id
int64
2.74B
3.05B
title
stringlengths
1
255
user
stringlengths
2
26
state
stringclasses
2 values
labels
listlengths
0
24
comments
int64
0
206
author_association
stringclasses
4 values
body
stringlengths
7
62.5k
is_title
bool
1 class
3,044,797,354
[Dynamo] Replace `unimplemented` with `unimplemented_v2` in `torch/_dynamo/variables/misc.py` [2/2]
shink
open
[ "triaged", "open source", "topic: not user facing", "module: dynamo" ]
6
CONTRIBUTOR
Part of #147913 Follow up: #152274 Replace `unimplemented` with`unimplemented_v2` in `torch/_dynamo/variables/misc.py` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,044,749,011
Add CUDA support for Adagrad(fused=True)
MeetThePatel
open
[ "triaged", "open source", "release notes: optim" ]
4
CONTRIBUTOR
This PR adds CUDA support for Adagrad(fused=True) optimizer, along with 3 minor changes: - Add a TensorLR variant for CPU Adagrad(fused=True). - Fix error message in `test/test_optim.py`, where the incorrect optimizer name was being printed. - Fix an error message in FusedSGD, where it was giving incorrect information. Along with this PR, I have done some benchmarking for this implementation. The benchmarking script is: [gist](https://gist.github.com/MeetThePatel/b7e93f3d3b65a67a09f8b02440a8cef9). This script also has NVTX tags, so if you want to create a trace, the relevant portions will be tagged with: - Adagrad implementation (default, foreach, fused). - Dtype (I benchmarked across `float64`, `float32`, `float16`, and `bfloat16`). - Tensor shape (I used tensor shapes from GPT-2 as reference). This benchmark measures speed and memory usage. Highlights: - Speed: These results are not the most stable. Speedup relative to default varies wildly (sometimes being slower) based on dtype and shape, as well as from run to run. I'm not sure what's going on here. - Memory: This fused implementation saves ~38% (peak) VRAM compared to the default and foreach implementations. The results of this benchmark are given in the comments of the gist: [link to comment](https://gist.github.com/MeetThePatel/b7e93f3d3b65a67a09f8b02440a8cef9?permalink_comment_id=5568984#gistcomment-5568984). cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,044,663,148
Allow zero sized dimensions in padding operations
sladyn98
open
[ "open source", "topic: not user facing" ]
4
NONE
Previously, the padding implementation in PadNd.cpp required all output dimensions to be strictly positive (> 0), which caused errors when padding tensors with zero-sized dimensions even when the padding for that dimension was also zero. This change relaxes the constraint to allow non-negative (>= 0) output dimensions, enabling operations like: x = torch.ones((0, 1)) y = functional.pad(x, [1, 1, 0, 0]) # Now returns tensor of shape (0, 3) The previous behavior was unnecessarily restrictive since mathematically a zero-sized dimension with zero padding should remain zero-sized. Fixes [#ISSUE_NUMBER](https://github.com/pytorch/pytorch/issues/152750)
true
3,044,623,989
fix test
yf225
closed
[ "topic: not user facing", "module: inductor", "ciflow/inductor" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #153036 * #152775 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,044,617,968
Add Split Softmax
AMindToThink
open
[ "module: nn", "triaged", "needs research" ]
2
NONE
Transformer models often forget their system prompts when processing long text due to the long distances between the source of the information and its destination. The Split Softmax function is a modification of softmax for use in attention that promotes the model to keep paying attention to the system prompt. It was developed to combat instruction drift and attention decay. It is described in this paper: [Measuring and Controlling Instruction (In)Stability in Language Model Dialogs](https://arxiv.org/pdf/2402.10962) I am doing research involving this function, and I would like to implement split softmax as an activation function in Pytorch, if it is deemed worthwhile. cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
true
3,044,611,322
WIP: Fix caching when output has unbacked
aorenste
open
[ "release notes: fx", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #153034
true
3,044,594,141
missalignment with differenet shape in F.linear with bf16 dtype
likelyzhao
open
[ "needs reproduction", "triaged", "module: bfloat16", "module: linear algebra", "module: padding" ]
1
NONE
### 🐛 Describe the bug For the F.linear function, when constructing matrix multiplications of varying dimensions via zero-padding, output consistency cannot be guaranteed under bf16 precision (outputs are consistent for some dimensions but inconsistent for others). ```python import torch import torch.nn.functional as F import pdb torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(True) torch.use_deterministic_algorithms = True torch.backends.cudnn.benchmark = False torch.utils.deterministic.fill_uninitialized_memory = True #pdb.set_trace() ## reproduce with rand variable for i in range(100): input_shape = [1661+ i, 3584] weight_shape = [3584, 3584] bias_shape = [3584] #device = torch.device("cpu") device = torch.device("cuda") dtype = torch.bfloat16 torch.random.manual_seed(0) r_input = torch.rand(input_shape, device=device, dtype=dtype) r_weight_q = torch.rand(weight_shape, device=device, dtype=dtype) r_bias_q = torch.rand(bias_shape, device=device, dtype=dtype) # expand weight_q with zeros zeros_w = torch.zeros((1024, r_weight_q.shape[1]), device=device, dtype=dtype) zeros_b = torch.zeros((1024), device=device, dtype=dtype) # 沿行方向拼接(dim=0) weight_expand = torch.cat((r_weight_q, zeros_w), dim=0) bias_expand = torch.cat((r_bias_q, zeros_b), dim=0) #pdb.set_trace() output_ori = F.linear(r_input, r_weight_q, r_bias_q) output_expand = F.linear(r_input, weight_expand, bias_expand) split_dim =-1 split_op_q, split_op_k, split_op_v = output_expand.split([weight_shape[split_dim], 512 , 512], dim=split_dim) sum = torch.sum(torch.abs(split_op_q.float() - output_ori.float())) print("diff split_op_q vs output_ori", sum.item()) # assume to be zero # sum split_op_k sum = torch.sum(split_op_k) print("sum split_op_k", sum.item()) # assume to be zero # sum split_op_v sum = torch.sum(split_op_v) print("sum split_op_v", sum.item()) # assume to be zero ``` ### Versions Collecting environment information... PyTorch version: 2.7.0+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.11.10 | packaged by conda-forge | (main, Oct 16 2024, 01:27:36) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-6.11.0-21-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090 GPU 1: NVIDIA GeForce RTX 4090 Nvidia driver version: 560.35.05 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 112 On-line CPU(s) list: 0-111 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6258R CPU @ 2.70GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 28 Socket(s): 2 Stepping: 7 CPU max MHz: 4000.0000 CPU min MHz: 1000.0000 BogoMIPS: 5400.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req vnmi pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.8 MiB (56 instances) L1i cache: 1.8 MiB (56 instances) L2 cache: 56 MiB (56 instances) L3 cache: 77 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-27,56-83 NUMA node1 CPU(s): 28-55,84-111 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==2.2.5 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.26.2 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] torch==2.7.0 [pip3] triton==3.3.0 [conda] numpy 2.2.5 pypi_0 pypi [conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi [conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi [conda] nvidia-nccl-cu12 2.26.2 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi [conda] torch 2.7.0 pypi_0 pypi [conda] triton 3.3.0 pypi_0 pypi cc @jianyuh @nikitaved @mruberry @walterddr @xwang233 @Lezcano
true
3,044,591,634
DISABLED test_hook_with_closure (__main__.HooksTests)
pytorch-bot[bot]
open
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: dynamo" ]
2
NONE
Platforms: asan, linux, mac, macos, rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_hook_with_closure&suite=HooksTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41763750570). Over the past 3 hours, it has been determined flaky in 22 workflow(s) with 44 failures and 22 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_hook_with_closure` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/workspace/test/dynamo/test_hooks.py", line 575, in test_hook_with_closure opt(x2, obj1).sum().backward() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_tensor.py", line 648, in backward torch.autograd.backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/__init__.py", line 354, in backward _engine_run_backward( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/compiled_autograd.py", line 1024, in runtime_wrapper out = compiled_fn( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 350, in __call__ return self.forward(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 678, in _fn return fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 840, in call_wrapped return self._wrapped_call(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 416, in __call__ raise e File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/fx/graph_module.py", line 403, in __call__ return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc] File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1755, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1861, in _call_impl return inner() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1798, in inner args_result = hook(self, args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 1458, in __call__ return self._torchdynamo_orig_callable( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 624, in __call__ return _compile( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 1133, in _compile raise InternalTorchDynamoError( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 1082, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_utils_internal.py", line 97, in wrapper_function return function(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 777, in compile_inner return _compile_inner(code, one_graph, hooks, transform) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 813, in _compile_inner out_code = transform_code_object(code, transform) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1422, in transform_code_object transformations(instructions, code_options) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 264, in _fn return fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 741, in transform tracer.run() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3494, in run super().run() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1345, in run while self.step(): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1254, in step self.dispatch_table[inst.opcode](self, inst) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 421, in impl self.push(fn_var.call_function(self, self.popn(nargs), {})) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builtin.py", line 1148, in call_function return handler(tx, args, kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builtin.py", line 792, in <lambda> return lambda tx, args, kwargs: obj.call_function( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builtin.py", line 1148, in call_function return handler(tx, args, kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builtin.py", line 968, in builtin_dispatch rv = fn(tx, args, kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builtin.py", line 842, in <lambda> handlers.append(lambda tx, args, _: binop_handler(tx, *args)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/builtin.py", line 465, in <lambda> [*a.items, *b.unpack_var_sequence(tx)], File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/variables/constant.py", line 124, in unpack_var_sequence raise NotImplementedError from e torch._dynamo.exc.InternalTorchDynamoError: NotImplementedError: from user code: File "/var/lib/jenkins/workspace/test/dynamo/test_hooks.py", line 902, in hook return (args[0] + 100,) Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo" To execute this test, run the following from the base repo dir: python test/dynamo/test_hooks.py HooksTests.test_hook_with_closure This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `dynamo/test_hooks.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,044,591,578
DISABLED test_comprehensive_svd_cuda_float32 (__main__.TestInductorOpInfoCUDA)
pytorch-bot[bot]
open
[ "high priority", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
2
NONE
Platforms: inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_comprehensive_svd_cuda_float32&suite=TestInductorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41765230283). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_comprehensive_svd_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1135, in test_wrapper return test(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1434, in only_fn return fn(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 2291, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1534, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/unittest/mock.py", line 1396, in patched return func(*newargs, **newkeywargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 962, in inner raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 954, in inner fn(self, device, dtype, op) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1207, in test_comprehensive raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1182, in test_comprehensive self.check_model_gpu( File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 657, in check_model_gpu check_model( File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 608, in check_model actual_grad = compute_grads(example_inputs, kwargs, actual, grads) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 406, in compute_grads return torch.autograd.grad( ^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/autograd/__init__.py", line 503, in grad result = _engine_run_backward( ^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) ^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 2191, in backward return impl_fn() ^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 2177, in impl_fn out = CompiledFunction._backward_impl(ctx, all_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 2272, in _backward_impl CompiledFunction.compiled_bw = aot_config.bw_compiler( ^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_functorch/aot_autograd.py", line 483, in __call__ return self.compiler_fn(gm, example_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_dynamo/backends/common.py", line 73, in _wrapped_bw_compiler disable( File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py", line 872, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_utils_internal.py", line 97, in wrapper_function return function(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 2234, in bw_compiler return inner_compile( ^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 710, in compile_fx_inner return wrap_compiler_debug(_compile_fx_inner, compiler_name="inductor")( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_dynamo/repro/after_aot.py", line 124, in debug_wrapper inner_compiled_fn = compiler_fn(gm, example_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 880, in _compile_fx_inner raise InductorError(e, currentframe()).with_traceback( File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 864, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( ^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 1487, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 1374, in codegen_and_compile compiled_module = graph.compile_to_module() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/graph.py", line 2238, in compile_to_module return self._compile_to_module() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/graph.py", line 2248, in _compile_to_module mod = self._compile_to_module_lines(wrapper_code) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/graph.py", line 2312, in _compile_to_module_lines mod = PyCodeCache.load_by_key_path( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/codecache.py", line 3022, in load_by_key_path mod = _reload_python_module(key, path, set_sys_modules=in_toplevel) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/compile_tasks.py", line 31, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) File "/tmp/tmp401_uv9u/in/cinruj2becx4kecqpts3wluagyedyxjwao554togl2aic6xyvuqm.py", line 309, in <module> async_compile.wait(globals()) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 481, in wait self._wait_futures(scope) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 501, in _wait_futures kernel = result.result() ^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/codecache.py", line 3524, in result return self.result_fn() ^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 368, in get_result kernel.precompile( File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 325, in precompile self._make_launchers() File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 482, in _make_launchers launchers.append(result.make_launcher()) ^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1279, in make_launcher self.reload_cubin_path() File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1271, in reload_cubin_path raise RuntimeError( torch._inductor.exc.InductorError: RuntimeError: ('Cubin file saved by TritonBundler not found at %s', '/tmp/tmp96eiehwi/triton/63DQS3QTGSR5JN435ZZGJB7PR5KXH675WH6S75753GZHHHOHU2TQ/triton_poi_fused_add_diag_embed_div_mul_sub_2.cubin') The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 426, in instantiated_test result = test(self, **param_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_cuda.py", line 256, in wrapped return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1147, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 44: SampleInput(input=Tensor[size=(3, 5), device="cuda:0", dtype=torch.float32], args=(), kwargs={'some': 'False'}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=44 python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_svd_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_opinfo.py` cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @clee2000 @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @muchulee8 @amjames @aakhundov
true
3,044,591,521
DISABLED test_comprehensive_amin_cuda_float32 (__main__.TestInductorOpInfoCUDA)
pytorch-bot[bot]
open
[ "high priority", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
4
NONE
Platforms: inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_comprehensive_amin_cuda_float32&suite=TestInductorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41762952404). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_comprehensive_amin_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1135, in test_wrapper return test(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1434, in only_fn return fn(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 2291, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1534, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/unittest/mock.py", line 1396, in patched return func(*newargs, **newkeywargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 962, in inner raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 954, in inner fn(self, device, dtype, op) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1207, in test_comprehensive raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1182, in test_comprehensive self.check_model_gpu( File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 657, in check_model_gpu check_model( File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 498, in check_model actual = run(*example_inputs, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py", line 676, in _fn raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 880, in _compile_fx_inner raise InductorError(e, currentframe()).with_traceback( File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 864, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( ^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 1487, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 1374, in codegen_and_compile compiled_module = graph.compile_to_module() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/graph.py", line 2238, in compile_to_module return self._compile_to_module() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/graph.py", line 2248, in _compile_to_module mod = self._compile_to_module_lines(wrapper_code) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/graph.py", line 2312, in _compile_to_module_lines mod = PyCodeCache.load_by_key_path( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/codecache.py", line 3022, in load_by_key_path mod = _reload_python_module(key, path, set_sys_modules=in_toplevel) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/compile_tasks.py", line 31, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) File "/tmp/tmpgizho8gt/d2/cd2y4mausykw5umyrmzdum2qkzn2fg7nsf2laqhorhycn73fix42.py", line 78, in <module> async_compile.wait(globals()) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 481, in wait self._wait_futures(scope) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 501, in _wait_futures kernel = result.result() ^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/codecache.py", line 3524, in result return self.result_fn() ^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 368, in get_result kernel.precompile( File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 325, in precompile self._make_launchers() File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 482, in _make_launchers launchers.append(result.make_launcher()) ^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1279, in make_launcher self.reload_cubin_path() File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1271, in reload_cubin_path raise RuntimeError( torch._inductor.exc.InductorError: RuntimeError: ('Cubin file saved by TritonBundler not found at %s', '/tmp/tmp_g6y7esm/triton/2U3MZWPKROAIPUJQWFF47YLASWPNKLNMVWDZ7NNDZNKFESIEDIKA/triton_poi_fused_amin_eq_0.cubin') Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo" The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 426, in instantiated_test result = test(self, **param_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1147, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 2: SampleInput(input=Tensor[size=(), device="cuda:0", dtype=torch.float32], args=(), kwargs={'dim': '-1', 'keepdim': 'False'}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=2 python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_amin_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_opinfo.py` cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @clee2000 @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @muchulee8 @amjames @aakhundov
true
3,044,591,468
DISABLED test_comprehensive_asinh_cuda_float32 (__main__.TestInductorOpInfoCUDA)
pytorch-bot[bot]
open
[ "high priority", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
4
NONE
Platforms: inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_comprehensive_asinh_cuda_float32&suite=TestInductorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41765095197). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_comprehensive_asinh_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/testing/_internal/common_device_type.py", line 1135, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/testing/_internal/common_device_type.py", line 1434, in only_fn return fn(self, *args, **kwargs) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/testing/_internal/common_utils.py", line 2291, in wrapper fn(*args, **kwargs) ~~^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) ~~^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/testing/_internal/common_utils.py", line 1534, in wrapper fn(*args, **kwargs) ~~^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.13/lib/python3.13/unittest/mock.py", line 1424, in patched return func(*newargs, **newkeywargs) File "/opt/conda/envs/py_3.13/lib/python3.13/contextlib.py", line 85, in inner return func(*args, **kwds) File "/opt/conda/envs/py_3.13/lib/python3.13/contextlib.py", line 85, in inner return func(*args, **kwds) File "/opt/conda/envs/py_3.13/lib/python3.13/contextlib.py", line 85, in inner return func(*args, **kwds) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 962, in inner raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 954, in inner fn(self, device, dtype, op) ~~^^^^^^^^^^^^^^^^^^^^^^^^^ File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1207, in test_comprehensive raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1182, in test_comprehensive self.check_model_gpu( ~~~~~~~~~~~~~~~~~~~~^ fn, ^^^ ...<2 lines>... **adjusted_kwargs, ^^^^^^^^^^^^^^^^^^ ) ^ File "/opt/conda/envs/py_3.13/lib/python3.13/contextlib.py", line 85, in inner return func(*args, **kwds) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 657, in check_model_gpu check_model( ~~~~~~~~~~~^ self, ^^^^^ ...<13 lines>... output_process_fn_grad=output_process_fn_grad, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 608, in check_model actual_grad = compute_grads(example_inputs, kwargs, actual, grads) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 406, in compute_grads return torch.autograd.grad( ~~~~~~~~~~~~~~~~~~~^ flat_diff_results, ^^^^^^^^^^^^^^^^^^ ...<3 lines>... retain_graph=True, ^^^^^^^^^^^^^^^^^^ ) ^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/autograd/__init__.py", line 503, in grad result = _engine_run_backward( outputs, ...<5 lines>... accumulate_grad=False, ) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ t_outputs, *args, **kwargs ^^^^^^^^^^^^^^^^^^^^^^^^^^ ) # Calls into the C++ engine to run the backward pass ^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 2191, in backward return impl_fn() File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 2177, in impl_fn out = CompiledFunction._backward_impl(ctx, all_args) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 2272, in _backward_impl CompiledFunction.compiled_bw = aot_config.bw_compiler( ~~~~~~~~~~~~~~~~~~~~~~^ copy.deepcopy(bw_module), placeholder_list ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_functorch/aot_autograd.py", line 483, in __call__ return self.compiler_fn(gm, example_inputs) ~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_dynamo/backends/common.py", line 73, in _wrapped_bw_compiler disable( ~~~~~~~~ bw_compiler_fn, reason="do not trace backward compiler function" ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ )(*args, **kwargs), ~^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_dynamo/eval_frame.py", line 872, in _fn return fn(*args, **kwargs) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_utils_internal.py", line 97, in wrapper_function return function(*args, **kwargs) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_inductor/compile_fx.py", line 2234, in bw_compiler return inner_compile( gm, ...<5 lines>... boxed_forward_device_index=forward_device, ) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_inductor/compile_fx.py", line 710, in compile_fx_inner return wrap_compiler_debug(_compile_fx_inner, compiler_name="inductor")( ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ gm, ^^^ example_inputs, ^^^^^^^^^^^^^^^ **kwargs, ^^^^^^^^^ ) ^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_dynamo/repro/after_aot.py", line 124, in debug_wrapper inner_compiled_fn = compiler_fn(gm, example_inputs) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_inductor/compile_fx.py", line 880, in _compile_fx_inner raise InductorError(e, currentframe()).with_traceback( e.__traceback__ ) from None File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_inductor/compile_fx.py", line 864, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( gm, example_inputs, inputs_to_check, **graph_kwargs ) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_inductor/compile_fx.py", line 1487, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) ~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_inductor/compile_fx.py", line 1374, in codegen_and_compile compiled_module = graph.compile_to_module() File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_inductor/graph.py", line 2238, in compile_to_module return self._compile_to_module() ~~~~~~~~~~~~~~~~~~~~~~~^^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_inductor/graph.py", line 2248, in _compile_to_module mod = self._compile_to_module_lines(wrapper_code) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_inductor/graph.py", line 2312, in _compile_to_module_lines mod = PyCodeCache.load_by_key_path( key, ...<2 lines>... attrs={**self.constants, **self.torchbind_constants}, ) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_inductor/codecache.py", line 3022, in load_by_key_path mod = _reload_python_module(key, path, set_sys_modules=in_toplevel) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_inductor/runtime/compile_tasks.py", line 31, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) ~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/tmp/tmpel4o06u5/a2/ca2ng4k4n2cyxptty4lubff7g4bdycvpg5ibcceovomu3o4vesag.py", line 91, in <module> async_compile.wait(globals()) ~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_inductor/async_compile.py", line 481, in wait self._wait_futures(scope) ~~~~~~~~~~~~~~~~~~^^^^^^^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_inductor/async_compile.py", line 501, in _wait_futures kernel = result.result() File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_inductor/codecache.py", line 3524, in result return self.result_fn() ~~~~~~~~~~~~~~^^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_inductor/async_compile.py", line 368, in get_result kernel.precompile( ~~~~~~~~~~~~~~~~~^ warm_cache_only=False, ^^^^^^^^^^^^^^^^^^^^^^ reload_kernel=reload_kernel_in_parent, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ static_triton_bundle_key=CompiledTritonKernels.key(source_code), ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 325, in precompile self._make_launchers() ~~~~~~~~~~~~~~~~~~~~^^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 482, in _make_launchers launchers.append(result.make_launcher()) ~~~~~~~~~~~~~~~~~~~~^^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1279, in make_launcher self.reload_cubin_path() ~~~~~~~~~~~~~~~~~~~~~~^^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1271, in reload_cubin_path raise RuntimeError( "Cubin file saved by TritonBundler not found at %s", cubin_location ) torch._inductor.exc.InductorError: RuntimeError: ('Cubin file saved by TritonBundler not found at %s', '/tmp/tmpmgh8qmyp/triton/W7C2BUE565B33EBVQRIAWWPYMR7MKL4OT4JHCNUSFCSH7PRGZ5UA/triton_poi_fused_add_mul_pow_rsqrt_0.cubin') The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) ~~~~~~^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) ~~~~~~^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/testing/_internal/common_device_type.py", line 426, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) ~~^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.13/lib/python3.13/site-packages/torch/testing/_internal/common_device_type.py", line 1147, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 0: SampleInput(input=Tensor[size=(20, 20), device="cuda:0", dtype=torch.float32], args=(), kwargs={}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=0 python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_asinh_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_opinfo.py` cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @clee2000 @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @muchulee8 @amjames @aakhundov
true
3,044,587,182
[Typing] Improve device typing for `torch.set_default_device()`
shink
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
12
CONTRIBUTOR
Part of: #152952 Here is the definition of `torch.types.Device`: https://github.com/pytorch/pytorch/blob/ab997d9ff584e8623de146b6eb9c9074081b045b/torch/types.py#L74 So `_Optional[_Union["torch.device", str, builtins.int]]` is equivalent to it. cc: @Skylion007
true
3,044,564,077
[Typing] Apply `torch.types.Device` in `torch/cuda/memory.py`
shink
open
[ "triaged", "open source", "topic: not user facing" ]
5
CONTRIBUTOR
Part of: #152952 Here is the definition of `torch.types.Device`: https://github.com/pytorch/pytorch/blob/ab997d9ff584e8623de146b6eb9c9074081b045b/torch/types.py#L74 It contains `int`, so the `int` in `Union[Device, int]` is redundant. cc: @Skylion007
true
3,044,559,891
remove register_fake
yf225
closed
[ "topic: not user facing", "module: inductor", "ciflow/inductor" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #153026 * #152775 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,044,513,586
Multiple CUDA graphs utilizing multiple CUDA GPUs encounter illegal memory access during replay
Atream
open
[ "triaged", "module: cuda graphs" ]
3
NONE
### 🐛 Describe the bug When capturing multiple CUDA graphs that use multiple CUDA GPUs, only the buffers related to the last captured CUDA graph are retained. As a result, only the last captured CUDA graph can be replayed successfully, while replaying other CUDA graphs leads to illegal memory access. Testing revealed that manually managing all tensors required during execution outside the CUDA graph allows successful runs. This suggests that the memory pool of previous CUDA graphs might be released or corrupted during subsequent CUDA graph captures. ```python import torch origin_device = torch.device("cuda:0") device_id = 0 TP_size = 2 torch.set_default_device(origin_device) torch.set_default_dtype(torch.bfloat16) cuda_graphs = [1, 2] streams = [torch.cuda.Stream(torch.device(f"cuda:{i}")) for i in range(TP_size)] buffer = [torch.zeros(i, 7168, device = torch.device("cuda:1")) for i in cuda_graphs] # create buffer manually def forward(hidden_states, cuda_graph_idx): orig_stream = torch.cuda.current_stream(origin_device) main_begin_event = torch.cuda.Event() orig_stream.record_event(main_begin_event) for device in range(TP_size): torch.cuda.set_device(torch.device(f"cuda:{device}")) streams[device].wait_event(main_begin_event) with torch.cuda.stream(streams[device]): if device != device_id: # This create a new tensor, will cause bug cur_hidden_states = torch.ones(hidden_states.shape, device=torch.device(f"cuda:{device}")) # use buffer created before, can run # buffer[cuda_graph_idx].fill_(1) if device == device_id: current_ans = hidden_states * 2 end_event = torch.cuda.Event() streams[device].record_event(end_event) orig_stream.wait_event(end_event) torch.cuda.set_device(origin_device) for device in range(TP_size): orig_stream.wait_stream(streams[device]) return current_ans graphs = [torch.cuda.CUDAGraph() for _ in range(len(cuda_graphs))] for i in range(len(cuda_graphs)): print("capturing", i) hidden_states = torch.randn((cuda_graphs[i], 7168), device=origin_device) for warm_up_iters in range(20): forward(hidden_states, i) for device in range(TP_size): torch.cuda.synchronize(device) with torch.cuda.graph(graphs[i]): forward(hidden_states, i) for device in range(TP_size): torch.cuda.synchronize(device) print("replaying", i) graphs[i].replay() for device in range(TP_size): torch.cuda.synchronize(device) for i in reversed(range(len(cuda_graphs))): for device in range(TP_size): torch.cuda.synchronize(device) print("replaying", i) graphs[i].replay() for device in range(TP_size): torch.cuda.synchronize(device) ``` ### Versions Collecting environment information... PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 4.0.1 Libc version: glibc-2.35 Python version: 3.12.9 | packaged by Anaconda, Inc. | (main, Feb 6 2025, 18:56:27) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-119-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.4.131 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090 GPU 1: NVIDIA GeForce RTX 4090 GPU 2: NVIDIA GeForce RTX 4090 GPU 3: NVIDIA GeForce RTX 4090 GPU 4: NVIDIA GeForce RTX 4090 GPU 5: NVIDIA GeForce RTX 4090 GPU 6: NVIDIA GeForce RTX 4090 GPU 7: NVIDIA GeForce RTX 4090 Nvidia driver version: 550.54.15 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 192 On-line CPU(s) list: 0-191 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8488C CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 48 Socket(s): 2 Stepping: 8 CPU max MHz: 3800.0000 CPU min MHz: 800.0000 BogoMIPS: 4800.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 4.5 MiB (96 instances) L1i cache: 3 MiB (96 instances) L2 cache: 192 MiB (96 instances) L3 cache: 210 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-47,96-143 NUMA node1 CPU(s): 48-95,144-191 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] ktransformers==0.2.3.post2+cu124torch26fancy [pip3] numpy==2.2.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.6.0 [pip3] torchaudio==2.6.0 [pip3] torchvision==0.21.0 [pip3] triton==3.2.0 [conda] ktransformers 0.2.3.post2+cu124torch26fancy pypi_0 pypi [conda] numpy 2.2.4 pypi_0 pypi [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] torch 2.6.0 pypi_0 pypi [conda] torchaudio 2.6.0 pypi_0 pypi [conda] torchvision 0.21.0 pypi_0 pypi [conda] triton 3.2.0 pypi_0 pypi cc @mcarilli @ezyang @eellison @penguinwu @BoyuanFeng
true
3,044,502,694
[RFC] Enable XPU+FlexAttention on Intel GPU
liangan1
open
[ "triaged", "enhancement", "oncall: pt2", "module: higher order operators", "module: pt2-dispatcher", "module: xpu", "module: flex attention" ]
1
NONE
### 🚀 The feature, motivation and pitch ## Motivation The Attention has been the critical performance bottleneck in the current LLM models, and FlexAttention is a good choice to cover the broad variants in the transformers series models. With FlexAttention, it is easy for us to enable the paged attention and fused SDPA in the transformers repo on XPU device. Besides, it also provide a candidate to process attention in LLM ecosystem libraries ., e.g., vLLM, SGLang on XPU device. FlexAttention is also a good start point to push the intel triton based GEMM kernel to be matured. FlexAttention provide both flexattention kernel and flexdecoding kernel to cover both compute bound and memory bound GEMM computation, and different shapes should also been supported to serve LLM inference., e.g. head_dim=64, 96, 128, 256. ## Our Plan As you know, FlexAttention is flexible enough to cover all kinds of variant of attention which also means that the dependent software stack need to be strong enough to cooperate with triton template kernel. So, it is still a stretch goal to push the XPU+FlexAttention to be landed in the torch-2.8. ## PR List The FlexAttention is still in active development and the API is not stable yet. - [ ] [[WIP]Enable XPU path for FlexAttention](https://github.com/pytorch/pytorch/pull/143553) ### Alternatives _No response_ ### Additional context _No response_ cc @chauhang @penguinwu @zou3519 @ydwu4 @bdhirsh @gujinghui @EikanWang @fengyuan14 @guangyey @Chillee @drisspg @yanboliang @BoyuanFeng
true
3,044,480,415
Fix Codegen.cmake warning
cyyever
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
6
COLLABORATOR
Fix ``` CMake Warning (dev) in cmake/Codegen.cmake: A logical block opening on the line /var/lib/jenkins/workspace/cmake/Codegen.cmake:393 (if) closes on the line /var/lib/jenkins/workspace/cmake/Codegen.cmake:401 (endif) with mis-matching arguments. ``` by removing the condition in `endif`. We could instead fix it, however, that is not best practice. For example, cmake_lint warns that, and CMake says ``` The optional <condition> argument is supported for backward compatibility only. ```
true
3,044,472,261
XPU inference output abnormal with device 'XPU:1'
maxwell-zhengxu
open
[ "high priority", "triage review", "triaged", "module: xpu" ]
4
NONE
### 🐛 Describe the bug Two intel GPUs environment with work well environment, the inference output is always correct for device 'xpu:0' while random output abnormal for device 'xpu:1' ```python import torch import torchvision.models as models torch.manual_seed(0) model = models.resnet50(weights="ResNet50_Weights.DEFAULT") model.eval() data = torch.rand(1, 3, 224, 224) device = torch.device('xpu:1') # 'xpu:0' model = model.to(device=device, dtype=torch.float16) data = data.to(device, dtype=torch.float16) with torch.no_grad(): ret = model(data) print(ret) print("Execution finished") ``` for 'xpu:0' output: ``` -1.3691e+00, 5.7471e-01, -6.7969e-01, -1.2334e+00, 6.6284e-02, -5.5713e-01, 7.4402e-02, 5.0879e-01, -8.7549e-01, -1.2363e+00, -9.1492e-02, -7.7588e-01, -1.4102e+00, -9.2334e-01, 6.4600e-01, -5.6267e-03, -7.8223e-01, -1.1904e+00, -4.1602e-01, 3.2806e-02, -4.9805e-01, -6.3574e-01, -8.5059e-01, -6.8555e-01, -9.4434e-01, -8.8623e-01, -6.7920e-01, -6.9824e-01, -2.8833e-01, 2.0312e+00]], ``` for 'xpu:1' output(random): ``` nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]], ``` This bug can work around with code "torch.xpu.set_device('xpu:1')", but for one App to use the two XPUs at the same time will have problem. ### Versions Collecting environment information... PyTorch version: 2.7.0+xpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.1 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.12 (main, Feb 4 2025, 14:57:36) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.8.0-58-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 144 On-line CPU(s) list: 0-143 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8452Y CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 36 Socket(s): 2 Stepping: 8 CPU max MHz: 3200.0000 CPU min MHz: 800.0000 BogoMIPS: 4000.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect user_shstk avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req hfi vnmi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr ibt amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 3.4 MiB (72 instances) L1i cache: 2.3 MiB (72 instances) L2 cache: 144 MiB (72 instances) L3 cache: 135 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-35,72-107 NUMA node1 CPU(s): 36-71,108-143 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.1.2 [pip3] pytorch-triton-xpu==3.3.0 [pip3] torch==2.7.0+xpu [pip3] torchaudio==2.7.0+xpu [pip3] torchvision==0.22.0+xpu [conda] Could not collect cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @gujinghui @EikanWang @fengyuan14 @guangyey
true
3,044,465,268
Adding a generic attribute for easier checkpoint discrepancy debugging.
githubsgi
open
[ "triaged", "open source" ]
5
CONTRIBUTOR
Adding a generic attributed called layer_id for the object that recompute_fn is a method of. This ties the checkpointing saved and recompute discrepancies to a layer in the model. topic: not user facing
true
3,044,464,840
Add a project section to pyproject.toml, making uv sync work
ezyang
open
[ "topic: not user facing" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #153020 With this change, I can now run `uv sync -v` and get all dependencies I need and then trigger build of PyTorch. (The `-v` is good because the build takes a long time and uv hides progress by default.) Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
true
3,044,455,802
[RFC][API-Unstable]Enable A16W4 on XPU Device
liangan1
open
[ "triaged", "module: xpu" ]
1
NONE
### 🚀 The feature, motivation and pitch ## Motivation As you know, the generation task with LLM is autoregressive and the GEMM computation of the decoding stage for the next token is memory bound. The weight only quantization with A16W4 has been widely adopted by the LLM inference, especially for the client GPU with single-user inference. It can help to reduce the memory consumption and reduce the memory footprint to speedup the inference. ## Plan We are working the XPU device enabling in torchAO. TorchAO provides multiple quantization recipes for A4W16, e.g., RTN, GPTQ and AWQ. **The goal of torch-2.8 is to provide a performant and comprise int4 solution with RTN and the GPTQ enabling is a stretch goal**. The RTN can provide the reasonable output in the generation task but there may be a big accuracy gap with a specific dataset and metric.  For GPTQ/AWQ, At the current stage, we want to prioritize he GPTQ. In the kernel sides, the int4 matmul with oneDNN should be reused by RTN/GPTQ/AWQ. the current implementation of torchAO uses the float zp and the scale/zp are stacked to one tensor but we need to use int zp. the impact is that we need to change the API of some classes in the torchAO and need more efforts to enable the XPU and make an acceptable design to enable the int zp of GPTQ.  There should be no performance gap with different algorithm. Even with RTN, we also use the group wise quantization. The granularity is similar with different algorithm. ## Features - [x] [int4 WOQ gemm XPU Support #137566](https://github.com/pytorch/pytorch/pull/137566) - [ ] [OneDNN primitive cache support for Int4 WOQ gemm on XPU #147693](https://github.com/pytorch/pytorch/pull/147693/) - [x] [INT4 XPU enabling in torchAO](https://github.com/pytorch/ao/pull/1577) - [ ] [WIP]Enable GPTQ + XPU in torchAO - [ ] Enable AWQ+ XPU in torchAO - [ ] Refactoring the layout design in the torchAO to support both float zp and int zp. ### Alternatives _No response_ ### Additional context _No response_ cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
3,044,434,059
DISABLED test_comprehensive_scatter_xpu_bool (__main__.TestInductorOpInfoXPU)
chuanqi129
closed
[ "triaged", "skipped", "module: xpu" ]
1
COLLABORATOR
Platforms: linux This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22'test%2Finductor%2Ftest_torchinductor_opinfo.py%3A%3ATestInductorOpInfoXPU%3A%3Atest_comprehensive_scatter_xpu_bool'%2C%20'test%2Finductor%2Ftest_torchinductor_opinfo.py%3A%3ATestInductorOpInfoXPU%3A%3Atest_comprehensive_scatter_xpu_int64'%22%5D)). cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
3,044,432,643
DISABLED test_comprehensive_scatter_xpu_int64 (__main__.TestInductorOpInfoXPU)
chuanqi129
closed
[ "triaged", "skipped", "module: xpu" ]
1
COLLABORATOR
Platforms: linux This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22'test%2Finductor%2Ftest_torchinductor_opinfo.py%3A%3ATestInductorOpInfoXPU%3A%3Atest_comprehensive_scatter_xpu_bool'%2C%20'test%2Finductor%2Ftest_torchinductor_opinfo.py%3A%3ATestInductorOpInfoXPU%3A%3Atest_comprehensive_scatter_xpu_int64'%22%5D)). cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
3,044,429,040
inconsistent grads between two types of `allgather`s
gameofdimension
open
[ "oncall: distributed", "module: autograd" ]
0
NONE
### 🐛 Describe the bug I've observed a gradient discrepancy between two PyTorch all-gather implementations: one using the DTensor API, and the other using all_gather_tensor_autograd. My goal is to implement a correct autograd-compatible all-gather operation, but I'm unsure which implementation (if either) produces the right gradients. ```python import os from datetime import timedelta import torch from torch.distributed import init_device_mesh from torch.distributed.tensor import DTensor, Replicate, Shard def make_data(gen, dtype): data = torch.rand(4, 5, requires_grad=True, generator=gen).to( device=torch.cuda.current_device(), dtype=dtype, ) data.retain_grad() return data def init_distributed(): local_rank = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) init_timeout_seconds = 300 torch.distributed.init_process_group( backend="nccl", timeout=timedelta(seconds=init_timeout_seconds), ) def allgather1(mesh, data: torch.Tensor): return DTensor.from_local( data, mesh, [Shard(0)] ).redistribute( mesh, [Replicate()] ).to_local() def allgather2(mesh, data): return torch.distributed._functional_collectives.all_gather_tensor_autograd( data, gather_dim=0, group=mesh.get_group()) def square_fb(out): loss = (out**2).sum() loss.backward() torch.cuda.synchronize() return loss def check1(mesh, data): out = allgather1(mesh, data) loss = square_fb(out) # 1. grad is 2*input assert torch.allclose(data.grad, 2 * data) return out, loss def check2(mesh, data): out = allgather2(mesh, data) loss = square_fb(out) # 2. grad is 2*world_size*input assert torch.allclose(data.grad, 2 * torch.distributed.get_world_size() * data) return out, loss def check_allgather(): init_distributed() world_size = torch.distributed.get_world_size() mesh = init_device_mesh(device_type="cuda", mesh_shape=[world_size]) dtype = torch.float32 rank = torch.distributed.get_rank() data1 = make_data(torch.Generator().manual_seed(10 + rank), dtype) data2 = make_data(torch.Generator().manual_seed(10 + rank), dtype) assert torch.allclose(data1, data2) ag1, loss1 = check1(mesh, data1) ag2, loss2 = check2(mesh, data2) assert torch.allclose(ag1, ag2) # two allgathers produce the same result assert torch.allclose(loss1, loss2) # both forwards are equal too print("all check passed") if __name__ == "__main__": check_allgather() ``` **to run the script** ``` torchrun --nproc-per-node=8 repro.py ### Versions Collecting environment information... PyTorch version: 2.7.0+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.31 Python version: 3.11.9 (main, May 14 2024, 09:36:59) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.10.0-136.36.0.112.4.oe2203sp1.x86_64-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 12.1.105 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A800-SXM4-80GB GPU 1: NVIDIA A800-SXM4-80GB GPU 2: NVIDIA A800-SXM4-80GB GPU 3: NVIDIA A800-SXM4-80GB GPU 4: NVIDIA A800-SXM4-80GB GPU 5: NVIDIA A800-SXM4-80GB GPU 6: NVIDIA A800-SXM4-80GB GPU 7: NVIDIA A800-SXM4-80GB Nvidia driver version: 535.161.07 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 57 bits virtual CPU(s): 128 On-line CPU(s) list: 0-127 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 106 Model name: Intel(R) Xeon(R) Platinum 8352Y CPU @ 2.20GHz Stepping: 6 CPU MHz: 2799.998 CPU max MHz: 3400.0000 CPU min MHz: 800.0000 BogoMIPS: 4400.00 Virtualization: VT-x L1d cache: 3 MiB L1i cache: 2 MiB L2 cache: 80 MiB L3 cache: 96 MiB NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Vulnerable Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Vulnerable Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.26.2 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] torch==2.7.0 [pip3] torchdiffeq==0.2.5 [pip3] torchsde==0.2.6 [pip3] torchvision==0.22.0 [pip3] triton==3.3.0 [conda] Could not collect cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @ezyang @albanD @gqchen @nikitaved @soulitzer @Varal7 @xmfan
true
3,044,413,527
c10d/gloo: add ibverbs backend
d4l3k
open
[ "oncall: distributed", "fb-exported", "ciflow/trunk", "release notes: distributed (c10d)" ]
5
MEMBER
Summary: X-link: https://github.com/pytorch/gloo/pull/437 This provides a new "UnboundBuffer" implementation for Gloo ibverbs backend so it can be used with PyTorch. This currently is passing basic tests such as `reduce_test` and `send_recv_test` but there are a number of failures. Putting this up for review so the follow up fixes are less of a mega PR and also so we can start doing some initial testing with this E2E with PyTorch. Known issues: * support recv from any is not supported * AllreduceBcubeBase2 is failing Test Plan: ``` buck2 run mode/dbgo //gloo/test:send_recv_test_ibverbs buck2 test //gloo/test: GLOO_DEVICE_TRANSPORT=IBVERBS buck2 run @//mode/opt //caffe2/test/distributed:c10d -- -r '.*gloo.*' -f ``` We can't run any of the gloo tests in CI since none of our CI machines have ibverbs so they're disabled by default and need to be manually run. Differential Revision: D73291471 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab
true
3,044,402,645
Operations on different precision tensors in CPU lead to different outputs
Redempt1onzzZZ
closed
[ "module: cpu", "triaged", "module: edge cases" ]
3
NONE
### 🐛 Describe the bug A similar finding with [https://github.com/pytorch/pytorch/issues/152294](#152294), the bug also consist in "torch.addcdiv", it seems that using only number (65536) as input, it will be transform to inf, however when using array ([65536]), the calculation will run normally. ``` import torch input_tensor = torch.zeros([1], dtype=torch.float16, device='cpu') print(input_tensor) tensor1 = torch.tensor([0.01], dtype=torch.float16, device='cpu') print(tensor1) tensor2 = torch.tensor([65536], dtype=torch.float32, device='cpu') print(tensor2) result = torch.addcdiv(input_tensor, tensor1, tensor2, value=0.1) print(result) ```` <img width="236" alt="Image" src="https://github.com/user-attachments/assets/a654941d-1239-4f38-a6cc-7208fa9a103d" /> ``` import torch input_tensor = torch.zeros([1], dtype=torch.float16, device='cpu') print(input_tensor) tensor1 = torch.tensor([0.01], dtype=torch.float16, device='cpu') print(tensor1) tensor2 = torch.tensor(65536, dtype=torch.float32, device='cpu') print(tensor2) result = torch.addcdiv(input_tensor, tensor1, tensor2, value=0.1) print(result) ``` <img width="252" alt="Image" src="https://github.com/user-attachments/assets/d2be34a0-2179-4fc7-b472-ca8622b9c504" /> ### Versions Collecting environment information... PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.11.11 (main, Dec 11 2024, 16:28:39) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.8.0-55-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3 Nvidia driver version: 570.124.06 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6430 CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 Stepping: 8 CPU max MHz: 3400.0000 CPU min MHz: 800.0000 BogoMIPS: 4200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect user_shstk avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req vnmi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr ibt amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 3 MiB (64 instances) L1i cache: 2 MiB (64 instances) L2 cache: 128 MiB (64 instances) L3 cache: 120 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy==1.15.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.5.1 [pip3] triton==3.1.0 [conda] blas 1.0 mkl https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main [conda] mkl 2023.1.0 h213fc3f_46344 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main [conda] mkl-service 2.4.0 py311h5eee18b_2 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main [conda] mkl_fft 1.3.11 py311h5eee18b_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main [conda] mkl_random 1.2.8 py311ha02d727_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main [conda] numpy 1.26.4 py311h08b1b3b_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main [conda] numpy-base 1.26.4 py311hf175353_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] torch 2.5.1 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @jerryzh168
true
3,044,401,500
[Lint] Add install command for GHA step
malfet
closed
[ "Merged", "topic: not user facing" ]
5
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152719 * __->__ #153013 Otherwise, it fails to run the script
true
3,044,401,411
[Testing] Add logic for running MPS tests
malfet
closed
[ "Merged", "topic: not user facing" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #153013 * #152719 * __->__ #153012 Prep change for getting rid of `_mac-test-mps.yml` A complete no-op for now, but will be used by PR above the stack, but they should be landed few days apart to avoid forcing lots of people to rebase their PRs
true
3,044,392,004
[WIP][dynamic shapes] unbacked safer cat, repeat
pianpwk
open
[ "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
With https://github.com/pytorch/pytorch/pull/150483, for https://github.com/pytorch/pytorch/issues/152473 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,044,379,231
Detect NVSHMEM location
kwen2501
closed
[ "Merged", "ciflow/trunk", "release notes: distributed (c10d)" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #153010 ### Changes - Detect NVSHMEM install location via `sysconfig.get_path("purelib")`, which typically resolves to `<conda_env>/lib/python/site-packages`, and NVSHMEM include and lib live under `nvidia/nvshmem` - Added link dir via `target_link_directories` - Removed direct dependency on mlx5 - Added preload rule (following other other NVIDIA libs) ### Plan of Record 1. End user experience: link against NVSHMEM dynamically (NVSHMEM lib size is 100M, similar to NCCL, thus we'd like users to `pip install nvshmem` than torch carrying the bits) 2. Developer experience: at compile time, prefers wheel dependency than using Git submodule General rule: submodule for small lib that torch can statically link with If user pip install a lib, our CI build process should do the same, rather than building from Git submodule (just for its header, for example) 3. Keep `USE_NVSHMEM` to gate non-Linux platforms, like Windows, Mac 4. At configuration time, we should be able to detect whether nvshmem is available, if not, we don't build `NVSHMEMSymmetricMemory` at all. For now, we have symbol dependency on two particular libs from NVSHMEM: - libnvshmem_host.so: contains host side APIs; - libnvshmem_device.a: contains device-side global variables AND device function impls.
true
3,044,337,298
DISABLED test_comprehensive_scatter_xpu_bool (__main__.TestInductorOpInfoXPU)
etaf
open
[ "triaged", "skipped", "module: xpu" ]
1
COLLABORATOR
Platforms: <fill this in or delete. Valid labels are: asan, linux, mac, macos, rocm, win, windows.> This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22'test%2Finductor%2Ftest_torchinductor_opinfo.py%3A%3ATestInductorOpInfoXPU%3A%3Atest_comprehensive_scatter_xpu_bool'%22%5D)). cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
3,044,335,974
DISABLED test_comprehensive_scatter_xpu_int64 (__main__.TestInductorOpInfoXPU)
etaf
open
[ "triaged", "skipped", "module: xpu" ]
1
COLLABORATOR
Platforms: <fill this in or delete. Valid labels are: asan, linux, mac, macos, rocm, win, windows.> This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22'test%2Finductor%2Ftest_torchinductor_opinfo.py%3A%3ATestInductorOpInfoXPU%3A%3Atest_comprehensive_scatter_xpu_int64'%22%5D)). cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
3,044,318,690
Remove redundant type aliases of _device_t for torch.Device (#152952)
sanjai-11
open
[ "oncall: distributed", "module: cpu", "triaged", "module: mkldnn", "open source", "module: amp (automated mixed precision)", "release notes: quantization", "topic: not user facing", "module: inductor", "module: dynamo", "release notes: distributed (checkpoint)", "suppress-bc-linter", "module: compiled autograd", "release notes: inductor (aoti)" ]
3
NONE
Fixes #152952 This PR removes redundant type aliases for `_device_t` and replaces them with `torch.types.Device` where applicable, to make the typing system more consistent across PyTorch. cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @jerryzh168 @gujinghui @PenghuiCheng @jianyuh @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen @snadampal @mcarilli @ptrblck @leslie-fang-intel @voznesenskym @penguinwu @EikanWang @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov @xmfan
true
3,044,295,252
[cutlass backend] Use src code to generate cutlass gemm name
henrylhtsang
open
[ "fb-exported", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
9
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #153006 * #152580 Differential Revision: [D74288965](https://our.internmc.facebook.com/intern/diff/D74288965/) This shaves off 40s for at least small cases, since we don't have to recompile the kernel again. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,044,256,520
[autograd][docs] Add more details on why save_for_backward is important in extending autograd note
soulitzer
open
[ "release notes: autograd" ]
1
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #153094 * __->__ #153005 cc @stas00
true
3,044,255,324
[WIP][Inductor-CPU] int8 WoQ concat linear
sanchitintel
open
[ "open source", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
2
COLLABORATOR
WIP - [ ] Add UT corresponding to torchao pattern - [ ] Add perf data - [ ] Refactor cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,044,226,030
[cutlass backend] Skip cuda lib path if it is torch/lib
henrylhtsang
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
7
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #153003 Differential Revision: [D74284808](https://our.internmc.facebook.com/intern/diff/D74284808/) This is a bit risky for cutlass backend, so decided to separate it out. Tested offline. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,044,220,979
[CI] Use sccache installed in docker image in xla build
clee2000
open
[ "topic: not user facing", "ciflow/pull" ]
2
CONTRIBUTOR
The edited comment should have the info Sccache stopped working on xla at some point near dec 17 2023. I am not sure what commit caused it. I think it was having trouble writing to the cache. Either way, there is an sccache already installed on the docker image, so we should use that instead of a binary from s3 which we're probably no longer sure where it came from/what commit it was built from The one in the docker image is installed here https://github.com/pytorch/xla/blob/69d438ee65cc250c974ca80edd80462ffbb2e163/.github/upstream/Dockerfile#L61 and is also very old, so I have https://github.com/pytorch/xla/pull/9102 to update it
true
3,044,212,130
[cutlass backend][test] re-enable test_cuda_compile_command for fbcode
henrylhtsang
closed
[ "fb-exported", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #153001 Differential Revision: [D74284047](https://our.internmc.facebook.com/intern/diff/D74284047/) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,044,159,796
[export] Unflatten None
angelayi
open
[ "ciflow/trunk", "release notes: export" ]
3
CONTRIBUTOR
Fixes #ISSUE_NUMBER
true
3,044,149,425
`lintrunenr init` fails
malfet
open
[ "module: lint", "triaged", "module: devx" ]
2
CONTRIBUTOR
### 🐛 Describe the bug Attempting to run `lintrunner init` fails ``` % lintrunner init --take FLAKE8 Warning: Could not find a lintrunner config at: '.lintrunner.private.toml'. Continuing without using configuration file. [2025-05-06T22:17:48Z INFO lintrunner::linter] Initializing linter: 'FLAKE8' [2025-05-06T22:17:48Z INFO lintrunner::linter] the init commands are ["python3", "tools/linter/adapters/pip_init.py", "--dry-run=0", "flake8==6.1.0", "flake8-bugbear==23.3.23", "flake8-comprehensions==3.15.0", "flake8-executable==2.1.3", "flake8-logging-format==0.9.0", "flake8-pyi==23.3.1", "flake8-simplify==0.19.3", "mccabe==0.7.0", "pycodestyle==2.11.1", "pyflakes==3.1.0", "torchfix==0.4.0 ; python_version >= \"3.9\" and python_version < \"3.13\""] <MainThread:DEBUG> $ uv pip install --user flake8==6.1.0 flake8-bugbear==23.3.23 flake8-comprehensions==3.15.0 flake8-executable==2.1.3 flake8-logging-format==0.9.0 flake8-pyi==23.3.1 flake8-simplify==0.19.3 mccabe==0.7.0 pycodestyle==2.11.1 pyflakes==3.1.0 torchfix==0.4.0 ; python_version >= "3.9" and python_version < "3.13" error: pip's `--user` is unsupported (use a virtual environment instead) <MainThread:DEBUG> took 38ms Traceback (most recent call last): File "/Users/nshulga/git/pytorch/pytorch/tools/linter/adapters/pip_init.py", line 92, in <module> run_command(pip_args) File "/Users/nshulga/git/pytorch/pytorch/tools/linter/adapters/pip_init.py", line 20, in run_command return subprocess.run(args, check=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/fbcode/platform010/Python3.12.framework/Versions/3.12/lib/python3.12/subprocess.py", line 571, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['uv', 'pip', 'install', '--user', 'flake8==6.1.0', 'flake8-bugbear==23.3.23', 'flake8-comprehensions==3.15.0', 'flake8-executable==2.1.3', 'flake8-logging-format==0.9.0', 'flake8-pyi==23.3.1', 'flake8-simplify==0.19.3', 'mccabe==0.7.0', 'pycodestyle==2.11.1', 'pyflakes==3.1.0', 'torchfix==0.4.0 ; python_version >= "3.9" and python_version < "3.13"']' returned non-zero exit status 2. [2025-05-06T22:17:48Z INFO lintrunner::linter] the status is ExitStatus(unix_wait_status(256)) error: lint initializer for 'FLAKE8' failed with non-zero exit code ``` ### Versions 2.7.0, nightly cc @ZainRizvi @huydhn @clee2000
true
3,044,141,928
[Dynamo][trace_rules] Add torch.distributed.fb.simple_fsdp to LEGACY_MOD_INLINELIST
yf225
closed
[ "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
2
CONTRIBUTOR
Functions / modules in `torch.distributed.fb.simple_fsdp` are guaranteed to be traceable, and inlining into them is prerequisite for having both pre-forward / post-forward hooks to be in the same graph as forward for SimpleFSDP modules. Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152998 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,044,135,504
[Testing] Add copysign from scalar regression test
malfet
closed
[ "Merged", "release notes: python_frontend", "ciflow/mps" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152997 But instead of adding it just for MPS backend, add it to OpInfo Fixes https://github.com/pytorch/pytorch/issues/152582
true
3,044,082,824
DISABLED test_comprehensive_rsub_cuda_float64 (__main__.TestInductorOpInfoCUDA)
pytorch-bot[bot]
open
[ "high priority", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
2
NONE
Platforms: inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_comprehensive_rsub_cuda_float64&suite=TestInductorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41741925240). Over the past 3 hours, it has been determined flaky in 4 workflow(s) with 4 failures and 4 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_comprehensive_rsub_cuda_float64` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1135, in test_wrapper return test(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1434, in only_fn return fn(self, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 2291, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1534, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/mock.py", line 1379, in patched return func(*newargs, **newkeywargs) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 962, in inner raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 954, in inner fn(self, device, dtype, op) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1207, in test_comprehensive raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1182, in test_comprehensive self.check_model_gpu( File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 657, in check_model_gpu check_model( File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 498, in check_model actual = run(*example_inputs, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 676, in _fn raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 876, in _compile_fx_inner raise InductorError(e, currentframe()).with_traceback( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 860, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1476, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1363, in codegen_and_compile compiled_module = graph.compile_to_module() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 2238, in compile_to_module return self._compile_to_module() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 2248, in _compile_to_module mod = self._compile_to_module_lines(wrapper_code) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/graph.py", line 2312, in _compile_to_module_lines mod = PyCodeCache.load_by_key_path( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 3006, in load_by_key_path mod = _reload_python_module(key, path, set_sys_modules=in_toplevel) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/compile_tasks.py", line 31, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) File "/tmp/tmpw_5t4te6/n4/cn43t6hhpisxcmgg35m75zudart56xsryxstmmc3gzkaqtgzcquz.py", line 80, in <module> async_compile.wait(globals()) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 479, in wait self._wait_futures(scope) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 499, in _wait_futures kernel = result.result() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 3508, in result return self.result_fn() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/async_compile.py", line 368, in get_result kernel.precompile( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 325, in precompile self._make_launchers() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 482, in _make_launchers launchers.append(result.make_launcher()) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1279, in make_launcher self.reload_cubin_path() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1271, in reload_cubin_path raise RuntimeError( torch._inductor.exc.InductorError: RuntimeError: ('Cubin file saved by TritonBundler not found at %s', '/tmp/tmpglir1l04/triton/NRV6JB5CRGNKIBVNC3J5DZEHWDXUHJURMVJZAUPVA4B5WSAIZZGA/triton_poi_fused_rsub_0.cubin') Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo" The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 426, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 1147, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 6: SampleInput(input=Tensor[size=(10, 1, 5), device="cuda:0", dtype=torch.float64], args=TensorList[Tensor[size=(10, 5), device="cuda:0", dtype=torch.float64]], kwargs={}, broadcasts_input=True, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=6 python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_rsub_cuda_float64 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_opinfo.py` cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @clee2000 @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @muchulee8 @amjames @aakhundov
true
3,044,071,880
[inductor] dtype promotion error in cat decomp
pianpwk
open
[ "ciflow/trunk", "module: inductor", "module: dynamo", "ciflow/inductor", "release notes: inductor", "merging" ]
4
CONTRIBUTOR
cloning single tensor wasn't following dtype promotion rules for SAM model: https://github.com/pytorch/pytorch/issues/152606 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,044,034,530
[dynamo] Actually support functools.lru_cache
williamwen42
open
[ "triaged", "oncall: pt2", "module: dynamo", "dynamo-functools" ]
0
MEMBER
Followup to https://github.com/pytorch/pytorch/issues/146598 Currently, when Dynamo traces a `lru_cache`d function, we simply trace the underlying function. This is not sound when the underlying function depends on state outside that function (e.g. globals, cells). Fully supporting the cache lookup involved in `lru_cache` would likely involve accessing, modeling, and updating the underlying attributes of the underlying `lru_cache` wrapper object in C. cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
true
3,044,025,410
[inductor] Fix ModularIndexing assumptions
isuruf
open
[ "module: cpu", "open source", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "merging" ]
4
COLLABORATOR
Fixes https://github.com/pytorch/pytorch/issues/151198. Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152993 Since the result of ModularIndexing can be zero due to the modulo operation, we should not make any assumption about ModularIndexing being positive cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @jerryzh168 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,044,012,443
conv2d with int8 on CUDA: GET was unable to find an engine to execute this computation
c-f-h
open
[ "module: cuda", "module: convolution", "triaged" ]
2
NONE
### 🐛 Describe the bug The following script works fine if I switch to CPU, or change the tensor dtypes to float32. Otherwise, see the error below. ```py import torch device = torch.device("cuda") # works fine with "cpu" print(f"Using device: {device}") # works fine if both are float32 input = torch.randint(low=0, high=2, size=(1, 1, 6, 6), dtype=torch.int8).to(device) kernel = torch.randint(low=0, high=2, size=(1, 1, 3, 3), dtype=torch.int8).to(device) output = torch.nn.functional.conv2d(input, kernel, padding=1) print("Convolution successful. Output shape:", output.shape) ``` Traceback: ``` Using device: cuda Traceback (most recent call last): File "C:\Users\Clemens\prog\cuda-conv-int8.py", line 10, in <module> output = torch.nn.functional.conv2d(input, kernel, padding=1) RuntimeError: GET was unable to find an engine to execute this computation ``` ### Versions PyTorch version: 2.7.0+cu128 Is debug build: False CUDA used to build PyTorch: 12.8 ROCM used to build PyTorch: N/A OS: Microsoft Windows 10 Home (10.0.19045 64-bit) GCC version: Could not collect Clang version: Could not collect CMake version: Could not collect Libc version: N/A Python version: 3.13.3 (tags/v3.13.3:6280bb5, Apr 8 2025, 14:47:33) [MSC v.1943 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.19045-SP0 Is CUDA available: True CUDA runtime version: 12.8.93 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce GTX 1060 6GB Nvidia driver version: 572.83 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Name: Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz Manufacturer: GenuineIntel Family: 1 Architecture: 9 ProcessorType: 3 DeviceID: CPU0 CurrentClockSpeed: 3201 MaxClockSpeed: 3201 L2CacheSize: 1024 L2CacheSpeed: None Revision: 15363 Versions of relevant libraries: [pip3] numpy==2.1.2 [pip3] torch==2.7.0+cu128 [pip3] torchaudio==2.7.0+cu128 [pip3] torchvision==0.22.0+cu128 [conda] Could not collect cc @ptrblck @msaroufim @eqy @jerryzh168
true
3,043,985,559
[FrozenSet] Fixes for FrozenSet
guilhermeleobas
open
[ "open source", "module: dynamo", "ciflow/inductor" ]
2
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152991 * #152990 * #152908 * #152907 * #152989 * #152906 * #152905 * #152903 * #152902 * #152901 * #152904 * #152988 * #152987 * #150792 * #152900 * #153070 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,043,985,422
[Set] Raise TypeError if set is called with the wrong number of arguments
guilhermeleobas
open
[ "open source", "module: dynamo", "ciflow/inductor" ]
2
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152991 * __->__ #152990 * #152908 * #152907 * #152989 * #152906 * #152905 * #152903 * #152902 * #152901 * #152904 * #152988 * #152987 * #150792 * #152900 * #153070 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,043,985,252
[Set] Update `set.union` and `set.update` to support *args
guilhermeleobas
open
[ "open source", "module: dynamo", "ciflow/inductor" ]
2
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152991 * #152990 * #152908 * #152907 * __->__ #152989 * #152906 * #152905 * #152903 * #152902 * #152901 * #152904 * #152988 * #152987 * #150792 * #152900 * #153070 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,043,984,885
[Set] Raise `TypeError` if argument is unhashable
guilhermeleobas
open
[ "open source", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
2
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152991 * #152990 * #152908 * #152907 * #152989 * #152906 * #152905 * #152903 * #152902 * #152901 * #152904 * __->__ #152988 * #152987 * #150792 * #152900 * #153070 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,043,984,736
[Set] Handle exception in ConstantVariable operation
guilhermeleobas
open
[ "open source", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
2
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152991 * #152990 * #152908 * #152907 * #152989 * #152906 * #152905 * #152903 * #152902 * #152901 * #152904 * #152988 * __->__ #152987 * #150792 * #152900 * #153070 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,043,976,311
[WIP] Add XPU support for FlightRecorder
frost-intel
open
[ "oncall: distributed", "open source", "ciflow/trunk", "release notes: distributed (c10d)", "topic: not user facing" ]
2
COLLABORATOR
This is the first part of bringing XPU/XCCL support for FlightRecorder. `AcceleratorEvent` is a generic interface for CUDAEvent and XPUEvent, which is used in FlightRecorder to work with both XCCL and NCCL. Since the actual instantiation of the FlightRecorder and DebugInfoWriter objects happens in ProcessGroupNCCL, a future PR in https://github.com/intel/torch-xpu-ops will provide actual FlightRecorder support in ProcessGroupXCCL. For now, I avoid any cosmetic changes to classes/functions/variables with "nccl" names, though this could be changed in the future to indicate that code is device agnostic. cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,043,971,158
`torch.load` can't deserialize `datetime` objects, even with the appropriate `safe_globals`
gtebbutt
open
[ "module: serialization", "triaged" ]
0
NONE
### 🐛 Describe the bug Spent a while chasing this one down on the assumption that a custom class from my code was being inadvertently saved, especially with the earlier message requiring `getattr` to be added to `safe_globals`, but it turns out it'll happen on any output containing a `datetime` object: ```python import torch import datetime import zoneinfo data = { "a": torch.tensor([1,2,3]), "b": datetime.datetime(2025, 1, 1, 12, 0, tzinfo=zoneinfo.ZoneInfo(key="UTC")), } torch.save(data, "data.pt") with torch.serialization.safe_globals([datetime.datetime, getattr, zoneinfo.ZoneInfo]): torch.load("data.pt") ``` ``` Traceback (most recent call last): File "<stdin>", line 2, in <module> File "/usr/local/lib/python3.12/site-packages/torch/serialization.py", line 1524, in load raise pickle.UnpicklingError(_get_wo_message(str(e))) from None _pickle.UnpicklingError: Weights only load failed. In PyTorch 2.6, we changed the default value of the `weights_only` argument in `torch.load` from `False` to `True`. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source. Please file an issue with the following so that we can make `weights_only=True` compatible with your use case: WeightsUnpickler error: Trying to call reduce for unrecognized function <built-in method _unpickle of type object at 0x563383311d20> ``` ### Versions Running in a container built from `docker.io/python:3.12`: ``` PyTorch version: 2.7.0+cu128 Is debug build: False CUDA used to build PyTorch: 12.8 ROCM used to build PyTorch: N/A OS: Debian GNU/Linux 12 (bookworm) (x86_64) GCC version: (Debian 12.2.0-14) 12.2.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.36 Python version: 3.12.10 (main, Apr 9 2025, 00:29:37) [GCC 12.2.0] (64-bit runtime) Python platform: Linux-6.12.26-x86_64-with-glibc2.36 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 5090 Nvidia driver version: 570.144 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: AuthenticAMD Model name: AMD Ryzen 9 9950X 16-Core Processor CPU family: 26 Model: 68 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU(s) scaling MHz: 31% CPU max MHz: 5752.0000 CPU min MHz: 600.0000 BogoMIPS: 8599.98 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx_vnni avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid bus_lock_detect movdiri movdir64b overflow_recov succor smca fsrm avx512_vp2intersect flush_l1d amd_lbr_pmc_freeze Virtualization: AMD-V L1d cache: 768 KiB (16 instances) L1i cache: 512 KiB (16 instances) L2 cache: 16 MiB (16 instances) L3 cache: 64 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.5 [pip3] nvidia-cublas-cu12==12.8.3.14 [pip3] nvidia-cuda-cupti-cu12==12.8.57 [pip3] nvidia-cuda-nvrtc-cu12==12.8.61 [pip3] nvidia-cuda-runtime-cu12==12.8.57 [pip3] nvidia-cudnn-cu12==9.7.1.26 [pip3] nvidia-cufft-cu12==11.3.3.41 [pip3] nvidia-curand-cu12==10.3.9.55 [pip3] nvidia-cusolver-cu12==11.7.2.55 [pip3] nvidia-cusparse-cu12==12.5.7.53 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.26.2 [pip3] nvidia-nvjitlink-cu12==12.8.61 [pip3] nvidia-nvtx-cu12==12.8.55 [pip3] torch==2.7.0+cu128 [pip3] torchmetrics==1.7.1 [pip3] triton==3.3.0 [conda] Could not collect ``` cc @mruberry @mikaylagawarecki
true
3,043,958,275
[hop_schema] support gen_schema for invoke_subgraph
ydwu4
open
[ "topic: not user facing" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152984 * #152974 * #151067
true
3,043,956,173
compile_fx: make a compile event that corresponds to the fx_compile waitcounter
c00w
open
[ "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor" ]
4
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152983 This is a pretty minor change, but by having exact correspondence, we can easily confirm data differences between perfetto and wait counters cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,043,912,132
[torch][ao] Properly strip tracking stats in _fold_conv_bn_qat for 1D
JakeStevens
open
[ "fb-exported", "release notes: quantization", "release notes: AO frontend" ]
5
NONE
Summary: _fold_conv_bn_qat has logic to remove the tracking stats. Currently, this includes a check that includes only torch.nn.modules.batchnorm.BatchNorm2d. As a result, the tracking stats are not properly removed when 1D is used. This diff updates to fix this. Test Plan: Run N7113483 without this fix. {F1977726982} ``` bento kernel build sensorml ``` Re-run with local version of kernel, containing this diff: {F1977727151} Notice that now, num_batches is removed. Differential Revision: D74269649
true
3,043,888,333
Catch TypeError from ValueRanges
jansel
open
[ "module: cpu", "fb-exported", "ciflow/trunk", "release notes: inductor" ]
3
CONTRIBUTOR
Summary: This is a possible workaround to https://fb.workplace.com/groups/1075192433118967/permalink/675836685333300/ Test Plan: Ask poster to confirm fix Differential Revision: D74268733 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @jerryzh168
true
3,043,887,194
Fix `'TensorBox' object has no attribute 'is_input_buffer'`
jansel
open
[ "fb-exported", "ciflow/trunk", "module: inductor", "ciflow/inductor", "release notes: inductor" ]
4
CONTRIBUTOR
Summary: Fix for https://fb.workplace.com/groups/1075192433118967/permalink/1664491270855744/ Test Plan: Used reproducer from D74262030 Differential Revision: D74270090 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,043,823,259
FPE when using `torch.lcm_` with int32 tensor and int16 scalar
SilentTester73
open
[ "module: crash", "module: cpu", "module: error checking", "triaged", "module: edge cases" ]
3
NONE
### 🐛 Describe the bug ### Description When using `torch.lcm_` in-place operation between a large int32 tensor and an int16 scalar, the program crashes with a floating point exception. The operation works fine with smaller tensors, but fails with a specific large tensor containing various integer values. ### Steps to Reproduce I've created a minimal reproduction script: Also available at colab: [https://colab.research.google.com/drive/17Ih4ovpuq_Sjo7S9_2XiYtxX0yUIL7YE?usp=sharing](https://colab.research.google.com/drive/17Ih4ovpuq_Sjo7S9_2XiYtxX0yUIL7YE?usp=sharing) ```python import torch # Create a problematic tensor tensor1 = torch.tensor([ [[-306846766, 58826, 0, 1073741824]], [[0, 0, -794885632, -154301178]], [[-2147483648, -1895825408, -1838202234, 914053657]] ], dtype=torch.int32) # Create a second tensor with a simple scalar value tensor2 = torch.tensor(26213, dtype=torch.int16) # This line causes a floating point exception torch.lcm_(tensor1, tensor2) ``` ### Expected Behavior The function should either: 1. Complete successfully and modify tensor1 in-place with the LCM values, or 2. Raise a proper Python exception with an informative error message when encountering problematic values (like zeros or other values that cause arithmetic errors) ### Actual Behavior The program crashes with a "Floating point exception (core dumped)" message. ``` About to attempt lcm operation Floating point exception (core dumped) ``` ### Versions ``` Collecting environment information... PyTorch version: 2.7.0+cu126 Is debug build: False CUDA used to build PyTorch: 12.6 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 17.0.6 (++20231209124227+6009708b4367-1~exp1~20231209124336.77) CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.12 (main, Feb 4 2025, 14:57:36) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.8.0-58-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 12.5.82 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 384 On-line CPU(s) list: 0-383 Vendor ID: AuthenticAMD Model name: AMD EPYC 9684X 96-Core Processor CPU family: 25 Model: 17 Thread(s) per core: 2 Core(s) per socket: 96 Socket(s): 2 Stepping: 2 BogoMIPS: 5099.98 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin cppc amd_ibpb_ret arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid overflow_recov succor smca fsrm flush_l1d debug_swap Virtualization: AMD-V L1d cache: 6 MiB (192 instances) L1i cache: 6 MiB (192 instances) L2 cache: 192 MiB (192 instances) L3 cache: 2.3 GiB (24 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-95,192-287 NUMA node1 CPU(s): 96-191,288-383 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.5 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-nccl-cu12==2.26.2 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] torch==2.7.0 [pip3] triton==3.3.0 [conda] Could not collect ``` cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @jerryzh168 @malfet
true
3,043,782,002
[Pytorch] Add `torch.cuda.streams.Event` to save torch functions list
dongji-gao
open
[ "fb-exported" ]
4
CONTRIBUTOR
Summary: TSIA Test Plan: WIP Differential Revision: D74266940
true
3,043,769,613
[MegaCache] Make MegaCache generic to allow external plugins registration
tbohutyn
open
[ "triaged", "open source", "topic: not user facing", "module: inductor", "module: dynamo" ]
4
CONTRIBUTOR
Implements #152976 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov @oulgen
true
3,043,763,742
Refactor MegaCache to make it generic
tbohutyn
open
[ "oncall: pt2" ]
0
CONTRIBUTOR
### 🚀 The feature, motivation and pitch Refactoring MegaCache to make it generic would allow for external plugins' caches to register in MegaCache. It would also remove specific cache logic from it. Related to https://github.com/pytorch/pytorch/pull/143341 Proposed PR https://github.com/pytorch/pytorch/pull/152977 ### Alternatives _No response_ ### Additional context _No response_ cc @chauhang @penguinwu
true
3,043,748,868
[dtensor] Extend Partial partition of replicated tensor for min/max reduce
BowenBao
open
[ "oncall: distributed", "triaged", "open source", "topic: improvements", "ciflow/inductor", "release notes: distributed (dtensor)" ]
2
COLLABORATOR
cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,043,721,503
[hop_schema] add HopSchemaGenerator to make it easier to create hop schema
ydwu4
open
[ "topic: not user facing" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152984 * __->__ #152974 * #151067
true
3,043,701,258
Adding XPU support to DTensor examples.
githubsgi
open
[ "oncall: distributed", "triaged", "open source", "topic: not user facing" ]
3
CONTRIBUTOR
Adds XPU support to visualize_sharding_example.py and comm_mode_features_example.py . topic: not user facing cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,043,700,902
avoid falling back to as_strided for non-contiguous in-place reshape.
laithsakka
open
[ "oncall: pt2" ]
0
CONTRIBUTOR
When non-contiguous tensor reshape operates has unbacked symbols, there is a very high probability of hitting data dependent errors if we call view_symint, hence instead we call as_strided instead. We could have cloned as well, but as_strided sounds more efficient. ``` if (!self.sym_numel().has_hint() || !product.has_hint()){ return self.as_strided_symint(sizes, stride.value()); } ``` To not do that we have to relax guard_size_obl from so many places, and as well. build on top of this for that. https://github.com/pytorch/pytorch/pull/152965 that idea is to revisit this in the long run after we have mode the codebase more unbacked friendly. cc @chauhang @penguinwu
true
3,043,698,093
DISABLED test_comprehensive_scatter_xpu_int32 (__main__.TestInductorOpInfoXPU)
chuanqi129
open
[ "triaged", "skipped", "module: xpu" ]
1
COLLABORATOR
Platforms: linux This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22'test%2Finductor%2Ftest_torchinductor_opinfo.py%3A%3ATestInductorOpInfoXPU%3A%3Atest_comprehensive_scatter_xpu_int32'%22%5D)). cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
3,043,694,521
DISABLED test_comprehensive_gather_xpu_int64 (__main__.TestInductorOpInfoXPU)
chuanqi129
open
[ "triaged", "skipped", "module: xpu" ]
1
COLLABORATOR
Platforms: linux This test was disabled because it is failing on main branch ([recent examples](https://torch-ci.com/failure?failureCaptures=%5B%22'test%2Finductor%2Ftest_torchinductor_opinfo.py%3A%3ATestInductorOpInfoXPU%3A%3Atest_comprehensive_gather_xpu_int64'%22%5D)). cc @gujinghui @EikanWang @fengyuan14 @guangyey
true
3,043,681,942
[nativert] Move GraphSignature to pytorch core
yiming0416
open
[ "fb-exported", "topic: not user facing" ]
9
CONTRIBUTOR
Summary: Torch Native Runtime RFC: https://github.com/pytorch/rfcs/pull/72 An in-memory representation of `GraphSignature` for graph specs of an exported program, which will be consumed by the runtime. Test Plan: Added tests under `test/cpp/nativert/test_graph_signature.cpp` Differential Revision: D73895378
true
3,043,660,961
[inductor] Generate synthetic offsets appropriately for autotuning _scaled_grouped_mm
bertmaher
open
[ "topic: not user facing", "module: inductor", "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152968 Summary: The autotuner is using zero-filled tensors to autotune _scaled_grouped_mm and that's not appropriate for the offsets tensor, since it essentially corresponds to "no input" and thus yields invalid perf results. We can't really use the actual input tensors, since we might be compiling this op in the context of an entire graph. So instead, I decided to create a synthetic offsets tensor assuming that each group is (roughly) the same size. I don't have data but I'd guess this approach is OK for MoE since we're generally hoping to load-balance the experts; I'm not sure how well it applies to other scenarios that might be more heavy-tailed. Test Plan: ``` pytest test_matmul_cuda.py -k test_scaled_grouped_gemm_ ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,043,651,973
[ATen][CUDA] Optimize 128 bit vectorization
pytorchbot
closed
[ "open source", "release notes: cuda" ]
1
COLLABORATOR
Fixes #147376. As per request: https://github.com/pytorch/pytorch/pull/145746#pullrequestreview-2642118301 This PR omits sm80 or older of using vec8 kernels due to long compilation and large binary size. cc @ptrblck @msaroufim @eqy @jerryzh168 @manuelcandales @SherlockNoMad @angelayi
true
3,043,651,250
[Memento] On-demand mode using without torch api
mzzchy
open
[ "fb-exported", "topic: not user facing" ]
11
CONTRIBUTOR
Differential Revision: D74179606
true
3,043,618,388
WIP so many changes to generate non-as strided view
laithsakka
open
[ "ciflow/inductor" ]
2
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152965 * #152722 * #148872
true
3,043,614,211
[FSDP2] need dummy forward/backward to stay SPMD
weifengpy
open
[ "oncall: distributed", "triaged" ]
2
CONTRIBUTOR
### 🚀 The feature, motivation and pitch FSDP2 assumes SPMD on every rank, meaning every rank needs to call forward/backward to issue all-gather / reduce-scatter However, user reported two cases that some rank might be skipping forward/backward * torchtune might mask all the activations. they have to create a dummy input to avoid job hanging https://github.com/pbontrager/torchtune/blob/ee2f5999976ce476c8dcb8e0f09dc7258a9b704c/torchtune/modules/loss/cross_entropy_loss.py#L76 * dataloader might return empty input for certain ranks. TODO: add github issue ### Alternatives _No response_ ### Additional context _No response_ cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,043,598,064
DTensor support for dynamic shapes is soft
bdhirsh
open
[ "oncall: distributed", "oncall: pt2" ]
1
CONTRIBUTOR
The state of DTensor + compile + dynamic shapes today is roughly: (1) for generic "pt2-friendly" tensor subclasses, we support compiling them with dynamic shapes. This includes cases where both the outer subclass shape and it's inner tensor shape(s) vary independently. (2) At the same time, dynamic shapes support imposes some extra requirements on tensor subclasses that DTensor does not fully meet today. One way to think of it is that any place where DTensor's code handles a tensor size, the code needs to be written in a way that is aware that this size might be a `torch.SymInt` object instead of a plain `int`. There are a few cases where DTensor handling for SymInts needs some additional work: (1) `DTensorSpec`. Today, this metadata holds the raw sizes/strides of the outer tensor shape. This is mainly a problem, because compile expects any subclass metadata to be able to be treated as a constant (SymInts are not supported). In particular, compile generates guards on the exact value of this metadata, and we will recompile if you have a graph input that is a tensor subclass with slightly different metadata. There are a few ways we could fix this. One easier option might be the following: subclass authors can specify a custom method that allows them to customize how dynamo generates metadata guards. We could try having DTensor define its metadata guards to not include the outer_size/stride arguments on the DTensorSpec, and see if that is enough to avoid problems. Hopefully that is enough. A more "pt2-friendly" option that would also be a more invasive DTensor change would be to remove outer_size/stride from `DTensorSpec` entirely, and instead require any code that needs to access this outer_size/stride to take in the actual DTensor itself as an argument, to read the sizes/strides from. (2) sharding propagation caching. In eager mode, sharding prop uses an lru cache to reduce cpu overhead. Under compile, this cache is problematic because it doesn't support symints. We have some logic in DTensor today to check for symints and skip the cache if there are any, but this logic is brittle. Instead, we should probably have all DTensor caching logic branch on whether or not we are currently inside of the compiler (3) sharding propagation rules themselves. Some of these rules are written to branch on input tensor shapes. This has two potential problems for compile. The first problem is that any branching will cause compile to specialize and emit guards, forcing a recompile if the condition fails. This can be desirable in some cases but not others, depending on whether we would prefer to generate one generic compiled artifact for some compiled DTensor code, or if we want specialized artifacts for different shpes. The second problem is around data dependent shapes. If there is any data-dependent code in the model, then this will manifest inside of compile as tensor's whose shape are "unbacked symints", meaning they have no backing "hint" that compile can take advantage of. When unbacked symints show up inside of the compiler, any code that branches on these shapes will result in a graph break. One way to deal with this is to audit places where we branch on shape, and agree on a "default path" that we can take for some of our sharding prop rules, if the shape is not actually known at compile time. There are pro's and con's to this approach. In the longer run, we may want to generate specialized compiled artifacts for different value ranges of these shapes. There is a related issue here that @tianyu-l ran into around dynamic shapes and sharding prop in eager mode: when dealing with data-dependent operations, the existing sharding prop caching will cache miss on every new shape, incurring significant eager overhead. It might be worth thinking about how to design the compiler-related improvements in the context of this problem. For example: one option might be to hardcode some "obvious" sharding prop rules for TP, that don't require specializing on shape, and use them when we know our shapes are data dependent. I have a very rough prototype of this here: https://github.com/pytorch/pytorch/pull/150582 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @chauhang @penguinwu
true
3,043,571,434
TestNestedTensorOpInfoCUDA.test_compile_backward_matmul_cuda_float32 Test Failure
nWEIdia
open
[ "module: tests", "triaged", "module: nestedtensor" ]
3
COLLABORATOR
### 🐛 Describe the bug Steps to Reproduce: please see https://github.com/pytorch/pytorch/issues/152962#issuecomment-2859328199 `Traceback (most recent call last): File "/usr/lib/python3.12/unittest/case.py", line 58, in testPartExecutor yield File "/usr/lib/python3.12/unittest/case.py", line 539, in subTest yield File "/opt/pytorch/pytorch/test/test_nestedtensor.py", line 8823, in test_compile_backward out_compile = compiled_f(sample.input, *sample.args, **sample.kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/eval_frame.py", line 671, in _fn raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/output_graph.py", line 1569, in _call_user_compiler raise BackendCompilerFailed( File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/output_graph.py", line 1544, in _call_user_compiler compiled_fn = compiler_fn(gm, self.example_inputs()) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/repro/after_dynamo.py", line 150, in __call__ compiled_gm = compiler_fn(gm, example_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/repro/after_dynamo.py", line 150, in __call__ compiled_gm = compiler_fn(gm, example_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/__init__.py", line 2400, in __call__ return self.compiler_fn(model_, inputs_, **self.kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/backends/debugging.py", line 219, in aot_eager_decomp_partition return aot_autograd( ^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/backends/common.py", line 106, in __call__ cg = aot_module_simplified(gm, example_inputs, **self.kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/aot_autograd.py", line 1178, in aot_module_simplified compiled_fn = dispatch_and_compile() ^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/aot_autograd.py", line 1150, in dispatch_and_compile compiled_fn, _ = create_aot_dispatcher_function( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/aot_autograd.py", line 574, in create_aot_dispatcher_function return _create_aot_dispatcher_function( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/aot_autograd.py", line 824, in _create_aot_dispatcher_function compiled_fn, fw_metadata = compiler_fn( ^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/jit_compile_runtime_wrappers.py", line 789, in aot_dispatch_autograd fx_g, joint_inputs, maybe_subclass_meta = aot_dispatch_autograd_graph( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py", line 318, in aot_dispatch_autograd_graph fx_g = _create_graph(joint_fn_to_trace, updated_joint_inputs, aot_config=aot_config) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py", line 55, in _create_graph fx_g = make_fx( ^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2288, in wrapped return make_fx_tracer.trace(f, *args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2226, in trace return self._trace_inner(f, *args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2197, in _trace_inner t = dispatch_trace( ^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_compile.py", line 51, in inner return disable_fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/eval_frame.py", line 850, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1221, in dispatch_trace graph = tracer.trace(root, concrete_args) # type: ignore[arg-type] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/eval_frame.py", line 850, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/_symbolic_trace.py", line 837, in trace (self.create_arg(fn(*args)),), ^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/_symbolic_trace.py", line 691, in flatten_fn tree_out = root_fn(*tree_args) ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1276, in wrapped out = f(*tensors) # type:ignore[call-arg] ^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 717, in inner_fn outs = fn(*args) ^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 819, in joint_fn return inner_fn( ^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 791, in inner_fn wrapped_outs = fn(*all_args) ^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 668, in joint_helper return _functionalized_f_helper(primals, tangents) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 416, in _functionalized_f_helper f_outs = fn(*f_args) ^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 283, in inner_fn_with_anomaly return inner_fn(*args) ^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 268, in inner_fn backward_out = torch.autograd.grad( ^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/autograd/__init__.py", line 451, in grad return handle_torch_function( ^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/overrides.py", line 1721, in handle_torch_function result = mode.__torch_function__(public_api, types, args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1324, in __torch_function__ return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/autograd/__init__.py", line 451, in grad return handle_torch_function( ^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/overrides.py", line 1743, in handle_torch_function result = torch_func_method(public_api, types, args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/nested_tensor.py", line 367, in __torch_function__ return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/autograd/__init__.py", line 502, in grad result = _engine_run_backward( ^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/nested_tensor.py", line 332, in __torch_dispatch__ return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/ops.py", line 218, in inner return func(aten_op, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/ops.py", line 2596, in matmul_backward_default grad_self = torch.matmul(grad, other.transpose(-1, -2)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/nested_tensor.py", line 332, in __torch_dispatch__ return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/ops.py", line 218, in inner return func(aten_op, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/ops.py", line 1250, in matmul_default return torch.stack(_unbind_impl(inp, other)) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/ops.py", line 1158, in _unbind_impl func(a_comp, b_comp) for (a_comp, b_comp) in zip(a.unbind(), b.unbind()) ^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/nested_tensor.py", line 332, in __torch_dispatch__ return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/ops.py", line 218, in inner return func(aten_op, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/ops.py", line 1061, in unbind_int return torch.split(values, lengths_scalars, dim=(ragged_idx - 1)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/functional.py", line 222, in split return tensor.split(split_size_or_sections, dim) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_tensor.py", line 1053, in split return torch._VF.split_with_sizes(self, split_size, dim) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_subclasses/functional_tensor.py", line 511, in __torch_dispatch__ outs_unwrapped = func._op_dk( ^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/utils/_stats.py", line 27, in wrapper return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1426, in __torch_dispatch__ return proxy_call(self, func, self.pre_dispatch, args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 989, in proxy_call track_tensor_tree(out, proxy_out, constant=constant, tracer=tracer) File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 684, in track_tensor_tree wrap_with_proxy(inner_res, proxy_res, constant) File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 658, in wrap_with_proxy wrap_with_proxy(ee, proxy[idx], get_constant(constant, idx)) # type: ignore[index] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 631, in wrap_with_proxy set_meta(proxy, e) File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 501, in set_meta proxy.node.meta["tensor_meta"] = _extract_tensor_metadata(val) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/passes/shape_prop.py", line 55, in _extract_tensor_metadata if result.is_contiguous(memory_format=query_format): ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/sym_node.py", line 588, in guard_size_oblivious r = self.evaluate(size_oblivious=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/sym_node.py", line 510, in evaluate return self.shape_env.evaluate_sym_node(self, size_oblivious) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6711, in evaluate_sym_node return self.evaluate_expr( ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/recording.py", line 263, in wrapper return retlog(fn(*args, **kwargs)) ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6727, in evaluate_expr return self._evaluate_expr( ^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6996, in _evaluate_expr raise self._make_data_dependent_error( torch._dynamo.exc.BackendCompilerFailed: backend='aot_eager_decomp_partition' raised: GuardOnDataDependentSymNode: Could not guard on data-dependent expression Eq(27, u0) (unhinted: Eq(s27, u0)). (Size-like symbols: u0) Caused by: (fx/passes/shape_prop.py:55 in _extract_tensor_metadata) For more information, run with TORCH_LOGS="dynamic" For extended logs when we create symbols, also add TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="u0" If you suspect the guard was triggered from C++, add TORCHDYNAMO_EXTENDED_DEBUG_CPP=1 For more debugging help, see https://docs.google.com/document/d/1HSuTTVvYH1pTew89Rtpeu84Ht3nQEFTYhAX3Ypa_xJs/edit?usp=sharing For C++ stack trace, run with TORCHDYNAMO_EXTENDED_DEBUG_CPP=1 Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo" 2025-05-06, ptyche , main [job↗](https://gitlab-master.nvidia.com/dl/dgx/pytorch/-/jobs/165128384) [ stacktraces ▾](https://dl.gitlab-master-pages.nvidia.com/pytorch/nightly-reports/unit_test_query/?mode=1&value=TestNestedTensorOpInfoCUDA.test_compile_backward_matmul_cuda_float32#) Traceback (most recent call last): File "/usr/lib/python3.12/unittest/case.py", line 58, in testPartExecutor yield File "/usr/lib/python3.12/unittest/case.py", line 539, in subTest yield File "/opt/pytorch/pytorch/test/test_nestedtensor.py", line 8823, in test_compile_backward out_compile = compiled_f(sample.input, *sample.args, **sample.kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/eval_frame.py", line 671, in _fn raise e.remove_dynamo_frames() from None # see TORCHDYNAMO_VERBOSE=1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/output_graph.py", line 1569, in _call_user_compiler raise BackendCompilerFailed( File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/output_graph.py", line 1544, in _call_user_compiler compiled_fn = compiler_fn(gm, self.example_inputs()) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/repro/after_dynamo.py", line 150, in __call__ compiled_gm = compiler_fn(gm, example_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/repro/after_dynamo.py", line 150, in __call__ compiled_gm = compiler_fn(gm, example_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/__init__.py", line 2400, in __call__ return self.compiler_fn(model_, inputs_, **self.kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/backends/debugging.py", line 219, in aot_eager_decomp_partition return aot_autograd( ^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/backends/common.py", line 106, in __call__ cg = aot_module_simplified(gm, example_inputs, **self.kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/aot_autograd.py", line 1178, in aot_module_simplified compiled_fn = dispatch_and_compile() ^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/aot_autograd.py", line 1150, in dispatch_and_compile compiled_fn, _ = create_aot_dispatcher_function( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/aot_autograd.py", line 574, in create_aot_dispatcher_function return _create_aot_dispatcher_function( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/aot_autograd.py", line 824, in _create_aot_dispatcher_function compiled_fn, fw_metadata = compiler_fn( ^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/jit_compile_runtime_wrappers.py", line 789, in aot_dispatch_autograd fx_g, joint_inputs, maybe_subclass_meta = aot_dispatch_autograd_graph( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py", line 318, in aot_dispatch_autograd_graph fx_g = _create_graph(joint_fn_to_trace, updated_joint_inputs, aot_config=aot_config) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py", line 55, in _create_graph fx_g = make_fx( ^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2288, in wrapped return make_fx_tracer.trace(f, *args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2226, in trace return self._trace_inner(f, *args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2197, in _trace_inner t = dispatch_trace( ^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_compile.py", line 51, in inner return disable_fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/eval_frame.py", line 850, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1221, in dispatch_trace graph = tracer.trace(root, concrete_args) # type: ignore[arg-type] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_dynamo/eval_frame.py", line 850, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/_symbolic_trace.py", line 837, in trace (self.create_arg(fn(*args)),), ^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/_symbolic_trace.py", line 691, in flatten_fn tree_out = root_fn(*tree_args) ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1276, in wrapped out = f(*tensors) # type:ignore[call-arg] ^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 717, in inner_fn outs = fn(*args) ^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 819, in joint_fn return inner_fn( ^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 791, in inner_fn wrapped_outs = fn(*all_args) ^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 668, in joint_helper return _functionalized_f_helper(primals, tangents) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 416, in _functionalized_f_helper f_outs = fn(*f_args) ^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 283, in inner_fn_with_anomaly return inner_fn(*args) ^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 268, in inner_fn backward_out = torch.autograd.grad( ^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/autograd/__init__.py", line 451, in grad return handle_torch_function( ^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/overrides.py", line 1721, in handle_torch_function result = mode.__torch_function__(public_api, types, args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1324, in __torch_function__ return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/autograd/__init__.py", line 451, in grad return handle_torch_function( ^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/overrides.py", line 1743, in handle_torch_function result = torch_func_method(public_api, types, args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/nested_tensor.py", line 367, in __torch_function__ return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/autograd/__init__.py", line 502, in grad result = _engine_run_backward( ^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/nested_tensor.py", line 332, in __torch_dispatch__ return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/ops.py", line 218, in inner return func(aten_op, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/ops.py", line 2596, in matmul_backward_default grad_self = torch.matmul(grad, other.transpose(-1, -2)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/nested_tensor.py", line 332, in __torch_dispatch__ return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/ops.py", line 218, in inner return func(aten_op, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/ops.py", line 1250, in matmul_default return torch.stack(_unbind_impl(inp, other)) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/ops.py", line 1158, in _unbind_impl func(a_comp, b_comp) for (a_comp, b_comp) in zip(a.unbind(), b.unbind()) ^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/nested_tensor.py", line 332, in __torch_dispatch__ return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/ops.py", line 218, in inner return func(aten_op, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/nested/_internal/ops.py", line 1061, in unbind_int return torch.split(values, lengths_scalars, dim=(ragged_idx - 1)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/functional.py", line 222, in split return tensor.split(split_size_or_sections, dim) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_tensor.py", line 1053, in split return torch._VF.split_with_sizes(self, split_size, dim) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/_subclasses/functional_tensor.py", line 511, in __torch_dispatch__ outs_unwrapped = func._op_dk( ^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/utils/_stats.py", line 27, in wrapper return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1426, in __torch_dispatch__ return proxy_call(self, func, self.pre_dispatch, args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 989, in proxy_call track_tensor_tree(out, proxy_out, constant=constant, tracer=tracer) File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 684, in track_tensor_tree wrap_with_proxy(inner_res, proxy_res, constant) File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 658, in wrap_with_proxy wrap_with_proxy(ee, proxy[idx], get_constant(constant, idx)) # type: ignore[index] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 631, in wrap_with_proxy set_meta(proxy, e) File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/proxy_tensor.py", line 501, in set_meta proxy.node.meta["tensor_meta"] = _extract_tensor_metadata(val) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/passes/shape_prop.py", line 55, in _extract_tensor_metadata if result.is_contiguous(memory_format=query_format): ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/sym_node.py", line 588, in guard_size_oblivious r = self.evaluate(size_oblivious=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/sym_node.py", line 510, in evaluate return self.shape_env.evaluate_sym_node(self, size_oblivious) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6711, in evaluate_sym_node return self.evaluate_expr( ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/recording.py", line 263, in wrapper return retlog(fn(*args, **kwargs)) ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6727, in evaluate_expr return self._evaluate_expr( ^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6996, in _evaluate_expr raise self._make_data_dependent_error( torch._dynamo.exc.BackendCompilerFailed: backend='aot_eager_decomp_partition' raised: GuardOnDataDependentSymNode: Could not guard on data-dependent expression Eq(27, u0) (unhinted: Eq(s27, u0)). (Size-like symbols: u0) Caused by: (fx/passes/shape_prop.py:55 in _extract_tensor_metadata) For more information, run with TORCH_LOGS="dynamic" For extended logs when we create symbols, also add TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="u0" If you suspect the guard was triggered from C++, add TORCHDYNAMO_EXTENDED_DEBUG_CPP=1 For more debugging help, see https://docs.google.com/document/d/1HSuTTVvYH1pTew89Rtpeu84Ht3nQEFTYhAX3Ypa_xJs/edit?usp=sharing For C++ stack trace, run with TORCHDYNAMO_EXTENDED_DEBUG_CPP=1 Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo"` ### Versions Should be reproducible with nightly binary on A100, H100 etc. cc @mruberry @ZainRizvi @cpuhrsch @jbschlosser @bhosmer @drisspg @soulitzer @davidberard98 @YuqingJ @eqy @ptrblck
true
3,043,543,233
[Dynamo] Remove unused guard PYMODULE_MATCH
jbschlosser
closed
[ "Merged", "ciflow/trunk", "topic: not user facing", "module: dynamo", "ciflow/inductor" ]
3
CONTRIBUTOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152729 * __->__ #152961 * #152872 * #152865 * #152730 * #152728 * #152727 * #152725 Not used anywhere: https://www.internalfb.com/code/search?q=repo%3Afbcode%20PYMODULE_MATCH cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true
3,043,469,694
Change aoti cpp tests to run serially within file
yushangdi
open
[ "ciflow/trunk", "topic: not user facing", "ciflow/inductor", "skip-url-lint" ]
7
CONTRIBUTOR
Fixes #152674 https://github.com/pytorch/pytorch/issues/152889 https://github.com/pytorch/pytorch/issues/152888 https://github.com/pytorch/pytorch/issues/152891 `--dist=loadfile` ensures all tests in the same source file run in the same worker. Tests like `FreeInactiveConstantBufferRuntimeConstantFoldingCuda` expect exclusive access to memory during test time to compute diffs (e.g., initMemory - updateMemory2 == DATASIZE). With `-n 3`, tests run in separate processes, but CUDA device memory is shared — and cudaMemGetInfo() reads device-wide global state. ``` python test/run_test.py --cpp --verbose -i cpp/test_aoti_inference -dist=loadfile ```
true
3,043,427,737
docs: Improve documentation for NCCL timeout / watchdog variables
booxter
open
[ "oncall: distributed", "triaged", "open source", "release notes: distributed (c10d)" ]
2
NONE
cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,043,403,327
Follow up to #152209, remove compat patch
clee2000
open
[ "topic: not user facing" ]
1
CONTRIBUTOR
Remove compat patch that lets PRs that haven't rebased base #152209 still have docker images. Merge this next week
true
3,043,388,225
[CI] Upgrade sccache to 0.10.0
clee2000
closed
[ "Merged", "ciflow/trunk", "topic: not user facing" ]
3
CONTRIBUTOR
Newest release handles cuda better, and I think this fixes the cases I saw where some cuda related builds weren't being cached correctly
true
3,043,298,872
[ROCm] unkip test_non_standard_bool except for failings ops
pragupta
open
[ "module: rocm", "open source", "ciflow/rocm", "ciflow/inductor-rocm" ]
2
CONTRIBUTOR
Fixes #ISSUE_NUMBER cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
3,043,285,407
UNSTABLE pull / linux-docs / build-docs-functorch-false
malfet
closed
[ "module: docs", "module: ci", "triaged", "unstable" ]
2
CONTRIBUTOR
Jobs fails with infinite redirects, likely due to the changes happening to the doc website, see https://github.com/pytorch/pytorch/actions/runs/14862967281/job/41733878657 cc @svekars @sekyondaMeta @AlannaBurke @seemethere @pytorch/pytorch-dev-infra
true
3,043,272,004
DTensor placement propagation for `slice` fails during recompile due to SymInts
lw
open
[ "oncall: distributed", "oncall: pt2" ]
0
CONTRIBUTOR
### 🐛 Describe the bug This code fails: ```py import torch import torch.distributed torch.distributed.init_process_group(backend="nccl", rank=0, world_size=1, device_id=torch.device("cuda", 0), init_method="tcp://127.0.0.1:2743") device_mesh = torch.distributed.device_mesh.DeviceMesh.from_group(torch.distributed.group.WORLD, "cuda") @torch.compile def foo(t): return t[:] t = torch.randn(1024).bfloat16().cuda() dt = torch.distributed.tensor.DTensor.from_local(t, device_mesh, (torch.distributed.tensor.Replicate(),)) torch._dynamo.mark_dynamic(dt, 0) foo(dt) ``` And throws this error: ``` Traceback (most recent call last): File "/home/lw/repro_dtensor_slice.py", line 16, in <module> foo(dt) File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py", line 662, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 1457, in __call__ return self._torchdynamo_orig_callable( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 1238, in __call__ result = self._inner_convert( ^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 619, in __call__ return _compile( ^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 1084, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_utils_internal.py", line 97, in wrapper_function return function(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 780, in compile_inner return _compile_inner(code, one_graph, hooks, transform) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 819, in _compile_inner out_code = transform_code_object(code, transform) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/bytecode_transformation.py", line 1422, in transform_code_object transformations(instructions, code_options) File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 264, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/convert_frame.py", line 737, in transform tracer.run() File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 3499, in run super().run() File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 1345, in run while self.step(): ^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 1254, in step self.dispatch_table[inst.opcode](self, inst) File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 827, in wrapper return inner_fn(self, inst) ^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/symbolic_convert.py", line 421, in impl self.push(fn_var.call_function(self, self.popn(nargs), {})) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/variables/builtin.py", line 1147, in call_function return handler(tx, args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/variables/builtin.py", line 791, in <lambda> return lambda tx, args, kwargs: obj.call_function( ^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/variables/builtin.py", line 1147, in call_function return handler(tx, args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/variables/builtin.py", line 1107, in _handle_insert_op_in_graph return wrap_fx_proxy(tx, proxy) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py", line 2421, in wrap_fx_proxy return wrap_fx_proxy_cls(target_cls=TensorVariable, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py", line 2487, in wrap_fx_proxy_cls return _wrap_fx_proxy( ^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/variables/builder.py", line 2585, in _wrap_fx_proxy example_value = get_fake_value(proxy.node, tx, allow_non_graph_fake=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/utils.py", line 3278, in get_fake_value raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/utils.py", line 3176, in get_fake_value ret_val = wrap_fake_exception( ^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/utils.py", line 2690, in wrap_fake_exception return fn() ^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/utils.py", line 3177, in <lambda> lambda: run_node(tx.output, node, args, kwargs, nnmodule) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/utils.py", line 3374, in run_node raise RuntimeError(make_error_message(e)).with_traceback( File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/utils.py", line 3333, in run_node return node.target(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_compile.py", line 51, in inner return disable_fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py", line 856, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/distributed/tensor/_api.py", line 350, in __torch_dispatch__ return DTensor._op_dispatcher.dispatch( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/distributed/tensor/_dispatch.py", line 160, in dispatch self.sharding_propagator.propagate(op_info) File "/my/conda/env/lib/python3.12/site-packages/torch/distributed/tensor/_sharding_prop.py", line 263, in propagate output_sharding = self.propagate_op_sharding_non_cached(op_info.schema) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/distributed/tensor/_sharding_prop.py", line 286, in propagate_op_sharding_non_cached op_strategy = self.op_strategy_funcs[op_schema.op](strategy_schema) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/my/conda/env/lib/python3.12/site-packages/torch/distributed/tensor/_ops/_tensor_ops.py", line 353, in gen_slice_strategy assert isinstance(end, int) ^^^^^^^^^^^^^^^^^^^^ torch._dynamo.exc.TorchRuntimeError: Dynamo failed to run FX node with fake tensors: call_function <built-in function getitem>(*(DTensor(local_tensor=FakeTensor(..., device='cuda:0', size=(s64,), dtype=torch.bfloat16), device_mesh=DeviceMesh('cuda', [0]), placements=(Replicate(),)), slice(None, None, None)), **{}): got AssertionError() from user code: File "/home/lw/repro_dtensor_slice.py", line 9, in foo return t[:] Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo" ``` Concretely, it seems that the sharding propagation rule for `slice` expects start and end to be ints, whereas they can also be SymInts. This issue has happened in our training code when invoking the same graph with multiple shapes as it triggered a recompilation with dynamic shapes. ### Versions PyTorch 2.7.0 cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @chauhang @penguinwu
true
3,043,159,561
[nativert] Move Placement to pytorch core
yushangdi
open
[ "fb-exported", "ciflow/trunk", "topic: not user facing" ]
13
CONTRIBUTOR
Summary: Move Placement to pytorch core. Using `torch::nativert::isSameDevice` explicitly in code to avoid confusion with the `isSameDevice` in torch namespace. Test Plan: ``` buck run fbcode//mode/dev-nosan //caffe2/test/cpp/nativert:placement_test ./bin/test_nativert ``` OSS and internal CI Differential Revision: D74190745
true
3,043,123,452
Remove redundant type aliases of _device for torch.Device
Skylion007
open
[ "good first issue", "triaged", "actionable" ]
5
COLLABORATOR
### 🚀 The feature, motivation and pitch We should remove redundant type aliases for `_device_t` and replace with `torch.types.Device` where appropriate to make the typing system a bit more consistent. #152935 is a good step in that direction ### Alternatives _No response_ ### Additional context _No response_
true
3,043,119,298
[ROCm] Ck gemm architecture guard
alugorey
open
[ "module: rocm", "triaged", "open source" ]
2
CONTRIBUTOR
Prevents CK gemms from being built unless explicitly specified. USE_ROCM_CK_GEMM controls the build, on by default on ROCm platform cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
3,043,110,284
Add NestedTensorHPU to to_padded_tensor in native_functions.yaml
sfraczek
open
[ "triaged", "open source", "ciflow/xpu", "release notes: xpu" ]
5
NONE
null
true
3,043,004,042
[dtensor] add privateuse1 SDPA op support to DTensor
1274085042
open
[ "oncall: distributed", "triaged", "open source" ]
2
CONTRIBUTOR
**Summary** This PR adds _scaled_dot_product_fused_attention_overrideable and _scaled_dot_product_fused_attention_overrideable_backward to DTensor ops @drisspg @fegin @d4l3k @wanchaol @albanD cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,042,998,223
[Linter] Add linter to detect device-bias hard code in test cases.
etaf
open
[ "open source", "topic: not user facing" ]
2
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #152948 * #152945 Since XPU does not gate community pull requests, we’ve observed that contributors often hardcode "cuda" in functions decorated with @requires_gpu() when adding new test cases. This causes the tests to fail on XPU and breaks XPU CI. This PR adds a linter to detect such issues automatically. An example is shown below. ``` Error (TEST_DEVICE_BIAS) [device-bias] `@requires_gpu` function should not hardcode device='cuda' 11670 | .contiguous() 11671 | ) 11672 | >>> 11673 | inp = torch.rand((64, 64), device="cuda") * 2 - 1 11674 | boundaries = torch.tensor([-0.9, -0.8, 0.1, 0.2, 0.5, 0.9]) 11675 | 11676 | self.common(fn, (inp, boundaries), check_lowp=False) Error (TEST_DEVICE_BIAS) [device-bias] `@requires_gpu` function should not hardcode .cuda() call 11700 | self.assertEqual(ref, res) 11701 | 11702 | for offset2 in (0, 1, 2, 3, 4): >>> 11703 | base2 = torch.randn(64 * 64 + 64, dtype=torch.float32).cuda() 11704 | inp2 = torch.as_strided(base2, (64, 64), (64, 1), offset2) 11705 | ref2 = fn(inp2) 11706 | res2 = fn_c(inp2) Error (TEST_DEVICE_BIAS) [device-bias] `@requires_gpu` function should not hardcode torch.device('cuda:0') 11723 | return x.sin() + x.cos() 11724 | 11725 | base = torch.randn( >>> 11726 | 64 * 64 + 64, dtype=torch.float32, device=torch.device("cuda:0") 11727 | ) 11728 | 11729 | inp1 = torch.as_strided(base, (32, 32), (32, 1), 4) Error (TEST_DEVICE_BIAS) [device-bias] `@requires_gpu` function should not hardcode .to('cuda') call 11771 | torch.manual_seed(42) 11772 | base = torch.randn(64 * 64 + 64, dtype=torch.float32, device=self.device) 11773 | torch.manual_seed(42) >>> 11774 | base_ref = torch.randn(64 * 64 + 64, dtype=torch.float32).to("cuda") 11775 | 11776 | inp = torch.as_strided(base, size, stride, offset) 11777 | inp_ref = torch.as_strided(base_ref, size, stride, offset) ```
true
3,042,984,947
Clean up of CUTLASS_VERSION
narekmalk
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing" ]
10
CONTRIBUTOR
Fixes #152847
true
3,042,957,740
[dtensor] add privateuse1 SDPA op support to DTensor
1274085042
closed
[ "oncall: distributed", "open source" ]
3
CONTRIBUTOR
**Summary** This PR adds _scaled_dot_product_fused_attention_overrideable and _scaled_dot_product_fused_attention_overrideable_backward to DTensor ops @drisspg @fegin @d4l3k @wanchaol @albanD cc @H-Huang @awgu @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k
true
3,042,791,350
[Break XPU] Fix XPU UT failures introduced by community.
etaf
closed
[ "open source", "Merged", "ciflow/trunk", "topic: not user facing", "module: inductor", "ciflow/inductor", "keep-going", "ciflow/xpu" ]
3
COLLABORATOR
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #152948 * __->__ #152945 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @kadeng @muchulee8 @amjames @chauhang @aakhundov
true
3,042,756,025
DISABLED test_compiler_collectives_automatic_dynamic_tensor (__main__.TestMultiProc)
pytorch-bot[bot]
open
[ "high priority", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: dynamo" ]
2
NONE
Platforms: inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_compiler_collectives_automatic_dynamic_tensor&suite=TestMultiProc&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41701856727). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_compiler_collectives_automatic_dynamic_tensor` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 605, in wrapper self._join_processes(fn) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 845, in _join_processes self._check_return_codes(elapsed_time) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 894, in _check_return_codes raise RuntimeError(error) RuntimeError: Process 0 exited with error code 10 and exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 734, in run_test getattr(self, test_name)() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 607, in wrapper fn() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/var/lib/jenkins/pytorch/test/distributed/test_dynamo_distributed.py", line 901, in test_compiler_collectives_automatic_dynamic_tensor self.assertEqual(res[0], r) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4095, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Scalars are not equal! Expected 3 but got 2. Absolute difference: 1 Relative difference: 0.3333333333333333 To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/distributed/test_dynamo_distributed.py TestMultiProc.test_compiler_collectives_automatic_dynamic_tensor This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `distributed/test_dynamo_distributed.py` cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @clee2000 @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @amjames
true
3,042,755,895
DISABLED test_comprehensive_ormqr_cuda_float64 (__main__.TestInductorOpInfoCUDA)
pytorch-bot[bot]
open
[ "high priority", "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: inductor" ]
2
NONE
Platforms: inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_comprehensive_ormqr_cuda_float64&suite=TestInductorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/41707147808). Over the past 3 hours, it has been determined flaky in 4 workflow(s) with 4 failures and 4 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_comprehensive_ormqr_cuda_float64` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1135, in test_wrapper return test(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1434, in only_fn return fn(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 2291, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1534, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/unittest/mock.py", line 1396, in patched return func(*newargs, **newkeywargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 962, in inner raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 954, in inner fn(self, device, dtype, op) File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1207, in test_comprehensive raise e File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor_opinfo.py", line 1182, in test_comprehensive self.check_model_gpu( File "/opt/conda/envs/py_3.12/lib/python3.12/contextlib.py", line 81, in inner return func(*args, **kwds) ^^^^^^^^^^^^^^^^^^^ File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 657, in check_model_gpu check_model( File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 608, in check_model actual_grad = compute_grads(example_inputs, kwargs, actual, grads) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/var/lib/jenkins/workspace/test/inductor/test_torchinductor.py", line 406, in compute_grads return torch.autograd.grad( ^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/autograd/__init__.py", line 503, in grad result = _engine_run_backward( ^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/autograd/graph.py", line 824, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/autograd/function.py", line 307, in apply return user_fn(self, *args) ^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 2191, in backward return impl_fn() ^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 2177, in impl_fn out = CompiledFunction._backward_impl(ctx, all_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 2272, in _backward_impl CompiledFunction.compiled_bw = aot_config.bw_compiler( ^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_functorch/aot_autograd.py", line 483, in __call__ return self.compiler_fn(gm, example_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_dynamo/backends/common.py", line 73, in _wrapped_bw_compiler disable( File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py", line 857, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_utils_internal.py", line 97, in wrapper_function return function(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 2223, in bw_compiler return inner_compile( ^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 708, in compile_fx_inner return wrap_compiler_debug(_compile_fx_inner, compiler_name="inductor")( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_dynamo/repro/after_aot.py", line 124, in debug_wrapper inner_compiled_fn = compiler_fn(gm, example_inputs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 876, in _compile_fx_inner raise InductorError(e, currentframe()).with_traceback( File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 860, in _compile_fx_inner mb_compiled_graph = fx_codegen_and_compile( ^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 1476, in fx_codegen_and_compile return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/compile_fx.py", line 1363, in codegen_and_compile compiled_module = graph.compile_to_module() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/graph.py", line 2234, in compile_to_module return self._compile_to_module() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/graph.py", line 2281, in _compile_to_module mod = PyCodeCache.load_by_key_path( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/codecache.py", line 3006, in load_by_key_path mod = _reload_python_module(key, path, set_sys_modules=in_toplevel) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/compile_tasks.py", line 31, in _reload_python_module exec(code, mod.__dict__, mod.__dict__) File "/tmp/tmpe31m95k2/dl/cdl3fhy2acur7hgkx32o2kxjrlda4roawc7calagde6llm4te4dk.py", line 692, in <module> async_compile.wait(globals()) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 479, in wait self._wait_futures(scope) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 499, in _wait_futures kernel = result.result() ^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/codecache.py", line 3508, in result return self.result_fn() ^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/async_compile.py", line 368, in get_result kernel.precompile( File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 325, in precompile self._make_launchers() File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 482, in _make_launchers launchers.append(result.make_launcher()) ^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1279, in make_launcher self.reload_cubin_path() File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/_inductor/runtime/triton_heuristics.py", line 1271, in reload_cubin_path raise RuntimeError( torch._inductor.exc.InductorError: RuntimeError: ('Cubin file saved by TritonBundler not found at %s', '/tmp/tmppjb75otd/triton/G6M2VGPKEHZ2RQ5ZRCTYQ7EEOPMKVLP7DKLIAK74WLFX4XDVD6WA/triton_poi_fused_mul_sub_6.cubin') The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 3154, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 426, in instantiated_test result = test(self, **param_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1215, in dep_fn return fn(slf, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_utils.py", line 1612, in wrapper fn(*args, **kwargs) File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/testing/_internal/common_device_type.py", line 1147, in test_wrapper raise e_tracked from e Exception: Caused by sample input at index 16: SampleInput(input=Tensor[size=(2, 2), device="cuda:0", dtype=torch.float64, contiguous=False], args=TensorList[Tensor[size=(2,), device="cuda:0", dtype=torch.float64], Tensor[size=(2, 2), device="cuda:0", dtype=torch.float64]], kwargs={'left': 'True', 'transpose': 'True'}, broadcasts_input=False, name='') To execute this test, run the following from the base repo dir: PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=16 python test/inductor/test_torchinductor_opinfo.py TestInductorOpInfoCUDA.test_comprehensive_ormqr_cuda_float64 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_opinfo.py` cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @clee2000 @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @muchulee8 @amjames @aakhundov
true
3,042,748,855
aten._scaled_dot_product_efficient_attention returns LSE padded to next highest multiple of 32
a-r-r-o-w
open
[ "module: cuda", "triaged", "module: sdpa" ]
2
CONTRIBUTOR
### 🐛 Describe the bug Hi! This is less of a bug report and more of an ask of why the behaviour is this way. With the following code to obtain LSE from efficient attention backend, the shape of the LSE tensor is `[1, 2, 32]`. It is expected that the size in dim=2 should match the sequence length, which is `8` in this case. Essentially, the LSE tensor has seqlen rounded up to the next highest multiple of 32 (for example, qkv with `seqlen=42` would result in LSE tensor of shape `[b, n, 64]`) With cudnn and flash backends, we get the LSE tensor in correct shape `[1, 2, 8]`. It makes me wonder why this is the behaviour, and if this makes it a requirement for [CP with efficient attention](https://github.com/pytorch/pytorch/blob/bc11afd41fc68637000dcd9c14128c75d9361443/torch/distributed/tensor/experimental/_attention.py#L247) to have seq_len % 32 == 0 (because otherwise the shape of sdpa output tensors and LSE will not match on [this](https://github.com/pytorch/pytorch/blob/bc11afd41fc68637000dcd9c14128c75d9361443/torch/distributed/tensor/experimental/_attention.py#L156) line). Although very simple to unpad out the extra values, any pointers to the code that automatically does this internally for flash/cudnn would be great! Code: ```python import torch sdpa = torch.ops.aten._scaled_dot_product_efficient_attention # sdpa = torch.ops.aten._scaled_dot_product_cudnn_attention seq_len = 8 query = torch.randn(1, 2, seq_len, 8).to("cuda", dtype=torch.bfloat16) key = torch.randn(1, 2, seq_len, 8).to("cuda", dtype=torch.bfloat16) value = torch.randn(1, 2, seq_len, 8).to("cuda", dtype=torch.bfloat16) output, lse, *_ = sdpa( query=query, key=key, value=value, attn_bias=None, compute_log_sumexp=True, dropout_p=0, is_causal=False, scale=0, ) print(lse.shape) print(lse) ``` Output: ``` torch.Size([1, 2, 32]) tensor([[[2.0794, 2.0794, 2.0794, 2.0794, 2.0794, 2.0794, 2.0794, 2.0794, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf], [2.0794, 2.0794, 2.0794, 2.0794, 2.0794, 2.0794, 2.0794, 2.0794, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf]]], device='cuda:0') ``` ### Versions ``` PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 Clang version: 10.0.0-4ubuntu1 CMake version: version 3.16.3 Libc version: glibc-2.31 Python version: 3.10.14 (main, Jul 10 2024, 22:05:36) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.4.0-166-generic-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 12.3.52 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-80GB GPU 1: NVIDIA A100-SXM4-80GB GPU 2: NVIDIA A100-SXM4-80GB GPU 3: NVIDIA DGX Display GPU 4: NVIDIA A100-SXM4-80GB Nvidia driver version: 535.129.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 43 bits physical, 48 bits virtual CPU(s): 128 On-line CPU(s) list: 0-127 Thread(s) per core: 2 Core(s) per socket: 64 Socket(s): 1 NUMA node(s): 1 Vendor ID: AuthenticAMD CPU family: 23 Model: 49 Model name: AMD EPYC 7742 64-Core Processor Stepping: 0 Frequency boost: enabled CPU MHz: 2591.593 CPU max MHz: 2250,0000 CPU min MHz: 1500,0000 BogoMIPS: 4491.68 Virtualization: AMD-V L1d cache: 2 MiB L1i cache: 2 MiB L2 cache: 32 MiB L3 cache: 256 MiB NUMA node0 CPU(s): 0-127 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Vulnerable Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip rdpid overflow_recov succor smca sme sev sev_es Versions of relevant libraries: [pip3] came-pytorch==0.1.3 [pip3] clip-anytorch==2.6.0 [pip3] dctorch==0.1.2 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] onnx==1.17.0 [pip3] onnxruntime==1.20.1 [pip3] pytorch-lightning==2.4.0 [pip3] pytorch_retinaface==0.1.0 [pip3] pytorch-triton==3.1.0+5fe38ffd73 [pip3] torch==2.6.0 [pip3] torch-optimi==0.2.1 [pip3] torch-tb-profiler==0.4.3 [pip3] torchao==0.10.0 [pip3] torchdata==0.10.1 [pip3] torchdiffeq==0.2.4 [pip3] torchmetrics==1.4.1 [pip3] torchsde==0.2.6 [pip3] torchvision==0.21.0 [pip3] triton==3.2.0 [conda] Could not collect ``` cc @ptrblck @msaroufim @eqy @jerryzh168 @albanD @XilunWu
true
3,042,681,757
ROCm: no HIP device available if device is already initialized
stefanozampini
open
[ "module: rocm", "triaged" ]
0
NONE
### 🐛 Describe the bug If I first initialize the HIP environment from `cupy`, `torch` does not detect it ``` $ python -c 'import cupy; print(cupy.cuda.is_available()); import torch; print(torch.cuda.is_available())' True False ``` However, as can be seen below, it should ``` $ python -c 'import cupy; print(cupy.cuda.is_available())' True $ python -c 'import torch; print(torch.cuda.is_available())' True $ python -c 'import cupy; import torch; print(torch.cuda.is_available())' True $ python -c 'for _ in range(2): import torch; print(torch.cuda.is_available()); import cupy; print(cupy.cuda.is_available())' True True True True ``` ``` $ python -c 'import torch; print(torch.zeros(0).to("cuda").device)' cuda:0 $ python -c 'import cupy; print(cupy.zeros(0).device)' <CUDA Device 0> ``` ### Versions ``` $ python collect_env.py Collecting environment information... PyTorch version: 2.7.0+rocm6.3 Is debug build: False CUDA used to build PyTorch: N/A ROCM used to build PyTorch: 6.3.42131-fa1d09cbd OS: Ubuntu 24.04.2 LTS (x86_64) GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.39 Python version: 3.12.3 (main, Feb 4 2025, 14:48:35) [GCC 13.3.0] (64-bit runtime) Python platform: Linux-5.19.0-46-generic-x86_64-with-glibc2.39 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: AMD Instinct MI100 (gfx908:sramecc+:xnack-) Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: 6.3.42131 MIOpen runtime version: 3.3.0 Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Vendor ID: AuthenticAMD Model name: AMD EPYC 7713 64-Core Processor CPU family: 25 Model: 1 Thread(s) per core: 1 Core(s) per socket: 64 Socket(s): 2 Stepping: 1 Frequency boost: enabled CPU(s) scaling MHz: 43% CPU max MHz: 3720.7029 CPU min MHz: 1500.0000 BogoMIPS: 4000.22 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin brs arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm Virtualization: AMD-V L1d cache: 4 MiB (128 instances) L1i cache: 4 MiB (128 instances) L2 cache: 64 MiB (128 instances) L3 cache: 512 MiB (16 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-63 NUMA node1 CPU(s): 64-127 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.5 [pip3] pytorch-triton-rocm==3.3.0 [pip3] torch==2.7.0+rocm6.3 [pip3] torchaudio==2.7.0+rocm6.3 [pip3] torchvision==0.22.0+rocm6.3 [conda] Could not collect ``` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd
true
3,042,513,699
[Don't merge] Debug
mengfei25
open
[ "triaged", "open source", "module: dynamo" ]
3
CONTRIBUTOR
cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
true