id
stringlengths 14
15
| text
stringlengths 13
2.7k
| source
stringlengths 60
181
|
---|---|---|
90c6e7ffb21f-1
|
e.g., if the underlying runnable uses an API which supports a batch mode.
async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
Asynchronously get documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
async ainvoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → List[Document]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.wikipedia.WikipediaRetriever.html
|
90c6e7ffb21f-2
|
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input – The input to the runnable.
config – The config to use for the runnable.
diff – Whether to yield diffs between each step, or the current state.
with_streamed_output_list – Whether to yield the streamed_output list.
include_names – Only include logs with these names.
include_types – Only include logs with these types.
include_tags – Only include logs with these tags.
exclude_names – Exclude logs with these names.
exclude_types – Exclude logs with these types.
exclude_tags – Exclude logs with these tags.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.wikipedia.WikipediaRetriever.html
|
90c6e7ffb21f-3
|
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.wikipedia.WikipediaRetriever.html
|
90c6e7ffb21f-4
|
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.wikipedia.WikipediaRetriever.html
|
90c6e7ffb21f-5
|
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
Retrieve documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.wikipedia.WikipediaRetriever.html
|
90c6e7ffb21f-6
|
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
invoke(input: str, config: Optional[RunnableConfig] = None) → List[Document]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
load(query: str) → List[Document]¶
Run Wikipedia search and get the article text plus the meta information.
See
Returns: a list of documents.
map() → Runnable[List[Input], List[Output]]¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.wikipedia.WikipediaRetriever.html
|
90c6e7ffb21f-7
|
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
run(query: str) → str¶
Run Wikipedia search and get page summaries.
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.wikipedia.WikipediaRetriever.html
|
90c6e7ffb21f-8
|
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.wikipedia.WikipediaRetriever.html
|
90c6e7ffb21f-9
|
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain_core.runnables.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain_core.runnables.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
Examples using WikipediaRetriever¶
Wikipedia
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.wikipedia.WikipediaRetriever.html
|
987eb125ed75-0
|
langchain.retrievers.document_compressors.chain_extract.default_get_input¶
langchain.retrievers.document_compressors.chain_extract.default_get_input(query: str, doc: Document) → Dict[str, Any][source]¶
Return the compression chain input.
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.chain_extract.default_get_input.html
|
70441ea89a66-0
|
langchain.retrievers.self_query.chroma.ChromaTranslator¶
class langchain.retrievers.self_query.chroma.ChromaTranslator[source]¶
Translate Chroma internal query language elements to valid filters.
Attributes
allowed_comparators
Subset of allowed logical comparators.
allowed_operators
Subset of allowed logical operators.
Methods
__init__()
visit_comparison(comparison)
Translate a Comparison.
visit_operation(operation)
Translate an Operation.
visit_structured_query(structured_query)
Translate a StructuredQuery.
__init__()¶
visit_comparison(comparison: Comparison) → Dict[source]¶
Translate a Comparison.
visit_operation(operation: Operation) → Dict[source]¶
Translate an Operation.
visit_structured_query(structured_query: StructuredQuery) → Tuple[str, dict][source]¶
Translate a StructuredQuery.
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.self_query.chroma.ChromaTranslator.html
|
54c8202ca79d-0
|
langchain_community.retrievers.kendra.RetrieveResult¶
class langchain_community.retrievers.kendra.RetrieveResult[source]¶
Bases: BaseModel
Amazon Kendra Retrieve API search result.
It is composed of:
relevant passages or text excerpts given an input query.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param QueryId: str [Required]¶
The ID of the query.
param ResultItems: List[langchain_community.retrievers.kendra.RetrieveResultItem] [Required]¶
The result items.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.kendra.RetrieveResult.html
|
54c8202ca79d-1
|
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.kendra.RetrieveResult.html
|
54c8202ca79d-2
|
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.kendra.RetrieveResult.html
|
d3c75a72f7c6-0
|
langchain_community.retrievers.kendra.clean_excerpt¶
langchain_community.retrievers.kendra.clean_excerpt(excerpt: str) → str[source]¶
Clean an excerpt from Kendra.
Parameters
excerpt – The excerpt to clean.
Returns
The cleaned excerpt.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.kendra.clean_excerpt.html
|
0e724fcccd94-0
|
langchain.retrievers.re_phraser.RePhraseQueryRetriever¶
class langchain.retrievers.re_phraser.RePhraseQueryRetriever[source]¶
Bases: BaseRetriever
Given a query, use an LLM to re-phrase it.
Then, retrieve docs for the re-phrased query.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param llm_chain: langchain.chains.llm.LLMChain [Required]¶
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param retriever: langchain_core.retrievers.BaseRetriever [Required]¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
0e724fcccd94-1
|
e.g., if the underlying runnable uses an API which supports a batch mode.
async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
Asynchronously get documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
async ainvoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → List[Document]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
0e724fcccd94-2
|
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input – The input to the runnable.
config – The config to use for the runnable.
diff – Whether to yield diffs between each step, or the current state.
with_streamed_output_list – Whether to yield the streamed_output list.
include_names – Only include logs with these names.
include_types – Only include logs with these types.
include_tags – Only include logs with these tags.
exclude_names – Exclude logs with these names.
exclude_types – Exclude logs with these types.
exclude_tags – Exclude logs with these tags.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
0e724fcccd94-3
|
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
0e724fcccd94-4
|
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_llm(retriever: BaseRetriever, llm: BaseLLM, prompt: PromptTemplate = PromptTemplate(input_variables=['question'], template='You are an assistant tasked with taking a natural language query from a user and converting it into a query for a vectorstore. In this process, you strip out information that is not relevant for the retrieval task. Here is the user query: {question}')) → RePhraseQueryRetriever[source]¶
Initialize from llm using default template.
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
0e724fcccd94-5
|
Initialize from llm using default template.
The prompt used here expects a single input: question
Parameters
retriever – retriever to query documents from
llm – llm for query generation using DEFAULT_QUERY_PROMPT
prompt – prompt template for query generation
Returns
RePhraseQueryRetriever
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
0e724fcccd94-6
|
Returns
A pydantic model that can be used to validate output.
get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
Retrieve documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
invoke(input: str, config: Optional[RunnableConfig] = None) → List[Document]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
0e724fcccd94-7
|
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
0e724fcccd94-8
|
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
0e724fcccd94-9
|
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain_core.runnables.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain_core.runnables.utils.Output]¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
0e724fcccd94-10
|
property OutputType: Type[langchain_core.runnables.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
Examples using RePhraseQueryRetriever¶
RePhraseQueryRetriever
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.re_phraser.RePhraseQueryRetriever.html
|
ee938d79ad21-0
|
langchain_community.retrievers.kendra.combined_text¶
langchain_community.retrievers.kendra.combined_text(item: ResultItem) → str[source]¶
Combine a ResultItem title and excerpt into a single string.
Parameters
item – the ResultItem of a Kendra search.
Returns
A combined text of the title and excerpt of the given item.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.kendra.combined_text.html
|
1d96d0ab9c24-0
|
langchain.retrievers.document_compressors.chain_filter.default_get_input¶
langchain.retrievers.document_compressors.chain_filter.default_get_input(query: str, doc: Document) → Dict[str, Any][source]¶
Return the compression chain input.
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.chain_filter.default_get_input.html
|
98dadf46958f-0
|
langchain_community.retrievers.kendra.TextWithHighLights¶
class langchain_community.retrievers.kendra.TextWithHighLights[source]¶
Bases: BaseModel
Text with highlights.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param Highlights: Optional[Any] = None¶
The highlights.
param Text: str [Required]¶
The text.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.kendra.TextWithHighLights.html
|
98dadf46958f-1
|
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.kendra.TextWithHighLights.html
|
98dadf46958f-2
|
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.kendra.TextWithHighLights.html
|
1f4f176abbaa-0
|
langchain_community.retrievers.pubmed.PubMedRetriever¶
class langchain_community.retrievers.pubmed.PubMedRetriever[source]¶
Bases: BaseRetriever, PubMedAPIWrapper
PubMed API retriever.
It wraps load() to get_relevant_documents().
It uses all PubMedAPIWrapper arguments without any change.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param MAX_QUERY_LENGTH: int = 300¶
param base_url_efetch: str = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?'¶
param base_url_esearch: str = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?'¶
param doc_content_chars_max: int = 2000¶
param email: str = 'your_email@example.com'¶
param max_retry: int = 5¶
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param sleep_time: float = 0.2¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param top_k_results: int = 3¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.pubmed.PubMedRetriever.html
|
1f4f176abbaa-1
|
use case.
param top_k_results: int = 3¶
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
Asynchronously get documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
async ainvoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → List[Document]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.pubmed.PubMedRetriever.html
|
1f4f176abbaa-2
|
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input – The input to the runnable.
config – The config to use for the runnable.
diff – Whether to yield diffs between each step, or the current state.
with_streamed_output_list – Whether to yield the streamed_output list.
include_names – Only include logs with these names.
include_types – Only include logs with these types.
include_tags – Only include logs with these tags.
exclude_names – Exclude logs with these names.
exclude_types – Exclude logs with these types.
exclude_tags – Exclude logs with these tags.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.pubmed.PubMedRetriever.html
|
1f4f176abbaa-3
|
exclude_types – Exclude logs with these types.
exclude_tags – Exclude logs with these tags.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.pubmed.PubMedRetriever.html
|
1f4f176abbaa-4
|
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.pubmed.PubMedRetriever.html
|
1f4f176abbaa-5
|
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
Retrieve documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.pubmed.PubMedRetriever.html
|
1f4f176abbaa-6
|
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
invoke(input: str, config: Optional[RunnableConfig] = None) → List[Document]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.pubmed.PubMedRetriever.html
|
1f4f176abbaa-7
|
lazy_load(query: str) → Iterator[dict]¶
Search PubMed for documents matching the query.
Return an iterator of dictionaries containing the document metadata.
lazy_load_docs(query: str) → Iterator[Document]¶
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
load(query: str) → List[dict]¶
Search PubMed for documents matching the query.
Return a list of dictionaries containing the document metadata.
load_docs(query: str) → List[Document]¶
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
retrieve_article(uid: str, webenv: str) → dict¶
run(query: str) → str¶
Run PubMed search and get the article meta information.
See https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESearch
It uses only the most informative fields of article meta information.
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.pubmed.PubMedRetriever.html
|
1f4f176abbaa-8
|
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.pubmed.PubMedRetriever.html
|
1f4f176abbaa-9
|
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain_core.runnables.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain_core.runnables.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.pubmed.PubMedRetriever.html
|
1f4f176abbaa-10
|
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
Examples using PubMedRetriever¶
PubMed
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.pubmed.PubMedRetriever.html
|
c54d04f9d504-0
|
langchain_community.retrievers.cohere_rag_retriever.CohereRagRetriever¶
class langchain_community.retrievers.cohere_rag_retriever.CohereRagRetriever[source]¶
Bases: BaseRetriever
Cohere Chat API with RAG.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param connectors: List[Dict] [Optional]¶
When specified, the model’s reply will be enriched with information found by
querying each of the connectors (RAG). These will be returned as langchain
documents.
Currently only accepts {“id”: “web-search”}.
param llm: BaseChatModel [Required]¶
Cohere ChatModel to use.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.cohere_rag_retriever.CohereRagRetriever.html
|
c54d04f9d504-1
|
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
Asynchronously get documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
async ainvoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → List[Document]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.cohere_rag_retriever.CohereRagRetriever.html
|
c54d04f9d504-2
|
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input – The input to the runnable.
config – The config to use for the runnable.
diff – Whether to yield diffs between each step, or the current state.
with_streamed_output_list – Whether to yield the streamed_output list.
include_names – Only include logs with these names.
include_types – Only include logs with these types.
include_tags – Only include logs with these tags.
exclude_names – Exclude logs with these names.
exclude_types – Exclude logs with these types.
exclude_tags – Exclude logs with these tags.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.cohere_rag_retriever.CohereRagRetriever.html
|
c54d04f9d504-3
|
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.cohere_rag_retriever.CohereRagRetriever.html
|
c54d04f9d504-4
|
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.cohere_rag_retriever.CohereRagRetriever.html
|
c54d04f9d504-5
|
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
Retrieve documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.cohere_rag_retriever.CohereRagRetriever.html
|
c54d04f9d504-6
|
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
invoke(input: str, config: Optional[RunnableConfig] = None) → List[Document]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.cohere_rag_retriever.CohereRagRetriever.html
|
c54d04f9d504-7
|
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.cohere_rag_retriever.CohereRagRetriever.html
|
c54d04f9d504-8
|
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.cohere_rag_retriever.CohereRagRetriever.html
|
c54d04f9d504-9
|
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain_core.runnables.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain_core.runnables.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.cohere_rag_retriever.CohereRagRetriever.html
|
99e4f8dbe94c-0
|
langchain_community.retrievers.kendra.RetrieveResultItem¶
class langchain_community.retrievers.kendra.RetrieveResultItem[source]¶
Bases: ResultItem
Retrieve API result item.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param Content: Optional[str] = None¶
The content of the item.
param DocumentAttributes: Optional[List[langchain_community.retrievers.kendra.DocumentAttribute]] = []¶
The document attributes.
param DocumentId: Optional[str] = None¶
The document ID.
param DocumentTitle: Optional[str] = None¶
The document title.
param DocumentURI: Optional[str] = None¶
The document URI.
param Id: Optional[str] = None¶
The ID of the relevant result item.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.kendra.RetrieveResultItem.html
|
99e4f8dbe94c-1
|
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_additional_metadata() → dict¶
Document additional metadata dict.
This returns any extra metadata except these:
result_id
document_id
source
title
excerpt
document_attributes
get_document_attributes_dict() → Dict[str, Optional[Union[str, int, List[str]]]]¶
Document attributes dict.
get_excerpt() → str[source]¶
Document excerpt or passage original content as retrieved by Kendra.
get_title() → str[source]¶
Document title.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.kendra.RetrieveResultItem.html
|
99e4f8dbe94c-2
|
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_doc(page_content_formatter: ~typing.Callable[[~langchain_community.retrievers.kendra.ResultItem], str] = <function combined_text>) → Document¶
Converts this item to a Document.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.kendra.RetrieveResultItem.html
|
52849039e2bd-0
|
langchain.retrievers.self_query.supabase.SupabaseVectorTranslator¶
class langchain.retrievers.self_query.supabase.SupabaseVectorTranslator[source]¶
Translate Langchain filters to Supabase PostgREST filters.
Attributes
allowed_comparators
Subset of allowed logical comparators.
allowed_operators
Subset of allowed logical operators.
metadata_column
Methods
__init__()
visit_comparison(comparison)
Translate a Comparison.
visit_operation(operation)
Translate an Operation.
visit_structured_query(structured_query)
Translate a StructuredQuery.
__init__()¶
visit_comparison(comparison: Comparison) → str[source]¶
Translate a Comparison.
visit_operation(operation: Operation) → str[source]¶
Translate an Operation.
visit_structured_query(structured_query: StructuredQuery) → Tuple[str, Dict[str, str]][source]¶
Translate a StructuredQuery.
|
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.self_query.supabase.SupabaseVectorTranslator.html
|
6c42365c8173-0
|
langchain_community.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever¶
class langchain_community.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever[source]¶
Bases: BaseRetriever
Elasticsearch retriever that uses BM25.
To connect to an Elasticsearch instance that requires login credentials,
including Elastic Cloud, use the Elasticsearch URL format
https://username:password@es_host:9243. For example, to connect to Elastic
Cloud, create the Elasticsearch URL with the required authentication details and
pass it to the ElasticVectorSearch constructor as the named parameter
elasticsearch_url.
You can obtain your Elastic Cloud URL and login credentials by logging in to the
Elastic Cloud console at https://cloud.elastic.co, selecting your deployment, and
navigating to the “Deployments” page.
To obtain your Elastic Cloud password for the default “elastic” user:
Log in to the Elastic Cloud console at https://cloud.elastic.co
Go to “Security” > “Users”
Locate the “elastic” user and click “Edit”
Click “Reset password”
Follow the prompts to reset the password
The format for Elastic Cloud URLs is
https://username:password@cluster_id.region_id.gcp.cloud.es.io:9243.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param client: Any = None¶
Elasticsearch client.
param index_name: str [Required]¶
Name of the index to use in Elasticsearch.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever.html
|
6c42365c8173-1
|
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
add_texts(texts: Iterable[str], refresh_indices: bool = True) → List[str][source]¶
Run more texts through the embeddings and add to the retriever.
Parameters
texts – Iterable of strings to add to the retriever.
refresh_indices – bool to refresh ElasticSearch indices
Returns
List of ids from adding the texts into the retriever.
async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
Asynchronously get documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever.html
|
6c42365c8173-2
|
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
async ainvoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → List[Document]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever.html
|
6c42365c8173-3
|
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input – The input to the runnable.
config – The config to use for the runnable.
diff – Whether to yield diffs between each step, or the current state.
with_streamed_output_list – Whether to yield the streamed_output list.
include_names – Only include logs with these names.
include_types – Only include logs with these types.
include_tags – Only include logs with these tags.
exclude_names – Exclude logs with these names.
exclude_types – Exclude logs with these types.
exclude_tags – Exclude logs with these tags.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever.html
|
6c42365c8173-4
|
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever.html
|
6c42365c8173-5
|
deep – set to True to make a deep copy of the model
Returns
new model instance
classmethod create(elasticsearch_url: str, index_name: str, k1: float = 2.0, b: float = 0.75) → ElasticSearchBM25Retriever[source]¶
Create a ElasticSearchBM25Retriever from a list of texts.
Parameters
elasticsearch_url – URL of the Elasticsearch instance to connect to.
index_name – Name of the index to use in Elasticsearch.
k1 – BM25 parameter k1.
b – BM25 parameter b.
Returns:
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever.html
|
6c42365c8173-6
|
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
Retrieve documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
invoke(input: str, config: Optional[RunnableConfig] = None) → List[Document]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever.html
|
6c42365c8173-7
|
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever.html
|
6c42365c8173-8
|
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever.html
|
6c42365c8173-9
|
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever.html
|
6c42365c8173-10
|
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain_core.runnables.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain_core.runnables.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
Examples using ElasticSearchBM25Retriever¶
ElasticSearch BM25
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever.html
|
f9d36f1b10cc-0
|
langchain_community.retrievers.docarray.DocArrayRetriever¶
class langchain_community.retrievers.docarray.DocArrayRetriever[source]¶
Bases: BaseRetriever
DocArray Document Indices retriever.
Currently, it supports 5 backends:
InMemoryExactNNIndex, HnswDocumentIndex, QdrantDocumentIndex,
ElasticDocIndex, and WeaviateDocumentIndex.
Parameters
index – One of the above-mentioned index instances
embeddings – Embedding model to represent text as vectors
search_field – Field to consider for searching in the documents.
Should be an embedding/vector/tensor.
content_field – Field that represents the main content in your document schema.
Will be used as a page_content. Everything else will go into metadata.
search_type – Type of search to perform (similarity / mmr)
filters – Filters applied for document retrieval.
top_k – Number of documents to return
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param content_field: str [Required]¶
param embeddings: langchain_core.embeddings.Embeddings [Required]¶
param filters: Optional[Any] = None¶
param index: Any = None¶
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param search_field: str [Required]¶
param search_type: langchain_community.retrievers.docarray.SearchType = SearchType.similarity¶
param tags: Optional[List[str]] = None¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
f9d36f1b10cc-1
|
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param top_k: int = 1¶
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
Asynchronously get documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
f9d36f1b10cc-2
|
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
async ainvoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → List[Document]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input – The input to the runnable.
config – The config to use for the runnable.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
f9d36f1b10cc-3
|
input – The input to the runnable.
config – The config to use for the runnable.
diff – Whether to yield diffs between each step, or the current state.
with_streamed_output_list – Whether to yield the streamed_output list.
include_names – Only include logs with these names.
include_types – Only include logs with these types.
include_tags – Only include logs with these tags.
exclude_names – Exclude logs with these names.
exclude_types – Exclude logs with these types.
exclude_tags – Exclude logs with these tags.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
f9d36f1b10cc-4
|
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
f9d36f1b10cc-5
|
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
f9d36f1b10cc-6
|
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
Retrieve documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
invoke(input: str, config: Optional[RunnableConfig] = None) → List[Document]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
f9d36f1b10cc-7
|
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
f9d36f1b10cc-8
|
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
f9d36f1b10cc-9
|
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain_core.runnables.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain_core.runnables.utils.Output]¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
f9d36f1b10cc-10
|
property OutputType: Type[langchain_core.runnables.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
Examples using DocArrayRetriever¶
DocArray Retriever
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.docarray.DocArrayRetriever.html
|
187e83447fc4-0
|
langchain_community.retrievers.metal.MetalRetriever¶
class langchain_community.retrievers.metal.MetalRetriever[source]¶
Bases: BaseRetriever
Metal API retriever.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param client: Any = None¶
The Metal client to use.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param params: Optional[dict] = None¶
The parameters to pass to the Metal client.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.metal.MetalRetriever.html
|
187e83447fc4-1
|
e.g., if the underlying runnable uses an API which supports a batch mode.
async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
Asynchronously get documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
async ainvoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → List[Document]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.metal.MetalRetriever.html
|
187e83447fc4-2
|
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input – The input to the runnable.
config – The config to use for the runnable.
diff – Whether to yield diffs between each step, or the current state.
with_streamed_output_list – Whether to yield the streamed_output list.
include_names – Only include logs with these names.
include_types – Only include logs with these types.
include_tags – Only include logs with these tags.
exclude_names – Exclude logs with these names.
exclude_types – Exclude logs with these types.
exclude_tags – Exclude logs with these tags.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.metal.MetalRetriever.html
|
187e83447fc4-3
|
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.metal.MetalRetriever.html
|
187e83447fc4-4
|
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.metal.MetalRetriever.html
|
187e83447fc4-5
|
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
Retrieve documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.metal.MetalRetriever.html
|
187e83447fc4-6
|
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
invoke(input: str, config: Optional[RunnableConfig] = None) → List[Document]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.metal.MetalRetriever.html
|
187e83447fc4-7
|
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.metal.MetalRetriever.html
|
187e83447fc4-8
|
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.metal.MetalRetriever.html
|
187e83447fc4-9
|
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain_core.runnables.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain_core.runnables.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property config_specs: List[langchain_core.runnables.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
Examples using MetalRetriever¶
Metal
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.metal.MetalRetriever.html
|
bff0750c211d-0
|
langchain_community.retrievers.kendra.QueryResult¶
class langchain_community.retrievers.kendra.QueryResult[source]¶
Bases: BaseModel
Amazon Kendra Query API search result.
It is composed of:
Relevant suggested answers: either a text excerpt or table excerpt.
Matching FAQs or questions-answer from your FAQ file.
Documents including an excerpt of each document with its title.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param ResultItems: List[langchain_community.retrievers.kendra.QueryResultItem] [Required]¶
The result items.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.kendra.QueryResult.html
|
bff0750c211d-1
|
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.kendra.QueryResult.html
|
bff0750c211d-2
|
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
|
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.kendra.QueryResult.html
|
9c11f87733a7-0
|
langchain_experimental.retrievers.vector_sql_database.VectorSQLDatabaseChainRetriever¶
class langchain_experimental.retrievers.vector_sql_database.VectorSQLDatabaseChainRetriever[source]¶
Bases: BaseRetriever
Retriever that uses SQLDatabase as Retriever
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param page_content_key: str = 'content'¶
column name for page content of documents
param sql_db_chain: langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain [Required]¶
SQL Database Chain
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_experimental.retrievers.vector_sql_database.VectorSQLDatabaseChainRetriever.html
|
9c11f87733a7-1
|
e.g., if the underlying runnable uses an API which supports a batch mode.
async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
Asynchronously get documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
async ainvoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → List[Document]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_experimental.retrievers.vector_sql_database.VectorSQLDatabaseChainRetriever.html
|
9c11f87733a7-2
|
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
Parameters
input – The input to the runnable.
config – The config to use for the runnable.
diff – Whether to yield diffs between each step, or the current state.
with_streamed_output_list – Whether to yield the streamed_output list.
include_names – Only include logs with these names.
include_types – Only include logs with these types.
include_tags – Only include logs with these tags.
exclude_names – Exclude logs with these names.
exclude_types – Exclude logs with these types.
exclude_tags – Exclude logs with these tags.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_experimental.retrievers.vector_sql_database.VectorSQLDatabaseChainRetriever.html
|
9c11f87733a7-3
|
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, *, default_key: str = 'default', prefix_keys: bool = False, **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_experimental.retrievers.vector_sql_database.VectorSQLDatabaseChainRetriever.html
|
9c11f87733a7-4
|
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate input to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the runnable is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters
|
https://api.python.langchain.com/en/latest/retrievers/langchain_experimental.retrievers.vector_sql_database.VectorSQLDatabaseChainRetriever.html
|
9c11f87733a7-5
|
This method allows to get an input schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate input.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
Retrieve documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
|
https://api.python.langchain.com/en/latest/retrievers/langchain_experimental.retrievers.vector_sql_database.VectorSQLDatabaseChainRetriever.html
|
9c11f87733a7-6
|
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
invoke(input: str, config: Optional[RunnableConfig] = None) → List[Document]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_experimental.retrievers.vector_sql_database.VectorSQLDatabaseChainRetriever.html
|
9c11f87733a7-7
|
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
|
https://api.python.langchain.com/en/latest/retrievers/langchain_experimental.retrievers.vector_sql_database.VectorSQLDatabaseChainRetriever.html
|
9c11f87733a7-8
|
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
|
https://api.python.langchain.com/en/latest/retrievers/langchain_experimental.retrievers.vector_sql_database.VectorSQLDatabaseChainRetriever.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.