id
stringlengths
1
7
text
stringlengths
6
1.03M
dataset_id
stringclasses
1 value
1603816
import datetime import flask.scaffold flask.helpers._endpoint_from_view_func = flask.scaffold._endpoint_from_view_func import flask_restful from flask import request from marshmallow import ValidationError from app import RestException, db from app.model.investigator import Investigator from app.model.study_investigator import StudyInvestigator from app.schema.schema import InvestigatorSchema class InvestigatorEndpoint(flask_restful.Resource): schema = InvestigatorSchema() def get(self, id): model = db.session.query(Investigator).filter_by(id=id).first() if model is None: raise RestException(RestException.NOT_FOUND) return self.schema.dump(model) def delete(self, id): db.session.query(StudyInvestigator).filter_by(investigator_id=id).delete() db.session.query(Investigator).filter_by(id=id).delete() db.session.commit() return None def put(self, id): request_data = request.get_json() instance = db.session.query(Investigator).filter_by(id=id).first() try: updated = self.schema.load(request_data, instance=instance) except Exception as errors: raise RestException(RestException.INVALID_OBJECT, details=errors) updated.last_updated = datetime.datetime.utcnow() db.session.add(updated) db.session.commit() return self.schema.dump(updated) class InvestigatorListEndpoint(flask_restful.Resource): investigatorsSchema = InvestigatorSchema(many=True) investigatorSchema = InvestigatorSchema() def get(self): investigators = db.session.query(Investigator).order_by(Investigator.name).all() return self.investigatorsSchema.dump(investigators) def post(self): request_data = request.get_json() try: load_result = self.investigatorSchema.load(request_data) model = db.session.query(Investigator).filter_by(name=load_result.name).first() if model: return self.investigatorSchema.dump(model) else: db.session.add(load_result) db.session.commit() return self.investigatorSchema.dump(load_result) except ValidationError as err: raise RestException(RestException.INVALID_OBJECT, details=load_result.errors)
StarcoderdataPython
3258862
import json import numpy as np import os import io def dice_score(ref, pred): # from https://stackoverflow.com/questions/49759710/calculating-dice-co-efficient-between-two-random-images-of-same-size if ref.shape != pred.shape: raise ValueError("Shape mismatch: img and img2 must have to be of the same shape.") else: intersection = np.logical_and(ref, pred) value = (2. * intersection.sum()) / (ref.sum() + pred.sum()) return value def dice_list(reference_json, user_json, image_width=1024, image_height=1024): f_reference = open(reference_json) if isinstance(user_json, str): f_user = open(user_json) else: f_user = io.StringIO(user_json.getvalue().decode("utf-8")) # f_user = json.load(stringio) data_reference = json.load(f_reference) data_user = json.load(f_user) list_dice_scores = [] # if "covid27" in reference_json: if "_via_img_metadata" in data_reference: gt_patients_list = data_reference["_via_img_metadata"] else: gt_patients_list = data_reference # gt_patients_list = data_reference["_via_img_metadata"] if "_via_img_metadata" in data_user: user_patients_list = data_user["_via_img_metadata"] else: user_patients_list = data_user for key in gt_patients_list: if key in user_patients_list: np_reference = np.zeros([image_width, image_height]) np_user = np.zeros([image_width, image_height]) for region in gt_patients_list[key]["regions"]: if region['shape_attributes']['name'] == 'rect': x_start = region['shape_attributes']['x'] y_start = region['shape_attributes']['y'] x_end = region['shape_attributes']['width'] + x_start y_end = region['shape_attributes']['height'] + y_start np_reference[x_start:x_end, y_start:y_end] = 1 else: # doesn't have rect type of region so we should skip it break for region in user_patients_list[key]["regions"]: if region['shape_attributes']['name'] == 'rect': x_start = region['shape_attributes']['x'] y_start = region['shape_attributes']['y'] x_end = region['shape_attributes']['width'] + x_start y_end = region['shape_attributes']['height'] + y_start np_user[x_start:x_end, y_start:y_end] = 1 dice_score_patient = dice_score(np_reference, np_user) if not np.isnan(dice_score_patient): list_dice_scores.append(dice_score_patient) else: # reference didn't had rect but user drew rect list_dice_scores.append(0) else: for region in gt_patients_list[key]["regions"]: if region['shape_attributes']['name'] == 'rect': list_dice_scores.append(0) print("Not segmented by used") else: print("Not rect tool") return list_dice_scores def get_score_all_users(directory, ground_truth_file, user_files_list): reference_json = os.path.join(directory, ground_truth_file) scores_users = [] for user_file in user_files_list: user_json = os.path.join(directory, user_file) dice_scores = dice_list(reference_json, user_json) user_score = round(np.sum(np.asarray(dice_scores)) * 10) scores_users.append(user_score) order_users = np.argsort(scores_users) return order_users, scores_users # if __name__ == '__main__': # # example of input and call to get order and scores # # inputs are directory where files are located, ground truth json filename, list of json users annotations filenames # order, score = get_score_all_users('/Users/joaosantinha/Downloads', # 'via_project_9Dec2020_15h40m_Les_ground_truth.json', # ['via_project_8Dec2020_15h28m_jane_with_missing_keys.json', # 'via_project_18May2021_13h3m_Pedro.json', # 'via_project_20May2021_10h53m-6_Lilli.json']) # print('Order: ', order+1, '\nScore: ', score)
StarcoderdataPython
4838571
"""Functions copypasted from newer versions of numpy. """ from __future__ import division, print_function, absolute_import import warnings import sys import numpy as np from numpy.testing.nosetester import import_nose from scipy._lib._version import NumpyVersion if NumpyVersion(np.__version__) > '1.7.0.dev': _assert_warns = np.testing.assert_warns else: def _assert_warns(warning_class, func, *args, **kw): r""" Fail unless the given callable throws the specified warning. This definition is copypasted from numpy 1.9.0.dev. The version in earlier numpy returns None. Parameters ---------- warning_class : class The class defining the warning that `func` is expected to throw. func : callable The callable to test. *args : Arguments Arguments passed to `func`. **kwargs : Kwargs Keyword arguments passed to `func`. Returns ------- The value returned by `func`. """ with warnings.catch_warnings(record=True) as l: warnings.simplefilter('always') result = func(*args, **kw) if not len(l) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) if not l[0].category is warning_class: raise AssertionError("First warning for %s is not a " "%s( is %s)" % (func.__name__, warning_class, l[0])) return result def assert_raises_regex(exception_class, expected_regexp, callable_obj=None, *args, **kwargs): """ Fail unless an exception of class exception_class and with message that matches expected_regexp is thrown by callable when invoked with arguments args and keyword arguments kwargs. Name of this function adheres to Python 3.2+ reference, but should work in all versions down to 2.6. Notes ----- .. versionadded:: 1.8.0 """ __tracebackhide__ = True # Hide traceback for py.test nose = import_nose() if sys.version_info.major >= 3: funcname = nose.tools.assert_raises_regex else: # Only present in Python 2.7, missing from unittest in 2.6 funcname = nose.tools.assert_raises_regexp return funcname(exception_class, expected_regexp, callable_obj, *args, **kwargs) if NumpyVersion(np.__version__) >= '1.10.0': from numpy import broadcast_to else: # Definition of `broadcast_to` from numpy 1.10.0. def _maybe_view_as_subclass(original_array, new_array): if type(original_array) is not type(new_array): # if input was an ndarray subclass and subclasses were OK, # then view the result as that subclass. new_array = new_array.view(type=type(original_array)) # Since we have done something akin to a view from original_array, we # should let the subclass finalize (if it has it implemented, i.e., is # not None). if new_array.__array_finalize__: new_array.__array_finalize__(original_array) return new_array def _broadcast_to(array, shape, subok, readonly): shape = tuple(shape) if np.iterable(shape) else (shape,) array = np.array(array, copy=False, subok=subok) if not shape and array.shape: raise ValueError('cannot broadcast a non-scalar to a scalar array') if any(size < 0 for size in shape): raise ValueError('all elements of broadcast shape must be non-' 'negative') broadcast = np.nditer( (array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'], op_flags=['readonly'], itershape=shape, order='C').itviews[0] result = _maybe_view_as_subclass(array, broadcast) if not readonly and array.flags.writeable: result.flags.writeable = True return result def broadcast_to(array, shape, subok=False): return _broadcast_to(array, shape, subok=subok, readonly=True)
StarcoderdataPython
3232782
<reponame>beidongjiedeguang/manim-express from manim_express_tests.tests_import import * scene = EagerModeScene(screen_size=Size.medium) test_axis = np.array([1, 1, 1]) vector_arrow = Arrow(ORIGIN, test_axis) scene.play(ShowCreation(vector_arrow)) scene.hold_on() q_1 = Quaternion().set_from_axis_angle(test_axis, 20 * DEGREES) q_2 = Quaternion().set_from_axis_angle(test_axis, 30 * DEGREES) print(Quaternion.multiply_quat(q_1, q_2)) print(Quaternion.multiply_quat_2(q_1, q_2)) vec1 = Vec3(1, 1, 1).normalise() vec2 = Vec3(2, 3, 4).normalise() print("-------------------") print(vec1, vec2) q = Quaternion().set_from_unit_vectors(vec1, vec2) print(vec1.apply_quaternion(q))
StarcoderdataPython
1671866
# A part of pdfrw (pdfrw.googlecode.com) # Copyright (C) 2006-2012 <NAME>, Austin, Texas # MIT license -- See LICENSE.txt for details class PdfObject(str): ''' A PdfObject is a textual representation of any PDF file object other than an array, dict or string. It has an indirect attribute which defaults to False. ''' indirect = False
StarcoderdataPython
1751437
#!/usr/bin/python ############################################## ###Python template ###Author: <NAME> ###Date: 7/15/14 ###Function: Conduct time-based simulations on age-structure networks where pre-existing immunity exists and is heterogeneous within the adult population. Vary single average value of immunity for subpopulation of adults with any pre-existing immunity. Choose subpopulation node IDs with a fixed random proportion of the adult population. ###Import data: ###Command Line: python age_time_immunity_single.py ############################################## ### notes ### ### packages/modules ### import csv import zipfile from time import clock from collections import defaultdict import networkx as nx from random import seed ## local modules ## import percolations as perc import simulation_parameters as par import pretty_print as pp ### parameters ### seed(19) numsims = par.sp_numsims size_epi = par.sp_size_epi inf_period = par.sp_inf_period g = par.sp_gamma T = par.sp_T b = par.sp_b # specific to immunity params imm_val_ls = par.sp_immune_val_list prop = par.sp_prop zstring = par.sp_pstr_fixed zstring2 = par.sp_mstr_range ### data structures ### d_node_age = {} # d_node_age[nodenumber] = ageclass ############################################### ### import data and initialize graph ### ### import data ### graph = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/urban_network_added_with_info_May24_2014/urban_edges_N10k_Sept2012.txt') # Vancouver network graph_ages = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/urban_network_added_with_info_May24_2014/urban_ages_N10k_Sept2012.txt') # node number and age class ### construct age-structured network ### ct = 1 G = nx.Graph() for edge in graph: edge_ls = edge.strip().split(' ') G.add_edge(*edge_ls) for line in graph_ages: new_line = line.strip().split(' ') node, age = new_line d_node_age[node] = age # node-ageclass dictionary N = float(G.order()) print "network size:", N ### ziparchive to write results ### zipname = '/home/elee/Dropbox/Elizabeth_Bansal_Lab/Age_Based_Simulations/Results/immunity_time_%ssims_beta%.3f_%s_%s.zip' %(numsims, b, zstring, zstring2) ############################################### ### set pre-existing immunity conditions ### totalsimtime = clock() ## identify nodes with pre-existing immunity (return list of adult IDs - mult methods) ## imm_nodes = list of adult IDs with any pre-existing immunity # choose randomly, given a proportion of adults with pre-existing immunity (# tune adult proportion in equal increments) (# set adult proportion equal to the proportion of adults infected from a single simulation) imm_nodes = perc.immune_nodes_proportion(G, d_node_age, prop) for imm_val in imm_val_ls: zstring3 = 'single%s' %(imm_val) # string for filename disambiguation ## assign magnitude of pre-existing immunity to each node (return dict with node ID and pre-existing immunity value; 0 if none - mult methods) ## d_immunity_mag[node] = pre-existing immunity value # set a single average value of immunity d_immunity_mag = perc.immunity_magnitude_single(G, imm_nodes, imm_val) ############################################### ### pre-existing immunity simulations ### totaltime = clock() ## save infection and recovery tsteps for each sim # d_save_I_tstep[simnumber] (or d_save_R_tstep) = [time step of infection/recovery where index = node number - 1 else 0] d_save_I_tstep = defaultdict(list) d_save_R_tstep = defaultdict(list) for num in xrange(numsims): start = clock() total_rec, I_tstep_list, R_tstep_list = perc.episim_age_time_imm(G, d_node_age, d_immunity_mag, b, g) d_save_I_tstep[num] = I_tstep_list d_save_R_tstep[num] = R_tstep_list print "simtime, simnum, episize:", clock() - start, "\t", num, "\t", total_rec # print tsteps of infection and recovery to recreate sim # sort order of sims so that the rows in d_save_I_tstep and d_save_R_tstep will match each other filename = 'Results/Itstep_immunity_time_%ssims_beta%.3f_%s_%s.txt' %(numsims, b, zstring, zstring3) pp.print_sorteddlist_to_file(d_save_I_tstep, filename, numsims) pp.compress_to_ziparchive(zipname, filename) filename = 'Results/Rtstep_immunity_time_%ssims_beta%.3f_%s_%s.txt' %(numsims, b, zstring, zstring3) pp.print_sorteddlist_to_file(d_save_R_tstep, filename, numsims) pp.compress_to_ziparchive(zipname, filename) print "total time for sims:", clock() - totaltime print "Params:", numsims, size_epi, inf_period, g, T, b, imm_val, prop print "total time for sims:", clock() - totalsimtime print "age_time_immunity_single.py complete"
StarcoderdataPython
49991
## This File Contains all the different Neural Network Architectures used and the Loss function import torch import torch.nn as nn import torch.nn.functional as functions ## Dense Network class Dense(nn.Module): def __init__(self): super(Dense,self).__init__() self.fc1 = nn.Linear(6*7,32) #board-size hard-coded self.fc2 = nn.Linear(32,16) self.probhead = nn.Linear(16,7) self.valuehead = nn.Linear(16,1) self.soft = nn.Softmax(dim=1) self.tanh = nn.Tanh() def forward(self,x): x = x.view(-1,6*7) x = functions.relu(self.fc1(x)) x = functions.relu(self.fc2(x)) #action probs P = self.soft(self.probhead(x)) #value probs v = self.tanh(self.valuehead(x)) return P,v ## Convolutional Network class Conv(nn.Module): def __init__(self): super(Conv,self).__init__() self.conv1 = nn.Conv2d(1,8,3,stride=1,padding=1) self.bn1 = nn.BatchNorm2d(8) self.fc1 = nn.Linear(336,150) self.fc2 = nn.Linear(150,60) self.probhead = nn.Linear(60,7) self.valuehead = nn.Linear(60,1) self.soft = nn.Softmax(dim=1) self.tanh = nn.Tanh() def forward(self,x): x = x.view(-1,1,6,7) x = functions.relu(self.bn1(self.conv1(x))) x = x.view(-1,6*7*8) x = functions.relu(self.fc1(x)) x = functions.relu(self.fc2(x)) P = self.soft(self.probhead(x)) v = self.tanh(self.valuehead(x)) return P,v ## Loss Function class Alphaloss(nn.Module): def __init__(self): super(Alphaloss,self).__init__() def forward(self,z,v,pi,P): #Notation as per AlphaZero Paper value_error = (z - v) **2 policy_error = -torch.matmul(pi,torch.log(P).T) # gives the same result #policy_error = torch.sum(-pi*torch.log(P),1) return (value_error.view(-1)+policy_error).mean()
StarcoderdataPython
4839642
<reponame>domenukk/lighthouse from .misc import * from .debug import * from .log import lmsg, logging_started, start_logging
StarcoderdataPython
3277058
print("Input: ",end="") string = input() def stack(s): if (len(s) == 0): return x = s[-1] s.pop() stack(s) print(x, end="") s.append(x) def min(s): Stack = [] Stack.append(s[0]) for i in range(1, len(s)): if (len(Stack) == 0): Stack.append(s[i]) else: if (Stack[-1] == s[i]): Stack.pop() else: Stack.append(s[i]) stack(Stack) print("Output: ",end="") min(string)
StarcoderdataPython
1775084
from django.apps import AppConfig class IngresoConfig(AppConfig): name = 'ingreso'
StarcoderdataPython
28766
class Solution: def diStringMatch(self, S): low,high=0,len(S) ans=[] for i in S: if i=="I": ans.append(low) low+=1 else: ans.append(high) high-=1 return ans +[low]
StarcoderdataPython
3240719
# Faça um programa que leia o ano de nascimento de um jovem e informe, de acordo com sua idade: # - se ele ainda vai se alistar ao serviço militar. # - se é a hora de se alistar. # - se já passou do tempo do alistamento. # seu programa também deverá mostrar o tempo que falta ou que passou do prazo. from datetime import date print('~~~'*15) print('SERVIÇO DE ALISTAMENTO MILITAR.') print('~~~'*15) ano = int(input('Digite o ano de nascimento: ')) idade = 2021 - ano n = 18 - idade if idade == 18: print('\033[33mVocê deverá se alistar ainda este ano!') elif idade <= 17: print('\033[32mainda falta(am) {} ano(os) para o seu alistamento.'.format(n)) elif idade > 18: n = n * (-1) print('\033[31mVocê já deveria ter se alistado há {} ano(os).'.format(n))
StarcoderdataPython
43501
# -*- coding: utf-8 -*- from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import from __future__ import print_function import matplotlib.pyplot as plt from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas class MatplotlibWidget(FigureCanvas): def __init__(self, figure, parent): """ """ super(MatplotlibWidget, self).__init__(figure) self.setParent(parent) self.fig = figure def close_figure(self): """ """ if self.fig: self.fig.clf() plt.close(self.fig) self.fig = None
StarcoderdataPython
1719089
import json import pytest from idempotency_key.encoders import BasicKeyEncoder from idempotency_key.exceptions import MissingIdempotencyKeyError def test_basic_encoding(): class Request: path_info = "/myURL/path/" method = "POST" body = json.dumps({"key": "value"}).encode("UTF-8") request = Request() obj = BasicKeyEncoder() enc_key = obj.encode_key(request, "MyKey") assert enc_key == "<KEY>" def test_basic_encoder_null_key(): class Request: path_info = "/myURL/path/" method = "POST" body = json.dumps({"key": "value"}).encode("UTF-8") request = Request() obj = BasicKeyEncoder() with pytest.raises(MissingIdempotencyKeyError) as e_info: obj.encode_key(request, None) assert e_info.value.args[0] == "Idempotency key cannot be None."
StarcoderdataPython
161847
# In the mysterious country of Byteland, everything is quite different from what you'd normally expect. In most places, if # you were approached by two mobsters in a dark alley, they would probably tell you to give them all the money that you # have. If you refused, or didn't have any - they might even beat you up. # # In Byteland the government decided that even the slightest chance of someone getting injured has to be ruled out. So, # they introduced a strict policy. When a mobster approaches you in a dark alley, he asks you for a specific amount of # money. You are obliged to show him all the money that you have, but you only need to pay up if he can find a subset of # your banknotes whose total value matches his demand. Since banknotes in Byteland can have any positive integer value # smaller than one thousand you are quite likely to get off without paying. # # Both the citizens and the gangsters of Byteland have very positive feelings about the system. No one ever gets hurt, the # gangsters don't lose their jobs, and there are quite a few rules that minimize that probability of getting mugged (the # first one is: don't go into dark alleys - and this one is said to work in other places also). # # Input # The first line contains integer t, the number of test cases (about 100). Then t test cases follow. Each test case starts # with n, the number of banknotes in your wallet, and m, the amount of money the muggers asked of you. Then n numbers # follow, representing values of your banknotes. Your wallet does not hold more than 20 banknotes, and the value of a # single banknote is never more than 1000. # # Output # For each test case output a single line with the word 'Yes' if there is a subset of your banknotes that sums to m, and # 'No' otherwise. # # Example # Input: # 5 # 3 3 # 1 # 1 # 1 # 5 11 # 1 # 2 # 4 # 8 # 16 # 5 23 # 1 # 2 # 4 # 8 # 16 # 5 13 # 1 # 5 # 5 # 10 # 10 # 20 132 # 17 # 6 # 4 # 998 # 254 # 137 # 259 # 153 # 154 # 3 # 28 # 19 # 123 # 542 # 857 # 23 # 687 # 35 # 99 # 999 # # Output: # Yes # Yes # Yes # No # Yes from itertools import combinations def subset(a, n, m): for i in range(1, n+1): array = combinations(a, i) for j in array: if sum(j) == m: return "Yes" return "No" for _ in range(int(input())): n, m = map(int, input().split()) a = [] for i in range(n): a.append(int(input())) ans = subset(a, n, m) print(ans) #Made by <NAME>
StarcoderdataPython
1706411
<filename>src/e404.py #!/usr/bin/python import util import templates def run(): print("Creating 404") html = templates.get("404") html = templates.initial_replace(html, -1) html = templates.final_replace(html, ".") util.writefile("../404.html", html) if __name__ == "__main__": run()
StarcoderdataPython
128297
<reponame>troyel/OpenMetadata<gh_stars>1-10 # Copyright 2021 Collate # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Test Table and Column Tests' validate implementations. Each test should validate the Success, Failure and Aborted statuses """ from datetime import datetime from metadata.generated.schema.entity.data.table import ColumnProfile, TableProfile from metadata.generated.schema.tests.basic import TestCaseResult, TestCaseStatus from metadata.generated.schema.tests.column.columnValuesLengthsToBeBetween import ( ColumnValueLengthsToBeBetween, ) from metadata.generated.schema.tests.column.columnValuesToBeBetween import ( ColumnValuesToBeBetween, ) from metadata.generated.schema.tests.column.columnValuesToBeNotNull import ( ColumnValuesToBeNotNull, ) from metadata.generated.schema.tests.column.columnValuesToBeUnique import ( ColumnValuesToBeUnique, ) from metadata.generated.schema.tests.table.tableColumnCountToEqual import ( TableColumnCountToEqual, ) from metadata.generated.schema.tests.table.tableRowCountToBeBetween import ( TableRowCountToBeBetween, ) from metadata.generated.schema.tests.table.tableRowCountToEqual import ( TableRowCountToEqual, ) from metadata.orm_profiler.validations.core import validate EXECUTION_DATE = datetime.strptime("2021-07-03", "%Y-%m-%d") def test_table_row_count_to_equal(): """ Check TableRowCountToEqual """ table_profile = TableProfile( profileDate=EXECUTION_DATE.strftime("%Y-%m-%d"), rowCount=100, ) res_ok = validate( TableRowCountToEqual(value=100), table_profile=table_profile, execution_date=EXECUTION_DATE, ) assert res_ok == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Success, result="Found 100.0 rows vs. the expected 100", ) res_ko = validate( TableRowCountToEqual(value=50), table_profile=table_profile, execution_date=EXECUTION_DATE, ) assert res_ko == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Failed, result="Found 100.0 rows vs. the expected 50", ) table_profile_aborted = TableProfile( profileDate=EXECUTION_DATE.strftime("%Y-%m-%d"), ) res_aborted = validate( TableRowCountToEqual(value=100), table_profile=table_profile_aborted, execution_date=EXECUTION_DATE, ) assert res_aborted == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Aborted, result="rowCount should not be None for TableRowCountToEqual", ) def test_table_row_count_to_be_between(): """ Check TableRowCountToEqual """ table_profile = TableProfile( profileDate=EXECUTION_DATE.strftime("%Y-%m-%d"), rowCount=100, ) res_ok = validate( TableRowCountToBeBetween(minValue=20, maxValue=120), table_profile=table_profile, execution_date=EXECUTION_DATE, ) assert res_ok == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Success, result="Found 100.0 rows vs. the expected range [20, 120].", ) res_ko = validate( TableRowCountToBeBetween(minValue=120, maxValue=200), table_profile=table_profile, execution_date=EXECUTION_DATE, ) assert res_ko == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Failed, result="Found 100.0 rows vs. the expected range [120, 200].", ) table_profile_aborted = TableProfile( profileDate=EXECUTION_DATE.strftime("%Y-%m-%d"), ) res_aborted = validate( TableRowCountToBeBetween(minValue=120, maxValue=200), table_profile=table_profile_aborted, execution_date=EXECUTION_DATE, ) assert res_aborted == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Aborted, result="rowCount should not be None for TableRowCountToBeBetween", ) def test_table_column_count_to_equal(): """ Check TableRowCountToEqual """ table_profile = TableProfile( profileDate=EXECUTION_DATE.strftime("%Y-%m-%d"), columnCount=5, ) res_ok = validate( TableColumnCountToEqual(columnCount=5), table_profile=table_profile, execution_date=EXECUTION_DATE, ) assert res_ok == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Success, result="Found 5.0 columns vs. the expected 5", ) res_ko = validate( TableColumnCountToEqual(columnCount=20), table_profile=table_profile, execution_date=EXECUTION_DATE, ) assert res_ko == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Failed, result="Found 5.0 columns vs. the expected 20", ) table_profile_aborted = TableProfile( profileDate=EXECUTION_DATE.strftime("%Y-%m-%d"), ) res_aborted = validate( TableColumnCountToEqual(columnCount=5), table_profile=table_profile_aborted, execution_date=EXECUTION_DATE, ) assert res_aborted == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Aborted, result="columnCount should not be None for TableColumnCountToEqual", ) def test_column_values_to_be_between(): """ Check ColumnValuesToBeBetween """ column_profile = ColumnProfile( min=1, max=3, ) res_ok = validate( ColumnValuesToBeBetween( minValue=0, maxValue=3, ), col_profile=column_profile, execution_date=EXECUTION_DATE, ) assert res_ok == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Success, result="Found min=1.0, max=3.0 vs. the expected min=0, max=3.", ) res_ko = validate( ColumnValuesToBeBetween( minValue=0, maxValue=2, ), col_profile=column_profile, execution_date=EXECUTION_DATE, ) assert res_ko == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Failed, result="Found min=1.0, max=3.0 vs. the expected min=0, max=2.", ) column_profile_aborted = ColumnProfile( min=1, ) res_aborted = validate( ColumnValuesToBeBetween( minValue=0, maxValue=3, ), col_profile=column_profile_aborted, execution_date=EXECUTION_DATE, ) assert res_aborted == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Aborted, result=( "We expect `min` & `max` to be informed on the profiler for ColumnValuesToBeBetween" + " but got min=1.0, max=None." ), ) def test_column_values_to_be_unique(): """ Check ColumnValuesToBeUnique """ column_profile = ColumnProfile( valuesCount=10, uniqueCount=10, ) res_ok = validate( ColumnValuesToBeUnique(), col_profile=column_profile, execution_date=EXECUTION_DATE, ) assert res_ok == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Success, result=( "Found valuesCount=10.0 vs. uniqueCount=10.0." + " Both counts should be equal for column values to be unique." ), ) column_profile_ko = ColumnProfile( valuesCount=10, uniqueCount=5, ) res_ko = validate( ColumnValuesToBeUnique(), col_profile=column_profile_ko, execution_date=EXECUTION_DATE, ) assert res_ko == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Failed, result=( "Found valuesCount=10.0 vs. uniqueCount=5.0." + " Both counts should be equal for column values to be unique." ), ) column_profile_aborted = ColumnProfile() res_aborted = validate( ColumnValuesToBeUnique(), col_profile=column_profile_aborted, execution_date=EXECUTION_DATE, ) assert res_aborted == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Aborted, result=( "We expect `valuesCount` & `uniqueCount` to be informed on the profiler for ColumnValuesToBeUnique" + " but got valuesCount=None, uniqueCount=None." ), ) def test_column_values_to_be_not_null(): """ Check ColumnValuesToBeNotNull """ column_profile = ColumnProfile( nullCount=0, ) res_ok = validate( ColumnValuesToBeNotNull(), col_profile=column_profile, execution_date=EXECUTION_DATE, ) assert res_ok == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Success, result=("Found nullCount=0.0. It should be 0."), ) column_profile_ko = ColumnProfile( nullCount=10, ) res_ko = validate( ColumnValuesToBeNotNull(), col_profile=column_profile_ko, execution_date=EXECUTION_DATE, ) assert res_ko == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Failed, result=("Found nullCount=10.0. It should be 0."), ) column_profile_aborted = ColumnProfile() res_aborted = validate( ColumnValuesToBeNotNull(), col_profile=column_profile_aborted, execution_date=EXECUTION_DATE, ) assert res_aborted == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Aborted, result=( "We expect `nullCount` to be informed on the profiler for ColumnValuesToBeNotNull." ), ) def test_column_value_length_to_be_between(): """ Check ColumnValueLengthsToBeBetween """ col_profile = ColumnProfile( minLength=4, maxLength=16, ) res_ok = validate( ColumnValueLengthsToBeBetween(minLength=2, maxLength=20), col_profile=col_profile, execution_date=EXECUTION_DATE, ) assert res_ok == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Success, result="Found minLength=4.0, maxLength=16.0 vs. the expected minLength=2, maxLength=20.", ) res_ko = validate( ColumnValueLengthsToBeBetween(minLength=10, maxLength=20), col_profile=col_profile, execution_date=EXECUTION_DATE, ) assert res_ko == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Failed, result="Found minLength=4.0, maxLength=16.0 vs. the expected minLength=10, maxLength=20.", ) col_profile_aborted = ColumnProfile(minLength=4) res_aborted = validate( ColumnValueLengthsToBeBetween(minLength=2, maxLength=20), col_profile=col_profile_aborted, execution_date=EXECUTION_DATE, ) assert res_aborted == TestCaseResult( executionTime=EXECUTION_DATE.timestamp(), testCaseStatus=TestCaseStatus.Aborted, result=( "We expect `minLength` & `maxLength` to be informed on the profiler for ColumnValueLengthsToBeBetween" + " but got minLength=4.0, maxLength=None." ), )
StarcoderdataPython
1737697
from django.db import models class Job(models.Model): image = models.ImageField(upload_to='images/') summary = models.CharField(max_length=200)
StarcoderdataPython
3399015
import copy import json import os import pdb import re from typing import Dict, List, TypeVar import torch from elvis.modeling.models import build_net from elvis.modeling.models.layers import MLP from torch.nn import functional as F from .base import MetaArch from .build import ARCH_REGISTRY Tensor = TypeVar('torch.tensor') __all__ = ['MetaVQA', 'build_meta_vqa'] class MetaVQA(MetaArch): def __init__(self, model, max_visual, max_tokens, ans2id): super(MetaArch, self).__init__() self.model = model self.max_visual = max_visual self.max_tokens = max_tokens self.ans2id = ans2id self.id2ans = {v: k for k, v in ans2id.items()} self.out_layer = MLP(in_features=self.model.embed_dim, hidden_dim=self.model.embed_dim, out_features=len(self.ans2id), dropout_p=.1) def forward(self, vis_in, txt_in, vis_mask, txt_mask, **kwargs): out = self.model(vis_in=vis_in, vis_mask=vis_mask, txt_in=txt_in, txt_mask=txt_mask) t_pool = out[:, 0] #v_pool = out[:, self.max_tokens] logits = self.out_layer(t_pool) return {'vqa_logits': logits} def compute_loss(self, vqa_logits, gt_answers, **kwargs) -> Dict: vqa_loss = F.binary_cross_entropy_with_logits(vqa_logits, gt_answers, reduction='none') vqa_loss = vqa_loss.sum(dim=-1).mean() return {'loss': vqa_loss} def save_on_disk(self, path): #save vocab only once vocab_ckp = os.path.join(path, 'VQA.vocab') if not os.path.exists(vocab_ckp): with open(vocab_ckp, 'w') as fp: json.dump(self.ans2id, fp) #use deepcopy to avoid problems with DistributedDataParallel state_dict = copy.deepcopy(self).cpu().state_dict() ckp_file = os.path.join(path, 'state_dict.pt') torch.save(state_dict, ckp_file) def from_pretrained(self, state_dict): layers_names = list(state_dict.keys()) for l_name in layers_names: if l_name.startswith('lm_mlp') or l_name.startswith('itm_fc'): del state_dict[l_name] else: #remove the model.layer_name state_dict[l_name[6:]] = state_dict.pop(l_name) self.model.load_state_dict(state_dict) def predict(self, vis_in, txt_in, vis_mask, txt_mask, **kwargs): out = self.forward(vis_in, txt_in, vis_mask, txt_mask, **kwargs) probs = torch.sigmoid(out['vqa_logits']).squeeze(0) answer_id = torch.argmax(probs).item() answer_conf = probs[answer_id].item() answer = self.id2ans[answer_id] return answer, answer_conf """ def from_checkpoint(self, path): self.lang_net.load_config(path) state_path = os.path.join(path, 'state_dict.pt') state_dict = torch.load(state_path) self.load_state_dict(state_dict) voc_path = os.path.join(path, 'label2ans.json') with open(voc_path) as fp: self.id2ans = json.load(fp) """ @ARCH_REGISTRY.register() def build_meta_vqa(cfg, **kwargs): with open(cfg.MODEL.ANS_VOCAB) as fp: ans2id = json.load(fp) model, data_interface = build_net(cfg.MODEL, get_interface='vqa', **{'ans2id': ans2id}) vqa = MetaVQA(model, max_visual=cfg.MODEL.MAX_N_VISUAL, max_tokens=cfg.MODEL.MAX_N_TOKENS, ans2id=ans2id) return vqa, data_interface
StarcoderdataPython
41476
""" Receiving Open Sound Control messages as audio streams **02-receive-streams.py** This script shows a granulation process controlled by OSC messages coming from another program (run the next example, *03-send-streams.py*, to get values coming in). """ from pyo import * s = Server().boot() # The sound table to granulate. table = SndTable("../snds/flute.aif") # Listen addresses '/density', '/position', '/pitch_rand' and '/duration' on port 9000. rec = OscReceive(port=9000, address=["/density", "/position", "/pitch_rand", "/duration"]) # Sets initial values for the OSC streams. This allow the program to run with # minimal behaviour even if no message have been sent on these addresses. rec.setValue("/density", 0.5) rec.setValue("/position", 0.5) rec.setValue("/pitch_rand", 0.0) rec.setValue("/duration", 0.5) # Density of grains, between 1 and 250 grains per second. dens = SigTo(rec["/density"], time=0.05, mul=249, add=1) # Reading position, in samples, in the table + little jitter noise. pos = SigTo(rec["/position"], time=0.05, mul=table.getSize(), add=Noise(100)) # Amplitude of a jitter noise around 1.0 to control the pitch of individual grains. rpit = SigTo(rec["/pitch_rand"], time=0.05, mul=0.2, add=0.001) pit = Noise(mul=rpit, add=1) # Grain duration, between 0.025 and 0.5 second. dur = SigTo(rec["/duration"], time=0.05, mul=0.475, add=0.025) grain = Particle( table=table, # table to read samples from. env=HannTable(), # grain envelope. dens=dens, # density of grains per second. pitch=pit, # pitch of grains. pos=pos, # position in the table where to start the grain. dur=dur, # grain duration. dev=0.01, # Maximum deviation of the starting time of the grain. pan=Noise(0.5, 0.5), # Panning factor of the grain. chnls=2, # Number of channels to output. mul=0.15, ).out() s.gui(locals())
StarcoderdataPython
3244987
<gh_stars>1-10 # daily request to youtube from django.utils import timezone from youtube.models import despacito from .ytbAPI import ytbAPI from . import youtube_lib as ytb def despacito_daily(): result = ytb.video_list('kJQP7kiw5Fk','statistics') t = timezone.now() v = result['statistics']['viewCount'] l = result['statistics']['likeCount'] d = result['statistics']['dislikeCount'] c = result['statistics']['commentCount'] tmp = despacito(date=t, views=v, likes=l, dislikes=d, comments=c) tmp.save() print('despacito daily done: {} \n'.format(str(t))) def test(): print('testdaily')
StarcoderdataPython
1685128
<gh_stars>10-100 # Copyright 2014-2020 Scalyr Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Module which tests the compat.py functionality. """ from __future__ import unicode_literals from __future__ import absolute_import import os import unittest import six from scalyr_agent.compat import os_environ_unicode class EnvironUnicode(unittest.TestCase): TEST_VAR = "TEST_VAR_ENVIRON_UNICODE" def test_environ_get(self): os.environ[EnvironUnicode.TEST_VAR] = six.ensure_str("Test string") self.assertEqual( os_environ_unicode.get(EnvironUnicode.TEST_VAR), six.text_type("Test string"), ) self.assertEqual( os_environ_unicode[EnvironUnicode.TEST_VAR], six.text_type("Test string") ) def test_environ_set(self): os_environ_unicode[EnvironUnicode.TEST_VAR] = six.ensure_str("Test two string") self.assertEqual( os_environ_unicode.get(EnvironUnicode.TEST_VAR), six.text_type("Test two string"), ) def test_environ_pop(self): os_environ_unicode[EnvironUnicode.TEST_VAR] = six.ensure_str("Test four string") value = os_environ_unicode.pop(EnvironUnicode.TEST_VAR) self.assertEqual(value, six.text_type("Test four string")) def test_environ_in(self): os.environ[EnvironUnicode.TEST_VAR] = "Foo" self.assertTrue(EnvironUnicode.TEST_VAR in os_environ_unicode) self.assertFalse("FakeKey1234" in os_environ_unicode)
StarcoderdataPython
1675353
#!/usr/bin/env python """bless_client A sample client to invoke the BLESS Lambda function and save the signed SSH Certificate. Usage: bless_client.py region lambda_function_name bastion_user bastion_user_ip remote_usernames bastion_ips bastion_command <id_rsa.pub to sign> <output id_rsa-cert.pub> region: AWS region where your lambda is deployed. lambda_function_name: The AWS Lambda function's alias or ARN to invoke. bastion_user: The user on the bastion, who is initiating the SSH request. bastion_user_ip: The IP of the user accessing the bastion. remote_usernames: Comma-separated list of username(s) or authorized principals on the remote server that will be used in the SSH request. This is enforced in the issued certificate. bastion_ips: The source IP(s) where the SSH connection will be initiated from. Addresses should be comma-separated and can be individual IPs or CIDR format (nn.nn.nn.nn/nn or hhhh::hhhh/nn). This is enforced in the issued certificate. bastion_command: Text information about the SSH request of the bastion_user. id_rsa.pub to sign: The id_rsa.pub that will be used in the SSH request. This is enforced in the issued certificate. output id_rsa-cert.pub: The file where the certificate should be saved. Per man SSH(1): "ssh will also try to load certificate information from the filename obtained by appending -cert.pub to identity filenames" e.g. the <id_rsa.pub to sign>. """ import json import os import stat import sys import boto3 def main(argv): if len(argv) < 9 or len(argv) > 10: print( 'Usage: bless_client.py region lambda_function_name bastion_user bastion_user_ip ' 'remote_usernames bastion_ips bastion_command <id_rsa.pub to sign> ' '<output id_rsa-cert.pub> [kmsauth token]') return -1 region, lambda_function_name, bastion_user, bastion_user_ip, remote_usernames, bastion_ips, \ bastion_command, public_key_filename, certificate_filename = argv[:9] with open(public_key_filename, 'r') as f: public_key = f.read().strip() payload = {'bastion_user': bastion_user, 'bastion_user_ip': bastion_user_ip, 'remote_usernames': remote_usernames, 'bastion_ips': bastion_ips, 'command': bastion_command, 'public_key_to_sign': public_key} if len(argv) == 10: payload['kmsauth_token'] = argv[9] payload_json = json.dumps(payload) print('Executing:') print('payload_json is: \'{}\''.format(payload_json)) lambda_client = boto3.client('lambda', region_name=region) response = lambda_client.invoke(FunctionName=lambda_function_name, InvocationType='RequestResponse', LogType='None', Payload=payload_json) print('{}\n'.format(response['ResponseMetadata'])) if response['StatusCode'] != 200: print('Error creating cert.') return -1 payload = json.loads(response['Payload'].read()) if 'certificate' not in payload: print(payload) return -1 cert = payload['certificate'] with os.fdopen(os.open(certificate_filename, os.O_WRONLY | os.O_CREAT, 0o600), 'w') as cert_file: cert_file.write(cert) # If cert_file already existed with the incorrect permissions, fix them. file_status = os.stat(certificate_filename) if 0o600 != (file_status.st_mode & 0o777): os.chmod(certificate_filename, stat.S_IRUSR | stat.S_IWUSR) print('Wrote Certificate to: ' + certificate_filename) if __name__ == '__main__': main(sys.argv[1:])
StarcoderdataPython
4815625
<reponame>zhuyuanxiang/deep-learning-with-python-notebooks # -*- encoding: utf-8 -*- """ @Author : zYx.Tom @Contact : <EMAIL> @site : https://zhuyuanxiang.github.io --------------------------- @Software : PyCharm @Project : deep-learning-with-python-notebooks @File : ch0702_tensor_board.py @Version : v0.1 @Time : 2019-11-27 15:26 @License : (C)Copyright 2018-2019, zYx.Tom @Reference : 《Python 深度学习,Francois Chollet》, Sec070202,P212 @Desc : 高级的深度学习最佳实践,使用TensorBoard来检查并且监控深度学习模型 """ import os import sys import matplotlib.pyplot as plt import numpy as np # pip install numpy<1.17,小于1.17就不会报错 import winsound from keras.activations import relu from keras.datasets import imdb from keras.layers import Conv1D, Embedding, GlobalMaxPooling1D, MaxPooling1D from keras.layers import Dense from keras.losses import binary_crossentropy from keras.models import Sequential from keras.optimizers import rmsprop from keras.preprocessing.sequence import pad_sequences # 屏蔽警告:Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 设置数据显示的精确度为小数点后3位 np.set_printoptions(precision = 3, suppress = True, threshold = np.inf, linewidth = 200) # to make this notebook's output stable across runs seed = 42 np.random.seed(seed) # Python ≥3.5 is required assert sys.version_info >= (3, 5) # numpy 1.16.4 is required assert np.__version__ in ["1.16.5", "1.16.4"] # ---------------------------------------------------------------------- max_features = 2000 max_len = 500 embedding_size = 128 epochs = 15 batch_size = 128 verbose = 2 validation_split = 0.2 print("Listing 7.7:准备 IMDB 数据集...") (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words = max_features) x_train = x_train[0:max_features] x_test = x_test[0:max_features] y_train = y_train[0:max_features] y_test = y_test[0:max_features] print('\t', len(x_train), 'train sequences(训练序列)') print('\t', len(x_test), 'test sequences(测试序列)') print('Pad sequences (samples x time)') x_train = pad_sequences(x_train, maxlen = max_len) x_test = pad_sequences(x_test, maxlen = max_len) print('\t x_train shape:', x_train.shape) print('\t x_test shape:', x_test.shape) # ---------------------------------------------------------------------- model = Sequential() model.add(Embedding(max_features, 128, input_length = max_len, name = 'Embedding')) model.add(Conv1D(32, 7, activation = relu)) model.add(MaxPooling1D(5)) model.add(Conv1D(32, 7, activation = relu)) model.add(GlobalMaxPooling1D()) model.add(Dense(1)) model.summary() model.compile(optimizer = rmsprop(), loss = binary_crossentropy, metrics = ['acc']) from keras.utils import plot_model plot_model(model, to_file = 'model.png') plot_model(model, show_shapes = True, to_file = 'model_with_parameter.png') # ---------------------------------------------------------------------- # callbacks = [ # TensorBoard( # log_dir = 'my_log_dir', # 日志文件保存的位置 # histogram_freq = 1, # 每一轮之后记录激活直方图 # # ToDo:还需要提供 embeddings_data 才能记录数据 # # embeddings_freq = 1, # 每一轮之后记录嵌入数据 # ) # ] # history = model.fit(x_train, y_train, epochs = 20, batch_size = 128, validation_split = 0.2, # callbacks = callbacks, verbose = 2, use_multiprocessing = True) # ---------------------------------------------------------------------- # 运行结束的提醒 winsound.Beep(600, 500) if len(plt.get_fignums()) != 0: plt.show() pass
StarcoderdataPython
138454
<gh_stars>1-10 from .APIKeyLabel import APIKeyLabel from .Contract import Contract from .DnsAddress import DnsAddress from .Error import Error from .GetOrganizationUsersResponseBody import GetOrganizationUsersResponseBody from .IsMember import IsMember from .JoinOrganizationInvitation import JoinOrganizationInvitation from .LocalizedInfoText import LocalizedInfoText from .Organization import Organization from .OrganizationAPIKey import OrganizationAPIKey from .OrganizationLogo import OrganizationLogo from .OrganizationTreeItem import OrganizationTreeItem from .RegistryEntry import RegistryEntry from .ValidityTime import ValidityTime from .api_response import APIResponse from .unhandled_api_error import UnhandledAPIError from .unmarshall_error import UnmarshallError from Jumpscale import j class OrganizationsService: def __init__(self, client): pass self.client = client def Get2faValidityTime(self, globalid, headers=None, query_params=None, content_type="application/json"): """ Get the 2FA validity time for the organization, in seconds It is method for GET /organizations/{globalid}/2fa/validity """ uri = self.client.base_url + "/organizations/" + globalid + "/2fa/validity" resp = self.client.get(uri, None, headers, query_params, content_type) try: if resp.status_code == 200: return APIResponse(data=ValidityTime(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def Set2faValidityTime(self, data, globalid, headers=None, query_params=None, content_type="application/json"): """ Update the 2FA validity time for the organization It is method for PUT /organizations/{globalid}/2fa/validity """ uri = self.client.base_url + "/organizations/" + globalid + "/2fa/validity" return self.client.put(uri, data, headers, query_params, content_type) def DeleteOrganizationAPIKey( self, label, globalid, headers=None, query_params=None, content_type="application/json" ): """ Removes an API key It is method for DELETE /organizations/{globalid}/apikeys/{label} """ uri = self.client.base_url + "/organizations/" + globalid + "/apikeys/" + label return self.client.delete(uri, None, headers, query_params, content_type) def GetOrganizationAPIKey(self, label, globalid, headers=None, query_params=None, content_type="application/json"): """ Get an api key from an organization It is method for GET /organizations/{globalid}/apikeys/{label} """ uri = self.client.base_url + "/organizations/" + globalid + "/apikeys/" + label resp = self.client.get(uri, None, headers, query_params, content_type) try: if resp.status_code == 200: return APIResponse(data=OrganizationAPIKey(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def UpdateOrganizationAPIKey( self, data, label, globalid, headers=None, query_params=None, content_type="application/json" ): """ Updates the label or other properties of a key. It is method for PUT /organizations/{globalid}/apikeys/{label} """ uri = self.client.base_url + "/organizations/" + globalid + "/apikeys/" + label return self.client.put(uri, data, headers, query_params, content_type) def GetOrganizationAPIKeyLabels(self, globalid, headers=None, query_params=None, content_type="application/json"): """ Get the list of active api keys. It is method for GET /organizations/{globalid}/apikeys """ uri = self.client.base_url + "/organizations/" + globalid + "/apikeys" resp = self.client.get(uri, None, headers, query_params, content_type) try: if resp.status_code == 200: resps = [] for elem in resp.json(): resps.append(APIKeyLabel(elem)) return APIResponse(data=resps, response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def CreateNewOrganizationAPIKey( self, data, globalid, headers=None, query_params=None, content_type="application/json" ): """ Create a new API Key, a secret itself should not be provided, it will be generated serverside. It is method for POST /organizations/{globalid}/apikeys """ uri = self.client.base_url + "/organizations/" + globalid + "/apikeys" resp = self.client.post(uri, data, headers, query_params, content_type) try: if resp.status_code == 201: return APIResponse(data=OrganizationAPIKey(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def GetOrganizationContracts(self, globalid, headers=None, query_params=None, content_type="application/json"): """ Get the contracts where the organization is 1 of the parties. Order descending by date. It is method for GET /organizations/{globalid}/contracts """ uri = self.client.base_url + "/organizations/" + globalid + "/contracts" return self.client.get(uri, None, headers, query_params, content_type) def CreateOrganizationContracty( self, data, globalid, headers=None, query_params=None, content_type="application/json" ): """ Create a new contract. It is method for POST /organizations/{globalid}/contracts """ uri = self.client.base_url + "/organizations/" + globalid + "/contracts" resp = self.client.post(uri, data, headers, query_params, content_type) try: if resp.status_code == 201: return APIResponse(data=Contract(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def GetDescriptionWithFallback( self, langkey, globalid, headers=None, query_params=None, content_type="application/json" ): """ Get the description for an organization for this langkey, try to use the English is there is no description for this langkey It is method for GET /organizations/{globalid}/description/{langkey}/withfallback """ uri = self.client.base_url + "/organizations/" + globalid + "/description/" + langkey + "/withfallback" resp = self.client.get(uri, None, headers, query_params, content_type) try: if resp.status_code == 200: return APIResponse(data=LocalizedInfoText(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def DeleteDescription(self, langkey, globalid, headers=None, query_params=None, content_type="application/json"): """ Delete the description for this organization for a given language key It is method for DELETE /organizations/{globalid}/description/{langkey} """ uri = self.client.base_url + "/organizations/" + globalid + "/description/" + langkey return self.client.delete(uri, None, headers, query_params, content_type) def GetDescription(self, langkey, globalid, headers=None, query_params=None, content_type="application/json"): """ Get the description for an organization for this langkey It is method for GET /organizations/{globalid}/description/{langkey} """ uri = self.client.base_url + "/organizations/" + globalid + "/description/" + langkey resp = self.client.get(uri, None, headers, query_params, content_type) try: if resp.status_code == 200: return APIResponse(data=LocalizedInfoText(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def SetDescription(self, data, globalid, headers=None, query_params=None, content_type="application/json"): """ Set the description for this organization for a given language key It is method for POST /organizations/{globalid}/description """ uri = self.client.base_url + "/organizations/" + globalid + "/description" resp = self.client.post(uri, data, headers, query_params, content_type) try: if resp.status_code == 201: return APIResponse(data=LocalizedInfoText(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def UpdateDescription(self, data, globalid, headers=None, query_params=None, content_type="application/json"): """ Update the description for this organization for a given language key It is method for PUT /organizations/{globalid}/description """ uri = self.client.base_url + "/organizations/" + globalid + "/description" resp = self.client.put(uri, data, headers, query_params, content_type) try: if resp.status_code == 200: return APIResponse(data=LocalizedInfoText(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def DeleteOrganizationDns( self, dnsname, globalid, headers=None, query_params=None, content_type="application/json" ): """ Removes a DNS name associated with an organization It is method for DELETE /organizations/{globalid}/dns/{dnsname} """ uri = self.client.base_url + "/organizations/" + globalid + "/dns/" + dnsname return self.client.delete(uri, None, headers, query_params, content_type) def UpdateOrganizationDns( self, data, dnsname, globalid, headers=None, query_params=None, content_type="application/json" ): """ Updates an existing DNS name associated with an organization It is method for PUT /organizations/{globalid}/dns/{dnsname} """ uri = self.client.base_url + "/organizations/" + globalid + "/dns/" + dnsname return self.client.put(uri, data, headers, query_params, content_type) def CreateOrganizationDns(self, data, globalid, headers=None, query_params=None, content_type="application/json"): """ Creates a new DNS name associated with an organization It is method for POST /organizations/{globalid}/dns """ uri = self.client.base_url + "/organizations/" + globalid + "/dns" resp = self.client.post(uri, data, headers, query_params, content_type) try: if resp.status_code == 201: return APIResponse(data=DnsAddress(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def RemovePendingOrganizationInvitation( self, username, globalid, headers=None, query_params=None, content_type="application/json" ): """ Cancel a pending invitation. It is method for DELETE /organizations/{globalid}/invitations/{username} """ uri = self.client.base_url + "/organizations/" + globalid + "/invitations/" + username return self.client.delete(uri, None, headers, query_params, content_type) def GetInvitations(self, globalid, headers=None, query_params=None, content_type="application/json"): """ Get the list of pending invitations for users to join this organization. It is method for GET /organizations/{globalid}/invitations """ uri = self.client.base_url + "/organizations/" + globalid + "/invitations" resp = self.client.get(uri, None, headers, query_params, content_type) try: if resp.status_code == 200: resps = [] for elem in resp.json(): resps.append(JoinOrganizationInvitation(elem)) return APIResponse(data=resps, response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def DeleteOrganizationLogo(self, globalid, headers=None, query_params=None, content_type="application/json"): """ Removes the Logo from an organization It is method for DELETE /organizations/{globalid}/logo """ uri = self.client.base_url + "/organizations/" + globalid + "/logo" return self.client.delete(uri, None, headers, query_params, content_type) def GetOrganizationLogo(self, globalid, headers=None, query_params=None, content_type="application/json"): """ Get the Logo from an organization It is method for GET /organizations/{globalid}/logo """ uri = self.client.base_url + "/organizations/" + globalid + "/logo" resp = self.client.get(uri, None, headers, query_params, content_type) try: if resp.status_code == 200: return APIResponse(data=OrganizationLogo(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def SetOrganizationLogo(self, data, globalid, headers=None, query_params=None, content_type="application/json"): """ Set the organization Logo for the organization It is method for PUT /organizations/{globalid}/logo """ uri = self.client.base_url + "/organizations/" + globalid + "/logo" resp = self.client.put(uri, data, headers, query_params, content_type) try: if resp.status_code == 200: return APIResponse(data=OrganizationLogo(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def RemoveOrganizationMember( self, username, globalid, headers=None, query_params=None, content_type="application/json" ): """ Remove a member from an organization. It is method for DELETE /organizations/{globalid}/members/{username} """ uri = self.client.base_url + "/organizations/" + globalid + "/members/" + username return self.client.delete(uri, None, headers, query_params, content_type) def AddOrganizationMember(self, data, globalid, headers=None, query_params=None, content_type="application/json"): """ Invite someone to become member of an organization. It is method for POST /organizations/{globalid}/members """ uri = self.client.base_url + "/organizations/" + globalid + "/members" resp = self.client.post(uri, data, headers, query_params, content_type) try: if resp.status_code == 201: return APIResponse(data=JoinOrganizationInvitation(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def UpdateOrganizationMemberShip( self, data, globalid, headers=None, query_params=None, content_type="application/json" ): """ Update an organization membership It is method for PUT /organizations/{globalid}/members """ uri = self.client.base_url + "/organizations/" + globalid + "/members" resp = self.client.put(uri, data, headers, query_params, content_type) try: if resp.status_code == 200: return APIResponse(data=Organization(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def RejectOrganizationInvite( self, invitingorg, role, globalid, headers=None, query_params=None, content_type="application/json" ): """ Reject the invite for one of your organizations It is method for DELETE /organizations/{globalid}/organizations/{invitingorg}/roles/{role} """ uri = self.client.base_url + "/organizations/" + globalid + "/organizations/" + invitingorg + "/roles/" + role return self.client.delete(uri, None, headers, query_params, content_type) def AcceptOrganizationInvite( self, data, invitingorg, role, globalid, headers=None, query_params=None, content_type="application/json" ): """ Accept the invite for one of your organizations It is method for POST /organizations/{globalid}/organizations/{invitingorg}/roles/{role} """ uri = self.client.base_url + "/organizations/" + globalid + "/organizations/" + invitingorg + "/roles/" + role resp = self.client.post(uri, data, headers, query_params, content_type) try: if resp.status_code == 201: return APIResponse(data=JoinOrganizationInvitation(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def RemoveIncludeSubOrgsOf( self, orgmember, globalid, headers=None, query_params=None, content_type="application/json" ): """ Remove an orgmember or orgowner organization to the includesuborgsof list It is method for DELETE /organizations/{globalid}/orgmembers/includesuborgs/{orgmember} """ uri = self.client.base_url + "/organizations/" + globalid + "/orgmembers/includesuborgs/" + orgmember return self.client.delete(uri, None, headers, query_params, content_type) def AddIncludeSubOrgsOf(self, data, globalid, headers=None, query_params=None, content_type="application/json"): """ Add an orgmember or orgowner organization to the includesuborgsof list It is method for POST /organizations/{globalid}/orgmembers/includesuborgs """ uri = self.client.base_url + "/organizations/" + globalid + "/orgmembers/includesuborgs" resp = self.client.post(uri, data, headers, query_params, content_type) try: if resp.status_code == 201: return APIResponse(data=Organization(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def DeleteOrgMember(self, globalid2, globalid, headers=None, query_params=None, content_type="application/json"): """ Remove an organization as a member It is method for DELETE /organizations/{globalid}/orgmembers/{globalid2} """ uri = self.client.base_url + "/organizations/" + globalid + "/orgmembers/" + globalid2 return self.client.delete(uri, None, headers, query_params, content_type) def SetOrgMember(self, data, globalid, headers=None, query_params=None, content_type="application/json"): """ Add another organization as a member of this one It is method for POST /organizations/{globalid}/orgmembers """ uri = self.client.base_url + "/organizations/" + globalid + "/orgmembers" return self.client.post(uri, data, headers, query_params, content_type) def UpdateOrganizationOrgMemberShip( self, data, globalid, headers=None, query_params=None, content_type="application/json" ): """ Update the membership status of an organization It is method for PUT /organizations/{globalid}/orgmembers """ uri = self.client.base_url + "/organizations/" + globalid + "/orgmembers" resp = self.client.put(uri, data, headers, query_params, content_type) try: if resp.status_code == 200: return APIResponse(data=Organization(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def DeleteOrgOwner(self, globalid2, globalid, headers=None, query_params=None, content_type="application/json"): """ Remove an organization as an owner It is method for DELETE /organizations/{globalid}/orgowners/{globalid2} """ uri = self.client.base_url + "/organizations/" + globalid + "/orgowners/" + globalid2 return self.client.delete(uri, None, headers, query_params, content_type) def SetOrgOwner(self, data, globalid, headers=None, query_params=None, content_type="application/json"): """ Add another organization as an owner of this one It is method for POST /organizations/{globalid}/orgowners """ uri = self.client.base_url + "/organizations/" + globalid + "/orgowners" return self.client.post(uri, data, headers, query_params, content_type) def RemoveOrganizationOwner( self, username, globalid, headers=None, query_params=None, content_type="application/json" ): """ Remove an owner from organization It is method for DELETE /organizations/{globalid}/owners/{username} """ uri = self.client.base_url + "/organizations/" + globalid + "/owners/" + username return self.client.delete(uri, None, headers, query_params, content_type) def AddOrganizationOwner(self, data, globalid, headers=None, query_params=None, content_type="application/json"): """ Invite someone to become owner of an organization. It is method for POST /organizations/{globalid}/owners """ uri = self.client.base_url + "/organizations/" + globalid + "/owners" resp = self.client.post(uri, data, headers, query_params, content_type) try: if resp.status_code == 201: return APIResponse(data=JoinOrganizationInvitation(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def DeleteOrganizationRegistryEntry( self, key, globalid, headers=None, query_params=None, content_type="application/json" ): """ Removes a RegistryEntry from the organization's registry It is method for DELETE /organizations/{globalid}/registry/{key} """ uri = self.client.base_url + "/organizations/" + globalid + "/registry/" + key return self.client.delete(uri, None, headers, query_params, content_type) def GetOrganizationRegistryEntry( self, key, globalid, headers=None, query_params=None, content_type="application/json" ): """ Get a RegistryEntry from the organization's registry. It is method for GET /organizations/{globalid}/registry/{key} """ uri = self.client.base_url + "/organizations/" + globalid + "/registry/" + key resp = self.client.get(uri, None, headers, query_params, content_type) try: if resp.status_code == 200: return APIResponse(data=RegistryEntry(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def ListOrganizationRegistry(self, globalid, headers=None, query_params=None, content_type="application/json"): """ Lists the RegistryEntries in an organization's registry. It is method for GET /organizations/{globalid}/registry """ uri = self.client.base_url + "/organizations/" + globalid + "/registry" resp = self.client.get(uri, None, headers, query_params, content_type) try: if resp.status_code == 200: resps = [] for elem in resp.json(): resps.append(RegistryEntry(elem)) return APIResponse(data=resps, response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def AddOrganizationRegistryEntry( self, data, globalid, headers=None, query_params=None, content_type="application/json" ): """ Adds a RegistryEntry to the organization's registry, if the key is already used, it is overwritten. It is method for POST /organizations/{globalid}/registry """ uri = self.client.base_url + "/organizations/" + globalid + "/registry" resp = self.client.post(uri, data, headers, query_params, content_type) try: if resp.status_code == 201: return APIResponse(data=RegistryEntry(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def DeleteRequiredScope( self, requiredscope, globalid, headers=None, query_params=None, content_type="application/json" ): """ Deletes a required scope It is method for DELETE /organizations/{globalid}/requiredscopes/{requiredscope} """ uri = self.client.base_url + "/organizations/" + globalid + "/requiredscopes/" + requiredscope return self.client.delete(uri, None, headers, query_params, content_type) def UpdateRequiredScope( self, data, requiredscope, globalid, headers=None, query_params=None, content_type="application/json" ): """ Updates a required scope It is method for PUT /organizations/{globalid}/requiredscopes/{requiredscope} """ uri = self.client.base_url + "/organizations/" + globalid + "/requiredscopes/" + requiredscope return self.client.put(uri, data, headers, query_params, content_type) def AddRequiredScope(self, data, globalid, headers=None, query_params=None, content_type="application/json"): """ Adds a required scope It is method for POST /organizations/{globalid}/requiredscopes """ uri = self.client.base_url + "/organizations/" + globalid + "/requiredscopes" return self.client.post(uri, data, headers, query_params, content_type) def GetOrganizationTree(self, globalid, headers=None, query_params=None, content_type="application/json"): """ Tree structure of all suborganizations It is method for GET /organizations/{globalid}/tree """ uri = self.client.base_url + "/organizations/" + globalid + "/tree" resp = self.client.get(uri, None, headers, query_params, content_type) try: if resp.status_code == 200: resps = [] for elem in resp.json(): resps.append(OrganizationTreeItem(elem)) return APIResponse(data=resps, response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def UserIsMember(self, username, globalid, headers=None, query_params=None, content_type="application/json"): """ Checks if the user has memberschip rights on the organization It is method for GET /organizations/{globalid}/users/ismember/{username} """ uri = self.client.base_url + "/organizations/" + globalid + "/users/ismember/" + username resp = self.client.get(uri, None, headers, query_params, content_type) try: if resp.status_code == 200: return APIResponse(data=IsMember(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def GetOrganizationUsers(self, globalid, headers=None, query_params=None, content_type="application/json"): """ Get all users from this organization, not including suborganizations. It is method for GET /organizations/{globalid}/users """ uri = self.client.base_url + "/organizations/" + globalid + "/users" resp = self.client.get(uri, None, headers, query_params, content_type) try: if resp.status_code == 200: return APIResponse(data=GetOrganizationUsersResponseBody(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def DeleteOrganization(self, globalid, headers=None, query_params=None, content_type="application/json"): """ Deletes an organization and all data linked to it (join-organization-invitations, oauth_access_tokens, oauth_clients, logo) It is method for DELETE /organizations/{globalid} """ uri = self.client.base_url + "/organizations/" + globalid return self.client.delete(uri, None, headers, query_params, content_type) def GetOrganization(self, globalid, headers=None, query_params=None, content_type="application/json"): """ Get organization info It is method for GET /organizations/{globalid} """ uri = self.client.base_url + "/organizations/" + globalid resp = self.client.get(uri, None, headers, query_params, content_type) try: if resp.status_code == 200: return APIResponse(data=Organization(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def CreateNewSubOrganization( self, data, globalid, headers=None, query_params=None, content_type="application/json" ): """ Create a new suborganization. It is method for POST /organizations/{globalid} """ uri = self.client.base_url + "/organizations/" + globalid resp = self.client.post(uri, data, headers, query_params, content_type) try: if resp.status_code == 201: return APIResponse(data=Organization(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message) def CreateNewOrganization(self, data, headers=None, query_params=None, content_type="application/json"): """ Create a new organization. 1 user should be in the owners list. Validation is performed to check if the securityScheme allows management on this user. It is method for POST /organizations """ uri = self.client.base_url + "/organizations" resp = self.client.post(uri, data, headers, query_params, content_type) try: if resp.status_code == 201: return APIResponse(data=Organization(resp.json()), response=resp) message = "unknown status code={}".format(resp.status_code) raise UnhandledAPIError(response=resp, code=resp.status_code, message=message) except ValueError as msg: raise UnmarshallError(resp, msg) except UnhandledAPIError as uae: raise uae except Exception as e: raise UnmarshallError(resp, e.message)
StarcoderdataPython
324
# -*- coding: utf-8 -*- """ Created on Tue Jun 26 16:34:21 2018 @author: LiHongWang """ import os import tensorflow as tf from model import fcn_vgg from model import fcn_mobile from model import fcn_resnet_v2 from data import input_data slim = tf.contrib.slim def main(): num_classes=2 tfRecorf_dir= 'D:/dataSet/kitti/road/sub_um_lane_tra66.tfrecord' train_dir = './fm2/' if not os.path.exists(train_dir): os.makedirs(train_dir) with tf.Graph().as_default(): global_step = tf.contrib.framework.get_or_create_global_step() tf.logging.set_verbosity(tf.logging.INFO) with tf.device("/cpu:0"): samples=input_data.get_images_labels(tfRecorf_dir,num_classes,66, crop_size=[224,224], batch_size=4) batch_queue = slim.prefetch_queue.prefetch_queue(samples, capacity=128 ) tra_batch = batch_queue.dequeue() logit,prediction=fcn_mobile.fcn_mobv1(tra_batch['image'],num_classes) # logit,prediction=fcn_vgg.fcn_vgg16(tra_batch['image'],num_classes) # logit,prediction=fcn_resnet_v2.fcn_res101(tra_batch['image'],num_classes) cross_entropy=tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logit, labels=tf.squeeze(tra_batch['label'], squeeze_dims=[3]),name="entropy") loss = tf.reduce_mean(cross_entropy,name='loss') slim.losses.add_loss(loss) total_loss = slim.losses.get_total_loss() # print("image", tra_batch['image']) # print("label", tf.cast(tra_batch['label']*255, tf.uint8)) # print("prediction", tf.cast(prediction*255, tf.uint8)) # Create some summaries to visualize the training process: tf.summary.scalar('losses/Total_Loss', total_loss) tf.summary.image("image", tra_batch['image'], max_outputs=4) tf.summary.image("label", tf.cast(tra_batch['label']*255, tf.uint8), max_outputs=4) tf.summary.image("prediction", tf.cast(prediction*255, tf.uint8), max_outputs=4) lr = tf.train.exponential_decay(0.001, global_step, 10000, 0.8, staircase=True) #lr = tf.constant(0.001, tf.float32) tf.summary.scalar('learning_rate', lr) for variable in slim.get_model_variables(): tf.summary.histogram(variable.op.name, variable) # Specify the optimizer and create the train op: optimizer = tf.train.RMSPropOptimizer(lr,0.9) train_op = slim.learning.create_train_op(total_loss, optimizer) # Run the training: gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7) config=tf.ConfigProto(gpu_options=gpu_options) final_loss = slim.learning.train(train_op, logdir=train_dir, log_every_n_steps=100, save_summaries_secs=20, save_interval_secs=1800, init_fn=None,#fcn_mobile.get_init_fn(), session_config=config, number_of_steps=65000) print('Finished training. Last batch loss %f' % final_loss) if __name__=='__main__': main()
StarcoderdataPython
145207
import os from flask import Flask, render_template, request, Response, send_from_directory, Blueprint, flash, g, redirect from functools import wraps from flask import current_app as app from flask_nav.elements import Navbar, View, Subgroup, Link, Text, Separator import datetime from crontab import CronTab import getpass from pocket import db as db from .nav import nav money = Blueprint("money", __name__) def check_auth(username, password): user = os.environ.get('AUTH_USER') if user is None: user = 'admin' passwd = os.environ.get('AUTH_PASS') if passwd is None: passwd = '<PASSWORD>' return username == user and password == <PASSWORD> def authenticate(): """Sends a 401 response that enables basic auth""" return Response( 'Could not verify your access level for that URL.\n' 'You have to login with proper credentials', 401, {'WWW-Authenticate': 'Basic realm="Login Required"'}) def requires_auth(f): @wraps(f) def decorated(*args, **kwargs): auth = request.authorization if not auth or not check_auth(auth.username, auth.password): return authenticate() return f(*args, **kwargs) return decorated nav.register_element('money_top', Navbar( View('Pocket Money Tracker', '.home'), View('Schedules', '.schedules'), View('Add Child', '.addChild'))) @money.route('/favicon.ico') def favicon(): return send_from_directory(os.path.join(app.root_path, 'static'), 'favicon.ico', mimetype='image/vnd.microsoft.icon') @money.route('/history/<child>') def history(child): rows = db.getHistory(child); return render_template("history.html",rows = rows, child = child) @money.route('/add/<child>') @requires_auth def add(child): now = datetime.datetime.now() dateString = now.strftime("%d/%m/%Y") templateData = { 'child': child, 'dt':dateString } return render_template('add.html', **templateData) @money.route('/schedules') def schedules(): rows = db.getSchedules() cron = CronTab(user=getpass.getuser()) return render_template('schedule.html', rows = rows, cron = cron) @money.route('/addSchedule') @requires_auth def addSchedule(): rows = db.getChildren() return render_template('addSchedule.html', rows = rows) @money.route('/addScheduleRec', methods = ['POST', 'GET']) def addScheduleRec(): if request.method == 'POST': try: print(request.form) child = request.form['children'] amt = request.form['amt'] desc = request.form['desc'] freq = request.form['freq'] # weekly / monthly freqWeekly = request.form['daily'] # MON - SUN freqMonthly = request.form['monthly'] # 1 - 31 frequency = "" if amt is None: amt = 0 cron = CronTab(user=getpass.getuser()) job = cron.new(command="/payment.sh '" + child + "' " + amt, comment=desc) job.minute.on(1) job.hour.on(1) if freq == "weekly": job.dow.on(freqWeekly) frequency = "Every week on " + freqWeekly if freq == "monthly": job.setall('1 1 ' + freqMonthly + ' * *') frequency = "On the " + str(freqMonthly) + " day of the month" cron.write() db.addSchedule(child, amt, desc, frequency) msg = "successfully added schedule" except Exception as e: print(e) msg = "error adding schedule" finally: flash(msg) return redirect('/') @money.route('/deleteSchedule/<child>/<desc>/<rowid>') @requires_auth def deleteSchedule(child, desc, rowid): try: print("Deleting schedule record") cron = CronTab(user=getpass.getuser()) cron.remove_all(comment=desc) cron.write() db.deleteSchedule(child, rowid) msg = "Successfully deleted record" except Exception as e: print(e) msg = "Error deleting record, please retry" finally: flash(msg) return redirect('/') @money.route('/deleteAmount/<child>/<rowid>') @requires_auth def deleteAmount(child, rowid): try: print("Deleting record") db.deleteAmount(child, rowid) msg = "Successfully deleted record" except Exception as e: print(e) msg = "Error deleting record, please retry" finally: flash(msg) return redirect('/') @money.route('/addRec', methods = ['POST', 'GET']) def addRec(): if request.method == 'POST': try: child = request.form['child'] dt = request.form['dt'] amt = request.form['amt'] desc = request.form['desc'] db.addData(child, dt, amt, desc) msg = "Successfully added transaction" except: msg = "Error adding transaction, please retry" finally: flash(msg) return redirect('/') @money.route('/addChildRec', methods = ['POST', 'GET']) def addChildRec(): if request.method == 'POST': try: child = request.form['child'] amt = request.form['amt'] if amt is None: amt = 0 now = datetime.datetime.now() dt = now.strftime("%Y-%m-%d") db.addChild(child, amt, dt) msg = "successfully added child" except Exception as e: print(e) msg = "error adding child" finally: flash(msg) return redirect('/') @money.route('/addChild') def addChild(): now = datetime.datetime.now() dateString = now.strftime("%Y-%m-%d") return render_template('addchild.html', title = 'Pocket Money Tracker', time = dateString) @money.route("/") def home(): now = datetime.datetime.now() dateString = now.strftime("%Y-%m-%d") rows = db.getBalances() if len(rows) == 0: return render_template('addchild.html', title = 'Pocket Money Tracker', time = dateString) else: return render_template('index.html', rows = rows, title = 'Pocket Money Tracker', time = dateString)
StarcoderdataPython
3393269
#! /usr/bin/python import logging import os import random import threading from random import randint class emGps(threading.Thread): def __init__(self, mode=None): threading.Thread.__init__(self) logging.info('Global Positioning System') self.gpsd = None self.running = False self.mode = mode self.latitude = None self.longitude = None self.altitude = None self.satellites = None if self.mode is None: self.gpsd = gps.gps(mode=WATCH_ENABLE) def run(self): self.running = True while self.running: if self.mode is None: self.gpsd.next() def stop(self): self.running = False def emGpsData(self): if self.mode is None: self.latitude = self.gpsd.fix.latitude self.longitude = self.gpsd.fix.longitude self.altitude = self.gpsd.fix.altitude self.satellites = self.gpsd.satellites self.speed = self.gpsd.speed self.track = self.gpsd.track else: self.latitude = random.uniform(21.14000000, 21.18000000) self.longitude = random.uniform(-101.600000, -101.660000) self.altitude = randint(1000, 2000) self.satellites = randint(1,10) self.speed = randint(10, 100) self.track = randint(0, 360) gpsdata = ("Gps: {0}," "{1}," "{2}," "{3}," "{4}," "{5}".format( \ self.latitude, self.longitude, self.altitude, self.satellites, self.speed, self.track)) logging.info(gpsdata) return self.latitude, self.longitude, \ self.altitude, self.satellites, \ self.speed, self.track @property def fix(self): return self.gpsd.fix @property def utc(self): return self.gpsd.utc @property def satellitess(self): return self.gpsd.satellites # End of File
StarcoderdataPython
1731868
<filename>rec_run.py import os import argparse def get_all_ini_files(): """ collect all ini files in the current folder :return: a list of sorted file names """ current_path = os.getcwd() all_files = os.listdir(current_path) ini_files = [] for item in all_files: if os.path.isfile(item) and item.endswith('.ini'): ini_files.append(item) return sorted(ini_files) def modify_arg_file(file_name=None, value=None): """ change arg file :param file_name: which file to change :param value: what value should be changed to :return: None """ with open("astra_in.in", 'r') as arg_file: contents = arg_file.readlines() if file_name is not None: distribution_line = contents[2] line_parts = distribution_line.split('\'') line_parts[1] = file_name new_line = '\''.join(line_parts) contents[2] = new_line if value is not None: # max_b_line = contents[68] max_b_line = contents[80] # 80 if space charge module is taken into account max_b_part = max_b_line.split('=') max_b_part[1] = value new_max_b_line = '='.join(max_b_part) contents[80] = new_max_b_line # 80 if space charge module is taken into account with open('astra_in_' + file_name + '-solStrength' + value + '.in', 'w') as arg_file: arg_file.writelines(contents) def main(filename=None, start=None, end=None, step=None): """ main function :param filename: particle distribution files :param start: imaging solenoid starting B field :param end: imaging solenoid final B field :param step: scan step size :return: None """ if start is not None and filename is None and end is None and step is None: files = get_all_ini_files() for file in files: print('processing {fn} with solenoid B field value of {va}'.format( fn=filename, va=start )) modify_arg_file(file_name=file, value=str(start)) os.system('./astra astra_in_' + file + '-solStrength' + start + '.in') elif filename is not None and start is not None and end is not None and step is not None: for i in range(int(start), int(end) - 1, int(step)): value = i / 10000 print('processing {fn} with solenoid B field value of {va}'.format( fn=filename, va=value )) modify_arg_file(file_name=filename, value=str(value)) os.system('./astra astra_in_' + filename + '-solStrength' + str(value) + '.in') else: # TODO: add raise errors and remove quit() print('Follow the following format:') print('python3 ' + __file__ + ' -f [filename] -start [start] -end [end] -step [step]') quit() print("DONE.") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-f", "--filename", help="file name") parser.add_argument('-s', '--start', help='start value (10000 or real number)') parser.add_argument('-e', '--end', help='end value (10000)') parser.add_argument('-st', '--step', help='step (10000)') args = parser.parse_args() main(filename=args.filename, start=args.start, end=args.end, step=args.step)
StarcoderdataPython
1699053
import os from configparser import ConfigParser, RawConfigParser from flask import request, g, Response import requests from json import dumps, loads from pymunge import MungeContext curr_dirname = os.path.dirname(os.path.abspath(__file__)) src_dir, _ = os.path.split(curr_dirname) file = src_dir + '/dev_config.ini' def use_munge(): cp = ConfigParser() cp.read(file) return cp['GLOBAL'].getboolean('munge') def munge_response(response): if use_munge(): body = response.json payload = dumps(body).encode('utf-8') with MungeContext() as ctx: cred = ctx.encode(payload).decode('utf-8') json = dumps(dict(munge_cred=cred)) response.data = json return response else: return response def unmunge_request(): body = request.json if use_munge(): cred = body['munge_cred'].encode('utf-8') with MungeContext() as ctx: payload, uid, gid = ctx.decode(cred) g.payload = loads(payload.decode('utf-8')) else: g.payload = body def send_request(*args, **kwargs) -> (Response, str): if not kwargs.get('json'): kwargs['json'] = dict() if use_munge(): with MungeContext() as ctx: cred = ctx.encode(dumps(kwargs['json']).encode('utf-8')).decode('utf-8') kwargs['json'] = dict(munge_cred=cred) r = requests.request(*args, **kwargs) if r.text: return r, loads(unmunge(r.text)) else: return r, r.text else: r = requests.request(*args, **kwargs) return r, loads(r.text) def unmunge(text): if use_munge(): d = loads(text) cred = d['munge_cred'].encode('utf-8') with MungeContext() as ctx: payload, uid, guid = ctx.decode(cred) return payload.decode('utf-8') else: return text def get_conf_directory(): default_config = '/etc/default/dmd' home_dir = os.path.expanduser("~") + '/.dmd/' project_cfg = os.getcwd() + '/src/cfg/' if os.path.isfile(default_config): with open(default_config) as f: file_content = '[dummy_section]\n' + f.read() config_parser = RawConfigParser() config_parser.read_string(file_content) return config_parser.get('dummy_section', 'conf_directory') elif os.path.isfile(home_dir + 'controller'): return home_dir else: return project_cfg def get_configfile_from_config(configuration): default_config = '/etc/default/jaws' project_cfg = os.getcwd() + '/src/cfg/' path = "" config_file = "" if os.path.isfile(default_config): with open(default_config) as f: file_content = '[dummy_section]\n' + f.read() config_parser = RawConfigParser() config_parser.read_string(file_content) path = config_parser.get('dummy_section', 'conf_directory') else: path = project_cfg main_parser = ConfigParser() main_config = main_parser.read(path + 'main.ini') if configuration == "storages": config_file = main_parser.get('CONFIGFILES', 'STORAGES') if configuration == "acl": config_file = main_parser.get('CONFIGFILES', 'ACL') if configuration == "application": config_file = main_parser.get('CONFIGFILES', 'APPLICATION') if configuration == "copytools": config_file = main_parser.get('CONFIGFILES', 'COPYTOOLS') if configuration == "controller": config_file = main_parser.get('CONFIGFILES', 'CONTROLLER') if configuration == "master": config_file = main_parser.get('CONFIGFILES', 'MASTER') if configuration == "view": config_file = main_parser.get('CONFIGFILES', 'MASTER') if configuration == "worker": config_file = main_parser.get('CONFIGFILES', 'WORKER') if configuration == "main": config_file = path + 'main.ini' config = ConfigParser() config.read(path + config_file) configuration_sections = config.sections() configuration = dict() for section in configuration_sections: configuration[section] = dict(config.items(section)) return configuration class Singleton(type): _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs) return cls._instances[cls]
StarcoderdataPython
3234542
<filename>blog/migrations/0005_auto_20180721_0113.py # -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-07-21 08:13 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0004_auto_20180721_0108'), ] operations = [ migrations.RemoveField( model_name='clue', name='publish', ), migrations.AlterField( model_name='clue', name='slug', field=models.SlugField(unique=True), ), ]
StarcoderdataPython
3369629
<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlipayCommerceDataScenicSyncModel(object): def __init__(self): self._code_value = None self._isv_name = None self._isv_scenic_address = None self._isv_scenic_name = None self._outer_id = None self._scenic_app_id = None self._scenic_id = None @property def code_value(self): return self._code_value @code_value.setter def code_value(self, value): if isinstance(value, list): self._code_value = list() for i in value: self._code_value.append(i) @property def isv_name(self): return self._isv_name @isv_name.setter def isv_name(self, value): self._isv_name = value @property def isv_scenic_address(self): return self._isv_scenic_address @isv_scenic_address.setter def isv_scenic_address(self, value): self._isv_scenic_address = value @property def isv_scenic_name(self): return self._isv_scenic_name @isv_scenic_name.setter def isv_scenic_name(self, value): self._isv_scenic_name = value @property def outer_id(self): return self._outer_id @outer_id.setter def outer_id(self, value): self._outer_id = value @property def scenic_app_id(self): return self._scenic_app_id @scenic_app_id.setter def scenic_app_id(self, value): self._scenic_app_id = value @property def scenic_id(self): return self._scenic_id @scenic_id.setter def scenic_id(self, value): self._scenic_id = value def to_alipay_dict(self): params = dict() if self.code_value: if isinstance(self.code_value, list): for i in range(0, len(self.code_value)): element = self.code_value[i] if hasattr(element, 'to_alipay_dict'): self.code_value[i] = element.to_alipay_dict() if hasattr(self.code_value, 'to_alipay_dict'): params['code_value'] = self.code_value.to_alipay_dict() else: params['code_value'] = self.code_value if self.isv_name: if hasattr(self.isv_name, 'to_alipay_dict'): params['isv_name'] = self.isv_name.to_alipay_dict() else: params['isv_name'] = self.isv_name if self.isv_scenic_address: if hasattr(self.isv_scenic_address, 'to_alipay_dict'): params['isv_scenic_address'] = self.isv_scenic_address.to_alipay_dict() else: params['isv_scenic_address'] = self.isv_scenic_address if self.isv_scenic_name: if hasattr(self.isv_scenic_name, 'to_alipay_dict'): params['isv_scenic_name'] = self.isv_scenic_name.to_alipay_dict() else: params['isv_scenic_name'] = self.isv_scenic_name if self.outer_id: if hasattr(self.outer_id, 'to_alipay_dict'): params['outer_id'] = self.outer_id.to_alipay_dict() else: params['outer_id'] = self.outer_id if self.scenic_app_id: if hasattr(self.scenic_app_id, 'to_alipay_dict'): params['scenic_app_id'] = self.scenic_app_id.to_alipay_dict() else: params['scenic_app_id'] = self.scenic_app_id if self.scenic_id: if hasattr(self.scenic_id, 'to_alipay_dict'): params['scenic_id'] = self.scenic_id.to_alipay_dict() else: params['scenic_id'] = self.scenic_id return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayCommerceDataScenicSyncModel() if 'code_value' in d: o.code_value = d['code_value'] if 'isv_name' in d: o.isv_name = d['isv_name'] if 'isv_scenic_address' in d: o.isv_scenic_address = d['isv_scenic_address'] if 'isv_scenic_name' in d: o.isv_scenic_name = d['isv_scenic_name'] if 'outer_id' in d: o.outer_id = d['outer_id'] if 'scenic_app_id' in d: o.scenic_app_id = d['scenic_app_id'] if 'scenic_id' in d: o.scenic_id = d['scenic_id'] return o
StarcoderdataPython
170905
<gh_stars>1-10 from topfarm.constraint_components.capacity import CapacityConstraint import numpy as np import topfarm from topfarm.tests.test_files import xy3tb from topfarm._topfarm import TopFarmProblem from topfarm.easy_drivers import EasySimpleGADriver def test_capacity_as_penalty(): tf = xy3tb.get_tf(design_vars={topfarm.type_key: ([0, 0, 0], 0, 2)}, constraints=[CapacityConstraint(5, rated_power_array=[100, 10000, 10])], driver=EasySimpleGADriver(), plot_comp=None) # check normal result that satisfies the penalty assert tf.evaluate()[0] == 141.0 # check penalized result if capacity constraint is not satisfied assert tf.evaluate({'type': np.array([0, 1, 1])})[0] == 1e10 + 15.1 def test_capacity_tf(): # 15 turbines, 5 different types, 50MW max installed capacity n_wt = 15 rated_power_array_kW = np.linspace(1, 10, int(n_wt / 3)) * 1e3 inputtypes = np.tile(np.array([range(int(n_wt / 3))]), 3).flatten() tf = TopFarmProblem({'type': inputtypes}, constraints=[CapacityConstraint(max_capacity=50, rated_power_array=rated_power_array_kW)], driver=EasySimpleGADriver() ) tf.evaluate() # case above the maximum allowed installed capacity, yes penalty assert tf["totalcapacity"] == 82.5 assert tf['penalty_comp.penalty_capacity_comp_50'] == 32.5 # set all turbines type 0, still 15 turbines and re-run the problem tf.evaluate({'type': inputtypes * 0}) # case below the maximum allowed installed capacity, no penalty assert tf["totalcapacity"] == 15 assert tf['penalty_comp.penalty_capacity_comp_50'][0] == 0.0
StarcoderdataPython
114294
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import typing as tp from . import core from . import container from . import choice def flatten_parameter( parameter: core.Parameter, with_containers: bool = True, order: int = 0 ) -> tp.Dict[str, core.Parameter]: """List all the instances involved as parameter (not as subparameter/ endogeneous parameter) Parameter --------- parameter: Parameter the parameter to inspect with_container: bool returns only non-container instances (aka no Dict, Tuple, Instrumentation or Constant) order: int order of model/internal parameters to extract. With 0, no model/internal parameters is extracted, with 1, only 1st order are extracted, with 2, so model/internal parameters and their own model/internal parameters etc... Returns ------- dict a dict of all parameters implied in this parameter, i.e all choices, items of dict and tuples etc, but not the subparameters/endogeneous parameters like sigma with keys if type "<index>.<key>" for a tuple containing dicts containing data for instance. Note ---- This function is experimental, its output will probably evolve before converging. """ flat = {"": parameter} if isinstance(parameter, core.Dict): content_to_add: tp.List[core.Dict] = [parameter] if isinstance(parameter, container.Instrumentation): # special case: skip internal Tuple and Dict content_to_add = [parameter[0], parameter[1]] # type: ignore for c in content_to_add: for k, p in c._content.items(): content = flatten_parameter(p, with_containers=with_containers, order=order) flat.update({str(k) + ("" if not x else ("." if not x.startswith("#") else "") + x): y for x, y in content.items()}) if order > 0 and parameter._parameters is not None: subparams = flatten_parameter(parameter.parameters, with_containers=False, order=order - 1) flat.update({"#" + str(x): y for x, y in subparams.items()}) if not with_containers: flat = {x: y for x, y in flat.items() if not isinstance(y, (core.Dict, core.Constant)) or isinstance(y, choice.BaseChoice)} return flat
StarcoderdataPython
4840264
<reponame>xiaohuid/huobi_Python<filename>huobi/model/accountbalancerequest.py from huobi.model import * class AccountBalanceRequest: """ The account change information received by subscription of account. :member timestamp: The UNIX formatted timestamp generated by server in UTC. change_type: The event that asset change notification related. account_list: The list of account and balance """ def __init__(self): self.timestamp = 0 self.client_req_id = "" self.topic = "" self.account_list = list() @staticmethod def json_parse(json_data): account_balance = AccountBalanceRequest() account_balance.timestamp = json_data.get_int("ts") account_balance.client_req_id = json_data.get_string("cid") account_balance.topic = json_data.get_string("topic") subaccount_list = json_data.get_array("data") account_list = list() for subaccount in subaccount_list.get_items(): account = Account.json_parse(subaccount) account_list.append(account) account_balance.account_list = account_list return account_balance
StarcoderdataPython
157342
# Generated by Django 2.2.6 on 2019-12-07 01:20 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('events', '0016_auto_20191206_2347'), ] operations = [ migrations.DeleteModel( name='DayOfWeek', ), migrations.AlterField( model_name='recurringevent', name='first_occurence', field=models.ForeignKey(blank=True, default=None, editable=False, null=True, on_delete=django.db.models.deletion.SET_NULL, to='events.RecurringEvent'), ), ]
StarcoderdataPython
143857
#!/usr/bin/env python # # Copyright 2011 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ .. moduleauthor:: <NAME> <<EMAIL>> test_omegacn7500: Unittests for omegacn7500 Uses a dummy serial port from the module :py:mod:`dummy_serial`. """ __author__ = "<NAME>" __email__ = "<EMAIL>" __license__ = "Apache License, Version 2.0" import sys import unittest import omegacn7500 import dummy_serial class TestCalculateRegisterAddress(unittest.TestCase): knownValues=[ ('setpoint', 0, 0, 8192), # registertype, patternnumber, stepnumber, knownresult ('setpoint', 1, 0, 8200), ('time', 0, 0, 8320), ('time', 0, 1, 8321), ('time', 1, 0, 8328), ('actualstep', 0, None, 4160), ('actualstep', 0, 0, 4160), ('actualstep', 1, None, 4161), ('actualstep', 1, 0, 4161), ('actualstep', 1, 5, 4161), # Stepnumber should have no effect. ('cycles', 0, None, 4176), ('cycles', 1, None, 4177), ('linkpattern', 0, None, 4192), ('linkpattern', 1, None, 4193), ] def testKnownValues(self): for registertype, patternnumber, stepnumber, knownresult in self.knownValues: resultvalue = omegacn7500._calculateRegisterAddress(registertype, patternnumber, stepnumber) self.assertEqual(resultvalue, knownresult) def testWrongValues(self): self.assertRaises(ValueError, omegacn7500._calculateRegisterAddress, 'ABC', 0, 0) self.assertRaises(ValueError, omegacn7500._calculateRegisterAddress, 'setpoint', -1, 0) self.assertRaises(ValueError, omegacn7500._calculateRegisterAddress, 'setpoint', 8, 0) self.assertRaises(ValueError, omegacn7500._calculateRegisterAddress, 'setpoint', 0, -1) self.assertRaises(ValueError, omegacn7500._calculateRegisterAddress, 'setpoint', 0, 8) def testWrongType(self): self.assertRaises(ValueError, omegacn7500._calculateRegisterAddress, 0, 0, 0) # Note: Raises value error self.assertRaises(ValueError, omegacn7500._calculateRegisterAddress, 1.0, 0, 0) self.assertRaises(ValueError, omegacn7500._calculateRegisterAddress, None, 0, 0) self.assertRaises(ValueError, omegacn7500._calculateRegisterAddress, ['setpoint'], 0, 0) self.assertRaises(TypeError, omegacn7500._calculateRegisterAddress, 'setpoint', 0.0, 0) self.assertRaises(TypeError, omegacn7500._calculateRegisterAddress, 'setpoint', [0], 0) self.assertRaises(TypeError, omegacn7500._calculateRegisterAddress, 'setpoint', None, 0) self.assertRaises(TypeError, omegacn7500._calculateRegisterAddress, 'setpoint', 0, 0.0) self.assertRaises(TypeError, omegacn7500._calculateRegisterAddress, 'setpoint', 0, [0]) class TestCheckPatternNumber(unittest.TestCase): def testKnownResults(self): omegacn7500._checkPatternNumber(0) omegacn7500._checkPatternNumber(3) omegacn7500._checkPatternNumber(7) def testWrongValue(self): self.assertRaises(ValueError, omegacn7500._checkPatternNumber, -1) self.assertRaises(ValueError, omegacn7500._checkPatternNumber, 8) self.assertRaises(ValueError, omegacn7500._checkPatternNumber, 99) self.assertRaises(ValueError, omegacn7500._checkPatternNumber, 12345) def testWrongType(self): self.assertRaises(TypeError, omegacn7500._checkPatternNumber, '1') self.assertRaises(TypeError, omegacn7500._checkPatternNumber, 1.0) self.assertRaises(TypeError, omegacn7500._checkPatternNumber, [1]) self.assertRaises(TypeError, omegacn7500._checkPatternNumber, None) class TestCheckStepNumber(unittest.TestCase): def testKnownResults(self): omegacn7500._checkStepNumber(0) omegacn7500._checkStepNumber(3) omegacn7500._checkStepNumber(7) def testWrongValue(self): self.assertRaises(ValueError, omegacn7500._checkStepNumber, -1) self.assertRaises(ValueError, omegacn7500._checkStepNumber, 8) self.assertRaises(ValueError, omegacn7500._checkStepNumber, 99) self.assertRaises(ValueError, omegacn7500._checkStepNumber, 12345) def testWrongType(self): self.assertRaises(TypeError, omegacn7500._checkStepNumber, '1') self.assertRaises(TypeError, omegacn7500._checkStepNumber, 1.0) self.assertRaises(TypeError, omegacn7500._checkStepNumber, [1]) self.assertRaises(TypeError, omegacn7500._checkStepNumber, None) class TestCheckSetpointValue(unittest.TestCase): def testKnownResults(self): omegacn7500._checkSetpointValue(900, 1000) omegacn7500._checkSetpointValue(900.0, 1000.0) def testWrongValue(self): self.assertRaises(ValueError, omegacn7500._checkSetpointValue, 900, 800) self.assertRaises(ValueError, omegacn7500._checkSetpointValue, 900.0, 800.0) self.assertRaises(ValueError, omegacn7500._checkSetpointValue, -100, 800) self.assertRaises(ValueError, omegacn7500._checkSetpointValue, 900, -800) def testWrongType(self): self.assertRaises(TypeError, omegacn7500._checkSetpointValue, '900', 1000) self.assertRaises(TypeError, omegacn7500._checkSetpointValue, [900], 1000) self.assertRaises(TypeError, omegacn7500._checkSetpointValue, None, 1000) self.assertRaises(TypeError, omegacn7500._checkSetpointValue, 900, '1000') self.assertRaises(TypeError, omegacn7500._checkSetpointValue, 900, [1000]) self.assertRaises(TypeError, omegacn7500._checkSetpointValue, 900, None) class TestCheckTimeValue(unittest.TestCase): def testKnownResults(self): omegacn7500._checkTimeValue(75, 99) omegacn7500._checkTimeValue(75.0, 99.0) def testWrongValue(self): self.assertRaises(ValueError, omegacn7500._checkTimeValue, 75, 10) self.assertRaises(ValueError, omegacn7500._checkTimeValue, -5, 10) self.assertRaises(ValueError, omegacn7500._checkTimeValue, -75, 10) self.assertRaises(ValueError, omegacn7500._checkTimeValue, 75.0, 10.0) self.assertRaises(ValueError, omegacn7500._checkTimeValue, -5.0, 10.0) self.assertRaises(ValueError, omegacn7500._checkTimeValue, -75.0, 10.0) self.assertRaises(ValueError, omegacn7500._checkTimeValue, 5, -10) self.assertRaises(ValueError, omegacn7500._checkTimeValue, 75, -10) self.assertRaises(ValueError, omegacn7500._checkTimeValue, 5.0, -10.0) self.assertRaises(ValueError, omegacn7500._checkTimeValue, 75.0, -10.0) def testWrongType(self): self.assertRaises(TypeError, omegacn7500._checkTimeValue, '75', 99) self.assertRaises(TypeError, omegacn7500._checkTimeValue, [75], 99) self.assertRaises(TypeError, omegacn7500._checkTimeValue, None, 99) self.assertRaises(TypeError, omegacn7500._checkTimeValue, 75, '99') self.assertRaises(TypeError, omegacn7500._checkTimeValue, 75, [99]) self.assertRaises(TypeError, omegacn7500._checkTimeValue, 75, None) ########################################### # Communication using a dummy serial port # ########################################### class TestDummyCommunication_Slave1(unittest.TestCase): """Testing using dummy communication, with data recorded for slaveaddress = 1 Most of the tests are for making sure that the communication details are OK. For some examples of testing the methods for argument value errors or argument type errors, see the :meth:`.testSetControlModeWithWrongValue` and :meth:`.testSetControlModeWithWrongValueType` methods. """ def setUp(self): # Prepare a dummy serial port to have proper responses dummy_serial.VERBOSE = False dummy_serial.RESPONSES = RESPONSES dummy_serial.DEFAULT_RESPONSE = 'NotFoundInDictionary' # Monkey-patch a dummy serial port for testing purpose omegacn7500.minimalmodbus.serial.Serial = dummy_serial.Serial # Initialize a (dummy) instrument self.instrument = omegacn7500.OmegaCN7500('DUMMYPORTNAME', 1) self.instrument._debug = False def testReadPv1(self): self.assertAlmostEqual( self.instrument.get_pv(), 24.6 ) def testRun(self): self.instrument.run() def testStop(self): self.instrument.stop() def testIsRunning(self): self.assertFalse( self.instrument.is_running() ) def testGetSetpoint(self): self.assertAlmostEqual( self.instrument.get_setpoint(), 100) def testSetSetpoint(self): self.instrument.set_setpoint(100) def testGetControlMode(self): self.assertEqual( self.instrument.get_control_mode(), 'PID') def testSetControlMode(self): self.instrument.set_control_mode(3) def testSetControlModeWithWrongValue(self): self.assertRaises(ValueError, self.instrument.set_control_mode, 4) self.assertRaises(ValueError, self.instrument.set_control_mode, -1) def testSetControlModeWithWrongValueType(self): self.assertRaises(TypeError, self.instrument.set_control_mode, 3.0) self.assertRaises(TypeError, self.instrument.set_control_mode, [3]) self.assertRaises(TypeError, self.instrument.set_control_mode, '3') self.assertRaises(TypeError, self.instrument.set_control_mode, None) def testGetStartPatternNo(self): self.assertEqual( self.instrument.get_start_pattern_no(), 2) def testSetStartPatternNo(self): self.instrument.set_start_pattern_no(2) def testGetPatternStepSetpoint(self): self.assertAlmostEqual( self.instrument.get_pattern_step_setpoint(0, 3), 333.3) def testSetPatternStepSetpoint(self): self.instrument.set_pattern_step_setpoint(0, 3, 333.3) self.instrument.set_pattern_step_setpoint(0, 3, 40) def testGetPatternStepTime(self): self.assertAlmostEqual( self.instrument.get_pattern_step_time(0, 3), 45) def testSetPatternStepTime(self): self.instrument.set_pattern_step_time(0, 3, 45) self.instrument.set_pattern_step_time(0, 3, 40) def testGetPatternActualStep(self): self.assertEqual( self.instrument.get_pattern_actual_step(0), 7 ) def testSetPatternActualStep(self): self.instrument.set_pattern_actual_step(0, 7) def testGetPatternAdditionalCycles(self): self.assertEqual( self.instrument.get_pattern_additional_cycles(0), 4) def testSetPatternAdditionalCycles(self): self.instrument.set_pattern_additional_cycles(0, 4) self.instrument.set_pattern_additional_cycles(0, 2) def testGetPatternLinkToPattern(self): self.assertEqual( self.instrument.get_pattern_link_topattern(0), 1) def testSetPatternLinkToPattern(self): self.instrument.set_pattern_link_topattern(0, 1) def testGetAllPatternVariables(self): # TODO: Change this to proper assertEqual _print_out( '\nSlave address 1:' ) _print_out( self.instrument.get_all_pattern_variables(0) ) def testSetAllPatternVariables(self): self.instrument.set_all_pattern_variables(0, 10, 10, 20, 20, 30, 30, 40, 40, 50, 50, 60, 60, 70, 70, 80, 80, 7, 4, 1) class TestDummyCommunication_Slave10(unittest.TestCase): """Testing using dummy communication, with data recorded for slaveaddress = 10 """ def setUp(self): dummy_serial.RESPONSES = RESPONSES dummy_serial.DEFAULT_RESPONSE = 'NotFoundInDictionary' omegacn7500.minimalmodbus.serial.Serial = dummy_serial.Serial self.instrument = omegacn7500.OmegaCN7500('DUMMYPORTNAME', 10) def testReadPv1(self): self.assertAlmostEqual( self.instrument.get_pv(), 25.9 ) def testRun(self): self.instrument.run() def testStop(self): self.instrument.stop() def testIsRunning(self): self.assertFalse( self.instrument.is_running() ) def testGetSetpoint(self): self.assertAlmostEqual( self.instrument.get_setpoint(), 100) def testSetSetpoint(self): self.instrument.set_setpoint(100) def testGetControlMode(self): self.assertEqual( self.instrument.get_control_mode(), 'PID') def testSetControlMode(self): self.instrument.set_control_mode(3) def testGetStartPatternNo(self): self.assertEqual( self.instrument.get_start_pattern_no(), 2) def testSetStartPatternNo(self): self.instrument.set_start_pattern_no(2) def testGetPatternStepSetpoint(self): self.assertEqual( self.instrument.get_pattern_step_setpoint(0, 3), 333.3) def testSetPatternStepSetpoint(self): self.instrument.set_pattern_step_setpoint(0, 3, 333.3) self.instrument.set_pattern_step_setpoint(0, 3, 40) def testGetPatternStepTime(self): self.assertAlmostEqual( self.instrument.get_pattern_step_time(0, 3), 45) def testSetPatternStepTime(self): self.instrument.set_pattern_step_time(0, 3, 45) self.instrument.set_pattern_step_time(0, 3, 40) def testGetPatternActualStep(self): self.assertEqual( self.instrument.get_pattern_actual_step(0), 7) def testSetPatternActualStep(self): self.instrument.set_pattern_actual_step(0, 7) def testGetPatternAdditionalCycles(self): self.assertEqual( self.instrument.get_pattern_additional_cycles(0), 4) def testSetPatternAdditionalCycles(self): self.instrument.set_pattern_additional_cycles(0, 4) self.instrument.set_pattern_additional_cycles(0, 2) def testGetPatternLinkToPattern(self): self.assertEqual( self.instrument.get_pattern_link_topattern(0), 1) def testSetPatternLinkToPattern(self): self.instrument.set_pattern_link_topattern(0, 1) def testGetAllPatternVariables(self): # TODO: Change this to proper assertEqual _print_out( '\nSlave address 10:' ) _print_out( self.instrument.get_all_pattern_variables(0) ) def testSetAllPatternVariables(self): self.instrument.set_all_pattern_variables(0, 10, 10, 20, 20, 30, 30, 40, 40, 50, 50, 60, 60, 70, 70, 80, 80, 7, 4, 1) RESPONSES = {} """A dictionary of respones from a dummy Omega CN7500 instrument. The key is the message (string) sent to the serial port, and the item is the response (string) from the dummy serial port. """ ## Recorded data from OmegaCN7500 ## #################################### # Slave address 1, get_pv() RESPONSES['\x01\x03\x10\x00\x00\x01\x80\xca'] = '\x01\x03\x02\x00\xf68\x02' # Slave address 1, run() RESPONSES['\x01\x05\x08\x14\xff\x00\xce^'] = '\x01\x05\x08\x14\xff\x00\xce^' # Slave address 1, stop() RESPONSES['\x01\x05\x08\x14\x00\x00\x8f\xae'] = '\x01\x05\x08\x14\x00\x00\x8f\xae' # Slave address 1, is_running() RESPONSES['\x01\x02\x08\x14\x00\x01\xfb\xae'] = '\x01\x02\x01\x00\xa1\x88' # Slave address 1, get_setpoint() RESPONSES['\x01\x03\x10\x01\x00\x01\xd1\n'] = '\x01\x03\x02\x03\xe8\xb8\xfa' # Slave address 1, set_setpoint() RESPONSES['\x01\x10\x10\x01\x00\x01\x02\x03\xe8\xb6\xfe'] = '\x01\x10\x10\x01\x00\x01T\xc9' # Slave address 1, get_control_mode() RESPONSES['\x01\x03\x10\x05\x00\x01\x90\xcb'] = '\x01\x03\x02\x00\x00\xb8D' #RESPONSES['\x01\x03\x10\x05\x00\x01\x90\xcb'] = '\x01\x03\x02\x00\x09xB' # Use this for testing wrong controlmode # Slave address 1, set_control_mode() RESPONSES['\x01\x10\x10\x05\x00\x01\x02\x00\x03\xf7\xc5'] = '\x01\x10\x10\x05\x00\x01\x15\x08' # Slave address 1, get_start_pattern_no() RESPONSES['\x01\x03\x100\x00\x01\x80\xc5'] = '\x01\x03\x02\x00\x029\x85' # Slave address 1, set_start_pattern_no() RESPONSES['\x01\x10\x100\x00\x01\x02\x00\x023\xa0'] = '\x01\x10\x100\x00\x01\x05\x06' # Slave address 1, set_pattern_step_setpoint() Pattern 0, step 3, value 333.3. See also below. RESPONSES['\x01\x10 \x03\x00\x01\x02\r\x05C2'] = '\x01\x10 \x03\x00\x01\xfa\t' # Slave address 1, set_pattern_step_time() Pattern 0, step 3, value 45. See also below. RESPONSES['\x01\x10 \x83\x00\x01\x02\x00-X|'] = '\x01\x10 \x83\x00\x01\xfb\xe1' # Slave address 1, set_pattern_additional_cycles() Pattern 0, value 4. See also below. RESPONSES['\x01\x10\x10P\x00\x01\x02\x00\x04\xba\x02'] = '\x01\x10\x10P\x00\x01\x05\x18' # Slave address 1, get_all_pattern_variables() # --- Valid for pattern 0 --- # SP0: 10 Time0: 10 # SP1: 20 Time1: 20 # SP2: 30 Time2: 30 # SP3: 333 Time3: 45 # SP4: 50 Time4: 50 # SP5: 60 Time5: 60 # SP6: 70 Time6: 70 # SP7: 80 Time7: 80 # Actual step: 7 # Add'l cycles: 4 # Linked pattern: 1 RESPONSES['\x01\x03 \x00\x00\x01\x8f\xca'] = '\x01\x03\x02\x00d\xb9\xaf' # SP0 RESPONSES['\x01\x03 \x01\x00\x01\xde\n'] = '\x01\x03\x02\x00\xc8\xb9\xd2' RESPONSES['\x01\x03 \x02\x00\x01.\n'] = '\x01\x03\x02\x01,\xb8\t' RESPONSES['\x01\x03 \x03\x00\x01\x7f\xca'] = '\x01\x03\x02\r\x05|\xd7' RESPONSES['\x01\x03 \x04\x00\x01\xce\x0b'] = '\x01\x03\x02\x01\xf4\xb8S' RESPONSES['\x01\x03 \x05\x00\x01\x9f\xcb'] = '\x01\x03\x02\x02X\xb8\xde' RESPONSES['\x01\x03 \x06\x00\x01o\xcb'] = '\x01\x03\x02\x02\xbc\xb8\x95' RESPONSES['\x01\x03 \x07\x00\x01>\x0b'] = '\x01\x03\x02\x03 \xb9l' RESPONSES['\x01\x03 \x80\x00\x01\x8e"'] = '\x01\x03\x02\x00\n8C' # Time0 RESPONSES['\x01\x03 \x81\x00\x01\xdf\xe2'] = '\x01\x03\x02\x00\x14\xb8K' RESPONSES['\x01\x03 \x82\x00\x01/\xe2'] = '\x01\x03\x02\x00\x1e8L' RESPONSES['\x01\x03 \x83\x00\x01~"'] = '\x01\x03\x02\x00-xY' RESPONSES['\x01\x03 \x84\x00\x01\xcf\xe3'] = '\x01\x03\x02\x0029\x91' RESPONSES['\x01\x03 \x85\x00\x01\x9e#'] = '\x01\x03\x02\x00<\xb8U' RESPONSES['\x01\x03 \x86\x00\x01n#'] = '\x01\x03\x02\x00F9\xb6' RESPONSES['\x01\x03 \x87\x00\x01?\xe3'] = '\x01\x03\x02\x00P\xb8x' RESPONSES['\x01\x03\x10@\x00\x01\x81\x1e'] = '\x01\x03\x02\x00\x07\xf9\x86' # Actual step RESPONSES['\x01\x03\x10P\x00\x01\x80\xdb'] = '\x01\x03\x02\x00\x04\xb9\x87' # Cycles RESPONSES['\x01\x03\x10`\x00\x01\x80\xd4'] = '\x01\x03\x02\x00\x01y\x84' # Linked pattern # Slave address 1, set_all_pattern_variables() # --- Valid for pattern 0 --- RESPONSES['\x01\x10 \x00\x00\x01\x02\x00d\x86y'] = '\x01\x10 \x00\x00\x01\n\t' # SP0 RESPONSES['\x01\x10 \x01\x00\x01\x02\x00\xc8\x87\xd5'] = '\x01\x10 \x01\x00\x01[\xc9' RESPONSES['\x01\x10 \x02\x00\x01\x02\x01,\x86='] = '\x01\x10 \x02\x00\x01\xab\xc9' RESPONSES['\x01\x10 \x03\x00\x01\x02\x01\x90\x86]'] = '\x01\x10 \x03\x00\x01\xfa\t' # SP3, value 40 RESPONSES['\x01\x10 \x04\x00\x01\x02\x01\xf4\x86\x01'] = '\x01\x10 \x04\x00\x01K\xc8' RESPONSES['\x01\x10 \x05\x00\x01\x02\x02X\x87]'] = '\x01\x10 \x05\x00\x01\x1a\x08' RESPONSES['\x01\x10 \x06\x00\x01\x02\x02\xbc\x87%'] = '\x01\x10 \x06\x00\x01\xea\x08' RESPONSES['\x01\x10 \x07\x00\x01\x02\x03 \x87\r'] = '\x01\x10 \x07\x00\x01\xbb\xc8' RESPONSES['\x01\x10 \x80\x00\x01\x02\x00\n\x18U'] = '\x01\x10 \x80\x00\x01\x0b\xe1' # Time0 RESPONSES['\x01\x10 \x81\x00\x01\x02\x00\x14\x99\x8c'] = '\x01\x10 \x81\x00\x01Z!' RESPONSES['\x01\x10 \x82\x00\x01\x02\x00\x1e\x19\xb8'] = '\x01\x10 \x82\x00\x01\xaa!' RESPONSES['\x01\x10 \x83\x00\x01\x02\x00(\x98\x7f'] = '\x01\x10 \x83\x00\x01\xfb\xe1' # Time3, value 40 RESPONSES['\x01\x10 \x84\x00\x01\x02\x002\x18\x03'] = '\x01\x10 \x84\x00\x01J ' RESPONSES['\x01\x10 \x85\x00\x01\x02\x00<\x98\x16'] = '\x01\x10 \x85\x00\x01\x1b\xe0' RESPONSES['\x01\x10 \x86\x00\x01\x02\x00F\x19\xc6'] = '\x01\x10 \x86\x00\x01\xeb\xe0' RESPONSES['\x01\x10 \x87\x00\x01\x02\x00P\x99\xd9'] = '\x01\x10 \x87\x00\x01\xba ' RESPONSES['\x01\x10\x10@\x00\x01\x02\x00\x07\xf8\x93'] = '\x01\x10\x10@\x00\x01\x04\xdd' # Actual step RESPONSES['\x01\x10\x10P\x00\x01\x02\x00\x02:\x00'] = '\x01\x10\x10P\x00\x01\x05\x18' # Cycles, value 2 RESPONSES['\x01\x10\x10`\x00\x01\x02\x00\x01\x7f\xf1'] = '\x01\x10\x10`\x00\x01\x05\x17' # Linked pattern # Slave address 10, get_pv() RESPONSES['\n\x03\x10\x00\x00\x01\x81\xb1'] = '\n\x03\x02\x01\x03\\\x14' # Slave address 10, run() RESPONSES['\n\x05\x08\x14\xff\x00\xcf%'] = '\n\x05\x08\x14\xff\x00\xcf%' # Slave address 10, stop() RESPONSES['\n\x05\x08\x14\x00\x00\x8e\xd5'] = '\n\x05\x08\x14\x00\x00\x8e\xd5' # Slave address 10, is_running() RESPONSES['\n\x02\x08\x14\x00\x01\xfa\xd5'] = '\n\x02\x01\x00\xa3\xac' # Slave address 10, get_setpoint() RESPONSES['\n\x03\x10\x01\x00\x01\xd0q'] = '\n\x03\x02\x03\xe8\x1d;' # Slave address 10, set_setpoint() RESPONSES['\n\x10\x10\x01\x00\x01\x02\x03\xe8\xc5\xce'] = '\n\x10\x10\x01\x00\x01U\xb2' # Slave address 10, get_control_mode() RESPONSES['\n\x03\x10\x05\x00\x01\x91\xb0'] = '\n\x03\x02\x00\x00\x1d\x85' # Slave address 10, set_control_mode() RESPONSES['\n\x10\x10\x05\x00\x01\x02\x00\x03\x84\xf5'] = '\n\x10\x10\x05\x00\x01\x14s' # Slave address 10, get_start_pattern_no() RESPONSES['\n\x03\x100\x00\x01\x81\xbe'] = '\n\x03\x02\x00\x02\x9cD' # Slave address 10, set_start_pattern_no() RESPONSES['\n\x10\x100\x00\x01\x02\x00\x02@\x90'] = '\n\x10\x100\x00\x01\x04}' # Slave address 10, set_pattern_step_setpoint() Pattern 0, step 3, value 333.3. See also below. RESPONSES['\n\x10 \x03\x00\x01\x02\r\x050\x02'] = '\n\x10 \x03\x00\x01\xfbr' # Slave address 10, set_pattern_step_time() Pattern 0, step 3, value 45. See also below. RESPONSES['\n\x10 \x83\x00\x01\x02\x00-+L'] = '\n\x10 \x83\x00\x01\xfa\x9a' # Slave address 10, set_pattern_additional_cycles() Pattern 0, value 4. See also below. RESPONSES['\n\x10\x10P\x00\x01\x02\x00\x04\xc92'] = '\n\x10\x10P\x00\x01\x04c' # Slave address 10, get_all_pattern_variables() # --- Valid for pattern 0 --- # SP0: 10 Time0: 10 # SP1: 20 Time1: 20 # SP2: 30 Time2: 30 # SP3: 333 Time3: 45 # SP4: 50 Time4: 50 # SP5: 60 Time5: 60 # SP6: 70 Time6: 70 # SP7: 80 Time7: 80 # Actual step: 7 # Add'l cycles: 4 # Linked pattern: 1 RESPONSES['\n\x03 \x00\x00\x01\x8e\xb1'] = '\n\x03\x02\x00d\x1cn' # SP0 RESPONSES['\n\x03 \x01\x00\x01\xdfq'] = '\n\x03\x02\x00\xc8\x1c\x13' RESPONSES['\n\x03 \x02\x00\x01/q'] = '\n\x03\x02\x01,\x1d\xc8' RESPONSES['\n\x03 \x03\x00\x01~\xb1'] = '\n\x03\x02\r\x05\xd9\x16' RESPONSES['\n\x03 \x04\x00\x01\xcfp'] = '\n\x03\x02\x01\xf4\x1d\x92' RESPONSES['\n\x03 \x05\x00\x01\x9e\xb0'] = '\n\x03\x02\x02X\x1d\x1f' RESPONSES['\n\x03 \x06\x00\x01n\xb0'] = '\n\x03\x02\x02\xbc\x1dT' RESPONSES['\n\x03 \x07\x00\x01?p'] = '\n\x03\x02\x03 \x1c\xad' RESPONSES['\n\x03 \x80\x00\x01\x8fY'] = '\n\x03\x02\x00\n\x9d\x82' # Time0 RESPONSES['\n\x03 \x81\x00\x01\xde\x99'] = '\n\x03\x02\x00\x14\x1d\x8a' RESPONSES['\n\x03 \x82\x00\x01.\x99'] = '\n\x03\x02\x00\x1e\x9d\x8d' RESPONSES['\n\x03 \x83\x00\x01\x7fY'] = '\n\x03\x02\x00-\xdd\x98' RESPONSES['\n\x03 \x84\x00\x01\xce\x98'] = '\n\x03\x02\x002\x9cP' RESPONSES['\n\x03 \x85\x00\x01\x9fX'] = '\n\x03\x02\x00<\x1d\x94' RESPONSES['\n\x03 \x86\x00\x01oX'] = '\n\x03\x02\x00F\x9cw' RESPONSES['\n\x03 \x87\x00\x01>\x98'] = '\n\x03\x02\x00P\x1d\xb9' RESPONSES['\n\x03\x10@\x00\x01\x80e'] = '\n\x03\x02\x00\x07\\G' # Actual step RESPONSES['\n\x03\x10P\x00\x01\x81\xa0'] = '\n\x03\x02\x00\x04\x1cF' # Cycles RESPONSES['\n\x03\x10`\x00\x01\x81\xaf'] = '\n\x03\x02\x00\x01\xdcE' # Linked pattern # Slave address 10, set_all_pattern_variables() # --- Valid for pattern 0 --- RESPONSES['\n\x10 \x00\x00\x01\x02\x00d\xf5I'] = '\n\x10 \x00\x00\x01\x0br' # SP0 RESPONSES['\n\x10 \x01\x00\x01\x02\x00\xc8\xf4\xe5'] = '\n\x10 \x01\x00\x01Z\xb2' RESPONSES['\n\x10 \x02\x00\x01\x02\x01,\xf5\r'] = '\n\x10 \x02\x00\x01\xaa\xb2' RESPONSES['\n\x10 \x03\x00\x01\x02\x01\x90\xf5m'] = '\n\x10 \x03\x00\x01\xfbr' # SP3, value 40 RESPONSES['\n\x10 \x04\x00\x01\x02\x01\xf4\xf51'] = '\n\x10 \x04\x00\x01J\xb3' RESPONSES['\n\x10 \x05\x00\x01\x02\x02X\xf4m'] = '\n\x10 \x05\x00\x01\x1bs' RESPONSES['\n\x10 \x06\x00\x01\x02\x02\xbc\xf4\x15'] = '\n\x10 \x06\x00\x01\xebs' RESPONSES['\n\x10 \x07\x00\x01\x02\x03 \xf4='] = '\n\x10 \x07\x00\x01\xba\xb3' RESPONSES['\n\x10 \x80\x00\x01\x02\x00\nke'] = '\n\x10 \x80\x00\x01\n\x9a' # Time0 RESPONSES['\n\x10 \x81\x00\x01\x02\x00\x14\xea\xbc'] = '\n\x10 \x81\x00\x01[Z' RESPONSES['\n\x10 \x82\x00\x01\x02\x00\x1ej\x88'] = '\n\x10 \x82\x00\x01\xabZ' RESPONSES['\n\x10 \x83\x00\x01\x02\x00(\xebO'] = '\n\x10 \x83\x00\x01\xfa\x9a' # Time3, value 40 RESPONSES['\n\x10 \x84\x00\x01\x02\x002k3'] = '\n\x10 \x84\x00\x01K[' RESPONSES['\n\x10 \x85\x00\x01\x02\x00<\xeb&'] = '\n\x10 \x85\x00\x01\x1a\x9b' RESPONSES['\n\x10 \x86\x00\x01\x02\x00Fj\xf6'] = '\n\x10 \x86\x00\x01\xea\x9b' RESPONSES['\n\x10 \x87\x00\x01\x02\x00P\xea\xe9'] = '\n\x10 \x87\x00\x01\xbb[' RESPONSES['\n\x10\x10@\x00\x01\x02\x00\x07\x8b\xa3'] = '\n\x10\x10@\x00\x01\x05\xa6' # Actual step RESPONSES['\n\x10\x10P\x00\x01\x02\x00\x02I0'] = '\n\x10\x10P\x00\x01\x04c' # Cycles, value 2 RESPONSES['\n\x10\x10`\x00\x01\x02\x00\x01\x0c\xc1'] = '\n\x10\x10`\x00\x01\x04l' # Linked pattern def _print_out( inputstring ): """Print the inputstring. To make it compatible with Python2 and Python3.""" sys.stdout.write(inputstring + '\n') if __name__ == '__main__': unittest.main()
StarcoderdataPython
1796190
<reponame>L3gume/CodeAndBrunch from setuptools import setup # you may need setuptools instead of distutils setup ( # basic stuff here scripts = [ 'patrickTweet.py', 'jsonParser.py' ] )
StarcoderdataPython
3250813
import osgtest.library.core as core import osgtest.library.files as files import osgtest.library.osgunittest as osgunittest class TestRestoreLcMaps(osgunittest.OSGTestCase): @core.osgrelease(3.5) def test_01_restore_lcmaps(self): core.skip_ok_unless_installed('lcmaps', 'lcmaps-plugins-voms', 'lcmaps-db-templates') files.restore(core.config['lcmaps.gsi-authz'], 'lcmaps') files.restore(core.config['lcmaps.db'], 'lcmaps')
StarcoderdataPython
3358177
# coding=utf8 import re import os import logging import datetime class SignalInfo: def __init__(self): self.log_datetime = None self.startup = None self.strategy = None self.runtime = None self.signal = None self.instrument = None self.quantity = None self.price = None self.dir = None self.datetime = None self.cpu_tick = None self.tag = None class OrderCreationInfo: def __init__(self): self.log_datetime = None self.startup = None self.runtime = None self.signal = None self.order = None self.instrument = None self.quantity = None self.price = None self.dir = None self.datetime = None self.cpu_tick = None class OrderTradedInfo: def __init__(self): self.log_datetime = None self.startup = None self.runtime = None self.order = None self.quantity = None self.price = None self.datetime = None self.cpu_tick = None def __parse_signal_row(row): try: stg = re.findall('stg:([^,]+),', row) rt = re.findall('rt:(\d+)', row) sig = re.findall('sig:(\d+)', row) ins = re.findall('ins:([a-zA-Z]+\d+)', row) qty = re.findall('qty:(\d+)', row) pri = re.findall('pri:([0-9.]+)', row) dr = re.findall('dir:([A-Z]+)', row) dt = re.findall('dt:(\d+T\d+)', row) ctk = re.findall('ctk:(\d+)', row) tag = re.findall('msg:(.*)', row) sinfo = SignalInfo() sinfo.strategy = stg[0] sinfo.runtime = int(rt[0]) sinfo.signal = int(sig[0]) sinfo.instrument = ins[0] sinfo.quantity = int(qty[0]) sinfo.price = float(pri[0]) sinfo.dir = dr[0] if len(dt[0]) == 13: temp = dt[0].replace("T", "T00") sinfo.datetime = datetime.datetime.strptime(temp, "%Y%m%dT%H%M%S") elif len(dt[0]) == 14: temp = dt[0].replace("T", "T0") sinfo.datetime = datetime.datetime.strptime(temp, "%Y%m%dT%H%M%S") else: sinfo.datetime = datetime.datetime.strptime(dt[0], "%Y%m%dT%H%M%S") sinfo.cpu_tick = int(ctk[0]) sinfo.tag = tag[0] return sinfo except Exception as e: logging.warning('parse_signal_row fail\nerror: %s\nrow: %s' % (str(e), row)) return None def __parse_order_creation_row(row): try: rt = re.findall('rt:(\d+)', row) sig = re.findall('sig:(\d+)', row) od = re.findall('ord:(\d+)', row) ins = re.findall('ins:([a-zA-Z]+\d+)', row) qty = re.findall('qty:(\d+)', row) pri = re.findall('pri:([0-9.]+)', row) dr = re.findall('dir:([A-Z]+)', row) dt = re.findall('dt:(\d+T\d+)', row) ctk = re.findall('ctk:(\d+)', row) sinfo = OrderCreationInfo() sinfo.runtime = int(rt[0]) sinfo.signal = int(sig[0]) sinfo.order = int(od[0]) sinfo.instrument = ins[0] sinfo.quantity = int(qty[0]) sinfo.price = float(pri[0]) sinfo.dir = dr[0] if len(dt[0]) == 13: temp = dt[0].replace("T", "T00") sinfo.datetime = datetime.datetime.strptime(temp, "%Y%m%dT%H%M%S") elif len(dt[0]) == 14: temp = dt[0].replace("T", "T0") sinfo.datetime = datetime.datetime.strptime(temp, "%Y%m%dT%H%M%S") else: sinfo.datetime = datetime.datetime.strptime(dt[0], "%Y%m%dT%H%M%S") sinfo.cpu_tick = int(ctk[0]) return sinfo except Exception as e: logging.warning('parse_order_creation_row fail\nerror: %s\nrow: %s' % (str(e), row)) return None def __parse_order_traded_row(row): try: rt = re.findall('rt:(\d+)', row) od = re.findall('ord:(\d+)', row) qty = re.findall('qty:(\d+)', row) pri = re.findall('pri:([0-9.]+)', row) dt = re.findall('dt:(\d+T\d+)', row) ctk = re.findall('ctk:(\d+)', row) sinfo = OrderTradedInfo() sinfo.runtime = int(rt[0]) sinfo.order = int(od[0]) sinfo.quantity = int(qty[0]) sinfo.price = float(pri[0]) if len(dt[0]) == 13: temp = dt[0].replace("T", "T00") sinfo.datetime = datetime.datetime.strptime(temp, "%Y%m%dT%H%M%S") elif len(dt[0]) == 14: temp = dt[0].replace("T", "T0") sinfo.datetime = datetime.datetime.strptime(temp, "%Y%m%dT%H%M%S") else: sinfo.datetime = datetime.datetime.strptime(dt[0], "%Y%m%dT%H%M%S") sinfo.cpu_tick = int(ctk[0]) return sinfo except Exception as e: logging.warning('parse_order_creation_row fail\nerror: %s\nrow: %s' % (str(e), row)) return None def __parse_row(row): log_dt = re.findall('^\[(\d{4}/\d{2}/\d{2} \d{2}:\d{2}:\d{2}\.\d{3})\]\[[A-Z]\]', row) if not log_dt or not log_dt[0]: return None try: log_dt = datetime.datetime.strptime(log_dt[0], "%Y/%m/%d %H:%M:%S.%f") except Exception as e: logging.warning('parse log datetime fail\nerror: %s\nrow: %s' % (str(e), row)) return None log_type = re.findall('<([a-z_]+)>', row) if not log_type or not log_type[0]: return None info = None if log_type[0] == 'signal': info = __parse_signal_row(row) elif log_type[0] == 'order_created': info = __parse_order_creation_row(row) elif log_type[0] == 'order_traded': info = __parse_order_traded_row(row) elif log_type[0] == 'order_canceled': pass elif log_type[0] == 'order_rejected': pass if info is not None: info.log_datetime = log_dt return info def parse_log_file(filename, parse_from_dt=None, parse_until_dt=None): """ :param filename: 日志文件名 :param parse_from_dt: 解析log时间戳大于等于此时间的日志 :param parse_until_dt: 解析log时间戳小于此时间的日志 :return: """ if parse_from_dt is None: parse_from_dt = datetime.datetime.min if parse_until_dt is None: parse_until_dt = datetime.datetime.max signals = list() orders = list() trades = list() if os.path.exists(filename): # split individual starts starts = list() lines = list() with open(filename) as fid: for line in fid: row = line.rstrip().lstrip() if not row: continue spliter_line = re.findall(r'^======', row) if not spliter_line: lines.append(line) else: starts.append(list(lines)) lines.clear() if lines: starts.append(list(lines)) # scan for n, lines in enumerate(starts): for line in lines: info = __parse_row(line) if info is None: continue if info.log_datetime < parse_from_dt: continue if info.log_datetime >= parse_until_dt: continue # set startup id info.startup = n if type(info) == SignalInfo: signals.append(info) elif type(info) == OrderCreationInfo: orders.append(info) elif type(info) == OrderTradedInfo: trades.append(info) return signals, orders, trades # ========================================================================= def main(): filename = r'C:\D\work_scripts\trade_log_parser\trade_logs\Transactions_20160420.log' s, o, t = parse_log_file(filename) for i in s: print(i) for i in o: print(i) for i in t: print(i) # ========================================================================= if __name__ == '__main__': main()
StarcoderdataPython
155818
import datetime import random import threading import time from selenium import webdriver from selenium.common.exceptions import TimeoutException, WebDriverException from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions from selenium.webdriver.support.ui import WebDriverWait from product_search_details import ProductSearchDetails NEWEGG = "newegg" BESTBUY = "bestbuy" def restart_selenium( driver ): if driver is not None: driver.close() driver = webdriver.Firefox() return driver def start_newegg_checkout( driver, item ) -> bool: btn = item.find_elements_by_class_name("btn-primary")[0] btn.click() time.sleep(0.5) driver.get("https://secure.newegg.com/Shopping/ShoppingCart.aspx") time.sleep(0.5) driver.get( "javascript:attachDelegateEvent((function(){Biz.GlobalShopping.ShoppingCart.checkOut('True')}));") time.sleep(3) if item.text.lower().find("Your shopping cart is empty") > -1: return False return True def scrape_for_product( driver: any, vendor_name: str, vendor_details: ProductSearchDetails, delay: float ) -> float: no_response_error_text = "site did not respond" should_exit = False try: product_search_url = vendor_details.product_search_url driver.get(product_search_url) time.sleep(3) try: element_search = vendor_details.sku_containter_css_class items = WebDriverWait(driver, delay).until( expected_conditions.presence_of_all_elements_located((By.CLASS_NAME, element_search))) for item in items: now = datetime.datetime.now() print("Time : ") print(now.strftime("%Y-%m-%d %H:%M:%S \n")) print(f'{vendor_name}\n{item.text}\n') if item.text.lower().find(vendor_details.add_to_cart_search) > -1: print(f'item available at {vendor_name}{item.text}') if vendor_name is NEWEGG: should_exit = start_newegg_checkout(driver, item) break except TimeoutException: print(no_response_error_text) delay += 15 except WebDriverException: print(no_response_error_text) delay += 15 return (delay, should_exit) class ProductScraper(object): def __scrape_for_product_loop__( self ): driver_attempt_count = 0 driver = restart_selenium(None) while True: if driver_attempt_count > 100: driver_attempt_count = 0 driver_attempt_count += 1 delay = random.random() * 10 + \ self.__product_info__.seconds_delay_between_refresh print(f'{self.__vendor_name__}\n') (delay, should_exit) = scrape_for_product( driver, self.__vendor_name__, self.__product_info__, delay) if should_exit: print("Please finish ordering") time.sleep(15 * 60) time.sleep(delay) def __init__( self, vendor_name: str, vendor_info: ProductSearchDetails ) -> None: self.__vendor_name__ = vendor_name self.__product_info__ = vendor_info self.__thread__ = threading.Thread( target=self.__scrape_for_product_loop__, name=vendor_name) self.__thread__.start()
StarcoderdataPython
189678
# -*- coding: utf-8 -*- """ Created on Thu Sep 18 09:25:00 2014 @author: rich """ import sys import re import ast import numpy as np from collections import Counter headerQuestion = 'Question' headerQID = 'qID' headerQuestionType = 'qAnalysisType' headerQuestionWeight = 'qWeight' headerPossibleResponses = 'Possible Responses' # responseOther = 'Other:' # used in original survey data responseOther = 'Other' qType_Metadata = -1 qType_Subjective = 0 qType_Numerical = 1 qType_Ordinal = 2 # pick one from an ordered list of options qType_MultiCategory = 3 # pick one or more from a list of options qType_BiCategory = 4 # answers of the form A, B, A and B, (neither), (other) qType_Category = 5 # pick one qType_Hierarchical = 6 # pick one or more, each option is hierarchical, colon separated qType_MultiOrdinal = 7 # pick one or more from an ordered list of options qType_WtdFeature = 8 # int/float is zero-based feature weight def isFloat(str): try: float(str) return True except ValueError: return False # get attribute list and optional weights for multi-valued attributes def getAttrValueList(values): weights = None if values == None or (isinstance(values, float) and np.isnan(values)): return ([], weights) if values == 'None': return (['None'], weights) if type(values) != list: try: values = ast.literal_eval(values) if not isinstance(values, list): values = [values] except: # in case there's an unparseable string, perhaps multiple values are separated by ; or | try: values = [x.strip() for x in re.split(";|\|", values)] except: print values values = [] values = filter(None, values) # filter out empty strings if len(values) > 0 and (type(values[0]) == list or type(values[0]) == tuple): valwts = zip(*values) values = list(valwts[0]) weights = list(valwts[1]) return (values, weights) def readQuestionAndResponseData(rawData, questionTextHeader, filters = [], doRound = False): questionData = rawData['questions'] responseData = rawData['responses'] questionTextHeader = questionTextHeader if (questionTextHeader != None and len(questionTextHeader) > 0) else headerQuestion # read in and process the questions # get questions print("[ReadData.readQuestionAndResponseData] Processing %s question rows" % str(len(questionData))) #print(questionData) qIDs = {int(question[headerQID]): question[questionTextHeader] for idx, question in questionData.iterrows()} # read in the responses # get headers # get responses print("[ReadData.readQuestionAndResponseData] Processing %s entity rows" % str(len(responseData))) # questions is a data frame of questions and an {ID, question text} dict data = {'questions': {'rawQuestions': questionData, 'questions': questionData, 'qIDs' : qIDs}, 'responses': responseData} cleanQuestions(data) buildAnswerMetadata(data, doRound) filterQuestions(data, filters) return data # build metadata about each question's answers # record question type and possible answer values (numeric range or list of choices) def buildAnswerMetadata(data, doRound): questionData = data['questions']['questions'] responseData = data['responses'] gotPossibleResponses = headerPossibleResponses in questionData.columns answers = {} answerIdx = {} # map question id and quesion text print("[ReadData.buildAnswerMetadata] Processing %s questions" % str(len(questionData))) for idx, qData in questionData.iterrows(): question = qData[headerQuestion] qType = int(qData[headerQuestionType]) qWt = float(qData[headerQuestionWeight]) if headerQuestionWeight in qData else 1.0 scan = False # question sheet has answer metadata if gotPossibleResponses and qData[headerPossibleResponses] is not None: responses = qData[headerPossibleResponses].split('|') if qType == qType_Numerical or qType == qType_WtdFeature: if responses[0] == 'numeric' or doRound == True: answer = {'qType': qType, 'qWt': qWt} answer['min'] = sys.float_info.max answer['max'] = sys.float_info.min scan = True else: answer = {'qType': qType, 'min': float(responses[0]), 'max': float(responses[1])} elif qType == qType_Ordinal: nResponses = len(responses) answer = {'qType': qType, 'qWt': qWt, 'options': responses, 'nResponses': nResponses} answer['hasOther'] = True if 'Other' in responses else False # all categorical responses, treat multiOrdinal as categorical for now elif qType == qType_MultiCategory or qType == qType_BiCategory or qType == qType_Category or qType == qType_MultiOrdinal: nResponses = len(responses) if 'Other' in responses: responses.remove(responseOther) responseMap = {} i = 0 for response in responses: responseMap[response] = i i += 1 answer = {'qType': qType, 'qWt': qWt, 'options': responses, 'nResponses': nResponses, 'responseMap': responseMap} else: answer = {'qType': qType, 'qWt': qWt} else: # no metadata in question sheet, scan all responses to build answer metadata scan = True # initialize answer metadata answer = {'qType': qType, 'qWt': qWt} if qType == qType_Numerical or qType == qType_WtdFeature: answer['min'] = sys.float_info.max answer['max'] = sys.float_info.min elif qType == qType_Ordinal or qType == qType_MultiCategory or qType == qType_BiCategory or qType == qType_Category or qType == qType_Hierarchical or qType == qType_MultiOrdinal: # answer['options'] = set() answer['options'] = Counter() if qType == qType_Ordinal: answer['hasOther'] = False if scan == True: # scan all responses to fill in answer metadata responses = responseData[question] if qType == qType_Numerical or qType == qType_WtdFeature: responses = responses.replace('', float('nan')) res = responses[~np.isnan(responses)] if len(res) > 0: answer['min'] = min(res) answer['max'] = max(res) else: # skip attribute if it has no values continue if doRound: responses = responses.round() if qType == qType_WtdFeature: # force feature min to zero answer['min'] = max(answer['min'], 0) answer['median'] = np.median(res) #print("Attribute: " + question + " info: " + str(answer)) elif qType == qType_MultiCategory or qType == qType_BiCategory or qType == qType_Hierarchical or qType == qType_MultiOrdinal: tot = 0 ntot = 0 for response in responses: ans = getAttrValueList(response)[0] answer['options'].update(ans) if len(ans) > 0: tot += len(ans) ntot += 1 answer['avgResponses'] = float(tot)/ntot elif qType == qType_Ordinal or qType == qType_Category: for response in responses: answer['options'].update([response]) # finalize answer metadata if qType == qType_Ordinal: responses = sorted(answer['options']) answer['options'] = responses answer['nResponses'] = len(responses) # all other categorical responses elif qType == qType_MultiCategory or qType == qType_BiCategory or qType == qType_Category or qType == qType_Hierarchical or qType == qType_MultiOrdinal: minTags = 1 if qType == qType_MultiCategory else 0 responses = [k for k, v in answer['options'].iteritems() if v > minTags] # keep tags that occur more than once answer['options'] = responses answer['nResponses'] = len(responses) responseMap = {} i = 0 for response in responses: responseMap[response] = i i += 1 answer['responseMap'] = responseMap # build answer similarity for each pair of hierarchical answers if qType == qType_Hierarchical: answer['responseSim'] = buildResponseSimilarityMatrix(responses) elif qType == qType_Numerical or qType == qType_WtdFeature: responses = responses.replace('', float('nan')) responses = responseData[question] res = responses[~np.isnan(responses)] answer['median'] = np.median(res) answer['histog'] = [] # qID = int(qData[0]) qID = int(qData[headerQID]) answers[qData[headerQuestion]] = answer answerIdx[qID] = qData[headerQuestion] data['answers'] = answers data['answerIdx'] = answerIdx # remove any questions (attributes) that are not in the response data def cleanQuestions(data): questions = data['questions']['rawQuestions'] responseData = data['responses'] dropList = [] for idx, qData in questions.iterrows(): question = qData[headerQuestion] if question not in responseData: dropList.append(idx) data['questions']['questions'] = questions.drop(dropList) # run one or more filters on the questions to select the questions to process # questionFilters is an array of functions with arguments (questionData) # that return boolean True if question is used def filterQuestions(data, questionFilters): questions = data['questions']['rawQuestions'] dropList = [] for idx, question in questions.iterrows(): for qFilter in questionFilters: if qFilter(question) == False: dropList.append(idx) newQuestions = data['questions']['questions'] = questions.drop(dropList) print("Processing %s filtered questions" % str(newQuestions.shape[0])) # compute similarity for each pair of hierarchical responses def buildResponseSimilarityMatrix(responses): n = len(responses) simmat = np.empty([n,n]) maxLen = 0 for i in range(0,n): ans1 = [x.strip() for x in responses[i].split(':')] len1 = len(ans1) if len1 > maxLen: maxLen = len1 for j in range(i,n): if i is j: simmat[i][j] = len1 else: ans2 = [x.strip() for x in responses[j].split(':')] len2 = len(ans2) for k in range(0, min(len1, len2)): if ans1[k] != ans2[k]: break simmat[i][j] = k simmat[j][i] = k # normalize with longest hierarchical term if maxLen > 1: maxLen = maxLen - 1 maxLen = float(maxLen) for i in range(0,n): for j in range(0,n): simmat[i][j] /= maxLen return simmat def getClusterAggregationData(rawData): propName = 'attribute' propType = 'type' aggOps = 'summary_stats' # comma separated list of aggregation operations try: aggData = rawData['aggregation'] aggDataFinal = {} # read in and process the sheet # get headers aggHeaders = {} headerRow = aggData[0] for idx in range(len(headerRow)): aggHeaders[headerRow[idx].value] = idx # get column indices and read data propIdx = aggHeaders[propName] typeIdx = aggHeaders[propType] aggIdx = aggHeaders[aggOps] for aggRow in aggData: aggOpList = [x.strip() for x in aggRow[aggIdx].split(',')] for aggOp in aggOpList: aggDataFinal[aggRow[propIdx]] = {propType: aggRow[typeIdx], aggOp: aggOp} except: aggDataFinal = None return aggDataFinal
StarcoderdataPython
1681038
<filename>ansible/venv/lib/python2.7/site-packages/ansible/modules/storage/netapp/netapp_e_auditlog.py #!/usr/bin/python # (c) 2018, NetApp, Inc # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = """ --- module: netapp_e_auditlog short_description: NetApp E-Series manage audit-log configuration description: - This module allows an e-series storage system owner to set audit-log configuration parameters. version_added: '2.7' author: <NAME> (@ndswartz) extends_documentation_fragment: - netapp.eseries options: max_records: description: - The maximum number log messages audit-log will retain. - Max records must be between and including 100 and 50000. default: 50000 log_level: description: Filters the log messages according to the specified log level selection. choices: - all - writeOnly default: writeOnly full_policy: description: Specifies what audit-log should do once the number of entries approach the record limit. choices: - overWrite - preventSystemAccess default: overWrite threshold: description: - This is the memory full percent threshold that audit-log will start issuing warning messages. - Percent range must be between and including 60 and 90. default: 90 force: description: - Forces the audit-log configuration to delete log history when log messages fullness cause immediate warning or full condition. - Warning! This will cause any existing audit-log messages to be deleted. - This is only applicable for I(full_policy=preventSystemAccess). type: bool default: no log_path: description: A local path to a file to be used for debug logging. required: no notes: - Check mode is supported. - This module is currently only supported with the Embedded Web Services API v3.0 and higher. """ EXAMPLES = """ - name: Define audit-log to prevent system access if records exceed 50000 with warnings occurring at 60% capacity. netapp_e_auditlog: api_url: "https://{{ netapp_e_api_host }}/devmgr/v2" api_username: "{{ netapp_e_api_username }}" api_password: "{{ <PASSWORD> }}" ssid: "{{ netapp_e_ssid }}" validate_certs: no max_records: 50000 log_level: all full_policy: preventSystemAccess threshold: 60 log_path: /path/to/log_file.log - name: Define audit-log utilize the default values. netapp_e_auditlog: api_url: "https://{{ netapp_e_api_host }}/devmgr/v2" api_username: "{{ netapp_e_api_username }}" api_password: "{{ <PASSWORD> }}" ssid: "{{ netapp_e_ssid }}" - name: Force audit-log configuration when full or warning conditions occur while enacting preventSystemAccess policy. netapp_e_auditlog: api_url: "https://{{ netapp_e_api_host }}/devmgr/v2" api_username: "{{ netapp_e_api_username }}" api_password: "{{ <PASSWORD> }}" ssid: "{{ netapp_e_ssid }}" max_records: 5000 log_level: all full_policy: preventSystemAccess threshold: 60 force: yes """ RETURN = """ msg: description: Success message returned: on success type: str sample: The settings have been updated. """ import json import logging from pprint import pformat from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.netapp import request, eseries_host_argument_spec from ansible.module_utils._text import to_native try: from urlparse import urlparse, urlunparse except Exception: from urllib.parse import urlparse, urlunparse class AuditLog(object): """Audit-log module configuration class.""" MAX_RECORDS = 50000 HEADERS = {"Content-Type": "application/json", "Accept": "application/json"} def __init__(self): argument_spec = eseries_host_argument_spec() argument_spec.update(dict( max_records=dict(type="int", default=50000), log_level=dict(type="str", default="writeOnly", choices=["all", "writeOnly"]), full_policy=dict(type="str", default="overWrite", choices=["overWrite", "preventSystemAccess"]), threshold=dict(type="int", default=90), force=dict(type="bool", default=False), log_path=dict(type='str', required=False))) self.module = AnsibleModule(argument_spec=argument_spec, supports_check_mode=True) args = self.module.params self.max_records = args["max_records"] if self.max_records < 100 or self.max_records > self.MAX_RECORDS: self.module.fail_json(msg="Audit-log max_records count must be between 100 and 50000: [%s]" % self.max_records) self.threshold = args["threshold"] if self.threshold < 60 or self.threshold > 90: self.module.fail_json(msg="Audit-log percent threshold must be between 60 and 90: [%s]" % self.threshold) self.log_level = args["log_level"] self.full_policy = args["full_policy"] self.force = args["force"] self.ssid = args['ssid'] self.url = args['api_url'] if not self.url.endswith('/'): self.url += '/' self.creds = dict(url_password=args['api_password'], validate_certs=args['validate_certs'], url_username=args['api_username'], ) # logging setup log_path = args['log_path'] self._logger = logging.getLogger(self.__class__.__name__) if log_path: logging.basicConfig( level=logging.DEBUG, filename=log_path, filemode='w', format='%(relativeCreated)dms %(levelname)s %(module)s.%(funcName)s:%(lineno)d\n %(message)s') self.proxy_used = self.is_proxy() self._logger.info(self.proxy_used) self.check_mode = self.module.check_mode def is_proxy(self): """Determine whether the API is embedded or proxy.""" try: # replace http url path with devmgr/utils/about about_url = list(urlparse(self.url)) about_url[2] = "devmgr/utils/about" about_url = urlunparse(about_url) rc, data = request(about_url, timeout=300, headers=self.HEADERS, **self.creds) return data["runningAsProxy"] except Exception as err: self.module.fail_json(msg="Failed to retrieve the webservices about information! Array Id [%s]. Error [%s]." % (self.ssid, to_native(err))) def get_configuration(self): """Retrieve the existing audit-log configurations. :returns: dictionary containing current audit-log configuration """ try: if self.proxy_used: rc, data = request(self.url + "audit-log/config", timeout=300, headers=self.HEADERS, **self.creds) else: rc, data = request(self.url + "storage-systems/%s/audit-log/config" % self.ssid, timeout=300, headers=self.HEADERS, **self.creds) return data except Exception as err: self.module.fail_json(msg="Failed to retrieve the audit-log configuration! " "Array Id [%s]. Error [%s]." % (self.ssid, to_native(err))) def build_configuration(self): """Build audit-log expected configuration. :returns: Tuple containing update boolean value and dictionary of audit-log configuration """ config = self.get_configuration() current = dict(auditLogMaxRecords=config["auditLogMaxRecords"], auditLogLevel=config["auditLogLevel"], auditLogFullPolicy=config["auditLogFullPolicy"], auditLogWarningThresholdPct=config["auditLogWarningThresholdPct"]) body = dict(auditLogMaxRecords=self.max_records, auditLogLevel=self.log_level, auditLogFullPolicy=self.full_policy, auditLogWarningThresholdPct=self.threshold) update = current != body self._logger.info(pformat(update)) self._logger.info(pformat(body)) return update, body def delete_log_messages(self): """Delete all audit-log messages.""" self._logger.info("Deleting audit-log messages...") try: if self.proxy_used: rc, result = request(self.url + "audit-log?clearAll=True", timeout=300, method="DELETE", headers=self.HEADERS, **self.creds) else: rc, result = request(self.url + "storage-systems/%s/audit-log?clearAll=True" % self.ssid, timeout=300, method="DELETE", headers=self.HEADERS, **self.creds) except Exception as err: self.module.fail_json(msg="Failed to delete audit-log messages! Array Id [%s]. Error [%s]." % (self.ssid, to_native(err))) def update_configuration(self, update=None, body=None, attempt_recovery=True): """Update audit-log configuration.""" if update is None or body is None: update, body = self.build_configuration() if update and not self.check_mode: try: if self.proxy_used: rc, result = request(self.url + "storage-systems/audit-log/config", timeout=300, data=json.dumps(body), method='POST', headers=self.HEADERS, ignore_errors=True, **self.creds) else: rc, result = request(self.url + "storage-systems/%s/audit-log/config" % self.ssid, timeout=300, data=json.dumps(body), method='POST', headers=self.HEADERS, ignore_errors=True, **self.creds) if rc == 422: if self.force and attempt_recovery: self.delete_log_messages() update = self.update_configuration(update, body, False) else: self.module.fail_json(msg="Failed to update audit-log configuration! Array Id [%s]. Error [%s]." % (self.ssid, to_native(rc, result))) except Exception as error: self.module.fail_json(msg="Failed to update audit-log configuration! Array Id [%s]. Error [%s]." % (self.ssid, to_native(error))) return update def update(self): """Update the audit-log configuration.""" update = self.update_configuration() self.module.exit_json(msg="Audit-log update complete", changed=update) def __call__(self): self.update() def main(): auditlog = AuditLog() auditlog() if __name__ == "__main__": main()
StarcoderdataPython
3395754
<filename>scrapy_cookies/storage/mongo.py import logging import pickle import re from http.cookiejar import Cookie from itertools import starmap from typing import Dict import pymongo from pymongo import MongoClient from pymongo.collection import Collection from pymongo.database import Database from scrapy.http.cookies import CookieJar from scrapy.settings import Settings from scrapy.spiders import Spider from scrapy_cookies.storage import BaseStorage logger = logging.getLogger(__name__) pattern = re.compile("^COOKIES_MONGO_MONGOCLIENT_(?P<kwargs>(?!KWARGS).*)$") def get_arguments(var): return {str: {"name": var}, dict: var}[type(var)] def write_cookiejar(cookiejar: CookieJar): return pickle.dumps(cookiejar) def read_cookiejar(document): try: return pickle.loads(document["cookiejar"]) except TypeError: return None def convert_cookiejar(cookiejar): def _convert_cookies(x): if isinstance(x, (str, int, bool)): return x elif isinstance(x, Cookie): return dict( map( lambda attr: (attr, getattr(x, attr)), ( "version", "name", "value", "port", "port_specified", "domain", "domain_specified", "domain_initial_dot", "path", "path_specified", "secure", "expires", "discard", "comment", "comment_url", ), ) ) elif isinstance(x, dict): return dict( starmap( lambda k, v: (_convert_cookies(k), _convert_cookies(v)), x.items() ) ) return _convert_cookies(cookiejar._cookies) class MongoStorage(BaseStorage): def __init__(self, settings: Settings): super(MongoStorage, self).__init__(settings) self.mongo_settings: Dict[str, str] = dict( starmap( lambda k, v: (pattern.sub(lambda x: x.group(1).lower(), k), v), filter( lambda pair: pattern.match(pair[0]), settings.copy_to_dict().items() ), ) ) self.mongo_settings.update(self.settings["COOKIES_MONGO_MONGOCLIENT_KWARGS"]) self.client: MongoClient = None self.db: Database = None self.coll: Collection = None @classmethod def from_middleware(cls, middleware): obj = cls(middleware.settings) return obj def open_spider(self, spider: Spider): self.client: MongoClient = MongoClient(**self.mongo_settings) self.db: Database = self.client.get_database( **get_arguments(self.settings["COOKIES_MONGO_DATABASE"]) ) self.coll: Collection = self.db.get_collection( **get_arguments(self.settings["COOKIES_MONGO_COLLECTION"]) ) self.coll.create_index([("key", pymongo.ASCENDING)], unique=True) def close_spider(self, spider: Spider): self.client.close() def __missing__(self, k) -> CookieJar: cookiejar: CookieJar = CookieJar() self[k] = cookiejar return cookiejar def __delitem__(self, v): # TODO: finish this method self.coll.delete_one({}) def __getitem__(self, k) -> CookieJar: v: CookieJar = read_cookiejar(self.coll.find_one({"key": k})) if isinstance(v, CookieJar): return v if hasattr(self.__class__, "__missing__"): return self.__class__.__missing__(self, k) raise KeyError(k) def __iter__(self): return iter(self.coll.find()) def __len__(self) -> int: return self.coll.count_documents({}) def __setitem__(self, k, v): self.coll.update_one( {"key": k}, { "$set": { "key": k, "cookiejar": write_cookiejar(v), "cookies": convert_cookiejar(v), } }, upsert=True, )
StarcoderdataPython
23317
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """This module contains a class representing messages that are sent or received. """ from azure.iot.device import constant # TODO: Revise this class. Does all of this REALLY need to be here? class Message(object): """Represents a message to or from IoTHub :ivar data: The data that constitutes the payload :ivar custom_properties: Dictionary of custom message properties :ivar lock_token: Used by receiver to abandon, reject or complete the message :ivar message id: A user-settable identifier for the message used for request-reply patterns. Format: A case-sensitive string (up to 128 characters long) of ASCII 7-bit alphanumeric characters + {'-', ':', '.', '+', '%', '_', '#', '*', '?', '!', '(', ')', ',', '=', '@', ';', '$', '''} :ivar sequence_number: A number (unique per device-queue) assigned by IoT Hub to each message :ivar to: A destination specified for Cloud-to-Device (C2D) messages :ivar expiry_time_utc: Date and time of message expiration in UTC format :ivar enqueued_time: Date and time a C2D message was received by IoT Hub :ivar correlation_id: A property in a response message that typically contains the message_id of the request, in request-reply patterns :ivar user_id: An ID to specify the origin of messages :ivar ack: A feedback message generator. This property is used in C2D messages to request IoT Hub to generate feedback messages as a result of the consumption of the message by the device :ivar content_encoding: Content encoding of the message data. Can be 'utf-8', 'utf-16' or 'utf-32' :ivar content_type: Content type property used to route messages with the message-body. Can be 'application/json' :ivar output_name: Name of the output that the is being sent to. """ def __init__( self, data, message_id=None, content_encoding="utf-8", content_type="application/json", output_name=None, ): """ Initializer for Message :param data: The data that constitutes the payload :param str message_id: A user-settable identifier for the message used for request-reply patterns. Format: A case-sensitive string (up to 128 characters long) of ASCII 7-bit alphanumeric characters + {'-', ':', '.', '+', '%', '_', '#', '*', '?', '!', '(', ')', ',', '=', '@', ';', '$', '''} :param str content_encoding: Content encoding of the message data. Default is 'utf-8'. Other values can be utf-16' or 'utf-32' :param str content_type: Content type property used to routes with the message body. Default value is 'application/json' :param str output_name: Name of the output that the is being sent to. """ self.data = data self.custom_properties = {} self.lock_token = None self.message_id = message_id self.sequence_number = None self.to = None self.expiry_time_utc = None self.enqueued_time = None self.correlation_id = None self.user_id = None self.ack = None self.content_encoding = content_encoding self.content_type = content_type self.output_name = output_name self._iothub_interface_id = None @property def iothub_interface_id(self): return self._iothub_interface_id def set_as_security_message(self): """ Set the message as a security message. This is a provisional API. Functionality not yet guaranteed. """ self._iothub_interface_id = constant.SECURITY_MESSAGE_INTERFACE_ID def __str__(self): return str(self.data)
StarcoderdataPython
31379
CANAIS_ADM = { "diretoria": 441263190832185350, "secretaria": 731689039853518848 } SAUDACOES = ["Olá!", "Oi!", "Iai!"] GUIA_ANONIMA_ID = 956319073568976967 msg_ajuda = "**::ola** | **::oi** | **::iai** | **::athena**: Mande um ola caloroso para mim, e responderei!\n" \ "**::cool** `texto`: Você pode me perguntar se algo é COOl (provavelmente sou eu).\n" \ "**::pitagoras** `expressão...`: Resolvo uma expressão matemática no estilo Pitágoras.\n" \ '**::rola** | **::dado** `NdN`: Consigo rolar uns dados para você se for conveniente.\n' \ "**::escolha** | **::prefere** `opções...`: Vou escolher a melhor opção entre algumas opções.\n" \ "**::stalk**: Envio algumas informações suas... Anda stalkeando você mesmo(a)!?.\n" \ "**::privilegios** `membro...`: Mostro suas permissões nesse canal ou de outra pessoa.\n" \ "**::convite**: Mando o convite do servidor.\n" \ "**::chegamais** `menções...`: Separo um canal para você e mais pessoas ficarem a vontade.\n" \ "**::ajuda** | **::comandos**: Esse já é um pouco autoexplicativo não?" \ "\n\n" \ "**Administração**:\n\n" \ '**::teste** `N vezes` `palavra`: Repito uma mensagem para saber se estou "di Boa"\n' \ '**::prompt**: Abro meu console para você interagir com meu código ||pervertido(a)!||.\n' \ "**::ping**: Mando a minha latência (morar nos E.U.A é para poucos).\n" \ "**::cep**: Mando o ID do canal atual.\n" \ "**::cpf**: Envio o ID de alguém.\n" \ "**::relatorio**: Faço um relatório geral do servidor." \ "(n de membros, n de boosts, nivel, n de canais, n de categorias, n de cargos...).\n" \ "**::faxina** `limite`: Dou uma limpeza das últimas (100 por padrão) mensagens no canal atual.\n" \ "\n" \ "**::log** `membro`: Faço um pequeno histórico escolar de um membro especifico. " \ "Ou o seu, caso não for especificado. Por padrão o limite é 15.\n" \ "\n" \ "**::basta**: Mando todas as pessoas **comuns** calarem a boca.\n" \ "**::liberado**: Descalo a boca de todos (talvez não seja uma boa ideia).\n" \ "**::aviso**: Muto alguém pelos seus crimes contra a nação.\n" \ "\n" \ "**::kick** `membro` `motivo`: Dou uma voadora em algum membro...\n" \ "Você pode **kickar** sem um motivo especificado, porém isso seria abuso de autoridade...\n" \ "**::ban** `membro` `motivo`: Excluo um membro da sociedade.\n" \ "Você pode **banir** sem um motivo especificado, porém isso seria abuso de autoridade..." \ "\n\n\n" \ "Você ainda pode pedir uma explicação de alto calão de certos comandos usando **::ajuda** `comando`." \ " Os que tenho alto conhecimento:" \ "`cool`; `soma`; `rola`; `escolha`; `chegamais`; `basta`; `log`; `ban`/`kick`; `aviso`." \ "\n" \ "Também se quiser saber mais sobre as permissões de `Administração`, mande um `::ajuda adms`." msg_adms = """ Vou dizer resumidamente quem pode oquê aqui e as permissões minimas do cargo mais alto seu. **Comando** | **Permissão** `::teste` | Gerenciar canais `::prompt` | Administrador `::ping` | Gerenciar canais `::cep` | Gerenciar canais `::cpf` | Gerenciar canais `::relatorio`| Administrador `::faxina` | Gerenciar mensagens `::log` | Gerenciar mensagens `::basta` | Gerenciar mensagens `::liberado` | Gerenciar mensagens `::aviso` | Gerenciar mensagens `::kick` | Expulsar membros `::ban` | Banir membros """ alta_ajuda = { "adms": msg_adms, "cool": "Digo se algo é _cool_, como por exemplo: ::cool athena", "pitagoras": "Calculo uma expressão matemática, como: `(23 + 2) * 9 - 2**3`.\nAinda pode usar exponenciação = `**`, e resto de divisão = `%`", "rola": "Rolo um dado descompromissadamente: ::rola 1d20 = 1 dado de 20", "escolha": "Use para eu escolher coisas aleatórias, manda as opções em sequência: ::escolha loritta athena disboard", "chegamais": """Tenho um sistema de mensagens anônimas. Entre em um desses canais para usufruir: <#956301680679473253> <#957638065596272680> <#957638119560192090> Use `::chegamais` `menções` (onde "menções" são as menções dos membros que queira convidar), o canal será fechado para todos com o cargo **everyone** com exceção de vocês (logicamente os outros como administradores e moderadores poderão ver as mensagens) e será aberto depois de _10 minutos_ de inatividade (fique tranquilo, antes disso eu vou apagar tudo). Obs: Sendo que os de patente alta podem ver as mensagens, não passem os limites, olhem <#441263333807751178> para terem certeza. """, "basta": "Todos com somente o cargo **everyone** serão impedidos de falar no canal com o comando invocado.", "log": "Envio as últimas mensagens de alguém.", "aviso": "Dou o cargo @Avisado para um membro e ele não poderá mandar mensagens em qualquer canal, para descastiga-lo use o comando novamente.", "kick": "Use para por alguém nas rédias, use-o no canal em que o membro tenha acesso (para deixar as coisas um pouco mais democráticas).", "ban": "Use para por alguém nas rédias, use-o no canal em que o membro tenha acesso (para deixar as coisas um pouco mais democráticas)." }
StarcoderdataPython
3381040
<gh_stars>1-10 # Copyright 2019 The Kapitan Authors # SPDX-FileCopyrightText: 2020 The Kapitan Authors <<EMAIL>> # # SPDX-License-Identifier: Apache-2.0 "kapitan error classes" class KapitanError(Exception): """generic kapitan error""" pass class CompileError(KapitanError): """compile error""" pass class InventoryError(KapitanError): """inventory error""" pass class SecretError(KapitanError): """secrets error""" pass class RefError(KapitanError): """ref error""" pass class RefBackendError(KapitanError): """ref backend error""" pass class RefFromFuncError(KapitanError): """ref from func error""" pass class RefHashMismatchError(KapitanError): """ref has mismatch error""" pass class HelmBindingUnavailableError(KapitanError): """helm input is used when the binding is not available""" pass class HelmTemplateError(KapitanError): pass class GitSubdirNotFoundError(KapitanError): """git dependency subdir not found error""" pass class GitFetchingError(KapitanError): """repo not found and/or permission error""" pass class RequestUnsuccessfulError(KapitanError): """request error""" pass class KubernetesManifestValidationError(KapitanError): """kubernetes manifest schema validation error""" pass
StarcoderdataPython
4818819
""" Struct that holds abstract_task, its part and handlers. """ from typing import Callable, Tuple import numpy as np from omtool.core.datamodel.abstract_task import AbstractTask from omtool.core.datamodel.snapshot import Snapshot class HandlerTask: """ Struct that holds abstract_task, its part and handlers. """ def __init__( self, task: AbstractTask, part=slice(0, None), handlers: list[Callable[[Tuple[np.ndarray, np.ndarray]], None]] = None, ): if handlers is None: handlers = [] self.task = task self.part = part self.handlers = handlers def run(self, snapshot: Snapshot): """ Launch the task and return its value """ data = self.task.run(snapshot[self.part]) for handler in self.handlers: handler(data)
StarcoderdataPython
1733589
# Generated by Django 2.2 on 2019-04-17 06:02 import django.contrib.postgres.fields.jsonb from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('core', '0004_auto_20190417_0601'), ] operations = [ migrations.AlterField( model_name='avatar', name='data', field=django.contrib.postgres.fields.jsonb.JSONField(default=dict), ), migrations.AlterField( model_name='child', name='data', field=django.contrib.postgres.fields.jsonb.JSONField(default=dict), ), migrations.AlterField( model_name='human', name='data', field=django.contrib.postgres.fields.jsonb.JSONField(default=dict), ), migrations.AlterField( model_name='parent', name='data', field=django.contrib.postgres.fields.jsonb.JSONField(default=dict), ), migrations.AlterField( model_name='sibling', name='data', field=django.contrib.postgres.fields.jsonb.JSONField(default=dict), ), ]
StarcoderdataPython
3335244
import numpy as np def return_test_set(X, y): """ :param X : 2D array of our dataset :param y : 1D array of the groundtruth labels of the dataset """ # total number of samples in the dataset N = X.shape[0] indices_all = list(np.arange(N)) # Create train set's indices and test set's indices # Train set will have samples 1-25, 51-75, 101-125 # Test set will have the rest samples indices_train = [] indices_test = [] for i in range(0, 25): indices_train.append(i) for i in range(50, 75): indices_train.append(i) for i in range(100, 125): indices_train.append(i) indices_test = [x for x in indices_all if x not in indices_train] indices_train = np.array(indices_train) indices_test = np.array(indices_test) X_train = X[indices_train,:] y_train = y[indices_train] X_test = X[indices_test,:] y_test = y[indices_test] return X_train, y_train, X_test, y_test
StarcoderdataPython
1679237
# -*- coding: utf-8 -*- """Mutations that expand the graph.""" from . import neighborhood, upstream from .neighborhood import * from .upstream import * __all__ = neighborhood.__all__ + upstream.__all__
StarcoderdataPython
1632948
# Feed-related, but Atom-independent, functions. from feedmark.utils import quote_plus def construct_entry_url(section): # Currently supports links to anchors generated by Github's Markdown renderer. if 'link-target-url' not in section.document.properties: return None return '{}#{}'.format(section.document.properties['link-target-url'], quote_plus(section.anchor)) def extract_feed_properties(document): properties = {} properties['title'] = document.title properties['author'] = document.properties['author'] properties['url'] = document.properties['url'] properties['link-target-url'] = document.properties.get('link-target-url') return properties def extract_sections(documents): sections = [] for document in documents: for section in document.sections: sections.append(section) sections.sort(key=lambda section: section.publication_date, reverse=True) return sections
StarcoderdataPython
1742638
import numpy as np import matplotlib.pylab as plt from skimage.transform import resize import imageio from os import walk from skimage.restoration import denoise_nl_means, estimate_sigma noisy_path = 'C:/Files/M2 MVA/S1/Object recognition/Project/SinGAN-master/Input/GaussianNoise/' NLmeans_path = 'C:/Files/M2 MVA/S1/Object recognition/Project/SinGAN-master/Output/NLmeans/Gaussian/' _, _, filenames = next(walk(noisy_path)) for image_name in filenames: print(image_name) noisy = imageio.imread(noisy_path+image_name)/255 plt.imshow(noisy) plt.show() sigma_estimation = np.mean(estimate_sigma(noisy, multichannel=True)) denoised = denoise_nl_means(noisy, h=0.7*sigma_estimation, fast_mode=True) plt.imshow(denoised) plt.show() imageio.imwrite(NLmeans_path+image_name, denoised)
StarcoderdataPython
5524
<gh_stars>0 # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from espnet(https://github.com/espnet/espnet) """Tacotron2 decoder related modules.""" import paddle import paddle.nn.functional as F import six from paddle import nn from paddlespeech.t2s.modules.tacotron2.attentions import AttForwardTA class Prenet(nn.Layer): """Prenet module for decoder of Spectrogram prediction network. This is a module of Prenet in the decoder of Spectrogram prediction network, which described in `Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`_. The Prenet preforms nonlinear conversion of inputs before input to auto-regressive lstm, which helps to learn diagonal attentions. Notes ---------- This module alway applies dropout even in evaluation. See the detail in `Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`_. .. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`: https://arxiv.org/abs/1712.05884 """ def __init__(self, idim, n_layers=2, n_units=256, dropout_rate=0.5): """Initialize prenet module. Parameters ---------- idim : int Dimension of the inputs. odim : int Dimension of the outputs. n_layers : int, optional The number of prenet layers. n_units : int, optional The number of prenet units. """ super().__init__() self.dropout_rate = dropout_rate self.prenet = nn.LayerList() for layer in six.moves.range(n_layers): n_inputs = idim if layer == 0 else n_units self.prenet.append( nn.Sequential(nn.Linear(n_inputs, n_units), nn.ReLU())) def forward(self, x): """Calculate forward propagation. Parameters ---------- x : Tensor Batch of input tensors (B, ..., idim). Returns ---------- Tensor Batch of output tensors (B, ..., odim). """ for i in six.moves.range(len(self.prenet)): # F.dropout 引入了随机, tacotron2 的 dropout 是不能去掉的 x = F.dropout(self.prenet[i](x)) return x class Postnet(nn.Layer): """Postnet module for Spectrogram prediction network. This is a module of Postnet in Spectrogram prediction network, which described in `Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`_. The Postnet predicts refines the predicted Mel-filterbank of the decoder, which helps to compensate the detail sturcture of spectrogram. .. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`: https://arxiv.org/abs/1712.05884 """ def __init__( self, idim, odim, n_layers=5, n_chans=512, n_filts=5, dropout_rate=0.5, use_batch_norm=True, ): """Initialize postnet module. Parameters ---------- idim : int Dimension of the inputs. odim : int Dimension of the outputs. n_layers : int, optional The number of layers. n_filts : int, optional The number of filter size. n_units : int, optional The number of filter channels. use_batch_norm : bool, optional Whether to use batch normalization.. dropout_rate : float, optional Dropout rate.. """ super().__init__() self.postnet = nn.LayerList() for layer in six.moves.range(n_layers - 1): ichans = odim if layer == 0 else n_chans ochans = odim if layer == n_layers - 1 else n_chans if use_batch_norm: self.postnet.append( nn.Sequential( nn.Conv1D( ichans, ochans, n_filts, stride=1, padding=(n_filts - 1) // 2, bias_attr=False, ), nn.BatchNorm1D(ochans), nn.Tanh(), nn.Dropout(dropout_rate), )) else: self.postnet.append( nn.Sequential( nn.Conv1D( ichans, ochans, n_filts, stride=1, padding=(n_filts - 1) // 2, bias_attr=False, ), nn.Tanh(), nn.Dropout(dropout_rate), )) ichans = n_chans if n_layers != 1 else odim if use_batch_norm: self.postnet.append( nn.Sequential( nn.Conv1D( ichans, odim, n_filts, stride=1, padding=(n_filts - 1) // 2, bias_attr=False, ), nn.BatchNorm1D(odim), nn.Dropout(dropout_rate), )) else: self.postnet.append( nn.Sequential( nn.Conv1D( ichans, odim, n_filts, stride=1, padding=(n_filts - 1) // 2, bias_attr=False, ), nn.Dropout(dropout_rate), )) def forward(self, xs): """Calculate forward propagation. Parameters ---------- xs : Tensor Batch of the sequences of padded input tensors (B, idim, Tmax). Returns ---------- Tensor Batch of padded output tensor. (B, odim, Tmax). """ for i in six.moves.range(len(self.postnet)): xs = self.postnet[i](xs) return xs class ZoneOutCell(nn.Layer): """ZoneOut Cell module. This is a module of zoneout described in `Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations`_. This code is modified from `eladhoffer/seq2seq.pytorch`_. Examples ---------- >>> lstm = paddle.nn.LSTMCell(16, 32) >>> lstm = ZoneOutCell(lstm, 0.5) .. _`Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations`: https://arxiv.org/abs/1606.01305 .. _`eladhoffer/seq2seq.pytorch`: https://github.com/eladhoffer/seq2seq.pytorch """ def __init__(self, cell, zoneout_rate=0.1): """Initialize zone out cell module. Parameters ---------- cell : nn.Layer: Paddle recurrent cell module e.g. `paddle.nn.LSTMCell`. zoneout_rate : float, optional Probability of zoneout from 0.0 to 1.0. """ super().__init__() self.cell = cell self.hidden_size = cell.hidden_size self.zoneout_rate = zoneout_rate if zoneout_rate > 1.0 or zoneout_rate < 0.0: raise ValueError( "zoneout probability must be in the range from 0.0 to 1.0.") def forward(self, inputs, hidden): """Calculate forward propagation. Parameters ---------- inputs : Tensor Batch of input tensor (B, input_size). hidden : tuple - Tensor: Batch of initial hidden states (B, hidden_size). - Tensor: Batch of initial cell states (B, hidden_size). Returns ---------- Tensor Batch of next hidden states (B, hidden_size). tuple: - Tensor: Batch of next hidden states (B, hidden_size). - Tensor: Batch of next cell states (B, hidden_size). """ # we only use the second output of LSTMCell in paddle _, next_hidden = self.cell(inputs, hidden) next_hidden = self._zoneout(hidden, next_hidden, self.zoneout_rate) # to have the same output format with LSTMCell in paddle return next_hidden[0], next_hidden def _zoneout(self, h, next_h, prob): # apply recursively if isinstance(h, tuple): num_h = len(h) if not isinstance(prob, tuple): prob = tuple([prob] * num_h) return tuple( [self._zoneout(h[i], next_h[i], prob[i]) for i in range(num_h)]) if self.training: mask = paddle.bernoulli(paddle.ones([*paddle.shape(h)]) * prob) return mask * h + (1 - mask) * next_h else: return prob * h + (1 - prob) * next_h class Decoder(nn.Layer): """Decoder module of Spectrogram prediction network. This is a module of decoder of Spectrogram prediction network in Tacotron2, which described in `Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`_. The decoder generates the sequence of features from the sequence of the hidden states. .. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`: https://arxiv.org/abs/1712.05884 """ def __init__( self, idim, odim, att, dlayers=2, dunits=1024, prenet_layers=2, prenet_units=256, postnet_layers=5, postnet_chans=512, postnet_filts=5, output_activation_fn=None, cumulate_att_w=True, use_batch_norm=True, use_concate=True, dropout_rate=0.5, zoneout_rate=0.1, reduction_factor=1, ): """Initialize Tacotron2 decoder module. Parameters ---------- idim : int Dimension of the inputs. odim : int Dimension of the outputs. att nn.Layer Instance of attention class. dlayers int, optional The number of decoder lstm layers. dunits : int, optional The number of decoder lstm units. prenet_layers : int, optional The number of prenet layers. prenet_units : int, optional The number of prenet units. postnet_layers : int, optional The number of postnet layers. postnet_filts : int, optional The number of postnet filter size. postnet_chans : int, optional The number of postnet filter channels. output_activation_fn : nn.Layer, optional Activation function for outputs. cumulate_att_w : bool, optional Whether to cumulate previous attention weight. use_batch_norm : bool, optional Whether to use batch normalization. use_concate : bool, optional Whether to concatenate encoder embedding with decoder lstm outputs. dropout_rate : float, optional Dropout rate. zoneout_rate : float, optional Zoneout rate. reduction_factor : int, optional Reduction factor. """ super().__init__() # store the hyperparameters self.idim = idim self.odim = odim self.att = att self.output_activation_fn = output_activation_fn self.cumulate_att_w = cumulate_att_w self.use_concate = use_concate self.reduction_factor = reduction_factor # check attention type if isinstance(self.att, AttForwardTA): self.use_att_extra_inputs = True else: self.use_att_extra_inputs = False # define lstm network prenet_units = prenet_units if prenet_layers != 0 else odim self.lstm = nn.LayerList() for layer in six.moves.range(dlayers): iunits = idim + prenet_units if layer == 0 else dunits lstm = nn.LSTMCell(iunits, dunits) if zoneout_rate > 0.0: lstm = ZoneOutCell(lstm, zoneout_rate) self.lstm.append(lstm) # define prenet if prenet_layers > 0: self.prenet = Prenet( idim=odim, n_layers=prenet_layers, n_units=prenet_units, dropout_rate=dropout_rate, ) else: self.prenet = None # define postnet if postnet_layers > 0: self.postnet = Postnet( idim=idim, odim=odim, n_layers=postnet_layers, n_chans=postnet_chans, n_filts=postnet_filts, use_batch_norm=use_batch_norm, dropout_rate=dropout_rate, ) else: self.postnet = None # define projection layers iunits = idim + dunits if use_concate else dunits self.feat_out = nn.Linear( iunits, odim * reduction_factor, bias_attr=False) self.prob_out = nn.Linear(iunits, reduction_factor) # initialize # self.apply(decoder_init) def _zero_state(self, hs): init_hs = paddle.zeros([paddle.shape(hs)[0], self.lstm[0].hidden_size]) return init_hs def forward(self, hs, hlens, ys): """Calculate forward propagation. Parameters ---------- hs : Tensor Batch of the sequences of padded hidden states (B, Tmax, idim). hlens : Tensor(int64) padded Batch of lengths of each input batch (B,). ys : Tensor Batch of the sequences of padded target features (B, Lmax, odim). Returns ---------- Tensor Batch of output tensors after postnet (B, Lmax, odim). Tensor Batch of output tensors before postnet (B, Lmax, odim). Tensor Batch of logits of stop prediction (B, Lmax). Tensor Batch of attention weights (B, Lmax, Tmax). Note ---------- This computation is performed in teacher-forcing manner. """ # thin out frames (B, Lmax, odim) -> (B, Lmax/r, odim) if self.reduction_factor > 1: ys = ys[:, self.reduction_factor - 1::self.reduction_factor] # length list should be list of int # hlens = list(map(int, hlens)) # initialize hidden states of decoder c_list = [self._zero_state(hs)] z_list = [self._zero_state(hs)] for _ in six.moves.range(1, len(self.lstm)): c_list += [self._zero_state(hs)] z_list += [self._zero_state(hs)] prev_out = paddle.zeros([paddle.shape(hs)[0], self.odim]) # initialize attention prev_att_w = None self.att.reset() # loop for an output sequence outs, logits, att_ws = [], [], [] for y in ys.transpose([1, 0, 2]): if self.use_att_extra_inputs: att_c, att_w = self.att(hs, hlens, z_list[0], prev_att_w, prev_out) else: att_c, att_w = self.att(hs, hlens, z_list[0], prev_att_w) prenet_out = self.prenet( prev_out) if self.prenet is not None else prev_out xs = paddle.concat([att_c, prenet_out], axis=1) # we only use the second output of LSTMCell in paddle _, next_hidden = self.lstm[0](xs, (z_list[0], c_list[0])) z_list[0], c_list[0] = next_hidden for i in six.moves.range(1, len(self.lstm)): # we only use the second output of LSTMCell in paddle _, next_hidden = self.lstm[i](z_list[i - 1], (z_list[i], c_list[i])) z_list[i], c_list[i] = next_hidden zcs = (paddle.concat([z_list[-1], att_c], axis=1) if self.use_concate else z_list[-1]) outs += [ self.feat_out(zcs).reshape([paddle.shape(hs)[0], self.odim, -1]) ] logits += [self.prob_out(zcs)] att_ws += [att_w] # teacher forcing prev_out = y if self.cumulate_att_w and prev_att_w is not None: prev_att_w = prev_att_w + att_w # Note: error when use += else: prev_att_w = att_w # (B, Lmax) logits = paddle.concat(logits, axis=1) # (B, odim, Lmax) before_outs = paddle.concat(outs, axis=2) # (B, Lmax, Tmax) att_ws = paddle.stack(att_ws, axis=1) if self.reduction_factor > 1: # (B, odim, Lmax) before_outs = before_outs.reshape( [paddle.shape(before_outs)[0], self.odim, -1]) if self.postnet is not None: # (B, odim, Lmax) after_outs = before_outs + self.postnet(before_outs) else: after_outs = before_outs # (B, Lmax, odim) before_outs = before_outs.transpose([0, 2, 1]) # (B, Lmax, odim) after_outs = after_outs.transpose([0, 2, 1]) logits = logits # apply activation function for scaling if self.output_activation_fn is not None: before_outs = self.output_activation_fn(before_outs) after_outs = self.output_activation_fn(after_outs) return after_outs, before_outs, logits, att_ws def inference( self, h, threshold=0.5, minlenratio=0.0, maxlenratio=10.0, use_att_constraint=False, backward_window=None, forward_window=None, ): """Generate the sequence of features given the sequences of characters. Parameters ---------- h : Tensor Input sequence of encoder hidden states (T, C). threshold : float, optional Threshold to stop generation. minlenratio : float, optional Minimum length ratio. If set to 1.0 and the length of input is 10, the minimum length of outputs will be 10 * 1 = 10. minlenratio : float, optional Minimum length ratio. If set to 10 and the length of input is 10, the maximum length of outputs will be 10 * 10 = 100. use_att_constraint : bool Whether to apply attention constraint introduced in `Deep Voice 3`_. backward_window : int Backward window size in attention constraint. forward_window : int Forward window size in attention constraint. Returns ---------- Tensor Output sequence of features (L, odim). Tensor Output sequence of stop probabilities (L,). Tensor Attention weights (L, T). Note ---------- This computation is performed in auto-regressive manner. .. _`Deep Voice 3`: https://arxiv.org/abs/1710.07654 """ # setup assert len(paddle.shape(h)) == 2 hs = h.unsqueeze(0) ilens = paddle.shape(h)[0] maxlen = int(paddle.shape(h)[0] * maxlenratio) minlen = int(paddle.shape(h)[0] * minlenratio) # initialize hidden states of decoder c_list = [self._zero_state(hs)] z_list = [self._zero_state(hs)] for _ in six.moves.range(1, len(self.lstm)): c_list += [self._zero_state(hs)] z_list += [self._zero_state(hs)] prev_out = paddle.zeros([1, self.odim]) # initialize attention prev_att_w = None self.att.reset() # setup for attention constraint if use_att_constraint: last_attended_idx = 0 else: last_attended_idx = None # loop for an output sequence idx = 0 outs, att_ws, probs = [], [], [] while True: # updated index idx += self.reduction_factor # decoder calculation if self.use_att_extra_inputs: att_c, att_w = self.att( hs, ilens, z_list[0], prev_att_w, prev_out, last_attended_idx=last_attended_idx, backward_window=backward_window, forward_window=forward_window, ) else: att_c, att_w = self.att( hs, ilens, z_list[0], prev_att_w, last_attended_idx=last_attended_idx, backward_window=backward_window, forward_window=forward_window, ) att_ws += [att_w] prenet_out = self.prenet( prev_out) if self.prenet is not None else prev_out xs = paddle.concat([att_c, prenet_out], axis=1) # we only use the second output of LSTMCell in paddle _, next_hidden = self.lstm[0](xs, (z_list[0], c_list[0])) z_list[0], c_list[0] = next_hidden for i in six.moves.range(1, len(self.lstm)): # we only use the second output of LSTMCell in paddle _, next_hidden = self.lstm[i](z_list[i - 1], (z_list[i], c_list[i])) z_list[i], c_list[i] = next_hidden zcs = (paddle.concat([z_list[-1], att_c], axis=1) if self.use_concate else z_list[-1]) # [(1, odim, r), ...] outs += [self.feat_out(zcs).reshape([1, self.odim, -1])] # [(r), ...] probs += [F.sigmoid(self.prob_out(zcs))[0]] if self.output_activation_fn is not None: prev_out = self.output_activation_fn( outs[-1][:, :, -1]) # (1, odim) else: prev_out = outs[-1][:, :, -1] # (1, odim) if self.cumulate_att_w and prev_att_w is not None: prev_att_w = prev_att_w + att_w # Note: error when use += else: prev_att_w = att_w if use_att_constraint: last_attended_idx = int(att_w.argmax()) # check whether to finish generation if sum(paddle.cast(probs[-1] >= threshold, 'int64')) > 0 or idx >= maxlen: # check mininum length if idx < minlen: continue # (1, odim, L) outs = paddle.concat(outs, axis=2) if self.postnet is not None: # (1, odim, L) outs = outs + self.postnet(outs) # (L, odim) outs = outs.transpose([0, 2, 1]).squeeze(0) probs = paddle.concat(probs, axis=0) att_ws = paddle.concat(att_ws, axis=0) break if self.output_activation_fn is not None: outs = self.output_activation_fn(outs) return outs, probs, att_ws def calculate_all_attentions(self, hs, hlens, ys): """Calculate all of the attention weights. Parameters ---------- hs : Tensor Batch of the sequences of padded hidden states (B, Tmax, idim). hlens : Tensor(int64) Batch of lengths of each input batch (B,). ys : Tensor Batch of the sequences of padded target features (B, Lmax, odim). Returns ---------- numpy.ndarray Batch of attention weights (B, Lmax, Tmax). Note ---------- This computation is performed in teacher-forcing manner. """ # thin out frames (B, Lmax, odim) -> (B, Lmax/r, odim) if self.reduction_factor > 1: ys = ys[:, self.reduction_factor - 1::self.reduction_factor] # length list should be list of int hlens = list(map(int, hlens)) # initialize hidden states of decoder c_list = [self._zero_state(hs)] z_list = [self._zero_state(hs)] for _ in six.moves.range(1, len(self.lstm)): c_list += [self._zero_state(hs)] z_list += [self._zero_state(hs)] prev_out = paddle.zeros([paddle.shape(hs)[0], self.odim]) # initialize attention prev_att_w = None self.att.reset() # loop for an output sequence att_ws = [] for y in ys.transpose([1, 0, 2]): if self.use_att_extra_inputs: att_c, att_w = self.att(hs, hlens, z_list[0], prev_att_w, prev_out) else: att_c, att_w = self.att(hs, hlens, z_list[0], prev_att_w) att_ws += [att_w] prenet_out = self.prenet( prev_out) if self.prenet is not None else prev_out xs = paddle.concat([att_c, prenet_out], axis=1) # we only use the second output of LSTMCell in paddle _, next_hidden = self.lstm[0](xs, (z_list[0], c_list[0])) z_list[0], c_list[0] = next_hidden for i in six.moves.range(1, len(self.lstm)): z_list[i], c_list[i] = self.lstm[i](z_list[i - 1], (z_list[i], c_list[i])) # teacher forcing prev_out = y if self.cumulate_att_w and prev_att_w is not None: # Note: error when use += prev_att_w = prev_att_w + att_w else: prev_att_w = att_w # (B, Lmax, Tmax) att_ws = paddle.stack(att_ws, axis=1) return att_ws
StarcoderdataPython
7746
<gh_stars>1-10 import wrapper as w from multiprocessing import Process import atexit import time from queue import Queue ''' 8 Processes, 24 threads per process = 192 threads ''' NUM_PROCESSES = 8 workerList = [] # Worker processes class Worker(Process): # Need multiple threads or else it takes forever def __init__(self, queue): # filNum is the id of the file to extract from super().__init__() self.queue = queue self.outQueue = Queue() def run(self): with concurrent.futures.ThreadPoolExecutor(max_workers=24) as executor: executor.submit(loadUrl()) def loadUrl(): while not self.queue.empty(): sentence = self.queue.get() ex = w.GrapheneExtract(sentence) self.outQueue.put(sentence.strip() + "\t" + str(ex.json) + "\n") queues = [] # Use seperate queues to avoid waiting for locks with open("data/all_news.txt", "r") as news: for line in news[::len(news) / NUM_PROCESSES]: queue = Queue() queue.put(line.strip()) print("Queue populated") for i in range(NUM_PROCESSES): worker = Worker(queues[i]) worker.daemon = True worker.start() workerList.append(worker) def close_running_threads(): for thread in workerList: thread.join() atexit.register(close_running_threads) print("All threads registered and working.") while True: print(queue.qsize() " sentences remaining to be requested") time.sleep(2) # Print every two seconds
StarcoderdataPython
1721067
<gh_stars>1-10 from iocompython import Root, EndPoint, Signal, Stream, json2bin import ioterminal import time def get_network_conf(device_name, network_name): global root exp_mblk_path = 'conf_exp.' + device_name + '.' + network_name imp_mblk_path = 'conf_imp.' + device_name + '.' + network_name stream = Stream(root, frd = "frd_buf", tod = "tod_buf", exp = exp_mblk_path, imp = imp_mblk_path, select = 2) stream.start_read() while True: s = stream.run() if s != None: break time.sleep(0.01) if s == 'completed': data = stream.get_data(); print(data) else: print(s) stream.delete() def set_network_conf(device_name, network_name): global root exp_mblk_path = 'conf_exp.' + device_name + '.' + network_name imp_mblk_path = 'conf_imp.' + device_name + '.' + network_name stream = Stream(root, frd = "frd_buf", tod = "tod_buf", exp = exp_mblk_path, imp = imp_mblk_path, select = 2) my_conf_bytes = str.encode("My dummy network configuration string") stream.start_write(my_conf_bytes) while True: s = stream.run() if s != None: break time.sleep(0.01) if s == 'completed': print("success") else: print(s) stream.delete() def main(): global root root = Root('netconftest', security='certfile=bob.crt,keyfile=bob.key') root.queue_events() ioterminal.start(root) epoint = EndPoint(root, flags='tls,dynamic') while (ioterminal.run(root)): e = root.wait_com_event(1000) if e != None: print(e) event = e[0] mblk_name = e[3] device_name = e[2] network_name = e[1] # New device. This has a potential problem. if event == 'new_device': #set_network_conf(device_name, network_name) # get_network_conf(device_name, network_name) # print(root.setconf(device_name + "." + network_name, str.encode("Dummy config data"))) # print(root.getconf(device_name + "." + network_name)) print(root.getconf(device_name + "." + network_name, 3)) # default network configuration root.delete() if (__name__ == '__main__'): main()
StarcoderdataPython
19213
""" These tests require an AWS account to be set up, but don't require any manual intervention beyond some initial setup. Also, these tests create instances (which cost money!). Either `meadowrun-manage install` needs to be set up, or `meadowrun-manage clean` needs to be run periodically """ import asyncio import datetime import io import pprint import threading import uuid import boto3 import fabric import pytest import meadowrun.aws_integration.management_lambdas.adjust_ec2_instances as adjust_ec2_instances # noqa: E501 from basics import BasicsSuite, HostProvider, ErrorsSuite, MapSuite from instance_registrar_suite import ( InstanceRegistrarProvider, InstanceRegistrarSuite, TERMINATE_INSTANCES_IF_IDLE_FOR_TEST, ) from meadowrun.aws_integration.aws_core import _get_default_region_name from meadowrun.aws_integration.ec2_instance_allocation import EC2InstanceRegistrar from meadowrun.aws_integration.ec2_pricing import _get_ec2_instance_types from meadowrun.aws_integration.ec2_ssh_keys import ensure_meadowrun_key_pair from meadowrun.aws_integration.grid_tasks_sqs import ( _add_tasks, _complete_task, _create_queues_for_job, _get_task, get_results, worker_loop, ) from meadowrun.instance_allocation import InstanceRegistrar from meadowrun.instance_selection import choose_instance_types_for_job, Resources from meadowrun.meadowrun_pb2 import ProcessState from meadowrun.run_job import AllocCloudInstance from meadowrun.run_job_core import Host, JobCompletion, CloudProviderType # TODO don't always run tests in us-east-2 REGION = "us-east-2" class AwsHostProvider(HostProvider): def get_host(self) -> Host: return AllocCloudInstance(1, 2, 80, "EC2", REGION) def get_test_repo_url(self) -> str: return "https://github.com/meadowdata/test_repo" async def get_log_file_text(self, job_completion: JobCompletion) -> str: with fabric.Connection( job_completion.public_address, user="ubuntu", connect_kwargs={"pkey": ensure_meadowrun_key_pair(REGION)}, ) as conn: with io.BytesIO() as local_copy: conn.get(job_completion.log_file_name, local_copy) return local_copy.getvalue().decode("utf-8") class TestBasicsAws(AwsHostProvider, BasicsSuite): pass class TestErrorsAws(AwsHostProvider, ErrorsSuite): pass class TestMapAws(MapSuite): def cloud_provider(self) -> CloudProviderType: return "EC2" class EC2InstanceRegistrarProvider(InstanceRegistrarProvider[InstanceRegistrar]): async def get_instance_registrar(self) -> InstanceRegistrar: return EC2InstanceRegistrar(await _get_default_region_name(), "create") async def deregister_instance( self, instance_registrar: InstanceRegistrar, public_address: str, require_no_running_jobs: bool, ) -> bool: return adjust_ec2_instances._deregister_ec2_instance( public_address, require_no_running_jobs, instance_registrar.get_region_name(), ) async def num_currently_running_instances( self, instance_registrar: InstanceRegistrar ) -> int: ec2 = boto3.resource("ec2", region_name=instance_registrar.get_region_name()) return sum(1 for _ in adjust_ec2_instances._get_running_instances(ec2)) async def run_adjust(self, instance_registrar: InstanceRegistrar) -> None: adjust_ec2_instances._deregister_and_terminate_instances( instance_registrar.get_region_name(), TERMINATE_INSTANCES_IF_IDLE_FOR_TEST, datetime.timedelta.min, ) async def terminate_all_instances( self, instance_registrar: InstanceRegistrar ) -> None: adjust_ec2_instances.terminate_all_instances( instance_registrar.get_region_name() ) def cloud_provider(self) -> CloudProviderType: return "EC2" class TestEC2InstanceRegistrar(EC2InstanceRegistrarProvider, InstanceRegistrarSuite): pass @pytest.mark.asyncio async def test_get_ec2_instance_types(): # This function makes a lot of assumptions about the format of the data we get from # various AWS endpoints, good to check that everything works. Look for unexpected # warnings! instance_types = await _get_ec2_instance_types(REGION) # the actual number of instance types will fluctuate based on AWS' whims. assert len(instance_types) > 600 chosen_instance_types = choose_instance_types_for_job( Resources(5, 3, {}), 52, 10, instance_types ) total_cpu = sum( instance_type.instance_type.logical_cpu * instance_type.num_instances for instance_type in chosen_instance_types ) assert total_cpu >= 3 * 52 total_memory_gb = sum( instance_type.instance_type.memory_gb * instance_type.num_instances for instance_type in chosen_instance_types ) assert total_memory_gb >= 5 * 52 assert all( instance_type.instance_type.interruption_probability <= 10 for instance_type in chosen_instance_types ) pprint.pprint(chosen_instance_types) chosen_instance_types = choose_instance_types_for_job( Resources(24000, 1000, {}), 1, 10, instance_types ) assert len(chosen_instance_types) == 0 class TestGridTaskQueue: def test_grid_task_queue(self): """ Tests the grid_task_queue functions without actually running any tasks. Uses SQS resources. """ region_name = asyncio.run(_get_default_region_name()) task_arguments = ["hello", ("hey", "there"), {"a": 1}] # dummy variables job_id = str(uuid.uuid4()) public_address = "foo" worker_id = 1 request_queue_url, result_queue_url = asyncio.run( _create_queues_for_job(job_id, region_name) ) # get results in a different thread as we're adding/completing tasks results = None def get_results_thread(): nonlocal results results = asyncio.run( get_results(result_queue_url, region_name, len(task_arguments), 1) ) results_thread = threading.Thread(target=get_results_thread) results_thread.start() # add some tasks asyncio.run(_add_tasks(request_queue_url, region_name, task_arguments)) # get some tasks and complete them task1 = _get_task( request_queue_url, result_queue_url, region_name, 0, public_address, worker_id, ) assert task1 is not None task2 = _get_task( request_queue_url, result_queue_url, region_name, 0, public_address, worker_id, ) assert task2 is not None _complete_task( result_queue_url, region_name, task1, ProcessState( state=ProcessState.ProcessStateEnum.SUCCEEDED, pickled_result=task1.pickled_function_arguments, ), public_address, worker_id, ) task3 = _get_task( request_queue_url, result_queue_url, region_name, 0, public_address, worker_id, ) assert task3 is not None # there should be no more tasks to get assert ( _get_task( request_queue_url, result_queue_url, region_name, 0, public_address, worker_id, ) is None ) _complete_task( result_queue_url, region_name, task2, ProcessState( state=ProcessState.ProcessStateEnum.SUCCEEDED, pickled_result=task2.pickled_function_arguments, ), public_address, worker_id, ) _complete_task( result_queue_url, region_name, task3, ProcessState( state=ProcessState.ProcessStateEnum.SUCCEEDED, pickled_result=task3.pickled_function_arguments, ), public_address, worker_id, ) results_thread.join() assert results == task_arguments def test_worker_loop(self): region_name = asyncio.run(_get_default_region_name()) task_arguments = [1, 2, 3, 4] # dummy variables job_id = str(uuid.uuid4()) public_address = "foo" worker_id = 1 request_queue_url, result_queue_url = asyncio.run( _create_queues_for_job(job_id, region_name) ) # get results on another thread results = None def get_results_thread(): nonlocal results results = asyncio.run( get_results(result_queue_url, region_name, len(task_arguments), 1) ) results_thread = threading.Thread(target=get_results_thread) results_thread.start() # add tasks asyncio.run(_add_tasks(request_queue_url, region_name, task_arguments)) # start a worker_loop which will get tasks and complete them worker_thread = threading.Thread( target=lambda: worker_loop( lambda x: x**x, request_queue_url, result_queue_url, region_name, public_address, worker_id, ) ) worker_thread.start() results_thread.join() worker_thread.join() assert results == [1, 4, 27, 256]
StarcoderdataPython
4817309
<filename>plans/apps.py from django.apps import AppConfig from . import conf as app_settings class PlansConfig(AppConfig): name = 'plans' verbose_name = app_settings.APP_VERBOSE_NAME
StarcoderdataPython
3348593
<filename>multilingual_librispeech/reorg_speakers.py import os mls_root = 'D:/Data/speech/multilingual_librispeech' for language in os.listdir(mls_root): language_dir = os.path.join(mls_root, language) if not os.path.isdir(language_dir): continue print(language) for speaker in os.listdir(language_dir): if '_' in speaker: continue if speaker in ['dev', 'test', 'train']: continue original_speaker_dir = os.path.join(language_dir, speaker) if not os.path.isdir(original_speaker_dir): continue print(speaker) for file in os.listdir(original_speaker_dir): t = file.split('_') speaker, book = t[0], t[1] new_speaker = speaker +"_" + book new_speaker_dir = os.path.join(language_dir, new_speaker) os.makedirs(new_speaker_dir, exist_ok=True) os.rename(os.path.join(original_speaker_dir, file), os.path.join(new_speaker_dir, file))
StarcoderdataPython
111981
<filename>ckanext/ckanpackager/cli.py import click from ckan import model from .model.stat import ckanpackager_stats_table def get_commands(): return [ckanpackager] @click.group() def ckanpackager(): ''' The CKAN Packager CLI. ''' pass @ckanpackager.command(name='initdb') def init_db(): ''' Initialise the ckanpackager tables. ''' if not ckanpackager_stats_table.exists(model.meta.engine): ckanpackager_stats_table.create(model.meta.engine) click.secho('Created ckanpackager_stats table', fg='green') else: click.secho('ckanpackager_stats already exists, skipping init', fg='green')
StarcoderdataPython
1748279
from setup import * def plot_attention(epoch_attentions, epoch): attn_plot_size = 16 attention = np.array(epoch_attentions[-1]) attention = attention[:attn_plot_size, :attn_plot_size] plt.clf() sns_plot = sns.heatmap(attention, cmap="GnBu") plt.title('Hidden State Activation vs. Decoder Time Step', fontsize=12) plt.xlabel('Decoder Time Step', fontsize=12) plt.ylabel('Hidden Activation', fontsize=12) curr_plot_dir = f"{plot_path}/{start_time}-{tune.get_trial_name()}/" os.makedirs(curr_plot_dir, exist_ok=True) plt.savefig(f"{curr_plot_dir}/attn-epoch{epoch}-.png") plt.savefig(f"{tune.get_trial_dir()}/attn-epoch{epoch}-.png")
StarcoderdataPython
1608226
""" Copyright (c) 2020 COTOBA DESIGN, Inc. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ """ Copyright (c) 2016-2019 <NAME> http://www.keithsterling.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import redis from programy.utils.logging.ylogger import YLogger from programy.storage.engine import StorageEngine from programy.storage.stores.nosql.redis.store.binaries import RedisBinariesStore from programy.storage.stores.nosql.redis.store.braintree import RedisBraintreeStore from programy.storage.stores.nosql.redis.store.conversations import RedisConversationStore from programy.storage.stores.nosql.redis.store.logs import RedisLogsStore from programy.storage.stores.nosql.redis.store.duplicates import RedisDuplicatesStore from programy.storage.stores.nosql.redis.store.errors import RedisErrorsStore from programy.storage.stores.nosql.redis.store.errors_collection import RedisErrorsCollectionStore from programy.storage.stores.nosql.redis.store.learnf import RedisLearnfStore class RedisStorageEngine(StorageEngine): def __init__(self, configuration): StorageEngine.__init__(self, configuration) def initialise(self): self._prefix = self.configuration.prefix self._sessions_set_key = "{prefix}:sessions".format(prefix=self._prefix) self._expiretime = self.configuration.expiretime self._redis = redis.StrictRedis( host=self.configuration.host, port=self.configuration.port, password=<PASSWORD>, db=self.configuration.db, username=self.configuration.username, ssl=self.configuration.ssl, socket_timeout=self.configuration.timeout) if self.configuration.drop_all_first is True: try: self.conversation_store().empty() except Exception as e: YLogger.exception(self, "Failed deleting conversation redis data - ", e) def binaries_store(self): return RedisBinariesStore(self) def braintree_store(self): return RedisBraintreeStore(self) def learnf_store(self): return RedisLearnfStore(self) def errors_store(self): return RedisErrorsStore(self) def duplicates_store(self): return RedisDuplicatesStore(self) def errors_collection_store(self): return RedisErrorsCollectionStore(self) def conversation_store(self): return RedisConversationStore(self) def logs_store(self): return RedisLogsStore(self)
StarcoderdataPython
114312
from math import ceil import cocotb import random from cocotb.clock import Clock from cocotb.result import TestSuccess, TestFailure from cocotb.triggers import RisingEdge from queue import Queue from poseidon_python import basic from cocotb_test import simulator CASES_NUM = 1 # the number of test cases BUFFER_SIZE = 9 # the size of buffer in transmitter class AXI4StreamTransmitter: def __init__(self, target) -> None: self.ref_outputs = Queue(maxsize=80) # store reference results self.dut = target async def reset_dut(self): dut = self.dut dut.reset.value = 0 await RisingEdge(dut.clk) dut.reset.value = 1 for i in range(2): await RisingEdge(dut.clk) dut.reset.value = 0 async def generate_input(self): """generate input signals""" dut = self.dut cases_count = 0 while cases_count < CASES_NUM: # get random values inputs = [] for i in range(BUFFER_SIZE): rand_value = random.randint(0, basic.P - 1) inputs.append([cases_count % pow(2, 5), rand_value]) self.ref_outputs.put(rand_value) cases_count += 1 # assign random values to dut io port tag = [] while len(tag) < BUFFER_SIZE: valid = random.random() > 0.2 index = random.randint(0, 4) while index in tag: index = random.randint(0, 4) dut.io_input_valid.value = valid dut.io_input_payload_state_id.value = inputs[index][0] dut.io_input_payload_state_element.value = inputs[index][1] await RisingEdge(dut.clk) if (dut.io_input_valid.value & dut.io_input_ready.value) == True: tag.append(index) async def check_output(self): """check output signals""" cases_count = 0 dut = self.dut while True: # get random ready signals ready = random.random() > 0.3 dut.io_output_ready.value = ready await RisingEdge(dut.clk) if (dut.io_output_ready.value & dut.io_output_valid.value) == True: ref_res = self.ref_outputs.get() dut_res = int(dut.io_output_payload.value) assert ref_res == dut_res, "test case {} failed".format(cases_count) cases_count += 1 if cases_count == CASES_NUM: raise TestSuccess(" pass {} test cases".format(CASES_NUM)) @cocotb.test(timeout_time=100000, timeout_unit="ns") async def AXI4StreamTransmitterTest(dut): await cocotb.start(Clock(dut.clk, 10, "ns").start()) # set default values to all dut input ports dut.io_input_valid.value = False dut.io_input_payload_state_id.value = 0 dut.io_input_payload_state_element.value = 0 dut.io_output_ready.value = False # start testing tester = AXI4StreamTransmitter(dut) await tester.reset_dut() await cocotb.start(tester.generate_input()) await cocotb.start(tester.check_output()) while True: await RisingEdge(dut.clk) # pytest def test_AXI4StreamTransmitter(): simulator.run( verilog_sources=["../main/verilog/AXI4StreamTransmitter.v"], toplevel="AXI4StreamTransmitter", module="AXI4StreamTransmitterTester", python_search="./src/reference_model/", )
StarcoderdataPython
3207039
<reponame>douglaspands/controle-financeiro from django.http import HttpRequest, HttpResponse from django.shortcuts import render from django.views.generic import TemplateView, View from .forms import RegistroForm from .usecases import registrar_usuario_pessoa_fisica class LogoutConfirmar(TemplateView): template_name = "registration/logout_confirmar.html" class UsuarioCriar(View): form_class = RegistroForm template_name = "autenticacao/usuario_criar.html" context_object_name = "usuario" def get(self, request: HttpRequest) -> HttpResponse: form = self.form_class() return render(request, self.template_name, {"form": form}) def post(self, request: HttpRequest) -> HttpResponse: form = self.form_class(request.POST) if form.is_valid(): registrar_usuario_pessoa_fisica(form) return render(request, "autenticacao/usuario_criar_concluido.html", {}) else: return render(request, self.template_name, {"form": form})
StarcoderdataPython
3311928
from todo import * bloco = Bloquinho() #colocando o bloco dentro do programa que manipula ele app = Request(bloco) #inicia o loop do programa app.run()
StarcoderdataPython
121593
<filename>graspsampling-py-defgraspsim/graspsampling/utilities.py<gh_stars>10-100 # Copyright (c) 2020 NVIDIA Corporation # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. """Helper functions for grasp sampling.""" import trimesh import trimesh.transformations as tra import numpy as np import os try: from trimesh.collision import fcl fcl_import_failed = False except Exception: fcl_import_failed = True def sample_spherical_cap(cone_dirs, cone_aperture, num_samples_per_dir=1): """Uniformly distributed points on a spherical cap (sphere radius = 1). Args: cone_dirs (np.array): Nx3 array that represents cone directions. cone_aperture (float): Aperture of cones / size of spherical cap. num_samples_per_dir (int, optional): Number of samples to draw per direction. Defaults to 1. Raises: NotImplementedError: [description] Returns: np.array: Nx3 array of sampled points. """ # sample around north pole if num_samples_per_dir > 1: raise NotImplementedError("num_samples_per_dir > 1 is not implemented") num_samples = len(cone_dirs) * num_samples_per_dir z = np.random.rand(num_samples) * (1.0 - np.cos(cone_aperture)) + np.cos( cone_aperture ) phi = np.random.rand(num_samples) * 2.0 * np.pi x = np.sqrt(1.0 - np.power(z, 2)) * np.cos(phi) y = np.sqrt(1.0 - np.power(z, 2)) * np.sin(phi) points = np.vstack([x, y, z]).T points = points[..., np.newaxis] transforms = np.array( [ trimesh.geometry.align_vectors([0, 0, 1], cone_dir)[:3, :3] for cone_dir in cone_dirs ] ) result = np.matmul(transforms, points) return np.squeeze(result, axis=2) def sample_random_orientation_z(mean_axis_z, axis_cone_aperture): """Sample a random orientation around a cap defined by mean_axis_z.""" z_axis = sample_spherical_cap( mean_axis_z, axis_cone_aperture, num_samples_per_dir=1 )[0] while True: r = sample_random_direction_R3(1)[0] # check if collinear if abs(z_axis.dot(r)) < (1.0 - 1e-2): break y_axis = np.cross(z_axis, r) x_axis = np.cross(y_axis, z_axis) orientation = np.eye(4) orientation[:3, 0] = x_axis orientation[:3, 1] = y_axis orientation[:3, 2] = z_axis return orientation def random_quaternions(size): """Generate random quaternions, uniformly distributed on SO(3). See: http://planning.cs.uiuc.edu/node198.html Args: size (int): Number of quaternions. Returns: np.array: sizex4 array of quaternions in w-x-y-z format. """ u = np.random.rand(size, 3) r1 = np.sqrt(1.0 - u[:, 0]) r2 = np.sqrt(u[:, 0]) t = 2.0 * np.pi * u[:, 1:] qw = np.cos(t[:, 1]) * r2 qx = np.sin(t[:, 0]) * r1 qy = np.cos(t[:, 0]) * r1 qz = np.sin(t[:, 1]) * r2 return np.vstack([qw, qx, qy, qz]).T def sample_random_direction_R3(number_of_directions): """Uniformly distributed directions on S2. Sampled from a multivariate Gaussian, followed by normalization. Args: number_of_directions (int): Number of directions to sample. Returns: np.array: number_of_directionsx3 array of directions. """ # sample multivariate Gaussian and normalize dir = np.random.normal(0, 1, (number_of_directions, 3)) dir = dir / np.linalg.norm(dir, axis=1)[:, np.newaxis] return dir def discretized_SO3(resolution): """Return an array of quaternions that are equidistant on SO(3). Args: resolution (int): A number in {72, 576, 4608, 36864}. Raises: ValueError: Argument represents an unknown resolution. Returns: np.array: Nx4 array of quaternions (in w-x-y-z format) """ available_resolutions = [72, 576, 4608, 36864] if resolution not in available_resolutions: raise ValueError( f"SO3 resolution {resolution} unknown. Available resolutions: \ {', '.join([str(x) for x in available_resolutions])}" ) res_path = get_resource_path("data/discretizations") res_name = os.path.join(res_path, f"so3_{int(resolution)}_quaternionxyzw.npy") quaternions = np.load(res_name) return quats_xyzw_to_wxyz(quaternions) def numpy_to_fcl_transform(arr): """Convert numpy matrix to fcl transform.""" return fcl.Transform(arr[:3, :3], arr[:3, 3]) def fcl_transform_to_numpy(arr): """Convert fcl transform to numpy matrix.""" ret = np.eye(4) ret[:3, :3] = arr.getRotation() ret[:3, 3] = arr.getTranslation() return ret def mat_to_pose_wxyz(mat): """Convert matrix to pos and wxyz quaternion.""" p = mat[:3, 3].tolist() p += tra.quaternion_from_matrix(mat).tolist() return np.array(p) def mat_to_pose_xyzw(mat): """Convert matrix to pos and xyzw quaternion.""" p = mat[:3, 3].tolist() p += np.roll(tra.quaternion_from_matrix(mat), -1).tolist() return np.array(p) def pose_wxyz_to_mat(p): """Convert pos and wxyz quaternion to matrix.""" tmp = tra.quaternion_matrix(p[3:]) tmp[:3, 3] = p[:3] return tmp def pose_xyzw_to_mat(p): """Convert pos and xyzw quaternion to matrix.""" tmp = tra.quaternion_matrix(np.roll(p[3:], +1)) tmp[:3, 3] = p[:3] return tmp def poses_xyzw_to_mats(poses): """Convert multiple pos and xyzw quaternion to matrices.""" mats = [] for p in poses: # convert each transform to a pose mat = pose_xyzw_to_mat(np.asarray(p)) mats.append(mat.tolist()) return mats def poses_wxyz_to_mats(poses): """Convert multiple pos and wxyz quaternion to matrices.""" mats = [] for p in poses: mat = pose_wxyz_to_mat(np.asarray(p)) mats.append(mat.tolist()) return mats def quats_xyzw_to_wxyz(q): """Convert from xyzw to wxyz quaternions.""" return np.roll(q, 1, axis=1) def quats_wxyz_to_xyzw(q): """Convert from wxyz to xyzw quaternions.""" return np.roll(q, -1, axis=1) def pose_xyzw_to_wxyz(p): """Convert from pose and xyzw to wxyz quatenrions.""" tmp = p[:3].tolist() tmp += np.roll(p[3:], +1).tolist() return np.array(tmp) # the main convention is: w - x - y - z def pose_wxyz_to_xyzw(p): """Convert from pose and wxyz to xyzw quaternions.""" tmp = p[:3].tolist() tmp += np.roll(p[3:], -1).tolist() return np.array(tmp) def mats_to_poses_xyzw(transforms): """Convert matrices to pos and xyzw quaternions.""" poses = [] for t in transforms: # convert each transform to a pose pose = mat_to_pose_xyzw(np.asarray(t)) poses.append(pose.tolist()) return poses def mats_to_poses_wxyz(transforms): """Convert matrices to pos and wxyz quaternions.""" poses = [] for t in transforms: # convert each transform to a pose pose = mat_to_pose_wxyz(np.asarray(t)) poses.append(pose.tolist()) return poses def get_gripper_object_bounds(gripper_mesh, object_mesh): """Get bounds of object with gripper.""" gripper_size = np.abs(gripper_mesh.bounding_sphere.bounds).max() lower_bound, upper_bound = np.split( object_mesh.bounds + [[-gripper_size], [gripper_size]], 2, axis=0 ) return lower_bound, upper_bound def get_resource_path(path=""): """Get path to resouce.""" return os.path.join(os.path.abspath(os.path.dirname(__file__)), "../", path) def instantiate_mesh(**kwargs): """Instantiate scaled mesh.""" fname = get_resource_path(kwargs["file"]) mesh = trimesh.load(fname) mesh.apply_scale(kwargs["scale"]) return mesh
StarcoderdataPython
106234
<reponame>IvanProgramming/dnevnik_mos_ru __version__ = "2.3.0" from .school import School from .class_unit import ClassUnit from .group import Group from .teacher import Teacher from .student_profile import StudentProfile from .client import Client from .academic_years import AcademicYear from .auth_providers import * from .exceptions import * from .base_auth_provider import BaseAuthProvider
StarcoderdataPython
1681588
#!/usr/bin/python3 try: from pbkdf2 import PBKDF2 except: print("install pbkdf2: \"pip3 install pbkdf2\"") exit(1) try: from Crypto import Random from Crypto.Util.py3compat import bchr from Crypto.Cipher import AES except: print("install pycrypto: \"pip3 install pycrypto\"") exit(1) import os, sys from base64 import b64encode from getpass import getpass import codecs def pad(data_to_pad, block_size, style='pkcs7'): padding_len = block_size-len(data_to_pad)%block_size if style == 'pkcs7': padding = bchr(padding_len)*padding_len elif style == 'x923': padding = bchr(0)*(padding_len-1) + bchr(padding_len) elif style == 'iso7816': padding = bchr(128) + bchr(0)*(padding_len-1) else: raise ValueError("Unknown padding style") return data_to_pad + padding def main(): # sanitize input if len(sys.argv) < 2: print("Usage:\n%s filename [passphrase]"%sys.argv[0]) exit(0) inputfile = sys.argv[1] try: with open(inputfile, "rb") as f: data = f.read() except: print("Cannot open file: %s"%inputfile) exit(1) if len(sys.argv) > 2: passphrase = sys.argv[2] else: while True: passphrase = getpass(prompt='Password: ') if passphrase == getpass(prompt='Confirm: '): break print("Passwords don\'t match, try again.") salt = Random.new().read(32) iv = Random.new().read(16) key = PBKDF2(passphrase=passphrase,salt=salt,iterations=100).read(32) cipher = AES.new(key, AES.MODE_CBC, IV=iv) padded = pad(data, 16) encrypted = cipher.encrypt(padded) projectFolder = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) with open(os.path.join(projectFolder, "decryptTemplate.html")) as f: templateHTML = f.read() encryptedJSON = "{\"salt\":\"%s\",\"iv\":\"%s\",\"data\":\"%s\"}"%( b64encode(salt).decode("utf-8"), b64encode(iv).decode("utf-8"), b64encode(encrypted).decode("utf-8")) encryptedDocument = templateHTML.replace("/*{{ENCRYPTED_PAYLOAD}}*/\"\"", encryptedJSON) filename, extension = os.path.splitext(inputfile) outputfile = filename + "-protected" + extension with codecs.open(outputfile, 'w','utf-8-sig') as f: f.write(encryptedDocument) print("File saved to %s"%outputfile) if __name__ == "__main__": main()
StarcoderdataPython
3232362
# Copyright (C) 2019 The Raphielscape Company LLC. # # Licensed under the Raphielscape Public License, Version 1.d (the "License"); # you may not use this file except in compliance with the License. # # Port to userbot by @MoveAngel from telethon.errors.rpcerrorlist import YouBlockedUserError from userbot import bot, CMD_HELP from userbot.events import register from asyncio.exceptions import TimeoutError @register(outgoing=True, pattern=r"^\.sa(?: |$)(.*)") async def lastname(steal): if steal.fwd_from: return if not steal.reply_to_msg_id: await steal.edit("```Mohon Reply Ke Pesan Pengguna Yang Ingin Anda Scan Yang Mulia.```") return message = await steal.get_reply_message() chat = "@SangMataInfo_bot" user_id = message.sender.id id = f"/search_id {user_id}" if message.sender.bot: await steal.edit("```Reply Ke Pesan Pengguna Yang Ingin Di Scann.```") return await steal.edit("__C__") await steal.edit("__Co__") await steal.edit("__Con__") await steal.edit("__Conn__") await steal.edit("__Conne__") await steal.edit("__Connec__") await steal.edit("__Connect__") await steal.edit("__Connecti__") await steal.edit("__Connectin__") await steal.edit("__Connecting__") await steal.edit("__Connecting t__") await steal.edit("__Connecting to__") await steal.edit("__Connecting to s__") await steal.edit("__Connecting to se__") await steal.edit("__Connecting to ser__") await steal.edit("__Connecting to serv__") await steal.edit("__Connecting to serve__") await steal.edit("__Connecting to server__") await steal.edit("__Connecting to server.__") await steal.edit("__Connecting to server..__") await steal.edit("__Connecting to server...__") try: async with bot.conversation(chat) as conv: try: msg = await conv.send_message(id) r = await conv.get_response() response = await conv.get_response() except YouBlockedUserError: await steal.reply( "```Yang Mulia, Mohon Unblock @sangmatainfo_bot Dan Coba Scan Kembali.```" ) return if r.text.startswith("Name"): respond = await conv.get_response() await steal.edit(f"`{r.message}`") await steal.client.delete_messages( conv.chat_id, [msg.id, r.id, response.id, respond.id] ) return if response.text.startswith("No records") or r.text.startswith( "No records" ): await steal.edit("```Saya Tidak Menemukan Informasi Pergantian Nama Ini Yang Mulia, Orang Ini Belum Pernah Mengganti Nama Sebelumnya```") await steal.client.delete_messages( conv.chat_id, [msg.id, r.id, response.id] ) return else: respond = await conv.get_response() await steal.edit(f"```{response.message}```") await steal.client.delete_messages( conv.chat_id, [msg.id, r.id, response.id, respond.id] ) except TimeoutError: return await steal.edit("`Saya Sedang Sakit Yang Mulia, Mohon Maaf`") CMD_HELP.update({ "sangmata": "⚡𝘾𝙈𝘿⚡: `.sa`\ \n↳ : Mendapatkan Riwayat Nama Pengguna Yang Di Scan." })
StarcoderdataPython
87672
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-08-29 20:55 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('animals', '0001_initial'), ] operations = [ migrations.AlterField( model_name='animal', name='lived_with_animal_types', field=models.CharField(blank=True, max_length=200), ), migrations.AlterField( model_name='animal', name='lived_with_animals', field=models.CharField(default='Unknown', max_length=10), ), migrations.AlterField( model_name='animal', name='lived_with_kids', field=models.CharField(default='Unknown', max_length=10), ), migrations.AlterField( model_name='animal', name='special_needs', field=models.CharField(blank=True, max_length=100), ), ]
StarcoderdataPython
137563
<reponame>ajrox090/VaRA-Tool-Suite<filename>varats/varats/data/reports/commit_report.py<gh_stars>0 """Data wrappers for commit reports generated by VaRA.""" import logging import typing as tp from pathlib import Path import pandas as pd import yaml from varats.base.version_header import VersionHeader from varats.mapping.commit_map import CommitMap from varats.report.report import BaseReport, FileStatusExtension, ReportFilename from varats.utils.git_util import ShortCommitHash, FullCommitHash LOG = logging.getLogger(__name__) class FunctionInfo(): """Encapsulates the information gathered for a single functions.""" def __init__(self, raw_yaml: tp.Dict[str, tp.Any]) -> None: self.__name = str(raw_yaml['function-name']) self.__id = str(raw_yaml['id']) self.__region_id = str(raw_yaml['region-id']) @property def name(self) -> str: """Name of the function.""" return self.__name @property def id(self) -> str: """Unique ID of the function info.""" return self.__id @property def region_id(self) -> str: """ID of the region.""" return self.__region_id def __str__(self) -> str: return "{} ({}): {}".format(self.name, self.id, self.region_id) class RegionMapping(): """Mapping from region ID to commit hash.""" def __init__(self, raw_yaml: tp.Dict[str, tp.Any]) -> None: self.id = str(raw_yaml['id']) self.hash = FullCommitHash(str(raw_yaml['hash'])) def __str__(self) -> str: return "{} = {}".format(self.id, self.hash.hash) class RegionToFunctionEdge(): """Graph edge to connect regions and function data.""" def __init__(self, from_region: str, to_function: str) -> None: self._from = from_region self._to = to_function @property def region(self) -> str: return self._from @property def function(self) -> str: return self._to def __str__(self) -> str: return "{} -> {}".format(self._from, self._to) class RegionToRegionEdge(): """Graph edge to interconnect regions.""" def __init__(self, raw_yaml: tp.Dict[str, tp.Any]) -> None: self._from = str(raw_yaml['from']) self._to = str(raw_yaml['to']) def __str__(self) -> str: return "{} -> {}".format(self._from, self._to) @property def edge_from(self) -> str: return self._from @property def edge_to(self) -> str: return self._to class FunctionGraphEdges(): """A graph like structure that represents the connections between ``FunctionInfo``s.""" def __init__(self, raw_yaml: tp.Dict[str, tp.Any]) -> None: self.fid = raw_yaml['function-id'] self.cg_edges: tp.List[RegionToFunctionEdge] = [] cg_edges = raw_yaml['call-graph-edges'] if cg_edges is not None: for edge in cg_edges: for callee in edge['to-functions']: self.cg_edges.append( RegionToFunctionEdge(edge['from-region'], callee) ) self.cf_edges: tp.List[RegionToRegionEdge] = [] cf_edges = raw_yaml['control-flow-edges'] if cf_edges is not None: for edge in cf_edges: self.cf_edges.append(RegionToRegionEdge(edge)) self.df_relations: tp.List[RegionToRegionEdge] = [] df_edges = raw_yaml['data-flow-relations'] if df_edges is not None: for edge in df_edges: self.df_relations.append(RegionToRegionEdge(edge)) def __str__(self) -> str: repr_str = "FName: {}:\n\t CG-Edges [".format(self.fid) sep = "" for cg_edge in self.cg_edges: repr_str += sep + str(cg_edge) sep = ", " repr_str += "]" repr_str += "\n\t CF-Edges [" sep = "" for cf_edge in self.cf_edges: repr_str += sep + str(cf_edge) sep = ", " repr_str += "]" return repr_str class CommitReport(BaseReport): """Data class that gives access to a loaded commit report.""" SHORTHAND = "CR" FILE_TYPE = "yaml" def __init__(self, path: Path) -> None: super().__init__(path) with open(path, "r") as stream: documents = yaml.load_all(stream, Loader=yaml.CLoader) version_header = VersionHeader(next(documents)) version_header.raise_if_not_type("CommitReport") version_header.raise_if_version_is_less_than(3) raw_infos = next(documents) self.finfos: tp.Dict[str, FunctionInfo] = {} for raw_finfo in raw_infos['function-info']: finfo = FunctionInfo(raw_finfo) self.finfos[finfo.name] = finfo self.region_mappings: tp.Dict[str, RegionMapping] = {} raw_region_mapping = raw_infos['region-mapping'] if raw_region_mapping is not None: for raw_r_mapping in raw_region_mapping: r_mapping = RegionMapping(raw_r_mapping) self.region_mappings[r_mapping.id] = r_mapping gedges = next(documents) self.graph_info: tp.Dict[str, FunctionGraphEdges] = {} for raw_fg_edge in gedges: f_edge = FunctionGraphEdges(raw_fg_edge) self.graph_info[f_edge.fid] = f_edge @property def head_commit(self) -> ShortCommitHash: """The current HEAD commit under which this CommitReport was created.""" return self.filename.commit_hash @classmethod def shorthand(cls) -> str: """Shorthand for this report.""" return cls.SHORTHAND @staticmethod def get_file_name( project_name: str, binary_name: str, project_version: str, project_uuid: str, extension_type: FileStatusExtension, file_ext: str = "yaml" ) -> str: """ Generates a filename for a commit report with 'yaml' as file extension. Args: project_name: name of the project for which the report was generated binary_name: name of the binary for which the report was generated project_version: version of the analyzed project, i.e., commit hash project_uuid: benchbuild uuid for the experiment run extension_type: to specify the status of the generated report file_ext: file extension of the report file Returns: name for the report file that can later be uniquly identified """ return ReportFilename.get_file_name( CommitReport.SHORTHAND, project_name, binary_name, project_version, project_uuid, extension_type, file_ext ) def calc_max_cf_edges(self) -> int: """Calculate the highest amount of control-flow interactions of a single commit region.""" cf_map: tp.Dict[str, tp.List[int]] = {} self.init_cf_map_with_edges(cf_map) total = 0 for from_to_pair in cf_map.values(): total = max(max(from_to_pair[0], from_to_pair[1]), total) return total def calc_max_df_edges(self) -> int: """Calculate the highest amount of data-flow interactions of a single commit region.""" df_map: tp.Dict[str, tp.List[int]] = {} self.init_df_map_with_edges(df_map) total = 0 for from_to_pair in df_map.values(): total = max(max(from_to_pair[0], from_to_pair[1]), total) return total def __str__(self) -> str: return "FInfo:\n\t{}\nRegionMappings:\n\t{}\n" \ .format(self.finfos.keys(), self.region_mappings.keys()) def __repr__(self) -> str: return "CR: " + self.path.name def __lt__(self, other: 'CommitReport') -> bool: return self.path < other.path def init_cf_map_with_edges( self, cf_map: tp.Dict[str, tp.List[int]] ) -> None: """ Initialize control-flow map with edges and from/to counters. Args: cf_map: control-flow """ # if any information is missing add all from the original # report to avoid errors. for reg_mapping in self.region_mappings.values(): cf_map[reg_mapping.id] = [0, 0] for func_g_edge in self.graph_info.values(): for cf_edge in func_g_edge.cf_edges: cf_map[cf_edge.edge_from][0] += 1 cf_map[cf_edge.edge_to][1] += 1 def number_of_cf_interactions(self) -> int: """Total number of found control-flow interactions.""" cf_map: tp.Dict[str, tp.List[int]] = {} self.init_cf_map_with_edges(cf_map) total_interactions = 0 for interaction_tuple in cf_map.values(): total_interactions += interaction_tuple[0] return total_interactions def number_of_head_cf_interactions(self) -> tp.Tuple[int, int]: """ The number of control-flow interactions the HEAD commit has with other commits. Returns: tuple (incoming_head_interactions, outgoing_head_interactions) """ cf_map: tp.Dict[str, tp.List[int]] = {} self.init_cf_map_with_edges(cf_map) for key, value in cf_map.items(): if key.startswith(self.head_commit.hash): interaction_tuple = value return (interaction_tuple[0], interaction_tuple[1]) return (0, 0) def init_df_map_with_edges( self, df_map: tp.Dict[str, tp.List[int]] ) -> None: """ Initialize data-flow map with edges and from/to counters. Returns: tuple (incoming_head_interactions, outgoing_head_interactions) """ # if any information is missing add all from the original report # to avoid errors. for reg_mapping in self.region_mappings.values(): df_map[reg_mapping.id] = [0, 0] for func_g_edge in self.graph_info.values(): for df_edge in func_g_edge.df_relations: df_map[df_edge.edge_from][0] += 1 df_map[df_edge.edge_to][1] += 1 def number_of_df_interactions(self) -> int: """Total number of found data-flow interactions.""" df_map: tp.Dict[str, tp.List[int]] = {} self.init_df_map_with_edges(df_map) total_interactions = 0 for interaction_tuple in df_map.values(): total_interactions += interaction_tuple[0] return total_interactions def number_of_head_df_interactions(self) -> tp.Tuple[int, int]: """The number of control-flow interactions the HEAD commit has with other commits.""" df_map: tp.Dict[str, tp.List[int]] = {} self.init_df_map_with_edges(df_map) for key, value in df_map.items(): if key.startswith(self.head_commit.hash): interaction_tuple = value return (interaction_tuple[0], interaction_tuple[1]) return (0, 0) class CommitReportMeta(): """Meta report class that combines the data of multiple reports, comming from different revisions, into one.""" def __init__(self) -> None: self.finfos: tp.Dict[str, FunctionInfo] = {} self.region_mappings: tp.Dict[str, RegionMapping] = {} self.__cf_ylimit = 0 self.__df_ylimit = 0 def merge(self, commit_report: CommitReport) -> None: """ Merge data from commit report into CommitReportMeta. Args: commit_report: new report that will be added to the meta report """ self.finfos.update(commit_report.finfos) self.region_mappings.update(commit_report.region_mappings) self.__cf_ylimit = max( self.__cf_ylimit, commit_report.calc_max_cf_edges() ) self.__df_ylimit = max( self.__df_ylimit, commit_report.calc_max_df_edges() ) @property def cf_ylimit(self) -> int: return self.__cf_ylimit @property def df_ylimit(self) -> int: return self.__df_ylimit def __str__(self) -> str: return "FInfo:\n\t{}\nRegionMappings:\n\t{}\n" \ .format(self.finfos.keys(), self.region_mappings.keys()) ############################################################################### # Connection Generators ############################################################################### def generate_inout_cfg_cf( commit_report: CommitReport, cr_meta: tp.Optional[CommitReportMeta] = None ) -> pd.DataFrame: """ Generates a pandas dataframe that contains the commit region control-flow interaction information. Args: commit_report: report containing the commit data cr_meta: the meta commit report, if available """ cf_map = {} # RM -> [from, to] # Add all from meta commit report and ... if cr_meta is not None: for reg_mapping in cr_meta.region_mappings.values(): cf_map[reg_mapping.id] = [0, 0] commit_report.init_cf_map_with_edges(cf_map) rows = [] for item in cf_map.items(): total = item[1][0] + item[1][1] rows.append([item[0], item[1][0], "From", total]) rows.append([item[0], item[1][1], "To", total]) rows.sort( key=lambda row: (row[0], -tp.cast(int, row[3]), -tp.cast(int, row[1]), row[2]) ) return pd.DataFrame( rows, columns=['Region', 'Amount', 'Direction', 'TSort'] ) def generate_interactions( commit_report: CommitReport, c_map: CommitMap ) -> tp.Tuple[pd.DataFrame, pd.DataFrame]: """ Converts the commit analysis interaction data from a ``CommitReport`` into a pandas data frame for plotting. Args: commit_report: the report c_map: commit map for mapping commits to unique IDs """ node_rows = [] for item in commit_report.region_mappings.values(): node_rows.append([item.hash, c_map.time_id(item.hash)]) node_rows.sort(key=lambda row: int(tp.cast(int, row[1])), reverse=True) nodes = pd.DataFrame(node_rows, columns=['hash', 'id']) link_rows = [] for func_g_edge in commit_report.graph_info.values(): for cf_edge in func_g_edge.cf_edges: link_rows.append([ cf_edge.edge_from, cf_edge.edge_to, 1, c_map.time_id(FullCommitHash(cf_edge.edge_from)) ]) links = pd.DataFrame( link_rows, columns=['source', 'target', 'value', 'src_id'] ) return (nodes, links) def generate_inout_cfg_df( commit_report: CommitReport, cr_meta: tp.Optional[CommitReportMeta] = None ) -> pd.DataFrame: """ Generates a pandas dataframe that contains the commit region data-flow interaction information. Args: commit_report: report containing the commit data cr_meta: the meta commit report, if available """ df_map = {} # RM -> [from, to] # Add all from meta commit report and ... if cr_meta is not None: for reg_mapping in cr_meta.region_mappings.values(): df_map[reg_mapping.id] = [0, 0] commit_report.init_df_map_with_edges(df_map) rows = [] for item in df_map.items(): total = item[1][0] + item[1][1] rows.append([item[0], item[1][0], "From", total]) rows.append([item[0], item[1][1], "To", total]) rows.sort( key=lambda row: (row[0], -tp.cast(int, row[3]), -tp.cast(int, row[1]), row[2]) ) return pd.DataFrame( rows, columns=['Region', 'Amount', 'Direction', 'TSort'] )
StarcoderdataPython
79468
<reponame>SidneyAn/nfv<filename>nfv/nfv-vim/nfv_vim/nfvi/objects/v1/_guest_service.py # # Copyright (c) 2015-2016 Wind River Systems, Inc. # # SPDX-License-Identifier: Apache-2.0 # import six from nfv_common.helpers import Constant from nfv_common.helpers import Constants from nfv_common.helpers import Singleton from nfv_vim.nfvi.objects.v1._object import ObjectData @six.add_metaclass(Singleton) class GuestServiceNames(Constants): """ Guest Service Name Constants """ UNKNOWN = Constant('unknown') HEARTBEAT = Constant('heartbeat') @six.add_metaclass(Singleton) class GuestServiceAdministrativeState(Constants): """ Guest Service Administrative State Constants """ UNKNOWN = Constant('unknown') LOCKED = Constant('locked') UNLOCKED = Constant('unlocked') @six.add_metaclass(Singleton) class GuestServiceOperationalState(Constants): """ Guest Service Operational State Constants """ UNKNOWN = Constant('unknown') ENABLED = Constant('enabled') DISABLED = Constant('disabled') # Guest Service Constant Instantiation GUEST_SERVICE_NAME = GuestServiceNames() GUEST_SERVICE_ADMIN_STATE = GuestServiceAdministrativeState() GUEST_SERVICE_OPER_STATE = GuestServiceOperationalState() class GuestService(ObjectData): """ NFVI Guest Service Object """ def __init__(self, name, admin_state, oper_state, restart_timeout=None): super(GuestService, self).__init__('1.0.0') self.update(dict(name=name, admin_state=admin_state, oper_state=oper_state, restart_timeout=restart_timeout)) def as_dict(self): """ Represent Guest Service data object as dictionary """ data = dict() data['name'] = self.name data['admin_state'] = self.admin_state data['oper_state'] = self.oper_state if self.restart_timeout is not None: data['restart_timeout'] = self.restart_timeout return data
StarcoderdataPython
1623371
# -*- coding: utf-8 -*- """ Provide a wrapper and helpers for AWS boto library. See https://boto3.readthedocs.io/en/latest/ for API details """ import logging import os import boto3 import re import toil.provider.base import toil from botocore.client import Config logger = logging.getLogger(__name__) class AwsLib(toil.provider.base.BaseProvider): """ library for AWS functionality. """ def __init__(self, toil, config): super(AwsLib, self).__init__(toil, config) def session(self, profile='default'): """ Create an AWS session. Args: profile (): the profile defined in config to use Returns: boto3.session.Session """ if profile in self.config: self.configure_proxy() # create a session return AwsSession(self._toil, profile, self.config[profile]) else: raise toil.CloudException( "profile '{profile}' not defined in config {config}".format(profile=profile, config=self.config)) class AwsSession(object): """ provide aws api access """ def __init__(self, toil, profile, config): # self._profile = profile self._config = config self._toil = toil def sts_client(self): """ Create an aws sts client Args: session (): an aws session Returns: boto3.session.client """ session = boto3.session.Session( region_name=self._config['region'], aws_access_key_id=self._config['access_key_id'], aws_secret_access_key=self._config['secret_access_key'], ) return session.client(service_name='sts') def assume_role(self, sts_client, **kwargs): """ Use sts to assume an AWS role. Returns a set of temporary security credentials (consisting of an access key ID, a secret access key, and a security token) that you can use to access AWS resources. Args: sts_client (): an aws sts client profile (): the profile defined in config to use Returns: dict """ sts_credentials = sts_client.assume_role( RoleArn=self._config['role_arn'], RoleSessionName=self._config['role_session_name'] , **kwargs) return sts_credentials def client(self, client_type, **kwargs): """ Create a client. Args: client_type (): the type of aws service self._profile (): the self._profile defined in config to use Returns: A low-level client representing an AWS service. Uses sts as defined in the config self._profile. """ session = boto3.session.Session( region_name=self._config['region'], aws_access_key_id=self._config['access_key_id'], aws_secret_access_key=self._config['secret_access_key'], ) if 'role_arn' in self._config and self._config['role_arn'] != "": sts_client = self.sts_client() sts_credentials = self.assume_role(sts_client) return session.client(client_type, aws_access_key_id=sts_credentials['Credentials']['AccessKeyId'], aws_secret_access_key=sts_credentials['Credentials']['SecretAccessKey'], aws_session_token=sts_credentials['Credentials']['SessionToken'], config=Config(signature_version='s3v4'), **kwargs ) else: return session.client(client_type, **kwargs) def resource(self, resource_type, **kwargs): """ Create a resource. Args: resource_type (): the type of aws resource profile (): the profile defined in config to use Returns: A low-level client representing an AWS service. Uses sts as defined in the config profile. """ session = boto3.session.Session( region_name=self._config['region'], aws_access_key_id=self._config['access_key_id'], aws_secret_access_key=self._config['secret_access_key'], ) if 'role_arn' in self._config and self._config['role_arn'] != "": sts_client = self.sts_client() sts_credentials = self.assume_role(sts_client) return session.resource(resource_type, aws_access_key_id=sts_credentials['Credentials']['AccessKeyId'], aws_secret_access_key=sts_credentials['Credentials']['SecretAccessKey'], aws_session_token=sts_credentials['Credentials']['SessionToken'], config=Config(signature_version='s3v4'), **kwargs ) else: session.resource(resource_type, **kwargs) def _upload_file_to_s3(self, resource, bucket_name, object_key, file_path, ssekms_key_id=None): """ Upload a file to s3 This method is private and should only be used withing this class. Args: resource (): aws resource bucket_name (): the bucket the file is going to object_key (): the key path for the file file_path (): the path for the local file to upload ssekms_key_id (): the server side encryption key Returns: Nothing. """ if ssekms_key_id is not None: data = open(file_path, 'rb') logger.debug( 'upload {file_path} to {bucketName}{objectKey} using {ssekms_key_id}'.format(file_path=file_path, bucketName=bucket_name, objectKey=object_key, ssekms_key_id=ssekms_key_id)) result = resource.Bucket(bucket_name).put_object(ServerSideEncryption='aws:kms', Key=object_key, Body=data, SSEKMSKeyId=ssekms_key_id) logger.debug(result) else: data = open(file_path, 'rb') logger.debug( 'upload {file_path} to {bucketName}{objectKey} using {ssekms_key_id}'.format(file_path=file_path, bucketName=bucket_name, objectKey=object_key, ssekms_key_id=ssekms_key_id)) result = resource.Bucket(bucket_name).put_object(Key=object_key, Body=data) logger.debug(result) # logger.debug('upload {file_path} to {bucketName}{objectKey}'.format(file_path=file_path, bucketName=bucket_name, objectKey=object_key)) # result = resource.Bucket(bucket_name).upload_file(Filename=file_path, Key=object_key) # logger.debug(result) def _aws_file_upload_handler(self, real_file_path, file_path, file_name, **kwargs): """ A helper method to upload a file to aws. This method is private and should only be used withing this class. Args: real_file_path (): path to local file file_path (): the path to use in aws file_name (): the local file name **kwargs (): Returns: Nothing """ bucket = kwargs.get('bucket', None) if bucket is None: raise TypeError('bucket argument is required') resource = kwargs.get('resource', None) if resource is None: raise TypeError('resource argument is required') ssekms_key_id = kwargs.get('ssekms_key_id', None) object_key = (os.path.relpath(file_path, '/') + '/' + file_name).replace('\\', '/') if not object_key.startswith('/'): object_key = '/' + object_key remove_from_key = kwargs.get('remove_from_key', None) if remove_from_key is not None: object_key = object_key.replace(remove_from_key, '') prefix = kwargs.get('prefix', '') if prefix is None: prefix = '' if prefix != '' and not prefix.endswith('/'): prefix += '/' object_key = prefix + object_key # object_key = prefix + (file_name).replace('\\', '/') real_file_path = real_file_path.replace('\\', '/') self._upload_file_to_s3(resource, bucket, object_key, real_file_path, ssekms_key_id) def upload_to_s3(self, bucket, local_path, prefix=None, ssekms_key_id=None): """ Upload a local directory to AWS. Uses the cloud helper process_dir and passes a function handler. Args: bucket (): aws bucket name local_path (): local directory path prefix (): prefix for aws ssekms_key_id (): aws encryption key profile (): the profile to use defined in config. Returns: Nothing """ resource = self.resource('s3', verify=False) self._toil.traverse_dir(local_path, self._aws_file_upload_handler, resource=resource, bucket=bucket, local_path=local_path, prefix=prefix, ssekms_key_id=ssekms_key_id, remove_from_key=local_path) def download_from_s3(self, bucket_name, key, file_path, ssekms_key_id=None): """ Download a file from aws s3. Args: bucket_name (): aws bucket name key (): the key to file in aws file_path (): local file path and name ssekms_key_id (): aws encryption key profile (): the profile to use defined in config Returns: Nothing """ resource = self.resource('s3', verify=False) result = resource.Bucket(bucket_name).objects.filter(Prefix=key) for s3_obj in result: # resource.Bucket(bucket_name).download_file logger.debug(s3_obj.key) local_key = s3_obj.key local_key = re.sub('[:]', "_colon_", local_key) # local_key = re.sub('[^a-zA-Z0-9\n\._-]', "", local_key) local_path = file_path + '/' + local_key local_dir_name = os.path.dirname(local_path) try: if not os.path.exists(local_dir_name): os.makedirs(local_dir_name) if not (local_path.endswith('/')): resource.Bucket(bucket_name).download_file(s3_obj.key, local_path) except Exception as ex: logging.error(ex)
StarcoderdataPython
1660249
from unittest.mock import patch import pytest from exco.extractor import Validator from exco.extractor.validator.built_in.is_not_blank_validator import IsNotBlankValidator from exco.extractor.validator.built_in.value_validator import ValueValidator from exco.extractor.validator.validation_result import ValidationResult def test_is_not_blank_validator(): validator = IsNotBlankValidator() assert validator.validate('a') == ValidationResult.bad( msg=f'Fail a fail validation of {str(validator)}') assert validator.validate('') == ValidationResult.good() @patch.multiple(ValueValidator, __abstractmethods__=set()) def test_value_validator_abstract(): with pytest.raises(NotImplementedError): vv = ValueValidator() vv.validate_value("a") @patch.multiple(Validator, __abstractmethods__=set()) def test_validator_abstract(): with pytest.raises(NotImplementedError): vv = Validator() vv.validate(value="a")
StarcoderdataPython
4832467
import cv2 import numpy as np #Read a Video Stream and Display It #Camera Object cam = cv2.VideoCapture(0) face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml") face_data= [] cnt =0 user_name = input("Enter your name") while True: ret,frame = cam.read() if ret==False: print("Something Went Wrong!") continue key_pressed = cv2.waitKey(1) & 0xFF if key_pressed == ord('q'): break faces = face_cascade.detectMultiScale(frame,1.3,5) # faces is the list whcih has tuples. print(faces) will show the cordinates of face at every second. Basically where are face it is. eg [(255,283,32)] faces = sorted(faces , key = lambda f : f[2]*f[3]) # Sorting b/c we want to save the biggest face in the video for accuracy as if two faces come in the video only one will be stored. if (len(faces)==0): continue # Pick the largest face (beacuse it is biggest according to the area ( f[2]*f[3] )) for face in faces[-1:]: x,y,w,h = face cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255, 255),2) # Extract (Crop of the required image) : Region of intrest face_section = frame[y-10:y+h+10, x-10: x+w+10] face_section = cv2.resize(face_section, (100,100)) cv2.rectangle(frame,(x,y),(x+w,y+h),(0 ,255, 255,2)) if cnt%10 == 0: print("Taking pictures",int(cnt/10)) face_data.append(face_section) cnt+=1 cv2.imshow("Video", frame) cv2.imshow("Video gray", face_section) # save the data in the numpy file print("Total faces",len(face_data)) face_data = np.array(face_data) face_data = face_data.reshape([face_data.shape[0],-1]) print(face_data.shape) np.save("FaceData/" + user_name+ ".npy",face_data) # it save the image into array form so that we can use it later print(face_data.shape) cam.release() cv2.destroyAllWindows()
StarcoderdataPython
76754
<reponame>joefinlon/Finlon_et_al_2021_DFR<filename>dfr_enhancement.py ''' Contains a routine to find regions of enhanced DFR based on matched DFR_Ku-Ka using a peak prominence method. Copyright <NAME>, Univ. of Washington, 2022. ''' import numpy as np from scipy.signal import find_peaks, peak_prominences, peak_widths from skimage.measure import label def find_regions(matched_object, dfr, method='prominances', min_dfr=None, min_prom=2., rel_height=0.4): ''' Inputs: matched_object: Dictionary created from matcher routine dfr: Masked array of DFR values computed from matched_object method: Method for determining enhanced DFR regions/periods ('prominances') min_dfr: Minimum DFR to consider for ID scheme (not used for 'prominances' method) min_prom: Minimum prominance needed to consider DFR peaks (float) rel_height: Relative height at which the peak width is measured as a percentage of its prominence (float between 0 and 1) ''' regions_object = {} peaks = np.array([], dtype='int'); prominences = np.array([]); width_heights = np.array([]) durations_p3 = np.array([]); durations_er2 = np.array([]) peak_starts_p3 = np.array([], dtype='datetime64[ns]'); peak_ends_p3 = np.array([], dtype='datetime64[ns]') peak_starts_er2 = np.array([], dtype='datetime64[ns]'); peak_ends_er2 = np.array([], dtype='datetime64[ns]') peak_count = 0 labels = label(~dfr.mask) # find contiguious regions/periods where valid (not masked) DFR values exist (peak ID is more robust this way) for labelnum in range(1, len(np.unique(labels))+1): peaks_temp, _ = find_peaks(dfr[labels==labelnum]) if len(peaks_temp)>0: prominences_temp = peak_prominences(dfr[labels==labelnum], peaks_temp, wlen=None); prominences_temp = prominences_temp[0] peaks_temp = peaks_temp[prominences_temp>=min_prom]; prominences_temp = prominences_temp[prominences_temp>=min_prom] # trim peaks and prominences widths_temp = peak_widths(dfr[labels==labelnum], peaks_temp, rel_height=rel_height) for peaknum in range(len(widths_temp[0])): # loop through each peak to get peak width start/end periods peak_count += 1 width_heights = np.append(width_heights, widths_temp[1][peaknum]) peak_start_er2 = matched_object['matched']['time_rad']['data'][int(np.where(labels==labelnum)[0][0]+np.floor(widths_temp[2][peaknum]))] peak_end_er2 = matched_object['matched']['time_rad']['data'][int(np.where(labels==labelnum)[0][0]+np.ceil(widths_temp[3][peaknum]))] peak_start_p3 = matched_object['matched']['time_p3']['data'][int(np.where(labels==labelnum)[0][0]+np.floor(widths_temp[2][peaknum]))] peak_end_p3 = matched_object['matched']['time_p3']['data'][int(np.where(labels==labelnum)[0][0]+np.ceil(widths_temp[3][peaknum]))] if peak_end_er2<peak_start_er2: # fixes rare instance where peak end needs to be shortened (no matched data after this time) peak_end_er2 = matched_object['matched']['time_rad']['data'][int(np.where(labels==labelnum)[0][0]+np.floor(widths_temp[3][peaknum]))] peak_end_p3 = matched_object['matched']['time_p3']['data'][int(np.where(labels==labelnum)[0][0]+np.floor(widths_temp[3][peaknum]))] durations_p3 = np.append(durations_p3, (peak_end_p3-peak_start_p3)/np.timedelta64(1,'s')) durations_er2 = np.append(durations_er2, (peak_end_er2-peak_start_er2)/np.timedelta64(1,'s')) print(' Peak #{} from {} - {} ({} sec)'.format(peak_count, peak_start_p3, peak_end_p3, durations_p3[-1])) peak_starts_p3 = np.append(peak_starts_p3, peak_start_p3); peak_ends_p3 = np.append(peak_ends_p3, peak_end_p3) peak_starts_er2 = np.append(peak_starts_er2, peak_start_er2); peak_ends_er2 = np.append(peak_ends_er2, peak_end_er2) peaks = np.append(peaks, np.where(labels==labelnum)[0][0]+peaks_temp) prominences = np.append(prominences, prominences_temp) # Construct the object regions_object['peak_start_p3'] = peak_starts_p3; regions_object['peak_end_p3'] = peak_ends_p3 regions_object['peak_start_er2'] = peak_starts_er2; regions_object['peak_end_er2'] = peak_ends_er2 regions_object['width_height'] = width_heights # height of the contour lines at which the widths where evaluated regions_object['peak_index'] = peaks; regions_object['peak_value'] = dfr[peaks]; regions_object['peak_prominence'] = prominences regions_object['duration_p3'] = durations_p3; regions_object['duration_er2'] = durations_er2 regions_object['stats'] = {} regions_object['stats']['num_regions'] = peak_count regions_object['stats']['mean_duration_p3'] = np.sum(durations_p3) / peak_count regions_object['stats']['mean_duration_er2'] = np.sum(durations_er2) / peak_count return regions_object
StarcoderdataPython
3349030
<reponame>clefever/aoc2019 from collections import defaultdict import adventofcode def part1(codes): prog = defaultdict(int, zip(range(len(codes)), codes)) output = run_program(prog, []) x, y = 0,0 grid = defaultdict(int) for char in output[1]: if char == 10: y += 1 x = 0 continue grid[(x,y)] = chr(char) x += 1 params = alignment_parameters(grid) total = sum(p[0]*p[1] for p in params) return total def part2(codes): # TODO: Calculate programatically prog = defaultdict(int, zip(range(len(codes)), codes)) prog[0] = 2 inputs = [ 65, 44, 66, 44, 66, 44, 65, 44, 67, 44, 66, 44, 67, 44, 67, 44, 66, 44, 65, 10, 82, 44, 49, 48, 44, 82, 44, 56, 44, 76, 44, 49, 48, 44, 76, 44, 49, 48, 10, 82, 44, 56, 44, 76, 44, 54, 44, 76, 44, 54, 10, 76, 44, 49, 48, 44, 82, 44, 49, 48, 44, 76, 44, 54, 10, 110, 10 ] output = run_program(prog, inputs) return output[1][-1] def print_grid(grid): left = min([key[0] for key in grid.keys()]) right = max([key[0] for key in grid.keys()]) bottom = max([key[1] for key in grid.keys()]) top = min([key[1] for key in grid.keys()]) for y in range(top, bottom+1): for x in range(left, right+1): print(grid[(x,y)], end=" ") print() def alignment_parameters(grid): left = min([key[0] for key in grid.keys()]) right = max([key[0] for key in grid.keys()]) bottom = max([key[1] for key in grid.keys()]) top = min([key[1] for key in grid.keys()]) param_list = [] for y in range(top+1, bottom): for x in range(left+1, right): if grid[(x,y)] == '#' and grid[(x-1,y)] == '#' and grid[(x+1,y)] == '#' and grid[(x,y-1)] == '#' and grid[(x,y+1)] == '#': param_list.append((x,y)) return param_list def run_program(codes, prog_input, ip = 0, relative_base = 0): outputs = [] prog = codes.copy() while prog[ip] != 99: code_and_modes = get_opcode_and_modes(prog[ip]) if code_and_modes[0] == 1: params = get_parameters(2, code_and_modes, prog, ip, relative_base) write_loc = get_write_location(3, code_and_modes, prog, ip, relative_base) prog[write_loc] = params[0] + params[1] ip += 4 elif code_and_modes[0] == 2: params = get_parameters(2, code_and_modes, prog, ip, relative_base) write_loc = get_write_location(3, code_and_modes, prog, ip, relative_base) prog[write_loc] = params[0] * params[1] ip += 4 elif code_and_modes[0] == 3: if len(prog_input) == 0: return (prog, outputs, ip, relative_base) write_loc = get_write_location(1, code_and_modes, prog, ip, relative_base) prog[write_loc] = prog_input.pop(0) ip += 2 elif code_and_modes[0] == 4: params = get_parameters(1, code_and_modes, prog, ip, relative_base) outputs.append(params[0]) ip += 2 elif code_and_modes[0] == 5: params = get_parameters(2, code_and_modes, prog, ip, relative_base) ip = params[1] if params[0] != 0 else ip + 3 elif code_and_modes[0] == 6: params = get_parameters(2, code_and_modes, prog, ip, relative_base) ip = params[1] if params[0] == 0 else ip + 3 elif code_and_modes[0] == 7: params = get_parameters(2, code_and_modes, prog, ip, relative_base) write_loc = get_write_location(3, code_and_modes, prog, ip, relative_base) prog[write_loc] = 1 if params[0] < params[1] else 0 ip += 4 elif code_and_modes[0] == 8: params = get_parameters(2, code_and_modes, prog, ip, relative_base) write_loc = get_write_location(3, code_and_modes, prog, ip, relative_base) prog[write_loc] = 1 if params[0] == params[1] else 0 ip += 4 elif code_and_modes[0] == 9: params = get_parameters(1, code_and_modes, prog, ip, relative_base) relative_base += params[0] ip += 2 return (None, outputs, -1, -1) def get_parameters(num, code_and_modes, prog, ip, relative_base): return [prog[prog[ip+i]] if code_and_modes[i] == 0 else prog[ip+i] if code_and_modes[i] == 1 else prog[relative_base+prog[ip+i]] for i in range(1, num+1)] def get_write_location(write_offset, code_and_modes, prog, ip, relative_base): if code_and_modes[write_offset] == 2: return relative_base+prog[ip+write_offset] else: return prog[ip+write_offset] def get_opcode_and_modes(code): code_str = str(code).rjust(5, '0') return (int(code_str[3:]), int(code_str[2]), int(code_str[1]), int(code_str[0])) def main(): puzzle_input = adventofcode.read_input(17) codes = [int(code) for code in puzzle_input.split(',')] adventofcode.answer(1, 5620, part1(codes)) adventofcode.answer(1, 768115, part2(codes)) if __name__ == "__main__": import doctest doctest.testmod() main()
StarcoderdataPython
4842578
"""Find the minimal frame pointer and stack pointer positions from a C6T VM logfile. This will be the lowest depth of the stack. """ from sys import argv from typing import Optional, Tuple def findmin(log: str, fieldpos: int) -> Optional[int]: """Splits and then finds minimum in given split index fieldpos. """ minval = None for line in log.splitlines(): try: curval = int(line.split()[fieldpos], base=16) if minval is None: minval = curval else: minval = min(curval, minval) except IndexError: continue except ValueError: continue return minval def findmins(log: str) -> Tuple[int]: """Find stack and frame pointer mins. """ fp, sp = findmin(log, 1), findmin(log, 3) if fp is None: fp = -1 if sp is None: sp = -1 return fp, sp if __name__ == "__main__": argv = [None, 'c6t.log'] with open(argv[1], 'r', encoding='utf8') as logfile: fp, sp = findmins(logfile.read()) print("FP:", hex(fp), "SP:", hex(sp))
StarcoderdataPython
3297470
import tweepy from twill_util import Util class Twill(): def __init__(self, consumer_key=None, consumer_secret=None, access_token=None, access_token_secret=None): '''Initialize the tweepy api''' self.util = Util() if not consumer_key: auth_dict = self.util.get_twitter_auth() if not auth_dict: raise ValueError("There is a problem with your twitter credentials") consumer_key = auth_dict['consumer_key'] consumer_secret = auth_dict['consumer_secret'] access_token = auth_dict['access_token'] access_token_secret = auth_dict['access_token_secret'] auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) self.tweepy_api = api
StarcoderdataPython
3362170
from setuptools import setup, find_packages from opensimplex import __version__ setup( name='opensimplex', version=__version__, description='OpenSimplex n-dimensional gradient noise function.', long_description=open('README.rst').read(), keywords='opensimplex simplex noise 2D 3D 4D', url='https://github.com/lmas/opensimplex', download_url='https://github.com/lmas/opensimplex/releases', author='<NAME>', author_email='<EMAIL>', license='MIT', packages=find_packages(), include_package_data=True, zip_safe=False, classifiers=[ # See: http://pypi.python.org/pypi?%3Aaction=list_classifiers 'Development Status :: 4 - Beta', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Scientific/Engineering :: Mathematics', ], )
StarcoderdataPython
185615
from flask import Flask from flask import request from flask import render_template from sassutils import builder from search import search import json app = Flask(__name__) compiled = builder.build_directory( sass_path="static/scss", css_path="static/css", strip_extension=False ) if app.debug or app.env == "development": print("Compiled scss:", compiled) @app.route('/', methods=['GET']) def index(): """ Index Page :return: rendered Page """ query = request.args.get('q') print(query) if query is not None: return search_component(query) else: return render_template('index.html') def search_component(query): """ Index page w/ search results :return: rendered Page """ # text = request.form['search_text'] text = query # !!!!!! # WARNING: no text sanitation done here. Expected to be done in search! # !!!!!! search_results = search(text) json_results = json.loads(search_results) return render_template('index.html', searchResult=json_results, searchComponent=text) if __name__ == "__main__": app.run(debug=True)
StarcoderdataPython
4819469
# coding: utf-8 import datetime from simple_api import db class User(db.Document): username = db.StringField(unique=True, sparse=True, regex=r'^[a-z0-9][a-z0-9\.\-_]*$') email = db.EmailField(max_length=256) created_at = db.DateTimeField(default=datetime.datetime.utcnow) meta = { 'index_background': True, 'indexes': [ {'fields': ['username']}, {'fields': ['email']}, ], }
StarcoderdataPython
168310
<reponame>thatch/nozomi<gh_stars>1-10 """ Nozomi Abstract API Session Module author: <EMAIL> """ from nozomi.data.decodable import Decodable from nozomi.security.agent import Agent from nozomi.ancillary.immutable import Immutable from nozomi.security.perspective import Perspective from typing import TypeVar T = TypeVar('T', bound='AbstractSession') class AbstractSession(Decodable, Agent): session_id: str = NotImplemented session_key: str = NotImplemented agent: Agent = NotImplemented perspective: Perspective = NotImplemented api_key: str = NotImplemented agent_requires_confirmation: bool = NotImplemented agent_confirmed: bool = NotImplemented agent_id = Immutable(lambda s: s._agent.agent_id)
StarcoderdataPython
3309101
<reponame>shish/sikulpy<gh_stars>10-100 """ http://doc.sikuli.org/keys.html """ import autopy3 # EXT class Key(object): ENTER = int(autopy3.key.K_RETURN) UP = int(autopy3.key.K_UP) DOWN = int(autopy3.key.K_DOWN) LEFT = int(autopy3.key.K_LEFT) RIGHT = int(autopy3.key.K_RIGHT) BACKSPACE = int(autopy3.key.K_BACKSPACE) TAB = "\t" class KeyModifier(object): # these differ based on platform CTRL = autopy3.key.MOD_CONTROL SHIFT = autopy3.key.MOD_SHIFT ALT = autopy3.key.MOD_ALT META = autopy3.key.MOD_META CMD = META WIN = META class Mouse(object): LEFT = 1 RIGHT = 2 MIDDLE = 3
StarcoderdataPython
90342
<reponame>mentix02/djodo<filename>task/urls.py from django.urls import path, register_converter from task import views, converters register_converter(converters.DateConverter, 'date') app_name = 'task' urlpatterns = [ path('', views.TaskListView.as_view(), name='index'), path('create/', views.TaskCreateView.as_view(), name='create'), path('delete/<int:pk>/', views.TaskDeleteView.as_view(), name='delete'), path('toggle/<int:pk>/', views.ToggleTaskView.as_view(), name='toggle'), path('update/<int:pk>/', views.TaskUpdateView.as_view(), name='update'), path('date/<date:date>/', views.DateTaskListView.as_view(), name='date'), path( 'delete/completed/', views.DeleteCompletedTaskView.as_view(), name='delete-completed', ), ]
StarcoderdataPython
4822854
<reponame>radluz/fakear import pytest import yaml import os from fakear import Fakear, FakearFileNotFound from voluptuous import Error as VoluptuousError class TestErrorsFakear(object): def test_engine_multiple_args_one_error(self): with pytest.raises(VoluptuousError): Fakear(cfg="tests/cfgs/simple_cmd_mult_args_one_error.yml") def test_engine_YAMLError(self): with pytest.raises(yaml.YAMLError): Fakear(rawdata="unbalanced blackets: ][") def test_engine_VoluptuousError(self): with pytest.raises(VoluptuousError): Fakear(rawdata="- command: echo") def test_fuzzy_text(self): with pytest.raises(VoluptuousError): Fakear(cfg="tests/cfgs/fuzzy_text.yml") def test_file_not_found(self): with pytest.raises(FakearFileNotFound): with Fakear(cfg="tests/cfgs/not_found.yml"): pass
StarcoderdataPython
1610779
<filename>RockPaperScissors.py import pygame, random WINDOW_WIDTH = 800 WINDOW_HEIGHT = 600 pygame.init() screen = pygame.display.set_mode([WINDOW_WIDTH , WINDOW_HEIGHT]) pygame.display.set_caption('Smileeeeeeeeeeeeeeeeeee') keep_going = True pic = pygame.image.load('./resources/ball.bmp') colorkey = pic.get_at((0, 0)) pic.set_colorkey(colorkey) picx = 0 picy = 0 BLACK = (0, 0, 0) WHITE = (255, 255, 255) timer = pygame.time.Clock() speedx = 5 speedy = 5 PADDLE_WIDTH = 50 PADDLE_HEIGHT = 25 paddlex = 300 paddley = 550 picw = 100 pich = 100 points = 0 lives = 5 font = pygame.font.SysFont("Times", 24) pygame.mixer.init() pop = pygame.mixer.Sound('./resources/pop.wav') def check_exit(): global event, keep_going for event in pygame.event.get(): if event.type == pygame.QUIT: keep_going = False def update_direction(speedx, speedy): if picx <= 0 or picx + pic.get_width() >= WINDOW_WIDTH: speedx = -speedx if picy <= 0: speedy = -speedy return speedx, speedy def lose_life_update(speedy, lives): if picy >= WINDOW_HEIGHT - pic.get_height(): lives -= 1 speedy = -speedy return lives, speedy def redraw_screen(): screen.fill(BLACK) screen.blit(pic, (picx, picy)) def draw_paddle(): paddlex = pygame.mouse.get_pos()[0] paddlex -= PADDLE_WIDTH / 2 pygame.draw.rect(screen, WHITE, (paddlex, paddley, PADDLE_WIDTH, PADDLE_HEIGHT)) return paddlex def update_score(points, speedy): if picy + pic.get_height() >= paddley and picy + pic.get_height() <= paddley + PADDLE_HEIGHT and speedy > 0: if picx + picw / 2 >= paddlex and picx + picw / 2 <= paddlex + PADDLE_WIDTH: points += 1 speedy = -speedy pop.play() return points, speedy def draw_game_over_message(speedx, speedy): notification = 'Lives' + str(lives) + 'Points : ' + str(points) if lives < 1: speedx = speedy = 0 notification = "Game Over. Your score was: " + str(points) notification += ". Press F1 to play again. " text = font.render(notification, True, WHITE) text_rect = text.get_rect() text_rect.centerx = screen.get_rect().centerx text_rect.y = 10 screen.blit(text, text_rect) pygame.display.update() return speedx, speedy def check_for_press_key(keep_going): global points, lives, picx, picy, speedx, speedy timer.tick(60) if event.type == pygame.KEYDOWN: if event.key == pygame.K_F1: points = 0 lives = 5 picx = 0 picy = 0 speedx = 5 speedy = 5 if event.key == pygame.K_ESCAPE: keep_going = False return keep_going while keep_going: check_exit() picx += speedx picy += speedy speedx, speedy = update_direction(speedx, speedy) lives, speedy = lose_life_update(speedy, lives) redraw_screen() paddlex = draw_paddle() points, speedy = update_score(points, speedy) speedx, speedy = draw_game_over_message(speedx, speedy) keep_going = check_for_press_key(keep_going) pygame.quit()
StarcoderdataPython
1625603
from flask import jsonify, Response from backend.api.handlers.decorators import api_authenticated, validate_team_key from backend.common.consts.api_version import ApiMajorVersion from backend.common.decorators import cached_public from backend.common.models.keys import TeamKey from backend.common.queries.team_query import TeamListQuery, TeamQuery @validate_team_key @api_authenticated @cached_public def team(team_key: TeamKey) -> Response: return jsonify(TeamQuery(team_key=team_key).fetch_dict(ApiMajorVersion.API_V3)) @api_authenticated @cached_public def team_list(page_num: int) -> Response: return jsonify(TeamListQuery(page=page_num).fetch_dict(ApiMajorVersion.API_V3))
StarcoderdataPython
3281117
<gh_stars>1-10 import multiprocessing import os import re from utils.Log import Log import requests import threadpool from net.NetUtils import EasyHttp from utils.sqllite_handle import Sqlite requests.packages.urllib3.disable_warnings() address = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) + '/' """ 66ip.cn 无效 data5u.com xicidaili.com goubanjia.com xdaili.cn kuaidaili.com cn-proxy.com proxy-list.org www.mimiip.com to do """ class GetFreeProxy(object): @staticmethod def freeProxySecond(area=33, page=1): """ 代理66 http://www.66ip.cn/ :param area: 抓取代理页数,page=1北京代理页,page=2上海代理页...... :param page: 翻页 :return: """ area = 33 if area > 33 else area for area_index in range(1, area + 1): for i in range(1, page + 1): url = "http://www.66ip.cn/areaindex_{}/{}.html".format(area_index, i) html_tree = EasyHttp.getHtmlTree(url) if not html_tree: Log.w('http://www.66ip.cn无效') return [] tr_list = html_tree.xpath("//*[@id='footer']/div/table/tr[position()>1]") if len(tr_list) == 0: continue for tr in tr_list: yield tr.xpath("./td[1]/text()")[0] + ":" + tr.xpath("./td[2]/text()")[0] break @staticmethod def freeProxyFourth(page_count=2): """ 西刺代理 http://www.xicidaili.com :return: """ url_list = [ 'http://www.xicidaili.com/nn/', # 高匿 'http://www.xicidaili.com/nt/', # 透明 ] for each_url in url_list: for i in range(1, page_count + 1): page_url = each_url + str(i) tree = EasyHttp.getHtmlTree(page_url) if not tree: Log.w('http://www.xicidaili.com无效') return [] proxy_list = tree.xpath('.//table[@id="ip_list"]//tr[position()>1]') for proxy in proxy_list: try: yield ':'.join(proxy.xpath('./td/text()')[0:2]) except Exception as e: pass @staticmethod def freeProxyFifth(): """ guobanjia http://www.goubanjia.com/ :return: """ url = "http://www.goubanjia.com/" tree = EasyHttp.getHtmlTree(url) if not tree: Log.w('http://www.goubanjia.com无效') return [] proxy_list = tree.xpath('//td[@class="ip"]') # 此网站有隐藏的数字干扰,或抓取到多余的数字或.符号 # 需要过滤掉<p style="display:none;">的内容 xpath_str = """.//*[not(contains(@style, 'display: none')) and not(contains(@style, 'display:none')) and not(contains(@class, 'port')) ]/text() """ for each_proxy in proxy_list: try: # :符号裸放在td下,其他放在div span p中,先分割找出ip,再找port ip_addr = ''.join(each_proxy.xpath(xpath_str)) port = each_proxy.xpath(".//span[contains(@class, 'port')]/text()")[0] yield '{}:{}'.format(ip_addr, port) except Exception as e: pass @staticmethod def freeProxySixth(): """ 讯代理 http://www.xdaili.cn/ :return: """ url = 'http://www.xdaili.cn/ipagent/freeip/getFreeIps?page=1&rows=10' try: res = EasyHttp.get(url, timeout=10).json() if not res or not res['RESULT'] or not res['RESULT']['rows']: Log.w('http://www.goubanjia.com无效') return [] for row in res['RESULT']['rows']: yield '{}:{}'.format(row['ip'], row['port']) except Exception as e: pass @staticmethod def freeProxySeventh(): """ 快代理 https://www.kuaidaili.com """ url_list = [ 'https://www.kuaidaili.com/free/inha/{page}/', 'https://www.kuaidaili.com/free/intr/{page}/' ] for url in url_list: for page in range(1, 2): page_url = url.format(page=page) tree = EasyHttp.getHtmlTree(page_url) if tree is None: Log.w('http://www.kuaidaili.com无效') return [] proxy_list = tree.xpath('.//table//tr') for tr in proxy_list[1:]: yield ':'.join(tr.xpath('./td/text()')[0:2]) @staticmethod def freeProxyEight(): """ 秘密代理 http://www.mimiip.com """ url_gngao = ['http://www.mimiip.com/gngao/%s' % n for n in range(1, 2)] # 国内高匿 url_gnpu = ['http://www.mimiip.com/gnpu/%s' % n for n in range(1, 2)] # 国内普匿 url_gntou = ['http://www.mimiip.com/gntou/%s' % n for n in range(1, 2)] # 国内透明 url_list = url_gngao + url_gnpu + url_gntou for url in url_list: r = EasyHttp.get(url, timeout=10) if not r: Log.w('http://www.mimiip.com无效') return [] proxies = re.findall(r'<td>(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})</td>[\w\W].*<td>(\d+)</td>', r) for proxy in proxies: yield ':'.join(proxy) @staticmethod def freeProxyNinth(): """ 码农代理 https://proxy.coderbusy.com/ :return: """ urls = ['https://proxy.coderbusy.com/classical/country/cn.aspx?page=1'] for url in urls: r = EasyHttp.get(url, timeout=10) if not r: Log.w('http://proxy.coderbusy.com无效') return [] proxies = re.findall('data-ip="(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})".+?>(\d+)</td>', r) for proxy in proxies: yield ':'.join(proxy) @staticmethod def freeProxyTen(): """ 云代理 http://www.ip3366.net/free/ :return: """ urls = ['http://www.ip3366.net/free/'] for url in urls: r = EasyHttp.get(url, timeout=10) if not r: Log.w('http://www.ip3366.com无效') return [] proxies = re.findall(r'<td>(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})</td>[\s\S]*?<td>(\d+)</td>', r) for proxy in proxies: yield ":".join(proxy) @staticmethod def freeProxyEleven(): """ IP海 http://www.iphai.com/free/ng :return: """ urls = [ 'http://www.iphai.com/free/ng', 'http://www.iphai.com/free/np', 'http://www.iphai.com/free/wg', 'http://www.iphai.com/free/wp' ] for url in urls: r = EasyHttp.get(url, timeout=10) if not r: Log.w('http://www.iphai.com无效') return [] proxies = re.findall(r'<td>\s*?(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})\s*?</td>[\s\S]*?<td>\s*?(\d+)\s*?</td>', r) for proxy in proxies: yield ":".join(proxy) @staticmethod def freeProxyTwelve(page_count=2): """ guobanjia http://ip.jiangxianli.com/?page= 免费代理库 超多量 :return: """ for i in range(1, page_count + 1): url = 'http://ip.jiangxianli.com/?page={}'.format(i) html_tree = EasyHttp.getHtmlTree(url) if html_tree is None: Log.w('http://ip.jiangxianli.com无效') return [] tr_list = html_tree.xpath("/html/body/div[1]/div/div[1]/div[2]/table/tbody/tr") if len(tr_list) == 0: continue for tr in tr_list: yield tr.xpath("./td[2]/text()")[0] + ":" + tr.xpath("./td[3]/text()")[0] @staticmethod def freeProxyWallFirst(): """ 墙外网站 cn-proxy :return: """ urls = ['http://cn-proxy.com/', 'http://cn-proxy.com/archives/218'] for url in urls: r = EasyHttp.get(url, timeout=10) if not r: Log.w('http://cn-proxy.com无效') return [] proxies = re.findall(r'<td>(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})</td>[\w\W]<td>(\d+)</td>', ) for proxy in proxies: yield ':'.join(proxy) @staticmethod def freeProxyWallSecond(): """ https://proxy-list.org/english/index.php :return: """ urls = ['https://proxy-list.org/english/index.php?p=%s' % n for n in range(1, 10)] import base64 for url in urls: r = EasyHttp.get(url, timeout=10) if not r: Log.w('http://proxy-list.org/english/index.php无效') return [] proxies = re.findall(r"Proxy\('(.*?)'\)", r) for proxy in proxies: yield base64.b64decode(proxy).decode() @staticmethod def freeProxyWallThird(): urls = ['https://list.proxylistplus.com/Fresh-HTTP-Proxy-List-1'] for url in urls: r = EasyHttp.get(url, timeout=10) if not r: Log.w('http://list.proxylistplus.com无效') return [] proxies = re.findall(r'<td>(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})</td>[\s\S]*?<td>(\d+)</td>', r) for proxy in proxies: yield ':'.join(proxy) def verifyProxyFormat(proxy): """ 检查代理格式 :param proxy: :return: """ import re verify_regex = r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}:\d{1,5}" _proxy = re.findall(verify_regex, proxy) return True if len(_proxy) == 1 and _proxy[0] == proxy else False @staticmethod def validUsefulProxy(params): """ 检验代理是否可用 """ marks = params.split('&&') if isinstance(marks[1], bytes): marks[1] = marks[1].decode('utf8') proxies = {"http": "http://{proxy}".format(proxy=marks[1])} flag = None try: # 超过20秒的代理就不要了 r = requests.get('http://httpbin.org/ip', proxies=proxies, timeout=10, verify=False) if r.status_code == 200 and r.json().get("origin"): # logger.info('%s is ok' % proxy) flag = True except Exception as e: flag = False if not flag: sqlite = Sqlite(address + 'ip.db') sqlite.update_data('delete * from ip_house where id = {}'.format(marks[0])) @staticmethod def getAllProxy(pool_size=10,thread_or_process=True,is_refash=True): Log.v('正在更新ip池,请稍后...') # address = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) + '/' if is_refash: proxys = GetFreeProxy.get_list_proxys() sqlite = Sqlite(address + 'ip.db') sqlite.update_data('DELETE FROM ip_house') sqlite = Sqlite(address + 'ip.db') for i in range(len(proxys)): if proxys[i] and GetFreeProxy.verifyProxyFormat(proxys[i]): sqlite.cursor.execute("INSERT INTO ip_house VALUES (?,?,?);", [i+1,proxys[i],'true']) sqlite.conn.commit() sqlite.close_conn() else: sqlite = Sqlite(address + 'ip.db') results = sqlite.query_data('select count(proxy_adress) from ip_house') if int(results[0][0]) == 0: proxys = GetFreeProxy.get_list_proxys() sqlite = Sqlite(address + 'ip.db') for i in range(len(proxys)): if proxys[i] and GetFreeProxy.verifyProxyFormat(proxys[i]): sqlite.cursor.execute("INSERT INTO ip_house VALUES (?,?,?);", [i + 1, proxys[i], 'true']) sqlite.conn.commit() sqlite.close_conn() sqlite = Sqlite(address + 'ip.db') results = sqlite.query_data('select id,proxy_adress from ip_house') params = [] for result in results: param = str(result[0]) + '&&' + result[1] params.append(param) Log.v('正在检查ip可用性...') if thread_or_process: GetFreeProxy.exec_multi_threading(pool_size,params) else: GetFreeProxy.exec_multi_process(pool_size,params) Log.v('更新完成') @staticmethod def get_list_proxys(): proxys = [] proxys.extend(GetFreeProxy.freeProxySecond()) proxys.extend(GetFreeProxy.freeProxyFourth()) proxys.extend(GetFreeProxy.freeProxyFifth()) proxys.extend(GetFreeProxy.freeProxySixth()) proxys.extend(GetFreeProxy.freeProxySeventh()) proxys.extend(GetFreeProxy.freeProxyEight()) proxys.extend(GetFreeProxy.freeProxyNinth()) proxys.extend(GetFreeProxy.freeProxyTen()) proxys.extend(GetFreeProxy.freeProxyEleven()) proxys.extend(GetFreeProxy.freeProxyTwelve()) proxys.extend(GetFreeProxy.freeProxyWallFirst()) proxys.extend(GetFreeProxy.freeProxyWallSecond()) proxys.extend(GetFreeProxy.freeProxyWallThird()) return proxys @staticmethod def exec_multi_process(size, proxys): pool = multiprocessing.Pool(processes=size) for proxy in proxys: pool.apply_async(GetFreeProxy.validUsefulProxy, (proxy,)) pool.close() pool.join() @staticmethod def exec_multi_threading(size, proxys): pool = threadpool.ThreadPool(size) reqs = threadpool.makeRequests(GetFreeProxy.validUsefulProxy, proxys) [pool.putRequest(req) for req in reqs] pool.wait() if __name__ == '__main__': GetFreeProxy.getAllProxy() pass
StarcoderdataPython
4841717
<reponame>csh-tech/horovod<filename>horovod/torch/sync_batch_norm.py # Based on https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/_functions.py # Modifications copyright 2020 Maka Autonomous Robotic Systems # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from horovod.torch.mpi_ops import allgather_async, allreduce_async, Sum, size, synchronize from distutils.version import LooseVersion import torch from torch.autograd.function import Function import torch.nn.functional as F from torch.nn.modules.batchnorm import _BatchNorm # Backward compat for old PyTorch if not hasattr(torch.jit, 'unused'): torch.jit.unused = lambda x: x _SYNC_BN_V2 = LooseVersion(torch.__version__) >= LooseVersion('1.6.0') class SyncBatchNorm(_BatchNorm): """ Applies synchronous version of N-dimensional BatchNorm. In this version, normalization parameters are synchronized across workers during forward pass. This is very useful in situations where each GPU can fit a very small number of examples. See https://pytorch.org/docs/stable/nn.html#batchnorm2d for more details about BatchNorm. Arguments: num_features: number of channels `C` from the shape `(N, C, ...)` eps: a value added to the denominator for numerical stability. Default: 1e-5 momentum: the value used for the running_mean and running_var computation. Can be set to `None` for cumulative moving average (i.e. simple average). Default: 0.1 affine: a boolean value that when set to `True`, this module has learnable affine parameters. Default: `True` track_running_stats: a boolean value that when set to `True`, this module tracks the running mean and variance, and when set to `False`, this module does not track such statistics and always uses batch statistics in both training and eval modes. Default: `True` NOTE: only GPU input tensors are supported in the training mode. """ def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True): super().__init__(num_features, eps, momentum, affine, track_running_stats) def _check_input_dim(self, input): if input.dim() < 2: raise ValueError('expected at least 2D input (got {}D input)'.format(input.dim())) def _run_bn(self, input): return F.batch_norm( input, self.running_mean, self.running_var, self.weight, self.bias, self.training or not self.track_running_stats, self.momentum, self.eps) @torch.jit.unused def _maybe_run_sync_bn(self, input): if size() == 1: return self._run_bn(input) return _SyncBatchNorm.apply( input, self.weight, self.bias, self.running_mean, self.running_var, self.eps, self.momentum) def forward(self, input): # currently only GPU input is supported by underlying kernel from PyTorch if not input.is_cuda: raise ValueError('SyncBatchNorm expected input tensor to be on GPU') self._check_input_dim(input) if self.training and self.track_running_stats: self.num_batches_tracked = self.num_batches_tracked + 1 if not self.training and self.track_running_stats: return self._run_bn(input) else: return self._maybe_run_sync_bn(input) class _SyncBatchNorm(Function): @staticmethod def forward(self, input, weight, bias, running_mean, running_var, eps, momentum): input = input.contiguous() size = input.numel() // input.size(1) count = torch.tensor([size]) # calculate mean/invstd for input. mean, invstd = torch.batch_norm_stats(input, eps) count_handle = allgather_async(count.unsqueeze(0), name='sync_batch_norm.count') mean_handle = allgather_async(mean.unsqueeze(0), name='sync_batch_norm.mean') invstd_handle = allgather_async(invstd.unsqueeze(0), name='sync_batch_norm.invstd') # wait on the async communication to finish count_all = synchronize(count_handle) mean_all = synchronize(mean_handle) invstd_all = synchronize(invstd_handle) if _SYNC_BN_V2: counts_for_bngswc = count_all.view(-1).float().to(input.device) else: # backwards compatibility counts_for_bngswc = count_all.view(-1).tolist() # calculate global mean & invstd mean, invstd = torch.batch_norm_gather_stats_with_counts( input, mean_all, invstd_all, running_mean, running_var, momentum, eps, counts_for_bngswc ) self.save_for_backward(input, weight, mean, invstd, count_all) # apply element-wise normalization return torch.batch_norm_elemt(input, weight, bias, mean, invstd, eps) @staticmethod def backward(self, grad_output): grad_output = grad_output.contiguous() saved_input, weight, mean, invstd, count_all = self.saved_tensors need_input_grad, need_weight_grad, need_bias_grad = self.needs_input_grad[0:3] # calculate local stats as well as grad_weight / grad_bias sum_dy, sum_dy_xmu, grad_weight, grad_bias = torch.batch_norm_backward_reduce( grad_output, saved_input, mean, invstd, weight, need_input_grad, need_weight_grad, need_bias_grad ) if need_input_grad: # synchronizing stats used to calculate input gradient. sum_dy_handle = allreduce_async(sum_dy, op=Sum, name='sync_batch_norm.sum_dy') sum_dy_xmu_handle = allreduce_async(sum_dy_xmu, op=Sum, name='sync_batch_norm.sum_dy_xmu') # wait on the async communication to finish sum_dy = synchronize(sum_dy_handle) sum_dy_xmu = synchronize(sum_dy_xmu_handle) if _SYNC_BN_V2: mean_dy = sum_dy / count_all.sum() mean_dy_xmu = sum_dy_xmu / count_all.sum() else: # before 1.6.0, sum_dy was sum of means from every worker, so we just # need to divide it by number of workers mean_dy = sum_dy / size() mean_dy_xmu = sum_dy_xmu / size() # backward pass for gradient calculation grad_input = torch.batch_norm_backward_elemt( grad_output, saved_input, mean, invstd, weight, mean_dy, mean_dy_xmu ) else: grad_input = None # synchronizing of grad_weight / grad_bias is not needed as distributed # training would handle all reduce. if weight is None or not need_weight_grad: grad_weight = None if weight is None or not need_bias_grad: grad_bias = None return grad_input, grad_weight, grad_bias, None, None, None, None, None, None
StarcoderdataPython
105308
""" time: c*26 + p space: 26 + 26 (1) """ class Solution: def findAnagrams(self, s: str, p: str) -> List[int]: cntP = collections.Counter(p) cntS = collections.Counter() P = len(p) S = len(s) if P > S: return [] ans = [] for i, c in enumerate(s): cntS[c] += 1 if i >= P: if cntS[s[i-P]] > 1: cntS[s[i-P]] -= 1 else: del cntS[s[i-P]] if cntS == cntP: ans.append(i-(P-1)) return ans
StarcoderdataPython
1777405
<gh_stars>1-10 # Choregraphe simplified export in Python. from naoqi import ALProxy names = list() times = list() keys = list() names.append("HeadPitch") times.append([0.8, 1.56, 2.24, 2.8, 3.48, 4.6]) keys.append([0.29602, -0.170316, -0.340591, -0.0598679, -0.193327, -0.01078]) names.append("HeadYaw") times.append([0.8, 1.56, 2.24, 2.8, 3.48, 4.6]) keys.append([-0.135034, -0.351328, -0.415757, -0.418823, -0.520068, -0.375872]) names.append("LElbowRoll") times.append([0.72, 1.48, 2.16, 2.72, 3.4, 4.52]) keys.append([-1.37902, -1.29005, -1.18267, -1.24863, -1.3192, -1.18421]) names.append("LElbowYaw") times.append([0.72, 1.48, 2.16, 2.72, 3.4, 4.52]) keys.append([-0.803859, -0.691876, -0.679603, -0.610574, -0.753235, -0.6704]) names.append("LHand") times.append([1.48, 4.52]) keys.append([0.238207, 0.240025]) names.append("LShoulderPitch") times.append([0.72, 1.48, 2.16, 2.72, 3.4, 4.52]) keys.append([1.11824, 0.928028, 0.9403, 0.862065, 0.897349, 0.842125]) names.append("LShoulderRoll") times.append([0.72, 1.48, 2.16, 2.72, 3.4, 4.52]) keys.append([0.363515, 0.226991, 0.20398, 0.217786, 0.248467, 0.226991]) names.append("LWristYaw") times.append([1.48, 4.52]) keys.append([0.147222, 0.11961]) names.append("RElbowRoll") times.append([0.64, 1.4, 1.68, 2.08, 2.4, 2.64, 3.04, 3.32, 3.72, 4.44]) keys.append([1.38524, 0.242414, 0.349066, 0.934249, 0.680678, 0.191986, 0.261799, 0.707216, 1.01927, 1.26559]) names.append("RElbowYaw") times.append([0.64, 1.4, 2.08, 2.64, 3.32, 3.72, 4.44]) keys.append([-0.312978, 0.564471, 0.391128, 0.348176, 0.381923, 0.977384, 0.826783]) names.append("RHand") times.append([1.4, 3.32, 4.44]) keys.append([0.853478, 0.854933, 0.425116]) names.append("RShoulderPitch") times.append([0.64, 1.4, 2.08, 2.64, 3.32, 4.44]) keys.append([0.247016, -1.17193, -1.0891, -1.26091, -1.14892, 1.02015]) names.append("RShoulderRoll") times.append([0.64, 1.4, 2.08, 2.64, 3.32, 4.44]) keys.append([-0.242414, -0.954191, -0.460242, -0.960325, -0.328317, -0.250085]) names.append("RWristYaw") times.append([1.4, 3.32, 4.44]) keys.append([-0.312978, -0.303775, 0.182504]) def main(robotIP, port): try: # uncomment the following line and modify the IP if you use this script outside Choregraphe. motion = ALProxy("ALMotion", robotIP, port) #motion = ALProxy("ALMotion") motion.angleInterpolation(names, keys, times, True) except BaseException, err: print err
StarcoderdataPython
1643707
<reponame>realvitya/fmcapi from fmcapi.api_objects.apiclasstemplate import APIClassTemplate from fmcapi.api_objects.helper_functions import * from .networkaddresses import NetworkAddresses import logging import warnings class NetworkGroups(APIClassTemplate): """ The NetworkGroups Object in the FMC. """ VALID_JSON_DATA = ["id", "name", "type", "objects", "literals"] VALID_FOR_KWARGS = VALID_JSON_DATA + [] URL_SUFFIX = "/object/networkgroups" # Technically you can have objects OR literals but I'm not set up for "OR" logic, yet. REQUIRED_FOR_POST = ["name"] def __init__(self, fmc, **kwargs): super().__init__(fmc, **kwargs) logging.debug("In __init__() for NetworkGroups class.") self.parse_kwargs(**kwargs) self.type = "NetworkGroup" def named_networks(self, action, name=""): logging.debug("In named_networks() for NetworkGroups class.") if action == "add": net1 = NetworkAddresses(fmc=self.fmc) response = net1.get() if "items" in response: new_net = None for item in response["items"]: if item["name"] == name: new_net = { "name": item["name"], "id": item["id"], "type": item["type"], } break if new_net is None: logging.warning( f'Network "{name}" is not found in FMC. Cannot add to NetworkGroups.' ) else: if "objects" in self.__dict__: duplicate = False for obj in self.objects: if obj["name"] == new_net["name"]: duplicate = True break if not duplicate: self.objects.append(new_net) logging.info(f'Adding "{name}" to NetworkGroups.') else: self.objects = [new_net] logging.info(f'Adding "{name}" to NetworkGroups.') if action == "addgroup": netg1 = NetworkGroups(fmc=self.fmc) response = netg1.get() if "items" in response: new_net = None for item in response["items"]: if item["name"] == name: new_net = { "name": item["name"], "id": item["id"], "type": item["type"], } break if new_net is None: logging.warning( f'Network "{name}" is not found in FMC. Cannot add to NetworkGroups.' ) else: if "objects" in self.__dict__: duplicate = False for obj in self.objects: if obj["name"] == new_net["name"]: duplicate = True break if not duplicate: self.objects.append(new_net) logging.info(f'Adding "{name}" to NetworkGroups.') else: self.objects = [new_net] logging.info(f'Adding "{name}" to NetworkGroups.') elif action == "remove": if "objects" in self.__dict__: objects_list = [] for obj in self.objects: if obj["name"] != name: objects_list.append(obj) self.objects = objects_list logging.info(f'Removed "{name}" from NetworkGroups.') else: logging.info( "This NetworkGroups has no named_networks. Nothing to remove." ) elif action == "clear": if "objects" in self.__dict__: del self.objects logging.info("All named_networks removed from this NetworkGroups.") def unnamed_networks(self, action, value=""): logging.debug("In unnamed_networks() for NetworkGroups class.") new_literal = [] if action == "add": if value == "": logging.error( "Value assignment required to add unamed_network to NetworkGroups." ) return literal_type = get_networkaddress_type(value=value) if literal_type == "host" or literal_type == "network": new_literal = {"value": value, "type": literal_type} elif literal_type == "range": logging.error( "Ranges are not supported as unnamed_networks in a NetworkGroups." ) else: logging.error( f'Value "{value}" provided is not in a recognizable format.' ) return if "literals" in self.__dict__: duplicate = False for obj in self.literals: if obj["value"] == new_literal["value"]: duplicate = True break if not duplicate: self.literals.append(new_literal) logging.info(f'Adding "{value}" to NetworkGroup.') else: self.literals = [new_literal] logging.info(f'Adding "{value}" to NetworkGroup.') elif action == "remove": if "literals" in self.__dict__: literals_list = [] for obj in self.literals: if obj["value"] != value: literals_list.append(obj) self.literals = literals_list logging.info(f'Removed "{value}" from NetworkGroup.') else: logging.info( "This NetworkGroups has no unnamed_networks. Nothing to remove." ) elif action == "clear": if "literals" in self.__dict__: del self.literals logging.info("All unnamed_networks removed from this NetworkGroups.") class NetworkGroup(NetworkGroups): """Dispose of this Class after 20210101.""" def __init__(self, fmc, **kwargs): warnings.resetwarnings() warnings.warn( "Deprecated: NetworkGroup() should be called via NetworkGroups()." ) super().__init__(fmc, **kwargs)
StarcoderdataPython
4809055
<gh_stars>1000+ # ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ try: from unittest.mock import Mock, patch except ImportError: # python < 3.3 from mock import Mock, patch # type: ignore from azure.identity._constants import EnvironmentVariables, KnownAuthorities from azure.identity._internal import get_default_authority, normalize_authority import pytest def test_get_default_authority(): """get_default_authority should return public cloud or the value of $AZURE_AUTHORITY_HOST, with 'https' scheme""" # default scheme is https for authority in ("localhost", "https://localhost"): with patch.dict("os.environ", {EnvironmentVariables.AZURE_AUTHORITY_HOST: authority}, clear=True): assert get_default_authority() == "https://localhost" # default to public cloud for environ in ({}, {EnvironmentVariables.AZURE_AUTHORITY_HOST: KnownAuthorities.AZURE_PUBLIC_CLOUD}): with patch.dict("os.environ", environ, clear=True): assert get_default_authority() == "https://" + KnownAuthorities.AZURE_PUBLIC_CLOUD # require https with pytest.raises(ValueError): with patch.dict("os.environ", {EnvironmentVariables.AZURE_AUTHORITY_HOST: "http://localhost"}, clear=True): get_default_authority() def test_normalize_authority(): """normalize_authority should return a URI with a scheme and no trailing spaces or forward slashes""" localhost = "localhost" localhost_tls = "https://" + localhost # accept https if specified, default to it when no scheme specified for uri in (localhost, localhost_tls): assert normalize_authority(uri) == localhost_tls # remove trailing characters for string in ("/", " ", "/ ", " /"): assert normalize_authority(uri + string) == localhost_tls # raise for other schemes for scheme in ("http", "file"): with pytest.raises(ValueError): normalize_authority(scheme + "://localhost")
StarcoderdataPython
4842306
import decorator import inspect import time import zope.testing.cleanup _caches = {} _timeouts = {} def collect(): """Clear cache of results which have timed out""" for func in _caches: for key in list(_caches[func]): if (time.time() - _caches[func][key][1] >= _timeouts[func]): _caches[func].pop(key, None) def clear(): _caches.clear() _timeouts.clear() zope.testing.cleanup.addCleanUp(clear) class do_not_cache_and_return: """Class which may be returned by a memoized method""" def __init__(self, value): self.value = value def __call__(self): return self.value def Memoize(timeout, ignore_self=False, _caches=_caches, _timeouts=_timeouts): """Memoize With Timeout timeout ... in seconds Based on http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/325905 """ @decorator.decorator def func(f, *args, **kwargs): cache = _caches.setdefault(f, {}) _timeouts.setdefault(f, timeout) cache_args = args if ignore_self: parameters = inspect.signature(f).parameters if parameters and next(iter(parameters)) == 'self': cache_args = args[1:] kw = list(kwargs.items()) kw.sort() key = (cache_args, tuple(kw)) try: hash(key) except TypeError: # Not hashable. key = None try: value, cached_time = cache[key] if (time.time() - cached_time) > timeout: raise KeyError except KeyError: value = f(*args, **kwargs) if isinstance(value, do_not_cache_and_return): return value() if key is not None: cache[key] = (value, time.time()) return value return func def memoize_on_attribute(attribute_name, timeout, ignore_self=False): @decorator.decorator def func(function, *args, **kw): try: self = args[0] cache = getattr(self, attribute_name) except (IndexError, AttributeError): raise TypeError( "gocept.cache.method.memoize_on_attribute could" + " not retrieve cache attribute '%s' for function %r" % (attribute_name, function)) return Memoize(timeout, _caches=cache, ignore_self=ignore_self)(function)(*args, **kw) return func
StarcoderdataPython
1606434
import numpy as np def generate_noise(size, beta): white_noise = np.random.randn(*size) white_noise_fft = np.fft.fftn(white_noise) ndims = len(size) freq_along_axis = [] for axis in range(ndims): freq_along_axis.append(np.fft.fftfreq(size[axis])) grids = np.meshgrid(*freq_along_axis) sum_of_squares = 0 for grid in grids: sum_of_squares += grid**2 freqs = np.sqrt(sum_of_squares) origin = (0,) * ndims freqs[origin] += 1e-8 # DC component filter = 1/np.power(freqs, beta) colored_fft = white_noise_fft * filter.T colored_noise = np.fft.ifftn(colored_fft) return np.abs(colored_noise)
StarcoderdataPython
1672995
# Generated by Django 3.0.5 on 2020-12-23 15:51 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('shows', '0001_initial'), ] operations = [ migrations.AddField( model_name='show', name='updated_date', field=models.DateTimeField(auto_now=True), ), ]
StarcoderdataPython
181296
#removes small images (<80x80) and resize all remaining images to 80x80 import os import cv2 sourceDir = 'D:\MER\Dataset\Expressions\\3. Face_crop\\Surprise' # Source folder targetDir = 'D:\MER\Dataset\Expressions\\4. small_image_removed_resized\\Surprise' # Target Folder imageCount = 0 for sRoot,sDirs,sFiles in os.walk(sourceDir): break for sourceName in sFiles: sourceFile = sourceDir+'\\'+sourceName image = cv2.imread(sourceFile) if image.shape[0] >= 80: imageCount+=1 fileName = 'surprise'+str(imageCount)+'.jpg' #change file name here imageResize = cv2.resize(image,(80,80)) # resize to 80x80 pixel cv2.imwrite(targetDir+'\\'+fileName,imageResize)
StarcoderdataPython
3230319
<gh_stars>1-10 # Generated by Django 3.0.6 on 2021-03-01 09:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("backend", "0004_pointsgained_comment"), ] operations = [ migrations.AddField( model_name="community", name="colour", field=models.CharField(blank=True, max_length=255, null=True), ), migrations.AddField( model_name="user", name="description", field=models.TextField(blank=True, null=True), ), ]
StarcoderdataPython
86116
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('adverts', '0006_auto_20150303_0009'), ] operations = [ migrations.AlterField( model_name='adchannel', name='ad_formats', field=models.ManyToManyField( to='adverts.AdFormat', help_text='size and shape of ad' ), ), migrations.AlterField( model_name='advert', name='ad_channels', field=models.ManyToManyField( blank=True, to='adverts.AdChannel', help_text='Where to show the ad' ), ), ]
StarcoderdataPython