id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
2,869,337,941
torch.sort: Optimize memory usage with (dtype_indices: ScalarType, dynamic_indices_dtype: bool) options
voidbag
open
[ "module: cpu", "triaged", "open source", "release notes: mps", "module: inductor" ]
14
NONE
Fixes #147628 The static dtype of indices was kLong(64bit), consuming exccessive memory. It reduces memory usage, determining the dtype of indices dynamically. The dtype is one of Byte, UInt16, UInt32 and UInt64. - ~This PR makes at::arange support uint16, uint32 and uint64 (`at::arange( uint(16|32|64) )->uint(16|32|64)`~ - ~It also changes existing behavior of at::arange, `at::arange(uint8)->int64` into `at::arange(uint8)->uint8`~ - This PR makes at::linspace support uint16, uint32 and uint64 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,869,324,770
Optimize memory usage of torch.sort significantly, with dynamic dtype indices
voidbag
open
[ "triaged", "enhancement", "module: python frontend" ]
3
NONE
### 🚀 The feature, motivation and pitch I optimized torch.sort to return indices with dynamic dtype, not fixed **64bit** torch.long This proposal can save GPU memory usage significantly. 1.example: Boolean matrix can express graph. `ret = torch.sort(torch.zeros((69878, 10677), dtype=torch.bool, device="cuda:0"))` number of elements: 746,087,406 1. existing torch return value - `ret = torch.sort(torch.zeros((69878, 10677), dtype=torch.bool, device="cuda:0"))` - Peak GPU memory usage: **19,517MiB** (data + cache) - Final GPU memory usage: **6,707MiB** (data) - values: ((69878, 10677), dtype=torch.bool) - indices: ((69878, 10677), dtype=**torch.long**) 2. proposal result: indices: - `ret = torch.sort(torch.zeros((69878, 10677), dtype=torch.bool, device="cuda:0"), dynamic_indices_type=True)` - Peak GPU memory usage: **6,709MiB** (data + cache) - Final GPU memory usage: **2,437MiB** (data) - values: ((69878, 10677), dtype=torch.bool) - indices: ((69878, 10677), dtype=**torch.uint16**) ### Alternatives _No response_ ### Additional context _No response_ cc @albanD
true
2,869,292,323
Enforce full FIPS compliance with hashlib - ruff rule S324 on python 3.9+
Skylion007
closed
[ "good first issue", "module: lint", "triaged", "enhancement", "actionable" ]
0
COLLABORATOR
### 🚀 The feature, motivation and pitch This is to more broadly address the issue here. We need to add a special flag for compliance reasons that the hashlib function is not being used for cryptographic applications. More details can be found here: https://github.com/pytorch/pytorch/issues/147236 . In most builds of Python, this will serve as a noop. We can enforce FIPS compliance o the hashlib this codebase wide pretty easily with ruff rule [S324](https://docs.astral.sh/ruff/rules/hashlib-insecure-hash-function/) We just need to have someone go and manually add usedforsecurity=False to all the hashlib calls in the codebase. The documentation for the rule doesn't mention the usedforsecurity suppression so I added it to the ruff docs so I opened an issue to improve the docs: https://github.com/astral-sh/ruff/issues/16188 Steps to resolve this issue: * Enable S324 in the pyproject.toml for RUFF * Scan the codebase for all flagged issues. Double check they are not in fact being used for a cryptographically secure application. If not add usedforsecurity=False, if so please flag. * Open a PR with the ruff rule enabled, and all the fixes linking back to this issue. ### Alternatives Leave as is. ### Additional context _No response_
true
2,869,258,327
HIP error: invalid device function on ROCm RX 7600XT
JackBinary
closed
[ "module: binaries", "module: rocm", "triaged" ]
5
NONE
### 🐛 Describe the bug #### **Issue Summary** When attempting to perform any GPU compute task using PyTorch with the ROCm/HIP backend, I encounter the following error: ``` RuntimeError: HIP error: invalid device function HIP kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing AMD_SERIALIZE_KERNEL=3 Compile with TORCH_USE_HIP_DSA to enable device-side assertions. ``` This occurs on the first attempt to allocate a tensor on the GPU. #### **Minimal Reproducible Example (PyTorch)** ```python import torch print("PyTorch detects GPU:", torch.cuda.is_available()) device = torch.device("cuda") print("Allocating tensors on GPU...") a = torch.randn((1000, 1000), device=device, dtype=torch.float32) b = torch.randn((1000, 1000), device=device, dtype=torch.float32) print("Running matrix multiplication...") result = torch.matmul(a, b) torch.cuda.synchronize() print("✅ PyTorch HIP execution successful!") ``` This fails immediately when attempting to allocate a tensor on the GPU. #### **Full Stack Trace** ``` PyTorch detects GPU: True Allocating tensors on GPU... Traceback (most recent call last): File "/home/jgarland/test_gpu.py", line 7, in <module> a = torch.randn((1000, 1000), device=device, dtype=torch.float32) RuntimeError: HIP error: invalid device function HIP kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing AMD_SERIALIZE_KERNEL=3 Compile with `TORCH_USE_HIP_DSA` to enable device-side assertions. ``` --- #### **Expected Behavior** PyTorch should correctly allocate and compute tensors on the AMD GPU using the HIP backend. #### **Actual Behavior** - PyTorch detects the GPU (`torch.cuda.is_available()` returns `True`). - The first attempt to allocate a tensor on the GPU results in an **invalid device function** error. --- #### **Comparison with HIP Native Code** The following equivalent HIP C++ program runs without issue, indicating that the GPU and ROCm environment are functioning correctly: ```cpp #include <hip/hip_runtime.h> #include <iostream> #include <vector> #define MATRIX_SIZE 1024 __global__ void matmul(const float* A, const float* B, float* C, int width) { int row = blockIdx.y * blockDim.y + threadIdx.y; int col = blockIdx.x * blockDim.x + threadIdx.x; if (row < width && col < width) { float sum = 0.0f; for (int k = 0; k < width; k++) { sum += A[row * width + k] * B[k * width + col]; } C[row * width + col] = sum; } } int main() { int matrix_size = MATRIX_SIZE * MATRIX_SIZE; int data_size = matrix_size * sizeof(float); float *d_A, *d_B, *d_C; hipMalloc((void**)&d_A, data_size); hipMalloc((void**)&d_B, data_size); hipMalloc((void**)&d_C, data_size); hipLaunchKernelGGL(matmul, dim3(32, 32), dim3(32, 32), 0, 0, d_A, d_B, d_C, MATRIX_SIZE); hipDeviceSynchronize(); std::cout << "✅ HIP matrix multiplication successful!" << std::endl; } ``` --- ### Versions ``` PyTorch version: 2.5.1+rocm6.2 Is debug build: False CUDA used to build PyTorch: N/A ROCM used to build PyTorch: 6.2.41133-dd7f95766 OS: Fedora Linux 41 (Forty One) (x86_64) GCC version: (GCC) 14.2.1 20250110 (Red Hat 14.2.1-7) Clang version: Could not collect CMake version: version 3.30.7 Libc version: glibc-2.40 Python version: 3.10.16 (main, Feb 10 2025, 00:00:00) [GCC 14.2.1 20250110 (Red Hat 14.2.1-7)] (64-bit runtime) Python platform: Linux-6.12.15-200.fc41.x86_64-x86_64-with-glibc2.40 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: AMD Radeon RX 7600 XT (gfx1102) Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: 6.2.41133 MIOpen runtime version: 3.2.0 Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 24 On-line CPU(s) list: 0-23 Vendor ID: AuthenticAMD Model name: AMD Ryzen 9 7900X 12-Core Processor CPU family: 25 Model: 97 Thread(s) per core: 2 Core(s) per socket: 12 Socket(s): 1 Stepping: 2 Frequency boost: enabled CPU(s) scaling MHz: 45% CPU max MHz: 5733.0000 CPU min MHz: 400.0000 BogoMIPS: 9381.75 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid overflow_recov succor smca fsrm flush_l1d amd_lbr_pmc_freeze Virtualization: AMD-V L1d cache: 384 KiB (12 instances) L1i cache: 384 KiB (12 instances) L2 cache: 12 MiB (12 instances) L3 cache: 64 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-23 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.1.2 [pip3] pytorch-triton-rocm==3.1.0 [pip3] torch==2.5.1+rocm6.2 [pip3] torchaudio==2.5.1+rocm6.2 [pip3] torchvision==0.20.1+rocm6.2 [conda] Could not collect ``` cc @seemethere @malfet @osalpekar @atalman @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,869,203,135
aten.grid_sampler_3d.default is missing a c-shim implementation, using proxy executor as fallback
bhack
open
[ "good first issue", "triaged", "oncall: pt2", "module: inductor", "oncall: export", "module: aotinductor" ]
4
CONTRIBUTOR
### 🐛 Describe the bug Do we need any action item here? ### Error logs ```python site-packages/torch/_inductor/ir.py:6638] [0/0] aten.grid_sampler_3d.default is missing a c-shim implementation, using proxy executor as fallback ``` ### Versions nightly cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4 @desertfire @yushangdi @benjaminglass1 @yf225
true
2,869,162,898
[MPS] Rand is broken for 5D+ tensors
andreabosisio
closed
[ "high priority", "triage review", "module: random", "module: mps" ]
2
NONE
### 🐛 Describe the bug While trying to generate different samples with a diffusion model, I noticed the following problem with the `torch.randn` function when using MPS: ```python import torch as th rand_cpu_5d = th.randn((2, 1, 32, 32, 32), device="cpu") print(th.allclose(rand_cpu_5d[0], rand_cpu_5d[1])) # False, as desired (tested multiple times) rand_mps_5d = th.randn((2, 1, 32, 32, 32), device="mps") print(th.allclose(rand_mps_5d[0], rand_mps_5d[1])) # True, not desired (tested multiple times) ``` But, at the same time: ```python rand_cpu_4d = th.randn((2, 32, 32, 32), device="cpu") print(th.allclose(rand_cpu_4d[0], rand_cpu_4d[1])) # False, as desired (tested multiple times) rand_mps_4d = th.randn((2, 32, 32, 32), device="mps") print(th.allclose(rand_mps_4d[0], rand_mps_4d[1])) # False, as desired (tested multiple times) ``` ### Versions Collecting environment information... PyTorch version: 2.5.1 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 15.2 (arm64) GCC version: Could not collect Clang version: 16.0.0 (clang-1600.0.26.6) CMake version: Could not collect Libc version: N/A Python version: 3.10.8 | packaged by conda-forge | (main, Nov 22 2022, 08:25:29) [Clang 14.0.6 ] (64-bit runtime) Python platform: macOS-15.2-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Pro Versions of relevant libraries: [pip3] numpy==2.2.2 [pip3] pytorch3d==0.7.8 [pip3] torch==2.5.1 [pip3] torchaudio==2.5.1 [pip3] torchvision==0.20.1 [conda] numpy 2.2.2 pypi_0 pypi [conda] pytorch 2.5.1 py3.10_0 pytorch [conda] pytorch3d 0.7.8 pypi_0 pypi [conda] torchaudio 2.5.1 py310_cpu pytorch [conda] torchvision 0.20.1 py310_cpu pytorch cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @pbelevich @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
2,869,016,582
torch.export.export creates guards that denies exporting.
JibAxelera
closed
[ "oncall: pt2", "export-triaged", "oncall: export" ]
6
NONE
### 🐛 Describe the bug ### Problem Trying to export a conv neural network using torch.export.export. If the model and the input tensors are on the GPU and I have a batchnorm layer in the model, it creates guards that make exporting fail in any case. ### Standalone code to reproduce : Just run the following python code : ```python import torch from torch.export import Dim class ConvNN(nn.Module): def __init__(self, params): super(ConvNN, self).__init__() self.num_output = 0 self.num_classes = params['num_classes'] self.confidence_threshold = params['confidence_threshold'] self.relu = nn.ReLU() self.conv1 = nn.Conv2d(3,64, kernel_size=3,padding=1, stride=1) self.batch_norm1 = nn.BatchNorm2d((64)) self.conv2 = nn.Conv2d(64,64, kernel_size=3,padding=1, stride=1) self.batch_norm2 = nn.BatchNorm2d((64)) self.maxpool1 = nn.MaxPool2d(kernel_size=2) self.early_exit1 = nn.Linear(16384, self.num_classes) def forward(self, x): x= self.conv1(x) x=self.batch_norm1(x) x= self.relu(x) x= self.conv2(x) x=self.batch_norm2(x) x= self.maxpool1(x) x= self.relu(x) return x, nn.functional.softmax(self.early_exit1(x.clone().view(x.size(0), -1)), dim=1) ###-- Main def main(): x = torch.rand(32,3,32,32).to('cuda') params = {} params['num_classes'] = 10 params['confidence_threshold'] = 0.5 model = ConvNN(params) model.cuda() model.eval() batch = Dim("batch") dynamic_shapes = {"x": {0: batch}} torch.export.export(model, (x,) , dynamic_shapes=dynamic_shapes) if __name__ == '__main__': main() ``` This outputs the following error : ``` assert op == "==", t ^^^^^^^^^^ AssertionError: batch < 2147483647/65536 ``` I believe these number will depend on the kind of GPU you have. Making the batch size bigger than this number does not solve the error as I get: ``` assert op == "==", t ^^^^^^^^^^ AssertionError: 2147483647/65536 <= batch ``` Adding torch dynamo logs I can see : ``` E0221 13:10:09.298000 131711 site-packages/torch/_guards.py:295] [0/0] - Not all values of batch = L['x'].size()[0] in the specified range satisfy the generated guard 65536*L['x'].size()[0] >= 2147483647. E0221 13:10:09.298000 131711 site-packages/torch/_guards.py:295] [0/0] - Not all values of batch = L['x'].size()[0] in the specified range satisfy the generated guard 2 <= L['x'].size()[0] and L['x'].size()[0] <= 65535 ``` ### Additional informations : If I remove the batch norm layer or put my model and input sample on CPU, the error is gone. ### Versions Versions of relevant libraries: [pip3] numpy==2.2.2 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] onnx==1.16.1 [pip3] onnxoptimizer==0.3.13 [pip3] onnxruntime==1.20.1 [pip3] onnxruntime-gpu==1.19.0 [pip3] onnxscript==0.1.0 [pip3] torch==2.6.0 [pip3] torch-mlir==20250127.357 [pip3] torchvision==0.21.0 [pip3] triton==3.2.0 [conda] numpy 2.2.2 pypi_0 pypi [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] torch 2.6.0 pypi_0 pypi [conda] torch-mlir 20250127.357 pypi_0 pypi [conda] torchvision 0.21.0 pypi_0 pypi [conda] triton 3.2.0 pypi_0 pypi cc @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
true
2,869,014,377
Build a storage reader/writer to write checkpoints in HF format
ankitageorge
closed
[ "oncall: distributed", "fb-exported", "Merged", "Reverted", "ciflow/trunk", "topic: new features", "topic: not user facing", "ci-no-td", "oncall: distributed checkpointing" ]
12
CONTRIBUTOR
Title - we want to write checkpoints in HF format with DCP, this diff allows this for the non-distributed use case. Copy of [D68444967](https://www.internalfb.com/diff/D68444967) (https://github.com/pytorch/pytorch/pull/146352). That diff got reverted because of lint errors. The lint error was due to having imports of uninstalled libraries. This was on purpose because we don't want to install safetensors and huggingface, this new diff explicitly ignores this lint so that we don't have the error. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @LucasLLC @MeetVadakkanchery @mhorowitz @pradeepfn @ekr0
true
2,868,996,465
[Inductor] Update `set_driver_to_gpu` code to avoid backend re-initialization with new Triton
anmyachev
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor" ]
7
COLLABORATOR
cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,868,888,671
Enabled force_shape_pad for triton tests in test_kernel_benchmark
iupaikov-amd
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "rocm" ]
18
CONTRIBUTOR
During ROCm runs we naturally have those tests show that padding path will be slower for our archs and the pad_mm chooses to opt out of padding thus failing those tests. Reasoning for this is per my understanding those tests don't check IF the operation should be padded in the first place, but HOW is it padded and if it's done in a correct way. More than that the tests shouldn't really be hardware dependent or have some condition for them. Similar PR for reference: https://github.com/pytorch/pytorch/pull/141768 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,868,774,546
[Triton 3.3] [ROCm] Enabled split_scan support for ROCm builds
iupaikov-amd
closed
[ "module: rocm", "open source", "Merged", "ciflow/trunk", "release notes: rocm", "module: inductor", "ciflow/inductor", "ciflow/rocm" ]
9
CONTRIBUTOR
Fixes issue https://github.com/pytorch/pytorch/issues/133228 Enabled split_scan support for ROCm builds. Must be handled in a non BC breaking way so this functionality is enabled conditionalised on triton version. cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,868,664,454
Document patched podman build for s390x runners
AlekseiNikiforovIBM
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
12
COLLABORATOR
Podman patches from upstream are needed to resolve a couple of issues hit when using it. Document automated build of podman with applied patches fixing those issues.
true
2,868,554,982
[ONNX] GNN model inaccuracy: scatter_reduce need to be fixed
canon-cmre-kamil-jacek
closed
[ "module: onnx", "triaged" ]
11
NONE
### 🐛 Describe the bug A pytorch-geometric model (GAT) produces different results after conversion to ONNX. I would not mind minor differences but depending on input data, these can be very large. Code to reproduce: ``` import logging import onnxruntime import numpy as np import torch from torch_geometric.nn import GAT logger = logging.getLogger(__name__) logger.info("Prepare model") num_features = 23 num_classes = 12 torch_path = "model.txt" onnx_path = "model.onnx" model = GAT(in_channels=num_features, out_channels=num_classes, heads=4, hidden_channels=16, num_layers=1, v2=True, dropout=0.0) best_model_ckpt = torch.load(torch_path, weights_only=False) model.load_state_dict(best_model_ckpt) model.eval() device = torch.device("cpu") model = model.to(device) logger.info("Generating dummy data for ONNX exporter") num_segments = 30 x = torch.randn(num_segments, num_features).to(device) edge_index = torch.randint(num_segments, size=(2, 58)).to(device) logger.info("Running torch model on dummy data") with torch.no_grad(): result_torch = model(x, edge_index).numpy() logger.info("Exporting") opset_version = 16 dynamic_axes = {'x': {0: 'dynamic_input_features'}, 'edge_index': {1: 'dynamic_input_edge_connection'}, 'output': {0: 'dynamic_output_segment'}} torch.onnx.export(model, (x, edge_index), onnx_path, verify=True, output_names=['output'], input_names=['x', 'edge_index'], dynamic_axes=dynamic_axes, opset_version=opset_version, dynamo=True, report=True ) logger.info("Running ONNX inference") ort_session = onnxruntime.InferenceSession(onnx_path, providers=['CPUExecutionProvider']) inputs = {'x': x.numpy(), 'edge_index': edge_index.numpy()} result = ort_session.run(['output'], inputs) result_onnx = torch.Tensor(result[0]).numpy() diff = result_torch - result_onnx logger.warning(f"Results difference: {diff}") logger.warning(f"Max, Min: {np.max(diff)}, {np.min(diff)}") ``` Output: ``` C:\Projects\ia_gnn_coronary_labelling\env\python.exe C:\Projects\ia_gnn_coronary_labelling\onnx_export_issue.py C:\Projects\ia_gnn_coronary_labelling\env\lib\site-packages\onnxscript\converter.py:823: FutureWarning: 'onnxscript.values.Op.param_schemas' is deprecated in version 0.1 and will be removed in the future. Please use '.op_signature' instead. param_schemas = callee.param_schemas() C:\Projects\ia_gnn_coronary_labelling\env\lib\site-packages\onnxscript\converter.py:823: FutureWarning: 'onnxscript.values.OnnxFunction.param_schemas' is deprecated in version 0.1 and will be removed in the future. Please use '.op_signature' instead. param_schemas = callee.param_schemas() C:\Projects\ia_gnn_coronary_labelling\env\lib\site-packages\torch\onnx\_internal\exporter\_compat.py:271: UserWarning: # 'dynamic_axes' is not recommended when dynamo=True, and may lead to 'torch._dynamo.exc.UserError: Constraints violated.' Supply the 'dynamic_shapes' argument instead if export is unsuccessful. warnings.warn( [torch.onnx] Obtain model graph for `GAT(23, 12, num_layers=1)` with `torch.export.export(..., strict=False)`... [torch.onnx] Obtain model graph for `GAT(23, 12, num_layers=1)` with `torch.export.export(..., strict=False)`... ✅ [torch.onnx] Run decomposition... [torch.onnx] Run decomposition... ✅ [torch.onnx] Translate the graph into ONNX... [torch.onnx] Translate the graph into ONNX... ✅ [torch.onnx] Check the ONNX model... [torch.onnx] Check the ONNX model... ✅ [torch.onnx] Execute the model with ONNX Runtime... [torch.onnx] Execute the model with ONNX Runtime... ✅ [torch.onnx] Verify output accuracy... [torch.onnx] Verify output accuracy... ❌ W0221 09:13:06.817510 16848 env\Lib\site-packages\torch\onnx\_internal\exporter\_core.py:1518] Output 'output' has a large absolute difference of 3.925521. W0221 09:13:06.817510 16848 env\Lib\site-packages\torch\onnx\_internal\exporter\_core.py:1525] Output 'output' has a large relative difference of 6.541924. [torch.onnx] Export report has been saved to 'onnx_export_2025-02-21_09-13-05-590746_accuracy.md'. Results difference: [[ 1.1920929e-07 9.5367432e-07 -9.5367432e-07 1.1920929e-07 -3.5762787e-07 -1.9073486e-06 1.9073486e-06 -4.7683716e-07 -2.3841858e-07 2.3841858e-07 2.3841858e-07 0.0000000e+00] [-5.9604645e-07 0.0000000e+00 2.3841858e-07 -5.9604645e-07 0.0000000e+00 0.0000000e+00 4.7683716e-07 0.0000000e+00 0.0000000e+00 0.0000000e+00 -2.3841858e-07 -2.3841858e-07] [ 0.0000000e+00 -7.1525574e-07 3.5762787e-07 -2.3841858e-07 0.0000000e+00 9.5367432e-07 0.0000000e+00 -9.5367432e-07 0.0000000e+00 0.0000000e+00 -1.1920929e-07 -2.3841858e-07] [ 0.0000000e+00 -5.9604645e-08 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1920929e-07 0.0000000e+00 0.0000000e+00 -4.7683716e-07 -2.3841858e-07 0.0000000e+00 2.3841858e-07] [ 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00] [ 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00] [ 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00] [-9.5367432e-07 2.3841858e-07 7.1525574e-07 2.1457672e-06 1.0728836e-06 0.0000000e+00 -9.5367432e-07 9.5367432e-07 -2.3841858e-07 -2.8610229e-06 0.0000000e+00 -9.5367432e-07] [ 1.9073486e-06 8.3446503e-07 -1.1920929e-06 9.5367432e-07 2.3841858e-07 -1.4305115e-06 0.0000000e+00 9.5367432e-07 4.7683716e-07 0.0000000e+00 1.4305115e-06 1.9073486e-06] [ 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 2.3841858e-07 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00] [ 9.5367432e-07 0.0000000e+00 9.5367432e-07 -1.9073486e-06 -3.8146973e-06 9.5367432e-07 1.9073486e-06 -4.7683716e-07 0.0000000e+00 9.5367432e-07 2.3841858e-07 1.0132790e-06] [ 4.7683716e-07 0.0000000e+00 -2.3841858e-07 1.7881393e-07 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 2.3841858e-07 0.0000000e+00 0.0000000e+00 0.0000000e+00] [ 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00] [ 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00] [ 0.0000000e+00 -2.3841858e-07 -2.3841858e-07 -4.7683716e-07 -2.3841858e-07 4.7683716e-07 4.7683716e-07 -8.9406967e-08 -1.7881393e-07 0.0000000e+00 -4.7683716e-07 2.3841858e-07] [ 0.0000000e+00 0.0000000e+00 -4.7683716e-07 3.5762787e-07 -2.3841858e-07 -4.7683716e-07 1.9073486e-06 0.0000000e+00 4.7683716e-07 4.7683716e-07 4.7683716e-07 9.5367432e-07] [ 0.0000000e+00 -1.9073486e-06 4.7683716e-07 1.4305115e-06 2.3841858e-06 0.0000000e+00 -3.8146973e-06 9.5367432e-07 4.7683716e-07 1.9073486e-06 1.7285347e-06 1.4305115e-06] [-1.9073486e-06 -4.7683716e-07 1.4305115e-06 -3.5762787e-07 0.0000000e+00 9.5367432e-07 -1.9073486e-06 4.7683716e-07 -2.3841858e-07 0.0000000e+00 -5.9604645e-07 -7.1525574e-07] [ 2.3841858e-07 -9.5367432e-07 -2.3841858e-07 2.3841858e-07 -5.9604645e-08 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 -4.7683716e-07 4.7683716e-07 7.1525574e-07] [ 2.6105111e+00 1.5927434e-01 -1.8088472e+00 2.3992982e+00 1.2503064e+00 -3.1788063e-01 -5.5680227e-01 -2.1198511e-01 4.1892463e-01 3.6400440e-01 -3.5966778e-01 2.0951438e-01] [ 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00] [-8.5174835e-01 -3.1561234e+00 -2.8051062e+00 -7.7328217e-01 2.6446767e+00 2.5995994e+00 5.1092625e-01 1.3140759e+00 1.5741320e+00 2.0076184e+00 2.7780089e+00 3.9255209e+00] [ 0.0000000e+00 9.5367432e-07 -4.7683716e-07 0.0000000e+00 -1.1920929e-07 -9.5367432e-07 1.1920929e-06 2.3841858e-07 4.7683716e-07 9.5367432e-07 2.3841858e-07 0.0000000e+00] [ 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00] [ 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00] [-9.5367432e-07 0.0000000e+00 0.0000000e+00 5.9604645e-08 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 -2.3841858e-07 -9.5367432e-07] [ 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.1920929e-07 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00] [-4.7683716e-07 9.5367432e-07 0.0000000e+00 -1.1920929e-07 4.7683716e-07 0.0000000e+00 4.7683716e-07 2.3841858e-07 4.7683716e-07 0.0000000e+00 1.1920929e-07 -4.7683716e-07] [ 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00] [-3.3378601e-06 7.1525574e-07 1.0728836e-06 -1.4305115e-06 -2.3841858e-07 0.0000000e+00 0.0000000e+00 -4.7683716e-07 -1.1920929e-07 0.0000000e+00 -9.5367432e-07 -3.8146973e-06]] Max, Min: 3.925520896911621, -3.156123399734497 ``` Report: https://gist.github.com/canon-cmre-kamil-jacek/10739f707815aa2439e55462cd200cc0 Model: [model.txt](https://github.com/user-attachments/files/18904471/model.txt) - without it differences are minimal. ### Versions Collecting environment information... PyTorch version: 2.7.0.dev20250127+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Microsoft Windows 10 Enterprise (10.0.19045 64-bit) GCC version: Could not collect Clang version: 17.0.6 CMake version: version 3.30.5 Libc version: N/A Python version: 3.9.21 (main, Dec 11 2024, 16:35:24) [MSC v.1929 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.19045-SP0 Is CUDA available: True CUDA runtime version: 11.6.55 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA T1200 Laptop GPU Nvidia driver version: 511.23 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Name: Intel(R) Xeon(R) W-11955M CPU @ 2.60GHz Manufacturer: GenuineIntel Family: 179 Architecture: 9 ProcessorType: 3 DeviceID: CPU0 CurrentClockSpeed: 2611 MaxClockSpeed: 2611 L2CacheSize: 10240 L2CacheSpeed: None Revision: None Versions of relevant libraries: [pip3] numpy==2.0.2 [pip3] onnx==1.17.0 [pip3] onnxruntime==1.19.2 [pip3] onnxscript==0.2.0 [pip3] pytorch-lightning==2.5.0.post0 [pip3] torch==2.7.0.dev20250127+cu118 [pip3] torch-geometric==2.6.1 [pip3] torchaudio==2.6.0.dev20250128+cu118 [pip3] torchmetrics==1.6.1 [pip3] torchvision==0.22.0.dev20250128+cu118 [conda] blas 1.0 mkl [conda] mkl 2023.1.0 h6b88ed4_46358 [conda] mkl-service 2.4.0 py39h827c3e9_2 [conda] mkl_fft 1.3.11 py39h827c3e9_0 [conda] mkl_random 1.2.8 py39hc64d2fc_0 [conda] numpy 2.0.2 py39h055cbcc_0 [conda] numpy-base 2.0.2 py39h65a83cf_0 [conda] pytorch-lightning 2.5.0.post0 pypi_0 pypi [conda] torch 2.7.0.dev20250127+cu118 pypi_0 pypi [conda] torch-geometric 2.6.1 pypi_0 pypi [conda] torchaudio 2.6.0.dev20250128+cu118 pypi_0 pypi [conda] torchmetrics 1.6.1 pypi_0 pypi [conda] torchvision 0.22.0.dev20250128+cu118 pypi_0 pypi
true
2,868,504,276
Remove useless options for third-party ONNX build
cyyever
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/periodic" ]
8
COLLABORATOR
Treat ONNX CMake targets properly and remove unneeded options.
true
2,868,486,048
Update merge rules for oneDNN part
EikanWang
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
6
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147615
true
2,868,473,116
[Intel GPU] Enable SDPA on XPU
DDEle
closed
[ "module: cpu", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "keep-going", "ciflow/xpu" ]
20
CONTRIBUTOR
Motivation === This PR is part of the plan of OneDNN Upstreaming, as #114848 [(comment)](https://github.com/pytorch/pytorch/issues/114848#issuecomment-2451553203) stated. The support of SDPA is via the overridable variance on XPU backend. Beside the added `Attention.cpp` file, `Graph.h` is added to hold utils for OneDNN graph including those for kernel/compile graph caching. In addition, a selection of testcases in `test/test_transformers.py` are copied into the new `test/xpu/test_transformers.py` and modified accordingly to provide additional tests beyond `./third_party/torch-xpu-ops/test/xpu/test_ops_xpu.py`. Depends on OneDNN version v3.7 upgrade in #147498 Depends on BUILD_GRAPH switch in #147608 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,868,465,777
torch.nn.AvgPool2d fails with stride >= 2^31 on CUDA
jiren-the-gray
open
[ "module: nn", "module: cuda", "triaged", "module: 64-bit", "module: pooling", "topic: fuzzer" ]
2
NONE
### 🐛 Describe the bug Running `torch.nn.AvgPool2d` with a stride of 2^31 or larger fails on CUDA but works on CPU. [colab](https://colab.research.google.com/drive/1n27_nl_NrOtP0H2qAngBVE2jQcvGi4Pa?usp=sharing) Minimal reproduction: ```python import torch m = torch.nn.AvgPool2d(3, stride=2**31) input = torch.randn(20, 16, 50, 32) out_cpu = m(input) # No error out_gpu = m.cuda()(input.cuda()) # RuntimeError: integer out of range ``` PS: Might be related to https://github.com/pytorch/pytorch/issues/113833 ### Versions Collecting environment information... PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.31.4 Libc version: glibc-2.35 Python version: 3.11.11 (main, Dec 4 2024, 08:55:07) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.1.85+-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.5.82 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Tesla T4 Nvidia driver version: 550.54.15 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.2.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 2 On-line CPU(s) list: 0,1 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) CPU @ 2.00GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 1 Socket(s): 1 Stepping: 3 BogoMIPS: 4000.24 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 32 KiB (1 instance) L1i cache: 32 KiB (1 instance) L2 cache: 1 MiB (1 instance) L3 cache: 38.5 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0,1 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable; SMT Host state unknown Vulnerability Meltdown: Vulnerable Vulnerability Mmio stale data: Vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Vulnerable Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Not affected; BHI: Vulnerable (Syscall hardening enabled) Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] optree==0.14.0 [pip3] torch==2.5.1+cu124 [pip3] torchaudio==2.5.1+cu124 [pip3] torchsummary==1.5.1 [pip3] torchvision==0.20.1+cu124 [pip3] triton==3.1.0 [conda] Could not collect cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki @ptrblck @msaroufim @eqy
true
2,868,465,485
[Intel GPU] Add SDPA implementation on XPU with OneDNN
DDEle
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/xpu" ]
9
CONTRIBUTOR
Add XPU implementation of OneDNN based SDPA operator. Will be integrated and enabled later. Depends on BUILD_GRAPH switch in #147608 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,868,457,345
[Minor] Fix minor mistake in docstring of replace_pattern
xwu99
closed
[ "open source", "Merged", "ciflow/trunk", "release notes: fx", "fx" ]
4
NONE
Fixes #147610 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,868,455,320
Minor mistake in docstring of replace_pattern in torch/fx/subgraph_rewriter.py
xwu99
closed
[ "module: docs", "triaged" ]
0
NONE
def pattern(w1, w2): return torch.cat([w1, w2]).sum() def replacement(w1, w2): return torch.stack([w1, w2]) it should not have extra `sum()` according to the following generated code: def forward(self, x, w1, w2): stack_1 = torch.stack([w1, w2]) sum_1 = stack_1.sum() stack_2 = torch.stack([w1, w2]) sum_2 = stack_2.sum() max_1 = torch.max(sum_1) add_1 = x + max_1 max_2 = torch.max(sum_2) add_2 = add_1 + max_2 return add_2 cc @svekars @brycebortree @sekyondaMeta @AlannaBurke
true
2,868,446,431
Adapt test_misc.py to HPUs
amathewc
closed
[ "triaged", "open source", "topic: not user facing", "module: dynamo" ]
3
CONTRIBUTOR
This PR is related to https://github.com/pytorch/pytorch/pull/145476 . That PR had two files (test_functions.py and test_misc.py) . test_functions was causing CI/rebase/merge issues and hence removed for now. This PR contains only test_misc.py. This is a continuation of https://github.com/pytorch/pytorch/pull/144387 . # MOTIVATION We recently integrated support for Intel Gaudi devices (identified as 'hpu') into the common_device_type framework via the pull request at https://github.com/pytorch/pytorch/pull/126970. This integration allows tests to be automatically instantiated for Gaudi devices upon loading the relevant library. Building on this development, the current pull request extends the utility of these hooks by adapting selected CUDA tests to operate on Gaudi devices. Additionally, we have confirmed that these modifications do not interfere with the existing tests on CUDA devices. Other accelerators can also extend the functionality by adding the device in the devices list. ( For eg: xpu ) # CHANGES Create a separate class for test functions running on CUDA devices Extend the functionality of these tests to include HPUs Use instantiate_device_type_tests with targeted attributes to generate device-specific test instances within the new classes Apply skipIfHPU decorator to bypass tests that are not yet compatible with HPU devices cc: @ankurneog , @EikanWang , @yanboliang , @guangyey cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,868,374,447
[Intel GPU] Enable BUILD_GRAPH for xpu_mkldnn
DDEle
closed
[ "module: mkldnn", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/xpu" ]
4
CONTRIBUTOR
For preparation of OneDNN based XPU SDPA enabling. cc @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal
true
2,868,317,440
Deprecate sm70 for cuda 12.8 binary
tinglvv
closed
[ "triaged", "open source", "Merged", "ciflow/binaries", "ciflow/trunk", "topic: not user facing" ]
9
COLLABORATOR
follow up for https://github.com/pytorch/pytorch/pull/146265/files, dropping sm_70 as well, since "Architecture support for Maxwell, Pascal, and Volta is considered feature-complete and will be frozen in an upcoming release." https://github.com/pytorch/pytorch/issues/145570 cc @ptrblck @atalman @nWEIdia
true
2,868,275,720
[ONNX] aten_pow_scalar failure on dynamo export with dynamic shapes
borisfom
closed
[ "module: onnx", "triaged" ]
13
CONTRIBUTOR
### 🐛 Describe the bug Here, encountered this error when trying to export DiffusionTransformer module. Same module exported fine with no dynamic shapes: ``` Traceback (most recent call last): File "/usr/local/lib/python3.12/dist-packages/torch/onnx/_internal/exporter/_core.py", line 519, in _handle_call_function_node_with_lowering outputs = onnx_function(*onnx_args, **onnx_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/onnxscript/values.py", line 635, in __call__ return self.func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/onnxscript/function_libs/torch_lib/ops/core.py", line 6632, in aten_pow_scalar return op.Pow(op.Cast(self, to=exponent.dtype), exponent) ^^^^^^^^^^^^^^ AttributeError: 'int' object has no attribute 'dtype' ``` Dynamo report is attached. Here are my dynamic shapes : ``` seq_dim = torch.export.Dim("seq_len") # , min=16, max=768) st = torch.export.Dim.STATIC token_dynamic_shapes = { 'a' : {1:seq_dim}, 's' : {1:seq_dim}, 'z' : {1:seq_dim, 2:seq_dim}, 'mask' : {1:seq_dim, 2:st}, 'multiplicity' : None, 'model_cache' : None, } ``` Also, possibly related: 1. onnx.export() made me define keys for all inputs in dynamic shapes dict, even non-tensor ones (see None above). 2. Even though 'mask' input is only 2 dimensional, I was forced to add static Dim for third dimension (2:st) key in its dict, otherwise onnx.export was failing even earlier with this error, trying to access dict entry for key 2: ``` def make_constraints( fake_mode: FakeTensorMode, gm: torch.fx.GraphModule, combined_args: dict[str, Any], dynamic_shapes: Union[dict[str, Any], tuple[Any], list[Any], None], num_lifted_inputs: int, ): .... for i, d in enumerate(node.meta["val"].shape): if isinstance(d, torch.SymInt) and not d.node.expr.is_number: # Look up the range constraint for the symbol corresponding to this shape dimension # and store it indexed by the symbolic expression corresponding to it. # NOTE(avik): Use node._expr instead of node.expr for the lookup here because # we want the symbol, not its replacement, which could be an expression. Maybe # there's a better way to do this, e.g., by (re)computing value ranges for expressions? > dim = shape_spec[i] if shape_spec else None E KeyError: 2 ``` repro is convoluted - hopefully the report would be enough to start ? @justinchuby @xadupre [conversion.md](https://github.com/user-attachments/files/18902915/conversion.md) ### Versions Pytorch nightly
true
2,868,264,783
[Docs] Add `OpDTypes.any_common_cpu_cuda_one`
shink
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
7
CONTRIBUTOR
Fixes #ISSUE_NUMBER
true
2,868,248,550
RuntimeError when running profiler in a loop
HardysJin
open
[ "oncall: profiler" ]
0
NONE
### 🐛 Describe the bug Hi, This bug not always happen, if I use profiler to export chrome trace in a loop, this is likely to happen. Code: ``` import vllm import torch import time def add_requests(llm, num_tokens=4096, batch_size=1, max_out_tokens=8 ): print(f"start inference for batch_size[{batch_size}], num_tokens[{num_tokens}], max_out_tokens[{max_out_tokens}]") words = ['test'] * num_tokens sample_prompt = ' '.join(words) inp_050 = { 'prompt_token_ids': [0] * num_tokens } sampling_params = vllm.SamplingParams( n=1, temperature=0.0, top_p=1.0, ignore_eos=True, max_tokens=max_out_tokens, ) for _ in range(batch_size): if vllm.__version__.startswith('0.5.0'): llm._add_request(inputs=inp_050, params=sampling_params) else: llm._add_request(prompt=sample_prompt, params=sampling_params ) def calculate_latency(llm, num_tokens=4096, batch_size=1, max_out_tokens=8, ): add_requests(llm, num_tokens, batch_size, max_out_tokens) step_times = [] chunk_times = [] while llm.llm_engine.has_unfinished_requests(): st = time.time() step_outputs = llm.llm_engine.step() chunk_times.append(time.time() - st) if all(out.finished for out in step_outputs): step_times.append(chunk_times) chunk_times = [] # torch.cuda.empty_cache() # torch.cuda.reset_peak_memory_stats() # torch.cuda.synchronize() return step_times model = vllm.LLM( model="/nvmedata/model/Qwen2-72B-Instruct", dtype=torch.float16, tensor_parallel_size = 4, trust_remote_code = True, download_dir = None, load_format = 'dummy', # initialize the weights with random values, which is mainly for profiling. gpu_memory_utilization = 0.9, # args.gpu_memory_utilization, enforce_eager = True, max_num_batched_tokens = 4096, max_model_len = 4096, ) input_combo = [(1, 4096), (1, 4095)] for i in range(10): with torch.profiler.profile( activities=[ torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA, ], on_trace_ready=torch.profiler.tensorboard_trace_handler("trace_result"), with_stack=True, ) as prof: for b_size, n_toks in input_combo: with torch.no_grad(): step_times = calculate_latency(model, num_tokens=n_toks, batch_size=b_size, max_out_tokens=1) ``` Error: ``` --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[3], [line 4](vscode-notebook-cell:?execution_count=3&line=4) [2](vscode-notebook-cell:?execution_count=3&line=2) import gc [3](vscode-notebook-cell:?execution_count=3&line=3) for i in range(10): ----> [4](vscode-notebook-cell:?execution_count=3&line=4) with torch.profiler.profile( [5](vscode-notebook-cell:?execution_count=3&line=5) activities=[ [6](vscode-notebook-cell:?execution_count=3&line=6) torch.profiler.ProfilerActivity.CPU, [7](vscode-notebook-cell:?execution_count=3&line=7) torch.profiler.ProfilerActivity.CUDA, [8](vscode-notebook-cell:?execution_count=3&line=8) ], [9](vscode-notebook-cell:?execution_count=3&line=9) on_trace_ready=torch.profiler.tensorboard_trace_handler("trace_result"), [10](vscode-notebook-cell:?execution_count=3&line=10) with_stack=True, [11](vscode-notebook-cell:?execution_count=3&line=11) ) as prof: [12](vscode-notebook-cell:?execution_count=3&line=12) for b_size, n_toks in input_combo: [13](vscode-notebook-cell:?execution_count=3&line=13) with torch.no_grad(): File ~/anaconda3/envs/py310/lib/python3.10/site-packages/torch/profiler/profiler.py:748, in profile.__exit__(self, exc_type, exc_val, exc_tb) [747](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f686172647973227d-0040ssh-002dremote-002b7-002e216-002e52-002e89.vscode-resource.vscode-cdn.net/nvmedata/hardys/git/vidur/~/anaconda3/envs/py310/lib/python3.10/site-packages/torch/profiler/profiler.py:747) def __exit__(self, exc_type, exc_val, exc_tb): --> [748](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f686172647973227d-0040ssh-002dremote-002b7-002e216-002e52-002e89.vscode-resource.vscode-cdn.net/nvmedata/hardys/git/vidur/~/anaconda3/envs/py310/lib/python3.10/site-packages/torch/profiler/profiler.py:748) self.stop() [749](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f686172647973227d-0040ssh-002dremote-002b7-002e216-002e52-002e89.vscode-resource.vscode-cdn.net/nvmedata/hardys/git/vidur/~/anaconda3/envs/py310/lib/python3.10/site-packages/torch/profiler/profiler.py:749) prof.KinetoStepTracker.erase_step_count(PROFILER_STEP_NAME) [750](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f686172647973227d-0040ssh-002dremote-002b7-002e216-002e52-002e89.vscode-resource.vscode-cdn.net/nvmedata/hardys/git/vidur/~/anaconda3/envs/py310/lib/python3.10/site-packages/torch/profiler/profiler.py:750) if self.execution_trace_observer: File ~/anaconda3/envs/py310/lib/python3.10/site-packages/torch/profiler/profiler.py:764, in profile.stop(self) [762](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f686172647973227d-0040ssh-002dremote-002b7-002e216-002e52-002e89.vscode-resource.vscode-cdn.net/nvmedata/hardys/git/vidur/~/anaconda3/envs/py310/lib/python3.10/site-packages/torch/profiler/profiler.py:762) if self.record_steps and self.step_rec_fn: [763](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f686172647973227d-0040ssh-002dremote-002b7-002e216-002e52-002e89.vscode-resource.vscode-cdn.net/nvmedata/hardys/git/vidur/~/anaconda3/envs/py310/lib/python3.10/site-packages/torch/profiler/profiler.py:763) self.step_rec_fn.__exit__(None, None, None) ... --> [359](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f686172647973227d-0040ssh-002dremote-002b7-002e216-002e52-002e89.vscode-resource.vscode-cdn.net/nvmedata/hardys/git/vidur/~/anaconda3/envs/py310/lib/python3.10/site-packages/torch/autograd/profiler.py:359) self.kineto_results = _disable_profiler() [360](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f686172647973227d-0040ssh-002dremote-002b7-002e216-002e52-002e89.vscode-resource.vscode-cdn.net/nvmedata/hardys/git/vidur/~/anaconda3/envs/py310/lib/python3.10/site-packages/torch/autograd/profiler.py:360) t1 = perf_counter_ns() [361](https://vscode-remote+attached-002dcontainer-002b7b22636f6e7461696e65724e616d65223a222f686172647973227d-0040ssh-002dremote-002b7-002e216-002e52-002e89.vscode-resource.vscode-cdn.net/nvmedata/hardys/git/vidur/~/anaconda3/envs/py310/lib/python3.10/site-packages/torch/autograd/profiler.py:361) self._stats.profiler_disable_call_duration_us = int((t1 - t0) / 1000) RuntimeError: !stack.empty() INTERNAL ASSERT FAILED at "../torch/csrc/autograd/profiler_python.cpp":981, please report a bug to PyTorch. Python replay stack is empty. ``` ### Versions Collecting environment information... PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.16 | packaged by conda-forge | (main, Dec 5 2024, 14:16:10) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4080 SUPER GPU 1: NVIDIA GeForce RTX 4080 SUPER Nvidia driver version: 550.120 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.5.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.5.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.5.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.5.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.5.1 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.5.1 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.5.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.5.1 /usr/local/cuda-12.5/targets/x86_64-linux/lib/libcudnn.so.8.9.0 /usr/local/cuda-12.5/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.0 /usr/local/cuda-12.5/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.0 /usr/local/cuda-12.5/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.0 /usr/local/cuda-12.5/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.0 /usr/local/cuda-12.5/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.0 /usr/local/cuda-12.5/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: GenuineIntel Model name: Intel(R) Core(TM) i9-14900KF CPU family: 6 Model: 183 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 1 Stepping: 1 CPU max MHz: 6000.0000 CPU min MHz: 800.0000 BogoMIPS: 6374.40 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect user_shstk avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi vnmi umip pku ospke waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize arch_lbr ibt flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 896 KiB (24 instances) L1i cache: 1.3 MiB (24 instances) L2 cache: 32 MiB (12 instances) L3 cache: 36 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Mitigation; Clear Register File Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] flake8==7.1.2 [pip3] mypy==1.15.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] numpydoc==1.8.0 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.5.1 [pip3] torchaudio==2.5.1 [pip3] torchvision==0.20.1 [pip3] triton==3.1.0 [conda] cuda-cudart-dev_linux-64 12.8.57 h3f2d84a_1 conda-forge [conda] cuda-cudart-static_linux-64 12.8.57 h3f2d84a_1 conda-forge [conda] cuda-cudart_linux-64 12.8.57 h3f2d84a_1 conda-forge [conda] cuda-nvrtc 12.8.61 hbd13f7d_0 conda-forge [conda] libcublas 12.8.3.14 h9ab20c4_0 conda-forge [conda] libcufft 11.3.3.41 hbd13f7d_0 conda-forge [conda] libcurand 10.3.9.55 hbd13f7d_0 conda-forge [conda] libcusolver 11.7.2.55 h9ab20c4_0 conda-forge [conda] libcusparse 12.5.7.53 hbd13f7d_0 conda-forge [conda] libnvjitlink 12.8.61 hbd13f7d_0 conda-forge [conda] mkl 2024.2.2 ha957f24_16 conda-forge [conda] numpy 1.26.4 pypi_0 pypi [conda] numpydoc 1.8.0 pypi_0 pypi [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] torch 2.5.1 pypi_0 pypi [conda] torchaudio 2.5.1 pypi_0 pypi [conda] torchvision 0.20.1 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi cc @robieta @chaekit @guotuofeng @guyang3532 @dzhulgakov @davidberard98 @briancoutinho @sraikund16 @sanrise
true
2,868,226,483
[dtensor][cp] experiment: try e2e cp flex_attention
XilunWu
open
[ "oncall: distributed", "topic: not user facing", "ciflow/inductor" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147603 * #147517 * #147516 * #147515 * #147514 * #145353 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,868,207,478
UnsupportedOperatorError: Exporting the operator 'aten::_make_per_tensor_quantized_tensor ' to ONNX opset version 11
wangqianscu
open
[ "module: onnx", "triaged" ]
3
NONE
### 🐛 Describe the bug When I export the torch model to onnx by torch.onnx.export(...), it raise error: UnsupportedOperatorError: Exporting the operator 'aten::_make_per_tensor_quantized_tensor ' to ONNX opset version 11. So I tried the opset 12, 17 it also not support. Then I try to use custom ops: ``` def make_per(g, x, scale, zp): return g.op('QuantizeLinear', x, scale, zp, dtype_i=torch.onnx.symbolic_helper.cast_pytorch_to_onnx['Byte']) torch.onnx.register_custom_op_symbolic('aten::_make_per_tensor_quantized_tensor', make_per, 11) torch.onnx.export(...) ``` it raised error: "RuntimeError: ArrayRef: invalid index Index = 11; Length = 11". how should I deal with it? ### Versions onnx version: 1.12.0 and 1.14.0 both not worked . torch version: 2.2
true
2,868,164,569
[CI] Reduce the AOT target list to reduce build time
chuanqi129
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/xpu" ]
6
COLLABORATOR
Fixes #ISSUE_NUMBER
true
2,868,150,722
DISABLED test_sdpa_rewriter_14_cuda (__main__.SDPAPatternRewriterCudaDynamicTests)
pytorch-bot[bot]
open
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
1
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_sdpa_rewriter_14_cuda&suite=SDPAPatternRewriterCudaDynamicTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/37581378760). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_sdpa_rewriter_14_cuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_fused_attention.py", line 707, in _test_sdpa_rewriter_14 self._check_common(dot_prod_attention) File "/var/lib/jenkins/pytorch/test/inductor/test_fused_attention.py", line 85, in _check_common self.assertGreaterEqual(counters["inductor"]["fuse_attention"], 1) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 1250, in assertGreaterEqual self.fail(self._formatMessage(msg, standardMsg)) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 675, in fail raise self.failureException(msg) AssertionError: 0 not greater than or equal to 1 To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_fused_attention.py SDPAPatternRewriterCudaDynamicTests.test_sdpa_rewriter_14_cuda This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_fused_attention.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,868,144,188
Fixed abnormal behavior of LazyLinear when using LayzLinear and load_state together
FFFrog
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
15
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147599 Update Points: - Update the logic of ``initialize_parameters`` - Add new testcases The ISSUE Related: https://github.com/pytorch/pytorch/issues/147389
true
2,868,123,392
Turn onnx functions into static
cyyever
closed
[ "oncall: jit", "open source", "Merged", "release notes: jit" ]
6
COLLABORATOR
To avoid exposing ONNX symbols. cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
2,868,111,928
[Dynamo] WeakRefVariable doesn't use the most updated python referent when call_function is executed
yanboliang
open
[ "triaged", "oncall: pt2", "module: dynamo" ]
3
CONTRIBUTOR
### 🐛 Describe the bug Repro: ``` import torch @torch.compile(backend="eager", fullgraph=True) def fn(y): obj = torch.tensor([1.0, 2.0]) weak_ref = weakref.ref(obj) if weak_ref() is None: a = y + 1 else: a = y - 1 del obj if weak_ref() is None: b = y + 1 else: b = y - 1 return a, b y = torch.ones(2, 3) print(fn(y)) ``` Compiled output: ``` (tensor([[0., 0., 0.], [0., 0., 0.]]), tensor([[0., 0., 0.], [0., 0., 0.]])) ``` Eager output: ``` (tensor([[0., 0., 0.], [0., 0., 0.]]), tensor([[2., 2., 2.], [2., 2., 2.]])) ``` I think the root cause is, we should check the original python referent every time when ```WeakRefVariable.call_function``` is executed. ### Versions main cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true
2,868,089,014
The performance of model with TP worse than without TP in CPU
jiqing-feng
closed
[ "oncall: distributed", "triaged" ]
21
NONE
### 🐛 Describe the bug model: meta-llama/Llama-3.1-8B-Instruct input shape: [1, 512] latency is forward latency instance: Intel 4th Gen Xeon SPR (1 numa node for 1 socket) base image: gar-registry.caas.intel.com/pytorch/pytorch-ipex-spr:cpu-device torch version: intel_extension_for_pytorch 2.6.0 torch 2.6.0+cpu CCL need this [PR](https://github.com/intel-innersource/frameworks.ai.pytorch.torch-ccl/pull/231) transformers need this [PR](https://github.com/huggingface/transformers/pull/36299) To build CCL, better with intel oneapi ``` apt-get update && apt-get install -y gpg-agent wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/oneapi-archive-keyring.gpg > /dev/null && echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main" | tee /etc/apt/sources.list.d/oneAPI.list apt-get update apt-get install -y numactl build-essential python3-dev git apt-get install -y intel-basekit source /opt/intel/oneapi/setvars.sh ``` CMD: 2TP: `OMP_NUM_THREADS=56 numactl -C 0-55 -m 0 torchrun --nnodes=2 --node_rank=0 --master_addr="127.0.0.1" --master_port=29500 --nproc-per-node 1 tp_hf.py & OMP_NUM_THREADS=56 numactl -C 56-111 -m 1 torchrun --nnodes=2 --node_rank=1 --master_addr="127.0.0.1" --master_port=29500 --nproc-per-node 1 tp_hf.py & wait` no TP: `OMP_NUM_THREADS=56 numactl -C 0-55 -m 0 python tp_hf.py` ```python import os import torch.distributed as dist from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel import time import torch import torch.profiler import oneccl_bindings_for_pytorch from pyinstrument import Profiler import torch import os import torch.backends.mkldnn import torch.backends.openmp print(f"Using {torch.get_num_threads()} threads (PyTorch)") print(f"OMP_NUM_THREADS={os.getenv('OMP_NUM_THREADS')}") # # Ensure PyTorch respects the OMP setting # torch.set_num_threads(int(os.getenv("OMP_NUM_THREADS", "56"))) # print(f"Now using {torch.get_num_threads()} threads after setting manually") model_id = "meta-llama/Llama-3.1-8B-Instruct" def main(is_tp, rank, world_size) -> None: backend = "ccl" print(is_tp) if is_tp: dist.init_process_group(backend) model_kwargs = dict(torch_dtype=torch.bfloat16) if is_tp: model_kwargs["tp_plan"] = "auto" else: model_kwargs["device_map"] = "cpu" # Retrieve tensor parallel model model = AutoModelForCausalLM.from_pretrained(model_id, **model_kwargs) print(model.dtype) # Prepare input tokens tokenizer = AutoTokenizer.from_pretrained(model_id) prompt = "Can I help" * 200 inputs = tokenizer(prompt, return_tensors="pt", max_length=512).input_ids.to(model.device) print(f"inpu shape is {inputs.shape}") # model = torch.compile(model) # warm-up if is_tp: dist.barrier() for i in range(5): with torch.no_grad(): outputs = model(inputs) if is_tp: dist.barrier() # profiler = Profiler() # profiler.start() # with torch.profiler.profile( # activities=[ # torch.profiler.ProfilerActivity.CPU, # torch.profiler.ProfilerActivity.CUDA, # ], # ) as prof: for i in range(5): with torch.no_grad(): start = time.time() outputs = model(inputs) end = time.time() print(f"time cost {(end-start)*1000} ms") # print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10)) # profiler.stop() # with open(f"profile_tp_{is_tp}_backend_{backend}_rank_{rank}.html", "w") as f: # f.write(profiler.output_html()) count = 0 for name, parameter in model.named_parameters(): if isinstance(parameter.data, torch.distributed.tensor.DTensor): print(f"name: {name}\nparameter: {parameter}") original_shape = parameter.data.shape shape = parameter.data.to_local().shape print(f"paramater local shape is {shape}") print(f"paramater original shape is {original_shape}") count += 1 if count > 2: break print(outputs) if __name__ == "__main__": rank = int(os.environ["RANK"]) if "RANK" in os.environ else 0 world_size = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 is_tp = "RANK" in os.environ main(is_tp, rank, world_size) ``` ``` | tp_size | no | 2 | | speed-up | 1.0x | 0.29x | ``` ### Versions ``` Collecting environment information... PyTorch version: 2.6.0+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 12.3.0-1ubuntu1~22.04) 12.3.0 Clang version: Could not collect CMake version: version 3.31.4 Libc version: glibc-2.35 Python version: 3.10.16 | packaged by conda-forge | (main, Dec 5 2024, 14:16:10) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-4.18.0-553.16.1.el8_10.x86_64-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 224 On-line CPU(s) list: 0-223 Vendor ID: GenuineIntel BIOS Vendor ID: Intel(R) Corporation Model name: Intel(R) Xeon(R) Platinum 8480L BIOS Model name: Intel(R) Xeon(R) Platinum 8480L CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 56 Socket(s): 2 Stepping: 7 CPU max MHz: 3800.0000 CPU min MHz: 800.0000 BogoMIPS: 4000.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities L1d cache: 5.3 MiB (112 instances) L1i cache: 3.5 MiB (112 instances) L2 cache: 224 MiB (112 instances) L3 cache: 210 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-55,112-167 NUMA node1 CPU(s): 56-111,168-223 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] intel_extension_for_pytorch==2.6.0 [pip3] numpy==2.1.3 [pip3] torch==2.6.0+cpu [pip3] torchaudio==2.6.0+cpu [pip3] torchvision==0.21.0+cpu [conda] intel-extension-for-pytorch 2.6.0 pypi_0 pypi [conda] mkl 2025.0.1 pypi_0 pypi [conda] numpy 2.1.3 pypi_0 pypi [conda] torch 2.6.0+cpu pypi_0 pypi [conda] torchaudio 2.6.0+cpu pypi_0 pypi [conda] torchvision 0.21.0+cpu pypi_0 pypi ``` cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,868,089,001
Non-Determinism in Faster R-CNN Despite Setting All Deterministic Flags
mbar0075
open
[ "triaged", "module: determinism" ]
0
NONE
### 🐛 Describe the bug I am encountering a `RuntimeError` when running Faster R-CNN with `torch.use_deterministic_algorithms(True)`. Despite setting all known deterministic flags, the following error persists: ``` RuntimeError: roi_align_backward_kernel does not have a deterministic implementation, but you set 'torch.use_deterministic_algorithms(True)' ``` Here is the code I use to enforce determinism: ```python import torch import os import random import numpy as np seed = 42 torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) # For multi-GPU torch.use_deterministic_algorithms(True) os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' os.environ['CUDNN_DETERMINISTIC'] = '1' torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # Ensures full determinism random.seed(seed) np.random.seed(seed) ``` Despite applying these settings, the script still throws the `roi_align_backward_kernel` error, indicating that the RoI Align backward pass lacks a deterministic implementation. I am using PyTorch 2.5.1+cu124. Are there any known workarounds for enforcing determinism while using Faster R-CNN? ### Versions Non-Determinism in Faster R-CNN Despite Setting All Deterministic Flags Thank you in advance for your help. cc @mruberry @kurtamohler
true
2,868,069,405
[Dtensor] Pass device information in OffsetBasedRNGTracker
ankurneog
open
[ "oncall: distributed", "triaged", "open source", "Stale", "topic: not user facing" ]
8
CONTRIBUTOR
Fixes https://github.com/pytorch/pytorch/issues/147584 ```OffsetBasedRNGTracker``` called without arguments will set default device type to cuda https://github.com/pytorch/pytorch/blob/533b884870acd951e684e0bf551eb76904dec047/torch/distributed/tensor/_random.py#L105 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,868,046,768
Define USE_C10D_XCCL and USE_XCCL in pytorch
Chao1Han
open
[ "open source", "release notes: xpu" ]
23
CONTRIBUTOR
### Motivation: Add `USE_XCCL` and `USE_C10D_XCCL` to enable support of XCCL backend building in stock PyTorch, similar to `USE_NCCL` and `USE_C10D_NCCL`. By default, `USE_XCCL` is OFF and allowed set to ON explicitly.
true
2,868,019,075
Fix log2, PowByNatural printing
isuruf
closed
[ "module: cpu", "open source", "Merged", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: inductor" ]
6
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147592 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,867,991,595
[outdated][experimental] delayed compile
bobrenjc93
closed
[ "ciflow/trunk", "release notes: fx", "fx", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147591 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @chenyang78 @kadeng @chauhang @amjames Differential Revision: [D69996869](https://our.internmc.facebook.com/intern/diff/D69996869)
true
2,867,990,997
[cutlass backend] cache_clear algorithm select cache on fresh inductor cache
henrylhtsang
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
8
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147590 Differential Revision: [D69959917](https://our.internmc.facebook.com/intern/diff/D69959917/) AlgorithmSelectorCache is a cache. The expectation is that when we force disable cache + clear inductor caches, it would be clear. However that is not the case. The reason why this is a problem can be seen by following this repro: What we will see is ``` SingleProcess AUTOTUNE benchmarking takes 6.2202 seconds and 46.0568 seconds precompiling for 36 choices SingleProcess AUTOTUNE benchmarking takes 492.3141 seconds and 0.0010 seconds precompiling for 36 choices ``` The root cause is, while precompiling is skipped, due to it being cache, autotuning isn't skipped since we force disable it. repro: ``` import logging import os os.environ["TORCH_LOGS"] = "+output_code,+benchmarking,+inductor" import torch import torch._inductor.config from torch._inductor.utils import clear_inductor_caches torch._inductor.config.max_autotune = True torch._inductor.config.force_disable_caches = True torch._inductor.config.autotune_num_choices_displayed = None torch._inductor.config.max_autotune_gemm_backends = "CUTLASS" torch._inductor.config.autotune_fallback_to_aten = False torch._inductor.config.cuda.cutlass_instantiation_level = "0001" def main(): M, N, K = 2048, 2048, 2048 dtype = torch.bfloat16 A = torch.randn(M, K, device="cuda", dtype=dtype) B = torch.randn(K, N, device="cuda", dtype=dtype) for _ in range(2): torch._dynamo.reset() clear_inductor_caches() compiled_model = torch.compile(torch.mm, fullgraph=True) _ = compiled_model(A, B) print("done") if __name__ == "__main__": main() ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,867,986,203
check if force_disable_caches before using precompile cache
henrylhtsang
closed
[ "fb-exported", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147589 Differential Revision: [D69966889](https://our.internmc.facebook.com/intern/diff/D69966889/) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,867,982,584
Also support non-contiguous activation for torch._weight_int8pack_mm on CPU
sanchitintel
closed
[ "module: cpu", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "intel" ]
9
COLLABORATOR
### Problem Non-contiguous activation for `torch._weight_int8pack_mm` is unsupported on CPU. So, with int8 WoQ with B16 activation with torchao, for batch-size 2 & above, an assertion is hit regarding non-contiguous A being unsupported. Such an issue was encountered with LLaMA models. ### Solution Also support non-contiguous activation for `torch._weight_int8pack_mm`, so long as it's contiguous on the last dimension & remove the assertion that requires contiguous activation. ### Alternative solutions considered Could modify LLaMA model in transformers library to call `contiguous` after obtaining the final hidden state, just before computing logits with the LM head. However, [it](https://github.com/huggingface/transformers/pull/36078) might cause some regression for other users of that code. Another aspect to this issue is - is latency always lower if we make an activation tensor contiguous before linear or `torch._weight_int8pack_mm` is called on CPU? I guess we need some data-points to analyze this part, although I think the performance should be good enough with this patch, since the first cache lines of rows of A are being explicitly prefetched in the existing code (and it also avoids copy, which a `contiguous` call would do). cc @jgong5 @mingfeima @XiaobingSuper @ashokei @jingxu10
true
2,867,981,679
Add unique kernel name support for user defined triton kernel
muchulee8
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
6
CONTRIBUTOR
Summary: Add unique_user_kernel_names which mimics what unique_kernel_names do, but for user defined Triton kernels. This does rewrite the copied kernel src, and modifies non-Inductor generated code, so we split it out from unique_kernel_names, where we have more control over all namings and generations. Test Plan: Only used for debug purpose Differential Revision: D69966608 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @amjames @chauhang @aakhundov
true
2,867,975,674
[cutlass backend] clear_on_fresh_inductor_cache when generatings cutlass ops
henrylhtsang
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147586 Differential Revision: [D69966732](https://our.internmc.facebook.com/intern/diff/D69966732/) This is needed if we want to generate cutlass ops with different instantiation level in one session. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,867,958,778
[SDPA backward error]Error detected in ScaledDotProductEfficientAttentionBackward0 when input seqlen is very long and with attn_mask
tianyan01
open
[ "triaged", "module: sdpa" ]
0
NONE
### 🐛 Describe the bug Here is the minimal example. When I set the seqlen=53936, and input a attn_mask, it will send me an error "Error detected in ScaledDotProductEfficientAttentionBackward0". But when I set seqlen=46344, or remove the attn_mask, it will run ok. The threshold of the seqlen is 46344, once seqlen > 46344, it will not run ok. ``` import torch import torch.nn.functional as F from torch.nn.attention import SDPBackend, sdpa_kernel torch.autograd.set_detect_anomaly(True) dtype = torch.bfloat16 seqlen = 53936 # seqlen = 46344 # no error query = torch.randn(1, 3, seqlen, 128, device="cuda", dtype=dtype, requires_grad=True) key = torch.randn(1, 3, seqlen, 128, device="cuda", dtype=dtype, requires_grad=True) value = torch.randn(1, 3, seqlen, 128, device="cuda", dtype=dtype, requires_grad=True) condition_sequence_length = 256 latent_sequence_length = seqlen - condition_sequence_length attention_mask = torch.zeros( 1, seqlen, seqlen, device=query.device, dtype=torch.bool ) effective_condition_sequence_length = 255 # suppose effective_sequence_length = latent_sequence_length + effective_condition_sequence_length attention_mask[0, : effective_sequence_length, : effective_sequence_length] = True attention_mask = attention_mask.unsqueeze(1) # attention_mask = None # no error res = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) loss = res.mean() loss.backward() ``` bug meesage: ``` lib/python3.10/site-packages/torch/autograd/graph.py:825: UserWarning: Error detected in ScaledDotProductEfficientAttentionBackward0. .... RuntimeError: CUDA error: an illegal memory access was encountered CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1 Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ``` ### Versions PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.5 LTS (x86_64) GCC version: (GCC) 12.2.0 Clang version: 3.8.0 (tags/RELEASE_380/final) CMake version: Could not collect Libc version: glibc-2.31 Python version: 3.10.16 (main, Dec 11 2024, 16:24:50) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.10.0-2.0.0.1-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 12.4.99 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: CF-NG-HZZ1-O GPU 1: CF-NG-HZZ1-O GPU 2: CF-NG-HZZ1-O GPU 3: CF-NG-HZZ1-O GPU 4: CF-NG-HZZ1-O GPU 5: CF-NG-HZZ1-O GPU 6: CF-NG-HZZ1-O GPU 7: CF-NG-HZZ1-O Nvidia driver version: 535.161.08 cuDNN version: Probably one of the following: /usr/lib/libcudnn.so.8.9.1 /usr/lib/libcudnn_adv_infer.so.8.9.1 /usr/lib/libcudnn_adv_train.so.8.9.1 /usr/lib/libcudnn_cnn_infer.so.8.9.1 /usr/lib/libcudnn_cnn_train.so.8.9.1 /usr/lib/libcudnn_ops_infer.so.8.9.1 /usr/lib/libcudnn_ops_train.so.8.9.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 52 bits physical, 57 bits virtual CPU(s): 192 On-line CPU(s) list: 0-191 Thread(s) per core: 2 Core(s) per socket: 48 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 143 Model name: Intel(R) Xeon(R) Platinum 8468V Stepping: 8 CPU MHz: 2900.000 CPU max MHz: 3800.0000 CPU min MHz: 800.0000 BogoMIPS: 4800.00 Virtualization: VT-x L1d cache: 4.5 MiB L1i cache: 3 MiB L2 cache: 192 MiB L3 cache: 195 MiB NUMA node0 CPU(s): 0-47,96-143 NUMA node1 CPU(s): 48-95,144-191 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hfi avx512vbmi umip pku waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Versions of relevant libraries: [pip3] numpy==2.2.1 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.3.0.75 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.5.1 [pip3] torchao==0.7.0 [pip3] torchvision==0.19.1 [pip3] triton==3.1.0 [conda] numpy 2.2.1 pypi_0 pypi [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.3.0.75 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] torch 2.5.1 pypi_0 pypi [conda] torchao 0.7.0 pypi_0 pypi [conda] torchvision 0.19.1 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi
true
2,867,942,439
[Distributed Tensor]OffsetBasedRNGTracker instantiation always try to create with CUDA backend
dayanandav
closed
[ "oncall: distributed", "triaged", "module: dtensor" ]
2
NONE
### 🐛 Describe the bug OffsetBasedRNGTracker create with always CUDA backend and cause problem when try to create with other backend(HPU) [random._rng_tracker = random.OffsetBasedRNGTracker()](https://github.com/pytorch/pytorch/blob/5ef94ca8162c541bced46ecd4e31dfd9d524ac51/torch/distributed/tensor/_api.py#L1028) this LOC always try to allocate CUDA backend cause problem with other backend StackTrace: E File "/root/repos/pytorch-training-tests/tests/pytorch/v2.6.0/distributed_hpu/tensor/test_random_ops.py", line 390, in test_deterministic_rand_1d E dtensor = fn(size, device_mesh=device_mesh, placements=[Shard(1)]) E File "/usr/local/lib/python3.10/dist-packages/torch/distributed/tensor/_api.py", line 1195, in rand E return _dtensor_init_helper( E File "/usr/local/lib/python3.10/dist-packages/torch/distributed/tensor/_api.py", line 1004, in _dtensor_init_helper E random._rng_tracker = random.OffsetBasedRNGTracker() E File "/usr/local/lib/python3.10/dist-packages/torch/distributed/tensor/_random.py", line 165, in __init__ E super().__init__(device_type) E File "/usr/local/lib/python3.10/dist-packages/torch/distributed/tensor/_random.py", line 109, in __init__ E raise RuntimeError( E RuntimeError: OffsetBasedRNGTracker instantiation requires the presence of CUDA/CUDA-like device ### Versions Collecting environment information... PyTorch version: 2.6.0+hpu_1.21.0-138.git5f97358 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.12 (main, Jan 17 2025, 14:35:34) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-126-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 160 On-line CPU(s) list: 0-159 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8380 CPU @ 2.30GHz CPU family: 6 Model: 106 Thread(s) per core: 2 Core(s) per socket: 40 Socket(s): 2 Stepping: 6 CPU max MHz: 3400.0000 CPU min MHz: 800.0000 BogoMIPS: 4600.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 3.8 MiB (80 instances) L1i cache: 2.5 MiB (80 instances) L2 cache: 100 MiB (80 instances) L3 cache: 120 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-39,80-119 NUMA node1 CPU(s): 40-79,120-159 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] habana-torch-dataloader==1.21.0.138 [pip3] habana-torch-plugin==1.21.0.138 [pip3] numpy==1.23.5 [pip3] pytorch-lightning==2.5.0.post0 [pip3] torch==2.6.0+hpu.1.21.0.138.git5f97358 [pip3] torch_tb_profiler==0.4.0 [pip3] torchaudio==2.6.0+cpu [pip3] torchdata==0.10.1+cpu [pip3] torchmetrics==1.6.1 [pip3] torchtext==0.18.0+cpu [pip3] torchvision==0.21.0+cpu [conda] Could not collect cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @tianyu-l @XilunWu
true
2,867,903,495
[import][inductor] Simplify grid handling
jansel
open
[ "module: rocm", "fb-exported", "Merged", "Reverted", "Stale", "ciflow/trunk", "topic: not user facing", "ciflow/mps", "skip-pr-sanity-checks", "module: inductor", "ciflow/inductor", "ciflow/xpu", "ci-no-td", "ciflow/inductor-rocm" ]
28
CONTRIBUTOR
Before this PR, calling a triton kernel would look like: ```py kernel.run(a, b, xnumel, grid=grid(xnumel), stream=stream0) ``` where the `grid=` was passed as a callable (function closure) arg. This PR removes the grid arg: ```py kernel.run(a, b, xnumel, stream=stream0) ``` instead now the grid computation is included in the kernel launcher, with something like: ```py def launcher(in_ptr0, out_ptr0, xnumel, stream): grid_0 = ((xnumel + 1023) >> 10) grid_1 = 1 grid_2 = 1 runner(grid_0, grid_1, grid_2, stream, function, metadata, None, launch_enter_hook, launch_exit_hook, in_ptr0, out_ptr0, xnumel) ``` This should be faster, since we remove multiple function/dict calls and are able to specialize the grid computation for each `triton.Config`. It also allows us to unify the handling of grids between the Python and C++ wrapper code. Before this, C++ wrapper code didn't actually support dynamic grid sizes and instead burned in a static grid. This unification allows this PR to be a net deletion of code. Note the attached diff contains some minor fbcode-only changes. cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @albanD @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,867,854,134
Refactor typing: Replace Any with ParamSpec for better type safety
devsashidhar
open
[ "oncall: distributed", "triaged", "open source", "Stale", "topic: not user facing" ]
3
NONE
Description This PR refactors function signatures by replacing *args: Any and **kwargs: Any with ParamSpec to improve type safety and preserve argument information. This enhances the ability of static type checkers like mypy to provide better error detection and improves code maintainability. Motivation Many functions in PyTorch currently use Any for variable-length arguments (*args and **kwargs), which erases type information. Using typing_extensions.ParamSpec allows better type inference, reducing accidental type mismatches and improving developer experience. Changes Made Replaced *args: Any, **kwargs: Any with P.args and P.kwargs where applicable. Removed legacy _F = TypeVar("_F", bound=Callable[..., Any]) usage where redundant. Ensured decorators preserve function signatures for better introspection. Issue Reference Fixes #146018 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,867,827,953
cpp libtorch transformerimpl lack some parameter between with python pytorch
mullerhai
open
[ "module: cpp", "module: nn", "triaged" ]
0
NONE
### 🐛 Describe the bug Hi, I find libtorch some layer impl not the same as python pytorch ,like transformer layer https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html in python Transformer CLASStorch.nn.Transformer(d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, activation=<function relu>, custom_encoder=None, custom_decoder=None, layer_norm_eps=1e-05, batch_first=False, norm_first=False, bias=True, device=None, dtype=None) in cpp TransformerImpl not have [layer_norm_eps=1e-05, batch_first=False, norm_first=False, ] ,three parameter not supply ,so how to pass these parameter in cpp thanks ### Versions libtorch latest pytorch 2.6 cc @jbschlosser @albanD @mruberry @walterddr @mikaylagawarecki
true
2,867,798,923
Fix issue #146018: Improve CachingAutotuner handling
devsashidhar
open
[ "triaged", "open source", "Stale", "topic: not user facing" ]
5
NONE
Fixes #146018 ### Summary: This PR addresses issue #146018 where `CachingAutotuner` fails when running on the `meta` device due to size inference issues. The fix ensures that dynamic shape handling works correctly when multiple calls with different tensor sizes are made. ### Changes: - Improved handling of `CachingAutotuner` when using meta tensors. - Ensured shape inference logic doesn't break when multiple calls use different shapes. ### Testing: - Ran tests to verify functionality. - Ensured behavior remains consistent on `cuda` and other devices.
true
2,867,782,426
[Easy][optim] Add LBFGS params optional desc
zeshengzong
closed
[ "open source", "Merged", "ciflow/trunk", "release notes: optim" ]
3
CONTRIBUTOR
[LBFGS docs](https://pytorch.org/docs/stable/generated/torch.optim.LBFGS.html#torch.optim.LBFGS) missing `optional` description for params in compare with other optimizer docs, like [Adam](https://pytorch.org/docs/stable/generated/torch.optim.Adam.html) ## Test Result ### Before ![image](https://github.com/user-attachments/assets/34877490-16b4-4c68-bf6c-405bae563352) ### After ![image](https://github.com/user-attachments/assets/7fba94c8-7091-47b8-bdf1-ca7d779a027f)
true
2,867,740,968
[distributed] Register sharding strategy for aten.amax.default to support float8 rowwise scaling
danielvegamyhre
closed
[ "oncall: distributed", "triaged", "module: dtensor" ]
0
CONTRIBUTOR
**Summary** While debugging an [issue](https://github.com/pytorch/torchtitan/issues/864) in torchtitan related to float8 with rowwise scaling + async TP + torch.compile, I found a different issue: With eager mode + float8 rowwise + vanilla TP, we get a different error: `Operator aten.amax.default does not have a sharding strategy registered.` See root cause analysis [here](https://github.com/pytorch/torchtitan/issues/864#issuecomment-2672953761). TL;DR is we need to register a sharding strategy for `aten.amax.default` in Dtensor. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @tianyu-l @XilunWu
true
2,867,697,013
demo myst_nb with compile tutorial
williamwen42
open
[ "Stale" ]
4
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147577
true
2,867,689,045
[ONNX][demo] Rotary embedding
justinchuby
open
[ "open source", "Stale", "release notes: onnx" ]
4
COLLABORATOR
This change gives users the ability to use onnx ops directly with `torch.ops.onnx.*` and showcases an implementation for RotaryEmbedding. The operators are native pytorch which play well with the ecosystem.
true
2,867,680,043
ncclUnhandledCudaError
youreternity1997
closed
[ "oncall: distributed", "module: c10d" ]
0
NONE
### 🐛 Describe the bug
true
2,867,671,792
[export] don't use unbacked_renamings in export
pianpwk
closed
[ "fb-exported", "Merged", "ciflow/trunk", "fx", "ciflow/inductor", "release notes: export" ]
8
CONTRIBUTOR
Plan: avoid the use of unbacked renamings, and introduce a pass run in `_produce_aten_artifact` that recomputes unbacked bindings. Decided to do this because in we don't serialize unbacked renamings (or any ShapeEnv state), so this used to compose poorly with de/serialization. This hopefully establishes the invariant that the unbacked binding keys are always in sync with the example values (i.e. same indices, and removed if the symbol is replaced / specialized). For de/serialization, we don't stored unbacked bindings, and just rerun the pass. Involved a refactor of compute_unbacked_bindings. cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,867,667,255
export method
avikchaudhuri
closed
[ "fb-exported", "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: export" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147573 The `export` API takes a `nn.Module` and traces its `forward` method. However sometimes it is useful to export different methods of a `nn.Module`, either as a one-off for debugging or as a set of methods that are called in some sequence outside `export` (e.g., `encode` / `decode`). When multiple methods of the same module instance are exported, they should share the same of the common module instance. This PR adds a couple of utils in `torch._export.utils` for this workflow. The `wrap_method` util wraps a method as a `nn.Module` that can then be exported. See included test. We recommend using the same module instance to export multiple methods on that instance, in which case they are guaranteed to share state. On serde, this state sharing is lost, so we provide another util, `sync_state`, to re-sync the state. These utils are meant to be eventually replaced by API-level changes, but for now this can unblock users who need this workflow. In particular, in the future we can accept one or multiple method entrypoints, with their own args / kwargs / dynamic shape specifications, which can create a variant of `ExportedProgram` with multiple graphs that share state; then we can automatically ensure that the state sharing is preserved through serde. Differential Revision: [D69960801](https://our.internmc.facebook.com/intern/diff/D69960801/) @diff-train-skip-merge
true
2,867,661,880
[dynamo] Support reads to global/captured tensors in `nonstrict_trace`-ed function
StrongerXi
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147572 * #147571 * #146950 * #146367 * #146714 As title. Without this patch we get the following error: Tweaking the `allow_non_fake_inputs` flag on tensor mode doesn't quite work for AOTAutograd, which also needs to fake-tensor-propagate the `nonstrict_trace`-ed function, but that's _after_ Dynamo has handled the `nonstrict_trace` processing and put the `flat_apply(...)` node into the graph. So we can't easily to temporarily enable the `allow_non_fake_inputs` flag on current fake mode, when AOTAutograd processes a `flat_apply` node from Dynamo's `nonstrict_trace` handling. And after discussing with zou3519, I decided to add a global `FakeTensorTLS` that contains a `allow_non_fake_inputs_override` flag, and patch the `nonstrict_trace`-ed function to temporarily tweak this flag during its execution. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,867,661,811
[dynamo] Support `nonstrict_trace` on class method
StrongerXi
closed
[ "Merged", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #147572 * __->__ #147571 * #146950 * #146367 * #146714 As title, also see 1. new test `test_nonstrict_trace_on_method` for example. 2. newly added comments for why we need special treatment on methods. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,867,646,768
`view()` + modify-in-place fails silently with DTensor
ad8e
open
[ "oncall: distributed", "triaged", "module: dtensor" ]
4
CONTRIBUTOR
### 🐛 Describe the bug Run command on 2-GPU machine: `torchrun --standalone --nnodes=1 --nproc-per-node=2 my_file.py` ``` import torch import torch.nn as nn from torch.distributed._tensor import DTensor, Shard, Replicate, distribute_tensor, distribute_module, init_device_mesh from torch.distributed._composable.fsdp import fully_shard, MixedPrecisionPolicy import os import torch.distributed as dist import datetime world_size = int(os.getenv("WORLD_SIZE", None)) local_rank = int(os.getenv("LOCAL_RANK", None)) global_rank = int(os.getenv("RANK", None)) print(f"world_size: {world_size}, local_rank: {local_rank}, global_rank: {global_rank}") dist.init_process_group( backend="cuda:nccl", init_method=None, world_size=world_size, rank=global_rank, device_id=torch.device(f"cuda:{local_rank}"), timeout=datetime.timedelta(seconds=120), ) torch.cuda.set_device(local_rank) device_mesh = init_device_mesh("cuda", mesh_shape=(2,), mesh_dim_names=("fsdp",)) placements = (Shard(dim=0),) works = False with torch.device('meta'): model = torch.nn.Linear(9, 8, bias=False) fully_shard(model, mesh=device_mesh) model.to_empty(device=local_rank) nn.init.ones_(model.weight) print("weight", model.weight) with torch.no_grad(): if works: multiplier = distribute_tensor(torch.arange(4, device=f"cuda:{local_rank}", dtype=torch.float32).view(4, 1), device_mesh=device_mesh, placements=placements) model.weight.view(4, 18).mul_(multiplier) else: multiplier = distribute_tensor(torch.arange(3, device=f"cuda:{local_rank}", dtype=torch.float32).view(3, 1), device_mesh=device_mesh, placements=placements) model.weight.view(3, 24).mul_(multiplier) print("weight2", model.weight) ``` Output: ``` world_size: 2, local_rank: 1, global_rank: 1 world_size: 2, local_rank: 0, global_rank: 0 weight weight DTensor(local_tensor=tensor([[1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1.]], device='cuda:0'), device_mesh=DeviceMesh('cuda', [0, 1], mesh_dim_names=('fsdp',)), placements=(Shard(dim=0),)) DTensor(local_tensor=tensor([[1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1.]], device='cuda:1'), device_mesh=DeviceMesh('cuda', [0, 1], mesh_dim_names=('fsdp',)), placements=(Shard(dim=0),)) weight2 weight2 DTensor(local_tensor=tensor([[1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1.]], device='cuda:0'), device_mesh=DeviceMesh('cuda', [0, 1], mesh_dim_names=('fsdp',)), placements=(Shard(dim=0),)) DTensor(local_tensor=tensor([[1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1.]], device='cuda:1'), device_mesh=DeviceMesh('cuda', [0, 1], mesh_dim_names=('fsdp',)), placements=(Shard(dim=0),)) ``` weight2 is all-ones, which is wrong. This signifies that `model.weight.view(3, 24).mul_(multiplier)` did nothing. If you set `works = True`, you'll see it produces numbers 0 to 3: ``` weight2 weight2 DTensor(local_tensor=tensor([[0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1.]], device='cuda:0'), device_mesh=DeviceMesh('cuda', [0, 1], mesh_dim_names=('fsdp',)), placements=(Shard(dim=0),)) DTensor(local_tensor=tensor([[2., 2., 2., 2., 2., 2., 2., 2., 2.], [2., 2., 2., 2., 2., 2., 2., 2., 2.], [3., 3., 3., 3., 3., 3., 3., 3., 3.], [3., 3., 3., 3., 3., 3., 3., 3., 3.]], device='cuda:1'), device_mesh=DeviceMesh('cuda', [0, 1], mesh_dim_names=('fsdp',)), placements=(Shard(dim=0),)) ``` ### Versions ``` PyTorch version: 2.6.0 Is debug build: False CUDA used to build PyTorch: 12.8 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.4 Libc version: glibc-2.35 Python version: 3.10.12 (main, Jan 17 2025, 14:35:34) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.5.13-650-3434-22042-coreweave-1-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.8.61 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3 GPU 1: NVIDIA H100 80GB HBM3 Nvidia driver version: 535.216.01 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.7.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8462Y+ CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 Stepping: 8 CPU max MHz: 4100.0000 CPU min MHz: 800.0000 BogoMIPS: 5600.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hfi vnmi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr ibt amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 3 MiB (64 instances) L1i cache: 2 MiB (64 instances) L2 cache: 128 MiB (64 instances) L3 cache: 120 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103,105,107,109,111,113,115,117,119,121,123,125,127 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] clip-anytorch==2.6.0 [pip3] dctorch==0.1.2 [pip3] DISTS-pytorch==0.1 [pip3] gpytorch==1.14 [pip3] lovely-numpy==0.2.13 [pip3] mypy-extensions==1.0.0 [pip3] natten==0.17.4+torch260cu128 [pip3] numpy==1.24.4 [pip3] torch==2.6.0 [pip3] torchaudio==2.6.0 [pip3] torchdiffeq==0.2.5 [pip3] torchsde==0.2.6 [pip3] torchvision==0.21.0 [pip3] triton==3.2.0+git35c6c7c6 [pip3] welford-torch==0.2.5 [conda] Could not collect ``` cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @tianyu-l @XilunWu
true
2,867,636,366
constexpr all the things in irange.h
swolchok
closed
[ "fb-exported", "ciflow/trunk", "topic: not user facing" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147569 I got complaints while irangeifying some files in ExecuTorch that irange could not be used in a constexpr function. This made the complaints go away. I added a constexpr function in irange_test that used to fail to build with `error: variable of non-literal type 'iterator' (aka 'integer_iterator<int, true>') cannot be defined in a constexpr function before C++23` and now builds fine. Differential Revision: [D69959614](https://our.internmc.facebook.com/intern/diff/D69959614/)
true
2,867,626,074
`copy_()` fails with HSDP in FSDP2
ad8e
open
[ "oncall: distributed", "triaged", "module: fsdp", "module: dtensor" ]
4
CONTRIBUTOR
### 🐛 Describe the bug Run on a 2-GPU machine: `torchrun --standalone --nnodes=1 --nproc-per-node=2 this_file.py` ``` import torch from torch.distributed._tensor import DTensor, Shard, Replicate, distribute_tensor, distribute_module, init_device_mesh from torch.distributed._composable.fsdp import fully_shard, MixedPrecisionPolicy import os import torch.distributed as dist import datetime world_size = int(os.getenv("WORLD_SIZE", None)) local_rank = int(os.getenv("LOCAL_RANK", None)) global_rank = int(os.getenv("RANK", None)) print(f"world_size: {world_size}, local_rank: {local_rank}, global_rank: {global_rank}") dist.init_process_group( backend="cuda:nccl", init_method=None, world_size=world_size, rank=global_rank, device_id=torch.device(f"cuda:{local_rank}"), timeout=datetime.timedelta(seconds=120), ) torch.cuda.set_device(local_rank) # this crashes device_mesh = init_device_mesh("cuda", mesh_shape=(1, 2), mesh_dim_names=("dp", "fsdp")) placements = (Replicate(), Shard(dim=0)) # this works # device_mesh = init_device_mesh("cuda", mesh_shape=(2,), mesh_dim_names=("fsdp",)) # placements = (Shard(dim=0),) @torch.no_grad() def init_broadcast(tensor): full_tensor = torch.zeros(tensor.shape, dtype=tensor.dtype, device=tensor.device) tensor.copy_(distribute_tensor(full_tensor, device_mesh=tensor.device_mesh, placements=tensor.placements)) with torch.device('meta'): model = torch.nn.Linear(8, 8, bias=False) fully_shard(model, mesh=device_mesh) model.to_empty(device=local_rank) init_broadcast(model.weight) out = model(torch.randn(8, 8, device=f"cuda:{local_rank}")) print(f"out {global_rank} {out}") ``` Output: ``` [kevin-h100-0:55567:0:55567] Caught signal 11 (Segmentation fault: address not mapped to object at address 0x78b35) [kevin-h100-0:55568:0:55568] Caught signal 11 (Segmentation fault: address not mapped to object at address 0x78b35) ==== backtrace (tid: 55567) ==== 0 0x0000000000042520 __sigaction() ???:0 1 0x000000000005f530 pncclGetUniqueId() ???:0 2 0x000000000005b385 pncclRedOpDestroy() ???:0 3 0x0000000000056e27 pncclResetDebugInit() ???:0 4 0x000000000004b0e7 pncclBroadcast() ???:0 5 0x000000000004b6bd pncclBcast() ???:0 6 0x000000005f4a9f36 c10d::ProcessGroupNCCL::broadcast() ???:0 7 0x0000000007bde936 c10d::ops::(anonymous namespace)::broadcast_CUDA() Ops.cpp:0 8 0x0000000007bf2986 c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoRuntimeFunctor_<std::tuple<std::vector<at::Tensor, std::allocator<at::Tensor> >, c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> > > (*)(c10::ArrayRef<at::Tensor>, c10::intrusive_ptr<c10d::ProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::ProcessGroup> > const&, long, long, bool, long), std::tuple<std::vector<at::Tensor, std::allocator<at::Tensor> >, c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> > >, c10::guts::typelist::typelist<c10::ArrayRef<at::Tensor>, c10::intrusive_ptr<c10d::ProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::ProcessGroup> > const&, long, long, bool, long> >, false>::call() Ops.cpp:0 9 0x0000000007150286 torch::autograd::basicAutogradNotImplementedFallbackImpl() autograd_not_implemented_fallback.cpp:0 10 0x0000000007bfefbc c10::impl::BoxedKernelWrapper<std::tuple<std::vector<at::Tensor, std::allocator<at::Tensor> >, c10::intrusive_ptr<c10d::Work, c10::detail::intrusive_target_default_null_type<c10d::Work> > > (c10::ArrayRef<at::Tensor>, c10::intrusive_ptr<c10d::ProcessGroup, c10::detail::intrusive_target_default_null_type<c10d::ProcessGroup> > const&, long, long, bool, long), void>::call() ProcessGroup.cpp:0 11 0x0000000007c10de7 c10d::ProcessGroup::broadcast() ProcessGroup.cpp:0 ... ``` Fails in 2.6, succeeds in 2.5.1. ### Versions ``` PyTorch version: 2.6.0 Is debug build: False CUDA used to build PyTorch: 12.8 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.4 Libc version: glibc-2.35 Python version: 3.10.12 (main, Jan 17 2025, 14:35:34) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.5.13-650-3434-22042-coreweave-1-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.8.61 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3 GPU 1: NVIDIA H100 80GB HBM3 Nvidia driver version: 535.216.01 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.7.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8462Y+ CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 Stepping: 8 CPU max MHz: 4100.0000 CPU min MHz: 800.0000 BogoMIPS: 5600.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hfi vnmi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr ibt amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 3 MiB (64 instances) L1i cache: 2 MiB (64 instances) L2 cache: 128 MiB (64 instances) L3 cache: 120 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103,105,107,109,111,113,115,117,119,121,123,125,127 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] clip-anytorch==2.6.0 [pip3] dctorch==0.1.2 [pip3] DISTS-pytorch==0.1 [pip3] gpytorch==1.14 [pip3] lovely-numpy==0.2.13 [pip3] mypy-extensions==1.0.0 [pip3] natten==0.17.4+torch260cu128 [pip3] numpy==1.24.4 [pip3] torch==2.6.0 [pip3] torchaudio==2.6.0 [pip3] torchdiffeq==0.2.5 [pip3] torchsde==0.2.6 [pip3] torchvision==0.21.0 [pip3] triton==3.2.0+git35c6c7c6 [pip3] welford-torch==0.2.5 [conda] Could not collect ``` cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @zhaojuanmao @mrshenli @rohan-varma @chauhang @tianyu-l @XilunWu
true
2,867,624,771
[cond] support mismatched output in inductor
ydwu4
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147567 In this PR, we extract `codegen_unbacked_symbol_defs` of FallbackKernel out as a `codegen_unbacked_symbol_defs_for_outputs` method in wrapper. With it, HOPs can support the case where the subgraph returns a tensor with unbacked symints. This PR only do it for cond, we'll have follow up PRs for others (e.g. while_loop) as well. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,867,590,155
Add support for non functional collectives under FakeTensorMode and fake_pg for memory tracking
sanketpurandare
closed
[ "oncall: distributed", "triaged", "open source", "Merged", "release notes: distributed (c10d)" ]
5
CONTRIBUTOR
This PR adds support for non-functional collectives under `FakeTensorMode` and `fake_pg`. It helps eliminate the patching of collectives for memory and runtime estimation. It also modifies the `ModTracker` to enable the post-backward hook call for modules whose inputs don't require gradients but parameters do. For the memory tracking, we now enable tracking DTensor dispatcher for custom dispatch functions like `entropy_loss`. Dispatcher is only enabled for the memory tracking part and disabled as soon as it is done. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @weifengpy
true
2,867,589,930
[dynamo][checkpoint] non-reentrant checkpoint + ambient saved tensor hooks is silently incorrect
xmfan
open
[ "module: activation checkpointing", "triaged", "oncall: pt2", "module: dynamo", "module: higher order operators", "module: pt2-dispatcher" ]
0
MEMBER
### 🐛 Describe the bug ```python # test/test_autograd.py:test_save_on_cpu_and_checkpoint a = torch.randn(2, 2, requires_grad=True) with torch.autograd.graph.save_on_cpu(): h = a.pow(2) h = checkpoint(lambda x: x.pow(2).pow(2), h, use_reentrant=False) # h = checkpoint(torch.compile(lambda x: x.pow(2).pow(2), backend="aot_eager"), h, use_reentrant=False) c = h.pow(2) c.sum().backward() c_grad = a.grad.clone() a.grad.zero_() ``` adding some logging to the involved pack/unpack hooks: ``` Eager Compile pack_to_cpu pack_to_cpu pack_to_cpu pack_to_cpu pack_to_cpu pack_to_cpu cp pack hook cp pack hook cp pack hook pack_to_cpu pack_to_cpu unpack_from_cpu unpack_from_cpu cp unpack hook cp unpack hook unpack_from_cpu unpack_from_cpu unpack_from_cpu unpack_from_cpu unpack_from_cpu cp unpack hook unpack_from_cpu unpack_from_cpu ``` ### Versions main cc @soulitzer @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames @zou3519 @ydwu4 @bdhirsh
true
2,867,527,259
[Inductor][NFC] Remove unused functions from `compile_tasks.py`
anmyachev
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor" ]
11
COLLABORATOR
cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,867,507,261
torch.distributed.elastic.multiprocessing.start_process description does not reflect API
ntw-au
open
[ "oncall: distributed", "triaged", "module: elastic" ]
1
NONE
### 📚 The doc issue The `tee` parameter to `torch.distributed.elastic.multiprocessing.start_process()` was removed in #120691 and released in PyTorch 2.3.0. However, the [2.3 documentation](https://pytorch.org/docs/2.3/elastic/multiprocessing.html#torch.distributed.elastic.multiprocessing.start_processes) (and subsequent versions) still refers to the `tee` parameter in the description on the web page and function documentation in code. This outdated documentation still exists in the latest stable documentation and `HEAD`. ### Suggest a potential alternative/fix Remove references to `tee` in PyTorch 2.3+ and replace with modern API usage, which presumably is to use the `logs_specs` parameter. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @dzhulgakov
true
2,867,485,736
[dynamo] Save/restore system random state more carefully [attempt 3]
williamwen42
open
[ "module: dynamo", "ciflow/inductor" ]
3
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147562 Attempt 3 at https://github.com/pytorch/pytorch/issues/145329 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,867,471,025
[partitioner] always ban compiler-driven recompute of collectives by default
bdhirsh
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: distributed (miscellaneous)" ]
6
CONTRIBUTOR
This should fix the hang in https://fb.workplace.com/groups/1075192433118967/permalink/1603268720311333/ The argument here is that: (1) in general, it is not safe for the partitioner to sometimes choose to recompute collectives in the backward. Why? If we are running a distributed job, where many ranks are compiling at the same time, we need every rank to make a consistent decision about which collectives are recomputed for backward. If we let each compiler instance make its own choice without any cross-rank communication, they can make different choices and cause NCCL hangs (see the link above) (2) later on, we'll want an `spmd_mode` flag that causes the compiler to issue collectives and communicate info across ranks. Once we have such a config, then turning it on should make it safe for the partitioner to potentially choose to recompute collectives (and agree on the binary "recompute-or-save" choice across all ranks) (3) even without an `spmd_mode`, users can override this choice by using `torch.utils.checkpoint()` in their user code. User checkpointing generally always overrides the partitioner, and this should be safe because we expect the user to apply checkpointing consistently across ranks Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #133044 * #148922 * __->__ #147561 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,867,465,431
Fix import of getArtifactLogger for ir_pre_fusion and ir_post_fusion
dulinriley
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
5
CONTRIBUTOR
Fixes #147002 There was an issue with the previous PR https://github.com/pytorch/pytorch/pull/147248 that didn't show up in CI, where a logging import was not complete in torch/_inductor/debug.py before importing it. This only happened if someone directly imported the file without doing any other imports before. Also set to off_by_default by request to reduce log spew. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,867,460,817
[inductor][subgraph] Plumbing to get ShapeAsConstantBuffer from subgraph to main graph output
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #139325 * __->__ #147559 I am unable to create a test case that fails without the next PR. The idea is to have a symint which is returned by the inner subgraph and then returned by the forward graph after partitioning. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,867,425,685
[export] Remove report from draft-export output
angelayi
closed
[ "fb-exported", "Merged", "ciflow/trunk", "release notes: export" ]
6
CONTRIBUTOR
Summary: This matches the export API. To print the report, people can just do `print(ep._report)`. This information is also displayed in the terminal after the draft_export call. Test Plan: CI Reviewed By: SherlockNoMad Differential Revision: D69689154
true
2,867,414,339
use statically_known_true instead of guard_size_oblivious in pattern matcher
bobrenjc93
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
14
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147557 We shouldn't add guards here. Use statically_known_true instead. Internal xref: https://fb.workplace.com/groups/1075192433118967/?multi_permalinks=1609560723015466&comment_id=1610040026300869&notif_id=1740082892544333&notif_t=work_feedback_reaction_generic&ref=notif Differential Revision: [D69950122](https://our.internmc.facebook.com/intern/diff/D69950122/) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,867,371,825
[caffe2] Ignore compiler option when building using clang
Nicoshev
closed
[ "module: cpu", "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "merging" ]
10
CONTRIBUTOR
Summary: Skip adding unrecognized option optimize("-fno-tree-loop-vectorize") when building using clang This piece of code began to be compiled after armv9a has been set as default compilation profile Test Plan: buck2 run mode/opt -c python.package_style=inplace -c fbcode.enable_gpu_sections=true -c fbcode.platform010_cuda_version=12 lego/scripts:lego_cli -- run-locally --model_entity_id ${MODEL} --config_version ${CONFIG_VERSION} --disable_generate_new_checkpoint --checkpoint_version 0 --publish_context OFFLINE_PUBLISH --lego_pipeline aiplatform.modelstore.model_generation.lego.lego_pipeline_builder.gmpp_lego_pipeline --gmpp_config '{"gmpp_pipeline_descriptor": "aiplatform.modelstore.model_generation.v1.ads_pipelines.aimp_pyper_pipeline.model_generation_pipeline", "worker_process_number":12, "worker_thread_per_process_number": 6, "use_work_assignment": true}' 2>&1 | tee aimp_697790515.log Reviewed By: andrewjcg Differential Revision: D69947027 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,867,360,966
[codemod] Fix unused-value issue in caffe2/aten/src/ATen/cuda/detail/CUDAHooks.cpp +4
r-barnes
closed
[ "oncall: distributed", "fb-exported", "Merged", "ciflow/trunk", "release notes: cpp", "topic: improvements", "topic: not user facing" ]
13
CONTRIBUTOR
Summary: LLVM has a warning `-Wunused-value` which we treat as an error because it's so often diagnostic of a code issue. Unused values often indicate a programming mistake, but can also just be unnecessary cruft that harms readability and performance. For questions/comments, contact r-barnes. - If you approve of this diff, please use the "Accept & Ship" button :-) Test Plan: Sandcastle Differential Revision: D69945678 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,867,347,134
[cutlass backend] Fix standalone runner test after swizzle became a runtime parameter
henrylhtsang
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147554 Differential Revision: [D69945114](https://our.internmc.facebook.com/intern/diff/D69945114/) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,867,337,196
ROCm MX-FP8 Gemm
petrex
open
[ "module: rocm", "module: mkldnn", "open source" ]
3
CONTRIBUTOR
TLDR: MX-FP8 matrix multiplications through hipblaslt (require AMD gfx950 && ROCm 6.5+) This pull request introduces several changes to enhance support for the MX format on ROCm, particularly for the gfx950 device. Key changes include adding validation for matrix dimensions and setting block sizes for the MX format, as well as updating the scaling logic to accommodate new requirements. ### Enhancements for MX format on ROCm: * [`aten/src/ATen/cuda/CUDABlas.cpp`](diffhunk://#diff-74fcb26047c1df4024105d36ce22a36b77cf8cc93c28631d743e639b3d6066aeR1552-R1569): Added validation for matrix dimensions and set block sizes for MX format when using ROCm version 6.5 or later on gfx950 devices. [[1]](diffhunk://#diff-74fcb26047c1df4024105d36ce22a36b77cf8cc93c28631d743e639b3d6066aeR1552-R1569) [[2]](diffhunk://#diff-74fcb26047c1df4024105d36ce22a36b77cf8cc93c28631d743e639b3d6066aeR1606-R1617) * [`aten/src/ATen/cuda/tunable/GemmHipblaslt.h`](diffhunk://#diff-bfa1a3b5d4bef1892bf50338775f3b0fd8cd31fc1868148f3968b98aefb68e3fL512-R530): Included validation and block size settings for MX format in the `HipblasltGemmOp` class. * [`aten/src/ATen/native/cuda/Blas.cpp`](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abL1210-R1260): Added validation for MX format requirements and updated scaling logic for block-wise scaling on gfx950 devices. [[1]](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abL1210-R1260) [[2]](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abR1403-R1423) ### Refactoring and utility functions: * [`aten/src/ATen/cuda/tunable/GemmMxUtils.h`](diffhunk://#diff-5e7883d306b6944d1f413707847c4a7d599f77f608e7f621e1f45ec0a4897d35R1-R37): Introduced helper functions `IsGfx950Device` and `ValidateMXFormatRequirements` to cache device properties and validate MX format requirements. * [`aten/src/ATen/native/cuda/Blas.cpp`](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abR1096-R1112): Added a helper function `IsGfx950Device` to cache device properties and updated the `_scaled_mm_out_cuda` function to include MX format validation. [[1]](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abR1096-R1112) [[2]](diffhunk://#diff-e8a569efee1e650172f120a0fdcda024fe3e4703a4ee3336425c8f685af6b3abR1339-R1344) ### Other changes: * [`torch/testing/_internal/common_cuda.py`](diffhunk://#diff-fe348e24069d43bc7c6913174b038fcc5880a3281bdc0e8e217cf210bd0935e5L105-R112): Updated platform support check for MX GEMM to include gfx950 devices on ROCm. * [`torch/utils/hipify/cuda_to_hip_mappings.py`](diffhunk://#diff-85bd10d67a85149584e7d7a8cba533241f7ad14450e5d54ffec23da34032429aR7325-R7327): Added mappings for new MX format attributes and scaling modes. cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal
true
2,867,329,276
Fix sympy float priting
isuruf
closed
[ "module: cpu", "open source", "Merged", "ciflow/trunk", "module: dynamic shapes", "module: inductor", "ciflow/inductor", "release notes: inductor" ]
6
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147552 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @ezyang @penguinwu @bobrenjc93 @voznesenskym @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov Fixes https://github.com/pytorch/pytorch/pull/147261
true
2,867,308,530
FlexAttention compiled has illegal memory access or device-side assert even though all tensors are contiguous
leijurv
open
[ "triaged", "oncall: pt2", "module: higher order operators", "module: pt2-dispatcher", "module: flex attention" ]
19
NONE
### 🐛 Describe the bug ```python import torch import torch.nn.attention.flex_attention flex_compiled = torch.compile(torch.nn.attention.flex_attention.flex_attention) torch.set_default_device("cuda") print(torch.__version__) if False: # these params trigger device-side assert: BATCH = 64 HEADS = 64 SEQ_LEN = 64 D_HEAD = 64 BAND = 64 else: # these params trigger illegal memory access: BATCH = 64 HEADS = 64 SEQ_LEN = 256 D_HEAD = 64 BAND = 64 Q = torch.randn((BATCH, HEADS, SEQ_LEN, D_HEAD), requires_grad=True) K = torch.randn((BATCH, HEADS, SEQ_LEN, D_HEAD), requires_grad=True) V = torch.randn((BATCH, HEADS, SEQ_LEN, D_HEAD), requires_grad=True) rel_bias = torch.randn((BATCH, HEADS, SEQ_LEN, BAND), requires_grad=True) def score_mod(score, b, h, q_idx, kv_idx): return score + rel_bias[b, h, q_idx, q_idx - kv_idx] def local_mask(b, h, q_idx, kv_idx): causal_mask = q_idx >= kv_idx window_mask = q_idx - kv_idx < BAND return causal_mask & window_mask flex_compiled(Q, K, V, score_mod=score_mod, block_mask=torch.nn.attention.flex_attention.create_block_mask( local_mask, B=BATCH, H=HEADS, Q_LEN=SEQ_LEN, KV_LEN=SEQ_LEN ), ) ``` Run with `CUDA_LAUNCH_BLOCKING=1` ``` 2.7.0.dev20250220+cu124 Traceback (most recent call last): File "/home/ubuntu/repro2.py", line 35, in <module> flex_compiled(Q, K, V, score_mod=score_mod, File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 585, in _fn return fn(*args, **kwargs) File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/nn/attention/flex_attention.py", line 1161, in flex_attention def flex_attention( File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 764, in _fn return fn(*args, **kwargs) File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1199, in forward return compiled_fn(full_args) File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 312, in runtime_wrapper all_outs = call_func_at_runtime_with_args( File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/utils.py", line 126, in call_func_at_runtime_with_args out = normalize_as_list(f(args)) File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/utils.py", line 100, in g return f(*args) File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/autograd/function.py", line 575, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 1847, in forward fw_outs = call_func_at_runtime_with_args( File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/utils.py", line 126, in call_func_at_runtime_with_args out = normalize_as_list(f(args)) File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 492, in wrapper return compiled_fn(runtime_args) File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 686, in inner_fn outs = compiled_fn(args) File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_inductor/output_code.py", line 460, in __call__ return self.current_callable(inputs) File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_inductor/utils.py", line 2348, in run return model(new_inputs) File "/tmp/torchinductor_ubuntu/hl/chlfd7hdtv2xyfko4hkkkgsy232itg4iclcanvyruwr6r2ortqxu.py", line 548, in call triton_tem_fused_0.run(primals_1, primals_2, primals_3, buf0, primals_5, primals_4, primals_7, primals_8, primals_6, buf1, grid=torch._inductor.kernel.flex_attention.flex_attention_grid(64, 64, 256, 64, meta0), stream=stream0) File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 956, in run return launcher( File "<string>", line 6, in launcher File "/home/ubuntu/.local/lib/python3.10/site-packages/triton/backends/nvidia/driver.py", line 444, in __call__ self.launch(*args, **kwargs) RuntimeError: Triton Error [CUDA]: an illegal memory access was encountered ``` If I add extra padding to either side of `rel_bias`, like this: `rel_bias = torch.randn((BATCH+2, HEADS, SEQ_LEN, BAND), requires_grad=True)[1:-1]`, it "fixes" the illegal memory access case, but not the device-side assert case. Additionally, even with that `rel_bias` padding workaround, these parameters cause the illegal memory access to occur now in the backward pass (just add `.sum().backward()`): ``` BATCH = 128 HEADS = 6 SEQ_LEN = 128 D_HEAD = 16 BAND = 16 ``` <details><summary>Backward pass log</summary> ``` 2.7.0.dev20250220+cu124 Traceback (most recent call last): File "/home/ubuntu/repro2.py", line 45, in <module> ).sum().backward() File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_tensor.py", line 639, in backward return handle_torch_function( File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/overrides.py", line 1721, in handle_torch_function result = mode.__torch_function__(public_api, types, args, kwargs) File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/utils/_device.py", line 104, in __torch_function__ return func(*args, **kwargs) File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward torch.autograd.backward( File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/autograd/__init__.py", line 353, in backward _engine_run_backward( File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 1982, in backward return impl_fn() File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 1968, in impl_fn out = CompiledFunction._backward_impl(ctx, all_args) File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 2088, in _backward_impl out = call_func_at_runtime_with_args( File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/utils.py", line 126, in call_func_at_runtime_with_args out = normalize_as_list(f(args)) File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 764, in _fn return fn(*args, **kwargs) File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_inductor/output_code.py", line 460, in __call__ return self.current_callable(inputs) File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_inductor/utils.py", line 2348, in run return model(new_inputs) File "/tmp/torchinductor_ubuntu/gh/cgh4rpnwzkagkm7cznka43dnr5bxpncxulpr3n2tdnbcrst2hpqc.py", line 1027, in call triton_tem_fused_zeros_2.run(primals_1, primals_2, primals_3, getitem_1, buf2, tangents_1, buf4, buf5, primals_5, primals_4, primals_9, primals_10, primals_7, primals_8, primals_11, primals_12, primals_6, buf0, buf6, grid=torch._inductor.kernel.flex_attention.flex_attention_backward_grid(128, 6, 128, 16, 6, 128, meta0), stream=stream0) File "/home/ubuntu/.local/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 956, in run return launcher( File "<string>", line 6, in launcher File "/home/ubuntu/.local/lib/python3.10/site-packages/triton/backends/nvidia/driver.py", line 444, in __call__ self.launch(*args, **kwargs) RuntimeError: Triton Error [CUDA]: an illegal memory access was encountered ``` </details> ### Versions <details><summary>Env</summary> ``` Collecting environment information... PyTorch version: 2.7.0.dev20250220+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.2 Libc version: glibc-2.35 Python version: 3.10.12 (main, Jan 17 2025, 14:35:34) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.4.131 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3 GPU 1: NVIDIA H100 80GB HBM3 Nvidia driver version: 565.57.01 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 52 On-line CPU(s) list: 0-51 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8480+ CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 26 Socket(s): 1 Stepping: 8 BogoMIPS: 4000.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx_vnni avx512_bf16 wbnoinvd arat vnmi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b fsrm md_clear serialize tsxldtrk avx512_fp16 arch_capabilities Virtualization: VT-x Hypervisor vendor: KVM Virtualization type: full L1d cache: 1.6 MiB (52 instances) L1i cache: 1.6 MiB (52 instances) L2 cache: 104 MiB (26 instances) L3 cache: 16 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-51 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Unknown: No mitigations Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] flake8==4.0.1 [pip3] numpy==1.21.5 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.25.1 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] pytorch-triton==3.2.0+git4b3bb1f8 [pip3] torch==2.7.0.dev20250220+cu124 [pip3] triton==3.2.0+gitb99a3006 [conda] Could not collect ``` </details> cc @chauhang @penguinwu @zou3519 @ydwu4 @bdhirsh @Chillee @drisspg @yanboliang @BoyuanFeng
true
2,867,304,220
Define `__all__` for `torch.utils.tensorboard`
ringohoffman
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "release notes: python_frontend" ]
8
CONTRIBUTOR
Fixes the issue: ```python import torch.utils.tensorboard torch.utils.tensorboard.FileWriter # pyright: "FileWriter" is not exported from module "torch.utils.tensorboard" torch.utils.tensorboard.RecordWriter # pyright: "RecordWriter" is not exported from module "torch.utils.tensorboard" torch.utils.tensorboard.SummaryWriter # pyright: "SummaryWriter" is not exported from module "torch.utils.tensorboard" ``` The [docs page for `torch.utils.tensorboard`](https://pytorch.org/docs/stable/tensorboard.html)
true
2,867,289,003
Enable strobelight profiling specific compile frame ids using COMPILE_STROBELIGHT_FRAME_FILTER
laithsakka
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147549 * #147547 running python test/strobelight/examples/compile_time_profile_example.py ``` strobelight_compile_time_profiler, line 123, 2025-02-20 14:08:08,409, INFO: compile time strobelight profiling enabled strobelight_compile_time_profiler, line 159, 2025-02-20 14:08:08,409, INFO: Unique sample tag for this run is: 2025-02-20-14:08:081656673devgpu005.nha1.facebook.com strobelight_compile_time_profiler, line 160, 2025-02-20 14:08:09,124, INFO: URL to access the strobelight profile at the end of the run: https://fburl.com/scuba/pyperf_experimental/on_demand/9felqj0i strobelight_compile_time_profiler, line 205, 2025-02-20 14:08:12,436, INFO: profiling frame 0/0 is skipped due to frame_id_filter 1/.* strobelight_compile_time_profiler, line 205, 2025-02-20 14:08:15,553, INFO: profiling frame 0/0 is skipped due to frame_id_filter 1/.* strobelight_compile_time_profiler, line 205, 2025-02-20 14:08:16,170, INFO: profiling frame 0/0 is skipped due to frame_id_filter 1/.* strobelight_compile_time_profiler, line 214, 2025-02-20 14:08:16,877, INFO: profiling frame 1/0 strobelight_function_profiler, line 247, 2025-02-20 14:08:19,416, INFO: strobelight run id is: 4015948658689996 strobelight_function_profiler, line 249, 2025-02-20 14:08:21,546, INFO: strobelight profiling running strobelight_function_profiler, line 289, 2025-02-20 14:08:25,964, INFO: work function took 4.417063233006047 seconds strobelight_function_profiler, line 230, 2025-02-20 14:08:28,310, INFO: strobelight profiling stopped strobelight_function_profiler, line 221, 2025-02-20 14:08:44,308, INFO: Total samples: 119 strobelight_function_profiler, line 221, 2025-02-20 14:08:44,308, INFO: GraphProfiler (python stack): https://fburl.com/scuba/pyperf_experimental/on_demand/73h2f7ur strobelight_function_profiler, line 221, 2025-02-20 14:08:44,308, INFO: Icicle view (python stack): https://fburl.com/scuba/pyperf_experimental/on_demand/zs06fi9e strobelight_compile_time_profiler, line 167, 2025-02-20 14:08:44,308, INFO: 1 strobelight success runs out of 1 non-recursive compilation events. ```
true
2,867,288,053
torch._scaled_mm with MXFP8
vkuzo
closed
[ "module: cuda", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "ci-no-td" ]
27
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147548 # summary Add blockwise MXFP8 support to `torch._scaled_mm` on CUDA capability 10.0 and higher devices. If the scales for A and B are of dtype `torch.float8_e8m0fnu`, we dispatch to the blockwise kernel from cuBLAS. This is a skeleton PR where we test basic functionality (numerics of various simple matrices, as well as one end to end quantization + gemm). - Scales are flipped based on transpose_result - Handles boundary conditions Note that MXFP4 is not added in this PR - we can tackle that in a future PR. This PR was created by taking https://github.com/pytorch/pytorch/pull/145562, switching e8m0 to in-core dtype, removing fp4 for now, and adding test cases. # test plan ``` pytest test/test_matmul_cuda.py -k blockwise_mxfp8 -s ``` cc @ptrblck @msaroufim @eqy
true
2,867,277,682
move _strobelight/example to avoid graph breaks
laithsakka
closed
[ "Merged", "topic: not user facing" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #147549 * __->__ #147547
true
2,867,270,879
Add continuous run for cachebench
oulgen
closed
[ "Merged", "ciflow/trunk", "release notes: releng" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147546 * #147537 This PR adds a continuous run for cache bench.
true
2,867,269,167
[MPS] fix attention for >4d tensors
Isalia20
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: bug fixes", "release notes: mps", "ciflow/mps" ]
3
COLLABORATOR
Fixes #147443 and adds tests for >4d tensors
true
2,867,234,530
Adding Small Epsilon in linalg_eig_backward to Improve Numerical Stability on GPU
alexanderlerner
closed
[ "module: autograd", "triaged", "module: linear algebra" ]
6
NONE
### 🚀 The feature, motivation and pitch Hi PyTorch Team, My team and I work on physics-inspired ML models where we use torch.linalg.eigh to get the eigenvector corresponding to the lowest eigenvalue of a Hermitian matrix. We sometimes run into numerical issues during backpropagation as we repeat training iterations over time. Specifically we see: `linalg_eigh_backward: The eigenvectors in the complex case are specified up to multiplication by e^{i phi}. The specified loss function depends on this quantity, so it is ill-defined` Upon investigation, there are not actually phase dependencies in our case. After digging into `linalg_eig_backward`, we found the issue actually might come from the backward formula that divides by `lambda_j - lambda_i` when computing `Econj` [here](https://github.com/pytorch/pytorch/blob/382fbcc1e43ae5d46ec148bdfd8dcfb73da81b77/torch/csrc/autograd/FunctionsManual.cpp#L3757C1-L3765C1). For near-degenerate eigenvalues, we suspect the small denominator might trigger unstable gradients or NaNs in lower-precision (e.g., `complex64`) calculations as we accumulate these small errors over time. Our fix has been to add a tiny epsilon in the denominator, something like: `const float eps = 1e-8; auto ret = VhgV.div_(Econj + eps);` We found that this small regularizer effectively removes NaNs and stabilizes training without altering our models (which are just subclasses of `nn.module`) . We would like to potentially contribute a PR to PyTorch that conditionally adds this epsilon—potentially factoring in tensor precision (e.g., using a smaller epsilon for double precision). Note that this only occurs on GPU, I'm running torch version `2.6.0` and cuda `12.3`. On CPU, the behavior shown actually throws a different error which makes more sense: `torch._C._LinAlgError: linalg.eigh: (Batch element 0): The algorithm failed to converge because the input matrix is ill-conditioned or has too many repeated eigenvalues (error code: 7).` Adding this epsilon in either case seemed to fix these issues -- some of our models are proprietary and we can't quite share an example, but might anyone know why we see this divergence in behavior between GPU and CPU, or at least what sorts of regimes might create this phenomenon in general? We’re new to contributing to PyTorch and would appreciate any guidance. Thank you so much for your time, and we look forward to your feedback! ### Alternatives _No response_ ### Additional context Some past issues referencing this same check: https://github.com/pytorch/pytorch/pull/70528 cc @ezyang @albanD @gqchen @pearu @nikitaved @soulitzer @Varal7 @xmfan @jianyuh @mruberry @walterddr @xwang233 @Lezcano
true
2,867,180,616
No gradient for `residuals` in the return value of `torch.linalg.lstsq`
Bichidian
closed
[ "module: autograd", "triaged", "module: linear algebra" ]
6
CONTRIBUTOR
The return value of `torch.linalg.lstsq` is a named tuple `(solution, residuals, rank, singular_values)`. I find that `solution` has gradient but `residuals` does not. Is this expected? I'm using `gels` driver. cc @ezyang @albanD @gqchen @pearu @nikitaved @soulitzer @Varal7 @xmfan @jianyuh @mruberry @walterddr @xwang233 @Lezcano
true
2,867,136,691
Increase memory for linux binary builds
jeanschmidt
closed
[ "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "ci-no-td" ]
11
CONTRIBUTOR
Recently I detected that some linux manywheels builds are flaky ([ex](https://github.com/pytorch/pytorch/actions/runs/13438309056/job/37555475510)). After investigating, could not detect issues when investigating the runner logs, its disk space available, network usage or CPU load. Unfortunately, memory information is not available. But given the symptoms, the likehood of this being a OOM problem is high. So, moving those build jobs from a `linux.12xlarge.ephemeral` to `linux.12xlarge.memory.ephemeral`. This change depends on https://github.com/pytorch/test-infra/pull/6316
true
2,867,125,401
Add XPU to is_compile_supported to support roi_align op in torchvision
frost-intel
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor", "release notes: xpu" ]
6
COLLABORATOR
Part of the required fix for https://github.com/intel/torch-xpu-ops/issues/1264. To support `roi_align`, torchvision uses `is_compile_supported` in `torch/_dynamo/utils.py` to compile a non-deterministic version of the op for backwards passes. This PR adds XPU device to the supported compile devices. The `is_compile_supported()` util function has extremely limited usage, only being used in `torchvision.ops.roi_align` and `torch.utils._content_store.has_storage()`. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,867,109,918
Update ruff linter for PEP585
aorenste
closed
[ "Merged", "ciflow/trunk", "release notes: onnx", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
This turns on PEP585 enforcement in RUFF. - Updates the target python version - Stops ignoring UP006 warnings (PEP585) - Fixes a few issues which crept into the tree in the last day Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147540 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,867,100,386
GRU does not return reverse hidden states when bidirectional=True
amitportnoy
closed
[]
0
NONE
### (Non-issue) In the code below `output, (h_n, c_n) = gru(x)` is my bug, since GRU does not return c_n closing this ### 🐛 Describe the bug Using `torch==2.5.1`, GRU with `bidirectional=True`, does not return the reverse direction hidden state in `h_n`. (LSTM will return those states, the issue is with GRU specifically) See reproduction code below. Thank you! ```python import torch gru = torch.nn.GRU(10, 40, bidirectional=True) x = torch.randn(30, 5, 10) output, (h_n, c_n) = gru(x) assert list(output.shape) == [30, 5, 80] # pass # WILL FAIL h_n.shape=torch.Size([5, 40]) assert list(h_n.shape) == [2, 5, 40] # LSTM works fine output, (h_n, c_n) = torch.nn.LSTM(10, 40, bidirectional=True)(x) assert list(h_n.shape) == [2, 5, 40] # pass ``` ### Versions ``` Collecting environment information... PyTorch version: 2.5.1+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Microsoft Windows 11 Enterprise (10.0.22631 64-bit) GCC version: Could not collect Clang version: Could not collect CMake version: Could not collect Libc version: N/A Python version: 3.10.11 (tags/v3.10.11:7d4cc5a, Apr 5 2023, 00:38:17) [MSC v.1929 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.22631-SP0 Is CUDA available: True CUDA runtime version: 12.8.61 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3080 Ti Laptop GPU Nvidia driver version: 571.96 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Name: 12th Gen Intel(R) Core(TM) i9-12900H Manufacturer: GenuineIntel Family: 207 Architecture: 9 ProcessorType: 3 DeviceID: CPU0 CurrentClockSpeed: 2500 MaxClockSpeed: 2500 L2CacheSize: 11776 L2CacheSpeed: None Revision: None Versions of relevant libraries: [pip3] numpy==2.2.1 [pip3] onnx==1.16.1 [pip3] onnxruntime==1.19.2 [pip3] onnxruntime-gpu==1.20.1 [pip3] onnxscript==0.1.0.dev20250107 [pip3] pytorch-lightning==2.5.0.post0 [pip3] torch==2.5.1+cu118 [pip3] torch-tb-profiler==0.4.3 [pip3] torchmetrics==1.6.1 [pip3] torchvision==0.20.1+cu118 [conda] Could not collect ```
true
2,867,088,021
[fx] demote node prepend to self log from warning to debug
xmfan
closed
[ "Merged", "ciflow/trunk", "release notes: fx", "fx" ]
3
MEMBER
FIXES https://github.com/pytorch/pytorch/issues/147175 Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147538 This is harmless, not sure why this is a user warning. Writing reordering graph passes is more concise when we ignore this warning. cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,867,065,999
Add cachebench
oulgen
closed
[ "Merged", "ciflow/trunk", "release notes: benchmark", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #147546 * __->__ #147537 This PR adds a new benchmark called cachebench in order to measure/demonstrate the prowess of PT2 caching. ``` python benchmarks/dynamo/cachebench.py --output="result.json" ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,867,064,519
Fix PEP585 update
aorenste
closed
[ "fb-exported", "Merged", "ciflow/trunk", "release notes: dataloader", "topic: not user facing" ]
11
CONTRIBUTOR
Summary: D69920347 causes a pyre failure due to changing a base object from typing.Iterable to abc.Iterable. For now revert that change until it can be dealt with on its own. Test Plan: failures from D69920347 pass locally unit tests pass Reviewed By: oulgen Differential Revision: D69936518
true
2,867,062,781
reland "[sigmoid] Test OSS model runner with test_export.py"
zhxchen17
closed
[ "fb-exported", "Merged", "ciflow/trunk", "release notes: export", "ci-no-td" ]
5
CONTRIBUTOR
Summary: There are ~260 tests for all the corner cases of export from test_export.py. utitlizing to test sigmoid in the OSS setting. Test Plan: buck test mode/opt caffe2/test:test_export -- -r _sigmoid Differential Revision: D69937387
true
2,867,029,542
specify only some dimensions in shapes collection
avikchaudhuri
closed
[ "fb-exported", "Merged", "ciflow/trunk", "release notes: export" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147534 Differential Revision: [D69936316](https://our.internmc.facebook.com/intern/diff/D69936316/)
true
2,867,009,291
Fix register constant to be usable in exportz
tugsbayasgalan
closed
[ "Merged", "ciflow/trunk", "release notes: fx", "fx" ]
8
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147533 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv Differential Revision: [D69939737](https://our.internmc.facebook.com/intern/diff/D69939737) @diff-train-skip-merge
true
2,867,009,203
better error message
tugsbayasgalan
closed
[ "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: export" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #147533 * __->__ #147532 Differential Revision: [D69939736](https://our.internmc.facebook.com/intern/diff/D69939736)
true
2,866,960,408
FSDP wrapped module cannot be called with zero arguments
gkanwar
closed
[ "oncall: distributed", "triaged", "module: fsdp" ]
1
NONE
### 🐛 Describe the bug When calling an FSDP-wrapped torch module with zero arguments, an index error is thrown. Reproducer code, which should be launched with an appropriate `torchrun`: ``` import torch import torch.distributed from torch.distributed.fsdp import FullyShardedDataParallel as FSDP import os class Model(torch.nn.Module): def __init__(self): super().__init__() self.a = torch.nn.Parameter(torch.tensor([1.0])) self.batch_size = 128 def forward(self): return torch.randn(self.batch_size) * self.a def main(): local_rank = int(os.environ['LOCAL_RANK']) torch.distributed.init_process_group() device = f'cuda:{local_rank}' model = Model().to(device) model = FSDP(model) print(model()) if __name__ == '__main__': main() ``` Error: ``` [rank0]: Traceback (most recent call last): [rank0]: File "/home/lqcd/gurtej/repro_fsdp_bug.py", line 23, in <module> [rank0]: main() [rank0]: File "/home/lqcd/gurtej/repro_fsdp_bug.py", line 20, in main [rank0]: print(model()) [rank0]: ^^^^^^^ [rank0]: File "/work/lqcd/d20a/users/gurtej/anaconda3/envs/torch2.5/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl [rank0]: return self._call_impl(*args, **kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/work/lqcd/d20a/users/gurtej/anaconda3/envs/torch2.5/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl [rank0]: return forward_call(*args, **kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/work/lqcd/d20a/users/gurtej/anaconda3/envs/torch2.5/lib/python3.12/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py", line 848, in forward [rank0]: args, kwargs = _root_pre_forward(self, self, args, kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/work/lqcd/d20a/users/gurtej/anaconda3/envs/torch2.5/lib/python3.12/site-packages/torch/distributed/fsdp/_runtime_utils.py", line 592, in _root_pre_forward [rank0]: args = args_tuple[0] [rank0]: ~~~~~~~~~~^^^ [rank0]: IndexError: tuple index out of range ``` This error occurs because the code here assumes exactly one argument: https://github.com/pytorch/pytorch/blob/main/torch/distributed/fsdp/_runtime_utils.py#L599 Is there any reason this assumption needs to be made here? It seems these lines could be simply dropped for support of arbitrary numbers of args and kwargs. There is an obvious workaround of just passing one dummy argument to such modules. We do this at the moment, but it would of course be much more natural not to have to hack the arguments list to run with FSDP. ### Versions ``` Collecting environment information... PyTorch version: 2.5.0 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.11.3 Libc version: glibc-2.35 Python version: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct 4 2024, 13:27:36) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-84-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 2080 Ti GPU 1: NVIDIA GeForce RTX 2080 Ti GPU 2: NVIDIA GeForce RTX 2080 Ti GPU 3: NVIDIA GeForce RTX 2080 Ti GPU 4: NVIDIA GeForce RTX 2080 Ti GPU 5: NVIDIA GeForce RTX 2080 Ti GPU 6: NVIDIA GeForce RTX 2080 Ti GPU 7: NVIDIA GeForce RTX 2080 Ti Nvidia driver version: 525.125.06 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 2 Stepping: 7 CPU max MHz: 3900.0000 CPU min MHz: 1000.0000 BogoMIPS: 4600.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1 MiB (32 instances) L1i cache: 1 MiB (32 instances) L2 cache: 32 MiB (32 instances) L3 cache: 44 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-15,32-47 NUMA node1 CPU(s): 16-31,48-63 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] torch==2.5.0 [pip3] triton==3.1.0 [conda] blas 1.0 mkl [conda] cuda-cudart 11.8.89 0 nvidia [conda] cuda-cupti 11.8.87 0 nvidia [conda] cuda-libraries 11.8.0 0 nvidia [conda] cuda-nvrtc 11.8.89 0 nvidia [conda] cuda-nvtx 11.8.86 0 nvidia [conda] cuda-runtime 11.8.0 0 nvidia [conda] libcublas 11.11.3.6 0 nvidia [conda] libcufft 10.9.0.58 0 nvidia [conda] libcurand 10.3.7.77 0 nvidia [conda] libcusolver 11.4.1.48 0 nvidia [conda] libcusparse 11.7.5.86 0 nvidia [conda] mkl 2023.1.0 h213fc3f_46344 [conda] mkl-service 2.4.0 py312h5eee18b_1 [conda] mkl_fft 1.3.10 py312h5eee18b_0 [conda] mkl_random 1.2.7 py312h526ad5a_0 [conda] numpy 1.26.4 py312hc5e2394_0 [conda] numpy-base 1.26.4 py312h0da6c21_0 [conda] pytorch 2.5.0 py3.12_cuda11.8_cudnn9.1.0_0 pytorch [conda] pytorch-cuda 11.8 h7e8668a_6 pytorch [conda] pytorch-mutex 1.0 cuda pytorch [conda] torchtriton 3.1.0 py312 pytorch ``` cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @zhaojuanmao @mrshenli @rohan-varma @chauhang
true
2,866,891,445
[fx][dynamo][be] Don't allow arbitrary dataclass in the graph
StrongerXi
open
[ "triaged", "oncall: pt2", "module: dynamo" ]
0
CONTRIBUTOR
### 🐛 Describe the bug Right now Dynamo and fx tracing allows dataclass instances in the graph, represented as `call_function(dataclass_ctor, args...)`. Relevant PRs: - #99576 - #134846 The issue is that dataclass constructor could have arbitrary user code. More context: https://docs.google.com/document/d/1rgm7_tnS1Uj2srLMatu092Or3_4bUGFoYjGMOoG2az4/edit?pli=1&disco=AAABdgcYZkg. ### Versions main cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true