text
stringlengths
0
174
license plate, by which it can be referred to. And this coding trick enables statements of
number theory to be understood on two different levels: as statements of number theory,
and also as statements about statements of number theory.
Once Godel had invented this coding scheme, he had to work out in detail a way of
transporting the Epimenides paradox into a numbertheoretical formalism. His final
transplant of Epimenides did not say, "This statement of number theory is false", but
rather, "This statement of number theory does not have any proof". A great deal of
confusion can be caused by this, because people generally understand the notion of
"proof" rather vaguely. In fact, Godel's work was just part of a long attempt by
mathematicians to explicate for themselves what proofs are. The important thing to keep
in mind is that proofs are demonstrations within fixed systems of propositions. In the case
of Godel's work, the fixed system of numbertheoretical reasoning to which the word
"proof" refers is that of Principia Mathematica (P.M.), a giant opus by Bertrand Russell
and Alfred North Whitehead, published between 1910 and 1913. Therefore, the Godel
sentence G should more properly be written in English as:
This statement of number theory does not have any proof in the system of Principia
Mathematica.
Incidentally, this Godel sentence G is not Godel's Theorem-no more than the Epimenides
sentence is the observation that "The Epimenides sentence is a paradox." We can now
state what the effect of discovering G is. Whereas the Epimenides statement creates a
paradox since it is neither true nor false, the Godel sentence G is unprovable (inside
P.M.) but true. The grand conclusion% That the system of Principia Mathematica is
"incomplete"-there are true statements of number theory which its methods of proof are
too weak to demonstrate.
Introduction: A Musico-Logical Offering
18
But if Principia Mathematica was the first victim of this stroke, it was certainly not the
last! The phrase "and Related Systems" in the title of Godel's article is a telling one: for if
Godel's result had merely pointed out a defect in the work of Russell and Whitehead, then
others could have been inspired to improve upon P.M. and to outwit Godel's Theorem.
But this was not possible: Godel's proof pertained to any axiomatic system which
purported to achieve the aims which Whitehead and Russell had set for themselves. And
for each different system, one basic method did the trick. In short, Godel showed that
provability is a weaker notion than truth, no matter what axiomatic system is involved.
Therefore Godel's Theorem had an electrifying effect upon logicians, mathematicians,
and philosophers interested in the foundations of mathematics, for it showed that no fixed
system, no matter how complicated, could represent the complexity of the whole
numbers: 0, 1, 2, 3, ... Modern readers may not be as nonplussed by this as readers of
1931 were, since in the interim our culture has absorbed Godel's Theorem, along with the
conceptual revolutions of relativity and quantum mechanics, and their philosophically
disorienting messages have reached the public, even if cushioned by several layers of
translation (and usually obfuscation). There is a general mood of expectation, these days,
of "limitative" results-but back in 1931, this came as a bolt from the blue.
Mathematical Logic: A Synopsis
A proper appreciation of Godel's Theorem requires a setting of context. Therefore, I will
now attempt to summarize in a short space the history of mathematical logic prior to
1931-an impossible task. (See DeLong, Kneebone, or Nagel and Newman, for good
presentations of history.) It all began with the attempts to mechanize the thought
processes of reasoning. Now our ability to reason has often been claimed to be what
distinguishes us from other species; so it seems somewhat paradoxical, on first thought,
to mechanize that which is most human. Yet even the ancient Greeks knew that reasoning
is a patterned process, and is at least partially governed by statable laws. Aristotle
codified syllogisms, and Euclid codified geometry; but thereafter, many centuries had to
pass before progress in the study of axiomatic reasoning would take place again.
One of the significant discoveries of nineteenth-century mathematics was that there are
different, and equally valid, geometries-where by "a geometry" is meant a theory of
properties of abstract points and lines. It had long been assumed that geometry was what
Euclid had codified, and that, although there might be small flaws in Euclid's
presentation, they were unimportant and any real progress in geometry would be
achieved by extending Euclid. This idea was shattered by the roughly simultaneous
discovery of non-Euclidean geometry by several people-a discovery that shocked the
mathematics community, because it deeply challenged the idea that mathematics studies
the real world. How could there be many differ
Introduction: A Musico-Logical Offering
19
ent kinds of "points" and "lines" in one single reality? Today, the solution to the dilemma
may be apparent, even to some nonmathematicians-but at the time, the dilemma created
havoc in mathematical circles.
Later in the nineteenth century, the English logicians George Boole and Augustus De
Morgan went considerably further than Aristotle in codifying strictly deductive reasoning
patterns. Boole even called his book "The Laws of Thought"-surely an exaggeration, but
it was an important contribution. Lewis Carroll was fascinated by these mechanized
reasoning methods, and invented many puzzles which could be solved with them. Gottlob
Lrege in Jena and Giuseppe Peano in Turin worked on combining formal reasoning with
the study of sets and numbers. David Hilbert in Gottingen worked on stricter
formalizations of geometry than Euclid's. All of these efforts were directed towards
clarifying what one means by "proof".