id
stringlengths
14
15
text
stringlengths
13
2.7k
source
stringlengths
60
181
dc8054ac6ee4-6
:param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks :param tags: Optional list of tags associated with the retriever. Defaults to None These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Parameters metadata – Optional metadata associated with the retriever. Defaults to None This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Returns List of relevant documents invoke(input: str, config: Optional[RunnableConfig] = None) → List[Document]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.google_vertex_ai_search.GoogleVertexAIMultiTurnSearchRetriever.html
dc8054ac6ee4-7
classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.google_vertex_ai_search.GoogleVertexAIMultiTurnSearchRetriever.html
dc8054ac6ee4-8
classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.google_vertex_ai_search.GoogleVertexAIMultiTurnSearchRetriever.html
dc8054ac6ee4-9
added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain_core.runnables.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[langchain_core.runnables.utils.Output]¶ The type of output this runnable produces specified as a type annotation. property client_options: ClientOptions¶ property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”}
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.google_vertex_ai_search.GoogleVertexAIMultiTurnSearchRetriever.html
dc8054ac6ee4-10
For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.google_vertex_ai_search.GoogleVertexAIMultiTurnSearchRetriever.html
382b9f0b79a8-0
langchain_community.retrievers.llama_index.LlamaIndexRetriever¶ class langchain_community.retrievers.llama_index.LlamaIndexRetriever[source]¶ Bases: BaseRetriever LlamaIndex retriever. It is used for the question-answering with sources over an LlamaIndex data structure. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param index: Any = None¶ LlamaIndex index to query. param metadata: Optional[Dict[str, Any]] = None¶ Optional metadata associated with the retriever. Defaults to None This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a retriever with its use case. param query_kwargs: Dict [Optional]¶ Keyword arguments to pass to the query method. param tags: Optional[List[str]] = None¶ Optional list of tags associated with the retriever. Defaults to None These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a retriever with its use case. async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.llama_index.LlamaIndexRetriever.html
382b9f0b79a8-1
e.g., if the underlying runnable uses an API which supports a batch mode. async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks :param tags: Optional list of tags associated with the retriever. Defaults to None These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Parameters metadata – Optional metadata associated with the retriever. Defaults to None This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Returns List of relevant documents async ainvoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → List[Document]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.llama_index.LlamaIndexRetriever.html
382b9f0b79a8-2
Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input – The input to the runnable. config – The config to use for the runnable. diff – Whether to yield diffs between each step, or the current state. with_streamed_output_list – Whether to yield the streamed_output list. include_names – Only include logs with these names. include_types – Only include logs with these types. include_tags – Only include logs with these tags. exclude_names – Exclude logs with these names. exclude_types – Exclude logs with these types. exclude_tags – Exclude logs with these tags. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream.
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.llama_index.LlamaIndexRetriever.html
382b9f0b79a8-3
Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.llama_index.LlamaIndexRetriever.html
382b9f0b79a8-4
Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.llama_index.LlamaIndexRetriever.html
382b9f0b79a8-5
This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks :param tags: Optional list of tags associated with the retriever. Defaults to None These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Parameters metadata – Optional metadata associated with the retriever. Defaults to None This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Returns List of relevant documents
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.llama_index.LlamaIndexRetriever.html
382b9f0b79a8-6
and passed as arguments to the handlers defined in callbacks. Returns List of relevant documents invoke(input: str, config: Optional[RunnableConfig] = None) → List[Document]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.llama_index.LlamaIndexRetriever.html
382b9f0b79a8-7
by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable.
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.llama_index.LlamaIndexRetriever.html
382b9f0b79a8-8
Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.llama_index.LlamaIndexRetriever.html
382b9f0b79a8-9
between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain_core.runnables.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[langchain_core.runnables.utils.Output]¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.llama_index.LlamaIndexRetriever.html
a2dd37b186f8-0
langchain.retrievers.self_query.timescalevector.TimescaleVectorTranslator¶ class langchain.retrievers.self_query.timescalevector.TimescaleVectorTranslator[source]¶ Translate the internal query language elements to valid filters. Attributes COMPARATOR_MAP OPERATOR_MAP allowed_comparators allowed_operators Subset of allowed logical operators. Methods __init__() visit_comparison(comparison) Translate a Comparison. visit_operation(operation) Translate an Operation. visit_structured_query(structured_query) Translate a StructuredQuery. __init__()¶ visit_comparison(comparison: Comparison) → client.Predicates[source]¶ Translate a Comparison. visit_operation(operation: Operation) → client.Predicates[source]¶ Translate an Operation. visit_structured_query(structured_query: StructuredQuery) → Tuple[str, dict][source]¶ Translate a StructuredQuery.
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.self_query.timescalevector.TimescaleVectorTranslator.html
7ef12952ec6e-0
langchain_experimental.rl_chain.metrics.MetricsTrackerRollingWindow¶ class langchain_experimental.rl_chain.metrics.MetricsTrackerRollingWindow(window_size: int, step: int)[source]¶ Attributes score Methods __init__(window_size, step) on_decision() on_feedback(value) to_pandas() __init__(window_size: int, step: int)[source]¶ on_decision() → None[source]¶ on_feedback(value: float) → None[source]¶ to_pandas() → pd.DataFrame[source]¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.metrics.MetricsTrackerRollingWindow.html
70f120a4a2af-0
langchain_experimental.rl_chain.vw_logger.VwLogger¶ class langchain_experimental.rl_chain.vw_logger.VwLogger(path: Optional[Union[str, PathLike]])[source]¶ Methods __init__(path) log(vw_ex) logging_enabled() __init__(path: Optional[Union[str, PathLike]])[source]¶ log(vw_ex: str) → None[source]¶ logging_enabled() → bool[source]¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.vw_logger.VwLogger.html
380d41fca1ab-0
langchain_experimental.rl_chain.base.parse_lines¶ langchain_experimental.rl_chain.base.parse_lines(parser: vw.TextFormatParser, input_str: str) → List['vw.Example'][source]¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.parse_lines.html
08a9330de845-0
langchain_experimental.rl_chain.base.stringify_embedding¶ langchain_experimental.rl_chain.base.stringify_embedding(embedding: List) → str[source]¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.stringify_embedding.html
fe16e35423e0-0
langchain_experimental.rl_chain.pick_best_chain.PickBestEvent¶ class langchain_experimental.rl_chain.pick_best_chain.PickBestEvent(inputs: Dict[str, Any], to_select_from: Dict[str, Any], based_on: Dict[str, Any], selected: Optional[PickBestSelected] = None)[source]¶ Attributes Methods __init__(inputs, to_select_from, based_on[, ...]) __init__(inputs: Dict[str, Any], to_select_from: Dict[str, Any], based_on: Dict[str, Any], selected: Optional[PickBestSelected] = None)[source]¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBestEvent.html
45a636eaedaa-0
langchain_experimental.rl_chain.base.embed_string_type¶ langchain_experimental.rl_chain.base.embed_string_type(item: Union[str, _Embed], model: Any, namespace: Optional[str] = None) → Dict[str, Union[str, List[str]]][source]¶ Helper function to embed a string or an _Embed object.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.embed_string_type.html
0fc20452e31a-0
langchain_experimental.rl_chain.base.VwPolicy¶ class langchain_experimental.rl_chain.base.VwPolicy(model_repo: ModelRepository, vw_cmd: List[str], feature_embedder: Embedder, vw_logger: VwLogger, *args: Any, **kwargs: Any)[source]¶ Methods __init__(model_repo, vw_cmd, ...) learn(event) log(event) predict(event) save() __init__(model_repo: ModelRepository, vw_cmd: List[str], feature_embedder: Embedder, vw_logger: VwLogger, *args: Any, **kwargs: Any)[source]¶ learn(event: TEvent) → None[source]¶ log(event: TEvent) → None[source]¶ predict(event: TEvent) → Any[source]¶ save() → None[source]¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.VwPolicy.html
54147199d466-0
langchain_experimental.rl_chain.base.SelectionScorer¶ class langchain_experimental.rl_chain.base.SelectionScorer[source]¶ Bases: Generic[TEvent], ABC, BaseModel Abstract method to grade the chosen selection or the response of the llm Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.SelectionScorer.html
54147199d466-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.SelectionScorer.html
54147199d466-2
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ abstract score_response(inputs: Dict[str, Any], llm_response: str, event: TEvent) → float[source]¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.SelectionScorer.html
eb8f3f63ad26-0
langchain_experimental.rl_chain.pick_best_chain.PickBest¶ class langchain_experimental.rl_chain.pick_best_chain.PickBest[source]¶ Bases: RLChain[PickBestEvent] PickBest is a class designed to leverage the Vowpal Wabbit (VW) model for reinforcement learning with a context, with the goal of modifying the prompt before the LLM call. Each invocation of the chain’s run() method should be equipped with a set of potential actions (ToSelectFrom) and will result in the selection of a specific action based on the BasedOn input. This chosen action then informs the LLM (Language Model) prompt for the subsequent response generation. The standard operation flow of this Chain includes: The Chain is invoked with inputs containing the BasedOn criteria and a list of potential actions (ToSelectFrom). An action is selected based on the BasedOn input. The LLM is called with the dynamic prompt, producing a response. If a selection_scorer is provided, it is used to score the selection. The internal Vowpal Wabbit model is updated with the BasedOn input, the chosen ToSelectFrom action, and the resulting score from the scorer. The final response is returned. Expected input dictionary format: At least one variable encapsulated within BasedOn to serve as the selection criteria. A single list variable within ToSelectFrom, representing potential actions for the VW model. This list can take the form of: A list of strings, e.g., action = ToSelectFrom([“action1”, “action2”, “action3”]) A list of list of strings e.g. action = ToSelectFrom([[“action1”, “another identifier of action1”], [“action2”, “another identifier of action2”]])
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBest.html
eb8f3f63ad26-1
A list of dictionaries, where each dictionary represents an action with namespace names as keys and corresponding action strings as values. For instance, action = ToSelectFrom([{“namespace1”: [“action1”, “another identifier of action1”], “namespace2”: “action2”}, {“namespace1”: “action3”, “namespace2”: “action4”}]). Extends:RLChain feature_embedder¶ Is an advanced attribute. Responsible for embedding the BasedOn and ToSelectFrom inputs. If omitted, a default embedder is utilized. Type PickBestFeatureEmbedder, optional Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param active_policy: Policy = <langchain_experimental.rl_chain.base.RLChain._NoOpPolicy object>¶ param auto_embed: bool = False¶ param callback_manager: Optional[BaseCallbackManager] = None¶ Deprecated, use callbacks instead. param callbacks: Callbacks = None¶ Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. param llm_chain: Chain [Required]¶ param memory: Optional[BaseMemory] = None¶ Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. param metadata: Optional[Dict[str, Any]] = None¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBest.html
eb8f3f63ad26-2
for the full catalog. param metadata: Optional[Dict[str, Any]] = None¶ Optional metadata associated with the chain. Defaults to None. This metadata will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. param metrics: Optional[Union[MetricsTrackerRollingWindow, MetricsTrackerAverage]] = None¶ param prompt: BasePromptTemplate [Required]¶ param selection_scorer: Union[SelectionScorer, None] = None¶ param selection_scorer_activated: bool = True¶ param tags: Optional[List[str]] = None¶ Optional list of tags associated with the chain. Defaults to None. These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. param verbose: bool [Optional]¶ Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to the global verbose value, accessible via langchain.globals.get_verbose(). __call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶ Execute the chain. Parameters inputs – Dictionary of inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBest.html
eb8f3f63ad26-3
Chain.input_keys except for inputs that will be set by the chain’s memory. return_only_outputs – Whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. metadata – Optional metadata associated with the chain. Defaults to None include_run_info – Whether to include run info in the response. Defaults to False. Returns A dict of named outputs. Should contain all outputs specified inChain.output_keys. async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBest.html
eb8f3f63ad26-4
e.g., if the underlying runnable uses an API which supports a batch mode. async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶ Asynchronously execute the chain. Parameters inputs – Dictionary of inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. return_only_outputs – Whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. metadata – Optional metadata associated with the chain. Defaults to None include_run_info – Whether to include run info in the response. Defaults to False. Returns A dict of named outputs. Should contain all outputs specified inChain.output_keys. activate_selection_scorer() → None¶ Activates the selection scorer, meaning that the chain will attempt to use the selection scorer to score responses.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBest.html
eb8f3f63ad26-5
async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶ Call the chain on all inputs in the list. async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Convenience method for executing chain. The main difference between this method and Chain.__call__ is that this method expects inputs to be passed directly in as positional arguments or keyword arguments, whereas Chain.__call__ expects a single input dictionary with all the inputs Parameters *args – If the chain expects a single input, it can be passed in as the sole positional argument. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. **kwargs – If the chain expects multiple inputs, they can be passed in directly as keyword arguments. Returns The chain output. Example
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBest.html
eb8f3f63ad26-6
directly as keyword arguments. Returns The chain output. Example # Suppose we have a single-input chain that takes a 'question' string: await chain.arun("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." await chain.arun(question=question, context=context) # -> "The temperature in Boise is..." async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBest.html
eb8f3f63ad26-7
step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input – The input to the runnable. config – The config to use for the runnable. diff – Whether to yield diffs between each step, or the current state. with_streamed_output_list – Whether to yield the streamed_output list. include_names – Only include logs with these names. include_types – Only include logs with these types. include_tags – Only include logs with these tags. exclude_names – Exclude logs with these names. exclude_types – Exclude logs with these types. exclude_tags – Exclude logs with these tags. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBest.html
eb8f3f63ad26-8
To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance deactivate_selection_scorer() → None¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBest.html
eb8f3f63ad26-9
Returns new model instance deactivate_selection_scorer() → None¶ Deactivates the selection scorer, meaning that the chain will no longer attempt to use the selection scorer to score responses. dict(**kwargs: Any) → Dict¶ Dictionary representation of chain. Expects Chain._chain_type property to be implemented and for memory to benull. Parameters **kwargs – Keyword arguments passed to default pydantic.BaseModel.dict method. Returns A dictionary representation of the chain. Example chain.dict(exclude_unset=True) # -> {"_type": "foo", "verbose": False, ...} classmethod from_llm(llm: ~langchain_core.language_models.base.BaseLanguageModel, prompt: ~langchain_core.prompts.base.BasePromptTemplate, selection_scorer: ~typing.Union[~langchain_experimental.rl_chain.base.AutoSelectionScorer, object] = <object object>, **kwargs: ~typing.Any) → PickBest[source]¶ classmethod from_orm(obj: Any) → Model¶ get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”]
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBest.html
eb8f3f63ad26-10
namespace is [“langchain”, “llms”, “openai”] get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBest.html
eb8f3f63ad26-11
Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶ Validate and prepare chain inputs, including adding inputs from memory. Parameters inputs – Dictionary of raw inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. Returns A dictionary of all inputs, including those added by the chain’s memory. prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶ Validate and prepare chain outputs, and save info about this run to memory. Parameters inputs – Dictionary of chain inputs, including any inputs added by chain memory. outputs – Dictionary of initial chain outputs.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBest.html
eb8f3f63ad26-12
memory. outputs – Dictionary of initial chain outputs. return_only_outputs – Whether to only return the chain outputs. If False, inputs are also added to the final outputs. Returns A dict of the final chain outputs. run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Convenience method for executing chain. The main difference between this method and Chain.__call__ is that this method expects inputs to be passed directly in as positional arguments or keyword arguments, whereas Chain.__call__ expects a single input dictionary with all the inputs Parameters *args – If the chain expects a single input, it can be passed in as the sole positional argument. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. **kwargs – If the chain expects multiple inputs, they can be passed in directly as keyword arguments. Returns The chain output. Example # Suppose we have a single-input chain that takes a 'question' string: chain.run("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..."
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBest.html
eb8f3f63ad26-13
context = "Weather report for Boise, Idaho on 07/03/23..." chain.run(question=question, context=context) # -> "The temperature in Boise is..." save(file_path: Union[Path, str]) → None¶ Save the chain. Expects Chain._chain_type property to be implemented and for memory to benull. Parameters file_path – Path to file to save the chain to. Example chain.save(file_path="path/chain.yaml") save_progress() → None¶ This function should be called to save the state of the learned policy model. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. update_with_delayed_score(score: float, chain_response: Dict[str, Any], force_score: bool = False) → None¶ Updates the learned policy with the score provided.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBest.html
eb8f3f63ad26-14
Updates the learned policy with the score provided. Will raise an error if selection_scorer is set, and force_score=True was not provided during the method call classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBest.html
eb8f3f63ad26-15
added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain_core.runnables.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[langchain_core.runnables.utils.Output]¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_keys: List[str]¶ Expect input key. :meta private: property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBest.html
eb8f3f63ad26-16
A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBest.html
a8644eabb1bf-0
langchain_experimental.rl_chain.base.Policy¶ class langchain_experimental.rl_chain.base.Policy(**kwargs: Any)[source]¶ Methods __init__(**kwargs) learn(event) log(event) predict(event) save() __init__(**kwargs: Any)[source]¶ abstract learn(event: TEvent) → None[source]¶ abstract log(event: TEvent) → None[source]¶ abstract predict(event: TEvent) → Any[source]¶ save() → None[source]¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.Policy.html
c460f4cd455b-0
langchain_experimental.rl_chain.base.prepare_inputs_for_autoembed¶ langchain_experimental.rl_chain.base.prepare_inputs_for_autoembed(inputs: Dict[str, Any]) → Dict[str, Any][source]¶ go over all the inputs and if something is either wrapped in _ToSelectFrom or _BasedOn, and if their inner values are not already _Embed, then wrap them in EmbedAndKeep while retaining their _ToSelectFrom or _BasedOn status
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.prepare_inputs_for_autoembed.html
a43b5ee36a47-0
langchain_experimental.rl_chain.base.Embedder¶ class langchain_experimental.rl_chain.base.Embedder(*args: Any, **kwargs: Any)[source]¶ Methods __init__(*args, **kwargs) format(event) __init__(*args: Any, **kwargs: Any)[source]¶ abstract format(event: TEvent) → str[source]¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.Embedder.html
a300fa8e6702-0
langchain_experimental.rl_chain.model_repository.ModelRepository¶ class langchain_experimental.rl_chain.model_repository.ModelRepository(folder: Union[str, PathLike], with_history: bool = True, reset: bool = False)[source]¶ Methods __init__(folder[, with_history, reset]) get_tag() has_history() load(commandline) save(workspace) __init__(folder: Union[str, PathLike], with_history: bool = True, reset: bool = False)[source]¶ get_tag() → str[source]¶ has_history() → bool[source]¶ load(commandline: List[str]) → vw.Workspace[source]¶ save(workspace: vw.Workspace) → None[source]¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.model_repository.ModelRepository.html
cde6f1987722-0
langchain_experimental.rl_chain.pick_best_chain.PickBestSelected¶ class langchain_experimental.rl_chain.pick_best_chain.PickBestSelected(index: Optional[int] = None, probability: Optional[float] = None, score: Optional[float] = None)[source]¶ Attributes index probability score Methods __init__([index, probability, score]) __init__(index: Optional[int] = None, probability: Optional[float] = None, score: Optional[float] = None)[source]¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBestSelected.html
efab4469f0ad-0
langchain_experimental.rl_chain.base.Selected¶ class langchain_experimental.rl_chain.base.Selected[source]¶ Methods __init__() __init__()¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.Selected.html
26512ab2e65f-0
langchain_experimental.rl_chain.base.embed_dict_type¶ langchain_experimental.rl_chain.base.embed_dict_type(item: Dict, model: Any) → Dict[str, Any][source]¶ Helper function to embed a dictionary item.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.embed_dict_type.html
023714f320e5-0
langchain_experimental.rl_chain.pick_best_chain.PickBestFeatureEmbedder¶ class langchain_experimental.rl_chain.pick_best_chain.PickBestFeatureEmbedder(auto_embed: bool, model: Optional[Any] = None, *args: Any, **kwargs: Any)[source]¶ Text Embedder class that embeds the BasedOn and ToSelectFrom inputs into a format that can be used by the learning policy model name The type of embeddings to be used for feature representation. Defaults to BERT SentenceTransformer. Type Any, optional Methods __init__(auto_embed[, model]) format(event) format_auto_embed_off(event) Converts the BasedOn and ToSelectFrom into a format that can be used by VW format_auto_embed_on(event) get_context_and_action_embeddings(event) get_indexed_dot_product(context_emb, action_embs) get_label(event) __init__(auto_embed: bool, model: Optional[Any] = None, *args: Any, **kwargs: Any)[source]¶ format(event: PickBestEvent) → str[source]¶ format_auto_embed_off(event: PickBestEvent) → str[source]¶ Converts the BasedOn and ToSelectFrom into a format that can be used by VW format_auto_embed_on(event: PickBestEvent) → str[source]¶ get_context_and_action_embeddings(event: PickBestEvent) → tuple[source]¶ get_indexed_dot_product(context_emb: List, action_embs: List) → Dict[source]¶ get_label(event: PickBestEvent) → tuple[source]¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBestFeatureEmbedder.html
62d8aadbfb45-0
langchain_experimental.rl_chain.pick_best_chain.PickBestRandomPolicy¶ class langchain_experimental.rl_chain.pick_best_chain.PickBestRandomPolicy(feature_embedder: Embedder, **kwargs: Any)[source]¶ Methods __init__(feature_embedder, **kwargs) learn(event) log(event) predict(event) save() __init__(feature_embedder: Embedder, **kwargs: Any)[source]¶ learn(event: PickBestEvent) → None[source]¶ log(event: PickBestEvent) → None[source]¶ predict(event: PickBestEvent) → List[Tuple[int, float]][source]¶ save() → None¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.pick_best_chain.PickBestRandomPolicy.html
42e9cdefa822-0
langchain_experimental.rl_chain.base.get_based_on_and_to_select_from¶ langchain_experimental.rl_chain.base.get_based_on_and_to_select_from(inputs: Dict[str, Any]) → Tuple[Dict, Dict][source]¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.get_based_on_and_to_select_from.html
42fe43487c0c-0
langchain_experimental.rl_chain.base.embed¶ langchain_experimental.rl_chain.base.embed(to_embed: Union[str, _Embed, Dict, List[Union[str, _Embed]], List[Dict]], model: Any, namespace: Optional[str] = None) → List[Dict[str, Union[str, List[str]]]][source]¶ Embeds the actions or context using the SentenceTransformer model (or a model that has an encode function) langchain_experimental.rl_chain.base.to_embed¶ (Union[Union(str, _Embed(str)), Dict, List[Union(str, _Embed(str))], List[Dict]], required) The text to be embedded, either a string, a list of strings or a dictionary or a list of dictionaries. langchain_experimental.rl_chain.base.namespace¶ (str, optional) The default namespace to use when dictionary or list of dictionaries not provided. langchain_experimental.rl_chain.base.model¶ (Any, required) The model to use for embedding Returns A list of dictionaries where each dictionary has the namespace as the key and the embedded string as the value Return type List[Dict[str, str]]
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.Embed.html
27f2e350972f-0
langchain_experimental.rl_chain.metrics.MetricsTrackerAverage¶ class langchain_experimental.rl_chain.metrics.MetricsTrackerAverage(step: int)[source]¶ Attributes score Methods __init__(step) on_decision() on_feedback(score) to_pandas() __init__(step: int)[source]¶ on_decision() → None[source]¶ on_feedback(score: float) → None[source]¶ to_pandas() → pd.DataFrame[source]¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.metrics.MetricsTrackerAverage.html
a0701f7ede41-0
langchain_experimental.rl_chain.base.AutoSelectionScorer¶ class langchain_experimental.rl_chain.base.AutoSelectionScorer[source]¶ Bases: SelectionScorer[Event], BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param llm_chain: langchain.chains.llm.LLMChain [Required]¶ param prompt: Optional[langchain_core.prompts.base.BasePromptTemplate] = None¶ param scoring_criteria_template_str: Optional[str] = None¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.AutoSelectionScorer.html
a0701f7ede41-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ static get_default_prompt() → ChatPromptTemplate[source]¶ static get_default_system_prompt() → SystemMessagePromptTemplate[source]¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.AutoSelectionScorer.html
a0701f7ede41-2
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ score_response(inputs: Dict[str, Any], llm_response: str, event: Event) → float[source]¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.AutoSelectionScorer.html
2c36d213de11-0
langchain_experimental.rl_chain.base.RLChain¶ class langchain_experimental.rl_chain.base.RLChain[source]¶ Bases: Chain, Generic[TEvent] The RLChain class leverages the Vowpal Wabbit (VW) model as a learned policy for reinforcement learning. - llm_chain Represents the underlying Language Model chain. Type Chain - prompt The template for the base prompt. Type BasePromptTemplate - selection_scorer Scorer for the selection. Can be set to None. Type Union[SelectionScorer, None] - policy The policy used by the chain to learn to populate a dynamic prompt. Type Optional[Policy] - auto_embed Determines if embedding should be automatic. Default is False. Type bool - metrics Tracker for metrics, can be set to None. Type Optional[Union[MetricsTrackerRollingWindow, MetricsTrackerAverage]] Initialization Attributes: feature_embedder (Embedder): Embedder used for the BasedOn and ToSelectFrom inputs. model_save_dir (str, optional): Directory for saving the VW model. Default is the current directory. reset_model (bool): If set to True, the model starts training from scratch. Default is False. vw_cmd (List[str], optional): Command line arguments for the VW model. policy (Type[VwPolicy]): Policy used by the chain. vw_logs (Optional[Union[str, os.PathLike]]): Path for the VW logs. metrics_step (int): Step for the metrics tracker. Default is -1. If set without metrics_window_size, average metrics will be tracked, otherwise rolling window metrics will be tracked. metrics_window_size (int): Window size for the metrics tracker. Default is -1. If set, rolling window metrics will be tracked. Notes
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.RLChain.html
2c36d213de11-1
Notes The class initializes the VW model using the provided arguments. If selection_scorer is not provided, a warning is logged, indicating that no reinforcement learning will occur unless the update_with_delayed_score method is called. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param active_policy: Policy = <langchain_experimental.rl_chain.base.RLChain._NoOpPolicy object>¶ param auto_embed: bool = False¶ param callback_manager: Optional[BaseCallbackManager] = None¶ Deprecated, use callbacks instead. param callbacks: Callbacks = None¶ Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. param llm_chain: Chain [Required]¶ param memory: Optional[BaseMemory] = None¶ Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. param metadata: Optional[Dict[str, Any]] = None¶ Optional metadata associated with the chain. Defaults to None. This metadata will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. param metrics: Optional[Union[MetricsTrackerRollingWindow, MetricsTrackerAverage]] = None¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.RLChain.html
2c36d213de11-2
param prompt: BasePromptTemplate [Required]¶ param selection_scorer: Union[SelectionScorer, None] = None¶ param selection_scorer_activated: bool = True¶ param tags: Optional[List[str]] = None¶ Optional list of tags associated with the chain. Defaults to None. These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. param verbose: bool [Optional]¶ Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to the global verbose value, accessible via langchain.globals.get_verbose(). __call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶ Execute the chain. Parameters inputs – Dictionary of inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. return_only_outputs – Whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.RLChain.html
2c36d213de11-3
these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. metadata – Optional metadata associated with the chain. Defaults to None include_run_info – Whether to include run info in the response. Defaults to False. Returns A dict of named outputs. Should contain all outputs specified inChain.output_keys. async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶ Asynchronously execute the chain. Parameters inputs – Dictionary of inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. return_only_outputs – Whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.RLChain.html
2c36d213de11-4
returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. metadata – Optional metadata associated with the chain. Defaults to None include_run_info – Whether to include run info in the response. Defaults to False. Returns A dict of named outputs. Should contain all outputs specified inChain.output_keys. activate_selection_scorer() → None[source]¶ Activates the selection scorer, meaning that the chain will attempt to use the selection scorer to score responses. async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶ Call the chain on all inputs in the list. async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Convenience method for executing chain.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.RLChain.html
2c36d213de11-5
Convenience method for executing chain. The main difference between this method and Chain.__call__ is that this method expects inputs to be passed directly in as positional arguments or keyword arguments, whereas Chain.__call__ expects a single input dictionary with all the inputs Parameters *args – If the chain expects a single input, it can be passed in as the sole positional argument. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. **kwargs – If the chain expects multiple inputs, they can be passed in directly as keyword arguments. Returns The chain output. Example # Suppose we have a single-input chain that takes a 'question' string: await chain.arun("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." await chain.arun(question=question, context=context) # -> "The temperature in Boise is..." async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.RLChain.html
2c36d213de11-6
Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input – The input to the runnable. config – The config to use for the runnable. diff – Whether to yield diffs between each step, or the current state. with_streamed_output_list – Whether to yield the streamed_output list. include_names – Only include logs with these names. include_types – Only include logs with these types. include_tags – Only include logs with these tags. exclude_names – Exclude logs with these names. exclude_types – Exclude logs with these types. exclude_tags – Exclude logs with these tags. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.RLChain.html
2c36d213de11-7
Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.RLChain.html
2c36d213de11-8
Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance deactivate_selection_scorer() → None[source]¶ Deactivates the selection scorer, meaning that the chain will no longer attempt to use the selection scorer to score responses. dict(**kwargs: Any) → Dict¶ Dictionary representation of chain. Expects Chain._chain_type property to be implemented and for memory to benull. Parameters **kwargs – Keyword arguments passed to default pydantic.BaseModel.dict method. Returns A dictionary representation of the chain. Example chain.dict(exclude_unset=True) # -> {"_type": "foo", "verbose": False, ...} classmethod from_orm(obj: Any) → Model¶ get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.RLChain.html
2c36d213de11-9
methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool¶ Is this class serializable?
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.RLChain.html
2c36d213de11-10
classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶ Validate and prepare chain inputs, including adding inputs from memory. Parameters inputs – Dictionary of raw inputs, or single input if chain expects
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.RLChain.html
2c36d213de11-11
Parameters inputs – Dictionary of raw inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. Returns A dictionary of all inputs, including those added by the chain’s memory. prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶ Validate and prepare chain outputs, and save info about this run to memory. Parameters inputs – Dictionary of chain inputs, including any inputs added by chain memory. outputs – Dictionary of initial chain outputs. return_only_outputs – Whether to only return the chain outputs. If False, inputs are also added to the final outputs. Returns A dict of the final chain outputs. run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Convenience method for executing chain. The main difference between this method and Chain.__call__ is that this method expects inputs to be passed directly in as positional arguments or keyword arguments, whereas Chain.__call__ expects a single input dictionary with all the inputs Parameters *args – If the chain expects a single input, it can be passed in as the sole positional argument. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.RLChain.html
2c36d213de11-12
these runtime tags will propagate to calls to other objects. **kwargs – If the chain expects multiple inputs, they can be passed in directly as keyword arguments. Returns The chain output. Example # Suppose we have a single-input chain that takes a 'question' string: chain.run("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." chain.run(question=question, context=context) # -> "The temperature in Boise is..." save(file_path: Union[Path, str]) → None¶ Save the chain. Expects Chain._chain_type property to be implemented and for memory to benull. Parameters file_path – Path to file to save the chain to. Example chain.save(file_path="path/chain.yaml") save_progress() → None[source]¶ This function should be called to save the state of the learned policy model. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.RLChain.html
2c36d213de11-13
to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. update_with_delayed_score(score: float, chain_response: Dict[str, Any], force_score: bool = False) → None[source]¶ Updates the learned policy with the score provided. Will raise an error if selection_scorer is set, and force_score=True was not provided during the method call classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.RLChain.html
2c36d213de11-14
Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain_core.runnables.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[langchain_core.runnables.utils.Output]¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_keys: List[str]¶ Expect input key. :meta private:
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.RLChain.html
2c36d213de11-15
property input_keys: List[str]¶ Expect input key. :meta private: property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.RLChain.html
b9ce405a7baa-0
langchain_experimental.rl_chain.base.Event¶ class langchain_experimental.rl_chain.base.Event(inputs: Dict[str, Any], selected: Optional[TSelected] = None)[source]¶ Attributes inputs selected Methods __init__(inputs[, selected]) __init__(inputs: Dict[str, Any], selected: Optional[TSelected] = None)[source]¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.Event.html
e2eea6e3ca4a-0
langchain_experimental.rl_chain.base.ToSelectFrom¶ langchain_experimental.rl_chain.base.ToSelectFrom(anything: Any) → _ToSelectFrom[source]¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.ToSelectFrom.html
2a831d21cfaa-0
langchain_experimental.rl_chain.base.BasedOn¶ langchain_experimental.rl_chain.base.BasedOn(anything: Any) → _BasedOn[source]¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.BasedOn.html
fc1a1da1928d-0
langchain_experimental.rl_chain.base.EmbedAndKeep¶ langchain_experimental.rl_chain.base.EmbedAndKeep(anything: Any) → Any[source]¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.EmbedAndKeep.html
6a91086ca033-0
langchain_experimental.rl_chain.base.is_stringtype_instance¶ langchain_experimental.rl_chain.base.is_stringtype_instance(item: Any) → bool[source]¶ Helper function to check if an item is a string.
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.is_stringtype_instance.html
8462538fb0bf-0
langchain_experimental.rl_chain.base.embed_list_type¶ langchain_experimental.rl_chain.base.embed_list_type(item: list, model: Any, namespace: Optional[str] = None) → List[Dict[str, Union[str, List[str]]]][source]¶
https://api.python.langchain.com/en/latest/rl_chain/langchain_experimental.rl_chain.base.embed_list_type.html
46fe1ea40232-0
langchain_core.language_models.chat_models.generate_from_stream¶ langchain_core.language_models.chat_models.generate_from_stream(stream: Iterator[ChatGenerationChunk]) → ChatResult[source]¶ Generate from a stream.
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.chat_models.generate_from_stream.html
11b35a8d80ab-0
langchain_core.language_models.chat_models.BaseChatModel¶ class langchain_core.language_models.chat_models.BaseChatModel[source]¶ Bases: BaseLanguageModel[BaseMessage], ABC Base class for Chat models. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ Whether to cache the response. param callback_manager: Optional[langchain_core.callbacks.base.BaseCallbackManager] = None¶ Callback manager to add to the run trace. param callbacks: Optional[Union[List[langchain_core.callbacks.base.BaseCallbackHandler], langchain_core.callbacks.base.BaseCallbackManager]] = None¶ Callbacks to add to the run trace. param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(messages: List[BaseMessage], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → BaseMessage[source]¶ Call self as a function. async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode.
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.chat_models.BaseChatModel.html
11b35a8d80ab-1
e.g., if the underlying runnable uses an API which supports a batch mode. async agenerate(messages: List[List[BaseMessage]], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → LLMResult[source]¶ Top Level call async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult[source]¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.chat_models.BaseChatModel.html
11b35a8d80ab-2
async ainvoke(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → BaseMessage[source]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str[source]¶ Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage[source]¶ Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message.
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.chat_models.BaseChatModel.html
11b35a8d80ab-3
to the model provider API call. Returns Top model prediction as a message. async astream(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[BaseMessageChunk][source]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input – The input to the runnable. config – The config to use for the runnable. diff – Whether to yield diffs between each step, or the current state. with_streamed_output_list – Whether to yield the streamed_output list. include_names – Only include logs with these names. include_types – Only include logs with these types. include_tags – Only include logs with these tags. exclude_names – Exclude logs with these names.
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.chat_models.BaseChatModel.html
11b35a8d80ab-4
exclude_names – Exclude logs with these names. exclude_types – Exclude logs with these types. exclude_tags – Exclude logs with these tags. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. call_as_llm(message: str, stop: Optional[List[str]] = None, **kwargs: Any) → str[source]¶ config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config.
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.chat_models.BaseChatModel.html
11b35a8d80ab-5
Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict[source]¶ Return a dictionary of the LLM. classmethod from_orm(obj: Any) → Model¶
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.chat_models.BaseChatModel.html
11b35a8d80ab-6
classmethod from_orm(obj: Any) → Model¶ generate(messages: List[List[BaseMessage]], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → LLMResult[source]¶ Top Level call generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult[source]¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.chat_models.BaseChatModel.html
11b35a8d80ab-7
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.chat_models.BaseChatModel.html
11b35a8d80ab-8
This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. invoke(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → BaseMessage[source]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict().
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.chat_models.BaseChatModel.html
11b35a8d80ab-9
Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str[source]¶ Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage[source]¶
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.chat_models.BaseChatModel.html
11b35a8d80ab-10
Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[BaseMessageChunk][source]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.chat_models.BaseChatModel.html
11b35a8d80ab-11
Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.chat_models.BaseChatModel.html
11b35a8d80ab-12
between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: TypeAlias¶ Get the input type for this runnable. property OutputType: Any¶ Get the output type for this runnable. property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.chat_models.BaseChatModel.html
d48782e667a3-0
langchain_core.language_models.llms.BaseLLM¶ class langchain_core.language_models.llms.BaseLLM[source]¶ Bases: BaseLanguageModel[str], ABC Base LLM abstract interface. It should take in a prompt and return a string. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ param callback_manager: Optional[langchain_core.callbacks.base.BaseCallbackManager] = None¶ param callbacks: Optional[Union[List[langchain_core.callbacks.base.BaseCallbackHandler], langchain_core.callbacks.base.BaseCallbackManager]] = None¶ param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str[source]¶ Check Cache and run the LLM on the given prompt and input. async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str][source]¶ Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently;
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.llms.BaseLLM.html
d48782e667a3-1
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, run_name: Optional[Union[str, List[str]]] = None, **kwargs: Any) → LLMResult[source]¶ Run the LLM on the given prompt and input. async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult[source]¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.llms.BaseLLM.html
d48782e667a3-2
first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str[source]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str[source]¶ Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage[source]¶ Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input.
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.llms.BaseLLM.html
d48782e667a3-3
Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str][source]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. Parameters input – The input to the runnable. config – The config to use for the runnable.
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.llms.BaseLLM.html
d48782e667a3-4
input – The input to the runnable. config – The config to use for the runnable. diff – Whether to yield diffs between each step, or the current state. with_streamed_output_list – Whether to yield the streamed_output list. include_names – Only include logs with these names. include_types – Only include logs with these types. include_tags – Only include logs with these tags. exclude_names – Exclude logs with these names. exclude_types – Exclude logs with these types. exclude_tags – Exclude logs with these tags. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any) → List[str][source]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema.
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.llms.BaseLLM.html
d48782e667a3-5
Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict[source]¶ Return a dictionary of the LLM. classmethod from_orm(obj: Any) → Model¶
https://api.python.langchain.com/en/latest/language_models/langchain_core.language_models.llms.BaseLLM.html