id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
2,908,701,098
bootcamp task for DTensor
XilunWu
open
[ "oncall: distributed", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #148932 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,908,685,839
Enable lazy tests
cyyever
open
[ "open source", "topic: not user facing" ]
1
COLLABORATOR
Fixes #ISSUE_NUMBER
true
2,908,674,564
[cond] don't trace fw and bw graph in autograd key
ydwu4
closed
[ "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor", "ci-no-td" ]
16
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #148930 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,908,668,043
[cutlass backend] Add addmm and bmm tests for AOTI
henrylhtsang
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #148929 Needs to do: 1. Expand addmm tests to cover all 4 shapes 2. Add dynamic shape support. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,908,668,007
[Codemod][AddExplicitStrictExportArg] caffe2/test/inductor
gmagogsfm
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
5
CONTRIBUTOR
Differential Revision: D70908557 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,908,657,480
default cudagraphable policy for custom op
BoyuanFeng
open
[ "triaged", "module: cuda graphs", "oncall: pt2" ]
2
CONTRIBUTOR
### 🐛 Describe the bug Currently pytorch assumes custom op is cudagraphable. Sometime this is wrong (repro below). Since custom op details is opaque to compiler, there might be something cudagraph cannot support (e.g., cpu ops) and compiler cannot detect that. From correctness perspective, it might be good to `default as non-cudagraphable` for custom ops. On the other side, there are many custom ops that contain only cuda ops. `default as non-cudagraphable` may lead to performance regression. ```python import torch from torch import Tensor @torch.library.custom_op("mylib::foo", mutates_args={}) def foo(x: Tensor) -> Tensor: # weird clone :P # return x.clone() return x.cpu().cuda() @foo.register_fake def _(x): return x.cpu().cuda() @torch.compile(mode="max-autotune") def f(x): return foo(x) x = torch.tensor([0., 1, 2, 3, 4], device="cuda") print(f(x)) x = torch.randn(5, device="cuda") print(f(x)) ``` cc @mcarilli @ezyang @eellison @penguinwu @chauhang @zou3519 ### Versions PyTorch version: 2.7.0a0+git4a2173d Is debug build: False CUDA used to build PyTorch: 12.0 ROCM used to build PyTorch: N/A OS: CentOS Stream 9 (x86_64) GCC version: (GCC) 11.5.0 20240719 (Red Hat 11.5.0-5) Clang version: Could not collect CMake version: version 3.31.4 Libc version: glibc-2.34 Python version: 3.10.15 (main, Oct 3 2024, 07:27:34) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.4.3-0_fbk14_hardened_2601_gcd42476b84e9-x86_64-with-glibc2.34 Is CUDA available: True CUDA runtime version: 12.0.140 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 GPU 1: NVIDIA H100 GPU 2: NVIDIA H100 GPU 3: NVIDIA H100 Nvidia driver version: 550.90.07 cuDNN version: Probably one of the following: /usr/lib64/libcudnn.so.9.1.1 /usr/lib64/libcudnn_adv.so.9.1.1 /usr/lib64/libcudnn_cnn.so.9.1.1 /usr/lib64/libcudnn_engines_precompiled.so.9.1.1 /usr/lib64/libcudnn_engines_runtime_compiled.so.9.1.1 /usr/lib64/libcudnn_graph.so.9.1.1 /usr/lib64/libcudnn_heuristic.so.9.1.1 /usr/lib64/libcudnn_ops.so.9.1.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 184 On-line CPU(s) list: 0-183 Vendor ID: AuthenticAMD Model name: AMD EPYC 9654 96-Core Processor CPU family: 25 Model: 17 Thread(s) per core: 1 Core(s) per socket: 184 Socket(s): 1 Stepping: 1 BogoMIPS: 4792.78 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm rep_good nopl cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw perfctr_core invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 clzero xsaveerptr wbnoinvd arat npt lbrv nrip_save tsc_scale vmcb_clean pausefilter pfthreshold v_vmsave_vmload vgif vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm flush_l1d arch_capabilities Virtualization: AMD-V Hypervisor vendor: KVM Virtualization type: full L1d cache: 11.5 MiB (184 instances) L1i cache: 11.5 MiB (184 instances) L2 cache: 92 MiB (184 instances) L3 cache: 2.9 GiB (184 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-183 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] flake8==6.1.0 [pip3] flake8-bugbear==23.3.23 [pip3] flake8-comprehensions==3.15.0 [pip3] flake8-executable==2.1.3 [pip3] flake8-logging-format==0.9.0 [pip3] flake8-pyi==23.3.1 [pip3] flake8-simplify==0.19.3 [pip3] mypy==1.14.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] optree==0.13.0 [pip3] pytorch-triton==3.1.0+cf34004b8a [pip3] torch==2.7.0a0+git4a2173d [pip3] torchao==0.7.0 [pip3] torchvision==0.20.0a0+120e22b [conda] blas 1.0 mkl [conda] magma-cuda121 2.6.1 1 pytorch [conda] mkl 2023.1.0 h213fc3f_46344 [conda] mkl-include 2023.1.0 h06a4308_46344 [conda] mkl-service 2.4.0 py310h5eee18b_1 [conda] mkl_fft 1.3.10 py310h5eee18b_0 [conda] mkl_random 1.2.7 py310h1128e8f_0 [conda] numpy 1.26.4 py310h5f9d8c6_0 [conda] numpy-base 1.26.4 py310hb5e798b_0 [conda] optree 0.13.0 pypi_0 pypi [conda] pytorch-triton 3.1.0+cf34004b8a pypi_0 pypi [conda] torch 2.7.0a0+git4a2173d dev_0 <develop> [conda] torchao 0.7.0 pypi_0 pypi [conda] torchfix 0.4.0 pypi_0 pypi [conda] torchvision 0.22.0a0+7b2addf dev_0 <develop>
true
2,908,652,276
Only create new tensors in `nn.Module.to_empty` if source tensor is not already on target device
ringohoffman
closed
[ "open source" ]
2
CONTRIBUTOR
Fixes #148843 Some `Module`s are only partially initialized on the meta-device, like with [`accelerate.init_empty_weights()`](https://huggingface.co/docs/accelerate/v0.11.0/en/big_modeling#accelerate.init_empty_weights) to avoid needing to re-initialize non-persistent buffers that are destroyed by `nn.Module.to_empty`, it can instead skip creating empty tensors when the source is already on the target device cc: @awgu
true
2,908,648,115
[modefile free][long tail] selectify fbcode/caffe2/defs.bzl
jordanzoo
closed
[ "fb-exported", "Merged", "topic: not user facing" ]
12
CONTRIBUTOR
Summary: replace read_config with select For more info, please refer to the [doc](https://docs.google.com/document/d/1e0Hvht8WEHhcRvlCAodq_R9xnAtKBrAhdyvxcAqQjCw/edit?tab=t.hl8j18gza0cv) Test Plan: CI Reviewed By: malfet Differential Revision: D70267850
true
2,908,640,562
[triton 3.3] Forward-fix mm template selection logic
davidberard98
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ciflow/rocm" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #148924 Follow-up from https://github.com/pytorch/pytorch/pull/148662. The logic from https://github.com/pytorch/pytorch/pull/148662 is incorrect; what we want is "choose the second template 'AMD-specific template' only if we're on hip AND triton version < 3.3" - negating it, the code should be "choose the cirst template if we're NOT on hip OR triton version >= 3.3". Tested locally to verify that it fixes the test. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,908,628,503
[dynamo][guards] Do not ID_MATCH on numpy tensors
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
8
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #148923 Might help with https://github.com/pytorch/pytorch/issues/148535 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,908,604,878
partitioner: treat inputs with static indices as free to save
bdhirsh
closed
[ "Merged", "ciflow/trunk", "release notes: composability", "module: inductor", "module: dynamo", "ciflow/inductor" ]
4
CONTRIBUTOR
Fixes https://github.com/pytorch/pytorch/issues/141881 internal xref: https://fb.workplace.com/groups/1075192433118967/posts/1538435030128036/?comment_id=1556782068293332 I tried to make a test case out of the code linked in that github issue. The setup + bad outcome today was as follows: (1) you have a graph where one of its inputs is a model weight (2) in the backward, you do some downstream compute on `weight`, `tmp = f(weight)`, where (a) `tmp` is of a smaller size than `weight`, and (b) the compute is trivially fusible into other kernels (so the partitioner thinks it is "free" to recompute (3) since `sizeof(tmp) < sizeof(weight)` and the recompute is free, the partitioner decides that it would be strictly better to save `tmp` for backward instead of weight (4) this is bad: `weight` is a static tensor that sits in GPU memory for the duration of your entire training loop, so saving it for backward has no negative impact on peak memory. Since we're saving `tmp` instead, we end up unnecessarily increasing peak memory. In particular - the repro involves an autograd.Function in eager that saves the weight for bw, so we end up hitting higher peak memory in compile The fix I'm trying out in this PR is to tell the partitioner that graph inputs that we know have static addresses (aka parameters) are "free" to save. Below is the fw/bw graph before my change, where you can see that instead of `primals_2` being saved for backward, we save `t_8` (which involves some low precision downstream compute on `primals_2`, that is only needed in the backward. ``` ===== Forward graph 0 ===== /data/users/hirsheybar/checkout2/pytorch/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module): def forward(self, primals_1: "bf16[64, 64][64, 1]cuda:0", primals_2: "bf16[64, 64][64, 1]cuda:0", primals_3: "bf16[64][1]cuda:0"): # File: /data/users/hirsheybar/checkout2/pytorch/test/dynamo/test_repros.py:6943 in forward, code: out = Fp8LinearFn.apply( abs_1: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten.abs.default(primals_1) view: "bf16[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(abs_1, [64, 1, 64]); abs_1 = None amax: "bf16[64, 1][1, 1]cuda:0" = torch.ops.aten.amax.default(view, [-1]); view = None abs_2: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten.abs.default(primals_2) view_1: "bf16[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(abs_2, [64, 1, 64]); abs_2 = None amax_1: "bf16[64, 1][1, 1]cuda:0" = torch.ops.aten.amax.default(view_1, [-1]); view_1 = None _to_copy: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten._to_copy.default(amax, dtype = torch.float32); amax = None clamp: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.clamp.default(_to_copy, 1e-12); _to_copy = None div: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.div.Tensor(clamp, 448.0); clamp = None reciprocal: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.reciprocal.default(div) view_2: "bf16[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(primals_1, [64, 1, 64]) view_3: "bf16[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.view.default(view_2, [64, 1, 1, 64]); view_2 = None slice_1: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.slice.Tensor(reciprocal, 0, 0, 9223372036854775807); reciprocal = None unsqueeze: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_1, 1); slice_1 = None slice_2: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.slice.Tensor(unsqueeze, 2, 0, 9223372036854775807); unsqueeze = None unsqueeze_1: "f32[64, 1, 1, 1][1, 1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_2, 3); slice_2 = None mul: "f32[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.mul.Tensor(view_3, unsqueeze_1); view_3 = unsqueeze_1 = None view_4: "f32[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(mul, [64, 1, 64]); mul = None view_5: "f32[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(view_4, [64, 64]); view_4 = None _to_copy_1: "f8e4m3fn[64, 64][64, 1]cuda:0" = torch.ops.aten._to_copy.default(view_5, dtype = torch.float8_e4m3fn); view_5 = None _to_copy_2: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten._to_copy.default(amax_1, dtype = torch.float32) clamp_1: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.clamp.default(_to_copy_2, 1e-12); _to_copy_2 = None div_1: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.div.Tensor(clamp_1, 448.0); clamp_1 = None reciprocal_1: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.reciprocal.default(div_1) view_6: "bf16[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(primals_2, [64, 1, 64]) view_7: "bf16[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.view.default(view_6, [64, 1, 1, 64]); view_6 = None slice_3: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.slice.Tensor(reciprocal_1, 0, 0, 9223372036854775807); reciprocal_1 = None unsqueeze_2: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_3, 1); slice_3 = None slice_4: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.slice.Tensor(unsqueeze_2, 2, 0, 9223372036854775807); unsqueeze_2 = None unsqueeze_3: "f32[64, 1, 1, 1][1, 1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_4, 3); slice_4 = None mul_1: "f32[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.mul.Tensor(view_7, unsqueeze_3); view_7 = unsqueeze_3 = None view_8: "f32[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(mul_1, [64, 1, 64]); mul_1 = None view_9: "f32[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(view_8, [64, 64]); view_8 = None _to_copy_3: "f8e4m3fn[64, 64][64, 1]cuda:0" = torch.ops.aten._to_copy.default(view_9, dtype = torch.float8_e4m3fn); view_9 = None t: "f32[1, 64][1, 1]cuda:0" = torch.ops.aten.t.default(div_1); div_1 = None new_ones: "f32[1, 1][1, 1]cuda:0" = torch.ops.aten.new_ones.default(div, [1, 1], pin_memory = False) new_ones_1: "f32[1, 1][1, 1]cuda:0" = torch.ops.aten.new_ones.default(t, [1, 1], pin_memory = False) t_2: "f8e4m3fn[64, 64][1, 64]cuda:0" = torch.ops.aten.t.default(_to_copy_3); _to_copy_3 = None t_3: "f32[1, 1][1, 1]cuda:0" = torch.ops.aten.t.default(new_ones_1); new_ones_1 = None _scaled_mm: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten._scaled_mm.default(_to_copy_1, t_2, new_ones, t_3, None, None, torch.bfloat16); _to_copy_1 = t_2 = new_ones = t_3 = None view_10: "bf16[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(_scaled_mm, [64, 1, 64]); _scaled_mm = None view_11: "bf16[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.view.default(view_10, [64, 1, 1, 64]); view_10 = None slice_5: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.slice.Tensor(div, 0, 0, 9223372036854775807); div = None unsqueeze_4: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_5, 1); slice_5 = None slice_6: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.slice.Tensor(unsqueeze_4, 2, 0, 9223372036854775807); unsqueeze_4 = None unsqueeze_5: "f32[64, 1, 1, 1][1, 1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_6, 3); slice_6 = None mul_2: "f32[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.mul.Tensor(view_11, unsqueeze_5); view_11 = unsqueeze_5 = None view_12: "f32[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(mul_2, [64, 1, 64]); mul_2 = None view_13: "f32[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(view_12, [64, 64]); view_12 = None view_14: "f32[1, 64, 64][4096, 64, 1]cuda:0" = torch.ops.aten.view.default(view_13, [1, 64, 64]); view_13 = None view_15: "f32[1, 64, 64, 1][4096, 64, 1, 1]cuda:0" = torch.ops.aten.view.default(view_14, [1, 64, 64, 1]); view_14 = None slice_7: "f32[1, 64][1, 1]cuda:0" = torch.ops.aten.slice.Tensor(t, 0, 0, 9223372036854775807); t = None unsqueeze_6: "f32[1, 1, 64][1, 64, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_7, 1); slice_7 = None slice_8: "f32[1, 1, 64][1, 64, 1]cuda:0" = torch.ops.aten.slice.Tensor(unsqueeze_6, 2, 0, 9223372036854775807); unsqueeze_6 = None unsqueeze_7: "f32[1, 1, 64, 1][1, 64, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_8, 3); slice_8 = None mul_3: "f32[1, 64, 64, 1][4096, 64, 1, 1]cuda:0" = torch.ops.aten.mul.Tensor(view_15, unsqueeze_7); view_15 = unsqueeze_7 = None view_16: "f32[64, 64, 1][64, 1, 1]cuda:0" = torch.ops.aten.view.default(mul_3, [64, 64, 1]); mul_3 = None view_17: "f32[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(view_16, [64, 64]); view_16 = None _to_copy_4: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten._to_copy.default(view_17, dtype = torch.bfloat16); view_17 = None add: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten.add.Tensor(_to_copy_4, primals_3); _to_copy_4 = primals_3 = None t_4: "bf16[64, 64][1, 64]cuda:0" = torch.ops.aten.t.default(primals_2); primals_2 = None clone: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten.clone.default(t_4, memory_format = torch.contiguous_format); t_4 = None t_5: "bf16[1, 64][1, 1]cuda:0" = torch.ops.aten.t.default(amax_1); amax_1 = None view_21: "bf16[1, 1, 64][1, 64, 1]cuda:0" = torch.ops.aten.view.default(t_5, [1, 1, 64]); t_5 = None amax_3: "bf16[1, 1][1, 1]cuda:0" = torch.ops.aten.amax.default(view_21, [-1]); view_21 = None unsqueeze_8: "bf16[1, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(amax_3, 1); amax_3 = None expand: "bf16[1, 64, 1][1, 0, 1]cuda:0" = torch.ops.aten.expand.default(unsqueeze_8, [1, 64, 1]) clone_1: "bf16[1, 64, 1][64, 1, 1]cuda:0" = torch.ops.aten.clone.default(expand, memory_format = torch.contiguous_format); expand = None view_22: "bf16[64, 1][1, 1]cuda:0" = torch.ops.aten.view.default(clone_1, [64, 1]); clone_1 = None _to_copy_7: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten._to_copy.default(view_22, dtype = torch.float32); view_22 = None clamp_3: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.clamp.default(_to_copy_7, 1e-12); _to_copy_7 = None div_3: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.div.Tensor(clamp_3, 448.0); clamp_3 = None reciprocal_3: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.reciprocal.default(div_3); div_3 = None view_27: "bf16[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(clone, [64, 1, 64]); clone = None view_28: "bf16[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.view.default(view_27, [64, 1, 1, 64]); view_27 = None slice_11: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.slice.Tensor(reciprocal_3, 0, 0, 9223372036854775807); reciprocal_3 = None unsqueeze_11: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_11, 1); slice_11 = None slice_12: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.slice.Tensor(unsqueeze_11, 2, 0, 9223372036854775807); unsqueeze_11 = None unsqueeze_12: "f32[64, 1, 1, 1][1, 1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_12, 3); slice_12 = None mul_5: "f32[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.mul.Tensor(view_28, unsqueeze_12); view_28 = unsqueeze_12 = None view_29: "f32[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(mul_5, [64, 1, 64]); mul_5 = None view_30: "f32[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(view_29, [64, 64]); view_29 = None _to_copy_8: "f8e4m3fn[64, 64][64, 1]cuda:0" = torch.ops.aten._to_copy.default(view_30, dtype = torch.float8_e4m3fn); view_30 = None t_8: "f8e4m3fn[64, 64][1, 64]cuda:0" = torch.ops.aten.t.default(_to_copy_8); _to_copy_8 = None # No stacktrace found for following nodes view_39: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(add, [64, 64]); add = None return (view_39, primals_1, unsqueeze_8, t_8) INFO: TRACED GRAPH ===== Backward graph 0 ===== <eval_with_key>.1 class GraphModule(torch.nn.Module): def forward(self, primals_1: "bf16[64, 64][64, 1]cuda:0", unsqueeze_8: "bf16[1, 1, 1][1, 1, 1]cuda:0", t_8: "f8e4m3fn[64, 64][1, 64]cuda:0", tangents_1: "bf16[64, 64][64, 1]cuda:0"): # File: /data/users/hirsheybar/checkout2/pytorch/test/dynamo/test_repros.py:6946 in forward, code: out = out.unflatten(0, input.shape[:-1]) view_19: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(tangents_1, [64, 64]); tangents_1 = None # File: /data/users/hirsheybar/checkout2/pytorch/test/dynamo/test_repros.py:6943 in forward, code: out = Fp8LinearFn.apply( abs_3: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten.abs.default(view_19) view_20: "bf16[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(abs_3, [64, 1, 64]); abs_3 = None amax_2: "bf16[64, 1][1, 1]cuda:0" = torch.ops.aten.amax.default(view_20, [-1]); view_20 = None expand: "bf16[1, 64, 1][1, 0, 1]cuda:0" = torch.ops.aten.expand.default(unsqueeze_8, [1, 64, 1]); unsqueeze_8 = None clone_1: "bf16[1, 64, 1][64, 1, 1]cuda:0" = torch.ops.aten.clone.default(expand, memory_format = torch.contiguous_format); expand = None view_22: "bf16[64, 1][1, 1]cuda:0" = torch.ops.aten.view.default(clone_1, [64, 1]); clone_1 = None _to_copy_5: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten._to_copy.default(amax_2, dtype = torch.float32); amax_2 = None clamp_2: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.clamp.default(_to_copy_5, 1e-12); _to_copy_5 = None div_2: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.div.Tensor(clamp_2, 448.0); clamp_2 = None reciprocal_2: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.reciprocal.default(div_2) view_23: "bf16[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(view_19, [64, 1, 64]) view_24: "bf16[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.view.default(view_23, [64, 1, 1, 64]); view_23 = None slice_9: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.slice.Tensor(reciprocal_2, 0, 0, 9223372036854775807); reciprocal_2 = None unsqueeze_9: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_9, 1); slice_9 = None slice_10: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.slice.Tensor(unsqueeze_9, 2, 0, 9223372036854775807); unsqueeze_9 = None unsqueeze_10: "f32[64, 1, 1, 1][1, 1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_10, 3); slice_10 = None mul_4: "f32[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.mul.Tensor(view_24, unsqueeze_10); view_24 = unsqueeze_10 = None view_25: "f32[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(mul_4, [64, 1, 64]); mul_4 = None view_26: "f32[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(view_25, [64, 64]); view_25 = None _to_copy_6: "f8e4m3fn[64, 64][64, 1]cuda:0" = torch.ops.aten._to_copy.default(view_26, dtype = torch.float8_e4m3fn); view_26 = None _to_copy_7: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten._to_copy.default(view_22, dtype = torch.float32); view_22 = None clamp_3: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.clamp.default(_to_copy_7, 1e-12); _to_copy_7 = None div_3: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.div.Tensor(clamp_3, 448.0); clamp_3 = None t_6: "f32[1, 64][1, 1]cuda:0" = torch.ops.aten.t.default(div_3); div_3 = None new_ones_2: "f32[1, 1][1, 1]cuda:0" = torch.ops.aten.new_ones.default(div_2, [1, 1], pin_memory = False) new_ones_3: "f32[1, 1][1, 1]cuda:0" = torch.ops.aten.new_ones.default(t_6, [1, 1], pin_memory = False) t_9: "f32[1, 1][1, 1]cuda:0" = torch.ops.aten.t.default(new_ones_3); new_ones_3 = None _scaled_mm_1: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten._scaled_mm.default(_to_copy_6, t_8, new_ones_2, t_9, None, None, torch.bfloat16); _to_copy_6 = t_8 = new_ones_2 = t_9 = None view_31: "bf16[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(_scaled_mm_1, [64, 1, 64]); _scaled_mm_1 = None view_32: "bf16[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.view.default(view_31, [64, 1, 1, 64]); view_31 = None slice_13: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.slice.Tensor(div_2, 0, 0, 9223372036854775807); div_2 = None unsqueeze_13: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_13, 1); slice_13 = None slice_14: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.slice.Tensor(unsqueeze_13, 2, 0, 9223372036854775807); unsqueeze_13 = None unsqueeze_14: "f32[64, 1, 1, 1][1, 1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_14, 3); slice_14 = None mul_6: "f32[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.mul.Tensor(view_32, unsqueeze_14); view_32 = unsqueeze_14 = None view_33: "f32[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(mul_6, [64, 1, 64]); mul_6 = None view_34: "f32[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(view_33, [64, 64]); view_33 = None view_35: "f32[1, 64, 64][4096, 64, 1]cuda:0" = torch.ops.aten.view.default(view_34, [1, 64, 64]); view_34 = None view_36: "f32[1, 64, 64, 1][4096, 64, 1, 1]cuda:0" = torch.ops.aten.view.default(view_35, [1, 64, 64, 1]); view_35 = None slice_15: "f32[1, 64][1, 1]cuda:0" = torch.ops.aten.slice.Tensor(t_6, 0, 0, 9223372036854775807); t_6 = None unsqueeze_15: "f32[1, 1, 64][1, 64, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_15, 1); slice_15 = None slice_16: "f32[1, 1, 64][1, 64, 1]cuda:0" = torch.ops.aten.slice.Tensor(unsqueeze_15, 2, 0, 9223372036854775807); unsqueeze_15 = None unsqueeze_16: "f32[1, 1, 64, 1][1, 64, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_16, 3); slice_16 = None mul_7: "f32[1, 64, 64, 1][4096, 64, 1, 1]cuda:0" = torch.ops.aten.mul.Tensor(view_36, unsqueeze_16); view_36 = unsqueeze_16 = None view_37: "f32[64, 64, 1][64, 1, 1]cuda:0" = torch.ops.aten.view.default(mul_7, [64, 64, 1]); mul_7 = None view_38: "f32[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(view_37, [64, 64]); view_37 = None _to_copy_9: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten._to_copy.default(view_38, dtype = torch.bfloat16); view_38 = None t_10: "bf16[64, 64][1, 64]cuda:0" = torch.ops.aten.t.default(view_19) mm: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten.mm.default(t_10, primals_1); t_10 = primals_1 = None sum_1: "bf16[64][1]cuda:0" = torch.ops.aten.sum.dim_IntList(view_19, [0]); view_19 = None return (_to_copy_9, mm, sum_1) ``` With the change, we save primals_2 for backward instead ``` ===== Forward graph 0 ===== /data/users/hirsheybar/checkout2/pytorch/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module): def forward(self, primals_1: "bf16[64, 64][64, 1]cuda:0", primals_2: "bf16[64, 64][64, 1]cuda:0", primals_3: "bf16[64][1]cuda:0"): # File: /data/users/hirsheybar/checkout2/pytorch/test/dynamo/test_repros.py:6943 in forward, code: out = Fp8LinearFn.apply( abs_1: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten.abs.default(primals_1) view: "bf16[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(abs_1, [64, 1, 64]); abs_1 = None amax: "bf16[64, 1][1, 1]cuda:0" = torch.ops.aten.amax.default(view, [-1]); view = None abs_2: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten.abs.default(primals_2) view_1: "bf16[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(abs_2, [64, 1, 64]); abs_2 = None amax_1: "bf16[64, 1][1, 1]cuda:0" = torch.ops.aten.amax.default(view_1, [-1]); view_1 = None _to_copy: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten._to_copy.default(amax, dtype = torch.float32); amax = None clamp: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.clamp.default(_to_copy, 1e-12); _to_copy = None div: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.div.Tensor(clamp, 448.0); clamp = None reciprocal: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.reciprocal.default(div) view_2: "bf16[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(primals_1, [64, 1, 64]) view_3: "bf16[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.view.default(view_2, [64, 1, 1, 64]); view_2 = None slice_1: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.slice.Tensor(reciprocal, 0, 0, 9223372036854775807); reciprocal = None unsqueeze: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_1, 1); slice_1 = None slice_2: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.slice.Tensor(unsqueeze, 2, 0, 9223372036854775807); unsqueeze = None unsqueeze_1: "f32[64, 1, 1, 1][1, 1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_2, 3); slice_2 = None mul: "f32[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.mul.Tensor(view_3, unsqueeze_1); view_3 = unsqueeze_1 = None view_4: "f32[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(mul, [64, 1, 64]); mul = None view_5: "f32[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(view_4, [64, 64]); view_4 = None _to_copy_1: "f8e4m3fn[64, 64][64, 1]cuda:0" = torch.ops.aten._to_copy.default(view_5, dtype = torch.float8_e4m3fn); view_5 = None _to_copy_2: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten._to_copy.default(amax_1, dtype = torch.float32) clamp_1: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.clamp.default(_to_copy_2, 1e-12); _to_copy_2 = None div_1: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.div.Tensor(clamp_1, 448.0); clamp_1 = None reciprocal_1: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.reciprocal.default(div_1) view_6: "bf16[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(primals_2, [64, 1, 64]) view_7: "bf16[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.view.default(view_6, [64, 1, 1, 64]); view_6 = None slice_3: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.slice.Tensor(reciprocal_1, 0, 0, 9223372036854775807); reciprocal_1 = None unsqueeze_2: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_3, 1); slice_3 = None slice_4: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.slice.Tensor(unsqueeze_2, 2, 0, 9223372036854775807); unsqueeze_2 = None unsqueeze_3: "f32[64, 1, 1, 1][1, 1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_4, 3); slice_4 = None mul_1: "f32[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.mul.Tensor(view_7, unsqueeze_3); view_7 = unsqueeze_3 = None view_8: "f32[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(mul_1, [64, 1, 64]); mul_1 = None view_9: "f32[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(view_8, [64, 64]); view_8 = None _to_copy_3: "f8e4m3fn[64, 64][64, 1]cuda:0" = torch.ops.aten._to_copy.default(view_9, dtype = torch.float8_e4m3fn); view_9 = None t: "f32[1, 64][1, 1]cuda:0" = torch.ops.aten.t.default(div_1); div_1 = None new_ones: "f32[1, 1][1, 1]cuda:0" = torch.ops.aten.new_ones.default(div, [1, 1], pin_memory = False) new_ones_1: "f32[1, 1][1, 1]cuda:0" = torch.ops.aten.new_ones.default(t, [1, 1], pin_memory = False) t_2: "f8e4m3fn[64, 64][1, 64]cuda:0" = torch.ops.aten.t.default(_to_copy_3); _to_copy_3 = None t_3: "f32[1, 1][1, 1]cuda:0" = torch.ops.aten.t.default(new_ones_1); new_ones_1 = None _scaled_mm: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten._scaled_mm.default(_to_copy_1, t_2, new_ones, t_3, None, None, torch.bfloat16); _to_copy_1 = t_2 = new_ones = t_3 = None view_10: "bf16[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(_scaled_mm, [64, 1, 64]); _scaled_mm = None view_11: "bf16[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.view.default(view_10, [64, 1, 1, 64]); view_10 = None slice_5: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.slice.Tensor(div, 0, 0, 9223372036854775807); div = None unsqueeze_4: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_5, 1); slice_5 = None slice_6: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.slice.Tensor(unsqueeze_4, 2, 0, 9223372036854775807); unsqueeze_4 = None unsqueeze_5: "f32[64, 1, 1, 1][1, 1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_6, 3); slice_6 = None mul_2: "f32[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.mul.Tensor(view_11, unsqueeze_5); view_11 = unsqueeze_5 = None view_12: "f32[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(mul_2, [64, 1, 64]); mul_2 = None view_13: "f32[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(view_12, [64, 64]); view_12 = None view_14: "f32[1, 64, 64][4096, 64, 1]cuda:0" = torch.ops.aten.view.default(view_13, [1, 64, 64]); view_13 = None view_15: "f32[1, 64, 64, 1][4096, 64, 1, 1]cuda:0" = torch.ops.aten.view.default(view_14, [1, 64, 64, 1]); view_14 = None slice_7: "f32[1, 64][1, 1]cuda:0" = torch.ops.aten.slice.Tensor(t, 0, 0, 9223372036854775807); t = None unsqueeze_6: "f32[1, 1, 64][1, 64, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_7, 1); slice_7 = None slice_8: "f32[1, 1, 64][1, 64, 1]cuda:0" = torch.ops.aten.slice.Tensor(unsqueeze_6, 2, 0, 9223372036854775807); unsqueeze_6 = None unsqueeze_7: "f32[1, 1, 64, 1][1, 64, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_8, 3); slice_8 = None mul_3: "f32[1, 64, 64, 1][4096, 64, 1, 1]cuda:0" = torch.ops.aten.mul.Tensor(view_15, unsqueeze_7); view_15 = unsqueeze_7 = None view_16: "f32[64, 64, 1][64, 1, 1]cuda:0" = torch.ops.aten.view.default(mul_3, [64, 64, 1]); mul_3 = None view_17: "f32[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(view_16, [64, 64]); view_16 = None _to_copy_4: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten._to_copy.default(view_17, dtype = torch.bfloat16); view_17 = None add: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten.add.Tensor(_to_copy_4, primals_3); _to_copy_4 = primals_3 = None t_5: "bf16[1, 64][1, 1]cuda:0" = torch.ops.aten.t.default(amax_1); amax_1 = None view_21: "bf16[1, 1, 64][1, 64, 1]cuda:0" = torch.ops.aten.view.default(t_5, [1, 1, 64]); t_5 = None amax_3: "bf16[1, 1][1, 1]cuda:0" = torch.ops.aten.amax.default(view_21, [-1]); view_21 = None unsqueeze_8: "bf16[1, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(amax_3, 1); amax_3 = None # No stacktrace found for following nodes view_39: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(add, [64, 64]); add = None return (view_39, primals_1, primals_2, unsqueeze_8) INFO: TRACED GRAPH ===== Backward graph 0 ===== <eval_with_key>.1 class GraphModule(torch.nn.Module): def forward(self, primals_1: "bf16[64, 64][64, 1]cuda:0", primals_2: "bf16[64, 64][64, 1]cuda:0", unsqueeze_8: "bf16[1, 1, 1][1, 1, 1]cuda:0", tangents_1: "bf16[64, 64][64, 1]cuda:0"): # File: /data/users/hirsheybar/checkout2/pytorch/test/dynamo/test_repros.py:6946 in forward, code: out = out.unflatten(0, input.shape[:-1]) view_19: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(tangents_1, [64, 64]); tangents_1 = None # File: /data/users/hirsheybar/checkout2/pytorch/test/dynamo/test_repros.py:6943 in forward, code: out = Fp8LinearFn.apply( t_4: "bf16[64, 64][1, 64]cuda:0" = torch.ops.aten.t.default(primals_2); primals_2 = None clone: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten.clone.default(t_4, memory_format = torch.contiguous_format); t_4 = None abs_3: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten.abs.default(view_19) view_20: "bf16[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(abs_3, [64, 1, 64]); abs_3 = None amax_2: "bf16[64, 1][1, 1]cuda:0" = torch.ops.aten.amax.default(view_20, [-1]); view_20 = None expand: "bf16[1, 64, 1][1, 0, 1]cuda:0" = torch.ops.aten.expand.default(unsqueeze_8, [1, 64, 1]); unsqueeze_8 = None clone_1: "bf16[1, 64, 1][64, 1, 1]cuda:0" = torch.ops.aten.clone.default(expand, memory_format = torch.contiguous_format); expand = None view_22: "bf16[64, 1][1, 1]cuda:0" = torch.ops.aten.view.default(clone_1, [64, 1]); clone_1 = None _to_copy_5: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten._to_copy.default(amax_2, dtype = torch.float32); amax_2 = None clamp_2: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.clamp.default(_to_copy_5, 1e-12); _to_copy_5 = None div_2: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.div.Tensor(clamp_2, 448.0); clamp_2 = None reciprocal_2: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.reciprocal.default(div_2) view_23: "bf16[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(view_19, [64, 1, 64]) view_24: "bf16[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.view.default(view_23, [64, 1, 1, 64]); view_23 = None slice_9: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.slice.Tensor(reciprocal_2, 0, 0, 9223372036854775807); reciprocal_2 = None unsqueeze_9: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_9, 1); slice_9 = None slice_10: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.slice.Tensor(unsqueeze_9, 2, 0, 9223372036854775807); unsqueeze_9 = None unsqueeze_10: "f32[64, 1, 1, 1][1, 1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_10, 3); slice_10 = None mul_4: "f32[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.mul.Tensor(view_24, unsqueeze_10); view_24 = unsqueeze_10 = None view_25: "f32[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(mul_4, [64, 1, 64]); mul_4 = None view_26: "f32[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(view_25, [64, 64]); view_25 = None _to_copy_6: "f8e4m3fn[64, 64][64, 1]cuda:0" = torch.ops.aten._to_copy.default(view_26, dtype = torch.float8_e4m3fn); view_26 = None _to_copy_7: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten._to_copy.default(view_22, dtype = torch.float32); view_22 = None clamp_3: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.clamp.default(_to_copy_7, 1e-12); _to_copy_7 = None div_3: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.div.Tensor(clamp_3, 448.0); clamp_3 = None reciprocal_3: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.reciprocal.default(div_3) view_27: "bf16[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(clone, [64, 1, 64]); clone = None view_28: "bf16[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.view.default(view_27, [64, 1, 1, 64]); view_27 = None slice_11: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.slice.Tensor(reciprocal_3, 0, 0, 9223372036854775807); reciprocal_3 = None unsqueeze_11: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_11, 1); slice_11 = None slice_12: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.slice.Tensor(unsqueeze_11, 2, 0, 9223372036854775807); unsqueeze_11 = None unsqueeze_12: "f32[64, 1, 1, 1][1, 1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_12, 3); slice_12 = None mul_5: "f32[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.mul.Tensor(view_28, unsqueeze_12); view_28 = unsqueeze_12 = None view_29: "f32[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(mul_5, [64, 1, 64]); mul_5 = None view_30: "f32[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(view_29, [64, 64]); view_29 = None _to_copy_8: "f8e4m3fn[64, 64][64, 1]cuda:0" = torch.ops.aten._to_copy.default(view_30, dtype = torch.float8_e4m3fn); view_30 = None t_6: "f32[1, 64][1, 1]cuda:0" = torch.ops.aten.t.default(div_3); div_3 = None new_ones_2: "f32[1, 1][1, 1]cuda:0" = torch.ops.aten.new_ones.default(div_2, [1, 1], pin_memory = False) new_ones_3: "f32[1, 1][1, 1]cuda:0" = torch.ops.aten.new_ones.default(t_6, [1, 1], pin_memory = False) t_8: "f8e4m3fn[64, 64][1, 64]cuda:0" = torch.ops.aten.t.default(_to_copy_8); _to_copy_8 = None t_9: "f32[1, 1][1, 1]cuda:0" = torch.ops.aten.t.default(new_ones_3); new_ones_3 = None _scaled_mm_1: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten._scaled_mm.default(_to_copy_6, t_8, new_ones_2, t_9, None, None, torch.bfloat16); _to_copy_6 = t_8 = new_ones_2 = t_9 = None view_31: "bf16[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(_scaled_mm_1, [64, 1, 64]); _scaled_mm_1 = None view_32: "bf16[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.view.default(view_31, [64, 1, 1, 64]); view_31 = None slice_13: "f32[64, 1][1, 1]cuda:0" = torch.ops.aten.slice.Tensor(div_2, 0, 0, 9223372036854775807); div_2 = None unsqueeze_13: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_13, 1); slice_13 = None slice_14: "f32[64, 1, 1][1, 1, 1]cuda:0" = torch.ops.aten.slice.Tensor(unsqueeze_13, 2, 0, 9223372036854775807); unsqueeze_13 = None unsqueeze_14: "f32[64, 1, 1, 1][1, 1, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_14, 3); slice_14 = None mul_6: "f32[64, 1, 1, 64][64, 64, 64, 1]cuda:0" = torch.ops.aten.mul.Tensor(view_32, unsqueeze_14); view_32 = unsqueeze_14 = None view_33: "f32[64, 1, 64][64, 64, 1]cuda:0" = torch.ops.aten.view.default(mul_6, [64, 1, 64]); mul_6 = None view_34: "f32[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(view_33, [64, 64]); view_33 = None view_35: "f32[1, 64, 64][4096, 64, 1]cuda:0" = torch.ops.aten.view.default(view_34, [1, 64, 64]); view_34 = None view_36: "f32[1, 64, 64, 1][4096, 64, 1, 1]cuda:0" = torch.ops.aten.view.default(view_35, [1, 64, 64, 1]); view_35 = None slice_15: "f32[1, 64][1, 1]cuda:0" = torch.ops.aten.slice.Tensor(t_6, 0, 0, 9223372036854775807); t_6 = None unsqueeze_15: "f32[1, 1, 64][1, 64, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_15, 1); slice_15 = None slice_16: "f32[1, 1, 64][1, 64, 1]cuda:0" = torch.ops.aten.slice.Tensor(unsqueeze_15, 2, 0, 9223372036854775807); unsqueeze_15 = None unsqueeze_16: "f32[1, 1, 64, 1][1, 64, 1, 1]cuda:0" = torch.ops.aten.unsqueeze.default(slice_16, 3); slice_16 = None mul_7: "f32[1, 64, 64, 1][4096, 64, 1, 1]cuda:0" = torch.ops.aten.mul.Tensor(view_36, unsqueeze_16); view_36 = unsqueeze_16 = None view_37: "f32[64, 64, 1][64, 1, 1]cuda:0" = torch.ops.aten.view.default(mul_7, [64, 64, 1]); mul_7 = None view_38: "f32[64, 64][64, 1]cuda:0" = torch.ops.aten.view.default(view_37, [64, 64]); view_37 = None _to_copy_9: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten._to_copy.default(view_38, dtype = torch.bfloat16); view_38 = None t_10: "bf16[64, 64][1, 64]cuda:0" = torch.ops.aten.t.default(view_19) mm: "bf16[64, 64][64, 1]cuda:0" = torch.ops.aten.mm.default(t_10, primals_1); t_10 = primals_1 = None sum_1: "bf16[64][1]cuda:0" = torch.ops.aten.sum.dim_IntList(view_19, [0]); view_19 = None return (_to_copy_9, mm, sum_1) ``` Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #149411 * __->__ #148922 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,908,591,296
fix cuDNN SDPA meta registration
eqy
closed
[ "module: cudnn", "open source", "Merged", "ciflow/trunk", "topic: bug fixes", "topic: not user facing", "module: inductor", "ciflow/inductor", "module: sdpa" ]
6
COLLABORATOR
Update `cuDNN SDPA` meta registration to matching memory layout behavior in: https://github.com/pytorch/pytorch/pull/138354 cc @csarofeen @ptrblck @xwang233 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,908,590,506
Rewrite cpp extension tests to not be crazy
janeyx99
open
[ "module: cpp-extensions", "module: tests", "triaged", "better-engineering" ]
3
CONTRIBUTOR
### 🚀 The feature, motivation and pitch Today, adding a test for a custom extension is painful because dependencies are weirdly tangled, different extensions want to test different things, and the prior attempt to consolidate all the building/installing into run_test.py is just confusing. We also use this python setup.py install --root ./install command followed by adding those weird ./installs to the python_path to get things to work. I don't know why we do this so I will chalk it up to ~ historical reasons ~. Either way, when someone gets the time, we should really refactor how we test our cpp extensions so that the following requirements are met: A. We should be able to test 1 extension at a time without needing to run and build and install all the other extensions B. Tests for extensions should live like normal unit tests ### Alternatives do nothing, i continue to suffer ### Additional context _No response_ cc @malfet @zou3519 @xmfan @mruberry @ZainRizvi
true
2,908,587,920
[testing only] Update torch.utils.checkpoint to stash and restore TLS state
soulitzer
open
[ "ciflow/trunk" ]
5
CONTRIBUTOR
Fixes #ISSUE_NUMBER
true
2,908,569,293
[DSD] Update the document to mention the limitation of set_optimizer_state_dict
fegin
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (checkpoint)" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #148918 Summary: Fixes https://github.com/pytorch/pytorch/issues/140898 cc @H-Huang @awgu @kwen2501 @wanchaol @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,908,532,329
[dynamo] Remove L scoping for recompilation messages
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #148917 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,908,517,027
Print hostname for ROCm CI runners in GHA logs
jithunnair-amd
closed
[ "module: rocm", "open source", "topic: not user facing", "ciflow/rocm", "ciflow/rocm-mi300" ]
2
COLLABORATOR
Will help provide debug info for MI300 nodes when something goes wrong in the GHA run, since currently it only prints the ephemeral pod ID, which cannot be easily traced back to the node after-the-fact. cc @jeffdaily @sunway513 @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,908,491,724
fix typo
not-lain
closed
[ "module: docs", "open source", "ciflow/trunk", "topic: not user facing" ]
8
NONE
Fixes #ISSUE_NUMBER cc @svekars @sekyondaMeta @AlannaBurke
true
2,908,491,638
DISABLED test_nested_wrap_dynamic_shapes (__main__.DynamicShapesHigherOrderOpTests)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: dynamo" ]
3
NONE
Platforms: linux, mac, macos, rocm, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_nested_wrap_dynamic_shapes&suite=DynamicShapesHigherOrderOpTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/38507216615). Over the past 3 hours, it has been determined flaky in 24 workflow(s) with 48 failures and 24 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_nested_wrap_dynamic_shapes` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `dynamo/test_dynamic_shapes.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,908,446,043
caffe2: gpu_cpp_library for :caffe2_gpu
get9
open
[ "caffe2", "fb-exported", "topic: not user facing" ]
4
NONE
Test Plan: #buildmore CI Reviewed By: christycylee Differential Revision: D70892337
true
2,908,434,884
Automate stable CUDA update and linter using min Python verison
atalman
closed
[ "Merged", "topic: not user facing" ]
6
CONTRIBUTOR
1. Fixes: https://github.com/pytorch/pytorch/issues/145571 . Cuda Stable is the same cuda version that is published to pypi, also used to set Metadata section in the rest of whl scripts and tag the docker releases with latest tag. 2. Updates min python version used in linter
true
2,908,433,441
[ROCm] testing: enable MEFF/FA unittests for gfx1100
xinyazhang
closed
[ "module: rocm", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "rocm", "ciflow/rocm" ]
7
COLLABORATOR
Include gfx1100, and optionally enable gfx1201/gfx950 according to env var TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,908,406,960
log cudagraph skip reasons
BoyuanFeng
closed
[ "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor" ]
1
CONTRIBUTOR
Add skip reasons to dynamo_compile so we can know popular skip reasons for cudagraph cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,908,359,787
Skip distributed subprocess test internally as they don't work
albanD
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "topic: not user facing" ]
3
COLLABORATOR
Follow up from https://github.com/pytorch/pytorch/pull/146098 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,908,308,870
Numpy v1 v2 compatibility
clee2000
closed
[ "module: numpy" ]
1
CONTRIBUTOR
Whats the policy on numpy compatibility in pytorch? I see that requirements-ci.txt pins numpy==1 for <python3.13 and numpy==2 for py3.13, but later in CI numpy gets reinstalled as numpy==2.0.2 for most python versions. Is CI supposed to use v2 or v1? Does being compatible with v2 ensure compatibility with v1? cc @mruberry @rgommers @malfet
true
2,908,299,346
[AOTI] Remove aoti_torch_cpu__weight_int4pack_mm_cpu_tensor
desertfire
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
19
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #148907 Summary: shim.h is only meant for generic tensor util shim functions. We should switch to use the auto fallback generation, but it will need some extra care on the op schema. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,908,290,089
[Torchscript] Add a flag to use mangled names instead of demangled
RihamSelim
closed
[ "oncall: jit", "fb-exported", "Merged", "ciflow/trunk", "release notes: jit" ]
12
CONTRIBUTOR
Summary: Optionally keep mangled names when expanding torchscript stacks Test Plan: ``` buck2 build mode/opt //scripts/rihams/LearnPyTorch:torch_script_generate --show-full-output /data/users/rihams/fbsource/buck-out/v2/gen/fbcode/0bd9d136228ad8a7/scripts/rihams/LearnPyTorch/__torch_script_generate__/torch_script_generate.par buck2 build mode/opt //scripts/rihams/LearnPyTorch:torch_script_execute --show-full-output ``` - With `--torch_jit_expanded_stacks_mangled` Flag: /data/users/rihams/fbsource/buck-out/v2/gen/fbcode/ef35e45045e8164c/scripts/rihams/LearnPyTorch/__torch_script_execute__/torch_script_execute fbcode/model.pt --torch_jit_expanded_stacks_mangled --torch_jit_enable_expanded_stacks https://fburl.com/scuba/strobelight_function_tracer/8die4rvm {F1975933247} Without Flag: /data/users/rihams/fbsource/buck-out/v2/gen/fbcode/ef35e45045e8164c/scripts/rihams/LearnPyTorch/__torch_script_execute__/torch_script_execute ./model.pt --torch_jit_enable_expanded_stacks https://fburl.com/scuba/strobelight_function_tracer/x3nladpf {F1975933268} Reviewed By: bbus Differential Revision: D70905872 cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
2,908,231,257
[ONNX] Create onnx_symbolic
justinchuby
closed
[ "module: onnx", "triaged", "open source", "Merged", "ciflow/trunk", "release notes: onnx", "topic: new features" ]
7
COLLABORATOR
In the old exporter we allow users to define a symbolic() method to bypass JIT tracing for a block of logic. We can allow users to do similar things by creating symbolic ops at export. This PR implements `torch.onnx.ops.symbolic` and `torch.onnx.ops.symbolic_multi_out` to allow users to create onnx nodes symbolically with pt2 & fx. The custom pytorch ops were designed such that the attributes are encoded to be part of a valid fx op. Users provide shape and dtype for the meta function to produce the currect fake tensor during export. An example is ![image](https://github.com/user-attachments/assets/c62f5f21-e038-456e-a71d-b9a5d0a7cd9d)
true
2,908,145,811
[CI] Upgrade numpy?
clee2000
closed
[ "release notes: releng" ]
1
CONTRIBUTOR
Gets rid of mention of py3.8, which is no longer supported Upgrades the numpy version used in build when possible (numpy2.0.2 is the most recent version that supports py3.9) As of right now, numpy2.2.3 is the most recent numpy version. py3.13 already has numpy2.1.2 installed and 2.0.2 doesn't have a release for py3.12 on pypi
true
2,908,138,103
[BE] Remove unused macro ENABLE_NCCL_P2P_SUPPORT
kwen2501
open
[ "oncall: distributed", "ciflow/trunk", "release notes: distributed (c10d)" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #148903 * #148900 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,908,132,670
Remove Direct Arm Compute Libray (ACL) Integration for Quantized Matmuls: `qlinear`/`qlinear_dynamic`
fadara01
open
[ "oncall: quantization", "module: arm" ]
1
COLLABORATOR
PR https://github.com/pytorch/pytorch/pull/148585 (temporarily) introduced a direct ACL implementation for `qlinear` and `qlinear_dynamic` for AArch64 when `USE_MKLDNN_ACL` is set. This direct ACL implementation is a lot faster than the existing implementations that utilized ACL through oneDNN (MKLDNN) due to the (current) API friction between the stateful ACL API and the stateless oneDNN API (see benchmarks and numbers on https://github.com/pytorch/pytorch/pull/148585). I'm creating this issue to make sure that we end up removing this direct ACL path for `qlinear` and `qlinear_dynamic` once we're done enabling a fast implementation for quantized matmuls through oneDNN+ACL. cc @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @vkuzo @jgong5 @Xia-Weiwen @leslie-fang-intel @msaroufim @malfet @snadampal @milpuz01
true
2,908,127,531
DISABLED test_train_parity_multi_group_cpu_offload_eager (__main__.TestFullyShard1DTrainingCore)
pytorch-bot[bot]
open
[ "oncall: distributed", "triaged", "module: flaky-tests", "skipped", "oncall: pt2" ]
3
NONE
Platforms: inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_train_parity_multi_group_cpu_offload_eager&suite=TestFullyShard1DTrainingCore&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/38499596698). Over the past 3 hours, it has been determined flaky in 4 workflow(s) with 6 failures and 4 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_train_parity_multi_group_cpu_offload_eager` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 605, in wrapper self._join_processes(fn) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 845, in _join_processes self._check_return_codes(elapsed_time) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 894, in _check_return_codes raise RuntimeError(error) RuntimeError: Process 1 exited with error code 10 and exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 734, in run_test getattr(self, test_name)() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 607, in wrapper fn() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3150, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 204, in wrapper return func(*args, **kwargs) File "/var/lib/jenkins/pytorch/test/distributed/_composable/fsdp/test_fully_shard_training.py", line 339, in test_train_parity_multi_group_cpu_offload_eager self.run_subtests( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_fsdp.py", line 1180, in run_subtests return run_subtests(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 1003, in run_subtests test_fn(*test_args, **test_kwargs, **subtest_kwargs) File "/var/lib/jenkins/pytorch/test/distributed/_composable/fsdp/test_fully_shard_training.py", line 466, in _test_train_parity_multi_group self.assertEqual(losses[0], losses[1]) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4091, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Scalars are not close! Expected -16099.6064453125 but got -16100.7587890625. Absolute difference: 1.15234375 (up to 1e-05 allowed) Relative difference: 7.157589559187715e-05 (up to 1.3e-06 allowed) To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/distributed/_composable/fsdp/test_fully_shard_training.py TestFullyShard1DTrainingCore.test_train_parity_multi_group_cpu_offload_eager This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 Process 2 exited with error code 10 and exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 734, in run_test getattr(self, test_name)() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 607, in wrapper fn() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3150, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 204, in wrapper return func(*args, **kwargs) File "/var/lib/jenkins/pytorch/test/distributed/_composable/fsdp/test_fully_shard_training.py", line 339, in test_train_parity_multi_group_cpu_offload_eager self.run_subtests( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_fsdp.py", line 1180, in run_subtests return run_subtests(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 1003, in run_subtests test_fn(*test_args, **test_kwargs, **subtest_kwargs) File "/var/lib/jenkins/pytorch/test/distributed/_composable/fsdp/test_fully_shard_training.py", line 466, in _test_train_parity_multi_group self.assertEqual(losses[0], losses[1]) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4091, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Scalars are not close! Expected -14233.7666015625 but got -14235.5712890625. Absolute difference: 1.8046875 (up to 1e-05 allowed) Relative difference: 0.00012678917327490054 (up to 1.3e-06 allowed) To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/distributed/_composable/fsdp/test_fully_shard_training.py TestFullyShard1DTrainingCore.test_train_parity_multi_group_cpu_offload_eager This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 Process 4 exited with error code 10 and exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 734, in run_test getattr(self, test_name)() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 607, in wrapper fn() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3150, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 204, in wrapper return func(*args, **kwargs) File "/var/lib/jenkins/pytorch/test/distributed/_composable/fsdp/test_fully_shard_training.py", line 339, in test_train_parity_multi_group_cpu_offload_eager self.run_subtests( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_fsdp.py", line 1180, in run_subtests return run_subtests(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 1003, in run_subtests test_fn(*test_args, **test_kwargs, **subtest_kwargs) File "/var/lib/jenkins/pytorch/test/distributed/_composable/fsdp/test_fully_shard_training.py", line 466, in _test_train_parity_multi_group self.assertEqual(losses[0], losses[1]) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4091, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Scalars are not close! Expected -16928.962890625 but got -16930.900390625. Absolute difference: 1.9375 (up to 1e-05 allowed) Relative difference: 0.00011444883023950379 (up to 1.3e-06 allowed) To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/distributed/_composable/fsdp/test_fully_shard_training.py TestFullyShard1DTrainingCore.test_train_parity_multi_group_cpu_offload_eager This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 Process 6 exited with error code 10 and exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 734, in run_test getattr(self, test_name)() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 607, in wrapper fn() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3150, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 204, in wrapper return func(*args, **kwargs) File "/var/lib/jenkins/pytorch/test/distributed/_composable/fsdp/test_fully_shard_training.py", line 339, in test_train_parity_multi_group_cpu_offload_eager self.run_subtests( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_fsdp.py", line 1180, in run_subtests return run_subtests(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 1003, in run_subtests test_fn(*test_args, **test_kwargs, **subtest_kwargs) File "/var/lib/jenkins/pytorch/test/distributed/_composable/fsdp/test_fully_shard_training.py", line 466, in _test_train_parity_multi_group self.assertEqual(losses[0], losses[1]) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4091, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Scalars are not close! Expected -16458.76953125 but got -16462.013671875. Absolute difference: 3.244140625 (up to 1e-05 allowed) Relative difference: 0.00019710711780977324 (up to 1.3e-06 allowed) To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/distributed/_composable/fsdp/test_fully_shard_training.py TestFullyShard1DTrainingCore.test_train_parity_multi_group_cpu_offload_eager This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 Process 7 exited with error code 10 and exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 734, in run_test getattr(self, test_name)() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 607, in wrapper fn() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3150, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 204, in wrapper return func(*args, **kwargs) File "/var/lib/jenkins/pytorch/test/distributed/_composable/fsdp/test_fully_shard_training.py", line 339, in test_train_parity_multi_group_cpu_offload_eager self.run_subtests( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_fsdp.py", line 1180, in run_subtests return run_subtests(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 1003, in run_subtests test_fn(*test_args, **test_kwargs, **subtest_kwargs) File "/var/lib/jenkins/pytorch/test/distributed/_composable/fsdp/test_fully_shard_training.py", line 466, in _test_train_parity_multi_group self.assertEqual(losses[0], losses[1]) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4091, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Scalars are not close! Expected -14614.646484375 but got -14616.1748046875. Absolute difference: 1.5283203125 (up to 1e-05 allowed) Relative difference: 0.00010457456594204845 (up to 1.3e-06 allowed) To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/distributed/_composable/fsdp/test_fully_shard_training.py TestFullyShard1DTrainingCore.test_train_parity_multi_group_cpu_offload_eager This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `distributed/_composable/fsdp/test_fully_shard_training.py` cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @clee2000 @chauhang @penguinwu
true
2,908,113,128
[RFC][BE] assume error checking is on by default (#141914)
kwen2501
open
[ "oncall: distributed", "ciflow/trunk", "release notes: distributed (c10d)" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #148903 * __->__ #148900 Summary: Remove conditional MACRO `ENABLE_NCCL_ERROR_CHECKING` and assume that error checking is always on. These checks were wrapped in a macro because older NCCL libraries didn't have the pre-requisite functions to do error checks. This check was put in several years ago. Pull request https://github.com/pytorch/pytorch/issues/142023 adds a static_assert that NCCL version should be 2.7 or above for PyTorch to work. 2.4 released about 2 years ago so it's relatively safe to assume that everyone has upgraded. Assume that the world has all upgraded to later version of NCCL library. Release note for PyTorch must specify that going forward, PyTorch will only work with NCCL version 2.7 and above. Test Plan: Unit tests. cc H-Huang awgu kwen2501 wanchaol fegin fduwjj wz337 wconstab d4l3k Reviewed By: wconstab, fduwjj, kwen2501 Differential Revision: D66672062 Pulled By: c-p-i-o cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,908,112,052
[DRAFT] make reshape work for reshapeing 1dim unbacked non-contig to anything
laithsakka
open
[]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #149266 * __->__ #148899 * #148893 * #148872 * #148742 * #148815 * #148809 * #148430
true
2,908,071,698
[IR] adding option to enable storing namedtuple fields
felixsu2006
open
[ "fb-exported", "ciflow/inductor", "release notes: export" ]
3
CONTRIBUTOR
Summary: adding option to enable/disable this functionality setting to True by default so shouldn't affect any existing use cases unless explicitly set to False Test Plan: no functionality changes Differential Revision: D70905747
true
2,908,065,282
Enable experimentation with ephemeral runners on pull.yml
jeanschmidt
closed
[ "topic: not user facing" ]
7
CONTRIBUTOR
# TLDR Adds `get-is-ephemeral` step to pull.yml workflow and enable the experimentation of `ephemeral` on `pull.yml` workflow. The status of the experiment can be found in the [test-infra issue](https://github.com/pytorch/test-infra/issues/5132). # What? Enable experiment with ephemeral runners in the pull.yml workflow. # Why? Those runners are ephemeral, as eliminating nonephemeral runners is a follow up for the recent security incident. Refreshable infrastructure have been something we've trying to accomplish for a while, but haven't been successful. The major blocker we face is related to stockouts and unreliability from GH side. Most of it is because nonephemeral runners can run other jobs and continue clearing the queue in case of a problem. This is not possible for ephemeral runners. # How? To remediate stockouts, the [reuse/refresh of ephemeral instances](https://github.com/pytorch/test-infra/pull/6315) have been introduced. In order to remediate GH side issues, [queue healing mechanism](https://github.com/pytorch/test-infra/pull/6018) is being implemented. # Next steps After merging those changes, we intend to put a small percentage of jobs to use ephemeral runners, so we can evaluate impact on queue times and gather statistics on reuse and tune noflap cluster behaviour. Once we feel comfortable the experiment will be shifted to 100% and we'll migrate all workflows to fully ephemeral instances. Eventually, all runners will be ephemeral and the experiment and runner variants will be removed, as we update other workflows like slow, trunk and nightlies.
true
2,908,036,888
[dynamo] fix bug where non-recursive disable modifies the original function
williamwen42
closed
[ "Merged", "ciflow/trunk", "topic: bug fixes", "module: dynamo", "ciflow/inductor", "release notes: dynamo", "keep-going" ]
7
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #148896 Fixes https://github.com/pytorch/pytorch/issues/148787. We fix this by: - Wrapping the original function instead of directly modifying it - When we detect that the previous frame is the non-recursive disable wrapper, then skip tracing this frame (non-recursive disable wrapper will always be skipped, so that frame will be present in the traceback)l cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,908,029,449
Remove 12.4 x86 builds and 12.6 sbsa builds from nightly
tinglvv
closed
[ "open source", "Merged", "ciflow/binaries", "ciflow/trunk", "topic: not user facing" ]
6
COLLABORATOR
https://github.com/pytorch/pytorch/issues/145570 redo https://github.com/pytorch/pytorch/pull/148625 cc @atalman @malfet @nWEIdia @ptrblck
true
2,907,995,378
Support uneven sharding for FSDP2 + TP
lw
closed
[ "oncall: distributed", "release notes: distributed (fsdp)", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150393 * #150146 * __->__ #148894
true
2,907,993,177
use statically known true instead of guard size oblivious in bmm and mm inductor decompositions .
laithsakka
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #148893 this was discussed with @eellison and he recommended using statically_known_true here, the intuition is. We already have 0/1 specializations in place, if we reach those checks with dynamic shapes that are not already specialized then we do not want them to specialize them, "a recompilation here is not justified". Those are all non-semantic changing optimizations. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,907,962,080
Introduce TORCH_ABI_VERSION and a runtime aoti_torch_abi_version C shim ABI
janeyx99
closed
[ "Merged", "ciflow/trunk", "release notes: cpp", "ciflow/inductor", "ci-no-td" ]
5
CONTRIBUTOR
Importable https://github.com/pytorch/pytorch/pull/148836
true
2,907,884,008
Upgrading FlashAttention to V3
drisspg
open
[ "triaged", "module: sdpa" ]
5
CONTRIBUTOR
# Summary We are currently building and utilizing FlashAttention2 for torch.nn.functional.scaled_dot_product_attention Up until recently the files we build and our integration was very manual. We recently changed this and made FA a third_party/submodule: https://github.com/pytorch/pytorch/pull/146372 This makes it easier to pull in new files (including those for FAv3) however due to the fact that third_party extensions do not have a mechanism to be re-integrated into ATen the build system + flash_api is still manual. ### Plan At a very high level we have a few options. I will for the sake of argument though not include the runtime dependency option. So for know lets assume we need to build and ship the kernels in libtorchcuda.so 1. Replace entirely FAv2 w/ FAv3: This up until recently seemed like a non ideal option since we would lose FA support for A100 + machines. This has changed in: https://github.com/Dao-AILab/flash-attention/commit/7bc3f031a40ffc7b198930b69cf21a4588b4d2f9 and therefor this seems like a much more viable option, and least binary size impactful. I think the main difference is that FAv3 doesn't support Dropout. TBD if this a large enough blocker. 2. Add FAv3 along w/ FAv2 This would require adding another backend to SDPA for FAv3. This would naively have a large impact to binary size, however we could choose to only build these kernels on H100 machines. I am personally in favor of 1 since it easier to maintain and will provide increased perf on a100 machines for the hot path (no dropout). For both paths, updates to internal build system will be needed.
true
2,907,782,392
Hook StaticCudaLauncher up to torch.compile (cold start)
jamesjwu
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
15
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #149629 * #149442 * #149054 * __->__ #148890 This hooks up the previous PR to torch.compile. Will add a config flag to hide this behind in a bit, but for now it's useful for testing purposes to have it on by default. Inductor will automatically choose to use StaticCudaLauncher to launch triton kernels if: - The kernel is a cuda kernel and inductor can find a cubin file associated with it - The kernel takes less than 50 arguments - The kernel doesn't use any special features (launch hooks, large amounts of shared memory) - The kernel is not user defined (to be supported in a later PR) We split CompileResult into TritonCompileResult and StaticTritonCompileResult, but have them share implementations of how they exec a python launcher. StaticTritonCompileResult's python launcher has the benefit of a simpler def_args/call_args setup, since it always filters out all constexprs before running, no matter the triton version. Some key features of StaticTritonCompileResult: - It is fully serializable - It stores the minimum amount of stuff, so that later it can be cached easily - It does not depend on any triton specific types (though it does have various triton metadata). For now, both TritonCompileResult and StaticTritonCompileResult still `exec` custom python launchers, and use GridExpr. We can change that in the future to simplify if we'd like. For now though, this custom python codegen is good for flexibility when it comes to supporting removal of constexprs, so using it for static launching is nice to not have to pay the cost of removing constexprs at kernel runtime. Hooking everything up to torch.compile lets me run every unit test with StaticCudaLauncher to make sure that we still pass (even if we bypass StaticCudaLauncher itself). It also lets me check for compilation/runtime performance with these changes. Fixes #149448 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,907,697,033
DISABLED test_make_closure_dynamic_shapes (__main__.DynamicShapesHigherOrderOpTests)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "module: higher order operators", "module: pt2-dispatcher" ]
3
NONE
Platforms: linux, mac, macos, rocm, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_make_closure_dynamic_shapes&suite=DynamicShapesHigherOrderOpTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/38476198190). Over the past 3 hours, it has been determined flaky in 21 workflow(s) with 42 failures and 21 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_make_closure_dynamic_shapes` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `dynamo/test_dynamic_shapes.py` ResponseTimeoutError: Response timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/dynamo/test_dynamic_shapes.py -1 (connected: true, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 0) headers: {} cc @zou3519 @ydwu4 @penguinwu @bdhirsh @clee2000 @chauhang @ezyang @bobrenjc93
true
2,907,693,730
Update RELEASE.md with latest changes to release process and release 2.7 information
atalman
closed
[ "Merged", "topic: not user facing" ]
3
CONTRIBUTOR
1. Update for Release 2.7 compatibility matrix 2. Remove mention of builder project, the scripts for release management were migrated to test-infra
true
2,907,582,092
Vincent/rebase 2.5
vincent-tr
closed
[ "oncall: distributed", "oncall: jit", "module: rocm", "module: cpu", "release notes: releng", "fx", "module: inductor", "module: dynamo", "release notes: distributed (checkpoint)" ]
2
NONE
Rebase `flexai/v2.5.0` from `upstream/release/2.5` Refs: NOTICKET cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @EikanWang @jgong5 @wenzhe-nrv @sanchitintel @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @mingfeima @XiaobingSuper @ashokei @jingxu10 @ezyang @SherlockNoMad @voznesenskym @penguinwu @Guobing-Chen @zhuhaozhe @blzheng @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,907,351,246
Unable to export model to ONNX with dynamo and dynamic batch size
Fredrik00
closed
[ "module: onnx", "triaged" ]
4
NONE
### 🐛 Describe the bug I have been trying to export PARSeq, a Transformer based scene text recognition model, to ONNX with torch.onnx.export and dynamo enabled. I have been successful in getting the model exported with a fixed batch size, but unfortunately not with dynamic shapes. I have created an input tensor matching my max batch size by repeating my original one. After passing it through the model for export, the batch size becomes fixed to the example tensor batch size rather than being dynamic. I have also attempted with dynamic_axes, which from the code looked like it would attempt to convert it to dynamic_shapes internally. ``` image = get_dummy_input() image_batch = image.repeat(128, 1, 1, 1) onnx_model = torch.onnx.export( lightning_model, image_batch, input_names=['input'], output_names=['output'], dynamo=True, dynamic_shapes=[{0: torch.export.Dim('batch_size', min=1, max=128)}], optimize=True, verbose=True # Includes metadata used during quantization ) onnx_model.save(output_path) ``` When using the exported onnx model for inference, with a batch size of 8 in this example, I get the following error: `onnxruntime.capi.onnxruntime_pybind11_state.RuntimeException: [ONNXRuntimeError] : 6 : RUNTIME_EXCEPTION : Non-zero status code returned while running Where node. Name:'node_Where_3144' Status Message: /onnxruntime_src/onnxruntime/core/providers/cpu/math/element_wise_ops.h:540 void onnxruntime::BroadcastIterator::Init(ptrdiff_t, ptrdiff_t) axis == 1 || axis == largest was false. Attempting to broadcast an axis by a dimension other than 1. 8 by 128` I couldn't find any example of the dynamic_shapes input, and the documentation is very vague. Is there something wrong with how I am specifying the dynamic input shapes? Full example can be found here (requirements listed in requirements/onnx.txt): https://github.com/Fredrik00/parseq/blob/tflite-export/tools/export_onnx.py ### Versions ``` [pip3] ai-edge-torch-nightly==0.4.0.dev20250303 [pip3] numpy==2.1.3 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] onnx==1.17.0 [pip3] onnxruntime==1.21.0 [pip3] onnxscript==0.2.1 [pip3] optree==0.14.1 [pip3] pytorch-lightning==2.5.0.post0 [pip3] torch==2.6.0+cu126 [pip3] torch_xla2==0.0.1.dev202412041639 [pip3] torchaudio==2.6.0+cu126 [pip3] torchmetrics==1.6.1 [pip3] torchvision==0.21.0+cu126 [pip3] triton==3.2.0 [conda] ai-edge-torch-nightly 0.4.0.dev20250303 pypi_0 pypi [conda] numpy 2.1.3 pypi_0 pypi [conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi [conda] optree 0.14.1 pypi_0 pypi [conda] pytorch-lightning 2.5.0.post0 pypi_0 pypi [conda] torch 2.6.0+cu126 pypi_0 pypi [conda] torch-xla2 0.0.1.dev202412041639 pypi_0 pypi [conda] torchaudio 2.6.0+cu126 pypi_0 pypi [conda] torchmetrics 1.6.1 pypi_0 pypi [conda] torchvision 0.21.0+cu126 pypi_0 pypi [conda] triton 3.2.0 pypi_0 pypi ```
true
2,907,250,810
test_memory_profiler_viz failed on cudamallocasync
garfield1997
open
[ "module: cuda", "triaged", "module: testing" ]
0
CONTRIBUTOR
### 🐛 Describe the bug step to reproduce the bug ```shell # step 1 export PYTORCH_CUDA_ALLOC_CONF="backend:cudaMallocAsync" # step 2 run test case from test_cuda.py python test_cuda.py -k 'test_memory_profiler_viz' ``` output ``` FAIL: test_memory_profiler_viz (__main__.TestCudaMallocAsync) ---------------------------------------------------------------------- Traceback (most recent call last): File "/projs/framework/xushuo/venv/gpu/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3108, in wrapper method(*args, **kwargs) File "/projs/framework/xushuo/venv/gpu/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1846, in wrapper return fn(*args, **kwargs) File "/projs/framework/xushuo/pytorch2_6/pytorch/test/test_cuda.py", line 3457, in test_memory_profiler_viz self.assertTrue("test_cuda.py" in plot) AssertionError: False is not true To execute this test, run the following from the base repo dir: python test/test_cuda.py TestCudaMallocAsync.test_memory_profiler_viz This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ---------------------------------------------------------------------- Ran 1 test in 0.109s FAILED (failures=1) ``` ### Versions Collecting environment information... PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.10.16 (main, Dec 11 2024, 16:24:50) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.5.0-18-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.4.99 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Tesla V100-SXM2-16GB GPU 1: Tesla V100-SXM2-16GB GPU 2: Tesla V100-SXM2-16GB GPU 3: Tesla V100-SXM2-16GB Nvidia driver version: 535.183.01 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 2 Stepping: 4 CPU max MHz: 3700.0000 CPU min MHz: 1000.0000 BogoMIPS: 4200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd mba ibrs ibpb stibp tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts vnmi pku ospke md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1 MiB (32 instances) L1i cache: 1 MiB (32 instances) L2 cache: 32 MiB (32 instances) L3 cache: 44 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS, IBPB conditional, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT vulnerable Versions of relevant libraries: [pip3] numpy==1.26.0 [pip3] nvidia-cublas-cu11==11.10.3.66 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu11==11.7.99 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu11==11.7.99 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu11==8.5.0.96 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] pytorch-triton==3.2.0+git0d4682f0 [pip3] torch==2.6.0 [pip3] torchdump==0.5.0 [pip3] triton==3.2.0 [conda] numpy 2.0.0 pypi_0 pypi [conda] torch-mlu-ci-overrides 0.0.2 pypi_0 pypi cc @ptrblck @msaroufim @eqy
true
2,907,206,658
CrossEntropy with label smoothing does not apply the correct label smoothing
adrien-grl
closed
[]
0
NONE
### 🐛 Describe the bug The `label_smoothing` parameter of the `nn.CrossEntropyLoss` does not match the expected behavior. Instead, it seems that the label smoothing that is applied is half of the correct value. Indeed, in the [original paper](https://arxiv.org/pdf/1512.00567) they specify that the loss is: $$\mathcal{L}(p) = D_{KL}(q' \lVert p) + H(q').$$ As a result, the minimum value of $p$ is $q'$ and $q'$ is given as: $$q'(k) = (1 - \epsilon) \delta_{k,y} + \frac{\epsilon}{K}.$$ In the example below we have $K=2$, $\epsilon=0.1$ and as a result, the softmax of `param` should be equal to $[1 - 0.1, 0.1]$. ## Minimum example to reproduce ```python import math import torch label_smoothing = 0.1 K = 2 label = torch.zeros(1, dtype=torch.long) p = torch.randn(1, K).requires_grad_(True) optim = torch.optim.SGD((p,), lr=1e-1) loss_fn = torch.nn.CrossEntropyLoss(label_smoothing=label_smoothing) for _ in range(10000): loss = loss_fn(p, label) loss.backward() optim.step() optim.zero_grad() def min_theoretical_value(label_smoothing): return ( -(1. - label_smoothing) * math.log(1. - label_smoothing) -label_smoothing * (math.log(label_smoothing) - math.log(K - 1)) ) print(loss - min_theoretical_value(label_smoothing)) print(loss - min_theoretical_value(label_smoothing / 2)) print(p.softmax(1)) ``` Note that you can check that the loss converged because ## Expected output ``` tensor(0.) tensor(0.1266) tensor([[0.9000, 0.1000]]) ``` ## Actual output ``` tensor(-0.1266) tensor(0.) tensor([[0.9500, 0.0500]]) ``` ### Versions PyTorch version: 2.7.0.dev20250224+cu128 Is debug build: False CUDA used to build PyTorch: 12.8 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.12.9 (main, Feb 5 2025, 08:49:00) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.8.61 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA RTX 3500 Ada Generation Laptop GPU Nvidia driver version: 570.124.06 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.7.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.7.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: GenuineIntel Model name: 13th Gen Intel(R) Core(TM) i9-13950HX CPU family: 6 Model: 183 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 1 Stepping: 1 CPU max MHz: 5500,0000 CPU min MHz: 800,0000 BogoMIPS: 4838.40 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect user_shstk avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi vnmi umip pku ospke waitpkg gfni vaes vpclmulqdq tme rdpid movdiri movdir64b fsrm md_clear serialize pconfig arch_lbr ibt flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 896 KiB (24 instances) L1i cache: 1,3 MiB (24 instances) L2 cache: 32 MiB (12 instances) L3 cache: 36 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Mitigation; Clear Register File Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.3 [pip3] nvidia-cublas-cu12==12.8.3.14 [pip3] nvidia-cuda-cupti-cu12==12.8.57 [pip3] nvidia-cuda-nvrtc-cu12==12.8.61 [pip3] nvidia-cuda-runtime-cu12==12.8.57 [pip3] nvidia-cudnn-cu12==9.7.1.26 [pip3] nvidia-cufft-cu12==11.3.3.41 [pip3] nvidia-curand-cu12==10.3.9.55 [pip3] nvidia-cusolver-cu12==11.7.2.55 [pip3] nvidia-cusparse-cu12==12.5.7.53 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.25.1 [pip3] nvidia-nvjitlink-cu12==12.8.61 [pip3] nvidia-nvtx-cu12==12.8.55 [pip3] onnx==1.17.0 [pip3] onnxruntime==1.20.1 [pip3] onnxruntime-gpu==1.20.1 [pip3] optree==0.14.0 [pip3] pytorch-lightning==2.5.0.post0 [pip3] pytorch-triton==3.2.0+git4b3bb1f8 [pip3] torch==2.7.0.dev20250224+cu128 [pip3] torchaudio==2.6.0.dev20250224+cu128 [pip3] torchmetrics==1.6.1 [pip3] torchvision==0.22.0.dev20250224+cu128 [conda] Could not collect Edit: Closed because my math is wrong...
true
2,907,187,294
Pytorch2.7+ROCm6.3 is 34.55% slower than Pytorch2.6+ROCm6.2.4
testbug5577
closed
[ "module: performance", "module: rocm", "triaged" ]
6
NONE
The same hardware and software environment, only the versions of PyTorch+ROCm are different. Use ComfyUI to run Hunyuan text to video: ComfyUI:v0.3.24 ComfyUI plugin: teacache 49frames 480x960 20steps CPU:i5-7500 GPU:AMD 7900XT 20GB RAM:32GB PyTorch2.6+ROCm6.2.4 Time taken: 348 seconds 14.7s/it The VAE Decode Tiled node (parameters: 128 64 32 8) takes: 55 seconds PyTorch2.7+ROCm6.3 Time taken: 387 seconds 15.66s/it**(11.21% slower)** The VAE Decode Tiled node (parameters: 128 64 32 8) takes: 74 seconds**(34.55% slower)** In addition, if the VAE node parameters are set to 256 64 64 8 (the default parameters for nvidia graphics cards), it will take a very long time and seem to be stuck but the program will not crash.The same situation occurs in both Pytorch 2.6 and 2.7. I'm sorry I don't know what error message to submit for this discrepancy, but I can cooperate with the test and upload the specified information. Thank you. [ComfyUI_running_.json](https://github.com/user-attachments/files/19162936/ComfyUI_running_.json) cc @msaroufim @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,907,029,068
[Inductor][CPP] Fix expr issue in loop split
leslie-fang-intel
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
4
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #148882 **Summary** Fix issue: https://github.com/pytorch/pytorch/issues/148058. In this case, there is an `indexing_expr` as an integer which doesn't have the method of `find`. **Test Plan** ``` python -u -m pytest -s -v test/inductor/test_cpu_repro.py -k test_issue_148058 ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,906,788,379
Update torch-xpu-ops commit pin
chunhuanMeng
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/xpu" ]
3
CONTRIBUTOR
Update the torch-xpu-ops commit to [026b2c8c7c92a7b2cec5d26334006e3423251cc6](https://github.com/intel/torch-xpu-ops/commit/026b2c8c7c92a7b2cec5d26334006e3423251cc6), includes: - Enable AOT for LNL cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,906,681,453
Refactor to use torch.accelerator.device_index instead of torch.cuda.device for generic device context manager
guangyey
closed
[ "oncall: distributed", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/rocm", "ciflow/xpu" ]
12
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #148880 * #148864 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,906,586,191
setuptools pinning
ozanMSFT
closed
[ "module: windows", "open source", "Merged", "ciflow/binaries", "ciflow/trunk", "topic: not user facing" ]
6
COLLABORATOR
Fixes #148877 --- On 9 March 2025, [setuptools](https://pypi.org/project/setuptools/#history) published a new version and it is causing an issue on `pytorch` with the following error: ``` AttributeError: module 'distutils' has no attribute '_msvccompiler'. Did you mean: 'ccompiler'? ``` Last known working version is [75.8.2](https://pypi.org/project/setuptools/75.8.2/) Currently it is affecting Windows ARM64 nightly build, however soon it might affect also Windows x64 builds. (conda version is not updated yet [setuptools conda](https://anaconda.org/anaconda/setuptools) Locally both `Windows ARM64` and `Windows x64` are having same problem with the latest `setuptools` (>75.8.2) --- This PR is pinning `setuptools` version. cc @peterjc123 @mszhanyi @skyline75489 @nbcsm @iremyux @Blackhex
true
2,906,577,125
Add Half support for weight_norm on CPU
CaoE
closed
[ "module: cpu", "open source", "module: half", "Merged", "ciflow/trunk", "release notes: nn", "ciflow/inductor" ]
10
COLLABORATOR
Fixes #148867. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,906,496,492
setuptools error - Windows - 'distutils' has no attribute '_msvccompiler'
ozanMSFT
closed
[ "module: build", "module: windows", "triaged", "module: regression" ]
1
COLLABORATOR
### 🐛 Describe the bug `setuptools` is updated on 9 March 2025. (last working version is `75.8.2`) https://pypi.org/project/setuptools/#history With this update, Windows nightly builds started fail with `AttributeError: module 'distutils' has no attribute '_msvccompiler'` --- Currently `x64` builds are not affected since they're still using `conda` version is not updated yet `75.8.0` as of today. However, once `conda` version is being updated, they will be also affected. (https://anaconda.org/anaconda/setuptools) NOTE: We locally tested on Windows x64 with `setuptools` recent version (`>75.8.2`), it also got same error. --- **Logs:** https://ossci-raw-job-status.s3.amazonaws.com/log/38441317550](https://ossci-raw-job-status.s3.amazonaws.com/log/38441317550) ``` 2025-03-09T08:11:01.4358834Z Traceback (most recent call last): 2025-03-09T08:11:01.4359408Z -- Building version 2.7.0.dev20250309+cpu 2025-03-09T08:11:01.4360139Z File "C:\a\pytorch\pytorch\pytorch\tools\build_pytorch_libs.py", line 21, in _get_vc_env 2025-03-09T08:11:01.4361713Z return distutils._msvccompiler._get_vc_env(vc_arch) # type: ignore[no-any-return] 2025-03-09T08:11:01.4362368Z ^^^^^^^^^^^^^^^^^^^^^^^ 2025-03-09T08:11:01.4363073Z AttributeError: module 'distutils' has no attribute '_msvccompiler'. Did you mean: 'ccompiler'? 2025-03-09T08:11:01.4363687Z 2025-03-09T08:11:01.4363996Z During handling of the above exception, another exception occurred: 2025-03-09T08:11:01.4364443Z 2025-03-09T08:11:01.4364610Z Traceback (most recent call last): 2025-03-09T08:11:01.4365176Z File "C:\a\pytorch\pytorch\pytorch\setup.py", line 1502, in <module> 2025-03-09T08:11:01.4373104Z main() 2025-03-09T08:11:01.4373545Z File "C:\a\pytorch\pytorch\pytorch\setup.py", line 1170, in main 2025-03-09T08:11:01.4382421Z build_deps() 2025-03-09T08:11:01.4382970Z File "C:\a\pytorch\pytorch\pytorch\setup.py", line 490, in build_deps 2025-03-09T08:11:01.4389171Z build_pytorch( 2025-03-09T08:11:01.4389796Z File "C:\a\pytorch\pytorch\pytorch\tools\build_pytorch_libs.py", line 121, in build_pytorch 2025-03-09T08:11:01.4391983Z my_env = _create_build_env() 2025-03-09T08:11:01.4392637Z ^^^^^^^^^^^^^^^^^^^ 2025-03-09T08:11:01.4393297Z File "C:\a\pytorch\pytorch\pytorch\tools\build_pytorch_libs.py", line 82, in _create_build_env 2025-03-09T08:11:01.4395306Z my_env = _overlay_windows_vcvars(my_env) 2025-03-09T08:11:01.4395815Z ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2025-03-09T08:11:01.4396547Z File "C:\a\pytorch\pytorch\pytorch\tools\build_pytorch_libs.py", line 51, in _overlay_windows_vcvars 2025-03-09T08:11:01.4398054Z vc_env = _get_vc_env(vc_arch) 2025-03-09T08:11:01.4398830Z ^^^^^^^^^^^^^^^^^^^^ 2025-03-09T08:11:01.4399562Z File "C:\a\pytorch\pytorch\pytorch\tools\build_pytorch_libs.py", line 25, in _get_vc_env 2025-03-09T08:11:01.4400909Z return _msvccompiler._get_vc_env(vc_arch) # type: ignore[no-any-return] 2025-03-09T08:11:01.4402146Z ^^^^^^^^^^^^^^^^^^^^^^^^^ 2025-03-09T08:11:01.4402831Z AttributeError: module 'distutils._msvccompiler' has no attribute '_get_vc_env' ``` ### Versions torch 2.7.0 **working version:** setuptools [75.8.2](https://pypi.org/project/setuptools/75.8.2/) **failed versions (all published on 9 March 2025):** setuptools [75.9.0](https://pypi.org/project/setuptools/75.9.0/) setuptools [75.9.1](https://pypi.org/project/setuptools/75.9.1/) setuptools [76.0.0](https://pypi.org/project/setuptools/76.0.0/) created issue on `setuptools`: https://github.com/pypa/setuptools/issues/4874 cc @malfet @seemethere @peterjc123 @mszhanyi @skyline75489 @nbcsm @iremyux @Blackhex
true
2,906,488,406
Use device agnostic APIs and variable names for dtensor
amathewc
closed
[ "oncall: distributed", "module: cpu", "triaged", "module: mkldnn", "open source", "module: amp (automated mixed precision)", "NNC", "release notes: quantization", "topic: not user facing", "module: inductor", "module: dynamo", "release notes: distributed (checkpoint)", "module: compiled autograd" ]
23
CONTRIBUTOR
## MOTIVATION To generalize DTensor test cases for non-CUDA devices, we are replacing certain APIs with device-agnostic alternatives. Additionally, we are refactoring the code to improve modularity. Please refer to this RFC as well: https://github.com/pytorch/rfcs/pull/66 ## CHANGES ### common_dtensor.py - Use APIs like torch.get_device_module and dist.get_default_backend_for_device to dynamically determine the device and backend based on the environment. - Replace hardcoded device names with generic identifiers such as self.device_type. - In the wrapper function, use DEVICE_COUNT, which is set via DEVICE_MODULE.device_count, instead of torch.accelerator.device_count(), as the latter does not support out-of-tree devices. ### test_random_ops.py & test_dtensor_config.py - Replace hardcoded device names with self.device_type. cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @jerryzh168 @gujinghui @PenghuiCheng @jianyuh @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal @mcarilli @ptrblck @leslie-fang-intel @EikanWang @voznesenskym @penguinwu @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov @xmfan @kwen2501 @c-p-i-o @ankurneog
true
2,906,394,490
Refactor `test/test_torch.py` by moving testcase to `test_indexing.py`
zeshengzong
closed
[ "triaged", "open source", "Merged", "Reverted", "topic: not user facing", "ci-no-td" ]
9
CONTRIBUTOR
Fix `FIXME` in `test_torch.py` by moving test-cases to `test_indexing.py` ```python # FIXME: move to test indexing # FIXME: move to indexing test suite ``` - Move tests in `test/test_torch.py` to `test_indexing.py` - Remove `FIXME` comments ## TestResult ```bash pytest test/test_torch.py -k TestTorchDeviceType -vv pytest test/test_indexing.py -k TestIndexing -vv ``` ![image](https://github.com/user-attachments/assets/49a80985-e74a-4da6-a063-476e87e6aa8a) ![image](https://github.com/user-attachments/assets/77afa936-5dba-480c-b293-eb1f7bc74420)
true
2,906,382,344
`torch.device.__enter__` does not affect `get_default_device` despite taking precedence over `set_default_device`
ringohoffman
open
[ "triaged", "module: python frontend" ]
1
CONTRIBUTOR
### 🐛 Describe the bug Using a `torch.device` as a context manager takes precedence over `set_default_device`, but this isn't reflected by the return value of `get_default_device`. ```python import torch import torch.utils._device torch.set_default_device("cuda:1") with torch.device("cuda:0"): print(f"get_default_device(): {torch.get_default_device()}") print(f"CURRENT_DEVICE: {torch.utils._device.CURRENT_DEVICE}") print(f"actual current device: {torch.tensor(()).device}") ``` ``` get_default_device(): cuda:1 CURRENT_DEVICE: cuda:1 actual current device: cuda:0 ``` I feel like calling `__enter__` on the `DeviceContext` created in `torch.device`'s C++ `__enter__` implementation and `__exit__` in the C++ `__exit__` implementation might be a solution. https://github.com/pytorch/pytorch/blob/00199acdb85a4355612bff28e1018b035e0e46b9/torch/csrc/Device.cpp#L179-L197 https://github.com/pytorch/pytorch/blob/00199acdb85a4355612bff28e1018b035e0e46b9/torch/utils/_device.py#L100-L104 https://github.com/pytorch/pytorch/blob/00199acdb85a4355612bff28e1018b035e0e46b9/torch/__init__.py#L1134-L1147 cc: @ezyang ### Versions torch==2.6.0 cc @albanD
true
2,906,358,061
Update slow tests
pytorchupdatebot
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/slow", "ci-no-td" ]
3
COLLABORATOR
This PR is auto-generated weekly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/weekly.yml). Update the list of slow tests.
true
2,906,293,895
convert guard_size_oblivious to runtime check in infer_size_impl
laithsakka
open
[ "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152722 * __->__ #148872 its ok to check the requirement numel == newsize at runtime in case of unbacked instead of at compile time and assume that its true.
true
2,906,283,113
Make `torch._check` support bool tensor as `cond` param
zeshengzong
open
[ "triaged", "open source", "topic: not user facing" ]
4
CONTRIBUTOR
Fixes #148349 ## Test Result ```python pytest test/test_torch.py -k test_check -vv ``` ![image](https://github.com/user-attachments/assets/b9cb97b9-28bd-4443-b9c6-0d8afe15068b)
true
2,906,243,333
DISABLED test_lift_tensors_with_shared_symbols_dynamic_shapes (__main__.DynamicShapesHigherOrderOpTests)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: dynamo" ]
3
NONE
Platforms: linux, mac, macos, rocm, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_lift_tensors_with_shared_symbols_dynamic_shapes&suite=DynamicShapesHigherOrderOpTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/38461240129). Over the past 3 hours, it has been determined flaky in 7 workflow(s) with 14 failures and 7 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_lift_tensors_with_shared_symbols_dynamic_shapes` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `dynamo/test_dynamic_shapes.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,906,200,092
Optimize `MaxPool1d` param `ceil_mode` description
zeshengzong
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
11
CONTRIBUTOR
Fixes #148123 Add output shape formula based on `ceil_mode` value, according to https://github.com/pytorch/pytorch/blob/00199acdb85a4355612bff28e1018b035e0e46b9/aten/src/ATen/native/Pool.h#L61-L75 ## Test Result ### Before ![image](https://github.com/user-attachments/assets/0a175178-a104-4348-a14b-516e866d533a) ### After ![image](https://github.com/user-attachments/assets/ce621d4b-1986-41fb-bd71-2b03c0aa996e)
true
2,906,148,635
Optimize shard_dim_alltoall to use alltoall_single
wanchaol
closed
[ "oncall: distributed", "open source", "Merged", "ciflow/trunk", "ciflow/periodic", "release notes: distributed (dtensor)" ]
6
COLLABORATOR
as titled, previously the shard_dim_alltoall uses `all_to_all`, which essentially could incur lots of copies if the tensor become non-contiguous during splits, and alltoall itself also incur copies This PR uses alltoall_single instead, so that we could minimize tensor copies. tested on all the shard dim change tests and it works properly: ``` pytest test/distributed/tensor/test_redistribute.py -s -k shard_dim_alltoall ``` Fixes #ISSUE_NUMBER cc @H-Huang @awgu @kwen2501 @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,906,143,010
FP16 of weight norm is slower than BF16 on CPU
jiqing-feng
closed
[ "module: nn", "triaged" ]
1
NONE
### 🐛 Describe the bug To reproduce it. CMD: `numactl -C 0-31 -m 0 python test.py` ```python import time import torch weight_norm = torch.nn.utils.parametrizations.weight_norm conv_layer = torch.nn.Conv1d(in_channels=192, out_channels=383, kernel_size=5, dilation=1, padding=2, dtype=torch.bfloat16) in_layer = weight_norm(conv_layer) input_tensor = torch.rand(1, 192, 178).to(conv_layer.weight.dtype) - 0.5 with torch.no_grad(): for i in range(100): start = time.time() out = in_layer(input_tensor) end = time.time() print(f"time costs: {(end-start)*1000000} us") ``` You can see the overall latency bf16: fp16 = 1:2 I profiled it and found the overhead is from weight norm. ### Versions ``` Collecting environment information... PyTorch version: 2.7.0.dev20250309+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.11.0-13-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 384 On-line CPU(s) list: 0-383 Vendor ID: GenuineIntel BIOS Vendor ID: Intel(R) Corporation Model name: Intel(R) Xeon(R) 6972P BIOS Model name: Intel(R) Xeon(R) 6972P CPU family: 6 Model: 173 Thread(s) per core: 2 Core(s) per socket: 96 Socket(s): 2 Stepping: 1 CPU max MHz: 3900.0000 CPU min MHz: 800.0000 BogoMIPS: 4800.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid ap erfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpci d cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xget bv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect user_shstk avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req hfi vnmi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnn i avx512_bitalg avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr ibt amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 9 MiB (192 instances) L1i cache: 12 MiB (192 instances) L2 cache: 384 MiB (192 instances) L3 cache: 960 MiB (2 instances) NUMA node(s): 6 NUMA node0 CPU(s): 0-31,192-223 NUMA node1 CPU(s): 32-63,224-255 NUMA node2 CPU(s): 64-95,256-287 NUMA node3 CPU(s): 96-127,288-319 NUMA node4 CPU(s): 128-159,320-351 NUMA node5 CPU(s): 160-191,352-383 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS Not affected; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] onnx==1.17.0 [pip3] pytorch-lightning==2.5.0.post0 [pip3] pytorch-metric-learning==2.8.1 [pip3] pytorchvideo==0.1.5 [pip3] torch==2.7.0.dev20250309+cpu [pip3] torch-audiomentations==0.11.1 [pip3] torch_pitch_shift==1.2.5 [pip3] torchaudio==2.6.0.dev20250309+cpu [pip3] torchmetrics==1.6.1 [pip3] torchvision==0.22.0.dev20250309+cpu [conda] Could not collect ``` cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
true
2,906,066,198
[Inductor] Core dumped due to invalid next size
Cookiee235
open
[ "module: crash", "oncall: pt2", "oncall: cpu inductor" ]
2
CONTRIBUTOR
### 🐛 Describe the bug ```python import torch class TestModel(torch.nn.Module): def __init__(self): super(TestModel, self).__init__() self.linear = torch.nn.Linear(10, 10) def forward(self, x): mean = torch.zeros(10, 10) std = torch.ones(10, 10) random_data = torch.normal(mean, std) LD = torch.randn(10, 10) pivots = torch.randint(0, 10, (10,)) B = torch.randn(10, 10) ldl_solution = torch.linalg.ldl_solve(LD, pivots, B) input_unpool = torch.randn(1, 1, 10, 10, 10) indices = torch.randint(0, 10, (1, 1, 10, 10, 10)) unpooled = torch.nn.functional.max_unpool3d(input_unpool, indices, kernel_size=2) combined = self.linear(x) + random_data + ldl_solution + unpooled.mean() return combined model = TestModel() inputs = torch.randn(1, 10) res = model(inputs) compiled_model = torch.compile(model, backend='inductor') compiled_out = compiled_model(inputs) # core dump ``` ### StackTrack ``` free(): invalid next size (fast) Aborted (core dumped) ``` ### Versions PyTorch version: 2.7.0.dev20250308+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: AlmaLinux 9.4 (Seafoam Ocelot) (x86_64) GCC version: (GCC) 11.4.1 20231218 (Red Hat 11.4.1-3) Clang version: 17.0.6 (AlmaLinux OS Foundation 17.0.6-5.el9) CMake version: version 3.26.5 Libc version: glibc-2.34 Python version: 3.13.0 | packaged by Anaconda, Inc. | (main, Oct 7 2024, 21:29:38) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.14.0-427.37.1.el9_4.x86_64-x86_64-with-glibc2.34 Is CUDA available: True CUDA runtime version: 12.6.77 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 GPU 3: NVIDIA GeForce RTX 3090 Nvidia driver version: 560.35.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Vendor ID: AuthenticAMD Model name: AMD Ryzen Threadripper PRO 3975WX 32-Cores CPU family: 23 Model: 49 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU(s) scaling MHz: 81% CPU max MHz: 4368.1641 CPU min MHz: 2200.0000 BogoMIPS: 7000.23 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sev sev_es Virtualization: AMD-V L1d cache: 1 MiB (32 instances) L1i cache: 1 MiB (32 instances) L2 cache: 16 MiB (32 instances) L3 cache: 128 MiB (8 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-63 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.3 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.25.1 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] pytorch-triton==3.2.0+git4b3bb1f8 [pip3] torch==2.7.0.dev20250308+cu126 [pip3] torchaudio==2.6.0.dev20250308+cu126 [pip3] torchvision==0.22.0.dev20250308+cu126 [pip3] triton==3.2.0 [conda] numpy 2.2.3 pypi_0 pypi [conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-nccl-cu12 2.25.1 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi [conda] pytorch-triton 3.2.0+git4b3bb1f8 pypi_0 pypi [conda] torch 2.7.0.dev20250308+cu126 pypi_0 pypi [conda] torchaudio 2.6.0.dev20250308+cu126 pypi_0 pypi [conda] torchvision 0.22.0.dev20250308+cu126 pypi_0 pypi [conda] triton 3.2.0 pypi_0 pypi cc @chauhang @penguinwu
true
2,906,017,307
Create and send `full_tensor` on `ProcessGroup`-supported device in `_broadcast_tensors`
ringohoffman
closed
[ "oncall: distributed", "triaged", "open source", "Merged", "ciflow/trunk", "release notes: distributed (checkpoint)" ]
7
CONTRIBUTOR
Fixes #138842 `device` is always the device of the `local_state_dict`, which may or may not be CPU, which is not supported by NCCL backend. Instead, create broadcasted tensors on one of `pg._device_types` and then move the tensors back if `local_state_dict`'s `device` was not supported by the `ProcessGroup`. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,905,997,322
Add torch.accelerator.device_index as accelerator's device switch context
guangyey
closed
[ "open source", "Merged", "ciflow/trunk", "release notes: python_frontend", "topic: not user facing", "ciflow/rocm", "ciflow/xpu", "module: accelerator" ]
12
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #148880 * __->__ #148864 # Motivation We propose adding support for the Python with statement on `torch.accelerator.device_index` to enable device switching functionality. This enhancement would simplify writing device-agnostic code and provide benefits across all accelerators. Its device-specific counterparts include [`torch.cuda.device`](https://github.com/pytorch/pytorch/blob/00199acdb85a4355612bff28e1018b035e0e46b9/torch/cuda/__init__.py#L482) and [`torch.cuda._DeviceGuard`](https://github.com/pytorch/pytorch/blob/00199acdb85a4355612bff28e1018b035e0e46b9/torch/cuda/__init__.py#L469). **Design Philosophy** It accepts either an `Int` or `None` as input. When `None` is passed, no device switch is performed. Supporting `None` is important for compatibility, as it's possible to encounter `None` values from `torch.device.index`. Therefore, with this PR, we can do like this ```python src = 0 dst = 1 # Set src to current device torch.accelerator.set_device_index(src) with torch.accelerator.device_index(dst): # Inside with statement, we set dst to current device assert torch.accelerator.get_device_index() == dst # Here the current device should be src assert torch.accelerator.get_device_index() == src ``` cc @albanD @EikanWang
true
2,905,985,840
[Doc] Update CMAKE_PREFIX_PATH for XPU windows README
Stonepia
closed
[ "module: docs", "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: xpu" ]
11
CONTRIBUTOR
We found that the `pip install cmake` and `conda install cmake` has different behavior. The reason is that the pip installed one doesn't find the corresponding libs under conda env. So we need to set the `CMAKE_PREFIX_PATH` for alignment. cc @svekars @sekyondaMeta @AlannaBurke @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,905,948,283
[Inductor] Compiled model crashed when execute inference
Cookiee235
open
[ "triaged", "oncall: pt2" ]
2
CONTRIBUTOR
### 🐛 Describe the bug ```python import torch class SimpleModel(torch.nn.Module): def __init__(self): super(SimpleModel, self).__init__() self.linear = torch.nn.Linear(10, 10) def forward(self, x): x = self.linear(x) eigvals = torch.linalg.eigvals(x) eigvals_not = torch.bitwise_not(eigvals.to(torch.int32)) loss = torch.nn.functional.margin_ranking_loss( eigvals.to(torch.float32), eigvals_not.to(torch.float32), torch.ones_like(eigvals).to(torch.float32) ) return loss model = SimpleModel() inputs = torch.randn(10, 10) res = model(inputs) compiled_model = torch.compile(model, backend='inductor') compiled_out = compiled_model(inputs) ``` ### Traceback ``` Traceback (most recent call last): File "/data/qshenaf/remote_pc/LLM4Converter/torch_tests/zero_signature_3apis_random/torch.nn.functional.margin_ranking_loss.py", line 26, in <module> compiled_out = compiled_model(inputs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/eval_frame.py", line 655, in _fn return fn(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "/data/qshenaf/remote_pc/LLM4Converter/torch_tests/zero_signature_3apis_random/torch.nn.functional.margin_ranking_loss.py", line 8, in forward def forward(self, x): File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/eval_frame.py", line 838, in _fn return fn(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/aot_autograd.py", line 1201, in forward return compiled_fn(full_args) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 315, in runtime_wrapper all_outs = call_func_at_runtime_with_args( compiled_fn, args_, disable_amp=disable_amp, steal_args=True ) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/utils.py", line 126, in call_func_at_runtime_with_args out = normalize_as_list(f(args)) ~^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/utils.py", line 100, in g return f(*args) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/autograd/function.py", line 575, in apply return super().apply(*args, **kwargs) # type: ignore[misc] ~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 1937, in forward fw_outs = call_func_at_runtime_with_args( CompiledFunction.compiled_fw, args, disable_amp=disable_amp, ) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/utils.py", line 126, in call_func_at_runtime_with_args out = normalize_as_list(f(args)) ~^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 495, in wrapper return compiled_fn(runtime_args) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 689, in inner_fn outs = compiled_fn(args) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_inductor/output_code.py", line 460, in __call__ return self.current_callable(inputs) ~~~~~~~~~~~~~~~~~~~~~^^^^^^^^ File "/tmp/torchinductor_qshenaf/3o/c3o7f3a7u7ehdg6lyrtuhqpuznmezaiii6mubdya4xmkaexqettr.py", line 166, in call assert_size_stride(buf3, (10, 10), (10, 1)) ~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ AssertionError: expected size 10==10, stride 1==10 at dim=0; expected size 10==10, stride 10==1 at dim=1 This error most often comes from a incorrect fake (aka meta) kernel for a custom op. Use torch.library.opcheck to test your custom op. See https://pytorch.org/docs/stable/library.html#torch.library.opcheck ``` ### Versions PyTorch version: 2.7.0.dev20250308+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: AlmaLinux 9.4 (Seafoam Ocelot) (x86_64) GCC version: (GCC) 11.4.1 20231218 (Red Hat 11.4.1-3) Clang version: 17.0.6 (AlmaLinux OS Foundation 17.0.6-5.el9) CMake version: version 3.26.5 Libc version: glibc-2.34 Python version: 3.13.0 | packaged by Anaconda, Inc. | (main, Oct 7 2024, 21:29:38) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.14.0-427.37.1.el9_4.x86_64-x86_64-with-glibc2.34 Is CUDA available: True CUDA runtime version: 12.6.77 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 GPU 3: NVIDIA GeForce RTX 3090 Nvidia driver version: 560.35.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Vendor ID: AuthenticAMD Model name: AMD Ryzen Threadripper PRO 3975WX 32-Cores CPU family: 23 Model: 49 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU(s) scaling MHz: 81% CPU max MHz: 4368.1641 CPU min MHz: 2200.0000 BogoMIPS: 7000.23 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sev sev_es Virtualization: AMD-V L1d cache: 1 MiB (32 instances) L1i cache: 1 MiB (32 instances) L2 cache: 16 MiB (32 instances) L3 cache: 128 MiB (8 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-63 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Notaffected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.3 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.25.1 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] pytorch-triton==3.2.0+git4b3bb1f8 [pip3] torch==2.7.0.dev20250308+cu126 [pip3] torchaudio==2.6.0.dev20250308+cu126 [pip3] torchvision==0.22.0.dev20250308+cu126 [pip3] triton==3.2.0 [conda] numpy 2.2.3 pypi_0 pypi [conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-nccl-cu12 2.25.1 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi [conda] pytorch-triton 3.2.0+git4b3bb1f8 pypi_0 pypi [conda] torch 2.7.0.dev20250308+cu126 pypi_0 pypi [conda] torchaudio 2.6.0.dev20250308+cu126 pypi_0 pypi [conda] torchvision 0.22.0.dev20250308+cu126 pypi_0 pypi [conda] triton 3.2.0 pypi_0 pypi cc @chauhang @penguinwu
true
2,905,947,765
[CPU]DNNL does not support bf16 backward on Lunar lake
gaopengff
closed
[ "triaged", "module: mkldnn", "module: regression", "module: intel", "bug" ]
4
CONTRIBUTOR
### 🐛 Describe the bug I have tested my ut on Intel Lunar lake cpu(Intel® Core™ Ultra Processors). It failed with error message: “**RuntimeError: DNNL does not support bf16/f16 backward on the platform with avx2_vnni_2**”. Here is the reproducer: ```python import torch x = torch.ones([2, 3, 8, 6], dtype=torch.float, requires_grad=True) conv1 = torch.nn.Conv2d(3, 32, kernel_size=7, stride=2, padding=3, bias=False) with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16): y = conv1(x) loss = y.sum() loss.backward() ``` I think it may be caused by CPU's compatibility with DNNL. Could you help with it? ### Versions Pytorch 2.6 cc @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal @frank-wei
true
2,905,932,644
AttributeError: module 'torch.compiler' has no attribute 'save_cache_artifacts'
janak2
closed
[ "triaged", "oncall: pt2", "compile-cache" ]
4
NONE
### 🐛 Describe the bug Documentation says you need pytorch > 2.4: https://pytorch.org/tutorials/recipes/torch_compile_caching_tutorial.html I have tried with torch 2.6 but am getting the following error: ### Error logs ``` Traceback (most recent call last): File "/pkg/modal/_runtime/container_io_manager.py", line 703, in handle_user_exception yield File "/pkg/modal/_container_entrypoint.py", line 384, in call_lifecycle_functions event_loop.run(res) File "/pkg/modal/_container_entrypoint.py", line 168, in run return self.loop.run_until_complete(task) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/asyncio/base_events.py", line 653, in run_until_complete return future.result() ^^^^^^^^^^^^^^^ File "/root/minicpm_inference_engine.py", line 390, in load_to_gpu artifacts = torch.compiler.save_cache_artifacts() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ AttributeError: module 'torch.compiler' has no attribute 'save_cache_artifacts' ``` ### Versions GPU - H100 Cuda - 12.4 Torch - 2.6.0 cc @chauhang @penguinwu
true
2,905,930,106
[Inductor] Output mismatch shape after compilation
Cookiee235
open
[ "triaged", "oncall: pt2", "module: pt2 accuracy" ]
3
CONTRIBUTOR
### 🐛 Describe the bug ```python import torch class SimpleModel(torch.nn.Module): def __init__(self): super(SimpleModel, self).__init__() self.conv = torch.nn.Conv2d(1, 3, kernel_size=3, stride=1, padding=1) self.upsample = torch.nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) def forward(self, x): x = self.conv(x) x = torch.floor(x) x = self.upsample(x) x = torch.unique_consecutive(x) return x model = SimpleModel() inputs = torch.randn(1, 1, 16, 16) res = model(inputs) compiled_model = torch.compile(model, backend='inductor') compiled_out = compiled_model(inputs) torch.testing.assert_close(res, compiled_out, rtol=1e-3, atol=1e-3) ``` ### Traceback ``` Traceback (most recent call last): File "/data/qshenaf/remote_pc/LLM4Converter/torch_tests/zero_signature_3apis_random/torch.nn.functional.upsample_bilinear.py", line 20, in <module> torch.testing.assert_close(res, compiled_out, rtol=1e-3, atol=1e-3) ~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/testing/_comparison.py", line 1519, in assert_close raise error_metas[0].to_error(msg) AssertionError: The values for attribute 'shape' do not match: torch.Size([2649]) != torch.Size([2638]). ``` ### Versions PyTorch version: 2.7.0.dev20250308+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: AlmaLinux 9.4 (Seafoam Ocelot) (x86_64) GCC version: (GCC) 11.4.1 20231218 (Red Hat 11.4.1-3) Clang version: 17.0.6 (AlmaLinux OS Foundation 17.0.6-5.el9) CMake version: version 3.26.5 Libc version: glibc-2.34 Python version: 3.13.0 | packaged by Anaconda, Inc. | (main, Oct 7 2024, 21:29:38) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.14.0-427.37.1.el9_4.x86_64-x86_64-with-glibc2.34 Is CUDA available: True CUDA runtime version: 12.6.77 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 GPU 3: NVIDIA GeForce RTX 3090 Nvidia driver version: 560.35.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Vendor ID: AuthenticAMD Model name: AMD Ryzen Threadripper PRO 3975WX 32-Cores CPU family: 23 Model: 49 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU(s) scaling MHz: 81% CPU max MHz: 4368.1641 CPU min MHz: 2200.0000 BogoMIPS: 7000.23 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sev sev_es Virtualization: AMD-V L1d cache: 1 MiB (32 instances) L1i cache: 1 MiB (32 instances) L2 cache: 16 MiB (32 instances) L3 cache: 128 MiB (8 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-63 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Notaffected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.3 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.25.1 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] pytorch-triton==3.2.0+git4b3bb1f8 [pip3] torch==2.7.0.dev20250308+cu126 [pip3] torchaudio==2.6.0.dev20250308+cu126 [pip3] torchvision==0.22.0.dev20250308+cu126 [pip3] triton==3.2.0 [conda] numpy 2.2.3 pypi_0 pypi [conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-nccl-cu12 2.25.1 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi [conda] pytorch-triton 3.2.0+git4b3bb1f8 pypi_0 pypi [conda] torch 2.7.0.dev20250308+cu126 pypi_0 pypi [conda] torchaudio 2.6.0.dev20250308+cu126 pypi_0 pypi [conda] torchvision 0.22.0.dev20250308+cu126 pypi_0 pypi [conda] triton 3.2.0 pypi_0 pypi cc @chauhang @penguinwu
true
2,905,929,913
RuntimeError: OffsetBasedRNGTracker instantiation requires the presence of CUDA/CUDA-like device
zqwenn
open
[ "oncall: distributed", "triaged" ]
4
CONTRIBUTOR
### 🐛 Describe the bug This [PR](https://github.com/pytorch/pytorch/pull/147025) will cause a RuntimeError for third-party backends while using the torch.distributed.tensor._random.manual_seed function. Here is the error stack. ```bash Root Cause (first observed failure): [0]: time : 2025-03-10_09:33:40 host : localhost rank : 7 (local_rank: 7) exitcode : 1 (pid: 1951609) error_file: /tmp/torchelastic_vxbheltp/none_pixn22hf/attempt_0/7/error.json traceback : Traceback (most recent call last): File "/root/anaconda3/envs/zqwtitan/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 354, in wrapper return f(*args, **kwargs) File "/dl/z00659619/torchtitan/torchtitan0301/torchtitan/torchtitan/train.py", line 99, in main dist_utils.set_determinism( File "/dl/z00659619/torchtitan/torchtitan0301/torchtitan/torchtitan/distributed/utils.py", line 110, in set_determinism torch.distributed.tensor._random.manual_seed(seed, spmd_mesh) File "/root/anaconda3/envs/zqwtitan/lib/python3.10/site-packages/torch/distributed/tensor/_random.py", line 82, in manual_seed _rng_tracker = OffsetBasedRNGTracker(device_mesh, run_state_sync=False) File "/root/anaconda3/envs/zqwtitan/lib/python3.10/site-packages/torch/distributed/tensor/_random.py", line 174, in __init__ raise RuntimeError( RuntimeError: OffsetBasedRNGTracker instantiation requires the presence of CUDA/CUDA-like device. Got npu instead. ``` ### Versions 2.7.0 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,905,884,556
[Flex Attention] support num_heads > 1 in block_mask
BoyuanFeng
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "module: flex attention" ]
4
CONTRIBUTOR
Previously flex decoding errors when block mask has num_heads > 1. So users have to use num_heads=1, or explicitly mark `kernel_options={"FORCE_USE_FLEX_ATTENTION": True}`. This PR fixes this issue. When not using grouped query attention (GQA, i.e., Hq == Hkv), we support block mask with num_heads = 1 and num_heads = num_query_heads (i.e., Hq). This is the same setting as flex attention kernel. When using GQA (i.e., Hq != Hkv), we support block mask with num_heads = 1. When num_heads = Hq, we fall back to flex attention kernel so user don't need to explicitly mark `kernel_options={"FORCE_USE_FLEX_ATTENTION": True}` anymore. Why fallback? In the current flex decoding triton kernel, grouped query heads for the same kv head are handled by the same thread block. Supporting num_heads = Hq with GQA requires support different kv num blocks for different query heads in the same thread block, leading to lots of redundant workload. So we should better use the main flex_attention kernel where each query head is handled by a separate block. Fixes #148527 Fixes #147267 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov @Chillee @drisspg @yanboliang
true
2,905,884,349
[Inductor] RuntimeError: derivative for aten::heaviside is not implemented
Cookiee235
closed
[ "triaged", "oncall: pt2" ]
2
CONTRIBUTOR
### 🐛 Describe the bug ### Reproducible script ``` import torch class SimpleModel(torch.nn.Module): def __init__(self): super(SimpleModel, self).__init__() self.linear = torch.nn.Linear(10, 10) def forward(self, x): x = self.linear(x) x = torch.heaviside(x, torch.tensor([0.0])) return x model = SimpleModel() inputs = torch.randn(10, 10) torch.set_num_interop_threads(4) num_threads = torch.get_num_threads() with torch.no_grad(): res = model(inputs) compiled_model = torch.compile(model, backend='inductor') compiled_out = compiled_model(inputs) # failed ``` ### StackTrace ``` Traceback (most recent call last): File "/data/qshenaf/remote_pc/LLM4Converter/bugs/0310/torch.set_num_interop_threads.py", line 27, in <module> compiled_out = compiled_model(inputs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/eval_frame.py", line 663, in _fn raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/eval_frame.py", line 655, in _fn return fn(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/convert_frame.py", line 1429, in __call__ return self._torchdynamo_orig_callable( ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ frame, cache_entry, self.hooks, frame_state, skip=1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/convert_frame.py", line 1210, in __call__ result = self._inner_convert( frame, cache_entry, hooks, frame_state, skip=skip + 1 ) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/convert_frame.py", line 597, in __call__ return _compile( frame.f_code, ...<14 lines>... skip=skip + 1, ) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/convert_frame.py", line 1056, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_utils_internal.py", line 97, in wrapper_function return function(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/convert_frame.py", line 758, in compile_inner return _compile_inner(code, one_graph, hooks, transform) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/convert_frame.py", line 794, in _compile_inner out_code = transform_code_object(code, transform) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/bytecode_transformation.py", line 1418, in transform_code_object transformations(instructions, code_options) ~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/convert_frame.py", line 256, in _fn return fn(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/convert_frame.py", line 712, in transform tracer.run() ~~~~~~~~~~^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/symbolic_convert.py", line 3315, in run super().run() ~~~~~~~~~~~^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/symbolic_convert.py", line 1216, in run while self.step(): ~~~~~~~~~^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/symbolic_convert.py", line 1126, in step self.dispatch_table[inst.opcode](self, inst) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/symbolic_convert.py", line 3511, in RETURN_VALUE self._return(inst) ~~~~~~~~~~~~^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/symbolic_convert.py", line 3496, in _return self.output.compile_subgraph( ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ self, ^^^^^ ...<2 lines>... ), ^^ ) ^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/output_graph.py", line 1141, in compile_subgraph self.compile_and_call_fx_graph( ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ tx, list(reversed(stack_values)), root, output_replacements ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/output_graph.py", line 1434, in compile_and_call_fx_graph compiled_fn = self.call_user_compiler(gm) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/output_graph.py", line 1484, in call_user_compiler return self._call_user_compiler(gm) ~~~~~~~~~~~~~~~~~~~~~~~~^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/output_graph.py", line 1541, in _call_user_compiler raise BackendCompilerFailed( self.compiler_fn, e, inspect.currentframe() ).with_traceback(e.__traceback__) from None File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/output_graph.py", line 1516, in _call_user_compiler compiled_fn = compiler_fn(gm, self.example_inputs()) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/repro/after_dynamo.py", line 150, in__call__ compiled_gm = compiler_fn(gm, example_inputs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/__init__.py", line 2349, in __call__ return compile_fx(model_, inputs_, config_patches=self.config) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_inductor/compile_fx.py", line 2087, in compile_fx return aot_autograd( ~~~~~~~~~~~~~ ...<6 lines>... cudagraphs=cudagraphs, ~~~~~~~~~~~~~~~~~~~~~~ )(model_, example_inputs_) ~^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/backends/common.py", line 101, in __call__ cg = aot_module_simplified(gm, example_inputs, **self.kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/aot_autograd.py", line 1160, in aot_module_simplified compiled_fn = AOTAutogradCache.load( dispatch_and_compile, ...<5 lines>... remote, ) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/autograd_cache.py",line 779, in load compiled_fn = dispatch_and_compile() File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/aot_autograd.py", line 1145, in dispatch_and_compile compiled_fn, _ = create_aot_dispatcher_function( ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ functional_call, ^^^^^^^^^^^^^^^^ ...<3 lines>... shape_env, ^^^^^^^^^^ ) ^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/aot_autograd.py", line 570, in create_aot_dispatcher_function return _create_aot_dispatcher_function( flat_fn, fake_flat_args, aot_config, fake_mode, shape_env ) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/aot_autograd.py", line 820, in _create_aot_dispatcher_function compiled_fn, fw_metadata = compiler_fn( ~~~~~~~~~~~^ flat_fn, ^^^^^^^^ ...<2 lines>... fw_metadata=fw_metadata, ^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/jit_compile_runtime_wrappers.py", line 783, in aot_dispatch_autograd fx_g, joint_inputs, maybe_subclass_meta = aot_dispatch_autograd_graph( ~~~~~~~~~~~~~~~~~~~~~~~~~~~^ flat_fn, flat_args, aot_config, fw_metadata=fw_metadata ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py", line 318, in aot_dispatch_autograd_graph fx_g = _create_graph(joint_fn_to_trace, updated_joint_inputs, aot_config=aot_config) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py", line 55, in _create_graph fx_g = make_fx( ...<3 lines>... pre_dispatch=aot_config.pre_dispatch, )(*args) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/fx/experimental/proxy_tensor.py", line 2240,in wrapped return make_fx_tracer.trace(f, *args) ~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/fx/experimental/proxy_tensor.py", line 2178,in trace return self._trace_inner(f, *args) ~~~~~~~~~~~~~~~~~^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/fx/experimental/proxy_tensor.py", line 2149,in _trace_inner t = dispatch_trace( wrap_key(func, args, self.fx_tracer, self.pre_dispatch), tracer=self.fx_tracer, concrete_args=tuple(phs), ) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_compile.py", line 51, in inner return disable_fn(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/eval_frame.py", line 838, in _fn return fn(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/fx/experimental/proxy_tensor.py", line 1174,in dispatch_trace graph = tracer.trace(root, concrete_args) # type: ignore[arg-type] File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/eval_frame.py", line 838, in _fn return fn(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/fx/_symbolic_trace.py", line 838, in trace (self.create_arg(fn(*args)),), ~~^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/fx/_symbolic_trace.py", line 692, in flatten_fn tree_out = root_fn(*tree_args) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/fx/experimental/proxy_tensor.py", line 1229,in wrapped out = f(*tensors) # type:ignore[call-arg] File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 717, in inner_fn outs = fn(*args) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 668, in joint_helper return _functionalized_f_helper(primals, tangents) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 416, in _functionalized_f_helper f_outs = fn(*f_args) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 283, in inner_fn_with_anomaly return inner_fn(*args) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 268, in inner_fn backward_out = torch.autograd.grad( needed_outs, ...<2 lines>... allow_unused=True, ) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/autograd/__init__.py", line 451, in grad return handle_torch_function( grad, ...<9 lines>... materialize_grads=materialize_grads, ) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/overrides.py", line 1721, in handle_torch_function result = mode.__torch_function__(public_api, types, args, kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/fx/experimental/proxy_tensor.py", line 1277,in __torch_function__ return func(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/autograd/__init__.py", line 502, in grad result = _engine_run_backward( outputs, ...<5 lines>... accumulate_grad=False, ) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ t_outputs, *args, **kwargs ^^^^^^^^^^^^^^^^^^^^^^^^^^ ) # Calls into the C++ engine to run the backward pass ^ torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: RuntimeError: derivative for aten::heaviside is not implemented ``` ### Versions PyTorch version: 2.7.0.dev20250308+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: AlmaLinux 9.4 (Seafoam Ocelot) (x86_64) GCC version: (GCC) 11.4.1 20231218 (Red Hat 11.4.1-3) Clang version: 17.0.6 (AlmaLinux OS Foundation 17.0.6-5.el9) CMake version: version 3.26.5 Libc version: glibc-2.34 Python version: 3.13.0 | packaged by Anaconda, Inc. | (main, Oct 7 2024, 21:29:38) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.14.0-427.37.1.el9_4.x86_64-x86_64-with-glibc2.34 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 GPU 3: NVIDIA GeForce RTX 3090 Nvidia driver version: 560.35.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Vendor ID: AuthenticAMD Model name: AMD Ryzen Threadripper PRO 3975WX 32-Cores CPU family: 23 Model: 49 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU(s) scaling MHz: 81% CPU max MHz: 4368.1641 CPU min MHz: 2200.0000 BogoMIPS: 7000.23 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sev sev_es Virtualization: AMD-V L1d cache: 1 MiB (32 instances) L1i cache: 1 MiB (32 instances) L2 cache: 16 MiB (32 instances) L3 cache: 128 MiB (8 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-63 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Notaffected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.3 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.25.1 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] pytorch-triton==3.2.0+git4b3bb1f8 [pip3] torch==2.7.0.dev20250308+cu126 [pip3] torchaudio==2.6.0.dev20250308+cu126 [pip3] torchvision==0.22.0.dev20250308+cu126 [pip3] triton==3.2.0 [conda] numpy 2.2.3 pypi_0 pypi [conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-nccl-cu12 2.25.1 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi [conda] pytorch-triton 3.2.0+git4b3bb1f8 pypi_0 pypi [conda] torch 2.7.0.dev20250308+cu126 pypi_0 pypi [conda] torchaudio 2.6.0.dev20250308+cu126 pypi_0 pypi [conda] torchvision 0.22.0.dev20250308+cu126 pypi_0 pypi [conda] triton 3.2.0 pypi_0 pypi cc @chauhang @penguinwu
true
2,905,876,615
Fix invalid format string in libfmt calls
cyyever
closed
[ "open source", "better-engineering", "Merged", "ciflow/trunk", "release notes: mps", "ciflow/mps" ]
8
COLLABORATOR
Wrap shaderSource inside fmt::runtime because the format string is not a string literal and can't pass libfmt's compile time check in C++23
true
2,905,871,886
Fix "invalid application of 'sizeof' to an incomplete type"
cyyever
closed
[ "open source", "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: export" ]
8
COLLABORATOR
Fixes with C++23 and constexpr std::unique_ptr
true
2,905,815,888
DISABLED test_comprehensive_nn_functional_conv_transpose3d_cuda_float32 (__main__.TestInductorOpInfoCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
28
NONE
Platforms: inductor, linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_comprehensive_nn_functional_conv_transpose3d_cuda_float32&suite=TestInductorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/38456186869). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_comprehensive_nn_functional_conv_transpose3d_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1159, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1458, in only_fn return fn(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 2288, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1239, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1239, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1239, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1534, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/mock.py", line 1379, in patched return func(*newargs, **newkeywargs) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 887, in inner raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 879, in inner fn(self, device, dtype, op) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1128, in test_comprehensive raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1088, in test_comprehensive self.check_model_gpu( File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 631, in check_model_gpu check_model( File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 513, in check_model self.assertEqual( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4091, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Tensor-likes are not close! Mismatched elements: 1 / 2744 (0.0%) Greatest absolute difference: 9.1552734375e-05 at index (0, 5, 4, 4, 3) (up to 1.5e-05 allowed) Greatest relative difference: 1.7759699403541163e-05 at index (0, 5, 4, 4, 3) (up to 1.3e-05 allowed) The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3150, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3150, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 454, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1171, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 8: SampleInput(input=Tensor[size=(1, 4, 5, 5, 5), device="cuda:0", dtype=torch.float32], args=(Tensor[size=(4, 8, 3, 3, 3), device="cuda:0", dtype=torch.float32],None), kwargs={}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=8 python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_nn_functional_conv_transpose3d_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_opinfo.py` cc @clee2000 @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @aakhundov
true
2,905,815,739
DISABLED test_train_parity_multi_group_unshard_async_op (__main__.TestFullyShard1DTrainingCore)
pytorch-bot[bot]
closed
[ "oncall: distributed", "triaged", "module: flaky-tests", "skipped", "oncall: pt2" ]
5
NONE
Platforms: inductor, linux, rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_train_parity_multi_group_unshard_async_op&suite=TestFullyShard1DTrainingCore&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/38454373016). Over the past 3 hours, it has been determined flaky in 5 workflow(s) with 5 failures and 5 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_train_parity_multi_group_unshard_async_op` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 605, in wrapper self._join_processes(fn) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 845, in _join_processes self._check_return_codes(elapsed_time) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 899, in _check_return_codes raise RuntimeError( RuntimeError: Process 0 terminated or timed out after 300.1126618385315 seconds ``` </details> Test file path: `distributed/_composable/fsdp/test_fully_shard_training.py` cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @clee2000 @chauhang @penguinwu
true
2,905,815,685
DISABLED test_capture_tracked_nested_dynamic_shapes (__main__.DynamicShapesHigherOrderOpTests)
pytorch-bot[bot]
closed
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: dynamo" ]
3
NONE
Platforms: linux, mac, macos, rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_capture_tracked_nested_dynamic_shapes&suite=DynamicShapesHigherOrderOpTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/38454349123). Over the past 3 hours, it has been determined flaky in 11 workflow(s) with 22 failures and 11 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_capture_tracked_nested_dynamic_shapes` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `dynamo/test_dynamic_shapes.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,905,808,113
[ROCm] AOTriton 0.9.2b RuntimeError Only Supports Head Dimension <=256
Beinsezii
closed
[ "module: rocm", "triaged", "module: sdpa" ]
4
NONE
### 🐛 Describe the bug The latest pytorch nightly makes it impossible to run `scaled_dot_product_attention` on tensors with batch dim > 256 without manually disabling the efficient attention kernels, likely as a result of https://github.com/pytorch/pytorch/pull/148433 trying to enable 512 >= hdim > 256 support ```python import torch q = torch.ones([1, 1, 16384, 512], dtype=torch.float16, device="cuda") k, v = q.clone(), q.clone() result = torch.nn.functional.scaled_dot_product_attention(q, k, v) ``` Full error ``` Traceback (most recent call last): File "/home/beinsezii/Python/quickdif/r.py", line 6, in <module> result = torch.nn.functional.scaled_dot_product_attention(q, k, v) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: FlashAttention forward only supports head dimension at most 256 ``` Verified AOTriton 0.9.2 ``` > readelf -p .comment .venv/lib/python3.12/site-packages/torch/lib/libaotriton_v2.so [ 2f] AOTriton 0.9.2 ``` ### Versions ``` Collecting environment information... PyTorch version: 2.7.0.dev20250309+rocm6.3 Is debug build: False CUDA used to build PyTorch: N/A ROCM used to build PyTorch: 6.3.42131-fa1d09cbd OS: Arch Linux (x86_64) GCC version: (GCC) 14.2.1 20250207 Clang version: 19.1.7 CMake version: version 3.31.6 Libc version: glibc-2.41 Python version: 3.12.7 (main, Oct 8 2024, 00:20:25) [Clang 18.1.8 ] (64-bit runtime) Python platform: Linux-6.13.5-arch1-1-x86_64-with-glibc2.41 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: AMD Radeon Graphics (gfx1100) Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: 6.3.42131 MIOpen runtime version: 3.3.0 Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 24 On-line CPU(s) list: 0-23 Vendor ID: AuthenticAMD Model name: AMD Ryzen 9 7900X 12-Core Processor CPU family: 25 Model: 97 Thread(s) per core: 2 Core(s) per socket: 12 Socket(s): 1 Stepping: 2 Frequency boost: enabled CPU(s) scaling MHz: 70% CPU max MHz: 5908.0000 CPU min MHz: 545.0000 BogoMIPS: 9382.43 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid overflow_recov succor smca fsrm flush_l1d amd_lbr_pmc_freeze Virtualization: AMD-V L1d cache: 384 KiB (12 instances) L1i cache: 384 KiB (12 instances) L2 cache: 12 MiB (12 instances) L3 cache: 64 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-23 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.3 [pip3] pytorch-triton-rocm==3.2.0+git4b3bb1f8 [pip3] torch==2.7.0.dev20250309+rocm6.3 [pip3] torch_migraphx==0.0.4 [pip3] torchao==0.10.0.dev20250309+rocm6.3 [pip3] torchsde==0.2.6 [conda] Could not collect ``` cc @mruberry @jbschlosser @walterddr @mikaylagawarecki @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,905,806,795
fix dynamo ide
drisspg
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #148849 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,905,753,715
[dynamo][guards] Dont guard on ephemeral numpy tensors
anijain2305
closed
[ "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor", "keep-going" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #148917 * __->__ #148848 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,905,748,547
Fix AttributeError for `_get_vc_env` with setuptools>=75.9.0
sigvoid
open
[ "triaged", "open source" ]
7
NONE
``` File "E:\AI\ComfyUI_windows_portable\python_embeded\Lib\site-packages\torch\utils\cpp_extension.py", line 2172, in _get_vc_env return _msvccompiler._get_vc_env(vc_arch) ^^^^^^^^^^^^^^^^^^^^^^^^^ AttributeError: module 'distutils._msvccompiler' has no attribute '_get_vc_env' ``` see https://github.com/pypa/setuptools/blob/v75.9.0/setuptools/_distutils/_msvccompiler.py
true
2,905,741,079
C++ support to print symbolic tensors as `Symbolic tensor: size=(...)`
grodranlorth
open
[ "triaged", "open source", "topic: not user facing" ]
11
NONE
Fixes https://github.com/pytorch/pytorch/issues/145491
true
2,905,734,501
Unable to compile pad/unpad from Flash Attention 2
conceptofmind
closed
[ "triaged", "oncall: pt2", "module: higher order operators", "module: pt2-dispatcher", "module: flex attention" ]
2
NONE
### 🐛 Describe the bug Hello all, I am attempting to compile a model that is unpadding and padding the input ids for an encoder with Flash Attention 2. The pad and unpad code can be found here: https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/bert_padding.py#L98 Example code: ```python x, indices, cu_seqlens, max_seqlen, _ = unpad_input( inputs=x, attention_mask=attn_mask ) x = self.embed(x) x = self.transformer(x, attn_mask, cu_seqlens, max_seqlen) x = self.lmhead(x) ``` ### Error logs When trying to compile the model I receive this graph break: ``` W0308 14:43:37.982000 21720 site-packages/torch/_dynamo/variables/tensor.py:869] [7/0] Graph break from `Tensor.item()`, consider setting: W0308 14:43:37.982000 21720 site-packages/torch/_dynamo/variables/tensor.py:869] [7/0] torch._dynamo.config.capture_scalar_outputs = True W0308 14:43:37.982000 21720 site-packages/torch/_dynamo/variables/tensor.py:869] [7/0] or: W0308 14:43:37.982000 21720 site-packages/torch/_dynamo/variables/tensor.py:869] [7/0] env TORCHDYNAMO_CAPTURE_SCALAR_OUTPUTS=1 W0308 14:43:37.982000 21720 site-packages/torch/_dynamo/variables/tensor.py:869] [7/0] to include these operations in the captured graph. W0308 14:43:37.982000 21720 site-packages/torch/_dynamo/variables/tensor.py:869] [7/0] W0308 14:43:37.982000 21720 site-packages/torch/_dynamo/variables/tensor.py:869] [7/0] Graph break: from user code at: W0308 14:43:37.982000 21720 site-packages/torch/_dynamo/variables/tensor.py:869] [7/0] File "/models/attn.py", line 171, in torch_dynamo_resume_in__upad_input_at_170 W0308 14:43:37.982000 21720 site-packages/torch/_dynamo/variables/tensor.py:869] [7/0] max_seqlen_in_batch = seqlens_in_batch.max().item() W0308 14:43:37.982000 21720 site-packages/torch/_dynamo/variables/tensor.py:869] [7/0] W0308 14:43:37.982000 21720 site-packages/torch/_dynamo/variables/tensor.py:869] [7/0] tensor([[-1.0541, -0.1679, 0.2720, ..., -0.0505, 0.5067, -0.0918], [-0.8398, -0.2256, 0.5115, ..., -0.2662, 0.0860, -0.1525], [-0.2781, -0.3775, 0.3996, ..., -0.1714, 0.7148, 0.3041]], device='cuda:0', grad_fn=<CompiledFunctionBackward>) Number of parameters in torch model: 34554170 ``` https://github.com/Dao-AILab/flash-attention/blob/5639b9d26dac63d912d6815cb4369250f6cef764/flash_attn/bert_padding.py#L115 ### Versions python3 collect_env.py % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 24353 100 24353 0 0 68213 0 --:--:-- --:--:-- --:--:-- 68407 Collecting environment information... PyTorch version: 2.6.0+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 12.3.0-1ubuntu1~22.04) 12.3.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.14 | packaged by conda-forge | (main, Mar 20 2024, 12:45:18) [GCC 12.3.0] (64-bit runtime) Python platform: Linux-5.15.0-134-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.6.85 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 Nvidia driver version: 560.35.05 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Vendor ID: GenuineIntel Model name: Intel(R) Core(TM) i5-10600K CPU @ 4.10GHz CPU family: 6 Model: 165 Thread(s) per core: 2 Core(s) per socket: 6 Socket(s): 1 Stepping: 5 CPU max MHz: 4800.0000 CPU min MHz: 800.0000 BogoMIPS: 8199.79 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp pku ospke md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 192 KiB (6 instances) L1i cache: 192 KiB (6 instances) L2 cache: 1.5 MiB (6 instances) L3 cache: 12 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-11 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Mitigation; Microcode Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu11==11.11.3.6 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu11==11.8.87 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu11==11.8.89 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu11==11.8.89 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu11==8.7.0.84 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu11==10.9.0.58 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu11==10.3.0.86 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu11==11.4.1.48 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu11==11.7.5.86 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu11==2.20.5 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu11==11.8.86 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] pytorch-triton==3.0.0+45fff310c8 [pip3] rotary-embedding-torch==0.5.3 [pip3] torch==2.6.0+cu126 [pip3] torchaudio==2.6.0+cu126 [pip3] torchvision==0.21.0+cu126 [pip3] triton==3.2.0 [conda] numpy 1.26.4 pypi_0 pypi [conda] nvidia-cublas-cu11 11.11.3.6 pypi_0 pypi [conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu11 11.8.87 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu11 11.8.89 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cuda-runtime-cu11 11.8.89 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cudnn-cu11 8.7.0.84 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi [conda] nvidia-cufft-cu11 10.9.0.58 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi [conda] nvidia-curand-cu11 10.3.0.86 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi [conda] nvidia-cusolver-cu11 11.4.1.48 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi [conda] nvidia-cusparse-cu11 11.7.5.86 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-nccl-cu11 2.20.5 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi [conda] nvidia-nvtx-cu11 11.8.86 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi [conda] pytorch-triton 3.0.0+45fff310c8 pypi_0 pypi [conda] rotary-embedding-torch 0.5.3 pypi_0 pypi [conda] torch 2.6.0+cu126 pypi_0 pypi [conda] torchaudio 2.6.0+cu126 pypi_0 pypi [conda] torchvision 0.21.0+cu126 pypi_0 pypi [conda] triton 3.2.0 pypi_0 pypi cc @chauhang @penguinwu @zou3519 @ydwu4 @bdhirsh @Chillee @drisspg @yanboliang @BoyuanFeng
true
2,905,679,656
[Export] fix automatically convert instances of _check(u>=0) to check_is_size()
SandishKumarHN
closed
[ "Merged", "ciflow/trunk", "release notes: fx", "fx", "ciflow/inductor" ]
14
CONTRIBUTOR
Fixes #148826 Understanding: 1. PyTorch should automatically convert instances of _check(u>=0) to check_is_size() 2. The export mechanism should suggest using check_is_size() instead of _check(u>=0) when applicable Changes made: 1. Added a helper function to detect non-negative checks: is_non_negative_check 2. Modified the suggestion logic in _suggest_torch_checks to detect and handle non-negative checks 3. unit tests test_is_non_negative_check_function, test_suggest_torch_checks_with_non_negative_check, and test_suggest_torch_checks_with_regular_check unit tests: base) sany@sandishs-Laptop pytorch % pytest test/export/test_export.py::TestExport::test_suggest_torch_checks_with_non_negative_check =================================== test session starts ================== platform darwin -- Python 3.9.19, pytest-7.3.2, pluggy-1.5.0 rootdir: /Users/sany/git/pytorch configfile: pytest.ini plugins: xdoctest-1.1.0, cpp-2.3.0, flakefinder-1.1.0, anyio-4.6.0, rerunfailures-14.0, hypothesis-5.35.1, xdist-3.3.1, subtests-0.13.1, typeguard-4.3.0 collected 1 item Running 1 items in this shard test/export/test_export.py . [100%] ======================== 1 passed in 1.67s ======================= (base) sany@sandishs-Laptop pytorch % pytest test/export/test_export.py::TestExport::test_suggest_torch_checks_with_regular_check ======================= test session starts ================= platform darwin -- Python 3.9.19, pytest-7.3.2, pluggy-1.5.0 rootdir: /Users/sany/git/pytorch configfile: pytest.ini plugins: xdoctest-1.1.0, cpp-2.3.0, flakefinder-1.1.0, anyio-4.6.0, rerunfailures-14.0, hypothesis-5.35.1, xdist-3.3.1, subtests-0.13.1, typeguard-4.3.0 collected 1 item Running 1 items in this shard test/export/test_export.py . [100%] ================================= 1 passed in 1.61s ================ (base) sany@sandishs-Laptop pytorch % pytest test/export/test_export.py::TestExport::test_is_non_negative_check_function ================================ test session starts ============= platform darwin -- Python 3.9.19, pytest-7.3.2, pluggy-1.5.0 rootdir: /Users/sany/git/pytorch configfile: pytest.ini plugins: xdoctest-1.1.0, cpp-2.3.0, flakefinder-1.1.0, anyio-4.6.0, rerunfailures-14.0, hypothesis-5.35.1, xdist-3.3.1, subtests-0.13.1, typeguard-4.3.0 collected 1 item Running 1 items in this shard test/export/test_export.py . [100%] ======================= 1 passed in 1.62s ========================= (base) sany@sandishs-Laptop pytorch % cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,905,654,595
make `to_empty` a no-op if parameter/buffer already on `device`
ringohoffman
open
[ "module: nn", "triaged", "needs design" ]
7
CONTRIBUTOR
### 🚀 The feature, motivation and pitch See also: * https://github.com/huggingface/transformers/issues/34234#issuecomment-2429754244 When loading a model with non-persistent buffers on the meta device, the default behavior of [`accelerate.init_empty_weights()`](https://huggingface.co/docs/accelerate/v0.11.0/en/big_modeling#accelerate.init_empty_weights) is to load buffers on the default device. This prevents you from: 1. needing to know that there are non-persistent buffers in whatever model you are loading, which cannot simply be reinitialized by calling `load_state_dict` 2. needing to know how to re-initialize those non-persistent buffers, which is both model and implementation specific and may break between versions 3. needing to update existing models to comply with some sort of `reset_parameters`-type API to enable restoring these non-persistent buffers through a stable API 4. needing to know that you need to write your models in this way to avoid problems with non-persistent buffers being initialized on the meta-device Below you will see that calling `nn.Module.to_empty(device="cpu")` on a model with non-persistent buffers that are already on the cpu ends up replacing the non-persistent buffers--which were already on the desired device--with an empty tensor. ```python import accelerate import transformers with accelerate.init_empty_weights(): config = transformers.AutoConfig.from_pretrained("/models/meta-llama/Llama-3.2-1B-Instruct") model = transformers.AutoModelForCausalLM.from_config(config) parameter_devices = {p.device for p in model.parameters()} print(f"{parameter_devices=}") # parameter_devices={device(type='meta')} buffer_devices = {b.device for b in model.buffers()} print(f"{buffer_devices=}") # buffer_devices={device(type='cpu')} buffer_names = {name for name, buffer in model.named_buffers()} state_dict = set(model.state_dict()) assert state_dict.isdisjoint(buffer_names) # these are non-persistent buffers that will not be re-initialized by calling load_state_dict rotary_embedding = next(iter(model.buffers())) print(rotary_embedding) # tensor([1.0000e+00, 6.6360e-01, 4.4037e-01, 2.9223e-01, 1.9392e-01, 1.2869e-01, ...]) model = model.to_empty(device=rotary_embedding.device) rotary_embedding = next(iter(model.buffers())) print(rotary_embedding) # tensor([0.0000e+00, 0.0000e+00, 7.5098e-25, 0.0000e+00, 6.0012e-30, 0.0000e+00,, ...]) ``` My suggestion is a simple, non-breaking change to `nn.Module.to_empty`, which is to only replace the parameter or buffer with an empty tensor if it is not already on the device the empty tensor would be created on: ```python def to_empty(module: ModuleT, *, device: torch.device | str | int | None, recurse: bool = True) -> ModuleT: """Move the parameters and buffers to the specified device without copying storage if they are not already on that device. Args: module: The module whose parameters and buffers to (maybe) move. device: The desired device of the parameters and buffers in the module. If `None`, the default device is used. recurse: Whether parameters and buffers of submodules should be recursively moved to the specified device. Returns: The (maybe) moved module. """ device = torch.empty((), device=device).device return module._apply( lambda t: torch.empty_like(t, device=device) if t.device != device else t, recurse=recurse, ) ``` ### Alternatives Currently I have no choice but to use the above implementation in my own code, but given that meta device initialization + `nn.Module.to_empty` is [part of the official FSDP2 guide for initializing models](https://github.com/pytorch/torchtitan/blob/main/docs/fsdp.md): > After with FSDP2: > ```python > with torch.device("meta"): > model = Transformer() > for module in model.modules(): > if isinstance(module, TransformerBlock): > fully_shard(module) > fully_shard(model) > for tensor in itertools.chain(model.parameters(), model.buffers()): > assert tensor.device == torch.device("meta") > # Allocate buffers and sharded parameters on GPU > model.to_empty(device="cuda") > # Run user-defined initializers > model.init_weights() # or `model.apply(init_weights)` > ``` as well as the popularity of the `transformers` library, I think this change will help to prevent the confusion that I experienced. ### Additional context _No response_ cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
true
2,905,569,419
We should use max size instead of hint size when autotuning
bobrenjc93
open
[ "triaged", "oncall: pt2" ]
0
CONTRIBUTOR
From x-ref https://fb.workplace.com/profile.php?id=61573598535425 @eellison > At compile time (mm tuning), it will use the hint, aka first size. we should use the max size. Similarly, runtime will use max size. When the max size diverges from runtime I think we could just reuse the existing cpp_wrapper compile time tuning. @Chillee > yeah, I think using max size is likely to lead to better generalization than using the first size. cc @chauhang @penguinwu
true
2,905,517,776
build pytorch2.3.0 cpu with mkldnn_acl 24.08 failed on aarch64
Serenagirl
open
[ "module: build", "triaged", "module: mkldnn", "module: third_party", "module: arm" ]
3
NONE
I build acl24.08 with cmake .. -DCMAKE_BUILD_TYPE=Release -DARM_COMPUTE_OPENMP=1 -DARM_COMPUTE_WERROR=0 -DARM_COMPUTE_BUILD_EXAMPLES=0 -DARM_COMPUTE_BUILD_TESTING=0 -DCMAKE_INSTALL_PREFIX=/opt/acl cmake --build . --parallel 160 and build pytorch with python setup.py build --cmake-only but failed ![Image](https://github.com/user-attachments/assets/590f4905-d8c4-4252-9a32-e987d4786646) cc @malfet @seemethere @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal @milpuz01
true
2,905,430,822
[ONNX] Export fails on `torchvision.transforms.functional.resize` (_upsample_bilinear2d_aa)
FabianSchuetze
closed
[ "module: onnx", "triaged" ]
5
CONTRIBUTOR
### 🐛 Describe the bug The following fails for me: ``` import torch import torchvision class Model(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): y = torchvision.transforms.functional.resize(x, size=[1024, 1024]) return y model = Model() x = torch.rand(1, 3, 400, 500) y = model(x) onnx_model = torch.onnx.export(model, x, dynamo=True) ``` The error message I got is: ``` /home/fabian/.local/lib/python3.12/site-packages/onnxscript/converter.py:823: FutureWarning: 'onnxscript.values.Op.param_schemas' is deprecated in version 0.1 and will be removed in the future. Please use '.op_signature' instead. param_schemas = callee.param_schemas() /home/fabian/.local/lib/python3.12/site-packages/onnxscript/converter.py:823: FutureWarning: 'onnxscript.values.OnnxFunction.param_schemas' is deprecated in version 0.1 and will be removed in the future. Please use '.op_signature' instead. param_schemas = callee.param_schemas() [torch.onnx] Obtain model graph for `Model()` with `torch.export.export(..., strict=False)`... [torch.onnx] Obtain model graph for `Model()` with `torch.export.export(..., strict=False)`... ✅ [torch.onnx] Run decomposition... [torch.onnx] Run decomposition... ✅ [torch.onnx] Translate the graph into ONNX... [torch.onnx] Translate the graph into ONNX... ❌ --------------------------------------------------------------------------- DispatchError Traceback (most recent call last) File ~/.local/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_core.py:708, in _translate_fx_graph(fx_graph, model, graph_like, owned_graphs, lower, registry) 707 if lower == "at_conversion": --> 708 _handle_call_function_node_with_lowering( 709 model, 710 node, 711 node_name_to_values, 712 graph_like=graph_like, 713 constant_farm=constant_farm, 714 registry=registry, 715 opset=opset, 716 node_name_to_local_functions=node_name_to_local_functions, 717 ) 718 else: 719 # No lowering File ~/.local/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_core.py:490, in _handle_call_function_node_with_lowering(model, node, node_name_to_values, graph_like, constant_farm, registry, opset, node_name_to_local_functions) 488 if onnx_function is None: 489 # TODO(justinchuby): Fall back to ATen op or do something else? --> 490 raise _errors.DispatchError( 491 f"No ONNX function found for {node.target!r}. Failure message: {message}" 492 ) 494 # Map FX inputs to ONNX inputs and fill optional inputs. 495 # torch_args and torch_kwargs are for op-level validation DispatchError: No ONNX function found for <OpOverload(op='aten._upsample_bilinear2d_aa', overload='default')>. Failure message: No decompositions registered for the real-valued input The above exception was the direct cause of the following exception: ConversionError Traceback (most recent call last) File ~/.local/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_core.py:1372, in export(model, args, kwargs, registry, dynamic_shapes, input_names, output_names, report, verify, profile, dump_exported_program, artifacts_dir, verbose) 1370 try: 1371 # Convert the exported program to an ONNX model -> 1372 onnx_program = _exported_program_to_onnx_program( 1373 decomposed_program, registry=registry 1374 ) 1376 # Run the ONNX passes File ~/.local/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_core.py:1008, in _exported_program_to_onnx_program(exported_program, registry, lower) 1006 graph_like = func -> 1008 values = _translate_fx_graph( 1009 fx_graph, 1010 model, 1011 graph_like=graph_like, 1012 owned_graphs=owned_graphs, 1013 lower=lower, 1014 registry=registry, 1015 ) 1017 assert name == "", "The last module processed should be the root module" File ~/.local/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_core.py:734, in _translate_fx_graph(fx_graph, model, graph_like, owned_graphs, lower, registry) 733 except Exception as e: --> 734 raise _errors.ConversionError( 735 f"Error when translating node {node.format_node()}. See the stack trace for more information." 736 ) from e 737 return node_name_to_values ConversionError: Error when translating node %_upsample_bilinear2d_aa : [num_users=1] = call_function[target=torch.ops.aten._upsample_bilinear2d_aa.default](args = (%x, [1024, 1024], False), kwargs = {}). See the stack trace for more information. The above exception was the direct cause of the following exception: ConversionError Traceback (most recent call last) Cell In[5], line 1 ----> 1 torch.onnx.export(model, x, dynamo=True) File ~/.local/lib/python3.12/site-packages/torch/onnx/__init__.py:351, in export(model, args, f, kwargs, export_params, verbose, input_names, output_names, opset_version, dynamic_axes, keep_initializers_as_inputs, dynamo, external_data, dynamic_shapes, custom_translation_table, report, optimize, verify, profile, dump_exported_program, artifacts_dir, fallback, training, operator_export_type, do_constant_folding, custom_opsets, export_modules_as_functions, autograd_inlining, **_) 349 if isinstance(args, torch.Tensor): 350 args = (args,) --> 351 return _compat.export_compat( 352 model, 353 args, 354 f, 355 kwargs=kwargs, 356 export_params=export_params, 357 verbose=verbose, 358 input_names=input_names, 359 output_names=output_names, 360 opset_version=opset_version, 361 custom_translation_table=custom_translation_table, 362 dynamic_axes=dynamic_axes, 363 keep_initializers_as_inputs=keep_initializers_as_inputs, 364 external_data=external_data, 365 dynamic_shapes=dynamic_shapes, 366 report=report, 367 optimize=optimize, 368 verify=verify, 369 profile=profile, 370 dump_exported_program=dump_exported_program, 371 artifacts_dir=artifacts_dir, 372 fallback=fallback, 373 ) 374 else: 375 from torch.onnx.utils import export File ~/.local/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_compat.py:304, in export_compat(model, args, f, kwargs, export_params, verbose, input_names, output_names, opset_version, custom_translation_table, dynamic_axes, dynamic_shapes, keep_initializers_as_inputs, external_data, report, optimize, verify, profile, dump_exported_program, artifacts_dir, fallback, **_) 302 registry.register_op(torch_op, op, is_complex=False) 303 try: --> 304 onnx_program = _core.export( 305 model, 306 args, 307 kwargs, 308 registry=registry, 309 dynamic_shapes=dynamic_shapes, 310 input_names=input_names, 311 output_names=output_names, 312 profile=profile, 313 report=report, 314 verify=verify, 315 dump_exported_program=dump_exported_program, 316 artifacts_dir=artifacts_dir, 317 verbose=verbose, 318 ) 320 except Exception as e: 321 if fallback: File ~/.local/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_core.py:1416, in export(model, args, kwargs, registry, dynamic_shapes, input_names, output_names, report, verify, profile, dump_exported_program, artifacts_dir, verbose) 1413 else: 1414 report_path = None -> 1416 raise _errors.ConversionError( 1417 _STEP_THREE_ERROR_MESSAGE 1418 + (f"\nError report has been saved to '{report_path}'." if report else "") 1419 + _summarize_exception_stack(e) 1420 ) from e 1422 profile_result = _maybe_stop_profiler_and_get_result(profiler) 1424 assert onnx_program.exported_program is not None ConversionError: Failed to convert the exported program to an ONNX model. This is step 3/3 of exporting the model to ONNX. Next steps: - If there is a missing ONNX function, implement it and register it to the registry. - If there is an internal error during ONNX conversion, debug the error and summit a PR to PyTorch. - Create an error report with `torch.onnx.export(..., report=True)`, and save the ExportedProgram as a pt2 file. Create an issue in the PyTorch GitHub repository against the *onnx* component. Attach the error report and the pt2 model. ## Exception summary <class 'torch.onnx._internal.exporter._errors.DispatchError'>: No ONNX function found for <OpOverload(op='aten._upsample_bilinear2d_aa', overload='default')>. Failure message: No decompositions registered for the real-valued input ⬆️ <class 'torch.onnx._internal.exporter._errors.ConversionError'>: Error when translating node %_upsample_bilinear2d_aa : [num_users=1] = call_function[target=torch.ops.aten._upsample_bilinear2d_aa.default](args = (%x, [1024, 1024], False), kwargs = {}). See the stack trace for more information. (Refer to the full stack trace above for more information.) ``` Is it true that resize doesn't work? Is there a workaround? ### Versions Collecting environment information... PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 24.04.2 LTS (x86_64) GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 Clang version: Could not collect CMake version: version 3.28.3 Libc version: glibc-2.39 Python version: 3.12.3 (main, Feb 4 2025, 14:48:35) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-6.11.0-17-generic-x86_64-with-glibc2.39 Is CUDA available: True CUDA runtime version: 12.0.140 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA RTX 500 Ada Generation Laptop GPU Nvidia driver version: 550.120 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 22 On-line CPU(s) list: 0-21 Vendor ID: GenuineIntel Model name: Intel(R) Core(TM) Ultra 7 155H CPU family: 6 Model: 170 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 1 Stepping: 4 CPU(s) scaling MHz: 31% CPU max MHz: 4800.0000 CPU min MHz: 400.0000 BogoMIPS: 5990.40 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb intel_ppin ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect user_shstk avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi vnmi umip pku ospke waitpkg gfni vaes vpclmulqdq rdpid bus_lock_detect movdiri movdir64b fsrm md_clear serialize arch_lbr ibt flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 544 KiB (14 instances) L1i cache: 896 KiB (14 instances) L2 cache: 18 MiB (9 instances) L3 cache: 24 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-21 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS Not affected; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] fast_pytorch_kmeans==0.2.2 [pip3] flake8==7.1.2 [pip3] mypy==1.15.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] onnx==1.17.0 [pip3] onnxruntime==1.20.1 [pip3] onnxscript==0.2.0 [pip3] torch==2.6.0 [pip3] torchprofile==0.0.4 [pip3] torchvision==0.21.0 [pip3] triton==3.2.0 [conda] Could not collect
true
2,905,398,382
[MPS] Fix Wreorder-init-list
cyyever
closed
[ "open source", "Merged", "ciflow/trunk", "release notes: mps", "ciflow/mps" ]
6
COLLABORATOR
Fixes the following warning: ``` warning: ISO C++ requires field designators to be specified in declaration order; field 'value' will be initialized after field 'size' [-Wreorder-init-list] 662 | return {.value.cf = scalar.to<c10::complex<float>>(), .size = sizeof(int64_t), .type = type}; ```
true
2,905,312,917
[Inductor] Inconsistency predict results for the compiled models with the original model
Cookiee235
closed
[]
2
CONTRIBUTOR
### 🐛 Describe the bug ### After the compilation with the inductor, the compiled model outputs significantly different results (i.e., 0.05) from the original model. It seems to reveal a bug. ### The reproducible script ```python import torch class TestModel(torch.nn.Module): def __init__(self): super(TestModel, self).__init__() self.fc1 = torch.nn.Linear(10, 10) self.fc2 = torch.nn.Linear(10, 10) def forward(self, x): x = self.fc1(x) x = torch.nn.functional.gumbel_softmax(x, tau=1.0, hard=False, dim=-1) x = self.fc2(x) x = torch.nn.functional.softshrink(x, lambd=0.5) return x model = TestModel() compiled_model = torch.compile(model, backend='inductor') for i in range(30): inputs = torch.randn(1, 10) ori_res = model(*inputs) compiled_out = compiled_model(*inputs) torch.testing.assert_close(ori_res, compiled_out, rtol=1e-3, atol=1e-3) ``` ### StackTrace (inconsistency results) ``` (torch) [qshenaf@sccpu6 0309]$ python torch.nn.functional.gumbel_softmax.py /data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/guards.py:741: RuntimeWarning: Guards may run slower on Python 3.13.0. Consider upgrading to Python 3.13.1+. warnings.warn( Traceback (most recent call last): File "/data/qshenaf/remote_pc/LLM4Converter/bugs/0309/torch.nn.functional.gumbel_softmax.py", line 24, in <module> torch.testing.assert_close(ori_res, compiled_out, rtol=1e-3, atol=1e-3) ~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/testing/_comparison.py", line 1519, in assert_close raise error_metas[0].to_error(msg) AssertionError: Tensor-likes are not close! Mismatched elements: 2 / 10 (20.0%) Greatest absolute difference: 0.05042219161987305 at index (5,) (up to 0.001 allowed) Greatest relative difference: inf at index (6,) (up to 0.001 allowed) (torch) [qshenaf@sccpu6 0309]$ ``` ### Versions PyTorch version: 2.7.0.dev20250308+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: AlmaLinux 9.4 (Seafoam Ocelot) (x86_64) GCC version: (GCC) 11.4.1 20231218 (Red Hat 11.4.1-3) Clang version: 17.0.6 (AlmaLinux OS Foundation 17.0.6-5.el9) CMake version: version 3.26.5 Libc version: glibc-2.34 Python version: 3.13.0 | packaged by Anaconda, Inc. | (main, Oct 7 2024, 21:29:38) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.14.0-427.37.1.el9_4.x86_64-x86_64-with-glibc2.34 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 GPU 3: NVIDIA GeForce RTX 3090 Nvidia driver version: 560.35.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Vendor ID: AuthenticAMD Model name: AMD Ryzen Threadripper PRO 3975WX 32-Cores CPU family: 23 Model: 49 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU(s) scaling MHz: 80% CPU max MHz: 4368.1641 CPU min MHz: 2200.0000 BogoMIPS: 7000.23 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sev sev_es Virtualization: AMD-V L1d cache: 1 MiB (32 instances) L1i cache: 1 MiB (32 instances) L2 cache: 16 MiB (32 instances) L3 cache: 128 MiB (8 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-63 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Notaffected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.3 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.25.1 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] pytorch-triton==3.2.0+git4b3bb1f8 [pip3] torch==2.7.0.dev20250308+cu126 [pip3] torchaudio==2.6.0.dev20250308+cu126 [pip3] torchvision==0.22.0.dev20250308+cu126 [pip3] triton==3.2.0 [conda] numpy 2.2.3 pypi_0 pypi [conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-nccl-cu12 2.25.1 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi [conda] pytorch-triton 3.2.0+git4b3bb1f8 pypi_0 pypi [conda] torch 2.7.0.dev20250308+cu126 pypi_0 pypi [conda] torchaudio 2.6.0.dev20250308+cu126 pypi_0 pypi [conda] torchvision 0.22.0.dev20250308+cu126 pypi_0 pypi [conda] triton 3.2.0 pypi_0 pypi
true
2,905,265,327
NVLS support in Pytorch
rajagond
open
[ "oncall: distributed", "triaged" ]
2
NONE
Does PyTorch support NVLS? If not, how does it manage to call NCCL’s NVLS algorithm using `torch.distributed.all_reduce`? cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,905,247,105
Introduce TORCH_ABI_VERSION and a runtime aoti_torch_abi_version C shim ABI
janeyx99
closed
[ "release notes: cpp", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #148836 <details> ghstack-source-id: 9619e98a56b47312c0ddea04b9d9500dd8e554b3 Pull Request resolved: https://github.com/pytorch/pytorch/pull/148836 <details>
true
2,905,238,517
[Inductor] Error detected in ReluBackward0
Cookiee235
closed
[ "oncall: pt2", "module: aotdispatch", "module: pt2-dispatcher" ]
1
CONTRIBUTOR
### 🐛 Describe the bug ### Description The following script failed when running it with the `torch.compile(mod, 'inductor')` under the nightly version (i.e., 2.7.0.dev20250308+cu126)! ### Reproducible script ```python import torch torch.set_grad_enabled(True) class SimpleModel(torch.nn.Module): def __init__(self): super(SimpleModel, self).__init__() self.linear = torch.nn.Linear(10, 10) def forward(self, x): x = self.linear(x) x = torch.nn.functional.relu(x) x = torch.nn.functional.relu_(x) return x model = SimpleModel() inputs = torch.randn(1, 10) compiled_model = torch.compile(model, backend='inductor') compiled_out = compiled_model(*inputs) ``` ### StackTrace ``` (torch) [qshenaf@sccpu6 0309]$ python torch.nn.functional.relu_.py /data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/autograd/graph.py:824: UserWarning: Error detected in ReluBackward0. Traceback of forward call that caused the error: File "/data/qshenaf/remote_pc/LLM4Converter/bugs/0309/torch.nn.functional.relu_.py", line 12, in forward x = torch.nn.functional.relu(x) (Triggered internally at /pytorch/torch/csrc/autograd/python_anomaly_mode.cpp:122.) return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass Traceback (most recent call last): File "/data/qshenaf/remote_pc/LLM4Converter/bugs/0309/torch.nn.functional.relu_.py", line 19, in <module> compiled_out = compiled_model(*inputs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/eval_frame.py", line 663, in _fn raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/eval_frame.py", line 655, in _fn return fn(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/convert_frame.py", line 1429, in __call__ return self._torchdynamo_orig_callable( ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ frame, cache_entry, self.hooks, frame_state, skip=1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/convert_frame.py", line 1210, in __call__ result = self._inner_convert( frame, cache_entry, hooks, frame_state, skip=skip + 1 ) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/convert_frame.py", line 597, in __call__ return _compile( frame.f_code, ...<14 lines>... skip=skip + 1, ) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/convert_frame.py", line 1056, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_utils_internal.py", line 97, in wrapper_function return function(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/convert_frame.py", line 758, in compile_inner return _compile_inner(code, one_graph, hooks, transform) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/convert_frame.py", line 794, in _compile_inner out_code = transform_code_object(code, transform) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/bytecode_transformation.py", line 1418, in transform_code_object transformations(instructions, code_options) ~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/convert_frame.py", line 256, in _fn return fn(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/convert_frame.py", line 712, in transform tracer.run() ~~~~~~~~~~^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/symbolic_convert.py", line 3315, in run super().run() ~~~~~~~~~~~^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/symbolic_convert.py", line 1216, in run while self.step(): ~~~~~~~~~^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/symbolic_convert.py", line 1126, in step self.dispatch_table[inst.opcode](self, inst) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/symbolic_convert.py", line 3511, in RETURN_VALUE self._return(inst) ~~~~~~~~~~~~^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/symbolic_convert.py", line 3496, in _return self.output.compile_subgraph( ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ self, ^^^^^ ...<2 lines>... ), ^^ ) ^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/output_graph.py", line 1141, in compile_subgraph self.compile_and_call_fx_graph( ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ tx, list(reversed(stack_values)), root, output_replacements ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/output_graph.py", line 1434, in compile_and_call_fx_graph compiled_fn = self.call_user_compiler(gm) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/output_graph.py", line 1484, in call_user_compiler return self._call_user_compiler(gm) ~~~~~~~~~~~~~~~~~~~~~~~~^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/output_graph.py", line 1541, in _call_user_compiler raise BackendCompilerFailed( self.compiler_fn, e, inspect.currentframe() ).with_traceback(e.__traceback__) from None File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/output_graph.py", line 1516, in _call_user_compiler compiled_fn = compiler_fn(gm, self.example_inputs()) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/repro/after_dynamo.py", line 150, in__call__ compiled_gm = compiler_fn(gm, example_inputs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/__init__.py", line 2349, in __call__ return compile_fx(model_, inputs_, config_patches=self.config) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_inductor/compile_fx.py", line 2087, in compile_fx return aot_autograd( ~~~~~~~~~~~~~ ...<6 lines>... cudagraphs=cudagraphs, ~~~~~~~~~~~~~~~~~~~~~~ )(model_, example_inputs_) ~^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/backends/common.py", line 101, in __call__ cg = aot_module_simplified(gm, example_inputs, **self.kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/aot_autograd.py", line 1160, in aot_module_simplified compiled_fn = AOTAutogradCache.load( dispatch_and_compile, ...<5 lines>... remote, ) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/autograd_cache.py",line 779, in load compiled_fn = dispatch_and_compile() File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/aot_autograd.py", line 1145, in dispatch_and_compile compiled_fn, _ = create_aot_dispatcher_function( ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ functional_call, ^^^^^^^^^^^^^^^^ ...<3 lines>... shape_env, ^^^^^^^^^^ ) ^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/aot_autograd.py", line 570, in create_aot_dispatcher_function return _create_aot_dispatcher_function( flat_fn, fake_flat_args, aot_config, fake_mode, shape_env ) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/aot_autograd.py", line 820, in _create_aot_dispatcher_function compiled_fn, fw_metadata = compiler_fn( ~~~~~~~~~~~^ flat_fn, ^^^^^^^^ ...<2 lines>... fw_metadata=fw_metadata, ^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/jit_compile_runtime_wrappers.py", line 783, in aot_dispatch_autograd fx_g, joint_inputs, maybe_subclass_meta = aot_dispatch_autograd_graph( ~~~~~~~~~~~~~~~~~~~~~~~~~~~^ flat_fn, flat_args, aot_config, fw_metadata=fw_metadata ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py", line 318, in aot_dispatch_autograd_graph fx_g = _create_graph(joint_fn_to_trace, updated_joint_inputs, aot_config=aot_config) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py", line 55, in _create_graph fx_g = make_fx( ...<3 lines>... pre_dispatch=aot_config.pre_dispatch, )(*args) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/fx/experimental/proxy_tensor.py", line 2240,in wrapped return make_fx_tracer.trace(f, *args) ~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/fx/experimental/proxy_tensor.py", line 2178,in trace return self._trace_inner(f, *args) ~~~~~~~~~~~~~~~~~^^^^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/fx/experimental/proxy_tensor.py", line 2149,in _trace_inner t = dispatch_trace( wrap_key(func, args, self.fx_tracer, self.pre_dispatch), tracer=self.fx_tracer, concrete_args=tuple(phs), ) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_compile.py", line 51, in inner return disable_fn(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/eval_frame.py", line 838, in _fn return fn(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/fx/experimental/proxy_tensor.py", line 1174,in dispatch_trace graph = tracer.trace(root, concrete_args) # type: ignore[arg-type] File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_dynamo/eval_frame.py", line 838, in _fn return fn(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/fx/_symbolic_trace.py", line 838, in trace (self.create_arg(fn(*args)),), ~~^^^^^^^ File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/fx/_symbolic_trace.py", line 692, in flatten_fn tree_out = root_fn(*tree_args) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/fx/experimental/proxy_tensor.py", line 1229,in wrapped out = f(*tensors) # type:ignore[call-arg] File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 717, in inner_fn outs = fn(*args) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 668, in joint_helper return _functionalized_f_helper(primals, tangents) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 416, in _functionalized_f_helper f_outs = fn(*f_args) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 283, in inner_fn_with_anomaly return inner_fn(*args) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 268, in inner_fn backward_out = torch.autograd.grad( needed_outs, ...<2 lines>... allow_unused=True, ) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/autograd/__init__.py", line 451, in grad return handle_torch_function( grad, ...<9 lines>... materialize_grads=materialize_grads, ) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/overrides.py", line 1721, in handle_torch_function result = mode.__torch_function__(public_api, types, args, kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/fx/experimental/proxy_tensor.py", line 1277,in __torch_function__ return func(*args, **kwargs) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/autograd/__init__.py", line 502, in grad result = _engine_run_backward( outputs, ...<5 lines>... accumulate_grad=False, ) File "/data/qshenaf/miniconda3/envs/torch/lib/python3.13/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ t_outputs, *args, **kwargs ^^^^^^^^^^^^^^^^^^^^^^^^^^ ) # Calls into the C++ engine to run the backward pass ^ torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.FloatTensor [10]], which is output 0 of ReluBackward0, is at version 1; expected version 0 instead. Hint: the backtrace further above shows the operation that failed to compute its gradient. The variable in question was changed in there or anywhere later. Good luck! ``` ### Versions PyTorch version: 2.7.0.dev20250308+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: AlmaLinux 9.4 (Seafoam Ocelot) (x86_64) GCC version: (GCC) 11.4.1 20231218 (Red Hat 11.4.1-3) Clang version: 17.0.6 (AlmaLinux OS Foundation 17.0.6-5.el9) CMake version: version 3.26.5 Libc version: glibc-2.34 Python version: 3.13.0 | packaged by Anaconda, Inc. | (main, Oct 7 2024, 21:29:38) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.14.0-427.37.1.el9_4.x86_64-x86_64-with-glibc2.34 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 GPU 3: NVIDIA GeForce RTX 3090 Nvidia driver version: 560.35.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Vendor ID: AuthenticAMD Model name: AMD Ryzen Threadripper PRO 3975WX 32-Cores CPU family: 23 Model: 49 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU(s) scaling MHz: 80% CPU max MHz: 4368.1641 CPU min MHz: 2200.0000 BogoMIPS: 7000.23 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sev sev_es Virtualization: AMD-V L1d cache: 1 MiB (32 instances) L1i cache: 1 MiB (32 instances) L2 cache: 16 MiB (32 instances) L3 cache: 128 MiB (8 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-63 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Notaffected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.3 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.25.1 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] pytorch-triton==3.2.0+git4b3bb1f8 [pip3] torch==2.7.0.dev20250308+cu126 [pip3] torchaudio==2.6.0.dev20250308+cu126 [pip3] torchvision==0.22.0.dev20250308+cu126 [pip3] triton==3.2.0 [conda] numpy 2.2.3 pypi_0 pypi [conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-nccl-cu12 2.25.1 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi [conda] pytorch-triton 3.2.0+git4b3bb1f8 pypi_0 pypi [conda] torch 2.7.0.dev20250308+cu126 pypi_0 pypi [conda] torchaudio 2.6.0.dev20250308+cu126 pypi_0 pypi [conda] torchvision 0.22.0.dev20250308+cu126 pypi_0 pypi [conda] triton 3.2.0 pypi_0 pypi cc @chauhang @penguinwu @zou3519 @bdhirsh
true
2,905,235,434
Remove aoti_torch_cpu__weight_int4pack_mm_cpu_tensor
janeyx99
closed
[ "Merged", "Reverted", "ciflow/trunk", "ciflow/inductor", "release notes: inductor", "ci-no-td" ]
17
CONTRIBUTOR
I noticed that this op was likely intended to be in the `extern "C"` portion of the file, but it was not added as such in https://github.com/pytorch/pytorch/pull/145250 which means this function is actually not stable/would get mangled by C++. Following the thread there I am thinking there are two possible solutions: (1) Since this op was never stable to begin with, and @Xia-Weiwen should add it to fallback_ops.py, I think this op is deletable + should get deleted before the 2.7 branch cut. (2) Or we could just move the op to the right portion of the code. ~While I like just deleting the op, I am hesitant to do in case there's something I haven't considered, so this PR does option 2.~ Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #148834
true
2,905,230,544
[caffe2/torch] Fixup upstream LLVM (major version 21) API changes
HighW4y2H3ll
closed
[ "oncall: jit", "fb-exported", "Merged", "NNC", "ciflow/trunk", "release notes: jit" ]
8
CONTRIBUTOR
Latest LLVM introduced two changes related to the `Triple` usage that causes build failures when building pytorch. ## Failure in llvm_codegen.cpp: Triple is stored in Modules instead of the string: https://github.com/llvm/llvm-project/commit/979c275097a642e9b96c6b0a12f013c831af3a6e ## Failure in llvm_jit.cpp: Triple argument is removed from LLJITBuilder::... : https://github.com/llvm/llvm-project/commit/b18e5b6a36399f11ba1152875b6892900c5afdaf cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true