id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
2,929,769,904
[ROCm] Fixes and improvements to CUDA->HIP flag conversion for CPP extensions
pytorchbot
closed
[ "module: rocm", "open source", "ciflow/rocm" ]
1
COLLABORATOR
Fixes https://github.com/ROCm/hip/issues/3764. Fixes and improvements to CUDA->HIP flag conversion for CPP extensions - Log flag conversion for debugging purposes. - Fix cases where it should not touch the -I flags or cases where CUDA appears more than once by replacing only the first instance. - Fix case where nvcc key may not exist - Fix case where hipify should ignore flag values and only touch the flag itself cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,929,749,472
[export] Handle non OpNamespace type during decomposition.
zhxchen17
closed
[ "fb-exported", "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: export" ]
6
CONTRIBUTOR
Summary: Turns out we can have non OpNamespace object in torch.ops._dir. We should just throw away those during iteration. Test Plan: eyes Differential Revision: D71417992
true
2,929,734,448
DISABLED test_get_model_state_dict_del_memory (__main__.TestStateDictMemory)
izaitsevfb
closed
[ "oncall: distributed", "skipped" ]
3
CONTRIBUTOR
Platforms: linux This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22distributed%2Fcheckpoint%2Ftest_state_dict.py%3A%3ATestStateDictMemory%3A%3Atest_get_model_state_dict_del_memory%22%5D)). cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @mori360 https://hud.pytorch.org/hud/pytorch/pytorch/b8c0c50bbea1970b5f6eb5b11b08bb093f3a7998/1?per_page=50&name_filter=ull%20%2F%20linux-focal-cuda11.8-py3.10-gcc9%20%2F%20test%20&mergeLF=true
true
2,929,731,322
[JIT] fix torchscript mha bias=False
Isalia20
open
[ "triaged", "open source", "release notes: jit", "topic: bug fixes" ]
3
COLLABORATOR
Fixes #149391
true
2,929,713,686
Enable TMA persistent GEMM Template by default
PaulZhang12
closed
[ "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
ghstack-source-id: d95f0938c09704b6658c6ed9f9c9d02cb474d636 Pull Request resolved: https://github.com/pytorch/pytorch/pull/149427 Another attempt to enable the TMA persistent GEMM templates in Inductor, given the availability of Hopper GPUs in the CI. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,929,711,424
[DO NOT MERGE] Enable TMA persistent GEMM Template by default
PaulZhang12
open
[ "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ci-no-td" ]
15
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #149427 Previously, this was unable to be landed given there was limited H100 for CI testing. Benchmarking on H100 CI looks good now. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,929,708,611
Use mypy 1.15
ZainRizvi
open
[ "topic: not user facing", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Fixes #ISSUE_NUMBER cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,929,701,579
python custom ops tutorial stopped working in PyTorch 2.7 RC1
zou3519
closed
[ "high priority", "triage review", "oncall: pt2", "module: inductor" ]
5
CONTRIBUTOR
Get PyTorch 2.7 RC1. Repro in next comment. Error looks like: ```py Traceback (most recent call last): File "/home/rzou/dev/2.7/pco.py", line 124, in <module> cropped_img = f(img) ^^^^^^ File "/home/rzou/dev/2.7/env/lib/python3.11/site-packages/torch/_dynamo/eval_frame.py", line 655, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/home/rzou/dev/2.7/pco.py", line 120, in f @torch.compile(fullgraph=True) File "/home/rzou/dev/2.7/env/lib/python3.11/site-packages/torch/_dynamo/eval_frame.py", line 838, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/home/rzou/dev/2.7/env/lib/python3.11/site-packages/torch/_functorch/aot_autograd.py", line 1201, in forward return compiled_fn(full_args) ^^^^^^^^^^^^^^^^^^^^^^ File "/home/rzou/dev/2.7/env/lib/python3.11/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 328, in runtime_wrapper all_outs = call_func_at_runtime_with_args( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/rzou/dev/2.7/env/lib/python3.11/site-packages/torch/_functorch/_aot_autograd/utils.py", line 126, in cal l_func_at_runtime_with_args out = normalize_as_list(f(args)) ^^^^^^^ File "/home/rzou/dev/2.7/env/lib/python3.11/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 689, in inner_fn outs = compiled_fn(args) ^^^^^^^^^^^^^^^^^ File "/home/rzou/dev/2.7/env/lib/python3.11/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 495, in wrapper return compiled_fn(runtime_args) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/rzou/dev/2.7/env/lib/python3.11/site-packages/torch/_inductor/output_code.py", line 460, in __call__ return self.current_callable(inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/tmp/torchinductor_rzou/oy/coy5shd4xlyzvhkrwtaiad5zxz7jhd654636vqhwxsyeux5q27d7.py", line 42, in call assert_size_stride(buf1, (3, 40, 40), (1600, 40, 1)) AssertionError: expected size 3==3, stride 1==1600 at dim=0; expected size 40==40, stride 120==40 at dim=1; expected s ize 40==40, stride 3==1 at dim=2 This error most often comes from a incorrect fake (aka meta) kernel for a custom op. Use torch.library.opcheck to test your custom op. See https://pytorch.org/docs/stable/library.html#torch.library.opcheck ``` cc @ezyang @gchanan @kadeng @msaroufim @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @muchulee8 @amjames @chauhang @aakhundov
true
2,929,643,466
[export] refactor DimHints for type errors
pianpwk
closed
[ "fb-exported", "Merged", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: export", "suppress-bc-linter" ]
7
CONTRIBUTOR
Differential Revision: D71414367 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,929,604,084
Add regression tests for 3 missing PR-time benchmarks
benjaminglass1
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
COLLABORATOR
Uses values from the latest PR-time benchmark run on viable/strict. See https://github.com/pytorch/pytorch/actions/runs/13898520615/job/38900894469 for a job showing why this is needed. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,929,589,063
Pip-installed pytorch limits threads to 1 when setting GOMP_CPU_AFFINITY (likely due to bundled GOMP)
yuchengliu1
open
[ "high priority", "module: binaries", "triaged", "module: intel" ]
13
NONE
### 🐛 Describe the bug Pip-installed pytorch limits threads to 1 when setting GOMP_CPU_AFFINITY, while a pytorch build from source code will not have this problem. The pip-installed pytorch will use a bundled GOMP. There is a cpp case can reproduce it. ``` #include <stdio.h> #include <omp.h> #include <torch/torch.h> int main() { printf("omp_get_max_threads %d\n", omp_get_max_threads()); printf("at::get_num_threads %d\n", at::get_num_threads()); return 0; } ``` compile command ```g++ -I<PYTHON_INSTALL_DIR>/site-packages/torch/include/torch/csrc/api/include/ -I<PYTHON_INSTALL_DIR>/site-packages/torch/include/ -fopenmp test.cpp -o test.o -L<PYTHON_INSTALL_DIR>/site-packages/torch/lib -ltorch -ltorch_cpu -lc10 -D_GLIBCXX_USE_CXX11_ABI=0``` the result with pip install pytorch ![Image](https://github.com/user-attachments/assets/35573d71-d774-4062-b120-60d0956563b1) the result with pytorch build from source code ![Image](https://github.com/user-attachments/assets/be263939-bcc1-4e24-8d74-8272cd6900a9) ### Versions Collecting environment information... PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 12.3.0-1ubuntu1~22.04) 12.3.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.10.16 | packaged by conda-forge | (main, Dec 5 2024, 14:16:10) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-5.15.47+prerelease6469.7-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 224 On-line CPU(s) list: 0-223 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8480+ CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 56 Socket(s): 2 Stepping: 8 CPU max MHz: 3800.0000 CPU min MHz: 800.0000 BogoMIPS: 4000.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr avx512_fp16 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 5.3 MiB (112 instances) L1i cache: 3.5 MiB (112 instances) L2 cache: 224 MiB (112 instances) L3 cache: 210 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-55,112-167 NUMA node1 CPU(s): 56-111,168-223 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.6.0 [pip3] triton==3.2.0 [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] torch 2.6.0 pypi_0 pypi [conda] triton 3.2.0 pypi_0 pypi cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @seemethere @malfet @osalpekar @atalman @frank-wei @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,929,564,975
[caffe2] Do not use --no-as-needed on macOS
stepanhruda
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
6
CONTRIBUTOR
Summary: `--no-as-needed` is not available in ld64.lld Applying this on all macos is potentially too broad? I am not sure if `fbcode//mode/mac` uses a different linker, but arvr mode for sure uses ld64.lld. Test Plan: CI / used for a macOS build on top of the stack. Differential Revision: D71315125
true
2,929,553,574
[dynamic] use maybe_mark_dynamic instead of mark_dynamic for batch size in benchmarks
xmfan
open
[ "module: dynamo", "ciflow/inductor" ]
2
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #148516 * __->__ #149420 * #149367 * #148694 * #149229 * #149336 in CA, when we capture the backward, the tensor containing the batch dim sometimes is coerced by some mul/matmul etc. with a static shaped tensor, resulting in a guard validation error cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,929,549,264
[logging] Add python version to dynamo_compile table
masnesral
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #149419 Summary: This adds a version field like the following: `3.10.9+fb (3.10:1dd9be6, May 4 2022, 01:23:45) [Clang 15.0.7 (mononoke://mononoke.internal.tfbnw.net/fbsource 5d1601b0eed7426ac` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,929,449,775
Aborting distributed backend causes segmentation fault in autograd
szmigacz
closed
[ "oncall: distributed", "triaged", "module: c10d", "bug" ]
10
CONTRIBUTOR
### 🐛 Describe the bug Running `torch.distributed.distributed_c10d._abort_process_group` asynchronously from a separate python thread causes segmentation fault from PyTorch autograd. The issue reproduces in `pytorch/pytorch:2.6.0-cuda12.6-cudnn9-devel` container on 8x H100, but I don't think it's hardware-specific since the issue is reported from CPU code. Likely delay `_abort_process_group` is hardware-specific, the issue reproduces if `_abort_process_group` is called when the main thread is calling `loss.backward`. On 8x H100 the issue reproduces in ~100 `loop_iterations`. Code to reproduce: ``` import argparse import threading import datetime import os import random import torch def parse_args(): parser = argparse.ArgumentParser( description='Example', formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument('--size', default=64, type=int) parser.add_argument('--layers', default=4, type=int) parser.add_argument('--log-interval', default=100, type=int) parser.add_argument('--chkpt-interval', default=100, type=int) parser.add_argument('--total-iterations', default=1000000, type=int) parser.add_argument('--seed', default=1234, type=int) parser.add_argument('--device', default='cuda', choices=['cpu', 'cuda']) return parser.parse_args() def abort(): torch.distributed.distributed_c10d._abort_process_group( torch.distributed.distributed_c10d.GroupMember.WORLD ) def train( loop_iteration, base_store, model, opt, backend, device, timeout, args ): aborted = False log_interval = args.log_interval chkpt_interval = args.chkpt_interval rank = int(os.environ['RANK']) world_size = int(os.environ['WORLD_SIZE']) # Create a new Store by adding a prefix based on the current restart # iteration. PrefixStore wraps the baseline TCPStore which is reused for # all restart iterations store = torch.distributed.PrefixStore(str(loop_iteration), base_store) torch.distributed.distributed_c10d._store_based_barrier( rank, store, 'initial', world_size, timeout=datetime.timedelta(seconds=60), ) torch.distributed.init_process_group( backend, store=store, rank=rank, world_size=world_size, timeout=timeout, ) local_rank = int(os.environ['LOCAL_RANK']) model_ddp = torch.nn.parallel.DistributedDataParallel( model, device_ids=[local_rank], output_device=local_rank ) random.seed((args.seed + loop_iteration) * world_size) fault_iteration = random.randint(1, 10) random.seed((args.seed + loop_iteration) * world_size + rank) delay = random.random() / 100 print(f'{rank=} {fault_iteration=} {delay=}') for iteration in range(args.total_iterations): # Randomly trigger an example fault if iteration == fault_iteration and not aborted: aborted = True print(f'example fault at {iteration=} from {rank=}') # abort torch.distributed after a random delay timer = threading.Timer( delay, abort, ) timer.start() inp = torch.rand(args.size, args.size).to(device) model.zero_grad() out = model_ddp(inp) loss = out.square().mean() loss.backward() opt.step() loss.item() if rank == 0 and iteration % log_interval == log_interval - 1: print(f'{rank=} {iteration=} {loss.item()=}') def main(): args = parse_args() print(f'{args}') local_rank = int(os.environ['LOCAL_RANK']) if args.device == 'cuda': torch.cuda.set_device(local_rank) device = torch.device('cuda') backend = 'nccl' timeout = datetime.timedelta(seconds=150) elif args.device == 'cpu': device = torch.device('cpu') backend = 'gloo' timeout = datetime.timedelta(seconds=10) else: raise RuntimeError # All objects created in ``main()`` are constructed only once, and reused # for all restart iterations. if args.seed is not None: torch.manual_seed(args.seed) model = torch.nn.Sequential( *[torch.nn.Linear(args.size, args.size) for _ in range(args.layers)] ).to(device) opt = torch.optim.Adam(model.parameters(), lr=1e-5) # TCPStore uses ``(MASTER_PORT + 1)`` to avoid conflicts with TCPStore # created by ``torch.distributed.run`` and listening on ``MASTER_PORT``, store = torch.distributed.TCPStore( host_name=os.environ['MASTER_ADDR'], port=int(os.environ['MASTER_PORT']) + 1, world_size=int(os.environ['WORLD_SIZE']), is_master=(int(os.environ['RANK']) == 0), multi_tenant=True, wait_for_workers=True, use_libuv=True, ) rank = int(os.environ['RANK']) loop_iteration = 0 while True: print(f'Starting {loop_iteration=}') try: train(loop_iteration, store, model, opt, backend, device, timeout, args) except Exception as ex: print(f'Exception on {rank=} {str(ex)}') if torch.distributed.is_initialized(): torch.distributed.destroy_process_group() loop_iteration += 1 if __name__ == '__main__': main() ``` Attaching sample output, and backtrace. [backtrace.txt](https://github.com/user-attachments/files/19324896/backtrace.txt) [output.txt](https://github.com/user-attachments/files/19324872/output.txt) Backtrace is non-deterministic, I've seen different failures, but so far it always contained `c10d::Reducer`. ### Versions ``` Collecting environment information... PyTorch version: 2.6.0+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.4 Libc version: glibc-2.35 Python version: 3.11.11 | packaged by conda-forge | (main, Dec 5 2024, 14:17:24) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-5.15.0-1030-nvidia-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.6.85 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3 GPU 1: NVIDIA H100 80GB HBM3 GPU 2: NVIDIA H100 80GB HBM3 GPU 3: NVIDIA H100 80GB HBM3 GPU 4: NVIDIA H100 80GB HBM3 GPU 5: NVIDIA H100 80GB HBM3 GPU 6: NVIDIA H100 80GB HBM3 GPU 7: NVIDIA H100 80GB HBM3 Nvidia driver version: 535.216.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8462Y+ CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 Stepping: 8 Frequency boost: enabled CPU max MHz: 2801.0000 CPU min MHz: 800.0000 BogoMIPS: 5600.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 3 MiB (64 instances) L1i cache: 2 MiB (64 instances) L2 cache: 128 MiB (64 instances) L3 cache: 120 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.2 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] optree==0.14.0 [pip3] torch==2.6.0+cu126 [pip3] torchaudio==2.6.0+cu126 [pip3] torchelastic==0.2.2 [pip3] torchvision==0.21.0+cu126 [pip3] triton==3.2.0 [conda] numpy 2.2.2 py311h5d046bc_0 conda-forge [conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi [conda] optree 0.14.0 pypi_0 pypi [conda] torch 2.6.0+cu126 pypi_0 pypi [conda] torchaudio 2.6.0+cu126 pypi_0 pypi [conda] torchelastic 0.2.2 pypi_0 pypi [conda] torchvision 0.21.0+cu126 pypi_0 pypi [conda] triton 3.2.0 pypi_0 pypi``` cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,929,419,769
[Build] Guard per-op headers in ACLUtils.cpp
malfet
closed
[ "module: cpu", "fb-exported", "Merged", "ciflow/trunk", "release notes: quantization" ]
5
CONTRIBUTOR
To fix internal build failures, where per-op headers are not generated. We really should have lint for something like that. Test Plan: CI Reviewed By: izaitsevfb Differential Revision: D71406882 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,929,377,209
[Build] Guard per-op headers inclusion
malfet
closed
[ "release notes: build", "topic: bug fixes" ]
2
CONTRIBUTOR
In newly added header, to fix internal build failures, where per-op headers are not used cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,929,344,450
Normalize intermediate node names to better utilize cache
bobrenjc93
closed
[ "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #149898 * __->__ #149415 This change was motivated by internal use case (https://fb.workplace.com/groups/1553867532149891/?multi_permalinks=1708481206688522&comment_id=1711739699696006&notif_id=1742399826944239&notif_t=work_feedback_reaction_generic&ref=notif) where we were producing different intermediate node names for the exact same code. This normalization pass does an alpha renaming of intermediate variables so that more isomorphic graphs now result in the same dynamo outputted graph. We do a normalization pass that effectively ensures that the name indexes monotonically increase. This typically already happens but in some cases, such as in HOPs, the invariant could be broken without normalization. Below we show an example where cond previously would have jumped from getitem_3 to get_item_2, but with normalization correctly uses getitem_4 after getitem_3. We've run this on the same model internally and confirmed with change we now get a cache hit.
true
2,929,308,006
torch.Size input
avikchaudhuri
closed
[ "fb-exported", "Merged", "ciflow/trunk", "fx", "ciflow/inductor", "release notes: export" ]
9
CONTRIBUTOR
Summary: Support for `torch.Size` inputs was patchy before because `unflatten_fn` for this type returned a tuple. This PR cleans this up. Fixes #149158 Test Plan: added test Differential Revision: D71403635 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,929,292,119
[CI][docker] Use multistage build for triton
clee2000
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
3
CONTRIBUTOR
Sees to reduce docker pull times by ~3 min if triton is requested, some compressed docker sizes seems to have decreased by 1/3 ish Also add check that triton is installed/not installed
true
2,929,227,103
[AOTI][reland] Update test runner to use the new APIs
desertfire
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (c10d)", "module: inductor", "ciflow/inductor", "ci-no-td" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #149412 Summary: Reland https://github.com/pytorch/pytorch/pull/147105. Switch to the newer aoti_compile_and_package APIs. Some tests still kept using legacy APIs, and will follow up with internal test refactoring. cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov Differential Revision: [D71470265](https://our.internmc.facebook.com/intern/diff/D71470265)
true
2,929,045,957
fix differentiable collectives under inference mode
bdhirsh
open
[ "oncall: distributed", "release notes: distributed (c10d)" ]
3
CONTRIBUTOR
The 3 differentiable collectives that exist today are all registered to the autograd key, which means that they won't work with inference mode. I gave them a separate implementation for the `CompositeExplicitAutograd` key ("below autograd"), where I call their non-differentiable counterparts. The main annoying bit is that the schemas are slightly different between some of these pairs of collectives (some of the non-differentiable collectives take in non-const args. I did enough to get consistency in this PR Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #149411 * #149652 * #149514 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,928,998,436
Monkeypatch fake mode so it errors on invalid custom ops
tugsbayasgalan
closed
[ "fb-exported", "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: export" ]
4
CONTRIBUTOR
Internal version: [D71294776](https://www.internalfb.com/diff/D71294776)
true
2,928,971,949
DISABLED test_binary_op_with_scalar_self_support__foreach_pow_is_fastpath_True_cuda_float32 (__main__.TestForeachCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
7
NONE
Platforms: linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_binary_op_with_scalar_self_support__foreach_pow_is_fastpath_True_cuda_float32&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/38951400893). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_binary_op_with_scalar_self_support__foreach_pow_is_fastpath_True_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1159, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/mock.py", line 1833, in _inner return f(*args, **kw) File "/var/lib/jenkins/workspace/test/test_foreach.py", line 327, in test_binary_op_with_scalar_self_support self._binary_test( File "/var/lib/jenkins/workspace/test/test_foreach.py", line 263, in _binary_test actual = op(inputs, self.is_cuda, is_fastpath) File "/var/lib/jenkins/workspace/test/test_foreach.py", line 90, in __call__ assert mta_called == (expect_fastpath and (not zero_size)), ( AssertionError: mta_called=False, expect_fastpath=True, zero_size=False, self.func.__name__='_foreach_pow', keys=('aten::_foreach_pow', 'Unrecognized', 'aten::empty_strided', 'cudaLaunchKernel', 'Lazy Function Loading', 'cudaDeviceSynchronize') The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3153, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3153, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3153, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 454, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1171, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 1: SampleInput(input=TensorList[Tensor[size=(20, 20), device="cuda:0", dtype=torch.float32], Tensor[size=(19, 19), device="cuda:0", dtype=torch.float32], Tensor[size=(18, 18), device="cuda:0", dtype=torch.float32], Tensor[size=(17, 17), device="cuda:0", dtype=torch.float32], Tensor[size=(16, 16), device="cuda:0", dtype=torch.float32], Tensor[size=(15, 15), device="cuda:0", dtype=torch.float32], Tensor[size=(14, 14), device="cuda:0", dtype=torch.float32], Tensor[size=(13, 13), device="cuda:0", dtype=torch.float32], Tensor[size=(12, 12), device="cuda:0", dtype=torch.float32], Tensor[size=(11, 11), device="cuda:0", dtype=torch.float32], Tensor[size=(10, 10), device="cuda:0", dtype=torch.float32], Tensor[size=(9, 9), device="cuda:0", dtype=torch.float32], Tensor[size=(8, 8), device="cuda:0", dtype=torch.float32], Tensor[size=(7, 7), device="cuda:0", dtype=torch.float32], Tensor[size=(6, 6), device="cuda:0", dtype=torch.float32], Tensor[size=(5, 5), device="cuda:0", dtype=torch.float32], Tensor[size=(4, 4), device="cuda:0", dtype=torch.float32], Tensor[size=(3, 3), device="cuda:0", dtype=torch.float32], Tensor[size=(2, 2), device="cuda:0", dtype=torch.float32], Tensor[size=(1, 1), device="cuda:0", dtype=torch.float32]], args=(10), kwargs={}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=1 PYTORCH_TEST_CUDA_MEM_LEAK_CHECK=1 PYTORCH_TEST_WITH_SLOW_GRADCHECK=1 python test/test_foreach.py TestForeachCUDA.test_binary_op_with_scalar_self_support__foreach_pow_is_fastpath_True_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true
2,928,946,215
Fix B018 Useless Expressions in Multiple Files (#106571)
rocordemu
open
[ "oncall: distributed", "triaged", "open source", "module: inductor", "module: dynamo", "release notes: distributed (checkpoint)" ]
8
NONE
### Description This PR addresses `flake8-bugbear` `B018` warnings ("Found useless expression") by removing unused tuple and constant expressions in three files. These fixes clean up the codebase, reducing potential confusion and aligning with the linting goals of #106571. As a first-time contributor (coming from Node.js and learning Python), I’m excited to help improve PyTorch’s code quality! ### Changes - **`torch/_dynamo/variables/ctx_manager.py`** - **Issue**: `Found useless Tuple expression. Consider either assigning it to a variable or removing it.` - **Fix**: Removed unnecessary tuple wrapper `(...,)` around a statement, keeping the side-effecting call intact. - **`torch/_inductor/cudagraph_trees.py`** - **Issue**: `Found useless Tuple expression. Consider either assigning it to a variable or removing it.` - **Fix**: Removed unnecessary tuple wrapper `(...,)` around a statement, keeping the side-effecting call intact. - **`torch/distributed/checkpoint/default_planner.py`** - **Issue**: `Found useless Constant expression. Consider either assigning it to a variable or removing it.` - **Fix**: Added a `return` statement before the standalone `True` expression, making it a meaningful return value. ### Details - **Related Issue**: Fixes #106571 - **Linting Tool**: Verified with `flake8` and `flake8-bugbear`. - **Testing**: Ran `pytest` locally to ensure no functional changes—only cleanup. ### Notes Thanks to @spzala, @Skylion007, and @zou3519 for maintaining this awesome project! Any feedback on my fixes or PR process is welcome—I’m here to learn and contribute. #### FYI @albanD I am creating a new PR because EasyCLA was failing on the first one. --- cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,928,892,623
[MPS] nanmedian implementation
Isalia20
closed
[ "open source", "Merged", "topic: improvements", "module: mps", "release notes: mps", "ciflow/mps" ]
4
COLLABORATOR
Implements nanmedian on MPS. This implementation only implements `torch.nanmedian(tensor)` without `keepdim` and `dim` Will implement nanmedian with dim and keepdim in a followup cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
2,928,886,230
Recompils due to Python float object
efsotr
closed
[ "triaged", "oncall: pt2", "module: dynamic shapes", "module: dynamo" ]
4
NONE
### 🐛 Describe the bug ```python import os os.environ["TORCH_LOGS"] = "recompiles_verbose" import torch x = torch.randn((10, 10), device="cuda", requires_grad=False) @torch.compile(dynamic=True) def model(x, y): return x * y y = model(x, 1.5) y2 = model(x, 2.5) ``` ### Error logs Just log ``` V0318 23:04:20.093000 2002586 site-packages/torch/_dynamo/guards.py:2811] [6/1] [__recompiles_verbose] Recompiling function model in /tmp/ipykernel_2002586/874691697.py:9 V0318 23:04:20.093000 2002586 site-packages/torch/_dynamo/guards.py:2811] [6/1] [__recompiles_verbose] triggered by the following guard failure(s): V0318 23:04:20.093000 2002586 site-packages/torch/_dynamo/guards.py:2811] [6/1] [__recompiles_verbose] guard 0 failures: V0318 23:04:20.093000 2002586 site-packages/torch/_dynamo/guards.py:2811] [6/1] [__recompiles_verbose] - 6/0: L['y'] == 1.5 ``` ### Versions torch 2.5.1 cc @chauhang @penguinwu @ezyang @bobrenjc93 @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true
2,928,877,933
[torch.compile] Recompils due to Python float object
efsotr
closed
[]
0
NONE
### 🐛 Describe the bug ```python import os os.environ["TORCH_LOGS"] = "recompiles_verbose" import torch x = torch.randn((10, 10), device="cuda", requires_grad=False) @torch.compile(dynamic=True) def model(x, y): return x * y y = model(x, 1.5) y2 = model(x, 2.5) ``` ``` V0318 23:04:20.093000 2002586 site-packages/torch/_dynamo/guards.py:2811] [6/1] [__recompiles_verbose] Recompiling function model in /tmp/ipykernel_2002586/874691697.py:9 V0318 23:04:20.093000 2002586 site-packages/torch/_dynamo/guards.py:2811] [6/1] [__recompiles_verbose] triggered by the following guard failure(s): V0318 23:04:20.093000 2002586 site-packages/torch/_dynamo/guards.py:2811] [6/1] [__recompiles_verbose] guard 0 failures: V0318 23:04:20.093000 2002586 site-packages/torch/_dynamo/guards.py:2811] [6/1] [__recompiles_verbose] - 6/0: L['y'] == 1.5 ``` ### Versions torch 2.5.1
true
2,928,842,380
A bunch of typos
macleginn
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
11
CONTRIBUTOR
Improves readability.
true
2,928,798,650
Fix broken build within xplat/caffe2
malfet
closed
[ "fb-exported", "Merged", "ciflow/trunk", "release notes: build", "topic: improvements" ]
9
CONTRIBUTOR
Summary: Following a pull from open source, the build within xplat is broken due to not finding <autograd/function.h>. Within the python_function.cpp there seems to be a convention of using the torch/csrc prefix. This change includes that prefix to enable the build to proceed. Test Plan: Build a binary using torch. https://www.internalfb.com/buck2/83122485-d3c3-43f4-97b4-81bb90450b3b Unit tests run too https://www.internalfb.com/intern/testinfra/testrun/13229323975828416 Further testing in CI and elsewise expected. Reviewed By: malfet Differential Revision: D70331539
true
2,928,741,801
Release.md readability improvements
ZainRizvi
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
6
CONTRIBUTOR
Improves a bunch of readability/grammatical issues with release.md. Note: This was a claude code experiment, with all changes automatically generated. But turns out minor edits like this is _not_ a good use of claude code since it asked for approval on every single changed line. Prob way more efficient to toss this entire thing into a simple LLM.
true
2,928,632,031
[AOTI] Forward fix unit test failures
desertfire
closed
[ "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ci-no-td" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #149401 Summary: There is a land conflict between https://github.com/pytorch/pytorch/pull/149161 and https://github.com/pytorch/pytorch/pull/147105. We just need to update the APIs used in two new unit tests. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,928,617,951
[Sigmoid] Remove magic method in CapabilityBasedPartitioner
StellarrZ
closed
[ "fb-exported", "Merged", "ciflow/trunk", "release notes: fx", "fx" ]
4
CONTRIBUTOR
Summary: As title. Test Plan: CI Differential Revision: D70575197 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,928,571,297
`empty_strided` Causes Silent Insistency In Inductor
WLFJ
closed
[ "triaged", "oncall: pt2", "topic: fuzzer" ]
4
NONE
### 🐛 Describe the bug In most cases, no one would intentionally use an uninitialized tensor created with `empty_strided` to build a model, but Inductor's results differ from Eager's. Repro: ```python import torch print(torch.__version__) def f(*args): sym_0, sym_1 = args var_406 = torch.empty_strided(size=sym_0, stride=sym_1) # print("BREAK") var_314 = torch.arccos(var_406) return torch.special.expm1(var_314), var_406 def eager_check(var_406): var_314 = torch.arccos(var_406) return torch.special.expm1(var_314) res, input = f((8,), (16,),) print('eager: is same?', torch.allclose(res, eager_check(input), equal_nan=True)) res, input = torch.compile(f)((8,), (16,),) print('inductor: is same?', torch.allclose(res, eager_check(input), equal_nan=True)) ``` Running result: ``` 2.8.0.dev20250317+cu128 eager: is same? True inductor: is same? False ``` If uncomment `print` to break the graph, now inductor result same as eager: ``` 2.8.0.dev20250317+cu128 BREAK eager: is same? True BREAK inductor: is same? True ``` ### Error logs No error log. Please feel free to ask me for more information. ### Versions PyTorch 2.8.0.dev20250317+cu128 cc @chauhang @penguinwu
true
2,928,406,533
Fix mtia_extension.cpp setDevice() to correctly set current_device
ileixe
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
10
CONTRIBUTOR
We referred to this code and found that there was a minor bug. Fix for future reference for others.
true
2,928,404,163
[xnnpack] Expose subgraph symbols
stepanhruda
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
11
CONTRIBUTOR
Summary: Main XNNPack target code uses symbols from subgraph so they need to be exported - this gets uncovered on macos where symbols were not visible after linking Test Plan: CI / used for a macOS build on top of the stack. Differential Revision: D71315023
true
2,928,295,011
Does FSDP support nested wrapping for MoE models with Expert Parallelism?
zigzagcai
closed
[ "oncall: distributed", "triaged", "module: fsdp" ]
10
NONE
Hi, I am trying to use FSDP with Expert Parallelism to tackle with training MoE models, which size is quite large (670B DeepSeek v3 for example). Since even we use fully sharded options , we will encounter CUDA OOM during training. The root cause is per-layer parameter size is quite large. Therefore we implement Expert Parallelism. However, the process group for MoE part (Expert Parallelism) and non-MoE part is not the same. So we need to wrap MoE part and non-MoE part separately. The detailed information of FSDP+ EP can be found here: https://github.com/pytorch/pytorch/issues/114361 I tried to wrap the model according to [the suggestion](https://github.com/pytorch/pytorch/issues/114361#issuecomment-1824694162) from @awgu ``` ignored_mod = [] for layer_id, layer in enumerate(model.layers): if layer_id >= config.first_k_dense_replace: layer.feed_forward.moe_layer.experts = FSDP( layer.feed_forward.moe_layer.experts, process_group=expert_data_process_group, sharding_strategy=ShardingStrategy.FULL_SHARD, forward_prefetch=True, backward_prefetch=BackwardPrefetch.BACKWARD_PRE, limit_all_gathers=True, use_orig_params=True, ) ignored_mod.append(layer.feed_forward.moe_layer.experts) model = FSDP( module=model, process_group=data_process_group, sharding_strategy=ShardingStrategy.FULL_SHARD, auto_wrap_policy=ModuleWrapPolicy(wrap_cls), forward_prefetch=True, backward_prefetch=BackwardPrefetch.BACKWARD_PRE, limit_all_gathers=True, use_orig_params=True, ignored_modules=ignored_mod, ) ``` But it seems that FSDP cannot support nested wrapping with two process_groups. (one for non-MoE parts and another one for MoE experts ) ``` File "/blahblah/zigzagcai/.conda/envs/my_dev_env/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py", line 483, in __init__ _auto_wrap( File "/blahblah/zigzagcai/.conda/envs/my_dev_env/lib/python3.10/site-packages/torch/distributed/fsdp/_wrap_utils.py", line 45, in _auto_wrap _check_nested_wrapping(root_module) File "/blahblah/zigzagcai/.conda/envs/my_dev_env/lib/python3.10/site-packages/torch/distributed/fsdp/_wrap_utils.py", line 107, in _check_nested_wrapping raise ValueError( ValueError: FSDP auto wrapping requires modules to not already have FSDP applied but found model.layers.1.feed_forward.moe_layer.experts in ``` And I cannot even put the wrapped InnerFSDP modules in the ignore_modules list, when we tried to materialize outerFSDP module. ``` File "/blahblah/zigzagcai/.conda/envs/my_dev_env/lib/python3.10/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py", line 442, in __init__ _init_ignored_module_states(self, module, ignored_modules, ignored_states) File "/blahblah/zigzagcai/.conda/envs/my_dev_env/lib/python3.10/site-packages/torch/distributed/fsdp/_init_utils.py", line 314, in _init_ignored_module_states state._ignored_modules = _get_ignored_modules(module, ignored_modules) File "/blahblah/zigzagcai/.conda/envs/my_dev_env/lib/python3.10/site-packages/torch/distributed/fsdp/_init_utils.py", line 697, in _get_ignored_modules raise ValueError("`ignored_modules` should not include FSDP modules") ValueError: `ignored_modules` should not include FSDP modules ``` Then I check with the FSDP source code, and I found the above assertion is on the relaxation TODO list: https://github.com/pytorch/pytorch/blob/main/torch/distributed/fsdp/_init_utils.py#L680-L683 https://github.com/pytorch/pytorch/blob/main/torch/distributed/fsdp/_wrap_utils.py#L43-L45 So I removed the two assertions and the training runs successfully. So, the question is does FSDP support nested warpping, that is: (1) Firstly, we wrap MoE expert part with `expert_data_process_group`, and put the wrapped expert parts into the `ignored_modules` (2) Then, we wrap the non-MoE part with `data_process_group`. Does my implementation right for this case since the two assertion is removed? Thanks in advance if anybody could provide some insights! cc @awgu @zhaojuanmao @rohan-varma @liangluofb @fegin @lessw2020 @mrshenli @penguinwu @kwen2501 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @zhaojuanmao @mrshenli @rohan-varma @chauhang @mori360 @kwen2501 @c-p-i-o
true
2,928,120,786
[FSDP2] DTensors are always marked as cpu tensor when we use offload_to_cpu
cyr0930
closed
[]
2
NONE
### 🐛 Describe the bug If offload_to_cpu == True and is fully_shard mode, DTensor of modules always marked as cpu tensor (just view, I think) https://github.com/pytorch/pytorch/blob/v2.6.0/torch/distributed/fsdp/_fully_shard/_fsdp_param.py#L383 DTensors are moved to cpu in the above line, but never get back to gpu, and error occurs. ```Expected all tensors to be on the same device, but found at least two devices, cpu and cuda:0!``` There should be some logic that recover it somewhere in all_gather function I think ### Versions 2.6.0 and main at the moment
true
2,927,929,502
[WIP]Enabling running HPU test through run_test.py
AnantGulati
open
[ "open source", "topic: not user facing" ]
2
CONTRIBUTOR
The purpose of this PR is to facilitate the use of run_test.py for executing PyTorch unit tests on HPU Changes made: - run_test.py: enables us to test for HPU supported tests by passing argument --hpu - common_utils.py: enables adding skips for expected failures - hpu_test_faliures.py: Enables us to pick x-fails and skips Skipped and expected failure file list will be kept locally and loaded with the HPU environment
true
2,927,833,151
Torch RPC examples from docs say usage is deprecated.
vaughankraska
open
[ "oncall: distributed", "module: docs", "triaged", "module: rpc" ]
3
NONE
### 🐛 Describe the bug When running any examples from the pytorch/examples repo or more importantly the examples from the RPC documentation, the following warning is displayed: `UserWarning: You are using a Backend <class 'torch.distributed.distributed_c10d.ProcessGroupGloo'> as a ProcessGroup. This usage is deprecated since PyTorch 2.0. Please use a public API of PyTorch Distributed instead.` For example I get the above warning when running [The Simple End-To-End example here](https://pytorch.org/docs/stable/rpc/distributed_autograd.html): ```python import torch import torch.multiprocessing as mp import torch.distributed.autograd as dist_autograd from torch.distributed import rpc from torch import optim from torch.distributed.optim import DistributedOptimizer def random_tensor(): return torch.rand((3, 3), requires_grad=True) def _run_process(rank, dst_rank, world_size): name = "worker{}".format(rank) dst_name = "worker{}".format(dst_rank) # Initialize RPC. rpc.init_rpc( name=name, rank=rank, world_size=world_size ) # Use a distributed autograd context. with dist_autograd.context() as context_id: # Forward pass (create references on remote nodes). rref1 = rpc.remote(dst_name, random_tensor) rref2 = rpc.remote(dst_name, random_tensor) loss = rref1.to_here() + rref2.to_here() # Backward pass (run distributed autograd). dist_autograd.backward(context_id, [loss.sum()]) # Build DistributedOptimizer. dist_optim = DistributedOptimizer( optim.SGD, [rref1, rref2], lr=0.05, ) # Run the distributed optimizer step. dist_optim.step(context_id) def run_process(rank, world_size): dst_rank = (rank + 1) % world_size _run_process(rank, dst_rank, world_size) rpc.shutdown() if __name__ == '__main__': # Run world_size workers world_size = 2 mp.spawn(run_process, args=(world_size,), nprocs=world_size) ``` What is the status of pytorch RPC? [This posts says](https://discuss.pytorch.org/t/warning-when-using-rpc/198009) it is mostly unmaintained and the above warning holds with that but nothing in the docs say otherwise. ### Versions PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: EndeavourOS Linux (x86_64) GCC version: (GCC) 14.2.1 20250207 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.41 Python version: 3.12.9 (main, Feb 12 2025, 14:50:50) [Clang 19.1.6 ] (64-bit runtime) Python platform: Linux-6.13.7-zen1-1-zen-x86_64-with-glibc2.41 Is CUDA available: True CUDA runtime version: 12.8.61 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce GTX 960 Nvidia driver version: 570.124.04 cuDNN version: Probably one of the following: /usr/lib/libcudnn.so.9.7.0 /usr/lib/libcudnn_adv.so.9.7.0 /usr/lib/libcudnn_cnn.so.9.7.0 /usr/lib/libcudnn_engines_precompiled.so.9.7.0 /usr/lib/libcudnn_engines_runtime_compiled.so.9.7.0 /usr/lib/libcudnn_graph.so.9.7.0 /usr/lib/libcudnn_heuristic.so.9.7.0 /usr/lib/libcudnn_ops.so.9.7.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 20 On-line CPU(s) list: 0-19 Vendor ID: GenuineIntel Model name: Intel(R) Core(TM) i9-10850K CPU @ 3.60GHz CPU family: 6 Model: 165 Thread(s) per core: 2 Core(s) per socket: 10 Socket(s): 1 Stepping: 5 CPU(s) scaling MHz: 66% CPU max MHz: 5200,0000 CPU min MHz: 800,0000 BogoMIPS: 7200,00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp vnmi pku ospke md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 320 KiB (10 instances) L1i cache: 320 KiB (10 instances) L2 cache: 2,5 MiB (10 instances) L3 cache: 20 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-19 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: Split huge pages Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Mitigation; Microcode Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.3 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.6.0 [pip3] torchvision==0.21.0 [pip3] triton==3.2.0 [conda] No relevant packages cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @svekars @sekyondaMeta @AlannaBurke @pietern @mrshenli @pritamdamania87 @zhaojuanmao @satgera @gqchen @aazzolini @jjlilley @osalpekar @jiayisuse @mrzzd
true
2,927,788,963
Fix `SequentialLR` deprecate warning about invoke `step(epoch)`
zeshengzong
open
[ "triaged", "open source", "release notes: optim" ]
4
CONTRIBUTOR
Fixes #116776 ## Changes - Refactor `LRScheduler.step` method, leave `epoch` check logic in public method `step` - Move update `lr` logic to `_update_lr` method - Make `SequentialLR` use `_update_lr` to avoid unnecessary warning message ## Test Result ```bash pytest test/optim/test_lrscheduler.py -vv ``` ![image](https://github.com/user-attachments/assets/e1c5527e-193e-4328-bf95-023139ea0416)
true
2,927,634,520
Cannot torch.jit.script nn.MultiheadAttention when bias is set to False
CloudyDory
open
[ "oncall: jit" ]
1
NONE
### 🐛 Describe the bug When we run `torch.jit.script` to `nn.MultiheadAttention` with `bias=False`, the following error occurs: ``` import torch import torch.nn as nn layer = nn.MultiheadAttention(128, 8, bias=False) # layer = nn.Linear(128, 128, bias=False) layer_jit = torch.jit.script(layer) ``` ``` RuntimeError: 'NoneType' object has no attribute or method 'dtype'.: File "/home/user/miniconda3/lib/python3.12/site-packages/torch/nn/modules/activation.py", line 1250 # they don't! why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)" elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype: ~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match" elif self.in_proj_weight is None: ``` Changing `bias` back to `True` solves this error. Setting the bias of other layers (such as `Linear`) does not produce such error. ### Versions Collecting environment information... PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.12.9 | packaged by Anaconda, Inc. | (main, Feb 6 2025, 18:56:27) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.6.85 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090 GPU 1: NVIDIA GeForce RTX 4090 Nvidia driver version: 560.35.05 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: AuthenticAMD Model name: AMD Ryzen 9 7950X 16-Core Processor CPU family: 25 Model: 97 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 1 Stepping: 2 CPU max MHz: 5881.0000 CPU min MHz: 545.0000 BogoMIPS: 8982.53 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid overflow_recov succor smca fsrm flush_l1d Virtualization: AMD-V L1d cache: 512 KiB (16 instances) L1i cache: 512 KiB (16 instances) L2 cache: 16 MiB (16 instances) L3 cache: 64 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] flake8==7.1.1 [pip3] mypy-extensions==1.0.0 [pip3] numpy==2.2.2 [pip3] numpydoc==1.7.0 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.6.0 [pip3] torchaudio==2.6.0 [pip3] torchvision==0.21.0 [pip3] triton==3.2.0 [conda] numpy 2.2.2 py312h2809609_0 [conda] numpy-base 2.2.2 py312he1a6c75_0 [conda] numpydoc 1.7.0 py312h06a4308_0 [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] torch 2.6.0 pypi_0 pypi [conda] torchaudio 2.6.0 pypi_0 pypi [conda] torchvision 0.21.0 pypi_0 pypi [conda] triton 3.2.0 pypi_0 pypi cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
true
2,927,631,934
[Docs] Make `torch.Library`'s `kind` have no default value to be consistent with the code
shink
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "release notes: python_frontend", "topic: docs" ]
8
CONTRIBUTOR
Fixes #149389
true
2,927,625,772
[Docs] `torch.Library`'s `kind` is inconsistent with the code
shink
closed
[ "triaged", "actionable", "module: library" ]
0
CONTRIBUTOR
### 🐛 Describe the bug The doc says that `kind` defaults to `IMPL` but it actually does not. <img width="821" alt="Image" src="https://github.com/user-attachments/assets/2eb7b65a-d642-4a13-b111-edc43080b3a0" /> Calling `torch.library.Library("fsdp")` will get this: ``` TypeError: Library.__init__() missing 1 required positional argument: 'kind' ``` ### Versions main cc @anjali411 @chauhang @penguinwu @zou3519 @bdhirsh
true
2,927,605,033
[Windows][inductor] fix blank space break windows file path
xuhancn
closed
[ "module: windows", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "intel", "module: inductor", "ciflow/inductor" ]
13
COLLABORATOR
Fixes #149310 From origin error message: ```cmd Command: cl /I C:/Program Files/Python310/Include /I c:/code/.env/lib/site-packages/torch/include /I c:/code/.env/lib/site-packages/torch/include/torch/csrc/api/include /I c:/code/.env/lib/site-packages/torch/include/TH /I c:/code/.env/lib/site-packages/torch/include/THC /D TORCH_INDUCTOR_CPP_WRAPPER /D STANDALONE_TORCH_HEADER /D C10_USING_CUSTOM_GENERATED_MACROS /DLL /MD /O2 /std:c++20 /wd4819 /wd4251 /wd4244 /wd4267 /wd4275 /wd4018 /wd4190 /wd4624 /wd4067 /wd4068 /EHsc /openmp /openmp:experimental C:/Users/user/AppData/Local/Temp/torchinductor_user/ou/coubnfnqsm2gbdzdytufv46jotd6sxsnnhgldiw45pl5yjq5nbvz.cpp /LD /FeC:/Users/user/AppData/Local/Temp/torchinductor_user/ou/coubnfnqsm2gbdzdytufv46jotd6sxsnnhgldiw45pl5yjq5nbvz.pyd /link /LIBPATH:c:/code/.env/Scripts/libs /LIBPATH:c:/code/.env/lib/site-packages/torch/lib torch.lib torch_cpu.lib torch_python.lib sleef.lib Output: Microsoft (R) C/C++ Optimizing Compiler Version 19.43.34809 for x86 Copyright (C) Microsoft Corporation. All rights reserved. cl : Command line warning D9025 : overriding '/openmp' with '/openmp:experimental' cl : Command line warning D9024 : unrecognized source file type 'Files/Python310/Include', object file assumed coubnfnqsm2gbdzdytufv46jotd6sxsnnhgldiw45pl5yjq5nbvz.cpp C:/Users/user/AppData/Local/Temp/torchinductor_user/ou/coubnfnqsm2gbdzdytufv46jotd6sxsnnhgldiw45pl5yjq5nbvz.cpp(21): fatal error C1083: Cannot open include file: 'Python.h': No such file or directory ``` Python installed in `C:/Program Files/Python310` path, and the blank space break the file path. Solution: Add quotes to declare Windows file paths, after that: ```cmd cl /I "C:/Users/Xuhan/.conda/envs/new_build/Include" /I "C:/Users/Xuhan/.conda/envs/new_build/lib/site-packages/torch/include" /I "C:/Users/Xuhan/.conda/envs/new_build/lib/site-packages/torch/include/torch/csrc/api/include" /D TORCH_INDUCTOR_CPP_WRAPPER /D STANDALONE_TORCH_HEADER /D C10_USING_CUSTOM_GENERATED_MACROS /D CPU_CAPABILITY_AVX512 /DLL /MD /O2 /std:c++20 /wd4819 /wd4251 /wd4244 /wd4267 /wd4275 /wd4018 /wd4190 /wd4624 /wd4067 /wd4068 /EHsc /openmp /openmp:experimental C:/Users/Xuhan/AppData/Local/Temp/tmp1wsj0m8r/za/czarp3ly5c22ge3hydvnzvad4cjimyr3hkwvofodxqffgil7frfd.cpp /arch:AVX512 /FeC:/Users/Xuhan/AppData/Local/Temp/tmp1wsj0m8r/za/czarp3ly5c22ge3hydvnzvad4cjimyr3hkwvofodxqffgil7frfd.pyd /LD /link /LIBPATH:"C:/Users/Xuhan/.conda/envs/new_build/libs" /LIBPATH:"C:/Users/Xuhan/.conda/envs/new_build/lib/site-packages/torch/lib" "torch.lib" "torch_cpu.lib" "torch_python.lib" "sleef.lib" ``` cc @peterjc123 @mszhanyi @skyline75489 @nbcsm @iremyux @Blackhex @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,927,486,447
[aoti] follow up to use new api in `test_provenance_tracing.py`
YUNQIUGUO
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
5
CONTRIBUTOR
Summary: As title. Follow up of D71181284. and some minor refactoring Context : D69609685 (update test runner to use new api) / https://github.com/pytorch/pytorch/pull/147105 Test Plan: ``` buck2 run -c fbcode.enable_gpu_sections=true -c fbcode.nvcc_arch=h100 @//mode/opt fbcode//caffe2/test/inductor:provenance_tracing -- -r test_triton_kernel_to_post_grad_tracing_cpu ``` Differential Revision: D71375725 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,927,383,675
Add AOTI shim for _weight_int4pack_mm_cpu_tensor (#149031)
Xia-Weiwen
closed
[ "open source", "module: inductor", "ciflow/inductor" ]
1
COLLABORATOR
**Summary** Previous implementation of shim did not align with the design and it was removed by https://github.com/pytorch/pytorch/pull/148907 This PR adds it back in the files of MKLDNN backend and re-enable the CPP wrapper UT. **Test plan** ``` pytest -s test/inductor/test_cpu_cpp_wrapper.py -k test_woq_int4 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/149031 Approved by: https://github.com/leslie-fang-intel, https://github.com/EikanWang, https://github.com/desertfire cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,927,334,153
Fix preload for cusparseLT
vihangm
closed
[ "triaged", "open source", "topic: bug fixes", "topic: not user facing" ]
11
NONE
This was added in #144477 but the preload logic was wrong since the missing `nvidia` path would trigger the `continue` in the loop and never search in the alternate location. This is easily reproduced when trying to use torch 2.6.0 in a hermetic bazel build. After this patch, torch manages to find and load cusparseLt properly. Signed-off-by: Vihang Mehta <vihang@gimletlabs.ai>
true
2,927,323,171
Fix local compilication and hipification
zoranzhao
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
7
MEMBER
Summary: As title, we need to fix the issue introduced from https://github.com/pytorch/pytorch/pull/148305 Test Plan: CI and e2e https://docs.google.com/document/d/1Bu-MxJCkN7WaRkKJLVBQvnSp8yV0v3Aeb3Y9R5sjeHw/edit?tab=t.0 Differential Revision: D71373001 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,927,247,376
Reuse format_size utils
guangyey
closed
[ "open source", "Merged", "ciflow/trunk", "release notes: mps", "ciflow/mps" ]
3
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #138222 * #149601 * __->__ #149383
true
2,927,130,270
Warn user of existing lock file to avoid infinite waiting
chaihahaha
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
13
CONTRIBUTOR
Sometimes the python script didn't exit normally and the lock file remains in the path. In this case, the `file_baton.py` may sleep forever waiting for the lock file to release. This PR will add a warning to show the existing lock file path, let the user better understand which file to delete when the waiting time is too long.
true
2,927,077,303
Update xla pin
zpcore
closed
[ "open source", "Merged", "topic: not user facing" ]
13
CONTRIBUTOR
Update xla pin to fix the github test failure issue. [failure link](https://hud.pytorch.org/failure?name=pull+%2F+linux-focal-py3_9-clang9-xla+%2F+test+%28xla%2C+1%2C+1%2C+lf.linux.12xlarge%29&jobName=linux-focal-py3_9-clang9-xla+%2F+test+%28xla%2C+1%2C+1%2C+lf.linux.12xlarge%29&failureCaptures=%5B%22test_call_jax_pytree%22%2C%22TestJaxInterop%22%5D). The test is run the torch_xla jax test but install the jax/jaxlib dependencies as we did in https://github.com/pytorch/xla/pull/8781/files.
true
2,927,065,279
[ROCm] Use alternate mirror for drm repo
jithunnair-amd
closed
[ "module: rocm", "open source", "Merged", "topic: not user facing", "ciflow/rocm" ]
4
COLLABORATOR
Fixes issue with building ROCm manywheel and libtorch images eg. https://github.com/pytorch/pytorch/actions/runs/13887711267/job/38854659005#step:4:8328 ``` #53 2.832 Cloning into 'drm'... #53 2.849 fatal: unable to access 'https://gitlab.freedesktop.org/mesa/drm.git/': The requested URL returned error: 503 #53 2.851 ./install_rocm_drm.sh: line 29: pushd: drm: No such file or directory ``` cc @jeffdaily @sunway513 @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,927,010,157
[MPS/inductor] Add support for `modified_bessel_i1`.
dcci
closed
[ "Merged", "topic: not user facing", "module: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
MEMBER
cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,926,945,848
[MPS] Add `bicubic2d_aa`
malfet
closed
[ "Merged", "topic: improvements", "release notes: mps", "ciflow/mps" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #149378 Which is currently the most frequently requested op in https://github.com/pytorch/pytorch/issues/141287 Mostly done by refactoring `upsample_bilinear2d_aa` to accept Functor as one of the template arguments, which closely ideas from https://github.com/python-pillow/Pillow/blob/eec43cfbc0c9962af2b728677d1d011b311584db/src/libImaging/Resample.c as well as https://github.com/pytorch/pytorch/blob/bb42e4d1374828ba417fa252d2bcac2f07d368e8/aten/src/ATen/native/cuda/UpSampleBilinear2d.cu#L472-L478 Populate unit tests by copying upsample_bilinear_2d_aa and reusing it as upsample_bicubic2d_aa At that point, only difference between upsample_bilinear2d_aa and upsample_bicubic2d_aa are convolution kernel function and size: for bilinear it's 3x3, for bicubic it's 5x5
true
2,926,942,262
[ONNX] Update types in VerificationInfo
justinchuby
closed
[ "module: onnx", "open source", "Merged", "ciflow/trunk", "release notes: onnx", "topic: docs" ]
9
COLLABORATOR
torch.types.Number was rendered as is in the documentation and can be confusing. We write the original types instead to reduce confusion for users.
true
2,926,903,262
Update torch-xpu-ops commit pin
chunhuanMeng
closed
[ "open source", "topic: not user facing", "ciflow/xpu", "release notes: xpu" ]
1
CONTRIBUTOR
Update the torch-xpu-ops commit to [fac0cf0118f3bc82fac4be46fb358546dd191f44](https://github.com/intel/torch-xpu-ops/commit/fac0cf0118f3bc82fac4be46fb358546dd191f44), includes: - Fix torch xpu build workflow logic - Refine XCCL build option - Align python executable to PyTorch - Ensure conditional setting of `AOT_TARGETS` and add `none` option to skip AOT compilation cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,926,873,145
[ONNX] Expose verification utilities
pytorchbot
closed
[ "open source", "release notes: onnx" ]
1
COLLABORATOR
Expose verification utilities to public documentation. - https://github.com/pytorch/pytorch/pull/132530 - https://github.com/pytorch/pytorch/pull/149377
true
2,926,865,889
[PrivateUse1] Allow out-of-tree devices to pass check when validating csr tensor args
shink
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "release notes: sparse" ]
24
CONTRIBUTOR
Fixes #149303 Fllow-up: #147306 Because we have a dispatch key named `DispatchKey::SparseCsrPrivateUse1` for this case, we allow users to create a csr tensor on out-of-tree devices, so we should also let that pass the check.
true
2,926,862,538
[Inductor-CPU] Faster int8 WoQ GEMM for small M with explicit prefetching and different outer loops
sanchitintel
open
[ "triaged", "open source", "ciflow/trunk", "topic: performance", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
14
COLLABORATOR
### Summary Fixes #148494 Explicitly prefetch the cache lines of the next `B` block to accelerate int8 WoQ (BF16 activation, int8 statically quantized weights) GEMM for small `M` dimension. Some of this code (outer loops of the GEMM) is being ported over from Intel Extension for PyTorch. The macro-kernel* and the micro-kernel* are essentially the same, but optionally prefetch a block of B. Templatization is being used to prevent branching causing a slowdown due to unnecessary prefetching. \* - in [BLIS](https://dl.acm.org/doi/10.1145/2764454) parlance ### Performance data with BS 1 Machine: 32 cores of one socket of a Intel Xeon SP Gen 5 machine | Model | input tokens | output tokens | next-token latency before this PR | Next-token latency after this change | Speedup | |-----------|-------------|-----------------|--------------------------------------|------------------------------------------|-----------| |GPT-J | 128 | 128 | 42 ms | 38 ms | 9.52 % | | GPT-J | 1024 | 1024 | 48 ms | 45 ms | 6.25 % | |LLaMA 3.1 8B Instruct | 128 | 128 | 52 ms | 47 ms| 9.61% | |LLaMA 3.1 8B Instruct | 1024 | 1024 | 57 ms | 53 ms| 7.01% | While the input shapes of GEMMs corresponding to linear for next-token computation remain the same in case of different number of input & output tokens, the difference in next-token latency is due to attention for those cases cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,926,841,542
[Inductor][CPP] rename shim_mkldnn.h/.cpp to shim_cpu.h/.cpp
Xia-Weiwen
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "intel", "module: inductor", "ciflow/inductor" ]
5
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #149372 **Summary** Previous discussion is here: https://github.com/pytorch/pytorch/pull/148907#issuecomment-2712795600 Rename these files because - they may hold mkldnn-unrelated code for CPU - filenames are aligned with files for CUDA and XPU cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,926,832,278
test if free chunk
laithsakka
open
[]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #149371
true
2,926,799,917
UNSTABLE pull / cuda12.4-py3.10-gcc9-sm75 / test (pr_time_benchmarks)
malfet
closed
[ "module: ci", "triaged", "oncall: pt2", "unstable" ]
4
CONTRIBUTOR
See https://hud.pytorch.org/hud/pytorch/pytorch/main/1?per_page=50&name_filter=pr_time&mergeLF=true <- job passes and fails intermittently with no apparent commit that could have started it cc @chauhang @penguinwu @seemethere @pytorch/pytorch-dev-infra
true
2,926,798,771
[ROCm] Enable several fsdp related UTs
pragupta
closed
[ "oncall: distributed", "module: rocm", "triaged", "open source", "Merged", "topic: not user facing", "ciflow/periodic" ]
6
CONTRIBUTOR
Enabling 26 UTs for ROCm in the following files: - distributed._shard.sharded_optim.test_sharded_optim - 2 UTs - distributed._shard.sharded_tensor.ops.test_binary_cmp - 4 UTs - distributed._shard.sharded_tensor.ops.test_init - 3 UTs - distributed._shard.sharded_tensor.ops.test_embedding - 2 UTs - distributed._shard.sharded_tensor.ops.test_embedding_bag - 2 UTs - distributed._composable.test_replicate_with_compiler - 4 UTs - distributed._composable.fsdp.test_fully_shard_grad_scaler - 1 UTs - distributed.tensor.test_attention - 4 UTs - distributed.tensor.test_matrix_ops - 1 UTs - distributed.tensor.test_tensor_ops - 1 UTs - distributed.fsdp.test_fsdp_grad_acc - 2 UTs cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,926,767,855
[MPS] Implement support for `modified_bessel_i1` in eager.
dcci
closed
[ "Merged", "ciflow/trunk", "topic: improvements", "module: mps", "release notes: mps" ]
6
MEMBER
cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen
true
2,926,758,816
[ca] fix accumulate grad polyfill when different strides between param and grad
xmfan
closed
[ "module: inductor", "module: dynamo", "ciflow/inductor" ]
2
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #149367 * #148516 * #149642 * #149641 * #149229 Optimizers assume param and grad must have same layout, which is enforced by the AccumulateGrad node. We could instead argue that optimizers should handle param/grad having different strides. FIXES https://github.com/pytorch/pytorch/issues/127922 and some benchmarks cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,926,740,052
Register flop formulas for flex attention
carmocca
open
[ "open source", "topic: not user facing" ]
1
CONTRIBUTOR
Addresses https://pytorch.slack.com/archives/C3PDTEV8E/p1742212622454339
true
2,926,739,490
[MPS/BE] Remove decorator that skipped test on macOS 12.
dcci
closed
[ "Merged", "topic: not user facing", "module: mps", "ciflow/mps", "module: inductor" ]
3
MEMBER
macOS 12 is not really supported anymore. cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,926,674,704
[AOTI] Add num_runners to AOTIModelPackageLoader
desertfire
closed
[ "Merged", "ciflow/trunk", "topic: improvements", "module: inductor", "ciflow/inductor", "release notes: inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #149364 Summary: AOTIModelContainerRunner takes a num_runners argument for multi-threaded inference, but AOTIModelPackageLoader forgot to take the same parameter, although its run() API already expects to take an optional cudaStream_t parameter for multi-threaded inference. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov Differential Revision: [D71357418](https://our.internmc.facebook.com/intern/diff/D71357418)
true
2,926,659,854
[MPS/BE] @parametrize generation of pointwise_ops.
dcci
closed
[ "Merged", "topic: not user facing", "module: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
MEMBER
Make this less error prone/reduces duplication. cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,926,657,572
Add x86-simd-sort accelerated sorting
sterrettm2
open
[ "module: cpu", "triaged", "open source", "topic: not user facing", "module: inductor" ]
6
CONTRIBUTOR
This is a new pull request for the same feature as #127936; the [issue](https://github.com/pytorch/pytorch/issues/140590) affecting that patch [has been resolved](https://github.com/pytorch/pytorch/pull/127936#issuecomment-2686374580). That patch is still closed and doesn't seem to be getting responses, so hopefully to get more attention I'm submitting this new patch; please tell me if this is a problem. This patch adds x86-simd-sort as a submodule to accelerate sorting for 32-bit and 64-bit datatypes when AVX2 or AVX512 are available. For contiguous data, this can be over a 10x speedup for large arrays. For discontiguous data, it can give over a 4x speedup with larger arrays. These benchmarks were gathered on a Skylake system (7900x), limited to 8 threads. <details> <summary><b>Contiguous Benchmarks</b></summary> ``` float32, normally distributed (in microseconds) size Default AVX2 AVX512 Default/AVX2 Default/AVX512 16 7.150844336 6.886271477 7.132277489 1.038420335 1.002603214 128 9.208030939 8.478154898 7.846915245 1.086089019 1.173458697 1024 37.79037627 23.60707456 16.44122627 1.600807257 2.298513241 10000 714.7355628 203.9921844 105.5683001 3.503739934 6.770361577 100000 8383.074408 721.6333354 465.3709247 11.61680593 18.01374766 1000000 97124.31945 5632.054572 3920.148401 17.24491803 24.77567416 10000000 1161974.907 86070.48988 71533.82301 13.50027063 16.24371323 int32_t, uniformly distributed (in microseconds) size Default AVX2 AVX512 Default/AVX2 Default/AVX512 16 7.203208685 6.92212224 7.014458179 1.040606975 1.026908779 128 8.972388983 8.195516348 7.592543125 1.094792396 1.18173698 1024 32.77489477 23.6874548 15.36617105 1.383639359 2.132925285 10000 607.8824128 193.3402024 99.25090471 3.144107667 6.124703997 100000 523.9384684 608.1836536 442.3166784 0.861480682 1.184532472 1000000 5211.348627 5271.598405 3518.861883 0.988570871 1.480975611 10000000 133853.6263 81463.05084 67852.97394 1.643120714 1.972700952 ``` </details> Note that the int32_t sort is accelerated by FBGEMM's radix sort for larger arrays, but this only handles contiguous data and in one sorting direction. <details> <summary><b>Discontiguous Benchmarks</b></summary> ``` float, normal distributed, discontiguous in sorted dimension (in microseconds) size Default AVX2 AVX512 Default/AVX2 Default/AVX512 16 3.836543679 4.011214256 3.84376061 0.956454439 0.99812243 128 5.755310194 5.755723127 4.820394962 0.999928257 1.193949923 1024 49.46946019 24.78790785 15.47874362 1.995709379 3.195960952 10000 665.2505291 236.6165959 143.9490662 2.811512551 4.621429974 100000 4328.002203 1329.001212 818.3516414 3.256582586 5.288682743 1000000 47651.5018 16693.72045 11827.39551 2.854456677 4.028909133 10000000 556655.1288 236252.6258 184215.9828 2.356185998 3.021752621 int32_t, uniformly distributed, discontiguous in sorted dimension (in microseconds) size Default AVX2 AVX512 Default/AVX2 Default/AVX512 16 3.817994356 3.878117442 3.770039797 0.984496837 1.012719908 128 5.578731397 5.577152082 4.716770534 1.000283176 1.182743862 1024 43.3412619 23.61275801 14.55446819 1.835501887 2.977866408 10000 634.3997478 224.4322851 133.9518324 2.826686667 4.736028889 100000 4084.358152 1292.363303 781.7867576 3.16037924 5.22438902 1000000 46262.20465 16608.35284 11367.51817 2.785478192 4.06968381 10000000 541231.9104 235185.1861 180249.9294 2.301301028 3.002674742 ``` </details> And single threaded performance on the same 7900x system. <details> <summary><b>Single Core Performance</b></summary> ``` float32, normally distributed (in microseconds) size default avx2 avx512 Default/AVX2 Default/AVX512 16 7.113132954 7.125889063 6.855771542 0.998209892 1.03753938 128 9.120340586 8.584395647 7.56901145 1.06243246 1.204957959 1024 36.27155249 24.53012899 15.79697341 1.478653149 2.296107714 10000 711.9155329 200.382199 108.2926268 3.552788305 6.573998194 100000 8399.78071 2366.537676 1330.463447 3.54939657 6.313424639 1000000 100915.9743 28517.82126 17892.53366 3.538698604 5.640116497 10000000 1204376.316 372791.338 258797.0257 3.230698231 4.653748678 int32_t, uniformly distributed (in microseconds) size default avx2 avx512 Default/AVX2 Default/AVX512 16 6.839853764 6.9264884 6.681355715 0.987492272 1.023722438 128 8.356203556 8.445468426 7.25971818 0.989430442 1.151036907 1024 30.88020962 23.73411948 14.40595382 1.30108933 2.143572721 10000 598.6316072 191.3458307 99.9496872 3.128532276 5.989329471 100000 1971.655619 2248.225125 1253.185778 0.87698318 1.57331471 1000000 24533.7907 27625.80853 16539.86351 0.888075029 1.483312766 10000000 361025.8579 358125.9727 248421.4783 1.008097389 1.453279565 float, normal distributed discontiguous in sorted dimension (in microseconds) size default avx2 avx512 Default/AVX2 Default/AVX512 16 3.9883219 3.897530437 3.803153276 1.023294613 1.048688183 128 5.797074333 5.687333666 4.795829393 1.019295627 1.208774095 1024 49.77498938 25.21366438 16.05679234 1.974127546 3.099933556 10000 670.7694155 244.0156184 145.6871839 2.748879026 4.604175863 100000 8045.512319 2731.892052 1707.214788 2.945033027 4.712653836 1000000 96954.93258 32101.35607 21151.68938 3.020275292 4.583791433 10000000 1159710.248 427844.882 316131.2342 2.710585769 3.668445642 int32_t, uniformly distributed discontiguous in sorted dimension (in microseconds) size default avx2 avx512 Default/AVX2 Default/AVX512 16 3.780948997 3.872428179 3.718787193 0.97637679 1.016715612 128 5.341575543 5.529783332 4.779936273 0.965964708 1.117499322 1024 39.1874838 23.01476824 15.89414877 1.702710337 2.465528942 10000 555.9280075 225.5575979 137.2813291 2.464683135 4.049552922 100000 6663.585735 2620.158211 1609.420934 2.543199761 4.140362284 1000000 79281.4539 31679.51566 20372.97304 2.502609407 3.891501439 10000000 961423.1586 417279.1243 305512.3885 2.304028893 3.146920369 ``` </details> cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov @leslie-fang-intel @r-devulap
true
2,926,654,593
[tp] change test_layer_norm_bwd_req_grad test to avoid uneven TP sharding which causes timeout
XilunWu
open
[ "oncall: distributed", "topic: not user facing" ]
1
CONTRIBUTOR
Fixes #148943 Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #149361 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,926,654,567
[EZ][Docker] Remove `install_db.sh`
malfet
closed
[ "Merged", "topic: not user facing" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #149360 Which is a vestige of caffe2 days and was no-op since https://github.com/pytorch/pytorch/pull/125092 cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
2,926,635,406
[Inductor-CPU] Fix int8 WoQ AMX micro-kernel when `block_n` is 16 or 48
sanchitintel
closed
[ "open source", "Merged", "ciflow/trunk", "topic: bug fixes", "topic: not user facing", "intel", "module: inductor", "ciflow/inductor" ]
9
COLLABORATOR
### Summary When the block-size for `N` dimension is `48` for the AMX GEMM micro-kernel for int8 WoQ (BF16 activation, int8 statically quantized weights), the logic for handling the tail is incorrect - we can't always dequantize 32 elements of weights at a time because we may need to dequantize `32` followed by `16` when `block_n` is `48` (for each `K`). This PR fixes that logic, which was initially exposed with `M=17, N=1024, K=1024`. This PR also fixes the case of `block_n` being 16. I had introduced [this bug ](https://github.com/pytorch/pytorch/commit/ca9813ea1498ad907abf5dc1cf20c83a1973969a) after misreading GEMM blockings as `["block_m", "block_k", "block_n"]` instead of `["block_m", "block_n", "block_k"]` (so I had wrongly assumed that `block_n` was always 32). ### Future work While this PR simply fixes a bug, it's possible to optimize the code pertaining to dequantizing & caching the B buffer - for `block_n` being `16` or `48`, `K` would always be a multiple of 2, so `K * block_n` will always be a multiple of 32. Since `dequantized_B_buf` stores rows contiguously, when `block_n` would be `16` or `48`, we could store 32 BF16 elements at a time instead of storing `16` at a time (when `block_n` is 16), or `32` followed by `16` at a time (when `block_n` is 48). Such an optimization would lower `register -> memory` data movements. cc @jgong5 @mingfeima @XiaobingSuper @ashokei @jingxu10 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,926,618,449
[dynamo] Add mem leak test
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #149358 Test for https://github.com/pytorch/pytorch/pull/148480 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,926,615,896
[ROCm][TunableOp] Minor fix to BLAS logging for ScaledGEMM with no bias vector.
naromero77amd
closed
[ "module: rocm", "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/rocm" ]
3
COLLABORATOR
Omit the bias type argument for BLAS logging when there is a ScaledGEMM with no bias vector. cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang
true
2,926,606,905
Make numpy check optional
atalman
closed
[ "Merged", "topic: not user facing" ]
4
CONTRIBUTOR
We may want to skip numpy smoke tests. Hence making it optional
true
2,926,570,422
[dtensor][tp] debug test_layer_norm_bwd_req_grad timeout when #GPU=3
XilunWu
open
[ "oncall: distributed", "topic: not user facing" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #149355 ### Summary test_layer_norm_bwd_req_grad has timeout failure when the model dimensions cannot be evenly divided by #GPUs. ### Traige Run `CUDA_VISIBLE_DEVICES="0,1,2" pytest test/distributed/tensor/test_math_ops.py -s -k test_layer_norm_bwd_req_grad` to reproduce the timeout. Using `py-spy` to find where the program is stuck shows: ``` Thread 2998997 (active): "MainThread" convert (torch/nn/modules/module.py:1344) _apply (torch/nn/modules/module.py:942) _apply (torch/nn/modules/module.py:915) to (torch/nn/modules/module.py:1355) test_layer_norm_bwd_req_grad (tensor/test_math_ops.py:501) wrapper (torch/testing/_internal/distributed/_tensor/common_dtensor.py:407) wrapper (torch/testing/_internal/common_utils.py:3153) wrapper (torch/testing/_internal/common_distributed.py:607) run_test (torch/testing/_internal/common_distributed.py:734) _run (torch/testing/_internal/common_distributed.py:713) run (multiprocessing/process.py:108) _bootstrap (multiprocessing/process.py:314) _main (multiprocessing/spawn.py:135) spawn_main (multiprocessing/spawn.py:122) <module> (<string>:1) ``` cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,926,566,552
[State_dict] Remove functools.cache and add unit test
mori360
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (checkpoint)" ]
8
CONTRIBUTOR
Fixes https://github.com/pytorch/pytorch/issues/149100 @functools.cache would keep 'self' alive, leading to unexpected memory performance. (e.g. in the issue linked, if the model is deleted, the model's memory is still occupied.) cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,926,531,221
xpu: improve error handling and reporting in XPU cmake files
dvrogozh
closed
[ "open source", "Merged", "ciflow/trunk", "ciflow/xpu", "release notes: xpu" ]
5
CONTRIBUTOR
For #149075 * Add a graceful cmake error instead of cryptic one if SYCL runtime is not found: ``` The link interface of target "c10_xpu" contains: torch::xpurt but the target was not found. ``` * Suppress unclear cmake error if SYCL compiler is not available and further version query fails: ``` CMake Error at /home/dvrogozh/pytorch/torch/share/cmake/Caffe2/FindSYCLToolkit.cmake:37 (string): string sub-command REGEX, mode REPLACE needs at least 6 arguments total to command. ``` CC: @gujinghui @EikanWang @fengyuan14 @guangyey @jgong5
true
2,926,501,829
[GPU Snapshot] Add Clear History Flag
sraikund16
closed
[ "module: cuda", "enhancement", "fb-exported", "Merged", "ciflow/trunk", "release notes: cuda" ]
12
CONTRIBUTOR
Summary: Oftentimes, users complain that a bunch of extra events are prepended to their desired GPU snapshot. This is because they usually attach an OOM logger without knowing and when they go to collect the actual snapshot, it adds all the OOM logger contents. Since OOM and regular snapshot use the same backend, we currently don't have the infra in place to split these snapshots. As a solution we add a flag to the snapshot frontend to clear out the history when starting the auto-trace record memory history. A more thorough solution would be to have a user pass in a handle and to have snapshots per handle to seperate the events. However, this would likely be complicated and more work than it is worth as we would have to change the callbacks in the caching allocator and pass these objects between python and cpp. Test Plan: See diff below Differential Revision: D71159720 cc @ptrblck @msaroufim @eqy
true
2,926,472,903
nccl: upgrade to 2.26.2 to avoid hang on ncclCommAbort
d4l3k
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/inductor" ]
7
MEMBER
Fixes #149153 Yaml generated from: ``` python .github/scripts/generate_ci_workflows.py ``` Test plan: Repro in https://gist.github.com/d4l3k/16a19b475952bc40ddd7f2febcc297b7 ``` rm -rf third_party/nccl python setup.py develop ```
true
2,926,451,167
cpp_wrapper: precompile a few more commonly used headers, and improve RAIIPyObject interface
benjaminglass1
closed
[ "open source", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "ci-no-td", "ciflow/rocm-mi300" ]
17
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #147225 * __->__ #149350 Add includes for torch.device, torch.dtype, torch.layout, and torch.memory_format to the cpp_wrapper common header, so that they get precompiled. Additionally, add move constructors and operator bool to RAIIPyObject. Closes #142005. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,926,449,933
DISABLED test_unshard_async (__main__.TestFullyShardUnshardMultiProcess)
pytorch-bot[bot]
open
[ "oncall: distributed", "triaged", "module: flaky-tests", "skipped", "module: fsdp", "oncall: pt2" ]
2
NONE
Platforms: inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_unshard_async&suite=TestFullyShardUnshardMultiProcess&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/38913895101). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_unshard_async` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 605, in wrapper self._join_processes(fn) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 845, in _join_processes self._check_return_codes(elapsed_time) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 899, in _check_return_codes raise RuntimeError( RuntimeError: Process 0 terminated or timed out after 300.0343186855316 seconds ``` </details> Test file path: `distributed/_composable/fsdp/test_fully_shard_comm.py` cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @clee2000 @zhaojuanmao @mrshenli @rohan-varma @chauhang @penguinwu
true
2,926,403,912
[Partition] Fix flaky
BoyuanFeng
open
[ "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
1
CONTRIBUTOR
Output buffer names may change sometimes leading to a flaky error. This fix removes the hardcoded output name in unit test. Fixes #148957 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,926,393,244
refresh benchmarks results.
laithsakka
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #149347 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,926,339,141
Dummy test
jamesjwu
closed
[ "ciflow/trunk", "module: inductor", "ciflow/inductor", "ci-no-td" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #149346 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,926,286,245
Narrow scope of clangtidy lintrunner on CI to match lintrunner configs
TovlyFB
open
[ "fb-exported", "topic: not user facing" ]
5
CONTRIBUTOR
Summary: `--all-files` for the CLANGTIDY lint is too broad, leading it to produce errors on files that should not be linted like `.cuh` files (see [discussion in PR 148936](https://github.com/pytorch/pytorch/pull/148936)). This PR narrows the scope to respect the include and exclude patterns in the `.lintrunner.toml` config. Test Plan: 1. Apply these changes to D70539649 and [export it to a PR](https://github.com/pytorch/pytorch/pull/148936) 2. Observe that the PR doesn't have any linter errors ([other errors on there are already being looked at](https://fb.workplace.com/groups/pytorch.edge.users/permalink/1721728545364098/) and are separate) Differential Revision: D71335488
true
2,926,264,997
[test] build dist
clee2000
closed
[ "topic: not user facing" ]
1
CONTRIBUTOR
Fixes #ISSUE_NUMBER
true
2,926,246,464
[c10d] Add a collective time estimator for NCCL comms
fduwjj
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (c10d)" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #149343 We want to upstream the feature from new nccl for users to estimate comm time. Resolves #147753 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @wz337 @wconstab @d4l3k @c-p-i-o
true
2,926,218,457
[MPS] Add inductor support for `modified_bessel_i0`.
dcci
closed
[ "Merged", "topic: improvements", "module: mps", "release notes: mps", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
MEMBER
cc @kulinseth @albanD @malfet @DenisVieriu97 @jhavukainen @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,926,209,915
[DCP][Draft] Checkpoint daemon process fixes
MeetVadakkanchery
open
[ "oncall: distributed", "fb-exported", "release notes: distributed (checkpoint)" ]
2
CONTRIBUTOR
Differential Revision: D71336180 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,926,208,734
[MTIA] Add _mtia_maybeExchangeDevice to MTIA module
PatriceVignola
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
9
CONTRIBUTOR
Summary: The FlexAttention path uses `_maybe_exchange_device`, so it will be needed eventually for MTIA as well. Test Plan: `buck2 test fbcode//mtia/host_runtime/torch_mtia/tests:test_torch_mtia_api -- test_maybe_exchange_device` Reviewed By: chaos5958 Differential Revision: D70072063
true
2,926,140,021
[Inductor] Improve memory locality by iterating over y dimension before x
blaine-rister
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
15
CONTRIBUTOR
# Feature Fixes https://github.com/pytorch/pytorch/issues/148718 by reordering the tensor dims to `(z, y, x)`. As a bonus refactor, block pointers no longer needed the `reorder=True` argument to `self.active_range_trees()`. Since this argument is no longer used anywhere, this PR simply deletes it as opposed to updating the logic for the new iteration order. # Perf impact It looks like there's a decent perf bump on A100, with cudagraphs enabled. Granted, perf runs seem to have some noise between commits. ([Workflow run](https://github.com/pytorch/pytorch/actions/runs/13914815576).) Training (all neutral or positive): ![image](https://github.com/user-attachments/assets/57f1ef1d-60b4-446f-baf3-aca87a26b81b) Inference (one positive, one very small negative): ![image](https://github.com/user-attachments/assets/679aa057-af23-47f1-8d8e-8520daf1bd92) As reported in https://github.com/pytorch/pytorch/issues/148718, this PR makes consecutive threads access consecutive memory addresses. This should theoretically give the GPU more opportunities to coalesce loads and stores. From Nvidia's [kernel profiling guide](https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html): > Local memory is private storage for an executing thread and is not visible outside of that thread. It is intended for thread-local data like thread stacks and register spills. Local memory addresses are translated to global virtual addresses by the AGU unit. Local memory has the same latency as global memory. One difference between global and local memory is that local memory is arranged such that consecutive 32-bit words are accessed by consecutive thread IDs. Accesses are therefore fully coalesced as long as all threads in a warp access the same relative address (e.g., same index in an array variable, same member in a structure variable, etc.). I couldn't find any information on how coalescing works for other kinds of memory, but the guide mentions it is also supported for accesses to the L2 cache. > The L2 Request Coalescer (LRC) processes incoming requests for L2 and tries to coalesce read requests before forwarding them to the L2 cache. It also serves programmatic multicast requests from the SM and supports compression for writes. The [answer to this Stack Overflow post](https://stackoverflow.com/a/5044424) also explains coalescing in a straightforward way. Inductor's current iteration order corresponds to the first (uncoalesced) example in that answer, while the order after this PR corresponds to the second (coalesced) example. Besides GPUs, this order of accessing data is highly advantageous for systems relying on DMAs, as those are designed to access contiguous spans of memory. This change improves the performance of an elementwise add kernel on an internal model, using internal hardware, by 1.76x. I will share the details with reviewers who are Meta employees via a private channel. # Test plan - Updated expected code on CI tests. - Added a new test checking the {x,y,z}indices and block pointers on a 3D pointwise kernel. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,926,095,481
Use enum to select floating point format in FbgemmEmbedding APIs
MatzeB
open
[ "fb-exported", "ciflow/trunk", "topic: not user facing" ]
17
CONTRIBUTOR
Summary: Most FBGemmEmbedding APIs currently feature a `bool is_bf16_out` parameter to differentiate between the float16 and bfloat16 format when the output array has type `uint16_t`. I am in the process of adding E5M2 and E4M3FN formats for output arrays with type `uint8_t`. Instead of adding another parameter, I would like to change the `bool is_bf16_out` parameter to `enum FloatFormat` to make it easier to add new formats: ``` enum class FloatFormat { DEFAULT, FLOAT16, BFLOAT16, FP8_E5M2, FP8_E4M3FN, }; ``` Test Plan: sandcastle Reviewed By: excelle08 Differential Revision: D68046358
true
2,926,080,999
Update nightly s390x builds
AlekseiNikiforovIBM
closed
[ "open source", "Merged", "topic: not user facing", "ciflow/binaries_wheel" ]
3
COLLABORATOR
This change should fix new nightly build failures for s390x.
true
2,926,064,974
[ca] fix dce for side-effects
xmfan
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor", "module: compiled autograd" ]
3
MEMBER
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #148516 * #149420 * #149367 * #148694 * #149229 * __->__ #149336 The AOT backward could have contained side effectful ops, so we can't DCE them. Have CA also call the default fx.Node.is_impure which will cover some of the existing cases cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,926,055,271
torch.matrix_exp gets stuck on GPU
jiren-the-gray
open
[ "needs reproduction", "module: cuda", "triaged", "module: deadlock", "module: linear algebra" ]
1
NONE
### 🐛 Describe the bug Running `torch.matrix_exp` with [a tensor](https://drive.google.com/file/d/1_BP6SZMKbQqMJ1nikaKrhuGneUsrjAE-/view?usp=sharing) works on CPU but gets stuck on GPU. I am providing a [colab](https://colab.research.google.com/drive/1RLd1q35-xHHANfu7YqLBu69Uv6gONROk?usp=sharing) with a code snippet to reproduce the problem using `concurrent.futures`, but I initially encountered it without this code snippet. This is just to demonstrate with a timeout that it gets stuck, and the code remains stuck even after the thread is attempted to be killed. It looks like the CUDA version encounters some sort of race condition. To run with colab, please upload [this file](https://drive.google.com/file/d/1_BP6SZMKbQqMJ1nikaKrhuGneUsrjAE-/view?usp=sharing) to the files tab first. Minimal reproducible code: ```python import torch, sys from safetensors import safe_open import concurrent.futures tensors = {} with safe_open("matrix_exp.safetensors", framework="pt", device='cpu') as f: for k in f.keys(): tensors[k] = f.get_tensor(k) def matrix_exp_with_timeout(tensor, timeout=10): with concurrent.futures.ThreadPoolExecutor() as executor: future = executor.submit(torch.matrix_exp, tensor) try: result = future.result(timeout=timeout) print("Executed successfully") return result except concurrent.futures.TimeoutError: print("Matrix exponential operation took too long and was terminated.") future.cancel() sys.exit(1) timeout = 10 # seconds print(tensors['tensor'].shape, tensors['tensor'].dtype) # torch.Size([3, 224, 224]) torch.float32 out_cpu = matrix_exp_with_timeout(tensors['tensor'], timeout=timeout) # Executed successfully out_gpu = matrix_exp_with_timeout(tensors['tensor'].cuda(), timeout=timeout) # Timeout, still stuck ``` To run locally, download the [safetensors file](https://drive.google.com/file/d/1_BP6SZMKbQqMJ1nikaKrhuGneUsrjAE-/view?usp=sharing) and keep alongside the code. ### Versions Collecting environment information... PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.31.6 Libc version: glibc-2.35 Python version: 3.11.11 (main, Dec 4 2024, 08:55:07) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.1.85+-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.5.82 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Tesla T4 Nvidia driver version: 550.54.15 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.2.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 2 On-line CPU(s) list: 0,1 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) CPU @ 2.00GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 1 Socket(s): 1 Stepping: 3 BogoMIPS: 4000.38 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 32 KiB (1 instance) L1i cache: 32 KiB (1 instance) L2 cache: 1 MiB (1 instance) L3 cache: 38.5 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0,1 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable; SMT Host state unknown Vulnerability Meltdown: Vulnerable Vulnerability Mmio stale data: Vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Vulnerable Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Not affected; BHI: Vulnerable (Syscall hardening enabled) Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable Versions of relevant libraries: [pip3] numpy==2.0.2 [pip3] nvidia-cublas-cu12==12.5.3.2 [pip3] nvidia-cuda-cupti-cu12==12.5.82 [pip3] nvidia-cuda-nvrtc-cu12==12.5.82 [pip3] nvidia-cuda-runtime-cu12==12.5.82 [pip3] nvidia-cudnn-cu12==9.3.0.75 [pip3] nvidia-cufft-cu12==11.2.3.61 [pip3] nvidia-curand-cu12==10.3.6.82 [pip3] nvidia-cusolver-cu12==11.6.3.83 [pip3] nvidia-cusparse-cu12==12.5.1.3 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.5.82 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] nvtx==0.2.11 [pip3] optree==0.14.1 [pip3] pynvjitlink-cu12==0.5.2 [pip3] torch==2.6.0+cu124 [pip3] torchaudio==2.6.0+cu124 [pip3] torchsummary==1.5.1 [pip3] torchvision==0.21.0+cu124 [pip3] triton==3.2.0 [conda] Could not collect cc @ptrblck @msaroufim @eqy @jianyuh @nikitaved @pearu @mruberry @walterddr @xwang233 @Lezcano
true
2,925,946,182
NUMA Binding Integration with torchrun
raghavhrishi
open
[ "oncall: distributed", "triaged", "open source", "release notes: distributed (c10d)" ]
5
NONE
Implements #148689 cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
true
2,925,925,146
[Profiler/Easy] Pass Overload Names To Kineto
sraikund16
closed
[ "enhancement", "fb-exported", "Merged", "ciflow/trunk", "release notes: profiler" ]
9
CONTRIBUTOR
Summary: Right now we get Overload names and forward them to the Event List frontend for profiler but we do not forward anything to kineto. This diff checks if there is an overload name for each cpu op and appends it to the name if necessary Test Plan: Added test in CI Differential Revision: D71326670
true