule them all: `CUBLAS_WORKSPACE_CONFIG` applies directly to `cuBLASLt` without a confusing `CUBLASLT_WORKSPACE_SIZE` that users would also need to consider Edit: for now, CUBLASLT_WORKSPACE_SIZE still exists to preserve previous behavior (we noticed some accuracy differences when automatically enabling larger workspace for CUBLASLT) cc @ptrblck @msaroufim @csarofeen @xwang233 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,796,519,027
[do not land] check unit tests in test_modules
FindHao
closed
[ "ciflow/trunk", "topic: not user facing", "ciflow/inductor", "keep-going" ]
7
MEMBER
BE tests
true
2,796,512,793
[executorch hash update] update the pinned executorch hash
pytorchupdatebot
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
81
COLLABORATOR
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml). Update the pinned executorch hash.
true
2,796,511,696
[do not land] check unit tests
FindHao
closed
[ "ciflow/trunk", "topic: not user facing", "ciflow/inductor", "keep-going" ]
7
MEMBER
BE tests
true