id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
3,034,855,767
static cuda launcher causes `RuntimeError: CUDA driver error: invalid device context` in torchtitan CI
bdhirsh
closed
[ "oncall: pt2", "module: inductor", "compile-cache" ]
1
CONTRIBUTOR
Here's a recent torchtitan CI job failure: https://github.com/pytorch/torchtitan/actions/runs/14691831856/job/41228192364#step:14:617 the repro command from torchtitan according to @tianyu-l is: ``` ./run_train.sh --training.compile --activation_checkpoint.mode selective --activation_checkpoint.selective_ac_option op ``` I confirmed that manually turning off the static cuda launcher in torchtitan fixes CI: https://github.com/pytorch/torchtitan/pull/1156/files cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov @oulgen @jamesjwu @masnesral
true
3,034,853,080
[dynamic shapes] use try-catch instead of guard_or_true for reshape_view_helper
pianpwk
closed
[ "fb-exported", "Merged", "ciflow/trunk", "release notes: fx", "ciflow/pull" ]
17
CONTRIBUTOR
Test Plan: test_export Differential Revision: D74033649
true
3,034,823,243
[export] Add draft-export docs
angelayi
closed
[ "Merged", "ciflow/trunk", "release notes: export" ]
4
CONTRIBUTOR
Sample page: https://docs-preview.pytorch.org/pytorch/pytorch/152637/draft_export.html cc @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @suo @ydwu4 @penguinwu
true
3,034,810,915
Switch to metal kernel for mul
skotapati
closed
[ "open source", "release notes: mps", "ciflow/mps" ]
2
COLLABORATOR
Draft PR
true
3,034,800,361
TestFlexAttentionCUDA.test_GQA_score_mod7_cuda_float16 fails on h100
BoyuanFeng
open
[ "triaged", "oncall: pt2", "module: higher order operators", "module: pt2-dispatcher", "module: flex attention" ]
0
CONTRIBUTOR
command to repro. This fails on h100. ``` python test/inductor/test_flex_attention.py TestFlexAttentionCUDA.test_GQA_score_mod7_cuda_float16 ``` Error: ``` File "/data/users/boyuan/pytorch/test/inductor/test_flex_attention.py", line 412, in _check_equal self.assertTrue(False, "Output/Grad with NaN") AssertionError: False is not true : Output/Grad with NaN ``` cc @chauhang @penguinwu @zou3519 @ydwu4 @bdhirsh @Chillee @drisspg @yanboliang
true
3,034,780,601
Incorrect strides for `nonzero_static` compilation
GMNGeoffrey
open
[ "triaged", "oncall: pt2", "module: fakeTensor", "module: pt2-dispatcher" ]
0
NONE
### 🐛 Describe the bug I am getting an output from `nonzero_static` with incorrect strides after being `torch.compile`'d. In older versions of torch, this manifests as some sort of runtime failure (I first encountered it as a GPU crash, which wasn't fun). In the latest stable and nightly versions, I'm instead seeing a somewhat helpful error message that points us in the right direction. The failing minimal reproducer code is ```python import torch def test_nonzero_static_miscompile(device): L = 5 eye = torch.eye(L, device=device) nonzero_static = eye.nonzero_static(size=L) i_static = nonzero_static[:, 0] j_static = nonzero_static[:, 1] nonzero = eye.nonzero() print(f"{nonzero_static.shape=} {nonzero_static=}") print(f"{nonzero.shape=} {nonzero=}") assert torch.equal(nonzero_static, nonzero), f"{nonzero_static=}\n{nonzero=}" i = nonzero[:, 0] j = nonzero[:, 1] print(f"{i_static.shape=} {i_static=}") print(f"{j_static.shape=} {j_static=}") print(f"{i.shape=} {i=}") print(f"{j.shape=} {j=}") assert torch.equal(i_static, i), f"{i_static=}\n{i=}" assert torch.equal(j_static, j), f"{j_static=}\n{j=}" def main(): torch.compile(test_nonzero_static_miscompile, backend="inductor")("cuda") if __name__ == "__main__": main() ``` It only happens for the inductor backend (not in eager or cudagraphs. I didn't try the external backends you have to separately install). It happens independent of the `mode` argument. It only happens when compile for the 'cuda' device This fails on all the versions of torch I've tried, which include the latest nightly for CUDA 12.6 (2.8.0.dev20250501+cu126), the latest stable for CUDA 12.6 (2.7.0+cu126), a custom build from NVIDIA (2.7.0a0+7c8ec84dab.nv25.03), and a custom ROCm build from AMD (2.6.0a0+gitfc899bf) ### Error logs On newer torch versions, I get this error <details><summary><code>AssertionError: expected size 5==5, stride 1==2 at dim=0; expected size 2==2, stride 5==1 at dim=1</code></summary> ``` Traceback (most recent call last): File "/home/gcmn/src/torch_nonzero_static_miscompile/nonzero_static_miscompile.py", line 36, in <module> main() File "/home/gcmn/src/torch_nonzero_static_miscompile/nonzero_static_miscompile.py", line 33, in main torch.compile(test_nonzero_static_miscompile, backend="inductor")('cuda') File "/home/gcmn/src/torch_nonzero_static_miscompile/torch-nightly.venv/lib/python3.11/site-packages/torch/_dynamo/eval_frame.py", line 663, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/home/gcmn/src/torch_nonzero_static_miscompile/nonzero_static_miscompile.py", line 3, in test_nonzero_static_miscompile def test_nonzero_static_miscompile(device): File "/home/gcmn/src/torch_nonzero_static_miscompile/torch-nightly.venv/lib/python3.11/site-packages/torch/_dynamo/eval_frame.py", line 857, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/home/gcmn/src/torch_nonzero_static_miscompile/torch-nightly.venv/lib/python3.11/site-packages/torch/_functorch/aot_autograd.py", line 1221, in forward return compiled_fn(full_args) ^^^^^^^^^^^^^^^^^^^^^^ File "/home/gcmn/src/torch_nonzero_static_miscompile/torch-nightly.venv/lib/python3.11/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 330, in runtime_wrapper all_outs = call_func_at_runtime_with_args( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/gcmn/src/torch_nonzero_static_miscompile/torch-nightly.venv/lib/python3.11/site-packages/torch/_functorch/_aot_autograd/utils.py", line 126, in call_func_at_runtime_with_args out = normalize_as_list(f(args)) ^^^^^^^ File "/home/gcmn/src/torch_nonzero_static_miscompile/torch-nightly.venv/lib/python3.11/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 497, in wrapper return compiled_fn(runtime_args) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/gcmn/src/torch_nonzero_static_miscompile/torch-nightly.venv/lib/python3.11/site-packages/torch/_inductor/output_code.py", line 584, in __call__ return self.current_callable(inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/tmp/torchinductor_gcmn/a4/ca4peqblkoanf3bgsmuoqay74uq2wqx5znkpvunwb2rvklycj435.py", line 95, in call assert_size_stride(buf2, (5, 2), (2, 1)) AssertionError: expected size 5==5, stride 1==2 at dim=0; expected size 2==2, stride 5==1 at dim=1 This error most often comes from a incorrect fake (aka meta) kernel for a custom op. Use torch.library.opcheck to test your custom op. See https://pytorch.org/docs/stable/library.html#torch.library.opcheck ``` </details> On older versions, it just hits my own assertion errors. Notably the errors are when comparing slices, not when comparing the full output tensors <details><summary><code>AssertionError: i_static=tensor([0, 2, 4, 1, 3], device='cuda:0') i=tensor([0, 1, 2, 3, 4], device='cuda:0')</code></summary ``` nonzero_static.shape=torch.Size([5, 2]) nonzero_static=tensor([[0, 0], [1, 1], [2, 2], [3, 3], [4, 4]], device='cuda:0') nonzero.shape=torch.Size([5, 2]) nonzero=tensor([[0, 0], [1, 1], [2, 2], [3, 3], [4, 4]], device='cuda:0') i_static.shape=torch.Size([5]) i_static=tensor([0, 2, 4, 1, 3], device='cuda:0') j_static.shape=torch.Size([5]) j_static=tensor([1, 3, 0, 2, 4], device='cuda:0') i.shape=torch.Size([5]) i=tensor([0, 1, 2, 3, 4], device='cuda:0') j.shape=torch.Size([5]) j=tensor([0, 1, 2, 3, 4], device='cuda:0') Traceback (most recent call last): File "/home/gcmn/src/torch_nonzero_static_miscompile/nonzero_static_miscompile.py", line 36, in <module> main() File "/home/gcmn/src/torch_nonzero_static_miscompile/nonzero_static_miscompile.py", line 33, in main torch.compile(test_nonzero_static_miscompile, backend="inductor")('cuda') File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/eval_frame.py", line 570, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/home/gcmn/src/torch_nonzero_static_miscompile/nonzero_static_miscompile.py", line 3, in test_nonzero_static_miscompile def test_nonzero_static_miscompile(device): File "/home/gcmn/src/torch_nonzero_static_miscompile/nonzero_static_miscompile.py", line 27, in torch_dynamo_resume_in_test_nonzero_static_miscompile_at_10 assert torch.equal(i_static, i), f"{i_static=}\n{i=}" ^^^^^^^^^^^^^^^^^^^^^^^^ AssertionError: i_static=tensor([0, 2, 4, 1, 3], device='cuda:0') i=tensor([0, 1, 2, 3, 4], device='cuda:0') ``` </details> ### Versions <details><summary>Torch nightly (2.8.0.dev20250501+cu126)</summary> Collecting environment information... PyTorch version: 2.8.0.dev20250501+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Debian GNU/Linux 12 (bookworm) (x86_64) GCC version: (Debian 12.2.0-14) 12.2.0 Clang version: Could not collect CMake version: version 3.31.0 Libc version: glibc-2.36 Python version: 3.11.2 (main, Nov 30 2024, 21:22:50) [GCC 12.2.0] (64-bit runtime) Python platform: Linux-6.1.0-27-cloud-amd64-x86_64-with-glibc2.36 Is CUDA available: True CUDA runtime version: 12.5.40 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-40GB Nvidia driver version: 550.90.07 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) CPU @ 2.20GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 6 Socket(s): 1 Stepping: 7 BogoMIPS: 4400.35 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 192 KiB (6 instances) L1i cache: 192 KiB (6 instances) L2 cache: 6 MiB (6 instances) L3 cache: 38.5 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-11 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Versions of relevant libraries: [pip3] numpy==2.1.2 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.26.2 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] pytorch-triton==3.3.0+git96316ce5 [pip3] torch==2.8.0.dev20250501+cu126 [pip3] torchaudio==2.6.0.dev20250501+cu126 [pip3] torchvision==0.22.0.dev20250501+cu126 [conda] Could not collect </details> <details><summary>Torch stable (2.7.0+cu126)</summary> Collecting environment information... PyTorch version: 2.7.0+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Debian GNU/Linux 12 (bookworm) (x86_64) GCC version: (Debian 12.2.0-14) 12.2.0 Clang version: Could not collect CMake version: version 3.31.0 Libc version: glibc-2.36 Python version: 3.11.2 (main, Nov 30 2024, 21:22:50) [GCC 12.2.0] (64-bit runtime) Python platform: Linux-6.1.0-27-cloud-amd64-x86_64-with-glibc2.36 Is CUDA available: True CUDA runtime version: 12.5.40 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-40GB Nvidia driver version: 550.90.07 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) CPU @ 2.20GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 6 Socket(s): 1 Stepping: 7 BogoMIPS: 4400.35 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 192 KiB (6 instances) L1i cache: 192 KiB (6 instances) L2 cache: 6 MiB (6 instances) L3 cache: 38.5 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-11 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Versions of relevant libraries: [pip3] numpy==2.2.5 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.26.2 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] torch==2.7.0 [pip3] torchaudio==2.7.0 [pip3] torchvision==0.22.0 [pip3] triton==3.3.0 [conda] Could not collect </details> Since this is reproducible on stable and nightly, I didn't include full details from all the other versions I tried. cc @chauhang @penguinwu @eellison @zou3519 @bdhirsh
true
3,034,772,647
[ca] wrap flex attention tests with compiled autograd
xmfan
open
[ "module: inductor", "ciflow/inductor" ]
2
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152633 * #152119 * #151962 * #151731 * #151860 * #149707 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,034,767,709
DISABLED test_torchvision_models_efficientnet_v2_l (__main__.TestVisionTracing)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "module: fx" ]
1
NONE
Platforms: asan, linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_torchvision_models_efficientnet_v2_l&suite=TestVisionTracing&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41498178561). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_torchvision_models_efficientnet_v2_l` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/test_fx.py", line 4953, in run_test script = torch.jit.script(graph) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_script.py", line 1443, in script ret = _script_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_script.py", line 1152, in _script_impl return torch.jit._recursive.create_script_module( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_recursive.py", line 557, in create_script_module return create_script_module_impl(nn_module, concrete_type, stubs_fn) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_recursive.py", line 626, in create_script_module_impl script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_script.py", line 653, in _construct init_fn(script_module) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_recursive.py", line 602, in init_fn scripted = create_script_module_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_recursive.py", line 626, in create_script_module_impl script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_script.py", line 653, in _construct init_fn(script_module) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_recursive.py", line 602, in init_fn scripted = create_script_module_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_recursive.py", line 626, in create_script_module_impl script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_script.py", line 653, in _construct init_fn(script_module) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_recursive.py", line 602, in init_fn scripted = create_script_module_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_recursive.py", line 626, in create_script_module_impl script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_script.py", line 653, in _construct init_fn(script_module) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_recursive.py", line 602, in init_fn scripted = create_script_module_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_recursive.py", line 626, in create_script_module_impl script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_script.py", line 653, in _construct init_fn(script_module) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_recursive.py", line 602, in init_fn scripted = create_script_module_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_recursive.py", line 626, in create_script_module_impl script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_script.py", line 653, in _construct init_fn(script_module) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_recursive.py", line 602, in init_fn scripted = create_script_module_impl( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_recursive.py", line 630, in create_script_module_impl create_methods_and_properties_from_stubs( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_recursive.py", line 466, in create_methods_and_properties_from_stubs concrete_type._create_methods_and_properties( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_recursive.py", line 1027, in compile_unbound_method create_methods_and_properties_from_stubs(concrete_type, (stub,), ()) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/jit/_recursive.py", line 466, in create_methods_and_properties_from_stubs concrete_type._create_methods_and_properties( RuntimeError: builtin cannot be used as a value: File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/conv.py", line 540 return F.conv2d( F.pad( input, self._reversed_padding_repeated_twice, mode=self.padding_mode ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE ), weight, 'Conv2d._conv_forward' is being compiled since it was called from 'Conv2d.forward' File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/conv.py", line 554 def forward(self, input: Tensor) -> Tensor: return self._conv_forward(input, self.weight, self.bias) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ASAN=1 PYTORCH_TEST_WITH_UBSAN=1 PYTORCH_TEST_WITH_SLOW=1 PYTORCH_TEST_SKIP_FAST=1 python test/test_fx.py TestVisionTracing.test_torchvision_models_efficientnet_v2_l This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_fx.py` cc @clee2000 @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
3,034,665,581
Fix two error messages involving Tensor.dense()
mhogervo
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo" ]
5
CONTRIBUTOR
Two error messages in the codebase instruct the user to use `Tendor.dense()`. This method doesn't exist, but `Tensor.to_dense()` does, and this is what the user should be using instead. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,034,561,957
[ROCm] Initial AITER Integration for mha_bwd asm kernels
alugorey
open
[ "module: rocm", "triaged", "open source", "ciflow/trunk", "topic: not user facing" ]
4
CONTRIBUTOR
Generates AITER plumbing via cmake. Calls into fav3 asm bwd CK kernels. cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
3,034,508,195
[DCP] Add 30min timeout for IPC communications in async checkpointing
MeetVadakkanchery
closed
[ "oncall: distributed", "fb-exported", "Merged", "ciflow/trunk", "release notes: distributed (checkpoint)", "oncall: distributed checkpointing" ]
6
CONTRIBUTOR
Summary: ### Diff Context - Sometime background process can be stuck processing async checkpoint request, and trainer shutdown can occur before the background process completes. - Fix, timeout the thread while reading the IPC queue for a response from background process. Differential Revision: D74017700 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @LucasLLC @pradeepfn
true
3,034,485,136
Make PGO code state not sensitive to file path by hashing file content when the file is available.
laithsakka
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152628 In some internal frameworks, on second attempts the actual code is copied to a different path than previous attempts. but its still the same. PGO will not work on those cased due to the following, sate entries before this PR used to be identified by (filepath, function name, line number). after this PR they are identified by (hash(filepath) , function name, line number). This way PGO will work for those jobs on future attempts and re-compilations of static versions will be avoided. Sometimes we do not have access to the source code, (file does not exists) This seems to happen mostly when we re-trace a compiled function but generally it can happen . cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,034,474,489
[v2.7.1] Release Tracker
atalman
open
[ "oncall: releng", "triaged", "release tracker" ]
11
CONTRIBUTOR
This issue is for tracking cherry-picks to the release branch. Following is [release branch](https://github.com/pytorch/pytorch/tree/release/2.7) for the 2.7.1 release. Our plan from this point is roughly the following: * Phase 1 (until 5/19): Cherry-pick post deadline (End of day 5PM PST) * Phase 2 (after 5/19): Perform extended integration/stability/performance testing based on Release Candidate builds. **Only issues that have ‘cherry-picks’ in this tracker will be considered for the release.** ## Cherry-Pick Criteria **Phase 1 (until 5/19):** Please note: **No feature work allowed for cherry picks**. The Releng team relies on the cherry pick process to manage risk to release quality, i.e. by porting a small set of commit from trunk that are "must-have" into the release branch, we limit the change to the minimal to address pressing issues. Thus, not everything a developer land into the trunk will make it into the release. So, please consider the criteria below and follow the cherry picking process. Only low-risk changes may be cherry-picked from master: 1. Fixes to regressions against the most recent release (e.g. 2.7.0 for 2.7.1 release; see [module: regression issue list](https://github.com/pytorch/pytorch/issues?q=is%3Aissue+is%3Aopen+label%3A%22module%3A+regression%22+)) 2. Low risk critical fixes for: silent correctness, backwards compatibility, crashes, deadlocks, (large) memory leaks 3. Critical Fixes to new features being introduced in 2.7.0 release 4. Documentation improvements 5. Release branch specific changes (e.g. blocking ci fixes, change version identifiers) Any other change requires special dispensation from the release managers (currently @atalman, @ZainRizvi , @seemethere @huydhn, @malfet). If this applies to your change please write "Special Dispensation" in the "Criteria Category:" template below and explain. **Phase 2 (after 5/19):** Note that changes here require us to rebuild a Release Candidate and restart extended testing (likely delaying the release). Therefore, the only accepted changes are **Release-blocking** critical fixes for: [silent correctness](https://github.com/pytorch/pytorch/issues?q=is%3Aissue+is%3Aopen+label%3A%22topic%3A+correctness+%28silent%29%22), [backwards compatibility](https://github.com/pytorch/pytorch/issues?q=is%3Aissue+is%3Aopen+label%3A%22topic%3A+bc-breaking%22+), [crashes](https://github.com/pytorch/pytorch/issues?q=is%3Aissue+is%3Aopen+label%3A%22topic%3A+crash%22+), [deadlocks](https://github.com/pytorch/pytorch/issues?q=is%3Aissue+is%3Aopen+label%3A%22topic%3A+deadlock%22+), (large) [memory leaks](https://github.com/pytorch/pytorch/issues?q=is%3Aissue+is%3Aopen+label%3A%22topic%3A+memory+usage%22+) Changes will likely require a discussion with the larger release team over VC or Slack. ## Cherry-Pick Process 1. Ensure your PR has landed in master. This does not apply for release-branch specific changes (see Phase 1 criteria). 2. Create (but do not land) a PR against the [release branch](https://github.com/pytorch/pytorch/tree/release/2.7). <details> ```bash # Find the hash of the commit you want to cherry pick # (for example, abcdef12345) git log git fetch origin release/2.7 git checkout release/2.7 git cherry-pick abcdef12345 # Submit a PR based against 'release/2.7' either: # via the GitHub UI git push my-fork # via the GitHub CLI gh pr create --base release/2.7 ``` </details> 3. Make a request below with the following format: ``` Link to landed trunk PR (if applicable): * Link to release branch PR: * Criteria Category: * ``` 1. Someone from the release team will reply with approved / denied or ask for more information. 2. If approved, someone from the release team will merge your PR once the tests pass. **Do not land the release branch PR yourself.** **NOTE: Our normal tools (ghstack / ghimport, etc.) do not work on the release branch.** See [HUD 2.7](https://hud.pytorch.org/hud/pytorch/pytorch/release%2F2.7/1?per_page=50) ### Versions 2.7.1
true
3,034,453,325
[Dynamo] Guard serialization for TENSOR_SUBCLASS_METADATA_MATCH
jbschlosser
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor", "ciflow/pull" ]
15
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152872 * #152865 * #152730 * #152729 * #152728 * #152727 * #152725 * #152724 * #152704 * __->__ #152626 This PR updates `GuardsStatePickler.reducer_override()` in `torch/_dynamo/guards.py` to handle reconstruction of traceable wrapper subclasses. It's intended to work recursively and handle any level of subclass instance nesting (e.g. subclass instances that contain subclass instances, etc.) This PR tests the guard on several traceable wrapper tensor subclasses: * `LocalSubclass`: used to ensure the correct error message is thrown when the subclass is not defined globally * `torch.testing._internal.two_tensor.TwoTensor`: defines None for its extra metadata * `SubclassWithMeta`: stores non-trivial extra metadata * `SubclassWithCustomMetadataGuard`: stores non-trivial extra metadata and defines a custom `__metadata_guard__` classmethod * `SubclassWithSubclassInnerTensors`: used to test recursiveness; this subclass contains subclass inner tensor components cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,034,451,300
[CP] Fix the offsets to KV in backward
fegin
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152625 This is more semantically correct even though we currently assumed KV have the same lengths. cc @H-Huang @awgu @wanchaol @fduwjj @wz337 @wconstab @d4l3k
true
3,034,423,623
[pytree] make `tree_*` functions accept both Python and C++ `PyTreeSpec`
XuehaiPan
open
[ "open source", "ciflow/trunk", "topic: not user facing", "module: pytree", "module: dynamo", "ciflow/inductor" ]
2
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #148328 * #148180 * #137400 * __->__ #152624 cc @zou3519 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,034,421,736
modded-nanogpt flaky NCCL hang starting 3/30 nightly
xmfan
open
[ "needs reproduction", "oncall: distributed", "triaged" ]
8
MEMBER
### 🐛 Describe the bug From @YouJiaCheng, > I evaluated performance of other nightly releases: time and peak memory allocated 0208:≈1470s, 50380MiB 0209:≈1483s, 50380MiB 0301:1484-1487s, 50380MiB 0310:1482-1484s, 52129MiB 0315:1498-1500s, 52129MiB 0330:NCCL Hang first run 0401:NCCL Hang first run 0410:NCCL Hang first run 0414:1496-1497s, 52129MiB, NCCL Hang after 5 successful runs 0415:~1498s, 52129MiB, NCCL Hang 2 in 3 runs ![Image](https://github.com/user-attachments/assets/7a0b4449-17d9-43cd-b6ab-81f387be7c5b) <details> <summary>Code</summary> ```python import os import sys with open(sys.argv[0]) as f: code = f.read() # read the code of this file ASAP, for logging import uuid import time import copy from dataclasses import dataclass from functools import lru_cache from pathlib import Path os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" import torch torch.empty(1, device="cuda", requires_grad=True).backward() # prevents a bug on some systems from torch import Tensor, nn import torch.nn.functional as F import torch.distributed as dist # use of FlexAttention contributed by @KoszarskyB from torch.nn.attention.flex_attention import BlockMask, flex_attention torch._inductor.config.coordinate_descent_tuning = True # we have banned this flag for new records because it causes compilation to take 30min torch._dynamo.config.compiled_autograd = True # ----------------------------------------------------------------------------- # Muon optimizer def zeropower_via_newtonschulz5(G: Tensor) -> Tensor: """ Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose of minimizing steps, it turns out to be empirically effective to keep increasing the slope at zero even beyond the point where the iteration no longer converges all the way to one everywhere on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T where S' is diagonal with S_{ii}' ∈ [1 - l, 1 + r], which turns out not to hurt model performance at all relative to UV^T, where USV^T = G is the SVD. """ assert G.ndim >= 2 # batched Muon implementation by @scottjmaddox, and put into practice in the record by @YouJiacheng X = G.bfloat16() if G.size(-2) > G.size(-1): X = X.mT # Ensure spectral norm is at most 1 X = X / (X.norm(dim=(-2, -1), keepdim=True) + 1e-7) # Perform the NS iterations for a, b, c in [ (4.0848, -6.8946, 2.9270), (3.9505, -6.3029, 2.6377), (3.7418, -5.5913, 2.3037), (2.8769, -3.1427, 1.2046), (2.8366, -3.0525, 1.2012), ]: A = X @ X.mT B = b * A + c * A @ A # quintic computation strategy adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng X = a * X + B @ X if G.size(-2) > G.size(-1): X = X.mT return X @torch.compile def update(acc_bf16_view_u16: Tensor, mantissa: Tensor, momentum_buffer: Tensor, grad: Tensor, momentum: Tensor, eff_lr: Tensor, eff_weight_decay: Tensor): assert acc_bf16_view_u16.dtype == mantissa.dtype == torch.uint16 grad = grad.float() momentum_buffer.copy_(momentum * momentum_buffer + (1 - momentum) * grad) v = zeropower_via_newtonschulz5(momentum * momentum_buffer + (1 - momentum) * grad) acc_m_u32 = (acc_bf16_view_u16.to(torch.uint32) << 16) | mantissa.to(torch.uint32) acc_m_u32.view(torch.float32).mul_(1 - eff_weight_decay) acc_m_u32.view(torch.float32).add_(other=v, alpha=-eff_lr) acc_bf16_view_u16.copy_((acc_m_u32 >> 16).to(torch.uint16)) mantissa.copy_(acc_m_u32.to(torch.uint16)) class Muon(torch.optim.Optimizer): """ Muon - MomentUm Orthogonalized by Newton-schulz https://kellerjordan.github.io/posts/muon/ Muon internally runs standard SGD-momentum, and then performs an orthogonalization post- processing step, in which each 2D parameter's update is replaced with the nearest orthogonal matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has the advantage that it can be stably run in bfloat16 on the GPU. Warning: This optimizer should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D parameters; those should all be optimized by a standard method (e.g., AdamW). """ def __init__(self, params, lr=0.02, weight_decay=0.01, momentum=0.95, rank=0, world_size=1): self.rank = rank self.world_size = world_size defaults = dict(lr=lr, weight_decay=weight_decay, momentum=momentum) super().__init__(params, defaults) assert all(p.dtype == torch.bfloat16 for group in self.param_groups for p in group["params"]) @torch.no_grad() def step(self): futures: list[torch.Future] = [] for group in self.param_groups: params: list[Tensor] = group["params"] params_pad = params + [torch.empty_like(params[-1])] * self.world_size momentum = torch._as_tensor_fullprec(group["momentum"]) for base_i in range(len(params))[::self.world_size]: if base_i + self.rank < len(params): p = params[base_i + self.rank] state = self.state[p] if len(state) == 0: state["mantissa"] = torch.zeros_like(p, dtype=torch.uint16) state["momentum_buffer"] = torch.zeros_like(p, dtype=torch.float32) update( p.view(torch.uint16), state["mantissa"], state["momentum_buffer"], p.grad, momentum, eff_lr=torch._as_tensor_fullprec(group["lr"] * max(1, p.size(-2) / p.size(-1)) ** 0.5), eff_weight_decay=torch._as_tensor_fullprec(group["lr"] * group["weight_decay"] * getattr(p, "wd_mul", 1.0)), ) futures.append(dist.all_gather(params_pad[base_i:base_i + self.world_size], params_pad[base_i + self.rank], async_op=True).get_future()) # for group in self.param_groups: # params: list[Tensor] = group["params"] # momentum = torch._as_tensor_fullprec(group["momentum"]) # for base_i in range(len(params))[::self.world_size]: # p = params[min(base_i + self.rank, len(params) - 1)] # state = self.state[p] # if len(state) == 0: # state["mantissa"] = torch.zeros_like(p, dtype=torch.uint16) # state["momentum_buffer"] = torch.zeros_like(p, dtype=torch.float32) # update( # p.view(torch.uint16), state["mantissa"], state["momentum_buffer"], # p.grad, momentum, # eff_lr=torch._as_tensor_fullprec(group["lr"] * max(1, p.size(-2) / p.size(-1)) ** 0.5), # eff_weight_decay=torch._as_tensor_fullprec(group["lr"] * group["weight_decay"] * getattr(p, "wd_mul", 1.0)), # ) # p_list = [params[min(base_i + i, len(params) - 1)] for i in range(self.world_size)] # futures.append(dist.all_gather(p_list, p_list[self.rank], async_op=True).get_future()) torch.futures.collect_all(futures).wait() # ----------------------------------------------------------------------------- # PyTorch nn.Module definitions for the model def norm(x: Tensor): return F.rms_norm(x, (x.size(-1),)) @torch.no_grad() def init_linear(w: Tensor): std = 0.5 * (w.size(-1) ** -0.5) # 0.5 is a bit better than the default 1/sqrt(3) bound = (3 ** 0.5) * std return w.uniform_(-bound, bound) class Rotary(nn.Module): def __init__(self, dim: int, max_seq_len: int): super().__init__() # half-truncate RoPE by @YouJiacheng (w/ base freq tuning) angular_freq = (1 / 1024) ** torch.linspace(0, 1, steps=dim//4, dtype=torch.float32) angular_freq = torch.cat([angular_freq, angular_freq.new_zeros(dim//4)]) t = torch.arange(max_seq_len, dtype=torch.float32) theta = torch.einsum("i,j -> ij", t, angular_freq) self.cos = nn.Buffer(theta.cos(), persistent=False) self.sin = nn.Buffer(theta.sin(), persistent=False) def forward(self, x_BTHD: Tensor): assert self.cos.size(0) >= x_BTHD.size(-3) cos, sin = self.cos[None, :x_BTHD.size(-3), None, :], self.sin[None, :x_BTHD.size(-3), None, :] x1, x2 = x_BTHD.to(dtype=torch.float32).chunk(2, dim=-1) y1 = x1 * cos + x2 * sin y2 = x1 * (-sin) + x2 * cos return torch.cat((y1, y2), 3).type_as(x_BTHD) class CausalSelfAttention(nn.Module): def __init__(self, dim: int, num_heads: int, max_seq_len: int, head_dim=128): super().__init__() self.num_heads = num_heads self.head_dim = head_dim hdim = num_heads * head_dim # merged QKV weights: suggested by many, implemented by @fernbear.bsky.social, and further improved by @YouJiacheng # https://x.com/hi_tysam/status/1879699187107033311 self.qkvo_w = nn.Parameter(init_linear(torch.empty(4, hdim, dim)).bfloat16()) self.qkvo_w.detach()[3].zero_() # out zero init suggested by @Grad62304977 self.rotary = Rotary(head_dim, max_seq_len) # scale the attention logits by given constant, instead of the default head_dim**-0.5, by @leloykun # inspired by learnable scalars used by @brendanh0gan https://x.com/hi_tysam/status/1879693583898591283 self.attn_scale = 0.12 def forward(self, x: Tensor, ve: Tensor | None, block_mask: BlockMask, lambdas: Tensor): B, T = x.size(0), x.size(1) # batch size, sequence length assert B == 1, "Must use batch size = 1 for FlexAttention" q, k, v = F.linear(x, self.qkvo_w[:3].flatten(end_dim=1)).view(B, T, 3 * self.num_heads, self.head_dim).chunk(3, dim=-2) q, k = norm(q), norm(k) # QK norm @Grad62304977 q, k = self.rotary(q), self.rotary(k) v = norm(v) if ve is not None: v = lambdas[0] * v + lambdas[1] * ve.view_as(v) # @KoszarskyB & @Grad62304977 else: # skip mid-layers token value embeddings by @YouJiacheng v = lambdas[0] * v y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask, scale=self.attn_scale).transpose(1, 2) y = y.contiguous().view(B, T, self.num_heads * self.head_dim) # re-assemble all head outputs side by side y = F.linear(y, self.qkvo_w[3]) return y class MLP(nn.Module): def __init__(self, dim: int): super().__init__() hdim = 4 * dim self.fc_w = nn.Parameter(init_linear(torch.empty(hdim, dim)).bfloat16()) self.proj_w = nn.Parameter(torch.zeros(dim, hdim).bfloat16()) self.fc_w.wd_mul = 2.0 self.proj_w.wd_mul = 2.0 def forward(self, x: Tensor): x = F.linear(x, self.fc_w) x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977 x = F.linear(x, self.proj_w) return x class Block(nn.Module): def __init__(self, dim: int, num_heads: int, max_seq_len: int, layer_idx: int): super().__init__() # skip attention of blocks.7 (the 8th layer) by @YouJiacheng self.attn = CausalSelfAttention(dim, num_heads, max_seq_len) if layer_idx != 7 else None self.mlp = MLP(dim) def forward(self, x: Tensor, ve: Tensor | None, x0: Tensor, block_mask: BlockMask, lambdas: Tensor, sa_lambdas: Tensor): x = lambdas[0] * x + lambdas[1] * x0 if self.attn is not None: x = x + self.attn(x, ve, block_mask, sa_lambdas) x = x + self.mlp(norm(x)) return x # ----------------------------------------------------------------------------- # The main model def next_multiple_of_n(v: float | int, *, n: int): return next(x for x in range(n, int(v) + 1 + n, n) if x >= v) class GPT(nn.Module): def __init__(self, vocab_size: int, num_layers: int, num_heads: int, model_dim: int, max_seq_len: int): super().__init__() self.embed = nn.Embedding(vocab_size, model_dim) # token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual implementation following https://arxiv.org/abs/2410.17897 # value embedding code simplification inspired by @ragulpr https://github.com/KellerJordan/modded-nanogpt/pull/78 self.value_embeds = nn.ModuleList([nn.Embedding(vocab_size, model_dim) for _ in range(3)]) self.blocks = nn.ModuleList([Block(model_dim, num_heads, max_seq_len, i) for i in range(num_layers)]) # there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. # suggested to me by @Grad62304977. this originates from Karpathy's experiments. self.lm_head_w = nn.Parameter(torch.zeros(next_multiple_of_n(vocab_size, n=128), model_dim)) # Add learnable skip connection weights for decoder layers assert num_layers % 2 == 0 self.scalars = nn.Parameter(torch.cat([ torch.ones(num_layers), # skip_weights *[torch.tensor([1.0, 0.0]) for _ in range(num_layers)], # block lambdas *[torch.tensor([0.5, 0.5]) for _ in range(num_layers)], # SA lambdas ])) def create_blockmasks(self, input_seq: Tensor, sliding_window_num_blocks: Tensor): BLOCK_SIZE = 128 docs = (input_seq == 50256).cumsum(0) def document_causal(b, h, q_idx, kv_idx): causal_mask = q_idx >= kv_idx document_mask = docs[q_idx] == docs[kv_idx] return causal_mask & document_mask def dense_to_ordered(dense_blockmask: Tensor): num_blocks = dense_blockmask.sum(dim=-1, dtype=torch.int32) indices = dense_blockmask.argsort(dim=-1, descending=False, stable=True).flip(-1).to(torch.int32) return num_blocks[None, None].contiguous(), indices[None, None].contiguous() # manual block mask creation by @YouJiacheng assert len(input_seq) % BLOCK_SIZE == 0 NUM_BLOCKS = len(input_seq) // BLOCK_SIZE block_idx = torch.arange(NUM_BLOCKS, dtype=torch.int32, device="cuda") causal_blockmask_any = block_idx[:, None] >= block_idx causal_blockmask_all = block_idx[:, None] > block_idx docs_low = docs.view(-1, BLOCK_SIZE)[:, 0].contiguous() docs_high = docs.view(-1, BLOCK_SIZE)[:, -1].contiguous() document_blockmask_any = (docs_low[:, None] <= docs_high) & (docs_high[:, None] >= docs_low) document_blockmask_all = (docs_low[:, None] == docs_high) & (docs_high[:, None] == docs_low) blockmask_any = causal_blockmask_any & document_blockmask_any blockmask_all = causal_blockmask_all & document_blockmask_all partial_kv_num_blocks, partial_kv_indices = dense_to_ordered(blockmask_any & ~blockmask_all) full_kv_num_blocks, full_kv_indices = dense_to_ordered(blockmask_all) def build_bm(window_size_blocks: Tensor) -> BlockMask: return BlockMask.from_kv_blocks( torch.clamp_max(partial_kv_num_blocks, torch.clamp_min(window_size_blocks - full_kv_num_blocks, 1)), partial_kv_indices, torch.clamp_max(full_kv_num_blocks, window_size_blocks - 1), full_kv_indices, BLOCK_SIZE=BLOCK_SIZE, mask_mod=document_causal, ) # Long-short SWA block masks by @leloykun & @YouJiacheng, adapated from suggestion by @Grad62304977, following Gemma 2 paper return build_bm(sliding_window_num_blocks), build_bm(sliding_window_num_blocks // 2) def forward(self, input_seq: Tensor, target_seq: Tensor, sliding_window_num_blocks: Tensor): assert input_seq.ndim == 1 ve = [value_embed(input_seq) for value_embed in self.value_embeds] # 012 ... 012 structure on token value embeddings by @YouJiacheng, improved on @leloykun's U-net structure ve = [ve[0], ve[1], ve[2]] + [None] * (len(self.blocks) - 6) + [ve[0], ve[1], ve[2]] assert len(ve) == len(self.blocks) long_bm, short_bm = self.create_blockmasks(input_seq, sliding_window_num_blocks) block_masks = [long_bm, short_bm, short_bm, short_bm, long_bm, short_bm, short_bm, short_bm, short_bm, short_bm, short_bm, long_bm, short_bm, short_bm, short_bm, long_bm] assert len(block_masks) == len(self.blocks) x = x0 = norm(self.embed(input_seq)[None]) # use of norm here by @Grad62304977 skip_connections = [] skip_map = { 9: 6, 10: 4, 11: 2, } skip_weights = self.scalars[:len(self.blocks)] lambdas = self.scalars[1 * len(self.blocks): 3 * len(self.blocks)].view(-1, 2) sa_lambdas = self.scalars[3 * len(self.blocks): 5 * len(self.blocks)].view(-1, 2) for i in range(len(self.blocks)): if i in skip_map: x = x + skip_weights[skip_map[i]] * skip_connections[skip_map[i]] x = self.blocks[i](x, ve[i], x0, block_masks[i], lambdas[i], sa_lambdas[i]) skip_connections.append(x) x = norm(x) if self.training: logits: Tensor = F.linear(x.flatten(end_dim=1), self.lm_head_w.bfloat16()).float() loss = F.cross_entropy(15 * logits * torch.rsqrt(logits.square() + 225), target_seq) return loss loss = 0 for i in range(4): logits: Tensor = F.linear(x.flatten(end_dim=1).chunk(4)[i], self.lm_head_w.bfloat16()).float() loss += F.cross_entropy(15 * logits * torch.rsqrt(logits.square() + 225), target_seq.chunk(4)[i]) / 4 return loss # ----------------------------------------------------------------------------- # Our own simple Distributed Data Loader def _load_data_shard(file: Path): header = torch.from_file(str(file), False, 256, dtype=torch.int32) # header is 256 int32 assert header[0] == 20240520, "magic number mismatch in the data .bin file" assert header[1] == 1, "unsupported version" num_tokens = int(header[2]) # number of tokens (claimed) with file.open("rb", buffering=0) as f: tokens = torch.empty(num_tokens, dtype=torch.uint16, pin_memory=True) # avoid pin_memory copy by @YouJiacheng f.seek(256 * 4) nbytes = f.readinto(tokens.numpy()) # avoid bytes->array copy by @YouJiacheng assert nbytes == 2 * num_tokens, "number of tokens read does not match header" return tokens def distributed_data_generator(filename_pattern: str, batch_size: int, rank : int, world_size : int): files = sorted(Path.cwd().glob(filename_pattern)) assert batch_size % world_size == 0 local_batch_size = batch_size // world_size file_iter = iter(files) # use itertools.cycle(files) instead if you want to do multi-epoch training tokens, pos = _load_data_shard(next(file_iter)), 0 while True: if pos + batch_size + 1 >= len(tokens): tokens, pos = _load_data_shard(next(file_iter)), 0 buf = tokens[pos + rank * local_batch_size:][:local_batch_size + 1] inputs = buf[:-1].to(device="cuda", dtype=torch.int32, non_blocking=True) # no sync on host side; targets = buf[1:].to(device="cuda", dtype=torch.int64, non_blocking=True) # H2D in another stream isn't helpful. pos += batch_size yield inputs, targets # ----------------------------------------------------------------------------- # int main @dataclass class Hyperparameters: # data train_files = "data/fineweb10B/fineweb_train_*.bin" # input .bin to train on val_files = "data/fineweb10B/fineweb_val_*.bin" # input .bin to eval validation loss on val_tokens = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons train_seq_len = 64*1024 # FlexAttention sequence length val_seq_len = 4*64*1024 # FlexAttention sequence length for validation # optimization num_iterations = 5960 # number of iterations to run cooldown_frac = 0.7 # fraction of training spent cooling down the learning rate # architecture vocab_size = 50257 # evaluation and logging val_loss_every = 125 # every how many steps to evaluate val loss? 0 for only at the end save_checkpoint = False args = Hyperparameters() run_id = int(os.environ.get("RUN_ID", 0)) # torchrun sets these env variables rank = int(os.environ["RANK"]) world_size = int(os.environ["WORLD_SIZE"]) assert world_size == 8 # this code is designed for 8xH100 assert torch.cuda.is_available() device = torch.device("cuda", int(os.environ["LOCAL_RANK"])) torch.cuda.set_device(device) dist.init_process_group(backend="nccl", device_id=device) dist.barrier() master_process = (rank == 0) # this process will do logging, checkpointing etc. # begin logging if master_process: run_id_full = f"{run_id:03d}_{uuid.uuid4()}" os.makedirs("logs", exist_ok=True) logfile = f"logs/{run_id_full}.txt" print(logfile) def print0(s, console=False): if master_process: with open(logfile, "a") as f: if console: print(s) print(s, file=f) from torch._logging._internal import trace_structured # noqa: E402 import torch._inductor.codecache # noqa: E402 import torch._inductor.graph # noqa: E402 def _patched_trace_structured(name, *args, **kwargs): if name == "inductor_output_code": match args, kwargs: case (metadata_fn, *_), _: filename = metadata_fn().get("filename", "Unknown") case _, {"metadata_fn": metadata_fn}: filename = metadata_fn().get("filename", "Unknown") case _: filename = "Unknown" print0(f"inductor_output_code: {filename}") trace_structured(name, *args, **kwargs) torch._inductor.codecache.trace_structured = _patched_trace_structured torch._inductor.graph.trace_structured = _patched_trace_structured # begin by printing this file (the Python code) print0(code) print0("="*100) # log information about the hardware/software environment this is running on print0(f"Running Python {sys.version}") print0(f"Running PyTorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}") def nvidia_smi(): import subprocess # avoid top level import return subprocess.run(["nvidia-smi"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True).stdout print0(nvidia_smi()) print0("="*100) ######################################## # Construct model and optimizer # ######################################## model: nn.Module = GPT(vocab_size=args.vocab_size, num_layers=16, num_heads=8, model_dim=1024, max_seq_len=max(args.train_seq_len, args.val_seq_len)).cuda() for m in model.modules(): if isinstance(m, nn.Embedding): m.bfloat16() for param in model.parameters(): dist.broadcast(param.detach(), 0) # collect the parameters to optimize hidden_matrix_params = sorted((p for p in model.blocks.parameters() if p.ndim >= 2), key=lambda x: x.size(), reverse=True) embed_params = [*model.embed.parameters(), *model.value_embeds.parameters()] scalar_params = [model.scalars] head_params: list[nn.Parameter] = [model.lm_head_w] # sanity check params_collections = [hidden_matrix_params, embed_params, scalar_params, head_params] optimized_parameters_set = {p for params in params_collections for p in params} assert optimized_parameters_set == {*model.parameters()} assert len(optimized_parameters_set) == sum(len(lst) for lst in params_collections) # init the optimizer(s) adam_param_groups = [dict(params=head_params, lr=1/320), dict(params=embed_params, lr=0.3), dict(params=scalar_params, lr=0.015)] # small adam epsilon by @YouJiacheng. this is an alternate method of fixing the world_size dependence # discovered by @fernbear.bsky.social https://x.com/hi_tysam/status/1879692937589875094 optimizer1 = torch.optim.AdamW(adam_param_groups, betas=(0.8, 0.95), eps=1e-10, weight_decay=0.0, fused=True) optimizer2 = Muon(hidden_matrix_params, lr=0.025, momentum=0.95, rank=rank, world_size=world_size) optimizers: list[torch.optim.Optimizer] = [optimizer1, optimizer2] def opt_params(opt: torch.optim.Optimizer) -> list[nn.Parameter]: return [p for group in opt.param_groups for p in group["params"]] opt2params = {opt: opt_params(opt) for opt in optimizers} for opt in optimizers: for group in opt.param_groups: group["initial_lr"] = group["lr"] # learning rate schedule: stable then decay def get_lr(step: int): x = step / args.num_iterations # progress in training assert 0 <= x < 1 if x < 1 - args.cooldown_frac: return 1.0 else: return (1 - x) / args.cooldown_frac # attention window size schedule: linearly increase @lru_cache(1) def get_window_size_blocks_helper(window_size: int): return torch.tensor(window_size // 128, dtype=torch.int32, pin_memory=True).cuda(non_blocking=True) def get_window_size_blocks(step: int): x = step / args.num_iterations # progress in training assert 0 <= x <= 1 # Linearly increase the block-wise sliding window size over training 128 -> 1792 # increase by @fernbear.bsky.social; block-wise by @YouJiacheng factor = 4 * x ** 3 - 6 * x ** 2 + 3 * x window_size = next_multiple_of_n(3456 * factor, n=128) return get_window_size_blocks_helper(window_size) model: nn.Module = torch.compile(model, dynamic=False) ######################################## # Warmup kernels # ######################################## # Warmup the training kernels, then re-initialize the state so we aren't cheating warmup_steps = 10 initial_state = copy.deepcopy(dict(model=model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])) for _ in range(warmup_steps): inputs = targets = torch.randint(0, args.vocab_size, size=(args.train_seq_len,), device="cuda") model(inputs.to(torch.int32), targets, get_window_size_blocks(0)).backward() for param in model.parameters(): dist.all_reduce(param.grad, op=dist.ReduceOp.AVG) for opt in optimizers: opt.step() model.zero_grad(set_to_none=True) model.load_state_dict(initial_state["model"]) for opt, opt_state in zip(optimizers, initial_state["optimizers"]): opt.load_state_dict(opt_state) del initial_state ######################################## # Training and validation # ######################################## torch.cuda.reset_peak_memory_stats() train_loader = distributed_data_generator(args.train_files, world_size * args.train_seq_len, rank, world_size) training_time_ms = 0 # start the clock dist.barrier() t0 = time.perf_counter() # begin training train_steps = args.num_iterations for step in range(train_steps + 1): last_step = (step == train_steps) # --------------- VALIDATION SECTION ----------------- if last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0): # stop the clock dist.barrier() training_time_ms += 1000 * (time.perf_counter() - t0) model.eval() val_batch_size = world_size * args.val_seq_len assert args.val_tokens % val_batch_size == 0 val_steps = args.val_tokens // val_batch_size val_loader = distributed_data_generator(args.val_files, val_batch_size, rank, world_size) val_loss = 0 with torch.no_grad(): for _ in range(val_steps): inputs, targets = next(val_loader) val_loss += model(inputs, targets, get_window_size_blocks(step)) val_loss /= val_steps del val_loader dist.all_reduce(val_loss, op=dist.ReduceOp.AVG) print0(f"step:{step}/{train_steps} val_loss:{val_loss:.6f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/max(step, 1):.2f}ms", console=True) model.train() # start the clock again dist.barrier() t0 = time.perf_counter() if last_step: if master_process and args.save_checkpoint: log = dict(step=step, code=code, model=model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers]) os.makedirs(f"logs/{run_id_full}", exist_ok=True) torch.save(log, f"logs/{run_id_full}/state_step{step:06d}.pt") # the last step only has the validation loop, so break to avoid training break # --------------- TRAINING SECTION ----------------- inputs, targets = next(train_loader) model(inputs, targets, get_window_size_blocks(step)).backward() opt2futures = { opt: [dist.all_reduce(p.grad, op=dist.ReduceOp.AVG, async_op=True).get_future() for p in params] for opt, params in opt2params.items() } # set optimization hyperparameters for opt in optimizers: for group in opt.param_groups: group["lr"] = group["initial_lr"] * get_lr(step) for group in optimizer2.param_groups: frac = min(step / 300, 1) # momentum warmup for muon group["momentum"] = (1 - frac) * 0.85 + frac * 0.95 # step the optimizers for opt in optimizers: torch.futures.collect_all(opt2futures[opt]).wait() opt.step() # null the gradients model.zero_grad(set_to_none=True) # logging approx_training_time_ms = training_time_ms + 1000 * (time.perf_counter() - t0) print0(f"step:{step+1}/{train_steps} train_time:{approx_training_time_ms:.0f}ms step_avg:{approx_training_time_ms/(step + 1):.2f}ms", console=True) print0(f"peak memory allocated: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB " f"reserved: {torch.cuda.max_memory_reserved() // 1024 // 1024} MiB", console=True) dist.destroy_process_group() ``` </details> ### Versions nightlies since 3/30 Collecting environment information... PyTorch version: 2.7.0.dev20250209+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 24.04.1 LTS (x86_64) GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.39 Python version: 3.12.9 (main, Feb 5 2025, 19:10:45) [Clang 19.1.6 ] (64-bit runtime) Python platform: Linux-5.4.250-2-velinux1u1-amd64-x86_64-with-glibc2.39 Is CUDA available: True CUDA runtime version: 12.8.61 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3 GPU 1: NVIDIA H100 80GB HBM3 GPU 2: NVIDIA H100 80GB HBM3 GPU 3: NVIDIA H100 80GB HBM3 GPU 4: NVIDIA H100 80GB HBM3 GPU 5: NVIDIA H100 80GB HBM3 GPU 6: NVIDIA H100 80GB HBM3 GPU 7: NVIDIA H100 80GB HBM3 Nvidia driver version: 535.129.03 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.7.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 168 On-line CPU(s) list: 0-161 Off-line CPU(s) list: 162-167 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8457C CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 42 Socket(s): 2 Stepping: 8 BogoMIPS: 5199.53 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 wbnoinvd arat avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid cldemote movdiri movdir64b md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 3.9 MiB (84 instances) L1i cache: 2.6 MiB (84 instances) L2 cache: 168 MiB (84 instances) L3 cache: 195 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-83 NUMA node1 CPU(s): 84-167 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Unknown: No mitigations Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==2.2.2 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] pytorch-triton==3.2.0+git4b3bb1f8 [pip3] torch==2.7.0.dev20250209+cu126 [conda] Could not collect cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,034,417,696
Parameterized CUDA Graph Launch
galv
open
[ "open source", "module: inductor", "ciflow/inductor" ]
5
COLLABORATOR
This is a follow on to #137318 . The main concern with that PR was robustness: We had no real way of knowing whether or not a particular 8-byte aligned 8-byte value in a parameter was really a pointer. This made it basically impossible to 100% guarantee correctness of replacing the arguments of a cuda graph, since you might accidentally replace a false positive. However, the compiler does in fact know the types of every argument to a cuda kernel; the only way this is exposed right now is via dwarf debug information, so I parsed the dwarf debug information. Disappointingly, this PR cannot be built on its own. I am currently depending upon a private API to get the ELF file holding a given cuda kernel (since that elf file contains the dwarf debug information we need) that sits in a header file called etbl_private.h (which I did not upload). Exposing internal APIs publicly will take time. Another challenge with this PR is that it requires you to build all CUDA code with nvcc's "-G" flag. This creates dwarf debug symbols, but at the cost of disabling optimizations. This both slows down compilation and means we don't benefit from this change yet, since your kernels will be way slower. A final concern is that this doesn't work with code generated via compilers other than nvcc. In particular, triton doesn't seem to generate dwarf debug symbols. I'm not very concerned about this right now, since triton's kernels apparently have very simple parameters (just basic types no structs): https://github.com/triton-lang/triton/blob/bb60d9efe15534c1d0514e19cdf5da14d38779a2/third_party/nvidia/backend/driver.py#L100-L122 That may all sound underwhelming, but I hope this paves the way towards calling cuda graphs as if they are functions. (i.e., you will no longer have to worry about an errant graph.replay() call clobbering an output value from a previous graph.replay()). The ability to reliably detect pointers in a cuda graph also would allow us to prevent cuda graphed code from "hogging" memory from non cuda graphed code. This is because we could "unmap" the physical memory backing virtual addresses of temporary allocations in a cuda graph. It remains to be seen whether this can be done perfomantly @eellison . I hope this dovetails nicely with @BoyuanFeng 's work on inductor graph partition and removing all of the constraints and workarounds in cudagraph trees. @eellison @BoyuanFeng @leijurv @zdevito cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,034,386,674
Stop proxy-ing autograd.Function.ctx into the graph
zou3519
open
[ "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152621 The reason why we did this before is because that's how our older autograd.Function x Dynamo interaction work, but we've since adopted newer designs that don't actually need the autograd.Function.ctx proxied into the graph. We still need a fx.Proxy for the autograd.Function.ctx object, so whenever we do I create one via discard_graph_changes. Test Plan: - existing tests cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,034,379,833
BE: Swap functorch --> torch._higher_order_ops
seemethere
closed
[ "fb-exported", "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: export" ]
4
MEMBER
Summary: Discovered when attempting to resolve arvr builds, should resolve issues around utilizing functorch through export. Test Plan: ``` buck2 test arvr/mode/linux/opt //arvr/libraries/xrrp/ml/python/test:convert_to_etvk_test ``` Differential Revision: D74013898
true
3,034,352,816
[fbgemm] Implement __obj_flatten__ for LinearPackedParamsBase
hl475
closed
[ "module: cpu", "fb-exported", "Merged", "ciflow/trunk", "release notes: quantization" ]
19
CONTRIBUTOR
Differential Revision: D73991241 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @jerryzh168
true
3,034,342,808
[CUDA][TF32] Account for TF32 in `test_conv2d_same_padding`
eqy
closed
[ "module: cuda", "module: convolution", "open source", "Merged", "module: tf32", "ciflow/trunk", "topic: not user facing" ]
3
COLLABORATOR
cc @ptrblck @msaroufim @jerryzh168 @zasdfgbnm
true
3,034,298,667
Pytorch Profiler crashes while using it with Pytorch Lightning module
MKaczkow
open
[ "oncall: profiler" ]
0
NONE
### 🐛 Describe the bug Pytorch Profiler crashes while using it with pytorch-lightning. I am attempting to profile some experiments, but keep getting errors like shown below. I've searched forum and gh issues and I'm aware of the following: * [issue](https://github.com/pytorch/pytorch/issues/98124) (not relevant -> different cause of error as sugested by message) * [issue](https://github.com/pytorch/pytorch/issues/68846) (not relevant -> different cause of error as sugested by message) * [forum post](https://discuss.pytorch.org/t/why-is-tensorboard-reporting-no-tensorcores/168473) (not relevant -> profiler runs, but output not in tensorboard) Suspecting / judging from error message, that the problem is related to context management in profiler, I've tried 2 ways of launching it, *v1 -> distinct-context-per-stage* and *v2 -> single-context-for-experiment*, but neither have succeded. Remaining parts of experiment, like dataloaders, model, etc. are provided in the environment and so far worked correctly (listed example setup at the very end of this issue, as it's quite a lot of code). Will be grateful for any ideas / debugging tips 🙂 Relevant code snippet v1: ```python trainer = pl.Trainer( log_every_n_steps=100, max_epochs=max_epochs, devices=1, accelerator=accelerator, enable_checkpointing=False, num_sanity_val_steps=0, # to avoid adding unnecessary item to validation_epoch_embedding_norms ) ########################### # Pre-training ########################### with profile( activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True, profile_memory=True, with_stack=True, ) as prof: with record_function("pretraining-validation"): # perform extra 'validation' epoch to see if untrained model does anything useful trainer.validate(model, dataloader_val_simclr) ########################### # Training ########################### with record_function("training-phase"): trainer.fit( model=model, train_dataloaders=dataloader_train_simclr, val_dataloaders=dataloader_val_simclr, ) ########################### # Testing ########################### with record_function("testing-final"): trainer.test( model, dataloaders=dataloader_test_simclr, ) ``` Code snippet v2: ```python trainer = pl.Trainer( log_every_n_steps=100, max_epochs=max_epochs, devices=1, accelerator=accelerator, enable_checkpointing=False, num_sanity_val_steps=0, # to avoid adding unnecessary item to validation_epoch_embedding_norms ) ########################### # Pre-training ########################### with profile( activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True, profile_memory=True, with_stack=True, ) as prof: with record_function("pretraining-validation"): # perform extra 'validation' epoch to see if untrained model does anything useful trainer.validate(model, dataloader_val_simclr) ########################### # Training ########################### with profile( activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True, profile_memory=True, with_stack=True, ) as prof: with record_function("training-phase"): trainer.fit( model=model, train_dataloaders=dataloader_train_simclr, val_dataloaders=dataloader_val_simclr, ) ########################### # Testing ########################### with profile( activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True, profile_memory=True, with_stack=True, ) as prof: with record_function("testing-final"): trainer.test( model, dataloaders=dataloader_test_simclr, ) ``` Stack traces: ``` RuntimeError Traceback (most recent call last) Cell In[4], line 107 96 trainer = pl.Trainer( 97 log_every_n_steps=100, 98 max_epochs=max_epochs, (...) 101 num_sanity_val_steps=0, # to avoid adding unnecessary item to validation_epoch_embedding_norms 102 ) 104 ########################### 105 # Pre-training (Validation before training) 106 ########################### --> 107 with profile( 108 activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], 109 record_shapes=True, 110 profile_memory=True, 111 with_stack=True, 112 ) as prof: 113 with record_function("pretraining-validation"): 114 # perform extra 'validation' epoch to see if untrained model does anything useful 115 trainer.validate(model, dataloader_val_simclr) File d:\{repository_path}\venv\Lib\site-packages\torch\profiler\profiler.py:699, in profile.__exit__(self, exc_type, exc_val, exc_tb) 698 def __exit__(self, exc_type, exc_val, exc_tb): --> 699 self.stop() 700 prof.KinetoStepTracker.erase_step_count(PROFILER_STEP_NAME) 701 if self.execution_trace_observer: File d:\{repository_path}\venv\Lib\site-packages\torch\profiler\profiler.py:715, in profile.stop(self) 713 if self.record_steps and self.step_rec_fn: 714 self.step_rec_fn.__exit__(None, None, None) --> 715 self._transit_action(self.current_action, None) File d:\{repository_path}\venv\Lib\site-packages\torch\profiler\profiler.py:744, in profile._transit_action(self, prev_action, current_action) 742 if action_list: 743 for action in action_list: --> 744 action() File d:\{repository_path}\venv\Lib\site-packages\torch\profiler\profiler.py:199, in _KinetoProfile.stop_trace(self) 197 self.execution_trace_observer.stop() 198 assert self.profiler is not None --> 199 self.profiler.__exit__(None, None, None) File d:\{repository_path}\venv\Lib\site-packages\torch\autograd\profiler.py:296, in profile.__exit__(self, exc_type, exc_val, exc_tb) 294 if self.use_cuda: 295 torch.cuda.synchronize() --> 296 self.kineto_results = _disable_profiler() 297 _run_on_profiler_stop() 298 parsed_results = self._parse_kineto_results(self.kineto_results) RuntimeError: !stack.empty() INTERNAL ASSERT FAILED at "..\\torch\\csrc\\autograd\\profiler_python.cpp":969, please report a bug to PyTorch. Python replay stack is empty. ``` Sometimes (seems random to be), I get this error: ``` RuntimeError Traceback (most recent call last) Cell In[28], [line 208](vscode-notebook-cell:?execution_count=28&line=208) [189](vscode-notebook-cell:?execution_count=28&line=189) trainer = pl.Trainer( [190](vscode-notebook-cell:?execution_count=28&line=190) log_every_n_steps=100, [191](vscode-notebook-cell:?execution_count=28&line=191) max_epochs=max_epochs, (...) [202](vscode-notebook-cell:?execution_count=28&line=202) ], [203](vscode-notebook-cell:?execution_count=28&line=203) ) [205](vscode-notebook-cell:?execution_count=28&line=205) ########################### [206](vscode-notebook-cell:?execution_count=28&line=206) # Pre-training [207](vscode-notebook-cell:?execution_count=28&line=207) ########################### --> [208](vscode-notebook-cell:?execution_count=28&line=208) with profile( [209](vscode-notebook-cell:?execution_count=28&line=209) activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], [210](vscode-notebook-cell:?execution_count=28&line=210) record_shapes=True, [211](vscode-notebook-cell:?execution_count=28&line=211) profile_memory=True, [212](vscode-notebook-cell:?execution_count=28&line=212) with_stack=True, [213](vscode-notebook-cell:?execution_count=28&line=213) ) as prof: [214](vscode-notebook-cell:?execution_count=28&line=214) with record_function("pretraining-validation"): [215](vscode-notebook-cell:?execution_count=28&line=215) # perform extra 'validation' epoch to see if untrained model does anything useful [216](vscode-notebook-cell:?execution_count=28&line=216) trainer.validate(model, dataloader_val_simclr) File d:\__repos\masters_bacter_private\venv\Lib\site-packages\torch\profiler\profiler.py:695, in profile.__enter__(self) [694](file:///D:/{repository_path}/venv/Lib/site-packages/torch/profiler/profiler.py:694) def __enter__(self): --> [695](file:///D:/{repository_path}/venv/Lib/site-packages/torch/profiler/profiler.py:695) self.start() [696](file:///D:/{repository_path}/venv/Lib/site-packages/torch/profiler/profiler.py:696) return self File d:\__repos\masters_bacter_private\venv\Lib\site-packages\torch\profiler\profiler.py:705, in profile.start(self) [704](file:///D:/{repository_path}/venv/Lib/site-packages/torch/profiler/profiler.py:704) def start(self): --> [705](file:///D:/{repository_path}/venv/Lib/site-packages/torch/profiler/profiler.py:705) self._transit_action(ProfilerAction.NONE, self.current_action) [706](file:///D:/{repository_path}/venv/Lib/site-packages/torch/profiler/profiler.py:706) if self.record_steps: [707](file:///D:/{repository_path}/venv/Lib/site-packages/torch/profiler/profiler.py:707) self.step_rec_fn = prof.record_function( [708](file:///D:/{repository_path}/venv/Lib/site-packages/torch/profiler/profiler.py:708) "ProfilerStep#" + str(self.step_num) [709](file:///D:/{repository_path}/venv/Lib/site-packages/torch/profiler/profiler.py:709) ) File d:\__repos\masters_bacter_private\venv\Lib\site-packages\torch\profiler\profiler.py:744, in profile._transit_action(self, prev_action, current_action) [742](file:///D:/{repository_path}/venv/Lib/site-packages/torch/profiler/profiler.py:742) if action_list: [743](file:///D:/{repository_path}/venv/Lib/site-packages/torch/profiler/profiler.py:743) for action in action_list: --> [744](file:///D:/{repository_path}/venv/Lib/site-packages/torch/profiler/profiler.py:744) action() File d:\__repos\masters_bacter_private\venv\Lib\site-packages\torch\profiler\profiler.py:155, in _KinetoProfile.prepare_trace(self) [141](file:///D:/{repository_path}/venv/Lib/site-packages/torch/profiler/profiler.py:141) def prepare_trace(self): [142](file:///D:/{repository_path}/venv/Lib/site-packages/torch/profiler/profiler.py:142) self.profiler = prof.profile( [143](file:///D:/{repository_path}/venv/Lib/site-packages/torch/profiler/profiler.py:143) use_cuda=(ProfilerActivity.CUDA in self.activities), [144](file:///D:/{repository_path}/venv/Lib/site-packages/torch/profiler/profiler.py:144) use_cpu=(ProfilerActivity.CPU in self.activities), (...) [153](file:///D:/{repository_path}/venv/Lib/site-packages/torch/profiler/profiler.py:153) experimental_config=self.experimental_config, [154](file:///D:/{repository_path}/venv/Lib/site-packages/torch/profiler/profiler.py:154) ) --> [155](file:///D:/{repository_path}/venv/Lib/site-packages/torch/profiler/profiler.py:155) self.profiler._prepare_trace() File d:\__repos\masters_bacter_private\venv\Lib\site-packages\torch\autograd\profiler.py:284, in profile._prepare_trace(self) [282](file:///D:/{repository_path}/venv/Lib/site-packages/torch/autograd/profiler.py:282) def _prepare_trace(self): [283](file:///D:/{repository_path}/venv/Lib/site-packages/torch/autograd/profiler.py:283) self.entered = True --> [284](file:///D:/{repository_path}/venv/Lib/site-packages/torch/autograd/profiler.py:284) _prepare_profiler(self.config(), self.kineto_activities) RuntimeError: Can't disable Kineto profiler when it's not running ``` Example setup: ```python import os import torch import torch.nn as nn from torch.utils.data import DataLoader, Dataset from torchvision.transforms import ToTensor from torchvision.datasets import MNIST import pytorch_lightning as pl from torch.profiler import profile, record_function, ProfilerActivity # Define a simple SimCLR model class SimCLRModel(pl.LightningModule): def __init__(self, hidden_dim=128, lr=1e-3): super().__init__() self.encoder = nn.Sequential( nn.Linear(28 * 28, 512), nn.ReLU(), nn.Linear(512, hidden_dim), ) self.projection = nn.Sequential( nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), ) self.lr = lr def forward(self, x): h = self.encoder(x.view(x.size(0), -1)) z = self.projection(h) return z def training_step(self, batch, batch_idx): x, _ = batch z = self(x) # Dummy loss for demonstration purposes loss = torch.mean(z) self.log('train_loss', loss) return loss def validation_step(self, batch, batch_idx): x, _ = batch z = self(x) # Dummy loss for demonstration purposes loss = torch.mean(z) self.log('val_loss', loss) return loss def test_step(self, batch, batch_idx): x, _ = batch z = self(x) # Dummy loss for demonstration purposes loss = torch.mean(z) self.log('test_loss', loss) return loss def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.lr) return optimizer # Define a simple dataset (using MNIST for simplicity) class ContrastiveMNIST(Dataset): def __init__(self, root, train=True, transform=ToTensor(), download=True): self.mnist = MNIST(root, train=train, transform=transform, download=download) def __len__(self): return len(self.mnist) def __getitem__(self, idx): img, target = self.mnist[idx] # Create a dummy second view for contrastive learning (same as first for simplicity) img_pair = img return img, img_pair # --- Setup --- # Define hyperparameters max_epochs = 3 batch_size = 64 learning_rate = 1e-3 hidden_dimension = 128 accelerator = "gpu" # "cpu" or "cuda" # Create data loaders data_dir = os.getcwd() # Use current directory to store MNIST train_dataset = ContrastiveMNIST(data_dir, train=True, download=True) val_dataset = ContrastiveMNIST(data_dir, train=False, download=True) test_dataset = ContrastiveMNIST(data_dir, train=False, download=True) dataloader_train_simclr = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=2) dataloader_val_simclr = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=2) dataloader_test_simclr = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=2) # Initialize the model model = SimCLRModel(hidden_dim=hidden_dimension, lr=learning_rate) ``` ### Versions PyTorch version: 2.3.1+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Microsoft Windows 10 Education (10.0.19045 64-bitowy) GCC version: Could not collect Clang version: Could not collect CMake version: Could not collect Libc version: N/A Python version: 3.12.3 (tags/v3.12.3:f6650f9, Apr 9 2024, 14:05:25) [MSC v.1938 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.19045-SP0 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3060 Nvidia driver version: 560.94 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Name: AMD Ryzen 7 5800X 8-Core Processor Manufacturer: AuthenticAMD Family: 107 Architecture: 9 ProcessorType: 3 DeviceID: CPU0 CurrentClockSpeed: 3801 MaxClockSpeed: 3801 L2CacheSize: 4096 L2CacheSpeed: None Revision: 8448 Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.3 [pip3] pytorch-lightning==2.3.3 [pip3] torch==2.3.1+cu118 [pip3] torch-tb-profiler==0.4.3 [pip3] torchmetrics==1.4.0.post0 [pip3] torchvision==0.18.1+cu118 [conda] Could not collect cc @robieta @chaekit @guotuofeng @guyang3532 @dzhulgakov @davidberard98 @briancoutinho @sraikund16 @sanrise
true
3,034,253,834
[dynamo] Guard serialization for FUNCTORCH_STACK_MATCH
zhxchen17
closed
[ "module: cpu", "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
9
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152723 * #152721 * #152716 * #152687 * __->__ #152616 * #152615 Make Functorch interpreters serializable most of the time, so that we can save the guards on functorch states. ## Test Cases: 0. torch.compile() without functorch layers present. Guard should fail with any layer being pushed. 1. torch.compile() nested in vmap. 2. torch.compile() nested in grad. 3. torch.compile() nested in jvp + vmap 4. torch.compile() nested functionalize 5. torch.compile() nested in vmap + grad Differential Revision: [D74008787](https://our.internmc.facebook.com/intern/diff/D74008787/) cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @jerryzh168 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,034,253,735
[dynamo] Guard serialization for DUAL LEVEL.
zhxchen17
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152723 * #152721 * #152716 * #152687 * #152616 * __->__ #152615 Seem dual level counter should be stored in OutputGraph so that the value can be preserved through roundtripping. Differential Revision: [D74008786](https://our.internmc.facebook.com/intern/diff/D74008786/) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,034,252,160
[WIP] Make FR vendor generic and try to enable it for gloo
fduwjj
open
[ "oncall: distributed", "release notes: distributed (c10d)" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152614 * #152563 * #152585 cc @H-Huang @awgu @wanchaol @fegin @wz337 @wconstab @d4l3k
true
3,034,214,821
Revert "Cleanup VS 2019 refs in pytorch (#145863)"
xuhancn
open
[ "triaged", "open source", "ciflow/binaries", "ciflow/trunk", "release notes: releng", "ciflow/xpu", "ci-no-td" ]
3
COLLABORATOR
This reverts commit b45e6fa707ced2adb68eaf1a2c1ccb389a6283d7. revert PRs: https://github.com/pytorch/pytorch/pull/145863 https://github.com/pytorch/pytorch/pull/145319
true
3,034,210,237
Enable AOTI for Metal inductor
malfet
open
[ "enhancement", "module: mps", "oncall: pt2", "oncall: export", "module: aotinductor" ]
0
CONTRIBUTOR
### 🚀 The feature, motivation and pitch Now that `torch.compile` is usable for MPS backend, we should extend it to Python-less environment (including ExecuTorch) and one avenue of enabling is is AOTI https://github.com/pytorch/pytorch/blob/4c8dee7986d0da5cd8485b8d84323c425d228891/aten/src/ATen/test/mps_test_metal_library.cpp#L61-L71 contains an example how Metal shader generated by Inductor can be compiled and executed ### Alternatives Invent something new, but why ### Additional context N/A cc @kulinseth @albanD @DenisVieriu97 @jhavukainen @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4 @desertfire @chenyang78 @yushangdi @benjaminglass1
true
3,034,187,972
Makefile: refactor build, setup and lint rules
ariel-anieli
open
[ "triaged", "open source", "topic: not user facing" ]
2
NONE
Hello maintainers, This is my first ever PR to the project; your feedback is much appreciated. I am proposing to refactor some rules in Makefile. The output is unchanged. After, ```shell # make lint -n lintrunner # make quicklint -n lintrunner # make ios -n ./scripts/build_ios.sh # make setup-env-cuda -n make setup-env PYTHON="python3" NIGHTLY_TOOL_OPTS="pull --cuda" make[1]: Entering directory '/home/ariel/src/pytorch' if [ -n "" ]; then \ echo "Please commit or stash all changes before running this script"; \ exit 1; \ fi python3 tools/nightly.py pull --cuda make[1]: Leaving directory '/home/ariel/src/pytorch' # make setup_env_cuda -n make setup-env PYTHON="python3" NIGHTLY_TOOL_OPTS="pull --cuda" make[1]: Entering directory '/home/ariel/src/pytorch' if [ -n "" ]; then \ echo "Please commit or stash all changes before running this script"; \ exit 1; \ fi python3 tools/nightly.py pull --cuda make[1]: Leaving directory '/home/ariel/src/pytorch' # git log --oneline -1 c48ea9abba (HEAD -> refactor-makefile, origin/refactor-makefile) Makefile: refactor build, setup and lint rules ``` Before, ```shell # make lint -n lintrunner # make quicklint -n lintrunner # make ios -n ./scripts/build_ios.sh # make setup-env-cuda -n make setup-env PYTHON="python3" NIGHTLY_TOOL_OPTS="pull --cuda" make[1]: Entering directory '/home/ariel/src/pytorch' if [ -n "" ]; then \ echo "Please commit or stash all changes before running this script"; \ exit 1; \ fi python3 tools/nightly.py pull --cuda make[1]: Leaving directory '/home/ariel/src/pytorch' # make setup_env_cuda -n make setup-env PYTHON="python3" NIGHTLY_TOOL_OPTS="pull --cuda" make[1]: Entering directory '/home/ariel/src/pytorch' if [ -n "" ]; then \ echo "Please commit or stash all changes before running this script"; \ exit 1; \ fi python3 tools/nightly.py pull --cuda make[1]: Leaving directory '/home/ariel/src/pytorch' # git log --oneline -1 6f6acb4128 (HEAD -> main, origin/main, origin/HEAD) [AOTI][CPU] Introduce config.cpp.use_decompose_tanh (#152542) ```
true
3,034,170,316
Update padding_mode type annotation to use Literal type (PaddingMode)
sudiptap
open
[ "triaged", "open source", "topic: not user facing" ]
3
NONE
Fixes #152280
true
3,034,159,846
[Environment Variable] Use thread-safe getenv functions
cyyever
open
[ "oncall: distributed", "oncall: jit", "open source", "NNC", "release notes: linalg_frontend" ]
1
COLLABORATOR
Use thread-safe getenv wrapper in remaining code. cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
3,034,152,488
[triton pin update] Run Inductor CI on pin updates for Triton and the PyTorch nightly branch
atalman
open
[ "oncall: releng", "triaged", "module: user triton" ]
0
CONTRIBUTOR
### 🐛 Describe the bug We would like to run Inductor CI on Triton pin updates So that we can see any regressions on the pin updates and notice any issues before accepting pin update. This most will require us to be able to upload triton on PR so that it can be tested on inductor CI: https://hud.pytorch.org/hud/pytorch/pytorch/main/1?per_page=50&name_filter=inductor ### Versions 2.8 cc @msaroufim @jerryzh168 @oulgen @aakhundov @davidberard98
true
3,034,094,316
Loops impacting output when utilizing hooks
Thomas2419
open
[ "module: nn", "triaged" ]
0
NONE
### 🐛 Describe the bug Hello! I believe this is a hook related behaving oddly under loops. When using a hook and a loop I'm getting unexpected output logits. I'm bringing this here as it ONLY happens when i use both and thus i believe is some weird hook+loop pytorch interaction and not a transformers interaction. ``` import torch, torch.nn.functional as F from transformers import CLIPModel, CLIPProcessor from PIL import Image # -------------------- config --------------------------------------------- device = "cuda" if torch.cuda.is_available() else "cpu" model_id = "openai/clip-vit-base-patch16" # -------------------- load model ----------------------------------------- model = CLIPModel.from_pretrained( model_id, attn_implementation="eager", ).to(device).eval() processor = CLIPProcessor.from_pretrained(model_id) # Load the image url = "/content/cat_couch.jpg" pil_img = Image.open(url) caption = "a cat on a couch" proc_inputs = processor(text=[caption], images=pil_img, return_tensors="pt", padding=True) layer_idx = -2 latents = {} steps = 5 sim_no_hook = model(**proc_inputs).logits_per_image[0, 0].item() # Capture the full input tuple def capture_hook(name): def hook(module, input, output): latents[name] = tuple( x.clone().detach().requires_grad_(True) if isinstance(x, torch.Tensor) else x for x in input ) return hook # Run once to capture original latents h_text = model.text_model.encoder.layers[layer_idx].register_forward_hook(capture_hook("input_text")) h_img = model.vision_model.encoder.layers[layer_idx].register_forward_hook(capture_hook("input_img")) sim_with_hook = model(**proc_inputs).logits_per_image[0, 0].item() h_text.remove() h_img.remove() # Use global CURRENT_INTERP for looped injection CURRENT_INTERP_TEXT = latents["input_text"][0] CURRENT_INTERP_IMG = latents["input_img"][0] # Persistent hook logic sim_scores_for = [] sim_scores_noloop = [] # NEW: no hook, no injection, pure loop to test # Register hooks before loop h_text = model.text_model.encoder.layers[layer_idx].register_forward_hook(persistent_hook_text) h_img = model.vision_model.encoder.layers[layer_idx].register_forward_hook(persistent_hook_img) # FOR loop for _ in range(steps): sim = model(**proc_inputs).logits_per_image[0, 0].item() sim_scores_for.append(sim) h_text.remove() h_img.remove() # Also test: same loop style, no hooks (pure loop behavior test) for _ in range(steps): sim = model(**proc_inputs).logits_per_image[0, 0].item() sim_scores_noloop.append(sim) print(f"HOOK FOR loop scores:") print(sim_scores_for) print(f"NO HOOK FOR loop scores:") print(sim_scores_noloop) print(f"Without hook: {sim_no_hook:.6f}") print(f"With hook: {sim_with_hook:.6f}") ``` The outputs: ``` HOOK FOR loop scores: [26.457609176635742, 26.457609176635742, 26.457609176635742, 26.457609176635742, 26.457609176635742] NO HOOK FOR loop scores: [29.929569244384766, 29.929569244384766, 29.929569244384766, 29.929569244384766, 29.929569244384766] Without hook: 29.929569 With hook: 29.929569 ``` ### Versions Collecting environment information... PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.31.6 Libc version: glibc-2.35 Python version: 3.11.12 (main, Apr 9 2025, 08:55:54) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.1.123+-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 12.5.82 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.2.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 2 On-line CPU(s) list: 0,1 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) CPU @ 2.20GHz CPU family: 6 Model: 79 Thread(s) per core: 2 Core(s) per socket: 1 Socket(s): 1 Stepping: 0 BogoMIPS: 4399.99 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xsaveopt arat md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 32 KiB (1 instance) L1i cache: 32 KiB (1 instance) L2 cache: 256 KiB (1 instance) L3 cache: 55 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0,1 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable; SMT Host state unknown Vulnerability Meltdown: Vulnerable Vulnerability Mmio stale data: Vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Vulnerable Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Not affected; BHI: Vulnerable Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable Versions of relevant libraries: [pip3] numpy==2.0.2 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] nvtx==0.2.11 [pip3] optree==0.15.0 [pip3] pynvjitlink-cu12==0.5.2 [pip3] torch==2.6.0+cu124 [pip3] torchaudio==2.6.0+cu124 [pip3] torchsummary==1.5.1 [pip3] torchvision==0.21.0+cu124 [pip3] triton==3.2.0 [conda] Could not collect cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
true
3,034,063,675
AOTI regression on SAM and tts-angular
zou3519
open
[ "high priority", "triage review", "triaged", "oncall: pt2", "oncall: export", "module: aotinductor" ]
4
CONTRIBUTOR
In aot_inductor_torchbench. See https://hud.pytorch.org/pytorch/pytorch/commit/701c0848b8695daa802c2d7ff2f9177faa6e1fe8#41477577732-box for failing logs. It looks like these were both previously "pass" but now "fail_to_run", so at least there isn't silent incorrectness. I'm going to flip the statuses on these so that the inductor-periodic CI becomes green, but we should either look into this or determine that we don't care about them. cc @ezyang @gchanan @kadeng @msaroufim @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4 @desertfire @chenyang78 @yushangdi @benjaminglass1
true
3,034,060,338
Fix some inductor periodic benchmarks
zou3519
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor", "ciflow/inductor-periodic" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152621 * __->__ #152605 Some were reporting "pass" consistently on https://hud.pytorch.org/ Those are fine to flip. I filed a separate issue for the now-regressions for AOTI: https://github.com/pytorch/pytorch/issues/152606. These should be looked at. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,034,031,609
[Testing] Is FindCUDA.cmake from `Modules_CUDA_fix` called at all?
malfet
open
[]
2
CONTRIBUTOR
Fixes #ISSUE_NUMBER
true
3,034,023,783
[BE] Delete `Module_CUDA_fix`
malfet
open
[ "release notes: build", "topic: improvements" ]
3
CONTRIBUTOR
We should be using upstream find(CUDA) always, shouldn't we?
true
3,034,010,859
[testing] 4
zou3519
closed
[ "release notes: releng", "fx", "module: inductor", "ciflow/inductor", "ciflow/inductor-periodic" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152602 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,033,950,638
[multigraph] use backend specializations in compile_and_call_fx_graph
bobrenjc93
open
[ "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor", "release notes: AO frontend" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152601 * #152597 * #152596 The goal of this multigraph work is to enable a compiled region that has a single dynamo trace but multiple backend specializations. This work was inspired by vLLM who does this in a somewhat hacky way where they use a custom backend to capture a dynamo graph and then manually invoke compile_fx multiple times to get specialized graphs. There's really two parts of this work: **The frontend changes:** 1) we introduce an optional kwarg `backend_specializations` to mark_dynamic that takes in a list of specializations. I debated other methods including specifying specializations via decorators, but ultimately decided this approach was more harmonious. The big issue with decorators is the difficulty of composing well with the rest of the torch.compile ecosystem including graph breaks, lazy initialization of variable trackers and symbolic variables, etc. **The backend changes (this PR):** 1) We capture the backend_specialization specified in the mark_dynamic API into a SymbolicContext. See changes in `/_dynamo/variables/builder.py` 2) After we are done dynamo tracing, we invoke `call_user_compiler` N + 1 times for N specializations and 1 generic graph. Under the hood this will call compile_fx, which composes nicely with both Async Compile and AOTAutogradCache. 3) When we have specializations, we install a specialized dispatch function that checks each specialization and dispatches to the first one that matches. If none of the specializations match, we dispatch to the generic graph. I decided to do this over returning N different GuardedCodes since 1) it doesn't pollute the dynamo cache (eg. if you have 8 specializations, you would hit the cache limit) 2) it naturally incorporates the hierarchical lattice structure of the guards since the specializations are always necessarily stricter than the generic region's guards. I benchmarked this PR stack with #152596 and found around a 50% reduction when dispatching to the specialized regions: ![495269647_576053105510082_9189856138964956774_n](https://github.com/user-attachments/assets/66030fed-d62e-4d87-940f-aa13c99b1a73)
true
3,033,950,555
store backend specializations in StatelessSymbolicContext
bobrenjc93
closed
[ "release notes: fx", "fx", "module: dynamo", "ciflow/inductor" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152670 * #152601 * __->__ #152600 * #152597 * #152596 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,033,943,220
[testing] 3
zou3519
closed
[ "topic: not user facing", "ciflow/inductor-periodic" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152599
true
3,033,924,328
[ez] fix grammar mistakes in StatefulSymbolicContext comment
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "release notes: fx", "topic: not user facing", "fx", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152650 * #152601 * #152600 * #152597 * #152596 * __->__ #152598 * #151407 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
3,033,924,252
[multigraph] add backend_specialization kwarg to mark_dynamic
bobrenjc93
open
[ "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152601 * __->__ #152597 * #152596 The goal of this multigraph work is to enable a compiled region that has a single dynamo trace but multiple backend specializations. This work was inspired by vLLM who does this in a somewhat hacky way where they use a custom backend to capture a dynamo graph and then manually invoke compile_fx multiple times to get specialized graphs. There's really two parts of this work: **The frontend changes (this PR):** 1) we introduce an optional kwarg `backend_specializations` to mark_dynamic that takes in a list of specializations. I debated other methods including specifying specializations via decorators, but ultimately decided this approach was more harmonious. The big issue with decorators is the difficulty of composing well with the rest of the torch.compile ecosystem including graph breaks, lazy initialization of variable trackers and symbolic variables, etc. **The backend changes:** 1) We capture the backend_specialization specified in the mark_dynamic API into a SymbolicContext. See changes in `/_dynamo/variables/builder.py` 2) After we are done dynamo tracing, we invoke `call_user_compiler` N + 1 times for N specializations and 1 generic graph. Under the hood this will call compile_fx, which composes nicely with both Async Compile and AOTAutogradCache. 3) When we have specializations, we install a specialized dispatch function that checks each specialization and dispatches to the first one that matches. If none of the specializations match, we dispatch to the generic graph. I decided to do this over returning N different GuardedCodes since 1) it doesn't pollute the dynamo cache (eg. if you have 8 specializations, you would hit the cache limit) 2) it naturally incorporates the hierarchical lattice structure of the guards since the specializations are always necessarily stricter than the generic region's guards. I benchmarked this PR stack with #152596 and found around a 50% reduction when dispatching to the specialized regions: ![495269647_576053105510082_9189856138964956774_n](https://github.com/user-attachments/assets/66030fed-d62e-4d87-940f-aa13c99b1a73)
true
3,033,901,683
[not for review] benchmark script
bobrenjc93
open
[ "topic: not user facing" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152601 * #152597 * __->__ #152596
true
3,033,890,781
ROCm, 7900 XTX: Pytorch FLASH_ATTENTION SDPA is 2.5x slower than MATH (fp16, head_dim 256, seqlen 4360, 12 heads)
FeepingCreature
open
[ "module: performance", "module: rocm", "triaged", "module: sdpa" ]
13
NONE
edit: Title changed to highlight later discovery, original contents preserved for easier reading. This was originally "ROCm, 7900 XTX: Pytorch SDPA is 2.5x slower than manual implementation with non-continuous v", but it turned out that the non-contiguous v didn't really matter. --- I was trying to figure out why AuraFlow seemed to be unusually slow in ComfyUI on my 7900 XTX. After a lot of time debugging and reducing together with Gemini 2.5 Pro, to our great surprise, we found that for these matrix sizes, *a compiled manual reimplementation of SDPA* was considerably faster than a Pytorch SDPA call! We baked it down to this benchmark: ```python import torch import torch.nn.functional as F import time import math # --- Test Configuration --- bsz = 2 n_heads = 12 seqlen = 4360 hidden_size = 3072 # Needed for storage calculations head_dim = hidden_size // n_heads dtype = torch.float16 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Benchmark parameters warmup_runs = 10 num_runs = 40 # Target shape and stride for the synthesized non-contiguous tensors target_shape = (bsz, n_heads, seqlen, head_dim) # Stride derived from sequence: linear(B,S,D) -> view(B,S,H,D') -> transpose(1,2) -> (B,H,S,D') target_stride = (13393920, 256, 3072, 1) # --- Function 1: Manual SDPA Core (Matmul -> Softmax -> Matmul) --- # Expects pre-normed Q and K. Intended for compilation. Output: B H S D' def manual_sdpa_core_ops(q_normed, k_normed, v): scale = 1.0 / math.sqrt(q_normed.size(-1)) attn_weights = torch.matmul(q_normed, k_normed.transpose(-2, -1)) * scale attn_weights = F.softmax(attn_weights.float(), dim=-1).to(q_normed.dtype) attn_output = torch.matmul(attn_weights, v) return attn_output # --- Function 2: Built-in SDPA Core --- # Expects pre-normed Q and K. Uses F.scaled_dot_product_attention. Run eagerly. Output: B H S D' def builtin_sdpa_core(q_normed, k_normed, v): attn_output = F.scaled_dot_product_attention(q_normed, k_normed, v) return attn_output # --- Utility: Benchmark Runner --- def run_benchmark(func, label, qn, kn, v): print(f"\n--- Benchmarking: {label} ---") args_tuple = (qn, kn, v) print("Warm-up...") with torch.no_grad(): for _ in range(warmup_runs): _ = func(*args_tuple) torch.cuda.synchronize() # Timing print("Timing...") total_time = 0.0 with torch.no_grad(): torch.cuda.synchronize() start_time = time.time() for _ in range(num_runs): _ = func(*args_tuple) torch.cuda.synchronize() end_time = time.time() total_time = end_time - start_time avg_time_ms = (total_time / num_runs) * 1000 print(f"Result: {avg_time_ms:.4f} ms per run") return avg_time_ms # --- Main Execution Logic --- if __name__ == "__main__": if device.type != 'cuda': print("This benchmark requires a CUDA-compatible device (ROCm counts).") exit() print("--- Bug Report Benchmark: F.sdpa vs Compiled Core (ROCm) ---") print("Compares F.scaled_dot_product_attention against a torch.compile'd") print("version of (Matmul -> Softmax -> Matmul). Uses inputs with specific") print("history: Synth Non-Contig -> Eager LayerNorm -> Benchmark Func.") print("\n--- Environment ---") print(f"Device: {torch.cuda.get_device_name(device)}") print(f"PyTorch Version: {torch.__version__}") print(f"Input Shapes (Q, K, V) before SDPA: {target_shape}") print(f"Input dtype: {dtype}") # --- Synthesize Non-Contiguous Inputs --- print("\n--- Input Generation ---") print(f"Synthesizing non-contiguous inputs with target stride {target_stride}...") num_elements_storage = bsz * seqlen * hidden_size q = torch.randn(num_elements_storage, dtype=dtype, device=device) k = torch.randn(num_elements_storage, dtype=dtype, device=device) v = torch.randn(num_elements_storage, dtype=dtype, device=device) q = torch.as_strided(q, size=target_shape, stride=target_stride).detach() k = torch.as_strided(k, size=target_shape, stride=target_stride).detach() v = torch.as_strided(v, size=target_shape, stride=target_stride).detach() print(f"Synthetic non-contiguous inputs created. is_contiguous: {q.is_contiguous()}") print("\nApplying F.layer_norm eagerly to synthetic Q/K...") q = F.layer_norm(q, (head_dim,)).detach() k = F.layer_norm(k, (head_dim,)).detach() # V is not normed print(f"Eager LN applied. Resulting Q is_contiguous: {q.is_contiguous()}") print("Compiling manual core function") compiled_manual_core = torch.compile(manual_sdpa_core_ops) print("\n--- Validation ---") output_builtin = builtin_sdpa_core(q, k, v) output_manual_compiled = compiled_manual_core(q, k, v) rtol = 1e-2; atol = 1e-2 are_close = torch.allclose(output_builtin, output_manual_compiled, rtol=rtol, atol=atol) if are_close: print(f"Validation PASSED! Outputs are close (rtol={rtol}, atol={atol}).") else: diff = torch.abs(output_builtin.float() - output_manual_compiled.float()) print(f"Validation FAILED! Outputs differ (rtol={rtol}, atol={atol}). Max diff: {diff.max().item()}") eager_time = run_benchmark( builtin_sdpa_core, "Eager: F.scaled_dot_product_attention", q, k, v ) # 2. Compiled: Manual SDPA Core (Inputs: Synth Strided -> Eager LN -> Contiguous) compiled_time = run_benchmark( compiled_manual_core, "Compiled: Manual Core (Matmul->Softmax->Matmul)", q, k, v ) # --- Summary --- print("\n\n--- Benchmark Summary (Average ms per run) ---") print(f"Eager: F.scaled_dot_product_attention: {eager_time:.4f} ms") print(f"Compiled: Manual Core (Matmul->Softmax->Matmul): {compiled_time:.4f} ms") print("\n--- Conclusion ---") print("This benchmark compares the core attention calculation speed.") print("Inputs are generated with specific non-contiguous strides, then LayerNormed eagerly (resulting in contiguous tensors).") print("Expected: F.sdpa performance to be similar or better than compiled basic ops.") print("Observed: Compiled basic ops are significantly faster (~8.6ms vs ~21ms) on my 7900 XTX, ROCm 6.4, Pytorch nightly April 2025.") ``` As you can see, the outputs are identical. As far as we can tell, the issue goes away if we remove the layer_norm, even though they're not part of the `torch.compile`d function and their output is continuous! It's a bit strange and maybe we're missing something. ### Versions PyTorch version: 2.8.0.dev20250423+rocm6.4 Is debug build: False CUDA used to build PyTorch: N/A ROCM used to build PyTorch: 6.4.43482-0f2d60242 OS: Ubuntu 25.04 (x86_64) GCC version: (Ubuntu 14.2.0-19ubuntu2) 14.2.0 Clang version: 20.1.2 (0ubuntu1) CMake version: version 3.31.6 Libc version: glibc-2.41 Python version: 3.13.3 (main, Apr 8 2025, 19:55:40) [GCC 14.2.0] (64-bit runtime) Python platform: Linux-6.14.4-x64v3-xanmod1-x86_64-with-glibc2.41 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: Radeon RX 7900 XTX (gfx1100) Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: 6.4.43482 MIOpen runtime version: 3.4.0 Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: AuthenticAMD Model name: AMD Ryzen 9 7950X3D 16-Core Processor CPU family: 25 Model: 97 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 1 Stepping: 2 Frequency boost: enabled CPU(s) scaling MHz: 55% CPU max MHz: 5763,0000 CPU min MHz: 400,0000 BogoMIPS: 8400,09 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid overflow_recov succor smca fsrm flush_l1d amd_lbr_pmc_freeze Virtualization: AMD-V L1d cache: 512 KiB (16 instances) L1i cache: 512 KiB (16 instances) L2 cache: 16 MiB (16 instances) L3 cache: 128 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Not affected Vulnerability Ghostwrite: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Vulnerable Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Not affected; BHI: Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] pytorch-triton-rocm==3.3.0+git96316ce5 [pip3] torch==2.8.0.dev20250423+rocm6.4 [pip3] torchaudio==2.6.0.dev20250424+rocm6.3 [pip3] torchsde==0.2.6 [pip3] torchvision==0.22.0.dev20250423+rocm6.3 [conda] Could not collect cc @msaroufim @jerryzh168 @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
3,033,812,815
[c10d] Add support for ReduceOp::AVG in ProcessGroupMPI for FSDP2
nariaki3551
open
[ "oncall: distributed", "open source", "release notes: distributed (c10d)" ]
6
CONTRIBUTOR
Hi, Currently, running FSDP2 with the MPI backend fails. This is because `ProcessGroupMPI` does not support reduce_scatter with `ReduceOp::AVG` used during the backward pass. However, most MPI implementations (such as OpenMPI) do not natively support an `AVG` reduce operation. To address this, this patch adds support for `ReduceOp::AVG` in `ProcessGroupMPI` as follows: - The process group performs the collective using `MPI_SUM`, then divides the result by `world_size` to emulate `AVG`. - A `TORCH_CHECK` is added to ensure the input tensor is of floating-point type. Supporting integer tensors would require additional logic for type conversion, and I believe that there is currently no strong use case for averaging integer data. Therefore, I limited floating-point tensors for AVG op. This patch enables FSDP2 to train correctly using the MPI backend. --- ### Error Reproduction Environment: **Ubuntu** 22.04, **Pytorch** v2.8.0a0+gitf84062f, **Open MPI** v5.0.7rc2 <details> <summary>FSDP2 training script</summary> ```python import os import time import argparse import dataclasses import torch from torch import nn import torch.distributed as dist from torch.distributed.fsdp import fully_shard import torch.optim as optim class SimpleModel(nn.Module): def __init__(self): super(SimpleModel, self).__init__() self.sequential0 = nn.Linear(512, 1024) self.sequential1 = nn.Linear(1024, 512) self.last = nn.Linear(512, 10) def forward(self, x): x = torch.relu(self.sequential0(x)) x = torch.relu(self.sequential1(x)) return self.last(x) def fsdp_training(local_rank: int): rank = dist.get_rank() world_size = dist.get_world_size() device = torch.device('cuda', local_rank) model = SimpleModel().to(device) fully_shard(model) gpu_name = torch.cuda.get_device_name(local_rank) print(f"Rank {rank}/{world_size}: FSDP is model created; #params: {sum(p.numel() for p in model.parameters())}; GPU: {gpu_name}") if rank == 0: print(model) optimizer = optim.AdamW(model.parameters(), lr=0.01) input_data = torch.randn(2, 512).to(device) target = torch.randint(0, 10, (2,)).to(device) print(f"Rank {rank}/{world_size}: Start training") model.train() num_epochs = 100 for epoch in range(num_epochs): optimizer.zero_grad() output = model(input_data) loss = nn.CrossEntropyLoss()(output, target) loss.backward() optimizer.step() if rank == 0: print(f"Epoch {epoch}/{num_epochs}: Loss {loss.item()}") if __name__ == '__main__': parser = argparse.ArgumentParser(description='FSDP Training') args = parser.parse_args() local_rank = int(os.getenv("LOCAL_RANK", 0)) local_rank = int(os.getenv("OMPI_COMM_WORLD_RANK", 0)) torch.cuda.set_device(local_rank) dist.init_process_group(backend="mpi") fsdp_training(local_rank) dist.destroy_process_group() ``` </details> Command: `mpirun -n 2 -- python3 test_fsdp2.py` <details> <summary>Error (Traceback)</summary> ```python [rank0]: Traceback (most recent call last): [rank0]: File "/app/pytorch_tests/src/training/test_fsdp2_mpi.py", line 81, in <module> [rank0]: fsdp_training(local_rank) [rank0]: File "/app/pytorch_tests/src/training/test_fsdp2_mpi.py", line 52, in fsdp_training [rank0]: loss.backward() [rank0]: File "/app/pytorch/torch/_tensor.py", line 648, in backward [rank0]: torch.autograd.backward( [rank0]: File "/app/pytorch/torch/autograd/__init__.py", line 354, in backward [rank0]: _engine_run_backward( [rank0]: File "/app/pytorch/torch/autograd/graph.py", line 824, in _engine_run_backward [rank0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass [rank0]: File "/app/pytorch/torch/distributed/fsdp/_fully_shard/_fsdp_state.py", line 297, in _root_post_backward_final_callback [rank0]: fsdp_param_group.post_backward() [rank0]: File "/app/pytorch/torch/distributed/fsdp/_fully_shard/_fsdp_param_group.py", line 445, in post_backward [rank0]: ) = foreach_reduce( [rank0]: File "/app/pytorch/torch/utils/_contextlib.py", line 116, in decorate_context [rank0]: return func(*args, **kwargs) [rank0]: File "/app/pytorch/torch/distributed/fsdp/_fully_shard/_fsdp_collectives.py", line 421, in foreach_reduce [rank0]: dist.reduce_scatter_tensor( [rank0]: File "/app/pytorch/torch/distributed/c10d_logger.py", line 81, in wrapper [rank0]: return func(*args, **kwargs) [rank0]: File "/app/pytorch/torch/distributed/distributed_c10d.py", line 4416, in reduce_scatter_tensor [rank0]: work.wait() [rank0]: IndexError: map::at ``` </details> cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,033,791,119
Flex Attention doesn't scale with custom bias
danjenson
open
[ "triaged", "oncall: pt2", "module: pt2-dispatcher", "module: flex attention" ]
1
NONE
### 🐛 Describe the bug When using FlexAttention with the following custom `RBFBias`, I cannot get FlexAttention to go above ~L=1600 without OOMing on an NVIDIA 24GB 4090. I also find that this implementation is about 6-8x slower than an implementation in JAX. Is there something I can configure to leverage the memory efficiency and speed of other fused attention mechanisms? ```python #!/usr/bin/env -S PYENV_VERSION=torch python3 import argparse import sys import time import torch import torch.nn as nn from torch.nn.attention.flex_attention import flex_attention torch.set_default_device("cuda:0") def main(seed: int, N: int, B: int, H: int, L: int, D: int, D_s: int): torch.manual_seed(seed) bias = RBFBias(num_heads=4, num_basis=5) kernel_options = {} # kernel_options = { # NOTE: doesn't help # "BLOCK_M": 64, # "BLOCK_N": 64, # "BLOCK_M1": 32, # "BLOCK_N1": 64, # "BLOCK_M2": 64, # "BLOCK_N2": 32, # } # https://github.com/pytorch/pytorch/issues/133254 attn = BiasedFlexAttention(bias, kernel_options) # attn = torch.compile(attn, dynamic=False) # NOTE: fails b = sample_batch(B, H, L, D, D_s) attn(**b) # precompile flex_attention (?) torch.cuda.synchronize() times = torch.zeros(N) for i in range(N): b = sample_batch(B, H, L, D, D_s) torch.cuda.synchronize() start = time.perf_counter() attn(**b) torch.cuda.synchronize() stop = time.perf_counter() times[i] = stop - start print( f"[B={B} H={H} L={L} D={D} D_s={D_s}]: {times.mean():0.6f}±{times.std():0.6f}s" ) class RBFBias(nn.Module): def __init__(self, num_heads, num_basis): super().__init__() self.alpha = nn.Parameter(torch.randn(num_heads, num_basis)) self.beta = nn.Parameter(torch.randn(num_heads, num_basis)) def forward(self, score, b, h, q_idx, kv_idx, qs_s, ks_s): q_s = qs_s[b, q_idx] k_s = ks_s[b, kv_idx] d_sq = torch.square(q_s - k_s).sum() alpha, beta = self.alpha[h], self.beta[h] d_rbf = alpha * torch.exp(-beta * d_sq) return score + d_rbf.sum() class BiasedFlexAttention(nn.Module): def __init__(self, bias: nn.Module, kernel_options: dict = {}): super().__init__() self.bias = bias self.kernel_options = kernel_options def forward(self, qs, ks, vs, qs_s, ks_s): def score_mod(score, b, h, q_idx, kv_idx): return self.bias(score, b, h, q_idx, kv_idx, qs_s, ks_s) return flex_attention( qs, ks, vs, score_mod=score_mod, kernel_options=self.kernel_options, ) def sample_batch(B: int, H: int, L: int, D: int, D_s: int): qs, ks, vs = torch.randn(3, B, H, L, D) qs_s, ks_s = torch.randn(2, B, L, D_s) return {"qs": qs, "ks": ks, "vs": vs, "qs_s": qs_s, "ks_s": ks_s} def parse_args(argv): parser = argparse.ArgumentParser( prog=argv[0], formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "-seed", type=int, default=42, help="Seed.", ) parser.add_argument( "-N", type=int, default=1000, help="Number of trials.", ) parser.add_argument( "-B", type=int, default=32, help="Batch size.", ) parser.add_argument( "-L", type=int, default=1664, # 1024 + 512 + 128 help="Length of sequence to test.", ) parser.add_argument( "-H", type=int, default=4, help="Number of attention heads.", ) parser.add_argument( "-D", type=int, default=16, help="Embedding dim per head.", ) parser.add_argument( "-D_s", type=int, default=2, help="Spatial dimension.", ) return parser.parse_args(argv[1:]) if __name__ == "__main__": args = parse_args(sys.argv) main(**vars(args)) ``` ### Versions ``` PyTorch version: 2.7.0+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Void Linux (x86_64) GCC version: (GCC) 14.2.1 20250405 Clang version: 17.0.6 CMake version: version 3.30.1 Libc version: glibc-2.41 Python version: 3.12.7 (main, Oct 6 2024, 23:32:45) [GCC 13.2.0] (64-bit runtime) Python platform: Linux-6.12.25_1-x86_64-with-glibc2.41 Is CUDA available: True CUDA runtime version: 12.6.85 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090 Nvidia driver version: 570.144 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: AuthenticAMD Model name: AMD Ryzen 9 7950X 16-Core Processor CPU family: 25 Model: 97 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 1 Stepping: 2 Frequency boost: enabled CPU(s) scaling MHz: 35% CPU max MHz: 5881.0000 CPU min MHz: 545.0000 BogoMIPS: 8982.57 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid overflow_recov succor smca fsrm flush_l1d amd_lbr_pmc_freeze Virtualization: AMD-V L1d cache: 512 KiB (16 instances) L1i cache: 512 KiB (16 instances) L2 cache: 16 MiB (16 instances) L3 cache: 64 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.3 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.26.2 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] pytorch-lightning==2.5.1 [pip3] torch==2.7.0 [pip3] torchmetrics==1.7.0 [pip3] torchvision==0.21.0 [pip3] triton==3.3.0 [conda] Could not collect ``` cc @zou3519 @bdhirsh @penguinwu @Chillee @drisspg @yanboliang @BoyuanFeng @chauhang @ydwu4
true
3,033,632,252
[ratter-build] Cannot detect CUDA when build from source
hieupth
open
[ "needs reproduction", "module: build", "triaged" ]
1
NONE
Hi, I am building from source using `rattler-build` with this `recipe.yaml` ```yaml context: name: pytorch version: nightly rev: main python: 3.12 gcc: 13.3 cuda: 12.8 cudnn: 9.8 archs: 8.6;9.0;10.0;12.0;12.6 package: name: ${{name|lower}} version: ${{version}} source: git: https://github.com/pytorch/pytorch.git rev: ${{rev}} build: script: env: PACKAGE_TYPE: conda USE_SYSTEM_SLEEF: 1 BUILD_CUSTOM_PROTOBUF: OFF USE_SYSTEM_PYBIND11: 1 USE_SYSTEM_EIGEN_INSTALL: 1 USE_MKLDNN: 1 USE_CUDA: 1 USE_CUFILE: 1 TORCH_CUDA_ARCH_LIST: "${{archs}}" CUDA_HOME: $PREFIX/targets/x86_64-linux CUDAToolkit_BIN_DIR: $PREFIX/bin CUDAToolkit_ROOT_DIR: $PREFIX CUDAToolkit_ROOT: $PREFIX CUDAToolkit_TARGET_DIR: $PREFIX/targets/x86_64-linux CMAKE_PREFIX_PATH: $PREFIX CMAKE_LIBRARY_PATH: $PREFIX/lib:$PREFIX/include:$CMAKE_LIBRARY_PATH content: | > third_party/NNPACK/cmake/DownloadSix.cmake $PYTHON setup.py install \ --single-version-externally-managed \ --record=record.txt \ --prefix="$PREFIX" requirements: build: - gcc=${{gcc}} - gxx=${{gcc}} - make - cmake - ninja - mkl-devel - libprotobuf - protobuf - nccl - cudnn=${{cudnn}} - cuda-toolkit=${{cuda}} - cuda-compiler=${{cuda}} - cuda-nvcc=${{cuda}} - cuda-driver-dev=${{cuda}} - cuda-cudart-dev=${{cuda}} - cuda-cupti-dev=${{cuda}} - cuda-nvrtc-dev=${{cuda}} - cuda-nvtx-dev=${{cuda}} - cuda-nvml-dev=${{cuda}} - cuda-profiler-api=${{cuda}} - cusparselt - libcublas-dev - libcudss-dev - libcufile-dev - libcufft-dev - libcurand-dev - libcusolver-dev - libcusparse-dev host: - python=3.12 - setuptools - pip - six - numpy - pyyaml - mkl-devel - typing-extensions - magma - nccl - cudnn=${{cudnn}} - cuda-toolkit=${{cuda}} - cuda-compiler=${{cuda}} - cuda-nvcc=${{cuda}} - cuda-driver-dev=${{cuda}} - cuda-cudart-dev=${{cuda}} - cuda-cupti-dev=${{cuda}} - cuda-nvrtc-dev=${{cuda}} - cuda-nvtx-dev=${{cuda}} - cuda-nvml-dev=${{cuda}} - cuda-profiler-api=${{cuda}} - cusparselt - libcublas-dev - libcudss-dev - libcufile-dev - libcufft-dev - libcurand-dev - libcusolver-dev - libcusparse-dev - libabseil - libprotobuf - sleef - pybind11 - eigen - zlib run: - python=3.12 - mkl - numpy - pyyaml - libnuma - typing-extensions - cudnn=${{cudnn}} - cuda-toolkit=${{cuda}} - cuda-driver-dev=${{cuda}} tests: - script: - python -c " import torch; print("is_available:", torch.cuda.is_available()); print("Device name:", torch.cuda.get_device_name(0)); " ``` I had been trying all the ways I found but it keep error like this: ```bash -- Could NOT find CUDA (missing: CUDA_INCLUDE_DIRS) (found version "12.8") │ │ CMake Warning at cmake/public/cuda.cmake:31 (message): │ │ PyTorch: CUDA cannot be found. Depending on whether you are building │ │ PyTorch or a PyTorch dependent library, the next warning / error will give │ │ you more info. │ │ Call Stack (most recent call first): │ │ cmake/Dependencies.cmake:44 (include) │ │ CMakeLists.txt:856 (include) │ │ │ │ CMake Warning at cmake/Dependencies.cmake:76 (message): │ │ Not compiling with CUDA. Suppress this warning with -DUSE_CUDA=OFF. │ │ Call Stack (most recent call first): │ │ CMakeLists.txt:856 (include) ``` My system is Debian, RTX5090 with Nvidia Driver 570.133.20. The nvidia-smi work correctly and I don't know what happened here. Please help! cc @malfet @seemethere
true
3,033,571,301
Fix: promote scalar to MPS device in exec_binary_kernel
KAVYANSHTYAGI
open
[ "triaged", "open source", "release notes: mps" ]
3
NONE
**PR Summary** This PR fixes an inconsistency in torch.copysign on the MPS backend when used with a scalar as the second operand. Scalars were being promoted to CPU tensors by default, leading to incorrect results due to cross-device operations. **Repro Before Fix** import torch t = torch.tensor([1.0, 2.0, 3.0], device="mps") torch.copysign(t, -2.0) Returns: tensor([1., 2., 3.], device='mps:0') Expected After Fix Correct output: tensor([-1., -2., -3.], device='mps:0') The fix ensures that scalars are promoted to the same device (input.device()) in exec_binary_kernel, aligning behavior across backends and preventing silent failures. **Related Issue** This addresses the issue discussed in [https://github.com/pytorch/pytorch/issues/152582] https://github.com/pytorch/pytorch/issues/152582 **CC Maintainers** @malfet @albanD @kulinseth @DenisVieriu97 Please review: this is a small but important fix to maintain consistency and correctness in binary ops on MPS.
true
3,033,319,153
Fix #152280: add Literal[…] PaddingMode to Conv modules
AnandVishesh1301
open
[ "triaged", "open source", "release notes: AO frontend" ]
3
NONE
## Description Updates `padding_mode` type annotations in convolution modules to use `Literal` for improved type safety. This PR builds on #152458 by @sujeet4010, addressing unresolved MYPY errors in `torch/ao/nn/qat/modules/conv.py` and adding test coverage. ## Related Issues - Resolves #152280 (original issue) - Fixes MYPY errors from #152458 ## Changes Made - Extended `Literal` type to QAT modules. - Added tests validating type enforcement. - Addressed CI failures from previous attempt. Credit to @sujeet4010 for the initial implementation.
true
3,033,318,715
[Dynamo] Optimize dedupe region ancestor tracking
mlazos
open
[ "ciflow/trunk", "module: dynamo", "ciflow/inductor", "release notes: dynamo", "merging" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152589 * #152572 * #152570 * #152506 * #152410 * #152505 * #152389 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,033,316,017
[WIP] suggest whitelist for dynamic shape recompilations
pianpwk
open
[ "module: dynamo", "ciflow/inductor", "release notes: dynamo" ]
2
CONTRIBUTOR
For this toy example, running with `TORCH_LOGS="recompiles"`: ``` class Foo(torch.nn.Module): def __init__(self): super().__init__() self.lin = torch.nn.Linear(4, 4) self.attr = torch.randn(4) def forward(self, x, y): return self.lin(x) + self.attr + y fn = torch.compile(Foo()) # 1 fn(torch.randn(7, 4), torch.randn(4)) # 2 fn(torch.randn(8, 4), torch.randn(4)) # 3 fn.lin = torch.nn.Linear(8, 4) fn.attr = torch.randn(4) fn(torch.randn(9, 8), torch.randn(4)) ``` logs: ``` V0506 17:15:05.960000 3670767 torch/_dynamo/guards.py:3384] [0/1] [__recompiles] Recompiling function forward in /data/users/pianpwk/pytorch/custom_tests/test_recompiles_tlparse.py:13 V0506 17:15:05.960000 3670767 torch/_dynamo/guards.py:3384] [0/1] [__recompiles] triggered by the following guard failure(s): V0506 17:15:05.960000 3670767 torch/_dynamo/guards.py:3384] [0/1] [__recompiles] - 0/0: tensor 'x' size mismatch at index 0. expected 7, actual 8 V0506 17:15:05.960000 3670767 torch/_dynamo/guards.py:3384] [0/1] [__recompiles] - The following environment variable would enable dynamic compilation to start, avoiding this recompile: TORCH_COMPILE_DYNAMIC_SOURCES="L['x']" V0506 17:15:06.083000 3670767 torch/_dynamo/guards.py:3384] [0/2] [__recompiles] Recompiling function forward in /data/users/pianpwk/pytorch/custom_tests/test_recompiles_tlparse.py:13 V0506 17:15:06.083000 3670767 torch/_dynamo/guards.py:3384] [0/2] [__recompiles] triggered by the following guard failure(s): V0506 17:15:06.083000 3670767 torch/_dynamo/guards.py:3384] [0/2] [__recompiles] - 0/1: tensor 'x' size mismatch at index 1. expected 4, actual 8 V0506 17:15:06.083000 3670767 torch/_dynamo/guards.py:3384] [0/2] [__recompiles] - Multiple size mismatches found. The following environment variable would enable dynamic compilation to start, avoiding this recompile: TORCH_COMPILE_DYNAMIC_SOURCES="L['x'],L['self']._modules['lin']._parameters['weight']" V0506 17:15:06.083000 3670767 torch/_dynamo/guards.py:3384] [0/2] [__recompiles] - Size guard failed on a parameter, consider using torch._dynamo.config.force_parameter_static_shapes = False to allow dynamism on parameters. V0506 17:15:06.083000 3670767 torch/_dynamo/guards.py:3384] [0/2] [__recompiles] - 0/0: tensor 'x' size mismatch at index 0. expected 7, actual 9 V0506 17:15:06.083000 3670767 torch/_dynamo/guards.py:3384] [0/2] [__recompiles] - Multiple size mismatches found. The following environment variable would enable dynamic compilation to start, avoiding this recompile: TORCH_COMPILE_DYNAMIC_SOURCES="L['x'],L['self']._modules['lin']._parameters['weight']" V0506 17:15:06.083000 3670767 torch/_dynamo/guards.py:3384] [0/2] [__recompiles] - Size guard failed on a parameter, consider using torch._dynamo.config.force_parameter_static_shapes = False to allow dynamism on parameters. ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,033,254,808
[Inductor] Introduce Wrapper IR line for symbolic call args
blaine-rister
closed
[ "Merged", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: inductor (aoti)" ]
3
CONTRIBUTOR
Preparatory refactor for https://github.com/pytorch/pytorch/pull/146942. This PR introduces a new wrapper IR line to represent symbolic call args. This deletes a little bit of duplicated code between the Python and C++ backends. In the main PR, having a Wrapper IR line for this also tells the FX backend what this part of the wrapper code is doing. Before this PR, symbolic call args generated raw Python lines, which confuse the FX converter. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,033,115,488
[2/N] Use std::filesystem
cyyever
open
[ "oncall: distributed", "triaged", "open source", "ciflow/inductor", "release notes: inductor (aoti)" ]
5
COLLABORATOR
Use std::filesystem in most inductor code. This is follow-up of #152288 . The check of `std::filesystem::create_directories` has been fixed because it may return false when the directory to create already exists. cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,033,099,094
[c10d][fr] Decouple the core logic of FR with the entry and event type
fduwjj
closed
[ "oncall: distributed", "fb-exported", "Merged", "ciflow/trunk", "release notes: distributed (c10d)" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152614 * #152563 * __->__ #152585 We want to make FR generic enough so the first step is to make the FR a template struct so that most of common code logic can be reused. The reason for this is that CudaEvent does not inherit c10::Event and we just want to swap the event part so that for NCCL we use CudaEvent and for the rest of backends, we use c10::event. cc @H-Huang @awgu @wanchaol @fegin @wz337 @wconstab @d4l3k Differential Revision: [D74262695](https://our.internmc.facebook.com/intern/diff/D74262695)
true
3,033,072,933
How does torch.cudagraph capture a hybrid graph?
ghostplant
closed
[]
1
NONE
I have a model containing not only CUDA operations in some places, and also CPU operators in other places. I want to capture the whole graph as a single CUDAGraph to replay. Is it possible in Pytorch?
true
3,033,072,462
add support for 0 size shardedTensor and recalculate metadata from all_gather
duduyi2013
closed
[ "oncall: distributed", "fb-exported", "Merged", "ciflow/trunk", "release notes: distributed (sharded)" ]
11
CONTRIBUTOR
Summary: change set 1. a ShardedTensor could have 0 size initially, the current check won't pass if the size is 0, added here 2. when we call ShardedTensor._init_from_local_shards, it will assume all the metadata is correct, all_gather to double check. In the new case, the metadata could be all 0 size, and the tensor has actual size, we need to provide such capability to recalculate the local/global metadata from the local tensor by all_gathering the information Test Plan: i don't see a UT is associated, I have tested this with diff stack, D73274786. Differential Revision: D73903933 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,033,047,728
[MPS] Binary kernels produce incorrect results when one of the tensor arguments is from a wrapped scalar
qqaatw
closed
[ "triaged", "module: regression", "module: correctness (silent)", "module: mps" ]
4
COLLABORATOR
### 🐛 Describe the bug Repro: ```python import torch tcpu = torch.tensor([1.0,2.0,3.0], device="cpu") torch.copysign(tcpu, -2.0) # tensor([-1., -2., -3.]) t = torch.tensor([1.0,2.0,3.0], device="mps") torch.copysign(t, -2.0) # tensor([1., 2., 3.], device='mps:0') ``` Internally, the scalar is wrapped into a cpu tensor and then re-dispatched. Three possible solutions here: 1. Wrap the scalar into an mps tensor instead of a cpu tensor. 2. Send the cpu tensor to mps in the binary kernel. 3. Error out rather than produce incorrect results. ### Versions nightly cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
3,033,013,295
[invoke_subgraph] rename identifiers to prevent python mangling
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
11
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152494 * #152490 * #152383 * #152384 * __->__ #152581 * #152547 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,032,942,578
[cutlass backend] cache filtered ops based on layouts
henrylhtsang
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #153006 * __->__ #152580 Differential Revision: [D73972687](https://our.internmc.facebook.com/intern/diff/D73972687/) Add cache to store the list of filtered ops for a specific shape + layout + dtype (aka hash on input_nodes). cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,032,932,963
[aoti] skip input symbol codegen for sympy expr w/ many symbols
ColinPeppler
closed
[ "Merged", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: inductor (aoti)" ]
3
CONTRIBUTOR
Issue was that - symbol-ids appeared out-of-order w.r.t to the order of the forward inputs ``` def forward(arg0 # [(s3 - 1) + s4, 32], arg1 #[(s3 - 1)] ..) ``` - this causes codegen to fail because it expects all the base symbols `s4,s3` to have been codegen-ed already. - well, we can skip codegen-ing sympy expr with many symbols e.g. `(s3 - 1) + s4` because `s3` and `s4` will be codegen-ed by other inputs. ``` # for example s3 = arg1.size(0) + 1 s4 = argN.size(0) ``` Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152579 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,032,902,015
[testing] 1
zou3519
closed
[ "release notes: releng", "fx", "module: inductor", "ciflow/inductor", "ciflow/inductor-periodic" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152578 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,032,891,842
[cutlass backend] Minor lru_cache to slightly speed up filtering ops
henrylhtsang
closed
[ "fb-exported", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ci-no-td", "ciflow/inductor-periodic" ]
15
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152577 For default level, it went from 0.11332 seconds to Filtering took 0.10064 seconds. You can't really apply lru_cache too aggressively. For example, hashing a cutlass op takes a long time. Removing a log further bring it down to 0.07202 seconds Differential Revision: [D73971021](https://our.internmc.facebook.com/intern/diff/D73971021/) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,032,875,949
[Inductor] Fix int check again
mlazos
closed
[ "Merged", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: inductor" ]
3
CONTRIBUTOR
Made an oss change to a diff train diff @diff-train-skip-merge cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,032,861,344
[IR] Input Adapter refactor prototype (#152459)
felixsu2006
closed
[ "fb-exported", "Merged", "ciflow/trunk", "release notes: export" ]
9
CONTRIBUTOR
Summary: 1. Adding `input` field to `_adapt_flat_args` function 2. In `process_forward_inputs`, `reorder_kwargs` will now do nothing if no kwargs are provided (previously would error) 3. Pass `args` as input to `_adapt_flat_args` These changes are made to update the InputAdapter see more context in D73811508 Test Plan: see D73811508 Differential Revision: D73945419
true
3,032,857,106
Added documentation for nonzero_static function (#152347)
sanjai-11
closed
[ "triaged", "open source", "topic: not user facing" ]
7
NONE
Fixes #152347 This PR adds documentation for the nonzero_static function in PyTorch.
true
3,032,848,140
Allow decomposeK to fuse
PaulZhang12
open
[ "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152573 * #150654 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,032,830,059
[Dynamo] Fix typing in graph_deduplication.py
mlazos
open
[ "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152589 * __->__ #152572 * #152570 * #152506 * #152410 * #152505 * #152389 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,032,815,194
[export] Ignore None buffers
angelayi
closed
[ "Merged", "ciflow/trunk", "release notes: export" ]
3
CONTRIBUTOR
Fixes https://github.com/pytorch/pytorch/issues/152467
true
3,032,802,827
[Hierarchical Compile] Replace tracing alias and mutation check with dynamo impl
mlazos
open
[ "ciflow/trunk", "module: dynamo", "ciflow/inductor", "release notes: dynamo" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152589 * #152572 * __->__ #152570 * #152506 * #152410 * #152505 * #152389 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,032,723,115
[ROCm] Update spack includes
jithunnair-amd
open
[ "module: rocm", "triaged", "open source", "release notes: rocm", "ciflow/rocm" ]
6
COLLABORATOR
* Cleans up code in `caffe2/CMakeLists.txt` to remove individual ROCm library include paths and use `ROCM_INCLUDE_DIRS` CMake var instead * `ROCM_INCLUDE_DIRS` CMake var is set in `cmake/public/LoadHIP.cmake` by adding all the ROCm packages that PyTorch depends on * `rocm_version.h` is provided by the `rocm-core` package, so use the include directory for that component to be compliant with Spack * Move `find_package_and_print_version(hip REQUIRED CONFIG)` earlier so that `hip_version.h` can be located in the hip package include dir for Spack * `list(REMOVE_DUPLICATES ROCM_INCLUDE_DIRS)` to remove duplicate `/opt/rocm/include` entries in the non-Spack case * Remove user-provided env var `ROCM_INCLUDE_DIRS` since `ROCM_PATH` already exists as a user-provided env var, which should be sufficient to locate the include directories for ROCm. cc @jeffdaily @sunway513 @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
3,032,717,939
Allow Metal Binary iterator to take CPUScalar operands
skotapati
closed
[ "open source", "release notes: mps", "ciflow/mps" ]
2
COLLABORATOR
Currently the metal binary kernel can only take MPSTensors and errors out if a scalar value is passed in. The following change allows the binary kernel to work with cpu scalar inputs, without the need to initialize a new MPS tensor. This is necessary for enabling binary logical/comparison ops via the metal kernel, which will be added in a followup PR
true
3,032,702,917
🐛 Add `ciflow/pull`🦋
malfet
closed
[ "Merged", "topic: not user facing" ]
3
CONTRIBUTOR
To make it easier to workaround GitHub relibability issues, when it sometime fails to scheduled `on: pull_request` workflows See https://github.com/pytorch/pytorch/issues/151322 But alas, it does not fixes problem at hand...
true
3,032,688,256
[Benchmark] High compilation time variance on benchmark dashboards
huydhn
open
[ "module: ci", "triaged", "module: infra" ]
0
CONTRIBUTOR
The issue is reported by compiler team (@zou3519, @oulgen) in which the compilation time seems to have a higher variance across runs. This happens on both PT2 (no compiler cache) and CacheBench dashboard, which seems to indicate an underlying problem with the runner. ![Image](https://github.com/user-attachments/assets/20e6f096-f262-4862-80fc-1586e3290e86) ![Image](https://github.com/user-attachments/assets/8b079383-b816-4f63-aae4-cc71a827425d) One potential explanation is that the H100/A100 where these benchmarks are running is multi-tenancy. So, other jobs running in parallel on the same runner could cause this. cc @seemethere @malfet @pytorch/pytorch-dev-infra @ZainRizvi @clee2000
true
3,032,687,653
Fix assertion in reorder_communication_preserving_peak_memory
wconstab
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152565 >=0 is practically correct becuase we do model the runtime of some ops as 0. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,032,678,721
`torch.randint` can't handle large `high` argument (and in general high range of `torch.uint64`)
vadimkantorov
closed
[ "module: docs", "triaged", "actionable", "module: python frontend" ]
3
CONTRIBUTOR
### 🐛 Describe the bug [Docs for `manual_seed`](https://pytorch.org/docs/stable/generated/torch.Generator.html#torch.Generator.manual_seed) say `The desired seed. Value must be within the inclusive range [-0x8000_0000_0000_0000, 0xffff_ffff_ffff_ffff].`. So trying to generate a seed: `python -c 'import torch; print(torch.randint(-0x8000_0000_0000_0000, 0xffff_ffff_ffff_ffff +1, (1, ), dtype=torch.int64))'` prints `RuntimeError: Overflow when unpacking long` The low/upper bounds for arguments are not specified in docs https://pytorch.org/docs/stable/generated/torch.randint.html :( ### Versions 2.6.0.dev20241007+cpu cc @svekars @sekyondaMeta @AlannaBurke @albanD
true
3,032,645,173
[c10d][fr] Make FR vendor neutral so that other backends can use it
fduwjj
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (c10d)" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152614 * __->__ #152563 * #152585 Current FR code is built with `USE_C10D_NCCL` we should remove it to make it generic. And we keep existing API used by NCCL so that we can have some bc compatibility because lots of use cases are around FR with NCCL. The generic version with C10::Event can then be used for other backend like Gloo, etc. The current Unit test should cover the change. cc @H-Huang @awgu @wanchaol @fegin @wz337 @wconstab @d4l3k @d4l3kC
true
3,032,644,811
xpu: rely on sycl/sycl.hpp to include bfloat16.hpp
dvrogozh
open
[ "triaged", "open source", "ciflow/trunk", "ciflow/xpu", "release notes: xpu", "module: xpu" ]
18
CONTRIBUTOR
Fixes: https://github.com/intel/torch-xpu-ops/issues/1503 `sycl/ext/oneapi/bfloat16.hpp` header file is a DPC++ compiler internal header. It's not documented for usage (see extension specification linked below) and is not guaranteed to exist. Instead, documented usage of extension suggests to rely on including `sycl/sycl.hpp` which in its turn includes `bfloat16.hpp` header (which is implementation detail). We stepped into issues by explicitly including `bloat16.hpp` sycl header whithin user facing production environment when `intel-sycl-rt` wheel is installed (which is the dependency of `torch` wheel package built and publicly available for xpu). Compiler includes this file from `intel-sycl-rt` and due to `#pragma once` usage its content is included as well giving redefinitions of symbols in this file (previous inclusion is coming from `sycl/sycl.hpp`): ``` In file included from /workspace/lib/python3.12/site-packages/torch/include/c10/util/BFloat16.h:23: /opt/intel/oneapi/compiler/2025.0/bin/compiler/../../include/sycl/ext/oneapi/bfloat16.hpp:60:23: error: redefinition of 'BF16VecToFloatVec' 60 | template <int N> void BF16VecToFloatVec(const bfloat16 src[N], float dst[N]) { | ^ /workspace/include/sycl/ext/oneapi/bfloat16.hpp:60:23: note: previous definition is here 60 | template <int N> void BF16VecToFloatVec(const bfloat16 src[N], float dst[N]) { | ``` While SYCL header files themselves can be improved (`#pragma once` dropped), we still must correct usage of sycl `bfloat16.hpp` header in pytorch, i.e. drop it. This fortunately helps to address the reported issue of redefinitions though follow up on compiler side is still required. Also, `SYCL_EXT_ONEAPI_BFLOAT16_MATH_FUNCTIONS` used to cover inclusion of `sycl/sycl.hpp` does not make sense since it's defined in this very header. Thus, we should use `SYCL_LANGUAGE_VERSION` instead which is defined on compiler level. See: https://github.com/intel/llvm/blob/f958dce28053dff145cd725ff57bc4ce94cb94d7/sycl/doc/extensions/experimental/sycl_ext_oneapi_bfloat16_math_functions.asciidoc CC: @EikanWang, @guangyey, @gujinghui cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
3,032,596,817
DISABLED test_graph_partition_reorder_cpu_and_gpu_interleave (__main__.CudaGraphTreeTests)
pytorch-bot[bot]
open
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
2
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_graph_partition_reorder_cpu_and_gpu_interleave&suite=CudaGraphTreeTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41432152468). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 4 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_graph_partition_reorder_cpu_and_gpu_interleave` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_cudagraph_trees.py", line 3206, in test_graph_partition_reorder_cpu_and_gpu_interleave self.assertEqual(self.get_manager().new_graph_id().id, 1) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4095, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Scalars are not equal! Expected 1 but got 2. Absolute difference: 1 Relative difference: 1.0 To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_cudagraph_trees.py CudaGraphTreeTests.test_graph_partition_reorder_cpu_and_gpu_interleave This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_cudagraph_trees.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,032,596,815
DISABLED test_pending_fusion_pro_and_epi (__main__.TestPrologueFusion)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
2
NONE
Platforms: rocm, inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_pending_fusion_pro_and_epi&suite=TestPrologueFusion&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41442212447). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_pending_fusion_pro_and_epi` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_max_autotune.py", line 1550, in test_pending_fusion_pro_and_epi ).run(code[0]) RuntimeError: Expected to not find ".run(" but found it # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_1.run(buf2, 16384, stream=stream0) ~~~~~ <--- HERE return (buf2, ) From CHECK-NOT: .run( To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_max_autotune.py TestPrologueFusion.test_pending_fusion_pro_and_epi This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_max_autotune.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,032,594,687
DISABLED test_comprehensive_signal_windows_hamming_cuda_float32 (__main__.TestInductorOpInfoCUDA)
pytorch-bot[bot]
open
[ "high priority", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
3
NONE
Platforms: inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_comprehensive_signal_windows_hamming_cuda_float32&suite=TestInductorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41444319438). Over the past 3 hours, it has been determined flaky in 5 workflow(s) with 5 failures and 5 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_comprehensive_signal_windows_hamming_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1135, in test_wrapper return test(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1434, in only_fn return fn(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 2291, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1534, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/unittest/mock.py", line 1396, in patched return func(*newargs, **newkeywargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 962, in inner raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 954, in inner fn(self, device, dtype, op) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1207, in test_comprehensive raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1182, in test_comprehensive self.check_model_gpu( File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 657, in check_model_gpu check_model( File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 498, in check_model actual = run(*example_inputs, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py", line 675, in _fn raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 862, in _compile_fx_inner raise InductorError(e, currentframe()).with_traceback( File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 846, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( ^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 1460, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 1347, in codegen_and_compile compiled_module = graph.compile_to_module() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/graph.py", line 2219, in compile_to_module return self._compile_to_module() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/graph.py", line 2266, in _compile_to_module mod = PyCodeCache.load_by_key_path( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/codecache.py", line 3006, in load_by_key_path mod = _reload_python_module(key, path, set_sys_modules=in_toplevel) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/compile_tasks.py", line 31, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) File "/tmp/tmpprxfcxho/fh/cfhjwbghdrheeqgrbsv2nrm7qfppxwloeepx7nnn4tfgkz4bjodb.py", line 186, in <module> async_compile.wait(globals()) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 448, in wait self._wait_futures(scope) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 468, in _wait_futures scope[key] = result.result() ^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/codecache.py", line 3508, in result return self.result_fn() ^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 343, in get_result kernel.precompile( File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 323, in precompile self._make_launchers() File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 480, in _make_launchers launchers.append(result.make_launcher()) ^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1277, in make_launcher self.reload_cubin_path() File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1269, in reload_cubin_path raise RuntimeError( torch._inductor.exc.InductorError: RuntimeError: ('Cubin file saved by TritonBundler not found at %s', '/tmp/tmpzp29actm/triton/TM6JRP6APJLRXXMGDDHV527FZJVUOTAAOWW7AGPEBRSGPED7SGIA/triton_poi_fused_cos_linspace_mul_sum_0.cubin') Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo" The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 426, in instantiated_test result = test(self, **param_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1147, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 4: SampleInput(input=2, args=(), kwargs={'sym': 'True', 'device': "'cuda:0'", 'dtype': 'torch.float32', 'requires_grad': 'False'}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=4 python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_signal_windows_hamming_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_opinfo.py` cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @clee2000 @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @muchulee8 @amjames @aakhundov
true
3,032,594,660
DISABLED test_comprehensive_amin_cuda_float64 (__main__.TestInductorOpInfoCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
2
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_comprehensive_amin_cuda_float64&suite=TestInductorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41442776015). Over the past 3 hours, it has been determined flaky in 10 workflow(s) with 10 failures and 10 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_comprehensive_amin_cuda_float64` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1135, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1434, in only_fn return fn(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 2291, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1534, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/mock.py", line 1379, in patched return func(*newargs, **newkeywargs) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 962, in inner raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 954, in inner fn(self, device, dtype, op) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1207, in test_comprehensive raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1182, in test_comprehensive self.check_model_gpu( File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 657, in check_model_gpu check_model( File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 498, in check_model actual = run(*example_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 675, in _fn raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 862, in _compile_fx_inner raise InductorError(e, currentframe()).with_traceback( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 846, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1460, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1347, in codegen_and_compile compiled_module = graph.compile_to_module() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 2219, in compile_to_module return self._compile_to_module() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 2266, in _compile_to_module mod = PyCodeCache.load_by_key_path( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 3006, in load_by_key_path mod = _reload_python_module(key, path, set_sys_modules=in_toplevel) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/compile_tasks.py", line 31, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) File "/tmp/tmpj96xl7eo/d2/cd2iznar6kymctlotthswvmztzfv4k3voqctpfmfbjp35bdlfdqs.py", line 78, in <module> async_compile.wait(globals()) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 448, in wait self._wait_futures(scope) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 468, in _wait_futures scope[key] = result.result() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 3508, in result return self.result_fn() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 343, in get_result kernel.precompile( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 323, in precompile self._make_launchers() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 480, in _make_launchers launchers.append(result.make_launcher()) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1277, in make_launcher self.reload_cubin_path() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1269, in reload_cubin_path raise RuntimeError( torch._inductor.exc.InductorError: RuntimeError: ('Cubin file saved by TritonBundler not found at %s', '/tmp/tmpvh5gum64/triton/RVENYFYII7IGSNDPLPOQUNDLGK426N3SQL2PUHHSGUV64S7CSW7A/triton_poi_fused_amin_eq_0.cubin') Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo" The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 426, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1147, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 1: SampleInput(input=Tensor[size=(), device="cuda:0", dtype=torch.float64], args=(), kwargs={'dim': '0', 'keepdim': 'True'}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=1 python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_amin_cuda_float64 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_opinfo.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,032,496,059
[BE] Update numba versions
malfet
open
[ "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "ci-no-td" ]
18
CONTRIBUTOR
Let's see if PyTorch is compatible with latest `test_unary_funcs` are no longer failing due to https://github.com/pytorch/pytorch/pull/148024
true
3,032,481,926
[ONNX] Delete JitTraceConvertStrategy
titaiwangms
closed
[ "open source", "Merged", "ciflow/trunk", "release notes: onnx" ]
10
COLLABORATOR
Fixes #151703
true
3,032,258,804
PGO does not work on jobs for frameworks that copy code to different dirs at different attempts.
laithsakka
open
[ "triaged", "oncall: pt2", "module: dynamic shapes" ]
0
CONTRIBUTOR
**internal Xrefs:** ``` attempt 0:[ https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/fire-swapna942-](https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/fire-swapna942-f725974742/attempt_0/version_0/rank_0/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000)[f725974742](https://www.internalfb.com/intern/fblearner/details/725974742)/attempt_0/version_0/rank_0/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000 attempt 1:[ https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/fire-swapna942-](https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/fire-swapna942-f725974742/attempt_1/version_0/rank_0/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000)[f725974742](https://www.internalfb.com/intern/fblearner/details/725974742)/attempt_1/version_0/rank_0/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000 ``` **whats going on** here is an interesting observation if you look at local code state in attempt1 at the frame 0/6 you will see TWO entries for the same function each encoding a different process id. (1) This is the entry coming from attempt 0 which says i saw different values for stuff that need to become dynamic. ``` /dev/shm/uid-99/7bbb6bf0-seed-nspid4026547364_cgpid14361465-ns-XXXXXXX5501:torch_dynamo_resume_in_forward_at_5501: L['___stack0'][0]: tensor size=[1024, 112, 256] stride=[S(1), S(2), 1] L['___stack0'][1]: tensor size=[?, 23, 256] stride=[S(1), S(2), 1] L['___stack0'][2]: tensor size=[?] stride=[1] L['___stack0'][3]: tensor size=[1024, 350] stride=[S(1), 1] L['___stack0'][4]: tensor size=[?, 1101] stride=[S(1), 1] L['dense_arch_out'][0]: tensor size=[?, 1024] stride=[S(1), 1] ... ``` (2)This is a new entry in the file. It seems like in this attempt we think that we are running a different frame due to this embedding of the process ID in the frame so we start from scratch. ``` /dev/shm/uid-99/7bbb6bf0-seed-nspid4026546680_cgpid7288320-ns-XXXXXXXXX:5501:torch_dynamo_resume_in_forward_at_5501: L['___stack0'][0]: tensor size=[1024, 112, 256] stride=[S(1), S(2), 1] L['___stack0'][1]: tensor size=[7363, 23, 256] stride=[S(1), S(2), 1] L['___stack0'][2]: tensor size=[7363] stride=[1] L['___stack0'][3]: tensor size=[1024, 350] stride=[S(1), 1] L['___stack0'][4]: tensor size=[7363, 1101] stride=[S(1), 1] L['dense_arch_out'][0]: tensor size=[7363, 1024] stride=[S(1), 1] ``` **Solution:** We will hash the file and use it as the prefix to the file name and line number. To avoid hashing for multiple times with in an attempts we will cache using the file path . cc @chauhang @penguinwu @ezyang @bobrenjc93
true
3,032,237,381
Implemented `Size.__radd__`
randolf-scholz
open
[ "triaged", "open source", "release notes: python_frontend", "module: python frontend" ]
4
CONTRIBUTOR
Fixes #144334 Builds on top of #146834 by @khushi-411 (I reused the `THPSize_add` method as-is) The needed trick was to add `PyNumberMethods` because these Number Protocol appears to be responsible for `__radd__` (see https://stackoverflow.com/q/18794169) cc @albanD
true
3,032,138,329
[BE] Replace func_name with __func__
malfet
closed
[ "module: cpu", "fb-exported", "Merged", "ciflow/trunk", "release notes: quantization", "topic: not user facing" ]
4
CONTRIBUTOR
Summary: Not sure why one needs to preserve the name by hand Test Plan: CI Differential Revision: D73941209 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @jerryzh168
true
3,032,133,746
Clean up conda usage in benchmark scripts
huydhn
closed
[ "Merged", "topic: not user facing", "test-config/default", "module: dynamo", "ciflow/inductor", "suppress-bc-linter" ]
3
CONTRIBUTOR
Fixes https://github.com/pytorch/pytorch/issues/152123. * Switch `benchmarks/dynamo/Makefile` to use uv. Note that these scripts are only used locally, so it's kind of ok to keep conda here IMO. But switching to uv is probably nicer to most folks. * Delete some files that are outdated and not used anymore cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,032,096,260
removing short-perf-test-cpu.sh and short-perf-test-gpu.sh
jeanschmidt
closed
[ "Merged", "ciflow/binaries", "ciflow/trunk", "topic: not user facing", "ciflow/periodic", "ciflow/nightly", "ciflow/unstable", "ciflow/slow" ]
4
CONTRIBUTOR
When working on #148342 I realised that there is no reference from those files. So seems they are stale and can be safely removed.
true
3,032,085,521
MPS varying seq len SDPA memory leak
SalmanMohammadi
open
[ "module: memory usage", "triaged", "module: mps", "module: sdpa" ]
2
CONTRIBUTOR
### 🐛 Describe the bug After trying the fix from #152371 (thanks so much for landing this so quickly) However, I was still seeing memory leaks. I found another issue where memory usage on MPS explodes when the sequence length sufficiently varies for SDPA - this does not occur with CUDA. ![Image](https://github.com/user-attachments/assets/2e871391-7f79-4b77-a5aa-500e62bcc91c) ### Reproduction script: ```python import torch import torch.nn.functional as F import sys def get_memory_stats(device: torch.device): if device.type == "mps": peak_active = torch.mps.current_allocated_memory() peak_alloc = torch.mps.driver_allocated_memory() return peak_active, peak_alloc elif device.type == "cuda": peak_active = torch.cuda.memory_stats().get("active_bytes.all.peak", 0) peak_alloc = torch.cuda.max_memory_allocated() return peak_active, peak_alloc def format_bytes(size_bytes): """Converts bytes to a readable string (KB, MB, GB).""" if size_bytes < 1024: return f"{size_bytes} B" elif size_bytes < 1024**2: return f"{size_bytes / 1024:.2f} KB" elif size_bytes < 1024**3: return f"{size_bytes / 1024**2:.2f} MB" else: return f"{size_bytes / 1024**3:.2f} GB" def run_sdpa_test_single_bs(batch_size, num_iterations, num_heads, head_dim, min_seq_len, max_seq_len, device, dtype): actual_max_seq_len = max(max_seq_len, min_seq_len + 1) peak_active, peak_alloc = get_memory_stats(device) print(f" Initial Memory: Active={format_bytes(peak_active)}, Alloc={format_bytes(peak_alloc)}") for i in range(num_iterations): seq_len = torch.randint(min_seq_len, actual_max_seq_len, (1,)).item() query = torch.randn(batch_size, num_heads, seq_len, head_dim, device=device, dtype=dtype) key = torch.randn(batch_size, num_heads, seq_len, head_dim, device=device, dtype=dtype) value = torch.randn(batch_size, num_heads, seq_len, head_dim, device=device, dtype=dtype) with torch.no_grad(): F.scaled_dot_product_attention(query, key, value) peak_active, peak_alloc = get_memory_stats(device) if (i + 1) % (num_iterations // 10 or 1) == 0: print(f" Step {i + 1}/{num_iterations}: Active={format_bytes(peak_active)}, Alloc={format_bytes(peak_alloc)}") final_peak_active, final_peak_alloc = get_memory_stats(device) print(f" Final Memory: Active={format_bytes(final_peak_active)}, Alloc={format_bytes(final_peak_alloc)}") print(f"--- Finished SDPA Test for BS={batch_size}, SeqLen Range=({min_seq_len}-{actual_max_seq_len - 1}) ---") if __name__ == "__main__": batch_size = 4 num_iterations = 400 num_heads = 8 head_dim = 128 min_seq_len = 128 max_seq_len = min_seq_len + int(sys.argv[1]) device = torch.device(sys.argv[2]) dtype = torch.bfloat16 run_sdpa_test_single_bs(batch_size, num_iterations, num_heads, head_dim, min_seq_len, max_seq_len, device, dtype) ``` #### CUDA results: ```bash root@cb0c541d80f5:/workspace/axolotl# python ../mem_test.py 128 cuda Initial Memory: Active=0 B, Alloc=0 B Step 40/400: Active=8.71 MB, Alloc=8.71 MB Step 80/400: Active=8.71 MB, Alloc=8.71 MB Step 120/400: Active=9.66 MB, Alloc=9.66 MB Step 160/400: Active=9.66 MB, Alloc=9.66 MB Step 200/400: Active=9.66 MB, Alloc=9.66 MB Step 240/400: Active=9.66 MB, Alloc=9.66 MB Step 280/400: Active=9.66 MB, Alloc=9.66 MB Step 320/400: Active=9.66 MB, Alloc=9.66 MB Step 360/400: Active=9.66 MB, Alloc=9.66 MB Step 400/400: Active=9.66 MB, Alloc=9.66 MB Final Memory: Active=9.66 MB, Alloc=9.66 MB --- Finished SDPA Test for BS=4, SeqLen Range=(128-255) --- root@cb0c541d80f5:/workspace/axolotl# python ../mem_test.py 256 cuda Initial Memory: Active=0 B, Alloc=0 B Step 40/400: Active=12.00 MB, Alloc=12.00 MB Step 80/400: Active=12.00 MB, Alloc=12.00 MB Step 120/400: Active=13.17 MB, Alloc=13.17 MB Step 160/400: Active=13.17 MB, Alloc=13.17 MB Step 200/400: Active=13.17 MB, Alloc=13.17 MB Step 240/400: Active=13.17 MB, Alloc=13.17 MB Step 280/400: Active=13.17 MB, Alloc=13.17 MB Step 320/400: Active=13.17 MB, Alloc=13.17 MB Step 360/400: Active=13.17 MB, Alloc=13.17 MB Step 400/400: Active=13.17 MB, Alloc=13.17 MB Final Memory: Active=13.17 MB, Alloc=13.17 MB --- Finished SDPA Test for BS=4, SeqLen Range=(128-383) --- root@cb0c541d80f5:/workspace/axolotl# python ../mem_test.py 512 cuda Initial Memory: Active=0 B, Alloc=0 B Step 40/400: Active=20.78 MB, Alloc=20.78 MB Step 80/400: Active=20.78 MB, Alloc=20.78 MB Step 120/400: Active=20.78 MB, Alloc=20.78 MB Step 160/400: Active=20.78 MB, Alloc=20.78 MB Step 200/400: Active=20.78 MB, Alloc=20.78 MB Step 240/400: Active=20.78 MB, Alloc=20.78 MB Step 280/400: Active=20.78 MB, Alloc=20.78 MB Step 320/400: Active=20.78 MB, Alloc=20.78 MB Step 360/400: Active=20.78 MB, Alloc=20.78 MB Step 400/400: Active=20.78 MB, Alloc=20.78 MB Final Memory: Active=20.78 MB, Alloc=20.78 MB --- Finished SDPA Test for BS=4, SeqLen Range=(128-639) --- root@cb0c541d80f5:/workspace/axolotl# python ../mem_test.py 2048 cuda Initial Memory: Active=0 B, Alloc=0 B Step 40/400: Active=67.58 MB, Alloc=67.58 MB Step 80/400: Active=67.58 MB, Alloc=67.58 MB Step 120/400: Active=67.58 MB, Alloc=67.58 MB Step 160/400: Active=67.58 MB, Alloc=67.58 MB Step 200/400: Active=67.58 MB, Alloc=67.58 MB Step 240/400: Active=67.58 MB, Alloc=67.58 MB Step 280/400: Active=67.58 MB, Alloc=67.58 MB Step 320/400: Active=67.89 MB, Alloc=67.89 MB Step 360/400: Active=67.89 MB, Alloc=67.89 MB Step 400/400: Active=68.14 MB, Alloc=68.14 MB Final Memory: Active=68.14 MB, Alloc=68.14 MB --- Finished SDPA Test for BS=4, SeqLen Range=(128-2175) --- ``` #### MPS Results: ```bash > python minimal_test.py 128 mps Initial Memory: Active=0 B, Alloc=384.00 KB Step 40/400: Active=5.86 MB, Alloc=77.17 MB Step 80/400: Active=5.86 MB, Alloc=85.52 MB Step 120/400: Active=5.83 MB, Alloc=117.83 MB Step 160/400: Active=5.86 MB, Alloc=118.02 MB Step 200/400: Active=4.17 MB, Alloc=118.28 MB Step 240/400: Active=5.83 MB, Alloc=118.41 MB Step 280/400: Active=5.84 MB, Alloc=118.47 MB Step 320/400: Active=5.84 MB, Alloc=118.48 MB Step 360/400: Active=5.83 MB, Alloc=118.56 MB Step 400/400: Active=5.83 MB, Alloc=118.61 MB Final Memory: Active=5.83 MB, Alloc=118.61 MB --- Finished SDPA Test for BS=4, SeqLen Range=(128-255) --- > python minimal_test.py 256 mps Initial Memory: Active=0 B, Alloc=384.00 KB Step 40/400: Active=7.81 MB, Alloc=143.22 MB Step 80/400: Active=7.81 MB, Alloc=151.73 MB Step 120/400: Active=7.81 MB, Alloc=184.08 MB Step 160/400: Active=7.81 MB, Alloc=184.47 MB Step 200/400: Active=7.81 MB, Alloc=184.77 MB Step 240/400: Active=7.81 MB, Alloc=185.03 MB Step 280/400: Active=8.11 MB, Alloc=185.28 MB Step 320/400: Active=7.81 MB, Alloc=185.50 MB Step 360/400: Active=7.81 MB, Alloc=185.78 MB Step 400/400: Active=17.01 MB, Alloc=185.88 MB Final Memory: Active=17.01 MB, Alloc=185.88 MB --- Finished SDPA Test for BS=4, SeqLen Range=(128-383) --- > python minimal_test.py 512 mps Initial Memory: Active=0 B, Alloc=384.00 KB Step 40/400: Active=5.06 MB, Alloc=1.13 GB Step 80/400: Active=17.57 MB, Alloc=1.13 GB Step 120/400: Active=15.55 MB, Alloc=1.13 GB Step 160/400: Active=10.97 MB, Alloc=1.13 GB Step 200/400: Active=7.15 MB, Alloc=1.13 GB Step 240/400: Active=15.55 MB, Alloc=1.13 GB Step 280/400: Active=10.97 MB, Alloc=1.13 GB Step 320/400: Active=17.57 MB, Alloc=1.13 GB Step 360/400: Active=10.97 MB, Alloc=1.13 GB Step 400/400: Active=17.57 MB, Alloc=1.13 GB Final Memory: Active=17.57 MB, Alloc=1.13 GB --- Finished SDPA Test for BS=4, SeqLen Range=(128-639) --- ``` ### Versions On MPS: ```bash Collecting environment information... PyTorch version: 2.8.0.dev20250430 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 15.1.1 (arm64) GCC version: Could not collect Clang version: 15.0.0 (clang-1500.3.9.4) CMake version: Could not collect Libc version: N/A Python version: 3.12.8 (main, Jan 5 2025, 06:55:30) [Clang 19.1.6 ] (64-bit runtime) Python platform: macOS-15.1.1-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Max Versions of relevant libraries: [pip3] numpy==2.2.3 [pip3] pytorch_sphinx_theme==0.0.24 [pip3] torch==2.8.0.dev20250430 [pip3] torchao==0.10.0+cpu [pip3] torchaudio==2.6.0.dev20250430 [pip3] torchdata==0.11.0 [pip3] torchtune==0.0.0 [pip3] torchvision==0.22.0.dev20250430 [conda] No relevant packages ``` On CUDA: ```bash Collecting environment information... PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 4.0.0 Libc version: glibc-2.35 Python version: 3.11.11 (main, Dec 11 2024, 16:28:39) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.4.0-196-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.4.131 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA RTX A6000 GPU 1: NVIDIA RTX A6000 GPU 2: NVIDIA RTX A6000 GPU 3: NVIDIA RTX A6000 Nvidia driver version: 550.127.08 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Vendor ID: AuthenticAMD Model name: AMD EPYC 7543 32-Core Processor CPU family: 25 Model: 1 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 Stepping: 1 Frequency boost: enabled CPU max MHz: 2800.0000 CPU min MHz: 1500.0000 BogoMIPS: 5599.84 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca Virtualization: AMD-V L1d cache: 2 MiB (64 instances) L1i cache: 2 MiB (64 instances) L2 cache: 32 MiB (64 instances) L3 cache: 512 MiB (16 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] apollo-torch==1.0.3 [pip3] galore-torch==1.0 [pip3] numpy==2.0.1 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.6.0+cu124 [pip3] torch-optimi==0.2.1 [pip3] torchao==0.9.0 [pip3] torchvision==0.21.0+cu124 [pip3] triton==3.2.0 [conda] No relevant packages ``` cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
3,032,074,389
Mr
Orilwela
closed
[]
1
NONE
### 📚 The doc issue Help ### Suggest a potential alternative/fix _No response_
true
3,032,073,487
FakeTensorUpdater does not trace nodes correctly
ProExpertProg
open
[ "triaged", "oncall: pt2", "module: inductor", "inductor_pattern_match", "vllm-compile" ]
2
NONE
### 🐛 Describe the bug There are two issues in the tracing in `torch._inductor.fx_utils.FakeTensorUpdater`: 1. `auto_functionalized` (and other higher-order op`) nodes don't get re-traced 2. If a node returns a tensor with a different `dtype`, it's still considered the same tensor a lot of the time. It's actually really hard to reproduce the issue, as most of the time tracing just doesn't happen. But later passes might depend on accurate trace information, and sometimes the lack of tracing leads to wrong inputs to custom ops, which can fail tracing (but it's hard to hit that because usually the tracing quits too early). But basically, this happened when manually editing the graph. A `dtype` was changed on an `empty` node, and instead of it's users getting retraced, the fake output tensor was considered unchanged (issue 2). Once I got past that issue by just removing the meta value, tracing did not propagate through the `auto_functionalized` nodes. That left a custom op that was type-sensitive with incorrect inputs. I think the fixes are: 1. `should_process_node` should return `True` if a node is a higher-order op 2. `is_fake_tensor_same` should explicitly compare `dtype`, not just `type(new) == type(old)` ### Versions torch==2.6.0 cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov @zou3519
true
3,032,064,980
[invoke_subgraph] Unpacked operands
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152494 * #152490 * #152383 * #152384 * #152581 * __->__ #152547 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,032,059,090
Remove Conda Instructions
AlannaBurke
open
[ "module: docs", "release notes: releng" ]
1
CONTRIBUTOR
Fixes #149551 Needs input on some of the instructions. cc @svekars @sekyondaMeta
true
3,032,051,955
ci: Switch benchmark dependency to use pip
seemethere
open
[ "topic: not user facing" ]
3
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152843 * __->__ #152545 As an effort to reduce our dependency on conda we should use pip here, also pins all the dependencies based on versions that I took today (04/30/2024), realistically this should probably be in a requirements.txt but I'm trying to limit the scope of this PR since I'm getting it done quickly. Relates to https://github.com/pytorch/pytorch/issues/148340 Signed-off-by: Eli Uriegas <eliuriegas@meta.com>
true
3,032,048,424
Migrate perf_test/test_[gc]pu_speed_mnist.sh from conda to venv
jeanschmidt
closed
[ "topic: not user facing" ]
1
CONTRIBUTOR
Replace conda with venv on: * `.ci/pytorch/perf_test/test_cpu_speed_mnist.sh` * `.ci/pytorch/perf_test/test_gpu_speed_mnist.sh` Fixes #148342
true
3,032,027,010
strict multidimensional slicing
avikchaudhuri
open
[ "fb-exported", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Differential Revision: D73937420 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,032,026,781
[AOTI][CPU] Introduce config.cpp.use_decompose_tanh
hl475
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
7
CONTRIBUTOR
Summary: Previously D70489427 changed tanh impl to `.tanh()`, and this is causing some meta internal workload perf regression. This diff will introduce a config so we can set it based on need. Differential Revision: D73909371 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,032,008,373
Add parameters for monitor
yangw-dev
closed
[ "module: rocm", "Merged", "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
Add log interval and log-data-collect interval to all test yml Add upload step for all test yml files next step: enable perf test with utilization cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
3,031,973,325
[CUDA] Rest peak memory stats before running `test_set_per_process_memory_fraction`
eqy
closed
[ "module: cuda", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
13
COLLABORATOR
Otherwise previous tests can cause `application = int(total_memory * 0.499) - torch.cuda.max_memory_reserved()` to go negative Hopefully abates current flakiness (see also https://github.com/pytorch/pytorch/issues/135115#:~:text=TestCuda.test_set_per_process_memory_fraction) cc @ptrblck @msaroufim @jerryzh168
true