id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
2,979,018,593
Code Clean: Remove python3.8 specific code because PyTorch now need Python3.9 and later
FFFrog
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
3
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150839 * #150838 * __->__ #150834 As the title stated.
true
2,978,918,930
Pin all root requirements to major versions
jondea
open
[ "triaged", "open source", "topic: not user facing" ]
2
CONTRIBUTOR
Builds regularly fail due to major changes in build packages (most recently #150149), should we pin all the root [`requirements.txt`](https://github.com/pytorch/pytorch/blob/a106842ea8be6eb17b368de16d9c107c12b809bc/requirements.txt) to at least major version? I made this a draft because I didn't really know the right solution, but - [pyproject.toml](https://github.com/pytorch/pytorch/blob/a106842ea8be6eb17b368de16d9c107c12b809bc/pyproject.toml#L2) has different build-requirements to requirements.txt? Which one is canonical? And should we have 2? - The manylinux CI builds seems to `pip install -r requirements.txt` but the Ubuntu unit testing CI uses `pip install -r requirements-ci.txt`. @malfet [suggested here](https://github.com/pytorch/pytorch/pull/138338#pullrequestreview-2379132987) that we should pin build requirements in CI but not for local development, should we have another set of requirements for just manylinux? - Should the requirements be baked into the builder Docker images? At least then we can build with known good build dependencies by choosing a specific commit of the builder image (e.g. [cpu-aarch64-af5c1b96e251422ad5fb05f98c1f0095f9c9d1cf](https://hub.docker.com/layers/pytorch/manylinuxaarch64-builder/cpu-aarch64-af5c1b96e251422ad5fb05f98c1f0095f9c9d1cf/images/sha256-f41083e96d23c3d2a1e6777f23fcf371979845eab129c25997f552a6d8023ad4)). At the moment, the CI build scripts do `pip install`, but this could be done in the `Dockerfile`, it would have the added benefit of speeding up the CI and making the builds more reproducible.
true
2,978,905,041
[inductor][cpu]functorch_dp_cifar10 AOTInductor AMP multiple thread performance regression in 2025-03-24 nightly release
zxd1997066
open
[ "oncall: pt2", "oncall: cpu inductor" ]
0
CONTRIBUTOR
### 🐛 Describe the bug <p>AOTInductor AMP multiple thread static shape default wrapper</p><table border="1" class="dataframe table"> <thead> <tr style="text-align: right;"> <th>suite</th> <th>name</th> <th>thread</th> <th>batch_size_new</th> <th>speed_up_new</th> <th>inductor_new</th> <th>eager_new</th> <th>compilation_latency_new</th> <th>batch_size_old</th> <th>speed_up_old</th> <th>inductor_old</th> <th>eager_old</th> <th>compilation_latency_old</th> <th>Ratio Speedup(New/old)</th> <th>Eager Ratio(old/new)</th> <th>Inductor Ratio(old/new)</th> <th>Compilation_latency_Ratio(old/new)</th> </tr> </thead> <tbody> <tr> <td>torchbench</td> <td>functorch_dp_cifar10</td> <td>multiple</td> <td>64</td> <td>1.016286</td> <td>0.010592308</td> <td>0.010764814328088</td> <td>35.067491</td> <td>64</td> <td>1.169075</td> <td>0.008584628</td> <td>0.010036073979100002</td> <td>35.173659</td> <td>0.87</td> <td>0.93</td> <td>0.81</td> <td>1.0</td> </tr> </tr> </tbody> </table> the bad commit: c36ac16da181989e32458bf52b5bc8ae99a0bb92 ``` /workspace/pytorch# bash inductor_single_run.sh multiple inference performance torchbench functorch_dp_cifar10 amp first static default 0 aot_inductor Testing with aot_inductor. multi-threads testing.... loading model: 0it [00:00, ?it/s] cpu eval functorch_dp_cifar10 skipping cudagraphs due to cpp wrapper enabled running benchmark: 100%|████████████████████████████████████████████████████████████████████████| 50/50 [00:01<00:00, 25.02it/s] 1.159x WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] dev,name,batch_size,speedup,abs_latency,compilation_latency,compression_ratio,eager_peak_mem,dynamo_peak_mem,calls_captured,unique_graphs,graph_breaks,unique_graph_breaks,autograd_captures,autograd_compiles,cudagraph_skips cpu,functorch_dp_cifar10,64,1.159491,17.737401,46.211767,0.718113,74.017178,103.071744,0,0,0,0,0,0,1 ``` the last good commit: 109644346737ed094db0b99e9c6dac5ac022e35f ``` /workspace/pytorch# bash inductor_single_run.sh multiple inference performance torchbench functorch_dp_cifar10 amp first static default 0 aot_inductor Testing with aot_inductor. multi-threads testing.... loading model: 0it [00:00, ?it/s] cpu eval functorch_dp_cifar10 skipping cudagraphs due to cpp wrapper enabled running benchmark: 100%|████████████████████████████████████████████████████████████████████████| 50/50 [00:01<00:00, 27.63it/s] 1.461x WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] dev,name,batch_size,speedup,abs_latency,compilation_latency,compression_ratio,eager_peak_mem,dynamo_peak_mem,calls_captured,unique_graphs,graph_breaks,unique_graph_breaks,autograd_captures,autograd_compiles,cudagraph_skips cpu,functorch_dp_cifar10,64,1.461040,14.502100,50.749922,0.721483,73.839411,102.343885,0,0,0,0,0,0,1 ``` ### Versions </table><p>SW info</p><table border="1" class="dataframe table"> <thead> <tr style="text-align: right;"> <th>name</th> <th>target_branch</th> <th>target_commit</th> <th>refer_branch</th> <th>refer_commit</th> </tr> </thead> <tbody> <tr> <td>torchbench</td> <td>main</td> <td>373ffb19</td> <td>main</td> <td>373ffb19</td> </tr> <tr> <td>torch</td> <td>main</td> <td>45b11730f10f64171a9861c98782e1875bad87c9</td> <td>main</td> <td>f80bee4934dc2d6c8031f481d699cd4832a1a932</td> </tr> <tr> <td>torchvision</td> <td>main</td> <td>0.19.0a0+d23a6e1</td> <td>main</td> <td>0.19.0a0+d23a6e1</td> </tr> <tr> <td>torchtext</td> <td>main</td> <td>0.16.0a0+b0ebddc</td> <td>main</td> <td>0.16.0a0+b0ebddc</td> </tr> <tr> <td>torchaudio</td> <td>main</td> <td>2.6.0a0+318bace</td> <td>main</td> <td>2.6.0a0+c670ad8</td> </tr> <tr> <td>torchdata</td> <td>main</td> <td>0.7.0a0+11bb5b8</td> <td>main</td> <td>0.7.0a0+11bb5b8</td> </tr> <tr> <td>dynamo_benchmarks</td> <td>main</td> <td>nightly</td> <td>main</td> <td>nightly</td> </tr> </tbody> </table> </table> Repro: [inductor_single_run.sh](https://github.com/chuanqi129/inductor-tools/blob//main/scripts/modelbench/inductor_single_run.sh) bash inductor_single_run.sh multiple inference performance torchbench functorch_dp_cifar10 amp first static default 0 aot_inductor Suspected guilty commit: c36ac16da181989e32458bf52b5bc8ae99a0bb92 [torchbench-functorch_dp_cifar10-inference-amp-static-default-multiple-performance-drop_guilty_commit.log](https://github.com/user-attachments/files/19644830/torchbench-functorch_dp_cifar10-inference-amp-static-default-multiple-performance-drop_guilty_commit.log) cc @chauhang @penguinwu @chuanqi129
true
2,978,897,433
[Quant][PT2E][X86] Enable annotation of aten.mul.tensor with X86InductorQuantizer
Xia-Weiwen
closed
[ "open source", "release notes: quantization", "intel" ]
3
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150831 * #151112 **Summary** This PR adds support of annotation of `aten.mul.tensor` in `X86InductorQuantizer`. `mul` is not annotated by default. Users need to set the following to enable annotation of `mul`: ```python quantizer.set_function_type_qconfig( torch.mul, quantizer.get_global_quantization_config() ) ``` After `convert_pt2e`, users get patterns like ``` quantize_per_tensor_default = torch.ops.quantized_decomposed.quantize_per_tensor.default(x, ...) dequantize_per_tensor_default = torch.ops.quantized_decomposed.dequantize_per_tensor.default(quantize_per_tensor_default, ...) quantize_per_tensor_default_1 = torch.ops.quantized_decomposed.quantize_per_tensor.default(y, ...); dequantize_per_tensor_default_1 = torch.ops.quantized_decomposed.dequantize_per_tensor.default(quantize_per_tensor_default_1, ...) mul = torch.ops.aten.mul.Tensor(dequantize_per_tensor_default, dequantize_per_tensor_default_1); ``` **Test plan** ``` pytest test/quantization/pt2e/test_x86inductor_quantizer.py -k test_annotate_mul_tensor ``` cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
true
2,978,891,788
[Inductor UT][Break XPU] Fix UTs for XPU broken by community.
etaf
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "keep-going", "ciflow/xpu" ]
11
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150830 * #149862 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,978,771,916
[Accelerator][Chore] Use existing `acc` when raising an error
shink
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "ciflow/mps", "ciflow/rocm" ]
4
CONTRIBUTOR
As the title said, `acc` already exists so we just use it instead of calling `current_accelerator()` again. cc: @albanD @guangyey @FFFrog
true
2,978,708,667
[ez] dynamo fix typo in comment
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151180 * #151179 * __->__ #150828 * #150755 * #150754 * #150753 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,978,706,354
Update torch-xpu-ops commit pin
xytintel
closed
[ "module: cpu", "triaged", "open source", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "keep-going", "ciflow/xpu", "release notes: xpu", "ci-no-td" ]
29
CONTRIBUTOR
Update the torch-xpu-ops commit to [655fa9bc7f88ab5bd3766b5f2fd5b43989c2caca](https://github.com/intel/torch-xpu-ops/commit/655fa9bc7f88ab5bd3766b5f2fd5b43989c2caca), including: - Update commit pin to xpu-ops main branch - Fixes batch_norm numeric error by adding additional boundary check - Enable two operators: fft & jagged_to_padded_dense - XCCL relevant changes: 1. Cache `cclStream` to improve performance. 2. Add support for complex datatypes in `allgather` and `broadcast`. 3. Support `coalescing` operations and `batch_isend_irecv`. 4. Introduce additional logging; use `export TORCH_CPP_LOG_LEVEL=INFO`. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @jerryzh168 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,978,669,705
[Codemod][AddExplicitStrictExportForTrainingInferenceArg] caffe2/torch/ao
gmagogsfm
closed
[ "fb-exported", "Merged", "ciflow/trunk", "release notes: quantization", "topic: not user facing" ]
4
CONTRIBUTOR
Differential Revision: D72615631
true
2,978,669,379
[pytorch] Remove numpy dependency from Knapsack Evaluator
basilwong
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
12
CONTRIBUTOR
Summary: The two implementations are functionally equivalent. They both calculate the memory budget at the knee point in the Pareto frontier using the same algorithm. 1. np.linspace -> basic list comprehension 2. runtime and memory values -> lists instead of numpy arrays 3. np.ptp -> max - min 4. np.norm -> diff with min value / range 5. np.sqrt -> **0.5 5. np.argmin -> .index(min(_)) Test Plan: # Unit Testing ``` buck test mode/opt //caffe2/test/functorch:test_ac_knapsack; pingme "tests done" Buck UI: https://www.internalfb.com/buck2/f4e41eb8-e775-4f04-b4e7-8e567599deb8 Test UI: https://www.internalfb.com/intern/testinfra/testrun/10133099236155875 Network: Up: 24KiB Down: 1.9GiB (reSessionID-7cd11487-f3e7-43ab-982a-805510771c8d) Executing actions. Remaining 0/259826 98:15:40.5s exec time total Command: test. Finished 3 local, 5 remote, 103467 cache (99% hit) 98:15:14.8s exec time cached (99%) Time elapsed: 1:09.9s Tests finished: Pass 15. Fail 0. Fatal 0. Skip 0. Build failure 0 ``` # End to End Testing ### Baseline Run with DP Let's confirm everything we are running on works. - Optimization Algo: DP - Memory Budget: 0.05 - AIX Link: apf_local-basilwong-2025-03-22_20:39:10 - TLParse rank 0: https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmpDJaWp5/rank_0/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000 - TLParse rank 1: https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmpDJaWp5/rank_1/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000 ### Dynamic Memory Budget (Before Change) - Revision: 2c95489b7f79 - Optimization Algo: Dynamic Memory Budget - Memory Budget: 0.05 - AIX Link: https://www.internalfb.com/mlhub/pipeline/4088035428184866 - TLParse: - https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmpykEy8U/rank_0/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000 - https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmpykEy8U/rank_1/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000 ### Dynamic Memory Budget (After Change) - Revision: 14353eef3c9e - Optimization Algo: Dynamic Memory Budget - Memory Budget: 0.05 - AIX Link: https://www.internalfb.com/mlhub/pipeline/1613558749306737 - TLParse Links: - https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmpZKNWFw/rank_0/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000 - https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmpZKNWFw/rank_1/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000 As a sanity check lets take the AC information for the following compile id: 7_0_0 from the rank 0 of each TLParse. {F1976883124} * Baseline: P1779400819 * Saved node values show we are storing much more compared to dynamic memory: ``` "Knapsack Saved Nodes": [ 16, 17, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60 ] ``` * Before Change: P1779401775 * Saved nodes are similar to after change but not exactly. ``` "Knapsack Saved Nodes": [ 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50 ] ``` * After Change: P1779402106 * Here we se the largest nodes that are saved are around the same, but there is a small discrepancy for the smallest nodes. ``` "Knapsack Saved Nodes": [ 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 57, 58, 59, 60, 61, 62 ], ``` The discrepancy can be explained by looking at the estimated memory values. This is the non-deterministic part(below are the top 5 memory values for considered candidates): ``` 0.05774741703905514, 0.007333005338292718, 0.007333005338292718, 0.007333005338292718, 0.007333005338292718, ``` vs ``` 0.049254204820440746, 0.006254502199421049, 0.006254502199421049, 0.006254502199421049, 0.006254502199421049, ``` Based on that the dynamic memory implementations performed similarly in an E2E test and that memory is non-deterministic we should be good to go to land. Differential Revision: D71692245
true
2,978,563,434
[MPSInductor] Naive welford_reduce implementation
malfet
closed
[ "Merged", "Reverted", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor", "ci-no-td" ]
13
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151155 * #151152 * #151151 * __->__ #150824 * #151042 Literal Python-to-Metal translation of https://github.com/pytorch/pytorch/blob/85549fe6de3b9a980d1dc98dc57379501bd2bb18/torch/_inductor/runtime/triton_helpers.py#L217-L225 Fixed missing barrier in `welford_combine` And this is sufficient to make `GPUTests.test_batch_norm_2d_2_mps` to pass cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,978,550,962
[export] Decomp failure when running `aten.item.default`
kisenaa
open
[ "module: onnx", "oncall: pt2", "oncall: export" ]
1
NONE
### 🐛 Describe the bug Trying to export yolo11 model to onnx with dynamo=True. But got an error: ``` Ultralytics 8.3.103 ≡ƒÜÇ Python-3.12.9 torch-2.8.0.dev20250405+cu128 CUDA:0 (NVIDIA GeForce RTX 4080 Laptop GPU, 12282MiB) YOLO11n summary (fused): 100 layers, 2,616,248 parameters, 0 gradients, 6.5 GFLOPs PyTorch: starting from 'yolo11n.pt' with input shape (1, 3, 640, 640) BCHW and output shape(s) (1, 300, 6) (5.4 MB) ONNX: starting export with onnx 1.17.0 opset 18... D:\learn\venv\Lib\site-packages\onnxscript\converter.py:823: FutureWarning: 'onnxscript.values.Op.param_schemas' is deprecated in version 0.1 and will be removed in the future. Please use '.op_signature' instead. param_schemas = callee.param_schemas() D:\learn\venv\Lib\site-packages\onnxscript\converter.py:823: FutureWarning: 'onnxscript.values.OnnxFunction.param_schemas' is deprecated in version 0.1 and will be removed in the future. Please use '.op_signature' instead. param_schemas = callee.param_schemas() D:\learn\venv\Lib\site-packages\torchvision\_meta_registrations.py:173: FutureWarning: `create_unbacked_symint` is deprecated, please use `new_dynamic_size` instead num_to_keep = ctx.create_unbacked_symint() ONNX: export failure Γ¥î 5.0s: Failed to decompose the FX graph for ONNX compatibility. This is step 2/3 of exporting the model to ONNX. Next steps: - Create an issue in the PyTorch GitHub repository against the *torch.export* component and attach the full error stack as well as reproduction scripts. - Create an error report with `torch.onnx.export(..., report=True)`, and save the ExportedProgram as a pt2 file. Create an issue in the PyTorch GitHub repository against the *onnx* component. Attach the error report and the pt2 model. Error report has been saved to 'onnx_export_2025-04-08_11-09-41-177592_decomp.md'. ## Exception summary <class 'AttributeError'>: 'float' object has no attribute 'node' While executing %item : [num_users=1] = call_function[target=torch.ops.aten.item.default](args = (%getitem_21,), kwargs = {}) GraphModule: class GraphModule(torch.nn.Module): ``` Traceback: ``` Original traceback: File "D:\learn\venv\Lib\site-packages\torch\fx\_symbolic_trace.py", line 805, in forward return _orig_module_call(mod, *args, **kwargs) File "D:\learn\venv\Lib\site-packages\torch\export\_trace.py", line 1842, in forward tree_out = mod(*args, **kwargs) File "D:\learn\venv\Lib\site-packages\torch\fx\_symbolic_trace.py", line 805, in forward return _orig_module_call(mod, *args, **kwargs) File "D:\learn\venv\Lib\site-packages\ultralytics\engine\exporter.py", line 1605, in forward preds = self.model(x) File "D:\learn\venv\Lib\site-packages\torch\fx\_symbolic_trace.py", line 805, in forward return _orig_module_call(mod, *args, **kwargs) File "D:\learn\venv\Lib\site-packages\ultralytics\nn\tasks.py", line 120, in forward return self.predict(x, *args, **kwargs) File "D:\learn\venv\Lib\site-packages\torch\fx\_symbolic_trace.py", line 805, in forward return _orig_module_call(mod, *args, **kwargs) File "D:\learn\venv\Lib\site-packages\ultralytics\nn\modules\head.py", line 75, in forward y = self._inference(x) (Refer to the full stack trace above for more information.) Traceback (most recent call last): File "D:\learn\venv\Lib\site-packages\torch\onnx\_internal\exporter\_core.py", line 1335, in export decomposed_program = _prepare_exported_program_for_export( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\learn\venv\Lib\site-packages\torch\onnx\_internal\exporter\_core.py", line 898, in _prepare_exported_program_for_export exported_program = _fx_passes.decompose_with_registry(exported_program, registry) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\learn\venv\Lib\site-packages\torch\onnx\_internal\exporter\_fx_passes.py", line 19, in decompose_with_registry return exported_program.run_decompositions(decomp_table) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\learn\venv\Lib\site-packages\torch\export\exported_program.py", line 122, in wrapper return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "D:\learn\venv\Lib\site-packages\torch\export\exported_program.py", line 1382, in run_decompositions return _decompose_exported_program( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\learn\venv\Lib\site-packages\torch\export\exported_program.py", line 848, in _decompose_exported_program ) = _decompose_and_get_gm_with_new_signature_constants( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\learn\venv\Lib\site-packages\torch\export\exported_program.py", line 467, in _decompose_and_get_gm_with_new_signature_constants aten_export_artifact = _export_to_aten_ir( ^^^^^^^^^^^^^^^^^^^ File "D:\learn\venv\Lib\site-packages\torch\export\_trace.py", line 824, in _export_to_aten_ir gm, graph_signature = transform(aot_export_module)( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\learn\venv\Lib\site-packages\torch\_functorch\aot_autograd.py", line 1353, in aot_export_module fx_g, metadata, in_spec, out_spec = _aot_export_function( ^^^^^^^^^^^^^^^^^^^^^ File "D:\learn\venv\Lib\site-packages\torch\_functorch\aot_autograd.py", line 1592, in _aot_export_function fx_g, meta = create_aot_dispatcher_function( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\learn\venv\Lib\site-packages\torch\_functorch\aot_autograd.py", line 574, in create_aot_dispatcher_function return _create_aot_dispatcher_function( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\learn\venv\Lib\site-packages\torch\_functorch\aot_autograd.py", line 675, in _create_aot_dispatcher_function fw_metadata = run_functionalized_fw_and_collect_metadata( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\learn\venv\Lib\site-packages\torch\_functorch\_aot_autograd\collect_metadata_analysis.py", line 198, in inner flat_f_outs = f(*flat_f_args) ^^^^^^^^^^^^^^^ File "D:\learn\venv\Lib\site-packages\torch\_functorch\_aot_autograd\utils.py", line 184, in flat_fn tree_out = fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "D:\learn\venv\Lib\site-packages\torch\_functorch\_aot_autograd\traced_function_transforms.py", line 899, in functional_call out = PropagateUnbackedSymInts(mod).run( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\learn\venv\Lib\site-packages\torch\fx\interpreter.py", line 171, in run self.env[node] = self.run_node(node) ^^^^^^^^^^^^^^^^^^^ File "D:\learn\venv\Lib\site-packages\torch\fx\experimental\symbolic_shapes.py", line 7286, in run_node rebind_unbacked(detect_fake_mode().shape_env, n, result) File "D:\learn\venv\Lib\site-packages\torch\fx\experimental\symbolic_shapes.py", line 549, in rebind_unbacked if u1.node.hint is not None: ^^^^^^^ AttributeError: 'float' object has no attribute 'node' ``` code: ```python from ultralytics import YOLO # Load the YOLOv11 model model = YOLO("./yolo11n.pt", task='detect') # add dynamo=true on the export function D:\learn\packages\ultralytics\engine\exporter.py model.export( format="onnx", nms=True, iou=0.5, dynamic=True, simplify=True, save=True, half=True, device = 'cuda', ) ``` I’ve attached the output and report log files below . How can I solve this problem? Is this pytorch or yolo library issue ? Thank you [onnx_export_2025-04-08_11-09-41-177592_decomp.md](https://github.com/user-attachments/files/19642384/onnx_export_2025-04-08_11-09-41-177592_decomp.md) [output.txt](https://github.com/user-attachments/files/19642385/output.txt) ### Versions ``` Collecting environment information... PyTorch version: 2.8.0.dev20250405+cu128 Is debug build: False CUDA used to build PyTorch: 12.8 ROCM used to build PyTorch: N/A OS: Microsoft Windows 11 Home Single Language (10.0.22631 64-bit) GCC version: (Rev3, Built by MSYS2 project) 14.2.0 Clang version: Could not collect CMake version: version 3.31.6 Libc version: N/A Python version: 3.12.9 (tags/v3.12.9:fdb8142, Feb 4 2025, 15:27:58) [MSC v.1942 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-11-10.0.22631-SP0 Is CUDA available: True CUDA runtime version: 12.8.61 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4080 Laptop GPU Nvidia driver version: 572.83 cuDNN version: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8\bin\cudnn_ops64_9.dll HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Name: Intel(R) Core(TM) Ultra 9 185H Manufacturer: GenuineIntel Family: 1 Architecture: 9 ProcessorType: 3 DeviceID: CPU0 CurrentClockSpeed: 2300 MaxClockSpeed: 2500 L2CacheSize: 18432 L2CacheSpeed: None Revision: None Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] onnx==1.17.0 [pip3] onnxruntime-gpu==1.21.0 [pip3] onnxscript==0.2.3 [pip3] onnxslim==0.1.49 [pip3] torch==2.8.0.dev20250405+cu128 [pip3] torchaudio==2.6.0.dev20250406+cu128 [pip3] torchvision==0.22.0.dev20250406+cu128 [conda] Could not collect ``` cc @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
true
2,978,511,972
DISABLED test_parity__foreach_abs_fastpath_outplace_cuda_int64 (__main__.TestForeachCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
5
NONE
Platforms: linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_parity__foreach_abs_fastpath_outplace_cuda_int64&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40141680405). Over the past 3 hours, it has been determined flaky in 7 workflow(s) with 14 failures and 7 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_parity__foreach_abs_fastpath_outplace_cuda_int64` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/test_foreach.py", line 228, in test_parity actual = func( File "/var/lib/jenkins/workspace/test/test_foreach.py", line 91, in __call__ assert mta_called == (expect_fastpath and (not zero_size)), ( AssertionError: mta_called=False, expect_fastpath=True, zero_size=False, self.func.__name__='_foreach_abs', keys=('aten::_foreach_abs', 'Unrecognized', 'aten::empty_strided', 'cudaLaunchKernel', 'Lazy Function Loading', 'cudaDeviceSynchronize') During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1159, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/mock.py", line 1833, in _inner return f(*args, **kw) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1975, in wrap_fn return fn(self, *args, **kwargs) File "/var/lib/jenkins/workspace/test/test_foreach.py", line 235, in test_parity with self.assertRaises(type(e)): File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 226, in __exit__ self._raiseFailure("{} not raised".format(exc_name)) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 163, in _raiseFailure raise self.test_case.failureException(msg) AssertionError: AssertionError not raised The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3156, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3156, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 454, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1171, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 0: SampleInput(input=TensorList[Tensor[size=(20, 20), device="cuda:0", dtype=torch.int64], Tensor[size=(19, 19), device="cuda:0", dtype=torch.int64], Tensor[size=(18, 18), device="cuda:0", dtype=torch.int64], Tensor[size=(17, 17), device="cuda:0", dtype=torch.int64], Tensor[size=(16, 16), device="cuda:0", dtype=torch.int64], Tensor[size=(15, 15), device="cuda:0", dtype=torch.int64], Tensor[size=(14, 14), device="cuda:0", dtype=torch.int64], Tensor[size=(13, 13), device="cuda:0", dtype=torch.int64], Tensor[size=(12, 12), device="cuda:0", dtype=torch.int64], Tensor[size=(11, 11), device="cuda:0", dtype=torch.int64], Tensor[size=(10, 10), device="cuda:0", dtype=torch.int64], Tensor[size=(9, 9), device="cuda:0", dtype=torch.int64], Tensor[size=(8, 8), device="cuda:0", dtype=torch.int64], Tensor[size=(7, 7), device="cuda:0", dtype=torch.int64], Tensor[size=(6, 6), device="cuda:0", dtype=torch.int64], Tensor[size=(5, 5), device="cuda:0", dtype=torch.int64], Tensor[size=(4, 4), device="cuda:0", dtype=torch.int64], Tensor[size=(3, 3), device="cuda:0", dtype=torch.int64], Tensor[size=(2, 2), device="cuda:0", dtype=torch.int64], Tensor[size=(1, 1), device="cuda:0", dtype=torch.int64]], args=(), kwargs={}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=0 python test/test_foreach.py TestForeachCUDA.test_parity__foreach_abs_fastpath_outplace_cuda_int64 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true
2,978,479,909
[CI] Run test_torchinductor for MPS device
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150821 There are only 118 failures atm, mark them all with xfail to avoid new regressions Add `xfail_if_mps_unimplemented` decorator to distinguish between tests that call unimplemented eager op vs ones that fail for some other reason. Added `aten._scaled_dot_product_attention_math_for_mps` fallback to make test behavior consistent between MacOS-15 (where falback is in place) and MacOS-14 Weird MacOS-14 specific skips: - test_torchinductor.py::GPUTests::test_cat_extern_kernel_mps - test_torchinductor.py::GPUTests::test_sort_transpose_mps (likely an eager bug) - test_torchinductor.py::GPUTests::test_unaligned_input_mps Numerous MacOS-13 skips, including few eager hard crashes, for example running `test_torchinductor.py::GPUTests::test_scatter5_mps` causes ``` /AppleInternal/Library/BuildRoots/c651a45f-806e-11ed-a221-7ef33c48bc85/Library/Caches/com.apple.xbs/Sources/MetalPerformanceShaders/MPSNDArray/Kernels/MPSNDArrayScatter.mm:309: failed assertion `Rank of destination array (1) must be greater than or equal to inner-most dimension of indices array (3)' ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,978,471,498
[Manylinux 2.28] Correct Linux aarch64 cuda binaries wheel name
pytorchbot
closed
[]
1
COLLABORATOR
Related to: https://github.com/pytorch/pytorch/issues/149044#issuecomment-2784044555 For CPU binaries we run auditwheel however for cuda binaries auditwheel produces invalid results . Hence we need to rename the file.
true
2,978,458,541
Optimize `ConvTranspose2d` stride description
zeshengzong
closed
[ "module: nn", "module: convolution", "triaged", "open source", "Merged", "ciflow/trunk", "release notes: nn", "topic: docs" ]
10
CONTRIBUTOR
Fixes #150775 ## Test Result ### Before ![image](https://github.com/user-attachments/assets/81cd932f-9447-4924-9553-a5cb88fc5d0e) ### After ![image](https://github.com/user-attachments/assets/6365c71c-7268-4226-b722-ee7446cb2467) cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
true
2,978,352,998
[CUDA] Only use vec128 if CUDA version is newer than 12.8
pytorchbot
closed
[ "open source" ]
1
COLLABORATOR
By addressing a feedback requested at https://github.com/pytorch/pytorch/pull/145746
true
2,978,330,968
Expose bicubic mode for torch::nn::functional::grid_sample in LibTorch
inventshah
closed
[ "open source", "Merged", "ciflow/trunk", "release notes: cpp" ]
18
CONTRIBUTOR
When bicubic interpolation was added to grid_sampler in #44780, `GridSampleFuncOptions` was not updated to allow a user to use bicubic mode in LibTorch, even though the function could handle it. This PR fixes the parity such that LibTorch's `torch::nn::functional::grid_sample` behaves the same as PyTorch's `torch.nn.functional.grid_sample`. Existing users can directly use `torch::grid_sampler` but must know what int to pass for the interpolation (2 for bicubic) and padding mode parameters, which is not ideal.
true
2,978,310,493
Do not depend on numpy during the import
basilwong
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
7
CONTRIBUTOR
Summary: Related issue: https://github.com/pytorch/pytorch/issues/149681 We can follow up with a different implementation that does not use numpy(potentially with Torch primitives). Test Plan: pending: contbuild & OSS CI Differential Revision: D72609835
true
2,978,303,356
[C10D] Document object collectives limitations
wconstab
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (c10d)" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150880 * __->__ #150815 Adds louder warning labels in the doc page and docstring for object collectives in hopes of raising awareness of several footgun issues including accidental creation of cuda contexts by serializing and sending 'device-local' gpu tensors over the object-* apis. Preview: <img width="902" alt="image" src="https://github.com/user-attachments/assets/e0c08c70-d8e5-4e15-b3e2-5cd563714f71" /> addresses #150798 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @d4l3k
true
2,978,271,107
[graph partition] reorder to reduce #partitions for simple dependencies
BoyuanFeng
closed
[ "Merged", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: inductor" ]
3
CONTRIBUTOR
This PR reduces #graph partitions by reordering nodes when the `should_partition` nodes have simple dependencies. Specifically, for `should_partition` nodes: a. If a node has no dependency or only depends on graph inputs: move to the front. Use case is when we move symints to cuda tensor for PaddedTensorSubclass b. If the only user of a node is OutputNode: move it to the end. #### Example The following example shows a padded tensor subclass use case where we copy symint to a cuda tensor (aka mask) in the middle of function. Reordering still generates 1 cudagraph by moving the mask to the front. ```python import torch torch._inductor.config.graph_partition = True # Two reasons for this: # 1. We want to reuse the same mask for many masked_fill calls # 2. Prevent inductor from fusing this op into other ops (e.g. masked_fill) # so we can still reorder in scheduler @torch.library.custom_op("mylib::create_mask", mutates_args=(), tags=(torch._C.Tag.cudagraph_unsafe,)) def create_mask(padded_size: int, original_size: int, device: torch.device) -> torch.Tensor: mask = torch.zeros((padded_size,), dtype=torch.bool, device=device) mask[original_size:] = True return mask @create_mask.register_fake def _(padded_size, original_size, device): return torch.empty((padded_size,), dtype=torch.bool, device=device) def f(padded_tensor, original_tensor, weight): original_size = original_tensor.size()[0] padded_size = padded_tensor.size()[0] # element wise op so we don't care padding value padded_tensor = padded_tensor + 1 padded_tensor = torch.nn.functional.relu(padded_tensor) # dot product requires padding with 0 dot_res = padded_tensor.dot(weight) padded_tensor += dot_res # min requires padding with inf, so we create mask now mask = create_mask(padded_size, original_size, padded_tensor.device) min_res = torch.min( torch.ops.aten.masked_fill(padded_tensor, mask, float("inf")) ) # max requires padding with inf. we can reuse previous mask max_res = torch.max( torch.ops.aten.masked_fill(padded_tensor, mask, -float("inf")) ) return min_res+max_res+padded_tensor compiled_f = torch.compile(f, mode="reduce-overhead") def run(padded_size, original_size): padded_tensor = torch.randn(padded_size, device="cuda") padded_tensor[original_size:] = 0 original_tensor = torch.randn(original_size, device="meta") weight = torch.randn(padded_size, device="cuda") eager_out = f(padded_tensor, original_tensor, weight) compiled_out = compiled_f(padded_tensor, original_tensor, weight) assert torch.allclose(eager_out[0], compiled_out[0]) assert torch.allclose(eager_out[1], compiled_out[1]) # new cudagraph run(8, 4) # new cudagraph due to recompile run(8, 6) ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,978,256,630
add reduce_scatter to symm mem ops
ngimel
closed
[ "oncall: distributed", "Merged", "ciflow/trunk", "release notes: distributed (c10d)" ]
6
COLLABORATOR
+ a few small fixes (don't error out on 0-element tensors, a few more checks for contiguous outputs, more threads for better perf). cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @xw285cornell
true
2,978,250,998
[CUDA][cuBLAS] Aten GEMM overload for FP32 output from FP16/BF16 inputs
PaulZhang12
closed
[ "Merged", "ciflow/trunk", "release notes: python_frontend", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150812 Enable FP32 output from FP16/BF16 GEMMs in aten with cuBLAS. Accumulation for these GEMMs are generally already done in FP32. Adds the functionality to the following aten operators: * mm * bmm * addmm * baddmm Follow up of customer issue: https://github.com/pytorch/pytorch/issues/146241#issuecomment-2781889390 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov Differential Revision: [D73126191](https://our.internmc.facebook.com/intern/diff/D73126191)
true
2,978,233,244
Pytorch. is_impure() does not take any argument. Removed it
elpdumont
open
[ "fb-exported", "release notes: fx", "fx" ]
4
NONE
Summary: D72427768 introduced an argument when calling `is_impure` (defined here: https://www.internalfb.com/code/fbsource/[00b3734ebfa7]/arvr/libraries/art/python/third_party/_python3.7/_win64/torch/fx/node.py?lines=509) This broke our conveyor: https://fb.workplace.com/groups/CTRLEngSupport/permalink/4045843202402092/ We removed the argument. Test Plan: `pte flow configs/pipelines/f4/releases/p1r/f4_pp_20250317_release enable_fast_run=True` https://internalfb.com/intern/fblearner/details/718510504/ Differential Revision: D72605617 cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
true
2,978,151,861
[dynamo][guards] Print relational guards only once
isuruf
closed
[ "open source", "Merged", "ciflow/trunk", "module: dynamo", "ciflow/inductor", "release notes: dynamo" ]
4
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #140756 * __->__ #150810 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,978,126,801
[export] Integrate meta kernel generation with draft-export
angelayi
closed
[ "Merged", "ciflow/trunk", "ciflow/inductor", "release notes: export" ]
3
CONTRIBUTOR
If a custom operator does not contain a fake impl, currently draft-export will use the real-tensor propagation to get an output for the operator and continue tracing. However if we retrace the exported model using `ep.run_decompositions`, or `export`, or run the exported program with fake tensors, we'll still fail because there's no fake impl. With this PR, after draft-export we will generate an operator profile for each operator call that we encounter, and store this on the report attached to the exported program `ep._report.op_profiles`. Users can then use `torch._library.fake_profile.register_fake_profile` to temporarily generate and register a fake impl based on these operator profiles. This way future fake tensor retracing will work. The workflow would look something like: ```python class M(torch.nn.Module): def forward(self, a, b): res = torch.ops.mylib.foo8(a, b) # no fake impl return res ep = export(M(), (torch.ones(3, 4), torch.ones(3, 4)) # this fails bc no fake impl ep = draft_export(M(), (torch.ones(3, 4), torch.ones(3, 4)) ep.run_decompositions() # this fails bc no fake impl # this registers fake impls based on the profiles with torch._library.fake_profile.register_fake_profile(ep._report.op_profiles): decomp = ep.run_decompositions() # this works new_inp = ( torch.ones(2, 3, 4), torch.ones(2, 3, 4), ) ``` Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150809
true
2,978,126,717
Fix assert_tensor_meta
angelayi
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150809 * __->__ #150808 * #150807 * #150806
true
2,978,126,637
Generate meta kernel with operator profiles
angelayi
closed
[ "module: custom-operators", "Merged", "release notes: composability" ]
2
CONTRIBUTOR
Added a context manager, `torch._library.fake_profile.register_fake_profile(op_profiles)`, where given an operator profile, it will generate and register a fake impl for the operator based on the operator profile. The input to `register_fake_profile` is a dictionary mapping operator name to a set of profiles which describe the input and outputs of the operator. Here's an example of a profile for `mylib.foo.default`: ``` "mylib.foo.default": { OpProfile( args_profile=( TensorMetadata(rank=2, dtype=torch.float32, device=torch.device("cpu"), layout=torch.strided,), TensorMetadata(rank=2, dtype=torch.float32, device=torch.device("cpu"), layout=torch.strided,), ), out_profile=TensorMetadata(rank=2, dtype=torch.float32, device=torch.device("cpu"), layout=torch.strided,), ) } ``` `foo`'s profile contains only one profile, which says that for 2 input tensors of rank 2, dtype float32, device cpu, we will return one tensor of rank 2, dtype float32, and device cpu. This will then generate a fake kernel where given 2 input tensors of rank 2 (and the other tensor metadata), we will output one tensor of rank 2 (and the other tensor metadata). If the operator also supports other input ranks, then we can add to the profile for the fake impl to support more input types. This profile can either be manually written or created by draft-export, and then checked into the codebase. Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150809 * #150808 * __->__ #150807 * #150806
true
2,978,126,545
[custom ops] Override fake registration
angelayi
closed
[ "module: custom-operators", "Merged", "ciflow/trunk", "release notes: composability" ]
3
CONTRIBUTOR
Added a flag, `allow_override`, to allow overriding existing kernel implementations in `torch.library.register_fake` `library.impl`. The default is false, where if a user tries to register a kernel to a dispatch key that already contains a kernel, it will error. This flag doesn't apply to CustomOpDefs, where overriding a fake kernel is already allowed. Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150809 * #150808 * #150807 * __->__ #150806
true
2,978,125,024
ONNX cannot save the XGBoost binary classifier properly when trained on an imbalanced dataset.
cugurm
closed
[]
1
NONE
### 🐛 Describe the bug ONNX cannot properly save an XGBoost binary classification model when it is trained on an imbalanced dataset. When I create the dataset for the XGBoost binary classification model like this: ``` n_instances, n_features = 100_000, 300 X = np.random.rand(n_instances, n_features) y = np.random.randint(0, 2, size=(n_instances,)) # Binary labels (0 or 1) ``` I am able to save the trained model to ONNX, load it, and make predictions that match the original model. However, when I create the training dataset with imbalanced labels like this: ``` n_instances, n_features = 100_000, 300 X = np.random.rand(n_instances, n_features) class_0_count, class_1_count = 90_000, 10_000 y = np.concatenate([np.zeros(class_0_count), np.ones(class_1_count)]) np.random.shuffle(y) ``` saving the model to ONNX and loading it results in predictions that differ from the original model. Reproducer: ``` import numpy as np import onnxruntime as rt from sklearn.datasets import load_iris from xgboost import XGBClassifier from skl2onnx import convert_sklearn from skl2onnx.common.data_types import FloatTensorType from skl2onnx import update_registered_converter from skl2onnx.common.shape_calculator import calculate_linear_classifier_output_shapes from onnxmltools.convert.xgboost.operator_converters.XGBoost import convert_xgboost def convert_xgboost_pipeline_to_onnx(X, y, n_features, n_test_instances=3): # Train XGBoost classifier pipe = XGBClassifier(objective='binary:logistic', eval_metric='logloss', n_estimators=500, max_depth=5, reg_lambda=1, reg_alpha=0) pipe.fit(X, y) # Register the ONNX converter for XGBClassifier update_registered_converter( XGBClassifier, "XGBoostXGBClassifier", calculate_linear_classifier_output_shapes, convert_xgboost, options={"nocl": [True, False], "zipmap": [True, False, "columns"]}, ) # Convert the model to ONNX model_onnx = convert_sklearn( pipe, "pipeline_xgboost", [("input", FloatTensorType([None, n_features]))], target_opset={"": 12, "ai.onnx.ml": 2}, options={"zipmap": False, "nocl": False}, ) # Save the ONNX model with open("pipeline_xgboost.onnx", "wb") as f: f.write(model_onnx.SerializeToString()) # Compare predictions print("XGBoost predict:", pipe.predict(X[:n_test_instances])) print("XGBoost predict_proba:", pipe.predict_proba(X[:n_test_instances])) # Predictions with ONNX Runtime sess = rt.InferenceSession("pipeline_xgboost.onnx", providers=["CPUExecutionProvider"]) pred_onx = sess.run(None, {"input": X[:n_test_instances].astype(np.float32)}) print("ONNX predict:", pred_onx[0]) print("ONNX predict_proba:", pred_onx[1]) if __name__ == "__main__": n_instances, n_features = 100_000, 300 X = np.random.rand(n_instances, n_features) y = np.random.randint(0, 2, size=(n_instances,)) # Binary labels (0 or 1) convert_xgboost_pipeline_to_onnx(X, y, n_features) class_0_count, class_1_count = 90_000, 10_000 y = np.concatenate([np.zeros(class_0_count), np.ones(class_1_count)]) np.random.shuffle(y) convert_xgboost_pipeline_to_onnx(X, y, n_features) ``` ### Versions ``` Collecting environment information... PyTorch version: 2.0.1+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.12 (main, Feb 4 2025, 14:57:36) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA RTX 2000 Ada Generation Laptop GPU Nvidia driver version: 535.183.01 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 20 On-line CPU(s) list: 0-19 Vendor ID: GenuineIntel Model name: 13th Gen Intel(R) Core(TM) i9-13900H CPU family: 6 Model: 186 Thread(s) per core: 2 Core(s) per socket: 14 Socket(s): 1 Stepping: 2 CPU max MHz: 5400.0000 CPU min MHz: 400.0000 BogoMIPS: 5990.40 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect user_shstk avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi vnmi umip pku ospke waitpkg gfni vaes vpclmulqdq tme rdpid movdiri movdir64b fsrm md_clear serialize pconfig arch_lbr ibt flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 544 KiB (14 instances) L1i cache: 704 KiB (14 instances) L2 cache: 11.5 MiB (8 instances) L3 cache: 24 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-19 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Mitigation; Clear Register File Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu11==11.10.3.66 [pip3] nvidia-cublas-cu12==12.1.3.1 [pip3] nvidia-cuda-cupti-cu11==11.7.101 [pip3] nvidia-cuda-cupti-cu12==12.1.105 [pip3] nvidia-cuda-nvrtc-cu11==11.7.99 [pip3] nvidia-cuda-nvrtc-cu12==12.1.105 [pip3] nvidia-cuda-runtime-cu11==11.7.99 [pip3] nvidia-cuda-runtime-cu12==12.1.105 [pip3] nvidia-cudnn-cu11==8.5.0.96 [pip3] nvidia-cudnn-cu12==8.9.2.26 [pip3] nvidia-cufft-cu11==10.9.0.58 [pip3] nvidia-cufft-cu12==11.0.2.54 [pip3] nvidia-curand-cu11==10.2.10.91 [pip3] nvidia-curand-cu12==10.3.2.106 [pip3] nvidia-cusolver-cu11==11.4.0.1 [pip3] nvidia-cusolver-cu12==11.4.5.107 [pip3] nvidia-cusparse-cu11==11.7.4.91 [pip3] nvidia-cusparse-cu12==12.1.0.106 [pip3] nvidia-nccl-cu11==2.14.3 [pip3] nvidia-nccl-cu12==2.19.3 [pip3] nvidia-nvjitlink-cu12==12.4.99 [pip3] nvidia-nvtx-cu11==11.7.91 [pip3] nvidia-nvtx-cu12==12.1.105 [pip3] onnx==1.14.0 [pip3] onnxconverter-common==1.14.0 [pip3] onnxmltools==1.11.2 [pip3] onnxruntime==1.20.0 [pip3] skl2onnx==1.15.0 [pip3] torch==2.0.1 [pip3] torch-geometric==2.3.1 [pip3] torchmetrics==1.1.1 [pip3] triton==2.0.0 [conda] Could not collect ```
true
2,978,109,353
[Inductor] assert fallback output alignment
shunting314
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150804 * #150777 Previous PR (https://github.com/pytorch/pytorch/pull/150777) fixes the alignment problem for fallback kernel assuming meta kernel is correct. This PR handles the case that meta kernel is incorrect. Assertion is added if the compiler assumes a fallback kernel output is aligned. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,978,101,665
TEST CACHE
muchulee8
closed
[ "topic: not user facing", "ciflow/inductor" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150803 * #150276 Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags:
true
2,978,092,419
Fix `-Wmissing-braces` in a few files
r-barnes
closed
[ "fb-exported", "Merged", "ciflow/trunk", "release notes: sparse" ]
8
CONTRIBUTOR
Test Plan: Sandcastle Reviewed By: wenxin0319
true
2,978,084,429
ProcessGroupGloo: support lazy_init
d4l3k
closed
[ "oncall: distributed", "Merged", "Reverted", "ciflow/trunk", "release notes: distributed (c10d)", "ci-no-td" ]
16
MEMBER
This adds lazy initialization support to ProcessGroupGloo via `TORCH_GLOO_LAZY_INIT` or via `create_device(..., lazy_init=True)` This is still a draft PR as there's one race condition when doing coalesced operations that needs to be fixed upstream in Gloo first. Depends on https://github.com/facebookincubator/gloo/pull/427 landing first This also updates the gloo submodule to include the required changes. Test plan: added lazy init test variants ``` pytest -v test/distributed/test_c10d_gloo.py -k Lazy ``` cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab
true
2,978,060,210
DISABLED test_parity__foreach_abs_fastpath_outplace_cuda_int32 (__main__.TestForeachCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
4
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_parity__foreach_abs_fastpath_outplace_cuda_int32&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40123681853). Over the past 3 hours, it has been determined flaky in 5 workflow(s) with 10 failures and 5 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_parity__foreach_abs_fastpath_outplace_cuda_int32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true
2,978,036,797
FSDP in hybrid mode throws _saved_grad_shard error when backward is called on cross-rank all-gathered loss
TianyiXiong1998
open
[ "oncall: distributed", "triaged", "module: fsdp" ]
3
NONE
Hi, I’m encountering a gradient error when using FSDP in hybrid sharding mode (i.e., ShardingStrategy.HYBRID_SHARD) during training. Here’s the setup and problem: Setup: • I am training with multiple ensemble members, distributed across ranks. • Each rank holds 1 or more ensemble members. • After local predictions are made, I use all_gather_into_tensor to gather all ensemble outputs across ranks. • On rank 0, I compute the loss based on the full gathered ensemble. • Then, I try to call .backward() on the loss computed from the gathered predictions. Code: for data, target in train_loader: # Prepare input for multiple ensemble members on this rank local_preds = [] for m in range(num_local_ensemble_members): pred = model(input_data, ...) local_preds.append(pred.unsqueeze(1)) local_preds_tensor = torch.cat(local_preds, dim=1) # Pad predictions on this rank to max ensemble size per rank padded_preds = pad_to_max_ensemble_size(local_preds_tensor) # All-gather ensemble predictions across all ranks all_preds = torch.empty(gather_shape) dist.all_gather_into_tensor(all_preds, padded_preds) step_ens = reconstruct_from_gathered(all_preds) # Compute loss on rank 0 using full ensemble prediction if rank == 0: step_loss = loss_fn(step_ens, target) # Backward on rank 0 optimizer.zero_grad() step_loss.backward() # <-- ❗ This raises "_saved_grad_shard" error optimizer.step() Problem: [rank0]: Traceback (most recent call last): [rank0]: File "conda-envs/conda_env/lib/python3.11/site-packages/torch/distributed/fsdp/_runtime_utils.py", line 1182, in _finalize_params [rank0]: handle.prepare_gradient_for_optim() [rank0]: File "/conda-envs/conda_env/lib/python3.11/site-packages/torch/distributed/fsdp/_flat_param.py", line 1636, in prepare_gradient_for_optim [rank0]: _p_assert( [rank0]: File "/conda-envs/conda_env/lib/python3.11/site-packages/torch/distributed/utils.py", line 146, in _p_assert [rank0]: raise AssertionError(s) [rank0]: AssertionError: All sharded parameters that received a gradient in the post-backward should use `_saved_grad_shard` This only happens when: • I use FSDP with HYBRID_SHARD or SHARD_GRAD_OP. • Loss is computed from all_gather-ed predictions that were not forward-passed on this rank. It works fine if: • I use NO_SHARD strategy. • Or compute loss and backward based only on the local forward outputs. cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @zhaojuanmao @mrshenli @rohan-varma @chauhang @mori360
true
2,978,030,056
`all_gather_object` creates context for each gpu multiple times (leaks memory)
stas00
closed
[ "oncall: distributed" ]
3
CONTRIBUTOR
### 🐛 Describe the bug When using `all_gather_object` it leaks many GBs of memory with 8 gpus the first time it's being used (no problem with `all_gather`) - it creates a new context for each gpu - so 7 times too many with 8 gpus. (64 contexts instead of 8 - can be observed with `nvidia-smi` showing 64 entries instead of 8) repro program: [dist-mem-test2.txt](https://github.com/user-attachments/files/19639305/dist-mem-test2.txt) repro log: [dist-mem-test2.log](https://github.com/user-attachments/files/19639299/dist-mem-test2.log) CC: @wconstab ### Versions pt-2.6 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @chauhang @penguinwu
true
2,977,969,306
Add CPython tests for iter/sort
guilhermeleobas
open
[ "open source", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152015 * __->__ #150797 * #150796 * #150795 * #150794 * #150793 * #150791 * #150790 * #150789 * #150788 Tests: * test_iter.py * test_sort.py
true
2,977,969,165
Add CPython generator/contextlib tests
guilhermeleobas
open
[ "open source", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152015 * #150797 * __->__ #150796 * #150795 * #150794 * #150793 * #150791 * #150790 * #150789 * #150788 Tests: * test_generator.py * test_generator_stop.py * test_contextlib.py
true
2,977,969,017
Add CPython int/float tests
guilhermeleobas
open
[ "open source", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152015 * #150797 * #150796 * __->__ #150795 * #150794 * #150793 * #150791 * #150790 * #150789 * #150788 Tests: * test_int.py * test_int_literal.py * test_float.py
true
2,977,968,813
Add CPython math/cmath tests
guilhermeleobas
open
[ "open source", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152015 * #150797 * #150796 * #150795 * __->__ #150794 * #150793 * #150791 * #150790 * #150789 * #150788 Tests: * test_math.py * test_cmath.py
true
2,977,968,653
Add CPython string tests
guilhermeleobas
open
[ "open source", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152015 * #150797 * #150796 * #150795 * #150794 * __->__ #150793 * #150791 * #150790 * #150789 * #150788 Files: * test_grammar.py * test_string.py * test_userstring.py
true
2,977,968,495
[Set] Add CPython set tests
guilhermeleobas
open
[ "open source", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152991 * #152990 * #152908 * #152907 * #152989 * #152906 * #152905 * #152903 * #152902 * #152901 * #152904 * #152988 * #152987 * __->__ #150792 * #152900 * #153070 Tests: * test_set.py cc @albanD @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,977,968,335
Add CPython dict tests
guilhermeleobas
open
[ "open source", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152015 * #150797 * #150796 * #150795 * #150794 * #150793 * __->__ #150791 * #150790 * #150789 * #150788 Tests: * test_dict.py * test_ordered_dict.py * test_userdict.py
true
2,977,968,186
Add CPython list/tuple tests
guilhermeleobas
open
[ "open source", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152015 * #150797 * #150796 * #150795 * #150794 * #150793 * #150791 * __->__ #150790 * #150789 * #150788 Tests: * test_list.py * test_tuple.py * test_userlist.py
true
2,977,968,046
Add CPython exception tests
guilhermeleobas
open
[ "open source", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152015 * #150797 * #150796 * #150795 * #150794 * #150793 * #150791 * #150790 * __->__ #150789 * #150788 ---- * test_baseexception.py * test_exceptions.py * test_exception_variations.py * test_raise.py * test_sys.py
true
2,977,967,910
Add CPython tests for unittest
guilhermeleobas
open
[ "open source", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152015 * #150797 * #150796 * #150795 * #150794 * #150793 * #150791 * #150790 * #150789 * __->__ #150788 Tests: * test_assertions.py
true
2,977,967,759
Add infra to run CPython tests under Dynamo
guilhermeleobas
closed
[ "open source", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "skip-pr-sanity-checks", "module: dynamo", "ciflow/inductor", "ci-no-td", "skip-url-lint" ]
25
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150787 cc @albanD @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,977,938,223
[Manylinux 2.28] Correct Linux aarch64 cuda binaries wheel name
atalman
closed
[ "Merged", "ciflow/binaries", "topic: not user facing" ]
5
CONTRIBUTOR
Related to: https://github.com/pytorch/pytorch/issues/149044#issuecomment-2784044555 For CPU binaries we run auditwheel however for cuda binaries auditwheel produces invalid results . Hence we need to rename the file.
true
2,977,929,091
[docs] remove --recursive flag from readme
danielvegamyhre
closed
[ "Merged", "ciflow/trunk", "topic: docs", "topic: not user facing" ]
6
CONTRIBUTOR
Fixes #150745 See https://github.com/pytorch/pytorch/issues/150745#issuecomment-2784216663 Cloning with `--recursive` as shown in the docs prevents users from checking out commits from before NCCL was removed as a submodule.
true
2,977,917,656
[Kineto] Enable OOM observer
mzzchy
closed
[ "fb-exported", "ciflow/trunk", "topic: not user facing" ]
5
CONTRIBUTOR
Summary: # Context: To support the investigation of OOM issue of shampoo optimizer, we want to enable OOM observer to allow memento to export the snapshot when OOM happens to figure out what has been allocated/freed before it. Test Plan: Run this test with next diff. ``` buck run @//mode/opt kineto/libkineto/fb/mtia/integration_tests:mtia_memory_auto_trace_test ``` https://fburl.com/pytorch_memory_visualizer/vsja3a5c Differential Revision: D71993315
true
2,977,903,919
[BE] Fix Amp.metal compilation warning
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps" ]
3
CONTRIBUTOR
Deleting unused `uint tid` fixes ``` [114/1416] Compiling /Users/nshulga/git/pytorch/pytorch/aten/src/ATen/native/mps/kernels/Amp.metal to Amp_30.air /Users/nshulga/git/pytorch/pytorch/aten/src/ATen/native/mps/kernels/Amp.metal:70:10: warning: unused parameter 'tid' [-Wunused-parameter] uint tid [[thread_position_in_grid]]) { ^ 1 warning generated. ```
true
2,977,879,921
[invoke_subgraph] Preserve node meta
anijain2305
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150717 * __->__ #150782 * #150666 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,977,842,646
[cutlass backend] Stop using GenerateSM80 for SM90 and SM100
henrylhtsang
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150781 Not urgent. We don't use the GenerateSM80 ops I believe. For SM100, we could skip SM90 as well. But I don't have data for that. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,977,829,899
[MPS] Support ArgumentBuffer bindings from C++/Python
malfet
closed
[ "Merged", "topic: improvements", "release notes: mps", "ciflow/mps" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150780 To workaround limitation of 32-arguments per kernel and being able to eventually compile something like ```python import torch def foo(*args): rc = torch.empty_like(args[0]) for arg in args: rc += arg return rc tensors = torch.rand(100, 32, device='mps').unbind(0) print(torch.compile(foo)(*tensors)) ``` For now, introduce `at::native::metal::get_tensor_gpu_address` and use it from both C++ test and compile_shader to convert list of tensors to list of pointers valid on GPU. Initially this binding were done via `id< MTLArgumentEncoder>`, but according to [Improving CPU Performance by Using Argument Buffers](https://developer.apple.com/documentation/metal/improving-cpu-performance-by-using-argument-buffers?language=objc#Encode-Resources-into-Argument-Buffers) article, this is not necessary when targeting Tier2-only devices (which is true of all devices on MacOS-13 or newer): > To directly encode the argument buffer resources on these Tier 2 devices, write the [MTLBuffer](https://developer.apple.com/documentation/metal/mtlbuffer?language=objc).[gpuAddress](https://developer.apple.com/documentation/metal/mtlbuffer/gpuaddress?language=objc) property — and for other resource types (samplers, textures, and acceleration structures), the [gpuResourceID](https://developer.apple.com/documentation/metal/mtlcomputepipelinestate/gpuresourceid?language=objc) property — into the corresponding structure member. To encode offsets, treat these property values as uint64 types and add the offset to them. Add both C++ and PyThon unittests that validate that this works. Please note, that using either ArgumentEncoder or directly encoding the data does not guarantee buffer will not be freed until shader execution is complete. On the other hand, this should already be guaranteed by MPSCachingAllocator that would only free the memory after all streams completed its execution.
true
2,977,785,538
Decorator `skipIfXpu` disables tests when used on class
exclamaforte
open
[ "high priority", "module: ci", "module: tests", "triaged", "module: regression", "module: testing" ]
7
CONTRIBUTOR
### 🐛 Describe the bug `skipIfXpu` is used on classes, for example in `test_autoheuristic.py`: ```python @skipIfXpu(msg="AutoHeuristic doesn't currently work on the XPU stack") class AutoHeuristicTest(TestCase): ``` If you try to run the tests: ``` (pytorch) $ python test_autoheuristic.py ---------------------------------------------------------------------- Ran 0 tests in 0.000s OK ``` No tests found: ``` (pytorch) $ python test_autoheuristic.py --discover-tests <unittest.suite.TestSuite tests=[]> ``` Running a class member function with skipIfXpu seems to work, however: ``` (pytorch) $ python test_aot_inductor.py -k test_fp8 ../home/gabeferns/pt-envs/pytorch/torch/backends/mkldnn/__init__.py:78: UserWarning: TF32 acceleration on top of oneDNN is available for Intel GPUs. The current Torch version does not have Intel GPU Support. (Triggered internally at /home/gabeferns/pt-envs/pytorch/aten/src/ATen/Context.cpp:148.) torch._C._set_onednn_allow_tf32(_allow_tf32) W0407 12:19:41.756000 1780910 torch/_export/__init__.py:67] +============================+ W0407 12:19:41.756000 1780910 torch/_export/__init__.py:68] | !!! WARNING !!! | W0407 12:19:41.756000 1780910 torch/_export/__init__.py:69] +============================+ W0407 12:19:41.757000 1780910 torch/_export/__init__.py:70] torch._export.aot_compile()/torch._export.aot_load() is being deprecated, please switch to directly calling torch._inductor.aoti_compile_and_package(torch.export.export())/torch._inductor.aoti_load_package() instead. stats [('calls_captured', 2), ('unique_graphs', 1)] inductor [('async_compile_cache_miss', 1), ('extern_calls', 1), ('async_compile_cache_hit', 1)] graph_break [] aten_mm_info [('aten._scaled_mm.default_s0_32_16', 1)] ./home/gabeferns/pt-envs/pytorch/torch/backends/mkldnn/__init__.py:78: UserWarning: TF32 acceleration on top of oneDNN is available for Intel GPUs. The current Torch version does not have Intel GPU Support. (Triggered internally at /home/gabeferns/pt-envs/pytorch/aten/src/ATen/Context.cpp:148.) torch._C._set_onednn_allow_tf32(_allow_tf32) stats [('calls_captured', 2), ('unique_graphs', 1)] inductor [('extern_calls', 1)] graph_break [] aten_mm_info [('aten._scaled_mm.default_s0_32_16', 1)] . ---------------------------------------------------------------------- Ran 4 tests in 12.083s OK ``` ### Versions h100 devserver cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @seemethere @malfet @pytorch/pytorch-dev-infra @mruberry @ZainRizvi @gujinghui @EikanWang @fengyuan14 @guangyey
true
2,977,741,109
Add config option to force disable CompiledTritonKernel cache
jamesjwu
closed
[ "fb-exported", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150778 We're unfortunately still seeing some flakiness internally in specific internal models: adding a disable CompiledTritonKernels cache feature to help mitigate. The issue seems to be sucluded to this specific model: StaticCudaLauncher could also help alleviate it, though I haven't had the permissions to be able to test yet. It's unclear to me if this will definitively fix the issue for the job, but we can test and if it doesn't, we'll have removed another possible cause. Differential Revision: [D72584099](https://our.internmc.facebook.com/intern/diff/D72584099/) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,977,619,534
[Inductor] fix alignement assumption for fallback
shunting314
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
6
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150804 * __->__ #150777 Inductor right now only works properly for fallback kernels producing aligned output. When Inductor create layout for fallback kernel output, Inductor does not add the tensor offset to the layout [link](https://github.com/pytorch/pytorch/blob/2a1e2b88ed7bf7d7436b741ee0c3a2297d7d7bc2/torch/_inductor/ir.py#L6935-L6941). Thus unaligned output will be treated as aligned. Adding the offset to the layout directly does not work since that change the index expression in the generated kernel and we may 'double' applying the offset. Triton already considers the offset when passing in the data_ptr. To solve this issue, we track the unaligned buffer names instead. This potentially can fix the internal issues we are debugging here: https://fb.workplace.com/groups/1075192433118967/permalink/1618308128807392/ cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov Differential Revision: [D72600784](https://our.internmc.facebook.com/intern/diff/D72600784)
true
2,977,492,712
[Async TP] reshape error for output of fused scaled_mm reduce scatter in certain case
danielvegamyhre
closed
[ "oncall: distributed" ]
2
CONTRIBUTOR
### 🐛 Describe the bug Can't post stack trace since it is internal code, but the error is thrown on this line: https://github.com/pytorch/pytorch/blob/06e9deabb623e004eb6024e703a976c5748d51e6/torch/distributed/_symmetric_memory/__init__.py#L1331 The error states the target tensor size is not compatible with the target shape of the view op. This is strange because this code works with torchtitan async TP and all unit tests are passing. So the internal code is hitting some edge case that doesn't occur in torchtitan or our tests. ### Versions Pytorch nightly cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,977,492,288
ConvTranspose2d documentation should clarify behavior of stride > 1 (zero insertion)
EduardoLawson1
closed
[ "module: docs", "module: nn", "module: convolution", "triaged", "actionable" ]
2
NONE
### 📚 The doc issue ## 📌 Feature Request: Improve `ConvTranspose2d` Documentation (Stride > 1) ### Summary Currently, the documentation for `torch.nn.ConvTranspose2d` does not clearly explain the behavior of the layer when `stride > 1`. In particular, it omits the fact that transposed convolutions with `stride > 1` insert zeros between input values (zero-insertion) before applying the convolution kernel. This behavior is fundamental to understanding the spatial upsampling performed by this layer. ### What’s Missing There is no mention in the current documentation about: - The insertion of zeros between input elements when `stride > 1` - How this zero-insertion affects the output shape and kernel application - That this is standard behavior for transposed convolutions (a.k.a. fractionally-strided convolutions) This causes confusion for users, especially those new to transposed convolutions, who expect the behavior to be more analogous to `nn.Upsample` or other interpolation methods. ### Suggest a potential alternative/fix ### Suggested Improvement Please consider adding a short explanation such as: > “When `stride > 1`, `ConvTranspose2d` effectively inserts zeros between input elements along the spatial dimensions before applying the convolution kernel. This allows the layer to increase spatial resolution and is equivalent to a learned upsampling operation.” Additionally, a simple visual example or reference to relevant literature cc @svekars @sekyondaMeta @AlannaBurke @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
true
2,977,451,209
[Async TP] use original output shape determined by reshape node
danielvegamyhre
closed
[ "oncall: distributed" ]
2
CONTRIBUTOR
cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,977,418,574
[cuda] Add new faster gammabeta backward kernel (#148605) (Reapply with launch bounds)
ahmadsharif1
closed
[ "ciflow/trunk", "release notes: nn" ]
2
CONTRIBUTOR
This is another attempt at re-applying because https://github.com/pytorch/pytorch/pull/150625 was reverted due to internal build failure which should now be resolved. # Changes over the previous PR This reverts commit 61a1f09 and adds `__launch_bounds__` to the kernel. Previously I merged 114d404 that did not work on Blackwell because it consumed too many registers. It got reverted in 61a1f09. For more context see: https://github.com/pytorch/pytorch/issues/150266. This PR reverts the revert (i.e. reapplies the original diff), with one additional line with `__launch_bounds__` added: ``` git diff HEAD^ diff --git a/aten/src/ATen/native/cuda/layer_norm_kernel.cu b/aten/src/ATen/native/cuda/layer_norm_kernel.cu index 0d63a2f979c..3ce2c24c18e 100644 --- a/aten/src/ATen/native/cuda/layer_norm_kernel.cu +++ b/aten/src/ATen/native/cuda/layer_norm_kernel.cu @@ -657,6 +657,7 @@ bool aligned_grid > __global__ void +__launch_bounds__(block_dim_x * block_dim_y) GammaBetaBackwardCUDAKernelTemplate( int64_t M, int64_t N, ``` I managed to get a Blackwell machine and verified that the fix works. The fix was verified using this repro that I got from @drisspg <details> <summary> Repro script that fails on Blackwell </summary> ``` import torch from torch.nn import init # from transformer_nuggets import init_logging # from transformer_nuggets.utils.benchmark import profiler # from pathlib import Path # init_logging() class PermuteModule(torch.nn.Module): def __init__(self, permutation): super(PermuteModule, self).__init__() self.permutation = permutation def forward(self, x:torch.Tensor) -> torch.Tensor: assert len(x.shape) == len(self.permutation), f"Dimension mismatch! Unable to permute {len(x.shape)} dim input with a {len(self.permutation)} dim permutation!" return x.permute(*self.permutation) def test(n_layers:int, conv_stride:int): _sequence = [] for _ in range(n_layers): # Conv1d inputs are (N x C x L), LayerNorm expects (* x C). Dims must be permuted between modules. _sequence += [ PermuteModule((0,2,1)), torch.nn.Conv1d(in_channels=512, out_channels=512, groups=1, kernel_size=9, dilation=1, stride=conv_stride, padding=0, bias=False), PermuteModule((0,2,1)), torch.nn.LayerNorm(512), torch.nn.ReLU() ] model = torch.nn.Sequential(*_sequence).to(device="cuda") data = torch.randn((100,2048,512), device="cuda") out = model(data) loss = torch.nn.functional.mse_loss(out, torch.rand_like(out)) loss.backward() torch.autograd.set_detect_anomaly(True) print(f"Torch version: {torch.__version__}") # with profiler(Path("conv")): # # print(f"layers=1, stride=1") # # test(n_layers=1, conv_stride=1) # # print(f"layers=2, stride=1") # # test(n_layers=2, conv_stride=1) # # print(f"layers=1, stride=2") # # test(n_layers=1, conv_stride=2) # print(f"layers=2, stride=2") # test(n_layers=2, conv_stride=2) print(f"layers=2, stride=2") test(n_layers=2, conv_stride=2) # we will not reach this print statement. print("DONE.") ``` </details> I also re-ran my performance benchmark and found no regressions over the previous PR. # Full description of the old PR Original PR: https://github.com/pytorch/pytorch/pull/148605 This PR adds a new kernel for producing gamma and beta values for the backward pass in a performant way. To test the performance against the baseline, I measured the backward pass of layernorm while sweeping over the following variables: 1. dtype in {half, float} 2. M in `2**k, 2**k - 1, 2**k + 1 for k in range(...)` 3. N in `2**k, 2**k - 1, 2**k + 1 for k in range(...)` 4. Whether we flush the L2 cache before running the backward pass Summary: The new code performs better than the old code, especially for powers of 2. For M >> N case, it performs very well (kernel itself can be 30x faster and the overall backward pass can be 5-10x faster). In order to visualize results of the kernel when choosing different values of M, N and dtype, I wrote some code to generate a heatmap. The heatmap has N on the x-axis, M on the y-axis and color-coded points where green shows performance improvement and red shows regressions. For example, `m=32 n=2048 1.42x` in the heatmap would indicate the normalized shape had 32 elements. The leading dimensions' product was 2048 elements and the new kernel resulted in the *backward pass* being 1.42x faster than the old *backward pass*. Important note: This heatmap shows the total backward pass time as seen by the user. The kernel time difference can be sometimes very large while the total backward pass time is not that high. For example, for dtype=torch.half, M=32 N=2048, flush_l2_cache=True case, the heatmap shows a speedup of 1.42x, while ncu tells me the new kernel is 2.5x faster than the old: M=32 N=2048 dtype=half flush_l2=True Old Kernel NCU summary: ``` ----------------------- ----------- ------------ Metric Name Metric Unit Metric Value ----------------------- ----------- ------------ DRAM Frequency Ghz 1.59 SM Frequency Ghz 1.35 Elapsed Cycles cycle 27,526 Memory Throughput % 2.21 DRAM Throughput % 0.54 Duration us 20.42 L1/TEX Cache Throughput % 4.31 L2 Cache Throughput % 2.62 SM Active Cycles cycle 1,475.02 Compute (SM) Throughput % 0.29 ----------------------- ----------- ------------ ``` M=32 N=2048 dtype=half flush_l2=True New Kernel NCU summary: ``` ----------------------- ----------- ------------ Metric Name Metric Unit Metric Value ----------------------- ----------- ------------ DRAM Frequency Ghz 1.59 SM Frequency Ghz 1.34 Elapsed Cycles cycle 10,920 Memory Throughput % 5.64 DRAM Throughput % 1.35 Duration us 8.13 L1/TEX Cache Throughput % 1.92 L2 Cache Throughput % 6.89 SM Active Cycles cycle 3,554.41 Compute (SM) Throughput % 0.67 ----------------------- ----------- ------------ ``` Let's look at some rows from the heatmap. For dtype=float16 flush_l2_cache=True and when input shapes are powers of 2, we get the following: <img width="1508" alt="image" src="https://github.com/user-attachments/assets/06179599-b2f0-4a45-8664-247a1067950b" /> There are 3 columns -- the first shows all data points, the second shows speedups only and the 3rd column shows regressions only. We can see that there are dramatic speedups for M >> N cases and the regressions are not that high (less than 1%, which could just be measurement noise). Here is a small guide I made: ![image](https://github.com/user-attachments/assets/90c26f7c-e3ad-46d2-a6ce-fe4b5fb3d738) For dtype=float32, we get a similar chart: <img width="1499" alt="image" src="https://github.com/user-attachments/assets/c4d31a76-03b0-426c-9114-e1bfad29b530" /> The new code performs especially well for m >> n cases, and also where m and n are small. The m >> n case is special because we run 2 reduction kernels back to back and parallelize in the "M" dimension (the older kernel only parallelized in the "N" dimension). The new code can sometimes have regressions for non-powers of 2. That is because the old code was using block sizes of {16, 32} while we have `threads.x = 32`. For example when N=33, the old code would have 3 blocks and we will have 2 blocks. I wrote some code to specialize for this case, but I think it will add complexity and @ngimel mentioned that non-powers of 2 are rare enough. I am including the regressions here for completeness' sake: <img width="1500" alt="image" src="https://github.com/user-attachments/assets/31c17cfb-ed9b-4106-b9c8-5c359751f530" /> To see this better: 1. Click the image 2. Right click the expanded image and open in a new tab 3. Go to that tab and left click once to zoom in If you want to see the full data, here it is: ![image](https://github.com/user-attachments/assets/54fb60c9-8c0c-4530-a1dd-79ecda1a69a1) I also measured binary size and compile time since those are important for developers: Binary size comparison ![image](https://github.com/user-attachments/assets/ceef5073-1036-47f6-b9dc-cea088beda51) ``` # Original -rwxr-xr-x 1 ahmads users 307193112 Mar 6 08:46 ./torch/lib/libtorch_cuda.so # This PR -rwxr-xr-x 1 ahmads users 307193112 Mar 6 08:46 ./torch/lib/libtorch_cuda.so ``` The diff in bytes is 302kB which is about a 0.1% increase. Compile time difference: ``` # Original real 0m10.931s user 0m9.676s sys 0m1.004s # this PR real 0m16.720s user 0m15.514s sys 0m1.066s # Command I ran time /usr/local/cuda/bin/nvcc -forward-unknown-to-host-compiler -DAT_PER_OPERATOR_HEADERS -DFLASHATTENTION_DISABLE_ALIBI -DFLASHATTENTION_DISABLE_SOFTCAP -DFLASH_NAMESPACE=pytorch_flash -DFMT_HEADER_ONLY=1 -DHAVE_MALLOC_USABLE_SIZE=1 -DHAVE_MMAP=1 -DHAVE_SHM_OPEN=1 -DHAVE_SHM_UNLINK=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DTORCH_CUDA_BUILD_MAIN_LIB -DTORCH_CUDA_USE_NVTX3 -DUNFUSE_FMA -DUSE_C10D_GLOO -DUSE_C10D_NCCL -DUSE_CUDA -DUSE_CUFILE -DUSE_DISTRIBUTED -DUSE_EXTERNAL_MZCRC -DUSE_FLASH_ATTENTION -DUSE_MEM_EFF_ATTENTION -DUSE_NCCL -DUSE_RPC -DUSE_TENSORPIPE -D_FILE_OFFSET_BITS=64 -Dtorch_cuda_EXPORTS -I/home/ahmads/personal/pytorch/build/aten/src -I/home/ahmads/personal/pytorch/aten/src -I/home/ahmads/personal/pytorch/build -I/home/ahmads/personal/pytorch -I/home/ahmads/personal/pytorch/cmake/../third_party/benchmark/include -I/home/ahmads/personal/pytorch/third_party/onnx -I/home/ahmads/personal/pytorch/build/third_party/onnx -I/home/ahmads/personal/pytorch/nlohmann -I/home/ahmads/personal/pytorch/third_party/flash-attention/csrc/flash_attn/src -I/home/ahmads/personal/pytorch/aten/src/THC -I/home/ahmads/personal/pytorch/aten/src/ATen/cuda -I/home/ahmads/personal/pytorch/third_party/fmt/include -I/home/ahmads/personal/pytorch/aten/src/ATen/../../../third_party/cutlass/include -I/home/ahmads/personal/pytorch/aten/src/ATen/../../../third_party/cutlass/tools/util/include -I/home/ahmads/personal/pytorch/build/caffe2/aten/src -I/home/ahmads/personal/pytorch/aten/src/ATen/.. -I/home/ahmads/personal/pytorch/build/nccl/include -I/home/ahmads/personal/pytorch/c10/cuda/../.. -I/home/ahmads/personal/pytorch/c10/.. -I/home/ahmads/personal/pytorch/third_party/tensorpipe -I/home/ahmads/personal/pytorch/build/third_party/tensorpipe -I/home/ahmads/personal/pytorch/third_party/tensorpipe/third_party/libnop/include -I/home/ahmads/personal/pytorch/torch/csrc/api -I/home/ahmads/personal/pytorch/torch/csrc/api/include -isystem /home/ahmads/personal/pytorch/build/third_party/gloo -isystem /home/ahmads/personal/pytorch/cmake/../third_party/gloo -isystem /home/ahmads/personal/pytorch/cmake/../third_party/tensorpipe/third_party/libuv/include -isystem /home/ahmads/personal/pytorch/cmake/../third_party/googletest/googlemock/include -isystem /home/ahmads/personal/pytorch/cmake/../third_party/googletest/googletest/include -isystem /home/ahmads/personal/pytorch/third_party/protobuf/src -isystem /home/ahmads/personal/pytorch/third_party/XNNPACK/include -isystem /home/ahmads/personal/pytorch/third_party/ittapi/include -isystem /home/ahmads/personal/pytorch/cmake/../third_party/eigen -isystem /usr/local/cuda/include -isystem /home/ahmads/personal/pytorch/third_party/ideep/mkl-dnn/include/oneapi/dnnl -isystem /home/ahmads/personal/pytorch/third_party/ideep/include -isystem /home/ahmads/personal/pytorch/INTERFACE -isystem /home/ahmads/personal/pytorch/third_party/nlohmann/include -isystem /home/ahmads/personal/pytorch/third_party/NVTX/c/include -isystem /home/ahmads/personal/pytorch/cmake/../third_party/cudnn_frontend/include -DLIBCUDACXX_ENABLE_SIMPLIFIED_COMPLEX_OPERATIONS -D_GLIBCXX_USE_CXX11_ABI=1 -Xfatbin -compress-all -DONNX_NAMESPACE=onnx_torch -gencode arch=compute_90,code=sm_90 -Xcudafe --diag_suppress=cc_clobber_ignored,--diag_suppress=field_without_dll_interface,--diag_suppress=base_class_has_different_dll_interface,--diag_suppress=dll_interface_conflict_none_assumed,--diag_suppress=dll_interface_conflict_dllexport_assumed,--diag_suppress=bad_friend_decl --expt-relaxed-constexpr --expt-extended-lambda -Wno-deprecated-gpu-targets --expt-extended-lambda -DCUB_WRAPPED_NAMESPACE=at_cuda_detail -DCUDA_HAS_FP16=1 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -O3 -DNDEBUG -std=c++17 -Xcompiler=-fPIC -DTORCH_USE_LIBUV -DCAFFE2_USE_GLOO -Xcompiler -Wall -Wextra -Wdeprecated -Wno-unused-parameter -Wno-missing-field-initializers -Wno-array-bounds -Wno-unknown-pragmas -Wno-strict-overflow -Wno-strict-aliasing -Wunused-function -Wunused-variable -Wunused-but-set-variable -Wno-maybe-uninitialized -MD -MT caffe2/CMakeFiles/torch_cuda.dir/__/aten/src/ATen/native/cuda/layer_norm_kernel.cu.o -MF caffe2/CMakeFiles/torch_cuda.dir/__/aten/src/ATen/native/cuda/layer_norm_kernel.cu.o.d -x cu -c /home/ahmads/personal/pytorch/aten/src/ATen/native/cuda/layer_norm_kernel.cu -o caffe2/CMakeFiles/torch_cuda.dir/__/aten/src/ATen/native/cuda/layer_norm_kernel.cu.o ``` So the new PR is 6 seconds longer compile time.
true
2,977,281,846
DISABLED test_parity__foreach_abs_fastpath_outplace_cuda_int16 (__main__.TestForeachCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
4
NONE
Platforms: linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_parity__foreach_abs_fastpath_outplace_cuda_int16&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40089822514). Over the past 3 hours, it has been determined flaky in 4 workflow(s) with 8 failures and 4 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_parity__foreach_abs_fastpath_outplace_cuda_int16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true
2,977,207,691
[CI] Add XPU compiled check in CICD
chuanqi129
closed
[ "open source", "Merged", "topic: not user facing", "ciflow/binaries_wheel" ]
4
COLLABORATOR
Address the suggestion from https://github.com/pytorch/pytorch/issues/150001#issuecomment-2753407421
true
2,977,042,906
[Profiler][HPU] Enable profiler.key_averages().table() for HPU devices
wdziurdz
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
4
CONTRIBUTOR
Fixes #150769
true
2,977,038,493
[Profiler][HPU] Assertion failure when calling profiler.key_averages().table() on HPU devices
wdziurdz
closed
[ "triaged", "intel", "module: hpu" ]
0
CONTRIBUTOR
### 🐛 Describe the bug profiler.key_averages().table() should be supported for HPU devices. Currently, calling it results in an assertion failure. Example call stack below: ```python Traceback (most recent call last): File "torch_profiler_chrome_tracer.py", line 57, in <module> print(profiler.key_averages().table()) File "python3.10/site-packages/torch/profiler/profiler.py", line 315, in key_averages return self.profiler.key_averages(group_by_input_shape, group_by_stack_n) File "python3.10/site-packages/torch/autograd/profiler.py", line 513, in key_averages return self._function_events.key_averages( File "python3.10/site-packages/torch/autograd/profiler_util.py", line 332, in key_averages stats[get_key(evt, group_by_input_shapes, group_by_stack_n)].add(evt) File "lib/python3.10/site-packages/torch/autograd/profiler_util.py", line 699, in add self.self_device_time_total += other.self_device_time_total File "python3.10/site-packages/torch/autograd/profiler_util.py", line 615, in self_device_time_total assert self.device_type in [ AssertionError ``` ### Versions Collecting environment information... PyTorch version: 2.6.0 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.5 CMake version: version 3.31.4 Libc version: glibc-2.35 Python version: 3.10.12 (main, Feb 4 2025, 14:57:36) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-134-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz CPU family: 6 Model: 85 Thread(s) per core: 1 Core(s) per socket: 6 Socket(s): 2 Stepping: 0 BogoMIPS: 5187.81 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon nopl xtopology tsc_reliable nonstop_tsc cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 invpcid avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xsaves arat pku ospke md_clear flush_l1d arch_capabilities Virtualization: VT-x Hypervisor vendor: VMware Virtualization type: full L1d cache: 384 KiB (12 instances) L1i cache: 384 KiB (12 instances) L2 cache: 12 MiB (12 instances) L3 cache: 38.5 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-11 Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Mitigation; PTE Inversion; VMX flush not necessary, SMT disabled Vulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] optree==0.14.0 [pip3] torch==2.6.0 [pip3] torch-debug==2.6.0 [pip3] torch_tb_profiler==0.4.0 [pip3] torchvision==0.21.0 [pip3] triton==3.1.0 [conda] Could not collect cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @jeromean @bsochack @sujoysaraswati
true
2,976,761,292
[elastic][test] fix race condition in test_barrier_timeout_rank_tracing
cdzhan
closed
[ "oncall: distributed", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
4
CONTRIBUTOR
# Root cause The barrier timeout set to 0.1 is too short, some threads may not have enough time to reach the barrier. # How to reproduce Adding some sleep will be easy to reproduce. ```python def test_barrier_timeout_rank_tracing(self): N = 3 store = dist.HashStore() def run_barrier_for_rank(i: int): if i != 0: import time;time.sleep(1) # Let some thread sleep for a while try: store_util.barrier( store, N, key_prefix="test/store", barrier_timeout=0.1, rank=i, rank_tracing_decoder=lambda x: f"Rank {x} host", trace_timeout=0.01, ) except Exception as e: return str(e) return "" ``` cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,976,646,684
[inductor] Clean typing in codegen/common.py and codecache.py
rec
open
[ "open source", "topic: not user facing", "module: inductor", "module: dynamo", "ciflow/inductor" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150767 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,976,612,438
Refactor: add initialization of math.lcm into torch_c_binding_in_graph_functions
FFFrog
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
4
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150766 As the title stated. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,976,611,813
torch.compile failed to handle a custom __delattr__ method correctly
XinyiYuan
open
[ "high priority", "triaged", "oncall: pt2", "module: dynamo", "dynamo-triage-jan2025" ]
1
NONE
### 🐛 Describe the bug torch.compile fails to correctly handle classes with a custom `__delattr__` method. Specifically, when a class overrides `__delattr__` to block deletion of certain attributes, the behavior is not preserved under compilation. MRE: ```python import torch class MyObject: def __init__(self, val): self.val = val def __delattr__(self, attr): if attr == "val": print(f"Cannot delete attribute '{attr}'!") else: super().__delattr__(attr) @torch.compile(fullgraph=True, backend="eager") def test(input_tensor): instance_a = MyObject(1) instance_b = MyObject(2) del instance_a.val del instance_b.val exists_a = hasattr(instance_a, 'val') exists_b = hasattr(instance_b, 'val') return input_tensor + 1, exists_a, exists_b # Expected output: (tensor([2.]), True, True) since 'val' deletion is prevented # Actual output: (tensor([2.]), False, False) print(process(torch.ones(1))) ``` Also, if we dont use `@torch.compile`, this error does not appear. This suggests that the cumtom `__delattr__` is bypassed or not respected during graph tracing or ahead-of-time compilation. ### Error logs Terminal output: ``` (tensor([2.]), False, False) ``` And `Cannot delete attribute '{attr}'!` is not printed. ### Versions python 3.10.14 pytorch 2.4.0 cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @amjames
true
2,976,581,829
Don't run NCCL/gloo distributed test without GPUs
Flamefire
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
9
COLLABORATOR
If there aren't any GPUs the WORLD_SIZE would be zero which does not work. So skip those backends completely in that case. Fix after https://github.com/pytorch/pytorch/pull/137161 It might make sense to still run the (CPU-) part of the tests by using something like `world_size = max(3, gpu_count)` or `num_gpus if num_gpus else 3` instead of skipping them all
true
2,976,573,934
[Dynamo][Typing] Enable `@override` for VTs [1/N]
shink
open
[ "open source", "topic: not user facing", "module: dynamo" ]
8
CONTRIBUTOR
As https://github.com/pytorch/pytorch/pull/150289#pullrequestreview-2729254192 said. Enable `@override` for VTs: - torch/_dynamo/variables/base.py - torch/_dynamo/variables/builtin.py - torch/_dynamo/variables/constant.py - torch/_dynamo/variables/ctx_manager.py cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,976,229,665
[Inductor] Set the default value of min_chunk_size to 512
jiayisunx
open
[ "open source", "module: inductor", "ciflow/inductor" ]
2
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150762 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,976,136,900
[Easy] enable PYFMT for torch/quantization/eager
FFFrog
closed
[ "open source", "Merged", "ciflow/trunk", "release notes: quantization", "topic: not user facing" ]
8
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150761 All modifications are done through tools, the detailed commands are as follows: ```bash lintrunner -a --take "PYFMT" --all-files ```
true
2,976,136,572
Add more check for torch.ormqr
FFFrog
closed
[ "release notes: linalg_frontend" ]
1
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150761 * __->__ #150760 As the title statd. Please refer to https://github.com/pytorch/pytorch/issues/150674 for more info.
true
2,976,113,250
Add more check for torch.ormqr
FFFrog
closed
[ "open source", "Merged", "ciflow/trunk", "release notes: linalg_frontend" ]
6
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150759 As the title statd. Please refer to https://github.com/pytorch/pytorch/issues/150674 for more info.
true
2,976,104,477
[Don't Merge] Check Regression
shiyang-weng
closed
[ "open source", "module: inductor" ]
2
CONTRIBUTOR
There are regressions running ci for https://github.com/pytorch/pytorch/pull/150150 But this patch not related to the regressions. This pr only used to check if there are regressions on master branch cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,976,080,707
Inductor `Fatal Python error` via reduction of `None` refcount to 0
main-horse
closed
[ "oncall: pt2" ]
1
CONTRIBUTOR
### 🐛 Describe the bug # TLDR 1. inductor torch.compile()'d training with torch nightly can produce `Fatal Python error: none_dealloc: deallocating None` after an indeterminate number of steps. 2. This is because some aspect of compiled autograd wrongly reduces the refcount of `None` to 0, which [triggers `Py_XDECREF(None)`](https://github.com/python/cpython/issues/115618) 3. The above does not occur when models are not compiled. See evidence/repro in related [torchtitan issue](https://github.com/pytorch/torchtitan/issues/1066) #### Note I have not confirmed the existence of this issue outside of a single DGX H100 node. It is plausible this issue is derived from elsewhere (e.g. bugged python binary distribution), but I cannot tell. I believe this issue is unlikely to be caught by tests in general, because the refcount of None is really high after typical trainer init. `sys.getrefcount(None)` starts at ~2e5 on torchtitan's first train step. ### Error logs See evidence/repro in related [torchtitan issue](https://github.com/pytorch/torchtitan/issues/1066) ### Versions ```bash $ python3 collect_env.py Collecting environment information... PyTorch version: 2.8.0.dev20250406+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.12 (main, Feb 4 2025, 14:57:36) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.0-133-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.4.131 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3 GPU 1: NVIDIA H100 80GB HBM3 GPU 2: NVIDIA H100 80GB HBM3 GPU 3: NVIDIA H100 80GB HBM3 GPU 4: NVIDIA H100 80GB HBM3 GPU 5: NVIDIA H100 80GB HBM3 GPU 6: NVIDIA H100 80GB HBM3 GPU 7: NVIDIA H100 80GB HBM3 Nvidia driver version: 550.127.08 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.8.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.8.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.8.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.8.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.8.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.8.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.8.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.8.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8468 CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 Stepping: 8 BogoMIPS: 4200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx_vnni avx512_bf16 wbnoinvd arat avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b fsrm md_clear serialize tsxldtrk avx512_fp16 arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 4 MiB (128 instances) L1i cache: 4 MiB (128 instances) L2 cache: 256 MiB (64 instances) L3 cache: 32 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-63 NUMA node1 CPU(s): 64-127 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Unknown: No mitigations Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] lovely-numpy==0.2.13 [pip3] numpy==2.2.4 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.26.2 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] pytorch-triton==3.3.0+git96316ce5 [pip3] torch==2.8.0.dev20250406+cu126 [pip3] torchdata==0.11.0 [pip3] triton==3.2.0 [conda] Could not collect ``` cc @chauhang @penguinwu
true
2,975,884,106
FP8: E4M3fn: The FP8 E4M3fn result is not inf when casting a bfloat16 value larger than max normal value of FP8 E4M3 (448). It gets rounded down to 448.
varun10221
closed
[ "triaged", "module: float8" ]
2
NONE
### 🐛 Describe the bug import torch vals = torch.tensor([464],dtype=torch.bfloat16) a_f8 = vals.to(torch.float8_e4m3fn) print(a_f8) b_bf16 = a_f8.to(torch.bfloat16) print(b_bf16) print(torch.finfo(torch.float8_e4m3fn).max) #This happens for all values from 449 ->465 , it updates to inf for values greater than that. ### Versions PyTorch version: 2.6.0 cc @yanbing-j @vkuzo @albanD @kadeng @penguinwu
true
2,975,813,845
[ez] move GuardsContext code comment to the right place
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151180 * #151179 * #150828 * __->__ #150755 * #150754 * #150753
true
2,975,813,754
[ez]][dynamo] remove useless super().__init__()
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151180 * #151179 * #150828 * #150755 * __->__ #150754 * #150753 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,975,813,639
[ez][dynamo] some code movement
bobrenjc93
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #151180 * #151179 * #150828 * #150755 * #150754 * __->__ #150753 `optimize_assert` already does the lookup for `backend` and `backend_ctx_ctor`. This simply moves the lookups within `optimize` lower so we don't end up calling these functions twice unnecessarily in the `optimize_assert` path. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
2,975,797,813
DISABLED test_parity__foreach_abs_fastpath_outplace_cuda_float64 (__main__.TestForeachCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
4
NONE
Platforms: linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_parity__foreach_abs_fastpath_outplace_cuda_float64&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40072204429). Over the past 3 hours, it has been determined flaky in 4 workflow(s) with 8 failures and 4 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_parity__foreach_abs_fastpath_outplace_cuda_float64` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true
2,975,654,630
[Quant][PT2E][X86] enable qconv1d-relu fusion
Xia-Weiwen
closed
[ "module: cpu", "open source", "Merged", "ciflow/trunk", "release notes: quantization", "intel", "module: inductor", "ciflow/inductor" ]
7
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150831 * __->__ #150751 **Summary** As the title. - The `conv1d - relu` pattern will be annotated by the `X86InductorQuantizer`. - The pattern will be fused as `qconv_pointwise` during lowering. **Test plan** ``` python test/inductor/test_mkldnn_pattern_matcher.py -k test_qconv1d_relu_cpu ``` cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,975,545,825
Make device check error message more descriptive
zeshengzong
closed
[ "triaged", "open source", "Merged", "Reverted", "ciflow/trunk", "topic: not user facing", "ci-no-td" ]
21
CONTRIBUTOR
Fixes #122757 ## Test Result ```python import torch model_output = torch.randn(10, 5).cuda() labels = torch.randint(0, 5, (10,)).cuda() weights = torch.randn(5) loss_fn = torch.nn.CrossEntropyLoss(weight=weights) loss = loss_fn(input=model_output, target=labels) print(loss) Traceback (most recent call last): File "/home/zong/code/pytorch/../loss2.py", line 17, in <module> loss = loss_fn(input=model_output, target=labels) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zong/code/pytorch/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zong/code/pytorch/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/zong/code/pytorch/torch/nn/modules/loss.py", line 1297, in forward return F.cross_entropy( ^^^^^^^^^^^^^^^^ File "/home/zong/code/pytorch/torch/nn/functional.py", line 3494, in cross_entropy return torch._C._nn.cross_entropy_loss( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: Expected all tensors to be on the same device, but got weight is on cpu, different from other tensors on cuda:0 (when checking argument in method wrapper_CUDA_nll_loss_forward) ```
true
2,975,472,077
Add `torch.triu_indices`, `torch.tril_indices` dtype description
zeshengzong
closed
[ "triaged", "open source", "Merged", "ciflow/trunk", "release notes: python_frontend" ]
12
CONTRIBUTOR
Fixes #150675 ## Test Result ![image](https://github.com/user-attachments/assets/f30a0de0-6475-4d07-b441-15fffd453ba1)
true
2,975,374,040
[DCP][OSS] Introduce barrier util in the DistWrapper for rank local checkpointing
saumishr
closed
[ "oncall: distributed", "fb-exported", "Merged", "ciflow/trunk", "release notes: distributed (checkpoint)" ]
4
CONTRIBUTOR
Summary: Introduce barrier util in the DistWrapper for rank local checkpointing. This barrier will be used at the end of the rank local checkpointing to ensure all ranks synchronize. Test Plan: UTs Differential Revision: D72541431 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
2,975,370,413
DISABLED test_parity__foreach_abs_fastpath_outplace_cuda_float32 (__main__.TestForeachCUDA)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "module: mta" ]
4
NONE
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_parity__foreach_abs_fastpath_outplace_cuda_float32&suite=TestForeachCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/40065343696). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_parity__foreach_abs_fastpath_outplace_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_foreach.py` cc @clee2000 @crcrpar @mcarilli @janeyx99
true
2,975,248,069
Export QAT model is not performing as expected when compared to the original model and FX Graph QAT
Jacobdelgado1002
closed
[ "needs reproduction", "oncall: quantization", "oncall: pt2", "oncall: export" ]
5
NONE
### 🐛 Describe the bug I'm trying to perform QAT utilizing MobileNetV2 with the goal of converting it into TFLite. However, after training the model, I run a bench-marking script to compare its performance to the original model and see that the performance deprecates greatly. Here are the important code snippets: ``` from torchvision import models from torch.ao.quantization.quantize_pt2e import prepare_qat_pt2e from torch.ao.quantization.quantizer.xnnpack_quantizer import XNNPACKQuantizer, get_symmetric_quantization_config model = models.mobilenet_v2(weights='DEFAULT') example_inputs = (next(iter(dataloader))[0].to(device),) model = torch.export.export_for_training(model, example_inputs).module() quantizer = XNNPACKQuantizer().set_global(get_symmetric_quantization_config(is_qat=True)) model = prepare_qat_pt2e(model, quantizer) train_model(model) ``` I only included what I thought was relevant since I didn't want to add confusion with all of my helper functions ``` def train_model(model): for phase in ['train', 'val']: is_train = phase == 'train' if is_train: torch.ao.quantization.move_exported_model_to_train(model) else: # Switch to evaluation mode to perform inference torch.ao.quantization.move_exported_model_to_eval(model) data_loader = train_loader if is_train else val_loader running_loss = 0.0 total_samples = 0.0 predictions, ground_truths, probabilities = [], [], [] with tqdm(total=len(data_loader), desc=f"{phase.capitalize()} Epoch {epoch + 1}/{epochs}") as pbar: for inputs, labels in data_loader: inputs, labels = inputs.to(device), labels.to(device) # Zero gradients only during training if is_train: optimizer.zero_grad() # Enable gradients only in training phase with torch.set_grad_enabled(is_train): model = model.to(device) model_logits = model(inputs) soft_loss = compute_distillation_loss(model_logits) label_loss, probs, preds = compute_loss_and_predictions(model_logits, labels, criterion) # Compute weighted combination of the distillation and cross entropy losses loss = soft_target_loss_weight * soft_loss + ce_loss_weight * label_loss # Backward pass and optimizer step in training phase if is_train: loss.backward() optimizer.step() # Update progress bar with average loss so far pbar.set_postfix(loss=f"{running_loss / total_samples:.4f}") pbar.update(1) ``` ### Actual vs expected behavior: I would expect that the quantized model has better performance than the original model but it does not. | | Original | QAT | |--------|--------|--------| | Model Size (MB) | 9.1899 | 11.1504 | | Inference Time (sec/sample) | 0.002896 | 0.011141 | | Throughput (samples/sec) | 345.29 | 89.76 | | Energy per Sample (Joules) | 0.3436 | 1.350853 | | Throughput per Watt (samples/sec/W) | 2.91 | 0.74 | This is even stranger since if I switch to FX Graph QAT, I get the expected behavior. However, I need to use Export quantization since I want to use the ai-edge-torch API to convert my model to TFLite. | | Original | QAT | |--------|--------|--------| | Model Size (MB) | 9.1899 | 2.3465 | | Inference Time (sec/sample) | 0.002896 | 000250 | | Throughput (samples/sec) | 345.29 | 4003.28 | | Energy per Sample (Joules) | 0.3436 | 0.0271 | | Throughput per Watt (samples/sec/W) | 2.91 | 36.85 | Additionally, when I print the resulting QAT model I get the following: ``` GraphModule( (features): Module( (0): Module( (1): Module() ) (1): Module( (conv): Module( (0): Module( (1): Module() ) (2): Module() ) ) (2): Module( (conv): Module( (0): Module( (1): Module() ) (1): Module( (1): Module() ) (3): Module() ) ) (3): Module( ... ``` I would think that it would be more similar to the resulting QAT model from FX Graph quantization which leads me to believe that it is not training correctly. The FX Graph is added below: ``` GraphModule( (features): Module( (0): Module( (0): QuantizedConv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), scale=0.22475136816501617, zero_point=113, padding=(1, 1)) (2): ReLU6(inplace=True) ) (1): Module( (conv): Module( (0): Module( (0): QuantizedConv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), scale=0.36381739377975464, zero_point=112, padding=(1, 1), groups=32) (2): ReLU6(inplace=True) ) (1): QuantizedConv2d(32, 16, kernel_size=(1, 1), stride=(1, 1), scale=0.5194709300994873, zero_point=139) ) ) ... ``` ### Versions My system has a `AMD Ryzen™ Threadripper™ 7960Xs × 48 `and a NVIDIA `GeForce RTX 4090` Here is my virtual env: <pre>absl-py==2.2.1 ai-edge-litert==1.2.0 ai-edge-quantizer==0.1.0 ai-edge-torch==0.4.0 anyio==4.8.0 argon2-cffi==23.1.0 argon2-cffi-bindings==21.2.0 arrow==1.3.0 asttokens==2.4.1 astunparse==1.6.3 async-lru==2.0.4 attrs==25.3.0 babel==2.17.0 beautifulsoup4==4.13.3 bleach==6.2.0 certifi==2024.12.14 cffi==1.17.1 charset-normalizer==3.4.1 coloredlogs==15.0.1 comm==0.2.2 contourpy==1.3.1 cycler==0.12.1 debugpy==1.8.6 decorator==5.1.1 defusedxml==0.7.1 execnet==2.1.1 executing==2.1.0 executorch==0.5.0 expecttest==0.3.0 fastjsonschema==2.21.1 filelock==3.17.0 flatbuffers==25.2.10 fonttools==4.55.8 fqdn==1.5.1 fsspec==2024.12.0 gast==0.6.0 google-pasta==0.2.0 grpcio==1.71.0 h11==0.14.0 h5py==3.13.0 httpcore==1.0.7 httpx==0.28.1 humanfriendly==10.0 hypothesis==6.130.8 idna==3.10 immutabledict==4.2.1 iniconfig==2.1.0 ipykernel==6.29.5 ipython==8.28.0 ipywidgets==8.1.5 isoduration==20.11.0 jax==0.5.3 jaxlib==0.5.3 jedi==0.19.1 Jinja2==3.1.5 joblib==1.4.2 json5==0.10.0 jsonpointer==3.0.0 jsonschema==4.23.0 jsonschema-specifications==2024.10.1 jupyter==1.1.1 jupyter-console==6.6.3 jupyter-events==0.12.0 jupyter-lsp==2.2.5 jupyter_client==8.6.3 jupyter_core==5.7.2 jupyter_server==2.15.0 jupyter_server_terminals==0.5.3 jupyterlab==4.3.5 jupyterlab_pygments==0.3.0 jupyterlab_server==2.27.3 jupyterlab_widgets==3.0.13 kaggle==1.6.17 keras==3.9.1 kiwisolver==1.4.8 libclang==18.1.1 Markdown==3.7 markdown-it-py==3.0.0 MarkupSafe==3.0.2 matplotlib==3.10.0 matplotlib-inline==0.1.7 mdurl==0.1.2 mistune==3.1.2 ml_dtypes==0.5.1 mpmath==1.3.0 namex==0.0.8 nbclient==0.10.2 nbconvert==7.16.6 nbformat==5.10.4 nest-asyncio==1.6.0 networkx==3.4.2 notebook==7.3.2 notebook_shim==0.2.4 numpy==2.0.0 nvidia-cublas-cu12==12.4.5.8 nvidia-cuda-cupti-cu12==12.4.127 nvidia-cuda-nvrtc-cu12==12.4.127 nvidia-cuda-runtime-cu12==12.4.127 nvidia-cudnn-cu12==9.1.0.70 nvidia-cufft-cu12==11.2.1.3 nvidia-curand-cu12==10.3.5.147 nvidia-cusolver-cu12==11.6.1.9 nvidia-cusparse-cu12==12.3.1.170 nvidia-cusparselt-cu12==0.6.2 nvidia-nccl-cu12==2.21.5 nvidia-nvjitlink-cu12==12.4.127 nvidia-nvtx-cu12==12.4.127 onnx==1.16.1 onnx-graphsurgeon==0.5.7 onnx-tf==1.6.0 onnx2tf==1.27.1 onnxruntime==1.21.0 onnxscript==0.2.3 opt_einsum==3.4.0 optree==0.14.1 overrides==7.7.0 packaging==24.2 pandas==2.2.2 pandocfilters==1.5.1 parameterized==0.9.0 parso==0.8.4 pexpect==4.9.0 pillow==11.1.0 platformdirs==4.3.6 pluggy==1.5.0 prometheus_client==0.21.1 prompt_toolkit==3.0.48 protobuf==3.20.3 psutil==6.0.0 ptyprocess==0.7.0 pure_eval==0.2.3 pycparser==2.22 Pygments==2.19.1 pyparsing==3.2.1 pyRAPL==0.2.3.1 pytest==8.3.5 pytest-xdist==3.6.1 python-dateutil==2.9.0.post0 python-json-logger==3.3.0 python-slugify==8.0.4 pytz==2024.2 PyYAML==6.0.2 pyzmq==26.2.0 referencing==0.36.2 requests==2.32.3 rfc3339-validator==0.1.4 rfc3986-validator==0.1.1 rich==13.9.4 rpds-py==0.23.1 ruamel.yaml==0.18.10 ruamel.yaml.clib==0.2.12 safetensors==0.5.3 scikit-learn==1.6.1 scipy==1.15.1 seaborn==0.13.2 Send2Trash==1.8.3 setuptools==75.8.0 six==1.17.0 sng4onnx==1.0.4 sniffio==1.3.1 sortedcontainers==2.4.0 soupsieve==2.6 stack-data==0.6.3 sympy==1.13.1 tabulate==0.9.0 tensorboard==2.19.0 tensorboard-data-server==0.7.2 tensorflow==2.19.0 termcolor==2.5.0 terminado==0.18.1 text-unidecode==1.3 tf2onnx==1.16.1 tf_keras==2.19.0 tflite==2.18.0 threadpoolctl==3.5.0 tinycss2==1.4.0 torch==2.6.0 torch_xla2==0.0.1.dev202412041639 torchaudio==2.6.0 torchsummary==1.5.1 torchvision==0.21.0 tornado==6.4.1 tqdm==4.67.1 traitlets==5.14.3 triton==3.2.0 types-python-dateutil==2.9.0.20241206 typing_extensions==4.12.2 tzdata==2025.1 uri-template==1.3.0 urllib3==2.3.0 wcwidth==0.2.13 webcolors==24.11.1 webencodings==0.5.1 websocket-client==1.8.0 Werkzeug==3.1.3 wheel==0.45.1 widgetsnbextension==4.0.13 wrapt==1.17.2 </pre> cc @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @vkuzo @jgong5 @Xia-Weiwen @leslie-fang-intel @msaroufim @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
true
2,975,199,483
Cannot checkout commits from when NCCL was still a submodule
danielvegamyhre
closed
[ "module: build", "module: ci", "triaged", "module: nccl" ]
5
CONTRIBUTOR
is there a way i can checkout the commit from before NCCL was updated here: https://github.com/pytorch/pytorch/commit/4ece056791d779a6bfb0574c3a26cd6a7e600089 When I try I can an error: ``` fatal: not a git repository: ../../../.git/modules/third_party/nccl/nccl fatal: could not reset submodule index ``` cc @seemethere @malfet @pytorch/pytorch-dev-infra
true
2,975,145,499
[codemod] Fix `-Wambiguous-reversed-operator` in aten/src/ATen/cuda/tunable/Tunable.h
r-barnes
closed
[ "fb-exported", "Merged", "ciflow/trunk", "release notes: cpp", "topic: improvements", "topic: not user facing" ]
7
CONTRIBUTOR
Summary: `-Wambiguous-reversed-operator` warns about ambiguous reversed operators, e.g. `a < b` and `b > a` are both valid. Such operators are disallowed in C++20. This codemod fixes the warnings. #buildsonlynotests - If this diff compiles, it works. - If you approve of this diff, please use the "Accept & Ship" button :-) Test Plan: Sandcastle Differential Revision: D72535527
true
2,975,094,347
a
jlcmoore
closed
[]
0
NONE
null
true
2,975,004,395
Install pytorch from pypi using local CUDA build
ikrommyd
open
[ "module: binaries", "oncall: releng", "module: ci", "triaged", "enhancement", "has workaround", "needs design" ]
5
NONE
### 🚀 The feature, motivation and pitch It's great that nvidia provides wheels for the CUDA related packages and we don't need `conda/mamba` to install pytorch anymore, but those packages take up space if you install pytorch in multiple environments. I would be nice if you could install a pytorch version from pypi that could grab and use your local cuda build. For example, `cupy` provides `pip install cupy-cuda12x`. `jax` provides `pip install "jax[cuda12_local]"` and as far as I'm aware, `pip install tensorflow` also appears to use the GPU even if I don't specify `pip install "tensorflow[and-cuda]"` which could install the nvidia/cuda wheels as well. Please close if this is just not possible in pytorch's case or a duplicate (I didn't see it if it's there). ### Alternatives Just have the available space and install the nvidia wheels on every environment separately. ### Additional context _No response_ cc @seemethere @malfet @osalpekar @atalman @pytorch/pytorch-dev-infra
true
2,974,992,843
how to install pytorch with cuda 12.2 and py3.12
goactiongo
closed
[]
4
NONE
### 🐛 Describe the bug I wanna know how to install pytorch with CUDA12.2 ### Versions I used the following command , and many issue occured conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
true
2,974,540,925
[DTensor] Add DTensor redistribute fwd/bwd datatype conversion to enable SimpleFSDP mixed precision training
ruisizhang123
closed
[ "oncall: distributed", "triaged", "open source", "Merged", "ciflow/trunk", "release notes: distributed (dtensor)" ]
7
CONTRIBUTOR
As titled, this pr adds additional `forward_dtype` and `backward_dtype` conversion in DTensor `redistribute` API to enable SimpleFSDP's mixed precision training. In this forward pass, the DTensor can be configured to be cast to `forward_dtype`; in the backward pass, the DTensor can be configured to be cast to `backward_dtype`. 1. **Correctness**: The end-to-end SimpleFSDP mixed precision training integration has been proved to work properly in the PR from this fork: https://github.com/tianyu-l/pytorch_intern24/pull/20. We are now migrating the code to official PyTorch DTensor. 2. **Example Usage**: There is an example in TorchTian's SimpleFSDP implementation: https://github.com/pytorch/torchtitan/pull/1060. In the example below, a DTensor `x` is all-gather'ed along the `self.compute_placements`, with datatype cast to `self.param_dtype`. In the backward pass, additionally, the computed gradients are reduce-scatter'ed along the `self.grad_placements`, with datatype cast to `self.reduce_dtype`. ```python output = x.redistribute( placements=self.compute_placements, forward_dtype=self.param_dtype, backward_dtype=self.reduce_dtype, ).to_local(grad_placements=self.grad_placements) ``` Under the hood, in `class Redistribute(torch.autograd.Function):`, the `forward` function first takes `x`'s local tensor, convert it to `forward_dtype`, before all-gather `x`. The `backward` function take `grad_output` and convert it to `backward_dtype`, before reduce-scatter `grad_output`. cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @tianyu-l
true
2,974,536,794
[AOTI] Embed cubin files into .so
desertfire
open
[ "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #150739 Summary: Embed cubin files so AOTI is one step closer to generate a single binary. Controlled by a flag and off as default. Differential Revision: [D72535357](https://our.internmc.facebook.com/intern/diff/D72535357)
true
2,974,521,493
[CI] [Inductor] Add MPS to HAS_GPU variable
malfet
open
[ "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150821 * __->__ #150738 * #150824 But exclude it from torch/testing/_internal/triton_utils.py (i.e. later implies `HAS_GPU` and has triton) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,974,520,904
[MPSInductor] Fix tiled reduction logic
malfet
closed
[ "Merged", "topic: not user facing", "ciflow/mps", "module: inductor", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #150738 * __->__ #150737 In case of tiles, index must include both reduction dimentions cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
2,974,440,544
Fix missing braces for clang CUDA
r-barnes
closed
[ "fb-exported", "Merged", "ciflow/trunk", "release notes: sparse" ]
4
CONTRIBUTOR
Test Plan: Sandcastle Differential Revision: D72469764
true
2,974,439,792
Suppress `-Wunused-function` for DSA
r-barnes
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing" ]
6
CONTRIBUTOR
Test Plan: Sandcastle Reviewed By: dtolnay Differential Revision: D72458590
true