id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
2,851,838,818
[export] Add meta for aten.bincount
angelayi
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
Fixes https://github.com/pytorch/pytorch/issues/147094
true
2,851,835,028
DISABLED test_output_match_linalg_cholesky_ex_cpu_float32 (__main__.TestConsistencyCPU)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "module: macos", "skipped", "module: mps" ]
2
NONE
Platforms: mac, macos This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_output_match_linalg_cholesky_ex_cpu_float32&suite=TestConsistencyCPU&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/37174505386). Over the past 3 hours, it has been determined flaky in 6 workflow(s) with 6 failures and 6 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_output_match_linalg_cholesky_ex_cpu_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/Users/ec2-user/runner/_work/_temp/conda_environment_13308447103/lib/python3.9/site-packages/torch/testing/_internal/common_device_type.py", line 1156, in test_wrapper return test(*args, **kwargs) File "/Users/ec2-user/runner/_work/pytorch/pytorch/test/test_mps.py", line 12640, in test_output_match self.assertEqual(cpu_out, mps_out, atol=atol, rtol=rtol) File "/Users/ec2-user/runner/_work/_temp/conda_environment_13308447103/lib/python3.9/site-packages/torch/testing/_internal/common_utils.py", line 4102, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Tensor-likes are not equal! Mismatched elements: 1 / 1 (100.0%) Greatest absolute difference: 9 at index (0, 0) Greatest relative difference: 1.0 at index (0, 0) The failure occurred for item [1] The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/Users/ec2-user/runner/_work/_temp/conda_environment_13308447103/lib/python3.9/site-packages/torch/testing/_internal/common_utils.py", line 3161, in wrapper method(*args, **kwargs) File "/Users/ec2-user/runner/_work/_temp/conda_environment_13308447103/lib/python3.9/site-packages/torch/testing/_internal/common_device_type.py", line 454, in instantiated_test result = test(self, **param_kwargs) File "/Users/ec2-user/runner/_work/_temp/conda_environment_13308447103/lib/python3.9/site-packages/torch/testing/_internal/common_device_type.py", line 1236, in dep_fn return fn(slf, *args, **kwargs) File "/Users/ec2-user/runner/_work/_temp/conda_environment_13308447103/lib/python3.9/site-packages/torch/testing/_internal/common_utils.py", line 1626, in wrapper fn(*args, **kwargs) File "/Users/ec2-user/runner/_work/_temp/conda_environment_13308447103/lib/python3.9/site-packages/torch/testing/_internal/common_device_type.py", line 1168, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 14: SampleInput(input=Tensor[size=(1, 1, 0, 0), device="cpu", dtype=torch.float32], args=(), kwargs={'upper': 'True'}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=14 python test/test_mps.py TestConsistencyCPU.test_output_match_linalg_cholesky_ex_cpu_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_mps.py` cc @clee2000 @wdvr @malfet @albanD @kulinseth @DenisVieriu97 @jhavukainen
true
2,851,829,486
[cond] support output sizes mismatch in front end
ydwu4
closed
[ "module: inductor", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147127 * #147045 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,851,803,230
[export] Generate printers/parsers for serialization enum values.
zhxchen17
closed
[ "fb-exported", "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: export" ]
4
CONTRIBUTOR
Summary: Generate two helper functions for enum classes in generated_serialization_types.h printEnum: will convert enum values into strings. parseEnum: will convert strings into enum values. Test Plan: CI Differential Revision: D69604850
true
2,851,785,088
Remove outdated comment in ATen/mkl/Sparse.h about lack of Windows support
gajanan-choudhary
closed
[ "triaged", "open source", "Merged", "topic: not user facing" ]
5
CONTRIBUTOR
Fixes #147124. * #102604 added support for Intel oneMKL Sparse BLAS APIs so there was an outdated comment left around in the codebase that can now be removed.
true
2,851,779,444
Windows support of Intel oneMKL Sparse BLAS APIs and possible outdated comment
gajanan-choudhary
closed
[ "triaged" ]
0
CONTRIBUTOR
* This is a minor issue about there being a possibly misleading comment in the codebase. * oneMKL Sparse BLAS APIs were not supported on Windows in the past, see #97352. * Support for oneMKL Sparse BLAS APIs on Windows was later enabled in #102604. * Therefore, I believe that the comment at https://github.com/pytorch/pytorch/blob/9a883007a2fae8917fd9ff2cc89e73b43dbf35ef/aten/src/ATen/mkl/Sparse.h#L5-L6 that was last updated in #97353 appears to now be outdated. Its removal appears to have been missed in #102604. * [Edit]: Created #147125 to fix this
true
2,851,760,693
[ddp] decouple python reducer from compilation mode
xmfan
closed
[ "oncall: distributed", "module: ddp", "Merged", "ciflow/trunk", "module: dynamo", "ciflow/inductor", "release notes: distributed (miscellaneous)" ]
10
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147123 Current implementation reads as: we will only actually use the "python_reducer" config if the DDP forward is compiled. Otherwise, we will silently fallback to C++ reducer + no DDPOptimizer. I'm changing this behavior to always use the python reducer if the config is specified. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames @StrongerXi
true
2,851,758,877
PyTorch build with numpy version incompatibility
H-Huang
closed
[ "module: build", "oncall: quantization", "has workaround" ]
2
MEMBER
I'm building the latest PyTorch using `TORCH_CUDA_ARCH_LIST="8.0 9.0" BUILD_TEST=0 USE_CUDA=1 USE_DISTRIBUTED=1 python setup.py install` But when I `import torch` I get: ``` A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/howardhuang/local/pytorch/torch/__init__.py", line 2232, in <module> from torch import quantization as quantization # usort: skip File "/home/howardhuang/local/pytorch/torch/quantization/__init__.py", line 2, in <module> from .fake_quantize import * # noqa: F403 File "/home/howardhuang/local/pytorch/torch/quantization/fake_quantize.py", line 10, in <module> from torch.ao.quantization.fake_quantize import ( File "/home/howardhuang/local/pytorch/torch/ao/quantization/__init__.py", line 12, in <module> from .pt2e._numeric_debugger import ( # noqa: F401 File "/home/howardhuang/local/pytorch/torch/ao/quantization/pt2e/_numeric_debugger.py", line 9, in <module> from torch.ao.quantization.pt2e.graph_utils import bfs_trace_with_node_process File "/home/howardhuang/local/pytorch/torch/ao/quantization/pt2e/graph_utils.py", line 9, in <module> from torch.export import ExportedProgram File "/home/howardhuang/local/pytorch/torch/export/__init__.py", line 70, in <module> from .decomp_utils import CustomDecompTable File "/home/howardhuang/local/pytorch/torch/export/decomp_utils.py", line 5, in <module> from torch._export.utils import ( File "/home/howardhuang/local/pytorch/torch/_export/__init__.py", line 48, in <module> from .wrappers import _wrap_submodules File "/home/howardhuang/local/pytorch/torch/_export/wrappers.py", line 7, in <module> from torch._higher_order_ops.strict_mode import strict_mode File "/home/howardhuang/local/pytorch/torch/_higher_order_ops/__init__.py", line 1, in <module> from torch._higher_order_ops._invoke_quant import ( File "/home/howardhuang/local/pytorch/torch/_higher_order_ops/_invoke_quant.py", line 8, in <module> from torch._higher_order_ops.base_hop import BaseHOP, FunctionWithNoFreeVars File "/home/howardhuang/local/pytorch/torch/_higher_order_ops/base_hop.py", line 12, in <module> from torch._subclasses.functional_tensor import disable_functional_mode File "/home/howardhuang/local/pytorch/torch/_subclasses/functional_tensor.py", line 45, in <module> class FunctionalTensor(torch.Tensor): File "/home/howardhuang/local/pytorch/torch/_subclasses/functional_tensor.py", line 275, in FunctionalTensor cpu = _conversion_method_template(device=torch.device("cpu")) /home/howardhuang/local/pytorch/torch/_subclasses/functional_tensor.py:275: UserWarning: Failed to initialize NumPy: A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. (Triggered internally at /home/howardhuang/local/pytorch/torch/csrc/utils/tensor_numpy.cpp:81.) cpu = _conversion_method_template(device=torch.device("cpu")) ``` The workaround is as the error mentions to downgrade the numpy version (`pip install "numpy<2"`), but I am curious whether this is expected since we have `numpy` as a dependency in our `requirements.txt` and i believe the latest stable version of numpy is >2. JFYI: I hit this error when trying to build and use a conda package internally for torchtitan so there may be some other setup things happening that I am unaware of. cc @malfet @seemethere @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @vkuzo @jgong5 @Xia-Weiwen @leslie-fang-intel @msaroufim
true
2,851,749,033
[AMD] Compile Failure with triton templates
eellison
closed
[ "triaged", "oncall: pt2", "module: inductor", "rocm" ]
2
CONTRIBUTOR
### 🐛 Describe the bug See pr [here](https://github.com/pytorch/pytorch/pull/146293) with special casing for amd triton template. ### Versions master cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,851,708,369
Make torch.cuda.gds APIs public
mikaylagawarecki
closed
[ "Merged", "ciflow/trunk", "release notes: cuda", "topic: new features" ]
3
CONTRIBUTOR
Follow up to https://github.com/pytorch/pytorch/pull/145748 that turned USE_CUFILE on for CUDA 12.6 and 12.8 binaries Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147120
true
2,851,665,252
[Edited] Add docstring to improve documentation
MayureshMore
closed
[ "oncall: distributed", "oncall: jit", "module: rocm", "module: cpu", "module: mkldnn", "open source", "release notes: quantization", "release notes: releng", "fx", "module: inductor", "module: dynamo" ]
3
NONE
Changes made in branch: **MayureshMore:2.1-dynamic-doc** [Edited] Add docstring to improve documentation cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @EikanWang @jgong5 @wenzhe-nrv @sanchitintel @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @mingfeima @XiaobingSuper @ashokei @jingxu10 @gujinghui @PenghuiCheng @jianyuh @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal @ezyang @SherlockNoMad @voznesenskym @penguinwu @zhuhaozhe @blzheng @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov @StrongerXi
true
2,851,646,018
padding fails on view from large tensor
rtyasdf
open
[ "module: cuda", "triaged", "module: 64-bit", "module: padding", "module: edge cases" ]
0
NONE
### 🐛 Describe the bug Call to padding function (`torch.nn.functional.pad`) in `reflect` mode on view of a tensor with number of elements exceeding 2^32 may lead to unexpected behavior, which best illustrated by following snippet: ```python import torch import torch.nn.functional as F DEVICE = torch.device('cuda:0') a = torch.rand((256, 256, 256, 256), device=DEVICE) # (expected) throws "RuntimeError: input tensor must fit into 32-bit index math" a_pad = F.pad(a, (1, 1, 1, 1), mode='reflect') # (expected) runs perfectly if we split large tensor along batch dimension for a_split in torch.split(a, 2, dim=0): split_pad = F.pad(a_split, (1, 1, 1, 1), mode='reflect') # (unexpected) throws "RuntimeError: input tensor must fit into 32-bit index math" for a_split in torch.split(a, 2, dim=1): split_pad = F.pad(a_split, (1, 1, 1, 1), mode='reflect') ``` While shape of `a_split` in last example technically can be processed by `F.pad` (since it is same as for "split along batch" example) for some reason it can't handle it and throws `RuntimeError`. ### Versions PyTorch version: 2.4.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 18.04.6 LTS (x86_64) GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 Clang version: Could not collect CMake version: version 3.10.2 Libc version: glibc-2.27 Python version: 3.11.11 (main, Dec 11 2024, 16:28:39) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-1027-nvidia-x86_64-with-glibc2.27 Is CUDA available: True CUDA runtime version: 11.1.105 cc @ptrblck @msaroufim @eqy
true
2,851,624,535
[torch][amdsmi] Look for amdsmi in ROCM_HOME/ROCM_PATH before using rpath
danzimm
closed
[ "module: rocm", "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/rocm" ]
6
CONTRIBUTOR
Summary: ROCm uses ROCM_HOME/ROCM_PATH to specify which version of rocm the user wants to use. This is especially important in multi-version setups. Let's respect that behavior when loading amdsmi. Test Plan: CI ``` NCCL_DEBUG=INFO NCCL_DEBUG_SUBSYS=INIT,COLL MSCCL_ALGO_DIR=~/2fbsource/third-party/rccl/develop/tools/msccl-algorithms RCCL_MSCCLPP_THRESHOLD=(math '128*1024*1024') RCCL_MSCCLPP_ENABLE=1 ENABLE_MSCCLPP=1 buck2 run fbcode//mode/opt-amd-gpu -m rocm621 fbcode//accelerators/workloads/microbench:bench_comm -- --shape moe_17b --comm_algo nccl_allreduce ``` Differential Revision: D69597647 cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,851,618,730
[DCP] Cache save plans: planner helpers and interface updates
saumishr
closed
[ "oncall: distributed", "fb-exported", "Merged", "ciflow/trunk", "topic: new features" ]
20
CONTRIBUTOR
Summary: This PR updates the planner interface and introduces the class variables to cache the local and global plans. Two new helpers are also introduced which will be used to compare if the plans have changed across save attempts and merge the delta plans. Test Plan: UTs Differential Revision: D69224488 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @LucasLLC @MeetVadakkanchery @mhorowitz @pradeepfn @ekr0
true
2,851,576,077
Unable to print in a branch run by torch.cond
xadupre
open
[ "triaged", "oncall: pt2", "module: higher order operators", "module: pt2-dispatcher" ]
2
COLLABORATOR
### 🐛 Describe the bug The code run by torch cond has more constraints than the other part of the model. So even before exporting the model, it may not work because of logging, printing, ... The following script returns: ```python import torch class SubThen(torch.nn.Module): def forward(self, x): return x * x class SubElse(torch.nn.Module): def forward(self, x): print(x) return torch.abs(x) class Model(torch.nn.Module): def __init__(self): super().__init__() self.sub_then = SubThen() self.sub_else = SubElse() def forward(self, x): return torch.cond(x.sum() > 0, self.sub_then, self.sub_else, [x]) model = Model() model(torch.rand((5, 4))) ``` ``` torch._dynamo.exc.UncapturedHigherOrderOpError: Cond doesn't work unless it is captured completely with torch.compile. Scroll up to find out what causes the graph break. ``` It works without ``print``. Then I did (look for **added line**): ```python import torch class SubThen(torch.nn.Module): def forward(self, x): return x * x class SubElse(torch.nn.Module): def forward(self, x): if not torch.compiler.is_compiling(): # added line print(x) return torch.abs(x) class Model(torch.nn.Module): def __init__(self): super().__init__() self.sub_then = SubThen() self.sub_else = SubElse() def forward(self, x): return torch.cond(x.sum() > 0, self.sub_then, self.sub_else, [x]) model = Model() model(torch.rand((5, 4))) ``` But that does not print anything. I chose print but anything considered as a mutation should behave the same as well. Is it by design? Is there a way to solve this (to print something or to cache something)? ### Versions ``` Collecting environment information... PyTorch version: 2.7.0.dev20250212+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.5 Libc version: glibc-2.35 Python version: 3.12.8 (main, Dec 4 2024, 08:54:12) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.167.4-microsoft-standard-WSL2-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.6.68 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4060 Laptop GPU Nvidia driver version: 538.92 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.3.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 20 On-line CPU(s) list: 0-19 Vendor ID: GenuineIntel Model name: 13th Gen Intel(R) Core(TM) i7-13800H CPU family: 6 Model: 186 Thread(s) per core: 2 Core(s) per socket: 10 Socket(s): 1 Stepping: 2 BogoMIPS: 5836.80 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves avx_vnni umip waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize flush_l1d arch_capabilities Virtualization: VT-x Hypervisor vendor: Microsoft Virtualization type: full L1d cache: 480 KiB (10 instances) L1i cache: 320 KiB (10 instances) L2 cache: 12.5 MiB (10 instances) L3 cache: 24 MiB (1 instance) Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Mitigation; Clear Register File Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==2.2.2 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] onnx==1.18.0 [pip3] onnx-extended==0.3.0 [pip3] onnxruntime_extensions==0.13.0 [pip3] onnxruntime-training==1.21.0+cu126 [pip3] optree==0.14.0 [pip3] pytorch-triton==3.2.0+git4b3bb1f8 [pip3] torch==2.7.0.dev20250212+cu126 [pip3] torch_geometric==2.4.0 [pip3] torchaudio==2.6.0.dev20250212+cu126 [pip3] torchvision==0.22.0.dev20250212+cu126 [conda] Could not collect ``` cc @chauhang @penguinwu @zou3519 @ydwu4 @bdhirsh @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo
true
2,851,541,853
[PT][FSDP] support custom all reduce hook across FSDP units
xunnanxu
closed
[ "oncall: distributed", "fb-exported", "Merged", "ciflow/trunk", "release notes: distributed (fsdp)", "ciflow/inductor" ]
29
CONTRIBUTOR
This change adds an API `set_all_reduce_hook` to the `FSDPModule` to support customized all reduce either in native HSDP (2d mesh) setup or custom HSDP (1d FSDP + custom AR across replicas) * For native HSDP, the original AR would still run as is and this hook allows for additional gradient modification post all reduce. * For custom HSDP, the original AR will be skipped and all the logic is instead expected to be executed in the hook. The custom hook is expected to perform operations in place (no return value). Example basic usage: ``` model = ... fully_shard(model, mesh=...) model.set_all_reduce_hook(my_hook) ``` By default, the hook will run in the default all reduce stream post reduce scatter. When native HSDP is NOT enabled, the custom hook can be specified to run in a custom stream. This custom stream will also be synchronized post reduce scatter similarly. See tests for examples. Test Plan: CI Differential Revision: D68255583 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,851,510,392
Add quantized BatchNorm1d module
mattpitkin
open
[ "triaged", "open source", "release notes: quantization" ]
4
CONTRIBUTOR
Fixes #147112.
true
2,851,509,393
Add quantized version of BatchNorm1d module
mattpitkin
open
[ "oncall: quantization" ]
0
CONTRIBUTOR
### 🚀 The feature, motivation and pitch Currently, there are quantized versions of the `BatchNorm2d` and `BatchNorm3d` modules, but not for `BatchNorm1d`. This is despite there being a quantized op for `batch_norm1d`. It would be useful to have the quantized `BatchNorm1d` included. ### Alternatives _No response_ ### Additional context _No response_ cc @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @vkuzo @jgong5 @Xia-Weiwen @leslie-fang-intel @msaroufim
true
2,851,508,759
[dsutil] shape-env logging
bobrenjc93
closed
[ "fb-exported", "release notes: fx", "fx", "ciflow/inductor" ]
2
CONTRIBUTOR
Differential Revision: D69355332 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,851,435,783
s390x: add cleanup for cancelled docker image builds
AlekseiNikiforovIBM
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
6
COLLABORATOR
When podman image build is cancelled, a couple of processes are left behind, and their existence prevents proper shutdown of runner container. Add cleanup step at the end of workflow using new option recently introduced in podman: https://github.com/containers/podman/pull/25102 Example of job preventing s390x worker cleaning up and restarting properly: https://github.com/pytorch/pytorch/actions/runs/13289159296/job/37105230728
true
2,851,338,544
torch.nan_to_num does not support complex64 data type under torch.compile
meetmul
open
[ "triaged", "oncall: pt2", "module: inductor" ]
1
NONE
### 🐛 Describe the bug When receiving complex64 tensor, `torch.nan_to_num` works normal under eager, however it will raise not supported error under torch.compile. code: ```python import torch input = torch.randn(1,1).to(torch.complex64) try: res = torch.nan_to_num(input) print("Successfully run torch.nan_to_num under eager.") except Exception as e: print(e) try: res = torch.compile(torch.nan_to_num)(input) print("Successfully run torch.nan_to_num under torch.compile.") except Exception as e: print(f"Failed to run torch.nan_to_num under torch.compile: {e}") ``` Actual output: ``` Successfully run torch.nan_to_num under eager. Failed to run torch.nan_to_num under torch.compile: backend='inductor' raised: RuntimeError: Complex dtype is not supported for isneginf, got dtype torch.complex64 While executing %nan_to_num : [num_users=1] = call_function[target=torch.nan_to_num](args = (%l_args_0_,), kwargs = {}) Original traceback: File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/external_utils.py", line 48, in inner return fn(*args, **kwargs) Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True ``` ### Error logs ``` Successfully run torch.nan_to_num under eager. Failed to run torch.nan_to_num under torch.compile: backend='inductor' raised: RuntimeError: Complex dtype is not supported for isneginf, got dtype torch.complex64 While executing %nan_to_num : [num_users=1] = call_function[target=torch.nan_to_num](args = (%l_args_0_,), kwargs = {}) Original traceback: File "/opt/conda/lib/python3.11/site-packages/torch/_dynamo/external_utils.py", line 48, in inner return fn(*args, **kwargs) Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True ``` ### Versions [pip3] numpy==1.26.2 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] optree==0.13.1 [pip3] torch==2.5.1 [pip3] triton==3.1.0 [conda] numpy 1.26.2 pypi_0 pypi [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] optree 0.13.1 pypi_0 pypi [conda] torch 2.5.1 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
2,851,298,314
Inconsistent data type casting decision when using `torch.addmv` under torch.compile and eager
meetmul
open
[ "triaged", "bug", "oncall: pt2", "module: inductor" ]
2
NONE
### 🐛 Describe the bug I think this is caused by the inconsistent type casting between torch.compile and eager. When `input` is float but `mat` and `vec` are integer, the **output under eager mode is integer but the output under torch.compile is float**. This inconsistent type casting will lead to inconsistent results for some cases. Here is the code I used to find this issue: ```python import torch from torch import nn class AddMVModel(nn.Module): def __init__(self): super(AddMVModel, self).__init__() def forward(self, input, mat, vec): return torch.addmv(input, mat, vec) model = AddMVModel() optimized_model = torch.compile(model) input = torch.tensor([2.7], dtype=torch.float32) mat = torch.tensor([[1, 2], [3, 4]], dtype=torch.int32) vec = torch.tensor([1, 2], dtype=torch.int32) out1 = model(input,mat,vec) out2 = optimized_model(input,mat,vec) print("eager: ", out1) print("after torch.compile: ", out2) ``` Actual output: ``` eager: tensor([ 7, 13], dtype=torch.int32) after torch.compile: tensor([ 7.7000, 13.7000]) ``` Expected output: maybe eager and torch.compile's result can be consistent. ### Error logs ``` eager: tensor([ 7, 13], dtype=torch.int32) after torch.compile: tensor([ 7.7000, 13.7000]) ``` ### Versions [pip3] numpy==1.26.2 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] optree==0.13.1 [pip3] torch==2.5.1 [pip3] triton==3.1.0 [conda] numpy 1.26.2 pypi_0 pypi [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] optree 0.13.1 pypi_0 pypi [conda] torch 2.5.1 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
2,851,261,401
Use 2022 as default VC_YEAR for windows tests
atalman
open
[ "Stale", "topic: not user facing" ]
2
CONTRIBUTOR
Same as: https://github.com/pytorch/pytorch/pull/147053 New Windows AMI does not have Visual Studio 2019. Hence use 2022 as default. See: pytorch/test-infra#6226
true
2,851,087,439
[inductor][refactor] Make _compile_file only used for fbcode
desertfire
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
4
CONTRIBUTOR
Summary: _compile_file in codecache.py only handles specific cpp compilation in fbcode. The next step is to consolidate it with cpp_builder. Test Plan: CI Differential Revision: D69592025 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,851,077,715
[AOTI] Update test runner to use the new APIs
desertfire
closed
[ "oncall: distributed", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ci-no-td" ]
11
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147105 Summary: Switch to the newer aoti_compile_and_package APIs. Some tests still kept using legacy APIs, and will follow up with internal test refactoring. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov Differential Revision: [D69609685](https://our.internmc.facebook.com/intern/diff/D69609685)
true
2,851,016,823
[ARM] Unit test TestSelectAlgorithmCPU.test_linear_with_embedding fails on non-bf16 Aarch64
robert-hardwick
open
[ "module: tests", "triaged", "module: arm" ]
2
COLLABORATOR
### 🐛 Describe the bug https://github.com/pytorch/pytorch/actions/runs/13290922608/job/37112338971 ``` =================================== FAILURES =================================== _ TestSelectAlgorithmCPU.test_linear_with_embedding_batch_size_384_in_features_196_out_features_384_bias_False_cpu_bfloat16 _ Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/inductor/test_cpu_select_algorithm.py", line 951, in test_linear_with_embedding self.common(mod, (idx, x), atol=atol, rtol=rtol) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 472, in check_model actual = run(*example_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 574, in _fn raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 752, in _compile_fx_inner raise InductorError(e, currentframe()).with_traceback( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 737, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1405, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1060, in codegen_and_compile graph.run(*example_inputs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 855, in run return super().run(*args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/interpreter.py", line 171, in run self.env[node] = self.run_node(node) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 1440, in run_node result = super().run_node(n) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/interpreter.py", line 236, in run_node return getattr(self, n.op)(n.target, args, kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 1143, in call_function raise LoweringException(e, target, args, kwargs).with_traceback( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 1133, in call_function out = lowerings[target](*args, **kwargs) # type: ignore[index] File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/lowering.py", line 462, in wrapped out = decomp_fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/kernel/mm.py", line 684, in tuned_addmm return autotune_select_algorithm( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/select_algorithm.py", line 2284, in autotune_select_algorithm return _ALGORITHM_SELECTOR_CACHE(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/select_algorithm.py", line 1925, in __call__ timings = do_autotuning(precompile_fn) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/select_algorithm.py", line 1854, in do_autotuning timings = self.lookup( File "/var/lib/jenkins/workspace/test/inductor/test_cpu_select_algorithm.py", line 56, in skip_cache timings = benchmark(choices) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/select_algorithm.py", line 1835, in autotune return make_benchmark_fn()(choices) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/select_algorithm.py", line 2019, in benchmark_in_current_process inputs = get_inputs(choices) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/select_algorithm.py", line 1982, in get_inputs choices[0].benchmark(*example_inputs_extern, out=out_extern) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/select_algorithm.py", line 1410, in benchmark return super().benchmark(*args, out=out) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/ir.py", line 4398, in benchmark return benchmarker.benchmark(algo, args, {"out": out}) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/benchmarking.py", line 39, in wrapper return fn(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/benchmarking.py", line 91, in benchmark return self.benchmark_cpu(_callable, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/benchmarking.py", line 39, in wrapper return fn(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/benchmarking.py", line 129, in benchmark_cpu run_for(warmup) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/benchmarking.py", line 122, in run_for _callable() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/benchmarking.py", line 89, in <lambda> _callable = lambda: fn(*fn_args, **fn_kwargs) # noqa: E731 torch._inductor.exc.InductorError: LoweringException: RuntimeError: self and mat2 must have the same dtype, but got Float and BFloat16 ``` ``` To execute this test, run the following from the base repo dir: python test/inductor/test_cpu_select_algorithm.py TestSelectAlgorithmCPU.test_linear_with_embedding_batch_size_384_in_features_196_out_features_384_bias_False_cpu_bfloat16 ``` We see this test failure on non BF16 hw supported Aarch64 https://github.com/pytorch/pytorch/blob/e21181642f6e4d2522c6912a7dee676c21f07428/test/inductor/test_cpu_select_algorithm.py#L941 ``` class M(torch.nn.Module): def __init__(self, bias): super().__init__() self.linear = torch.nn.Linear(in_features, out_features, bias).to( dtype=dtype ) self.emb = torch.nn.Embedding(64, out_features) def forward(self, idx, x): return self.emb(idx) + self.linear(x) ``` It seems that on an Aarch64 without BF16 hw support , self.emb(idx) = float32 , self.linear(x) = bfloat16, and therefore the resulting tensor is float32, which causes the test to fail, as inductor path outputs bfloat16 tensor. I attempted to fix this by setting self.emb dtype e.g. `self.emb = torch.nn.Embedding(64, out_features).to(dtype=dtype)`, however I ran into this assertion error `self.assertEqual(counters["inductor"]["cpp_epilogue_fusion_counter"], 1)` This makes me think the eager path is working correctly and there is an issue in inductor. I will disable this test on Aarch64 with BF16 hw support. ### Versions PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (aarch64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.1 Libc version: glibc-2.35 Python version: 3.10.16 | packaged by conda-forge | (main, Dec 5 2024, 14:08:42) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-6.5.0-1018-aws-aarch64-with-glibc2.35 Is CUDA available: N/A CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: aarch64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 48 On-line CPU(s) list: 0-47 Vendor ID: ARM Model name: Neoverse-N1 Model: 1 Thread(s) per core: 1 Core(s) per cluster: 48 Socket(s): - Cluster(s): 1 Stepping: r3p1 BogoMIPS: 243.75 Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop asimddp ssbs L1d cache: 3 MiB (48 instances) L1i cache: 3 MiB (48 instances) L2 cache: 48 MiB (48 instances) L3 cache: 32 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-47 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; __user pointer sanitization Vulnerability Spectre v2: Mitigation; CSV2, BHB Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy==1.13.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.22.4 [pip3] onnx==1.17.0 [pip3] onnxscript==0.1.0.dev20240817 [pip3] optree==0.13.0 [pip3] torch==2.7.0a0+gitf94426b [conda] No relevant packages cc @mruberry @ZainRizvi @malfet @snadampal @milpuz01
true
2,850,953,651
DISABLED test_output_match_linalg_cholesky_cpu_float32 (__main__.TestConsistencyCPU)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "module: macos", "skipped" ]
1
NONE
Platforms: mac, macos This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_output_match_linalg_cholesky_cpu_float32&suite=TestConsistencyCPU&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/37150595954). Over the past 3 hours, it has been determined flaky in 5 workflow(s) with 5 failures and 5 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_output_match_linalg_cholesky_cpu_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/Users/ec2-user/runner/_work/_temp/conda_environment_13302190425/lib/python3.9/site-packages/torch/testing/_internal/common_device_type.py", line 1156, in test_wrapper return test(*args, **kwargs) File "/Users/ec2-user/runner/_work/pytorch/pytorch/test/test_mps.py", line 12625, in test_output_match mps_out = op(*mps_args, **mps_kwargs) File "/Users/ec2-user/runner/_work/_temp/conda_environment_13302190425/lib/python3.9/site-packages/torch/testing/_internal/opinfo/core.py", line 1188, in __call__ return self.op(*args, **kwargs) torch._C._LinAlgError: linalg.cholesky: (Batch element 0): The factorization could not be completed because the input is not positive-definite (the leading minor of order 1072234504 is not positive-definite). The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/Users/ec2-user/runner/_work/_temp/conda_environment_13302190425/lib/python3.9/site-packages/torch/testing/_internal/common_utils.py", line 3161, in wrapper method(*args, **kwargs) File "/Users/ec2-user/runner/_work/_temp/conda_environment_13302190425/lib/python3.9/site-packages/torch/testing/_internal/common_device_type.py", line 454, in instantiated_test result = test(self, **param_kwargs) File "/Users/ec2-user/runner/_work/_temp/conda_environment_13302190425/lib/python3.9/site-packages/torch/testing/_internal/common_device_type.py", line 1236, in dep_fn return fn(slf, *args, **kwargs) File "/Users/ec2-user/runner/_work/_temp/conda_environment_13302190425/lib/python3.9/site-packages/torch/testing/_internal/common_utils.py", line 1626, in wrapper fn(*args, **kwargs) File "/Users/ec2-user/runner/_work/_temp/conda_environment_13302190425/lib/python3.9/site-packages/torch/testing/_internal/common_device_type.py", line 1168, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 11: SampleInput(input=Tensor[size=(2, 0, 0), device="cpu", dtype=torch.float32], args=(), kwargs={'upper': 'False'}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=11 python test/test_mps.py TestConsistencyCPU.test_output_match_linalg_cholesky_cpu_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_mps.py` ResponseTimeoutError: Response timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/test_mps.py -1 (connected: true, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 0) headers: {} cc @clee2000 @wdvr @malfet @albanD
true
2,850,949,299
Fix init CUDA preload: get correct versions (#147001)
aowenson-imm
open
[ "triaged", "open source", "topic: not user facing" ]
3
NONE
Fixes #147001 Main change is in `cuda_libs` dict. For each lib, specify two patterns: 1) specific version e.g. `libcudart.so.12*` 2) the original less-specific pattern, as a backup Supporting change in `_preload_cuda_deps`, sorting multiple matches by version to prefer newer lib.
true
2,850,898,326
Optimize `_inductor/debug.py` *args : Any with typing_extensions.TypeVarTuple
zeshengzong
open
[ "triaged", "open source", "Stale", "topic: not user facing", "module: inductor" ]
3
CONTRIBUTOR
Fixes part of #146249 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,850,835,369
[inductor] SIGSEGV due to missing negative stride check in `torch.as_strided`
WLFJ
open
[ "module: crash", "triaged", "bug", "oncall: pt2", "topic: fuzzer" ]
0
NONE
### 🐛 Describe the bug When running the following test case with `torch.compile`, a segmentation fault (SIGSEGV) occurs. Without `torch.compile`, the expected `RuntimeError` is raised instead. # Test Case: ```python import torch @torch.compile def f(*args): sym_0, sym_1, sym_2, sym_3 = args var_374 = torch.tril_indices(row=sym_0, col=sym_1, offset=0) var_483 = torch.as_strided(var_374, size=sym_2, stride=sym_3, storage_offset=None) return var_483 + 1. res = f(751, 0, (1,), (-1,)) print(res) ``` # Observed Behavior: With `torch.compile`, running the above code results in a segmentation fault (SIGSEGV). However, when running the function without `torch.compile`, the following error is correctly raised: ``` Traceback (most recent call last): File "test.py", line 10, in <module> res = f(751, 0, (1,), (-1,)) ^^^^^^^^^^^^^^^^^^^^^^ File "test.py", line 7, in f var_483 = torch.as_strided(var_374, size=sym_2, stride=sym_3, storage_offset=None) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: as_strided: Negative strides are not supported at the moment, got strides: [-1] ``` ### Versions PyTorch 2.7.0.dev20250209+cu124 cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu
true
2,850,818,722
Optimize `graph.py` typing
zeshengzong
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor" ]
12
CONTRIBUTOR
Optimize `graph.py` methods type annotation. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,850,802,960
The unit of the return value of torch.cuda.clock_rate
cdzhan
closed
[ "module: docs", "module: cuda", "triaged" ]
6
CONTRIBUTOR
### 🐛 Describe the bug According to ![Image](https://github.com/user-attachments/assets/3ae43953-5f6b-44b2-a907-96269cecb82b) The unit of the return value should be MHz. ```bash root@cambricon-PowerEdge-C4140:/workspace# python -c "import torch;print(torch.cuda.clock_rate())" 1312 root@cambricon-PowerEdge-C4140:/workspace# nvidia-smi --query-gpu=clocks.sm --format=csv clocks.current.sm [MHz] 1312 MHz 1312 MHz 135 MHz 1312 MHz ``` ### Versions main cc @svekars @brycebortree @sekyondaMeta @AlannaBurke @ptrblck @msaroufim @eqy
true
2,850,797,173
Remove code for Python < 3.9
cyyever
closed
[ "open source", "Merged", "ciflow/trunk", "release notes: fx", "fx", "module: dynamo", "ciflow/inductor" ]
3
COLLABORATOR
Fixes #ISSUE_NUMBER cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @chenyang78 @kadeng @chauhang @amjames @StrongerXi
true
2,850,583,714
[torch.export] Exporting PaliGemma2 model fails due to data-dependent guarding issue
chohk88
closed
[ "oncall: pt2", "oncall: export" ]
9
NONE
### 🐛 Describe the bug **Title:** [torch.export] Exporting PaliGemma2 Model Fails Due to Data-Dependent Guarding Issue **🐛 Describe the bug** Attempting to export the `google/paligemma2-3b-pt-224` model using `torch.export` fails due to a data-dependent guard. The error originates from https://github.com/huggingface/transformers/blob/298b3f19303294293f7af075609481d64cb13de3/src/transformers/models/paligemma/modeling_paligemma.py#L508. Even when bypassing the error at `modeling_paligemma.py:508`, a similar issue arises at another location (https://github.com/huggingface/transformers/blob/298b3f19303294293f7af075609481d64cb13de3/src/transformers/cache_utils.py#L1657), further indicating an underlying problem with the handling of dynamic symbolic shapes. **Error Message:** ``` W0213 09:47:01.171000 226363 site-packages/torch/fx/experimental/symbolic_shapes.py:6578] failed during evaluate_expr(Ne(u0, 589824), hint=None, size_oblivious=False, forcing_spec=False E0213 09:47:01.172000 226363 site-packages/torch/fx/experimental/recording.py:299] failed while running evaluate_expr(*(Ne(u0, 589824), None), **{'fx_node': False}) Traceback (most recent call last): File "/root/.pyenv/versions/3.10.16/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/root/.pyenv/versions/3.10.16/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/root/.vscode-server/extensions/ms-python.debugpy-2025.0.1-linux-x64/bundled/libs/debugpy/adapter/../../debugpy/launcher/../../debugpy/__main__.py", line 71, in <module> cli.main() File "/root/.vscode-server/extensions/ms-python.debugpy-2025.0.1-linux-x64/bundled/libs/debugpy/adapter/../../debugpy/launcher/../../debugpy/../debugpy/server/cli.py", line 501, in main run() File "/root/.vscode-server/extensions/ms-python.debugpy-2025.0.1-linux-x64/bundled/libs/debugpy/adapter/../../debugpy/launcher/../../debugpy/../debugpy/server/cli.py", line 351, in run_file runpy.run_path(target, run_name="__main__") File "/root/.vscode-server/extensions/ms-python.debugpy-2025.0.1-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py", line 310, in run_path return _run_module_code(code, init_globals, run_name, pkg_name=pkg_name, script_name=fname) File "/root/.vscode-server/extensions/ms-python.debugpy-2025.0.1-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py", line 127, in _run_module_code _run_code(code, mod_globals, init_globals, mod_name, mod_spec, pkg_name, script_name) File "/root/.vscode-server/extensions/ms-python.debugpy-2025.0.1-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py", line 118, in _run_code exec(code, run_globals) File "/opt/torch_tensorrt/examples/dynamo/torch_export_paligemm2.py", line 61, in <module> exported_program = _export( File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/export/_trace.py", line 1046, in wrapper raise e File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/export/_trace.py", line 1019, in wrapper ep = fn(*args, **kwargs) File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/export/exported_program.py", line 121, in wrapper return fn(*args, **kwargs) File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/export/_trace.py", line 2101, in _export export_artifact = export_func( # type: ignore[operator] File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/export/_trace.py", line 1880, in _non_strict_export aten_export_artifact = _to_aten_func( # type: ignore[operator] File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/export/_trace.py", line 769, in _export_to_aten_ir gm, graph_signature = transform(aot_export_module)( File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/export/_trace.py", line 1810, in _aot_export_non_strict gm, sig = aot_export(wrapped_mod, args, kwargs=kwargs, **flags) File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1345, in aot_export_module fx_g, metadata, in_spec, out_spec = _aot_export_function( File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1584, in _aot_export_function fx_g, meta = create_aot_dispatcher_function( File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 570, in create_aot_dispatcher_function return _create_aot_dispatcher_function( File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 671, in _create_aot_dispatcher_function fw_metadata = run_functionalized_fw_and_collect_metadata( File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/collect_metadata_analysis.py", line 197, in inner flat_f_outs = f(*flat_f_args) File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/utils.py", line 184, in flat_fn tree_out = fn(*args, **kwargs) File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 879, in functional_call out = mod(*args[params_len:], **kwargs) File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/export/_trace.py", line 1794, in forward tree_out = mod(*args, **kwargs) File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/transformers/models/paligemma/modeling_paligemma.py", line 508, in forward if inputs_embeds[special_image_mask].numel() != image_features.numel(): File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/__init__.py", line 736, in __bool__ return self.node.bool_() File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/fx/experimental/sym_node.py", line 581, in bool_ return self.guard_bool("", 0) File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/fx/experimental/sym_node.py", line 519, in guard_bool r = self.shape_env.evaluate_expr(self.expr, self.hint, fx_node=self.fx_node) File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/fx/experimental/recording.py", line 263, in wrapper return retlog(fn(*args, **kwargs)) File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py", line 6569, in evaluate_expr return self._evaluate_expr( File "/root/.pyenv/versions/3.10.16/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py", line 6786, in _evaluate_expr raise self._make_data_dependent_error( torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode: Could not guard on data-dependent expression Ne(u0, 589824) (unhinted: Ne(u0, 589824)). (Size-like symbols: u0) Caused by: (transformers/models/paligemma/modeling_paligemma.py:508 in forward) For more information, run with TORCH_LOGS="dynamic" For extended logs when we create symbols, also add TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="u0" If you suspect the guard was triggered from C++, add TORCHDYNAMO_EXTENDED_DEBUG_CPP=1 For more debugging help, see https://docs.google.com/document/d/1HSuTTVvYH1pTew89Rtpeu84Ht3nQEFTYhAX3Ypa_xJs/edit?usp=sharing For C++ stack trace, run with TORCHDYNAMO_EXTENDED_DEBUG_CPP=1 ``` **To Reproduce** Run the following script to attempt exporting the model: ```python import torch from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration from transformers.image_utils import load_image from torch.export._trace import _export # 1. Model setup DEVICE = torch.device("cuda:0") model_id = "google/paligemma2-3b-pt-224" url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg" image = load_image(url) model = PaliGemmaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16 ).eval().to(DEVICE) processor = PaliGemmaProcessor.from_pretrained(model_id) prompt = "" model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(DEVICE) input_len = model_inputs["input_ids"].shape[-1] # 2. PyTorch with torch.inference_mode(): pyt_generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False) pyt_generation = pyt_generation[0][input_len:] pyt_decoded = processor.decode(pyt_generation, skip_special_tokens=True) print("=============================") print("PyTorch generated text:") print(pyt_decoded) print("=============================") # (a) Dummy inputs batch_size = 1 dummy_input_ids = model_inputs["input_ids"] dummy_attention_mask = model_inputs["attention_mask"] dummy_pixel_values = model_inputs["pixel_values"] dummy_inputs = { "input_ids": dummy_input_ids, "attention_mask": dummy_attention_mask, "pixel_values": dummy_pixel_values, } # (b) Dynamic shape BATCH = torch.export.Dim("batch", min=1, max=2) SEQ_LEN = torch.export.Dim("seq_len", min=1, max=1024) dynamic_shapes = { "input_ids": {0: BATCH, 1: SEQ_LEN}, "attention_mask": {0: BATCH, 1: SEQ_LEN}, "pixel_values": {0: BATCH}, } # (c) ExportedProgram # torch.export.export( # model, # args=(), # kwargs=dummy_inputs, # dynamic_shapes=dynamic_shapes, # strict=False, # ) exported_program = _export( model, args=(), kwargs=dummy_inputs, dynamic_shapes=dynamic_shapes, strict=False, allow_complex_guards_as_runtime_asserts=True, ) ``` **Additional context** - The issue occurs at [transformers/models/paligemma/modeling_paligemma.py#L508](https://github.com/huggingface/transformers/blob/298b3f19303294293f7af075609481d64cb13de3/src/transformers/models/paligemma/modeling_paligemma.py#L508) - Even after bypassing this line, another similar error arises, indicating a deeper issue. Would appreciate any insights on how to handle data-dependent guards in `torch.export`. Thanks! ### Versions PyTorch version: 2.7.0.dev20250212+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.10.16 (main, Feb 12 2025, 15:05:21) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-131-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.2.140 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3080 Ti Nvidia driver version: 535.183.01 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 36 On-line CPU(s) list: 0-35 Vendor ID: GenuineIntel Model name: Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 18 Socket(s): 1 Stepping: 7 CPU max MHz: 4800.0000 CPU min MHz: 1200.0000 BogoMIPS: 6000.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 576 KiB (18 instances) L1i cache: 576 KiB (18 instances) L2 cache: 18 MiB (18 instances) L3 cache: 24.8 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-35 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==2.2.2 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] pytorch-triton==3.2.0+git4b3bb1f8 [pip3] torch==2.7.0.dev20250212+cu124 [pip3] torch-tensorrt==2.7.0.dev0+2368e63ef [pip3] torchvision==0.22.0.dev20250212+cu124 [pip3] triton==3.2.0 [conda] Could not collect cc @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
true
2,850,565,577
Fix the Problems About Defining Static Variable in Inline Function
FFFrog
open
[ "oncall: distributed", "oncall: jit", "open source", "Merged", "Reverted", "ciflow/trunk", "release notes: cpp", "ci-no-td" ]
34
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147095 Refer to https://github.com/pytorch/pytorch/issues/125465 for more informations - Remove unused header files - Move the inline function that defines the static variable to .cc cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
2,850,536,732
[torch.export] torch._dynamo.exc.Unsupported: dynamic shape operator: aten.bincount.default
riestmo-nxp
closed
[ "oncall: pt2", "oncall: export" ]
0
NONE
### 🐛 Describe the bug When trying to export a model that uses the torch.bincount operation, I get the following error: ``` torch._dynamo.exc.Unsupported: dynamic shape operator: aten.bincount.default; Operator does not have a meta kernel that supports dynamic output shapes, please report an issue to PyTorch ``` This code snippet can be used to reproduce the error: ```python import torch input = torch.randint(0, 8, (5,), dtype=torch.int64) class BincountDummyModel(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): weights = torch.linspace(0, 1, steps=5) bc = x.bincount(weights) return bc device = "cpu" model = BincountDummyModel().to(device) exported_model = torch.export.export(model, (input,)) ``` ### Versions Collecting environment information... PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-122-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 11.5.119 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA RTX A6000 GPU 1: NVIDIA RTX A6000 GPU 2: NVIDIA RTX A6000 GPU 3: NVIDIA RTX A6000 Nvidia driver version: 550.90.07 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) W-3335 CPU @ 3.40GHz CPU family: 6 Model: 106 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 1 Stepping: 6 CPU max MHz: 4000.0000 CPU min MHz: 800.0000 BogoMIPS: 6800.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 768 KiB (16 instances) L1i cache: 512 KiB (16 instances) L2 cache: 20 MiB (16 instances) L3 cache: 24 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.1.3 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] onnx==1.17.0 [pip3] onnxruntime==1.20.1 [pip3] torch==2.5.1 [pip3] torchvision==0.20.1 [pip3] triton==3.1.0 [conda] Could not collect cc @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
true
2,850,493,389
DISABLED test_view_dtype_upsize_errors_xla_uint8 (__main__.TestViewOpsXLA)
ankurneog
closed
[ "skipped" ]
1
CONTRIBUTOR
Platforms: <fill this in or delete. Valid labels are: asan, linux, mac, macos, rocm, win, windows.> This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22test_view_dtype_upsize_errors_xla_uint8%22%2C%22TestViewOpsXLA%22%5D)).
true
2,850,493,238
DISABLED test_view_dtype_upsize_errors_xla_uint8 (__main__.TestViewOpsXLA)
ankurneog
closed
[ "skipped" ]
1
CONTRIBUTOR
Platforms: <fill this in or delete. Valid labels are: asan, linux, mac, macos, rocm, win, windows.> This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22test_view_dtype_upsize_errors_xla_uint8%22%2C%22TestViewOpsXLA%22%5D)).
true
2,850,491,826
DISABLED test_view_dtype_upsize_errors_xla_uint8 (__main__.TestViewOpsXLA)
ankurneog
closed
[ "skipped" ]
1
CONTRIBUTOR
Platforms: <fill this in or delete. Valid labels are: asan, linux, mac, macos, rocm, win, windows.> This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22test_view_dtype_upsize_errors_xla_uint8%22%2C%22TestViewOpsXLA%22%5D)).
true
2,850,491,031
DISABLED test_view_dtype_upsize_errors_xla_uint8 (__main__.TestViewOpsXLA)
ankurneog
closed
[ "skipped" ]
1
CONTRIBUTOR
This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22test_view_dtype_upsize_errors_xla_uint8%22%2C%22TestViewOpsXLA%22%5D)).
true
2,850,487,623
DISABLED test_conj_imag_view_lazy_complex128 (__main__.TestViewOpsLAZY)
ankurneog
closed
[ "skipped" ]
1
CONTRIBUTOR
Platforms: <fill this in or delete. Valid labels are: asan, linux, mac, macos, rocm, win, windows.> This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22test_view_ops.py%3A%3ATestViewOpsLAZY%3A%3Atest_conj_imag_view_lazy_complex128%22%5D)).
true
2,850,487,384
DISABLED test_conj_imag_view_lazy_complex128 (__main__.TestViewOpsLAZY)
ankurneog
closed
[ "skipped" ]
1
CONTRIBUTOR
This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22test_view_ops.py%3A%3ATestViewOpsLAZY%3A%3Atest_conj_imag_view_lazy_complex128%22%5D)).
true
2,850,487,151
DISABLED test_conj_imag_view_lazy_complex128 (__main__.TestViewOpsLAZY)
ankurneog
closed
[ "skipped" ]
1
CONTRIBUTOR
This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22test_view_ops.py%3A%3ATestViewOpsLAZY%3A%3Atest_conj_imag_view_lazy_complex128%22%5D)).
true
2,850,486,877
DISABLED test_conj_imag_view_lazy_complex128 (__main__.TestViewOpsLAZY)
ankurneog
closed
[ "skipped" ]
1
CONTRIBUTOR
This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22test_view_ops.py%3A%3ATestViewOpsLAZY%3A%3Atest_conj_imag_view_lazy_complex128%22%5D)).
true
2,850,486,677
DISABLED test_conj_imag_view_lazy_complex128 (__main__.TestViewOpsLAZY)
ankurneog
closed
[ "skipped" ]
1
CONTRIBUTOR
This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22test_view_ops.py%3A%3ATestViewOpsLAZY%3A%3Atest_conj_imag_view_lazy_complex128%22%5D)).
true
2,850,486,416
DISABLED test_conj_imag_view_lazy_complex128 (__main__.TestViewOpsLAZY)
ankurneog
closed
[ "skipped" ]
1
CONTRIBUTOR
This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22test_view_ops.py%3A%3ATestViewOpsLAZY%3A%3Atest_conj_imag_view_lazy_complex128%22%5D)).
true
2,850,486,174
DISABLED test_conj_imag_view_lazy_complex128 (__main__.TestViewOpsLAZY)
ankurneog
closed
[ "skipped" ]
1
CONTRIBUTOR
This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22test_view_ops.py%3A%3ATestViewOpsLAZY%3A%3Atest_conj_imag_view_lazy_complex128%22%5D)).
true
2,850,485,537
OpenReg: Run test_openreg in CI
Zhenbin-8
open
[ "triaged", "open source", "Stale", "topic: not user facing" ]
2
CONTRIBUTOR
The current CI will skip the test codes under test/cpp_extensions, so I move `test_openreg.py` to the test directory to allow the CI to run.
true
2,850,484,371
DISABLED test_conj_imag_view_lazy_complex128 (__main__.TestViewOpsLAZY)
ankurneog
closed
[ "skipped" ]
1
CONTRIBUTOR
This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22test_view_ops.py%3A%3ATestViewOpsLAZY%3A%3Atest_conj_imag_view_lazy_complex128%22%5D)).
true
2,850,484,052
DISABLED test_conj_imag_view_lazy_complex128 (__main__.TestViewOpsLAZY)
ankurneog
closed
[ "skipped" ]
1
CONTRIBUTOR
This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22test_view_ops.py%3A%3ATestViewOpsLAZY%3A%3Atest_conj_imag_view_lazy_complex128%22%5D)).
true
2,850,483,328
DISABLED test_conj_imag_view_lazy_complex128 (__main__.TestViewOpsLAZY)
ankurneog
closed
[ "skipped" ]
1
CONTRIBUTOR
This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22test_view_ops.py%3A%3ATestViewOpsLAZY%3A%3Atest_conj_imag_view_lazy_complex128%22%5D)).
true
2,850,468,304
[torch][cuda] Remove redundant getting of pynvml handler
cdzhan
open
[ "triaged", "open source", "Stale", "topic: not user facing" ]
3
CONTRIBUTOR
Fixes #ISSUE_NUMBER
true
2,850,407,457
[inductor] SIGSEGV when using `torch.compile` with `torch.as_strided_copy`
WLFJ
open
[ "module: crash", "module: error checking", "triaged", "oncall: pt2", "topic: fuzzer" ]
1
NONE
### 🐛 Describe the bug When running the following test case with `torch.compile`, a segmentation fault (SIGSEGV) occurs. Without `torch.compile`, the expected `RuntimeError` is raised instead. # Test case ```python import torch @torch.compile def f(*args): input, sym_1, sym_2 = args return torch.as_strided_copy(input, size=sym_1, stride=sym_2, storage_offset=None) res = f(torch.tensor([]), (1,), (0,),) print(res) ``` # Observed Behavior: With `torch.compile`, running the above code results in a segmentation fault (SIGSEGV). However, when running the function without `torch.compile`, the following error is correctly raised: ``` Traceback (most recent call last): File "test.py", line 7, in <module> res = f(torch.tensor([]), (1,), (0,),) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "test.py", line 5, in f return torch.as_strided_copy(input, size=sym_1, stride=sym_2, storage_offset=None) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: setStorage: sizes [1], strides [0], storage offset 0, and itemsize 4 requiring a storage size of 4 are out of bounds for storage of size 0 ``` ### Versions PyTorch 2.7.0.dev20250209+cu124 cc @malfet @chauhang @penguinwu
true
2,850,407,244
How to check grads in each step of model?
ElinLiu0
closed
[ "module: onnx", "triaged" ]
7
NONE
Hi there: I've implement a Pytorch version of [Retrieval-based-Voice-Conversion(RVC for short)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI) at [here](https://github.com/ElinLiu0/RVCTorch/blob/master/POC_Torch.ipynb). The question is,when i wanna export my implementation pipeline into ONNX using below code: ```python with torch.inference_mode(), torch.cuda.amp.autocast(enabled=False): torch.onnx.export( pipeline, (audio.cuda(),), "pipeline.onnx", input_names=["input"], output_names=["output"], opset_version=14 ) ``` It rasing below error: ```python RuntimeError: Cannot insert a Tensor that requires grad as a constant. Consider making it a parameter or input, or detaching the gradient Tensor: 0.6670 [ torch.cuda.HalfTensor{1} ] ``` Typically rasing with an `nn.BatchNorm2d` cell called at [rmvpe.py](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/infer/lib/rmvpe.py) at line 244. So how could i fix this error,since this implementation finally will deploy on C# or model serving platform like NVIDIA Triton.
true
2,850,364,581
[inductor] Performance Degradation and Hang in `torch.diff`
WLFJ
open
[ "module: performance", "triaged", "oncall: pt2", "module: inductor", "topic: fuzzer" ]
0
NONE
### 🐛 Describe the bug I encountered a significant performance issue when using `torch.diff` within a `torch.compile` function. The issue occurs when increasing the `n` parameter of `torch.diff`, leading to extreme slowdowns. test case: ```python import torch @torch.compile def f(*args): sym_0, sym_1, sym_2 = args var_540 = torch.ones(size=sym_0) return torch.diff(var_540, n=sym_1, dim=sym_2, prepend=None, append=None) res = f((3505,), 30, 0) print(res) ``` # Observed Behavior * When `sym_1 = 10`, execution completes in **~4 seconds**: ``` tensor([0., 0., 0., ..., 0., 0., 0.]) ________________________________________________________ Executed in 4.02 secs fish external usr time 9.42 secs 822.00 micros 9.42 secs sys time 0.75 secs 210.00 micros 0.75 secs ``` * When `sym_1 = 20`, execution completes in **~4 seconds**: ``` tensor([0., 0., 0., ..., 0., 0., 0.]) ________________________________________________________ Executed in 3.99 secs fish external usr time 9.27 secs 511.00 micros 9.27 secs sys time 0.76 secs 0.00 micros 0.76 secs ``` * When `sym_1 = 30`, compilation and execution fail to complete even after **500 seconds**: ``` KeyboardInterrupt ________________________________________________________ Executed in 511.90 secs fish external usr time 514.55 secs 0.00 millis 514.55 secs sys time 1.75 secs 1.07 millis 1.75 secs ``` ### Versions PyTorch 2.7.0.dev20250209+cu124 cc @msaroufim @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
2,850,307,769
[DONT MRGE][XPU] Add arl-h AOT target for windows cd
chuanqi129
closed
[ "triaged", "open source", "topic: not user facing", "ciflow/binaries_wheel" ]
9
COLLABORATOR
Fixes #ISSUE_NUMBER
true
2,850,284,758
[DO NOT MERGE] Update oneDNN to the latest main branch
jiayisunx
open
[ "module: mkldnn", "open source", "topic: not user facing", "ciflow/linux-aarch64" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #147855 * #147360 * __->__ #147073 cc @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal
true
2,850,252,220
[Inductor] Set prop_kind to forward_inference when grad is not needed for mkldnn_linear_pointwise and mkldnn_convolution_pointwise
jiayisunx
closed
[ "module: cpu", "open source", "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: inductor" ]
3
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #147855 * #147360 * #147359 * #147073 * __->__ #147072 Summary: The `prop_kind` of `mkldnn._linear_pointwise`, `mkldnn._linear_pointwise.binary`, `mkldnn._convolution_pointwise.binary` and `mkldnn._convolution_pointwise_.binary` are always `dnnl_forward`, i.e., `dnnl_forward_training` , regardless of whether `grad` is needed. Setting `prop_kind` to `dnnl_forward_inference` for these ops when `grad` is not needed could have better performance. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,850,232,112
[Inductor][CPU] SIGSEGV in `torch.slice_copy` with large step value
WLFJ
closed
[ "high priority", "module: crash", "bug", "oncall: pt2", "oncall: cpu inductor", "topic: fuzzer" ]
2
NONE
### 🐛 Describe the bug The following test case causes a SIGSEGV (Segmentation Fault) when run with `torch.compile`: ```python import torch @torch.compile def f(input): var_17 = torch.slice_copy(input, dim=0, start=449, end=None, step=9223372036854775807) return torch.reciprocal(var_17) input = torch.randn((875,)) res = f(input) print(res) ``` This leads to: ``` fish: Job 1, 'python3 test.py' terminated by signal SIGSEGV (Segmentation fault) ``` However, when running the same function without `@torch.compile`, the expected output is: ``` tensor([]) ``` Additionally, when executed on `torch.compile` + CUDA, the issue does not occur. The combination of `torch.slice_copy` with an extremely large step value (`9223372036854775807`, which is `INT64_MAX`) might be causing incorrect memory access in the compiled mode, leading to a segmentation fault. Since eager mode correctly handles this case by returning an empty tensor (`tensor([])`), `torch.compile` may be missing a necessary bounds check or handling an invalid pointer. ### Versions PyTorch 2.7.0.dev20250209+cu124 cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu
true
2,850,183,262
[inductor][cpu] SIGILL with `torch.randint`
WLFJ
closed
[ "module: crash", "bug", "oncall: pt2", "oncall: cpu inductor", "topic: fuzzer" ]
1
NONE
### 🐛 Describe the bug When running the following test case with `torch.compile`, a SIGILL (Illegal Instruction) error occurs: ```python import torch @torch.compile def f(*args): sym_0, sym_1 = args return torch.randint(high=sym_0, size=sym_1) res = f(0, (3960,)) ``` This leads to: ``` fish: Job 2, 'python3 test.py' terminated by signal SIGILL (Illegal instruction) ``` However, when running the same function without `@torch.compile`, the expected error is raised instead: ``` Traceback (most recent call last): File "test.py", line 8, in <module> res = f(0, (3960,)) ^^^^^^^^^^^^^ File "test.py", line 6, in f return torch.randint(high=sym_0, size=sym_1) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: random_ expects 'from' to be less than 'to', but got from=0 >= to=0 ``` It seems that `torch.compile` with CPU does not properly validate the range constraints of `torch.randint`, leading to undefined behavior that results in a crash instead of a controlled error message. CUDA works fine with `torch.compile`. ### Versions PyTorch 2.7.0.dev20250209+cu124 cc @chauhang @penguinwu
true
2,850,141,267
[Inductor][CPP] Avoid transpose with cpp micro-gemm for FlexAttention
CaoE
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147069 * #147068 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,850,141,006
[Inductor][CPP] Add transposed B matrix support for CppMicroGemmFP32Vec
CaoE
closed
[ "module: cpu", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
9
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #147069 * __->__ #147068 * Add transposed B support for CppMicroGemmFP32Vec. * Add support for cases where N is not divisible by `block_n`. Expand CppMicroGemmFP32Vec to generate gemm kernel that supports transposed B and N of arbitrary size. This is the basis for https://github.com/pytorch/pytorch/pull/147069 to get better performance. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,850,140,775
Separate transpose from memory load/store and add load size support for convert_to_int32
CaoE
closed
[ "module: cpu", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
3
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #147069 * #147068 * __->__ #147067 Separate transpose from memory load/store and add load size support for convert_to_int32 to facilitate the expansion for CppMicroGemmFP32Vec. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,850,136,211
OpenReg: Fix releasing tensor issue when using pin_memory
Zhenbin-8
open
[ "triaged", "open source", "topic: not user facing" ]
2
CONTRIBUTOR
# Fail when exiting process When executing the following code: ``` import pytorch_openreg import torch if __name__ == "__main__": a = torch.tensor(1).pin_memory() ``` The process will exit with error. This is the same issue as https://github.com/pytorch/pytorch/pull/140936 # Fail when exiting python generator When executing the following code, error will happen on python 3.9: ``` import pytorch_openreg import torch def generator(): t = torch.tensor(1).pin_memory() yield if __name__ == "__main__": iter = generator() next(iter) try: next(iter) # Error happens here on python 3.9 except StopIteration: print("success") # python 3.10+ ``` This is the same issue as https://github.com/pytorch/pytorch/pull/141815#issuecomment-2547303381 cc @albanD
true
2,850,132,294
Issue with FBGEMM Operators in Exported PyTorch AOT Model When Running in C++: Cound not find schema for fbgemm:xxx
siluzhou-pku
closed
[ "oncall: pt2", "oncall: export", "module: aotinductor" ]
1
NONE
### 🐛 Describe the bug **Description** I am encountering an issue when exporting a PyTorch model that uses `torch.ops.fbgemm.asynchronous_complete_cumsum` and running it in C++. The model works correctly in Python after adding `import fbgemm_gpu`, but fails when running in a C++ environment. --- **Steps to Reproduce** 1. **Model Definition** In my PyTorch model, I use the `torch.ops.fbgemm.asynchronous_complete_cumsum` function as follows: ```python class gul_grs_user_model(torch.nn.Module): def forward(self, xxx): # ... x_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(past_lengths) # ... other fbgemm ops ... return output ``` 2. **Exporting the FX Graph** I export the model using `torch.export.export` and then perform symbolic tracing: ```python exported_program_model: torch.export.ExportedProgram = torch.export.export( warp_model, args=(), kwargs=self.inputs_dict ) graph_module: torch.fx.GraphModule = torch.fx.symbolic_trace(exported_program_model.module()) graph_module.to_folder(os.path.join(self.fx_folder, self.model_name), self.model_name) ``` 3. **Generated `module.py`** The exported `module.py` contains code similar to: ```python import torch from math import inf from math import nan NoneType = type(None) import torch from torch import device import torch.fx._pytree as fx_pytree import torch.utils._pytree as pytree from torch.nn import * class gul_grs_user_model(torch.nn.Module): def forward(self, xxx): # ... asynchronous_complete_cumsum_default = torch.ops.fbgemm.asynchronous_complete_cumsum.default(view_default) dense_to_jagged_forward_default = torch.ops.fbgemm.dense_to_jagged_forward.default( mul_tensor_1, [asynchronous_complete_cumsum_default] ) mul_tensor_1 = None # ... ``` 4. **Python Error When Loading the Module** When loading the exported module in Python without modification, I encounter the following error: ``` Traceback (most recent call last): File "fx_model_plugin.py", line 132, in <module> args.static).build() File "fx_model.py", line 116, in build fx_model._model = self.load_model() File "fx_model.py", line 80, in load_model user_model = torch.fx.symbolic_trace(user_model) File "torch/fx/_symbolic_trace.py", line 1281, in symbolic_trace graph = tracer.trace(root, concrete_args) File "torch/fx/_symbolic_trace.py", line 823, in trace (self.create_arg(fn(*args)),), File "module.py", line 83, in forward asynchronous_complete_cumsum_default = torch.ops.fbgemm.asynchronous_complete_cumsum.default(view_default) File "torch/_ops.py", line 1225, in __getattr__ raise AttributeError(...) ``` 5. **Workaround in Python** By adding `import fbgemm_gpu` at the beginning of `module.py`, the module loads and runs successfully in Python: ```python import torch import fbgemm_gpu # Added import from math import inf from math import nan # ... rest of the code ... ``` 6. **Compiling the Model** I compile the model using `torch._export.aot_compile`: ```python dynamicLib_path = torch._export.aot_compile( self.model, args=tuple(list(self._inputs_dict.values())), dynamic_shapes={**self._dynamic_shapes}, options={ "aot_inductor.output_path": os.path.join(self.dynamicLib_output_folder, dynamicLib_name), "max_autotune": True, }, ) ``` 7. **Error When Running in C++** However, when attempting to run the compiled module in C++, I receive the following error: ![Image](https://github.com/user-attachments/assets/67df4cbe-43c0-4825-a4a5-eeb60013a87a) --- **Environment** - **PyTorch version**: `torch-2.5.1+cu124` - **fbgemm_gpu version**: `1.0.0` - **Python version**: `3.12` - **CUDA version**: `12.4` - **C++ Build Information**: ![Image](https://github.com/user-attachments/assets/02623a9d-6e70-4bfe-938b-5c4c9e615f19) --- **Question** How can I resolve the issue of `torch.ops.fbgemm.*` functions not being found when running the compiled module in C++? Is there a proper way to include or register the `fbgemm_gpu` custom operations in the C++ environment so that the model runs successfully? --- **Additional Information** - In Python, adding `import fbgemm_gpu` resolves the issue, which suggests that the `fbgemm_gpu` module needs to be imported to register the custom operations. - In C++, I am unsure how to perform an equivalent operation to ensure that `fbgemm_gpu` functions are available. - The C++ application links against `libtorch.so`, but it seems that it doesn't include `fbgemm_gpu` operations by default. - I suspect that I need to include or link against `fbgemm_gpu` when building the C++ application, but I couldn't find clear documentation on how to do this. --- **Thank you for your assistance!** cc @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4 @desertfire @chenyang78 @yushangdi @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv ### Error logs _No response_ ### Versions Collecting environment information... PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Alibaba Cloud Linux 3 (Soaring Falcon) (x86_64) GCC version: (GCC) 10.2.1 20200825 (Alibaba 10.2.1-3.8 2.32) Clang version: 17.0.6 (Alibaba Cloud Compiler 17.0.6.4-24.11.20.alios7) CMake version: version 3.26.5 Libc version: glibc-2.32 Python version: 3.12.8 | packaged by Anaconda, Inc. | (main, Dec 11 2024, 16:31:09) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-4.19.91-009.ali4000.alios7.x86_64-x86_64-with-glibc2.32 Is CUDA available: True CUDA runtime version: 12.4.99 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 106 Model name: Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz Stepping: 6 CPU MHz: 2900.000 CPU max MHz: 3500.0000 CPU min MHz: 800.0000 BogoMIPS: 5800.00 Virtualization: VT-x L1d cache: 48K L1i cache: 32K L2 cache: 1280K L3 cache: 49152K NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid fsrm md_clear pconfig flush_l1d arch_capabilities Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.5.1+cu124 [pip3] torchaudio==2.5.1 [pip3] torchvision==0.20.1 [pip3] triton==3.1.0 [pip3] fbgemm_gpu==1.0.0 [conda] No relevant packages cc @chauhang @penguinwu
true
2,850,090,484
[torch/elastic] unexpected behavior of torch elastic
shinytang6
open
[ "oncall: distributed", "triaged", "module: elastic" ]
17
NONE
### 🐛 Describe the bug Hi all, I conducted some simple tests using torch elastic to understand its behavior under node failures, and I encountered several unexpected outcomes against the official doc. ## Fault Tolerance & Elasticity test Master node A command: ```shell $ torchrun --nnodes=1:2 --nproc-per-node=1 --rdzv-id=0 --rdzv-backend=c10d --rdzv-endpoint=MASTER_ADDR:MASTER_PORT --max-restarts=10 elastic-demo.py ``` Worker node B command: ``` $ torchrun --nnodes=1:2 --nproc-per-node=1 --rdzv-id=0 --rdzv-backend=c10d --rdzv-endpoint=MASTER_ADDR:MASTER_PORT --max-restarts=10 elastic-demo.py ``` ### Case 1 * Both nodes start the task simultaneously, and the training begins normally. * After terminating the worker node B task (using ctrl+c or kill -15), master node A hangs and the training still stalls. * Restarting the worker node B task sometimes results in an error (torch.distributed.elastic.rendezvous.api.RendezvousClosedError), but it occasionally restarts successfully. This behavior is irregular and the `--max-restarts` parameter does not seem to take effect; it occurs regardless of increasing or decreasing its value and appears to depend on the timing of the rejoining(not sure about that). ### Case 2 * Both nodes start the task simultaneously, and the training begins normally. * After terminating the worker node B task (using kill -9), master node A hangs and the training stalls. * Restarting the worker node B task allows the training to restart, but the `--max-restarts` parameter does not seem to take effect too. ### Case 3 * Both nodes start the task simultaneously, and the training begins normally. * After terminating master node A’s task (using ctrl+c, kill -15, or kill -9), the entire training crashes immediately. The detailed error message: ```python Traceback (most recent call last): File "/opt/conda/bin/torchrun", line 8, in <module> sys.exit(main()) File "/opt/conda/lib/python3.8/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 348, in wrapper return f(*args, **kwargs) File "/opt/conda/lib/python3.8/site-packages/torch/distributed/run.py", line 901, in main run(args) File "/opt/conda/lib/python3.8/site-packages/torch/distributed/run.py", line 892, in run elastic_launch( File "/opt/conda/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 133, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/opt/conda/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 255, in launch_agent result = agent.run() File "/opt/conda/lib/python3.8/site-packages/torch/distributed/elastic/metrics/api.py", line 124, in wrapper result = f(*args, **kwargs) File "/opt/conda/lib/python3.8/site-packages/torch/distributed/elastic/agent/server/api.py", line 680, in run result = self._invoke_run(role) File "/opt/conda/lib/python3.8/site-packages/torch/distributed/elastic/agent/server/api.py", line 829, in _invoke_run self._initialize_workers(self._worker_group) File "/opt/conda/lib/python3.8/site-packages/torch/distributed/elastic/metrics/api.py", line 124, in wrapper result = f(*args, **kwargs) File "/opt/conda/lib/python3.8/site-packages/torch/distributed/elastic/agent/server/api.py", line 652, in _initialize_workers self._rendezvous(worker_group) File "/opt/conda/lib/python3.8/site-packages/torch/distributed/elastic/metrics/api.py", line 124, in wrapper result = f(*args, **kwargs) File "/opt/conda/lib/python3.8/site-packages/torch/distributed/elastic/agent/server/api.py", line 489, in _rendezvous rdzv_info = spec.rdzv_handler.next_rendezvous() File "/opt/conda/lib/python3.8/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1125, in next_rendezvous self._op_executor.run( File "/opt/conda/lib/python3.8/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 667, in run raise RendezvousClosedError torch.distributed.elastic.rendezvous.api.RendezvousClosedError ``` So my questions are: 1. Is the behavior of different signals (SIGINT, SIGTERM, SIGKILL) expected? 2. Why does the `--max-restarts` parameter not seem to affect the restart behavior? Is there something I'm missing in the configuration or use of this parameter? ### Versions torch version: ```python $ pip show torch Name: torch Version: 2.4.1 Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration Home-page: https://pytorch.org/ Author: PyTorch Team Author-email: packages@pytorch.org License: BSD-3 Location: /opt/conda/lib/python3.8/site-packages Requires: filelock, fsspec, jinja2, networkx, nvidia-cublas-cu12, nvidia-cuda-cupti-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-runtime-cu12, nvidia-cudnn-cu12, nvidia-cufft-cu12, nvidia-curand-cu12, nvidia-cusolver-cu12, nvidia-cusparse-cu12, nvidia-nccl-cu12, nvidia-nvtx-cu12, sympy, triton, typing-extensions Required-by: accelerate, bitsandbytes, deepspeed, flash_attn, flash_attn_1, peft, torchaudio, torchpippy, torchvision, transformer_engine, trl ``` cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @dzhulgakov
true
2,850,086,396
[DEBUG ONLY] vec flex attention and add UT
chunyuan-w
closed
[ "open source", "ciflow/trunk", "topic: not user facing", "ciflow/periodic", "module: inductor", "ciflow/inductor" ]
1
COLLABORATOR
Fixes #ISSUE_NUMBER cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,850,040,979
[Feature Request] Release original parameters by layer when turning on `freezing_discard_parameters`
leslie-fang-intel
open
[ "triaged", "oncall: pt2", "module: inductor" ]
8
COLLABORATOR
### 🚀 The feature, motivation and pitch `Freezing` is an Inductor configuration that converts input arguments into frozen parameters and applies constant folding to transform frozen parameters accordingly. There is an additional flag, `freezing_discard_parameters`, which, when enabled, discards parameters from the eager module to reduce memory usage ([code reference](https://github.com/pytorch/pytorch/blob/43eb39d7c832b5560f7bfa8d29cc7919ac21c0ca/torch/_inductor/freezing.py#L124C15-L126)). However, `freezing_discard_parameters` takes effect only at the end of the freezing pass, meaning peak memory usage during the process may still exceed the threshold for large language models. In this feature request, we aim to explore solutions for discarding eager module parameters layer by layer to minimize peak memory usage. ### Alternatives Some points to implement this feature: - Step 1: Mapping `_frozen_param` to Eager Module Buffers - We need to record the mapping between each `_frozen_param` and buffers from the eager module. It’s unclear if this can be done purely through name analysis; otherwise, we may need to check the data_ptr for each `_frozen_param` and compare it with buffers from the eager module. - To simplify below analysis and safely apply this feature, we will also ensure that all `_frozen_param` have no aliasing between each other. - Step 2: Handling `ConstantFolder` Runs - During each node execution in `ConstantFolder`, we check whether a `_frozen_param` is generated with new storage. Some constant folding operations (e.g., permute nodes) may generate a new `_frozen_param` that still shares storage with the original eager module buffer. - Step 3: Applying the Optimization - If a `_frozen_param` with new storage is detected, we further verify whether the original FX node has only one user. Once the above conditions are met, we can discard the corresponding buffer from the eager module. Additionally, we may need to delete other Python object references if necessary to free up memory effectively. cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @aakhundov @eellison ### Additional context _No response_
true
2,849,963,534
try print stacktrace for error
henrylhtsang
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
5
CONTRIBUTOR
Differential Revision: D69573525 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,849,951,908
check if config.autotune_fallback_to_aten before using aten as a fallback
henrylhtsang
closed
[ "fb-exported", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Differential Revision: D69213269 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,849,938,625
AttributeError: type object 'torch._C._distributed_c10d.BackendType' has no attribute 'XCCL'.
oraluben
open
[ "oncall: distributed", "triaged", "module: xpu" ]
8
CONTRIBUTOR
### 🐛 Describe the bug Found on 2.6+cu126 on aarch64 ``` (venv) root@7dc30e9f3e4f:/workspace# pip3 install torch --index-url https://download.pytorch.org/whl/cu126 Looking in indexes: https://download.pytorch.org/whl/cu126, https://pypi.ngc.nvidia.com Collecting torch Downloading https://download.pytorch.org/whl/cu126/torch-2.6.0%2Bcu126-cp312-cp312-linux_aarch64.whl.metadata (26 kB) Collecting filelock (from torch) Downloading https://download.pytorch.org/whl/filelock-3.13.1-py3-none-any.whl.metadata (2.8 kB) Collecting typing-extensions>=4.10.0 (from torch) Downloading https://download.pytorch.org/whl/typing_extensions-4.12.2-py3-none-any.whl.metadata (3.0 kB) Collecting setuptools (from torch) Downloading https://download.pytorch.org/whl/setuptools-70.2.0-py3-none-any.whl.metadata (5.8 kB) Collecting sympy==1.13.1 (from torch) Downloading https://download.pytorch.org/whl/sympy-1.13.1-py3-none-any.whl (6.2 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.2/6.2 MB 13.0 MB/s eta 0:00:00 Collecting networkx (from torch) Downloading https://download.pytorch.org/whl/networkx-3.3-py3-none-any.whl.metadata (5.1 kB) Collecting jinja2 (from torch) Downloading https://download.pytorch.org/whl/Jinja2-3.1.4-py3-none-any.whl.metadata (2.6 kB) Collecting fsspec (from torch) Downloading https://download.pytorch.org/whl/fsspec-2024.6.1-py3-none-any.whl.metadata (11 kB) Collecting mpmath<1.4,>=1.1.0 (from sympy==1.13.1->torch) Downloading https://download.pytorch.org/whl/mpmath-1.3.0-py3-none-any.whl (536 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 536.2/536.2 kB 119.1 MB/s eta 0:00:00 Collecting MarkupSafe>=2.0 (from jinja2->torch) Downloading https://download.pytorch.org/whl/MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (29 kB) Downloading https://download.pytorch.org/whl/cu126/torch-2.6.0%2Bcu126-cp312-cp312-linux_aarch64.whl (2462.2 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.5/2.5 GB 37.1 MB/s eta 0:00:00 Downloading https://download.pytorch.org/whl/typing_extensions-4.12.2-py3-none-any.whl (37 kB) Downloading https://download.pytorch.org/whl/filelock-3.13.1-py3-none-any.whl (11 kB) Downloading https://download.pytorch.org/whl/fsspec-2024.6.1-py3-none-any.whl (177 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 177.6/177.6 kB 3.0 MB/s eta 0:00:00 Downloading https://download.pytorch.org/whl/Jinja2-3.1.4-py3-none-any.whl (133 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 133.3/133.3 kB 2.2 MB/s eta 0:00:00 Downloading https://download.pytorch.org/whl/networkx-3.3-py3-none-any.whl (1.7 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.7/1.7 MB 20.1 MB/s eta 0:00:00 Downloading https://download.pytorch.org/whl/setuptools-70.2.0-py3-none-any.whl (930 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 930.8/930.8 kB 41.7 MB/s eta 0:00:00 Installing collected packages: mpmath, typing-extensions, sympy, setuptools, networkx, MarkupSafe, fsspec, filelock, jinja2, torch Successfully installed MarkupSafe-2.1.5 filelock-3.13.1 fsspec-2024.6.1 jinja2-3.1.4 mpmath-1.3.0 networkx-3.3 setuptools-70.2.0 sympy-1.13.1 torch-2.6.0+cu126 typing-extensions-4.12.2 (venv) root@7dc30e9f3e4f:/workspace# python -c 'import torch' Traceback (most recent call last): File "<string>", line 1, in <module> File "/venv/lib/python3.12/site-packages/torch/__init__.py", line 2108, in <module> from torch import _VF as _VF, functional as functional # usort: skip ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/venv/lib/python3.12/site-packages/torch/functional.py", line 7, in <module> import torch.nn.functional as F File "/venv/lib/python3.12/site-packages/torch/nn/__init__.py", line 8, in <module> from torch.nn.modules import * # usort: skip # noqa: F403 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/venv/lib/python3.12/site-packages/torch/nn/modules/__init__.py", line 1, in <module> from .module import Module # usort: skip ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/venv/lib/python3.12/site-packages/torch/nn/modules/module.py", line 29, in <module> from torch.utils._python_dispatch import is_traceable_wrapper_subclass File "/venv/lib/python3.12/site-packages/torch/utils/__init__.py", line 8, in <module> from torch.utils import ( File "/venv/lib/python3.12/site-packages/torch/utils/data/__init__.py", line 1, in <module> from torch.utils.data.dataloader import ( File "/venv/lib/python3.12/site-packages/torch/utils/data/dataloader.py", line 20, in <module> import torch.distributed as dist File "/venv/lib/python3.12/site-packages/torch/distributed/__init__.py", line 122, in <module> from .device_mesh import DeviceMesh, init_device_mesh File "/venv/lib/python3.12/site-packages/torch/distributed/device_mesh.py", line 40, in <module> from torch.distributed.distributed_c10d import ( File "/venv/lib/python3.12/site-packages/torch/distributed/distributed_c10d.py", line 234, in <module> class Backend(str): File "/venv/lib/python3.12/site-packages/torch/distributed/distributed_c10d.py", line 285, in Backend XCCL: ProcessGroup.BackendType.XCCL, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ AttributeError: type object 'torch._C._distributed_c10d.BackendType' has no attribute 'XCCL'. Did you mean: 'NCCL'? ``` x86 is fine https://github.com/pytorch/executorch/issues/7692 looks like a same issue Also note that 2.6+cu124 aarch64 is missing: ``` (venv) root@7dc30e9f3e4f:/workspace# pip3 install torch --index-url https://download.pytorch.org/whl/cu124 Looking in indexes: https://download.pytorch.org/whl/cu124, https://pypi.ngc.nvidia.com Collecting torch Downloading https://download.pytorch.org/whl/cu124/torch-2.5.1-cp312-cp312-linux_aarch64.whl (2359.8 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/2.4 GB 1.3 MB/s eta 0:30:15 ERROR: Operation cancelled by user ``` ### Versions Collecting environment information... PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Ubuntu 24.04.1 LTS (aarch64) GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 Clang version: Could not collect CMake version: version 3.31.4 Libc version: glibc-2.39 Python version: 3.12.3 (main, Nov 6 2024, 18:32:19) [GCC 13.2.0] (64-bit runtime) Python platform: Linux-6.4.16-linuxkit-aarch64-with-glibc2.39 Is CUDA available: N/A CUDA runtime version: 12.8.61 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Probably one of the following: /usr/lib/aarch64-linux-gnu/libcudnn.so.9.7.0 /usr/lib/aarch64-linux-gnu/libcudnn_adv.so.9.7.0 /usr/lib/aarch64-linux-gnu/libcudnn_cnn.so.9.7.0 /usr/lib/aarch64-linux-gnu/libcudnn_engines_precompiled.so.9.7.0 /usr/lib/aarch64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.7.0 /usr/lib/aarch64-linux-gnu/libcudnn_graph.so.9.7.0 /usr/lib/aarch64-linux-gnu/libcudnn_heuristic.so.9.7.0 /usr/lib/aarch64-linux-gnu/libcudnn_ops.so.9.7.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: aarch64 CPU op-mode(s): 64-bit Byte Order: Little Endian CPU(s): 6 On-line CPU(s) list: 0-5 Vendor ID: Apple Model name: - Model: 0 Thread(s) per core: 1 Core(s) per cluster: 6 Socket(s): - Cluster(s): 1 Stepping: 0x0 BogoMIPS: 48.00 Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm jscvt fcma lrcpc dcpop sha3 asimddp sha512 asimdfhm dit uscat ilrcpc flagm sb paca pacg dcpodp flagm2 frint Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Mitigation; __user pointer sanitization Vulnerability Spectre v2: Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] torch==2.6.0+cu126 [conda] Could not collect cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,849,870,079
DISABLED test_comprehensive_nn_functional_interpolate_linear_cuda_float16 (__main__.TestInductorOpInfoCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
1
NONE
Platforms: inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_comprehensive_nn_functional_interpolate_linear_cuda_float16&suite=TestInductorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/37071120963). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_comprehensive_nn_functional_interpolate_linear_cuda_float16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1156, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1444, in only_fn return fn(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 2268, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1236, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1236, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1236, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1626, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1548, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/mock.py", line 1379, in patched return func(*newargs, **newkeywargs) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor_opinfo.py", line 955, in inner raise e File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor_opinfo.py", line 947, in inner fn(self, device, dtype, op) File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor_opinfo.py", line 1196, in test_comprehensive raise e File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor_opinfo.py", line 1156, in test_comprehensive self.check_model_gpu( File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor.py", line 631, in check_model_gpu check_model( File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor.py", line 472, in check_model actual = run(*example_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 574, in _fn raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 752, in _compile_fx_inner raise InductorError(e, currentframe()).with_traceback( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 737, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1405, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1125, in codegen_and_compile compiled_fn = graph.compile_to_module().call File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 1990, in compile_to_module return self._compile_to_module() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 2032, in _compile_to_module mod = PyCodeCache.load_by_key_path( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 2758, in load_by_key_path mod = _reload_python_module(key, path) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/compile_tasks.py", line 51, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) File "/tmp/tmpl_pslh1a/py/cpyiyckui3wrzg7avzyn26ctxka6bqy3eoqqwzkaqezgnq6a5lq6.py", line 356, in <module> async_compile.wait(globals()) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 421, in wait scope[key] = result.result() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 3237, in result return self.result_fn() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 312, in get_result kernel.precompile( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 272, in precompile self._make_launchers() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 427, in _make_launchers launchers.append(result.make_launcher()) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1068, in make_launcher binary._init_handles() File "/var/lib/jenkins/triton/python/triton/compiler/compiler.py", line 390, in _init_handles self.module, self.function, self.n_regs, self.n_spills = driver.active.utils.load_binary( torch._inductor.exc.InductorError: RuntimeError: Triton Error [HIP]: Code: 209, Messsage: no kernel image is available for execution on the device Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3126, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3126, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 454, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1626, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1168, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 0: SampleInput(input=Tensor[size=(2, 3, 4), device="cuda:0", dtype=torch.float16], args=((3)), kwargs={'scale_factor': 'None', 'mode': "'linear'", 'align_corners': 'True'}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=0 PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_nn_functional_interpolate_linear_cuda_float16 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_opinfo.py` cc @clee2000 @wdvr @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
2,849,869,647
DISABLED test_comprehensive_nn_functional_interpolate_bilinear_cuda_float64 (__main__.TestInductorOpInfoCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
6
NONE
Platforms: inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_comprehensive_nn_functional_interpolate_bilinear_cuda_float64&suite=TestInductorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/37070019968). Over the past 3 hours, it has been determined flaky in 5 workflow(s) with 10 failures and 5 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_comprehensive_nn_functional_interpolate_bilinear_cuda_float64` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `inductor/test_torchinductor_opinfo.py` cc @clee2000 @wdvr @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
2,849,837,329
[Inductor][CPP] Fix node name for wgt delete
leslie-fang-intel
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147056 **Summary** This is a regression issue caused by a change in the FX node name. In commit 71010bf0972834e35a155e6a187e5c6649a5a36b, both the node name and target for the `get_attr` node in `V.graph.graph.nodes` were `_frozen_param2`. However, in the latest main, the node name has changed to `_reorder_linear_weight`. This PR fixes the regression by using the node's target instead of its name. **Test Plan** ``` python -u -m pytest -s -v test/inductor/test_cpu_select_algorithm.py -k test_cpp_weight_prune ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,849,836,496
INTERNAL ASSERT FAILED or SEGFAULT when JITting a function that can return different types
MaigoAkisame
open
[ "oncall: jit" ]
0
CONTRIBUTOR
### 🐛 Describe the bug Put the following code in `foo.py`. The `wtf` function may return either an int or a list. ```python import torch from typing import Any @torch.jit.script def wtf(flag: bool) -> Any: return 1 if flag else list((2,)) ``` Run `python foo.py`, and it'll trigger an `INTERNAL ASSERT FAILED` error: ``` Traceback (most recent call last): File "/tmp/foo.py", line 5, in <module> def wtf(flag: bool) -> Any: File "/home/yunwang/.fbpkg_conda_envs/xlformers_llama4_evals_conda-034f809/lib/python3.10/site-packages/torch/jit/_script.py", line 1429, in script ret = _script_impl( File "/home/yunwang/.fbpkg_conda_envs/xlformers_llama4_evals_conda-034f809/lib/python3.10/site-packages/torch/jit/_script.py", line 1205, in _script_impl fn = torch._C._jit_script_compile( RuntimeError: r INTERNAL ASSERT FAILED at "/mnt/code/pytorch/aten/src/ATen/core/jit_type_base.h":556, please report a bug to PyTorch. ``` If the last term is written as a list literal, it will even trigger a `Segmentation fault (core dumped)`: ```python import torch from typing import Any @torch.jit.script def wtf(flag: bool) -> Any: return 1 if flag else [2] ``` This can only work if we annotate the type of the last term, like: ```python import torch from typing import Any, List @torch.jit.script def wtf(flag: bool) -> Any: return 1 if flag else torch.jit.annotate(List[int], [2]) ``` Is this a known limitation of PyTorch in inferring the types of expressions? ### Versions ``` Collecting environment information... PyTorch version: 2.6.0a0+git88e338f Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: CentOS Stream 9 (x86_64) GCC version: (GCC) 11.5.0 20240719 (Red Hat 11.5.0-2) Clang version: Could not collect CMake version: version 3.30.2 Libc version: glibc-2.34 Python version: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.4.3-0_fbk20_zion_2830_g3e5ab162667d-x86_64-with-glibc2.34 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3 GPU 1: NVIDIA H100 80GB HBM3 GPU 2: NVIDIA H100 80GB HBM3 GPU 3: NVIDIA H100 80GB HBM3 GPU 4: NVIDIA H100 80GB HBM3 GPU 5: NVIDIA H100 80GB HBM3 GPU 6: NVIDIA H100 80GB HBM3 GPU 7: NVIDIA H100 80GB HBM3 Nvidia driver version: 535.154.05 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 224 On-line CPU(s) list: 0-223 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8480C CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 56 Socket(s): 2 Stepping: 8 Frequency boost: enabled CPU(s) scaling MHz: 100% CPU max MHz: 2001.0000 CPU min MHz: 800.0000 BogoMIPS: 4000.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req vnmi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr ibt amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 5.3 MiB (112 instances) L1i cache: 3.5 MiB (112 instances) L2 cache: 224 MiB (112 instances) L3 cache: 210 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-55,112-167 NUMA node1 CPU(s): 56-111,168-223 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Vulnerable: eIBRS with unprivileged eBPF Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] onnxruntime==1.20.1 [pip3] optree==0.12.1 [pip3] pytorch-lightning==2.5.0.post0 [pip3] pytorch-metric-learning==2.8.1 [pip3] pytorch-triton==3.0.0+dedb7bdf33 [pip3] torch==2.6.0a0+git88e338f [pip3] torch-audiomentations==0.12.0 [pip3] torch_pitch_shift==1.2.5 [pip3] torchaudio==2.5.0a0+97ed7b3 [pip3] torchmetrics==1.6.1 [pip3] torchvision==0.20.0a0+c36025a [pip3] triton==3.2.0 [conda] Could not collect ``` cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
2,849,832,933
Fix for issue #142834, Segmentation fault in replication_pad2d_backward
AmalDevHaridevan
open
[ "module: cpu", "triaged", "open source", "Stale" ]
3
NONE
Fixes #142834 # Before fix ```python import torch grad_output = torch.full((2, 0, 6, 8,), 1, dtype=torch.float) self = torch.full((2, 2, 4, 4,), 1, dtype=torch.float) padding = [2, 2, 1, 1] print("="*50) print("input_tensor:") print(self) print("="*50) print("output_tensor:") print(grad_output) print("="*50) torch.ops.aten.replication_pad2d_backward(grad_output, self, padding) ``` ``` ================================================== input_tensor: tensor([[[[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]], [[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]]], [[[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]], [[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]]]]) ================================================== output_tensor: tensor([], size=(2, 0, 6, 8)) ================================================== Segmentation fault (core dumped) ``` # After fix ```================================================== input_tensor: tensor([[[[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]], [[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]]], [[[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]], [[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]]]]) ================================================== output_tensor: tensor([], size=(2, 0, 6, 8)) ================================================== Traceback (most recent call last): File "/home/harid/pytorch/../test.py", line 44, in <module> torch.ops.aten.replication_pad2d_backward(grad_output, self, padding) File "/home/harid/pytorch/torch/_ops.py", line 1156, in __call__ return self._op(*args, **(kwargs or {})) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: grad output tensor is empty ``` cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,849,817,138
Use 2022 as default VC_YEAR for windows builds
atalman
open
[ "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "ci-no-td" ]
11
CONTRIBUTOR
New Windows AMI does not have Visual Studio 2019. Hence use 2022 as default. See: https://github.com/pytorch/test-infra/pull/6226
true
2,849,802,615
[ONNX] Implement aten.stft
justinchuby
open
[ "module: onnx", "triaged", "OSS contribution wanted" ]
4
COLLABORATOR
Otherwise it is decomp to unfold and fft, which is more memory consuming I think.
true
2,849,788,364
Inductor Triton Gemm Autotune broke on the latest Triton
xuzhao9
closed
[ "triaged", "oncall: pt2", "module: inductor" ]
2
CONTRIBUTOR
### 🐛 Describe the bug On Triton latest main branch (commit 06941f490322679231aae20bfe20b61e9885ad4) and the latest PyTorch nightly branch, run the following script: ``` import torch import torch._inductor.config as inductor_config import triton M = 20120 K = 512 N = 1536 a = torch.randn([M,N]).cuda() b = torch.randn([M,K]).cuda() c = torch.randn([K,N]).cuda() def mm(): return torch.addmm(a, b, c) with inductor_config.patch( max_autotune=True, max_autotune_gemm_backends="TRITON", autotune_fallback_to_aten=False, ): pt2_mm = torch.compile(mm, dynamic=False) pt2_mm() if __name__ == "__main__": pt2_mm() ``` TorchInductor gemm autotune will break: ``` AUTOTUNE addmm(20120x1536, 20120x512, 512x1536) triton_mm_13 1.4602 ms 100.0% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=128, BLOCK_N=64, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=3, num_warps=4 triton_mm_9 1.4848 ms 98.3% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=64, BLOCK_N=128, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=3, num_warps=4 triton_mm_6 1.4889 ms 98.1% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=64, BLOCK_N=64, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=2, num_warps=4 triton_mm_5 1.5155 ms 96.4% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=16, BLOCK_M=64, BLOCK_N=64, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=2, num_warps=4 triton_mm_10 1.7459 ms 83.6% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=64, BLOCK_N=128, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=4, num_warps=8 triton_mm_14 1.7510 ms 83.4% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=128, BLOCK_N=64, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=4, num_warps=8 triton_mm_15 1.8029 ms 81.0% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=2, num_warps=8 triton_mm_16 2.0388 ms 71.6% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=32, BLOCK_M=128, BLOCK_N=128, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=3, num_warps=4 triton_mm_7 2.0695 ms 70.6% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=64, BLOCK_N=64, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=3, num_warps=8 triton_mm_11 2.1268 ms 68.7% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=64, BLOCK_N=128, B_PROLOGUE_CAST_TYPE=None, EVEN_K=True, GROUP_M=8, num_stages=3, num_warps=4 SingleProcess AUTOTUNE benchmarking takes 14.4064 seconds and 0.0000 seconds precompiling for 19 choices E0212 21:27:28.480000 109916 subproc_pool.py:321] Error in subprocess E0212 21:27:28.480000 109916 subproc_pool.py:321] concurrent.futures.process._RemoteTraceback: E0212 21:27:28.480000 109916 subproc_pool.py:321] """ E0212 21:27:28.480000 109916 subproc_pool.py:321] Traceback (most recent call last): E0212 21:27:28.480000 109916 subproc_pool.py:321] File "/home/xz/miniconda3/lib/python3.11/concurrent/futures/process.py", line 256, in _process_worker E0212 21:27:28.480000 109916 subproc_pool.py:321] r = call_item.fn(*call_item.args, **call_item.kwargs) E0212 21:27:28.480000 109916 subproc_pool.py:321] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E0212 21:27:28.480000 109916 subproc_pool.py:321] File "/home/xz/miniconda3/lib/python3.11/site-packages/torch/_inductor/compile_worker/subproc_pool.py", line 340, in do_job E0212 21:27:28.480000 109916 subproc_pool.py:321] return pickler.dumps(result) E0212 21:27:28.480000 109916 subproc_pool.py:321] ^^^^^^^^^^^^^^^^^^^^^ E0212 21:27:28.480000 109916 subproc_pool.py:321] File "/home/xz/miniconda3/lib/python3.11/site-packages/torch/_inductor/compile_worker/subproc_pool.py", line 100, in dumps E0212 21:27:28.480000 109916 subproc_pool.py:321] return pickle.dumps(obj, pickle.HIGHEST_PROTOCOL) E0212 21:27:28.480000 109916 subproc_pool.py:321] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E0212 21:27:28.480000 109916 subproc_pool.py:321] AttributeError: Can't pickle local object 'JITFunction.__init__.<locals>.<lambda>' E0212 21:27:28.480000 109916 subproc_pool.py:321] """ E0212 21:27:28.480000 109916 subproc_pool.py:321] E0212 21:27:28.480000 109916 subproc_pool.py:321] The above exception was the direct cause of the following exception: E0212 21:27:28.480000 109916 subproc_pool.py:321] E0212 21:27:28.480000 109916 subproc_pool.py:321] Traceback (most recent call last): E0212 21:27:28.480000 109916 subproc_pool.py:321] File "/home/xz/miniconda3/lib/python3.11/site-packages/torch/_inductor/compile_worker/subproc_pool.py", line 319, in callback E0212 21:27:28.480000 109916 subproc_pool.py:321] result = future.result() E0212 21:27:28.480000 109916 subproc_pool.py:321] ^^^^^^^^^^^^^^^ E0212 21:27:28.480000 109916 subproc_pool.py:321] File "/home/xz/miniconda3/lib/python3.11/concurrent/futures/_base.py", line 449, in result E0212 21:27:28.480000 109916 subproc_pool.py:321] return self.__get_result() E0212 21:27:28.480000 109916 subproc_pool.py:321] ^^^^^^^^^^^^^^^^^^^ E0212 21:27:28.480000 109916 subproc_pool.py:321] File "/home/xz/miniconda3/lib/python3.11/concurrent/futures/_base.py", line 401, in __get_result E0212 21:27:28.480000 109916 subproc_pool.py:321] raise self._exception E0212 21:27:28.480000 109916 subproc_pool.py:321] AttributeError: Can't pickle local object 'JITFunction.__init__.<locals>.<lambda>' E0212 21:27:28.486000 109916 subproc_pool.py:321] Error in subprocess E0212 21:27:28.486000 109916 subproc_pool.py:321] concurrent.futures.process._RemoteTraceback: E0212 21:27:28.486000 109916 subproc_pool.py:321] """ E0212 21:27:28.486000 109916 subproc_pool.py:321] Traceback (most recent call last): E0212 21:27:28.486000 109916 subproc_pool.py:321] File "/home/xz/miniconda3/lib/python3.11/concurrent/futures/process.py", line 256, in _process_worker E0212 21:27:28.486000 109916 subproc_pool.py:321] r = call_item.fn(*call_item.args, **call_item.kwargs) E0212 21:27:28.486000 109916 subproc_pool.py:321] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E0212 21:27:28.486000 109916 subproc_pool.py:321] File "/home/xz/miniconda3/lib/python3.11/site-packages/torch/_inductor/compile_worker/subproc_pool.py", line 340, in do_job E0212 21:27:28.486000 109916 subproc_pool.py:321] return pickler.dumps(result) E0212 21:27:28.486000 109916 subproc_pool.py:321] ^^^^^^^^^^^^^^^^^^^^^ E0212 21:27:28.486000 109916 subproc_pool.py:321] File "/home/xz/miniconda3/lib/python3.11/site-packages/torch/_inductor/compile_worker/subproc_pool.py", line 100, in dumps E0212 21:27:28.486000 109916 subproc_pool.py:321] return pickle.dumps(obj, pickle.HIGHEST_PROTOCOL) E0212 21:27:28.486000 109916 subproc_pool.py:321] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ E0212 21:27:28.486000 109916 subproc_pool.py:321] AttributeError: Can't pickle local object 'JITFunction.__init__.<locals>.<lambda>' E0212 21:27:28.486000 109916 subproc_pool.py:321] """ E0212 21:27:28.486000 109916 subproc_pool.py:321] E0212 21:27:28.486000 109916 subproc_pool.py:321] The above exception was the direct cause of the following exception: E0212 21:27:28.486000 109916 subproc_pool.py:321] E0212 21:27:28.486000 109916 subproc_pool.py:321] Traceback (most recent call last): E0212 21:27:28.486000 109916 subproc_pool.py:321] File "/home/xz/miniconda3/lib/python3.11/site-packages/torch/_inductor/compile_worker/subproc_pool.py", line 319, in callback E0212 21:27:28.486000 109916 subproc_pool.py:321] result = future.result() E0212 21:27:28.486000 109916 subproc_pool.py:321] ^^^^^^^^^^^^^^^ E0212 21:27:28.486000 109916 subproc_pool.py:321] File "/home/xz/miniconda3/lib/python3.11/concurrent/futures/_base.py", line 449, in result E0212 21:27:28.486000 109916 subproc_pool.py:321] return self.__get_result() E0212 21:27:28.486000 109916 subproc_pool.py:321] ^^^^^^^^^^^^^^^^^^^ E0212 21:27:28.486000 109916 subproc_pool.py:321] File "/home/xz/miniconda3/lib/python3.11/concurrent/futures/_base.py", line 401, in __get_result E0212 21:27:28.486000 109916 subproc_pool.py:321] raise self._exception E0212 21:27:28.486000 109916 subproc_pool.py:321] AttributeError: Can't pickle local object 'JITFunction.__init__.<locals>.<lambda>' Traceback (most recent call last): File "/home/xz/1.py", line 22, in <module> pt2_mm() File "/home/xz/miniconda3/lib/python3.11/site-packages/torch/_dynamo/eval_frame.py", line 574, in _fn raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/xz/miniconda3/lib/python3.11/site-packages/torch/_inductor/compile_fx.py", line 752, in _compile_fx_inner raise InductorError(e, currentframe()).with_traceback( File "/home/xz/miniconda3/lib/python3.11/site-packages/torch/_inductor/compile_fx.py", line 737, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( ^^^^^^^^^^^^^^^^^^^^^^^ File "/home/xz/miniconda3/lib/python3.11/site-packages/torch/_inductor/compile_fx.py", line 1405, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/xz/miniconda3/lib/python3.11/site-packages/torch/_inductor/compile_fx.py", line 1125, in codegen_and_compile compiled_fn = graph.compile_to_module().call ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/xz/miniconda3/lib/python3.11/site-packages/torch/_inductor/graph.py", line 1990, in compile_to_module return self._compile_to_module() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/xz/miniconda3/lib/python3.11/site-packages/torch/_inductor/graph.py", line 2032, in _compile_to_module mod = PyCodeCache.load_by_key_path( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/xz/miniconda3/lib/python3.11/site-packages/torch/_inductor/codecache.py", line 2758, in load_by_key_path mod = _reload_python_module(key, path) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/xz/miniconda3/lib/python3.11/site-packages/torch/_inductor/runtime/compile_tasks.py", line 51, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) File "/tmp/torchinductor_xz/dg/cdgmewjcirhyxskflqjjf2d4zjuqxgbjtxtnhqoxwrs6zc53e2ck.py", line 146, in <module> async_compile.wait(globals()) File "/home/xz/miniconda3/lib/python3.11/site-packages/torch/_inductor/async_compile.py", line 421, in wait scope[key] = result.result() ^^^^^^^^^^^^^^^ File "/home/xz/miniconda3/lib/python3.11/site-packages/torch/_inductor/codecache.py", line 3237, in result return self.result_fn() ^^^^^^^^^^^^^^^^ File "/home/xz/miniconda3/lib/python3.11/site-packages/torch/_inductor/async_compile.py", line 311, in get_result kernel = task.result() ^^^^^^^^^^^^^ File "/home/xz/miniconda3/lib/python3.11/concurrent/futures/_base.py", line 456, in result return self.__get_result() ^^^^^^^^^^^^^^^^^^^ File "/home/xz/miniconda3/lib/python3.11/concurrent/futures/_base.py", line 401, in __get_result raise self._exception torch._inductor.exc.InductorError: AttributeError: Can't pickle local object 'JITFunction.__init__.<locals>.<lambda>' Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information ``` Note: - Rerun the script will *NOT* reproduce, to reproduce it again, you will need to remove the cache at `/tmp/torchinductor_${USER}` - This is a recent change, the program ran well on triton hash ae1a8f1e but broken on triton hash 08d7f64d Reported by Tritonbench CI: https://github.com/pytorch-labs/tritonbench/actions/runs/13269027574/job/37122665658 ### Versions Pytorch Nightly: 2.7.0.dev20250212+cu126 Triton lastest main branch: https://github.com/triton-lang/triton/commit/06941f490322679231aae20bfe20b61e9885ad48 cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
2,849,727,585
More precise check for shared storage check in inductor/reinplace pass
laithsakka
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147050 Currently if two tensor share storage we have some logic to avoid re-inplacing. Before this PR two tensors share storage if use same underlying storage even if they do not overlap. This diff enhance the checks to avoid cases when we know tensors do not overlap easily. mitigate https://github.com/pytorch/pytorch/issues/139628 but does not fix the inductor issue in it. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,849,715,553
fake_tensor: Handle op errors more gracefully
c00w
open
[ "Stale", "topic: not user facing", "module: dynamo", "ciflow/inductor", "keep-going" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147049 if we have a operator error (i.e. incompatible dimensions etc... from torch._check) within a faketensor, then it fails with torch._dynamo.exc.TorchRuntimeError rather than gracefully falling back to be unimplemnted and letting eager mode fail Since fake_tensor had no dependency on dynamo, I did not add one, and instead relied up existing fake tensor unsupported exceptions. Let me know if there is a preference to instead use ObservedExceptions here. I've added a specific test case which triggers a torch._check failure whose stack trace lines up with errors I've observed in production cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames @StrongerXi
true
2,849,687,783
Feature Request: rsample for Von Mises distribution
dario-loi
open
[ "module: distributions", "triaged", "needs research" ]
0
NONE
## 🚀 The feature, motivation and pitch The von Mises-Fisher distribution implemented in `torch.distribution` should get an `.rsample()` method. ## Motivation Backpropagating through vMF is essential to train Hyperspherical VAEs, which have drastically better performance for directional data, for example in graph reconstruction (https://arxiv.org/abs/1804.00891). Without `.rsample` one is limited to gaussian priors for VAE training. ## Additional context An implementation that exposes an `.rsample()` method is available [in this repo](https://github.com/nicola-decao/s-vae-pytorch/blob/master/hyperspherical_vae/distributions/von_mises_fisher.py). Moreover I can see that in the original Von Mises distribution feature request (#13811), comments are still stating that the distribution only works for 3D, if that's the case, then we really need an N-D implementation before we need `.rsample()` (but ideally we would like both). ### Alternatives _No response_ ### Additional context _No response_ cc @fritzo @neerajprad @alicanb @nikitaved
true
2,849,683,648
DISABLED test_comprehensive_sub_cuda_float16 (__main__.TestInductorOpInfoCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
1
NONE
Platforms: inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_comprehensive_sub_cuda_float16&suite=TestInductorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/37064610656). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_comprehensive_sub_cuda_float16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1156, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1444, in only_fn return fn(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 2268, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1236, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1236, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1236, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1626, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1548, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/mock.py", line 1379, in patched return func(*newargs, **newkeywargs) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor_opinfo.py", line 955, in inner raise e File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor_opinfo.py", line 947, in inner fn(self, device, dtype, op) File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor_opinfo.py", line 1196, in test_comprehensive raise e File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor_opinfo.py", line 1156, in test_comprehensive self.check_model_gpu( File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor.py", line 631, in check_model_gpu check_model( File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor.py", line 472, in check_model actual = run(*example_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 574, in _fn raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 752, in _compile_fx_inner raise InductorError(e, currentframe()).with_traceback( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 737, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1402, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1122, in codegen_and_compile compiled_fn = graph.compile_to_module().call File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 1990, in compile_to_module return self._compile_to_module() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 2032, in _compile_to_module mod = PyCodeCache.load_by_key_path( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 2758, in load_by_key_path mod = _reload_python_module(key, path) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/compile_tasks.py", line 51, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) File "/tmp/tmp8a_fq99r/3r/c3rzu2oegaufd6pkc6k7dwcm72ndfggbcgeh5mowo3dtkew2cjnk.py", line 84, in <module> async_compile.wait(globals()) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 421, in wait scope[key] = result.result() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 3237, in result return self.result_fn() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 312, in get_result kernel.precompile( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 272, in precompile self._make_launchers() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 427, in _make_launchers launchers.append(result.make_launcher()) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1068, in make_launcher binary._init_handles() File "/var/lib/jenkins/triton/python/triton/compiler/compiler.py", line 390, in _init_handles self.module, self.function, self.n_regs, self.n_spills = driver.active.utils.load_binary( torch._inductor.exc.InductorError: RuntimeError: Triton Error [HIP]: Code: 209, Messsage: no kernel image is available for execution on the device Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3126, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3126, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 454, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1626, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1168, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 5: SampleInput(input=Tensor[size=(5, 10, 5), device="cuda:0", dtype=torch.float16], args=TensorList[Tensor[size=(5, 10, 5), device="cuda:0", dtype=torch.float16]], kwargs={}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=5 PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_sub_cuda_float16 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_opinfo.py` cc @clee2000 @wdvr @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
2,849,677,907
[dynamo] Make SliceVariable a subclass of VariableTracker
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147046 * #146995 * #146819 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames @StrongerXi
true
2,849,666,326
[cond] make cond call fake kernel in dynamo
ydwu4
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #147130 * __->__ #147045 * #146954 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov @StrongerXi
true
2,849,656,944
Clean up backend_type_map from distributed_c10d
H-Huang
open
[ "oncall: distributed", "triaged", "better-engineering", "module: c10d" ]
0
MEMBER
Try to remove `backend_type_map` since it doesn't look needed anymore and validate CI / internal tests pass. https://github.com/pytorch/pytorch/blob/67cbbb29e075af848d95c936eca79e6645208107/torch/distributed/distributed_c10d.py#L282 cc @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,849,644,440
UNSTABLE pull / win-vs2022-cpu-py3 / build
huydhn
closed
[ "module: windows", "module: ci", "triaged", "unstable" ]
2
CONTRIBUTOR
The failure shows up after the new AMI ami-0403662469a2d1e25 rolls out. cc @peterjc123 @mszhanyi @skyline75489 @nbcsm @iremyux @Blackhex @seemethere @malfet @pytorch/pytorch-dev-infra @atalman @Camyll Same as https://github.com/pytorch/pytorch/issues/147041
true
2,849,631,166
UNSTABLE trunk / win-vs2022-cuda12.1-py3 / build
huydhn
closed
[ "module: windows", "module: ci", "triaged", "unstable" ]
2
CONTRIBUTOR
The failure shows up after the new AMI ami-0403662469a2d1e25 rolls out. cc @peterjc123 @mszhanyi @skyline75489 @nbcsm @iremyux @Blackhex @seemethere @malfet @pytorch/pytorch-dev-infra @atalman @Camyll Same as https://github.com/pytorch/pytorch/issues/147041
true
2,849,629,955
UNSTABLE trunk / win-vs2022-cpu-py3
huydhn
closed
[ "module: ci", "triaged", "unstable" ]
2
CONTRIBUTOR
The failure shows up after the new AMI `ami-0403662469a2d1e25` rolls out. cc @seemethere @malfet @pytorch/pytorch-dev-infra @atalman @Camyll
true
2,849,627,598
Updated test_cuda.py to rerun tests
BLOrange-AMD
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "keep-going", "ciflow/rocm" ]
13
CONTRIBUTOR
Initially test_cuda::TestCudaMallocAsync::test_clock_speed and test_cuda::TestCudaMallocAsync::test_power_draw are skipped in this [commit](https://github.com/ROCm/pytorch/commit/d4871750d9ea0c36cfd5ff8a19a0b6aeedb729ad). Pulled ROCm nightly image and verified these two tests run fine locally. Filed this PR to enable them.
true
2,849,607,029
[DCP] Introduce process based async checkpointing
MeetVadakkanchery
closed
[ "oncall: distributed", "fb-exported", "Merged", "ciflow/trunk", "topic: new features", "release notes: distributed (checkpoint)", "oncall: distributed checkpointing" ]
26
CONTRIBUTOR
Summary: ### Context Background checkpoint upload thread interfering with trainer thread: In [async save API](https://github.com/pytorch/pytorch/blob/main/torch/distributed/checkpoint/state_dict_saver.py#L239-L248), the background thread spends a considerable amount of time on CPU-bound tasks (pickling/unpickling several metada objects a.k.a SavePlans) on rank0 during the collective operation; this kind of asymmetric computation heavily contends for GIL with the trainer thread causing GPU util to suffer significantly for the E2E checkpoint duration. ### Solution: Introduce async save via a checkpoint daemon process. This daemon process will be created once (during the first save attempt) and can serve async checkpoint requests for the remainder of training lifetime. Test Plan: Added E2E UTs for process based async save. Differential Revision: D69272583 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @LucasLLC @mhorowitz @pradeepfn @ekr0
true
2,849,595,740
[Inductor] Graph Partition
BoyuanFeng
closed
[ "Merged", "ciflow/trunk", "topic: new features", "module: inductor", "ciflow/inductor", "release notes: inductor" ]
3
CONTRIBUTOR
This PR implements inductor graph partition. Previously, 1 dynamo graph is mapped to 1 inductor graph, and further mapped to 1 call function. In this PR, we allow 1 dynamo graph mapped to multiple inductor graphs and multiple `graph_partition` functions in the generated code. This allows applying different further optimizations to different `graph_partition`. Design Doc: [link](https://docs.google.com/document/d/1qPgOfy25l7SIYnrQrvU-TO1mdHMslCwv_SLmeXID6tM/edit?usp=sharing) Example: [Generated code before and after this diff](https://www.internalfb.com/intern/diffing/?paste_number=1737334601) In the follow-up PR, we will extend the work to cudagraph, which allows applying cudagraph to parts of the generated code (#125864). cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,849,591,699
Add CUDA 12.8 windows nightly build
tinglvv
closed
[ "open source", "Merged", "ciflow/binaries", "topic: not user facing" ]
10
COLLABORATOR
https://github.com/pytorch/pytorch/issues/145570 windows AMI is deployed to prod today, prepping the windows cuda 12.8 build cc @atalman @malfet @ptrblck @nWEIdia
true
2,849,587,639
test - bump up benchmarked epi choices
eellison
open
[ "Stale", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147036 * #147008 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,849,577,638
fix pt2e block wise quantization test
cccclai
closed
[ "fb-exported", "Merged", "ciflow/trunk", "release notes: quantization" ]
4
CONTRIBUTOR
Differential Revision: D69559217 https://github.com/pytorch/pytorch/pull/145941 breaks the unit test added for prepare pt2e + block wise quantization. Fixing
true
2,849,573,447
[ROCm] [TunableOp] Enable logging of BLAS parameters
naromero77amd
closed
[ "module: rocm", "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/rocm" ]
3
COLLABORATOR
This PR supports a logging feature that is being requested. ``` PYTORCH_TUNABLEOP_BLAS_LOG=1 ``` Enables the logging of BLAS parameters with either offline or online (in-situ) tuning. The BLAS parameters are written to the CSV file. cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang
true
2,849,556,310
[Inductor-CPP] If all of the activation scale dims are 1, make it a 0D tensor
sanchitintel
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: bug fixes", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
10
COLLABORATOR
For int8 dynamically quantized activation & int8 quantized weights, add a workaround for some indexing issue that expected an empty index ( so, was expecting a 0D tensor) in epilogue creator when the activation scale was sized [1, 1] by converting it into a 0D tensor. The issue was discovered while running LLaMA2 quantized with torchao's `int8_dynamic_activation_int8_weight` quantization on CPU with max-autotune enabled (although this error would've occurred regardless). The final hidden states tensor that's activation to LM head is of shape `[batch_size, sequence_length, hidden_dim]` during decoding. For decoding one token at a time with batch size 1, sequence length is 1. The activation scale is shaped `[1, 1]` (reshaped from `[1, 1, 1]`). However, Inductor epilogue creator expects a 0D tensor in this case (my guess is that the corresponding logic in Inductor expects a 0D tensor if a tensor has only one element, even if it's 1D?). cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,849,555,123
[NJT] fix flop counter for SDPA & test
davidberard98
closed
[ "module: nestedtensor", "Merged", "ciflow/trunk", "topic: bug fixes", "release notes: nested tensor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147032 Fixes 3 issues: 1. The test wasn't actually testing SDPA: both were checking cuda, and the inputs to SDPA were not transposed. 2. FlopCounterMode has been renamed _FlopCounterMode (and a wrapper named FlopCounterMode has been added) 3. offsets_to_list also needs to ignore the actual offset values if offsets is a meta tensor. cc @cpuhrsch @jbschlosser @bhosmer @drisspg @soulitzer @YuqingJ Differential Revision: [D69558785](https://our.internmc.facebook.com/intern/diff/D69558785)
true
2,849,539,442
Add self to CODEOWNERS for fx/proxy.py; warn against adding new node arg types
zou3519
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "fx" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147031 * #147013 * #147012 * #147016 Not sure if there's a better way cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,849,539,316
[inline_inbuilt_nn_modules] Move export to inline_inbuilt_nn_modules
anijain2305
open
[ "triaged", "oncall: pt2", "module: dynamo", "dynamo-triage-jan2025" ]
0
CONTRIBUTOR
### 🐛 Describe the bug For export, we should not lift the parameters and buffers as inputs. We can register them in the Dynamo Fx graph. This will maintain the input signature constraint required by the export. ### Error logs _No response_ ### Versions NA cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true