id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
2,880,282,003
[test][do not merge]Upgrade oneDNN to v3.7(11)
yanbing-j
closed
[ "module: mkldnn", "open source", "module: arm", "ciflow/trunk", "topic: not user facing", "intel", "module: inductor", "ciflow/inductor", "ciflow/xpu", "ciflow/linux-aarch64" ]
1
COLLABORATOR
Fixes #ISSUE_NUMBER cc @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @Guobing-Chen @Xia-Weiwen @snadampal @malfet @milpuz01 @voznesenskym @penguinwu @EikanWang @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,880,281,292
[test][do not merge]Upgrade oneDNN to v3.7 (10)
yanbing-j
closed
[ "module: mkldnn", "open source", "module: arm", "ciflow/trunk", "topic: not user facing", "intel", "module: inductor", "ciflow/inductor", "ciflow/xpu", "ciflow/linux-aarch64" ]
1
COLLABORATOR
Fixes #ISSUE_NUMBER cc @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @Guobing-Chen @Xia-Weiwen @snadampal @malfet @milpuz01 @voznesenskym @penguinwu @EikanWang @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,880,280,519
[test][do not merge]Upgrade oneDNN to v3.7 (9)
yanbing-j
closed
[ "module: mkldnn", "open source", "module: arm", "ciflow/trunk", "topic: not user facing", "intel", "module: inductor", "ciflow/inductor", "ciflow/xpu", "ciflow/linux-aarch64" ]
1
COLLABORATOR
Fixes #ISSUE_NUMBER cc @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @Guobing-Chen @Xia-Weiwen @snadampal @malfet @milpuz01 @voznesenskym @penguinwu @EikanWang @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,880,279,748
[test][do not merge]Upgrade oneDNN to v3.7 (8)
yanbing-j
closed
[ "module: mkldnn", "open source", "module: arm", "ciflow/trunk", "topic: not user facing", "intel", "module: inductor", "ciflow/inductor", "ciflow/xpu", "ciflow/linux-aarch64" ]
1
COLLABORATOR
Fixes #ISSUE_NUMBER cc @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @Guobing-Chen @Xia-Weiwen @snadampal @malfet @milpuz01 @voznesenskym @penguinwu @EikanWang @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,880,278,648
[test][do not merge] Upgrade oneDNN to v3.7 (7)
yanbing-j
closed
[ "module: mkldnn", "open source", "module: arm", "ciflow/trunk", "topic: not user facing", "intel", "module: inductor", "ciflow/inductor", "ciflow/xpu", "ciflow/linux-aarch64" ]
1
COLLABORATOR
Fixes #ISSUE_NUMBER cc @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @Guobing-Chen @Xia-Weiwen @snadampal @malfet @milpuz01 @voznesenskym @penguinwu @EikanWang @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,880,277,849
test 0-dim squeeze in basic.TestSqueeze
redwrasse
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
11
CONTRIBUTOR
Replace TODO with 0-dim squeeze, checks scalar is unchanged in `basic.TestSqueeze`
true
2,880,268,097
Custom ops support arbitrary input types by migrating to python dispatcher
yanboliang
open
[ "triaged", "open source", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
1
CONTRIBUTOR
Test case: ``` @torch.library.custom_op("mylib::foo", mutates_args=()) def foo(d: dict, t: torch.Tensor) -> torch.Tensor: return torch.sin(d["x"] - d["y"] + t) @foo.register_fake def _(d: dict, t: torch.Tensor) -> torch.Tensor: return torch.empty_like(d["x"]) d = {"x": torch.randn(2, 3, requires_grad=True), "y": torch.randn(2, 3, requires_grad=True)} t = torch.randn(2, 3, requires_grad=True) @torch.compile(backend="eager", fullgraph=True) def fn(d, t): return torch.sin(torch.ops.mylib.foo.default(d, t) + 1.5) y = fn(d, t) print(y) y.sum().backward() print(d["x"].grad) print(d["y"].grad) print(t.grad) ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,880,231,009
[Intel GPU] Decompule Intel GPU oneDNN from other backends
ZhiweiYan-96
closed
[ "triaged", "module: mkldnn", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/xpu", "ciflow/linux-aarch64" ]
6
COLLABORATOR
# Motivation Currently, Intel GPU is moving forward rapidly with the development of feature. We(Intel GPU) want an independent version control over oneDNN component so as to quickly adopt the optimization or bug fixing provided by oneDNN team. This PR does not change the behaviors of other backends like Intel CPU, ARM. They can keep using the stable version contained in `third_party/ideep`. # Detail At compilation time, we will `git clone` oneDNN via URL `https://github.com/oneapi-src/oneDNN` and checkout to the tag/commit that Intel GPU backend prefers. This feature is supported by CMake `Externalproject_add` command. Following is a build log example: ```bash [11/60] Performing download step (git clone) for 'xpu_mkldnn_proj' Cloning into 'xpu_mkldnn_proj'... HEAD is now at 5e92240360 meta: updated citation file [12/60] Performing update step for 'xpu_mkldnn_proj' -- Already at requested tag: v3.7 [13/60] No patch step for 'xpu_mkldnn_proj' ``` The log demonstates that, we explicitly download the source files and checkout to a specific tag. The source file of oneDNN is located at `build/xpu_mkldnn_proj-prefix/src/xpu_mkldnn_proj` # Runtime verification Running UT for CPU ```bash onednn_verbose,v1,info,oneDNN v3.7.0 (commit fc3f17ad469b8a6da7192ae12d32625faa509f1e) onednn_verbose,v1,info,cpu,runtime:OpenMP,nthr:24 onednn_verbose,v1,info,cpu,isa:Intel AVX-512 with Intel DL Boost onednn_verbose,v1,info,gpu,runtime:none onednn_verbose,v1,info,graph,backend,0:dnnl_backend onednn_verbose,v1,primitive,info,template:operation,engine ``` Runnint UT for Intel GPU ```bash onednn_verbose,v1,info,oneDNN v3.7.0 (commit 5e9224036021433d2577548ed0539fe9a53256bc) onednn_verbose,v1,info,cpu,runtime:threadpool,nthr:24 onednn_verbose,v1,info,cpu,isa:Intel AVX-512 with Intel DL Boost onednn_verbose,v1,info,gpu,runtime:DPC++ onednn_verbose,v1,info,gpu,engine,sycl gpu device count:2 ``` We can see that, Intel GPU would uses commit `5e922` (tag v3.7), while CPU uses `fc3f17` Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147926 cc @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal
true
2,880,134,335
Fix auto_functionalize x inference_mode
zou3519
closed
[ "Merged", "ciflow/trunk", "release notes: composability", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147925 Fixes #147924 We were using the wrong FunctionalTensorMode to construct FunctionalTensors. FunctionalTensors modify the FunctionalTensorMode on construction, so that led to the wrong FunctionalTensorMode being modified. This PR threads the FunctionalTensorMode through correctly. Test Plan: - new test cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,880,087,911
[functionalization] inference_mode_base wrong with auto_functionalization
zou3519
closed
[]
0
CONTRIBUTOR
auto_functionalization creates FunctionalTensor whose modes are fresh modes: https://github.com/pytorch/pytorch/blob/f211818bc0d1c8de39c1ef8071c4ff865989e40b/torch/_subclasses/functional_tensor.py#L463-L465 However, constructing a FunctionalTensor mutates the mode object (https://github.com/pytorch/pytorch/blob/f211818bc0d1c8de39c1ef8071c4ff865989e40b/torch/_subclasses/functional_tensor.py#L151-L160). In the case of auto_functionalization it ends up mutating the wrong mode. Fix is simple, we need to thread the mode through to do_auto_functionalize
true
2,880,084,940
[inductor] Add logs for precompile and autotuning
henrylhtsang
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
4
CONTRIBUTOR
Differential Revision: D70222645 I want to add more logs around precompile, especially around the reason why sometimes it gets fast returned. See https://github.com/pytorch/pytorch/pull/147590 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,880,029,343
[cutlass backend] turn autotuning logs off by default + rename log to autotuning log
henrylhtsang
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147922 things we did: * turn off autotuning logs by default * rename autotuning logs from log to autotuning_log, so people are aware that it is a special artifact log. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,880,022,894
Adam doesn't work with nonzero-dim Tensor betas
Tony-Y
open
[ "module: optimizer", "triaged" ]
0
CONTRIBUTOR
### 🐛 Describe the bug This bug was pointed out at https://github.com/pytorch/pytorch/issues/145461#issuecomment-2612287681. The PR #145674 fixed the Tensor `lr` issue, but not the Tensor `betas` issue. ### Versions The same as #145461 cc @vincentqb @jbschlosser @albanD @janeyx99 @crcrpar
true
2,880,022,885
Remove binaries/benchmark_args.h
cyyever
closed
[ "open source", "Merged", "ciflow/binaries", "ciflow/trunk", "topic: not user facing" ]
7
COLLABORATOR
It's not used in OSS.
true
2,880,011,647
[inductor][cpu]AOT inductor AMP static shape default wrapper occupied almost 3x disk than before
zxd1997066
open
[ "oncall: pt2", "oncall: cpu inductor" ]
6
CONTRIBUTOR
### 🐛 Describe the bug Take resnet50 as example, the bad commit: 0e1675a89bcc00c3615048947b5ef6c0355765d3 ``` /workspace/pytorch# bash inductor_single_run.sh multiple inference performance torchbench resnet50 amp first static default 0 aot_inductor Testing with aot_inductor. multi-threads testing.... loading model: 0it [00:00, ?it/s] cpu eval resnet50 running benchmark: 100%|███████████████████████████████████████████████████████████████| 50/50 [00:03<00:00, 12.88it/s] 4.801x WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] dev,name,batch_size,speedup,abs_latency,compilation_latency,compression_ratio,eager_peak_mem,dynamo_peak_mem,calls_captured,unique_graphs,graph_breaks,unique_graph_breaks,autograd_captures,autograd_compiles,cudagraph_skips cpu,resnet50,32,4.800948,13.025713,28.911735,0.962134,239.280538,248.697651,0,0,0,0,0,0,0 /workspace/pytorch# cd /tmp/ /tmp# du -d 1 -h 294M ./torchinductor_root 295M . ``` the last good commit: 768d73f6929be2a6eb81fe7424416dceb4a4aca9 ``` bash inductor_single_run.sh multiple inference performance torchbench resnet50 amp first static default 0 aot_inductor Testing with aot_inductor. multi-threads testing.... loading model: 0it [00:00, ?it/s] cpu eval resnet50 running benchmark: 100%|███████████████████████████████████████████████████████████████| 50/50 [00:03<00:00, 12.98it/s] 4.797x WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] dev,name,batch_size,speedup,abs_latency,compilation_latency,compression_ratio,eager_peak_mem,dynamo_peak_mem,calls_captured,unique_graphs,graph_breaks,unique_graph_breaks,autograd_captures,autograd_compiles,cudagraph_skips cpu,resnet50,32,4.797237,12.917480,27.858889,0.962642,239.691776,248.993792,0,0,0,0,0,0,0 /workspace/pytorch# cd /tmp /tmp# du -d 1 -h 100M ./torchinductor_root 100M . ``` ### Versions </table><p>SW info</p><table border="1" class="dataframe table"> <thead> <tr style="text-align: right;"> <th>name</th> <th>target_branch</th> <th>target_commit</th> <th>refer_branch</th> <th>refer_commit</th> </tr> </thead> <tbody> <tr> <td>torchbench</td> <td>main</td> <td>373ffb19</td> <td>main</td> <td>766a5e3a</td> </tr> <tr> <td>torch</td> <td>main</td> <td>bea72180ed75f522ce4fe5e723bc2112e0874732</td> <td>main</td> <td>f2d6cfa6775</td> </tr> <tr> <td>torchvision</td> <td>main</td> <td>0.19.0a0+d23a6e1</td> <td>main</td> <td>0.19.0a0+d23a6e1</td> </tr> <tr> <td>torchtext</td> <td>main</td> <td>0.16.0a0+b0ebddc</td> <td>main</td> <td>0.16.0a0+b0ebddc</td> </tr> <tr> <td>torchaudio</td> <td>main</td> <td>2.6.0a0+c670ad8</td> <td>main</td> <td>2.6.0a0+b6d4675</td> </tr> <tr> <td>torchdata</td> <td>main</td> <td>0.7.0a0+11bb5b8</td> <td>main</td> <td>0.7.0a0+11bb5b8</td> </tr> <tr> <td>dynamo_benchmarks</td> <td>main</td> <td>nightly</td> <td>main</td> <td>f2d6cfa6775601df5a038f7a4d0b37da75a53ed9</td> </tr> </tbody> </table> </table> Repro: [inductor_single_run.sh](https://github.com/chuanqi129/inductor-tools/blob//main/scripts/modelbench/inductor_single_run.sh) bash inductor_single_run.sh multiple inference performance torchbench resnet50 amp first static default 0 aot_inductor Suspected guilty commit: 0e1675a89bcc00c3615048947b5ef6c0355765d3 cc @chauhang @penguinwu @chuanqi129 @leslie-fang-intel @chunyuan-w
true
2,879,999,477
[FlexAttention] Fix IMA bug
drisspg
closed
[ "high priority", "module: nn", "Merged", "ciflow/trunk", "release notes: nn", "bug", "module: inductor", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147918 # Summary Fixes: https://github.com/pytorch/pytorch/issues/147268 I got this right for the backwards and somehow forgot to do the flip in the forward, not sure how this wasnt found earlier.. Testing IMAs is tuff in pytest so didnt add but verified on reproducer ```py ❯ sanitize python flex/maurice_ima.py --setting 0 ========= COMPUTE-SANITIZER pool: torch.Size([64, 8, 784, 64]) tensor(1.0078, device='cuda:0') Feat shape torch.Size([64, 8, 784, 64]) Feat strides (401408, 50176, 64, 1) Feat is contig: True attn: torch.Size([64, 8, 784, 64]) tensor(1.7994, device='cuda:0') ========= ERROR SUMMARY: 0 errors ❯ sanitize python flex/maurice_ima.py --setting 1 ========= COMPUTE-SANITIZER pool: torch.Size([64, 8, 784, 64]) tensor(2.8297, device='cuda:0') Feat shape torch.Size([64, 8, 784, 64]) Feat strides (401408, 50176, 64, 1) Feat is contig: True attn: torch.Size([64, 8, 784, 64]) tensor(1.9714, device='cuda:0') ========= ERROR SUMMARY: 0 errors ❯ sanitize python flex/maurice_ima.py --setting 2 ========= COMPUTE-SANITIZER pool: torch.Size([64, 8, 784, 64]) tensor(3.2232, device='cuda:0') Feat shape torch.Size([64, 8, 784, 64]) Feat strides (401408, 50176, 64, 1) Feat is contig: True attn: torch.Size([64, 8, 784, 64]) tensor(2.2095, device='cuda:0') ========= ERROR SUMMARY: 0 errors ```` cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @muchulee8 @amjames @chauhang @aakhundov
true
2,879,961,700
[Don't merge]Upgrade submodule oneDNN to v3.7 (#147498)(Zi)
xuhancn
open
[ "module: mkldnn", "open source", "Stale", "ciflow/binaries", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ci-no-td", "ciflow/linux-aarch64" ]
5
COLLABORATOR
This PR is to upgrade submodule oneDNN to v3.7. ## Improvements - Improved performance of convolution and matmul primitives on Intel Xeon processors with Intel AMX instruction set support (formerly Sapphire Rapids and Granite Rapids). - Improved performance of int8 and fp32 forward convolution primitive on processors with Intel AVX2 instruction set support. - Improved performance of fp8 matmul primitives with bf16 and fp16 bias data type on Intel Xeon processors with Intel AMX instruction set support (formerly Sapphire Rapids and Granite Rapids). - Introduced initial optimizations for Intel GPUs based on Xe3 architecture. - Added bfloat16 support for SDPA, implemented fp16 and bf16 gemm kernel in SDPA. - Fixed f16 matmul accuracy, the issue of SDPA cannot dispatched to ukernel, bf16/fp16/fp32 conv performance, INT8 Kernel trigger page fault, deconvolution precision issue on complex128 and fp64 and gemm correctness issue in float16 issues. - Improved bf16 matmul performance with fp32 destination with Arm Compute Library (ACL). - Improved bf16 to fp32 reorder performance. - Improved bf16 reorder performance. - Improved bf16 convolution with ACL. Fixes https://github.com/pytorch/pytorch/issues/136348. ## Validation results on CPU 1. NLP models accuracy/inference/training ![image](https://github.com/user-attachments/assets/859279b8-1631-4268-b226-7de9ac5870d8) ![image](https://github.com/user-attachments/assets/30ec7151-41ca-482a-9d2d-0c4850e75bab) 2. Torchbench cpu userbenchmark inference & training ![image](https://github.com/user-attachments/assets/71c9807c-caf9-4385-9990-d2ab637031cd) 3. Inductor quantization ![image](https://github.com/user-attachments/assets/3d2a3bd3-82fa-4566-8050-7ea5d6b61675) 4. Dynamo benchmarks ![image](https://github.com/user-attachments/assets/554ecce3-c85c-4a0e-88f1-2e73983c5dcd) ![image](https://github.com/user-attachments/assets/148c88f8-4367-4428-bb54-ce8a4deefd1b) ![image](https://github.com/user-attachments/assets/f2e744f4-d710-4699-acf4-1f130ecfadf1) ![image](https://github.com/user-attachments/assets/97128b80-4d0e-495a-aeda-dde3e70c96fd) ![image](https://github.com/user-attachments/assets/a9afce37-684c-45c0-b938-6dd7e0383805) ![image](https://github.com/user-attachments/assets/b8714236-9681-4fbe-8d98-be93deedab88) ![image](https://github.com/user-attachments/assets/4423061f-d133-45ba-98bd-d2f739e50431) ![image](https://github.com/user-attachments/assets/7955da10-3d23-493e-99fa-658f7f40035b) ## Validation results on XPU Accuracy is same as baseline. Performance is shown below. ![image](https://github.com/user-attachments/assets/7645304d-5b1d-43f9-b840-9f846ed380a0) ## Validation results on ARM ![image](https://github.com/user-attachments/assets/080f7c02-0238-436f-ad20-5a9e3f6aafbb) ![image](https://github.com/user-attachments/assets/443742aa-ca61-41de-ae80-5d4c65cd0c87) Pull Request resolved: https://github.com/pytorch/pytorch/pull/147498 Approved by: https://github.com/fadara01, https://github.com/mingfeima, https://github.com/atalman Fixes #ISSUE_NUMBER cc @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal @voznesenskym @penguinwu @EikanWang @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,879,934,245
[Draft] Enable cpu_offload for _distribute_state_dict
mori360
open
[ "oncall: distributed", "Stale", "release notes: distributed (checkpoint)" ]
2
CONTRIBUTOR
Fixes #ISSUE_NUMBER cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @LucasLLC @MeetVadakkanchery @mhorowitz @pradeepfn @ekr0
true
2,879,930,417
[aot] reset aot counter on torch._dynamo.reset
xmfan
open
[ "Stale", "module: dynamo", "ciflow/inductor", "release notes: AO frontend" ]
2
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147915 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,879,916,580
[MPS] Introduce a shader for `entr()`.
dcci
closed
[ "Merged", "topic: not user facing", "module: mps", "ciflow/mps", "module: inductor" ]
4
MEMBER
To be used in eager/inductor in order to implement the missing operation. cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,879,899,362
[dynamo] Replace `unimplemented` with `unimplemented_v2`
williamwen42
open
[ "triaged", "oncall: pt2", "module: dynamo", "module: compile ux" ]
0
MEMBER
Tracking issue convert all `unimplemented` calls to `unimplemented_v2`. List of files that need conversion (tag yourself/comment to claim): - [x] torch/_dynamo/codegen.py @zeshengzong - [x] torch/_dynamo/variables/base.py @shink - [x] torch/_dynamo/variables/builder.py @williamwen42 https://github.com/pytorch/pytorch/pull/151044 - [x] torch/_dynamo/variables/builtin.py @williamwen42 https://github.com/pytorch/pytorch/pull/151145 - [x] torch/_dynamo/variables/constant.py @FFFrog - [x] torch/_dynamo/variables/ctx_manager.py @zou3519 - [ ] torch/_dynamo/variables/dicts.py @anijain2305 - [x] torch/_dynamo/variables/distributed.py @yanboliang #148500 - [x] torch/_dynamo/variables/functions.py (@StrongerXi) https://github.com/pytorch/pytorch/pull/151277 - [ ] torch/_dynamo/variables/higher_order_ops.py @zou3519 - [ ] torch/_dynamo/variables/iter.py @shink https://github.com/pytorch/pytorch/pull/151789 - [x] torch/_dynamo/variables/lists.py @shink https://github.com/pytorch/pytorch/pull/151873 - [ ] torch/_dynamo/variables/misc.py @shink https://github.com/pytorch/pytorch/pull/152274 - [x] torch/_dynamo/variables/nn_module.py @shink https://github.com/pytorch/pytorch/pull/151895 - [ ] torch/_dynamo/variables/script_object.py @zou3519 - [ ] torch/_dynamo/variables/tensor.py - [x] torch/_dynamo/variables/torch_function.py (@StrongerXi) https://github.com/pytorch/pytorch/pull/151278 - [ ] torch/_dynamo/variables/torch.py - [ ] torch/_dynamo/variables/user_defined.py (@anijain2305 ) No need to add unittests to test/dynamo/test_graph_break_messages.py unless you think a graph break is significant. cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true
2,879,881,072
[dynamo] update data-dependent branching graph break messages
williamwen42
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor", "module: compile ux" ]
3
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147912 * #147872 * #147494 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,879,865,679
DISABLED test_inductor_reduce_scatter_tensor_single (__main__.CompileTest)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "module: c10d", "oncall: pt2" ]
16
NONE
Platforms: inductor, rocm, linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_inductor_reduce_scatter_tensor_single&suite=CompileTest&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/37814537658). Over the past 3 hours, it has been determined flaky in 6 workflow(s) with 12 failures and 6 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_inductor_reduce_scatter_tensor_single` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/distributed/test_c10d_functional_native.py", line 706, in setUp dist.init_process_group( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 81, in wrapper return func(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 95, in wrapper func_return = func(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1638, in init_process_group raise ValueError("trying to initialize the default process group twice!") ValueError: trying to initialize the default process group twice! ``` </details> Test file path: `distributed/test_c10d_functional_native.py` cc @clee2000 @wdvr @chauhang @penguinwu
true
2,879,860,303
[DONOTLAND] Fix partial + scalar issue
wz337
open
[ "oncall: distributed", "Stale", "ciflow/trunk", "topic: not user facing", "ciflow/inductor", "module: dtensor" ]
3
CONTRIBUTOR
Fixes #ISSUE_NUMBER cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wconstab @d4l3k @c-p-i-o @tianyu-l @XilunWu
true
2,879,859,281
Exporting onnx model to a buffer causes "TypeError: expected str, bytes or os.PathLike object, not BytesIO"
liqunfu
closed
[ "module: onnx", "triaged" ]
2
COLLABORATOR
### 🐛 Describe the bug torch.onnx.export cannot take io buffer as input when external_data is True. The repo code with some modification is from https://github.com/Project-MONAI/MONAI/blob/a09c1f08461cec3d2131fde3939ef38c3c4ad5fc/monai/networks/utils.py#L692. when running this code: ```python f = io.BytesIO() torch.onnx.export( mode_to_export, onnx_inputs, f=f, input_names=input_names, output_names=output_names or None, dynamic_axes=dynamic_axes, opset_version=opset_version, do_constant_folding=do_constant_folding, # dynamo=False, dynamo=True, external_data=True, **torch_versioned_kwargs, ) ``` it got: ====================================================================== ERROR: test_unet_1_cpu (__main__.TestConvertToOnnx) ---------------------------------------------------------------------- Traceback (most recent call last): File "c:\Anaconda3\envs\monai\lib\site-packages\parameterized\parameterized.py", line 620, in standalone_func return func(*(a + p.args), **p.kwargs, **kw) File "C:/LiqunWA/MONAI/tests/networks/test_convert_to_onnx.py", line 55, in test_unet onnx_model = convert_to_onnx( File "c:\liqunwa\monai\monai\networks\utils.py", line 694, in convert_to_onnx torch.onnx.export( File "c:\Anaconda3\envs\monai\lib\site-packages\torch\onnx\__init__.py", line 364, in export return _compat.export_compat( File "c:\Anaconda3\envs\monai\lib\site-packages\torch\onnx\_internal\exporter\_compat.py", line 186, in export_compat onnx_program.save( File "c:\Anaconda3\envs\monai\lib\site-packages\torch\onnx\_internal\exporter\_onnx_program.py", line 182, in save onnxscript_apis.save_model_with_external_data(self.model, destination) File "c:\Anaconda3\envs\monai\lib\site-packages\onnxscript\_framework_apis\torch_2_5.py", line 76, in save_model_with_external_data destination_path = pathlib.Path(model_path) File "c:\Anaconda3\envs\monai\lib\pathlib.py", line 960, in __new__ self = cls._from_parts(args) File "c:\Anaconda3\envs\monai\lib\pathlib.py", line 594, in _from_parts drv, root, parts = self._parse_args(args) File "c:\Anaconda3\envs\monai\lib\pathlib.py", line 578, in _parse_args a = os.fspath(a) TypeError: expected str, bytes or os.PathLike object, not BytesIO ---------------------------------------------------------------------- Ran 5 tests in 74.567s FAILED (errors=3) ### Versions (monai) c:\LiqunWA\MONAI>python collect_env.py Collecting environment information... PyTorch version: 2.7.0.dev20250224+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Microsoft Windows 11 Enterprise (10.0.22631 64-bit) GCC version: Could not collect Clang version: 18.1.8 CMake version: version 3.28.3 Libc version: N/A Python version: 3.10.16 | packaged by Anaconda, Inc. | (main, Dec 11 2024, 16:19:12) [MSC v.1929 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.22631-SP0 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Name: AMD EPYC 7763 64-Core Processor Manufacturer: AuthenticAMD Family: 2 Architecture: 9 ProcessorType: 3 DeviceID: CPU0 CurrentClockSpeed: 2445 MaxClockSpeed: 2445 L2CacheSize: 4096 L2CacheSpeed: None Revision: 257 Versions of relevant libraries: [pip3] flake8==7.1.2 [pip3] flake8-bugbear==24.2.6 [pip3] flake8-comprehensions==3.16.0 [pip3] mypy==1.11.2 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] onnx==1.17.0 [pip3] onnx_graphsurgeon==0.5.5 [pip3] onnxruntime==1.20.1 [pip3] onnxscript==0.2.0 [pip3] pytorch-ignite==0.4.11 [pip3] torch==2.7.0.dev20250224+cpu [pip3] torchaudio==2.6.0.dev20250224+cpu [pip3] torchio==0.20.4 [pip3] torchvision==0.22.0.dev20250224+cpu [conda] numpy 1.26.4 pypi_0 pypi [conda] pytorch-ignite 0.4.11 pypi_0 pypi [conda] torch 2.7.0.dev20250224+cpu pypi_0 pypi [conda] torchaudio 2.6.0.dev20250224+cpu pypi_0 pypi [conda] torchio 0.20.4 pypi_0 pypi [conda] torchvision 0.22.0.dev20250224+cpu pypi_0 pypi
true
2,879,832,853
[PT2][Optimus][Opportunity Finder][1/n] Add opportunity finder in the inductor for GEMM horizonal fusion search
mengluy0125
open
[ "fb-exported", "Stale", "module: inductor", "ciflow/inductor", "release notes: inductor" ]
6
CONTRIBUTOR
Summary: As titled Test Plan: ### How to enable Patch the following config ``` torch._inductor.config.optimus_opportunity_finder = True ``` ### local reproduce ``` buck2 run mode/opt aps_models/ads/ecosystem/tooling/tools/efficient_module_suite/benchmark:omnifm_perf_benchmark -- benchmark-with-prod-model --prod_config mast_omnifm_v1-5_mwb --prod_config_override prod_config_override_jointarch --batch_size 8 --enable_pt2 True ``` | Metric | Value | |:-------------------|:------------| | Batch size | 8 | | GPU type | H100 | | Latency | 156.54 ms | | Model size | 15999.01 MB | | Flops | 672.93 G | | Flops/example | 84.12 G | | TFLOPS/sec | 4.30 | | MFU | 0.54% | | Activation/example | 2096.66 MB | | CPU time total | 364.53 ms | | GPU time total | 150.01 ms | Trace link: https://our.intern.facebook.com/intern/perfdoctor/trace_view?filepath=tree/traces/efficient_module_suite/omnifm.Feb_25_14_08_21_trace.json.gz&bucket=pyper_traces snapshot link: https://www.internalfb.com/manifold/explorer/ai_efficiency/tree/gpu_snapshot/omnifm.Feb_25_14_08_21.snapshot.pickle P1740638925 Differential Revision: D70205693 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,879,823,914
Increase reference count of state tensor in `THPGenerator_reduce` to avoid premature garbage collection in `multiprocessing` start method `"forkserver"` and `"spawn"`
ringohoffman
open
[ "triaged", "module: random", "open source", "release notes: cpp" ]
5
CONTRIBUTOR
Fixes #146828 For this script: ```python from __future__ import annotations import time import torch def worker(generator: torch.Generator): print(generator.get_state()) if __name__ == '__main__': torch.multiprocessing.set_start_method("forkserver") # or "spawn" generator = torch.Generator("cpu") process = torch.multiprocessing.Process(target=worker, args=(generator,)) process.start() # process.run() does not cause a crash for i in range(10): print("Main", i) time.sleep(1) process.join() process.close() ``` When I add ~~`Py_INCREF(ret)`~~ `Py_INCREF(state_tensor)`, I stop getting: ```console $ python a.py Main 0 Main 1 Traceback (most recent call last): File "/home/matthew/.conda/envs/torch39/lib/python3.9/multiprocessing/forkserver.py", line 274, in main code = _serve_one(child_r, fds, File "/home/matthew/.conda/envs/torch39/lib/python3.9/multiprocessing/forkserver.py", line 313, in _serve_one code = spawn._main(child_r, parent_sentinel) File "/home/matthew/.conda/envs/torch39/lib/python3.9/multiprocessing/spawn.py", line 126, in _main self = reduction.pickle.load(from_parent) File "/home/matthew/pytorch/torch/multiprocessing/reductions.py", line 546, in rebuild_storage_fd storage = cls._new_shared_fd_cpu(fd, size) RuntimeError: unable to resize file <filename not specified> to the right size: Invalid argument (22) Main 2 Main 3 Main 4 Main 5 Main 6 Main 7 Main 8 Main 9 ``` And I start getting: ```console $ python a.py Main 0 Main 1 tensor([ 1, 209, 156, ..., 0, 0, 0], dtype=torch.uint8) Main 2 Main 3 Main 4 Main 5 Main 6 Main 7 Main 8 Main 9 ``` cc @pbelevich
true
2,879,805,468
scriptfunction: Make sure we have valid __name__ and __qualname__
c00w
closed
[ "oncall: jit", "Merged", "ciflow/trunk", "release notes: jit", "topic: not user facing" ]
12
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147906 * #147894 It's not fully clear why these are not being created, but you can definitely reproduce this in code. `__name__` is fun, since there appears to be no way to explicitly set it on the pybind11 layer or c++ layer. I've set this in the python wrapper code (which works correctly). But let me know if people feel strongly and want us to go explicitly cast to python within the cpp functions and set it there. cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
2,879,797,609
[BE][EZ] Delete MacOS-12.3 xfail list
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #147893 * __->__ #147905 * #147892 As PyTorch requires at least MacOS-13 (and Metal-3) to work, delete any pre-MacoS13 checks from test script
true
2,879,787,709
[ROCm] Enable mi300-specific workflows to be triggered on PRs
jithunnair-amd
closed
[ "module: rocm", "triaged", "open source", "Merged", "topic: not user facing", "ciflow/rocm", "ciflow/inductor-rocm", "ciflow/rocm-mi300", "ciflow/inductor-perf-test-nightly-rocm" ]
8
COLLABORATOR
This change will be needed to be able to trigger the MI300-specific CI workflows on PRs by using a PR label. * inductor-rocm-mi300.yml uses the existing `ciflow/inductor-rocm` label so that any PR manually labeled as such will trigger `inductor` config runs on both MI200 and MI300. * rocm-mi300.yml uses a separate `ciflow/rocm-mi300` label, since we don't want to over-trigger `default` config runs on MI300 runners due to limited capacity, and [`ciflow/rocm` label is automatically applied](https://github.com/pytorch/test-infra/blob/79438512a0632583899938d3b0277da78f5569e0/torchci/lib/bot/autoLabelBot.ts#L24) on many PRs. * inductor-perf-test-nightly-rocm.yml uses a separate `ciflow/inductor-perf-test-nightly-rocm` label, so that we can manually trigger a round of perf testing on MI300 runners to test the perf impact of a major inductor-related change. cc @jeffdaily @sunway513 @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,879,782,338
Remerge of #144974
wdvr
open
[ "Stale", "release notes: cuda", "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Had to be reverted due to an older PR that needed to be backed out. This is the re-merge PR for #144974. branch was deleted - need to recreate the PR @lw feel free to approve / merge this one, or fix up your original one if you can restore gh/lw/5/base cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,879,768,179
[CP] Use TorchFunctionMode to dispatch SDPA for CP
fegin
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147902 While we prefer not use monkey patching to dispatch SDPA, TorchFunctionMode is currently not compatible with selective activation checkpointing (https://github.com/pytorch/pytorch/issues/147995). This PR adds `TorchFunctionMode` to CP code and make it configurable. cc @H-Huang @awgu @kwen2501 @wanchaol @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,879,750,862
[cutlass backend] force_disable_caches for test_number_mm_precompiles
henrylhtsang
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
4
CONTRIBUTOR
Summary: Test is flaky right now. Differential Revision: D70209511 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,879,742,513
[ROCm][TunableOp] Remove extra transpose characters in hipBLASLt signature.
naromero77amd
closed
[ "module: rocm", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/rocm" ]
3
COLLABORATOR
Cleanup the TunableOp hipBLASLt signature of extra transpose characters. Test manually and no new regressions found. cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang
true
2,879,737,011
Change persistent reduction threshold to 32
PaulZhang12
open
[ "Stale", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
6
CONTRIBUTOR
Summary: Increasing threshold for inductor multikernel flag from 16->32 can lead to significant performance gain. This change is safe as TORCHINDUCTOR_MULTI_KERNEL is disabled by defaul Example benchmark: ```` import torch import torch.nn.functional as F from triton.testing import do_bench from torch._inductor import config as inductor_config import math def position_bias_softmax(scores, weight=None, pw_bias=False): scores = scores.to(torch.float32) context_position = torch.arange(2048, dtype=torch.long, device="cuda")[:, None] memory_position = torch.arange(2048, dtype=torch.long, device="cuda")[None, :] relative_position = memory_position - context_position # shape (query_length, key_length) relative_buckets = 0 num_buckets=32 max_distance=128 relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) max_exact = num_buckets // 2 is_small = relative_position < max_exact relative_position_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_position_if_large = torch.min( relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) ) relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) values = F.embedding(relative_buckets, weight) values = values.permute([2, 0, 1]).unsqueeze(0) scores = scores + values return F.softmax(scores, dim=-1).to(torch.float16) scores = torch.randn(8, 2048, 2048, device="cuda", dtype=torch.float16) weight = torch.randn(32, 1, device="cuda") position_bias_softmax(scores, weight) compiled = torch.compile(position_bias_softmax) compiled(scores, weight=weight) gb = 2 * scores.element_size() * scores.numel() / 1e9 sec = do_bench(lambda: compiled(scores, weight=weight)) / 1e3 print(f"weighted bias gb/s: {gb/sec}") ```` With this change: gb/s: 987.0799446648006 Baseline: gb/s: 693.3391918370983 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov @shunting314 @eellison
true
2,879,729,786
[PT2] Allow tensor type in allowed_getattr_types_for_subgm when verifiying ep
adeaa0332
open
[ "fb-exported", "release notes: export" ]
10
NONE
Summary: Noticed this when converting a graph with the following format EP( non_lowerable_part: (....) AOTI_HOP(non_lowerable_inputs) ) You will get the following error ``` raise SpecViolationError( torch._export.verifier.SpecViolationError: Invalid get_attr type <class 'torch.Tensor'>. Valid get_attr types: (<class 'torch.fx.graph_module.GraphModule'>, <class 'torch.nn.parameter.Parameter'>) ``` The non lowerable part has a tensor type in the sub gm for get_attr Test Plan: Sandcastle Differential Revision: D70206758
true
2,879,717,230
[targets2buck] Remove tombstone messages proactively
bigfootjon
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
9
MEMBER
Summary: X-link: https://github.com/pytorch/executorch/pull/8703 Originally we created a bunch of empty `TARGETS` files to allow us to enable `BUCK` files in fbcode by hiding the existing BUCK file. These files were subsequently merged together using `non_fbcode_target` so these tombstones are no longer necessary. This diff fixes all files that WOULD have had the useless tombstone merged into them. To create this diff, I just ran the merger script that Codemod Service is using and then deleted the "merged from" and tombstone lines with `sed`, `arc f` and reverted any lines that didn't make sense Test Plan: CI Differential Revision: D69994481
true
2,879,712,983
[ONNX] slice complex tensor needs implementation
MilesV64
closed
[ "module: onnx", "triaged" ]
0
NONE
🐛 Describe the bug Torch 2.6.0 shows an error with slice calls to complex tensors. ``` <class 'torch.onnx._internal.exporter._errors.DispatchError'>: No ONNX function found for <OpOverload(op='aten.slice', overload='Tensor')>. Failure message: No decompositions registered for the complex-valued input ⬆️ <class 'torch.onnx._internal.exporter._errors.ConversionError'>: Error when translating node %slice_1 : [num_users=1] = call_function[target=torch.ops.aten.slice.Tensor](args = (%_to_copy, 0, 0, 9223372036854775807), kwargs = {}). See the stack trace for more information. ``` Full reproduction code: ```python import torch class ComplexSliceModel(torch.nn.Module): def forward(self, x): # Convert input to a complex tensor x_complex = x.to(torch.complex64) # Apply a slice operation on the complex tensor return x_complex[:, :2] model = ComplexSliceModel() dummy_input = torch.randn(3, 4) # Verify the model works as expected print("Model output:", model(dummy_input)) # This call fails due to the slice op on a complex tensor. torch.onnx.export(model, dummy_input, "complex_slice.onnx", dynamo=True) ``` **Versions** ``` PyTorch version: 2.6.0 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 15.3.1 (arm64) GCC version: Could not collect Clang version: 16.0.0 (clang-1600.0.26.6) CMake version: Could not collect Libc version: N/A Python version: 3.12.9 | packaged by conda-forge | (main, Feb 14 2025, 07:56:32) [Clang 18.1.8 ] (64-bit runtime) Python platform: macOS-15.3.1-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M4 Pro Versions of relevant libraries: [pip3] numpy==2.0.2 [pip3] onnx==1.17.0 [pip3] onnxruntime==1.20.1 [pip3] onnxscript==0.1.0.dev20250121 [pip3] torch==2.6.0 [pip3] torchaudio==2.6.0 [pip3] torchvision==0.21.0 ```
true
2,879,712,979
[Inductor-CPU] Fix broken int8 WoQ GEMM AMX implementation in main
sanchitintel
closed
[ "open source", "Merged", "ciflow/trunk", "topic: bug fixes", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
15
COLLABORATOR
#146843 broke int8 WoQ GEMM's (for BF16 activation) AMX ISA implementation in the main branch. UT: `python test/inductor/test_cpu_select_algorithm.py -v -k woq` The issue remained undetected because in case of templated kernel compilation failure, the auto-tuning infra marks its runtime as `inf`, and the op against which it was being benchmarked is used, so UTs didn't fail even on machines that support AMX ISA. `test/inductor/test_cpu_select_algorithm.py` UTs checked the value of the `select_algorithm_autotune` counter, which only counts how many ops were selected for autotuning against their templated codegened counterparts. @leslie-fang-intel advised using a new counter. I added `counters["inductor"]["cpp_templated_kernel_counter"]`, which is incremented after a codegened kernel's compilation, so it'd help catch breakage scenarios in which a templated kernel could not be codegened due to a compilation failure. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,879,702,149
Don't crash when we call __qualname__ on torch._C.ScriptFunction
c00w
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
16
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #147906 * __->__ #147894 We've root caused this to correctly throwing attribute error on ScriptFunction when missing attributes are caused. This PR will fix crashes that are showing up. I'm going to stack a second PR to fix torch._c.ScriptFunction just being a very badly behaving python object (which should also fix this cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,879,700,327
[BE] Switch `TestConsistency` to MPS device
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147893 Which will eventually allow move decorators away more `common_mps.py` Adjust tolerances accordingly. XFAIL a bunch of tests on MacOS-13, which is going to be deprecated anyway
true
2,879,700,245
[BE] Switch `index_variable` to `torch.testing.make_tensor`
malfet
closed
[ "Merged", "ciflow/trunk", "release notes: python_frontend", "topic: not user facing", "ciflow/mps" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #147893 * #147905 * __->__ #147892 As it was a long-time todo and actually ublocks using this function for MPS devices (that do not support double)
true
2,879,695,691
[ca] side-effect free initial trace: RAII PyCompilerInterface
xmfan
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor", "module: compiled autograd" ]
3
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #148042 * __->__ #147891 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,879,693,446
[ROCm] [TunableOp] Unit tests for scaled GEMM and GEMM with bias
naromero77amd
closed
[ "module: rocm", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/rocm" ]
4
COLLABORATOR
Two more unit tests for TunableOp: - Scaled GEMM - GEMM with bias cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang
true
2,879,679,122
Bitshift with MPS backend
philkr
closed
[ "triaged", "module: correctness (silent)", "module: mps" ]
2
NONE
### 🐛 Describe the bug The bitshift `<<` operation seems broken in the MPS backend ```python import torch 1 << torch.arange(10, device="mps") ``` returns ```python tensor([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18], device='mps:0') ``` Expected result ```python tensor([ 1, 2, 4, 8, 16, 32, 64, 128, 256, 512], device='mps:0') ``` Other backends give the correct result, so did pytorch 2.3.1. Pytorch 2.6.0 and nightly 2.7.0 both give the wrong result. It seems reproducible across devices. ### Versions PyTorch version: 2.7.0.dev20250224 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 15.4 (arm64) GCC version: Could not collect Clang version: 16.0.0 (clang-1600.0.26.6) CMake version: version 3.23.1 Libc version: N/A Python version: 3.12.4 | packaged by conda-forge | (main, Jun 17 2024, 10:13:44) [Clang 16.0.6 ] (64-bit runtime) Python platform: macOS-15.4-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Max Versions of relevant libraries: [pip3] mypy==1.10.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==2.0.0 [pip3] torch==2.7.0.dev20250224 [pip3] torchaudio==2.6.0.dev20250224 [pip3] torchvision==0.22.0.dev20250224 [conda] numpy 2.0.0 pypi_0 pypi [conda] torch 2.7.0.dev20250224 pypi_0 pypi [conda] torchaudio 2.6.0.dev20250224 pypi_0 pypi [conda] torchvision 0.22.0.dev20250224 pypi_0 pypi cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
2,879,623,728
[logs][qol] Print log options alphabetically
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #147824 * __->__ #147888
true
2,879,621,532
DISABLED test_inductor_reduce_scatter_tensor_coalesced (__main__.CompileTest)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "module: c10d" ]
17
NONE
Platforms: inductor, rocm, linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_inductor_reduce_scatter_tensor_coalesced&suite=CompileTest&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/37797588417). Over the past 3 hours, it has been determined flaky in 6 workflow(s) with 12 failures and 6 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_inductor_reduce_scatter_tensor_coalesced` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `distributed/test_c10d_functional_native.py` cc @clee2000 @wdvr
true
2,879,608,515
[scan] User-facing reverse flag handling
bohnstingl
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo" ]
4
COLLABORATOR
This PR removes the reverse flag from the backend implementation and resolves it via `torch.flip` in the frontend. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames @ydwu4
true
2,879,570,254
[inductor][ck] kBatch parametrized
coconutruben
closed
[ "module: rocm", "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
7
CONTRIBUTOR
Summary: # Why Enable us to set the kBatch parameter, rather than bake it in Especially for larger splitK scenarios, this can yield very good performance (up to 1.5x vs hipblaslt from initial tests) ## Why like this The obvious question should be: why not add this to the op itself, and maybe even into the template/kernel. That would simplify the code. The choice to have it as a "runtime" param that we fix is be able to reuse the compiled CK `.so` libraries, as now multiple choices of kBatch can be used with the exact same `.so` (as the shared library does not depend on kBatch, but takes it as a parameter) # What - copy cutlass approach for swizzle to have a "runtime" arg that we pass in but is really choice dependent - pipe through everything from template and kernel - hard-code it to be kBatch=1 for now (same as before, just now settable) This is part of a series of Diffs, where next we need to figure out 1. how to filter out ops + kBatch that don't work 2. set this better for splitK scenarios (hand written heuristic) Test Plan: (with minor modifications) ``` # show it working with AOTI buck2 run mode/opt-amd-gpu //scripts/henrylhtsang/repros:aot ``` ``` # show it working with inductor only buck2 run -c fbcode.re_gpu_tests=False mode/opt-amd-gpu fbcode//deeplearning/aot_inductor/benchmark/sampling:test_gemm_autotune_benchmark_AMD_block_0 ``` Differential Revision: D70200008 cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,879,553,231
`FxGraphDrawer` fails on `einsum` nodes
f-dangel
open
[ "triaged", "module: fx" ]
0
NONE
### 🐛 Describe the bug I am trying to visualize a `torch.fx.GraphModule` using `torch.fx.passes.graph_drawer.FxGraphDrawer`. If the graph module contains an `einsum` operation, I get a `bad label` error. Here is an MWE to reproduce the problem: ```python """Cannot visualize `einsum` nodes with `torch.fx` graph drawer.""" from torch import einsum from torch.fx import passes, symbolic_trace from torch.nn import Module # Setting this to `True` triggers the error. # Everything works fine if set to `False`. USE_EINSUM = True class Square(Module): def forward(self, x): if USE_EINSUM: return einsum("a,a->a", x) else: return x**2 mod = symbolic_trace(Square()) g = passes.graph_drawer.FxGraphDrawer(mod, "einsum") g.get_dot_graph().write_svg("einsum.svg") ``` Here is an example of the error: ```bash b'Error: bad label format {name=%einsum|op_code=call_function\\n|target=torch.functional.einsum\\n|args=(a,a->a,)|num_users=1\\n}\n' ``` ### Versions ``` PyTorch version: 2.4.0.post101 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 15.3.1 (x86_64) GCC version: Could not collect Clang version: 16.0.0 (clang-1600.0.26.6) CMake version: version 3.31.0 Libc version: N/A Python version: 3.9.16 (main, May 15 2023, 18:51:40) [Clang 14.0.6 ] (64-bit runtime) Python platform: macOS-10.16-x86_64-i386-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M2 Versions of relevant libraries: [pip3] flake8==7.1.1 [pip3] flake8-bugbear==24.12.12 [pip3] flake8-comprehensions==3.16.0 [pip3] flake8-tidy-imports==4.11.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==2.0.1 [pip3] torch==2.4.0.post101 [conda] libtorch 2.4.0 cpu_mkl_hdbae018_101 conda-forge [conda] mkl 2023.2.0 h54c2260_50500 conda-forge [conda] numpy 2.0.2 pypi_0 pypi [conda] numpy-base 2.0.1 py39h03d8c7d_1 [conda] pytorch 2.4.0 cpu_mkl_py39hd2dbf71_101 conda-forge ``` cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,879,531,469
[aotd] Log torch._functorch.config in tlparse
IvanKobzarev
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147883 Adding torch._functorch.config to tlparse for better debugability. E.g. https://github.com/pytorch/pytorch/pull/147638 happened only with `torch._functorch.config.view_replay_for_aliased_outputs=False` which is True by defautl cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,879,510,591
[CI] add missing matrix cases for `pytorch-linux-focal-py{3.12,3.13}-clang10`
XuehaiPan
open
[ "open source", "topic: not user facing" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147882 These two images are referenced here: https://github.com/pytorch/pytorch/blob/adf0f4ffd24eac6bf0c49d49c82a2d0e988196c0/.github/workflows/docker-builds.yml#L57-L60 https://github.com/pytorch/pytorch/blob/adf0f4ffd24eac6bf0c49d49c82a2d0e988196c0/.github/workflows/pull.yml#L517 https://github.com/pytorch/pytorch/blob/adf0f4ffd24eac6bf0c49d49c82a2d0e988196c0/.github/workflows/pull.yml#L224
true
2,879,381,680
[export][dynamic shapes] add Dim._OBLIVIOUS, _mark_oblivious()
pianpwk
open
[ "fb-exported", "Stale", "ciflow/trunk", "fx", "module: dynamo", "ciflow/inductor", "release notes: export" ]
10
CONTRIBUTOR
Summary: Adds `Dim._OBLIVIOUS` in export dynamic shapes, and `_mark_oblivious()` in dynamo decorators, to support the use of OBLIVIOUS_SIZE. The semantics are that we allocate what looks like a unbacked symbol, but is technically backed; it contains a hint, the user-intention is just to opt into size-oblivious reasoning and avoid 0/1 specialization. Decided to do this over mark_unbacked + hint because it's easier to write code in symbolic_shapes that distinguishes between valid reasoning for oblivious sizes and general unbacked (e.g. we can set replacements for oblivious sizes since they're graph inputs, and we don't face the "time traveling" problem): https://github.com/pytorch/pytorch/blob/3a69dee955f2c6c57f7c879ba82469fa0c1d0b74/torch/fx/experimental/symbolic_shapes.py#L6284-L6297 On the other hand if we just handled this with unbacked + hint, it's hard to tell if we're dealing with input sizes that should have hints, or if we've just been doing real-tensor prop. Test Plan: test_export Differential Revision: D70193972 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,879,361,387
[dynamo] add sourceless builder for `types.MethodType`
XuehaiPan
closed
[ "open source", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor", "ci-no-td" ]
16
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #148151 * #113258 * #113257 * __->__ #147880 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,879,317,666
Flex Attention is incompatible with selective AC
fegin
open
[ "triaged", "oncall: pt2", "module: higher order operators", "module: pt2-dispatcher", "module: flex attention" ]
4
CONTRIBUTOR
### 🐛 Describe the bug When using FlexAttention with selective activation checkpointing, we got an error as below ``` traceback : Traceback (most recent call last): File "/data/users/chienchin/mywork/pytorch/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 354, in wrapper return f(*args, **kwargs) File "/data/users/chienchin/fbsource/fbcode/pytorch/torchtitan/train.py", line 306, in main pred = model(input_ids) File "/data/users/chienchin/mywork/pytorch/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/data/users/chienchin/mywork/pytorch/torch/nn/modules/module.py", line 1857, in _call_impl return inner() File "/data/users/chienchin/mywork/pytorch/torch/nn/modules/module.py", line 1805, in inner result = forward_call(*args, **kwargs) File "/data/users/chienchin/fbsource/fbcode/pytorch/torchtitan/torchtitan/models/llama/model.py", line 478, in forward h = layer(h, self.freqs_cis) File "/data/users/chienchin/mywork/pytorch/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/data/users/chienchin/mywork/pytorch/torch/nn/modules/module.py", line 1857, in _call_impl return inner() File "/data/users/chienchin/mywork/pytorch/torch/nn/modules/module.py", line 1805, in inner result = forward_call(*args, **kwargs) File "/data/users/chienchin/mywork/pytorch/torch/distributed/algorithms/_checkpoint/checkpoint_wrapper.py", line 171, in forward return self.checkpoint_fn( # type: ignore[misc] File "/data/users/chienchin/mywork/pytorch/torch/_compile.py", line 51, in inner return disable_fn(*args, **kwargs) File "/data/users/chienchin/mywork/pytorch/torch/_dynamo/eval_frame.py", line 764, in _fn return fn(*args, **kwargs) File "/data/users/chienchin/mywork/pytorch/torch/utils/checkpoint.py", line 495, in checkpoint ret = function(*args, **kwargs) File "/data/users/chienchin/mywork/pytorch/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/data/users/chienchin/mywork/pytorch/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "/data/users/chienchin/fbsource/fbcode/pytorch/torchtitan/torchtitan/models/llama/model.py", line 359, in forward h = x + self.attention(self.attention_norm(x), freqs_cis) File "/data/users/chienchin/mywork/pytorch/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/data/users/chienchin/mywork/pytorch/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "/data/users/chienchin/fbsource/fbcode/pytorch/torchtitan/torchtitan/models/llama/model.py", line 230, in forward output = flex_attention(xq, xk, xv, block_mask=self.block_mask) File "/data/users/chienchin/mywork/pytorch/torch/nn/attention/flex_attention.py", line 1357, in flex_attention out, lse = torch.compile( File "/data/users/chienchin/mywork/pytorch/torch/_dynamo/eval_frame.py", line 585, in _fn return fn(*args, **kwargs) File "/data/users/chienchin/mywork/pytorch/torch/nn/attention/flex_attention.py", line 1345, in _flex_attention_hop_wrapper return flex_attention_hop(*args, **kwargs) File "/data/users/chienchin/mywork/pytorch/torch/_higher_order_ops/flex_attention.py", line 92, in __call__ return super().__call__( File "/data/users/chienchin/mywork/pytorch/torch/_ops.py", line 471, in __call__ return wrapper() File "/data/users/chienchin/mywork/pytorch/torch/_ops.py", line 467, in wrapper return self.dispatch( File "/data/users/chienchin/mywork/pytorch/torch/_ops.py", line 455, in dispatch return kernel(*args, **kwargs) File "/data/users/chienchin/mywork/pytorch/torch/_higher_order_ops/flex_attention.py", line 744, in flex_attention_autograd out, logsumexp = FlexAttentionAutogradOp.apply( File "/data/users/chienchin/mywork/pytorch/torch/autograd/function.py", line 575, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File "/data/users/chienchin/mywork/pytorch/torch/_higher_order_ops/flex_attention.py", line 610, in forward out, logsumexp = flex_attention( File "/data/users/chienchin/mywork/pytorch/torch/_higher_order_ops/flex_attention.py", line 92, in __call__ return super().__call__( File "/data/users/chienchin/mywork/pytorch/torch/_ops.py", line 471, in __call__ return wrapper() File "/data/users/chienchin/mywork/pytorch/torch/_ops.py", line 462, in wrapper return torch.overrides.handle_torch_function( File "/data/users/chienchin/mywork/pytorch/torch/overrides.py", line 1721, in handle_torch_function result = mode.__torch_function__(public_api, types, args, kwargs) File "/data/users/chienchin/mywork/pytorch/torch/_dynamo/_trace_wrapped_higher_order_op.py", line 142, in __torch_function__ return func(*args, **(kwargs or {})) File "/data/users/chienchin/mywork/pytorch/torch/_higher_order_ops/flex_attention.py", line 92, in __call__ return super().__call__( File "/data/users/chienchin/mywork/pytorch/torch/_ops.py", line 471, in __call__ return wrapper() File "/data/users/chienchin/mywork/pytorch/torch/_ops.py", line 467, in wrapper return self.dispatch( File "/data/users/chienchin/mywork/pytorch/torch/_ops.py", line 365, in dispatch raise NotImplementedError( NotImplementedError: There was no rule registered for HOP flex_attention and mode <torch.utils.checkpoint._CachingTorchDispatchMode object at 0x7f3e5cc0fac0>. We recommend filing an issue. ``` This issue can be reproduced with https://github.com/pytorch/torchtitan/pull/887 and `CONFIG_FILE="./train_configs/llama3_8b.toml" ./run_llama_train.sh --model.use_flex_attn` Note that full activation checkpointing doesn't cause this issue. ### Versions nightly cc @chauhang @penguinwu @zou3519 @ydwu4 @bdhirsh @Chillee @drisspg @yanboliang @BoyuanFeng
true
2,879,312,751
follow up to #147548, fix regression on MI300
jeffdaily
closed
[ "open source", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "ci-no-td" ]
10
COLLABORATOR
Removing curly braces seemed superficial but broke MI300 rowwise matmul.
true
2,879,309,575
[MPS] faster integer batched matmul
Isalia20
closed
[ "open source", "Merged", "ciflow/trunk", "topic: performance", "release notes: mps", "ciflow/mps" ]
6
COLLABORATOR
Followup to #147526 Tiled matmul for bmm as well. ## Speed ups: ![speedups_bmm](https://github.com/user-attachments/assets/02501145-7d64-4bbe-9dcc-994f004b4829) Script to record times: ```python import torch import numpy as np import time import csv batch_sizes = [1, 2, 4, 8] matrix_sizes = [256, 512, 1024, 2048] num_runs = 10 warmup_runs = 3 def run_int_mm(A, B): torch.mps.synchronize() start = time.perf_counter() c = A @ B torch.mps.synchronize() end = time.perf_counter() return c, end - start results = { 'N': [], 'B': [], 'mean_time': [], 'std_time': [] } for b in batch_sizes: for n in matrix_sizes: print(f"\nBenchmarking N={n} and B={b}") try: A_mps = torch.randint(low=-100, high=100, size=(b, n, n), dtype=torch.int8, device="mps") B_mps = torch.randint(low=-100, high=100, size=(b, n, n), dtype=torch.int8, device="mps") for _ in range(warmup_runs): _, _ = run_int_mm(A_mps, B_mps) times = [] for _ in range(num_runs): _, t = run_int_mm(A_mps, B_mps) times.append(t) mean_time = np.mean(times) std_time = np.std(times) results['N'].append(n) results['B'].append(b) results['mean_time'].append(mean_time) results['std_time'].append(std_time) print(f"Mean time: {mean_time:.4f}s ± {std_time:.4f}s") except RuntimeError as e: print(f"Error for N={n}: {e}") continue with open('int_bmm_benchmark_times_new.csv', 'w', newline='') as f: writer = csv.writer(f) writer.writerow(['N', 'batch', 'mean_time', 'std_time']) for i in range(len(results['N'])): writer.writerow([ results['N'][i], results['B'][i], results['mean_time'][i], results['std_time'][i] ]) ```
true
2,879,296,924
[inductor] Implement max_pool2d_with_indices as a reduction for large window sizes
isuruf
closed
[ "open source", "Merged", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: inductor" ]
9
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #148210 * #148209 * __->__ #147876 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,879,278,235
roundtrip cast between float32|bfloat16 and e8m0 should work in torchinductor
vkuzo
closed
[ "triaged", "oncall: pt2", "module: inductor" ]
0
CONTRIBUTOR
### 🐛 Describe the bug We should make sure that float32|bfloat16 -> e8m0 and back cast works in torchinductor: ```python import torch dtype = torch.float8_e8m0fnu hp_dtype = torch.float32 # and torch.bfloat16 def foo(x0): x1 = x0.to(dtype) x2 = x1.to(hp_dtype) return x2 x0 = torch.randn(16, 16, device=device, dtype=hp_dtype) foo_c = torch.compile(foo, backend="inductor", fullgraph=True) with torch.no_grad(): y_c = foo_c(x0) ``` * Today, this fails with the following error message: https://gist.github.com/vkuzo/e6ab922d3ddabec8d9f7836d56d58712 * A failing, skipped test case for this behavior is being added in https://github.com/pytorch/pytorch/pull/147770 This is important for the PT2 support of MX workflows (tracked in https://github.com/pytorch/ao/issues/556). Specifically, once this functionality exists, a user would be able to write a scaling+casting kernel for MX and directly cast from float32 to e8m0, without having to implement this cast themselves with bit shifting. The semantics of the cast to e8m0 are described in detail in https://github.com/pytorch/pytorch/issues/146414. ### Versions main branch cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @aakhundov @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4 @desertfire @yushangdi
true
2,879,268,609
Does CUDACachingAllocator.cpp still require deferred event creation?
galv
open
[ "module: cuda", "triaged", "module: CUDACachingAllocator" ]
2
COLLABORATOR
### 🚀 The feature, motivation and pitch This commit back in 2017 changed the cuda caching allocator pretty drastically: https://github.com/pytorch/pytorch/commit/07f5b21ef1bd29d1451c616062dcbfc3f8fd7c6a The previous one had the following semantics: - The user would call CachingHostAllocator_recordEvent() after every usage of a pinned memory allocation (this actually happens in only one place, in Copy.cu, right now). This would create a cudaEvent_t after every time recordEvent() was called. Note that cudaEventCreateWithFlags can be a potentially expensive call in terms of time taken and whether it takes locks. - A memory block was "safe" to free only if cudaEventQuery() on all events recorded for that block returned cudaSuccess. The one after that commit has the following semantics: - The user would still call CachingHostAllocator_recordEvent() after every usage of a pinned memory allocation, but no cuda event would be created. Instead, the cuda stream on which the usage occurred would be saved into a hashed set. No event would be created. - Instead, event creation would be deferred until free() was called, with the events being recorded on all streams the pinned memory was used on. This means that the corresponding events could potentially include kernels that happen after the call to CachingHostAllocator_recordEvent(), so after this "optimization", the event becomes less precise. My hunch is that this can potentially increase pinned memory usage, though I don't have an example right now. The referenced PR https://github.com/pytorch/pytorch/pull/702 is not a PR; it's an issue. So I can't read it to try to understand the motivation better. @soumith do you have any idea what happened here? Was there an old repo for pytorch before the current one? Regardless, I think the goal of that PR was to remove cudaEventCreate from the critical path, by moving it to free() rather than CachingHostAllocator_recordEvent(). However @ajtulloch made a PR that creates a cache of cuda events in #69299 that does this in a more correct way. There is no reason why free() wouldn't necessarily be on the critical path (i.e., blocking your cpu from launching more cuda kernels) in pythonic pytorch code. (e.g., it would happen every time a pinned tensor goes out of scope if there are no references to it). So Andrew's PR is much better. Context is that I am working on adding cuda stream graph capture support to code calling torch.Tensor.pin_memory(). cuda events can no longer be used to check for whether all usages of a piece of pinned memory are allocated. I believe I know the right way (see whether a path exists from the kernel using the pinned allocation to the node just before the free() call), but certainly the above behavior was quite confusing to me. To be frank, the CUDACachingAllocator.cpp file has expanded in size and complexity over the years, so I'm not sure about removing this old optimization, for fear of messing something up. But I wanted to document the concern. ### Alternatives _No response_ ### Additional context _No response_ cc @ptrblck @msaroufim @eqy
true
2,879,263,484
returning tensors of dtype torch.float8_e8m0fnu should work with torchinductor
vkuzo
closed
[ "triaged", "oncall: pt2", "module: inductor" ]
1
CONTRIBUTOR
### 🐛 Describe the bug We should make sure the following works: ```python import torch dtype = torch.float8_e8m0fnu device = "cuda" def foo(x0): x1 = x0 + 1 x2 = x1.view(dtype) return x2 x0 = torch.randint(0, 255, (16, 16), device=device, dtype=torch.uint8) foo_c = torch.compile(foo, backend="inductor", fullgraph=True) with torch.no_grad(): y_c = foo_c(x0) ``` * Today, this fails with the following error message: https://gist.github.com/vkuzo/d2f560d34b7c68fc89671fa8f80f6294 * A failing, skipped test case for this behavior is being added in https://github.com/pytorch/pytorch/pull/147770 This is important for the PT2 support of MX workflows (tracked in https://github.com/pytorch/ao/issues/556). Specifically, once this functionality exists, a user would be able to write a scaling+casting kernel for MX and output the scales directly in the e8m0 dtype, instead of having to output in uint8 and view as e8m0 afterwards. ### Versions main branch cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,879,252,020
[dynamo] add context manager debug information to graph breaks
williamwen42
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor", "module: compile ux" ]
15
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #147912 * __->__ #147872 * #147494 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,879,220,295
[dynamo] Plumb HOP debug info into side_effects
williamwen42
open
[ "triaged", "oncall: pt2", "module: dynamo", "module: higher order operators", "module: pt2-dispatcher", "dynamo-side-effects", "module: compile ux" ]
0
MEMBER
See https://github.com/pytorch/pytorch/pull/147385#discussion_r1967836734 cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames @zou3519 @ydwu4 @bdhirsh
true
2,879,218,232
[Not4Land] test `optree` with HEAD version
XuehaiPan
closed
[ "open source", "ciflow/trunk", "topic: not user facing", "module: pytree", "not4land", "module: dynamo", "ciflow/inductor", "keep-going", "ci-test-showlocals" ]
2
COLLABORATOR
cc @zou3519 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,879,207,520
[dtensor] refactor sharding prop to handle cross mesh computation
wanchaol
closed
[ "oncall: distributed", "triaged", "open source", "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: distributed (dtensor)" ]
3
COLLABORATOR
as titled, this PR moves the same mesh check from the sharding propagation level to each individual operator level. This is to allow more flexibility for each individual operator to check the operator can be run on the same mesh or not. For example, before this PR if user have two DTensor params that lives on different DeviceMesh, and want to run `for_each` operator on them individually, it would error out with cross mesh error. But for foreach computation there could be DTensors that live on different meshes, as long as the the mesh are the same in a "zipped way". This should also fix https://github.com/pytorch/pytorch/issues/134212 Fixes #ISSUE_NUMBER cc @H-Huang @awgu @kwen2501 @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,879,130,860
Track follow ups to #147354
mikaylagawarecki
open
[ "module: internals", "triaged" ]
0
CONTRIBUTOR
Filing issue to track https://github.com/pytorch/pytorch/pull/147354#pullrequestreview-2631005924 tl;dr inplace `Tensor.set_(storage)` (except for the [meta symint variant](https://github.com/pytorch/pytorch/blob/346bbefa630b58fda5453373e2a3bdcc32236a16/aten/src/ATen/native/TensorShape.cpp#L397) which seems to properly handle this) would - unsafely set the storage offset https://github.com/pytorch/pytorch/blob/346bbefa630b58fda5453373e2a3bdcc32236a16/aten/src/ATen/native/TensorShape.cpp#L383 - call resize_, which would skip resizing if the sizes and strides were unchanged https://github.com/pytorch/pytorch/blob/346bbefa630b58fda5453373e2a3bdcc32236a16/aten/src/ATen/native/Resize.cpp#L204-L206 **This is reachable from the weights only unpickler and it was found that this can be used to trigger out of bounds accesses.** To fix this I added a check to make sure the storage is within bounds if the size/stride don't change using `checkInBoundsForStorage` However despite this function already being symintified, there were two points within `checkStorageInBounds` that caused "Could not guard on data-dependent expression" issues. Per ttps://docs.google.com/document/d/1HSuTTVvYH1pTew89Rtpeu84Ht3nQEFTYhAX3Ypa_xJs/edit?usp=sharing I made the following changes (1) `storage_size_bytes == 0` https://github.com/pytorch/pytorch/blob/346bbefa630b58fda5453373e2a3bdcc32236a16/aten/src/ATen/native/Resize.h#L91-L93 I made this use `TORCH_GUARD_SIZE_OBLIVIOUS` to make the early return evaluate to False when compiling https://github.com/pytorch/pytorch/blob/8e4decdb6e3f4f70488d4967de1dffabe96c9064/aten/src/ATen/native/Resize.h#L104-L106 (2) The TORCH_CHECK to make sure storage size + offset <= size of the new storage https://github.com/pytorch/pytorch/blob/346bbefa630b58fda5453373e2a3bdcc32236a16/aten/src/ATen/native/Resize.h#L96-L110 I changed this to a TORCH_SYM_CHECK to make this a deferred runtime assert, however, because the earlier storage_size_bytes == 0 check is wrapped in TORCH_GUARD_SIZE_OBLIVIOUS, I made the condition the following https://github.com/pytorch/pytorch/blob/8e4decdb6e3f4f70488d4967de1dffabe96c9064/aten/src/ATen/native/Resize.h#L109-L123 where TORCH_MAYBE_SYM_CHECK is defined as such https://github.com/pytorch/pytorch/blob/8e4decdb6e3f4f70488d4967de1dffabe96c9064/c10/core/SymBool.h#L95-L100 sym_eq/sym_le with int64_t arguments would return bool and in order to or the bools I added logic for logical or (||) to SymBool.h https://github.com/pytorch/pytorch/blob/8e4decdb6e3f4f70488d4967de1dffabe96c9064/c10/core/SymBool.h#L52-L54 iiuc the current bitwise or`|` is actually implemented as logical or s(but I had to add || as well since for the bool || bool case, there is a rule that makes sure bools are not being bitwise or-ed in our mobile builds) error: use of bitwise '|' with boolean operands [-Werror,-Wbitwise-instead-of-logical] This issue is to track the changes made and make any appropriate fixes when Ed is back from leave cc @ezyang @bhosmer @smessmer @ljk53 @bdhirsh @albanD
true
2,878,994,133
[Inductor][Tests] Update `get_divisible_by_16` function in `test_torchinductor.py` to work correctly with new Triton
anmyachev
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor" ]
4
COLLABORATOR
cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,878,993,657
Parallelize bf16->f32 conversion for gemm(bf16:bf16->bf16)
aditew01
closed
[ "module: cpu", "triaged", "open source", "module: arm", "topic: not user facing" ]
2
COLLABORATOR
Improves performance for at::addmm / linear kernels when executed in dtype=bfloat16 and when SBGEMM is available. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @malfet @snadampal @milpuz01
true
2,878,987,993
[export] Add support for invoke_subgraph
angelayi
closed
[ "fx", "module: dynamo", "ciflow/inductor", "release notes: export" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #147992 * __->__ #147863 * #147862 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,878,987,765
Add some more meta kernels
angelayi
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147862
true
2,878,922,237
[Resubmit] Record input strides at time of tracing, constrain to them for triton fn
eellison
closed
[ "Merged", "ciflow/trunk", "release notes: fx", "fx", "module: inductor", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147861 Resubmit of https://github.com/pytorch/pytorch/pull/145448. it lost its changes on rebase. cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,878,919,076
addmv bfloat16 accuracy issues on cpu
AnthonyBarbier
closed
[ "triaged", "module: bfloat16", "module: linear algebra", "module: correctness (silent)", "module: arm", "module: intel" ]
2
CONTRIBUTOR
### 🐛 Describe the bug Significant inaccuracy when using addmv composite opinstead of individual ops with bf16 inputs : ```python import torch b = torch.tensor([5.8438, -6.3125], dtype=torch.bfloat16) A = torch.tensor( [ [4.3125, -6.4375, -3.8125, 4.3125, 8.2500, -5.4062, -3.2656, -5.4688, 6.1562, -2.9062], [7.0000, 0.7617, 5.1875, -4.9375, 4.5625, -6.5938, -0.9023, 6.4375, -2.4219, -3.3906], ], dtype=torch.bfloat16, ) x = torch.tensor( [5.6875, -8.0000, 8.0625, 5.0000, -4.7812, 7.4375, -1.4766, 3.2344, 1.9688, -3.3125], dtype=torch.bfloat16, ) c = b + (A @ x) print(f"b + (A @ x) = {c}") out = torch.addmv(b, A, x, alpha=1, beta=0) print(f"addmv(beta=0) + b bfloat {out+b}") print(f"addmv(beta=0) + b fp32 {(out.float()+b.float()).bfloat16()}") out = torch.addmv(b, A, x, alpha=1, beta=1) print(f"addmv bfloat {out}") ``` Output on x86 with https://download.pytorch.org/whl/nightly/cpu/torch-2.7.0.dev20250224%2Bcpu-cp313-cp313-manylinux_2_28_x86_64.whl ``` b + (A @ x) = tensor([1.9219, 2.3125], dtype=torch.bfloat16) addmv(beta=0) + b bfloat tensor([1.9219, 2.3125], dtype=torch.bfloat16) addmv(beta=0) + b fp32 tensor([1.9219, 2.3125], dtype=torch.bfloat16) addmv bfloat tensor([1.6562, 2.1562], dtype=torch.bfloat16) ``` Output on Graviton 3 with https://download.pytorch.org/whl/nightly/cpu/torch-2.7.0.dev20250224%2Bcpu-cp310-cp310-manylinux_2_28_aarch64.whl ``` b + (A @ x) = tensor([1.9219, 2.3125], dtype=torch.bfloat16) addmv(beta=0) + b bfloat tensor([1.9219, 2.3125], dtype=torch.bfloat16) addmv(beta=0) + b fp32 tensor([1.9219, 2.3125], dtype=torch.bfloat16) addmv bfloat tensor([1.6562, 2.1562], dtype=torch.bfloat16) ``` It doesn't seem to be an accumulation issue as it only affects the "add" part. I thought maybe it was an issue to do with the accumulator being fp32 which is why I tried to manually upcast the operands for the add but that didn't change anything. ### Versions x86 Environment: ``` Collecting environment information... PyTorch version: 2.7.0.dev20250224+cpu Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: EndeavourOS Linux (x86_64) GCC version: (GCC) 14.2.1 20250207 Clang version: Could not collect CMake version: version 3.31.5 Libc version: glibc-2.41 Python version: 3.13.2 (main, Feb 5 2025, 08:05:21) [GCC 14.2.1 20250128] (64-bit runtime) Python platform: Linux-6.13.4-arch1-1-x86_64-with-glibc2.41 Is CUDA available: False CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3060 Ti Nvidia driver version: 570.86.16 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 20 On-line CPU(s) list: 0-19 Vendor ID: GenuineIntel Model name: 12th Gen Intel(R) Core(TM) i7-12700F CPU family: 6 Model: 151 Thread(s) per core: 2 Core(s) per socket: 12 Socket(s): 1 Stepping: 2 CPU(s) scaling MHz: 24% CPU max MHz: 4900.0000 CPU min MHz: 800.0000 BogoMIPS: 4224.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l2 cdp_l2 ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdt_a rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect user_shstk avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi vnmi umip pku ospke waitpkg gfni vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize arch_lbr flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 512 KiB (12 instances) L1i cache: 512 KiB (12 instances) L2 cache: 12 MiB (9 instances) L3 cache: 25 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-19 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Mitigation; Clear Register File Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.3 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.7.0.dev20250224+cpu [pip3] torchaudio==2.6.0.dev20250224+cpu [pip3] torchvision==0.22.0.dev20250224+cpu [conda] Could not collect ``` Aarch64 environment: ``` Collecting environment information... PyTorch version: 2.7.0.dev20250224+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (aarch64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.12 (main, Feb 4 2025, 14:57:36) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.8.0-1021-aws-aarch64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: aarch64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 16 On-line CPU(s) list: 0-15 Vendor ID: ARM Model: 1 Thread(s) per core: 1 Core(s) per socket: 16 Socket(s): 1 Stepping: r1p1 BogoMIPS: 2100.00 Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm jscvt fcma lrcpc dcpop sha3 sm3 sm4 asimddp sha512 sve asimdfhm dit uscat ilrcpc flagm ssbs paca pacg dcpodp svei8mm svebf16 i8mm bf16 dgh rng L1d cache: 1 MiB (16 instances) L1i cache: 1 MiB (16 instances) L2 cache: 16 MiB (16 instances) L3 cache: 32 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-15 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; __user pointer sanitization Vulnerability Spectre v2: Mitigation; CSV2, BHB Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.3 [pip3] torch==2.7.0.dev20250224+cpu [pip3] torchaudio==2.6.0.dev20250224 [pip3] torchvision==0.22.0.dev20250224 [conda] Could not collect ``` cc @jianyuh @nikitaved @pearu @mruberry @walterddr @xwang233 @Lezcano @malfet @snadampal @milpuz01 @frank-wei @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,878,861,329
Exporting a PyTorch Model with Dynamic ModuleList Indexing to ONNX
tso2381637
open
[ "module: onnx", "triaged" ]
0
NONE
Description: I have a PyTorch model that contains a torch.nn.ModuleList with multiple torch.nn.Linear layers. The forward pass selects a specific layer dynamically based on an index input. Below is the model definition: ``` import torch class TorchModel(torch.nn.Module): def __init__(self): super().__init__() self.fc1 = torch.nn.ModuleList([torch.nn.Linear(10, 10) for _ in range(10)]) def forward(self, x, i): return self.fc1[i](x) ``` I want to export this model to ONNX while preserving the dynamic indexing (self.fc1[i]) so that I can perform inference in ONNX with a variable index value. However, ONNX does not natively support dynamic indexing for ModuleList. Is there a way to export this model to ONNX while ensuring that the entire computation graph, including dynamic layer selection, is preserved? If not, what are the possible workarounds to achieve similar functionality in ONNX?
true
2,878,790,729
[fix]: Offload OpenBLAS gemv calls to dedicated OpenBLAS kernel
nikhil-arm
open
[ "open source" ]
5
COLLABORATOR
Description: 1. Directly call mv and addmv call instead of re-routing via addmm 2. Avoid weight transpose as mv and addmv does not require it Improvement: 14% perf improvement for gemv operator on shape of 1 4096 4096 Tester Script: ``` import torch import torch.nn as nn import torch.profiler as profiler from time import time import numpy as np import sys torch.manual_seed(0) M = 1 K = 4096 N = 4096 bias = 1 dtype=torch.float32 class Net(nn.Module): def __init__(self, K, N): super(Net, self).__init__() b = (bias == 1) self.linear = torch.nn.Linear(K, N, bias=b, dtype=dtype) def forward(self, x): return self.linear(x) model = Net(K, N) model.eval() input = torch.randn(M, K, dtype=dtype) for _ in range(5): model(input) with profiler.profile(with_stack=True, profile_memory=False, record_shapes=True) as prof: for _ in range(10000): outputs = model(input) print(prof.key_averages(group_by_input_shape=True).table(sort_by='self_cpu_time_total', row_limit=50)) print("Output Shape ", outputs.shape) ``` Change-Id: Ia0fc13c61fc63e5c01485958d12ea65aab50aa2f Fixes #ISSUE_NUMBER
true
2,878,573,749
Triton aarch64 and triton sbsa
johnnynunez
closed
[ "oncall: releng" ]
1
CONTRIBUTOR
### 🚀 The feature, motivation and pitch Why? runners: Github: https://github.blog/changelog/2025-01-16-linux-arm64-hosted-runners-now-available-for-free-in-public-repositories-public-preview/ windows arm q2 2025: https://github.com/github/roadmap/issues/1098 Devices: GH200 and future devices: Digits, jetson thor, cuda arm laptops are coming Nvidia is merging SBSA and ARM64 together ### Alternatives alls is in x86_64 https://download.pytorch.org/whl/nightly/pytorch-triton/ alternatives, at this moment for jetson: https://github.com/dusty-nv/jetson-containers/tree/master/packages/ml/triton ### Additional context useful for use in github arm runners like flash attention repository for GH200 cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @malfet @seemethere @snadampal @milpuz01 @bertmaher @int3 @davidberard98 @nmacchioni @chenyang78 @embg @peterbell10 @aakhundov
true
2,878,566,821
[BE] Parameterize TestSDPA in test_mps.py
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147856
true
2,878,535,154
[DO NOT MERGE] Migrate from oneDNN Inner Product to oneDNN MatMul for mkldnn_linear and mkldnn_linear_backward
jiayisunx
open
[ "module: cpu", "module: mkldnn", "open source", "ciflow/linux-aarch64" ]
2
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147855 * #147360 * #147073 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @gujinghui @PenghuiCheng @jianyuh @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal
true
2,878,495,103
[ONNX] BitwiseOr was generated for bool inputs (invalid)
JuntaoLiu01
open
[ "module: onnx", "triaged" ]
27
NONE
### 🐛 Describe the bug ```python def trans2onnx_v2(torch_model, onnx_path): image = torch.randn(1, 3, 640, 640) mask = torch.randint(0, 1, (1, 1, 640, 640), dtype=torch.int64) image = image.cuda() mask = mask.cuda() # work ok onnx_program = torch.onnx.dynamo_export(torch_model, image, mask) # fail export_options = torch.onnx.ExportOptions(dynamic_shapes=True) onnx_program = torch.onnx.dynamo_export(torch_model, image, mask, export_options=export_options) onnx_program.save(onnx_path) ``` when export with ```python onnx_program = torch.onnx.dynamo_export(torch_model, image, mask) ``` the program works OK! but errors occur when run with: ```python export_options = torch.onnx.ExportOptions(dynamic_shapes=True) onnx_program = torch.onnx.dynamo_export(torch_model, image, mask, export_options=export_options) ``` the error is: ``` torch._dynamo.exc.Unsupported: unsupported operator: aten._fft_r2c.default ``` ### Versions PyTorch version: 2.4.0 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A Clang version: 13.0.1 (Red Hat 13.0.1-2.module+el8.6.0+37+eac49f58) Libc version: glibc-2.28 Python version: 3.10.16 (main, Dec 11 2024, 16:24:50) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.4.119-19-0009.11-x86_64-with-glibc2.28 Is CUDA available: True CUDA runtime version: 12.2.140 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Tesla T4 Nvidia driver version: 535.104.05 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] numpy==2.0.1 [pip3] onnx==1.17.0 [pip3] onnxruntime==1.20.1 [pip3] onnxscript==0.2.0 [pip3] torch==2.4.0 [pip3] torchvision==0.19.0 [pip3] triton==3.0.0 [conda] blas 1.0 mkl [conda] cuda-cudart 12.1.105 0 nvidia [conda] cuda-cupti 12.1.105 0 nvidia [conda] cuda-libraries 12.1.0 0 nvidia [conda] cuda-nvrtc 12.1.105 0 nvidia [conda] cuda-nvtx 12.1.105 0 nvidia [conda] cuda-opencl 12.6.77 0 nvidia [conda] cuda-runtime 12.1.0 0 nvidia [conda] ffmpeg 4.3 hf484d3e_0 pytorch [conda] libcublas 12.1.0.26 0 nvidia [conda] libcufft 11.0.2.4 0 nvidia [conda] libcurand 10.3.7.77 0 nvidia [conda] libcusolver 11.4.4.55 0 nvidia [conda] libcusparse 12.0.2.55 0 nvidia [conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch [conda] libnvjitlink 12.1.105 0 nvidia [conda] mkl 2023.1.0 h213fc3f_46344 [conda] mkl-service 2.4.0 py310h5eee18b_1 [conda] mkl_fft 1.3.11 py310h5eee18b_0 [conda] mkl_random 1.2.8 py310h1128e8f_0 [conda] numpy 2.0.1 py310h5f9d8c6_1 [conda] numpy-base 2.0.1 py310hb5e798b_1 [conda] pytorch 2.4.0 py3.10_cuda12.1_cudnn9.1.0_0 pytorch [conda] pytorch-cuda 12.1 ha16c6d3_6 pytorch [conda] pytorch-mutex 1.0 cuda pytorch [conda] torchtriton 3.0.0 py310 pytorch [conda] torchvision 0.19.0 py310_cu121 pytorch
true
2,878,308,461
DISABLED test_mixed_mm_exhaustive_dtypes (__main__.TestPatternMatcher)
pytorch-bot[bot]
open
[ "module: rocm", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
1
NONE
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_mixed_mm_exhaustive_dtypes&suite=TestPatternMatcher&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/37769671030). Over the past 3 hours, it has been determined flaky in 4 workflow(s) with 5 failures and 4 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_mixed_mm_exhaustive_dtypes` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_pattern_matcher.py", line 405, in test_mixed_mm_exhaustive_dtypes self._test_mixed_impl(fn, args, True, False, rtol=0.16, atol=1e-4) File "/var/lib/jenkins/pytorch/test/inductor/test_pattern_matcher.py", line 333, in _test_mixed_impl FileCheck().check("k_idx").check(".to(").check("tl.dot").run(code) RuntimeError: Expected to find ".to(" but did not find it Searched string: acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE) for k_idx in range(0, tl.cdiv(K, BLOCK_K)): a_k_idx_vals = offs_k[None, :] + (k_idx * BLOCK_K) b_k_idx_vals = offs_k[:, None] + (k_idx * BLOCK_K) idx_m = offs_a_m[:, None] idx_n = a_k_idx_vals xindex = idx_n + 256*idx_m a = tl.load(A + (xindex)) idx_m = b_k_idx_vals idx_n = offs_b_n[None, :] xindex = idx_n + 256*idx_m b = tl.load(B + (xindex)) acc += tl.dot(a, b, allow_tf32=ALLOW_TF32) # rematerialize rm and rn to save registers rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) idx_m = rm[:, None] idx_n = rn[None, :] mask = (idx_m < M) & (idx_n < N) # inductor generates a suffix xindex = idx_n + 256*idx_m tl.store(out_ptr0 + (tl.broadcast_to(xindex, acc.shape)), acc, mask) ''', device_str='cuda') meta0 = {'GROUP_M': 8, 'EVEN_K': True, 'ALLOW_TF32': 'False', 'ACC_TYPE': 'tl.float32', 'BLOCK_M': 64, 'BLOCK_N': 32, 'BLOCK_K': 128, 'matrix_instr_nonkdim': 16} async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (256, 256), (256, 1)) assert_size_stride(arg1_1, (256, 256), (256, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((256, 256), (256, 1), torch.float16) # Topologically Sorted Source Nodes: [to], Original ATen: [aten._to_copy] stream0 = get_raw_stream(0) triton_poi_fused__to_copy_0.run(arg0_1, buf0, 65536, grid=grid(65536), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((256, 256), (256, 1), torch.float16) # Topologically Sorted Source Nodes: [to, mm], Original ATen: [aten._to_copy, aten.mm] stream0 = get_raw_stream(0) triton_tem_fused__to_copy_mm_1.run(arg1_1, buf0, buf1, grid=torch._inductor.kernel.mm_common.mm_grid(256, 256, meta0), stream=stream0) del arg1_1 del buf0 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.int8) arg1_1 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float16) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module) From CHECK: .to( To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_pattern_matcher.py TestPatternMatcher.test_mixed_mm_exhaustive_dtypes This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_pattern_matcher.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,878,308,327
DISABLED test_inductor_inplace_op_on_view (__main__.CompileTest)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "module: c10d", "oncall: pt2" ]
19
NONE
Platforms: inductor, rocm, linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_inductor_inplace_op_on_view&suite=CompileTest&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/37772363869). Over the past 3 hours, it has been determined flaky in 20 workflow(s) with 40 failures and 20 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_inductor_inplace_op_on_view` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `distributed/test_c10d_functional_native.py` cc @clee2000 @wdvr @chauhang @penguinwu
true
2,878,232,001
expandable_segments does not work for CUDAPluggableAllocator + MemPool
youkaichao
open
[ "module: cuda", "triaged", "module: CUDACachingAllocator" ]
2
COLLABORATOR
### 🐛 Describe the bug Here is an example code: ```python import torch import torch.utils.cpp_extension cpp_sources = """ // save as alloc.cc // compile with g++ alloc.cc -o alloc.so -I/usr/local/cuda/include -shared -fPIC #include <sys/types.h> #include <cuda_runtime_api.h> #include <iostream> // Compile with g++ alloc.cc -o alloc.so -I/usr/local/cuda/include -shared -fPIC extern "C" { void* my_malloc(ssize_t size, int device, cudaStream_t stream) { void *ptr; cudaMalloc(&ptr, size); std::cout<<"C side: alloc "<<ptr<< " " <<size<<std::endl; return ptr; } void my_free(void* ptr, ssize_t size, int device, cudaStream_t stream) { std::cout<<"C side: free "<<ptr<< " "<<size<<std::endl; cudaFree(ptr); } // hack: add this placeholder function to let PyTorch generate module extension template at::Tensor sin_add(at::Tensor x, at::Tensor y) { return x.sin() + y.sin(); } } """ module = torch.utils.cpp_extension.load_inline("alloc", cpp_sources, with_cuda=True, functions=['sin_add']) so_file = module.__file__ def f(): new_alloc = torch.cuda.memory.CUDAPluggableAllocator( so_file, 'my_malloc', 'my_free') with torch.cuda.use_mem_pool(torch.cuda.MemPool(new_alloc._allocator)): for factor in (1024, 1024 ** 2): data = torch.empty((60, factor), dtype=torch.uint8, device="cuda") del data data = torch.empty((70, factor), dtype=torch.uint8, device="cuda") del data f() import gc gc.collect() ``` When I run it directly, I can see my allocator is called, and there are some lines printed: ```text C side: alloc 0x7ff075e00000 2097152 C side: alloc 0x7ff058000000 62914560 C side: alloc 0x7ff052000000 73400320 ``` However, when I enable expandable segment, via `PYTORCH_CUDA_ALLOC_CONF="expandable_segments:True" python test.py` , I get no output. My custom allocator is not used at all. This is reported by vllm users who use vllm's sleep mode. see https://github.com/vllm-project/vllm/pull/11743#issuecomment-2681730438 . ### Versions Collecting environment information... PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.2 Libc version: glibc-2.35 Python version: 3.10.15 (main, Oct 3 2024, 07:27:34) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-1071-nvidia-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.5.82 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3 GPU 1: NVIDIA H100 80GB HBM3 GPU 2: NVIDIA H100 80GB HBM3 GPU 3: NVIDIA H100 80GB HBM3 GPU 4: NVIDIA H100 80GB HBM3 GPU 5: NVIDIA H100 80GB HBM3 GPU 6: NVIDIA H100 80GB HBM3 GPU 7: NVIDIA H100 80GB HBM3 Nvidia driver version: 570.86.15 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.7.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 224 On-line CPU(s) list: 0-223 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8480C CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 56 Socket(s): 2 Stepping: 8 CPU max MHz: 3800.0000 CPU min MHz: 800.0000 BogoMIPS: 4000.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 5.3 MiB (112 instances) L1i cache: 3.5 MiB (112 instances) L2 cache: 224 MiB (112 instances) L3 cache: 210 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-55,112-167 NUMA node1 CPU(s): 56-111,168-223 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.5.1 [pip3] torchaudio==2.5.1 [pip3] torchvision==0.20.1 [pip3] triton==3.1.0 [conda] Could not collect cc @ptrblck @msaroufim @eqy
true
2,878,224,624
The issue where opt_output in fx_graph_runnable.py is inconsistent with the actual output when testing run_repro(acc=True)
MovieTrack
closed
[]
1
NONE
### 🐛 Describe the bug Conclusion ✔ Use .clone() before modifying tensors from expand(), view(), or as_strided(). ✔ Ensure tensors are .contiguous() before operations. ✔ Debug with x.is_contiguous() to check memory layout. If the issue persists, share a code snippet for further debugging! 🚀 ### Versions Conclusion ✔ Use .clone() before modifying tensors from expand(), view(), or as_strided(). ✔ Ensure tensors are .contiguous() before operations. ✔ Debug with x.is_contiguous() to check memory layout. If the issue persists, share a code snippet for further debugging! 🚀
true
2,878,219,992
Immediate Global State Mutation After Using `_force_original_view_tracking` Decorator
vwrewsge
open
[ "triaged", "oncall: pt2", "module: aotdispatch", "module: pt2-dispatcher", "internal ramp-up task" ]
1
NONE
### 🐛 Describe the bug Similar to [# 113359](https://github.com/pytorch/pytorch/pull/113359), when using the _force_original_view_tracking decorator in PyTorch, the global state of the view replay (torch._C._is_view_replay_enabled()) is mutated immediately after the decorator is applied, even though it should not modify the global state until the decorated function is executed. # Code ``` import torch from torch.autograd.grad_mode import _force_original_view_tracking # Save original view replay state original_mode = torch._C._is_view_replay_enabled() print(original_mode) # Apply decorator (should NOT modify global state until function execution) @_force_original_view_tracking(not original_mode) def test_function(x): return x # Check if global state was mutated immediately after decoration current_mode = torch._C._is_view_replay_enabled() if current_mode != original_mode: print("NOT THE SAME") ``` ### Versions PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A cc @chauhang @penguinwu @zou3519 @bdhirsh
true
2,878,212,438
[inductor] [cpu] `torch.nn.Fold` throws assertionerror in codegen
shaoyuyoung
closed
[ "triaged", "oncall: pt2", "oncall: cpu inductor" ]
4
CONTRIBUTOR
### 🐛 Describe the bug **description**: when compiling `torch.nn.Fold`, eager pass the check while inductor throws assertion error on CPU. **device backend**: only CPP ```python import torch import torch.nn as nn import torch.nn.functional as F from torch._inductor import config config.fallback_random = True torch.set_grad_enabled(False) class Model(torch.nn.Module): def __init__(self): super().__init__() self.fold = torch.nn.Fold(output_size=(4, 4), kernel_size=(2, 2), stride=(2, 2)) def forward(self, x): x = self.fold(x) return x model = Model() x = torch.randn(1, 4, 4) inputs = [x] def run_test(model, inputs, backend): torch.manual_seed(0) if backend != "eager": model = torch.compile(model, backend=backend) try: c_output = model(*inputs) print(c_output) except Exception as e: print(e) run_test(model, inputs, 'eager') run_test(model, inputs, 'inductor') ``` ### Error logs ``` tensor([[[[-1.4824, 0.3560, -0.1719, 0.8068], [ 0.1535, 1.0522, -0.2272, 0.0148], [-1.4766, -0.4049, -0.1608, 0.3579], [ 0.5846, -1.5835, -0.9422, -0.3230]]]]) C0225 20:16:07.828000 162414 site-packages/torch/_inductor/scheduler.py:1163] [0/0] Error in codegen for ComputedBuffer(name='buf1', layout=MutationLayoutSHOULDREMOVE('cpu', torch.float32, size=[1, 1, 4, 4], stride=[16, 16, 4, 1]), data=Scatter(device=device(type='cpu'), dtype=torch.float32, inner_fn=<function ReinterpretView.make_loader.<locals>.loader at 0x7f078c1b3060>, ranges=[1, 1, 2, 2, 2, 2], output_indexer=<function index_output_size_and_inner_fn.<locals>.fn at 0x7f078c1b2fc0>, scatter_mode='atomic_add')) AssertionError: ``` ### Versions nightly 20250225 cc @chauhang @penguinwu
true
2,878,186,396
[inductor] [silence] inconsistent swap wih eager when compiling `torch.rot90-torch.randn_like`
shaoyuyoung
open
[ "high priority", "triaged", "oncall: pt2", "module: aotdispatch", "module: pt2-dispatcher" ]
1
CONTRIBUTOR
### 🐛 Describe the bug **description**: this bug is triggered only when `torch.rot90` and `torch.randn_like` are used together. In my case, u can see the **second element (-2.1788)** and the **third element (-0.2934)** are swapped by inductor (compared with eager). **device backend**: both triton and CPP **note**: I have used `config.fallback_random = True` and `torch.manual_seed(0)` ```python import torch import torch.nn as nn import torch.nn.functional as F from torch._inductor import config config.fallback_random = True torch.set_grad_enabled(False) torch.manual_seed(0) class Model(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): torch.manual_seed(0) x = torch.rot90(x, k=1, dims=[2, 3]) print(x) x = torch.randn_like(x) print(x) return x model = Model() x = torch.randn(1, 1, 2, 2) inputs = [x] def run_test(model, inputs, backend): if backend != "eager": model = torch.compile(model, backend=backend) torch.manual_seed(0) output = model(*inputs) return output output = run_test(model, inputs, 'eager') c_output = run_test(model, inputs, 'inductor') print(torch.allclose(output, c_output, 1e-3, 1e-3, equal_nan=True)) print(torch.max(torch.abs(output - c_output))) ``` ### Error logs ``` tensor([[[[-0.2934, 0.5684], [ 1.5410, -2.1788]]]]) tensor([[[[ 1.5410, -2.1788], [-0.2934, 0.5684]]]]) tensor([[[[-0.2934, 0.5684], [ 1.5410, -2.1788]]]]) tensor([[[[ 1.5410, -0.2934], [-2.1788, 0.5684]]]]) False tensor(1.8854) ``` ### Versions nightly 20250225 cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu @bdhirsh @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @muchulee8 @amjames @aakhundov
true
2,878,176,533
`RuntimeError` not raised for `out=` argument in `torch.tensordot` with `requires_grad` tensors
vwrewsge
closed
[ "module: autograd", "triaged", "actionable" ]
1
NONE
### 🐛 Describe the bug When using torch.tensordot with tensors that have requires_grad=True, the function should raise a RuntimeError when the out argument is passed, as the operation does not support automatic differentiation. # Code ``` import torch # Create input tensors with requires_grad=True a = torch.empty((2, 3), requires_grad=True) b = torch.empty((3, 4), requires_grad=True) c = torch.empty((2, 4)) # Should throw RuntimeError: "functions with out=... arguments don't support automatic differentiation" torch.tensordot(a, b, dims=([1], [0]), out=c) ``` # Similar PR [#117067](https://github.com/pytorch/pytorch/pull/117067) ### Versions PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A cc @ezyang @albanD @gqchen @pearu @nikitaved @soulitzer @Varal7 @xmfan
true
2,878,148,689
Set disable_clone=True when running opt_gm
Danielmic
open
[ "triaged", "open source", "Stale", "module: dynamo" ]
3
CONTRIBUTOR
Fixes #147843 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,878,135,773
Python warnings are printed multiple times
vwrewsge
open
[ "oncall: jit" ]
2
NONE
### 🐛 Describe the bug Following the change in [PR #128581](https://github.com/pytorch/pytorch/pull/128581), Python warnings should be printed once unless the warning cache is reset. However, when running the following code, the warning appears multiple times instead of once. ``` import torch # A function that causes the JIT tracer to emit a warning when traced def func(x): # Use non-deterministic operation to trigger a warning return x + torch.rand_like(x) for _ in range(10): traced = torch.jit.trace(func, (torch.ones(2, 2),)) # Run the traced function to ensure tracing occurs traced(torch.ones(2, 2)) ``` ### Versions PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
2,878,118,128
The opt_output in `fx_graph_runnable.py` is inconsistent with the actual output when testing run_repro(acc=True).
Danielmic
open
[ "triaged", "oncall: pt2" ]
2
CONTRIBUTOR
### 🐛 Describe the bug If the input tensor is created using expand(), view(), or as_strided(), cloning the input in the func same_two_models will fail. The res is mismatch with the output of directly running opt_gm(list(args)). ### Error logs Running result.copy_(x.clone()) throws a runtime error more than one element of the written-to tensor refers to a single memory location. Please clone() the tensor before performing the operation. ### Versions PyTorch version: 2.6.0a0+ecf3bae40a.nv25.01 Is debug build: False CUDA used to build PyTorch: 12.8 ROCM used to build PyTorch: N/A OS: Ubuntu 24.04.1 LTS (x86_64) GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 Clang version: Could not collect CMake version: version 3.31.4 Libc version: glibc-2.39 Python version: 3.12.3 (main, Nov 6 2024, 18:32:19) [GCC 13.2.0] (64-bit runtime) Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.39 Is CUDA available: True CUDA runtime version: 12.8.61 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-PCIE-40GB Nvidia driver version: 535.183.01 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.7.0 cc @chauhang @penguinwu
true
2,878,066,810
[inductor] `torch.slice_scatter` throws `AssertionError` when meeting internal `float32`
shaoyuyoung
open
[ "good first issue", "triaged", "oncall: pt2", "module: inductor" ]
9
CONTRIBUTOR
### 🐛 Describe the bug **description**: when meeting internal `float32` (it's `y` in my case), eager pass the check and return 0 while inductor throws an assertion error **device**: both on triton and CPP ```python import torch import torch.nn as nn import torch.nn.functional as F from torch._inductor import config config.fallback_random = True torch.set_grad_enabled(False) class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x): y = torch.Tensor([0]) # y dtype: torch.float32 x = torch.slice_scatter(y, x, 0) return x model = Model() x = torch.Tensor([0]).to(torch.int64) inputs = [x] def run_test(model, inputs, backend): model.eval() torch.manual_seed(0) if backend != "eager": model = torch.compile(model, backend=backend) try: c_output = model(*inputs) print(c_output) except Exception as e: print(e) run_test(model, inputs, 'eager') run_test(model, inputs, 'inductor') ``` ### Error logs ``` tensor([0.]) LoweringException: AssertionError: target: aten.slice_scatter.default args[0]: TensorBox(StorageBox( Pointwise( 'cpu', torch.float32, def inner_fn(index): _ = index tmp0 = ops.constant(0.0, torch.float32) return tmp0 , ranges=[1], origin_node=full_default, origins=OrderedSet([full_default]) ) )) args[1]: TensorBox(StorageBox( InputBuffer(name='arg0_1', layout=FixedLayout('cpu', torch.int64, size=[1], stride=[1])) )) ``` ### Versions nightly 20250225 cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
2,878,058,590
AttributeError: Can't pickle local object 'make_opaque_bitwise_fn.<locals>.BitwiseFn'
default1360
open
[ "module: pickle", "triaged", "module: dynamic shapes" ]
1
NONE
### 🐛 Describe the bug I encountered an issue while trying to pickle an instance of a dynamically generated class using `make_opaque_bitwise_fn` from `torch.utils._sympy.functions`. ``` import pickle import sympy from torch.utils._sympy.functions import make_opaque_bitwise_fn # Generate the bitwise_and function class BitwiseFn_bitwise_and = make_opaque_bitwise_fn("bitwise_and", "and_") # Create an instance of the dynamically generated class x = BitwiseFn_bitwise_and(sympy.Symbol('a'), sympy.Symbol('b')) data = pickle.dumps(x) ``` # Output ``` AttributeError: Can't pickle local object 'make_opaque_bitwise_fn.<locals>.BitwiseFn' ``` # Similar PR https://github.com/pytorch/pytorch/pull/138395 ### Versions torch 2.6.0 cc @chauhang @penguinwu @ezyang @bobrenjc93
true
2,878,036,896
`AssertionError` in `torch.compile`
default1360
closed
[ "oncall: pt2", "module: dynamo", "dynamo-triage-jan2025" ]
2
NONE
### 🐛 Describe the bug When attempting to compile the `torch.norm` function using `torch.compile`, an `AssertionError` occurs. ``` import torch compiled_norm = torch.compile(torch.norm) ``` ### Versions torch 2.6.0 cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true
2,877,958,088
IndexError: tuple index out of range when running vLLM script
qiangzaiXu
closed
[]
2
NONE
### 🐛 Describe the bug **Description:** When running the provided Python script to load and generate text from a model in vllm, an error occurs during the random seed initialization. ```python from vllm import LLM, SamplingParams if __name__ == '__main__': # Sample prompts prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] # Create a sampling params object. sampling_params = SamplingParams(temperature=0.8, top_p=0.95) # Create an LLM object llm = LLM(model="/data2/Llama-2-70b-hf", dtype="float16", tensor_parallel_size=4, enforce_eager=True, trust_remote_code=True) # Generate texts from the prompts outputs = llm.generate(prompts, sampling_params) # Print the outputs for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` The specific error is: ```python IndexError: tuple index out of range ``` This happens during the call to torch.cuda.default_generators[i], which leads to the failure of the manual_seed function. **Error Traceback:** [rank0]: Traceback (most recent call last): [rank0]: File "/data/offline_4.py", line 19, in <module> [rank0]: llm = LLM(model="/data2/Llama-2-70b-hf", dtype="float16", tensor_parallel_size=4, enforce_eager=True, trust_remote_code=True) [rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/utils.py", line 1051, in inner [rank0]: return fn(*args, **kwargs) [rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/entrypoints/llm.py", line 247, in __init__ [rank0]: self.llm_engine = self.engine_class.from_engine_args( [rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/engine/llm_engine.py", line 484, in from_engine_args [rank0]: engine = cls( [rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/engine/llm_engine.py", line 273, in __init__ [rank0]: self.model_executor = executor_class(vllm_config=vllm_config, ) [rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/executor/executor_base.py", line 262, in __init__ [rank0]: super().__init__(*args, **kwargs) [rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/executor/executor_base.py", line 51, in __init__ [rank0]: self._init_executor() [rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/executor/mp_distributed_executor.py", line 124, in _init_executor [rank0]: self._run_workers("init_device") [rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/executor/mp_distributed_executor.py", line 185, in _run_workers [rank0]: driver_worker_output = run_method(self.driver_worker, sent_method, [rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/utils.py", line 2220, in run_method [rank0]: return func(*args, **kwargs) [rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/worker/worker.py", line 170, in init_device [rank0]: set_random_seed(self.model_config.seed) [rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/utils.py", line 10, in set_random_seed [rank0]: current_platform.seed_everything(seed) [rank0]: File "/usr/local/lib/python3.10/dist-packages/vllm/platforms/interface.py", line 224, in seed_everything [rank0]: torch.manual_seed(seed) [rank0]: File "/usr/local/lib/python3.10/dist-packages/torch/_compile.py", line 31, in inner [rank0]: return disable_fn(*args, **kwargs) [rank0]: File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 600, in _fn [rank0]: return fn(*args, **kwargs) [rank0]: File "/usr/local/lib/python3.10/dist-packages/torch/random.py", line 46, in manual_seed [rank0]: torch.cuda.manual_seed_all(seed) [rank0]: File "/usr/local/lib/python3.10/dist-packages/torch/cuda/random.py", line 131, in manual_seed_all [rank0]: _lazy_call(cb, seed_all=True) [rank0]: File "/usr/local/lib/python3.10/dist-packages/torch/cuda/__init__.py", line 244, in _lazy_call [rank0]: callable() [rank0]: File "/usr/local/lib/python3.10/dist-packages/torch/cuda/random.py", line 128, in cb [rank0]: default_generator = torch.cuda.default_generators[i] [rank0]: IndexError: tuple index out of range ### Versions PyTorch version: 2.5.0a0+872d972e41.nv24.08 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.30.2 Libc version: glibc-2.35 Python version: 3.10.12 (main, Jul 29 2024, 16:56:48) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-60-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.6.20 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A800-SXM4-80GB GPU 1: NVIDIA A800-SXM4-80GB GPU 2: NVIDIA A800-SXM4-80GB GPU 3: NVIDIA A800-SXM4-80GB GPU 4: NVIDIA A800-SXM4-80GB GPU 5: NVIDIA A800-SXM4-80GB GPU 6: NVIDIA A800-SXM4-80GB GPU 7: NVIDIA A800-SXM4-80GB Nvidia driver version: 535.183.01 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.3.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 144 On-line CPU(s) list: 0-143 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8374C CPU @ 2.70GHz CPU family: 6 Model: 106 Thread(s) per core: 2 Core(s) per socket: 36 Socket(s): 2 Stepping: 6 CPU max MHz: 3500.0000 CPU min MHz: 800.0000 BogoMIPS: 5400.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 3.4 MiB (72 instances) L1i cache: 2.3 MiB (72 instances) L2 cache: 90 MiB (72 instances) L3 cache: 108 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-35,72-107 NUMA node1 CPU(s): 36-71,108-143 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.24.4 [pip3] nvidia-cudnn-frontend==1.5.2 [pip3] nvtx==0.2.5 [pip3] onnx==1.16.0 [pip3] optree==0.12.1 [pip3] pynvjitlink==0.2.3 [pip3] pytorch-triton==3.0.0+dedb7bdf3 [pip3] torch==2.5.0a0+872d972e41.nv24.8 [pip3] torch_tensorrt==2.5.0a0 [pip3] torchvision==0.20.0a0
true
2,877,836,094
[Triton upstream] [ROCm]: `RuntimeError: Triton Error [HIP]: Code: 209, Messsage: no kernel image is available for execution on the device`
jataylo
closed
[ "module: rocm" ]
2
COLLABORATOR
### 🐛 Describe the bug Testing on latest torch/triton, running into the following failures: ``` test/inductor/test_torchinductor_opinfo.py::TestInductorOpInfoCUDA::test_comprehensive_mvlgamma_mvlgamma_p_5_cuda_float16 test/inductor/test_torchinductor_opinfo.py::TestInductorOpInfoCUDA::test_comprehensive_mvlgamma_mvlgamma_p_5_cuda_float32 ``` ``` torch._inductor.exc.InductorError: RuntimeError: Triton Error [HIP]: Code: 209, Messsage: no kernel image is available for execution on the device To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_mvlgamma_mvlgamma_p_5_cuda_float16 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` ### Versions PyTorch/Triton TOT cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @hongxiayang @naromero77amd
true
2,877,765,610
[Dynamo] Fix `is_compile_supported()` when `device_type` contains device index
shink
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo" ]
20
CONTRIBUTOR
Fixes #147826 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,877,600,681
Fix recent regression in evaluate_expr that effect cache lookups
laithsakka
closed
[ "Merged", "ciflow/trunk", "release notes: fx", "topic: not user facing", "fx", "module: dynamo", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #147836 PR https://github.com/pytorch/pytorch/pull/146939/ added an argument for evaluate_expr for the purpose of logging. This caused a regression that we thought is due to calling id on symnode. I digged deeper and found that adding that argument although does not effect results of evaluate_expr it mess the cache lookups. I refactored the code to avoid using expr_sym_node_id in the cache lookup, I also introduced evaluate_sym_node to and simplified the calls to evaluate_expr #suppress-bc-linter cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @voznesenskym @penguinwu @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,877,594,634
[Intel GPU] Add synchronize() in torch.utils.benchmark
DDEle
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/xpu" ]
10
CONTRIBUTOR
When following https://pytorch.org/tutorials/recipes/recipes/benchmark.html on XPU, I notice that the device it is not synchronized in the benchmark. This PR tries to fix this and align the behavior with CUDA.
true
2,877,587,777
[test][do not merge] Upgrade oneDNN to v3.7(6)
yanbing-j
closed
[ "module: mkldnn", "open source", "module: arm", "ciflow/trunk", "topic: not user facing", "intel", "module: inductor", "ciflow/inductor", "ciflow/xpu", "ciflow/linux-aarch64" ]
2
COLLABORATOR
Fixes #ISSUE_NUMBER cc @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @Guobing-Chen @Xia-Weiwen @snadampal @malfet @milpuz01 @voznesenskym @penguinwu @EikanWang @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,877,586,156
[test][do not merge] Upgrade oneDNN to v3.7 (5)
yanbing-j
closed
[ "module: mkldnn", "open source", "module: arm", "ciflow/trunk", "topic: not user facing", "intel", "module: inductor", "ciflow/inductor", "ciflow/xpu", "ciflow/linux-aarch64" ]
2
COLLABORATOR
Fixes #ISSUE_NUMBER cc @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @Guobing-Chen @Xia-Weiwen @snadampal @malfet @milpuz01 @voznesenskym @penguinwu @EikanWang @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,877,584,316
[test][do not merge] Upgrade oneDNN to v3.7 (4)
yanbing-j
closed
[ "module: mkldnn", "open source", "module: arm", "ciflow/trunk", "topic: not user facing", "intel", "module: inductor", "ciflow/inductor", "ciflow/xpu", "ciflow/linux-aarch64" ]
2
COLLABORATOR
Fixes #ISSUE_NUMBER cc @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @Guobing-Chen @Xia-Weiwen @snadampal @malfet @milpuz01 @voznesenskym @penguinwu @EikanWang @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true